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ABSTRACT

Mutual exclusion is an essential primitive in distributed systems to ensure

at most one process at a time accesses a shared resource. While classical

distributed mutual exclusion algorithms assume full, consistent membership,

today’s IoT and adhoc networks are characterized by high churn that often

leaves membership inconsistent and incomplete. We extend a classical mu-

tual exclusion algorithm by taking advantage of the observation that any

two nodes typically have a common friend, even if they don’t know each

other. The presented algorithm is tolerant to churn, robust to heterogene-

ity in membership lists, bandwidth-efficient, and degrades gracefully. We

accompany this algorithm with formal proofs of safety, starvation-freedom,

and deadlock-freedom; a slow path ensuring safety even when common-case

assumptions happen to be false; and experimental results validating perfor-

mance at scale.
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CHAPTER 1

INTRODUCTION

Edge computing systems are quickly becoming critical infrastructure in the

modern world. Driven by falling hardware costs, ubiquitous, data-hungry

AI, and burgeoning use cases, the Internet of Things (IoT) market is ex-

pected to grow 16.7% YoY, reaching $650.5 billion in 2026 [1]. The plethora

of use cases can be viewed as comprising two categories - static and dy-

namic environments. Examples of the former include smart manufacturing,

smart retail [1], smart energy grids [2], structural health monitoring [3], and

healthcare [4]. While static settings have been the focus of most previous

work, dynamic environments are becoming increasingly important, with use

cases such as smart transportation (cargo monitoring, fleet management, au-

tonomous vehicles) [1], smart agriculture [5], defense [6], on-body healthcare

[4], and livestock management [7].

These deployments often contain shared resources which require coordina-

tion to access, such as sensors attached to grazing cattle that need to take

turns writing into a given file, or reconnaissance robots in the battlefield tak-

ing turns surveying a particular area. In other cases, network performance

can improve by executing the CS code at only one node; for example, better

power efficiency can be achieved by executing environment sensing at only

one IoT device [8]. Additionally, mutual exclusion algorithms must satisfy

safety and liveness, providing freedom from deadlock and starvation.

Classical solutions to mutual exclusion [9], [10], [11] shared the flawed as-

sumption of strong membership, where each node always knows every other

node. However, harsh, dynamic environments are characterized by lossy,

bandwidth constrained networks and high churn. They run weak member-

ship protocols that can not guarantee that each node always knows about

all others, but only deliver membership changes eventually (though often

quickly), e.g., Medley [12]. We show that classical mutual exclusion solu-

tions break down under such membership models. While several mutual
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exclusion algorithms have been proposed for static environments, no mutual

exclusion algorithm for ad hoc networks exists, with truly dynamic, incon-

sistent membership (allowing nodes to leave and join).

Dynamic environments present significant challenges for mutual exclusion.

Membership inconsistency is heterogeneous across nodes; for example, one

node may be missing a quarter of the network from its membership list while

another is missing only one node. Bandwidth scarcity requires efficiency, and

the critical use cases require graceful degradation and provable safety even

when different nodes have inconsistent system views.

Contributions This paper presents the first permission-based mutual ex-

clusion algorithm that is churn-tolerant. Our algorithm and system, named

Camera (Churn-tolerant Mutual Exclusion by extending Ricart-Agrawala))

extends the classical mutual exclusion algorithm that was originally by Ri-

cart and Agrawala [9], and imbues it with churn-tolerance. We leverage the

key observation that, with very high probability, ad hoc membership proto-

cols [12] result in membership graphs where any two nodes either know each

other or have a third node they both know—we call this the Mutual Friend

Property (MFP). Camera uses this property to nudge the system back into

a correct state.

Our key contributions are:

1. Camera, an efficient algorithm that ensures mutual exclusion in ad hoc

networks with inconsistent, dynamic membership;

2. Formal proofs of correctness of safety, starvation-freedom, and deadlock-

freedom;

3. A detection mechanism and fall-back algorithm for when the MFP does

not hold; and

4. Experimental results showing that synchronization delay falls under

contention and zipfian-distributed requesters produce wait times inde-

pendent of request arrival rate

2



CHAPTER 2

BACKGROUND

2.1 System Model

We adopt an asynchronous system model consisting of up to N nodes at

a time, allowing churn. The communication medium can arbitrarily delay

messages but will not drop them. Clocks are not synchronized. We adopt a

fail-stop model, and exclude Byzantine failures. These nodes must coordinate

to execute a ‘critical section’ one at a time, known as the mutual exclusion

problem. Note that multiple requests at a single node should be serialized

by the node itself, below the Camera level. This is the same system model as

the original Ricart-Agrawala paper, with one key distinction - membership

lists.

We assume a weak underlying membership protocol, and use traces from

ad hoc network membership algorithm Medley [12] to fuel our simulation.

We also assume the membership protocol includes a failure detector

that is eventually complete, so all non-faulty nodes eventually learn about

all failures. However, arbitrary propagation delays for joins and fails/leaves

are acceptable, as are false positives. Additionally, nodes can join or fail at

any time.

2.2 Problem Statement

We now formally define the three key properties of mutual exclusion algo-

rithms - safety, deadlock-freedom, and starvation-freedom.

Definition 1 (Safety). Safety guarantees that no more than one node will

enter a critical section at any point in time.

Definition 2 (Deadlock-freedom). Freedom from deadlock, the state in
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which when no node is in its critical section and no node can ever proceed

into its critical section.

Definition 3 (Starvation-freedom). Freedom from starvation, the state in

which some node is waiting indefinitely to enter its critical section while other

nodes continue entering and exiting.

Deadlock-freedom and starvation-freedom together constitute liveness in

mutual exclusion algorithms.

We also assume that the membership graphG is strongly connected - which

is a minimal assumption to maintain safety and liveness:

Theorem 1. Let ALG be a mutual exclusion algorithm with the following

assumptions:

• Any node can run enter() at any time

• Messages can only be sent along edges in the membership graph

• ‘Information’ can only be conveyed across processes via messages

Then, a strongly connected membership graph is necessary for ALG to

satisfy safety and liveness.

The proof is in Appendix A.

2.3 Mutual Friend Property

Definition 4 (Mutual Friend Property (MFP)). Write Memlisti to denote

the membership list at node pi. For every pair of nodes pi, pj requesting

access to the critical section, their membership lists intersect in at least one

node; formally, Memlisti ∩Memlistj ̸= ∅

The Mutual Friend Property says any pair of requesting nodes must either

know each other, or have at least one other node they both know. In par-

ticular, this property still allows nodes pi, pj to not be directly aware of each

other. Camera provides safety under the Mutual Friend Property, and we

present an extension that maintains safety under strongly connected mem-

bership. We additionally observe that the Mutual Friend Property holds in

most practical ad hoc systems, as weak membership protocols typically still

provide membership lists containing more than half the system.
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Lemma 2. Let |Memlisti| > N
2
at all simultaneously requesting pi, where N

is the total number of nodes in the system. Then, the Mutual Friend Property

is satisfied, because any two quorums intersect in at least one node.

