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Abstract

Topological phases of quantum matter have been at the forefront of physics research for the past forty

years, ever since the observation of the integer quantum Hall effect (IQHE) and, soon after, the discovery

that its precise quantization arises from the topology of the groundstate wavefunction. The realization that

the topology of the wavefunction can have meaningful physical consequences has been incredibly impactful,

and topology is now a core aspect of nearly every field of physics. In the context of condensed matter

physics, understanding the topology of the groundstate provides a means to further resolve distinct phases

of matter beyond the Landau-Ginzburg paradigm of spontaneous symmetry breaking. Rather than being

characterized by a local order parameter, topological quantum matter possesses robust global properties that

are of fundamental theoretical and practical importance. These global properties are often well-described

by topological effective actions, also known as topological response theories, that capture how the system

responds to probe gauge fields. The paradigmatic example of this is the electromagnetic response of the

IQHE, which is captured by the Abelian Chern-Simons action. These topological responses are an invaluable

tool, as they both provide insight into experimental signatures of topological phases of matter and have

significantly furthered our understand of quantum field theory.

In condensed matter physics, the geometry of the lattice plays a central role. The crystal lattice greatly

reduces the symmetry of the system from the full Poincaré group to that of a space group, enabling the emer-

gence of exotic phenomena that are otherwise prohibited. In topological phases of matter, these reduced

symmetries allow the further resolution of topological phases into those that cannot be adiabatically de-

formed into one another while preserving certain symmetries. These symmetry protected topological phases

(SPTs) are distinct from phases exhibiting topological order, which require no symmetry protection. Our

understanding of SPTs protected by crystalline symmetries is currently quite robust, with the recent advent

of topological quantum chemistry and the development of symmetry indicators for topological phases. In

parallel to these developments, there has been a recent resurgence of interest in gauging crystalline symme-

tries. Crystalline gauge fields are a tool that allow us to formally treat lattice defects as fluxes of crystalline

symmetries, placing them on the same footing as electromagnetic gauge fields that describe magnetic fluxes
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(fluxes of U(1) symmetry). As such, crystalline gauge fields enable the construction of topological effec-

tive actions that capture the coupling of electrons to the lattice geometry. These effective actions describe

mixed crystalline-electromagnetic response theories in which fluxes of crystalline symmetries induce electric

charge fluctuations, and, conversely, electromagnetic fluxes induces fluctuations of charges associated with

crystalline symmetries (namely crystal momentum and orbital angular momentum).

In this thesis we utilize the tool of crystalline gauge fields to study the crystalline-electromagnetic re-

sponse of a range of topological semimetals and insulators. In Chapter 2 we begin by developing a unifying

framework based on translation gauge fields that allows us to study the translation-electromagnetic responses

of topological semimetals in up to D = 3 dimensions. This framework not only illuminates relations between

previously-known topological semimetals, but also allows us to identify a new class of quadrupolar nodal

line semimetals. Within this framework, we exhaustively construct all topological effective actions that can

be built by combining electromagnetic and translation gauge fields. In Chapter 3 we identify tight-binding

lattice models that host each such action and confirm the predicted responses through microscopic and nu-

merical calculations. We find that the coefficients of these responses are universally proportional to weighted

momentum-energy multipole moments of the nodal points (or lines) of the semimetal.

In Chapter 4 we expand the study of translation-electromagnetic responses to higher order topological

semimetals. To do so we construct a model Hamiltonian for a time-reversal symmetric Weyl semimetal with

a quadrupolar arrangement of higher-order Weyl nodes. It is known that similar first order Weyl semimetals

exhibit a translation-electromagnetic response in which charge is bound to screw dislocations and momentum

is bound to magnetic flux, both in an amount proportional to the chirality-weighted quadrupole moment of

the Weyl nodes in the momentum space. We show that the higher-order nature of the Weyl nodes in our

model leads to the emergence of an additional translation-electromagnetic surface response with a coefficient

proportional to the dipole moment of the surface Dirac nodes that emerge with open boundary conditions.

We also find that the quadrupole moment of the crystal momentum, a previously unstudied quantity, provides

a link between the bulk and surface translation-electromagnetic response coefficients.

Finally, we study in Chapter 5 the rotation-electromagnetic response of the insulator that emerges from

a Dirac semimetal coupled to charge density wave order. Using analytic and numeric methods we show

the following. First, when the CDW is lattice-commensurate, disclination-line defects of the lattice have a

quantized charge per length. Second, when the CDW is inversion-symmetric, disclinations of the lattice have

a quantized electric polarization. Third, when the CDW is lattice-commensurate and inversion-symmetric,

disclinations are characterized by a “disclination filling anomaly” – a quantized difference in the total charge

bound to disclination-lines of Dirac-CDW with open and periodic boundaries. We construct an effective

response theory that captures the topological responses of the Dirac-CDW insulators in terms of a total
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derivative term, denoted the R ∧ F term. The R ∧ F term describes the crystalline analog of the axion

electrodynamics that are found in Weyl semimetal-CDW insulators. We also use the rotation-electromagnetic

response theory to classify the strongly correlated topological phases of three-dimensional charge-ordered

Dirac-semimetals.
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Chapter 1

Introduction

Some of this chapter is adapted from Mark R. Hirsbrunner, Oleg Dubinkin, Fiona J. Burnell, and Taylor

Hughes, arXiv preprint arXiv:2309.10840.

1.1 Topological quantum matter

Topological phases of matter are one of the most active and important areas of modern condensed matter

physics. The field initiated with the experimental observation of the integer quantum Hall effect (IQHE),

in which the Hall conductivity of a two-dimensional electron gas is precisely quantized to integer multiples

of e2/h in the presence of sufficiently strong magnetic fields [1]. Shortly after the discovery of the IQHE, it

was shown that the Hall conductivity is a topological invariant of the bandstructure, explaining the integer

quantization of the quantity [2]–[5]. Topological invariants are global properties of quantum systems that are

insensitive to local details. In the case of the Hall conductivity, the invariant for non-interacting insulators

the integral of the Berry curvature over the Brillouin zone (BZ),

σxy =
e2

h
C, C = − 1

2π

∫
d2kFxy, Fxy = −i

[〈
∂u

∂kx

∣∣∣∣ ∂u∂ky
〉
−
〈
∂u

∂ky

∣∣∣∣ ∂u∂kx
〉]

, (1.1)

where |u⟩ are the Bloch states and C is the Chern number. It is straightforward to show that this integral

is insensitive to generic variations in Bloch states, |u⟩ → |u⟩+ |δu⟩, and is thus a topological invariant. It is

also manifestly global and involves all length scales in the problem, since it is an integral over momentum

space. The non-local nature of topological phases places them outside the Landau-Ginzburg classification

scheme, in which phases of matter are differentiated by patterns of spontaneous symmetry breaking and

local order parameters. Put simply, topological phases of matter cannot be distinguished from another by
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local properties.

The fractional quantum Hall effect (FQHE), in which the Hall conductance is quantized in rational frac-

tions of e2/h, was first observed just years after the initial discovery of the IQHE [6]. Despite their apparent

similarity, FQHE and IQHE represent two drastically different classes of topological phases, topologically

ordered phases and symmetry protected topological (SPT) phases, respectively. SPTs are phases that can-

not be adiabatically deformed into trivial insulators while maintaining their symmetry and can exist with

or without interactions [7]–[17]. Topologically ordered phases are inherently interacting and are character-

ized by the presence of anyonic excitations with fractional statistics and by special patterns of long-range

entanglement [18]–[21]. Topological order also implies a groundstate degeneracy that is distinct from the

trivial groundstate degeneracy of phases resulting from spontaneous symmetry breaking. The degenerate

groundstates of a spontaneously broken symmetry state can be differentiated by local order parameters, while

groundstates with topological order are related to each other by non-local operators such as non-contractible

Wilson loops.

SPTs are universally characterized by topological invariants of the bandstructure. The IQHE is charac-

terized by the Chern number, and its quantization is protected by U(1) charge conservation symmetry [2]–[5].

Another important SPT is the one-dimensional Su-Schrieffer-Heeger (SSH) model [22], [23]. When chiral

symmetry is enforced, the topological invariant characterizing the SSH model is the chiral winding number

of the Hamiltonian [24]. In three spatial dimensions, time-reversal symmetric insulators are characterized

by their axion Θ angle, which is quantized to 0 or π [25], [26]. As discussed above, the Hall conductance

of two-dimensional topological insulators is proportional to the Chern number [2]–[5]. Similarly, the parity

of the chiral winding number of the SSH chain is proportional to the electric polarization, and the theta

angle of three-dimensional topological insulators is proportional to the magnetoelectric polarizability [25]–

[28]. The Hall conductivity, polarization, and magnetoelectric polarizability are all examples of topological

electromagnetic responses. The relation between topological invariants and quantized responses like these is

quite general, and topological responses are, in fact, a key manifestation of electronic topology in solids.

These electromagnetic topological responses are obtained by coupling the electronic degrees of freedom

of a system to a probe (non-dynamical) U(1) electromagnetic gauge field and integrating out the electrons,

which produces an effective action for probe field:

e−iSeff[Aµ] =

∫
DψDψ̄e−iS[ψ,ψ̄,Aµ]. (1.2)

Topological responses appear in the effective action as terms that are independent of the metric, i.e., they

are functions only of the topology of the manifold, not the geometry. One such term is the Chern-Simons
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action,

SCS[Aµ] =
C

4π

∫
A ∧ dA, (1.3)

from which one can obtain the charge and current responses by taking functional derivatives with respect to

Aµ,

j0 =
δSCS[Aµ]

δA0(x)
=

C

2π
Bz(x)

ji =
δSCS[Aµ]

δAi(x)
=

C

2π
ϵijEj ,

(1.4)

The first line is the Středa effect, in which electric charge is bound to magnetic flux in systems with finite Hall

conductivity, and the second line describes the Hall conductivity [29], [30]. This effective action faithfully

captures the electromagnetic response of the IQHE, but it it not clear upon inspection that SCS is gauge-

invariant.

Applying a gauge transformation Aµ → Aµ + ∂µω, we find that the action changes by a surface term

SCS[Aµ + ∂µω] = SCS[Aµ] +
C

4π

∫
d(ω ∧ dA). (1.5)

This term vanishes if ω is chosen to be zero at the boundary or, if ω is finite, when there are no magnetic

monopoles. Consider now placing the system on a sphere instead of a plane, and Wick rotate to imaginary

time to compactify the time direction to a circle with circumference β. Place a magnetic monopole within

the sphere, which by Dirac quantization must have flux

∫
S2

F12 = 2πn, n ∈ Z, (1.6)

and take the field configuration to be static. The resulting effective action is

SCS[Aµ] =
C

2π

∫ β

0

dτ

∫
S2

d2xA0F12, (1.7)

where the extra factor of two comes from an integration by parts. If we choose a large gauge transformation

for which ω winds by 2π around the Euclidean time axis, ω(τ, xi) = 2πτ/β, then the value of A0 shifts by

2π/β, and the effective action changes by δS = 2πC. Because the action appears in the partition function

as exp(−iSCS), to ensure gauge invariance we need C to take integer values. The preceding calculation was,

admittedly, quite convoluted. However, it shows that we can obtain the quantization of the Hall conductivity

just by studying the gauge invariance of the Chern-Simons effective action! This demonstrates the power of

topological responses for understanding the physics of topological quantum matter.
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The topological electromagnetic responses of one- and three-dimensional insulators are captured by the

effective actions

S1D = P

∫
dA (1.8)

and

S3D =
Θ

8π2

∫
dA ∧ dA, (1.9)

both of which are manifestly gauge invariant. Their coefficients are instead quantized by symmetries, chiral

and time-reversal for the one- and three-dimensional cases, respectively, rather than by enforcing gauge

invariance. More general topological terms can be written down if one considers gauge fields for symmetries

beyond U(1) charge conservation. For example, the physics of the quantum spin Hall effect, a time-reversal

symmetric topological insulator phase in two dimensions, can be understood by constructing a topological

effective action that couples the electromagnetic gauge field to the gauge field for Us(1) spin conservation

symmetry [31].

Interestingly, certain distinctive features of the electromagnetic responses of topological semimetals are

described by response theories that are closely analogous to those of topologically insulating phases, but with

unquantized coefficients that are determined by the momentum-space and energy locations of the point or line

nodes [32]–[37]. For point-node semimetals, the relevant response coefficients are momentum-energy vectors

determined as a sum of the momentum and energy locations of the point-nodes weighted by their chirality

(or by their helicity, for Dirac semimetals), yielding a momentum-energy space dipole. For example, the low-

energy, nodal contribution to the anomalous Hall effect tensor of a 3D Weyl semimetal is determined by the

momentum components of this momentum-energy dipole vector. The quasi-topological response coefficients

of topological semimetals are not strictly quantized since they can be continuously tuned with the nodal

momenta. However, the forms of the responses share many features with topological insulators in one lower

dimension, or perhaps more precisely, with weak topological insulators in the same dimension [38], [39].

Indeed, topological semimetals and weak topological insulators both require discrete translation symmetry

to be protected and both are sensitive to translation defects such as dislocations [40].

This sensitivity to discrete translation symmetry points out an important flaw in our discuss so far —

the topological insulators discussed above are all protected by local anti-unitary symmetries, but we have

not yet considered crystalline symmetries. One of the major accomplishments in the field of topological

quantum matter is the “ten-fold way”, an exhaustive classification of topologically distinct phases in any

dimension that are protected by time-reversal, charge-conjugation (particle-hole), and/or chiral symmetry,

each of which is local and anti-unitary [7], [41], [42]. The importance of crystalline symmetries for topological

classification was appreciated early on, with generalizations to inversion-, rotation-, and mirror-symmetric
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systems following shortly afterward [39], [43]–[47]. Full classification of SPTs with crystalline symmetries is

a challenging problem, but the tools needed to do so were developed over the next decade, culminating in the

advent of topological quantum chemistry and the theory of symmetry indicators, which enabled the successful

classification of topological phases protected by any magnetic or non-magnetic space group [48]–[57]. While

the classification is now complete, a deep understanding of the many topological phases encompassed by this

classification is an important area of active research.

Motivated in part by this progress in crystal topology, there has been a recent resurgence of interest

in developing gauge theories of crystalline symmetries [58]–[67]. We saw above that topological response

theories are a powerful tool for studying topological phases of matter. It therefore stands to reason that

gauge theories of crystal symmetries are indispensable for understanding crystalline topological insulators.

As with gauge fields of on-site symmetries, the physical content of crystalline gauge fields is encoded in

their fluxes. For both on-site and crystalline symmetries, particles encircling fluxes of the symmetry are

acted upon by an element of the symmetry group. For a magnetic flux, this group element is just a phase.

For crystalline symmetry, the group element can be a translations, rotation, or any other element of the

crystalline symmetry group. These crystal fluxes are actually well-known under a different name: lattice

defects [68]. This connection to lattice defects shows that crystalline gauge fields are quite physical, despite

appearing as an abstract mathematical construction. Crystalline gauge fields are a powerful tool, and there

exists now a large body of work employing them to study the crystalline responses of topological quantum

matter [62]–[64], [68]–[84]. In the following sections we provide detailed background information on lattice

defects and crystalline gauge fields, and the remainder of this thesis is a collection of our work applying

these techniques to study the translation- and rotation-electromagnetic responses of topological insulators

and semimetals.

1.2 Topological lattice defects

Lattices are described by their space group, the set of symmetry operations that leaves the lattice invariant.

There are 230 three-dimensional space groups and 17 two-dimensional ones, also known as the wallpaper

groups. The elements of the space group are products of point group operations, like rotations and reflections,

with translations, applied in that order. If all the elements of a space group, excepting translations, leave

a single common point fixed, the group is called symmorphic. Non-symmorphic groups contain symmetry

elements combining point group operations with partial translations by fractional primitive lattice vectors.

Space groups can also be extended to include the time-reversal operation to form magnetic space groups,

which are useful for describing crystals with spin ordering. In this thesis we only consider symmorphic
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(a) (b) (c) (d)

Figure 1.1: Illustrations of isolated disclinations on the square lattice: (a) plaquette-centered with ΘF = π/2,
(b) plaquette-centered with ΘF = −π/2, (c) vertex-centered with ΘF = π/2, and (d) vertex-centered with
−π/2.

(a) (b)

Figure 1.2: Illustrations of a method for constructing plaquette-centered disclinations. For a systems with
Cn rotation symmetry, a disclination with ΘF = 2πm/n can be constructed by stitching together n − m
defect-free patches of the lattice. The illustrations depict (a) ΘF = π/2 and (b) ΘF = −π/2 plaquette-
centered disclinations of a C4 symmetric lattice, where the defect-free patches are shown in black and the
connections between them in red.

non-magnetic space groups, and only work with defects of rotation and translation symmetries.

We first consider defects of n-fold rotation symmetry, Cn. Defects of rotations symmetry are called

disclinations and can be formed via the insertion or removal of wedges of the lattice that subtend an angle

2πm/n, such that the lattice is locally symmetric under rotations by Cn±m. Disclinations are characterized

by their Frank angle ΘF , the angle by which a vector rotates when it traverses a loop around the disclination

core. Examples of ΘF = π/2 and ΘF = −π/2 disclinations on the square lattice are depicted in Fig. 1.1.

For a given Frank angle, there are two distinct types of disclination, plaquette-centered (Fig. 1.1 a and b)

and vertex-centered (Fig. 1.1 c and d), that are differentiated by the location of their rotation center. Before

discussing the physical consequences of the differing locations of the rotation center, it is prudent to first

discuss the construction of disclinations in more detail.
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Figure 1.3: Illustrations depicting a method to iteratively build vertex-centered disclinations. For a discli-
nation with ΘF = 2πm/n on a Cn-symmetric lattice, the method begins by patterning n − m plaquettes
around a central vertex. The disclination is grown is placing additional rows of plaquettes along each face
of the boundary and connecting the faces with n−m additional plaquettes at the corners of the boundary.
The illustrations depict from left to right growing the disclination layer by layer, with shading indicating the
plaquettes added in each step. The top and bottom rows depict ΘF = π/2 and Θf = −π/2 disclinations,
respectively, on the square lattice.

Plaquette-centered disclinations of a Cn symmetric lattice with ΘF = 2πm/n can be constructed by

stitching together n −m identical defect-free patches of the lattice, as depicted in Fig. 1.2. One corner of

each patch is placed at a vertex of the central plaquette, forming an n−m-sided polygon. The edges of each

section emanating from the central plaquette are stitched together to complete the disclination. Vertex-

centered disclinations are constructed iteratively by building up plaquettes around the central vertex, as

shown in Fig. 1.3. The first step is to place n −m plaquettes around the central vertex. The disclination

is built out by placing an additional plaquette onto each edge of the boundary, then placing an additional

plaquettes at each of the n −m corners to close the new outer ring of plaquettes. This process is iterated

to grow the disclinated lattice. These algorithms are neither unique nor physically motivated, but they are

useful tools for building explicit lattices onto which tight-binding Hamiltonians can be placed for numerical

calculations.

We now consider the physical differences between plaquette and vertex-centered disclinations. Lattice

defects are characterized by the holonomy of closed loops containing the defect core. In other words, encircling

defects is equivalent to the application of a symmetry element of the space group, and distinct defects

correspond to distinct symmetry elements. In practice, the holonomy can be calculated by traversing a

closed loop, i.e. translating by nxx̂, followed by ny ŷ, −nxx̂, and finally −ny ŷ. The defect enclosed by such
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Figure 1.4: The holonomy of (a) plaquette- and (b) vertex-centered disclinations with ΘF = −π/2. The red
arrow depicts the loop upon which the holonomy is calculated, 3ŷ → −3x̂→ −3ŷ → 3x̂. The blue arrows and
labels show the local frame of the coordinate system at each point along the path, from which the rotation
of the local frame by −π/2 can be clearly seen. The loop around the plaquette-centered disclination fails to
close by the vector −3x̂, and the loop around the vertex-centered disclination fails to close by −3x̂+ ŷ. The
vector by which the path fails to close is not universal and depends on the path chosen, but the difference
in this vector between plaquette- and vertex-centered disclinations is path-independent. The dashed lines
indicate a choice for the branch-cut across which the local Hilbert space is rotated.

a loop will be characterized by the angle by which the local frame has rotated (the Frank angle ΘF ) and the

vector separating the starting and ending points of the loop. In Fig. 1.4 we show such loops encircling −π/2

plaquette and vertex-centered defects on the square lattice. Comparing the local frame at the start and end

of each loop, it is clear that the Frank angle of the disclination is −π/2. Both loops fail to close, with the start

and end points separated by the vectors −3x̂ and −3x̂+ ŷ for the plaquette and vertex-centered disclinations,

respectively. The translation that is enacted by such a loop around a disclination is dependent on the path,

meaning it is not a topological quantity and cannot be used to characterize the defect. However, the

difference in the translation affected by the plaquette and vertex-centered disclinations is path-independent.

This difference arises from the different location of the rotation center for each disclination.

The composite defect formed by two disclinations with opposite Frank angles has a zero net Frank angle,

but a loop encircling it will generally not close, so the holonomy still includes a translation part. Such a defect

is called a dislocation, a defect solely of translation symmetry. The simplest construction of a dislocation is

obtained by joining a plaquette-centered disclination with a vertex-centered disclination of opposite Frank

angle. Two versions of this construction are depicted in Fig. 1.5, the two combinations of a ±π/2 plaquette-

centered disclination with a ∓π/2 vertex-centered disclination. Also shown in Fig. 1.5 are loops around the

dislocations, drawn in blue. In flat space these loops would close, and the vector separating the start and

end of the loop is the Burgers vector that defines the dislocation. More general dislocations can be formed

8



(a) (b)

Figure 1.5: Depictions of two dislocations formed by combining (a) a ΘF = π/2 plaquette-centered discli-
nation and a ΘF = −π/2 vertex-centered disclination and (b) a ΘF = −π/2 plaquette-centered disclination
and a ΘF = π/2 vertex-centered disclination. The rotation parts of the individual disclinations cancel,
leaving only the path-independent translation part of the composite defect. The blue path indicates a closed
loop upon which the holonomy of the dislocation can be computed, and the red arrow is the Burgers vector
of the dislocation that closes the loop. The shaded plaquettes indicate the plaquette-centered disclination,
and the links connecting to the core of the vertex-centered disclination are indicated by dashed lines.

by combining different types of disclinations (plaquette-centered with plaquette-centered, vertex-centered

with vertex-centered) and by placing the disclinations further apart. The Burgers vector of such disclination

dipoles will scale linearly with the separation between the disclination centers, but the general form of the

Burgers vector is complex. Only in the extreme case of zero separation between the disclinations do the

translation parts properly cancel, permitting the description of plaquette and vertex-centered disclinations

as differing by fusion with a dislocation. In this thesis we do not consider systems that are sensitive to both

rotation and translation symmetry, so this subtlety will not arise here. We note that such systems do exist

and their response to disclinations is an important question for future research.

Our discussion of defects has so far been limited to defects of rotation and translation symmetry in two

dimensions. Fortunately, these defects generalize straightforwardly to three dimensions. Disclinations can

be stacked to form disclination lines. Disclination lines are uncommon in real materials, but they provide an

useful theoretical tool for understanding the role of rotation symmetry in topological phases. Dislocations

are somewhat more complex in three dimensions, as we have to consider cases in which the Burgers vector

either lies in the plane of the defect or is perpendicular to it. The former case is an edge dislocation and

corresponds to the insertion of partial planes of sites into the lattice. The latter case are screw dislocations,

in which the planes of the lattice are cut along a line extending from the axis of the defect and stitched back

together such that each plane connects to a neighboring plane, rather than itself. The planes of the lattice

wrap around the screw dislocation core like the threads of a screw, as implied by the name.
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Figure 1.6: A lattice containing a dipole of plaquette-centered disclinations. The central plaquettes of the
ΘF = π/ and ΘF = −π/2 disclinations are marked in blue and red, respectively. The gray shading indicates
the additional lattice sites inserted by the disclination dipole, which form a dislocation with Burgers vector
3x̂+ 3ŷ.

1.3 Tight-binding Hamiltonians on defected lattices

Much of this thesis is concerned with performing explicit calculations using model tight-binding Hamiltonians

on defected lattices, so here we provide details on how to construct such Hamiltonians. For simplicity, we

consider a Hamiltonian with only nearest-neighbor hopping elements,

Ĥ =
∑
R⃗

H0c
†
R⃗
c
R⃗
+Hxc

†
R⃗+x̂

c
R⃗
+Hyc

†
R⃗+ŷ

c
R⃗
+H.c., (1.10)

where R⃗ enumerates lattice sites. For any lattice, defected or not, the first step of constructing the Hamil-

tonian is placing the onsite term H0 on each lattice site. For a lattice with a disclination, the local frame

cannot be chosen consistently across the entire lattice and there must exist a branch cut emanating from

the disclination core across which the local frame rotates abruptly. Away from this branch cut, the local

geometry determines the placement of hopping elements Hx and Hy on the links of the lattice. For links that

connect across the branch cut, the hopping elements must be rotated accordingly. For example, consider the

branch cuts depicted in Fig. 1.4. The local frame is rotated by π/2 on either side of the dashed line, so the

hopping elements crossing that line must take the form

Hdisc = HxUπ/2 = Uπ/2Hy, (1.11)

where Uπ/2 is the unitary part of the rotation operator. This procedure is sufficient to place a tight-binding

Hamiltonian on a plaquette-centered disclination, but there is an additional complication for vertex-centered
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disclinations. Any hopping elements including the central vertex of a vertex-centered disclination are not

determined by the bulk Hamiltonian. Any coupling that respects the rotation symmetry of the disclination is

permissible, but often the central vertex is left disconnected from the rest of the lattice. These considerations

generalize straightforwardly to Hamiltonians with hopping elements to further neighbors, and disclination

lines can be treated in momentum space along their axis.

Placing a tight-binding Hamiltonian on a lattice with a dislocation is significantly simpler. Because the

local frame can be consistently defined across the lattice in the absence of disclinations, the hopping elements

connecting to the sites added by the dislocation are determined by the local geometry. The exception

is that the hopping elements connecting to sites at the end of a dislocation are not determined by the

bulk Hamiltonian and must be chosen according to additional, problem-specific considerations. Similar to

disclination lines, screw dislocations can be treated in momentum space along the screw axis by modifying

the hopping elements that span a branch cut extending from the screw axis. An electron traversing a loop

containing a screw dislocation is translated along the screw axis by the Burgers vector b⃗. When translation

symmetry is maintained along the screw axis, the crystal momentum along that axis is a good quantum

number, and the electron wavefunction acquires a phase eik⃗·⃗b. The dislocation can therefore be accounted

for by multiplying any hopping elements crossing a branch cut extending from the screw axis by this phase

factor. These generalized momentum-dependent Peierls factors are a powerful tool that we employ extensively

in this thesis.

Treating edge dislocations with momentum-dependent Peierl factors is somewhat more subtle. Consider

a lattice on a cylinder with infinite length and a circumference of N sites. We would like to add a dislocation

to the lattice by inserting a semi-infinite row of sites while maintaining translation symmetry along the

circumference of the cylinder. Unfortunately, it is not possible to do so except in three extreme cases:

implementing all-to-all hoppings for the lattice sites other either side of the end of the dislocation, removing

all hopping elements connecting across the end of the dislocation, or inserting an integer multiple of N

dislocations. None of these is physically motivated, but we can implement a compromise that captures

most of the essential physics by using momentum-dependent Peierls factors. Consider an electron with

definite momentum k along the circumference of the cylinder. In the absence of a dislocation, it acquires a

phase eikN upon traversing the circumference. Inserting a dislocation corresponds to locally increasing the

circumference of the cylinder by the Burgers vector b, such that the phase acquired is instead eik(N+b). This

phase can be accounted for by multiplying hopping elements along the circumference by the phase eikb/N .

This is equivalent to shifting the momentum to k → k(1 + b/N) on the portion of the cylinder threaded by

the dislocation. Implementing this momentum shift allows us to treat the dislocation in momentum space,

sidestepping the issue of implementing translation-invariant hopping elements at the end of the dislocation.
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However, this technique does not account for the change in the number of electrons caused by the insertion

of a dislocation. The implications of this shortcoming are an important topic for future research, but we do

not consider it in this thesis.

1.4 Crystalline gauge fields

The tool we use in this thesis to capture the coupling between electrons and lattice geometry is crystalline

gauge fields. In this section we review their formulation, focusing on analogies between them and conventional

gauge fields. In an abstract sense, conventional gauge fields for on-site symmetries describe the twisted

boundary conditions of each closed space-time loop. A clear example of this is the electromagnetic gauge

field, Aµ. This field emerges from gauging global U(1) charge conservation symmetry, so loop integrals of

Aµ accordingly measure the winding of the phase of the wavefunction around the loop. This is simply the

Aharanov-Bohm effect, in which electrons acquire a phase upon encircling a magnetic flux. In this example,

the loop is taken around a defect of the gauge field. One can also consider threading the magnetic flux

through the loop made by any periodic spatial direction, i.e. through the center of a torus. In that case the

gauge field measures the phase electrons acquire upon traversing the periodic axis of space. This picture

can be extended to other on-site symmetries. The general statement is that traversing space-time loops is

equivalent to acting on the system with an element of the gauged symmetry group, G, and the flux of the

gauge field, A, through the loop can be identified with this symmetry operator,

∮
γ

A = g ∈ G. (1.12)

This statement is also true for crystalline symmetries, but gauging them is more subtle because they are

both discrete and do not leave space-time invariant. We first consider gauging translation symmetry on

lattices without disclinations. We discuss gauging rotation symmetry next, and then briefly summarize some

difficulties of gauging both simultaneously.

Keeping the picture of loop integrals corresponding to symmetry operators in mind, it is convenient to

begin by considering weak lattice deformations. The quantity of interest is

eai = δai −
∂ua

∂xi
, (1.13)

where the Kronecker δai encodes the fixed reference lattice vectors, ua is the lattice displacement, and ∂ua

∂xi

is the distortion tensor [85]. Integrals of this quantity around closed loops captures the net Burgers vector,
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ba, of all the dislocations contained within the loop [85],

∮
eai dxi =

∮
∂ua

∂xi
dxi = ba. (1.14)

We would like to identify the components of b⃗ as elements of the discrete translation symmetry group, Txi
,

which would allow us to define ea as the gauge fields for discrete translation symmetry. However, the vector

defined above contains two contributions from the lattice geometry, integer multiples of primitive lattice

vectors and generic contributions arising from local elastic deformation of the lattice sites. The stress and

strain fields arising from such local elastic deformations can couple to electrons, but we are only interested

in the coupling between electrons and topological lattice defects. By discarding the part of ea arising from

local elastic deformations, we can treat ea as integer-valued gauge fields for discrete translation symmetry.

The gauge freedom of these fields corresponds to arbitrary relabeling of lattice sites and arises from the local

elastic deformations that we discard. In earlier work, e.g., Ref. [72], these translation gauge fields could

have been called frame-fields, but the translation gauge fields encode only the translation part of geometric

distortions, whereas the frame fields also carry rotational information.

These translation gauge fields are locally flat, dea = 0, and loop integrals of them describe the topology

of the lattice. Integrals of translation gauge fields along non-contractible loops that encircle the entire lattice

capture either the dimensions of the lattice,

∮
Ca

ea = La, (1.15)

or the shear of lattice when integrating the field a along an axis other than a,

∮
Ca

eb, (1.16)

i.e. the displacement of the slice of the lattice at xa = 0 from the slice of the lattice at xa = La. Dislocations

correspond to defects of the translation gauge field, and integrals of ea along loops containing such defects

produce the net Burgers of all dislocations contained by the loop,

∮
ea = ba. (1.17)

We can equivalently write this as a surface integral of the exterior derivative of the translation gauge field,

∫
S

dea = ba, (1.18)
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from which we can see that the dislocation density is analogous to the magnetic field arising from the U(1)

electromagnetic gauge field. By the same analogy, the equivalent of electric fields are time-dependent strains.

The analogy between dislocations and magnetic flux is what underlies the appearance of momentum-

dependent Peierl factors in Hamiltonians placed on lattices containing dislocations, as discussed in the

previous section. Conventional Peierls phases capture the U(1) phase acquired by electrons as they encircle

a magnetic field (U(1) flux). Importantly, the acquired phase is proportional to the electric charge, because

this is the coupling constant between electrons and the electromagnetic field. Translation gauge fields instead

couple to electrons through the crystal momentum. The momentum dependence of the Peierls factors we

use to account for dislocations arises from simple substitution in conventional Peierls factors of the electric

charge with crystal momentum, and it is simply a manifestation of the electron being translated as it winds

around the defect. In Appendix A.1, we show more explicitly how translation symmetry can be gauged under

a teleparallel constraint of the underlying system geometry, which provides more clarity on why translation

gauge fields are charged under crystal momentum.

It is clear that there are many ways in which eaµ can be treated on equal footing with the electromagnetic

gauge field, but there are some important distinctions. First, the fields eaj in Eq. (1.13) are not true gauge

fields. This becomes important when considering the possible response actions: while the total charge of

a system strictly conserved, momentum conservation is not similarly inviolable (see e.g. [86]–[88] for some

interesting physical consequences of this distinction). Second, responses involving eaµ are predicated on the

existence of translation symmetry. Thus, if the response is characterized by a boundary effect or a response

to a flux, we must be careful to ensure that (at least approximate) translation symmetry is maintained in

order to connect the coefficient of the response action to explicit model calculations. Indeed, some responses

are not well-defined unless configurations that maintain translation symmetry are used. This is unlike the

electromagnetic response for which U(1) charge symmetry is maintained independent of the geometry and

gauge field configuration. Other important distinctions have been discussed in recent literature that has

begun putting the gauging of discrete spatial symmetries on firmer ground [58], [62], [89]. One important

distinction is that the translation gauge fields correspond to a discrete gauge symmetry ZNa , where Na is

the number of unit cells in the a-th direction. This discreteness can play an important role in the topological

response properties [62], [63], but such details do not arise in this thesis.

Gauging rotation symmetry proceeds similarly to translation symmetry. Consider a lattice with Cn

rotation symmetry about some axis. Defects of rotation symmetry are disclinations, around which the local

coordinate frame rotates non-trivially. To account for the rotation of the local coordinates, we can introduce a

Zn-valued gauge field ω. More specifically, if the rotation gauge field is non-zero on a particular link, ωij = m

mod n, the local coordinate frames on the sites i and j are rotated from each other by the angle 2πm/n.
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The gauge freedom of this field corresponds to the freedom to arbitrarily choose the local coordinate frame

at each site. The physical content of ω is again captured by integrals of it along closed loops. An integral

around a defect of the field,
∮
ω = m ̸= 0 corresponds to a disclination with Frank angle ΘF = 2πm/n.

In dimensions D >= 3, it is possible to also consider integral of ω along non-contractible loops spanning

the system, which indicate rotated boundary conditions, but it is unclear what the interpretation of such

integrals is for D = 2.

Although rotation gauge fields appear more straightforward than translation gauge field, they are quite

complex to implement alongside each other. Here we briefly consider the difficulty of doing so, following the

treatment of the topic in Ref. [62]. This point is made most clear by explicitly treating them as discrete

lattice gauge fields, rather than approximating them as continuous gauge fields as we do in the rest of

this thesis. Consider a combined discrete gauge field for translations and rotations of a two-dimensional

system with Cn rotation symmetry, Bij = (R⃗ij ,Ωij), defined on links of the lattice directed from site i to

site j. The notation R⃗ij is simply a compact way to write the components of the translation gauge field,

R⃗ij = (exij , e
y
ij , e

z
ij). The composition of two elements of this field is given by

(R⃗1,Ω1)(R⃗2,Ω2) = (R⃗1 + U(Ω1)R⃗2,Ω1 +Ω2), (1.19)

where U(Ω) is a rotation matrix. We see that the rotations combine straightforwardly, but composing

translations involves rotating one of the two vectors. This is the central challenge of gauging both symmetries

simultaneously.

A gauge transformation of this field is determined by the choice of the gauge variable on each lattice site,

(r⃗i, ωi), under which the field transforms as

(R⃗ij ,Ωij) →
(
U(−ωi)

(
R⃗ij + U(Ωij)r⃗j − r⃗i

)
,−ωi +Ωij + ωj

)
. (1.20)

The physical quantities of these gauge fields are the symmetry fluxes, which in the lattice description are

given by

dA[ijk] = Aij +Ajk −Aik. (1.21)
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Fluxes of the rotation part of the gauge field are gauge invariant,

dΩ′[ijk] = Ω′
ij +Ω′

jk − Ω′
ik

= (−ωi +Ωij + ωj) + (−ωj +Ωjk + ωk)− (−ωi +Ωik + ωk)

= Ωij +Ωjk − Ωik

= dΩ[ijk],

(1.22)

but the same cannot be said for the translation part:

dR⃗′
ij [ijk] = R⃗′

ij + R⃗′
jk − R⃗′

ik

= U(−ωi)
(
R⃗ij + U(Ωij)r⃗j − r⃗i

)
+ U(−ωj)

(
R⃗jk + U(Ωjk)r⃗k − r⃗j

)
− U(−ωk)

(
R⃗ik + U(Ωik)r⃗k − r⃗i

)
.

(1.23)

This only reduces to dR⃗ij in the case that both ωi and Ωij vanish. This variation under a gauge transfor-

mation arises from the fact that we have not taken into account the local change of the coordinate frame

along the loop [ijk]. The complicated change of R⃗ under gauge transformations makes it quite difficult to

construct gauge invariant quantities from the field.

One natural approach to solving this problem is to modify the translation gauge fields such that the

rotation of the local frame is accounted for when adding fields on different links. Consider the product of the

crystalline gauge field along some path between two arbitrary sites 0 and n, B01B12 . . . Bn−1,n. Expanding

out this product yields

B01B12 . . . Bn−1,n =

(
n−1∑
k=0

U (C01 + C12 + · · ·+ Ck,k−1) R⃗k,k−1,

n−1∑
k=0

Ck,k−1

)
. (1.24)

Each translation component is rotated by the sum of all preceding rotation components in the sum. This

product keeps track of all the rotations along the path from the arbitrary origin (0) to the point k, enabling

the parallel transport of R⃗ between different sites on the lattice. Using this path to construct a modified

translation gauge field

R⃗(0)
k,k+1 = U(C01 + C12 + · · ·+ Ck−1,k)R⃗k,k+1, (1.25)

we can attempt to define a Burgers vector via the loop integral

∮
γ

R⃗(0). (1.26)
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This becomes after a gauge transformation

∮
γ

R⃗(0)′ = U(−ω0)
(
R⃗01 + U(Ω01)r⃗1 − r⃗0

)
+ U(Ω′

01)U(−ω1)
(
R⃗12 + U(Ω12)r⃗2 − r⃗1

)
+ . . .

