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This paper addresses a pivotal challenge in Unmanned Aerial Vehicle (UAV) networks
crucial for sectors including delivery services, agriculture, and emergency response: optimizing
UAV charging strategies for continuous operation in monitoring and inspection missions.
We introduce a novel Maximum Entropy Principle (MEP) framework that employs mobile
charging vehicles (MCVs), potentially Unmanned Ground Vehicles (UGVs), for in-field UAV
charging. This MEP framework marks a significant advancement in the field by providing an
integrated solution for multi-objective problems, including simultaneous obstacle-aware path
planning and resource management under energy limitations. Distinguished from traditional
heuristic approaches, our framework adeptly handles complex scenarios, significantly reducing
optimization variables and facilitating robustness analysis. Through comprehensive simulations,
our methodology has demonstrated significant advantages over existing algorithms in handling
complex operational scenarios. Unlike other algorithms, which often struggle with large network
sizes or intricate constraints, our solution consistently delivers robust performance. Empirical
evidence indicates that our method achieves more than double the cost-effectiveness compared
to its counterparts, coupled with multiple orders of magnitude faster operational speed. This
research not only contributes to the theoretical understanding of autonomous UAV/UGV network
planning but also has significant practical implications for real-time, field-deployable solutions.

I. Nomenclature

𝑀 = Total number of UGVs
𝑁 = Total number of UAVs
𝑂 = The set of all obstacles
𝑓 𝑗 = UGV id
𝑣𝑖 = UAV id
𝛿𝑖 = UAV destination id
𝑥𝑖 = Initial UAV deployment coordinates
𝑦0
𝑗

= Initial UGV deployment parameters
𝑦 𝑗 = 𝑟−dimensional vector of UGV parameters to be optimized
𝑧𝑖 = UAV destination coordinates
𝐾 = Maximum number of stages
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𝜂𝑖
𝑗
(𝑘) = Binary decision variable for UAV 𝑣𝑖 to transition to waypoint 𝑓 𝑗 in the 𝑘 th step

𝜌𝑖 = Operation priority weight of UAV 𝑣𝑖
𝑙𝑖 (𝑘) = Waypoint id of UAV 𝑣𝑖 at step 𝑘
𝑐𝑖0 = Initial charge of UAV 𝑣𝑖
𝑐𝑖 (𝑘) = Charge of UAV 𝑣𝑖 at step 𝑘
𝑅𝑖 (𝑐) = Range of UAV 𝑣𝑖 with a battery charge 𝑐
𝑅𝑖 (1) = Full Charge Range (F.C.R.) of UAV 𝑣𝑖
𝑑 (·, ·) = Distance function between two spatial waypoints
𝜁o (·, ·) = Obstacle-aware penalty function between two waypoints, for the obstacle o
𝐷𝑖 (𝑘) = Total transition cost incurred by UAV 𝑣𝑖 until step 𝑘
𝛼 = UGV cost factor
𝐶UGV = Transportation cost of UGVs
Γ𝑘 = Stage 𝑘 representing the set of all possible waypoints for UAVs
𝛾𝑘 = An element (node) of stage Γ𝑘
𝛾 = Path of a UAV modelled as an ordered tuple of the elements from the stages Γ𝑘
G = The set of all possible paths of the form 𝛾 taken by UAVs
𝑑𝑖
𝑘
(·, ·) = Transition cost incurred by a UAV in moving from a facility in Γ𝑘 to another facility in Γ𝑘+1

𝑦𝛾𝑘 = Location/parameters corresponding to the facility represented by the value of 𝛾𝑘 ,∀𝑘
𝜂𝑖 (·) = Binary decision variable to indicate the path taken by a particular UAV
𝑝𝑖 (·) = Probabilistic decision variable to indicate the probability of a path taken by UAV 𝑣𝑖
𝑝𝑖
𝑘
(·|·) = Probability of transition of 𝑣𝑖 in stage 𝑘 from one facility in Γ𝑘 to another in Γ𝑘+1

𝐻 = Total entropy of distribution over the set of all the paths taken by all the UAVs
𝐷 = Cumulative cost incurred by all the UAVs
𝐹 = Free energy function
𝛽 = The annealing parameter

II. Introduction

Unmanned aerial vehicles (UAVs) are experiencing rapid advancements in technology, leading to a wide range of
prospective civil applications. In recent years, the realm of UAVs has witnessed transformative advancements,

especially in artificial intelligence and machine learning, fostering significant improvements in autonomous decision-
making and operational efficiency. This evolution is particularly evident in the widespread adoption of UAVs for
delivery services, which is revolutionizing supply chain dynamics and customer experiences. Presently, UAV networks
are extensively employed in numerous sectors, including construction site monitoring, agricultural surveillance,
environmental assessment, search and rescue missions, delivery logistics, data acquisition, and wireless communication
[1]. These applications frequently entail intricate optimization and planning challenges, such as strategically locating
facilities through facility location problems (FLPs) [2], [3], path planning [4], [5], and efficiently managing vehicle
routing problems (VRPs) [6], [7]. Such optimization is also crucial for ensuring safety and regulatory compliance,
given the limited range and endurance of UAVs. Additionally, as UAV networks expand in complexity and scale,
optimal decision-making becomes imperative to manage and coordinate multiple UAVs effectively, thereby facilitating
adaptability and responsiveness in dynamic environments. This approach not only bolsters operational effectiveness but
also contributes to minimizing the environmental impact of UAV operations.

The mentioned optimization challenges usually appear as mixed-integer programming problems which are
characterized by a large number of decision variables, non-convexity, and the presence of multiple local minima.
Conventional heuristics-based approaches often yield suboptimal solutions, as their performance heavily relies on the
initial conditions.

This paper introduces and validates a comprehensive framework, based on the Maximum Entropy Principle (MEP),
that effectively handles various planning and logistics challenges in UAV networks. Our approach improves upon
traditional models by offering a solution that can address a wide range of problems and constraints. For example, it
efficiently manages UAV routes and resource allocation by planning the sequence of waypoints and allocating resources
for tasks like service facility coverage. Additionally, the framework is carefully crafted to control traffic density, reducing
congestion risks. It also optimizes UAV speed for better energy efficiency, timely mission completion, and reliability
under uncertain conditions. This system strikes a fine balance between achieving optimal results and maintaining
robustness, ensuring operational efficiency without sacrificing adaptability to changing situations. It takes into account
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Fig. 1 Diagrammatic Representation of the Problem Overview.

various limitations, capacities, and geographical factors, making it a versatile tool for managing the complexities of
UAV traffic.

The problem statement of this paper posits a network of UAVs, each with a predefined battery capacity and initial
charge, along with charging Unmanned Ground Vehicles (UGVs), and a multitude of destination targets (see Fig. 1).
This problem construction is inspired by real-world challenges in UAV operations, where the need for efficient charging
strategies is paramount. Researchers have demonstrated the feasibility of long-term off-the-grid surveillance missions
using self-sustainable UAVs and have explored ground charging infrastructure deployment. Moreover, the utilization
of mobile charging vehicles (MCVs), including UGVs, has introduced innovative possibilities for field recharging,
enabling complex coordination between UAVs and UGVs in energy-constrained environments. The primary objective is
to design the flight paths in such a manner that minimizes the total weighted distance traversed by the UAVs, while
ensuring that each UAV reaches its destination without exhausting its charge while avoiding all potential obstacles. The
strategy involves a decision-making process where vehicles may either fly directly to their destination or via a network
of charging UGVs, based on their deployment coordinates and the intended endpoint. This operational framework is
designed to answer three pivotal questions: 1) What is the minimum number of charging nodes required to guarantee
the feasibility of the UAVs’ journeys? 2) What is the optimal route for each UAV, considering the need to balance
expediency with energy conservation? 3) Where should the charging facilities be located to provide maximal support to
the UAV fleet? Addressing these queries is essential to refine the efficiency and reliability of UAV operations within the
proposed traffic management system. The upcoming sections detail our framework’s systematic approach to answering
these questions simultaneously, highlighting its comprehensive methodology and practical applications.

The results from multiple carefully designed simulations highlight our framework’s proficiency in identifying
optimal solutions that adhere to both UAV/UGV combined energy efficiency and obstacle avoidance requirements.
Most importantly though, our approach significantly outperforms standard algorithms typically employed for such
optimization problems, exhibiting superiority in terms of final cost efficiency, execution speed and ability to handle
complicated scenarios. This contribution novelty is especially significant to facilitate real-time deployable solutions in
the field with real autonomous UAV & UGV systems, which is a key consideration of our developed framework, as also
discussed in the following sections.

III. Background and Literature Gap
Recent works have shown various approaches to multi-objective optimization in UAV networks. Some focus

on secure communications at the physical layer through collaborative beamforming, emphasizing the challenges of
ensuring security in UAV communications [8]. Others propose optimizations for maximizing data rates, energy
harvesting, and minimizing UAV energy consumption over mission periods [9]. In multi-UAV systems, optimization
problem formulations concerning parameters like energy, detection time, risk, and information gain have been explored,
particularly in search and rescue applications [10]. This field is rich with problems and solutions involving mission
completion time, signal strength, and total energy cost minimization in UAV swarm-assisted IoT applications [11].