Simulation results, such as those from Medley [12], show that membership

lists are quorums with very high probability. Figure 2.1 shows the result of

running Medley for 350,000 rounds on a random topology of 256 nodes with

a default hop-to-hop drop rate of 0.05. Subfigure 2.1a shows the sizes of the

membership lists over time, smoothed with a width-3 rolling average. The

best exponential fit for the average is −0.2157e−0.0000223x+255.50, suggesting

it rapidly stabilizes to 255 nodes, much higher than the required quorum. In

Subfigure 2.1b, the average size of the smallest membership list each node has

ever seen resembles the exponential 6.1057e−0.0000145x+236.69 and stabilizes

at 240, far higher than the 129 quorum requirement. Thus, MFP will be

satisfied with high probability.

(a) Membership Size

(b) Min Membership Size

Figure 2.1
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CHAPTER 3

BACKGROUND: RICART-AGRAWALA

We begin by understanding the original Ricart-Agrawala algorithm and how

it fails under inconsistent membership induced by churn.

3.1 Ricart-Agrawala Algorithm

The following is a summary of Ricart-Agrawala to accompany the pseudo-

code in Algorithm 1. Node pi, wishing to enter the CS, sends a REQUEST

message with (sequence number,pi) to every node in its membership list.

pi enters its CS only after receiving OKs back from all its peers. When

receiving a request from pj, it buffers the request if it is executing the CS

or if its own outstanding request has priority (lower sequence number) over

pj’s. Otherwise, it immediately responds with an OK. Upon exiting, it sends

an OK in response to all buffered requests.

In Figure 3.1a, pi is requesting access to the CS. pi begins by sending a

Request(1,pi) message to every other node. Each independently receives the

request, doesn’t defer because it is neither in the CS nor waiting to enter,

and responds with an OK. pi thus enters the CS.

Now, pj also attempts to enter the CS in Figure 3.1b. Under Ricart-

Agrawala’s assumption of complete membership, pi and pj know each other

(a) Single Node Requesting
(b) Two Nodes Successfully Re-
questing
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Algorithm 1: Ricart-Agrawala Pseudo-code

1 Definitions:
2 enum State = {WAIT,HELD,NONE};
3 struct Request = {int seq num, string id};
4 Initialization:
5 Set Deferred, Pending OKs = ∅;
6 string me = ”myId”;
7 Request myRequest = None;
8 State myState = State.NONE;
9 int max seq seen = 0;

10 def enter():
11 myState = State.WAIT;
12 myRequest = (max seq seen + 1, me);
13 Pending Oks = Memlist;
14 Pending Oks.remove(me);
15 for peer in Pending Oks:
16 send message(myRequest,peer);
17 WAITFOR(Pending Oks.empty());
18 myState = State.HELD;
19 //Enter CS!

20 def exit():
21 myState = State.None;
22 for request in Deferred:
23 Deferred.remove(request);
24 send message(OK,request.id);

25 def receive request(Request req, string sender):
26 max seq seen = max(max seq seen,req.seq num);
27 if myState = State.HELD or (myState = State.WAIT and req >
28 myRequest): // we have priority over incoming request
29 Deferred.insert(req);
30 else:
31 send message(OK,req.id);

32 def receive OKs(sender, senderRecentlyOKed, Request
req):

33 Pending OKs.remove(sender);
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(and pk). They send their requests to each other and pk. The latter receives

the request, decides not to defer because it is neither in the CS nor waiting

to enter, and responds with OK messages. pj and pi are each waiting for just

one more OK - from each other! Both evaluate pi’s request as having higher

priority because i < j, so pj immediately sends an OK (allowing pi into the

CS) while pi defers pj’s request. When pi exits the CS, it empties the queue

by sending OKs to all deferred requests, giving pj the final OK it needs to

enter its CS. pi and pj exemplify the intended operation of Ricart-Agrawala

with complete membership lists.

3.2 Ricart-Agrawala Safety Violation

Operating Ricart-Agrawala under the strongly connected membership model

can violate safety for a pair of requesting nodes pi and pj who don’t know

about each other. Because Ricart-Agrawala relies on nodes with higher prior-

ity to defer conflicting requesters from entering the CS, safety is maintained

as long as the node with lower priority sends a request to the node with

higher priority. On the other hand, the following theorem enumerates cases

that can result in a safety violation under weak membership.

Theorem 3. Let pi and pj be two requesting nodes, such that Reqi < Reqj.

Under either of the two following conditions, there exists runs of Ricart-

Agrawala in which safety is violated even under the Mutual Friend Property:

1. Symmetric Ignorance:

pi /∈ Memlistj and pj /∈ Memlisti

2. Asymmetric Ignorance:

pi /∈ Memlistj and pj ∈ Memlisti

Proof. It suffices to show examples of safety violation under each of these

conditions, as follows:

Figure 3.2 shows an example of failure under Symmetric Ignorance, condi-

tion (1) above. Only two processes pi, pj request access to the CS. Following

the normal operation of the Ricart-Agrawala algorithm, any nodes pk belong-

ing to either of the two membership lists respond OK to all received requests.

However, if pi /∈ Memlistj and pj /∈ Memlisti, each of them receives OKs
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from everyone in their respective membership lists and proceeds into the CS,

thus violating safety.

Figure 3.2: Symmetric Ignorance Failure

Figure 3.3 shows an example of failure under Asymmetric Ignore, condi-

tion (2) above. pi and pj request access to the CS, where pi knows pj but

pj does not know pi. Because the non-requesting nodes respond with OK

immediately, and pj locally evaluates Reqi < Reqj and also sends an OK,

pi receives OKs from every member of its membership list. Simultaneously,

pj receives OKs from all members of its membership list and enters the CS,

violating safety.

Figure 3.3: Asymmetric Ignorance Failure (pi /∈ Memlistj)
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CHAPTER 4

CAMERA

4.1 Camera Design

In this chapter we present our churn-tolerant variant of the Ricart-Agrawala

algorithm from section 3.1 [9].

The primary issue with running Ricart-Agrawala under churn is that re-

questing nodes may not know each other. The key intuition is that Camera

leverages the Mutual Friend Property (which we expect to be commonly

true), and uses such ‘overlapping’ nodes to nudge the system back to a cor-

rect state.

Camera extends Ricart-Agrawala as follows. Whenever pj responds OK to

a request, it also includes a list of all nodes to whom it has recently said OK.

We expect this set to be small, because the tight resource constraints in most

ad hoc systems mean only a few nodes would request CS access simultane-

ously. For example, IoT transportation settings find 95% of requests have

interarrival times greater than 100ms [13]. When a requesting node receives

an OK message with the recently OKed set, it checks that set for any nodes

it does not know about. It adds those new nodes to its own membership

list and sends them the REQUEST, waiting for those OKs before entering.

Algorithm 2 describes the operation of Camera in further detail.

The safety violation that occurs in Ricart-Agrawala under Asymmetric

Ignorance from Case 2 in Section 3.2 (only one node does not know the

other) is solved by a few additional lines of code in the process to receive

REQUEST messages. When the requester pi is unknown by the receiving

node pj, pj adds pi to its membership list and, if it’s in the WAIT state, sends

pi its own REQUEST as well, incrementing the number of OKs it must wait

for.