+ U(Ω′
01 + · · ·+Ω′

n1,n)U(−ωn)
(
R⃗n0 + U(Ωn0)r⃗0 − r⃗n

)
= U(−ω0)R⃗01 + U(−ω0 +Ω01)R⃗12 + · · ·+ U(−ω0 +Ω01 + · · ·+Ωn−1,n)R⃗n0

+ U(−ω0 +Ω01)r⃗1 + U(−ω0 +Ω01 +Ω12)r⃗1 + · · ·+ U(−ω0 +Ω01 + · · ·+Ωn0)r⃗0

− U(−ω0)r⃗0 − U(−ω0 +Ω01)r⃗1 − · · · − U(−ω0 +Ω01 + · · ·+Ωn−1,n)r⃗n

= U(−ω0)

∮
γ

R⃗(0),

(1.27)

assuming there are no disclinations such that
∮
γ
Ω = 0. This definition of the Burgers vector is independent

of the translation part of the gauge transformation but rotates according to the change in the local frame at

the origin. This is sensible, as rotating the local frame should rotate the Burgers vector.

One would hope that dR⃗(0) would be a well-defined symmetry flux defining the dislocation density, since

the loop integral of R⃗(0) seems like a sensible definition of the Burgers vector. However, this quantity is

non-local, origin-dependent, and not gauge invariant. It is clear that constructing a well-defined translation

symmetry flux is a subtle challenge, but it is possible [62]. In this thesis we do not study systems that

are sensitive to both translations and rotations in the same plane, so such a construction is not necessary.

However, it is an important consideration for future work studying combined translation- and rotation-

electromagnetic responses of three-dimensional systems.

1.5 Outline

So far we have reviewed the relevant history of topological quantum matter, the utility of effective response

theories for studying topological phases, the types of topological lattice defects that exist in crystals, how

to place tight-binding Hamiltonians on defected lattices, and how crystalline gauge fields can be used to

capture lattice geometry. In the remainder of this thesis, we apply these tools to study the crystalline-

electromagnetic response of a wide range of systems. We begin in Chapter 2 by developing a unified theory

of topological response theories that can be built by combining electromagnetic and translation gauge fields.

We identify topological semimetals that host each of these responses and calculate the response coefficients

through a combination of the gradient expansion procedure, dimensional reduction, compactification, and
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the Kubo formula. In Chapter 3 we verify these effective response theories through microscopic and numeri-

cal calculations employing tight-binding models. In Chapter 4 we apply the ideas developed in the previous

two chapters to study the translation-electromagnetic responses of a higher order topological semimetal.

Using a combination of analytic and numerical tools, we show that the higher order topological semimetal

hosts both bulk and surface translation-electromagnetic responses, the coefficients of which are related by

the bulk quadrupole moment of crystal momentum, a previously unstudied quantity. Finally, in Chapter 5

we turn to studying the rotation-electromagnetic response of a novel insulator that arises from coupling a

Dirac semimetal to charge density wave (CDW) order. We show that the anomalous unquantized rotation-

electromagnetic response of conventional Dirac semimetals is elevated to a quantized response in the resulting

Dirac-CDW insulator. The rotation-electromagnetic response binds a quantized charge per length to discli-

nation lines and leads to a disclination filling anomaly, a difference in the charge bound to disclination lines

with open and periodic boundary conditions.
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Chapter 2

Anomalous

translation-electromagnetic responses

in semimetals

This chapter is adapted from Mark R. Hirsbrunner, Oleg Dubinkin, Fiona J. Burnell, and Taylor Hughes,

arXiv preprint arXiv:2309.10840.

2.1 Introduction

In this chapter we study the topological responses of 1D, 2D, and 3D topological semimetals coupled to

electromagnetic and translation gauge (strain) fields. In addition to the well-studied case where the nodal

points form a dipole in the BZ, we also study cases where the point-nodes have momentum-energy quadrupole

or octupole patterns. Our approach allows us to make clear connections between a wide variety of response

theories across dimensions, and clarifies relationships between many of the response theories we discuss.

We find that the chirality-weighted momentum-energy multipole moments of the semimetals determine new

types of quasi-topological responses to electromagnetic fields and strain. We are able to explicitly derive

many of these responses from Kubo formula calculations (sometimes combined with dimensional reduction

procedures [26]). We also extend our results to the responses of nodal line semimetals (NLSMs) and construct

a new type of NLSM with an unusual crossed, cage-like nodal structure. In the next chapter we explicitly

study these families of response theories using lattice model realizations.

This chapter is organized as follows. In Sec.2.2 we provide an overview of and intuition about the
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response theories that we discuss in more detail in later sections, and in the following sections we derive a

family of effective actions that describe mixed crystalline-electromagnetic responses coupling electromagnetic

and translation gauge fields in various spatial dimensions. We begin in section 2.3 by deriving the effective

response theories of 2D semimetals. We use these 2D responses as guides to derive the responses of 1D

semimetals in section 2.4 and the responses of 3D nodal line semimetals in section 2.5. The anomalous

nature of semimetals in 3D makes direct calculation of their responses quite subtle, so we next derive in

section 2.6 the responses of 4D semimetals. In section 2.7 we both consider boundary responses of and apply

compactification procedures to 4D semimetals to obtain response theories for 3D semimetals.

2.2 Overview of Response Theories

The systems we consider in this article all exhibit U(1) charge conservation and discrete translation symmetry

in at least one spatial direction. In the presence of these symmetries we can consider the responses to

background field configurations of the electromagnetic gauge field Aµ and the collection of translation gauge

fields eaµ. For example, if the system exhibits translation symmetry in the x-direction, then we can consider

coupling the system to the field exµ. Our goal is to study low-energy response theories of electrons coupled

to translation and electromagnetic gauge fields.

Using this framework, our goal is to consider the low-energy responses of electrons to the background

electromagnetic and translation gauge fields. Given a translation-invariant Bloch Hamiltonian H, the re-

sponse theories we consider can, in principle, be derived from correlation functions of the electromagnetic

current

jµ = e
∂H

∂kµ
, (2.1)

and the crystal momentum current

J µ
a = ℏka

∂H

∂kµ
, (2.2)

where the former couples to Aµ and the latter to eaµ (see App. A.1 for more details for the latter). Indeed, we

take exactly this approach in Sections 2.3-2.7 to derive response actions for 2D and 3D systems. While our

explicit derivations are important for precisely determining the coefficients of the response actions we study,

it will be helpful to first motivate the overarching structure that connects a large subset of these response

theories. We also note that alternative approaches to determining some of the response actions we discuss

have been proposed in Refs. [63], [78], [79], and where the results overlap with ours, they agree.

To understand the connections between the response theories we study, it is useful to begin by reviewing

the well-known dimensional hierarchy of response theories of strong topological insulators [26]. We show the
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Figure 2.1: (a) A dimensional hierarchy of theories describing responses of strong topological insulators. The
theories are related by dimensional reduction (θ symbol, green arrow) [26], taking the boundary response
((1/2)∂ symbol, purple arrow), or adiabatic pumping (œ symbol, red arrow) [5]. (b) A dimensional hierarchy
of insulating systems with mixed crystalline-electromagnetic responses. The theories are related by stacking
(layer symbol, dark red arrow) and cutting (scissor symbol, blue arrow). (c) A family tree of dimensional
hierarchies establishing connections between responses of strong TIs and insulators with mixed crystalline-
electromagnetic responses. (d) Illustrations representing the nature of the phases constituting the hierarchy
depicted in (c). (i) A single isolated charge. (ii) A line of charges forming a lattice. (iii) An insulating chain
having a quantized charge polarization. (iv) A two-dimensional lattice of charges. (v) A two-dimensional
weak topological insulator where polarized chains are stacked transverse to their polarization. (vi) A two-
dimensional Chern insulator having chiral edge states indicated by red arrows. (vii) A three-dimensional
lattice of charges. (viii) A three-dimensional lattice built from a two-dimensional array of polarized chains;
alternatively, a stack of two-dimensional weak topological insulators. (ix) A three-dimensional stack of
Chern insulators forming a time-reversal breaking weak topological insulator. (x) A three-dimensional strong
topological insulator with surface Dirac cones.

general structure in Fig. 2.1(a), where the response terms are built solely from the electromagnetic gauge

field. Furthermore, Chern-Simons and θ-term response actions appear in even and odd spatial dimensions,

respectively. There are a number of connections between the theories in different dimensions, and we will

now review three of them. First, a Chern-Simons action in D spatial dimensions can be dimensionally

reduced to a θ-term action in (D-1)-dimensions by compactifying one spatial direction [90], [91]. The (D-

1)-dimensional system can also represent a TI if the value of θ is quantized to be 0orπ by a symmetry that

protects the (D-1)-dimensional topological insulator [26]. Second, one can consider the reverse process in

which quantized adiabatic pumping [5] in (D-1)-dimensions converts a θ-term action to a D-dimensional

Chern-Simons action. Finally, a θ-term action for a (D-1)-dimensional topological insulator exhibits a half-

quantized (D-2)-Chern-Simons response on boundaries where θ jumps by π. These general relationships are

summarized in Fig. 2.1(a) where each type of relationship is color- and symbol-coordinated.

Next, consider the less familiar set of relationships in Fig. 2.1(b) between gapped theories with mixed
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crystalline-electromagnetic responses arising from effective actions containing both Aµ and eaµ fields. We

emphasize that the precise relationships we refer to in Fig. 2.1(b) are for gapped systems where the coefficients

of the actions are quantized. In contrast, for the majority of this chapter we focus on the quasi-topological

responses of gapless systems which take similar forms, but with non-quantized coefficients. Remarkably, many

of the actions we discuss for insulators can be generalized to the non-quantized case. For semimetals, however,

the dimensional relationships we point out are more akin to physical guides than a precise prescription for

deriving matching coefficients in-between dimensions.

With this caveat in mind, let us consider the family of theories in Fig. 2.1(b). In 0D we can consider the

response action for a gapped system of electrons, S[A] = Q
∫
dtA0, which represents a system with charge

Q = eNe where Ne is the (integer) number of electrons. Stacking these 0D systems in a discrete, translation-

invariant lattice in the x-direction, generates a line of charges. Indeed, stacking produces the response for a

translation invariant line-charge density which is captured by the next action in the sequence in Fig. 2.1(b),

i.e., Q
∫
A ∧ ex = Q

∫
dxdt(A0e

x
x − Axe

x
0). In this action the first term represents the charge density along

the line, while the second term represents a current generated if the lattice of charges is moving. The latter

consequence becomes manifest in the weakly distorted lattice limit since the current is proportional to the

displacement rate: j ∼ ex0 ∼ ∂ux

∂t .

One can also imagine a reverse process in which a single unit cell is cut out of a translation-invariant line

of charge at integer filling. Since the system is gapped and translation invariant, this results in a move in

the opposite direction in Fig. 2.1(b), i.e., from A ∧ ex in 1D to A in 0D with the same integer coefficient Q.

We can use this example to highlight our caveat about gapped vs. gapless systems mentioned above. That

is, while it is reasonable to have a 1D gapless system with non-quantized (i.e., non-integer) charge (per unit

cell) described by the 1D action, the cutting procedure will not work properly at non-integer filling since the

result will be a 0D point with a fractional charge.

In comparison to the response sequence for strong TIs, we see that stacking is the analog of pumping for

the translation gauge field 1. While pumping adds an extra electromagnetic gauge field factor A, stacking

adds an extra translation gauge field eD+1, where D+1 is the stacking direction. As a result, given any action

in the strong TI sequence, we can stack copies to get the response action of a primary weak TI (stacks of

co-dimension-1 strong TIs, e.g., lines stacked into 2D) by adding a wedge product with eD+1. We can push

the stacking idea further to generate secondary weak TIs (stacks of co-dimension-2 strong TIs, e.g., lines

stacked into 3D) by a wedge product with eD+1 ∧ eD+2, and so on.

The stacking and cutting procedures are not the only relationships between the response theories in

1As mentioned, this analogy is precise only for gapped systems. For gapless systems the analogy predicts the correct form
of the action, but does not uniquely determine the coefficient.
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Fig. 2.1(b). Just as in the strong TI sequence, there exist connections between the boundary properties of

some D-dimensional systems and the bulk response of a (D-1)-dimensional system. For example, the 2D

response action in Fig. 2.1(b) represents the response of a stack of Su-Schrieffer-Heeger chains (SSH) [22],

each with a quantized polarization of e/2. The boundary of such a 2D system is a line of charge on the edge,

albeit with a density of e/2 electrons per unit cell on the edge line instead of the integer density obtained

by stacking integer-filled 0D points. As such, the boundary of the 2D A∧ dex action represents a line-charge

described by the action A ∧ ex, but with a half-integer coefficient.

Combining the dimensional relationships in the sequences of both Fig. 2.1(a) and (b) allows us to construct

family tree of related theories. We show this tree in Fig. 2.1(c), including response actions in 0, 1, 2, and

3 spatial dimensions. In 0D there is only an integer electron charge response that couples to A0. For 1D,

one can either stack charges to form a line of charge (upper branch), or consider an electrically polarized TI

(lower branch) where the charge is split in half and moved to opposing ends of the chain while the interior

remains neutral. In 2D one can stack line charges to get a plane of charge (top branch), stack 1D polarized

TIs to get a weak TI (middle branch), or pump charge in a 1D TI to generate a 2D Chern insulator (bottom

branch).

In 3D the set of responses is richer. Stacking plane charges generates a 3D volume of charges (top branch),

stacking Chern insulators generates a 3D primary weak TI (second from bottom branch), and stacking 2D

weak TIs generates a 3D secondary weak TI built from 1D polarized wires (second branch from top). The

other well-known possibility is the magneto-electric response for a 3D strong TI [26], [27] (bottom branch).

Although it is not shown, this theory is related to a 4D quantum Hall system via pumping (3D to 4D) or

dimensional reduction (4D to 3D) [26]. The final option we consider, which is the middle branch enclosed

by a dotted rectangle, is
∫
dA ∧ dea. This response theory has not been previously studied in detail. This

theory is a total derivative, and yields a gapped boundary with an electric polarization (e.g., a stack of SSH

chains on the boundary). This is reminiscent of an electric quadrupole (higher-order) response [92], [93], and

we explore this connection further in Sec. 2.7.

While the above discussion centers on gapped systems, our primary focus is on gapless topological

semimetals. Importantly, each of the actions in the family tree in Fig. 2.1(c) that contain a translation

gauge field can also represent a contribution to the response of various types of metals or topological semimet-

als [32]–[36], [63], [77]–[79], [94]. This is because many semimetals can be generated by translation-invariant

stacking of lower dimensional topological phases. Since the momentum ka in the stacking direction is con-

served, one can consider adding up the set of topological response terms for each gapped ka. A semimetal

represents a scenario where the coefficients of these topological terms at each ka are quantized and have

discrete jumps at ka that contain a nodal point. For example, the 2D electric polarization response of a
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Figure 2.2: (a) Fermi-surfaces of a 3D time-reversal invariant Weyl semimetal with a quadrupole Weyl node
configuration. Red and blue colors denote positive and negative Berry-curvature respectively. The associated
action has a coefficient matrix Qab which is symmetric and proportional to the Weyl-node quadrupole
moment. For this configuration the coefficients Qxx and Qyy are non-vanishing. (b) Similar to subfigure (a)
except it is the Fermi surfaces for a 2D Dirac semimetal having four Dirac nodes in a quadrupole pattern.
The action is described by a symmetric matrix of coefficients Qab. (c) the Fermi surface of an unusual cage-
like nodal line semimetal built from stacking the Dirac node quadrupole semimetal in subfigure (b). The
action has a set of coefficients Bab,c which is anti-symmetric in a and b. Heuristically the action in (b) can
generate the action in (a) by adiabatic pumping, or can generate the action in (c) by stacking.

stack of 1D TIs becomes the response of a 2D Dirac semimetal if the wires forming the stack are coupled

strongly enough to close the insulating gap [36]. In the presence of reflection symmetry, each momentum in

the stacking direction has a quantized charge polarization that jumps when the momentum hits a gapless

2D Dirac point. Additionally, the 3D response of a stack of Chern insulators becomes the non-quantized

anomalous Hall effect response of a time-reversal breaking Weyl semimetal, in which each fixed-k plane that

does not intersect a Weyl point carries a quantized Chern number that jumps at a Weyl point [32]–[35].

While many of these response theories have been discussed in detail before, only a few works have high-

lighted the contributions from the translation gauge fields [63], [73], [77]–[79], [86], [94], [95]. As such, a

large fraction of this chapter is devoted to explicit derivations of the response coefficients of the actions in

Fig. 2.1(c) that have couplings to the translation gauge fields. We leave explicit calculations of the physical

response phenomena in representative model systems to the next chapter.

Before moving on to more explicit derivations, we first provide here motivation for three additional

response theories that lie outside the family tree in Fig. 2.1(c). As mentioned above, a remarkable feature

of the response actions of point-node semimetals is that their coefficients are determined from the energy-

momentum locations of the nodal points. Indeed, for the relevant response actions in Fig. 2.1(c), the

coefficients are obtained as a chirality-weighted momentum dipole moment of the point-nodes (note that Dirac

points do not have a chirality, nevertheless there is a signed quantity that plays the same role). Interestingly,

recent work on rank-2 chiral fermions and Weyl semimetals with a chirality-weighted momentum quadrupole
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moment [63], [77], [78], [94] has unveiled a new set of response theories. This category of theories contains

actions that include factors of more than one translation gauge field of the same type (e.g., ea∧deb, where a =

b), and as such, does not appear in the family tree in Fig. 2.1(c). This also implies that the translation gauge

field factors in these response theories cannot be obtained by the conventional stacking of lower dimensional

systems that we discussed above, since stacking produces wedge products with distinct translation gauge

fields.

In Fig. 2.2 we show three response theories that follow this pattern along with representative Fermi

surfaces of systems hosting the response theories. Fig. 2.2(a) shows the Fermi surface structure of a 3D time-

reversal invariant Weyl semimetal with a Weyl node quadrupole moment. The response action of this system

is mixed between electromagnetic and translation gauge fields, and the inset in the Fermi-surface figure lists

which coefficients Qab are non-vanishing. Some details of this response were discussed in Refs. [63], [77], [94],

the former of which connects the response to rank-2 chiral fermions on the surface of the 3D Weyl semimetal.

Fig. 2.2(b) shows the Fermi surface structure of a 2D Dirac semimetal with a Dirac node quadrupole structure.

This response represents a momentum current response to a translation gauge field. Its form shares some

similarities with the torsional Hall viscosity [72], [95]–[98], though we leave a precise connection to future

work. Finally, in Fig. 2.2(c) we show the Fermi-surface for an unusual nodal line semimetal formed from

stacking the Dirac node quadrupole semimetal of Fig. 2.2(b). While one may naively expect this system

to host two independent Fermi rings, we instead find a new type of Fermi-surface structure in which the

Fermi lines join at two crossings to form a cage. The symbols on the right-hand-side of Fig. 2.2 indicate

the connections between these theories: (i) the response of the nodal line structure is a stacked version of

the 2D Dirac node quadrupole semimetal response from Fig. 2.2(b), and (ii) one can heuristically consider

the four-node Weyl response in Fig. 2.2(a) to be a dimensional extension of the response in Fig. 2.2(b) via

pumping.

Hvaing described the forms of the various response actions of interest, in the following sections we

determine their coefficients. All of the response actions in Fig. 2.1(c) that contain only electromagnetic

gauge fields represent insulators, and their coefficients have been studied in detail (e.g., see Ref. [26]). The

actions containing translation gauge fields can represent insulators or gapless systems, and the two can often

be distinguished by the values of the coefficients. That is, for insulators we expect the coefficients to be

quantized in some units (in even spatial dimensions they are quantized in the presence of some symmetry),

while for topological semimetals we expect the coefficients to be a tunable function of the momentum and

energy locations of the nodal points or lines. Our focus here is on 2D Dirac, 3D Weyl, and 3D nodal line

semimetals. Interestingly, some of the response coefficients for metals/semimetals can take the same values

allowed for an insulator, although this would typically require fine-tuning, or extra symmetry. For example,
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a 1D system can have compensating particle and hole Fermi surfaces such that the total filling is an integer,

as one would find in an insulator, yet the system is still gapless. In such a case we will show that the system

has additional response terms that have coefficients that are incompatible with a gapped insulator.

It is important to acknowledge a key qualitative difference between these types of topological semimetals.

Namely, we recall that 2D topological Dirac semimetals and 3D nodal line semimetals require symmetry

(the composite T I symmetry) to guarantee the local stability of the gapless points/lines in momentum

space. This is inherently different from the case of 3D Weyl semimetals, for which the nodes require no

extra symmetry to protect their gaplessness. A Weyl node can be gapped out only by bringing another Weyl

node of opposite chirality to the same point in the Brillouin zone. A similar story applies to (semi)metallic

systems in 1D: each gapless point has a well-defined chirality defined as the sign of the Fermi velocity, and

a gap can be opened only by overlapping Fermi points of opposite chiralities.

This distinction in symmetry protection is important for the response theories describing Dirac and

Weyl semimetals as it reflects the well-known structure of anomalies in even and odd spatial dimensions.

Furthermore, it will impact our strategy for deriving the response coefficients for these systems. As an

example, the response properties of 2D Dirac semimetals can be determined straightforwardly from the

Kubo formula if we first apply a symmetry-breaking perturbation that weakly gaps out the nodes. The

resulting insulator response can then be taken to the semimetallic limit by tuning the perturbation to zero.

Hence, the effective response action for such systems can be obtained by treating the system as an insulator

and applying the Kubo formula, or more generally, a gradient expansion procedure. This method can be

applied to 2D and 4D Dirac semimetals, and consequently 3D nodal line semimetals since they are just

stacks of 2D Dirac semimetals. For such semimetals we actually have a choice of what symmetry to break,

e.g., inversion or time-reversal. Which one we need to break depends on the nodal configuration and the

action we are intending to generate. For example, in the case of a 2D Dirac semimetal with a pair of

nodes, breaking time-reversal is well-studied and generates a quantum Hall response via a Chern-Simons

term. However, breaking inversion symmetry is relatively less-studied and generates a mixed Chern-Simons

response between electromagnetic and translational gauge fields. This is corroborated by the fact that the

electromagnetic Chern-Simons action breaks time-reversal, while the mixed Chern-Simons term with these

fields breaks inversion. We show that the mixed Chern-Simons term has a well-defined limit as the gap closes

and inversion symmetry is restored, which leads to a non-trivial response action for the 2D Dirac semimetal.

Alternatively, the response of isolated chiral gapless points in 1D and 3D can be determined if they are

viewed as theories that live on the boundary of a higher-dimensional topological insulator or topological

semimetal. In the presence of gauge fields, the higher-dimensional bulk generates a current inflow to the

boundary to compensate the anomalous response of the gapless boundary modes. From this perspective, one
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expects that the effective response action of Weyl semimetals in odd spatial dimensions can be obtained by

taking the boundary contribution of a higher-dimensional system. There are likely other methods that can be

applied to derive these response actions in their intrinsic spatial dimension, e.g., via the subtle introduction

of an auxiliary θ-field, but we choose our procedure since it reinforces the dimensional relationships discussed

in the previous section and requires fewer formal tools.

Our strategy for deriving the general form of the coefficients of mixed crystalline-electromagnetic re-

sponses begins with deriving effective response actions in even spatial dimensions, i.e., 2D and 4D. We do

so by identifying gradient expansion contributions (see Appendix A.2 for a brief review) that contain an

appropriate effective action constructed out of translational (eλ) and electromagnetic (A) gauge fields. The

response of semimetals in odd spatial dimensions is then obtained by looking at the boundary of response

theories defined in one higher dimension.

2.3 Effective responses of 2D semimetals

In this subsection we derive the coefficients of two 2D response actions that contain translation gauge fields,

namely response action (v) from Fig. 2.1(c), and the response action in Fig. 2.2(b). We find that the

coefficients of these actions are characterized by the dipole and quadrupole moments of the Berry curvature

in the 2D Brillouin Zone, respectively. Specializing to 2D Dirac semimetals, we find the distribution of Berry

curvature is sharply localized as ±π-fluxes at the Dirac nodes. Hence, the coefficients become proportional

to the dipole and quadrupole moment of the distribution of Dirac nodes.

Dirac node dipole semimetal

First consider a gapped T -invariant system with broken I symmetry. Under these conditions the electro-

magnetic Chern-Simons term, which represents the Hall conductivity, vanishes. We can consider instead

the mixed linear response of a momentum current to an electromagnetic field, or vice-versa. Using the

Kubo formula, or applying the gradient expansion procedure described in App. A.2, we find the following

contribution to the effective action (when the chemical potential lies in the insulating gap) (See also [88]):

Se,A = −e
∫
d3r eαµ∂νAρ

∫
dωd2k

(2π)3
kαΩ

(3)
µνρ(ω, k), (2.3)

where

Ω(3)
µνρ(ω, k) = tr

(
G0

∂G−1
0

∂kµ

∂G0

∂kν

∂G−1
0

∂kρ

)
, (2.4)
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and G0(kµ) is the single-particle Green function. To extract the coefficient of the eα ∧ dA term, we contract

Ω
(3)
µνρ with the totally antisymmetric tensor 1

3!ε
µνρ. This gives the coefficient

cα = e
εµνρ

3!

∫
dωd2k

(2π)3
kα Ω(3)

µνρ(ω, k) (2.5)

of the response action

Se,A = cα

∫
eα ∧ dA. (2.6)

We note that Eq. 2.5 is very similar to the response coefficient of the standard electromagnetic Chern-

Simons term, excepting from the factor of kα in the integrand. As such, assuming α = x, y, we use a

well-established result to evaluate the frequency integral and obtain [99]:

εµνρ

24π2

∫
dωd2k Ω(3)

µνρ(ω, k) =
1

2π

∫
BZ

dkxdky Fxy(kx, ky), (2.7)

where Fxy is the Berry curvature. Hence, we can rewrite cα as an integral over the BZ by substituting this

relationship into Eq. 2.5 to find:

cα =
e

(2π)2

∫
BZ

dkxdky kαFxy(kx, ky). (2.8)

We have thus arrived at the result that cα is proportional to the α-th component of the dipole moment of

the distribution of Berry curvature. This coefficient can be non-zero since it is allowed by broken I and

preserved T , i.e., Fxy(k) = −Fxy(−k). We also note that cα is independent of the choice of zone center,

and shifts of k in the integrand in general, because the Chern number (Hall conductivity) vanishes in the

presence of T .

In a gapped T -invariant system, restoring I-symmetry forces cα to vanish, since Fxy(k) = 0. However,

in gapless systems this need not be the case. To see this, we apply our result from Eq. 2.8 to a 2D Dirac

semimetal by first introducing a weak perturbation VI that breaks I and opens up a small gap, and then

taking the limit VI → 0, in which inversion symmetry is restored. In the gapped system the Berry curvature

Fxy is distributed smoothly across the entire 2D BZ. In the gapless limit, the Berry curvature distribution

develops sharp peaks of weight π localized at the positions of the Dirac points:

Fxy =

ND∑
a=1

πχaδ(k− ka), (2.9)

where a runs over all Dirac nodes at momenta ka, and χa = ±1 is an integer indicating the sign of the
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π-Berry phase around the Fermi surface of the a-th Dirac point at a small chemical potential above the

node [36]. Ultimately, we find the effective response action of a Dirac node dipole semimetal is given by:

SDD =
ePα
4π

∫
eα ∧ dA, (2.10)

where

Pα =

ND∑
a=1

χak
a
α, (2.11)

is the dipole moment of the Dirac nodes.

Note that if the Dirac nodes meet at the zone boundary, they can be gapped even in the presence of

T I symmetry. The resulting insulating phase represents a weak TI with Pα = Gα, where Gα are the

components of a reciprocal lattice vector. In this case, the action in Eq. 2.10 describes a stack (i.e., a family

of lattice lines/planes corresponding to Ga) of 1D polarized TI chains aligned perpendicular to Ga. To see

this explicitly, we take Gx = 2π
ax

, and set eαβ = δαβ in Eq. 2.10 to obtain the action

e

2

∫
dx

ax

(∫
dydtEy

)
= Nx

e

2

∫
dydtEy, (2.12)

where Nx is the number of unit cells in the x-direction. This action is just Nx copies of the usual θ-term

action for 1D, electrically-polarized topological insulators (θ = π) parallel to the y-direction, stacked along

x̂.

We shown that Eq. 2.10 is a quasi-topological contribution to the response of a 2D Dirac semimetal where

the nodes have a dipolar configuration. However, there is another important subtlety that we must consider.

Earlier work shows that the electromagnetic response of 2D Dirac semimetals with both T and I symmetry is

an electric polarization proportional to the Dirac-node dipole moment [36]. Even more recently, connections

have been made between mixed translation-electromagnetic responses and the electric polarization [89]. Since

we have a clear derivation of the response term we can use our results to understand the precise connection

between the electric polarization and the coefficient cα of the eα ∧ dA response action. Using the standard

approach of Ref. [100], the polarization in 2D is

Pαe =
e

(2π)2
i

∫
BZ

d2k⟨uk|∂kαuk⟩ (2.13)

where Aα(k) = i⟨uk|∂kαuk⟩ is the Berry connection. Hence, we find that the electric polarization Pαe is
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related to cα by an integration by parts (See Appendix A.3):

Pαe =
e

(2π2)
εαβ

∫
d2k kβFxy +

e

2π
Wα

= ϵαβcβ +
e

2π
Wα,

(2.14)

where we set the lattice constants equal to unity and the Wilson loop

Wα =

∮
dkαAα(kα, kβ = π), (2.15)

is an integral of the Berry connection Aα along the α-th momentum direction at a fixed, inversion-invariant

transverse momentum kβ = π at the boundary of the BZ.

From this explicit relationship there are some immediate conclusions. First, in the Dirac semimetal limit

we reproduce the result of Ref. [36], where the polarization is proportional to the Dirac node dipole moment:

Pαe = e
2(2π)ε

αβPβ . Second, if we have broken inversion symmetry (while T is still preserved), we see that

the polarization and the coefficient cα are not quantized, and not equal to each other. This scenario can

be found in inversion-breaking insulators with a Berry curvature dipole moment. These insulators have a

charge polarization and also possess a mixed translation-electromagnetic response. However, we find from

this calculation and explicit numerical checks that they are generically inequivalent. Ultimately, this boils

down to the fact that the Wilson loop at the boundary of the BZ requires a symmetry to be quantized, e.g.,

mirror or inversion. Otherwise, the Wilson loop gives a contribution that distinguishes the polarization and

the mixed crystalline-electromagnetic responses. We leave a detailed discussion of this subtle distinction to

future work.

To summarize, Eq. 2.10 captures the generic mixed crystalline-electromagnetic response of the bulk of a

2D system with T -symmetry. In the limit of a Dirac semimetal, the coefficient of the response coincides with

the electric polarization of the system. We note that in this limit there are other non-vanishing response

terms since the system is gapless, but Eq. 2.10 represents a distinct contribution to the total response of the

system to electromagnetic and translation gauge fields. We study an explicit model with this response term

in Sec. 3.2.

Dirac node quadrupole semimetal

Here we discuss the response of quadrupole arrangements of 2D Dirac nodes, as shown in Fig. 2.2(b). If the

Chern number and momentum dipole moment Pα vanish, then the semimetal has a well-defined momentum

quadrupole moment that is independent of the choice of zone center. Here we show that such systems are
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described by the response action:

SDQ =
ℏQαβ

8π

∫
eα ∧ deβ . (2.16)

From the derivation in the previous subsection we anticipate that, in the limit of a Dirac semimetal band

structure, the coefficient Qαβ of this response action is related to the momentum quadrupole moment of

the Dirac nodes. To confirm this statement, let us consider the linear response of a momentum current to

a translation gauge field for a gapped system. From the Kubo formula, or gradient expansion, we find a

coefficient of the eα ∧ deβ term:

Qαβ ≡ 1

2

εµνρ
3!

∫
dωd2k

(2π)3
kαkβ Ω(3)

µνρ(ω, k). (2.17)

We can use the relationship mentioned in Eq. 2.7 to carry out the frequency integral to obtain the coefficient

of Eq. 2.16:

Qαβ =
1

π

∫
BZ

dkxdky kαkβFxy(kx, ky). (2.18)

To apply this to the Dirac node quadrupole semimetal shown in Fig. 2.2(b), we evaluate the response by

first introducing a symmetry-breaking mass term and study the topological response of the resulting gapped

system. The mass term breaks T but produces a vanishing total Chern number. In the example at hand,

this is accomplished by adding a k-independent term that opens a local mass of the same sign for each of

the four Dirac points in Fig. 2.2b. Such a mass term preserves I, which in the gapped system automatically

guarantees a vanishing dipole moment of the Berry curvature. This, together with the vanishing Chern

number, is necessary so that the momentum quadrupole moment is well-defined and independent of the

choice of zone center. For this scenario, in the limit that the perturbative mass goes to zero,

Qαβ =

ND∑
a=1

χak
a
αk

a
β , (2.19)

which is the Dirac node quadrupole moment. In Sec. 3.3 we explicitly study a model with this Berry

curvature configuration and non-vanishing Qαβ . We find that while the Dirac node dipole moment captures

the electric polarization (see Appendix A.3), the Dirac node quadrupole moment captures a momentum

polarization (see Appendix A.4), this time, without the subtlety of an additional Wilson loop contribution.

For comparison, the surface charge theorem relates the bulk electric polarization to a boundary charge, and

the bulk momentum polarization generates a boundary momentum.
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Figure 2.3: (a) One-dimensional band structure of an ordinary metal. The pair of gapless points is marked by
the sign of their respective chiralities, highlighting the momentum-space dipole characterizing the response
of the system. (b) Band structure of a 1D metal characterized by a momentum quadrupole moment. The
system has an integer (vanishing in this case) charge filling, but a non-zero momentum. (c) Band structure
of a 1D metal characterized by a momentum octupole moment. The system has an integer (vanishing)
filling, a vanishing momentum, but a non-vanishing expectation value for the square of the momentum. See
Appendix A.5.

2.4 Effective responses of 1D (semi)metals

Having derived the responses of 2D systems coupled to electromagnetic and translation gauge fields, here

we use Figs. 2.1(b) and 2.2 as guides to generate related responses in 1D and 3D. To calculate 1D responses

we consider boundary response of the 2D systems (this section), and we obtain responses of 3D nodal line

semimetals by stacking 2D responses (next section). We note that in the following discussion we treat

translation as a continuous symmetry (as in Appendix A.1, as this perspective is useful for obtaining the

correct response actions from our diagram calculations). One can see Ref. [63], for example, for a discussion

that treats the subtleties associated to having a discrete translation symmetry.

It is well-known that chiral modes in 1D are anomalous, i.e., charge is not conserved in the presence of an

electric field. This anomaly is resolved in 1D lattice models by fermion doubling, i.e., for every right-moving

chiral mode there is a corresponding left-moving mode that compensates the anomaly. While it is true that

the electromagnetic charge anomaly is resolved with such a lattice dispersion, the doubled system can still

be anomalous in a different sense if we have translation symmetry (see Ref. [63] for a similar discussion).

To be specific, in the presence of translation symmetry we can consider the momentum current in Eq. 2.2:

J µ
x = ℏkxjµ, where jµ is the particle number current. At low energies, current-carrying excitations lie in

the vicinity of Fermi points kF,αx and carry corresponding particle currents jµ(α). The total contribution to

momentum current from these low-lying modes is:

J µ
x =

∑
α

ℏkF,αx jµ(α). (2.20)
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In the simplest case of a nearest-neighbor lattice model with a single, partially-filled band, there are two

Fermi points: kF ≡ kF,Rx = −kF,Lx , with jµR = (ρR, vF ρR) and jµL = (ρL,−vF ρL), where ρ is the number

density. Interestingly, the momentum current in this scenario is

J µ
x = ℏkF (jµR − jµL), (2.21)

which, up to a factor of ℏkF , is just the axial current!

Importantly, even though this lattice model does not have an electromagnetic charge anomaly, ∂µ(ej
µ
L +

ejµR) = 0, it does have an axial anomaly:

∂µ(j
µ
R − jµL) =

eEx

πℏ
. (2.22)

Taking this point of view, we can reformulate the axial anomaly in this system as a mixed crystalline-

electromagnetic anomaly where an electric field Ex violates conservation of the kx momentum current,

∂µJ µ
x =

eℏkF

πℏ
Ex. (2.23)

More generally the anomaly is proportional to the momentum dipole moment of the Fermi points, which

replaces a factor of 2kF in Eq. 2.23 (see App. A.5).

There is a conjugate effect that occurs in an applied strain field, which can be implemented as a translation

electric field Exx = ∂xe
x
0 −∂texx. Naively, such a non-vanishing field will generate violations to the conservation

law for the usual electromagnetic current according to

∂µ(ej
µ) =

ekF

π
Exx , (2.24)

(again see App. A.5 for a more general expression in terms of the momentum dipole). However, this equation

is not quite correct for an isolated system with a fixed number of electrons, and hence, we must be careful

when considering time-dependent changes to exx.

To gain some intuition for Eq. 2.24, consider increasing the system size by one lattice constant a during

a time T by adding an extra site to the system:
∫
dxdt Exx = a (one can also think of threading a dislocation

into the hole of a 1D periodic system). From the anomaly equation we find that the amount of charge in

the system changes by ekFa/π, as one would expect for adding a unit cell to a translation-invariant system

with a uniform charge density ρ = ekF /π. However, there is a subtlety that we can illustrate by considering

a system with a fixed number of electrons Ne = kFLx/π that we strain by uniformly increasing the lattice
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constant. Assuming a uniform system, the anomalous conservation law in this case becomes

∂tρ = ∂t

(
ekF

π
exx

)
. (2.25)

Crucially, we note that if we increase the system size with fixed particle number, then kF will decrease.

Indeed, in the small deformation limit the momenta are proportional to (exx)
−1 since their finite size quanti-

zation depends inversely on the system size. Using this result, the conservation law becomes:

∂tρ =
e

π

(
exx∂tk

F + kF∂te
x
x

)
=
ekF

π
(−∂texx + ∂te

x
x) = 0 (2.26)

where we used ∂t(e
x
x)

−1 = −(exx)
−2∂te

x
x.

