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ABSTRACT

Generating accurate convex decompositions of indoor scenes from single RGB images is a

challenging task with numerous applications in computer graphics. Current state-of-the-art

methods employ encoder-decoder neural networks to convert RGB images into a fixed num-

ber of simple primitives (e.g., parallelepipeds). However, these approaches have limitations

in capturing long-range dependencies and transferring global information, which can impact

their accuracy and generalization capability across diverse indoor environments. To ad-

dress these limitations, we propose ENS-CVXNet, an ensemble approach that leverages the

strengths of various convex decomposition techniques and incorporates additional geometric

information as summaries. Our core analysis explores well-established algorithms such as

VHACD, COACD, and BSP-Net, as well as the integration of global features extracted by

PointNet from the input point cloud. By combining multiple models trained with differ-

ent summaries and configurations, ENS-CVXNet selects the best-performing model for each

input image based on its ability to generate accurate depth predictions, evaluated against

ground truth depth maps or predictions from state-of-the-art depth predictors. Through

extensive experiments and evaluations on the NYUv2 dataset, we demonstrate that ENS-

CVXNet outperforms the baseline method, achieving a 20% decrease in AbsRel from 0.093

to 0.0744, and improving the overall precision and quality of convex decomposition for in-

door scenes. Our ensemble approach effectively combines the strengths of various techniques,

leveraging geometric summaries and adapting to diverse scene characteristics, results in more

accurate and robust 3D geometric reconstruction from single RGB images.
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CHAPTER 1: INTRODUCTION

Generating accurate convex decompositions of 3D scenes from single RGB images is a

complex problem. Current state-of-the-art methods, such as the work by Vavilala et al. [1],

employ learned regression techniques to convert RGB images to a fixed number of simple

primitives. While this baseline approach has shown promising results, it is primarily based

on an encoder-decoder neural network architecture, which may have limitations in capturing

long-range dependencies and transferring information on a global scale.

Figure 1.1: An example of convex decomposition applied to a mesh, breaking it down into
simpler convex components. This figure is taken from here.

Figure 1.1 shows an example of convex decomposition applied to a 3D mesh of an object,

breaking it down into simpler convex components. While this example illustrates convex

decomposition on a single object mesh, our work focuses on generating convex decompositions

of entire indoor scenes from single RGB images, as demonstrated in Chapter 4.

To address these limitations and improve the accuracy of convex decomposition, we pro-

pose an ensemble approach that leverages the strengths of various convex decomposition

techniques and incorporates additional geometric information as summaries. Our core anal-

ysis is grounded in the examination of well-established algorithms, including Volumetric

Hierarchical Approximate Convex Decomposition (VHACD) [2] and Approximate Convex
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Decomposition for 3D Meshes with Collision-Aware Concavity and Tree Search (COACD)

[3].

While VHACD and COACD can accurately represent the locations of objects in the scene,

their generated convex primitives often have complex and arbitrary shapes, unlike the simple

parallelepipeds produced by the baseline method. To capitalize on the strengths of these

algorithms while preserving the simplicity of the baseline output, we propose using the

outputs of VHACD and COACD as geometric summaries, providing additional information

to the baseline encoder-decoder network.

Specifically, we explore various approaches to incorporate the geometric summaries, such

as using the means or medians of the convex primitives generated by COACD, or integrating

global features extracted by PointNet [4] from the input point cloud. These summaries are

stacked with the output of the encoder and fed into the decoder, allowing the network to

leverage the geometric information during the learning process.

By combining multiple models trained with different summaries and configurations, our

proposed ensemble approach, ENS-CVXNet, selects the best-performing model for each input

image based on its ability to generate accurate depth predictions. This selection process is

facilitated by comparing the depth predictions of each model against the ground truth depth

map or predictions from state-of-the-art depth predictors like MiDaS [5].

Through extensive experiments and evaluations as shown in Chapter 4, we demonstrate

that the ENS-CVXNet ensemble approach, which integrates the strengths of various con-

vex decomposition techniques and leverages geometric summaries, outperforms the baseline

model and improves the overall precision and quality of simple convex decomposition for

indoor scenes.

The rest of the thesis is organized as follows:

Chapter 2 provides a literature review, discussing relevant work in the areas of primitive

decomposition. Chapter 3 gives background information on the baseline approach for convex

decomposition of indoor scenes from Vavilala et al. [1], including details on their encoder-

decoder architecture, loss functions, and evaluation metrics. Chapter 4 presents our proposed

ENS-CVXNet ensemble approach, detailing the various convex decomposition algorithms

explored, the use of geometric summaries. Chapter 5 concludes the thesis, summarizing the

key contributions of our work and discussing potential future research directions. Finally,

Appendix A contains supplementary materials, including additional tables.
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CHAPTER 2: LITERATURE REVIEW

The concept of representing 3D scenes or objects using a set of primitive shapes has been

an active area of research in computer vision for decades [6, 7, 8]. Such primitive-based

representations offer several advantages, including parsimonious abstraction [9], natural seg-

mentation [6, 10], and simplified geometric reasoning [11, 12, 13]. The primary challenge lies

in selecting primitives that can be easily inferred from image data while allowing for effective

shape approximation.

Early work on convex decomposition focused on individual objects rather than entire

scenes. Tulsiani et al. [14] demonstrated a learned procedure that can parse 3D shapes

into cuboids without requiring ground truth segmentations during training. Deng et al.

[9] introduced CVXNet, a method that recovers 3D representations of objects as unions of

convex polytopes from point cloud and image data, again without relying on ground truth

segmentations. More recently, an advanced version of CVXNet has been developed [15] to

decompose entire scenes into a comprehensive set of primitives, forming the foundation for

the work presented in this work.