When we have Symmetric Ignorance (pi /∈ Memlistj and pj /∈ Memlisti),
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Algorithm 2: Camera Pseudo-code

1 Definitions:
2 enum State = {WAIT,HELD,NONE};
3 enum Path = {SLOW, FAST};
4 struct Request = {int seq num, string id, Path path};
5 Initialization:
6 Set Deferred, Recently OKed, Pending OKs = ∅;
7 string me = ”myId”;
8 Request myRequest = None;
9 State myState = State.NONE;

10 int max seq seen = 0;

11 def enter():
12 myState = State.WAIT;
13 max seq seen += 1;
14 myRequest = (max seq seen, me, Path.FAST);
15 Pending Oks = Memlist;
16 Pending Oks.remove(me);
17 for peer in Pending Oks:
18 send message(myRequest,peer);
19 WAITFOR(Pending Oks.empty());
20 myState = State.HELD;
21 //Enter critical section!

22 def exit():
23 myState = State.None;
24 IP MULTICAST(RELEASE(myRequest));
25 for request in Deferred:
26 Deferred.remove(request);
27 send message(OK(Recently OKed),request.id);
28 Recently OKed.insert(request);
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Algorithm 2: Camera Pseudo-code (cont.)

1 def receive request(Request req, string sender):
2 if req.id not in Memlist:
3 if myState == State.WAIT:
4 Pending OKs.insert(req.id);
5 send message(myRequest,req.id);
6 Memlist.insert(req.id);

7 max seq seen = max(max seq seen,req.seq num);
8 if myState = State.HELD or (myState = State.WAIT and req >
9 myRequest): // we have priority over incoming request

10 Deferred.insert(req);
11 else:
12 send message(OK(Recently OKed),req.id);
13 Recently OKed.insert(req);

14 def receive release(Request req):
15 Recently OKed.remove(req);

16 def receive OKs(sender, senderRecentlyOKed, Request
req):

17 if req.path is Path.FAST:
18 for node in senderRecentlyOKed:
19 if node not in Memlist:
20 Pending OKs.insert(node);
21 send message(myRequest, node);
22 Memlist.insert(node);
23 Pending OKs.remove(sender);
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the common friend pk will inform the second requester about the first, nudg-

ing the system back into a correct state. Suppose pk, known by both pi and

pj, receives pi’s request before pj’s. pk will respond OK to pi, and will include

pi in the OK to pj. pj will thus forward its request to pi, informing them

of each other. The system will be forced back into a correct informational

state, and critical section entry will be delayed at pj until pi exits, maintain-

ing safety. The following exposition presents examples of both cases.

Camera in Action

Here are examples of Camera maintaining safety when Ricart-Agrawala would

have violated it. pk is the node that both pi and pj know about. Figure 4.1

depicts pi and pj ignorant of each other. pi and pj simultaneously send

REQUEST messages to pk, who happens to receive pi’s before pj’s. pk re-

sponds to pi with OK, so pi enters the critical section. pk responds to pj with

OK(1,pi), so pj knows to relay its own request to pi. pi defers responding

until after exiting the critical section, preventing pj from violating safety. Af-

ter exiting, pi responds to the deferred message with OK, letting pj into the

critical section. Thus, we see how Camera solves the safety issues resulting

from requesters under Symmetric Ignorance.

Figure 4.1: Camera Success Despite pi /∈ Memlistj and pj /∈ Memlisti

Figure 4.2 shows the simpler solution for the Asymmetric Ignorance case

(2). When pi’s request arrives at pj, pj adds pi to its membership list and

relays its request to pi. pi has higher priority and thus waits until exiting

before sending the final OK allowing pj into the CS. Thus, Camera also solves

the safety issue resulting in Ricart-Agrawala from Asymmetric Ignorance.
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Figure 4.2: Camera Success Despite pi /∈ Memlistj

Retention Period

The cached OK responses in the algorithm (line 27 of Algorithm 2 and line

13 of Algorithm 2 (cont.)) need to be retained long enough to not violate

safety. While the size of this list is bounded by N (since each node has at

most one outstanding request), this still consumes large memory resources.

We discuss here how retention periods can be shortened. The key idea is to

send RELEASE messages eagerly on exiting the critical section, allowing the

recipients to clear the corresponding OKs.

Safety only requires retaining a given node in the OK cache before and

while it is executing its critical section. As soon as it has exited, it sends a

RELEASE message to everyone who sent it an OK, so they can prune its

request from their OK cache. A RELEASE message arriving after the next

REQUEST from the same node will simply be discarded. We use raw IP

multicast to optimize bandwidth, due to the following result:

Lemma 4. Dropped RELEASE messages do not cause safety or liveness

violations.

Proof. Let pi exit its critical section and send a RELEASE message that

drops. Nodes inMemlisti maintain the cached OK, so future requesters send

their REQUEST to pi as well. If pi is in NONE state (so it can’t contribute

to safety violations), it will simply send an OK (maintaining liveness). Oth-

erwise, the algorithm will arbitrate requests as intended, maintaining safety

and liveness.
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4.2 Camera Analysis

Safety

Recall that safety is the guarantee that at most one node is executing a

critical section at any point in time.

Theorem 5. Camera ensures safety.

Proof. Assume the contrary - that two nodes pi and pj execute the critical

section simultaneously. Assume without loss of generality that their requests

are ordered such that Reqi < Reqj, generating four unique cases:

1. pi ∈ Memlistj AND pj ∈ Memlisti

2. pi /∈ Memlistj AND pj ∈ Memlisti

3. pi ∈ Memlistj AND pj /∈ Memlisti

4. pi /∈ Memlistj AND pj /∈ Memlisti

The first case represents the Ricart-Agrawala assumption of complete mem-

bership, while Case 2 and Case 4 are safety-violating Asymmetric Ignorance

and Symmetric Ignorance from Section 3.2.

Case 1 - pi ∈ Memlistj and pj ∈ Memlisti

Note the original Ricart-Agrawala algorithm also maintained safety in this

case, as shown in Figure 3.1b, so the proof for Camera is straightforward.

To enter, pi and pj would have each sent REQUEST and OK to the other.

Recall Reqi < Reqj means Reqj must have arrived at pi after pi initiated its

own process (otherwise, pi’s sequence number ≥ pj’s sequence number + 1).

Thus, there are only two sub-cases for when pi receives Reqj.

1. pi receives Reqj before receiving all pending OKs → pi is WAITing,

evaluates Reqi < Reqj, and defers

2. pi receives Reqj after receiving all pending OKs → pi is in HELD state

and defers by default
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In either sub-case, pi sends an OK allowing pj into the critical section only

after pi exits its own critical section, contradicting our assumption of a safety

violation.

Case 2 - pi /∈ Memlistj and pj ∈ Memlisti

Figure 4.2 shows a visual example of Camera maintaining safety in this case.

For pi to be in the critical section, it must have sent Reqi to pj and received

an OK in response. There are three sub-cases for when pj receives Reqi in

relation to when pj entered its critical section.

1. pj receives Reqi while in its critical section → pj defers responding

until after exiting the critical section → i receives its OK and enters

the critical section after pj exits → contradiction!