The outcome ∂tρ = 0 is the result one would expect by stretching the system uniformly while keeping

the number of particles fixed. To clarify, at a fixed particle number we know the total charge cannot change,

however it perhaps seems counter-intuitive that the density does not decrease if we stretch the system. The

reason is that the quantity ρ above, which is defined as δS
δA0

, is not a scalar density. Indeed, for general

geometries the scalar charge density is defined as

ρ̄ =
1

exx

δS

δA0
, (2.27)

where the exx is essentially playing the role of the determinant of a spatial metric. To calculate the total

charge we then use

Q =

∫
dx exxρ̄ =

∫
dx ρ. (2.28)

The scalar charge density ρ̄ decreases as the system is stretched since ∂tρ̄ ∝ ∂tPx, which decreases as the

system size increases at fixed electron number.

The effective response action of the 1D system can be derived as a boundary effective action of an

appropriate 2D theory. In fact, we have already seen such a 2D system when studying the 2D Dirac

semimetal with Dirac nodes arranged in a dipolar fashion. The bulk response for this 2D system with a

weak inversion-breaking gap is Eq. 2.10. As mentioned above, this bulk theory implies that the system has

an electric polarization. From the surface-charge theorem for polarization we expect that the boundary will

have a charge density equal the polarization component normal to the boundary. The contribution to the

buondary effective action from Eq. 2.10 is:

S∂ =
e

4π
Pα
∫

eα ∧A. (2.29)
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From this we can extract the boundary charge density: ρ∂ = e
2
P∂

2π e
∂
∂ where P∂ is the component along the

boundary, and e∂∂ is the diagonal translation gauge field component along the boundary that is simply equal

to unity in non-deformed geometries.

While the form of this action is what we expect for a 1D metal, the coefficient is half the size it should

be. The reason is that on the edge of the 2D Dirac semimetal, the momentum-space projections of the bulk

Dirac nodes in the edge BZ represent points where the edge-filling changes by ±e/2, [36] not ±e as would

be the case for a 1D Fermi-point in a metal. Hence for a metal we expect a result twice as large (we will

see a similar result in Sec. 2.7 when comparing the boundary response of a 4D system to that of a 3D Weyl

semimetal). Thus the action for the 1D system is

S1D,D =
e

2π
Pα
∫

eα ∧A. (2.30)

From this form we can identify Pα = (−∆µ/ℏ,∆kx) such that Px

2π is simply the filling fraction of the 1D

metal and Pt

2π measures the imbalance of left- and right-moving excitations in the system (∆µ = µR − µL).

Introducing a charge current vector

jµ =
e

2π
εµνPν =

e

2π
(∆kx,∆µ/ℏ)T (2.31)

we can recast Eq. 2.31 in the most familiar form: S1D,D =
∫
dtdx jµAµ. Thus, we have now generated

the action (ii) from Fig. 2.1(c). Let us also note that the edge states of the Dirac semimetal can be flat,

while the 1D context we mentioned above has a dispersion. However, the key feature of both cases is that

as momentum is swept across the 1D BZ (1D surface BZ for the 2D case) the filling of the states changes

in discrete jumps at either the Fermi points in 1D, or the (surface-projected) Dirac points in 2D. It is this

change in the filling that is captured by the quantity Px, and it does not depend on the dispersion in a

crucial way.

With this example in mind, we can ask what the analogous 1D boundary system is for the Berry curvature

quadrupole action Eq. 2.16. We mentioned that this bulk response represents a momentum polarization,

which implies that the boundary should have a momentum density parallel to the edge. Indeed, we expect

that such a 1D system will have a vanishing Fermi-point dipole moment (i.e., the filling is integer), but a

quadrupole moment that is non-vanishing (see Fig. 2.3(b)).

From the point of view of the translation gauge fields, such band structures are chiral since either the

right movers or left movers carry larger momentum charge. To see this, consider a 1D Fermi surface with

right-movers at momenta ±KF , and left-movers at momenta ±QF . Let us further restrict our attention to
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currents for which the net number of right-movers (and of left-movers) is zero, e.g. ρR(KF )+ρR(−KF ) = 0.

Defining δρR = (ρR(KF )− ρR(−KF )), and δρL = (ρL(QF )− ρL(−QF )), we see that the momentum gauge

field couples to

J µ
x = KF δρR +QF δρL . (2.32)

Thus we see that for KF ̸= QF (as in Fig. 2.3(b)), the momentum gauge field couples differently to right-

and left- moving density fluctuations. In the extreme limit that QF = 0, the momentum gauge theory is

fully chiral.

More generally, in a 1D system with a Fermi-point quadrupole given by (c.f. Eq. 2.19)

Qxx =

NF∑
a=1

= sgn(vFa)(k
(a)
x )2, (2.33)

and fixed electric charge, this chiral coupling leads to an anomaly in the presence of a non-vanishing trans-

lation gauge field:

∂µJ µ
x =

ℏQxx

4π
Exx . (2.34)

This anomaly implies that if we turn on a translation gauge field (e.g., via strain) then we will generate

momentum as shown in App. A.5 2.

The response theory describing such a 1D system is similar to that describing the chiral boundary of a

Chern-Simons theory. Indeed, if we start from Eq. 2.16 and derive the boundary response (and compensate

for a similar factor of two as mentioned above in the momentum-dipole case) we arrive at an effective action:

S = − ℏ
4π

∫
dtdx

(
Qxxe

x
xe
x
t +Qxte

x
xe
t
t

)
. (2.35)

In this effective action the momentum quadrupole moment of the Fermi points Qxx encodes the ground state

momentum density (see Appendix A.5). The quantity Qxt is the mixed Fermi-point quadrupole moment in

momentum and energy, but we leave a detailed discussion of such mixed moments to future work.

The arguments of this section can be extended to look at higher moments of the chirality-weighted Fermi

momenta, which are proportional to the ground state expectation values of higher and higher powers of

momenta. To describe these properties, and related response phenomena, we can introduce gauge fields

eabc... that couple to higher monomials of momentum, kakbkc . . . . For example, the fields that couple to zero

powers or one power of momentum are the electromagnetic A and translation gauge fields kxe
x respectively,

2As shown in the Appendix, this anomaly has two contributions. One comes from the low-energy currents that contribute
with a factor of 1/2π and a second from a change of system-size for a ground state carrying a non-vanishing momentum density
with a factor of −1/4π.
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and we could introduce a coupling kakbe
ab to the set of 1-form gauge fields eab, e.g., k2xe

xx. We describe the

hierarchical anomalies associated to these gauge fields in Appendix A.5.

2.5 Effective responses of 3D nodal line semimetals

Next we use our 2D results from Sec. 2.3 to generate the responses of two types of nodal line semimetals in

3D. To generate the two types we imagine stacking either the action in Eq. 2.10 or in Eq. 2.16. The action

resulting from stacking the former has been discussed in Refs. [37], [78]; the second is, to the best of our

knowledge, new. From our arguments for gapped systems in Sec. 2.2, we expect that the form of the actions

we obtain from stacking contain an extra wedge product with the translation gauge field in the stacking

direction. To be explicit, suppose we are stacking up 2D semimetals (that are parallel to the xy-plane) into

the z-direction. By stacking decoupled planes of the responses in either Eq. 2.10 or Eq. 2.16, we expect to

find

S =
ePα
4πaz

∫
ez ∧ eα ∧ dA, (2.36)

or

S =
ℏQαβ

8πaz

∫
ez ∧ eα ∧ deβ , (2.37)

respectively, where α, β = x, y. The forms of these actions match action (viii) in Fig. 2.1(c) and the action in

Fig. 2.2(c), respectively. We note that the stacked, decoupled systems simply inherit the response coefficient

of the 2D system.

We want to consider more general configurations of systems with stacked and coupled planes, perhaps

stacked in several directions. As we have seen, if the layers we stack are decoupled, then each layer contributes

the same amount. This contribution (for a stack in the z-direction) is captured by the integral 1
az

∫
ez = Nz

where Nz is the number of layers. However, if the layers are coupled, then each fixed-kz plane can have

a different amount of Dirac node dipole moment (Pα(kz)) or Dirac node quadrupole moment (Qαβ(kz)),

respectively. The total coefficient is determined by the sum over all values of kz. One can also have stacks

in any direction, not just the z-direction. Hence, in this more generic scenario the actions become

SDD3 = eBαβ
∫

eα ∧ eβ ∧ dA, (2.38)

and

SDQ3 = ℏBαβ,γ
∫

eα ∧ eβ ∧ deγ , (2.39)
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with coefficients

Bαβ =
1

4(2π)3
ϵαβσ

∫
d3k kδFσδ (2.40)

and

Bαβ,γ =
1

6(2π)3
ϵαβσ

∫
d3k kγkδFσδ. (2.41)

where Fµν is the Berry curvature of the kµkν-plane. These forms of the coefficients capture scenarios with

more complicated nodal line geometries. Indeed, as previously shown in Ref. [37], the coefficient Bαβ is

determined by the line nodes that have non-vanishing area when projected into the αβ-plane. Additionally,

for nodal line semimetals with T I symmetry the coefficient is proportional to the charge polarization in the

direction normal to the αβ-plane [37]. We can see this explicitly by integrating Eq. 2.40 by parts with the

same caveats mentioned in Sec. 2.3 surrounding Eq. 2.14.

Analogously, the coefficient Bαβ,γ can represent a kind of “momentum”-polarization where the polariza-

tion is again normal to the αβ-plane, and the charge that is polarized is the momentum along the γ-direction.

We can see this heuristically by integrating by parts using the derivatives in the Fσδ to find

Bαβ,γ ∼ − 1

2(2π)3

∫
d3k

(
ϵαβσkγAσ − ϵαβγkiAi

)
(2.42)

where we have used the ∼ symbol to indicate that there are boundary terms we have dropped that can be

important if the line nodes span the Brillouin zone. We can see from this from the that that the coefficient

for the case when α, β, γ are not all different, e.g. Bxz,x, is proportional to the polarization in the y-direction

(i.e. normal to the xz-plane) weighted by the momentum in the x-direction.

We note that for Bαβ to be well-defined, the Chern number in each plane must vanish. In addition to this

constraint, Bαβ = 0 is a necessary constraint for Bαβ,γ to be well defined. These hierarchical requirements are

analogous to the usual requirements for the ordinary (magnetic) dipole and (magnetic) quadrupole moments

of the electromagnetic field to be independent of the choice of origin. Here the role of the magnetic field

distribution is being played by Fσρ(k), and, for example, the constraint on the vanishing Chern number

eliminates the possibility of magnetic monopoles (i.e., Weyl points).

2.6 Effective responses of 4D semimetals

Our next goal is to determine the coefficients for the response actions of 3D Weyl point-node semimetals.

However, because the Weyl nodes in 3D exhibit an anomaly, the responses are subtle to calculate intrinsically

in 3D. Instead, to accomplish our goal we first carry out more straightforward calculations of the responses
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of 4D semimetals and return to 3D either by considering the boundary of a 4D system or by compactifying

and shrinking one dimension of the bulk. Hence, as a step toward 3D semimetals, in this section we provide

the derivation for effective response actions of semimetals in 4D.

The first action we consider is of the form

S = cα

∫
eα ∧ dA ∧ dA, (2.43)

where for our purposes α = x, y, z, w. Collecting all terms in the gradient expansion that have this field

content we obtain:

S =
e2

ℏ

∫
d5r eαµ∂νAρ∂σAτ ×

∫
dωd4k

(2π)5
kαΩ

(5)
µνρστ (ω, k), (2.44)

where

Ω(5)
µνρστ (ω, k) = tr

(
G0

∂G−1
0

∂kµ

∂G0

∂kν

∂G−1
0

∂kρ

∂G0

∂kσ

∂G−1
0

∂kτ

)
, (2.45)

and G0(ω, k) is the single-particle Green function. To determine the coefficient cα we project this coefficient

onto the totally antisymmetric part and then, just as in Eq. 2.7, we can carry out the frequency integral [99]

to obtain the simpler expression

∫
dωd4k

2π

εµνρστ
5!

kαΩ
(5)
µνρστ (ω, k) =

1

16

∫
BZ

d4k kαεijklF ijFkl. (2.46)

Hence, the response coefficient takes the form

cα =
e2

ℏ
1

16(2π)4

∫
BZ

d4k kαεijklF ijFkl =
e2Pα
16π2ℏ

, (2.47)

where we introduced

Pα =
1

16π2

∫
BZ

d4k kαεijklF ijFkl. (2.48)

As we see from this calculation, similar to 2D, the 4D response theories can be characterized by the

distribution of the quantity εijklF ijFkl across the 4D Brillouin zone. For our focus, let us consider the case

where the 4D system is a semimetal with a set of isolated Dirac points (linearly dispersing band touchings

where four bands meet). Without symmetry, these Dirac points are locally unstable in momentum space to

the opening of a gap. If we open up an infinitesimally small energy gap, the quantity εijklF ijFkl becomes

well-defined across the entire BZ and its distribution takes the following form in the massless limit:

εijklF ijFkl =

ND∑
a=1

16π2χaδ(k− ka). (2.49)
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If we substitute this into Eq. 2.48 then we immediately see that Pα becomes the momentum space dipole

of the set of 4D Dirac nodes. Let us also comment that if we integrate Eq. 2.48 by parts we see that Pα

can also be interpreted as a set of magneto-electric polarizabilities [26], [27]. Just as in the case of the

polarization of a 2D Dirac semimetal, the integration by parts will generate a boundary term that captures

the magneto-electric polarizability coming from the 3D boundaries of the 4D BZ. Hence, the connection

between the total magneto-electric polarizability and the mixed translation-electromagnetic response is only

exact in the symmetric limit when the boundary term is quantized.

In summary, a 4D response of a system characterized by a dipolar distribution of the εijklF ijFkl quantity

reads:

S =
e2Pα
16π2ℏ

∫
eα ∧ dA ∧ dA. (2.50)

Similar to 2D, if the dipolar response vanishes we can obtain a momentum quadrupole response coefficient

for the action:

S =
eQαβ

16π2

∫
eα ∧ deβ ∧ dA, (2.51)

where Qαβ is a symmetric matrix determined by the momentum space quadrupole moment of the 4D

Dirac nodes. Finally, if both the dipolar and quadrupolar responses vanish we can consider an octupolar

distribution that will give the response coefficient for the action:

S =
ℏOαβγ

48π2

∫
eα ∧ deβ ∧ deγ , (2.52)

where Oαβγ is determined by the momentum space octupole moment of the 4D Dirac nodes. We will leave

the discussion of octupolar configurations of Dirac and Weyl nodes to future work. We also mention that,

similar to 2D, for these responses to be independent of the choice of BZ origin we require that the second

Chern number of the 4D system vanishes. Alternatively, if the second Chern number is non-vanishing, then

the boundary of the system will contain a non-vanishing chirality of Weyl nodes. As such, the anomalous

charge response of the chiral boundary will not allow us to uniquely determine the momentum response on

the boundary.

Before moving on to 3D, let us briefly present some physical intuition about the response in Eq. 2.50. Con-

sider a 4D time-reversal and inversion invariant system having two Dirac nodes separated in the kz-direction.

To simplify the discussion, let us also assume the system has mirror symmetryMz. The assumed symmetries

imply that each fixed-kz volume can be treated as an independent 3D insulator having 3D inversion sym-

metry, and hence the magneto-electric polarizability of these 3D insulator subspaces is quantized [26], [44],

[101]. Now, if we sweep through kz then each bulk 4D Dirac point crossing changes the magneto-electric
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polarizability of the fixed-kz volume by a half-integer (i.e., changes the related axion angle by π) [26]. Since

the magneto-electric polarizability jumps between its quantized values as we pass through the two bulk

Dirac nodes, the kz Brillouin zone splits into two intervals: (i) an interval with a vanishing magneto-electric

polarizability, and (ii) an interval with a non-vanishing quantized magneto-electric polarizability. Indeed, we

could have anticipated this result from the form of the action Eq. 2.50 when α = z, i.e., the action represents

stacks of 3D topological insulators that each have a non-vanishing magneto-electric polarizability.

2.7 Effective responses of 3D semimetals

From this discussion we see that, in the presence of symmetry, the 4D bulk Dirac node dipole moment

determines the magneto-electric polarizability of these 4D topological semimetals via Eq. 2.50. In this

section we connect this result to 3D semimetals in two ways. First, we consider the 3D boundary of the 4D

system, and second we consider the compactification of one spatial dimension.

Let us begin by considering the boundary response action from Eq. 2.50. For the model system described

at the end of the previous section we know the system has a kz-dependent magneto-electric polarizability.

Consider a boundary in the fourth spatial direction w. Since the magneto-electric polarizability is changing

from inside to outside of the boundary, the boundary itself will have a non-vanishing Hall conductivity. For

our example system, each fixed-kz slice of this boundary will have a Hall conductivity σxy, which is quantized,

but possibly vanishing. Additionally, since the bulk 4D Dirac nodes are separated in the kz direction, they

will project to gapless points in the 3D surface BZ (on surfaces that have at least one direction perpendicular

to the z-direction) where the Hall conductivity discretely jumps by ∆σxy = ± e2

2h .

From this phenomenology, i.e., discrete Hall conductivity jumps as we sweep through kz we expect

that the boundary response of Eq. 2.50 captures the same response as a Weyl semimetal that has a non-

vanishing momentum space dipole moment of the Weyl nodes in the z-direction. Indeed the generic boundary

contribution from Eq. 2.50 has the form:

SWD =
e2Pα
8π2ℏ

∫
eα ∧ dA ∧A (2.53)

which was proposed by Ref. [35] to describe the response of Weyl semimetals, though in the more conventional

form using an axion field and without the translation gauge field. Here Pα, α = x, y, z is the momentum

dipole of the Weyl nodes in the α-th direction. This action is represented as (ix) in Fig. 2.1(c). We note

that the coefficient in Eq. 2.53 is twice as large as the actual boundary term derived from Eq. 2.50. This is

because when ki passes through a single Weyl point we have ϵijk∆σjk = ± e2

h , where the surface the response
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of the 4D system has jumps of half the size. This is analogous to the fact that a 1D metal has an integer

jump in the filling as we pass through a Fermi point, whereas the surface of a 2D Dirac semimetal has a

boundary “filling” that jumps by a half-integer as we pass through a gapless point in the surface BZ.

We can repeat this analysis for Eq. 2.51. The coefficient of this term is proportional to the momentum

space quadrupole moment of the nodal points. Unfortunately the phenomenology of this term is not as easy

to analyze in 4D because it is not generated from a lower dimensional system in a clear way 3. By analogy

with the previous case, the bulk 4D Dirac nodes will project to a quadrupole of 3D Weyl nodes on the

surface. We can extract the form of the 3D action we want by taking the boundary term generated from

Eq. 2.51. Then accounting for the factor of two as in the previous case, we arrive at:

SWQ =
eQαβ

8π2

∫
eα ∧ deβ ∧A. (2.54)

(Note that since Qαβ is symmetric, the related contribution of the form eQαβ/8π
2
∫
eα ∧ eβ ∧ dA vanishes).

This action is the same as that shown in Fig. 2.2(a). It produces a mixed crystalline-electromagnetic

response and represents a rank-2 vector charge response when certain mirror symmetries are preserved [77].

Its response coefficient is determined by the momentum space quadrupole moment of the Weyl nodes.

Finally, we come to the action (x) in Fig. 2.1(c). Let us briefly sketch some salient features of this

response, while we leave a detailed discussion to future work. We can arrive at this action using a formal

compactification of the action in Eq. 2.50 [26]. First we can integrate that action by parts to arrive at

e2Pα
16π2ℏ

∫
A ∧ deα ∧ dA, (2.55)

where we have ignored the boundary term. We now want to dimensionally reduce the fourth spatial direction

w, which we accomplish by choosing periodic boundary conditions in w and letting the size of the system in

this direction shrink toward zero. In this limit any derivatives with respect to w are (formally in our case)

dropped 4. The resulting non-vanishing contribution is

e2Pα
8π2ℏ

∮
Awdw

∫
deα ∧ dA, (2.56)

where the integral and exterior derivative in the second factor are over only the remaining four spacetime

3Even though there is a eα wedge product with a lower-dimensional action, it is not transverse to the lower-dimensional
action since Qαβ is symmetric. For example, there will be terms where, say, ex couples to dex, which cannot be interpreted as
a conventional stacked action.

4Alternatively we can assume the fields Aw, eαw are locked to their ground state values and thus have vanishing derivatives
in all directions.
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dimensions. We can now make the definition

Θ ≡ 2π
e

h

∫
Awdw, (2.57)

to arrive at action (x) from Fig. 2.1(c):

ePα
8π2

∫
Θdeα ∧ dA. (2.58)

To illustrate some of the phenomenology of this action let us assume that Pz ̸= 0. Additionally let us

assume that we maintain time-reversal and inversion symmetry. As such, Θ = 0, π. To begin, we see that

the action in Eq. 2.58 is a total derivative if Θ and Pα are space-time independent. The resulting pure

boundary term is just proportional to the response of a 2D weak TI (or 2D Dirac semimetal), i.e., Eq. 2.6.

Depending on the symmetry of the surfaces, this implies that we expect the surface to be gapped except for

possibly isolated Dirac points. Since the boundary terms appear as ez ∧ dA we expect that surfaces normal

to x̂ (ŷ) will harbor a y-polarization (x-polarization), i.e., the polarization is tangent to the surface.

Importantly, the sign of the polarization depends on the interpolation of Θ between its non-trivial bulk

value of Θ = π and the trivial vacuum value Θ = 0 outside the system. For neighboring surfaces where

the effective sign of the polarization changes we anticipate hinge charges where surfaces intersect since the

polarizations are converging or diverging from the hinges. Thus, the response of this system is similar to a

stack of 2D planes of quadrupole moment having component qxy ̸= 0. In this scenario, coupled quadrupole

planes could lead to either a higher order weak topological insulator with a quadrupole moment, or a higher

order topological semimetal with boundary (and possibly bulk) Dirac nodes [102], [103]. To make further

progress it would be advantageous to have a microscopic derivation of the coefficient in Eq. 2.58 intrinsically

in 3D. Hence, we will leave further discussion of this action to future work.

2.8 Discussion

In this chapter we presented a framework of explicit connections between a wide-ranging family of topological

response theories from 0D to 3D. Using this framework, we showed how the coefficients for these response

theories, most of which are well-known in insulators, can be obtained for topological semimetals. This

allowed us to provide careful derivations and characterizations of mixed crystalline-electromagnetic responses

of semimetallic and insulating systems in various spatial dimensions. In the next chapter we provide an

extensive set of microscopic lattice calculations and numerical confirmations affirming that our predicted

field theory responses do indeed arise in tight-binding lattice models.

With the advent of topological quantum chemistry [48]–[53], thousands of crystalline topological in-
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sulators and semimetals have been identified, but many open questions persist about how to probe their

topological features. The work in this chapter provides insight into how the topology in some of these mate-

rials may be probed and characterized, i.e., by combining geometric/strain distortions and electromagnetic

responses.

There is a growing body of work studying the mixed crystalline-electromagnetic responses of Weyl

semimetals with dipole and quadrupole arrangements of nodes [63], [73]–[80], [82], [86], [94], [104]–[112],

that indicate a broad interest in these topics. Our work serves two major purposes in the context of this

previous literature: (i) we identified several aspects of mixed crystalline-electromagnetic responses that have

not yet been addressed in earlier work, and (ii) we synthesized aspects of the existing literature to present

a unified description of these responses in terms of the momentum-space multipole moments of the nodal

configurations, and to provide new intuition in previously studied responses. While prior work has examined

the mixed crystalline-electromagnetic response of two-dimensional Dirac node dipole semimetals [36], [89],

we have advanced this understanding by identifying a Wilson loop correction the response coefficient that

raises a subtle question about the connection between the charge polarization and the mixed-crystalline-

electromagnetic response. Additionally, the Dirac node quadrupole semimetal has not been previously dis-

cussed, making our work the first study of its properties and mixed crystalline-electromagnetic responses.

Furthermore, our model of a nodal line quadrupole semimetal and its corresponding response theory are new

to the literature as well.

The results of this work point in many possible directions for future work. First, finding experimental re-

alizations of the proposed topological responses in solid state or metamaterial systems is an exciting prospect.

Rank-2 chiral fermions, which have an anomaly compensated by the bulk response of a Weyl quadrupole

semimetal [77], were realized in a recent experiment on non-Hermitian topo-electric circuit metamateri-

als [113]. In that platform, the mixed crystalline-electromagnetic response generates a momentum-resolved

non-Hermitian skin effect that was observed in the experiment. Topo-electric circuits, along with other meta-

materials and solid state platforms are promising arenas in which the many mixed crystalline-electromagnetic

responses we discuss in this paper could be realized. Other extensions of this work include the consideration

of additional crystalline gauge fields as was done in, e.g., Refs. [61]–[64], [83], [84]. Some of us are also

working on extending the nodal, higher-multipole responses to interacting systems and non-equilibrium sys-

tems where, in the latter, one can have mixed energy-momentum multipole moments. Studying the leading

nodal dipole moments has already led to a rich set of phenomena, and the higher moments provide a large

hierarchy of phenomena that can be explored in current experiments.
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Chapter 3

Microscopic and numerical

calculations of

translation-electromagnetic responses

This chapter is adapted from Mark R. Hirsbrunner, Oleg Dubinkin, Fiona J. Burnell, and Taylor Hughes,

arXiv preprint arXiv:2309.10840.

3.1 Introduction

In this chapter we provide a series of model examples that manifest the responses described in the previous

chapter by the actions in Figs. 2.1(c) and 2.2. Using these models we numerically calculate the various

charge and momentum responses to electromagnetic and translation gauge fields, providing an independent

verification of the coefficients derived in the previous chapter. Some of the models and responses we discuss

below have appeared elsewhere in the literature, while others are have not. We carry out this analysis in

the same order as the previous chapter, i.e., point-node Dirac semimetals in 2D, nodal line semimetals in

3D, and then point-node Weyl semimetals in 3D. Comparable calculations for 1D systems were carried out

analytically in Sec. 2.4, so we do not perform additional numerical studies for 1D systems here. Additional

discussion of 1D systems can be found in App. A.5.

This chapter is organized as follows. In Secs. 3.2 and 3.3 we study Dirac node dipole and quadrupole

models in D = 2. In Secs. 3.4 and 3.5 we study nodal line semimetals generated by stacking Dirac node

dipole and quadrupole semimetals in 3D. Finally, in Secs. 3.6 and 3.7 we study 3D Weyl semimetals with
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dipole and quadrupole node arrangements.

3.2 2D Dirac node dipole semimetal and insulator

We begin with the time-reversal invariant 2D systems discussed in Sec. 2.3 that exhibit a mixed crystalline-

electromagnetic response. Since T is preserved, the usual Chern-Simons response of the electromagnetic

field vanishes. Instead, the response action derived in the Sec. 3.2 takes the form of a mutual Chern-Simons

term [89]:

S[eλν , Aµ] =
e

4π
Pλ
∫

eλ ∧ dA. (3.1)

Unlike the purely electromagnetic polarization response action considered in Ref. [36], this formulation of

the low-energy response theory also includes bulk electromagnetic responses to the translation gauge fields.

For example, by taking a functional derivative with respect to Aµ we have

ρ = − e

4π
Pλεij∂ieλj ,

jx =
e

4π
Pλ(∂teλy − ∂ye

λ
t ),

jy = − e

4π
Pλ(∂teλx − ∂xe

λ
t ).

(3.2)

We see that the first equation predicts an electric charge density localized on a dislocation in the bulk of the

lattice, which is exactly the phenomenology we expect for a weak topological insulator [40] or a 2D Dirac

semimetal. The action (3.1) also predicts a bulk momentum response to the electromagnetic field when

varied with respect to eµ,

J t
λ = − e

4π
PλBz,

J i
λ = − e

4π
PλεijEj ,

(3.3)

where Ei and Bi are the components of electric and magnetic fields respectively. In the inversion-symmetric

limit and in the absence of lattice defects and deformations, for which the crystalline gauge fields reduce to

eλµ = δλµ, Eq. (3.2) simply reproduces the boundary charge and current responses of an ordinary 2D Dirac

semimetal or weak topological insulator, which harbors a non-vanishing electric polarization. However, as

we mentioned in Sec. 2.3, and comment further on below, we do not expect the coefficient of this action to

match the electric polarization when inversion is strongly broken.

While the electric polarization and magnetization responses of Dirac semimetals were discussed in detail in

Ref. [36], the momentum responses in Eq. 3.3, and the charge responses to translation fluxes (i.e., dislocations)
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in Eq. 3.2 are less familiar. We therefore explicitly calculate these responses using a minimal tight-binding

model. For simplicity, we employ a two-band Bloch Hamiltonian that can model both 2D Dirac semimetals

and weak topological insulators:

H(k) = VIσ
x + sin(kyay)σ

y + (m− cos(kxax)− cos(kyay))σ
z. (3.4)

When VI = 0, H has both inversion symmetry, I = σz, and (spinless) time-reversal symmetry, T = K. In

this symmetric regime, m can be chosen to produce a semimetal with Dirac points located at, for example,

(kx, ky) = (±π/(2ax), 0), when m = 1. In the semimetal phase, turning on VIσ
x, which breaks inversion

while preserving T , generates a mass term that opens a gap at the Dirac points. The signs of the Berry

curvature localized near the two now-gapped Dirac points are opposite, as shown in Fig. 3.1(a), with the

sign at a particular point determined by the sign of the perturbation VI . Hence the total Berry curvature

of the occupied band integrated over the entire BZ, equivalent to the Chern number, is zero, and the Berry

curvature dipole is well-defined.

To confirm our analytic calculations of the response coefficients we first calculate the momentum density

localized around an out-of-plane magnetic flux Φz using the tight-binding model Eq. (3.4). In order to

determine the kx momentum density in the lattice model, we must introduce magnetic flux in a fashion that

preserves translation symmetry in the x̂-direction. We show the configuration that we employ in Fig. 3.1(b).

This configuration keeps the crystal momentum kx as a good quantum number and allows us to compute

the value of J t
x as the probability density of the occupied single particle states weighted by their momentum

ℏkx. The results of the numerical calculations are presented in Fig. 3.1(c,d), where we study how the excess

kx momentum density bound to magnetic flux behaves as a function of both the magnetic flux Φz at fixed

Berry curvature dipole Px, and and as a function of Px at fixed Φx. Our numerical results match our analytic

calculations precisely.

We can interpret this result by noting that the momentum current in Eq. 3.3 can be obtained in the

semiclassical limit by considering the momentum current carried by electron wavepackets subject to an

anomalous velocity [114], [115]. The equation of motion of an electron wavepacket with momentum k

formed from a single band is

vi(k) =
∂E
ℏ∂ki

+
e

ℏ
ϵijEjFxy(k), (3.5)

where vi(k) is the wavepacket velocity, E(k) is the energy spectrum of the band, Ej is the electric field,

and e
ℏϵ
ijEjFxy(k) is the anomalous velocity. The momentum current of the occupied states is obtained by

adding up the contributions ℏkµvi(k) in the BZ and contains a term arising from the anomalous velocity
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given by

J i
λ = − e

(2π)2
ϵijEj

∫
dkxdky kλFxy(kx, ky)

= − e

4π
PλϵijEj .

(3.6)

We can also numerically probe our response equations by studying the charge response to the deformation

of the lattice. To do so, we introduce a translation flux to rows of plaquettes located near y = Ny/4 and

y = 3Ny/4, analogous to the magnetic flux configuration we just considered. This effectively inserts two

rows of dislocations such that if one encircles a plaquette containing translation flux, the Burgers vector

is in the x-direction. This creates opposite translational magnetic fields Bxz = ∂xe
x
y − ∂ye

x
x penetrating the

two rows of plaquettes. We again choose this geometry since it is compatible with translation symmetry in

the x-direction. In our lattice model we insert the translation flux by explicitly adding generalized Peierls’

factors that are kx-dependent, i.e., exp
(
ikx
∫
exi dx

i
)
such that the colored regions in Fig. 3.1(b) contain

non-vanishing translation flux. The resulting electron charge density localized on the translation magnetic

flux has a dependence on both the Bxz field strength and the Berry curvature dipole moment Px as shown in

Fig. 3.1(e),(f). This again matches the expectation from our analytic response equations.

We emphasize that the effective action (3.2) describes the mutual bulk response between the electromag-

netic and the momentum currents in semimetallic and insulating systems with vanishing Chern number. We

showed in Sec. 2.3 that one must be careful when comparing this response to the charge polarization. In par-

ticular, our numerics show that, even in the presence of significant inversion-breaking, the bulk momentum

density response to a magnetic flux tracks the value of the coefficient cα from Eq. 2.8 as demonstrated in

Fig. 3.1 (d). In contrast, as shown in Sec. 2.3, the expression for the electric polarization, Eq. 2.14, contains

an additional term that is proportional to the value of a Wilson loop along the boundary of the BZ. This value

is not quantized when inversion symmetry is broken, and, for large values of VI , this contribution becomes

significant enough that the polarization response clearly deviates from the result one would expect from a

naive interpretation of Eq. 3.2. However, the mutual response between the electromagnetic and translation

gauge fields described by this action remains valid. This subtlety is not the focus of our current article, so

we leave further discussions to future work.

3.3 2D Dirac quadrupole semimetal

Next, we consider the class of 2D semimetallic phases characterized by the quadrupole moment of the Berry

curvature introduced in Sec. 2.3. We know from Sec. 2.3 that the low-energy effective response action for
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Figure 3.1: (a) Plot of the Berry curvature across the 2D Brillouin zone for the Dirac node dipole semimetal
model (3.4) for m = 1.1 with an added inversion-breaking perturbation with VI = −0.5. We use this model
to probe the kx momentum density response. For that we consider a completely periodic system and insert
the magnetic flux Φz thorough two lines of plaquettes such that the translational symmetry along the x̂-
direction is preserved, as shown in panel (b). (c) shows the kx momentum density localized around one line of
plaquettes penetrated by the magnetic field Bz as a function of magnetic flux. (d) shows the kx momentum
density as a function of Berry curvature dipole moment Px defined in Eq. (2.8) which we tune in our model
by varying the parameter m between m = 1.0 and m = 1.5. In (e) and (f) we show analogous calculations
for the charge density response to a translation flux with Burgers vector in the x-direction as a function of
(e) translation flux at fixed Berry curvature dipole, and (f) Berry curvature dipole at fixed translation flux.
The open circles in (e) represent Burgers’ vector choices that are not integer multiples of a lattice constant.
The red dashed lines in (c)-(f) are guides to the eye indicating a slope of 1.
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this system takes the form:

S =
ℏ
8π

Qαβ

∫
eα ∧ deβ . (3.7)

This action generates a momentum current response

J µ
α = − ℏ

4π
Qαβε

µνσ∂νe
β
σ (3.8)

These currents describe both a bulk momentum polarization (e.g., yielding momentum on the boundary

where Qαβ changes), and a bulk energy-momentum response to translation gauge fields. We note that this

response is exactly analogous to that of the Dirac node dipole semimetal discussed above if we replace the

electromagnetic field with a translation gauge field.

To illustrate and explicitly confirm the responses numerically we use the following 2-band square lattice

Bloch Hamiltonian with next-nearest-neighbor hopping terms:

H(k) = VT σ
x + sin(kxa) sin(kya)σ

y + (m− cos(kxa)− cos(kya))σ
z. (3.9)

This model has an inversion symmetry (i.e., Cz2 symmetry) that is realized trivially on-site with I = I, mirror

symmetry along the kx = ky axis, and, when VT = 0, time-reversal symmetry T = σzK. This model can be

tuned to a semimetal phase as well, for example, setting m = 1 we find four gapless Dirac points located at

(kx, ky) = (±π/2a, 0) and (kx, ky) = (0,±π/2a).

To confirm the response action is correct, we first need to calculate the Dirac-node quadrupole moment.

To see that the Berry curvature quadrupole moment is well-defined, we first note that the choice of VT as a

mass perturbation forces Pα to vanish. We also need the Chern number to vanish, which is guaranteed by

the mirror symmetry. With these symmetries, the Berry curvature peaks at Dirac points that are related by

inversion symmetry have the same sign, while the peaks related by mirror symmetry carry opposite signs,

resulting in a quadrupolar distribution of the Berry curvature, as in Fig. 3.2(b). Since the Chern number and

Pα both vanish, the quadrupolar distribution is well-defined and signals the presence of a well-defined elastic

response in this model (see also Ref. [98]). The diagonal elements of the Dirac-node quadrupole moment of

our model are equal and opposite, Qxx = −Qyy, and the off-diagonal elements are zero. Since the sign of the

Berry curvature flux for 2D Dirac points with T I-symmetry is ambiguous, we once again treat our system

in the insulating regime with non-zero VT first and then recover the semimetallic case by taking the limit

VT → 0.

Using this model, let us first focus on the momentum polarization response and highlight the difference

with the 2D Dirac node dipole semimetal case from Section 3.2. If the bulk has a momentum polarization
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Figure 3.2: (a) Spectrum of the 2D Dirac node quadrupole semimetal (3.9) in a ribbon geometry (y-direction
open, x-direction periodic) for m = 1, the T -breaking perturbation set to VT = −0.2, and the energy tilt
in Eq. 3.11 ϵ = 0.1. At half filling, the ground state of the model is momentum-polarized: occupied states
localized near y = 1, which are indicated by the blue color, carry a positive value of the kx momentum,
while the occupied states near y = Ny have a negative value of kx. (b) Berry curvature distribution across
the Brillouin zone for a small gapping perturbation VT = −0.2. (c) The boundary charge distribution as a
function of momentum. (d), (e) kx momentum bound to a row of dislocations (c.f. Fig. 3.1(b)) as a function
of Qxx at fixed Bxz in (d) and as a function of Bxz at fixed Qxx in (e). (f) Plot of momentum polarization P ykx
obtained from computing kx-momentum bound to an edge normal to ŷ. (g) As a consequence of non-zero
ϵ we see that the velocities of single-particle states in (a)localized on opposite edges have the same sign,
while the energy and kx momentum charges are exact opposite. This leads to boundary energy currents as
illustrated in panel (g) as a function of Qtt.
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we expect translation-symmetric edges to have a bound momentum density. We will first make a general

argument for the existence of the boundary momentum and then confirm the results numerically for our

model. Let us suppose our system has a boundary normal to the y-direction. We expect such a boundary

will carry kx momentum if Qxx ̸= 0. To show this, let us make a gauge transformation on the fields in Eq. 3.7:

eaµ → eaµ + ∂µλ
a for some vector function λa. Since there is a boundary, the response action is not gauge

invariant and we find the variation δλS = −ℏQab

8π λa(∂0e
b
x − ∂xe

b
0). Our system has no translation-twisting of

the boundaries, i.e., eyx = exy = 0, so we find the variation reduces to δλS = −ℏQxx

8π λx(∂0e
x
x − ∂xe

x
0). This

variation can be canceled by adding an action of the form Eq. 2.35. That is, we expect to have 1D degrees

of freedom on the boundary that harbor a non-vanishing kx-momentum density captured by an effective 1D

quadrupole moment Qxx that matches the value of the 2D quadrupole moment. Interestingly, we note that

the coefficient of Eq. 2.35 is twice that of the variation we need to cancel. Hence, the edge of our system has

a fractional momentum density, i.e., a 1D system with the same Qxx would have twice as much momentum.