Researchers have explored various approaches to decompose and understand indoor scenes

from visual data. Hedau et al. [16, 17, 18] proposed methods for recovering room layouts as

cuboids, identifying furniture, and estimating free space within rooms. Hoiem et al. [19, 20]

focused on parsing outdoor scenes into vertical and horizontal surfaces, while Gupta et al.

[21] demonstrated a parse into blocks. For indoor scenes, techniques have been developed

to recover room layouts [22, 23], estimate plane layouts [23, 24], and impute patch-like

primitives from data [25]. Jiang [26] demonstrated parsing RGBD images into primitives by

solving a 0-1 quadratic program, while Kluger et al. [27] proposed a RANSAC-like greedy

algorithm for identifying cuboids sequentially.

Traditional approaches to primitive fitting often involved minimizing a cost function by

choosing an appropriate set of primitives [28]. However, recent advancements in deep learning

have enabled predicting suitable primitives directly from data, potentially avoiding local

minima issues faced by descent-based methods [9, 14, 24, 29]. Various primitives have been

explored for 3D representation, including cuboids [30, 31, 32, 33], superquadrics [34], planes

[24, 35], and generalized cylinders [29, 36]. Despite these efforts, existing methods still face

challenges in producing varying numbers of primitives per scene [37] and accounting for

different scene characteristics.

Our work aims to address these limitations by proposing an ensemble approach, ENS-

CVXNet, which combines the strengths of various convex decomposition techniques and

incorporates additional geometric information to improve the accuracy and quality of convex
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decomposition for indoor scenes from single RGB images, on top of the recent work [15, 38]

(baseline).
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CHAPTER 3: BACKGROUND

Current state-of-art convex decomposition for indoor scenes uses a learned regression pro-

cedure to convert a single RGB image to simple primitives [1]. They build an encoder-decoder

architecture that takes RGB and segmentation maps as input. After some polishing, their

network outputs a fixed number of primitives (14 in their paper). Since it is based on

encoder-decoder based neural network, its likely to have difficulty in Capturing Long-Range

Dependencies of the image, like the exact global features, and possibly different objects in an

image. There are many ways to improve that, and we have proposed an ensemble approach

in section 4, that beats this approach in terms of accuracy. Since the proposed approach is

based on [1], let’s first understand the working of their method.

3.1 HOW IT WORKS

In their work, the authors proposed an inference framework designed to process RGBD

images alongside segmentation maps. They proposed an encoder-decoder architecture, the

training of the network is supervised by a variety of loss functions that essentially guide the

network to differentiate between inside and outside labeled samples.

The network outputs a fixed number of primitives which is trained with certain losses that

we have discussed later. After that, the polishing step is applied to improve the decomposi-

tion based on descent and greedy strategies.

Their architecture is based on CVXNet [39], and using their predefined losses and hyper-

parameter, fine-tuning and adding some more losses to generate parallelopiped convexes. In

their work, they introduce a series of loss functions in the framework to train the network

for optimal primitive decomposition of indoor scenes. This framework comprises several

components, each targeting a specific aspect of the decomposition process to ensure that the

Figure 3.1: This figure shows an encoder-decoder architecture that takes RGB and segmen-
tation maps as input and outputs a fixed number of primitives, taken from the baseline [1].
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Cfg. Prune Refine Depth GT Seg GT ninit nused AbsRel ↓ RMSE ↓ Mean ↓ Median ↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑ Seg Acc ↑
noInit × ✓ ✓ ✓ 24 24.0 0.447 1.604 81.286 80.566 0.021 0.061 0.096 0.359

noSeg × × × × 24 24.0 0.179 0.664 41.687 38.224 0.115 0.291 0.391 0.626

withSeg × × × × 24 24.0 0.310 1.231 52.305 48.846 0.088 0.231 0.317 0.528

A × ✓ × × 24 24.0 0.163 0.679 40.692 35.697 0.124 0.313 0.424 0.623

B × ✓ × × 24 24.0 0.166 0.696 41.019 35.964 0.122 0.310 0.421 0.623

C ✓ ✓ × × 24 14.4 0.144 0.603 38.235 33.621 0.133 0.335 0.451 0.615

D ✓ ✓ ✓ × 24 14.0 0.098 0.513 37.361 32.402 0.144 0.353 0.469 0.619

E ✓ ✓ ✓ ✓ 24 13.9 0.098 0.514 37.355 32.395 0.144 0.353 0.469 0.618

ref - - ✓ ✓ - - 0.110 0.357 14.9 7.5 0.622 0.793 0.852 0.719

Table 3.1: Table 3.1 presents the final evaluation metrics reported in the baseline paper
[1] for their convex decomposition method. The authors conducted an ablation study with
different configurations on the 654 test images from the NYUv2 dataset, evaluating against
ground truth depth, normals, and segmentation. The table shows the performance of vari-
ous setups, including without initialization (noInit), without segmentation loss (noSeg), with
segmentation loss (withSeg), and different refinement strategies (A, B, C, D, E). The metrics
reported are Absolute Relative error (AbsRel), Root Mean Squared Error (RMSE), normal
error metrics, and pixel-wise segmentation accuracy. The best non-oracle configuration (C)
achieved an AbsRel of 0.144, RMSE of 0.603, and a segmentation accuracy of 0.615, out-
performing the random initialization (noInit) and demonstrating the effectiveness of their
approach.

network outputs in a certain way.