Charging strategies in UAV networks are critical for continuous operations, especially in monitoring and inspection
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missions. It has been demonstrated successfully that long-term deployments in wide-area airborne surveillance missions
completely off-the-grid is possible through self-sustainable autonomous UAVs that can perform multiple back-to-back
solar recharging cycles [12]. However, to facilitate even faster UAV recharging cycles, we may also assume some
pre-established ground infrastructure in areas of interest; for instance certain studies propose deployment strategies
for UAVs to maximize coverage of target areas while ensuring energy replenishment at ground charging stations [13].
Further progress in the state-of-the-art has unlocked advanced capabilities, but also higher challenges, by using MCVs
–which could be UGVs– to provide charging support to UAVs in the field [14]. These may range from traditional UGVs
with their known limitations, to novel versatile legged-locomotion systems that may navigate unstructured terrain while
ferrying and simultaneously fast-recharging the UAV systems onboard reliably [15]. More importantly, it has been
demonstrated that autonomous coordination of such marsupial UGV & UAV systems in the field can be successful, with
multiple take-off and subsequent regrouping (UAV-UGV docking & fast-recharging) cycles becoming possible and being
resiliently executed, even without wireless communication between agents, through the utilization of Deep-Learned
strategies for airborne detection and autonomous vision-based guidance [16]. Futher works in the field of persistent
surveillance with energy-constrained UAVs have also suggested mobile charging stations mounted on UGVs; these
principally enable UAVs to recharge as they are transported to different locations [17]. A study proposed a UGV-UAV
hybrid system where UGVs serve as moving charging stations for UAVs. In this setup, goods collected at a depot are
delivered to the destination through UGVs and UAVs, with UGVs providing charging support for UAVs en route to their
target points [18].

The incorporation of Artificial Intelligence (AI) in UAV routing protocols has gained attention, with trends leaning
towards AI-enabled predictive networking and self-adaptive learning-based protocols [19]. Various routing algorithms
have been proposed, including low latency routing algorithms based on partial location information and network
connectivity [20]. Multi-agent reinforcement learning has also been utilized to aid dynamic routing in UAV swarm
networks [21]. Power-Aware Routing (PAR) is another recent algorithm that considers adjustable power in UAV networks,
aiming to find efficient transmission paths [22]. The autonomous navigation and obstacle avoidance capabilities of UAVs
in uncharted territories are crucial for tasks such as geographical reconnaissance, cartography, field rescue operations,
among others [23]. Research has also been directed towards autonomous obstacle avoidance based on obstacle contour
detection, employing algorithms like the D* algorithm for path planning [24].

The growth of smart devices and reliance on cellular technologies have paved the way for UAV-enabled mobile
edge computing, yet challenges like computation delay, transmission delay, and monetary cost remain. Distributed
computation offloading schemes have been proposed to address challenges like low offloading efficiency, high energy
consumption, and high complexity in UAV-enabled edge computing. The field is moving towards joint optimization of
UAV trajectory, computation offloading, resource allocation, and machine-learning-driven optimization to handle these
challenges [25, 26].

The academic landscape demonstrates a considerable volume of research dedicated to various planning problems,
each typically treated as a distinct challenge. However, the convergence of these issues, especially within the realm
of spatial networks, is notably under-researched. This gap in existing literature is due to the scarcity of studies that
simultaneously tackle multiple planning and logistics challenges. The approaches in literature that involve multi-fold
objectives often simplify the problem, making it more tractable for a metaheuristic algorithms like evolutionary or
swarm-based algorithms. Simultaneously optimizing both the charging node locations and the exact routes for each
vehicle significantly increases the complexity, as it involves a mix of continuous (node locations) and discrete (route
waypoints) optimization; The complexity intensifies further when various network constraints are present.

In our prior research, we have made seminal contributions to this specialized field. The methodology proposed in
[27] forms the cornerstone of our current research, aimed at addressing diverse planning problems in the context of
UAV traffic management (UTM). This approach utilizes MEP from Statistical Physics, providing a notable benefit in
reducing the quantity of variables that need to be optimized in such planning problem scenarios. This framework was
selected due to its robust capability to integrate various constraints such as capacity, inclusion/exclusion criteria, and
uncertainties in different parameters. Additionally, it offers a comprehensive platform for addressing a multitude of
problems without restricting the algorithm’s structure to a particular scenario. We posit that these attributes render the
[27] framework eminently suitable for adaptation to UTM planning challenges, subject to requisite modifications.

IV. Network Configuration
The Unmanned Air Systems (UAS) that operate within this traffic management framework are diverse and multi-

faceted, representing a heterogeneous fleet with varied capabilities and performance metrics. Each vehicle is designed

4

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Il
lin

oi
s 

L
ib

ra
ry

 o
n 

Ja
nu

ar
y 

3,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
11

66
 



Fig. 2 Indicative illustration of our team’s autonomous self-sustainable UAVs with solar and external-battery-
powered recharging capabilities, and legged-locomotion UGVs that carry Docking-&-Recharging backpacks,
allowing for their combined marsupial operation as Systems-of-Systems that can support wide-area deployments
in-the-wild. Such classes of systems comprise the main paradigm considered as the target application field for
this paper’s proposed framework.

to operate at multiple speeds, catering to the broad spectrum of operational requirements. To facilitate efficient traffic
management, these vehicles autonomously provide a suite of their own parameters to the central aggregator. These
parameters include, but are not limited to, their points of origin and destination, energy levels, make and model, as well
as critical travel parameters such as the desired estimated time of arrival (ETA). Moreover, they possess the functionality
to report real-time path conditions back to the aggregator, ensuring the system remains abreast of the current traffic
situation. In turn, the aggregator dispatches control parameters to each UAS, which are imperative for the vehicles to
adhere to their assigned paths and schedules, thus maintaining an orderly and synchronized flow within the airspace.

Ground resources in our traffic management ecosystem are envisaged as a network of service stations (static)
and UGVs that offer vital support services to the UAV fleet, primarily focusing on offering mobile recharging. The
strategic positioning of these ground resources can maximize the accessibility of UAVs to in-situ recharging or other
maintenance services. Moreover, their positioning is characterized by heterogeneity, since mobile UGVs can be
redeployed dynamically to cater to the on-demand service needs of UAVs. Indicatively, especially marsupial solutions
that combine UAVs with quadruped UGVs [16] which are known to exhibit high degrees of locomotion versatility
[28], offer a particularly wide envelope of fleet deployment flexibility, unlocking operation across diverse locations and
extending the UAVs’ range by minimizing downtime and ensuring that they can quickly return to their designated flight
paths (see Fig. 2). Through intelligent integration with the traffic management system, these ground resources serve as
critical waypoints that enhance the overall robustness and reliability of the UAS network.

V. Mathematical Formulation
In building our analytical model, we establish several foundational assumptions to ground the framework. The

initial deployment positions of the UAVs and their intended destinations are fixed within a Cartesian coordinate
system, and they transit between the UGV service points to reach their destinations. Essentially, UGVs serve as
the waypoints facilitating UAV transition within the network from their initial locations to their destinations in a
sequential manner. We consider 𝑁 UAVs in the network, indexed as 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑁 with their initial locations at
𝑥𝑖 ∈ R2, 1 ≤ 𝑖 ≤ 𝑁 . We denote UAV destinations by 𝛿𝑖 , 1 ≤ 𝑖 ≤ 𝑁 , fixed at 𝑧𝑖 ∈ R2, 1 ≤ 𝑖 ≤ 𝑁 . Further, we
assume there are 𝑀 UGVs indexed as 𝑓 𝑗 , 1 ≤ 𝑗 ≤ 𝑀. The actions of UAVs are defined by the decision variables,
𝜂𝑖
𝑗
(𝑘) ∈ {0, 1}𝑁×𝑀×𝐾 , 𝑖 ∈ {1, 2, . . . , 𝑁}, 𝑗 ∈ {1, 2, . . . , 𝑀}, 𝑘 ∈ {1, 2, . . . , 𝐾}, where 𝜂𝑖

𝑗
(𝑘) = 1 indicates that UAV 𝑣𝑖

occupies UGV 𝑓 𝑗 in the 𝑘 th stage, otherwise 𝜂𝑖
𝑗
(𝑘) = 0. Thus, the sequence {𝜂𝑖

𝑗
(𝑘), 1 ≤ 𝑗 ≤ 𝑀}𝐾

𝑘=1 determines UAV
paths ∀𝑣𝑖 . We also denote the parameters associated with the UGVs, 𝑦 𝑗 ∈ R𝑀×𝑟 ,∀ 𝑗 ∈ {1, 2, . . . , 𝑀} for which the
network needs to be optimized, e.g., UGV coordinates, UAV schedules at UGVs, or similar parameters. In this paper,
we focus on optimal placement of UGVs and optimal routing of the UAVs through them to their designated destinations.

UAVs are attributed varying degrees of operational priority 𝜌𝑖 ∈ [0, 1],∑𝑖 𝜌𝑖 = 1, allowing for the calibration of
certain UAV types in alignment with their strategic importance. The charge levels 𝑐𝑖0 and 𝑐𝑖 (𝑘),∀𝑘 of each UAV are
expressed as a value within the continuum from zero to one, denoting a scale from fully depleted to fully charged.
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The Full-Charge-Range (F.C.R.) of a UAV is a critical metric indicating the maximum distance it can cover when
fully charged, with the UAV’s actual range being a direct linear function of its current charge level. We assume that
UAVs are fully recharged upon visiting any charging nodes within the network, resetting their available range for
continued operation. The associated UAV transition cost 𝑑 (·, ·) between waypoint coordinates is defined by the spatial
distance, and could be any valid distance function as deemed appropriate for the model’s fidelity and computational
efficiency. The transition cost may also include transition penalties incurred by the UAVs, for instance, due to range
constraints, and obstacle-aware penalties. The cumulative cost 𝐷𝑖 (𝑘) of a UAV’s route is computed as the sum of these
transitional distances, a factor which is subject to modification based on the specific requirements. Our goal is find an
optimal coordinates for the 𝑟−dimensional UGV locations 𝑦 𝑗 ∈ R𝑟 when initially located at 𝑦0

𝑗
∈ R𝑟 and optimal routes

determined by 𝜂𝑖
𝑗
(𝑘) for all the UAVs such that the total UAV and UGV transportation cost in the network is minimized.