This is analogous to the fractional boundary charge density one finds from the half-quantized electric charge

polarization.

We confirm this response numerically by studying the model (3.9) on a lattice in a ribbon geometry

that is open in the ŷ-direction and periodic in x̂. Figure 3.2 (a) shows the resulting band structure, for

which a gap is opened by a non-vanishing VT and the occupied states have two symmetrically positioned

sets of flat band states: one in an interval having kx < 0 and the other in an interval having kx > 0. The

occupied boundary states with kx < 0 (red) are localized near the top (y = Ny) boundary, while the occupied

boundary states with kx > 0 (blue) are localized near the bottom (y = 1) boundary. At half filling we find

that the excess/deficit charge near the boundary depends on kx as shown in Fig. 3.2(c). We see that the

states at positive and negative kx are imbalanced, indicating a non-vanishing kx momentum density on the

edge. Indeed, each state between the Dirac nodes contributes an amount to the total edge momentum equal

to kx weighted by a factor of ±1/2, since the particle density on the edge at each kx in this range is ±1/2.

Because states at opposite kx have opposite excess/deficit probability density, the total sum is non-vanishing

and depends on Qxx as shown in Fig. 3.2(f). We find that the bulk momentum polarization P ykx = ℏQxx

8π

matches the numerically calculated boundary momentum density, as expected for a generalized surface charge

theorem 1. To further probe the response equations, we subject the Dirac node quadrupole semimetal to

the same linear array of dislocations employed in the previous section (c.f. Fig. 3.1(b)). From Eq. 3.8,

we expect to find momentum density localized on dislocations. Since our geometry preserves translation

1We comment that even though the Chern-Simons term for the translation gauge fields shares some properties with the
electromagnetic Chern-Simons term, there is a key distinction: The translation gauge fields have a constant background. This
allows the Dirac node quadrupole system to have a static momentum polarization, whereas the electromagnetic Chern Simons
term in a Chern insulator would predict generating an electric polarization as one tunes the vector potential.

52



in the x̂-direction, we can compute the amount of kx momentum bound to dislocations, similar to how

we computed the amount of charge bound to dislocations in the previous section. We show our results in

Fig. 3.2(d)(e) where we first plot momentum density as a function of Qxx for fixed translation flux Bxz , and

then plot momentum density as a function of Bxz for fixed Qxx. Both results match the analytic value from

the response action.

Finally, let us briefly consider a case when the mixed energy-momentum quadrupole moment Qta is

non-vanishing. In this scenario the effective action (3.7) implies the existence of a bulk orbital momentum

magnetization of

Mz
kµ = − ℏ

8π
Qtµ, (3.10)

that will manifest as boundary momentum currents, even in equilibrium (note we assume ett = 1). To

generate a non-vanishing Qtµ in our model (3.9), we turn on an additional perturbation

∆H(k) = ϵ sin(kx)I2×2. (3.11)

When m = 1 and VT → 0−, this induces Qtx = −πϵ and Qtt = ϵ2, leading to momentum kx magnetization,

Mz
kx

= − ℏ
8πQtx, and bulk energy magnetization,Mz

kt
= − ℏ

8πQtt, following from Eq. (3.10). In Fig. 3.2(g) we

plot the boundary energy current response ∆J x
t as a function of Qtt.We calculate this quantity by summing

the particle current 1
ℏ
∂H
∂kx

weighted by the energy ϵ(k) of each state. The slope of the plot confirms the

coefficients predicted in Eq. (3.10).

3.4 3D nodal line dipole semimetal

Heuristically we can consider nodal 3D semimetals as arising from stacks of 2D Dirac node dipole semimetals.

Furthermore, similar to the 2D case, with inversion symmetry the bulk response action

S[eλ, A] = eBµν
∫

eµ ∧ eν ∧ dA (3.12)

can be interpreted as a charge magnetization Mi and electric polarization P ie :

eBta =M ieai , eBab = εijkP
k
e e
a
i e
b
j (3.13)
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Figure 3.3: (a) Fermi line of a 3D NLSM (3.17) with VI = 0, m = 2 that is tiled in the energy-momentum
space {kz, kx, E} by the perturbation (3.19) where we set ϵ = 1. The projections of this curve onto the
{kx, kz} and {kz, E} planes give the exact values of the Bxz and Btz coefficients respectively. (b) A screw
dislocation characterized by a Burgers’ vector bz = az creates an internal boundary carrying a current
circulating around the magnetization vector Mz. Note that the currents’ direction is perpendicular to the
Burgers’ vector and the Magnetization vector Mz, as predicted by Eq. 3.20.

where we have taken functional derivatives of Eq. 3.12 with respect to the magnetic and electric fields

respectively, and used ett = 1. For an unmodified geometry we recover the results of Ref. [37], i.e.,

eBta =Ma, eBab = εabkP
k
e . (3.14)

Microscopically, the coefficient Bab, where a, b = 1, 2, 3, is proportional to the area of the line nodes that

project onto surfaces normal to the ab-plane as illustrated in Fig. 3.3(a).

The bulk action also implies a non-vanishing momentum response to electromagnetic fields:

J µ
λ = 2eBληεµνρσeην∂ρAσ, (3.15)

and a conjugate electromagnetic response to translation gauge fields:

jµ = 2eBληεµνρσeλν∂ρeησ. (3.16)

To illustrate how these responses manifest in an explicit model, we can construct a Hamiltonian for a

3D nodal line dipole semimetal by stacking copies of the 2D Dirac node dipole semimetal in Eq. (3.4) in the

ẑ-direction. When there is no hopping between the 2D layers, such a system will have two lines of gapless

states spanning the BZ along the kz direction, located at (kx, ky) = (±K, 0) (for our model). Adding hopping

terms in the ẑ-direction leads to a Bloch Hamiltonian:

H(k) = VIσ
x + sin(kyay)σ

y + (m− cos(kxax)− cos(kyay)− cos(kzaz))σ
z. (3.17)

Taking VI → 0 and m = 2, we find a single loop of gapless states located in the ky = 0 plane, described by
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the equation cos(kxax)+ cos(kzaz) = 1. The stack of 2D Dirac node dipole semimetals will naturally endow

the 3D nodal line system with electric polarization (and/or magnetization). Correspondingly, this model has

a single non-zero component of the antisymmetric tensor Bxz defined in Eq. (2.40), which encodes a charge

polarization in the ŷ-direction. From Eq. 3.15, a non-vanishing Bxz also implies a kx momentum line-density

localized on a magnetic flux tube oriented in the ẑ-direction:

J t
x = 2eBxzεtzijezzBz = 2eBxzBz, (3.18)

similar to a stack of decoupled 2D Dirac semimetallic layers (in the last equality we replaced ezz = 1). This

is the 3D analog of the response shown in Figs. 3.1(c) and (d) for the 2D Dirac semimetal.

We can see an example of a charge response if we tilt the nodal line to introduce a non-zero value of Btz

as illustrated in Fig. 3.3(a). In our model we can tilt the node by adding an extra dispersion

∆H(k) = ϵ sin(kxax)I2×2, (3.19)

to the Hamiltonian. This term breaks T and induces a net magnetization Mz = eBtz, setting up the

corresponding circulating boundary currents in the system [37].

Now, when Btz is non-vanishing, Eq. 3.16 implies that a screw dislocation with Burgers vector bz ẑ hosts

a bound electromagnetic current. Indeed, if we assume the screw dislocation is located at (x, y) = (0, 0) and

runs along the z-axis we find

jz = −2eBtzεtzjkett∂jezk = −2eBtzbzδ(x)δ(y), (3.20)

where we used ett = 1 and ∇× ez = bzδ(x)δ(y).

We can illustrate the origin of this current by considering the magnetizationMz (and associated boundary

currents) induced by Btz. A screw dislocation with Burgers vector bz ẑ can be constructed by cutting a seam

into layers normal to ẑ and re-gluing them along the seams with neighboring layers above or below. When cut,

the boundary current associated to Mz will appear, and after re-gluing this current will be routed vertically

along the screw-dislocation line, i.e., along the z-direction as shown in Fig. 3.3 (b). The magnetization Mz

gives rise to a surface bound current j∂ = Mz circulating around the ẑ-axis in each layer. The effective

number of current loops winding around the dislocation line per unit length is equal to the Burgers vector

bz. Thus the total current in the ẑ-direction is:

jz = −bzj∂ = −2eBtzbz, (3.21)
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which reproduces the result obtained from the response action. Furthermore, we can understand the sign of

the current from Fig. 3.3(b) where we see that the current on the dislocation has an opposite orientation to

the current generated by Mz. Another interesting consequence of Eq. (3.12) is the topological piezoelectric

effect discussed in Ref. [88].

3.5 3D nodal line quadrupole semimetal

In Sec. 2.5, we derived the effective response action:

S[eλ] = ℏBλη,α
∫

eλ ∧ eη ∧ deα. (3.22)

for the nodal line quadrupole semimetal. The response action implies the energy-momentum currents:

J µ
λ = 2ℏ (Bλη,α − Bηα,λ) εµνρσeην∂ρeασ , (3.23)

where we have used that Bλη,α is anti-symmetric under exchange of the first two indices.

In analogy with the 2D Dirac node dipole and Dirac node quadrupole semimetals, we expect that most

of the responses from the Dirac nodal line dipole semimetal in Sec. 3.4 can be translated to describe some

of the responses of this action if we replace charge currents and densities with momentum currents and

densities etc. Indeed, we showed in Eq. 2.42 that when λ and η are both spatial indices, Bλη,λ implies

a momentum polarization in a direction perpendicular to λ and η, and carrying momentum parallel to λ.

By analogy, the mixed temporal-spatial components Bit,j describe a momentum magnetization in the i-th

direction carrying momentum in the j-th direction. The momentum magnetization is further responsible

for generating bound-currents on screw-dislocations, i.e., the momentum magnetization will have circulating

boundary momentum currents and a momentum current along screw dislocations similar to the charge bound

currents on dislocations shown in Section 3.4.

To be more explicit, we can illustrate the momentum polarization in a model by showing the analog of

the surface charge theorem, i.e., momentum polarization will yield surface momentum densities. To obtain

a Hamiltonian for the nodal line quadrupole semimetal, we begin by stacking 2D Dirac node quadrupole

semimetals (see Fig. 3.2 (b)) along the ẑ-direction. When the planes are completely decoupled, this construc-

tion produces a set of four straight Fermi lines stretching in the kz-direction. If we couple the two-dimensional

planes, then we arrive at the following Bloch Hamiltonian:

H(k) = VT σ
x + sin(kxa) sin(kya)σ

y + (m− cos(kxa)− cos(kya)− cos(kzaz))σ
z. (3.24)
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Figure 3.4: Fermi Lines of the model (3.24) with m = 2 and VT → 0−. Resolving this structure as a pair of
loops with fixed orientation we can project them onto the kxkz or kykz surfaces to determine the momentum
polarization. The colored regions of the projected nodes indicate flat drumhead states that would appear
in open boundary conditions on one boundary (red) or the opposing boundary (blue). By looking at the
relative positions of the two areas bounded by the projected loops in the surface BZ, we see that one surface
will have one sign of the kx or ky momentum, and the other surface will have the other. For example, for
the kxkz surface BZ the the projections indicate a dipole moment of kx momentum polarized along the y
direction captured by the response coefficient Bzx,x. Inset: Cage-like nodal Fermi surface in the model (3.24)
with EF = 0.2.

For a wide range of parameters this model has a pair of nodal line loops that form a cage structure as shown

in Figs. 2.2 and 3.4 with m = 2 and VT = 0. In general, the local gaplessness of the nodal loops can be

protected by the product T I. The cage structure created by the joined, intersecting loops can be split apart

by, for example, breaking mirror symmetry along the kx = ky axis while preserving T I. However, even in this

case the nodal loops still produce a non-vanishing contribution to the response coefficient Bαβ,γ . Hence, the

response is more general than the specific cage-like nodal configuration. Calculating the response coefficient

for the action in the limit VT → 0−, we find that Bxz,x = −Bzx,x, Byz,y = −Byz,y are non-vanishing, as

shown in Fig. 3.4.

Using this model we can illustrate the origin of the boundary momentum resulting from the bulk mo-

mentum polarization. The discussion is analogous to the calculation of the boundary momentum of the 2D

Dirac node quadrupole semimetal in Sec. 3.3. Indeed, the analogy is clear since the cage nodal structure is

just arising from a family of 2D Dirac node quadrupoles parameterized by kz. To specify an unambiguous

momentum polarization we turn on a small T -breaking perturbation VT . After doing this, and as shown

in Fig. 3.4, we see that the two nodal loop segments that lie in the ky = 0 plane (one for kx > 0 and one

for kx < 0) carry the same Berry flux in the kz-direction (red arrows in Fig. 3.4). Similarly, the two loop

segments in the kx = 0 plane carry the same Berry flux (blue arrows), which is opposite to that carried by

the ky = 0 segments. Consequently, the loop segment in the ky = 0, kx > 0 half-plane must connect with a

loop segment in the kx = 0 plane in order to form a closed nodal loop with a consistent helicity/flux sign.
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To clarify the consequences of this nodal configuration let us consider the kxkz plane in Fig. 3.4. We can

calculate a Berry-Zak phase [116] in the ky direction parameterized by (kx, kz), and for our model we find a

Berry phase of magnitude π inside the projected nodal region in the kxkz plane. When VT is turned on, the

sign of the π Berry-Zak phases are no longer ambiguous, and are opposite for the projected areas at kx > 0

and kx < 0. If we calculate the total polarization in the y-direction when summed over all kx and kz it will

vanish. However, the polarization weighted by the kx momentum will be non-zero. The occupied drumhead

surface states in the kxkz surface-BZ (see Fig. 3.4 and c.f. Fig. 3.2(a,b,c)) will have an imbalanced kx

momentum, but, when combined with the bulk charge density, a vanishing charge (c.f. Fig. 3.2(c)). This is

a reflection of the surface charge theorem for a vanishing charge polarization, and non-vanishing momentum

polarization. We numerically calculated the magnitude of the bound surface momentum, finding it to be

in agreement with the value predicted by the response action, 2ℏBxz,x. We see from this picture that to

have a non-zero response Bxz,x, we want two oppositely oriented nodal loops with identical, non-vanishing

areas when projected in the kxkz-plane, but positioned so that the sums of all kx inside each nodal loop are

different from each other, e.g., in our model they are opposite values.

As an additional explicit example of a non-vanishing response allowed in our model we can consider the

momentum density

J 0
x = 2ℏBxz,xϵijk(2ezi ∂jexk − exi ∂je

z
k) (3.25)

generated by a geometric deformation. To generate a non-vanishing response let us consider an xz-planar

interface. Since we must preserve translation symmetry along x to calculate kx momentum, and we want to

preserve translation in z for convenience, we have the following terms:

J 0
x = 2ℏBxz,x (2ezx∂yexz − 2ezz∂ye

x
x − exx∂ye

z
z + exz∂ye

z
x) . (3.26)

If we cut the system at y = 0, both sides of the interface will carry a surface kx-momentum density J 0
x,surf =

±2ℏBxz,x, since the system has a kx momentum polarization along ŷ with this magnitude. Since each interface

carries an opposite sign of the momentum density, if we glue them back together there will be no momentum

at the interface. Now, for y > 0 let us perturb away from the background translation gauge field configuration

to eai = (1+ ϵa)δai where ϵa = (ϵx, 0, ϵz) is a small deformation. The momentum density response to leading

order in ϵa is

J 0
x = 2ℏBxz,x [−2ϵxδ(y)− ϵzδ(y)] , (3.27)

which we see is localized at the interface y = 0.

We can interpret this response by noting that changing exx or ezz effectively changes the area of one side of
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the interface (y > 0) relative to the other (y < 0). Since the total kx momentum on both sides of the interface

should be unchanged by this deformation (we maintain translation symmetry in x during the process), then

increasing the area for y > 0 must lower the momentum density. Indeed, the surface kx momentum density

on ŷ surfaces must be inversely proportional to Lx and Lz. Finally, since we are considering kx-momentum

density, the quantization of which depends on L−1
x , J 0

x actually depends on L−2
x , hence the difference between

the coefficients of ϵx and ϵz in Eq. 3.27.

3.6 3D Weyl node dipole semimetal

The electromagnetic and geometric response of time-reversal breaking 3D Weyl semimetals have been dis-

cussed extensively in the literature [35], [36], [63], [73]–[80], [82], [86], [95], [104]–[112], [117], [118]. Here we

focus on a few particular consequences of the mixed crystalline-electromagnetic response and on establishing

agreement between the response field theory and microscopic lattice model calculations. Recall that the

response action for a 3D Weyl semimetal with a non-vanishing Weyl-node dipole moment Pλ is

S[eλν , Aµ] =
e2Pλ
8π2ℏ

∫
eλ ∧A ∧ dA. (3.28)

This response implies the following bulk electromagnetic and momentum currents:

jµ = −e
2Pλ
4π2ℏ

εµνρσeλν∂ρAσ +
e2Pλ
8π2ℏ

εµνρσAν∂ρe
λ
σ , (3.29)

J µ
λ =

e2Pλ
8π2ℏ

ϵµνρσAν∂ρAσ. (3.30)

In the presence of dislocations the translational flux is non-vanishing, and hence the bulk electromagnetic

current is anomalous:

∂µj
µ = −e

2Pλ
8π2ℏ

εµνσρ∂µe
λ
ν∂σAρ. (3.31)

This reflects the fact that the action Eq. 3.28 is not gauge-invariant in the presence of dislocations. Indeed,

in our explicit tight-binding model calculations below we find the spectrum on a single screw dislocation line

contains a pair of chiral modes of the same chirality (one near each bulk Weyl node momentum as shown

in Fig. 3.6(b)). These modes are responsible for the anomalous current on dislocation lines, as was first

described by Ref. [40].

To verify the electromagnetic response to the applied crystalline gauge field we consider a simple 2-band
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model of a 3D Weyl semimetal with a pair of gapless nodes:

H(k) = sin(kzaz)σ
x + sin(kyay)σ

y + (2−m− cos(kxax)− cos(kyay)− cos(kzaz))σ
z. (3.32)

The Weyl node with the positive chirality χ = +1 is located at k = (arccos(−m), 0, 0) and the node with

χ = −1 is at k = (− arccos(−m), 0, 0). The Weyl node dipole moment therefore has only one non-zero

component Px = 2arccos(−m) and the resulting response action is

S[eλν , Aµ] =
e2Px
8π2ℏ

∫
d4xϵµνρσexµAν∂ρAσ. (3.33)

Let us first consider the response arising from the constant background translation fields exx = 1 and

exy = bx/Ly, which describe a twist such that a particle traversing the lattice in the y-direction translates by

bx in the x-direction. We note that such a configuration is volume preserving since det(e) = 1, where the

matrix e has matrix elements eij = eji . When bx = 0 the response action is

e2Px
8π2ℏ

∫
exxdx

∫
dtdydzϵxνρσAν∂ρAσ. (3.34)

Using the relation
∫
dxexx = Lx we find an anomalous Hall effect in the yz-plane such that σyz = e2

h
PxLx

2π ,

which is the standard result [34], [35]. Now, if we turn on bx we will still have the same σyz, but we will also

have the additional term

e2Px
8π2ℏ

∫
exydy

∫
dtdxdzϵyνρσAν∂ρAσ. (3.35)

Because of the different index on the ϵ-symbol, this term represents an anomalous Hall effect in the xz-plane

with σzx = e2

h
Pxbx
2π . We can find a simple interpretation for this effect: when we turn on exy , the minimal

coupling kx → kx, ky → ky + kxe
x
y shifts the bulk Weyl nodes, (±Px/2, 0, 0) → (±Px/2, ±Pxbx/(2Ly), 0).

Hence an effective Py = Pxbx
Ly

is generated when the Weyl momenta are sheared. Indeed, we expect that,

at least for uniform, traceless translation gauge field deformations, the response phenomena can be simply

interpreted as transformations of the Weyl node dipole Pi → ejiPj . We show an explicit example of this in

the first and third surface-BZ panels of Fig. 3.5(a) where the bulk nodes and their connected Fermi arcs

have been rotated in the deformed geometry relative to the undeformed geometry. We note that if the

deformation is not volume-preserving, then we must be careful when considering what is held fixed while

volume is changing in order to interpret the resulting phenomena.

In addition to these cases of fixed background translation fields, let us consider varying those fields in

space. We are interested in the electromagnetic response to applied translational magnetic fields Bai =
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Figure 3.5: (a) The three panels show numerically calculated Fermi arcs in (left) the surface BZ with un-
deformed geometry, (right) the surface BZ with exy non-vanishing, and (center) the arcs localized at the
interface formed by gluing the two sides of the interface together. The colored circles in the first and third
panels represent the surface BZ projections of the bulk Weyl nodes on either side of the interface. The color
is a guide to show the connectivity/orientation of the Fermi arcs, not the chirality of the bulk nodes. On both
sides of the interface the bulk nodes have the same chirality, but since they are effectively projected onto
surfaces having opposite normal vectors they generate Fermi arcs having opposite chirality. (b) Illustrations
of (left) the un-deformed geometry and (right) the deformed geometry with exy non-vanishing. (c) The
numerically calculated current localized at the interface between un-deformed and deformed geometries as
a function of the chemical potential shift A0.

ϵijk∂je
a
k. Since the nodes in our model are separated in kx, we will consider geometries where the Burgers

vector of the translation magnetic field also points along the x-direction, Bxi ̸= 0.

First let us consider a system containing a domain wall as a function of z, such that at z = 0 the field exy

jumps from 0 to bx/Ly. For z < 0 we have bulk Weyl nodes that project onto the z-surface at (±Px/2, 0),

while for z > 0 the bulk Weyl nodes have been transformed and sit at (±Px/2,±Pxbx/(2Ly)). We show the

numerically calculated Fermi arcs for our un-deformed and deformed models in the left and right surface BZ

panels of Fig. 3.5(a).

Now let us glue the z < 0 and z > 0 sides to each other to make a domain-wall interface. We schematically

illustrate the interface geometry in Fig. 3.5(b). Since the normal vector on each side of the interface is

opposite, we expect the Fermi arcs for z < 0 to have the opposite chirality to their corresponding arcs for

z > 0. Indeed, as shown in the center surface BZ panel of Fig. 3.5(a), the Fermi arcs on both sides can

hybridize because of their opposite chiralities and form new arcs in the 2D subsystem of the interface. These

new Fermi arcs encode the fact that the Hall conductivity σxz is varying at this interface. These effects are

all manifestations of the fact that the Weyl node dipole moment Pi is changing at the interface, and hence

we expect Fermi arcs to be trapped generically at interfaces of this type. We note that a similar strain

geometry, and the corresponding Weyl node configuration, was discussed in [87].

From Eq. 3.29 we see that applying a uniform, non-vanishing A0 to the system described above should

generate a charge current in the x-direction. We can see the microscopic origin of this current as follows. If

we increase A0, each linearly-dispersing point on the Fermi arc will have an excess charge density δn(k) =

eA0

2πℏ|vF (k)| where vF (k) is the Fermi velocity of the Fermi arc located at k in the surface-BZ. Hence, the

contribution to the current of such a point on the Fermi arc is jx(k) = evF (k)δn(k). For our model and
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(a) (b) (c)

Figure 3.6: (a) The bulk spectrum of a Weyl semimetal with two nodes on the kx-axis (b) The spectrum
of the same Weyl semimetal with periodic boundary conditions and two screw dislocations with opposite
Burgers vectors threaded along the x-direction. Red and blue coloration indicates on which dislocation
the chiral modes are localized. Each dislocation has a net positive (red) or negative (blue) chirality. (c)
Numerical calculation of the charge density bound to a screw dislocation as Ax is tuned. The red dashed
lined corresponds to the theoretical prediction.

geometry, the contributions to the jx current that are linear in the deformations of eai arise from the Fermi

arcs stretching between (K, 0) → (K,Kexy) and (−K, 0) → (−K,−Kexy). Each of these arcs has a fixed value

kx = ±K and each arc has an opposite Fermi velocity. Hence

jx = evF (K, ky)δn
Kexy
2π

+ evF (−K, ky)δn
Kexy
2π

=
e2PxexyA0

4π2ℏ
sgn(vF ), (3.36)

where Kexy/2π counts the density of states on the Fermi arc in the ky direction, sgn(vF ) is sign of the velocity

on the kx = +K arc, and Px = 2K2 is the un-deformed value. This result matches the prediction from the

response theory and matches the numerical results in Fig. 3.5(c) 2.

We can also study a system with a pair of screw dislocation lines. We explicitly insert two screw

dislocations at positions (y, z) = (Ny/4, 0) and (y, z) = (3Ny/4, 0), running parallel to the x̂-axis with

Burgers vectors bx = +1 and bx = −1, respectively. In Fig. 3.6(a) we show the energy spectrum of a

Weyl semimetal with Weyl nodes on the kx-axis with periodic boundary conditions and no dislocations. In

Fig. 3.6(b) we show the spectrum of the same system after two screw dislocations have been inserted as

described above. The blue/red coloration indicates on which dislocation the states are localized. We see

that near each Weyl point the right-moving modes are on the red dislocation while the left-moving modes

are on the blue dislocation, as described by Eq. (3.29). Hence, each dislocation has a net chirality.

To test the response equation we apply a non-vanishing Ax and numerically calculate the charge density

localized on a single dislocation. We can carry out a microscopic calculation of the charge bound to a

dislocation as a function of Ax. Let us assume a nodal configuration with a positive node at k = (Px/2, 0, 0)

and a negative node at (−Px/2, 0, 0). In the presence of a dislocation with Burgers vector bx, each kykz-plane

2While the coefficient of the response in Eq. 3.29 is half the size of our numerical and analytic result, our calculations
inherently determine the covariant anomaly of the interface Fermi arc states which receives inflow from the bulk term in
Eq. 3.29, i.e., inflow from a boundary term of the same magnitude, hence doubling the result [96], [119]–[121].
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sees an effective magnetic flux Φ(kx) =
bxkx
2π Φ0, where Φ0 = h/e. Hence each kykz-plane with a non-vanishing

Chern number contributes to the charge as

∆Q =
eLx
2π

∫
BZ

C(kx)
kxb

x

2π
dkx = 0, (3.37)

where C(kx) is the Chern number of each kykz-plane parameterized by kx. If we turn on a non-vanishing Ax

(kx → kx +
e
ℏAx) and re-calculate the bound charge we find

∆Q|Ax = −Lx
2π

∫ Px

2 − e
ℏAx

−Px

2 − e
ℏAx

kxb
x

2π
dkx

=
e2PxbxLx

4π2ℏ
Ax.

(3.38)

This result is exactly what is found in our numerics shown in Fig. 3.6(c). Both of these results match the

analytic prediction in Eq. 3.29 after including an extra factor of two which takes into account the bulk and

boundary inflow to the boundary [96], [119]–[121].

3.7 3D Weyl node quadrupole semimetal

Finally, we will discuss some aspects of the crystalline response of 3D Weyl semimetals with gapless Weyl

nodes forming a quadrupole pattern. Some of these responses were recently discussed in Refs. [63], [77], [94],

and here we consider some of the responses in more microscopic detail and compare directly with lattice

model calculations.

Recall from Sec. 2.7 the response action

SWQ =
eQαβ

8π2

∫
eα ∧ deβ ∧A. (3.39)

The bulk linear response implied by Eq. (2.54) is

J µ
α =

e

8π2
εµνρσQαβe

β
ν∂ρAσ − e

4π2
εµνρσQαβAν∂ρe

β
σ, (3.40)

jµ = − e

8π2
ϵµνρσQαβe

α
ν ∂ρe

β
σ. (3.41)

We also note that both of these currents can be anomalous when subjected to certain gauge field configura-
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(a) (b)

(c) (d)

Figure 3.7: (a) The bulk spectrum of a Weyl semimetal with two nodes of one chirality on the kx-axis and two
nodes of the opposite chirality on the ky-axis. (b) The spectrum of the same Weyl semimetal with periodic
boundary conditions and two screw dislocations with opposite Burgers vectors threaded along the x-direction.
Red and blue coloration indicates on which dislocation the chiral modes are localized. Each dislocation has
a no net chirality, and the Weyl nodes on the ky-axis do not form chiral modes. (c) The spatially-resolved
kx momentum density response of a Weyl node quadrupole semimetal to a pair of screw dislocations with
opposite Burgers’ vectors bx = ±ax located at (y, z) = (20ay, (20± 10)az) with the background gauge field
Ax = 2.5 × 10−4ℏ/eax and Qxx = π2/(2a2x). (d) Numerically calculated dependence of the kx momentum
density localized on a screw dislocation with Burgers’ vector bx = 1 as a function of the background gauge
field Ax, using the same model as in (c).
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tions:

∂µJ µ
α = − e

8π2
εµνρσQαβ∂µe

β
ν∂ρAσ, (3.42)

∂µj
µ = − e

8π2
ϵµνρσQαβ∂µe

α
ν ∂ρe

β
σ. (3.43)

Now let us consider several different phenomena associated to these response equations in the context of

a lattice model introduced in Ref. [77]:

H(k) = sin kx sin kyΓ
x + sin kzΓ

y + (m+ t(cos kx + cos ky + cos kz)) Γ
z. (3.44)

Without any geometric deformations, the semimetal phase of our model with a Weyl node quadrupole has

two nodes of one chirality at k = (±K, 0, 0) and two of the opposite chirality at (0,±K, 0). Thus the gapped,

2D kykz planes parameterized by kx will have a non-vanishing Chern number C for −K < kx < 0 and a

non-vanishing Chern number −C for 0 < kx < K where C = ±1. Similar statements can be made about

the kxkz planes. Without loss of generality let us choose the nodes on the kx-axis to have positive chirality

such that Qxx > 0 and C = +1. For our model this also implies that Qyy < 0 and the non-vanishing kxkz

Chern number planes have a negative Chern number for ky < 0 and positive Chern number for ky > 0. For

example, in our model we can generate a configuration with this structure using m = −2, t = 1.

We study the momentum density bound to magnetic flux lines and charge density bound to screw

dislocations. These two responses, some aspects of which were first described in Ref. [77] (see also Refs. [63],

[94]), are the most straightforward because they are essentially bulk responses and do not generate anomalous

currents, i.e., the RHS of the anomalous conservation laws above will vanish. Our model has Qxx = −Qyy ̸=

0, and the responses generated by these two coefficients give two separate sets of terms in the response action.

Hence, for simplicity we consider only the Qxx responses for now.

Let us first microscopically calculate the expected response to inserting a magnetic flux or a screw

dislocation and compare with the response theory. First, consider inserting a thin magnetic flux line along

the x-direction having flux Φ localized at, say (y, z) = (0, 0). This flux will generate a Hall effect from each

of the non-trivial kykz Chern planes. The total charge bound to the flux line will vanish because there

are equal and opposite contributions from kx < 0 and kx > 0. However, threading the flux will build up a

non-vanishing kx-momentum since planes with opposite kx-momentum have opposite Chern number. The

total momentum (spatial integral of momentum density) driven to the flux line by the Hall effect at each kx

momentum is

∆Px = − Φ

Φ0

Lx
2π

∫ π

−π
C(kx)ℏkxdkx =

Φ

Φ0

ℏK2Lx
2π

, (3.45)
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where the Chern number C(kx) is the piecewise-constant function across the kx BZ described above , and

Φ0 = h/e is the quantum of magnetic flux. Using the fact that Qxx = 2K2 and dividing by the volume we

find the momentum density

J 0
x =

eQxx

8π2
Bx. (3.46)

This is the same result coming from the first term in Eq. 3.40 when exx = 1.

Next let us calculate the charge response to inserting dislocations. Consider a screw dislocation with

Burgers vector component bx associated to a translation gauge field configuration Bxx ≡ ∂ye
x
z − ∂ze

x
y =

bxδ(y)δ(z). From Eqs. 3.40 and 3.41 we see that both the momentum and charge currents have responses to

dislocations, and we will first calculate the charge response. Heuristically the dislocation is like a U(1) gauge

flux that couples to momentum instead of electric charge, so the dislocation couples to kx momentum because

it has a non-vanishing bx. Hence each kykz-plane having non-vanishing Chern number (and non-vanishing

kx) will generate a Hall response, but with a magnitude proportional to its kx charge. Indeed, each plane

sees an effective flux Φ(kx) =
kxb

x

2π Φ0. Hence, the total charge bound to the dislocation will be

∆Q =
eLx
2π

∫ π

−π

kxbx
2π

C(kx)dkx = −ebxQxx

8π2
Lx. (3.47)

This matches Eq. 3.41, again after setting exx = 1 (see also Refs. [63], [77], [94]).

Now we consider the momentum response to a dislocation, i.e., a momentum density bound to the

dislocation when Ax is non-vanishing (this comes from the second term in Eq. 3.40). First we can compute

the amount of momentum bound to a dislocation when Ax = 0 by adding the contributions of each Chern

plane:

∆Px =
Lx
2π

∫ π

−π

kxbx
2π

C(kx)ℏkxdkx

=
Lxbxℏ
4π2

(∫ K

0

k2xdkx −
∫ 0

−K
k2xdkx

)

= 0.

(3.48)

We note that this calculation is similar to Eq. 3.47 except with an additional factor of the “momentum-

charge” ℏkx in the integrand. Now if we turn on an Ax such that kx → kx + e
ℏAx, we can repeat the

calculation to find

∆Px|Ax =
Lxbxℏ
4π2

∫ K− eAx

ℏ

− eAx

ℏ

k2xdkx −
∫ − eAx

ℏ

−K− eAx

ℏ

k2xdkx


= −eLxbx2K

2

4π2
Ax.

(3.49)
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Figure 3.8: (a) The three panels show numerically calculated Fermi arcs in (left) the surface BZ of the
un-deformed geometry, (right) the surface BZ of the deformed geometry with exy and eyx are non-vanishing,
and (center) the BZ of the interface formed gluing the deformed and un-deformed geometries together. See
the caption in Fig. 3.5 for comments about the color guides on the open circles representing the surface BZ
projections of the bulk Weyl nodes. (b) Illustrations of (left) un-deformed and (right) deformed geometries.
(c) The numerically calculated momentum current localized at interface between deformed and un-deformed
geometries as a function of the chemical potential shift A0.

The final result yields

J 0
x = −eQxxAx

4π2
Bxx, (3.50)

which matches Eq. 3.40 and our numerical calculations in Figs. 3.7(c) and (d). For the numerics we inserted

a pair of screw dislocations with burgers vectors bx = ±ax in the presence of a constant background gauge

potential Ax. The resulting kx momentum density of the ground state as a function of the y and z lattice co-

ordinates is shown in Fig. 3.7 (c). Furthermore, the dependence of this momentum density on Ax reproduces

the expected response coefficient, as shown in Fig. 3.7 (d).

Next let us consider an interface between an un-deformed geometry and a geometry with a non-vanishing

background eyx and exy as shown in Fig. 3.8(b). To be explicit, let the interface between the two geometries

occur as a function of z at z = 0. On the surface of the un-deformed system we numerically calculated the

characteristic (rank-2) Fermi arc structure as shown in the left surface-BZ panel in Fig. 3.8(a). For our

deformed geometry we show the modified bulk Weyl node quadrupole and Fermi arcs when eyx = exy ̸= 0 in

the right surface-BZ panel in Fig. 3.8(a).

From these figures we see that the Weyl node quadrupole moment Q(R)
ab on the deformed side is modified

from the quadrupole moment Q(L)
ab on the un-deformed side. Explicitly, we can compute:

Q(R)
xx = (exx)

2Q(L)
xx + 2exxe

y
xQ(L)

xy + (eyx)
2Q(L)

yy

Q(R)
xy = exxe

x
yQ(L)

xx + eyxe
y
yQ(L)

yy + (exxe
y
y + eyxe

x
y)Q(L)

xy

Q(R)
yy = (exy)

2Q(L)
xx + 2exye

y
yQ(L)

xy + (eyy)
2Q(L)

yy ,

(3.51)

i.e., Q(R)
ij = eaiQ

(L)
ab ebj . For our model and geometry we can make the simplifications exx = 1 = eyy, e

y
x =
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exy ,Q
(L)
xy = 0, and Q(L)

xx = 2K2 = −Q(L)
yy . Substituting these relations into Eq. 3.51 yields

Q(R)
xx = −Q(R)

yy = 2K2(1− (eyx)
2), (3.52)

and Q
(R)
xy = 0. Alternatively, we can see this result from the locations of the deformed Weyl nodes which will

sit at (K,Kexy , 0)+, (−K,−Kexy , 0)+, (Keyx,K, 0)−, and (−Keyx,−K, 0)− (where the subscripts ± encode the

chirality for our choice of model parameters).

Since the Weyl node quadrupole moments on the two sides of the interface are different, we expect gluing

the two sides together will leave behind a signature at the interface. Indeed, from the middle surface-BZ panel

in Fig. 3.8(a) we see gapless Fermi arcs that remain at the interface and stretch between the unmodified and

modified projected locations of the bulk Weyl nodes. From Eqs. 3.40, 3.41 we see there should be responses

J x
x = − e

4π2
QxxA0∂ze

x
y , , J y

y = − e

4π2
QyyA0∂ze

y
x, (3.53)

j0 =
e

8π2

(
Qxxe

x
x∂ze

x
y −Qyye

y
y∂ze

y
x

)
=
eQxx

4π2
∂ze

y
x, (3.54)

where in the last equality we substituted in the relations that are specific to our model and interface geometry,

which we stated above.