3.2 LOSS FUNCTION

The overall loss function for training the convex decomposition network can be written as:

Ltotal = Lsample + λ1Lunique + λ2Lortho + λ3Lalign + λ4Lvol + λ5Lentropy + λ6 (3.1)

where λ1, λ2, λ3, λ4, λ5 are weight hyperparameters for the respective losses, and λ6 is

remaining losses. The individual losses are defined as follows:

• Lsample: The primary sample loss that encourages correct classification of points as

inside or outside the convex primitives.

• Lunique: The unique parameterization loss, modified from [39] to penalize small offsets

in the halfplane parameters:

Lunique =
1

H

∑
h

∥dh∥2 +
1

H

∑
h

∥∥∥∥ 1

dh

∥∥∥∥2

(3.2)

where H = 6 is the number of halfplanes per convex, and dh is the offset parameter
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for halfplane h.

• Lortho: The orthonormality loss for the predicted Manhattan world parameters M ∈
R3×3:

Lortho =
1

9

∑
(I −M⊤M)2 (3.3)

where I is the identity matrix.

• Lalign: The alignment loss that encourages convex faces to follow the Manhattan world

directions:

Lalign = 1− 1

6

∑
N ·W (3.4)

where N is a 3× 6 matrix of predicted convex normals, and W = [M;−M] is a 3× 6

matrix of Manhattan world basis vectors.

• Lvol: The volume loss that encourages convexes to be predicted in decreasing order of

volume:

Lvol =
1

K

∑
ReLU(V [1 :]− V [0 : −1]) (3.5)

where V ∈ RK is a vector of convex volumes, and K is the total number of convexes.

• Lentropy: The segmentation loss that encourages convexes and their faces to respect

segmentation boundaries:

Lentropy =
1

6K

∑
entropy(CfL) (3.6)

where Cf ∈ R6K×N is a matrix representing the indicator function response for each

face, L ∈ RN×41 is a one-hot encoding of segmentation labels, and K is the number of

convexes.

The overall loss Ltotal is minimized during training to obtain a set of convex primitives

that accurately represents the input 3D scene while satisfying the desired properties encoded

by the individual losses.

All of these losses are effectively used to train the model on NYUv2 dataset. They used

Absolute Relative difference (AbsRel)[40], defined as

AbsRel =
1

|N |
∑
y∈N

|y − ŷ|
ŷ

(3.7)

where N is the set of available pixels in the manually annotated ground-truth. They got an

AbsRel of 0.098 on test data with ground truth depth maps used during refinement instead
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Figure 3.2: This figure presents a qualitative study of their method on a test image never
seen by the network during testing. The first row shows: 1) the ground truth depth, 2)
the ground truth RGB image, 3) the raytraced depth predicted from the network’s output
convexes, and 4) the gradient of the ground truth depth (normal). The second row displays:
5) the analytic normal predicted from the raytraced depth, 6) points correctly identified
as inside the surface, 7) points correctly identified on the surface, and 8) points correctly
identified as outside the surface. The third row contains: 9) the values of the different
loss terms used during training, 10) the ground truth segmentation labels, 11) the predicted
convex decomposition, and 12) the predicted segmentation from the network. This highlights
the difficulty of the optimization problem and shows results from just the decoder in the
network. We will use the same Tableau in the rest of the thesis.

of inferred. Their evaluation results are shown in table 3.1.

Figure 3.2 shows the work of their approach on one of the images on the NYUv2 dataset

(index=0 of the image), and we use the same image to compare various approaches in the

rest of the thesis. In the figure 3.2, we are trying to predict the best convexes, see (11)

Segmented Normal, by comparing the Raytrace Depth (3) with the GT depth (1) with the

help of AbsRel.

3.3 IMPROVEMENTS

The baseline convolution network has limitations in capturing long-range dependencies

and transferring information on a global scale, which leaves room for improvement. In the

next chapter, we will explore various methods to address these limitations and enhance the

8



performance of the convex decomposition model.

In the subsequent chapters, we will look into the details of our proposed ensemble method.

We will present the architecture of the individual models, the training process, and the

ensemble method. We will also conduct extensive experiments to evaluate the performance

of our approach and compare it against the baseline and other state-of-the-art methods.
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CHAPTER 4: METHODS

4.1 OVERVIEW

The baseline convolution network has limitations in capturing long-range dependencies and

transferring information on a global scale. We hypothesize that by providing the decoder with

additional information about the depth map and global features, we can improve the model’s

performance. There are several approaches to supply this supplementary information, which

we refer to as the summary.

Given the diverse nature of indoor scenes, with variations in wall sizes, floor areas, and

object densities, it is challenging for a single model to accurately decompose the image

into simple primitives with good AbsRel in all scenarios. Instead of relying on a single

model, we propose an ensemble approach where multiple models are trained, each potentially

specializing in different aspects of the scene. During evaluation, we select the best-performing

model based on its ability to generate accurate depth predictions for the given input image.

By utilizing ground truth depth maps or predictions from state-of-the-art depth predictors

like MiDaS [5] during the evaluation phase, we can compare the depth predictions of our

various models against the reference and choose the most accurate one for each input image.

The core of our analysis is grounded in the examination of several well-established Con-

vex Decomposition Algorithms. We will see Volumetric Hierarchical Approximate Convex

Decomposition (VHACD), known for its hierarchical decomposition capabilities [2]. Addi-

tionally, we will explore the Convex Objects Approximation and Clustering Decomposition

(COACD) [3], and Binary Space Partitioning Networks (BSP-Net) [41], use of PointNet [4]

as summary, each offering unique perspectives and solutions for different types of scenes.

Following the use cases and results of these algorithms, we will see some Experimental

Configurations for Convex Decomposition. This section will discuss which configurations

yield the most promising results, enhancing our understanding of the optimal settings for

each method. The discussion will be presented in Section 4.3.