These assumptions are integral to the formulation and subsequent optimization of the UAV traffic management system,
providing a structured foundation from which the model can be elaborated and refined.

Hence, the problem is formulated as follows (refer to the Nomenclature for complete parameter definitions):

min
𝜂,𝑦

∑︁
𝑖

𝜌𝑖𝐷
𝑖 (𝐾) + 𝛼

∑︁
𝑗

∥𝑦 𝑗 − 𝑦0
𝑗 ∥2 (1)

Subject to 𝑙𝑖 (0) = 𝑙𝑖0 ∀𝑖 (2)

𝑙𝑖 (𝑘) = 𝑙𝑖𝑑 ∀𝑖, 𝑘 ≥ 𝐾 (3)

𝑙𝑖 (𝑘 + 1) =
𝑀∑︁
𝑗=1
𝜂𝑖𝑗 (𝑘)𝑙 𝑗 ∀𝑖, 𝑘 𝑙 𝑗 ∈ {1, . . . , 𝑀} (4)

𝐷𝑖 (0) = 0 ∀𝑖 (5)

𝐷𝑖 (𝑘 + 1) = 𝐷𝑖 (𝑘) + 𝑑∗ (𝑙𝑖 (𝑘 + 1), 𝑙𝑖 (𝑘)) ∀𝑖, 𝑘 (6)

𝑅𝑖 (𝑐𝑖 (𝑘)) ≥ 𝑑∗ (𝑙𝑖 (𝑘 + 1), 𝑙𝑖 (𝑘))) ∀𝑖, 𝑘 (7)

where: 𝑑∗ (·, ·) = 𝑑 (·, ·) +
∑︁
o∈𝑂

𝜁o (·, ·)

We pose the problem formulation from (1) to (7). In the formulation, the objective function (1) integrates two pivotal
factors: the weighted sum of the total transition cost incurred by all the UAVs and the collective transportation cost of
all the UGVs involved in relocating from their initial deployed positions 𝑦0

𝑗
to their optimized locations 𝑦 𝑗 . The cost

function, 𝐶UGV, is defined by the eq. 𝐶UGV = 𝛼
∑
𝑗 ∥𝑦 𝑗 − 𝑦0

𝑗
∥2, where 𝛼 denotes the UGV cost factor. By quantifying

this aspect, the model ensures a holistic optimization that minimizes not just the aerial paths of UAVs but also the
ancillary costs associated with ground support logistics. The objective is to minimize the total cost function across the
discrete-binary decision variables 𝜂𝑖

𝑗
(𝑘) and the spatial coordinates of UGVs, denoted as 𝑦 𝑗 ∈ R𝑟 , thereby formulating

a mixed-integer programming problem.
The formulation incorporates constraints, such as (2) and (3), specifying the initial and final locations of all UAVs.

Additionally, constraint (4) dynamically updates the waypoint location of UAVs during transitions through UGVs.
The cumulative costs for each UAV are initialized and iteratively updated in accordance with constraints (5) and (6),
respectively. This cost is adjusted by incorporating geometric distances and supplementary penalties to mitigate obstacles
and accommodate for limited UAV charge range. Constraint (7) ensures that each transition between waypoints adheres
to the prescribed charge limit for the UAVs.

VI. Proposed Solution

A. Intro to the Framework
In this section we adapt a sequential viewpoint to formulate and solve the formulation proposed in the previous

section. This framework treats the problem as a sequential decision-making process and applies the Maximum Entropy
Principle to handle its inherent complexity, known as NP-hardness which arises due to simultaneous need to tackle
facility location and routing problems. We also discuss practical constraints in detail, such as the limited range of the
UAVs and obstacle aware penalties.
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We view the multi-hop motion of each UAV in a sequential manner consisting of 𝑀 + 2 stages

Γ0, Γ1, . . . , Γ𝑀 , Γ𝑀+1.

The stage Γ0 represents a UAV in its initial deployment location, Γ0 = {𝑣𝑖} in their initial location. For 1 ≤ 𝑘 ≤ 𝑀 , the
stages Γ𝑘 consist of all the charging nodes and the destinations Γ𝑘 = ∪ 𝑗

{
𝑓 𝑗
}
∪ ∪𝑖 {𝛿𝑖} and the final stage only consists

of the destinations, Γ𝑀+1 = ∪𝑖 {𝛿𝑖}.
We model the transportation path of a UAV 𝑣𝑖 ∈ Γ0 to its destination 𝛿𝑖 ∈ Γ𝑀+1 through charging nodes as

𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑀 ) where 𝛾𝑘 ∈ Γ𝑘 ,∀1 ≤ 𝑘 ≤ 𝑀 . If a UAV reaches its destination in stage Γ𝑞 for some 𝑞 ≤ 𝑀 , then
𝛾𝑘 = 𝛿𝑖 , 𝑞 ≤ 𝑘 ≤ 𝑀. Let G := {(𝛾1, . . . , 𝛾𝑀 ) : 𝛾𝑘 ∈ Γ𝑘 , 1 ≤ 𝑘 ≤ 𝑀} denote the set of all possible paths. For each
path 𝛾 ∈ G taken by a UAV 𝑣𝑖 , there is a transportation cost given by 𝑑𝑖 (𝛾) = ∑𝑘=𝑀

𝑘=0 𝑑𝑖
𝑘
(𝛾𝑘 , 𝛾𝑘+1), where 𝑑𝑖

𝑘
(𝛾𝑘 , 𝛾𝑘+1)

represents the transition cost incurred by UAV 𝑣𝑖 in stage transition Γ𝑘 → Γ𝑘+1. In case of a simultaneous resource
allocation and routing problem, the transition cost is determined by the geometrical distance between two consecutive
waypoints 𝛾𝑘 and 𝛾𝑘+1, which can take any valid distance function. In this paper, we have chosen Euclidean distance as
an example, i.e. 𝑑𝑖

𝑘
(𝛾𝑘 , 𝛾𝑘+1) = ∥𝑦𝛾𝑘 − 𝑦𝛾𝑘+1 ∥, where 𝑦𝛾𝑘 ,∀𝑘 represents the location coordinates of UGV 𝛾𝑘 selected

by UAV 𝑣𝑖 in the Γ𝑘 stage. Additionally, the transition cost accounts for penalties due to limited UAV charge range and
obstacles in the paths (discussed in the subsection VI.B).

We formulate a Facility Location and Path Optimization (FLPO) problem which has two-fold objectives - finding
an optimal path 𝛾 ∈ G for each 𝑣𝑖 , 𝑖 ∈ {1, 2, . . . , 𝑁} and optimal locations 𝑦 𝑗 for each facility 𝑗 ∈ {1, 2, . . . , 𝑀}. If
𝜂𝑖 (𝛾) ∈ {0, 1} is a binary association that represents the choice of the path 𝛾 that leads to minimum cost 𝑑𝑖 (𝛾), taken by
𝑣𝑖 , then we intend to solve the following two-fold objective optimization

min
{𝑦 𝑗 }

𝐷 := min
{𝑦 𝑗 }

∑︁
𝑣𝑖

𝜌𝑖

∑︁
𝛾∈G

𝜂𝑖 (𝛾)𝑑𝑖 (𝛾) + 𝛼
∑︁
𝑗

∥𝑦 𝑗 − 𝑦0
𝑗 ∥2

𝜂𝑖 (𝛾) = 1, if 𝛾 = arg min
𝛾∈G

𝑑𝑖 (𝛾)

= 0, otherwise.

(8)

Note that the above objective is same as that proposed in (1), except that the decision variables 𝜂 and costs 𝑑 (·) are
defined over a space G of all possible paths 𝛾. It is also crucial to note that this objective differs from standard FLPO
problems due to the additional cost consideration for the transportation of UGVs. The above optimization problem
requires solving for two coupled objectives as the cost of transportation 𝑑𝑖 (𝛾) for each 𝑣𝑖 depends on both the path 𝛾
taken and the corresponding UGV locations 𝑦 𝑗 , 𝑗 ∈ {1, 2, . . . , 𝑀} appearing in the path 𝛾. One way to tackle the above
coupled objective optimization problem is to solve each objective sequentially - first optimizing the locations of UGV
charging nodes using a facility location algorithm and then determining the shortest transportation paths for UAVs
to their destinations through a network graph. However, this method overlooks the interdependence of the objectives
and its highly non-convex nature, leading to a suboptimal solution due to initialization biases. The solution approach
adopted from [27] relaxes the choice of binary association variables 𝜂𝑖 (𝛾) with probability association variables
𝑝𝑖 (𝛾) ∈ [0, 1] , ∑

𝛾∈G 𝑝
𝑖 (𝛾) = 1. These probability associations now represent a p.m.f. over the space of all the paths

G for each UAV 𝑣𝑖 . This translates our objective of finding an optimal binary variables to finding optimal weights to
each path assigned, making it “less commital” initially to any path chosen by a UAV. The optimal associations are
determined by maximizing the Shannon’s entropy of the distributions at fixed values of relaxed cost 𝐷0

max
𝑝𝑖 ( ·) ,∀𝑖
𝑦 𝑗 ,∀ 𝑗

𝐻 := max
𝑝𝑖 ( ·) ,∀𝑖
𝑦 𝑗 ,∀ 𝑗

−
∑︁
𝑖

𝜌𝑖

∑︁
𝛾∈G

𝑝𝑖 (𝛾) log 𝑝𝑖 (𝛾)

Subject to 𝐷 =
∑︁
𝑖

𝜌𝑖

∑︁
𝛾∈G

𝑝𝑖 (𝛾)𝑑𝑖 (𝛾) + 𝛼
∑︁
𝑗

∥𝑦 𝑗 − 𝑦0
𝑗 ∥2 = 𝐷0.