We confirmed the momentum and charge responses numerically, in particular the J x
x response shown

in Fig. 3.8(c), and we also provide microscopic analytic arguments here. The momentum currents both

follow the same logic, so let us consider only J x
x for now. From the center surface-BZ panel in Fig. 3.8(a)

we see remnant Fermi arcs. If we increase A0, each linearly-dispersing point on the Fermi arc will have

an excess charge density δn(k) = eA0

2πℏ|vF (k)| where vF (k) is the Fermi velocity at the Fermi arc located at

k in the surface-BZ. Hence, the contribution to the kx momentum current of such a point on the Fermi

arc is J x
x (k) = ℏkxvF (k)δn(k). For our model and geometry, the contributions to the J x

x current that

are linear in the deformations of eai arise from the Fermi arcs stretching between (K, 0) → (K,Kexy) and

(−K, 0) → (−K,−Kexy). Each of these arcs has a fixed value kx = ±K and each arc has an opposite Fermi

velocity. Hence

J x
x = ℏKvF (K, ky)δn

Kexy
2π

+ ℏ(−K)vF (−K, ky)δn
Kexy
2π

=
eQ(L)

xx exyA0

4π2
sgn(vF ),

(3.55)

where Kexy/2π counts the density of states on the Fermi arc in the ky direction, sgn(vF ) is sign of the velocity

on the kx = +K arc, and the un-deformed Q(L)
xx = 2K2. This result matches the prediction from the response

theory and matches the numerical results in Fig. 3.8(c).
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The calculation of the charge density j0 at the interface is simpler since it comes from the bulk response to

a translation magnetic field. At the interface there is a non-vanishing Bxx = −∂zexy and Byy = ∂ze
y
x. Since the

kykz-planes and kxkz-planes have non-vanishing Chern numbers, they yield a density response similar to what

we found on the dislocation line in Eq. 3.47. Each kx state sees an effective magnetic flux Φ(kx) = −kxb
x

2π Φ0,

and similarly for each ky state Φ(ky) =
kyb

y

2π Φ0, where b
x =

∫
dyexy |z>0 and by =

∫
dxeyx|z>0 are the Burgers

vectors obtained when integrating across the entire periodic y- and x-directions respectively. Hence the total

charge at the interface is

∆Q = −2eLx
2π

∫ K

0

kxb
x

2π
dkx +

2eLy
2π

∫ K

0

kyb
y

2π
dky

=
e

8π2
(−Qxxb

xLx +Qyyb
yLy)

= −eQxxb
xLx

4π2
,

(3.56)

where the leading factors of two in the first line account for identical contributions from the interval kx ∈

[−K, 0], and in the last equation we used Qxx = −Qyy and Lxb
x = Lyb

y since eyx = exy . This final result

matches Eq. 3.41.
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Chapter 4

Anomalous

translation-electromagnetic responses

in higher order semimetals

This chapter is adapted from Mark R. Hirsbrunner, Alexander D. Gray, and Taylor Hughes, Phys. Rev. B

109, 075169 (2024). ©2024 American Physical Society.

4.1 Introduction

Topological semimetals (TSMs) possess quasi-topological terms in their bulk electromagnetic responses that

are governed by the configuration of their nodal points or lines in momentum space [117], [122]–[128]. In

particular, the responses of point node TSMs are proportional to the chirality-weighted momentum space

multipole moments of the nodal points, i.e., monomials of their momentum-space location weighted by their

chirality or helicity. For example, in the simplest case of a time-reversal breaking Weyl semimetal (WSM)

with two nodes, the magnitude of the bulk anomalous Hall conductivity is proportional to the dipole moment

of the Weyl nodes in momentum space [33]–[36]. Additionally, these bulk responses are often necessary to

compensate for anomalous surface states, such as chiral Fermi arcs in time-reversal breaking WSMs [34].

In recent years the field of TSMs has grown to include higher order TSMs (HOTSMs) that are charac-

terized by spectral features and other phenomena on surfaces of codimension n > 1. The nodal points of

HOTSMs differ from conventional TSMs in that they are attached to both surface and hinge Fermi arcs.

Heuristically such a node separates gapped momentum space planes that differ in both Chern number and
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some form of 2D higher order topology. The family of HOTSMs is quite diverse, including higher order

analogs of Dirac and Weyl semimetals [102], [103], [129]–[141], nodal line semimetals [142], nodal super-

conductors [143]–[146], non-Hermitian TSMs [147]–[150], and periodically driven Floquet TSMs [151]–[155].

In some instances, HOTSMs possess additional boundary states and/or electromagnetic responses beyond

first-order TSMs. For example, second order WSMs exhibit both surface Fermi arcs and hinge states that

generate competing surface and hinge responses [137] in which the bulk charge bound to a magnetic flux

(via the anomalous Hall effect) is constrained by the charge bound to hinges parallel to the flux. Simi-

larly, conventional type-I Dirac semimetals (DSMs) have a bulk spin-Hall-like response determined by the

momentum-space dipole moment of the Dirac nodes [36], while some higher order DSMs also possess a bulk

electric quadrupole moment that generates a surface polarization response [102].

In parallel to these developments of HOTSMs, recent studies have shown that TSMs can exhibit mixed

crystalline-electromagnetic responses in addition to purely electromagnetic responses. These mixed crystalline-

electromagnetic responses are often probed by subjecting systems to dislocation and disclination defects [68].

TSMs typically possess interesting response phenomena to such defects because the TSM nodal surfaces are

protected by translation symmetry and, in some cases, rotation symmetries [63], [73]–[82], [156]. For exam-

ple, time-reversal symmetric WSMs with a quadrupole arrangement of Weyl nodes in momentum space have

electric charge bound to screw dislocations and crystal momentum bound to magnetic flux [63], [77], [156].

Motivated by these unusual electromagnetic responses, here we take the first steps toward understanding

the translation-electromagnetic responses of higher order TSMs. In Section 4.2 we introduce a model of a

TSM with a quadrupole arrangement of higher order Weyl nodes and characterize its topological features.

In Section 4.3 we show that this model possesses a rank-2 mixed translation-electromagnetic response sim-

ilar to that found in Refs. [63], [77] for quadrupolar arrangements of first-order Weyl nodes. Furthermore,

we demonstrate that the higher order nature of the Weyl nodes in our model leads to an additional sur-

face translation-electromagnetic response arising from the presence of a dipole of surface Dirac nodes. In

Section 4.4 we show that this model can possess a bulk quadrupole moment of equilibrium crystal momen-

tum. We show that the magnitude of this quadrupole moment of momentum is determined by both the

momentum-space quadrupole moment of the bulk Weyl nodes and the momentum-space dipole moment of

the surface Dirac nodes. This result is a generalization of the notion of characterizing TSMs via multipole

moments of the nodal point distribution to the broad class of HOTSMs. In Section 4.5 we conclude with a

discussion of future directions for this work.
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4.2 Model

In this section we construct a model of a time-reversal symmetric Weyl semimetal in which higher order

Weyl nodes are arranged in a quadrupole pattern. We discuss bulk indicators of the topology of this model

and the associated bulk, surface, and hinge spectra. Consider the following Bloch Hamiltonian,

H(k) = sin(kx) sin(ky)Γ1 + sin(kz)Γ2 + (m+ cos(kx) + β cos(kz)) Γ3

+ (m+ cos(ky) + β cos(kz)) Γ4 + iγΓ1Γ2,

(4.1)

where Γi is a set of five anti-commuting 4 × 4 matrices. We use the basis Γ0 = σ2 ⊗ σ0, Γ1 = σ1 ⊗ σ1,

Γ2 = σ1 ⊗ σ2, Γ3 = σ1 ⊗ σ3, and Γ4 = σ3 ⊗ σ0, where σi are the Pauli matrices. This Hamiltonian possesses

a range of symmetries: spinless time-reversal symmetry (TRS), T = KI, two-fold rotation symmetry about

each axis, C2x = C2y = Γ1Γ2, C2z = I, mirror symmetry about the x = y and x = −y planes,M1,1 =M1,−1 =

(Γ3 − Γ4)Γ0/
√
2, the product of four-fold rotation and reflection along the z-axis, C4zMz = (Γ3 + Γ4)/

√
2,

and the product of inversion and chiral symmetry, PΞ = Γ2
1.

We first consider the bulk energy spectrum of H(k) in the special case m+ β = −1 and γ = 0, for which

a quadratic band crossing (QBC) appears at Γ, as shown in Fig. 4.1a. While m and β can be tuned to

generate QBCs at other high-symmetry points of the BZ, we only consider parameter ranges that place the

QBC at Γ. Departing from this starting point by tuning γ away from zero splits the QBC into four Weyl

nodes that move apart along the kx and ky axes. We show the finite-γ spectrum in Fig. 4.1b which clearly

depicts the Weyl nodes on the ΓX and ΓY lines.

To identify the bulk topology, we recall that Weyl nodes act as quantized sources of Berry curvature. As

such, the Chern number of any surface in momentum space that encloses a single Weyl node is C = ±1,

where the sign is determined by the chirality χ of the node. Consequently, we can foliate the Brillouin

zone into families of fixed momentum planes, and planes that are separated by a Weyl node must have

Chern numbers differing by χ. This planar family picture is very convenient and we denote the Hamiltonian

restricted to two-dimensional momentum planes normal to the ki axis as H(k; ki). In Fig. 4.1c we plot the

Chern numbers of H(k, ki) for i = x, y, z as functions of ki with m = −0.3, β = −0.7 and γ = 0.5. The

discrete jumps in Chern number at the Weyl nodes indicate that the chiralities of the nodes on the kx and

ky axes are negative and positive, respectively.

The fixed-momentum planes having non-vanishing Chern number generate chiral edge modes along open

1Chiral symmetry is typically only realized approximately in material systems, with the exception of superconductors.
Breaking the chiral symmetry of our model releases the bulk Weyl nodes, surface Dirac nodes, and hinge modes from being
pinned to zero energy. This shift could introduce additional Fermi surface contributions to the translation-electromagnetic
responses we study here, but otherwise does not affect our conclusions.
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Figure 4.1: (a) The band structure of H(k) along high-symmetry lines in the kz = 0 plane with m = −0.3,
β = −0.7, and γ = 0. The band structure possesses a QBC at Γ and is otherwise gapped. (b) The band
structure of H(k) with m = −0.3, β = −0.7, and γ = 0.5. The finite value of γ splits the QBC into four
Weyl nodes, two on the kx axis and two on the ky axis. (c) The Chern number of H(k; kx) (solid blue),
H(k; ky) (dashed red), and H(k; kz) (dot-dashed green) as functions of the perpendicular momentum with
= m − 0.3, β = −0.7, and γ = 0.5. The changes in the Chern number as the perpendicular momenta are
tuned through Weyl nodes indicates that the nodes along kx and ky are of negative and positive chirality,
respectively. (d) The nested Wilson loops p

vy
z (blue crosses) and pvzy (blue circles), bulk gap (solid red line),

and surface gap (dashed red line) of H(k; kx) with m = −0.3, β = −0.7, and γ = 0.0. (e) The finite-γ phase
diagram of H(k; kx) with m = −0.3, and β = −0.7. The solid and dashed black lines indicate bulk and
surface gap closings of H(k; kx), respectively. The light green region is adiabatically connected to the γ = 0
QI phase and therefore has C = 0 and qxy = e/2. The red and blue regions are Chern insulator phases with
C = ±1, and the white regions are trivial.
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boundaries. The collection of these edge states comprise the surface Fermi arcs that connect projections of

the Weyl nodes in the surface BZ. In Fig. 4.2a we plot the surface spectrum of H(k) with open boundary

conditions along the z-direction. At zero energy there are a pair of intersecting Fermi arcs, which we depict

in blue, on the surface normal to the z-direction, with one nodal arc on the kx-axis and another arc on the

ky-axis. At energies above or below E = 0 the Fermi arcs form portions of a hyperbola that originate at

the positive chirality nodes, nearly meet at the origin, and then turn in opposite directions to eventually

terminate at the negative chirality nodes. Indeed, the dispersion around Γ is that of a saddle point E = kxky,

hence this model is another realization of a surface rank-2 chiral fermion [77]. For comparison, in Fig. 4.2b

we plot the surface spectrum with open boundaries in the x-direction with m = −0.3, β = −0.7, and

γ = 0.5. We find that the Fermi arcs that appear on the x-normal surface originate at Γ and terminate

at the positive- and negative-momentum projections of the Weyl nodes on the ky-axis. On a y-normal

surface the relative chirality of the nodes switches, but the Fermi arcs are identical because of the mirror

and rotational symmetries of H(k).

We can characterize arrangements of Weyl nodes by calculating the momentum-space multipole moments

of the nodes weighted by the node chiralities. In particular, we define the Weyl dipole Pi andWeyl quadrupole

Qij moments as

Pa =
∑
n

χnkna , Qab =
∑
n

χnknak
n
b , (4.2)

where n indexes the nodes. The Weyl dipole moment of H(k), which is proportional to the anomalous Hall

conductivity, vanishes as required by TRS. In contrast, we find that the diagonal quadrupole moments Qxx

and Qyy are non-vanishing, and the mirror symmetries along the x = y and x = −y axes require them to

have the same magnitude and opposite sign. We consider these moments because, as mentioned above, the

dipole moment is directly related to the anomalous Hall coefficient, and recent works have shown that the

quadrupole moment characterizes translation-electromagnetic responses, e.g., screw dislocations bind electric

charge, and magnetic flux binds crystal momentum [63], [77]. Below we show that the Weyl nodes in our

model are, in fact, higher order Weyl nodes, and investigate the translation-electromagnetic responses that

arise from quadrupole arrangements of higher order Weyl nodes.

We have mentioned that first order Weyl nodes represent a transition (as a function of momentum)

between insulator phases on planes of the foliated BZ where the Chern number differs by the Weyl chirality.

In contrast, higher order Weyl nodes separate insulators that differ by both a Chern number and some type

of 2D higher order topology. In our case the higher order topology is that of a quadrupole insulator (QI) [55],

[60], [92], [93], [136], [157]–[161]. Depending on the symmetry, such QI phases can be either bulk obstructed

or boundary obstructed [162]–[166], and they are characterized by a quantized bulk electric quadrupole
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moment qxy = e/2 and a quantized, vanishing bulk charge polarization. The bulk electric quadrupole

moment is defined as qxy = p∂x + p∂y −Qcorner mod 1, where p∂x and p∂y are the electric polarizations on ŷ-

and x̂-normal surfaces, respectively, and Qcorner is the charge localized on a corner where two such surfaces

meet. One typical manifestation of a bulk electric quadrupole moment qxy is a set of corner charges in

systems with open boundary conditions in both the x- and y-directions. For our model these corner charges

are accompanied by a set of four mid gap corner modes, the occupation of which determines the pattern of

signs of the corner charges.

To show that the Weyl nodes in our model are higher order we need a procedure to diagnose the QI

topology. One approach is to study the pair of Berry phases (p
νy
x , pνxy ) of the hybrid Wannier bands vy(kx)

and vx(ky) [92], [93]. These Berry phases, which are referred to as nested Wilson loops, indicate the QI phase

with non-vanishing qxy when they are both non-trivial, i.e., when (p
νy
x , pνxy ) = (1/2, 1/2). The symmetry

restrictions required to quantize the nested Wilson loops are more stringent than those required to enforce a

non-vanishing, quantized quadrupole moment, so this approach can be applied only in a reduced parameter

region of our model. Typically, a pair of mirror symmetries is needed to quantize the nested Wilson loops,

but our putative QI insulator Hamiltonians H(k, kx) and H(k, ky) instead possess pairs of mirror times

time-reversal symmetries. These symmetries are represented by Mx/yT = I4×4 and MzT = Γ1Γ2, and

descend from the the C2x/y, C2z, and T symmetries of H(k). These mirror times time-reversal symmetries

quantize the bulk quadrupole moment but do not quantize the nested Wilson loops.

We can make progress by noting that these symmetries are elevated to conventional mirror symmetries

in the limit γ = 0. Hence the γ = 0 limit permits the computation of the bulk quadrupole moment via the

nested Wilson loops. We present the results of this computation in Fig. 4.1d where we plot the bulk gap,

surface gap, and nested Wilson loops of H(k, kx) with m = −0.3, β = −0.7, and γ = 0 as a function of kx.

We find that the bulk gap closes at kx = 0, corresponding to the QBC at Γ. Interestingly, the surface gap

closes at a pair of momenta kx = ±k0, far away from the location of the bulk gap closing. For 0 < |kx| < |k0|,

both nested Wilson loops are quantized to 1/2, confirming the presence of a non-trivial QI phase for each

fixed-kx plane in this interval. One of the two nested Wilson loops changes values at the surface gap closing

at |kx| = k0, leaving the region |kx| > k0 with only a single non-trivial nested Wilson loop, indicating a

phase with vanishing quadrupole moment for all fixed-kx planes in this interval.

While we can only calculate the quantized nested Wilson loops for γ = 0, we can go beyond the γ ̸= 0

case by using an adiabatic argument. As long as the crystal symmetries that quantize qxy and the x, y

components of the (bulk) polarization are maintained, the bulk quadrupole moment can change only at bulk

or surface gap closing points. Thus, knowing the results for γ = 0, we can determine the bulk quadrupole

moment at finite γ via a straightforward adiabatic argument. At any momentum kx for which H(k, kx)
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realizes the γ = 0 QI phase, the Hamiltonian will remain in the QI phase at finite γ as long as there are no

intervening bulk or surface gap closings, and the quantizing symmetry is maintained. We plot the locations

of the bulk and surface gap closings of H(k, kx) in Fig. 4.1e as a function of kx and γ with m = −0.3 and

β = −0.7. The splitting of the QBC into Weyl nodes nucleates a pair of C = −1 and C = +1 Chern insulator

phases on opposite sides of kx = 0, indicated in blue and red, respectively. The locations of the surface gap

closings do not depend on γ, so the QI remains intact for kWeyl < |kx| < k0, where kWeyl is the location of

the Weyl node on the kx axis. Similar results obtain when we consider the 2D, fixed-momentum phases as

a function of ky instead of kx. This confirms that the Weyl nodes in this system separate Chern insulator

phases from QI phases and are higher order Weyl nodes.

The surface gap closings that bound the QI phases of H(k, kx) appear as a pair of surface Dirac cones

at opposite values of kx on the kz = π boundary of the y-normal surface BZ. An analogous pair of surface

Dirac cones appears on x-normal surface BZs owing to the rotation and mirror symmetries of H(k). We plot

the x-normal surface spectrum with m = −0.3, β = −0.7, and γ = −0.5 in Fig. 4.2b, in which the surface

Dirac cone at positive ky is visible and depicted in red. With open boundary conditions along both the y-

and z-directions, the hinge spectrum of H(k), shown in Fig. 4.2c, exhibits a pair of mid-gap flat bands in

the hinge BZ spanning between the projections of the bulk Weyl nodes and the surface Dirac nodes. These

mid-gap hinge arcs originate from the mid-gap corner modes of the QI phase. We find identical results

for hinges parallel to ŷ as ensured by the mirror and rotation symmetries of H(k). In the next section

we study the mixed crystalline-electromagnetic responses that arise from such quadrupole arrangements of

higher order Weyl nodes, with H(k) serving as an explicit realization. Additionally, in Sec. 4.4 we study

some further consequences of the mid-gap hinge states.

4.3 Translation-Electromagnetic Responses

It was recently shown that semimetals hosting a quadrupole configuration of Weyl nodes exhibit a mixed

translation-electromagnetic response that binds crystal momentum to magnetic flux and electric charge to

screw dislocations [63], [77]. Here we confirm that the Hamiltonian Eq. (4.1) also exhibits this response.

Furthermore, we show that the higher order nature of our model’s Weyl nodes leads to an additional sur-

face translation-electromagnetic response. This surface response manifests as crystal momentum bound to

magnetic flux and electric charge bound to dislocations.

The translation-electromagnetic response of topological semimetals hosting a Weyl quadrupole is captured

by the effective action

S[A, e] = − e

8π2

∫
d4x ϵµνρσQabe

a
µAν∂ρe

b
σ, (4.3)
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Figure 4.2: The (a) z- and (b) x-normal surface band structures of Eq. 4.1 along high-symmetry lines with
m = −0.3, β = −0.7 and γ = 0.5, using 30 lattice sites in the open direction. The z-normal surface has a
cross of Fermi arcs connecting the projections of the Weyl nodes on both the kx and ky axes. The x-normal
surface possesses Fermi arcs between the projections of the Weyl nodes on the Γ−Y line and a pair of Dirac
cones on the BZ boundary. Bands containing Fermi arcs are drawn in blue and the surface Dirac cones
are indicated with red. The spectrum of the y-normal surface is identical to the x-normal surface. (c) The
spectrum of H(k) with open boundary conditions along the y- and z-directions, 25 lattice sites along each
open direction, m = −0.3, β = −0.7, and γ = 0.5. The zero-energy modes arise from the quadrupole phases
of H(k; kx) and are localized to the hinges. The dashed red lines indicate the bounds of the zero-energy
hinge modes. The hinge spectrum along the y-direction is identical.

where Qab is the quadrupole moment of the Weyl nodes, Aµ is the electromagnetic gauge field, and eµ are

the translation gauge fields [58], [62], [72], [79], [89], [110]. For our model we simplify this action by noting

that only the diagonal elements of the quadrupole moment of Qab are non-vanishing Qxx = −Qyy ≡ Q̄.

One response encoded by this action is the binding of momentum density to magnetic flux that points

along the x- or y-directions,

J 0
a =

eQ̄

8π2
Ba (δax − δay) , (4.4)

where the bound momentum points along the magnetic field and the momentum density of the electrons is

defined as

J 0
a =

1

e

∫
d3k

(2π)3
kaj

0(k), (4.5)

where we have assumed eab = δab . If the lattice is distorted and off-diagonal elements of the translation gauge

field are present, Eq. (4.4) is modified such that the momentum density does not align directly with the

magnetic field. There is also a conjugate response wherein charge is bound to screw dislocations that have

Burgers vectors in the xy-plane,

j0 =
eQ̄

8π2

(
Bxx − Byy

)
, (4.6)

where we have set exx = eyy = ezz = 1, ∂xe
x
y = ∂xe

x
z = 0, and allow ∂ze

x
y and ∂ye

x
z to be finite. In these two

response equations Ba are the components of the magnetic field and Baa = ϵabc∂be
a
c denotes the torsional

magnetic field induced by a screw dislocation along the a-axis.
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This translation-electromagnetic response can be straightforwardly understood as a consequence of the

arrangement of non-trivial Chern insulator phases on planes in the foliated BZ. For simplicity, let us first

consider planes normal to kx and denote the locations of the Weyl nodes away from kx = 0 on the kx-axis

as ±k0. As shown in Fig. 4.1c, the Chern number of H(k; kx) is C = −1 for −k0 < kx < 0, C = 1 for

0 < kx < k0, and C = 0 elsewhere. Consider inserting a magnetic flux Φ in the yz-plane. Let us assume that

this flux line preserves translation symmetry along x̂. Then the net response of the system to the magnetic

flux is the response of H(k, kx) summed over kx. The trivial phases of H(k, kx) are inert to the flux, but the

Chern insulator phases bind charge q = CΦ/Φ0 to the flux, where Φ0 is the quantum of magnetic flux [29].

The charge density bound to the flux by the C = 1 and C = −1 phases of H(k, kx) are opposite, so no net

charge is accumulated. However, the crystal momentum-per-length bound to the flux is non-vanishing:

∫
dydz J 0

x =
eQ̄

8π2
Φ. (4.7)

The dual response of charge bound to a screw dislocation along the x̂-direction can be understood through

similar reasoning. As with the Aharonov-Bohm effect for electrons near a magnetic flux line, electrons

encircling a screw dislocation acquire a phase. In the magnetic flux case the phase is proportional to a

product of the charge and flux, φ ∝ eΦ. In the torsional flux case, the phase is the dot product of the crystal

momentum of the electron (translation charge) and the Burgers vector of the dislocation (torsional flux),

φ = k · b, where b = (bx, 0, 0) in this case. Since the phase acquired upon encircling the screw dislocation

is proportional to kx, the C = 1 and C = −1 phases of H(k, kx) bind equal charge (in both sign and

magnitude) to the defect, yielding no bound crystal momentum density. However, there is a non-vanishing

bound charge-per-length: ∫
dydz j0(r) =

eQxx
8π2

bx. (4.8)

The response to threading magnetic flux or screw dislocations along other directions can be interpreted

similarly. That is, one can determine the arrangement of the Chern insulator phases perpendicular to the

chosen direction n̂ by projecting the Weyl nodes onto that axis in momentum space. Then one can apply

the flux insertion method above to determine the response. As an additional example, this model has the

interesting characteristic that for n̂ = x̂± ŷ and n̂ = ẑ, the response is zero because the Weyl nodes project

onto the given axes in opposite-chirality pairs, yielding C = 0 for all momenta.

Since our model H(k) has Weyl nodes arranged in a quadrupolar pattern we expect to find it has the

responses encoded by Eq. 4.3. Here we verify that H(k) exhibits the translation-electromagnetic response

described above by numerically calculating both the electric charge density bound to screw dislocations and
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the momentum density bound to magnetic fluxes. We consider a system with periodic boundary conditions

in all directions and choose a configuration to preserve translation symmetry along x̂, which is necessary to

permit calculation of the crystal momentum density along x̂. As such, we treat the x-direction in momentum

space with Nk = 40, and use a lattice of dimension Ny ×Nz = 40× 40 in the y-and z-directions. We insert

oppositely-signed flux lines, either electromagnetic or torsional, along x̂ at sites (y, z) = (20, 10) and (20, 30).

Torsional flux is defined analogously to magnetic flux, ΦaT =
∫
dSbBab , and screw dislocations are sources of

torsional flux equal to the burgers vector of the screw dislocation.

To generate the fluxes we include the magnetic flux Φ via a Peierls phase, i.e., multiplying all hopping

terms that cross the line connecting the two flux lines by the phase exp (2πiΦ/Φ0). Because the translation

gauge fields couple to momentum rather than charge, the torsional magnetic field of a screw dislocation

is accounted for by modifying the Peierls phases used for the magnetic flux to be a product of the crystal

momentum along x̂ and the torsional flux of the dislocation, kxΦ
T
x [72], [95], [96]. The modified Peierls phase

captures the phase acquired by an electron having crystal momentum kx encircling the screw dislocation

and translating by ΦTx sites in the x̂-direction.

Using this setup, we calculate the momentum density bound to magnetic flux as a function of the flux as

shown in Fig. 4.3a. Similarly, in Fig. 4.3d we plot the charge bound to a screw dislocation as a function of

the torsional flux. Both plots demonstrate the expected linear relationship between charge/momentum and

flux with slope eQ̄/8π2, corroborating that the Hamiltonian H(k) possesses the response predicted by the

effective action in Eq. (4.3). Let us comment about the data points represented by open circles in Fig. 4.3d.

In order to be commensurate with the lattice, torsional flux ΦT should take integer values equivalent to the

Burgers vector of the screw dislocation. The open circle data points are non-integer torsional fluxes that

can be inserted via our momentum-dependent Peierls factors, but the interpretation in terms of an elastic

lattice defect is less clear.

Now that we have confirmed the expected bulk responses we can move on to identify the surface responses.

Indeed, as a consequence of our Weyl nodes being higher order, we expect that even regions of the surface

BZ that do not harbor gapless surface states may contribute to surface responses. Indeed, since the x̂-

and ŷ-normal surfaces of the model Hamiltonian host a pair of Dirac nodes we expect to find a 2D surface

response analogous to a 2D Dirac semimetal. As such, these surfaces possess a translation-electromagnetic

response similar to that of the bulk described by the effective action [36]:

S[A, e] =
ePa
4π

∫
d3xϵµνρ eaµ∂νAρ. (4.9)

79



0.0 0.5 1.0 1.5
| x| ( /e)

0.0

0.5

1.0

1.5

|
0 x
| (e Q 8

2
)

(a)

0.00 0.05 0.10
| y| ( /e)

0.00

0.05

0.10

|
0 x
| (e

x
4

)

(b)

(c)

0 1 2
| T| (a)

0

1

2

|j0 | (
e Q 8

2
)

(d)

0.0 0.5 1.0
| T| (a)

0.0

0.5

1.0

|j0 | (e
x

4
)

(e) (f)

Figure 4.3: (a) The crystal momentum bound to magnetic flux by Eq. (4.1) on a lattice of dimension
Ny ×Nz = 40× 40, and Nkx = 40. (b) The surface crystal momentum density J 0

x bound to magnetic flux
along the y-direction for a system size of Ny ×Nz = 30× 30 and Nkx = 40. (c) The magnetic flux geometry
we use to calculate the momentum and charge density response on x- and y-normal surfaces. Red (blue)
coloration indicates either magnetic or dislocation flux pointing along the +y-direction (−y-direction). (d)
The electric charge bound to a screw dislocation with Ny × Nz = 40 × 40, and Nkx = 40. Empty and
filled circles indicate fractional and integer torsional fluxes. (e) The surface electric charge density bound to
dislocation flux for a system size of Ny × Nz = 40 × 40 and Nkx = 100. Here ΦDtot is the total dislocation
flux integrated along the x-direction, corresponding to the difference in system size along the x-direction
between the strained and unstrained regions in units of the unstrained lattice constant. Empty and filled
circles indicate fractional and integer dislocation fluxes. (f) The torsional flux geometry used to calculate
the surface charge response. The red (blue) plaquettes correspond to positive (negative) torsional flux and
the black arrows indicate the hoppings that acquire a momentum-dependent Peierls phase due to the strain
of the lattice. All results presented here are calculated using the parameters m = β = −0.5 and γ = 0.5.
The red dotted lines in (a), (b), (d), and (e) each have a slope of one and indicate the analytic result.
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Here the response coefficient is the Berry curvature dipole moment, given by [36], [89], [156]

Pa =
1

π

∫
BZ

d2kkaF(k), (4.10)

where F is the Berry curvature and the integration is restricted to the surface BZ. When the surface

has time-reversal and inversion symmetry, this action implies that the system has a charge polarization

pa = e
4π ϵ

abPb[36] (which resides on the surface of our 3D system).

To illustrate a particular response let us focus on the response of the y-normal surface, for which Px ̸= 0

and Pz = 0 (the x-normal surface has an analogous response by symmetry). The translation-electromagnetic

response captured by the effective action Eq. (4.9) binds momentum density to magnetic flux,

J 0
x = − e

4π
PxBy, (4.11)

and binds electric charge to dislocations,

j0 = − e

4π
Px (∂xexz − ∂ze

x
x)

j0 = − e

4π
PxBxy .

(4.12)

Here we verify that the surfaces of our model have these responses via direct numerical calculation. We

consider a system with open boundary conditions in the ŷ-direction and periodic boundary conditions in the

x̂- and ẑ-directions. We treat the x̂-direction in momentum space and calculate the momentum density bound

to magnetic flux (using Nk = 40 momentum points), and the charge bound to dislocations (using Nk = 100

momentum points). The other two directions we leave in position space and use a lattice of dimension

Ny × Nz = 30 × 30 and Ny × Nz = 40 × 40 for each of the calculations respectively. To avoid difficulties

arising from the divergent Berry curvature distribution of Dirac nodes, we also include an inversion-breaking

perturbation H ′ = −ν i2Γ2Γ3 with ν = 0.5.

To calculate the kx momentum density on a ŷ-normal surface it is necessary to maintain translation

symmetry along x̂. To do so we introduce the magnetic field via two strips of magnetic flux lines extending

in the x-direction, each with opposite field orientations ±By ŷ. For the Ny×Nz = 40×40 lattice these strips

are located at z1 = 10 and z2 = 30, while for the Ny ×Nz = 30× 30 lattice they are located at z1 = 8 and

z2 = 23. The geometry of this magnetic field configuration is depicted in Fig. 4.3c. We include torsional flux

in an analogous translation symmetry-preserving manner by using the generalized, momentum-dependent

Peierls factors mentioned above for the bulk response. We can think of this torsional magnetic field as

a non-vanishing strain configuration between the z1 and z2 planes that immediately relaxes back to the
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unstrained lattice outside this interval. This configuration induces opposite torsional magnetic fields Bxy at

the boundaries of the strained region. We schematically depict this geometry in Fig. 4.3f, where the red

(blue) plaquettes contain positive (negative) dislocation fluxes, and the black arrows indicate hopping terms

to which we apply the momentum-dependent Peierls phases.

Because we are interested in a surface response, we must use a layer-resolved Berry curvature to calculate

the response coefficient Pα for just the top (or bottom) surface of the system. The layer-resolved Berry

curvature can be obtained by combining the projector onto the occupied subspace, defined as

P (k) =
∑

ϵi(k)<0

|ui(k)⟩ ⟨ui(k)| (4.13)

where H(k) |ui(k)⟩ = ϵi(k) |ui(k)⟩, and the projector onto the nth layer of the lattice, Pn, via the formula [27]

Fab
n (k) = Tr [P (k)∂kaP (k)Pn∂kbP (k)] . (4.14)

Using this formalism, the surface response coefficient is given by the momentum-space dipole moment of the

layer-resolved Berry curvature summed over half the sites in the open direction:

Px =
1

π

Ny/2∑
n=1

∫
BZ

dkxdkz kxFxz
n (kx, kz). (4.15)

The momentum and charge bound to the surface by dislocations and magnetic flux are calculated in a similar

manner, i.e., layer contributions are summed over half of the sites in the open direction,

j0 =

Ny/2∑
n=1

j0(n), J 0
x =

Ny/2∑
n=1

J 0
x (n). (4.16)

After carrying out these calculations, we show the x-momentum density bound to a strip of magnetic flux

lines as a function of the magnetic flux in Fig. 4.3b and plot the charge density bound to a strip of dislocations

as a function of torsional flux in Fig. 4.3e. The momentum density bound to magnetic flux is linear in the

magnetic flux with the correct proportionality constant ePx/4π. Here the value of Px is determined by

directly calculating Eq. 4.15, which determines the slopes of the dashed lines in Figs. 4.3b and 4.3e. For

a small torsional flux value, ΦT = 1, the charge density bound to dislocations matches the prediction of

the effective action, but this relation becomes non-linear at higher values of ΦT because of stronger lattice

effects. As mentioned above for the bulk calculations, the open circles in Fig. 4.3e represent non-integral

dislocation fluxes that are mathematically obtainable via our momentum-dependent Peierls factors, though
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their physical interpretation as a lattice defect is not clear.

4.4 Momentum-Weighted Quadrupole Moment

As one final physical phenomenon associated to our system of a quadrupole of higher order Weyl nodes, let

us consider what is happening at the hinges. Because some regions of momentum-space harbor higher order

topology in our model, we expect to find hinge modes and/or fractional charge per unit length along the

hinge. Indeed, the hinge phenomena in our system are associated with the momentum planes that harbor

a 2D QI. At half-filling, the sign of the electric quadrupole moment of these planes is ambiguous when the

symmetries protecting the topology are enforced, i.e., the value qxy = e/2 is equivalent to qxy = −e/2. In

the case of the QI phases of H(k; kx) and H(k; ky), the relevant quantizing symmetries are the pair of mirror

times time-reversal symmetries. To choose the sign of the quadrupole moment we want to weakly break

both of these symmetries, but preserve the product, i.e., preserve C2 symmetry so that no electric dipole

moment is allowed. Operationally, for a system with open boundaries, the symmetry breaking provides a

prescription of how to fill the low-energy hinge states that is consistent with the sign of the quadrupole

moment. Interestingly, our model has two distinct possible choices of symmetry breaking that we discuss

below.

One possible choice of symmetry breaking is the perturbations H ′(k) = δ sin
(
kx/y

)
Γ0, which accomplish

the required symmetry breaking for H(k; kx/y) respectively. Since Γ0 is odd under time-reversal, this term is

time-reversal invariant, but it breaks both mirror symmetries since sin
(
kx/y

)
is odd under mirrorMx/y. As a

consequence, this perturbation endows the positive- and negative-momentum intervals of the QI phases with

the same sign of quadrupole moment. Hence the positive and negative momentum intervals add together to

yield a finite bulk electric quadrupole moment (per xz cross sectional area),

Qbulk
xz = Ly

∫
dky
2π

qxz(ky)

= ±eLy
2π

(kDirac − kWeyl) ,

(4.17)

where the sign is determined by the sign of δ. The analogous quantity in the yz plane is defined as

Qbulk
yz = Lx

∫
dkx
2π

qyz(kx)

= ∓eLx
2π

(kDirac − kWeyl) .

(4.18)

The magnitude of the bulk electric quadrupole is determined solely by the separation between the projections

onto the hinge BZ of the bulk Weyl nodes and surface Dirac nodes, kWeyl and kDirac, as these control the
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portion of the BZ that is occupied by the QI phase.

Next we consider a second possible symmetry breaking perturbation H ′′(k) = δΓ0. This term preserves

the mirror symmetries but breaks time-reversal symmetry. It has the effect of endowing the positive- and

negative-momentum intervals of QI phases with opposite quadrupole moments. The resulting bulk electric

quadrupole moment vanishes, since it receives equal and opposite contributions from each momentum inter-

val. Instead the system realizes quadrupole moments of crystal momentum density that have not previously

been considered,

Ky
xz =

Ly
e

∫
dky
2π

kyqxz(ky),

Kx
yz =

Lx
e

∫
dkx
2π

kxqyz(kx).

(4.19)

The bulk crystal momentum quadrupole moment density manifests as momentum density bound to hinges,

as shown in Fig. 4.4, where the momentum points along the hinges. Similar to the bulk electric quadrupole

moment, the magnitude of the bulk crystal-momentum quadrupole moment is determined by the locations

of the bulk Weyl and surface Dirac nodes,

Ky
xz = ±Ly

4π

(
k2Dirac − k2Weyl

)
, (4.20)

where the overall sign is again determined by the sign of δ. It is interesting to note that this quantity can be

concisely expressed in terms of the Weyl quadrupole moment Q̄ and the surface Dirac dipole moment Px,

Ky
xz = ±Ly

π

(
P2
y − 2Q̄

)
, (4.21)

and therefore acts as a link between the bulk and surface translation-electromagnetic responses. This is

analogous to the response of higher order Weyl dipole systems, in which the extent of the Fermi arcs on the

surface and the arcs on the hinge must satisfy a sum rule [137].

We note that the bulk quadrupole moment of crystal momentum density is well-defined only when the

bulk electric quadrupole moment vanishes, as its value can otherwise be arbitrarily changed by shifts of the

BZ origin k → k + k′. This is exactly what happens when we choose the H ′′ perturbation since the total

bulk quadrupole moment vanishes. The invariance of the bulk quadrupole moment of crystal momentum

under shifts of the BZ can also be seen from the definition in Eq. (4.21). The Weyl quadrupole moments Qxx

and Qyy are invariant under such shifts because the C2z symmetry of the Hamiltonian forces the Weyl dipole

moments in the kx-ky plane to vanish, and the surface Dirac dipole moments Px/y are invariant because

the product of the M1,±1 and C4Mz symmetries form a surface Mz symmetry that forces the surface Chern

number to vanish.
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Figure 4.4: The position-resolved momentum density of H(k)+H ′′(k) with open boundary conditions along
the y- and z- directions, m = −0.3, β = −0.7, γ = 0.5, and δ = 10−4.