Building on the information gained from these experiments, we will introduce ENS-

CVXNet, a Convex Decomposition Network, in Section 4.6. ENS-CVXNet is an ensemble of

different networks built on top of the learned-summary baseline method, methods represent

our attempt to mix the strengths of various decomposition techniques into a unified, robust

framework for Convex Decomposition. Finally, we discover that the ensemble approach,

which combines the strengths of various convex decomposition techniques and leverages dif-

ferent summaries, works better than using any individual summary in single model alone.
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4.2 DATASET

The NYUv2 dataset [42] is used in our experimentss. The NYUv2 dataset consists of

1449 RGBD images, which we divide into the standard 795-654 train-test split. While 795

images may seem like a relatively small number for training neural networks, we demonstrate

that the convex decomposition predicted by the network serves as a good starting point for

subsequent refinement, leading to very accurate results.

For our experiments, we often use a small subset of the testing images to find the best

hyperparameters, as evaluating on the entire set of 654 test images can be computationally

expensive and time-consuming. We will specify the subset size for each experiment where

applicable.

Our method is implemented using TensorFlow, and we train our models on an NVIDIA A40

GPU. We utilize the Adam optimizer with a learning rate of 0.0001. Given the parameters

of a collection of convex components for a test image, we can perform ray marching from

the original viewpoint to obtain a depth map, part segmentation, and normals. Our method

involves ray marching and interval halving at the first intersection point. For evaluation, we

compare the depth associated with the predicted convex decomposition against the input

depth map, using the standard depth error metrics on the 654 NYUv2 test images from [43].

Our training procedure requires depth maps with known camera calibration parameters.

Following previous scene parsing work, we focus on the NYUv2 dataset [42], as it provides

the necessary depth information and calibration parameters.

4.3 CONVEX DECOMPOSITION ALGORITHMS

4.3.1 VHACD

Volumetric Hierarchical Approximate Convex Decomposition (VHACD) was applied di-

rectly on the mesh of the input image to decompose it into an initial set of primitives. These

primitives were then used as a summary input to the baseline model. Different hyperpa-

rameters in VHACD were experimented with to decompose the mesh into convex primitives,

keeping the number of primitives smaller than 14. The reason for using 14 primitives is to

maintain consistency with the baseline model, which uses 14 primitives in their final results.

This allows for a fair comparison between the proposed method and the baseline. Inter-

estingly, using VHACD alone, results close to the baseline model were achieved but with

complex primitives, suggesting that the output of VHACD can used as a summary to guide

the baseline model in finding better convex decompositions.
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Figure 4.1 demonstrates an example of applying VHACD to the mesh of the original image.

The results obtained using different hyperparameters are listed in Appendix A.2. Although

the convexes generated by VHACD have complex and arbitrary shapes, they can sometimes

accurately represent the locations of objects in the scene.

Figure 4.1: This figure shows the results of applying VHACD directly on the mesh of the
input image, generating a convex decomposition consisting of 16 primitives. When compared
to the baseline model in Figure 3.2, it is evident that the convexes generated by VHACD in
the segmented normals have more complex and arbitrary shapes. However, these VHACD-
generated convexes occasionally align well with the actual locations of objects in the scene.
The AbsRel achieved by VHACD in this example is 0.061, which is comparable to the baseline
model shown in Figure 3.2. It is important to highlight that VHACD generates complex
primitives with only multiple faces, unlike baseline.

4.3.2 COACD

Secondly, Convex Objects Approximation and Clustering Decomposition (COACD) was

employed to decompose a given mesh into a set of nearly convex components. COACD offers

an advantage over VHACD by capturing both the global structure and intricate details of

input shapes. This addresses a common issue in conventional approaches that may overlook

certain features. COACD introduces a collision-aware concavity metric that robustly assesses

approximation errors by considering the distance between a shape and its convex hull.

Extensive testing and experimentation were conducted with different hyperparameters

in COACD, eliminating the need for network interference. The results demonstrated that
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using COACD alone achieves performance comparable to the baseline model and surpasses

VHACD. This finding suggests that COACD results can be leveraged as references to enhance

the baseline model’s ability to identify more efficient convex representations. Figure 4.2

illustrates an example of applying COACD to the mesh of the original image. The results

of different hyperparameters are listed in Appendix A.1.

Figure 4.2: This figure shows the results of applying COACD directly on the mesh of the
input image, generating a convex decomposition with 18 primitives. When compared to the
baseline model’s output in figure 3.2, the convexes produced by COACD in the segmented
normals exhibit more complex and arbitrary shapes. It also increases the number of faces of
a convex (in hundreds) when compared to the baseline (Parallelepiped has 6 faces). However,
these COACD-generated convexes often accurately represent the locations of objects in the
scene. Moreover, the average AbsRel obtained by COACD across all images in the test
dataset surpasses that of VHACD.

Figure 4.2 shows an example of how we apply VHACD to the mesh of the original image,

and the results of different hyperparameters are listed in appendix A.1.

As seen in the figure, COACD can accurately detect the chair and dustbin, unlike VHACD

in Figure 4.1. Comparing both tables reveals that COACD performs better than VHACD.

Based on the results in Appendix A.1, the best-performing hyperparameters have been fixed

for subsequent experiments.

4.4 POST-PROCESSING AFTER DECOMPOSITION

After initially decomposing images into convex parts using the COACD method, each

13



Figure 4.3: This figure shows the results of applying Blender API smoothing as a polishing
method to the COACD decomposition shown in Figure 4.2. While smoothing can sometimes
improve the AbsRel, it may also introduce holes or gaps in the depth map, and the number
of faces of a convex (in hundreds), as evident in this example.

resulting convex part went through further processing using different experimental configura-

tions. These configurations, such as Axis-Aligned Bounding Box, Non-Axis Aligned Bound-

ing Box, Parallelepiped Bounding, and others, were applied to individually refine and analyze

the convex components.