(9)

Note that for the hard probability associations i.e., 𝑝𝑖 (𝛾) = 𝜂𝑖 (𝛾), the cost function 𝐷 in (9) is identical to the original
cost in (8). In this case, the coupled objective (8) has multiple local minima and the solution depends on the initial
facility locations 𝑦 𝑗 ,∀ 𝑗 . Thus, to get rid of the local influence on the initialization condition, we first construct the
following Lagrangian

min
{𝑦 𝑗 }, 𝑝 ( · | · )

𝐹 := 𝐷 − 1
𝛽
𝐻, (10)
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Fig. 3 Proposed FLPO framework.

also referred to as free energy adopted from the Statistical Physics analogy. The Lagrangian parameter 𝛽 (also called as
annealing parameter) is varied from zero to infinity, and analysis shows that decreasing 𝐷0 is same as increasing 𝛽.
The similar process in Statistical Physics, where the parameter “temperature” is decreased gradually is well known as
“annealing”. At small 𝛽, the entropy term 𝐻 dominates and the objective is convex with respect to path probabilities
𝑝𝑖 (𝛾). The optimal solution leads to a uniform distribution (𝑝𝑖 (𝛾))∗ = 1/|G|,∀𝑖 over the set of all paths and a single
facility location 𝑦∗

𝑗
at the centroid of all the initial UAV locations 𝑥𝑖 . The value of 𝛽 is incremented and the previous

optimal solution is used an initial condition to solve the optimization problem (10) again. As we iterate at higher values
of 𝛽, more weight is given to the minimization of 𝐷 and optimal solution keeps tracking the global minima obtained in
the first iteration. As 𝛽 → ∞, the probability associations converge to a binary association and we converge to the
original problem (8).

Our framework’s key strength lies in its ability to automatically provide binary solutions for path parameters at the
end of the optimization process. This is done while only using continuous decision variables, avoiding the complexities
of mixed-integer optimization. This unique feature gives our framework a significant advantage in solving complex
problems that include binary variables, distinguishing it from other algorithms. We obtain our solution at larger values
of 𝛽 (or smaller values of 𝐷0) starting with initial unbiased solution independent of initialization condition.

The sequential framework reduces the problem size by applying the law of optimality on the optimal transportation
paths. It follows that the upcoming facility on the path is decided solely by the current facility and is independent
of the prior facilities on that path. We impose this structure on our choice of the association weights 𝑝𝑖 (𝛾), which
translates to a Markov property. Thus, the association weight 𝑝𝑖 (𝛾), which relates an entire transportation path
𝛾 = (𝛾1, ..., 𝛾𝑀 ) to the UAV 𝑣𝑖 , can be broken down into association weights {𝑝𝑘 (𝛾𝑘+1 |𝛾𝑘)}𝑀𝑘=1, where 𝑝𝑘 (𝛾𝑘+1 |𝛾𝑘)
relates the stage Γ𝑘 to Γ𝑘+1 with 𝑝𝑖

𝑀
(𝛿𝑖 |𝛾𝑀 ) = 1 and initial transition probability denoted by 𝑝𝑖0 (𝛾1 |𝑣𝑖), more specifically

𝑝(𝛾 |𝛾0) = Π𝑀
𝑘=0𝑝𝑘 (𝛾𝑘 |𝛾0) (see Fig. 3). Since the Lagrangian 𝐹 is convex with respect to 𝑝𝑖

𝑘
,∀𝑖, 𝑘 , setting 𝜕𝐹

𝜕𝑝𝑖
𝑘

= 0,∀𝑖, 𝑘
yields

𝑝𝑖𝑘 (𝛾𝑘+1 |𝛾𝑘) = 𝑒−𝛽𝑑
𝑖
𝑘
(𝛾𝑘 ,𝛾𝑘+1 )

∑
(𝜎𝑘+2 ,...,𝜎𝑀 ):
𝜎𝑘+1=𝛾𝑘+1

𝑒−𝛽
∑𝑀
𝑡=𝑘+1 𝑑

𝑖
𝑡 (𝜎𝑡 ,𝜎𝑡+1 )∑

(𝜎𝑘+1 ,...,𝜎𝑀 ):
𝜎𝑘=𝛾𝑘

𝑒−𝛽
∑𝑀
𝑡=𝑘 𝑑

𝑖
𝑡 (𝜎𝑡 ,𝜎𝑡+1 )

. (11)

Therefore, we can directly compute path parameters using (11), leaving only 𝑦 𝑗 to be solved. This separation significantly
reduces computational complexity, as the quantity of 𝑦 𝑗s is considerably less than the number of path variables
𝑝𝑖
𝑘
(𝛾𝑘+1 |𝛾𝑘). Observing eq. (11), it becomes evident that as 𝛽 → ∞, the path variables 𝑝𝑖

𝑘
(𝛾𝑘+1 |𝛾𝑘) converge to one

for segments on the shortest path from a given node, and zero elsewhere. Substituting the above expression back in (10)
gives an expression for free energy

𝐹 = − 1
𝛽

∑︁
𝑖

𝜌𝑖 log
∑︁
𝛾∈G

𝑒−𝛽
∑𝑀
𝑡=0 𝑑

𝑖
𝑡 (𝛾𝑡 ,𝛾𝑡+1 ) + 𝛼

∑︁
𝑗

∥𝑦 𝑗 − 𝑦0
𝑗 ∥2 (12)
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Fig. 4 Diagrammatic obstacle penalty model.

and further solving for 𝜕𝐹
𝜕𝑦 𝑗

= 0 gives the optimal location of facilities at every 𝛽. Standard numerical optimization
schemes can also be incorporated to to minimize the modified free energy function (12) over 𝑦 𝑗s.

B. Constraints and assumptions
The viability of a given scenario within our UAV traffic management framework is bound by specific feasibility

criteria, which are chiefly governed by the costs associated with UAV transitions.
• UAV Full Charge Range: Any transition exceeding the UAV’s current range incurs a prohibitively high cost,

modeled by a hyperbolic tangent function that approaches infinity as the distance surpasses the UAV’s capacity at
that stage. Accordingly, the sequential transition cost function defined in the previous section is modified to

𝑑𝑖𝑘 (𝛾𝑘 , 𝛾𝑘+1) = ∥𝑦𝛾𝑘 − 𝑦𝛾𝑘+1 ∥ +
𝜇

2
(
tanh

[
∥𝑦𝛾𝑘 − 𝑦𝛾𝑘+1 ∥ − 𝑅𝑖 (𝑐𝑖 (𝑘))

]
+ 1

)
(13)

where 𝜇 is a constant (typically a large value). While a transition may fall within the UAV’s range, it might still be
deemed inadvisable if it poses a substantial risk of battery depletion. The feasibility of a scenario is contingent
upon various factors: the UAVs’ initial coordinates, their intended destinations, the levels of initial charge, and the
number of accessible charging nodes. In certain instances, the constellation of these parameters may render a
scenario infeasible, with no solution that ensures all UAVs reach their destinations without exhausting their charge
en route. Such infeasibility becomes evident upon examining the cumulative cost post-optimization termination.
This metric serves as a simple diagnostic tool, enabling us to ascertain the requisite minimum number of charging
nodes to render a scenario viable, providing a way to answer the first proposed research question addressed in the
Introduction.