4.5 Discussion

In this work we made the first steps towards understanding the interplay between higher order topology

and translation-electromagnetic responses. By constructing and analyzing an explicit model, we showed

that elevating a quadrupole arrangement of Weyl nodes, which is known to exhibit a bulk translation-

electromagnetic response, to higher order Weyl nodes produces an additional translation-electromagnetic

surface response. We further demonstrated that the surface response originates from the higher order QI

phases of the Hamiltonian in the foliated BZ. We additionally found that adding symmetry breaking per-

turbations can produce bulk quadrupole moments of either electric charge or crystal momentum, depending

on the particular perturbation chosen.

These results motivate a number of different directions for future research. Of primary importance

is identifying promising material platforms in which these translation-electromagnetic responses can be

observed. The response we predict in this work requires the system to possess both a bulk Weyl quadrupole

moment and a surface Dirac dipole moment. As for the crystal symmetry ingredients, for theWeyl quadrupole

moment to be well defined, the Weyl dipole moments in the plane of the quadrupole must vanish, which can

be guaranteed by mirror symmetry or a set of C2 symmetries (time reversal symmetry would also suffice,

although that would prevent observation of the momentum quadrupole). The surface Dirac dipole moment

similarly requires the surface Chern number to be zero, which can be enforced by the presence of a surface

mirror symmetry or a time reversal symmetry (as long as the bulk is not a 3D topological insulator). These

symmetries, along with the possible breaking of TRS either by magnetic ordering or an applied magnetic field,

are necessary to observe the translation-electromagnetic response. Combining these symmetry requirements

with the tools provided by topological quantum chemistry may provide a route to identifying materials that

host this translation-electromagnetic response [48], [53].
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There are a number of systems that are likely to host similar types of mixed responses and warrant further

study. Higher order analogs of two-dimensional Dirac quadrupole semimetals and three-dimensional nodal

line semimetals [156] are particularly promising, as are higher order nodal superconductors [143]–[146] and

higher order non-Hermitian TSMs [147]–[150]. Furthermore, there are promising metamaterial platforms in

which one could generate our model. Both Weyl points [167] and higher order quadrupole topology [168]–

[170] have each been demonstrated separately in experiment, so combining the two is plausibly achievable.

In these systems it may even be possible to extract information about the crystal momentum, as was recently

accomplished in a topoelectric circuit experiment studying higher rank surface states [113].

Interestingly, our model also presents a platform in which to study quantum oscillations, as the com-

bination of surface Fermi arcs and zero-energy hinge arcs may provide unusual circuits for electrons to

traverse [171]. The properties of these systems in strong magnetic fields may also be a fruitful line of pursuit

as the zeroth Landau level of the bulk Weyl nodes must coordinate with the zeroth Landau level of the

surface Dirac fermions. We leave these studies to future work.
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Chapter 5

Axionic rotation-electromagnetic

response in charge-ordered Dirac

semimetals

This chapter is adapted from Julian May-Mann, Mark R. Hirsbrunner, Lei Gioia, and Taylor Hughes, arXiv

preprint arXiv:2403.00055.

5.1 Introduction

In this chapter we turn our attention to systems that are sensitive to defects of rotation symmetry. This works

builds upon significant recent progress in understanding topological phases protected by rotation symmetry,

including classification of two-dimensional topological crystalline insulators, unquantized quasi-topological

response theories of three-dimensional type-I Dirac semimetals, and rotation-electromagnetic responses of

three-dimensional topological crystalline insulators [61]–[63], [83], [84]. Specifically, we study the rotation-

electromagnetic responses that can arise in insulators resulting from the gapping out of three-dimensional

Dirac semimetals (DSMs) by charge density wave (CDW)order. The mixed rotation-electromagnetic response

theory we discover is analogous to the purely electromagnetic response theory hosted by three-dimensional

inversion-symmetry Weyl semimetals (WSMs) that are gapped out by CDW order [25], [73], [172]–[174].

These systems exhibit axion electrodynamics that is described by a 3D Θ term, the coefficient of which

is quantized to 0 or π when the combined WSM and CDW system has inversion symmetry [26], [27], [44],

[175]–[177]. In addition to axion electrodynamics, the inversion-symmetric Weyl-CDW insulator also exhibits

87



a quantized 3D anomalous Hall response [32], [38], [178]. Importantly, the Θ = 0 and Θ = π Weyl-CDW

insulators can be distinguished when inversion-symmetric open boundaries are present by their total Hall

conductances, which differ by e2/h [174].

DSMs can similarly be gapped out via a CDW to produce a Dirac-CDW insulator [179]. The result-

ing insulator can be understood by treating the DSM as two copies of a WSM related by time-reversal

symmetry [180], [181]. This intuition reveals that the Dirac-CDW insulator cannot display a quantized 3D

Hall response, as the 3D Hall response is odd under time-reversal symmetry. This intuition further shows

that the Dirac-CDW insulator also has trivial axion electrodynamics (i.e., a vanishing 3D Θ term) since Θ

is defined mod (2π). Despite the absence of these effects, there is more to the story of the Dirac-CDW

insulator topological responses. In this work, we consider the crystalline-electromagnetic (CEM) responses

of Dirac-CDW insulators, specifically those that describe how charge fluctuations are induced by rotation

symmetry defects (i.e. disclinations) [62], [63], [68], [182]–[185].

Dirac-CDW insulators possess a natural sensitivity to disclination defects, which are line-like fluxes of

rotation symmetry, because they are protected by rotation symmetry. However, the exact nature of the

CEM response to disclinations depends on: (i) if the CDW is in/commensurate with the lattice and (ii) if

the Dirac-CDW insulator has inversion symmetry. When the CDW is commensurate with the lattice, the

Dirac-CDW insulator has residual discrete translation symmetry determined by the CDW period. We show

that disclination loops in the 3D Dirac-CDW insulator bind a quantized charge per length in this case. The

charge per length is determined by a combination of the Frank angle of the disclination and the length of

the CDW period. This response can be considered as a CEM analog of the 3D Hall effect, as the former

describes how charge per length is bound to disclination lines, while the latter describes how charge per

length is bound to magnetic flux lines. In fact, the disclination response is essentially a layered version

of the 2D discrete Wen-Zee response that describes how charge is bound to point-like disclinations of 2D

lattices [59]–[62], [64], [84], [185]–[189]. Hence, we refer to this response of the 3D Dirac-CDW insulator as

the 3D discrete Wen-Zee (dWZ) response. Furthermore, we show that the 3D dWZ response is captured in

the effective response theory by a layered version of the 2D Wen-Zee term.

Just like the case for Weyl-CDW insulators, we find that there are two distinct classes of Dirac-CDW

insulators when inversion symmetry is preserved. The difference between the two classes of insulators

manifests as a difference in the parity of charge bound to disclination lines that terminate on the open

boundaries of a system. In analogy to axion electrodynamics, we find that the effective response theories

for the two classes of Dirac-CDW insulators differ by a quantized total derivative term. This term, called

the R ∧ F term, was previously discussed in Ref. [83]. Similar to the 3D Θ term that describes axion

electrodynamics, the R ∧ F term is a total derivative term that leads to anomalous boundary physics that
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we discuss in detail below.

We show that it is generically possible to define a “disclination filling anomaly” when the CDW is

commensurate and preserves the inversion symmetry of the DSM [161], [162]. A disclination filling anomaly

occurs when it is impossible to change from periodic to (gapped) open boundary conditions while preserving

both inversion symmetry and conserving charge on the disclination line. Alternatively put, we show that when

the disclination filling anomaly is present, disclination lines of an inversion-symmetric insulator must bind

different amounts of charge for open and periodic boundary conditions. This difference in charge is quantized

and cannot be removed by inversion-preserving boundary effects. This serves to further classify crystalline

insulators by considering filling anomalies in the presence of topological defects such as a disclination.

The rest of this paper is organized as follows: in Section 5.2 we provide an overview of Dirac semimet-

als, including lattice models, protecting crystalline symmetries, and their unquantized quasi-topological

responses. In Section 5.4 we describe how adding a CDW to the DSM model can give rise to correlated

topological crystalline insulators. In Section 5.3 we discuss relevant topological response terms, such as the

discrete Wen-Zee and R∧F terms. Equipped with this knowledge, in Section 5.5 we analytically and numer-

ically demonstrate the topological crystalline-electromagnetic responses of Dirac-CDW insulators. Finally,

in Section 5.6 we conclude with a discussion and outlook, and include technical details in the appendices.

5.2 Dirac semimetals: lattice model, topology, and responses

In this section we review the relevant properties of DSMs, paying particular attention to the symmetries that

protect DSMs. We also discuss the anomalous responses of the gapless DSM in the presence of probe gauge

fields. We demonstrate that these anomalous responses physically manifest as charge bound to disclination

defects of the lattice.

Lattice model

In this subsection we briefly review the band theory of DSMs. DSMs are classified into two groups: type-I

DSMs whose low-energy gapless features are protected by separate symmorphic and translation symmetries;

and type-II DSMs wherein the Dirac nodes arise from non-symmorphic symmetry-enforcement of band

crossings with four-dimensional irreducible representations at high-symmetry points at the Brillouin zone

edge [123], [180], [181], [190]. We consider only symmorphic DSMs, utilizing a minimal model hosting a

pair of Dirac nodes that are protected by time-reversal, inversion, rotation, and translation symmetry. Such

DSMs are known to possess unquantized anomalous responses that we review in another section below [36],

[63].
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Our starting point for the symmorphic DSM is the following Bloch Hamiltonian of spin-1/2 fermions on

an orthorhombic lattice [181],

HDSM(k) = sin(kxax)Γ1 + sin(kyay)Γ2

+ [cos(kzaz)− cos(Kaz)]Γ3

− bxy[2− cos(kxax)− cos(kyay)]Γ3,

(5.1)

where ax,y,z are the lattice constants in the x, y, and z directions, respectively. The Γa matrices are defined

as

Γ1 = σxsz, Γ2 = −σy, Γ3 = σz,Γ4 = σxsx, Γ5 = σxsy, (5.2)

where σ and s are Pauli matrices acting on the sublattice and spin degrees of freedom, respectively (this

identification is not important for our discussion). Here and throughout this chapter we leave any 2 × 2

identity matrices implicit, (i.e., Γ2 = −σys0, and Γ3 = σzs0, where s0 is the 2× 2 identity in spin space).

The (doubly-degenerate) energy bands of this model are given by

E±(k) = ±
[
sin2(kxax) + sin2(kyay) + (cos(kzaz)− cos(Kaz)− bxy[2− cos(kxax)− cos(kyay)])

2
]1/2

.

(5.3)

From this equation we see that the parameter K determines the location of the Dirac nodes at which the

bands become four-fold degenerate: kDN ≡ (0, 0,K), E±(kDN) = E±(−kDN) = 0. Intuitively, K can be

varied to parameterize a process wherein two pairs of doubly-degenerate bands are inverted. At K = 0

the bands are not inverted and have a quadratic band touching at k = 0. At K = π the bands are fully

inverted and have a quadratic band touching at k = (0, 0, π). For other values of K, the two pairs of bands

are partially inverted and have linear crossings at k = (0, 0,±K). The parameter bxy determines the gap

away from the high symmetry line kx = ky = 0. As expected, the continuum Hamiltonian near the four-fold

degenerate nodal points takes on the Dirac-form

HDSM(±kDN + q) ≈ qxaxΓ1 + qyayΓ2 ± qzaz sin(Kax)Γ3. (5.4)

Here and throughout we take the system to be half-filled, i.e., two electrons per unit cell, such that the

chemical potential intersects the Dirac points.
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Symmetries

For generic values of K, the Hamiltonian in Eq. 5.1 consists of two doubly degenerate bands that meet at

a pair of four-fold degenerate Dirac nodes. The four-fold degeneracies are stabilized by the combination

of: four-fold rotation symmetry around the z-axis, C4z; translation symmetry in the z-direction, T z; charge

conservation symmetry, U(1); time-reversal symmetry, T ; and inversion symmetry, I.

The gaplessness of the Dirac nodes is protected by the combination of C4z rotation symmetry, T z trans-

lation symmetry, and U(1) charge conservation symmetry. The C4z operator is given by

U4 = exp
(
i
π

2
[ 12σ

zsz − sz]
)
, (5.5)

where (U4)
4 = −1, since we have spin-1/2 fermions. This symmetry prohibits mass terms ∝ Γ4 and ∝ Γ5.

The T z translation symmetry prevents the Dirac node at +kDN from hybridizing with the Dirac node at

−kDN. The U(1) charge symmetry precludes the appearance of superconducting pairing terms.

The two-fold degeneracy of the bands of Eq. 5.1 away from the Dirac nodes is ensured by the combination

of time-reversal and inversion symmetry: time-reversal symmetry guarantees that a state with momentum k

is accompanied by a degenerate state at −k with opposite spin (σ) projection. Similarly, inversion symmetry

guarantees that a state with momentum k is always accompanied by a degenerate state at −k with the same

spin (s) projection. The combination of time-reversal and inversion symmetries therefore guarantees that all

states are at least two-fold degenerate. Furthermore, time-reversal and inversion symmetry also protect the

four-fold degeneracy of the Dirac nodes at k = ±kDN, and prevent the DSM phase from being deformed into

a Weyl semimetal phase. For example, adding a time-reversal breaking term, such as a magnetic Zeeman

term ∝ sz, will split a Dirac nodes into one positive-chirality and one negative-chirality Weyl node. If

inversion symmetry is preserved, then this splitting of Dirac nodes must occur in pairs, and if there is

a positive chirality Weyl node at k, there will be a negative chirality Weyl node at −k. This may be

understood via the requirement that the Berry curvature satisfies Ω(k) = −Ω(−k) because of inversion

symmetry. This Dirac node splitting procedure results in a magnetic Weyl semimetal that possesses an

anomalous Hall conductivity. Alternatively, if inversion symmetry is broken and time-reversal symmetry is

preserved, we may arrive at a time-reversal invariant Weyl semimetal, where a positive chirality Weyl node

at k, is accompanied by a second positive chirality Weyl node at −k. This naturally arises as a consequence

of time-reversal symmetry which implies Ω(k) = Ω(−k). Analogous to the magnetic WSM case, such a

material is known to possess an unquantized momentum anomaly response that describes non-trivial charge

responses to dislocations, as discussed in previous chapters [63], [77], [156], [191] .

The time-reversal operator is given by T = −isyκ, where κ is the complex conjugation operator (T 2 = −1
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for spin-1/2 fermions). For the lattice model in Eq. 5.1 there are multiple inequivalent choices of inversion

symmetry, which correspond to different choices of inversion center. The different inversion centers are

related by translations of half of a lattice vector. Since we consider breaking translation symmetry in the

z-direction, we pay special attention to the two inversion centers that differ by a half-translation in the

z-direction:

Is = σz, Ib = eikzazσz. (5.6)

We call Is “site-centered” inversion symmetry since it sends r = (rx, ry, rz) → (−rx,−ry,−rz) and leaves the

site (0, 0, 0) invariant. Similarly, we call Ib “bond-centered” inversion symmetry since it sends (rx, ry, rz) →

(−rx,−ry,−rz+az) and leaves the bond (0, 0, az/2) invariant. There are other choices of inversion symmetry

that differ by half a translation in either the x or y-directions from those above. However, these other inversion

symmetry definitions are unimportant for our analysis.

The distinction between the site- and bond-centered inversion symmetries has important implications

when considering systems with open boundary conditions. Namely, for a system of length Lz = azNz in the

z-direction (i.e., Nz lattice sites along the z-direction) and open boundary conditions, site-centered inversion

symmetry necessitates that Nz is odd, while bond-centered inversion symmetry necessitates that Nz is even.

We discuss the interplay between inversion symmetry and CDWs in Sec. 5.4 below.

Anomalous topological response

As shown in Ref. [63], the DSM in Eq. 5.1 possesses an anomalous topological response to fluxes of C4z

rotation symmetry (disclination line defects). This response can be expressed in terms of probe (non-

dynamic) gauge fields for the U(1) charge symmetry (Aµ) and C4z rotation symmetry (ωµ) as

Lanom =
ν

2π2
Gzϵ

ijkωi∂jAk, (5.7)

where i, j, k run over t, x, y, the “fillinf” is given by ν = 2K/2π, and Gz = 2π/az is the reciprocal lattice

vector along the z direction. The origin of such a term may be understood via the lowest Landau level (LLL)

picture wherein a uniform magnetic flux is applied in the z-direction: such a system possesses two LLLs with

different C4z charges, giving rise to a filling-type anomaly that protects the bands from gapping out [63].

We also note that Eq. 5.7 is not manifestly gauge invariant for arbitrary values of ν, but gauge invariance is

restored by the gapless degrees of freedom at the nodes of the DSM.

Fluxes of the rotation gauge field, ω, encode disclinations with a Frank-vector ∝ ẑ. In 3D lattices, the

disclinations are line-defects that extend parallel to their Frank-vector. We implicitly take all disclinations to
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Figure 5.1: (a) A lattice with C4z symmetry and no disclinations. Upon cutting out the greyed-out quadrant
and re-gluing, we arrive at (b) a disclinated lattice. (c) A stack of disclinations of 2D layers forms a
disclination line of a 3D crystal, as shown in (d).

stretch along the z-direction in this chapter. One can think of disclination lines as stacks of 2D disclinations

in the xy-planes, as shown in Fig. 5.1. At the level of gauge field configurations, considering disclinations

that stretch along only the z-direction amounts to the condition that
∮
Cxz

ω =
∮
Cyz

ω = 0, where the loop

integrals are over curves Cab in the ab-plane that do not intersect the cores of any disclinations.

While the (discrete) gauge field ω is formally characterized only by its holonomies, previous works [64],

[83] have shown that it is possible to treat ω as a continuous gauge field with all fluxes quantized, i.e.∮
ω ∈ [0, π2 , π,

3π
2 ). This flux quantization can be thought of as arising from a Higgs mechanism, similar

to the electromagnetic flux quantization in superconductors, where angular momentum is the analogy of

electric charge. Here and throughout, we treat ω as smoothly varying, but with quantized fluxes.

The response theory in Eq. 5.7 implies that disclinations in a DSM bind a charge per length determined

by ν. To demonstrate this, let us take a functional derivative of the action generated by Eq. 5.7 with respect

to A0. The contribution to the charge density from the DSM anomalous response is

ρanom =
ν

2π2
Gz[∂xωy − ∂yωx]. (5.8)

For a thin-core disclination parallel to the z-axis, ∂xωy − ∂yωx = ΘF δ(x)δ(y), where ΘF = 2πs/4 is the

Frank angle and s ∈ Z. For a system of length Lz = azNz with Nz ∈ Z, the disclination binds a total charge

Qdisc =
ΘF
π
νNz + δQ. (5.9)

Here we assume that the system is charge neutral in the absence of any disclinations, which amounts to adding

negatively-charge background ions to each site of the lattice. In addition to the topological contribution

∝ ΘF , we have included an additional contribution to the disclination charge, δQ. This contribution is O(1)

and arises from the gapless particles that are necessary to restore the gauge invariance of the anomalous DSM
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Figure 5.2: (a) The numerically computed charge per layer bound to a ΘF = π/2 disclination as a function
of ν for the Hamiltonian Eq. 5.1 with bxy = 1 (black circles). The dashed line for comparison has slope
1
πΘF ν and vanishing intercept, indicating the theoretical prediction. The disclinated lattice is constructed as
in Ref. [83] for Nx = Ny = 39 lattice sites in the xy-plane, and 250 momentum points along the kz axis. (b)
The bound charge resolved in kz (momentum parallel to the disclination line) for K = π/3. The deviations
from 0 and 1/2 near kz = ±π

3
1
az

are the result of finite size effects and the small size of the gap near the
Dirac nodes.

response [63]. In Fig. 5.2(a) we plot the disclination charge as a function of ν using the DSM tight-binding

model in Eq. 5.1 and find that the disclination charge follows the predicted trend, Qdisc/Nz ≈ ΘF

π ν.

A useful way of understanding the disclination response of the DSM is to treat the momentum kz of

Eq. 5.1 as a tunable parameter, such that gapped planes with fixed kz are trivial 2D insulators for |kz| > K

and quantum spin Hall (QSH) insulators for |kz| < K [31], [192]. The Dirac nodes at |kz| = K mark the

band crossings that connect the topologically distinct two-dimensional insulators. In this way, the DSM

with K ≠ 0, π can be viewed as an intermediate phase between a trivial insulator (K = 0), and a weak 3D

topological insulator (K = π) [36], [39]. As we discuss in Sec. 5.3, disclinations of the 2D QSH insulator

bind charge ΘF /π. For a system of length Lz = azNz, the momentum kz is discretized in steps of size

2π/Nz. Each kz slice binds charge ΘF /π to a disclination if |kz| < K, and charge 0 if |kz| > K, as shown in

Fig. 5.2(b). The disclination therefore binds a total charge

Qdisc =

κ∑
kz=−κ

ΘF
π

≈ ΘF
π

2KNz
2π

=
ΘF
π
νNz. (5.10)

If we add in the extra O(1) contribution, δQ, that arises from the gapless modes at kz = ±K, we arrive at

Eq. 5.9.
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5.3 Topological crystalline-electromagnetic responses of crystalline

insulators

In preparation for our discussion of the topological crystalline-electromagnetic responses of the Dirac-CDW

insulator in Sec. 5.5, we first discuss the crystalline-electromagnetic responses that are relevant for insulators

with C4z rotation as well as Tz discrete translation and/or inversion symmetries. These responses are similar

to the anomalous response of the DSM discussed in Sec. 5.2. However, unlike the DSM responses, the

topological responses of insulators are quantized because of gauge invariance and symmetry (DSMs can have

unquantzed responses since the there are low energy gapless degrees of freedom that restore gauge invariance).

We mainly consider insulators composed of spin-1/2 fermions with TRS, which is the relevant case for DSMs.

Similar responses also exist for spinless fermions and systems without TRS, but the quantization of the

responses is different [83], [185].

For spin-1/2 systems with TRS and C4z rotation symmetry, we show here that crystalline-electromagnetic

responses provde: a Z4 classification when the system possesses T z discrete translation symmetry; a Z2

classification when the system has additional inversion symmetry; and a Z4 × Z2 classification when the

system has both T z discrete translation and inversion symmetries. We also show that the Z4 index indicates

that disclinations with Frank angle ΘF bind a charge per length of 2n ΘF

2πaz
(n ∈ Z4) for a system with

discrete translation rz → rz + az and periodic boundaries in the z-direction. The effective response theory

for the insulator with a non-trivial Z4 index also contains a 3D discrete Wen-Zee (dWZ) term. The Z2 index

corresponds to the charge parity of a disclination when inversion-symmetric open boundary conditions are

present. Insulators with different Z2 indices have effective response theories that differ by a quantized total

derivative term that was referred to as the R∧F term in Ref. [83]. When the insulator has both T z discrete

translation and inversion symmetry, the Z2 index can be equivalently understood as the presence or absence

of a filling anomaly [161], [162] of the 1D disclination lines, which we define more formally in Sec. 5.3.

We note that here we are discussing only the topological crystalline-electromagnetic responses of insulators

in various symmetry classes. This is not an exhaustive list of all topological responses. Notably, we are

ignoring any purely electromagnetic responses in the section.

The discrete Wen-Zee response

To begin, we consider the dWZ response in 2D and 3D. The dWZ response of a 2D system describes the

binding of a quantized charge to disclinations [59]–[62], [64], [84], [185]–[189]. The 3D dWZ response is

essentially a layered version of the 2D dWZ response and describes how disclination lines bind a quantized

95



charge per length.

The discrete Wen-Zee response in 2D

The 2D dWZ response corresponds to the following topological term in the effective field theory,

L2D-WZ =
S2D

2π
ϵijkωi∂jAk, (5.11)

where i, j, k run over t, x, y. Here, fluxes of ω (which are point-like in 2D) are disclinations of the 2D lattice.

For spin-1/2 fermions with TRS, S2D is quantized to be an even integer 1 and defined mod (8) in the case

of insulators with C4 symmetry 2. Therefore the allowed inequivalent values are S2D = 0, 2, 4, or 6 for

insulators with time-reversal and C4 symmetry.

A representative 2D insulator with S2D = 2 is realized by the following 4-band Hamiltonian,

HQSH(kx, ky) = sin(kx)Γ1 + sin(ky)Γ2 − [m− cos(kx)− cos(ky)]Γ3, (5.12)

with the C4 rotation operator given by Eq. 5.5, and TRS given by T = −isyκ. This Hamiltonian is a QSH

insulator for 0 < |m| < 2 and a trivial insulator for 2 < |m| [31], [192]. The QSH insulator has a 2D dWZ

response with S2D = 2, while the 2D dWZ response vanishes (S2D = 0) in the trivial phase3 [64]. We note

that Eq. 5.12 can be related to Eq. 5.1 by fixing bxy = 1 and setting M = 2 + cos(kz)− cos(Q).

The 2D dWZ response indicates that a disclination with Frank angle ΘF binds charge

Qdisc = S2D
ΘF
2π

mod (2), (5.13)

where we have added additional negative background charges such that the system is charge neutral in the

absence of disclinations. The mod(2) ambiguity in defining Qdisc arises from the fact that it is possible to add

a Kramers pair of particles to the disclination core without changing any topological properties for spin-1/2

insulators with TRS. Since ΘF is a multiple of π/2, the disclination charge is always trivial if S2D = 8. This

is why S2D is defined mod(8) as noted before.

1For insulators composed of spinless fermions with TRS or spin-1/2 fermions without TRS, S2D is quantized as an integer.
For insulators composed of spinless fermions without TRS, S2D = C/2 mod (1) where C is the Chern number.

2For spin-1/2 fermions with TRS, S2D is defined mod (2n) in Cn symmetric insulators. For spinless fermions either with
or without TRS, or spin-1/2 fermions without TRS, S2D is defined mod (n) in Cn symmetric insulators

3In Ref. [61], a trivial insulator has a non-zero discrete shift. This difference arises because Ref. [61] considers the charge
contribution from only the electrons. Here we are considering the contribution from the electrons, and the contribution from
the background ions, which are effectively a trivial insulator composed of negative charges.
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The discrete Wen-Zee response in 3D

For insulators with T z discrete translation, z → z + az, the 2D dWZ response can be extended to 3D as

a layered response. The 3D layered response is expressed by the following topological term in the effective

response theory,

L3D-WZ = S3D
Gz
4π2

ϵijkωi∂jAk, (5.14)

where Gz = 2π
az

is the reciprocal lattice vector along the z-direction. Here, as in Sec. 5.2, flux-lines of ω

are disclination lines with Frank-vector ∝ ẑ. Again, we take all disclination lines to extend along the z-

direction. This response is a layered version of the 2D dWZ response with 2D layer per lattice period, az.

The coefficient S3D, which we call the 3D discrete shift, is defined mod (8) and quantized as an even integer

for spin-1/2 fermions with TRS and C4z rotation symmetry, i.e. S3D = 0, 2, 4, or 6. Because of the this, the

value of S3D defines a Z4 index for insulators in this symmetry class.

This quantization of S3D is directly inherited from the quantization of S2D. The 3D dWZ term, Eq. 5.14,

has the same form as the unquantized anomaly of the DSM, Eq. 5.7. However, the coefficient of the 3D dWZ

term, S3D, is quantized, while the coefficient of the DSM anomaly equation, ν, is not (recall that ν is not

quantized due to the gaplessness of the DSM).

The 3D dWZ response physically manifests as a quantized charge per length bound to disclination lines,

as illustrated in Fig. 5.3a. If we take a system of length Lz = azNz that includes a disclination line with

Frank angle ΘF , Eq. 5.14 indicates that the total charge on the disclination line is

Qdisc =
ΘF
2π

S3DNz mod (2Nz). (5.15)

Here we have again implicitly added negatively charged background ions such that the system is charge

neutral without any disclinations. The mod (2Nz) ambiguity arises from the fact that it is possible to change

the disclination charge by embedding a 1D insulator in the disclination core without changing any topological

properties of the system. Due to the Kramers degeneracy and the Lieb-Schultz-Mattis theorem [193], the

charge per unit length must be an even integer for translation invariant spin-1/2 1D insulators with TRS.

From the mod (2Nz) ambiguity and the fact that the Frank angles of disclinations of a C4z symmetric

insulators are quantized in units of π/2, we also find that S3D = 8 leads to a trivial charge of the disclination,

confirming our earlier assertion that S3D is defined mod (8).

Without T z discrete translation symmetry, the charge per length of a disclination line is not a well-defined

quantity, as it is possible to add local charges to arbitrary points along the disclination. An important

consequence of this is that the charge per length of a disclination is not a topological, quantized quantity for
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Qdisc = ΘF
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𝒮3DNz mod 2Nz

Φ(0) ∈ {0,2π}

Qdisc = Φ(0)
π
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mod 2ΘF
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Figure 5.3: (a) The total charge per length, Qdisc/Nz, of an insulator with a disclination with Frank angle
ΘF is proportional to S3D, the coefficient of the dWZ term. (b) The disclination charge parity, Qdisc

mod (2ΘF /π), of a ΘF -disclination of an inversion-symmetric insulator with open boundary conditions is
determined by Φ(0) = {0, 2π}, the value of the coefficient of the R ∧ F term at the inversion center.

insulators with incommensurate CDWs, as it is possible to shift the charge per length of a disclination by an

arbitrary amount. However, for systems that are finite in the z-direction, the total charge on a disclination

line Qdisc is still a quantized multiple of ΘF /π. This can be understood by treating the z-coordinate as an

internal degree of freedom of an effectively 2D system with TRS and C4z rotation symmetry. A disclination

line of the finite 3D system is also a disclination of the effective 2D system, and the total charge bound to

the disclination is therefore quantized according to the 2D dWZ response (Eq. 5.11).

The R ∧ F Term

It was shown in Ref. [83] that the effective response theory of 3D crystalline insulators with rotation symmetry

around a fixed axis can contain the topological term

LR∧F = ϵµνλη
Φ

4π2
∂µων∂λAη, (5.16)

where µ, ν, λ, η run over t, x, y, z, and Φ is generally a function of position and time. We denote this response

as the R ∧ F term, since it couples the lattice curvature Rµν = ∂µων − ∂νωµ to the electromagnetic field

strength Fµν = ∂µAν − ∂νAµ [83]. The R ∧ F term has a similar form to the Θ term, F ∧ F , that describes

axion electrodynamics exhibited by 3D topological insulators [25], [26]. Like the Θ term, the R∧F term has

a periodic coefficient and is a total derivative when the coefficient is constant. For spin-1/2 insulators with

TRS, Φ is 4π periodic. In general, the periodicity of Φ depends on the spin of the fermions and the presence

of TRS, as discussed in Ref. [83].
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The charge response associated with the R ∧ F term is

jµ = ϵµνλη
1

4π2
∂νΦ∂λωη. (5.17)

Fixing ω to the configuration of a disclination line, ∂xωy−∂yωx = ΘF δ(x)δ(y), the charge response simplifies

to

ρdisc =
ΘF
4π2

∂zΦδ(x)δ(y),

jzdisc = −ΘF
4π2

∂tΦδ(x)δ(y).

(5.18)

The first lines indicates that spatial fluctuations of Φ along disclination lines bind charge. The second line

indicates that temporal fluctuations along disclination lines drive a current. Together, these two responses

indicate a charge polarization in the z-direction proportional to ΘF localized on the disclination line.

Adiabatically increasing Φ homogeneously by an amount δΦ over some time T (i.e., Φ(t) = Φ0 + δΦ t
T )

changes the polarization on the disclination line, P zdisc, as

∆P zdisc =

∫ T

0

dt∂tP
z
disc =

∫ T

0

dtjzdisc =
δΦ

2π

ΘF
2π

. (5.19)

We therefore find that if the effective response theories of two insulators differ by an R ∧ F term with a

constant coefficient δΦ, the polarization of disclination lines will differ by δΦ
2π

ΘF

2π between the two insulators.

4

The R ∧ F term with discrete translation symmetry

Here we turn our attention to the connection between the R∧F term and the 3D dWZ response. We consider

a system with T z discrete translation, z → z + az, and suppress any dependence on x and y here, since the

disclination responses in Eq. 5.18 primarily involve the dependence of Φ on z and t. The coefficient of the

R ∧ F term can be non-constant for a system with T z discrete translation symmetry, as Φ(z) = Φ(z + az)

mod (4π) has non-constant solutions. The solutions are characterized by their winding across a single unit-

cell period
∫ az
0
dz∂zΦ(z), which is an integer multiple of 4π. Examples of different winding configurations

are shown in Fig. 5.4.

With this in mind we can compute the total charge bound to a disclination for a periodic system of length

4Note that two systems can have a well-defined difference in polarization even if the systems do not have a well-defined
polarization individually. For example, a system with a net charge does not have a well-defined polarization, as the polarization
will depend on the choice of origin. However, the difference in polarization between two systems with the same net charge is
independent of the choice of origin.
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Figure 5.4: Two examples of how Φ can wind across the unit cell. Both lines wind by −4π across the unit
cell, but one has Φ(0) = 0 (red dashed) and the other has Φ(0) = 2π (black solid).

Lz = azNz:

Qdisc =
ΘF
2π

∫ Lz

0

∂z
Φ(z)

2π
dz mod (2Nz)

=
ΘF
2π

Nz

∫ az

0

∂z
Φ(z)

2π
dz mod (2Nz),

(5.20)

where the mod (2Nz) ambiguity again arises from the fact that it is possible to change the disclination

charge per length by embedding a 1D insulator in the disclination core. Comparing to Eq. 5.15, we find a

relation for the dWZ response coefficient:

S3D =
1

2π

∫ az

0

dz∂zΦ(z), (5.21)

from which we see that the winding of Φ over one period, az, generates a 3D dWZ response.

We can make the connection between the R ∧ F and 3D dWZ terms more concrete by setting

Φ(z) = Φ0 + S3DGzz, (5.22)

where Φ0 is an arbitrary constant. This solution preserves T z discrete translation symmetry when Gz =

2π/az. Plugging this value of Φ(z) into Eq. 5.16 leads to the 3D dWZ term in Eq. 5.14, after an integration

by parts. Because of the mod (2Nz) ambiguity, the R ∧ F term identifies a Z4 classification of insulators

with T z discrete translation symmetry, exactly as discussed in Sec. 5.3.

Although it is not manifest in Eq. 5.22, it is important to note that the coefficient of the R ∧ F term,

Φ, is a 4π-periodic variable. Importantly, when Φ has a winding there is no discontinuity between z = 0

and z = Lz, since S3D is an even integer and S3DGzLz = S3D2πNz = 0 mod (4π). The expression for Φ(z)
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given in Eq. 5.22 is therefore smooth everywhere with ∂zΦ(z) = S3DGz. The same would be true if we

replaced the linear interpolation in Eq. 5.22 with a more complicated function like those shown in Fig. 5.4.

R ∧ F term with inversion symmetry

We can now consider the R∧F term for a system with inversion symmetry. We again take Φ to be independent

of the x and y coordinates but allow for Φ to depend on z. We show here that the R ∧ F term resolves a

Z2 distinction between inversion-symmetric insulators. Inversion symmetry requires that Φ(z) = −Φ(−z)

mod (4π), i.e., Φ must be an odd function of z. Here we take the inversion center to be in the z = 0 plane. It

is also possible to have an inversion center at z = az/2, but the difference between the two inversion centers

can be accounted for by a redefinition of the coordinate system. In continuum effective field theory, such a

coordinate change is innocuous. However, such a change is not innocuous for lattice systems, as the discrete

lattice sites lead to a unique choice of origin (modulo lattice translations). At z = 0, inversion symmetry

requires that Φ(0) = −Φ(0). Since Φ is 4π periodic, Φ(0) = 0 or Φ(0) = 2π are both allowed values satisfying

this condition. The choice of these values defines two classes (i.e., a Z2 classification) of inversion-symmetric

insulators. Alternatively expressed, the response theories of insulators with different Z2 indices differ by a

R ∧ F term with Φ(0) = 2π.

Importantly, the value of Φ(0) has a direct physical interpretation when switching from periodic bound-

aries to open boundaries in the z-direction. We show below that a disclination with open boundaries has

charge Qdisc = 0 mod (2ΘF

π ) when Φ(0) = 0, and charge ΘF

π mod (2ΘF

π ) when Φ(0) = 2π. We refer to

the quantity Qdisc mod (2ΘF

π ) as the disclination charge parity. The disclination charge parity is a nat-

ural quantity to consider for inversion-symmetric systems with open boundary conditions, as purely 2D

boundary effects can change the disclination charge by at most an integer multiple of 2ΘF

π , provided they

respect inversion symmetry. The charge parity is therefore a physical observable that determines the Z2

classification.

To show why the value of Φ(0) determines the disclination charge parity, let us consider a system of

length Lz with periodic boundaries in the z-direction and use local perturbations to “cut” the system and

generate open boundaries at z = ±Lz/2. We assume that the resulting open boundary system satisfies the

following four conditions:

1. Changing from periodic to open boundary conditions preserves inversion symmetry around z = 0.

2. The system with open boundaries is gapped, such that Φ(z) can be defined over the entire system.

3. The value of Φ at the inversion center, Φ(0) remains constant when changing from periodic to open

boundaries. This condition is satisfied if the gap at the inversion center remains open when switching
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the boundary conditions.

4. At the boundaries of the system, Φ vanishes (i.e., Φ(z) = 0 for |z| ≥ Lz/2). This choice of boundary

conditions is equivalent to requiring that the R ∧ F term fully vanishes outside the boundaries of the

system.