4.4.1 Smoothing using Blender

After decomposition, each convex part was smoothed using the Blender software’s API

in Python. This smoothing step aimed to refine the surface quality of the convex parts

by removing any sharp edges or irregularities introduced during the decomposition process.

Smoothing contributed to increase the functional quality of the convex parts.

An example of Blender smoothing is shown in figure 4.3. For some curved surfaces, it

works better, but majorly the application of blender API as a postprocessing doesn’t help

much in improving the AbsRel.

4.4.2 Axis-Aligned Bounding Box

Each convex part was enclosed within an Axis-Aligned Bounding Box (AABB). This

14



Figure 4.4: This figure shows the Axis-Aligned Bounding Box on the decomposition from
COACD as shown in fig 4.2. To compare it with the baseline, we tried to compress the
convex into a simple smallest volume Axis-Aligned Bounding Box. As you can see in this
image, it generates a lot of small cuboids to maintain the AbsRel, increasing the count of
simple primitives, unlike what we wanted to get the convex decomposition with the least
number of Parallelepiped.

approach facilitated the spatial organization and efficient collision detection for the convex

parts. By aligning the bounding boxes with the coordinate axes, computational simplicity

was maintained, like baseline.

To find the AABB, given the centroid of each convex from the Open3D library, the code was

written to determine the axis-aligned coordinates. The AABB method creates a bounding

box that is aligned with the coordinate axes. It starts by finding the minimum and maximum

coordinates of the mesh vertices along each axis (x, y, z). These minimum and maximum

coordinates define the extents of the bounding box. Then it defines eight vertices of the

bounding cube using these minimum and maximum coordinates. The vertices represent the

corners of the bounding cube

Figure 4.4 illustrates an AABBs to the convex parts obtained from the decomposition

process. It has been observed that the AABB approach tends to perform better when the

number of final convexes is relatively small. To further enhance the results, various greedy ap-

proaches were explored to merge different Axis-Aligned Boxes. Additionally, postprocessing

techniques were applied, which occasionally led to improvements in the AbsRel, particularly

in cases with a limited number of boxes.
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4.4.3 Non-Axis Aligned Bounding Box

Alternatively, Non-Axis Aligned Bounding Boxes (NAABBs) were applied to each convex

part, offering a tighter and more customized fit than AABBs. This configuration was es-

pecially useful for parts with complex geometries, as the bounding box could adapt to the

part’s orientation and shape, potentially reducing the empty space within the bounding box

and increasing the precision of spatial queries and collision detection.

Figure 4.5: This figure shows the use of Non-Axis-Aligned Bounding Box on the decompo-
sition from COACD as shown in fig 4.2, in order to compare it with the baseline. As you
can see in this image, it works better than AABB 4.4, in terms of number of primitives
while maintaining AbsRel, but still generates a lot of small parallelepipeds to maintain the
AbsRel, increasing the count of simple primitives, unlike what we wanted to get the convex
decomposition with the least number of Parallelepipeds.

An example of NAABBs is shown in figure 4.5. It works better than AABB in terms of

overall AbsRel. The NAABBs method creates a bounding box that is oriented based on

the principal axes of the mesh. We implement the code, it begins by calculating the center

of the mesh vertices. Then, it centers the vertices by subtracting the center coordinates

from each vertex. This step translates the mesh to the origin. Next, the covariance matrix

of the centered vertices is computed. The covariance matrix provides information about

the spread and orientation of the vertices. Eigenvalues and eigenvectors of the covariance

matrix are calculated. The eigenvectors represent the principal axes of the mesh, and the

eigenvalues indicate the variance along each axis. The eigenvectors are sorted based on the
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eigenvalues to align the bounding box with the principal axes. The mesh is then rotated to

align with the eigenvectors using a rotation matrix. The minimum and maximum points of

the aligned vertices are calculated to determine the extents of the oriented bounding box

(OBB). Eight corners of the OBB are computed in the aligned coordinates. These corners

are then transformed back to the original coordinate system.

4.4.4 With Parallelepiped Bounding

In some cases, parallelepiped bounding was applied to certain convex parts, providing a

three-dimensional bounding geometry that could be oriented in any direction. This flexibility

allowed for an even closer fit to the convex parts than NAABBs, which could be particularly

advantageous for optimizing spatial efficiency and collision detection accuracy in densely

populated 3D environments.

We implements the Parallelepiped method to find the minimum bounding box of a set

of 3D points. The code takes the convex hull points and an angle increment as input

and iteratively rotates the point set around the x-axis and z-axis using the specified angle

increment. At each rotation, a rotation matrix is constructed, and the convex hull points

are transformed by applying the rotation matrix. The minimum and maximum values of the

rotated points along each axis (x, y, z) are calculated to determine the width, height, and

depth of the bounding box. The volume of the bounding box is computed as the product

of these dimensions and stored for each rotation. After exploring all possible rotations,

the code reconstructs the rotation matrix associated with the minimum bounding box and

projects the convex hull points onto the rotated frame. The center point and corner points

of the bounding box are calculated based on the minimum and maximum coordinates of the

projected points. Finally, it returns the optimal rotation angles, and the projected corners.

4.4.5 Original Convex Decomposition

For comparison purposes, the convex primitives were left in their original state after de-

composition, without any further bounding or smoothing. This approach served as a control

to assess the impact and necessity of additional post-processing steps on the utility and

performance of the convex parts in practical applications.