• Obstacle Avoidance : In the presented model, obstacle avoidance is incorporated into the UAV’s route planning
by adjusting the flight path to circumvent any potential obstructions within the airspace. When a UAV encounters
an obstacle, the system calculates an alternative route—referred to as the corrected route—that skirts around the
obstruction. For demonstration purposes only, we assume that obstacles are bound within circular areas that UAVs
need to avoid (although our method is not dependant on this assumption). We denote the set of all obstacles by 𝑂.
If an obstacle o ∈ 𝑂 with radius 𝑟o intersects with a straight line path between 𝛾𝑘 and 𝛾𝑘+1, as shown in Fig. 4,
then UAVs circumvent the obstacle in an arc of length 𝑙o (𝛾𝑘 , 𝛾𝑘+1) given by

𝑙o (𝛾𝑘 , 𝛾𝑘+1) = 2𝑟o tan−1

(
𝑏o (𝛾𝑘 , 𝛾𝑘+1)√︁

4𝑟2
o − 𝑏o (𝛾𝑘 , 𝛾𝑘+1)2

)
(14)

where 𝑏o is the portion of the straight line path intercepted inside the circle. The additional path length covered
by UAV around obstacle o is given by 𝜁o (𝛾𝑘 , 𝛾𝑘+1) = 𝑙o (𝛾𝑘 , 𝛾𝑘+1) − 𝑏o (𝛾𝑘 , 𝛾𝑘+1) and the transition cost (13) is
further updated as below

𝑑𝑖𝑘 (𝛾𝑘 , 𝛾𝑘+1) = ∥𝑦𝛾𝑘 − 𝑦𝛾𝑘+1 ∥ +
𝜇

2
(
tanh

[
∥𝑦𝛾𝑘 − 𝑦𝛾𝑘+1 ∥ − 𝑅𝑖 (𝑐𝑖 (𝑘))

]
+ 1

)
+

∑︁
𝑜∈𝑂

𝜁o (𝛾𝑘 , 𝛾𝑘+1) (15)
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The additional term in the cost is summed over all the obstacles but it penalizes only for those obstacles which are
intersected by line between 𝛾𝑘 and 𝛾𝑘+1. If an obstacle o′ ∈ 𝑂 does not intersect the path joining between 𝛾𝑘
and 𝛾𝑘+1, then the additional cost is zero because 𝑏o′ = 0 ⇒ 𝑙o′ = 0 ⇒ 𝜁o′ (𝛾𝑘 , 𝛾𝑘+1) = 0. This deviation from
the original path is necessary to maintain safety and operational integrity. The model considers this detour by
integrating the additional distance and complexity into the transition cost function of the UAV’s journey. Therefore,
the corrected route not only ensures avoidance of the obstacle but also reflects the associated cost implications of
this avoidance in the UAV’s flight plan optimization.

VII. Simulations and Results
The methodology of this paper is evaluated through a series of simulations over different scenarios. We will

demonstrate the ability of this framework on finding the optimal location of UGVs, the optimal routes of UAVs to their
destination coordinates, while satisfying combined energy demands as well as avoiding obstacles along their routes.
The scenarios have been meticulously designed to provide a robust testbed, ensuring that all constraints are met under
challenging conditions. While our framework has undergone testing on UAV networks with hundreds of units, we opted
for a smaller UAV network to gain a deeper insight into the problem and its solution.

Fig. 5 presents the simulation results for four distinct scenarios, each introducing a unique complexity to the routing
and facility location dimensions of the strategic planning problem. The simulation incorporates ten UAVs (𝑁 = 10) and
three obstacles, where initial charge levels, deployment and destination coordinates for UAVs, and obstacle geographical
characteristics across all scenarios are identical in all of the scenarios. For the purposes of this analysis, we presume
a homogeneous UAV network with uniform F.C.R. and a standardized cost factor. These variables were deliberately
selected to create a demanding context for locating charging nodes and determining optimal UAV pathways. The initial
location, destination location, and initial charge level of the UAVs considered for simulations are as follows: ((10.0, 5.0),
(45.0, 50.0), 0.7), ((3.0, 40.0), (50.0, 10.0), 0.5), ((20.0, 15.0), (35.0, 35.0), 0.6), ((5.0, 30.0), (25.0, 5.0), 0.4), ((40.0,
45.0), (10.0, 10.0), 0.8), ((30.0, 20.0), (5.0, 35.0), 0.6), ((15.0, 10.0), (40.0, 40.0), 0.4), ((35.0, 5.0), (10.0, 45.0), 0.5),
((25.0, 40.0), (20.0, 10.0), 0.7), and ((45.0, 15.0), (5.0, 20.0), 0.3).

In Fig. 5-a, the scenario is configured with three charging nodes (𝑀 = 3), revealing the absence of a viable
coordination that ensures all UAVs retain sufficient energy. The optimization terminates with multiple UAVs depleting
their energy reserves along their routes, indicating a necessity to augment the number of charging nodes. This adjustment
is evidenced in Fig. 5-b (𝑀 = 4), where the optimization algorithm effectively meets the energy requirements against
the backdrop of obstacles, simultaneously optimizing to reduce the aggregate average travel distance. Fig. 5-c illustrates
the implications of reducing the UAVs’ range by 10% form 25 to 22.5 on the strategic planning, resulting in a minor shift
in charging node positioning coupled with a modification of UAV trajectories to sustain energy viability in the new setup.
Finally, Fig. 5-d elucidates the impact of introducing a non-trivial cost for UGV transport distances on the preferential
positioning of charging nodes(𝛼 = 10), skewing them towards their initial deployment coordinates, exemplified here as
(25,50)—while concurrently satisfying obstacle-aware optimality and energy sufficiency in all path segments.

The annealing process within our framework is pivotal for enabling the algorithm to bypass local minima and
approach solution spaces close to the global optimum. The parameter 𝛽, when varied from lower to higher values as per
eq. (10), alters the cost function’s landscape. Initially, at lower 𝛽 values, the cost function, represented by a smoother
and more manageable state, gradually transitions to the actual original cost 𝐷, as indicated in eq. (9). This original
cost function is inherently more challenging to optimize due to its sharp transitions for minor variable changes and its
minimal gradient over extensive areas between these transitions.

In simpler terms, starting with 𝛽 ≈ 0 implies beginning with a smoother cost function. By solving the optimization
problem at this stage and progressively increasing 𝛽, we utilize the solution obtained for the preceding 𝛽 value as the
initial estimate for the subsequent 𝛽 value. This strategy aids in maintaining proximity to the optimal solution throughout
the transition to the more complex actual cost function. Fig. 6 illustrates how varying 𝛽 impacts the cost function’s
shape, focusing on the optimization of four charging facility locations in scenario (b) from the preceding section. To
produce these plots, we initially determined the optimal positions for facilities 𝐹1 − 𝐹4. Then, we varied each facility’s
location individually while keeping the others fixed at their optimal positions. The top four plots correspond to a small
𝛽 value, showcasing a smoother cost function with substantial gradients across the domain. Conversely, the bottom four
plots, associated with a large 𝛽 value, reveal sharp transitions in proximity to the optimum locations and nearly zero
gradients across most of the optimization domain. Consequently, in the latter scenario, pinpointing the optimal location
poses a significant challenge for optimization algorithms.
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Fig. 5 Results of the Simulation: The paths taken by the UAVs are differentiated using various colors and line
styles. The length of each path segment is indicated by numerical values. Green numbers represent segments
that fall within the UAV’s operational range, while red numbers highlight segments where energy constraints are
either borderline or violated.
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Fig. 6 Local variations of the free energy function (12) with respect to location of each charging node, for the
second scenario in Fig. 5, at 𝛽 = 1𝑒 − 8 (top plots) and 𝛽 = 1𝑒8 (bottom plots).

A. Benchmark against standard algorithms
To compare the performance of our algorithm with other standard methodologies utilized in this domain, we have

chosen three evolutionary algorithms to tackle the optimization problem proposed in this paper. These algorithms are:
Genetic Algorithm (GA), Covariance matrix adaptation evolution strategy (CMA-ES), and Particle Swarm Optimization
(PSO). The hyperparameters of these algorithms are provided in Table 1. The first two were implemented using the
standard “DEAP"∗, and the third using the “Pyswarms"† Python packages.

Our algorithm introduces a significant advancement in computational efficiency over existing methodologies. By
integrating the Shannon entropy term into the MEP framework, we achieve a substantial reduction in the number of
optimization variables. Specifically, the free energy function, as shown in eq. 12, depends solely on the facility locations
𝑦 𝑗 : 𝑗 ∈ {1, . . . , 𝑀}. This integration eliminates the need to optimize over route parameters 𝑝𝑘 (𝛾𝑘+1 |𝛾𝑘), which can be
directly computed using the Gibbs distribution (11). In contrast to other methods that aim to optimize a multi-faceted
objective function (1), our approach significantly reduces computational complexity. This reduction is achieved by
limiting the optimization variables to facility locations, whereas other methods must include both facility locations
and route parameters for all UAVs. Consequently, our framework exhibits superior scalability for large-scale scenarios
involving numerous UAVs and facilities, a capability that other methodologies find challenging to manage efficiently in
comparably extensive problem setups.

To establish a meaningful comparison with alternative algorithms, we first simplified the original planning problem,
as outlined in eq. 1. This simplification was necessary to adapt the problem for optimization by metaheuristic algorithms,
which require meticulous customization for handling mixed-integer cost functions and their inherent constraints. For
instance, genetic algorithms (GAs) necessitate tailored mutation and crossover operators to effectively manage mixed
optimization variables. Recognizing that the performance of these algorithms can be significantly influenced by such
modifications, we opted for a relaxed version of the cost function, denoted as 𝐷 in eq. 9. In this relaxed model, all
optimization variables are continuous. In our MEP framework, the number of optimization variables is 𝑟𝑀 in an
𝑟-dimensional setting. This contrasts with the 𝑟𝑀 + 𝑁 (𝑀2 + 1) (𝑀 + 1) parameters required by other algorithms when
including route parameters. The disparity in variable count in the order of ≈ 𝑁𝑀3, becomes substantial for large values
of 𝑁 and 𝑀 , rendering the optimization of extensive UAV and facility networks nearly impractical with other algorithms.