2. pj receives Reqi before entering its critical section but after sending out

Reqj → pj learns about pi and sends its own Reqj to pi, along with

an OK because pj is WAITing and evaluates Reqi < Reqj. With both

Reqj and OK in flight from pj to pi, there are two states pi might be

in when it receives Reqj.

(a) WAIT: Reqj arrives before some OK (either pj’s or another that

is pending) → i evaluates Reqi < Reqj and defers responding

(b) HELD: Reqj arrives after pj’s OK and all other pending OKs, and

pi automatically defers

In either state, pi defers the OK allowing pj into the critical section until

after pi exits, contradicting the assumption that safety is violated.

3. pj receives Reqi before initiating its process, so pj responds with OK

and adds pi to Memlistj. When pj executes enter() , we have pi ∈
Memlistj, contradicting the case assumption.

In all sub-cases, safety is maintained.

Case 3 - pi ∈ Memlistj and pj /∈ Memlisti pj would have sent Reqj to

pi and received an OK back. There are a few sub-cases of when pi receives

Reqj:
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1. pi receives Reqj after getting the OKs it needed, so is in HELD state,

and thus defers the OK until after it exits its critical section. Contra-

diction!

2. pi receives Reqj before receiving its own needed OKs, but after initiat-

ing the process. pi would take the following steps:

(a) Add pj to Memlisti

(b) send Reqi to pj

(c) evaluate Reqi < Reqj so defer responding to pj

(d) wait for OK from pj (and the rest of the pending OKs)

pj receives Reqi while in WAIT state, evaluates Reqi < Reqj, and

immediately sends OK. pi receives the OK, executes its critical section,

and only sends the final OK allowing pj into the critical section after

pi has exited, contradicting the assumption!

3. pi receives Reqj before even initiating its own process. This would

cause Reqi > Reqj because seq numi ≥ seq numj + 1, contradicting

the assumption that Reqi < Reqj!

Case 4 - pi /∈ Memlistj AND pj /∈ Memlisti

Refer to Figure 4.1 for a visual example. Let pk ∈ Memlisti
⋂
Memlistj ̸= ∅,

by the Mutual Friend Property. For pi and pj to simultaneously enter the

critical section, both would have sent a REQUEST to pk and received an OK.

pk processes the incoming requests serially. Assume without loss of generality

that pk processes Reqj first, so pk first responds to pj with OK and later to

pi with OK(Reqj). When pi receives that message, it immediately adds pj

to Memlisti. We now have pj ∈ Memlisti and pi /∈ Memlistj. Because

we assigned pj to be the node whose request pk received first, there are two

possible sub-cases for the comparison of the two requests:

1. Reqi < Reqj - proof from Case 2 holds

2. Reqj < Reqi - If we simply switch the nodes we’ve assigned to pi and

pj, we have pi ∈ Memlistj and pj /∈ Memlisti, with Reqi < Reqj. This

is the same setup to the proof for Case 3, which holds here as well

Thus, we show that mutual exclusion is safely achieved.
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Corollary 5.1. Even with arbitrary failures, as long as Mutual Friend Prop-

erty holds, Camera ensures Safety.

Because each common neighbor acts independently to inform pi and pj of

each other, only one common neighbor is needed for correctness. Thus, the

failure of other common neighbors don’t affect correctness, as long as the

Mutual Friend Property holds.

Deadlock-freedom

Recall that one critical property of mutual exclusion algorithms is deadlock-

freedom. We say a deadlock occurs when 1) no node is in its critical section

and 2) no node will be able to enter the critical section.

Theorem 6. Camera prevents deadlocks.

Proof. Assume there is a deadlock. There must be some cycle of nodes

deferring REQUESTs, meaning every node in that cycle has at least one

OK deferred. There are only two reasons for a node pi to defer an incoming

REQUEST Reqj:

1. pi is in HELD state - but this equates to executing the critical section,

so, by definition, the system can not be deadlocked.

2. pi is WAITing and evaluates Reqi < Reqj. Because deadlock requires

every node in the cycle to have its REQUEST deferred by at least one

node, ∀Reqj that is pending, ∃Reqi such that Reqi < Reqj. In other

words, every request in the cycle must have at least one other request

with lower priority than it. This means there can not be any minimum

request (with higher priority than all other ongoing requests). Note

that evaluating requests in their lexicographic order means every pair

is comparable, and this comparison is transitive, providing a total order

on requests. Therefore, there must be some minimum request in the

set of ongoing requests that comprise the cycle. This is a contradiction.
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Starvation-freedom

Recall the third critical property of mutual exclusion algorithms is starvation-

freedom, the guarantee that any given request will, in finite time, be allowed

access to the critical section if other nodes are entering and exiting.

Theorem 7. No request will be starved under Camera.

Proof. Assume there is a starved node pi. pi can only be prevented from

entering the critical section because it has a pending OK from some node

pj → pi previously sent a REQUEST to pj. At all such nodes pj that

receive Reqi, all subsequent Reqj will evaluate Reqj > Reqi because the

sequence number (first dimension) of Reqj is greater than Reqi’s sequence

number by line 13 of Algorithm 2. Thus, as other nodes continue to enter

and exist, pi will eventually have the minimum sequence number (recall the

total order on requests). Due to our result from Theorem 6 that deadlock is

impossible, some node will have to enter the critical section. Reqi will have

the highest priority, so no node will be able to defer Reqi (while pi will defer

all incoming requests). Thus, pi will enter the critical section, contradicting

the assumption of starvation.

Causality

Camera maintains safety even incomplete membership at the expense of

causal ordering of critical section execution.

Definition 5 (Causality). Request B is causally dependent on Request A

if there is a path of direct causal links from A to B. There are two types

of direct causal links: 1) from an event to a subsequent event at the same

node and 2) from a send event of a message to the receive event of the same

message (on a different node).

Using Lamport timestamps (which track causality) as the sequence num-

bers in Ricart-Agrawala under complete membership ensures that if pj’s re-

quest is causally dependent on pi’s request, pi will be allowed into the critical

section before pj.

The following observations mitigate the loss of causality under Camera:
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• If application messages are not considered (such as by using indepen-

dent sequence numbers rather than Lamport timestamps), then Cam-

era maintains causality, providing application developers with a useful

approximation of ’fairness’.

• More importantly, this is no worse than the original Ricart-Agrawala

approach. In all situations where Ricart-Agrawala worked correctly,

and thus preserved causality, Camera continues to preserve causality.

Causality can only be violated when membership is not full and con-

sistent, where the original Ricart-Agrawala would have violated safety.

Figure 4.3 depicts how application messages can outpace protocol messages

to violate causality under Camera.

Figure 4.3: Causality Violation under Camera

4.3 Performance Analysis

Bandwidth

The number of messages required for pi to enter the critical section is lower-

bounded by 2*(len(Memlisti)-1) and upper-bounded by 2*(N-1). While the

number of messages is the same as the original Ricart-Agrawala and similar

to other distributed mutual exclusion strategies, such as a ring approach,

half of the messages are OK messages which might include cached OKs and

thus be of size O(N). The rapid RELEASE messages help keep this low in
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practice, but there is no guarantee. Exit bandwidth is much better - using

IP multicast for the RELEASE messages brings exit bandwidth down to

effectively O(1).