Appendix A.3 shows that after obtaining convex primitives from COACD, a post-processing

step converts them into parallelepipeds for comparison with the baseline model’s output. The

last column denotes different configurations tested on the same hyperparameter, to assess

which one works the best. Although this combination doesn’t outperform the baseline yet,
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it suggests using COACD primitives as a summary input to the baseline could improve its

AbsRel metric.

4.5 ENHANCING THE BASELINE WITH GEOMETRIC SUMMARY

From the last section, we have fixed COACD as the method for summary estimation. This

section will compare the baseline with the summary-infused baseline on different types of

summaries.

Figure 4.6 illustrates the architecture of how the summary is passed through the encoder-

decoder network. The output of COACD is stacked with the output of the decoder and then

passed to the encoder. This allows the network to incorporate the geometric information

from the COACD (summary) into the learning process.

Input

Point Cloud

COACD
Extracting 14

primitves

Text

summary

Figure 4.6: Architecture of passing the COACD summary through the encoder-decoder
network. The output of COACD is stacked with the output of the decoder and then passed
to the encoder, allowing the network to incorporate the geometric information from the
summary.

In the following subsections, we will explore various approaches that can lead to different

summaries being passed to the network. These approaches aim to provide the network with

additional geometric information to enhance its performance in convex decomposition tasks.

4.5.1 Using the means of each convex from COACD as summary

We saw that the convex decomposition from COACD will give somewhat exact locations

of different objects, using the center of this convex we pass this to the network as an addi-

tion input stacked with the encoder output to the decoder of the architecture. Figure 4.7

represents how it looks like after final convex decomposition.

18



Figure 4.7: This figure shows the final convex decomposition after using the mean coordinates
of each convex primitive from COACD as summary to the baseline network. The image shows
the input RBG image (1) and the predicted convex components (11), where the centroids of
the convex components are used as summary, and might be aligned with the mean locations
obtained from COACD predicted from the network

4.5.2 Using the median of each convex from COACD as summary

Similar to using the means of the convex primitives from COACD, we can utilize the

medians of these convex components as summary for the baseline model. The convex de-

composition from COACD provides approximate locations of different objects in the scene.

By calculating the median point of each convex, we can pass these median coordinates as

additional input to the network, stacked with the encoder output before feeding into the de-

coder of the baseline architecture. Figure 4.8 illustrates how the final convex decomposition

looks after incorporating the medians of the convex components as summary.

This approach, using the medians instead of the means, could potentially provide a dif-

ferent perspective or representation of the convex components’ locations, which yield some

improvements when compared to the mean, leading to a 0.0057 reduction in AbsRel (from

0.1144 to 0.1087) and a 0.0231 reduction in RMSE (from 0.5334 to 0.5103) when evaluated on

a subset of test images, as shown in Table 4.1 that shows the AbsRel and RMSE of a subset

of test images to compare these three different approaches. The integration of the summary

to the baseline does not improve the AbsRel by much, but in some cases, it improves a lot.
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Figure 4.8: This figure shows the final convex decomposition after using the median coordi-
nates of each convex primitive from COACD as summary to the baseline network. Compared
to using the mean coordinates as summary, the median approach better captures the repre-
sentative location of each convex component.

Model AbsRel RMSE
Baseline 0.0634 0.3020
Baseline with COACD Mean 0.1144 0.5334
Baseline with COACD Median 0.1087 0.5103

Table 4.1: Comparison of models based on AbsRel and RMSE metrics. Note that this
comparison of models is on a subset of the test data for computational efficiency.

4.5.3 Using PointNet as summary

PointNet is a proven neural network architecture [44], designed to process point cloud

directly, making it highly versatile and applicable to various tasks involving 3D point clouds.

In our approach, we use the capabilities of PointNet by extracting the global features from

the input point cloud, as shown in Figure 4.9 from the PointNet paper [4]. These global

features effectively encode the geometric information and shape characteristics of the point

cloud.

a) Directly using PointNet network’s global features as summary

Initially, we passed 32 output features from PointNet to the decoder without training this

with the baseline. On the test set, we saw an AbsRel of 0.101 and RMSE of 0.475.

b) Integrating PointNet Architecture to the network decoder, with end-to-end Training
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Figure 4.9: The architecture of PointNet, illustrating the process of global feature extraction
from point clouds. This figure is taken from [4].

Figure 4.10: This figure shows the use of pre-trained PointNet network’s 32 global output
features as summary to the baseline model’s decoder, without any training of the PointNet
architecture. This approach achieved an AbsRel of 0.101 and an RMSE of 0.475 on the
test set, indicating that while the PointNet features provide some useful information, their
performance is limited without being fine-tuned jointly with the baseline model.
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Subsequently, we enabled end-to-end training with the defined loss, maintaining the 32

output features. This approach slightly improved performance, yielding an AbsRel of 0.100

and an RMSE of 0.467. This can be seen in the following figure 4.11

Figure 4.11: This figure shows the integration of the PointNet architecture into the base-
line model’s decoder and enabling end-to-end training with the defined loss function, while
maintaining the 32 output features from PointNet. This approach slightly improved the
performance, yielding an AbsRel of 0.100 and an RMSE of 0.467. The end-to-end training
allowed the PointNet features to be fine-tuned jointly with the baseline model, leading to
better performance compared to using the pre-trained PointNet features directly.

Expanding the output features from PointNet to 512 during end-to-end training led to a

decrease in performance, with an AbsRel of 0.125 and an RMSE of 0.579, as can be seen in

figure 4.12. This is due to the fact that the network is learning too many details neglecting

the superficial global features.

c) Integrating PointNet with end-to-end Training and different Normalization

Introducing normalization like batch normalization to the 32 output features network

during end-to-end training further improved the metrics, with an AbsRel of 0.095 and an

RMSE of 0.456, as shown in the following figure.