Therefore, while our framework is capable of handling large-scale scenarios, we selected The first scenario in
the previous section for benchmarking, with additional simplifications. To further align with the capabilities of other
algorithms, we adjusted the UAV range (𝐹.𝐶.𝑅) to 200. This adjustment not only simplifies the objective space but also
eases the optimization challenge by reducing significant penalty terms related to energy violation constraints, thereby
smoothing the cost function. In this case, all UAVs will have the capacity to go directly to their destinations, and no

∗https://deap.readthedocs.io/en/master/
†https://pyswarms.readthedocs.io/en/latest/
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Table 1 Hyperparameters of Genetic Algorithm, PSO Algorithm, and CMA-ES Algorithm

Algorithm Parameter Value
GA Population Size 100

Number of Generations 2000
Crossover Probability (cxpb) 0.9
Mutation Probability (mutpb) 0.25
Selection Method Tournament Selection
Tournament Size 3
Initialization Method Random Uniform Distribution

PSO Number of Particles 100
Number of Generations 1000
Topology Class star
C1 (Cognitive Weight) 0.2
C2 (Social Weight) 0.8
W (Inertia Weight) 0.95

CMA-ES Number of Generations 3000
Sigma (𝜎) 0.3
Population Size (𝜆) 100
Strategy Derandomized Self-Adaptation

Table 2 Performance Metrics of Algorithms

Methodology Mean Cost CV Cost Mean Time (s) CV Time

Proposed method 401.982 0.000 4.748 0.212
GA 861.718 0.017 903.024 0.004
PSO 990.775 0.057 719.769 0.040
CMA-ES 1016.855 0.190 1680.674 0.003

re-charge is needed. The total cost in this case is almost equal to 400. Hence, we assess the capability of algorithms to
find this obvious solution of this case.

Table 2 presents the results of simulations conducted for various algorithms. Each algorithm underwent three trials,
with the results including the average (Mean) and the Coefficient of Variation (CV) for both cost and execution time‡.
Notably, our algorithm swiftly identified the solution for this scenario, in stark contrast to the other algorithms, which
remained trapped in local minima, taking significantly longer. This underscores the superior efficiency and effectiveness
of our algorithm in addressing such optimization challenges.

B. Sensitivity Analysis
Sensitivity analysis emerges as a critical component of our framework, offering an insightful examination into how

variations in network parameters—such as traffic volume, traffic density, UAS-type configurations, the number and
type of UAV facilities, and the incidence of communication errors and delays—affect overall system performance.
By systematically altering these parameters, our framework can predict and quantify the impact of each factor on the
network’s efficacy. This allows for informed decision-making and resource prioritization, ensuring that allocation
is not only strategic but also adaptive to potential fluctuations within the system. Moreover, sensitivity analysis is
indispensable for risk assessment and enhancing the resilience of the network. It empowers us to identify and fortify the
network’s vulnerabilities to external disturbances or operational changes, thereby bolstering the robustness of UAV

‡All of the algorithms are executed using an Intel® Core™ i7-4790 CPU (@ 3.60 GHz).
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traffic management and safeguarding against disruptions that could otherwise compromise the integrity and reliability
of UAV services.

To delve into sensitivity analysis, it is crucial to grasp how the free energy (10) behaves in relation to framework
parameters, such as the location of the battery charging nodes, UAV full charge range, and size of the obstacles
in between the paths. For instance, the derivative of the free energy 𝐹 in (10) with respect to a facility location
𝑦𝑟 ,∀𝑟 ∈ {1, 2, . . . , 𝑀} is given by

𝜕𝐹

𝜕𝑦𝑟
=

∑︁
𝑖

[
𝜕𝐹

𝜕𝑑𝑖0 (𝑣𝑖 , 𝛾
𝑟
1 )

·
𝜕𝑑𝑖0 (𝑣,𝛾

𝑟
𝑘+1)

𝜕𝑦𝑟
+

∑︁
𝛾2∈Γ2

𝜕𝐹

𝜕𝑑𝑖1 (𝛾
𝑟
1 , 𝛾2)

·
𝜕𝑑𝑖1 (𝛾

𝑟
1 , 𝛾2)

𝜕𝑦𝑟

+
𝑀−1∑︁
𝑘=1

( ∑︁
𝛾𝑘 ∈Γ𝑘

𝜕𝐹

𝜕𝑑𝑖
𝑘
(𝛾𝑘 , 𝛾𝑟𝑘+1)

·
𝜕𝑑𝑖

𝑘
(𝛾𝑘 , 𝛾𝑟𝑘+1)
𝜕𝑦𝑟

+
∑︁

𝛾𝑘+2∈Γ𝑘+2

𝜕𝐹

𝜕𝑑𝑖
𝑘+1 (𝛾

𝑟
𝑘+1, 𝛾𝑘+2)

·
𝜕𝑑𝑖

𝑘+1 (𝛾
𝑟
𝑘+1, 𝛾𝑘+2)
𝜕𝑦𝑟

) ]
+ 2𝛼(𝑦𝑟 − 𝑦0

𝑟 )

(16)

where the waypoint 𝛾𝑟
𝑘
∈ Γ𝑘 ,∀𝑘 has the parameter 𝑦𝑟 . The above expression has two terms, the first term is the result of

UAV transportation and the second term is due to UGV transportation, which is linear in 𝑦𝑟 . The first term has the
derivatives of free energy and transition costs as unknowns. The derivative of the transition cost with respect to facility
locations in the above expression can be computed explicitly in the following form

𝜕𝑑𝑖
𝑘
(𝑠, 𝑡)
𝜕𝑦𝑟

= 𝜅𝑠,𝑟

(
𝑦𝑟 − 𝑦𝑡
∥𝑦𝑟 − 𝑦𝑡 ∥

(
1 + 0.5sech2 (

∥𝑦𝑟 − 𝑦𝑡 ∥ − 𝑅𝑖 (𝑐𝑖 (𝑘))
) )

+
∑︁
𝑜∈𝑂

𝜕

𝜕𝑦𝑟
𝜁o (𝑟, 𝑡)

)
+ 𝜅𝑡 ,𝑟

(
𝑦𝑟 − 𝑦𝑠
∥𝑦𝑟 − 𝑦𝑠 ∥

(
1 − 0.5sech2 (

∥𝑦𝑠 − 𝑦𝑟 ∥ − 𝑅𝑖 (𝑐𝑖 (𝑘))
) )

+
∑︁
𝑜∈𝑂

𝜕

𝜕𝑦𝑟
𝜁o (𝑠, 𝑟)

)
,∀𝑠 ∈ Γ𝑘 , 𝑡 ∈ Γ𝑘+1

(17)

where 𝜅𝑢,𝑣 = 1, if 𝑢 = 𝑣 and 0 otherwise, is Kronecker Delta function. Further, 𝑦𝑠 and 𝑦𝑡 are facility locations of the
waypoints 𝑠 ∈ Γ𝑘 and 𝑡 ∈ Γ𝑘+1 and the node 𝑟 has facility location 𝑦𝑟 . The Gibbs distribution structure of the probability
associations in (11) provides an interesting interpretation of the derivative of free energy with respect to transition cost.

Proposition 1 For the transition Γ𝐾 ∋ 𝑠 → 𝑡 ∈ Γ𝐾+1 for 𝐾 ∈ {0, 1, 2, . . . , 𝑀}, the gradient of free energy function
𝐹 with respect to the transition cost 𝑑𝑖

𝐾
(𝑠, 𝑡) is equivalent to the probability that 𝑣𝑖 reaches 𝑡 ∈ Γ𝐾+1 stage through

𝑠 ∈ Γ𝐾 , i.e.
𝜕𝐹

𝑑𝑖
𝐾
(𝑠, 𝑡)

= 𝜌𝑖

∑︁
𝛾1 ,...,𝛾𝐾−1

𝑝𝑖0 (𝛾1 |𝑣𝑖)𝑝𝑖1 (𝛾2 |𝛾1) . . . 𝑝𝑖𝐾−1 (𝑠 |𝛾𝐾−1)𝑝𝑖𝐾 (𝑡 |𝑠) ≤ 1 (18)

Proof: See appendix 1
The equations (17) and (18) can be substituted into (16) to analyze the sensitivity of free energy with respect to

facility locations. The above remark signifies that the free energy is “well-behaved” with respect to the transition cost
function. The transition cost function can have discontinuous changes, for example, due to appearance of tan hyperbolic
function, which applies large penalties to avoid any constraint violations (see subsection VI.B). Irrespective, the free
energy does not change arbitrarily. Furthermore, the combinatorial sum over the set of all the paths passing through
𝑠 ∈ Γ𝐾 to 𝑡 ∈ Γ𝐾+1 can be calculated using a dynamic programming sum leading to efficient computation. Additionally,
the sequential framework allows us to use matricization techniques for faster computation of free energy gradient and its
efficient implementation.