Client Delay

If nodes stop executing or requesting the critical section long enough for

the system to stabilize (clear OK caches), and then node pi seeks to enter

it, Ricart-Agrawala and Camera both require 2*(len(Memlisti)-1) messages

(outgoing REQUESTs and incoming OKs) for pi to enter. This takes 1

round-trip time (RTT). Exiting never has any message delay.

Synchronization Delay

When one node pj finishes executing the critical section with exactly one

other node pi waiting (and having waited long enough to find out about pj

and send it a REQUEST), it will take a single message (1 deferred OK from

pj to pi) for pi to enter its critical section. This takes 0.5 RTTs, and the

analysis is the same for both Ricart-Agrawala and Camera. Now, loosen

the assumption that pi has been waiting long enough to find out about pj,

and say that 1) pj /∈ Memlisti; and 2) pi initiates its critical section entry

instantaneously before pj exits. The Mutual Friend Property requires there

to be some pk that is known by both pi and pj, which has cached that it

sent pj an OK. In this scenario, we need 1 RTT to reach everyone in pi’s

membership list, including pk, and then 1 more to check with pj itself. pj

will have released by the time it receives Reqi, so there will be no additional

delay there, for a total of 2 RTTs. Note this assumes that pi already knows

about everyone in pj’s OK cache.

Worst Case Synchronization Delay: Loosen that final assumption

about pi knowing everyone in pj’s cache to get worst case behavior of N-1

RTTs, with a line graph of cached OKs. Take pi1 with Memlisti1 = {pi2}.
Imagine pi2 has only pi3 in its OK cache, pi3 has only pi4 in its OK cache,

..., and piN−1
has only piN in its OK cache. pi1 sends its REQUEST to pi2 ,

which responds with OK(pi3) - 1 RTT. pi1 sends its REQUEST to pi3 , which

responds with OK(i4) - 2 RTTs. And so on until pi1 sends its REQUEST to
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piN , which responds with OK - N-1 RTTs (despite the total message count

remaining unchanged).

To make matters worse, observe that this is all wasted effort.

Remark. Assuming the Mutual Friend Property holds, safety doesn’t require

pi1 to check with pi4 through piN , because they all have exited!

Proof. Assume one of them pk hadn’t exited. The assumed Mutual Friend

Property would require pi2 ∈ Memlistk to ensureMemlisti1∩Memlistk ̸= ∅.
Also, because pk is cached by some node (pik−1

), we know that pk had to

have entered the critical section at some point. So if pi2 ∈ Memlistk, pi2

should have also received Reqk, responded with OK, and cached pk at some

point. In our setup, we said that pi2 has only pi3 in its cache. The only

possible reason for why pk is no longer in pi2 ’s cache is because pk exited and

sent a RELEASE, thus contradicting our assumption that pk has not exited.

Therefore, at least N-3 RTTs out of the N-1 constitute truly unnecessary

delay.

However, note that this line graph was artificially constructed by assum-

ing absolute worst case delivery of several RELEASE messages, and cache

relationship graphs of height N − 1 are highly unlikely in practice due to the

practical mechanisms suggested in Subsection 23 for RELEASE messages.

Memory Usage

Another important resource to consider is local node memory. The only

significant change in memory usage under Camera is the retention of the

list of recently OKed requests. Because nodes must serialize their requests,

receiving a second request B for any given node means that its previous

request A has already completed, so A can be discarded from the retained

list if it is still present. Essentially, we need to retain at most one OKed

request for each node, so the additional memory is bounded by O(N), and

in practice often less due to the rapid IP-multicast RELEASEs. In modern

memory systems, even sensor networks, this is acceptable overhead.
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Effect of Drop Rate

Let’s examine the effect of drop rate on the expected end-to-end delivery

time of a message. Define the following variables:

d end-to-end drop rate

r hop-to-hop drop rate

h 1-hop delay

c average # hops/message (6)

λ E(delay from E2E drop)

T timeout

Clearly, d = 1 − (1 − r)c, so the end-to-end drop rate grows rapidly with

the hop-to-hop drop rate as seen in Figure 4.4. λ depends on which hop the

message drops, and will incur delay from the timeout required to realize the

message dropped plus the hop-to-hop latency for all successful hops.

Figure 4.4: Drop Rate Relationship
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λ = E(delay from E2E drop)

= T +
c∑

i=1

P(drop on ith hop) + h(i− 1)

= T +
c∑

i=1

(1− r)i−1r + h(i− 1)

= T +
r

1− r

c∑
i=1

(1− r)i + h

c∑
i=1

i− 1

= T +
r

1− r
(
1− (1− r)c+1

r
− 1) + h

c(c− 1)

2

We note that if a message experiences exactly n E2E drops, the time for

delivery will be n times the expected delay from a single drop, plus the ch

time required to successfully transmit c hops. Also note that 0 < d < 1,

allowing closed-form solutions to the series below.

E(E2E delivery time)

=
∞∑
n=0

P(exactly n drops)(nλ+ ch)

=
∞∑
n=0

dn(1− d)(nλ+ ch)

= (1− d)(ch
∞∑
n=0

dn + λ
∞∑
n=0

ndn)

= (1− d)(
ch

1− d
+

λd

(1− d)2
)

= ch+
λd

1− d

= ch+ λ
1− (1− r)c

(1− r)c

.

Plugging in λ as calculated above gives the function depicted in Figure 4.5.
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(a) Log scale (b) Linear Scale

Figure 4.5: Expected E2E delay against H2H drop rate

4.4 Relaxing The Mutual Friend Property

We refer to the algorithm described so far as the “fast path”, which maintains

safety under the Mutual Friend Property. We now present an extension

of Camera that maintains safety even when the Mutual Friend Property is

violated, referring to it as the “slow path”.

Identification

The Mutual Friend Property is a safe assumption, because all violations will

be detected. We assume an estimator for N (total network size), such as

that described in [14], that provides an upper bound, N.upper. At the top

of enter() , pi switches to the slow-path if len(Memlisti) ≤ N.upper
2

. While

false positives are possible, they will be very rare because membership lists

are mostly consistent in practice, as shown by the graphs in Section 2.3.

It is possible that pi’s membership list is larger than half the network only

due to stale entries (failed nodes whose failure information has not reached

pi yet). pi will wait indefinitely for the OKs from these nodes until the

eventually complete failure detector informs it of their failure, and will resort

to the slow path if the membership list ever becomes too small. The fast

path is thus fault-tolerant.
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Description

When requester pi’s membership list doesn’t satisfy a quorum, we build a

BFS spanning tree to propogate its request. By obtaining OKs from every

node in the tree, Camera ensures that there is at least one node who both pi

and any other requester have asked for permission. A node initiates the slow

path for a request independently when it locally detects its membership list

contains less than half the network, and is robust to any combination of slow

or fast paths being run by other nodes. We adopt Algorithm 9 in Chapter 2

of [15] to create a BFS spanning tree as described in Algorithm 3, with the

requester as root.

Algorithm 3: Constructing a Spanning Tree

1 p = 1 do
2 Root sends ”start p” through tree
3 Leaves send ”join p + 1” to nodes they have not talked to yet
4 Upon first receiving ”join p + 1”, pi responds ”ACK” to become

leaf of tree
5 pi replies ”NACK” to any additional ”join” messages
6 Old leaves use echo algorithm to pass responses back to root,

which then increments p
7 until no new node detected

We make the following additions, which clearly don’t change the operation

of the spanning tree algorithm.