Consider adding a disclination to the system with open boundary conditions. Using Eq. 5.18, the total

charge bound to the disclination is

Qdisc =
ΘF
2π

1

2π

∫ Lz/2

−Lz/2

∂zΦ(z)dz

=
Φ(0)

π

ΘF
2π

+ 2n
ΘF
π
, (5.23)

where n ∈ Z is the number of times Φ fully winds by 4π between 0 and Lz/2. Here we have used the facts

that Φ(z) = −Φ(−z) and Φ(Lz/2) = 0. This equation reflects that Φ must wind by an integer multiple of 4π

between 0 and Lz/2 if Φ(0) = Φ(Lz/2) = 0, while if Φ must instead wind by a half-integer integer multiple

of 4π if Φ(0) = 2π and Φ(Lz/2) = 0. This is illustrated in Fig. 5.3b, and two representative configurations

of Φ(z) are shown in Fig. 5.5, where n = 3. We therefore find that

Qdisc =
Φ(0)

π

ΘF
2π

mod (2
ΘF
π

). (5.24)

The difference between the Φ(0) = 0 and Φ(0) = 2π insulators is therefore manifest in the value of Qdisc

mod (2ΘF

π ) when open boundaries are present. Specifically Qdisc = 0 mod (2ΘF

π ) and ΘF

π mod (2ΘF

π ) for

Φ(0) = 0 and 2π, respectively. We also find that Qdisc = 0 mod (2ΘF

π ) for Φ(0) = 4π, in agreement with Φ

being 4π periodic.

The R ∧ F term with discrete translation and inversion symmetry

If an insulator has both inversion symmetry and T z discrete translation symmetry (z → z + az), then the

values of Φ(0) and S3D from Eq. 5.21 lead to a Z4 ×Z2 classification based on the phenomena associated to

the R ∧ F term. We stress that this classification is not exhaustive, but it is sufficient to characterize the

Dirac-CDW insulators we discuss in the following sections.

If two insulators have the same 3D dWZ response (i.e., the same value of S3D in Eq. 5.21), but different

values of Φ(0), the polarization of disclination lines differ by δΦ(0)
2π

ΘF

2π , where the difference between the

value of Φ(0) between the two insulators, δΦ(0), is equal to either 0 or 2π based on our previous discussions.
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Figure 5.5: The disclination charge parity of inversion-symmetric insulators is determined by the value of
Φ(z) at the inversion center (the z = 0 plane here). Figures (a) and (b) show two windings of Φ(z) with
n = 3 but different values of Φ(0). Figure (a) has Φ(0) = 2π and thus winds a total of seven times, producing
an odd disclination charge parity. Figure (b) has Φ(0) = 0 and therefore winds only six times, yielding an
even disclination charge parity.

To show why different values of Φ(0) lead to a difference in polarization, we take a given Φ(z) that is

invariant under T z discrete translation and inversion symmetry, and define an adiabatic evolution where

Φ(z) increases by 2π over a time T , Φ(z) → Φ(z) + 2πt/T . Inversion symmetry is broken for 0 < t < T

but is restored at t = T . During this process, Φ(0) changes by 2π, and
∫ az
0
dz∂zΦ(z) remains constant

(i.e., S3D remains constant). Based on Eq. 5.18, and 5.19 the polarization of a disclination line changes

by ΘF

2π during this process. Recall that disclinations of insulators with a non-zero S3D have a finite charge

per length. Therefore, the polarization of a disclination is not strictly well-defined for insulators with finite

S3D. However, the difference in the polarization of disclinations between insulators with the same S3D is

well-defined. This is analogous to discussions of polarization in Chern insulators [194], [195].

For insulators with S3D = 2, the two classes of inversion-symmetric insulators are related to each other

by a half-translation z → z + az/2. For S3D = 2, this is clear if we set Φ(z) = 2Gzz, for which Φ(0) = 0.

Translating the system by az/2 shifts Φ(z) → 2π + 2Gzz, for which Φ(0) = 2π. This relationship can

be naturally understood if we treat the 3D dWZ response as arising from a stacking of 2D systems with

S2D = 2. In order to preserve inversion symmetry around z = 0, the 2D systems must be centered at either

z = naz or z = naz + az/2 with n ∈ Z. A disclination line of such a system has charge ΘF /π centered at

z = naz or z = naz + az/2, respectively. This is the same charge configurations that are realized by the two

topologically distinct phases of the 1D inversion symmetric Su–Schrieffer–Heeger (SSH) model [22], [23], if

we set the electron charge to be ΘF /π instead of 1 in the SSH model.

We similarly have that the two insulators with S3D = 6 are related by a half-translation. This can

be understood using that S3D = 6 = −2 mod (8), and hence the S3D = 6 dWZ response is captured by
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Φ(z) = −2Gzz. A half translation then shifts Φ(0) → Φ(0)− 2π = Φ(0)+2π mod (4π). We can also invoke

a similar stacking argument to the one used above, but instead stacking 2D systems with S2D = −2.

The two inversion symmetric insulators having S3D = 4 are related to each other by a quarter translation,

z → z + az/4. Here, we can imagine the 3D dWZ response as arising from having two 2D systems between

z = naz and z = (n + 1)az, each with S2D = 2. To preserve inversion symmetry, these 2D systems must

be stacked in one of two classes of configurations. In the first class of stacking configurations, one insulator

is at z = naz + δz and one is at z = (n + 1)az − δz for each n ∈ Z, where δz ∈ [0, az) is a constant offset.

Since inversion symmetry is preserved for all δz here, stacking configurations having different values of δz

are adiabatically connected. In the second class of stacking configurations, one insulator is at z = naz and

one is at z = naz+az/2. It can be directly confirmed that the second stacking configuration is distinct from

the first stacking configuration for any value of δz. Furthermore, if we take the second stacking configuration

and perform a quarter translation, we arrive at the first stacking configuration with δz = az/4.

The value of Φ(0) determines the disclination charge parity for a system with open boundaries. However,

as we discuss in Appendix B.1, the absolute disclination charge parity is not a practical quantity to consider

since it can depend on the choice of inversion center. For insulators with T z discrete translation symmetry,

a more useful quantity to consider is the difference in the value of the disclination bound charge Qdisc

mod (2ΘF

π ) between a system with open boundaries and a system of the same size with periodic boundaries.

For a system of size Lz = azNz, the difference in charge is

QFA =
ΘF
2π

[
Φ(0)

π
− S3DNz

]
mod (2

ΘF
π

). (5.25)

Since S3D is an even integer for spin-1/2 insulators with TRS, QFA = 0 or ΘF

π are the distinct values. When

QFA is non-zero, we will refer to the system as having a disclination filling anomaly. The usual filling anomaly

reflects an inability to symmetrically deform from periodic to open boundary conditions while keeping the

charge in the system constant [161], [162], [196], [197]. Here, the disclination filling anomaly reflects an

inability to change from periodic to open boundary conditions while keeping both inversion symmetry and

the charge on disclination lines constant.

In Appendix B.1 we argue that the disclination line filling anomaly necessarily vanishes for any layered

insulator. Here we specifically define a layered insulator as an insulator where electrons from different unit

cells in the z-direction are fully decoupled. Cutting a layered system to change from periodic to open

boundary conditions is a trivial procedure under this definition. Hence, insulators that exhibit a disclination

filling anomaly are not layered in this way.

In summary, the R∧F term characterizes both the 3D dWZ response and the disclination filling anomaly
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of rotation-symmetric insulators. The response phenomena lead to a Z4×Z2 classification for insulators with

T z discrete translation symmetry and inversion symmetry. On the one hand, the Z4 index is determined by

calculating the disclination charge per length for a system with periodic boundary conditions. On the other,

the Z2 index is determined by calculating and comparing the total disinclination charge for a given system

with periodic boundary conditions and with open boundary conditions.

For systems that do not have translation symmetry, the value of Φ(0) remains quantized, since its

quantization requires only inversion symmetry. This means that there should be two distinct insulators

characterized by Φ(0) = 0 and Φ(0) = 2π, respectively, for systems with only inversion symmetry. For open

boundary conditions, the two classes of insulators will have different disclination charge parities. However,

without translation symmetry, it is not possible to define the disclination filling anomaly. The disclination

charge parity is therefore be significant when considering DSMs with an incommensurate CDW, which lack

any form of translation symmetry.

5.4 Gapping a Dirac Semimetal with a Charge Density Wave

The gapless nodes of the DSM are protected by translation, rotation, and U(1) charge conservation symme-

tries. By spontaneously breaking one of these symmetries it is possible to drive the system into a gapped

phase with charge density wave (CDW), nematic, or superconducting order, respectively. Here we consider

the gapped insulating phase that is generated by breaking translation symmetry using CDW order (see

Ref. [179] for a discussion of the instabilities of a DSM to CDW formation). We pay special attention to in-

version symmetry and show that there are two distinct classes of inversion-symmetric Dirac-CDW insulators.

The differences between these two classes of insulators is further discussed in Sec. 5.5.

To consider the effects of a CDW distortion on the low-energy degrees of freedom, we start with a DSM

with two Dirac nodes at ±kDN , and expand the fermion annihilation operators around the two Dirac points,

as

cr ≈
∑
q

eir·q+irzKcq,R + eir·q−irzKcq,L, (5.26)

and introduce a new set of Pauli matrices τ , where τz = +1 (−1) for the fermions in the R (L) valley. In

terms of the R and L fermions, the 8× 8 low-energy Hamiltonian for the DSM is

H =qxaxΓ1 + qyayΓ2 + qzaz sin(Kax)Γ3τ
z. (5.27)

The crystalline symmetries act on the low-energy Hamiltonian as follows: The C4z rotation symmetry
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acts as

R4 = exp
(
−iπ

4
[σzsz − 2sz]

)
. (5.28)

As discussed previously, there are two possible inversion symmetries, site-centered and bond-centered. The

site-centered inversion symmetry acts on the low-energy Hamiltonian as

Is = σzτx = Γ3τ
x. (5.29)

The bond-centered inversion symmetry can be similarly written as

Ib = Iseiqzaz+iKazτ
z

. (5.30)

This expression can be simplified by performing a unitary transformation, U = exp(−iKazτz), which leaves

the Hamiltonian unaffected but reduces the bond-centered inversion symmetry to

Ib = Iseiqzaz . (5.31)

This unitary transformation simplifies our later discussions, and so we implicitly assume such a unitary

transformation has been performed when discussing continuum models with bond-centered inversion sym-

metry.

A CDW can be dynamically generated through interactions, as discussed in Ref. [179]. In the mean field

limit, a CDW order corresponds to a translation symmetry breaking term. We consider two possible types

of translation symmetry breaking terms here. First is an onsite term that is given in terms of the original

lattice model by

Ĥsite =
∑
r

|∆s| cos(2Krz + θs)[c
†
rΓ3cr], (5.32)

where |∆s| and θs are the amplitude and phase of the onsite CDW, respectively. Second is a bond-order

term in the z-direction that modulates the hopping terms as

Ĥbond =
∑
r

|∆b| cos(2Krz + θb)[c
†
rΓ3cr+z] + H.c., (5.33)

where |∆b| and θb are the amplitude and phase of the bond-order CDW, respectively. Note that we explicitly

choose terms that carry momentum equal to the separation of the Dirac nodes (2K). This nesting condition

allows the mean field term to couple the low-energy degrees of freedom at the two Dirac nodes. We also

could have chosen different Γ-matrix structure in Eqs. 5.32,5.33, but our choice of Γ3 ensures that these
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terms can open a mass gap in the continuum Hamiltonian.

Returning to the low-energy theory, Eq. 5.27, the CDW mean field terms in Eq. 5.32 and 5.33 induce the

following terms in the continuum Hamiltonian

Hmass =M(q)Γ3τ
x +M ′(q)Γ3τ

y. (5.34)

The two mass terms are off-diagonal in τ and, hence, couple the two Dirac nodes. The spectrum of the

continuum Hamiltonian with the M and M ′ terms is 4-fold degenerate with energy eigenvalues

E±(q) = ±
[
(qxax)

2 + (qyay)
2 + (qzaz sin(Kaz))2 +M(q)2 +M ′(q)2

]1/2
. (5.35)

We are interested in the situation where the CDW is weak and tangibly affects only the low-energy modes

along the kx = ky = 0 high-symmetry line. In terms of the original lattice model, this leads to the requirement

that |∆s/b| ≪ bxy (recall that bxy determines the gap away from kx = ky = 0).

Now let us consider the effects of inversion symmetry. By comparing Eq. 5.31 and 5.29 to Eq. 5.34, we find

thatM andM ′ must be an even and odd functions of q in presence of inversion, respectively. ThereforeM ′(q)

must vanish at the Dirac point, q = 0 in inversion-symmetric systems. This leads to two distinct inversion-

symmetric insulators, one with and M ′(0) = 0 and M(0) > 0, and one with M ′(0) = 0 and M(0) < 0. We

now wish to relate the values of the M and M ′ to the microscopic mean-field CDW parameters, |∆s|, |∆b|,

θs and θb. Recall that we are implicitly using a unitary transformation when considering bond-centered

inversion symmetry, such that the inversion operation takes on the simple form in Eq. 5.31. Because of

this, we have to consider the site-centered and bond-centered cases (i.e. those with and without the unitary

transformation) separately when relating M and M ′ to the mean-field parameters. Plugging Eq. 5.26 into

Eq. 5.32 and 5.33, we find that symmetry M and M ′ are related to the mean-field terms for site-centered

inversion as

M(0) = |∆s| cos(θs) + |∆b| cos(θb −Kaz),

M ′(0) = |∆s| sin(θs) + |∆b| sin(θb −Kaz).
(5.36)

To be compatible with inversion symmetry we need M ′(0) to vanish, hence, the onsite term is compatible

with site-centered inversion symmetry when θs = 0, or π, and the hopping term is compatible with site-

centered inversion symmetry when θb = Kaz, or Kaz + π. Similarly, for bond-centered inversion symmetry
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(using the unitary transformation discussed above) M and M ′ are related to the mean-field terms as

M(0) = |∆s| cos(θs +Kaz) + |∆b| cos(θb),

M ′(0) = |∆s| sin(θs +Kaz) + |∆b| sin(θb).
(5.37)

Hence, the onsite term is compatible with bond-centered inversion symmetry when θs = −Kaz, or −Kaz+π,

and the hopping term is compatible with bond-centered inversion when θb = 0, π.

We note that the commensurate CDWwith period 2 (K = π/2az) is a special case, since the corresponding

onsite term is compatible with site centered inversion symmetry for all values of θs, while the hopping term

is not compatible with site-centered inversion symmetry for any value of θb. Similarly, the hopping term is

compatible with bond-centered inversion symmetry for all θb, while the onsite term is never compatible with

bond-centered inversion symmetry. This can be confirmed by direct inspection of Eq. 5.32 and 5.33.

The two inversion-symmetric Dirac-CDW insulators (M(0) ≶ 0, M ′(0) = 0) are anisotropic topological

crystalline insulators (TCI). As we show in the next section, they have different Z2 indices under the clas-

sification scheme discussed in Sec. 5.3. Although they have different crystalline-electromagnetic responses,

both classes of insulators share many important physical properties. Namely, both classes of insulators have

symmetry-protected gapless surface states on boundaries normal to the x and y directions. This can be

understood by noting that the Dirac-CDW insulator is adiabatically connected to two TRS-related copies

of the Weyl-CDW insulator. Since the Weyl-CDW insulators have gapless 1D chiral surface modes on the x

and y surfaces that circulate around the z-axis [174], the Dirac-CDW insulator has helical surface modes that

counter-propagate around the z-axis [179]. These edge modes match those that are found in a stack of 2D

quantum spin Hall (QSH) layers. The helical surface modes also indicate that edge and screw dislocations

of the CDW bind helical modes [179]. The helical modes of the Dirac-CDW insulator are interesting in their

own right, but they do not have an immediate impact on our discussion of the disclination responses of the

Dirac-CDW insulator, provided that disclinations are far away from any boundaries normal to the x or y

directions. We note that while the surfaces normal to the x and y directions are gapless due to time-reversal

symmetry, surfaces normal to the z direction can be gapped while preserving all relevant symmetries.

5.5 Crystalline-electromagnetic responses of the Dirac-CDW in-

sulator

We now turn our attention to the topological responses of Dirac-CDW insulators. The usual topological elec-

tromagnetic responses, namely the 3D Hall response and axion electrodynamics, are trivial for a Dirac-CDW
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insulator since such an insulator is essentially two time-reversal symmetry related, Weyl-CDW insulators.

However, even though Dirac-CDW insulators have trivial electromagnetic responses, they can host non-trivial

crystalline-electromagnetic responses. The exact nature of these responses depends on if the CDW preserves

a subgroup of the T z discrete translation symmetry of the lattice (i.e., if the CDW is commensurate with

the lattice) and if the CDW preserves inversion symmetry.

Below we will show the following results. If the CDW is commensurate, the Dirac-CDW insulators have

a quantized 3D dWZ response. If the CDW preserves inversion symmetry but is incommensurate, we find

there are two distinct inversion-symmetric Dirac-CDW insulators that differ by a Φ = 2π R ∧ F term.

Based on our previous arguments, two insulators differing by an R ∧ F term will have different disclination

charge parities. If the CDW is both commensurate and preserves inversion symmetry, we find that there

are two distinct inversion-symmetric Dirac-CDW insulators that have the same 3D dWZ response, but differ

by a Φ = 2π R ∧ F term. One of these insulators has a disclination filling anomaly, while the other does

not. We will establish these results analytically, and confirm them through explicit numerical lattice model

calculations.

The 3D discrete Wen-Zee response of the Dirac-CDW insulator

We show in this subsection that the Dirac-CDW insulator realizes the 3D dWZ response when the CDW is

commensurate. Such a response cannot occur for an incommensurate CDW, as a well-defined 3D dWZ re-

sponse requires discrete translation symmetry. To this end, let us consider a Dirac-CDW insulator generated

by a commensurate CDW with a period p
qaz, where az is lattice constant along the z-direction (K = q

p
π
az

in

Eq. 5.1). Such a system has an enlarged unit cell of length ãz = paz, and a reduced T z discrete translation

symmetry z → z + paz. The 3D dWZ response of such a system can be written analogously to Eq. 5.14 as

L3D-WZ CDW = S3D
G̃z
4π2

ϵijkωi∂jAk, (5.38)

where G̃z = 2π/paz is the reciprocal lattice vector along the z-direction with respect to the enlarged lattice

and S3D = 2q. This response indicates that a disclination line of a system of size Lz = azNz binds charge

Qdisc = S3D
ΘF
2π

Nz/p mod (2Nz/p),

= 2
q

p

ΘF
2π

Nz mod (2Nz/p),

(5.39)

where the mod (2Nz/p) ambiguity comes from adding a local Kramers degenerate pair of electrons to each

enlarged unit cell. Note that we assume Nz is a multiple of p in order for the system to be invariant under
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the reduced translation symmetry.

We can arrive at Eq. 5.38 by starting with the anomaly equation of the DSM, Eq. 5.7, and enlarging the

unit cell,

az → ãz = paz,

Gz → G̃z = Gz/p

(5.40)

Using that ν = q/p, we then arrive at Eq. 5.38. Note that after this redefinition of the unit cell, Eq. 5.7 has

an integer coefficient and is therefore gauge invariant and anomaly free. The system no longer needs to have

gapless degrees of freedom to compensate. Indeed, the Dirac nodes can be gapped out by the CDW order

as discussed previously. The 3D dWZ response of the Dirac-CDW insulator is therefore the descendant of

the anomalous DSM response when the anomaly is removed by breaking translation symmetry.

We can also argue that the commensurate Dirac-CDW insulator realizes the response in Eq. 5.38 by

treating the DSM (without a CDW) as a family of 2D insulators that are parameterized by kz. We recall

from above that the 2D insulators with |kz| < K are QSH insulators with S2D = 2 and the insulators with

|kz| > K are trivial (S2D = 0) in this interpretation. The total charge on a disclination in the DSM is simply

the sum of contributions coming from the QSH insulators and the gapless degrees of freedom at kz = ±K.

Turning on the CDW couples the 2D system indexed by kz to the 2D system indexed by kz + 2K. If the

magnitude of the CDW is small, the coupling will affect only the gapless systems at kz = ±K. The effect

of the CDW on the gapped states that are initially indexed |kz| < K and |kz| > K will be negligible and

therefore not affect the topological responses of these states. In particular, at weak coupling the topological

responses of the |kz| < K (i.e., the QSH insulators) will not be affected. Therefore, if we add a disclination to

the system, each of the |kz| < K insulators will still bind charge ΘF

π . Additionally, a direct calculation shows

that the two hybridized states at kz = ±K bind a net charge of ΘF

π . The states for |kz| > K correspond

to trivial 2D insulators and therefore do not bind any charge. For a system of size Lz = azNz, where kz is

quantized as a multiple of 2π/Nz (assuming periodic boundary conditions), there will be a total of qpNz − 1

states with |kz| < K (recall that Nz must be a multiple of q). A disclination therefore binds a total charge

of 2 qp
ΘF

2π Nz, in agreement with Eq. 5.39.

The disclination filling anomaly of the Dirac semimetal-charge density wave in-

sulator

In Sec. 5.4 we showed that there are two distinct inversion-symmetric Dirac-CDW insulators for a given K.

In this section we show that the effective response theories for these insulators differ by an R∧F term with
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Φ = 2π. If the CDW is commensurate such that the system has T z discrete translation symmetry, one of

these insulators will have a disclination filling anomaly and the other will not (see Sec. 5.3). More generally,

i.e., for incommensurate CDWs as well, the difference in the R ∧ F term indicates that the disclination

charges of the two insulators will differ by ΘF /π mod (2ΘF /π) when open boundaries are present.

To show that the two inversion-symmetric insulators differ by a Φ = 2π R ∧ F term, we consider the

low-energy Lagrangian for the DSM subject to a mean-field CDW term (see Sec. 5.4 and Eq. 5.34), and

minimally couple the Dirac fermions to the U(1) charge and C4z rotation gauge fields,

L = Ψ̄[iΓ̄µDµ +M +M ′Γ̄5]Ψ,

Dµ = ∂µ − iAµ − iωµ

[
1

2
σzsz − sz

]
,

(5.41)

where Ψ is an 8 component spinor, Ψ̄ = Ψ†Γ̄0, and

Γ̄x = σyszτx, Γ̄y = σxτx, Γ̄z = τy, Γ̄0 = σzτx, Γ̄5 = τz. (5.42)

The covariant derivative Dµ minimally couples the low-energy fermions to the U(1) gauge field, Aµ, and the

C4z gauge field, ωµ. The latter couples via the C4z angular momentum operator, 1
2σ

zsz − sz [83]. In this

minimal coupling procedure, we are treating ω as a continuous gauge field with fluxes that are quantized in

multiples of π/2 as discussed before. Compared to Eq. 5.34, we are suppressing any momentum dependence

of the CDW mass terms M and M ′, as it is either irrelevant at this order, or can be absorbed into a

redefinition of the Fermi velocity.

We are interested in the difference between the topological response of the two gapped inversion-symmetric

phases, i.e., inversion symmetry setsM ′ = 0, and we want to compare the insulators havingM > 0 orM < 0.

To this end, we set M = M̄ cos(θ) and M ′ = M̄ sin(θ), and consider a process where θ is smoothly increased

from 0 to π. The fermions remain gapped during this process (Eq. 5.35), and the effective response theory

(treated as a function of θ) is found by integrating out the massive fermions. The resulting effective response

theory contains the topological term,

Ltop[θ] =
θ

2π2
ϵµνλη∂µων∂λAη , (5.43)

which arises from a triangle diagram with external legs Aµ, ωµ, and θ. The θ = 0 and θ = π inversion-

symmetric insulators therefore differ by a Φ = 2π R ∧ F term (Eq. 5.16).

Based on this, and our discussions in Sec. 5.3 and 5.5, we therefore conclude that the two distinct
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Figure 5.6: Layered construction of the period-2 Dirac-CDW insulators, where a two adjacent z-layers (teal)
pair up to form a QSH insulator (dashed box) with S3D = 2. For a system of length Lz = azNz with open
boundaries, this stacking can be done such that there are Nz/2 QSH insulators (a) or Nz/2−1 QSH insulator
layers (b). This describes Eq. 5.51 with |∆b| = 1, and θb = 0 and π respectively. When there Nz/2− 1 QSH
insulator layers, there are a pair of decoupled z-layers on the top and bottom surfaces (orange).

inversion-symmetric Dirac-CDW insulators differ by a Φ = 2π R ∧ F term. For commensurate CDWs, this

difference is related to the presence or absence of a disclination filling anomaly. For incommensurate CDWs,

the difference in R ∧ F term indicates that the two insulators have different disclination charge parities.

Analytic solution for the period 2 charge density wave

To demonstrate the Dirac-CDW insulator responses we will first consider the insulators that form when

a DSM with K = π/2az is driven into a insulating phase by a period-2 CDW with inversion symmetry.

As noted in Sec. 5.2, there are two types of inversion symmetries to consider, the site-centered inversion

symmetry that sends z → −z, and the bond-centered inversion symmetry that sends z → −z + az. For a

system with open boundaries, the site-centered inversion symmetry requires an odd number of sites, while

the bond-centered inversion symmetry requires an even number of sites. For an insulator with a period-2

CDW, it is natural to require an even number of sites for commensurability, and so we will consider a lattice

model with bond-centered inversion symmetry.

The mean field limit of the DSM (Eq. 5.1) with a period-2 CDW hopping term (Eq. 5.33) is

HDSM-CDW =

Hxy Hz

Hz† Hxy

 (5.44)

Hxy = sin(kxax)Γ1 + sin(kyay)Γ2 − bxy(2− cos(kxax)− cos(kyay))Γ3 (5.45)
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Hz = (1 + |∆b| cos(θb))Γ3 + eik̃z ãz (1− |∆b| cos(θb))Γ3 (5.46)

where k̃z = kz/2 is the momentum of the folded Brillouin zone with conjugate position, z̃ = 2z. The unit

cells indexed by z̃ are twice as large as in the gapless DSM, and have length ãz = 2az. We consider a weak

CDW where |∆b| ≪ bxy. The bond-centered inversion symmetry acts on HDSM-CDW as

Ib = σztx, (5.47)

where the t Pauli matrices act on the 4× 4 blocks that make up HDSM-CDW. The even-z (odd-z) sublattices

of Eq. 5.1 correspond to tz = +1(−1) in Eq. 5.44. The t Pauli matrices should not to be confused with the

τ Pauli matrices that differentiate the two Dirac nodes in the low-energy Hamiltonian, Eq. 5.27.

There are two inversion-symmetric gapped phases to consider, cos(θb) > 0 and cos(θb) < 0. For simplicity,

we restrict our attention to the cases where θb = 0 or θb = π. For the period-2 CDW, other values of θb are

equivalent to one of these two values by a redefinition of |∆b|. To demonstrate that the θb = 0 and θb = π

insulators differ by a Φ = 2π R ∧ F term we can add an inversion symmetry breaking onsite term

H ′ = 2∆′Γ3t
z (5.48)

which is simply the onsite CDW term, Eq. 5.32 with ∆′ = |∆s| cos(θs). Indeed, HDSM-CDW+H ′ is equivalent

to Eq. 5.41 in the continuum limit with M ∝ |∆b| cos(θb) and M ′ ∝ ∆′. Hence, based on Sec. 5.5 the θb = 0

and θb = π phases differ by a Φ = 2π R ∧ F term.

To analyze the full lattice model, it is useful to consider |∆b| = 1 and θb = 0 where the Hamiltonian is

independent of k̃z, and can be treated as a stack of 2D insulating layers. The tx = ±1 sectors of each layer

are equivalent to QSH Hamiltonians, Eq. 5.12, with masses m = 2 ∓ 2
bxy

respectively. Recalling that we

have set bxy ≫ |∆b| = 1 , the tx = −1 sector is in the QSH phase, while the tx = +1 sector is in the trivial

phase. We can therefore conclude that for |∆b| = 1 and θb = 0 each CDW period hosts a single 2D QSH

insulator, in agreement with our earlier arguments.

To determine the 3D dWZ response in this layered limit, let us consider adding a disclination to a lattice

of length Lz = azNz with periodic boundary conditions. In order for the system to preserve the reduced

translation symmetry, z → z + 2az, Nz must be an even integer such that there are Nz/2 CDW periods.

Since each CDW period contains a single QSH insulator which has a S2D = 2 2D dWZ response, the charge

bound to a disclination is

Qdisc =
1

2

ΘF
π
Nz mod (Nz). (5.49)
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Comparing this to Eq. 5.39, we find that the full 3D system has a 3D dWZ response with S3D = 2, as

expected for a layered system.

Next let us consider the |∆b| = 1 and θb = π insulator. This insulator is related to the θb = 0 insulating

phase by a translation in the z-direction by half of the doubled unit cell (i.e., translation by one unit cell of

the original DSM lattice model)

Tz−1/2 =

0 eikz

1 0

 . (5.50)

The |∆b| = 1 and θb = π insulator can therefore also be treated as a stack of 2D insulating layers. The

2D insulators equally occupy the tz = +1 sublattice of layer z̃ and the tz = −1 sublattice of layer z̃ + 1.

Based on our previous results, the bulk of the |∆b| = 1 and θb = π insulator also hosts a single 2D QSH

insulator per CDW period, and therefore has S3D = 2. Hence, both the |∆b| = 1 and θb = 0, π insulators

have an identical 3D dWZ response with S3D = 2. Since the 3D dWZ response is quantized for insulators

with rotation symmetry and charge conservation, we conclude that all insulating phases of our model with

bxy ≫ |∆b| ≠ 0 have this response.

While these phases are not distinguished by their dWZ response, based our previous discussions in

Sec. 5.3, we expect two distinct classes of inversion-symmetric insulators can be distinguished by another

response. In fact, we have shown that the effective response theories for these insulators differ by a Φ = 2π

R ∧ F term. Based on our results from Sec. 5.5, the θb = 0, and θb = π insulators should fall into different

classes, and one of these insulators should have a disclination filling anomaly, while the other should not. As

we show below, the θb = π insulator has a disclination filling anomaly, while the θb = 0 insulator does not.

To show this, let us consider a system described by Eq. 5.44 of length Lz = aNz (Nz even) with open

boundaries in the z-direction. Using position space in the z-direction and momentum space in the x and

y-directions, the Hamiltonian is

ĤDSM-CDW =

Nz/2∑
z̃=1

[
c†kx,ky,z̃H

xyckx,ky,z̃

+ (1 + |∆b| cos(θb))c†kx,ky,z̃Γ3t
xckx,ky,z̃

+ (1− |∆b| cos(θb))c†kx,ky,z̃Γ3t
xckx,ky,z̃+1

]
,

(5.51)

where z̃ = 2z labels the doubled unit cells along the z-direction. As before, we consider the representative

insulators with |∆b| = 1 and θb = 0 or π.

For |∆b| = 1 and θb = 0, the spectrum is fully gapped, and different z̃-layers are fully decoupled.

Furthermore, each of these layers has S2D = 2, and constitutes a QSH insulator, i.e. one non-trivial QSH
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per z̃. This stacking configuration is shown in Fig. 5.6(a). If we add a π/2 disclination-line to the insulator,

each z̃-layer will bind charge ΘF /π. For a system of length Lz = azNz, the total charge on the disclination

line is the sum of the charges on the 2D layers,

Qdisc =
1

2

ΘF
π
Nz mod (2

ΘF
π

), (5.52)

where the 2ΘF /π ambiguity comes from the ability to add 2D insulators having S2D ∈ 2Z to the top

and bottom surfaces while preserving inversion symmetry (recall that S2D is an even integer for spin-1/2

insulators with TRS). Comparing Eq. 5.52 and 5.49, we find that the disclination charge of the |∆b| = 1

and θb = 0 insulator changes by 0 mod (2ΘF /π) when changing boundary conditions, indicating that this

system does not have a disclination filling anomaly.

We can similarly find the charge on the disclination line when |∆b| = 1 and θb = π. For open boundaries,

the tz = −1 sublattice of the z̃ = 1 layer is fully decoupled. The Hamiltonian for the fermions in this

sublattice/layer sector is just Hxy from Eq. 5.44, which has a gapless point at kx = ky = 0. The fermions on

the tz = +1 sublattice of the z̃ = Nz/2 layer at the top are also decoupled from the other layers/sublattices

and are gapless. These sectors can be gapped out, with inversion symmetry preserving mass terms ∝ Γ3.

When such a perturbation has been applied we can determine the charge distribution on a π/2-disclination

line. As noted previously, the bulk of the |∆b| = 1, θb = π insulator is composed of layers of QSH insulators

having S2D = 2. These insulators have equal weight on the tz = +1 sublattice of z̃ and the tz = −1 sublattice

of z̃+1. Since these QSH insulators live between z̃ layers, a system of length Lz = aNz with open boundaries

in the z-direction will have Nz/2 − 1 QSH layers. This stacking configuration is shown in Fig. 5.6(b). To

compute the disclination charge we also note that the gapping perturbation on the surfaces can generate

boundary insulators that also have 2D dWZ responses with S2D-bnd ∈ 2Z. However, the discrete Wen-Zee

shift of the boundary insulators at the top and bottom must be the same because of inversion symmetry.

Counting up the contributions from the bulk QSH layers and the boundary insulating layers, the total charge

on the disclination line is

Qdisc =
1

2

ΘF
π

(Nz − 2 + 2S2D-bnd) mod (2
ΘF
π

). (5.53)

Using Eqs. 5.53 and 5.49, we find that the charge on the disclination lines of the |∆b| = 1, θb = π insulator

changes by ΘF /π mod (2ΘF /π) when changing boundary conditions. The θb = π insulator therefore has

a disclination filling anomaly. Physically, the difference in charge can be traced back to the fact that if we

place the QSH insulators between z̃ layers (as we did for the θb = π insulator), there will be one less QSH
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Figure 5.7: (a, b) The charge bound to a disclination as a function of z for K = π/2az, ∆s = 0, ∆b = 0.5,
nx = 15, and nz = 14 with (a) open and (d) periodic boundary conditions. (b, e) The charge bound to a
disclination as a function of z for K = π/3az, ∆s = 0.5, ∆b = 0, nx = 15, and nz = 15 with (b) open and
(e) periodic boundary conditions. (c) The charge bound to a disclination as a function of z for K =

√
2π/4,

∆s = 0.5, ∆b = 0, nx = 15, and nz = 15 with open boundary conditions. In all cases we set bxy = 1.0
and ∆surf = 0.25. The solid black and dashed red lines indicate θb/s = 0 and θb/s = π, respectively. The
alternating gray and white shading indicates unit cells of the CDWs. (f) The charge density around a
disclination summed over the z-direction with K = π/2az, θb = π, ∆s = 0, ∆b = 0.5, bxy = 1.0, ∆surf = 0.25,
nx = 15, and nz = 12. The charge distribution is qualitatively identical for all other cases considered in this
work.

insulator than if we place the QSH insulators on the z̃ layers (as we did for the θb = 0 insulator). Boundary

effects can add a QSH insulator to the top and bottom layers. But even with the effect, the parity of the

number of QSH insulators is fixed in each stacking configuration. This leads to the quantized difference in

disclination charge found above.

In summary, we find two distinct inversion-symmetric insulators can arise from the coupling a K = π/2az

DSM to a CDW. As expected, both insulators have a S3D = 2 3D dWZ response, and one has a disclination

filling anomaly while the other does not.

Numeric analysis

In this subsection, we numerically calculate the crystalline-electromagnetic responses for the inversion-

symmetric Dirac-CDW insulators that form when a DSM is coupled to: a commensurate K = π/2az (period
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Kaz |∆s| |∆b| θs/b Nz
Qdisc

OBC
Qdisc

PBC
DL Filling
Anomaly

π/2 0 1/2 0 14 7/2 7/2 No

π/2 0 1/2 π 14 4 7/2 Yes

π/3 1/2 0 0 15 5/2 5/2 No

π/3 1/2 0 π 15 3 5/2 Yes

π/2
√
2 1/2 0 0 15 5/2 N/A N/A

π/2
√
2 1/2 0 π 15 3 N/A N/A

Table 5.1: Summary of the numerical analysis of the crystalline-electromagnetic responses of the Dirac-CDW
insulator. The Hamiltonian for the DSM is given by Eq. 5.1 with Dirac nodes at k = (0, 0,±K) and bxy = 1.

The CDW is included at the via either an inversion-symmetric onsite potential (Ĥs in Eq. 5.32 with θs = 0
or π) or an inversion-symmetric hopping amplitude (Ĥb in Eq. 5.33 with θb = 0 or π) with period π/K. For
the commensurate values of K = π/2 and π/3) the total charge bound to a disclination is calculated for
periodic and open and boundary conditions, the difference of which gives the disclination filling anomaly,
defined in Sec. 5.3. However, periodic boundary conditions are not compatible with the incommensurate
value of K = π/2

√
2, precluding the calculation of the disclination filling anomaly.

2) CDW, a commensurate K = π/3az (period 3) CDW, and an incommensurate K = π/2
√
2az CDW. These

calculations are performed using the DSM Hamiltonian in Eq. 5.1 with bxy = 1. The K = π/2az CDW is

implemented via the hopping mean field term in Eq. 5.33 with |∆b| = 1/2 and either θb = 0 or π, both

of which preserve bond-centered inversion symmetry. The K = π/3az CDW is implemented via the onsite

mean field term in Eq. 5.32 with |∆s| = 1/2 and either θs = 0 or π, preserving the site-centered inversion

symmetry. The K = π/2
√
2az CDW is similarly implemented with the onsite mean field term in Eq. 5.32

with |∆s| = 1/2 and either θs = 0 or π, also preserving site-centered inversion symmetry.

For each system, we evaluate the Hamiltonian on a lattice with open boundary conditions and a ΘF = π/2

disclination line. The disclination line is located at the center of the lattice and stretches straight along the

z-direction. To reduce the impact of finite size effects, we also add an inversion-preserving perturbation of

the form H ′
surf = ∆surfΓ3 (∆surf = 1/4 on both the top and bottom layers and vanishes elsewhere) to increase

the gap on the z-normal surfaces. Then we calculate the disclination charge by summing the charge density

over all sites within some radial distance from the disclination core. To further reduce the impact of finite

size effects, we perform these calculations over a range of system sizes and extrapolate to the infinite-size

limit. The details of how the integration radius is determined and how the extrapolations are performed,

are provided in Appendix B.2.

As expected from our analysis in previous sections, we find that charge is bound to the disclination line

for all Dirac-CDW insulators, as shown in Fig. 5.7f. Specifically, in Fig. 5.7 we plot the layer-resolved

disclination charge for each insulator at the largest accessible system size. For the commensurate CDWs,

K = π/2az and K = π/3az, we find that the charge distribution oscillates with a period matching the CDW
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period, with deviations at open boundaries. There is no notable periodicity for the K = π/2
√
2az CDW, as

it is incommensurate with the lattice. The total disclination charges for each of these insulators extrapolated

to the infinite-size limit are enumerated in Table 5.1.

For K = π/2az, the total charge bound to the disclination with open boundary conditions differs by 1/2

between the θb = 0 and θb = π Dirac-CDW insulators. This difference in disclination charge is a direct

manifestation of the difference in the coefficient of the R ∧ F term between the two Dirac-CDW insulators.