VIII. Conclusion
In summary, this study presents a significant breakthrough in UAV network optimization with the development of an

MEP framework for efficient UAV charging. Our approach surpasses existing methods in cost, speed, and complexity
management, offering valuable insights for theoretical understanding and practical deployment in different sectors.
Acknowledging the limitations in simulation scope, our future research will involve expanding this framework to
encompass other aspects of UAV networks, such as scheduling and congestion at service facilities. Additionally, we plan
to implement our framework in on-the-field trials with actual UAVs, further validating its effectiveness in real-world
scenarios. This work not only advances UAV/UGV network planning but also paves the way for ongoing innovation in
autonomous vehicle integration.
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Appendix
Appendix 1 Proof of proposition 1

Proof : Differentiating 𝐹 with respect to 𝑑𝑖
𝐾
(𝑠, 𝑡) for some 𝐾 ∈ {0, 1, . . . , 𝑀}, some 𝑠 ∈ Γ𝐾 , 𝑡 ∈ Γ𝐾+1

𝜕𝐹

𝜕𝑑𝑖
𝐾
(𝑠𝑖 , 𝑠 𝑗 )

= − 𝜌𝑖
𝛽

𝜕

𝜕𝑑𝑖
𝐾
(𝑠, 𝑡)

log
∑︁

𝛾1 ,𝛾2 ,...,𝛾𝑀
𝛾𝑀+1=𝛿𝑖

𝑒−𝛽
∑𝑀
𝑘=0 𝑑

𝑖
𝑘
(𝛾𝑘 ,𝛾𝑘+1 )

= − 𝜌𝑖
𝛽

1∑
𝛾1 ,𝛾2 ,...,𝛾𝑀
𝛾𝑀+1=𝛿𝑖

𝑒−𝛽
∑𝑀
𝑘=0 𝑑

𝑖
𝑘
(𝛾𝑘 ,𝛾𝑘+1 )

∑︁
𝛾1 ,𝛾2 ,...,𝛾𝑀
𝛾𝑀+1=𝛿𝑖

𝜕

𝜕𝑑𝑖
𝐾
(𝑠, 𝑡)

𝑒−𝛽
∑𝑀
𝑘=0 𝑑

𝑖
𝑘
(𝛾𝑘 ,𝛾𝑘+1 )

=
𝜌𝑖∑

𝛾1 ,𝛾2 ,...,𝛾𝑀
𝛾𝑀+1=𝛿𝑖

𝑒−𝛽
∑𝑀
𝑘=0 𝑑

𝑖
𝑘
(𝛾𝑘 ,𝛾𝑘+1 )

∑︁
𝛾1 ,𝛾2 ,...,𝛾𝑀
𝛾𝑀+1=𝛿𝑖

𝑒−𝛽
∑𝑀
𝑘=0 𝑑

𝑖
𝑘
(𝛾𝑘 ,𝛾𝑘+1 )

𝑀∑︁
𝑘=0

𝜕𝑑𝑖
𝑘
(𝛾𝑘 , 𝛾𝑘+1)

𝜕𝑑𝑖
𝐾
(𝑠, 𝑡)

=
𝜌𝑖∑

𝛾1 ,𝛾2 ,...,𝛾𝑀
𝛾𝑀+1=𝛿𝑖

𝑒−𝛽
∑𝑀
𝑘=0 𝑑

𝑖
𝑘
(𝛾𝑘 ,𝛾𝑘+1 )

∑︁
𝛾1 ,𝛾2 ,...,𝛾𝑀
𝛾𝑀+1=𝛿𝑖

𝑒−𝛽
∑𝑀
𝑘=0 𝑑

𝑖
𝑘
(𝛾𝑘 ,𝛾𝑘+1 )

𝑀∑︁
𝑘=0

𝜅𝑘,𝐾 𝜅𝑠,𝛾𝑘 𝜅𝑡 ,𝛾𝑘+1

=
𝜌𝑖∑

𝛾1 ,𝛾2 ,...,𝛾𝑀
𝛾𝑀+1=𝛿𝑖

𝑒−𝛽
∑𝑀
𝑘=0 𝑑

𝑖
𝑘
(𝛾𝑘 ,𝛾𝑘+1 )

∑︁
𝛾1 ,𝛾2 ,...,𝛾𝑀
𝛾𝑀+1=𝛿𝑖

𝑒−𝛽
∑𝑀
𝑘=0 𝑑

𝑖
𝑘
(𝛾𝑘 ,𝛾𝑘+1 ) 𝜅𝑠,𝛾𝐾 𝜅𝑡 ,𝛾𝐾+1

=
𝜌𝑖∑

𝛾1 ,𝛾2 ,...,𝛾𝑀
𝛾𝑀+1=𝛿𝑖

𝑒−𝛽
∑𝑀
𝑘=0 𝑑

𝑖
𝑘
(𝛾𝑘 ,𝛾𝑘+1 )

∑︁
𝛾1 ,𝛾2 ,...,𝛾𝑀
𝛾𝑀+1=𝛿𝑖

𝛾𝐾=𝑠,𝛾𝐾+1=𝑡

𝑒−𝛽
∑𝑀
𝑘=0 𝑑

𝑖
𝑘
(𝛾𝑘 ,𝛾𝑘+1 )

Since we have the probability associations obtained as Gibbs distribution in 11, we notice that the above expression can
be written as a probability that at least one UAV performs the transition from 𝑠 ∈ Γ𝐾 to 𝑡 ∈ Γ𝐾+1

𝜕𝐹

𝜕𝑑𝑖
𝐾
(𝑠, 𝑡)

= 𝜌𝑖

∑︁
𝛾1 ,𝛾2 ,...,𝛾𝑀
𝛾𝐾=𝑠,𝛾𝐾+1=𝑡

𝑝𝑖0 (𝛾1 |𝑣𝑖)𝑝𝑖1 (𝛾2 |𝛾1) . . . 𝑝𝑖𝐾−1 (𝑠 |𝛾𝐾−1)𝑝𝑖𝐾 (𝑡 |𝑠)𝑝𝑖𝐾+1 (𝛾𝐾+1 |𝑡) . . . 𝑝𝑖𝑀 (𝛿 |𝛾𝑀 )

= 𝜌𝑖

∑︁
𝛾1 ,...,𝛾𝐾−1

𝑝𝑖0 (𝛾1 |𝑣𝑖)𝑝𝑖1 (𝛾2 |𝛾1) . . . 𝑝𝑖𝐾−1 (𝑠 |𝛾𝐾−1)𝑝𝑖𝐾 (𝑡 |𝑠)·∑︁
𝛾𝐾+1 ,...,𝛾𝑀

𝑝𝑖𝐾+1 (𝛾𝐾+1 |𝑡) . . . 𝑝𝑖𝑀−1 (𝛾𝑀 |𝛾𝑀−1)

= 𝜌𝑖

∑︁
𝛾1 ,...,𝛾𝐾−1

𝑝𝑖0 (𝛾1 |𝛾0)𝑝𝑖1 (𝛾2 |𝛾1) . . . 𝑝𝑖𝐾−1 (𝑠 |𝛾𝐾−1)𝑝𝑖𝐾 (𝑡 |𝑠) ≤ 1 (19)

Acknowledgments
We acknowledge the support of National Aeronautics and Space Administration under Grant NASA 80NSSC22M0070

for this work.

References
[1] Otto, A., Agatz, N., Campbell, J., Golden, B., and Pesch, E., “Optimization approaches for civil applications of unmanned

aerial vehicles (UAVs) or aerial drones: A survey,” Networks, Vol. 72, No. 4, 2018, pp. 411–458.

[2] Shavarani, S. M., Mosallaeipour, S., Golabi, M., and İzbirak, G., “A congested capacitated multi-level fuzzy facility location
problem: An efficient drone delivery system,” Computers & Operations Research, Vol. 108, 2019, pp. 57–68.

[3] Shavarani, S. M., “Multi-level facility location-allocation problem for post-disaster humanitarian relief distribution: a case
study,” Journal of Humanitarian Logistics and Supply Chain Management, Vol. 9, No. 1, 2019, pp. 70–81.

[4] Phung, M. D., Quach, C. H., Dinh, T. H., and Ha, Q., “Enhanced discrete particle swarm optimization path planning for UAV
vision-based surface inspection,” Automation in Construction, Vol. 81, 2017, pp. 25–33.

15

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Il
lin

oi
s 

L
ib

ra
ry

 o
n 

Ja
nu

ar
y 

3,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
11

66
 



[5] Sancı, S., and İşler, V., “A parallel algorithm for UAV flight route planning on GPU,” International Journal of Parallel
Programming, Vol. 39, 2011, pp. 809–837.

[6] Gottlieb, Y., and Shima, T., “UAVs task and motion planning in the presence of obstacles and prioritized targets,” Sensors,
Vol. 15, No. 11, 2015, pp. 29734–29764.

[7] Jiang, X., Zhou, Q., and Ye, Y., “Method of task assignment for UAV based on particle swarm optimization in logistics,”
Proceedings of the 2017 international conference on intelligent systems, metaheuristics & swarm intelligence, 2017, pp.
113–117.

[8] Li, J., Sun, G., Kang, H., Wang, A., Liang, S., Liu, Y., and Zhang, Y., “Multi-Objective Optimization Approaches for
Physical Layer Secure Communications Based on Collaborative Beamforming in UAV Networks,” IEEE/ACM Transactions on
Networking, Vol. 31, No. 4, 2023, pp. 1902–1917. https://doi.org/10.1109/TNET.2023.3234324.

[9] Yu, Y., Tang, J., Huang, J., Zhang, X., So, D. K. C., and Wong, K.-K., “Multi-Objective Optimization for UAV-Assisted
Wireless Powered IoT Networks Based on Extended DDPG Algorithm,” IEEE Transactions on Communications, Vol. 69, No. 9,
2021, pp. 6361–6374. https://doi.org/10.1109/TCOMM.2021.3089476.

[10] Yanmaz, E., “Joint or decoupled optimization: Multi-UAV path planning for search and rescue,” Ad Hoc Networks, Vol. 138,
2023, p. 103018. https://doi.org/https://doi.org/10.1016/j.adhoc.2022.103018, URL https://www.sciencedirect.com/science/
article/pii/S1570870522001901.

[11] Li, J., Sun, G., Duan, L., and Wu, Q., “Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual Antenna
Arrays,” IEEE Transactions on Mobile Computing, 2023, pp. 1–18. https://doi.org/10.1109/tmc.2023.3298888, URL
https://doi.org/10.1109%2Ftmc.2023.3298888.