• Piggy-back REQUESTs on top of the ”join p + 1” message in line 3

• Copy topology information for f+1 levels from the echo algorithm at

line 6, so any given node knows the topology of the subtree rooted at

itself up to depth f+1.

Because our membership graph is strongly connected, the resulting tree

T includes every node in the network, and our piggy-backing of REQUEST

messages guarantees that every node has received the REQUEST.

Once the tree is constructed, a node pi sends an OK to its parent only

when it has both received an OK from all its children in T and has met the

fast-path conditions (either chose to not defer or is clearing the defer buffer).

The root enters when it has received an OK from all its children.
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Slow-Path Safety

Lemma 8. A node pi will only send its parent an OK when all nodes in the

subtree rooted at pi (including itself) have said OK by fast-path conditions.

Proof. Induct on the height h of that subtree. Take the base case of h = 0.

This leaf has no children, so will respond with OK once when its fast-path

conditions allow it to. Now assume the above statement is true for all nodes

that root subtrees of height h − 1 or less. By our specification of the slow-

path, pi (the root of the subtree of height h) will only respond OK when 1)

it has received an OK from each of its children and 2) it has met its own

fast-path conditions. Each child is the root of a subtree of height at most

h − 1, so the inductive hypothesis holds and the child’s response means all

nodes in its subtree have said OK by fast-path conditions. But the subtree

rooted at pi is merely the union of the subtrees rooted at its children and pi,

so pi’s OK to its parent means all nodes in the subtree rooted at pi have said

OK by fast-path conditions.

Theorem 9. The slow path maintains safety.

Proof. Now, take pi to be the requester. It was the root of the BFS tree, so

the subtree rooted at it is the entire network - this means the requester will

only be able to enter its critical section once every node in the system has

said OK under the fast-path conditions.

Now, assume two nodes pi and pj violate safety, both running the slow path.

Each is the root of its own BFS tree (recall the slow-path runs independently

at the request level), and by Lemma 8, each must have received an OK from

every other node. In particular, they must have said OK in response to

REQUEST messages from each other. There are the following cases for the

ordering of the requests.

1. One received the other’s request before sending its own. Assume with-

out loss of generality that Reqi arrived at pj before Reqj was sent out.

Reqj.seq num ≥ Reqi.seq num+ 1. So pi would receive Reqj in either

the HELD or WAIT state, and would have deferred the OK to pj until

after pi exited. Safety would have been maintained.

2. Each sent its own request before receiving the other’s request, but also

before receiving the other’s OK. So each was in the WAIT state when it
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received the other’s request. We asserted that pi must have received an

OK from pj. So pj must have evaluated Reqi < Reqj. However, with

that evaluation, pi would have deferred pj’s request until after exiting,

again contradicting our assumption of safety.

3. pi received all OKs (including pj’s) before receiving Reqj. pi was thus in

the HELD state and deferred the OK to pj until pi exited, contradicting

the assumption of safety being violated.

Let Pv denote the nodes who receive Reqv and must say OK to allow that

request in. Simply, as soon as one of the conflicting nodes pi runs the slow

path (setting Pi = N), and the other pj has a non-empty membership list,

we are guaranteed Pi ∩ Pj ̸= ∅, and the proof described for the fast path in

Section 4.2 applies.

Remark (Liveness). The liveness properties (deadlock-freedom and starvation-

freedom) of the slow path follows in the same way as in the fast path. There

must be some minimum request that evaluates to less than all other requests,

and thus receives all necessary OKs.

Slow Path Fault Tolerance

Recall that the fast-path is unaffected by failures while the Mutual Friend

Property is satisfied, and defaults to the slow-path otherwise. Once in the

slow path, we assume a fixed f failures between a request being initiated and

the critical section being executed. If a node pi fails as in Figure 4.6, then

pi’s parent pj in the BFS spanning tree also becomes the parent for all of pi’s

children (waits for OKs from them before responding OK to its own parent).

If pi and pj fail simultaneously, pj’s parent k will take over as the parent for all

of pi’s children as well as all of pj’s children. Because we piggy-backed subtree

topology for the next f +1 levels on the echo algorithm will constructing the

tree, this method can tolerate up to f simultaneous failures. Noting that the

echo algorithm could easily carry back all topology information, providing a

simple extension to tolerate an arbitrary number of simultaneous failures, as

long as the membership graph remains strongly connected.
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Figure 4.6: Handling Failures on the Slow-Path
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CHAPTER 5

EXPERIMENTAL RESULTS

We evaluated the performance of Camera with varying numbers of concurrent

requesters, system sizes, per-hop message drop rates, and network topolo-

gies. The key metrics were request waiting times and bandwidth (end-to-end

message count, end-to-end message size, hop-to-hop message count, and hop-

to-hop message size), and all parameter tuples were run for n = 100 runs.

The simulation periodically imported membership traces from Medley [12],

a membership protocol for dynamic ad hoc networks. While the duration of

each CS execution was held constant, we also varied the spatial and temporal

distribution of requests in our realistic workloads. All graphs show the mean

as a red dot, the IQR as the orange bar, and the min and max whiskers in

green and blue, respectively.

Our simulation sought to address the following questions:

1. How much synchronization delay does Camera add? How much band-

width does Camera require?

2. How does Camera scale (delay, bandwidth) against the number of con-

current requesters, system size, and drop rate?

3. How does Camera perform against realistic workloads with various tem-

poral (request arrival times) and spatial (which nodes are requesting)

distributions?

We tested under high-contention workloads, where all requesters initiated

their requester simultaneously. In addition, we simulated realistic workloads

under four configurations of spatial and temporal request distributions.

Throughout, we refer to the waiting time for an individual request as the

time elapsed between the requester executing enter() and the requester ex-

ecuting its critical section, and analyze this as a proxy for the synchronization
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delay. We expect that client delay should be similar to the original Ricart-

Agrawala algorithm, because a solo requester should not have to take any

corrective action. Under high contention, we expect average synchronization

delay to behave similarly to Ricart-Agrawala, because requesters will take

corrective action while other nodes are executing the critical section.

Table 5 shows default values for parameters, except where stated otherwise.

The number of concurrent requesters applies only to the high-contention

workloads, while IA:D applies only to the realistic workloads.

trials per data point 100

drop rate 0.05

system size (N) 256

concurrent requesters 10

IA:D 1.0

topology random

5.1 High Contention Workload

The first set of workloads were high contention, where all requesters initi-

ated their requests concurrently. We isolate the synchronization delay by

normalizing wait times by the number of concurrent requesters.

Take an example of n requesters who run enter() simultaneously, each

spending 1 time unit in the CS with synchronization delay of H time units.

The waiting times are 1 + H for the second requester, 2 + 2H for the

third, and (H + 1)i for the ith. The average waiting time then becomes∑n−1
i=1 (H+1)i

n−1
= (H+1)(n−1)n

n−1
= (H+1)n. Dividing again by n for the normaliza-

tion step approximates isolating the synchronization delay H, because the

CS execution time of 1 is constant.