Comparing different PointNet experiments that we tried, table 4.2 below summarizes the

outcomes of all experiments, providing a clear comparison across different approaches. We

see that an end-to-end with 32 output features and batch normalization improves the network

for some specific cases where the depth is not too much.
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Figure 4.12: Visualization of the results obtained when expanding the output features from
PointNet to 512 during end-to-end training with the baseline model. This approach led to
a decrease in performance, with an AbsRel of 0.125 and an RMSE of 0.579. The increased
number of output features allowed the network to learn too many details, neglecting the
superficial global features, which negatively impacted the overall performance.

Experiment AbsRel RMSE

Non-Train with 32 Features 0.101 0.475
End-to-End with 32 Features 0.100 0.467
End-to-End with 32 and Batch Normalization 0.095 0.456
End-to-End with 512 Features 0.125 0.579
Forcing Zero Output 0.098 0.453
Baseline 0.093 0.452

Table 4.2: Summary of PointNet experiments. Note- These experiments are on the full test
dataset.
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Figure 4.13: Results of introducing normalization, specifically batch normalization, to the
32 output features from PointNet during end-to-end training with the baseline model. This
approach further improved the metrics, achieving an AbsRel of 0.095 and an RMSE of 0.456.
The normalization step helped to stabilize the training process and allowed the network to
better leverage the global features extracted by PointNet, leading to improved performance
compared to the previous experiments.

4.5.4 Using COACD median as summary and modified loss term

While using the COACD median as a summary input did not significantly improve the

model’s performance, we explored an alternative approach by incorporating the COACD

median into the loss function. Instead of directly passing the COACD median to the decoder,

we modified the loss term to account for the squared distance between the output convex

median and the COACD median.

Specifically, we added an additional term to the overall loss function, as shown in Equation

4.1:

Ltotal = Loriginal + λ6

K∑
i=1

|medianoutput
i −medianCOACD

i |2 (4.1)

By incorporating the COACD median information directly into the loss function, we aim

to encourage the model to generate convex components whose medians are closer to the

COACD medians. This approach leverages the summary knowledge from COACD without

explicitly providing it as just input to the decoder, potentially allowing for more effective

24



integration and utilization of this information during the training process.

4.5.5 Fixing the convex centroid as COACD mean and using as summary to decoder
network

In this approach, we fixed the centroid of each convex component predicted by the network

to be the mean of the corresponding convex primitive obtained from COACD. We then used

these fixed centroids as summary, providing them as additional input to the decoder network

of the baseline model. By constraining the convex centroids to the COACD means, we aimed

to leverage the accurate location information from COACD, while allowing the network to

optimize the remaining parameters (e.g., dimensions, orientations) of the convex components

during training.

Figure 4.14 illustrates how the COACD means are used as fixed centroids for the network

to predict other parameters of the parallelepipeds. The big blobs represent the COACDmean

locations, which are used as the fixed centroid positions for each convex component. The

network is then responsible for predicting the remaining parameters, such as the dimensions

and orientations of the parallelepipeds, while keeping the centroids fixed at the COACD

mean locations. By incorporating this approach, we aim to take advantage of the accurate

location information provided by COACD, while still allowing the network to optimize the

other parameters of the convex components during the training process.

Table 4.3 shows the results introducing a loss term and fixing the center, on the whole 654

images of test set.

Experiment λ6 AbsRel RMSE

Centroid Loss

0.0001 0.1237 0.5792

0.00001 0.1652 0.6805

0.001 0.2119 0.8806

Fixed Centroid

0.0001 0.1988 0.7936

0.00001 0.1932 0.7805

0.000001 0.1927 0.7601

ICCV Baseline 0.093 0.452

Table 4.3: Results with different Centroid Experiments, on the whole 654 images of test set.
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Figure 4.14: This figure shows the use of COACD means as fixed centroids for the network
to predict other parameters of the parallelepipeds. The COACD means (big blobs) are used
as the fixed centroid locations for each convex component. The network is then tasked with
predicting the remaining parameters, such as the dimensions and orientations, while keeping
the centroids fixed at the COACD mean locations.

4.6 OUR APPROACH: ENS-CVXNET

We saw that different trials lead to different results, some better for some suited envi-

ronments. Building on the insights gained from the results of various convex decomposition

algorithms and the subsequent enhancements through geometric summary and global feature

integration, we propose an ensemble approach ENS-CVXNet as shown in figure 4.15.

Figure 4.16a and Figure 4.16b illustrate how ENS-CVXNet works for two different input

images. The ensemble generates various outputs from different models, and the one with the

best depth prediction is selected as the final output for each image. This selection process is

based on comparing the depth predictions of each model with the ground truth depth map,

using a reliable off-the-shelf depth predictor like MIDAS. In Figure 4.16a, the Baseline model

is selected as the best output for the given input image, while in Figure 4.16b, the PointNet

Summary (32 features and Batch Normalization) model is selected as the best output for a

different input image. This demonstrates the adaptability of the ENS-CVXNet approach, as

it can select different models based on their performance for each specific input image.