[12] Carlson, S. J., Arora, P., Karakurt, T., Moore, B., and Papachristos, C., “Towards multi-day field deployment autonomy: A
long-term self-sustainable micro aerial vehicle robot,” 2023 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2023, pp. 11396–11403.

[13] Trotta, A., Felice, M. D., Montori, F., Chowdhury, K. R., and Bononi, L., “Joint Coverage, Connectivity, and Charging
Strategies for Distributed UAV Networks,” IEEE Transactions on Robotics, Vol. 34, No. 4, 2018, pp. 883–900. https:
//doi.org/10.1109/TRO.2018.2839087.

[14] Qin, W., Shi, Z., Li, W., Li, K., Zhang, T., and Wang, R., “Multiobjective routing optimization of mobile charging vehicles
for UAV power supply guarantees,” Computers & Industrial Engineering, Vol. 162, 2021, p. 107714. https://doi.org/https:
//doi.org/10.1016/j.cie.2021.107714, URL https://www.sciencedirect.com/science/article/pii/S0360835221006185.

[15] Moore, B., Carlson, S. J., Arora, P., Avlonitis, E. S., Karakurt, T., Feil-Seifer, D., and Papachristos, C., “Combined Docking-
and-Recharging for a Flexible Aerial/Legged Marsupial Autonomous System,” 2023 IEEE Aerospace Conference, IEEE, 2023,
pp. 1–9.

[16] Arora, P., Karakurt, T., Avlonitis, E., Carlson, S. J., Moore, B., Feil-Seifer, D., and Papachristos, C., “Deep Learning–based
Reassembling of an Aerial & Legged Marsupial Robotic System–of–Systems,” 2023 International Conference on Unmanned
Aircraft Systems (ICUAS), IEEE, 2023, pp. 626–633.

[17] Seyedi, S., YazicioÄŸlu, Y., and Aksaray, D., “Persistent Surveillance With Energy-Constrained UAVs and Mobile Charging
Stations,” IFAC-PapersOnLine, Vol. 52, No. 20, 2019, pp. 193–198. https://doi.org/https://doi.org/10.1016/j.ifacol.2019.12.157,
URL https://www.sciencedirect.com/science/article/pii/S2405896319320087, 8th IFAC Workshop on Distributed Estimation
and Control in Networked Systems NECSYS 2019.

[18] Ko, Y. K., Park, J. H., and Ko, Y. D., “A Development of Optimal Algorithm for Integrated Operation of UGVs and UAVs for
Goods Delivery at Tourist Destinations,” Applied Sciences, Vol. 12, No. 20, 2022. https://doi.org/10.3390/app122010396, URL
https://www.mdpi.com/2076-3417/12/20/10396.

[19] Rovira-Sugranes, A., Razi, A., Afghah, F., and Chakareski, J., “A review of AI-enabled routing protocols for UAV networks:
Trends, challenges, and future outlook,” Ad Hoc Networks, Vol. 130, 2022, p. 102790. https://doi.org/https://doi.org/10.1016/j.
adhoc.2022.102790, URL https://www.sciencedirect.com/science/article/pii/S1570870522000087.

[20] Zhang, Q., Jiang, M., Feng, Z., Li, W., Zhang, W., and Pan, M., “IoT Enabled UAV: Network Architecture and Routing
Algorithm,” IEEE Internet of Things Journal, Vol. 6, No. 2, 2019, pp. 3727–3742. https://doi.org/10.1109/JIOT.2018.2890428.

16

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Il
lin

oi
s 

L
ib

ra
ry

 o
n 

Ja
nu

ar
y 

3,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
11

66
 

https://doi.org/10.1109/TNET.2023.3234324
https://doi.org/10.1109/TCOMM.2021.3089476
https://doi.org/https://doi.org/10.1016/j.adhoc.2022.103018
https://www.sciencedirect.com/science/article/pii/S1570870522001901
https://www.sciencedirect.com/science/article/pii/S1570870522001901
https://doi.org/10.1109/tmc.2023.3298888
https://doi.org/10.1109%2Ftmc.2023.3298888
https://doi.org/10.1109/TRO.2018.2839087
https://doi.org/10.1109/TRO.2018.2839087
https://doi.org/https://doi.org/10.1016/j.cie.2021.107714
https://doi.org/https://doi.org/10.1016/j.cie.2021.107714
https://www.sciencedirect.com/science/article/pii/S0360835221006185
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.12.157
https://www.sciencedirect.com/science/article/pii/S2405896319320087
https://doi.org/10.3390/app122010396
https://www.mdpi.com/2076-3417/12/20/10396
https://doi.org/https://doi.org/10.1016/j.adhoc.2022.102790
https://doi.org/https://doi.org/10.1016/j.adhoc.2022.102790
https://www.sciencedirect.com/science/article/pii/S1570870522000087
https://doi.org/10.1109/JIOT.2018.2890428


[21] Wang, Z., Yao, H., Mai, T., Xiong, Z., and Yu, F. R., “Cooperative Reinforcement Learning Aided Dynamic Routing in UAV
Swarm Networks,” ICC 2022 - IEEE International Conference on Communications, 2022, pp. 1–6. https://doi.org/10.1109/
ICC45855.2022.9838808.

[22] Zhai, W., Liu, L., Peng, J., Ding, Y., and Lu, W., “PAR: A Power-Aware Routing Algorithm forÂ UAV Networks,” Wireless
Algorithms, Systems, and Applications, edited by L. Wang, M. Segal, J. Chen, and T. Qiu, Springer Nature Switzerland, Cham,
2022, pp. 333–344.

[23] Zhang, Z., Liu, X., and Feng, B., “Research on obstacle avoidance path planning of UAV in complex environments based
on improved Bézier curve,” Scientific Reports, Vol. 13, No. 1, 2023. https://doi.org/10.1038/s41598-023-43783-7, URL
http://dx.doi.org/10.1038/s41598-023-43783-7.

[24] Li, H., Zhu, J., Liu, Y., and Fu, X., “Autonomous Obstacle Avoidance Algorithm for UAVs Based on Obstacle Contour
Detection,” Advances in Guidance, Navigation and Control, edited by L. Yan, H. Duan, and Y. Deng, Springer Nature Singapore,
Singapore, 2023, pp. 584–593.

[25] Huda, S. A., and Moh, S., “Survey on computation offloading in UAV-Enabled mobile edge computing,” Journal of Network
and Computer Applications, Vol. 201, 2022, p. 103341. https://doi.org/https://doi.org/10.1016/j.jnca.2022.103341, URL
https://www.sciencedirect.com/science/article/pii/S1084804522000108.

[26] Song, Z., Qin, X., Hao, Y., Hou, T., Wang, J., and Sun, X., “A comprehensive survey on aerial mobile edge computing:
Challenges, state-of-the-art, and future directions,” Computer Communications, Vol. 191, 2022, pp. 233–256. https://doi.org/https:
//doi.org/10.1016/j.comcom.2022.05.004, URL https://www.sciencedirect.com/science/article/pii/S0140366422001566.

[27] Srivastava, A., and Salapaka, S. M., “Simultaneous facility location and path optimization in static and dynamic networks,”
IEEE Transactions on Control of Network Systems, Vol. 7, No. 4, 2020, pp. 1700–1711.

[28] Tranzatto, M., Mascarich, F., Bernreiter, L., Godinho, C., Camurri, M., Khattak, S. M. K., Dang, T., Reĳgwart, V., Loeje, J.,
Wisth, D., Zimmermann, S., Nguyen, H., Fehr, M., Solanka, L., Buchanan, R., Bjelonic, M., Khedekar, N., Valceschini, M.,
Jenelten, F., Dharmadhikari, M., Homberger, T., De Petris, P., Wellhausen, L., Kulkarni, M., Miki, T., Hirsch, S., Montenegro,
M., Papachristos, C., Tresoldi, F., Carius, J., Valsecchi, G., Lee, J., Meyer, K., Wu, X., Nieto, J., Smith, A., Hutter, M., Siegwart,
R., Mueller, M., Fallon, M., and Alexis, K., “CERBERUS: Autonomous Legged and Aerial Robotic Exploration in the Tunnel
and Urban Circuits of the DARPA Subterranean Challenge,” Field Robotics, 2021, pp. 274–324, arXiv.2201.07067.

17

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Il
lin

oi
s 

L
ib

ra
ry

 o
n 

Ja
nu

ar
y 

3,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
11

66
 

https://doi.org/10.1109/ICC45855.2022.9838808
https://doi.org/10.1109/ICC45855.2022.9838808
https://doi.org/10.1038/s41598-023-43783-7
http://dx.doi.org/10.1038/s41598-023-43783-7
https://doi.org/https://doi.org/10.1016/j.jnca.2022.103341
https://www.sciencedirect.com/science/article/pii/S1084804522000108
https://doi.org/https://doi.org/10.1016/j.comcom.2022.05.004
https://doi.org/https://doi.org/10.1016/j.comcom.2022.05.004
https://www.sciencedirect.com/science/article/pii/S0140366422001566

	Nomenclature
	Introduction
	Background and Literature Gap
	Network Configuration
	Mathematical Formulation
	Proposed Solution
	Intro to the Framework
	Constraints and assumptions

	Simulations and Results
	Benchmark against standard algorithms
	Sensitivity Analysis

	Conclusion