Concurrent Requesters

We begin by examining how Camera scales with the number of concurrent

requesters.

Figure 5.1a shows normalized waiting times flatten as a function of the

number of concurrent requesters, because requesters who enter later are typ-

ically waiting on very few OKs, shortening the synchronization delay and
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thus bringing down the average. This point is reached quickly, as shown by

isolating the leftmost region of the graph in Figure 5.1b.

(a) Normalized wait times (b) Few requesters

Figure 5.1: Normalized wait times against concurrent requesters

Figure 5.2 shows that the incremental bandwidth per requester is constant,

meaning that total bandwidth scales linearly with the number of concurrent

requesters. This is expected and ideal behavior because each request must

be approved by almost everyone else in the system.

System Size

We examined how Camera performs in systems of various sizes.

Figure 5.3 (normalized by N) show that average waiting time increases

with system size, rapidly at first and leveling off by N=256. This is because

an individual node’s wait time at low concurrent requesters (here 10) is de-

termined by the maximum round-trip time to other nodes, which increases

with the number of nodes.

Figure 5.4 shows the total number of messages per node increases sub-

linearly with the number of nodes in the system. The number of messages

per non-requesting node is proportional to the fixed number of concurrent

requesters, while the number of messages per requesting node increases lin-

early (requests must be approved by every node in the system). Messages

per node is a weighted average of message per requesting and non-requesting

node, so grows sublinearly and slower at larger N where requesters constitute

less of the network. Camera thus scales well to large systems.
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(a) End-to-End Message Count (b) E2E Message Size

(c) H2H Message Count (d) H2H Message Size

Figure 5.2: Normalized Network Metrics against Concurrent Requesters

Drop Rate

Message drops play a critical role in dynamic edge networks. We verify

Camera performs optimally under a range of realistic hop-to-hop drop rates,

fixing the number of concurrent requests at 64 (a quarter of the system)

rather than 10 to augment the effect of message drops.

Figure 5.5 and Figure 5.6 show that waiting times and bandwidth both

grow exponentially with drop rate, because synchronization delay at high

concurrent requesters is dominated by the message delivery time from the

exiting node to the incoming node. The growth rate is slightly faster than

suggested by our analysis of expected message delay in Subsection 4.3, due

to the long initial waiting times. Yet, note that the increase is at most an

order of magnitude in the practical range between 0.05 and 0.2, reaffirming

the practicality of Camera.
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Figure 5.3: Normalized wait times against system size

(a) End-to-End Message Count (b) E2E Message Size

(c) H2H Message Count (d) H2H Message Size

Figure 5.4: Normalized network metrics against system size. Normalization
is by system size and concurrent requesters = 10.
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Figure 5.5: Wait times against drop rate

(a) End-to-End Message Count (b) E2E Message Size

(c) H2H Message Count (d) H2H Message Size

Figure 5.6: Network Metrics against Drop Rate
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5.2 Realistic Workload

In order to understand how Camera behaves in the wild, we injected work-

loads where the requester interarrival times were distributed as either expo-

nential and Weibull [16] distributions, the latter of which is known to rep-

resent network arrival rates [17]. The choice of requester from the N nodes

followed either a uniform or Zipfian distribution.

Interarrival Time v.s. CS Duration

These distributions introduced an additional key parameter of inquiry: the

ratio between the average interarrival time and the duration of critical section

execution (IA:D), which was held constant. In theory, a higher ratio would

imply that, on average, requests are coming in slower than they’re being

executed, and wait times should be driven down.

Figure 5.7a shows that this behavior is highly dependent on the spatial

distribution. When requesters are uniformly distributed, waitTimes decrease

linearly with IA:D as expected, and faster under the Poisson workload. How-

ever, the zipfian spatial distribution has consistently lower wait times, in-

dependent of both the average and distribution of interarrival rates. The

concentration of requesters results in 1) fewer instances of finding out about

potentially conflicting requesters and needing corrective action and 2) less

effective contention because nodes locally serialize their own requests. That

advantage becomes less important when requests are arriving slowly (high

IA:D), so the performance of the two distributions converge. Note that the

zipfian distribution tends to be seen in the wild [18] , making Camera highly

practical.

Figure 5.7b shows total end-to-end messages (and the remaining band-

width metrics, omitted) are independent of IA:D, because each requests still

needs approval from the rest of the system.

In summary, Camera provides low waiting times even at high request ar-

rival rates under a zipfian spatial distribution (likely in practice), and band-

width is roughly distribution-independent.
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(a) Wait times (b) E2E Messages

Figure 5.7: Effect of IA:D

Drop Rates

We examined the effect of drop rate under these realistic workload distribu-

tions. Figure 5.8a and Figure 5.8b show that all four distributions saw both

wait times and bandwidth metrics respond at the same exponential rate to

changes in the message drop rate. This is because changes in wait time un-

der increasing drop rates are primarily due to additional message resends,

and our analysis in Subsection 4.3 applies equally to all distributions. For

the same reasons as discussed with the IA:D analysis above, the zipfian wait

times are consistently lower than the Poisson lines.

(a) Wait times (b) E2E Messages per node

Figure 5.8: Effect of Drop Rate
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System Size

We evaluated the effect of increasing system size on Camera’s performance.

Figure 5.9a reveals that wait times grow with system size at a faster rate un-

der uniform distributions than under zipfian distributions, and the latter is

concave down (sublinear). Recall that the higher concentration of requesters

under a zipfian distribution provide an advantage from local node serializa-

tion. This advantage becomes more impactful with more nodes in the sys-

tem, as fewer nodes who are holding back OK messages results in a smaller

maximum values for the delivery time of those lingering OKs. Note that in

the uniform case, the Weibull temporal distribution has slightly higher wait

times than exponential interarrival times; having more nodes results in larger

maximum OK delays, and the effect compounds under Weibull’s burstiness.

Figure 5.9b shows that the per node bandwidth increases sub-linearly with

the size of the system, as the weighted average of linearly-increasing per

requesting node bandwidth and roughly-constant per non-requesting node

bandwidth. The effect of a constant hop-to-hop drop rate is more evident

in large systems where the average end-to-end journey length is larger, par-

tially contributing to the increase. The same reasoning explains why zipfian

requester distribution requires more bandwidth than uniform, especially in

larger systems; because requesters are more concentrated topologically, the

average number of hops between requesters and non-requesters is larger, pro-

ducing more end-to-end drops. This marginal effect is visible in all bandwidth

graphs in this section, and is due to the implementation quirks that nodes

are clustered in the topology by their id, which is used to sample from the

zipfian distribution.
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(a) Wait times

(b) E2E Messages per node

Figure 5.9: Effect of System Size
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Against varying IA:D ratios, drop rates, and system sizes, Camera operates

close to theoretical values. Wait times are consistently lower under realistic

zipfian requester distributions than under uniform distributions, although

at the cost of marginal bandwidth increases. Interarrival time distributions

have little effect, although Camera performs slightly better when arrivals are

a Poisson process than it does under Weibull interarrival times. Camera is

thus highly scalable, robust to various distributions, and practical.
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CHAPTER 6

RELATED WORKS

Classical solutions to the mutual exclusion problem can be divided into

permission-based and token-based approaches. In addition to Ricart-Agrawala

[9], the former category includes Maekawa’s
√
N Algorithm [11], a voting-

based algorithm that arranges the N nodes into a square matrix to intelli-

gently select a subset of nodes to grant permission. The token-based ap-

proaches include Raymond’s tree-based algorithm [10], which imposes a log-

ical tree structure upon the network, with the token holder as the root. As

discussed in Chapter 1, these classical algorithms all assume fully consistent

membership.