Similarly, the disclination charge differs by 1/2 between the θs = 0 and θs = π Dirac-CDW insulators

with K = π/3az, and K = π/2
√
2az. We therefore find that the two distinct inversion-symmetric Dirac-

CDW insulators for each CDW wavevector have different disclination charge parities, matching our analytic

predictions.

For the commensurate K = π/2az and K = π/3az CDWs, it is also possible to have periodic boundary

conditions in the z-direction. Hence in these cases we can determine the 3D dWZ response of the Dirac-CDW

insulators and whether or not the insulators host a disclination filling anomaly. We find that for periodic

boundaries, both the θb = 0 and π insulators with K = π/2az bind charge 1/2 per CDW period (1/4 per

original lattice layer). The θb = 0 and π insulators with K = π/3az also bind charge 1/2 per CDW period

(1/6 per original lattice layer). This is exactly the 3D dWZ response that we have previously discussed.

Furthermore, we find that the disclination charges differ by 1/2 with periodic and open boundary conditions

for the K = π/2az, θb = π and K = π/3az, θs = π insulators, indicating disclination filling anomalies. The

presence of the disclination filling anomaly can also be observed in the charge density profiles plotted in

Fig. 5.7, in which it manifests as a deviation at the boundaries of the disclination charge per CDW period.

The disclination charges for open and periodic boundary conditions are identical for the K = π/2az, θb = 0

and K = π/3az, θs = 0 insulators, marking the absence of disclination filling anomalies. These results agree

with the analytic calculations presented in Sec. 5.5. As discussed in Sec. 5.3, the disclination filling anomaly

is ill-defined for insulators with incommensurate K, like the K = π/2
√
2az Dirac-CDW insulators, since they

are incompatible with periodic boundaries.

5.6 Discussion

In this chapter we considered the topological responses of the insulating state that arises from coupling a 3D

DSM to a CDW. Unlike the related Weyl-CDW insulators, the Dirac-CDW insulators do not display a Hall

effect or axion electrodynamics. Rather, the Dirac-CDW insulators display novel crystalline-electromagnetic

responses wherein charge is bound to disclination defects of the lattice. These crystalline-electromagnetic

responses are encoded in a 3D discrete Wen-Zee term and an R ∧ F term. Due to the inversion symmetry
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of the DSM, there are two classes of insulating states where Φ = 0 and Φ = 2π respectively. These two

insulating phases can be differentiated by considering the total charge bound to disclination lines. These

responses naturally arise from the combination of topology and spatial symmetries that stabilize the DSMs.

In terms of real materials, a potential material candidate for realizing the Dirac-CDW insulator is TaTe4,

a DSM that develops commensurate CDW order at finite temperature [198]. The CDW momentum matches

the momentum space separation for a pair of Dirac points. Despite this, the CDW phase of TaTe4 is not

insulating, but rather has an 8-fold degenerate doubled Dirac point in the folded Brillouin zone. Additionally,

TaTe4 has Dirac points at other momenta that do not strongly couple to the CDW, and are expected to remain

gapless. The gapless Dirac points prevent TaTe4 from realizing the quantized crystalline-electromagnetic

responses discussed, but it does indicate that the combination of Dirac and CDW physics can occur in real

materials.

There is also a much broader family of topological semimetals protected by non-symmorphic crystal

symmetries, for which there are many candidate host materials and some experimentally confirmed exam-

ples [125], [199]. Understanding the mixed crystalline-electromagnetic response of non-symmorphic topolog-

ical semimetals is an open question for future work, as the structure of non-symmorphic symmetry fluxes

is not currently understood. In addition, it would be interesting to consider the crystalline-electromagnetic

responses of rotation-symmetric higher order Dirac semimetals, both with and without interactions. Previ-

ous studies of higher order semimetals [94], [102], [103], [137], [138] have already revealed novel behavior not

found in their first order counterparts, but a full understanding of the topological responses of higher order

semimetals remains incomplete, even for symmorphic symmetries.
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Appendix A

Supplementary information for

Chapter 2

This chapter is adapted from Mark R. Hirsbrunner, Oleg Dubinkin, Fiona J. Burnell, and Taylor Hughes,

arXiv preprint arXiv:2309.10840.

A.1 Translation gauge fields derived from the teleparallel pre-

scription

In this section we provide a derivation of the translation gauge field eµν and its’ coupling prescription that

follow directly from gauging the translational symmetry group, which can be done in a similar fashion to

gauging the ordinary electromagnetic U(1) symmetry. Consider a translation transformation

rµ → rµ + aµ, (A.1)

which is generated by corresponding operators P̂µ = −iℏ∂µ. Under such an infinitesimal translation the

wave function changes by δψ = iaµ(P̂µ/ℏ)ψ. Promoting the transformation to a local one, aµ → aµ(r), we

find that the derivative of ψ does not transform covariantly anymore:

ℏδ(∂νψ) = iaµ(r)∂ν(P̂µψ) + iP̂µψ∂νa
µ(r). (A.2)
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We can compensate the second term by introducing an additional gauge potential Bµν that obeys the gauge

transformation rules Bµν → Bµν − ∂νa
µ(r). This allows us to define a covariant derivative:

Dνψ = ∂νψ + iBµν (P̂µ/ℏ)ψ. (A.3)

Now it is straightforward to check that the covariant derivative transforms as expected:

ℏδ(Dνψ) = iaµ(t, x)Dν(P̂µψ) (A.4)

We can re-express the partial derivative in Eq. A.3 as a momentum operator to write down:

Dνψ = ieµν P̂µ/ℏ (A.5)

where eµν = δµν + Bµν is a translation gauge field that inherits its gauge transformations from the gauge

potential Bµν :

eµν → eµν − ∂νa
µ(r). (A.6)

A.2 Gradient expansion

In this appendix we provide a quick review of the gradient expansion procedure. As we are interested in

responses involving both electromagnetic and translation gauge fields, we need to consider how the electron

wave vector gets shifted in the presence of spatially-varying gauge fields Aµ(r) and eλµ(r) = δλµ +Bλµ(r) (see

Appendix A.1):

kµ → kµ +
e

ℏ
Aµ(r) + kλB

λ
µ(r). (A.7)

For small gauge fields, we can obtain a simple form of the resulting single-particle Green’s functions by

performing a Taylor expansion:

G0(k)
−1 → G−1

AB(k, r) = G−1
0

(
kµ +

e

ℏ
Aµ(r) + kλB

λ
µ(r)

)
≈ G−1

0 (k) +
e

ℏ
Aµ(r)

∂G−1
0

∂kµ
+ kλB

λ
µ(r)

∂G−1
0

∂kµ
(k) + ...

≈ G−1
0 (k) +

( e
ℏ
Aµ(r) + kλe

λ
µ(r)− kµ

) ∂G−1
0

∂kµ
(k) + ...

(A.8)
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We then follow the standard procedure to derive the effective action:

i

ℏ
S = log

(
ZAB
Z0

)
= log

(
DetG−1

AB

DetG−1
0

)
≈ Tr log (I +G0Σ)

(A.9)

where

Σ =
( e
ℏ
Aµ(r) + kλe

λ
µ(r)− kµ

) ∂G−1
0

∂kµ
(k) + ... (A.10)

Expanding the trace of logarithm we get

i

ℏ
S ≈ Tr log (I +G0Σ)

≈ Tr (G0Σ)−
1

2
Tr (G0ΣG0Σ)

+
1

3
Tr (G0ΣG0ΣG0Σ)− ...

(A.11)

The RHS of this equation is a sum of integrals over the entire phase space and the products under functional

traces are convolutions. Therefore we need to use the Moyal product formula, expanding each G0Σ term as:

G0 ⋆ Σ ≈ G0Σ+
i

2
{G0,Σ}+ ... (A.12)

where ⋆ is the Moyal product operator and {·, ·} are the Poisson brackets for the rµ and kµ variables. The

RHS of the last equation contains ordinary products of G0 and Σ that are subsequently integrated over the

phase-space. For example, in d space-time dimensions we get for the Tr (G0Σ) term in the 0-th order of the

Moyal product expansion: ∫
ddr

ddk

(2π)d

( e
ℏ
Aµ + kλB

λ
µ

)
tr

(
G0

∂G−1
0

∂kµ

)
. (A.13)

where ‘tr’ denotes the ordinary trace over orbital and spin degrees of freedom.

A.3 Electric polarization as a Berry curvature dipole

Let us consider the expression for the polarization of a 2D system with a single filled band,

P ye =
eΩ

(2π)2
i

∫
BZ

d2k⟨uk|∂kyuk⟩ ≡
eΩ

(2π)2
iP, (A.14)
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where Ω is the area of the unit cell. We rewrite the last integral denoted as ’P ’ as a first moment of the

Berry curvature, Fxy = i⟨∂kxuk|∂kyuk⟩ − i⟨∂kyuk|∂kxuk⟩. Consider the following quantity:

F = −i
∫
BZ

d2k kxFxy

=

∫
BZ

d2k kx
[
⟨∂kxuk|∂kyuk⟩ − ⟨∂kyuk|∂kxuk⟩

]
,

(A.15)

where we assume Fxy to be smooth and integrable in the Brillouin zone spanning kx ∈ [−π/ax, π/ax) and

ky ∈ [−π/ay, π/ay). Clearly, the integrand jumps in value at the kx = π/ax boundary of the Brillouin zone

and so we will treat the kx direction as open. Integrating by parts with respect to kx we find:

F = −i4π
ax

∮
dkyAy(kx = π/ax, ky)

−
∫
BZ

d2k
(
⟨uk|∂kyuk⟩ − ⟨∂kyuk|uk⟩

)
−
∫
BZ

d2k kx⟨uk|∂kx∂kyuk⟩

+

∫
BZ

d2k kx⟨∂kx∂kyuk|uk⟩,

(A.16)

where Aµ(k) = i⟨uk|∂kµuk⟩ is the Berry connection. The first term is proportional to a Wilson loop

W y(kx = π/ax) along the kx = π/ax line. It is easy to recognize that the second term is twice the integral

of interest, −2P . Integrating the third and fourth terms by parts with respect to ky we find:

−
∫
BZ

d2k kx
(
⟨uk|∂kx∂kyuk⟩ − ⟨∂kx∂kyuk|uk⟩)

=

∫
BZ

d2k kx
(
⟨∂kyuk|∂kxuk⟩ − ⟨∂kxuk|∂kyuk⟩

)
= −i

∫
d2k kxFyx = −F

(A.17)

Summing up, we have:

F = −i4π
ax
W y − 2P − F

⇓

P = −F − i
2π

ax
W y

(A.18)

and the polarization is therefore given by

P ye = − eΩ

(2π)2

∫
BZ

d2k kxFxy

+
eay
2π

∮
dkyAy(kx = π/ax, ky).

(A.19)
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Performing a similar calculation for P xe , we find the general formula

P ie =
eΩ

(2π)2
εij
∫
d2k kjFxy + eaiW

i. (A.20)

In the case when the system has inversion symmetry, the Wilson loop taken along a high-symmetry line

satisfies W i(kj = π/aj) = −W i(kj = π/aj) and W
i(kj = 0) = −W i(kj = 0) for i ̸= j and we find that the

non-quantized part of the polarization is accounted for entirely by the Berry curvature’s dipole moment.

A.4 Momentum polarization as a Berry curvature quadrupole

Let us consider the following expression for the kx momentum polarization in the ŷ direction of a 2D system

with a single filled band:

P ykx =
Ω

(2π)2
i

∫
BZ

d2k kx⟨uk|∂kyuk⟩ ≡
Ω

(2π)2
iQ, (A.21)

which is just a natural extension of the analogous expression for the charge polarization. We can rewrite the

integral denoted as ‘Q’ as a second moment of the Berry curvature, as we now show. Consider the following

quantity:

F = − i

2

∫
BZ

d2k k2xFxy

=
1

2

∫
BZ

d2k k2x⟨∂kxuk|∂kyuk⟩

− 1

2

∫
BZ

d2k k2x⟨∂kyuk|∂kxuk⟩

(A.22)

where we once again assume Fxy to be smooth and integrable in the Brillouin zone spanned by kx ∈

[−π/ax, π/ax) and ky ∈ [−π/ay, π/ay). Treating the kx direction of the BZ as open, we integrate by parts

with respect to kx to find:

F = −
∫
BZ

d2k kx
(
⟨uk|∂kyuk⟩ − ⟨∂kyuk|uk⟩

)
− 1

2

∫
BZ

d2k k2x⟨uk|∂kx∂kyuk⟩

+
1

2

∫
BZ

d2k k2x⟨∂kx∂kyuk|uk⟩

(A.23)

Note the absence of the Wilson loop contribution we found in the previous section, which is a result of the

symmetric nature of the function k2x. We see again that the first term is twice the integral of interest, −2Q.
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Integrating the third and fourth terms by parts with respect to ky we find:

− 1

2

∫
BZ

d2k k2x
(
⟨uk|∂kx∂kyuk⟩ − ⟨∂kx∂kyuk|uk⟩)

=
1

2

∫
BZ

d2k k2x
(
⟨∂kyuk|∂kxuk⟩ − ⟨∂kxuk|∂kyuk⟩

)
= − i

2

∫
d2k k2xFyx =

i

2

∫
d2k k2xFxy = −F

(A.24)

Summing up, we have:

F = −2Q− F

⇓

Q = −F

(A.25)

and we find the polarization to be:

P ykx = − Ω

8π2

∫
BZ

d2k k2xFxy. (A.26)

Performing a similar calculation for P xky , we find the general relation:

P xky =
Ω

8π2

∫
BZ

d2k k2yFxy. (A.27)

A.5 Responses for 1D systems

Here we discuss responses of isolated one-dimensional metals with a fixed number of electrons Ne. For the

cases we consider, the Fermi surface consists of an even integer number NF of Fermi points with chiralities

χa = sgn va, where va is the Fermi velocity of the a-th Fermi point. From the Fermion doubling theorem [200]

the total chirality vanishes, χ =
∑NF

a=1 χa = 0. We wish to define three more quantities besides χ that

characterize 1D metals:

Px =

NF∑
a=1

χak
(a)
Fx (A.28)

Qxx =

NF∑
a=1

χa

(
k
(a)
Fx

)2
(A.29)

Oxxx =

NF∑
a=1

χa

(
k
(a)
Fx

)3
. (A.30)

These three quantities represent the momentum space dipole, quadrupole, and octupole moments of the

Fermi-points, respectively (see Fig. 2.3(a), (b), (c)). We could go beyond the octupole moment to any higher
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moment, but for brevity we stop at this order. Importantly, these momentum moments are related to the

ground state properties of the metal. The total charge is proportional to the dipole moment,

Q =
eL

2π
Px, (A.31)

the total momentum ⟨ℏkx⟩ is proportional to the quadrupole moment,

Px =
1

2

ℏL
2π

Qxx, (A.32)

the total momentum squared ⟨(ℏkx)2⟩ is proportional to the octupole moment,

Pxx =
1

3

ℏ2L
2π

Oxxx, (A.33)

and so on for higher moments. From this we see that each of the momentum-space moments determines the

density of higher and higher powers of momentum, starting at zeroth order where the charge is proportional

to the momentum dipole. There are two important caveats to note: (i) in order for the n-th moment and its

associated physical quantity to be independent of the origin of the BZ, all lower moments must vanish, and

(ii) these results hold only up to constants independent of the set of k
(a)
Fx which result from contributions of

filled bands.

Here we consider a family of anomalous responses to various gauge fields in 1D metals. We have already

considered some of these anomalies in Sec. 2.4, and we go into more detail in this Appendix. To proceed,

we introduce a family of gauge fields e, eα, eαβ , eαβγ , . . . . Each of these fields couples to charges that are

powers of momentum. The field e we identify with the family of electromagnetic gauge field one-forms e
ℏA,

as it couples to zero powers of momentum. The field eα is the translation gauge field we have extensively

discussed, and it couples linearly to momentum kα. In general the fields eαβγ...ζ couple to the momentum

charges kαkβkγ . . . kζ . Since we consider momentum-space moments only up to the octupole moment Oxxx,

we consider gauge fields only up to eαβγ .
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Using these gauge fields we can consider the following set of actions

Sχ =
e2χ

2πℏ

∫
dxdtA0Ax (A.34)

SP =
e

2π

∫
dxdtPx(ex0Ax − exxA0) (A.35)

SQ =
ℏ
2π

∫
dxdtQxx

[
1
2e
x
0e
x
x + e(exx0 Ax − exxx A0)

]
(A.36)

SO =
ℏ2

2π

∫
dxdtOxxx

[
1
3 (e

x
0e
xx
x − exxe

xx
0 ) + e(exxx0 Ax − exxxx A0)

]
. (A.37)

These actions capture two important phenomena associated to each of the momentum moments: (i) the

connection to the assiociated ground state quantity, i.e., Q,Px, and Pxx, and (ii) the shift in Q,Px, Pxx,

and Pxxx when an electric field is turned on. As a first example let us consider Sχ. We can calculate the

electromagnetic charge density and current to find ρ = e2χ
h Ax and jx = e2χ

h A0. If we use these results to

calculate the conservation law we find

∂µj
µ =

e2χ

h
Ex, (A.38)

which is just the usual U(1) anomaly of a chiral fermion. The fact that χ = 0 for any lattice model has

two immediate consequences: (i) the U(1) charge anomaly above vanishes for lattice systems, and (ii) the

momentum dipole moment Px is well-defined and independent of the choice of momentum space origin. Just

as for conventional electric or magnetic multipole moments, in order for the n-th moment to be well-defined,

all of the lower moments must vanish. As such, the action SQ is well-defined only if χ = Px = 0. Similarly,

for SO to be well-defined we must have χ = Px = Qxx = 0.

Now let us consider each of the remaining actions in turn. We begin with SP . As mentioned in Sec. 2.4,

Px is related to the charge density of a 1D metal via ρ = − e
2πPxe

x
x, and the momentum density via

J 0
x = e

2πPxAx [36]. Assuming that our system is translation invariant, let us consider stretching our system

via a time-dependent exx. During this process the total number of electrons cannot change. Working from

the charge density we find

∂tρ = − e

2π
∂t(Pxexx). (A.39)

Naively we are just changing exx, however if we stretch the system at fixed particle number the Fermi momenta

will change inversely. We therefore have ∂tPx = −Px

exx
∂te

x
x. Inserting this into Eq. A.39 we find

∂tρ = − e

2π

(
−exx

Px

exx
∂te

x
x + Px∂texx

)
= 0. (A.40)
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Using this equation we find

∆Q =

∫
dt

∫
dx ∂tρ = 0 (A.41)

as we expect for a fixed number of electrons.

To be self-contained, let us reiterate our argument from the main text. At a fixed particle number we

know the total charge cannot change. Intuitively we might expect that the density should decrease if we

stretch the system. However, the quantity ρ above, which is defined as δS
δA0

is not a scalar density. For

general geometries the scalar charge density would be defined as

ρ̄ =
1

exx

δS

δA0
. (A.42)

To calculate the total charge we would then use

Q =

∫
dx exxρ̄ =

∫
dx ρ. (A.43)

Indeed, the scalar charge density ρ̄ will decrease as the system is stretched since ∂tρ̄ ∝ ∂tPx, which decreases

as the system size increases at fixed electron number.

Next, we can see that another consequence of a non-vanishing Px is a mixed crystalline-electromagnetic

anomaly. To illustrate this, let us consider the change in momentum-density in an applied electric field

generated by a change in Ax. We find

∂tJ x
0 =

e

2π
∂t(PxAx). (A.44)

Unlike the previous case, when we turn on a non-vanishing Ax the dipole Px does not change. Hence we

find the anomalous conservation law

∂µJ µ
x =

ePx
2π

Ex. (A.45)

Moving on, let us discuss the action SQ. To have a well-defined quadrupole moment Qxx we need Px = 0.

This scenario can happen non-trivially in systems with more than one occupied band near the Fermi-level,

as shown in Fig. 2.3(b). As long as any perturbations we apply keep χ and Px fixed to zero, then the

phenomena associated to Qxx are physically meaningful. From this action we can derive three separate
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conservation laws:

∂tρ =
e

2π
∂t(Qxxe

xx
x ) (A.46)

∂tJ 0
x =

ℏ
4π
∂t(Qxxe

x
x) (A.47)

∂tJ 0
xx = − e

2π
∂t(QxxAx), (A.48)

where the quantities Px and Pxx in Eqs. A.32 and A.33 are determined by Px =
∫
J 0
x dx, Pxx =

∫
J 0
xxdx. The

first and third equations generate a kind of mixed anomaly, so let us discuss those first. For fixed electron

number we know that ∂tρ must vanish, which implies that ∂tQxx = −Qxx

exx
x
∂te

xx
x . Thus the first equation is

simply ∂tρ = 0. For the third equation, since changing Ax while keeping χ = Px = 0 does not change Qxx,

we have

∂µJ µ
xx =

eQxx

2π
Ex. (A.49)

This implies that if we insert flux into the system, then the momentum quadrupole moment changes, i.e.,

the expectation value of the momentum squared in the resulting excited state changes while the total charge

and momentum remain fixed.

Returning to the middle equation, we consider the change in momentum as we stretch the system.

Crucially we use the relationship ∂tQxx = −2Qxx

exx
∂te

x
x (heuristically, this comes from the fact that quadratic

powers of momentum are proportional to L−2). Inserting this in Eq. A.47 we find

∂tJ 0
x = −ℏQxx

2π
∂te

x
x +

ℏQxx

4π
∂te

x
x = −ℏQxx

4π
∂te

x
x. (A.50)

We can interpret the first contribution in the middle section of the above equation as coming from the

change in the Fermi points k
(a)
Fx induced by changing exx. The second contribution arises from the existence

of a non-vanishing ground state momentum density when the length of the system is changed. Note that

while the coefficient of the final result is the same magnitude as Eq. A.47, the sign is opposite. The full

conservation law becomes

∂µJ µ
x =

ℏQxx

4π
Exx . (A.51)

Finally, if we have a scenario where χ,Px, and Qxx are all vanishing, and remain vanishing after applying

any gauge fields, then the phenomena associated to Oxxx become physically relevant. Such a scenario can

exist in a 1D metal where four bands appear at the Fermi surface (see Fig. 2.3(c)). Just as above, let us
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consider the conservation laws we can derive from SO :

∂tρ =− eℏ2

2π
∂t(Oxxxe

xxx
x ) (A.52)

∂tJ 0
x =

ℏ2

6π
∂t(Oxxxe

xx
x ) (A.53)

∂tJ 0
xx =− ℏ2

6π
∂t(Oxxxe

x
x) (A.54)

∂tJ 0
xxx =

eℏ2

2π
∂t(OxxxAx). (A.55)

We can use identical arguments as above to determine that ∂tOxxx = −Oxxx

exxx
x

∂te
xxx
x so that the total charge

remains fixed. Under a change of Ax we have ∂tOxxx = 0, and under a change in exx we can determine that

∂tOxxx = −3Oxxx

exx
∂te

x
x. Using these relationships we can reduce three of the conservation laws to find

∂µj
µ =0 (A.56)

∂µJ µ
xx =− ℏ2Oxxx

3π
Exx (A.57)

∂µJ µ
xxx =− eℏ2Oxxx

2π
Ex. (A.58)

To get the final conservation law we need to determine how Oxxx changes when exxx changes. From counting

powers of length we find ∂tOxxx = − 3
2
Oxxx

exx
x

∂te
xx
x . Inserting this into the conservation law for ρx generates

∂µJ µ
x =

ℏ2Oxxx

12π
Exxx . (A.59)

In summary, while the anomalous responses we have written in this section are formally correct, it is

impossible to uniquely determine the coefficients Px,Qxx, or Oxxx unless all lower moments vanish (starting

with the chirality χ). Additionally, even if the lower moments are initially vanishing, turning on gauge fields

may generate these moments anomalously and hence invalidate the higher moments. We expect that under

the assumptions of vanishing lower moments that the highest moment will generate the physical responses

described above.
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Appendix B

Supplementary information for

Chapter 5

This chapter is adapted from Julian May-Mann, Mark R. Hirsbrunner, Lei Gioia, and Taylor Hughes, arXiv

preprint arXiv:2403.00055.

B.1 Disclination charge parity and the disclination filling anomaly

in layered systems

In this Appendix we discuss why the disclination charge parity is not a meaningful quantity for inversion-

symmetric insulators, as it depends on the choice of inversion center for systems with open boundaries.

However, the difference between the disclination charge parity for open and periodic boundary conditions

(referred to in the main text as the disclination filling anomaly) does not depend on the inversion center, and

is therefore a physically meaningful quantity. We establish this by considering layered insulators. Although

we are only considering specific systems, the dependence of the disclination charge parity on the choice of

inversion center is general. We recall from the main text that what we mean by a layered insulator is one

that is adiabatically connected to a limit of decoupled layers where electrons are not hybrdized between

different unit cells in the z-direction.

To this end, let us consider an inversion-symmetric 3D insulator composed of Nz layers of 2D insulators,

stacked along the z-direction. We further take the system to have open boundary conditions in the z-

direction. For such a system, there are two choices of inversion symmetry that differ with respect to their

inversion center. First, there is inversion symmetry where the inversion center is in a given layer, such that
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Figure B.1: An inversion-symmetric stack of 2D layers (green) for site-centered inversion symmetry (a)
and bond-centered inversion symmetry (b). For site-centered inversion symmetry, one layer maps onto itself
under inversion symmetry, while other layers map onto a partner, such that the total number of layers, Nz
is odd. For bond-centered inversion symmetry, all layers map onto a partner, such that the total number of
layers, Nz is even.

this layer maps to itself under inversion symmetry. This was referred to as site-centered inversion symmetry

in the main text. Second, there is inversion symmetry where the inversion center is in-between two adjacent

layers. This was referred to as bond-centered inversion symmetry in the main text. For site-centered inversion

symmetry and open boundaries, Nz must be odd, since under inversion symmetry, one layer maps to itself,

while all other layers must map onto an inversion symmetry related partner. Similarly, for bond-centered

inversion symmetry, Nz must be even, since all layers map onto an inversion symmetry related partner. The

two inversion-symmetric stacking configurations are shown in Fig. B.1(a),(b).

Consider the disclination response of the layered insulator. For a 3D layered insulator, the disclination

response of the full system is simply the sum of responses of the 2D layers. Each 2D layer is described

by a 2D dWZ term, with discrete shift S2D. For spin-1/2 fermions with TRS, S2D is quantized as an

even integer. Because of the 2D dWZ response, a ΘF disclination line binds charge Qdisc-2D = S2D
ΘF

2π

mod (2) on each layer, where the mod (2) factor reflects that it is possible to locally add a Kramers

degenerate pair of electrons to the disclination core. The total disclination charge of the full 3D system is

thenQdisc-3D = NS2D
ΘF

2π mod (2). For a finite size system of spin-1/2 fermions with time-reversal symmetry

(TRS), the disclination charge parity is equal to the total charge on disclination line mod(2ΘF

π ),

Qdisc-3D mod

(
2
ΘF
π

)
= S2DNz

ΘF
2π

mod

(
2
ΘF
π

)
, (B.1)

where we have used the fact that ΘF is a multiple of 2π/n for Cn symmetric insulators. The disclination

132



0.1 0.6
r

3.0

3.5

4.0

|Q
di

sc
(r)

|

b = 0
b =

Figure B.2: The charge bound to a ΘF = π/2 disclination for a Dirac-CDW insulator as a function of the
integration radius distance r with Q = π/2, bxy = 1, ∆surf = 0.25, ∆s = 0, ∆b = 0.5, Nx = 15, and Nz = 14.
The radius r is scaled such that the farthest point from the disclination core is at r = 1. Note that the r-axis
only extends from 0.1 to 0.6.

charge parity is therefore zero when NzS2D/2 is even, and non-zero when NzS2D/2 is odd. From this, we

can conclude the following: when S2D/2 is even, the disclination charge parity always vanishes, but when

S2D/2 is odd, the disclination charge parity vanishes when Nz is even and is non-zero when Nz is odd. So

when S2D/2 is odd, the disclination charge parity always vanishes for bond centered inversion symmetry, and

is always non-zero for site-centered inversion symmetry. This occurs for an insulator composed of quantum

spin Hall layers, each of which have S2D = 2.

Having established that the disclination charge parity depends on the choice of inversion center, let us

now consider the disclination filling anomaly. To do this, we will take the layered system and “sew” the top

and bottom layers to one another such that the system has periodic boundaries in the z-direction. For a

layered system, the sewing procedure is trivial by definition and will not change the total disclination charge,

or, by extension, the disclination charge parity. The disclination filling anomaly will therefore necessarily

vanish for all layered systems, regardless of the choice of inversion center or the value of S2D.

B.2 Details of the numerics

Here we discuss the details of how we calculate the charge bound to a disclination and the extrapolations

in system size that we performed. To calculate the charge bound to a disclination, we sum the charge

on all lattice sites in each layer that are within some radius from the disclination core. In Fig. B.2 we

plot the charge bound to a disclination as a function of the integration radius for a Dirac-CDW insulator
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with Q = π/2, Nx = 15, Nz = 14, bxy = 1, ∆surf = 0.25, ∆s = 0, ∆b = 0.5, and both θb = 0 and

θb = π. The radius r is scaled such that the farthest point from the disclination core in the lattice is at

r = 1. The disclination charges approach the theoretical predictions, marked by dashed horizontal lines,

for roughly r > 0.3, indicating the exponential localization of the disclination charge. The disclination

charge approaches zero for both small and large r, and the largest values of the disclination charge generally

approach the theoretical predictions, except for very small system sizes. However, the integration radius at

which the disclination charge most closely obtains the theoretical prediction varies significantly as a function

of system size and other parameters. As such, we always calculate the disclination charge using a range of

integration radius and report the maximal absolute value.

To diminish the impact of finite-size effects, we calculated the charges for each case enumerated in

Table 5.1 over a range of system sizes and extrapolated to the infinite system-size limit. We found that

effects arising from the finite extent of the lattice in the z-direction were minimal, so for each calculation

we fixed Nz and varied Nx, the side length of the disclinated lattice. In Table B.1 we plot the disclination

charges as a function of Nx along with fits to a decaying exponential, |Qdisc(Nx)| = Q∞ + be−cNx . We plot

the infinite system size limit, Q∞, with red dashed lines and report the values and uncertainties in the insets.

The values reported in Table 5.1 are the values of Q∞ rounded to the nearest half integer, which produces

less than a 1% error in all cases.
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Kaz
OBC PBC

θs/b = 0 θs/b = π θs/b = 0 θs/b = π

π/2

10 15
Nx

3.46

3.48

3.50

|Q
di

sc
|

= 3.4992(8)

10 15
Nx

3.7

3.8

3.9

4.0
|Q

di
sc

|

= 3.9977(5)

10 15
Nx

3.46

3.48

3.50

|Q
di

sc
|

= 3.49997(1)

10 15
Nx

3.46

3.48

3.50

|Q
di

sc
|

= 3.49997(1)

π/3

10 15
Nx

2.46

2.48

2.50

|Q
di

sc
|

= 2.5004(5)

10 15
Nx

2.6

2.8

3.0

|Q
di

sc
|

= 3.009(1)

10 15
Nx

2.44

2.46

2.48

2.50

|Q
di

sc
|

= 2.5000(6)

10 15
Nx

2.2

2.3

2.4

2.5

|Q
di

sc
|

= 2.5187(7)

π/2
√
2

10 15
Nx

2.425

2.450

2.475

2.500

|Q
di

sc
|

= 2.5045(1)

10 15
Nx

2.9

3.0

|Q
di

sc
|

= 3.0038(9)

Table B.1: System size extrapolations of the charge bound to a ΘF = π/2 disclination for K = π/2, π/3,
and π/2

√
2 with θs/b = 0 and π for both open and periodic boundary conditions. For each calculation we

used bxy = 1, ∆surf = 0.25, and ∆s = 0. The system size along the disclination was set to Nz = 14 for
K = π/2 and Nz = 15 for K = π/3 and π/2

√
2. The solid red lines are fits to a decaying exponential,

|Qdisc(Nx) = Q∞ + be−cNx . The value and uncertainty of the large-Nx limit, Q∞, is reported in the legend
and plotted with a red dashed line.
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[188] A. Rüegg, S. Coh, and J. E. Moore, “Corner states of topological fullerenes,” Phys. Rev. B, vol. 88,

no. 15, p. 155 127, 2013. doi: 10.1103/PhysRevB.88.155127.

[189] C. W. Peterson, T. Li, W. Jiang, T. L. Hughes, and G. Bahl, “Trapped fractional charges at bulk

defects in topological insulators,” Nature, vol. 589, no. 7842, pp. 376–380, 2021. doi: 10.1038/s41586-

020-03117-3.

[190] B.-J. Yang and N. Nagaosa, “Classification of stable three-dimensional dirac semimetals with non-

trivial topology,” Nat commun, vol. 5, no. 1, p. 4898, 2014. doi: 10.1038/ncomms5898.

[191] L. Gioia and C. Wang, “Nonzero momentum requires long-range entanglement,” Phys. Rev. X, vol. 12,

p. 031 007, 3 Jul. 2022. doi: 10.1103/PhysRevX.12.031007.

[192] C. L. Kane and E. J. Mele, “Quantum spin hall effect in graphene,” Phys. Rev. Lett., vol. 95, no. 22,

p. 226 801, 2005. doi: 10.1103/PhysRevLett.95.226801.

[193] E. Lieb, T. Schultz, and D. Mattis, “Two soluble models of an antiferromagnetic chain,” Annals of

Physics, vol. 16, no. 3, pp. 407–466, 1961. doi: 10.1016/0003-4916(61)90115-4.

[194] S. Coh and D. Vanderbilt, “Electric polarization in a chern insulator,” Phys. Rev. Lett., vol. 102,

no. 10, p. 107 603, 2009. doi: 10.1103/PhysRevLett.102.107603.

151

https://doi.org/10.1103/PhysRevLett.111.047006
https://doi.org/10.1103/PhysRevLett.111.025304
https://doi.org/10.1103/PhysRevB.89.224503
https://doi.org/10.1103/PhysRevB.101.115115
https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1103/PhysRevLett.110.046401
https://doi.org/10.1103/PhysRevB.88.155127
https://doi.org/10.1038/s41586-020-03117-3
https://doi.org/10.1038/s41586-020-03117-3
https://doi.org/10.1038/ncomms5898
https://doi.org/10.1103/PhysRevX.12.031007
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRevLett.102.107603


[195] S. Vaidya, M. C. Rechtsman, and W. A. Benalcazar, Response to polarization and weak topology in

chern insulators, 2023. arXiv: 2304.13118 [cond-mat.mes-hall].

[196] Y. Fang and J. Cano, “Filling anomaly for general two-and three-dimensional c 4 symmetric lattices,”

Phys. Rev. B, vol. 103, no. 16, p. 165 109, 2021. doi: 10.1103/PhysRevB.103.165109.

[197] P. Rao and B. Bradlyn, “Effective action approach to the filling anomaly in crystalline topological

matter,” Phys. Rev. B, vol. 107, no. 19, p. 195 153, 2023. doi: 10.1103/PhysRevB.107.195153.

[198] X. Zhang, Q. Gu, H. Sun, et al., “Eightfold fermionic excitation in a charge density wave compound,”

Phys. Rev. B, vol. 102, no. 3, p. 035 125, 2020. doi: 10.1103/PhysRevB.102.035125.

[199] B. Bradlyn, J. Cano, Z. Wang, et al., “Beyond dirac and weyl fermions: Unconventional quasiparticles

in conventional crystals,” Science, vol. 353, no. 6299, aaf5037, 2016. doi: 10.1126/science.aaf5037.

[200] H. Nielsen and M. Ninomiya, “A no-go theorem for regularizing chiral fermions,” Physics Letters B,

vol. 105, no. 2, pp. 219–223, 1981. doi: 10.1016/0370-2693(81)91026-1.

152

https://arxiv.org/abs/2304.13118
https://doi.org/10.1103/PhysRevB.103.165109
https://doi.org/10.1103/PhysRevB.107.195153
https://doi.org/10.1103/PhysRevB.102.035125
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1016/0370-2693(81)91026-1

	Introduction
	Topological quantum matter
	Topological lattice defects
	Tight-binding Hamiltonians on defected lattices
	Crystalline gauge fields
	Outline

	Anomalous translation-electromagnetic responses in semimetals
	Introduction
	Overview of Response Theories
	Effective responses of 2D semimetals
	Dirac node dipole semimetal
	Dirac node quadrupole semimetal

	Effective responses of 1D (semi)metals
	Effective responses of 3D nodal line semimetals
	Effective responses of 4D semimetals
	Effective responses of 3D semimetals
	Discussion

	Microscopic and numerical calculations of translation-electromagnetic responses
	Introduction
	2D Dirac node dipole semimetal and insulator
	2D Dirac quadrupole semimetal
	3D nodal line dipole semimetal
	3D nodal line quadrupole semimetal
	3D Weyl node dipole semimetal
	3D Weyl node quadrupole semimetal

	Anomalous translation-electromagnetic responses in higher order semimetals
	Introduction
	Model
	Translation-Electromagnetic Responses
	Momentum-Weighted Quadrupole Moment
	Discussion

	Axionic rotation-electromagnetic response in charge-ordered Dirac semimetals
	Introduction
	Dirac semimetals: lattice model, topology, and responses
	Lattice model
	Symmetries
	Anomalous topological response

	Topological crystalline-electromagnetic responses of crystalline insulators
	The discrete Wen-Zee response
	The discrete Wen-Zee response in 2D
	The discrete Wen-Zee response in 3D

	The RF̂ Term
	The RF̂ term with discrete translation symmetry
	RF̂ term with inversion symmetry
	The RF̂ term with discrete translation and inversion symmetry


	Gapping a Dirac Semimetal with a Charge Density Wave
	Crystalline-electromagnetic responses of the Dirac-CDW insulator
	The 3D discrete Wen-Zee response of the Dirac-CDW insulator
	The disclination filling anomaly of the Dirac semimetal-charge density wave insulator
	Analytic solution for the period 2 charge density wave
	Numeric analysis

	Discussion

	Supplementary information for Chapter 2
	Translation gauge fields derived from the teleparallel prescription
	Gradient expansion
	Electric polarization as a Berry curvature dipole
	Momentum polarization as a Berry curvature quadrupole
	Responses for 1D systems

	Supplementary information for Chapter 5
	Disclination charge parity and the disclination filling anomaly in layered systems
	Details of the numerics

	References