General consensus and coordination systems for distributed systems can

also be used to achieve mutual exclusion. For example, Paxos [19] and Raft

[20] can be used to reach consensus about which node should be currently

executing the critical section. Similarly, Google’s Chubby Lock System [21]

can provide locking for filesystems, a special case of the mutual exclusion

problem, but is engineered for high-bandwidth networks. The open-source

coordination system ZooKeeper suffers from the same limitation, despite pro-

viding coordination and synchronization primitives. The common thread is

that existing systems are 1) more general and thus sacrifice performance; and

2) designed for reliable, static networks.

On the other hand, adhoc and edge networks are often characterized by

incomplete membership. There has been much recent work in building other

critical primitives for such settings, such as distributed hash tables [22],

bounded degree topologies [23], grid-based virtual filesystems [24], and con-

sensus [25].

The mutual exclusion problem in this setting has also received attention,

primarily focused on token-based approaches. One such example is the di-

rect implementation of mutual exclusion inside a P2P DHT [26], which only

provides probabilistic, rather than the provable, safety and is only useful
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for DHT applications. Another algorithm [27] for mobile adhoc networks

is highly efficient under high mobility, but underperforms when mobility is

limited. The majority of algorithms focused on MANETs [28], [29], [30] are

token-based with the accompanying limitations. Even permission-based ap-

proaches that modify Ricart-Agrawala for MANETs make assumptions (such

as stable mobile support stations [31] or a fixed set of possible peers [32]) that

don’t apply to many modern ad hoc networks, such our motivating examples

of sensor networks.
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CHAPTER 7

CONCLUSION

We presented Camera, a permission-based churn-tolerant mutual exclusion

protocol for dynamic edge networks. We leveraged the key insight that edge

membership protocols typically satisfy the Mutual Friend Property, and ac-

companied our primary algorithm with a fall-back for when MFP is not

satisfied. We formally proved that Camera guarantees safety and freedom

from both deadlock and starvation. Experimental results demonstrated that

per-requester waiting time drops exponentially with additional concurrent

requesters, grows only linearly with large system sizes, and favors practical

spatial and temporal request distributions.

Future Work Future avenues of exploration include but are not limited

to the following:

1. Implementation and deployment in order to empirically validate per-

formance in real-world networks and under real workloads. While our

simulation results are promising for scalability, implementing Camera

in a small-scale sensor network will further corroborate correctness.

Deploying in a live large-scale system will provide data about the real-

world efficacy of Camera.

2. Optimization of the slow-path algorithm. Our simulation results re-

garding the Mutual Friend Property as presented in Section 4 suggest

that the slow-path will be invoked extremely rarely. We therefore fa-

vored simplicity and choose a fairly inefficient spanning tree broadcast

method. However, for systems using membership protocols that are

less likely to satisfy the Mutual Friend Property, the slow-path can be

optimized, such as by using a more efficient broadcast method, allowing

OKs multiple routes to reach the requester, or building the spanning

tree with topology awareness.
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3. Empowering Camera with topology-awareness. There’s a vast design

space in assigning priority, obtaining permission, or even using algo-

rithmic variants based on node proximity. This would be especially

useful in deployments with high hop-to-hop message drop rates, be-

cause reducing the average number of hops a message must travel dras-

tically decreases the end-to-end drop rate, and can therefore reduce

both bandwidth and waiting times.

4. Generalization to other primitives focused on high-churn edge networks.

Sensor and similar networks require many of the same core-layer algo-

rithms as traditional data-center systems, and can benefit from a sin-

gle integrated solution, the adhoc equivalent of ZooKeeper [33]. Such

algorithms can include leader election, consensus, hash tables, RPC

frameworks, distributed shared memory, and more.
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APPENDIX A

APPENDIX

A permission-based mutual exclusion algorithm might specify that a request-

ing node must 1) receive some number of OK messages before entering the

CS; 2) simply enter the CS if it doesn’t receive STAY-OUT message(s) within

some fixed timeout t; or 3) some combination of the former two.

Lemma 10. Let ALG be a permission-based mutual exclusion algorithm that

satisfies safety in an asynchronous system. Then ALG must exclusively re-

quire a requesting process to receive OK message(s) before entering the CS,

rather than entering if it doesn’t receive STAY-OUT messages within some

fixed timeout t.

Proof. Suppose that a requesting process pi entered the CS t time-units after

sending its requests, unless receiving a STAY-OUT message. While another

node pj was executing its critical section, maintaining safety would require

some node pk to send pi a STAY-OUT message. Our asynchronous system

allows arbitrary delays, and delaying that message t + 1 time units would

cause pi to execute its critical section while pj was still executing it, violating

safety.

Recall Theorem 1:

Theorem 1. Let ALG be a mutual exclusion algorithm with the following

assumptions:

• Any node can run enter() at any time

• Messages can only be sent along edges in the membership graph

• ‘Information’ can only be conveyed across processes via messages

Then, a strongly connected membership graph is necessary for ALG to

satisfy safety and liveness.
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Proof. We will proceed by first taking permission-oriented ALG and ex-

amine the membership edges required to maintain safety and liveness, and

then do the same for non-permission-oriented ALG. Intuitively, maintaining

both safety and liveness requires passing information between any competing

nodes, which can only happen on edges of the membership graph.

Fix ALG to be permission-oriented, and let G be a membership graph on

which ALG maintains safety and liveness. Take any pair of nodes pi, pj that

can request simultaneously, supposing pi has priority. By Lemma 10, pj must

be waiting for an OK message m from some node pk. To maintain starvation-

freedom, pk should only withhold m from pj because pk 1) is informed that

pi is executing its critical section and 2) will eventually learn when pi exits.

Because information can only be transmitted over messages and thus along

edges in G, there must exist some path p in G from pi to pk. Maintaining

liveness also requires an edge e = k −→ pj for pk to send pj that final OK

message. Thus, there exists a path p′ = pe from pi to pj. Now suppose pj

was already executing its critical section when pi initiated its request, and

apply the symmetric argument, so pi ↭ pj. Because we assumed any node

can run enter() whenever it wishes, any pair of nodes in the membership

graph could request simultaneously, so the above holds for all (pi,pj) in G.

By definition, G must be strongly connected.

Now, assume the algorithm is not permission-oriented. This means there

must be some ‘token’ circulating to permit critical section execution. Because

we assumed every node pj can make a request, starvation freedom means

that the token must have a path from its current location to pj. Because

the same assumption means that the current location can be at any node pi,

there must be a path from every node pi to every other node pj, making G

strongly connected by definition.

We thus see that any mutual exclusion algorithm maintaining both safety

and liveness requires a strongly connected underlying membership graph.
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