For the whole test set, ENS-CVXNet achieves an AbsRel of 0.0744, outperforming the

baseline, on 654 test images. By leveraging the strengths of various convex decomposition

techniques and selecting the best output based on depth accuracy, ENS-CVXNet improves
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Figure 4.15: This schematic representation illustrates the proposed ENS-CVXNet ensemble
approach for better convex decompistion. The input RGB image is processed by multiple
convex decomposition models, including the baseline, COACD with mean summary, COACD
with median summary, and PointNet, fixing the centers, and with varying configurations.
Each model generates a convex decomposition of the input image, which is then evaluated
against the ground truth depth map using an off-the-shelf depth predictor (e.g., MIDAS).
The model with the lowest AbsRel is selected as the best output for the given input image.
By integrating the best-performing methods from various convex decomposition techniques
and leveraging depth as a selection criterion, ENS-CVXNet aims to improve the precision
and quality of convex decomposition.
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ENS-CVXNet

The best among the set of output from different 
ensemble is chosen, comparing AbsRel of 

output depth, and GT depth

(a) Example 1: Baseline model selected as the best output

ENS-CVXNet

The best among the set of output from different 
ensemble is chosen, comparing AbsRel of 

output depth, and GT depth

(b) Example 2: PointNet Summary (32 features and Batch Normalization) selected.

Figure 4.16: Visualization of the ENS-CVXNet ensemble approach for two different input
images. The ensemble generates multiple convex decompositions using different models,
with varying configurations. The depth predictions of each model are compared against the
ground truth depth map using an off-the-shelf depth predictor (e.g., MIDAS). The model
with the lowest AbsRel is selected as the best output for the given input image.
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Figure 4.17: Bar graphs illustrating the number of times each model is selected by the ENS-
CVXNet ensemble approach on the test set. (a) shows the model selection count on a linear
scale, while (b) presents the same data on a logarithmic scale for better visualization of less
frequently selected models. Out of 50 different models, only 8 models are selected multiple
times, with some good models being chosen more frequently. However, a small number of
test images still benefit from the selection of different models, highlighting the importance
of the ensemble approach in adapting to various scene characteristics. It doesn’t hurt to
remove some models which have been used fewer times while ensembling.

the overall precision and quality of simple convex decomposition.

By using the ensemble approach and selecting the best output based on GT depth or

depth generated from MiDas, ENS-CVXNet achieves an impressive AbsRel of 0.074 on the

test images, without any additional polishing steps. This performance surpasses the baseline

model, as shown in Table 3.1, demonstrating the effectiveness of our proposed ensemble

method in improving the overall accuracy of 3D geometric reconstruction.

Figure 4.17 presents two bar graphs illustrating the number of times each model is selected

by the ENS-CVXNet ensemble approach on the full test set. The first graph (Figure 4.17a)

shows the model selection count on a linear scale, while the second graph (Figure 4.17b)

displays the same data on a logarithmic scale to better visualize the less frequently selected

models. Out of the 50 different models in the ensemble, only 8 models are selected multiple

times, with some good models being chosen more frequently. However, it is important to

note that a small number of test images still benefit from the selection of different models,

highlighting the importance of the ensemble approach in adapting to various scene character-

istics and improving the overall accuracy of convex decomposition. Finally, we discover that

the ensemble approach, which combines the strengths of various convex decomposition tech-

niques and leverages different summaries, works better than using any individual summary

in single model alone.
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To evaluate the effectiveness of the ensemble approach, we conducted experiments with

varying numbers of models included in the ensemble. Table 4.4 presents the AbsRel values

achieved when using different ensemble sizes, ranging from a single model (the baseline)

to an ensemble of 8 models. The results clearly demonstrate the benefits of the ensemble

strategy, as the AbsRel metric consistently improves with the inclusion of more models.

Number of Models AbsRel
1 0.093
2 0.088
3 0.084
4 0.080
5 0.077
6 0.075
7 0.074
8 0.074

Table 4.4: Impact of ensemble size on the AbsRel metric, demonstrating the consistent
improvement in performance as more models are included in the ensemble.

Figure 4.18 shows the outputs of the 6 top-performing models, along with the ground

truth, for 8 different input images. Each row corresponds to a single input image, with the

ground truth shown in the first column. The remaining columns display the outputs from

the 6 top models. The image with the highlighted blue border in each row represents the

best output among the 6 models, as selected by the ENS-CVXNet ensemble approach for

that particular input image.

This figure illustrates the diversity of outputs produced by the different models in the

ensemble, as well as the ability of the ENS-CVXNet approach to select the most accurate

convex decomposition for each input image, taking into account the strengths and weaknesses

of the individual models in different scenarios.
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Figure 4.18: Outputs of the 6 top-performing models, along with the ground truth, for 8
different input images. Each row corresponds to a single input image, with the ground truth
shown in the first column and the remaining columns displaying the outputs from the 6 top
models. The image with the highlighted blue border in each row represents the best output
among the 6 models, as selected by the ENS-CVXNet ensemble approach for that particular
input image.
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CHAPTER 5: CONCLUSION

In this work, we addressed the challenging task of generating accurate convex decompo-

sitions of indoor scenes from single RGB images. While current state-of-the-art methods

uses encoder-decoder neural networks to convert RGB images into a fixed number of sim-

ple primitives, they have limitations in capturing long-range dependencies and transferring

global information across diverse indoor environments.

To overcome these limitations, we proposed ENS-CVXNet, an ensemble approach that

leverages the strengths of various convex decomposition techniques and incorporates ad-

ditional geometric information as summaries. Our core analysis explored well-established

algorithms such as VHACD, COACD, CVXNet, and BSP-Net, as well as the integration of

global features extracted by PointNet from the input point cloud.

By combining multiple models trained with different summaries and configurations, ENS-

CVXNet selects the best-performing model for each input image based on its ability to

generate accurate depth predictions, evaluated against ground truth depth maps or predic-

tions from state-of-the-art depth predictors. Extensive experiments and evaluations on the

NYUv2 dataset demonstrated the effectiveness of our approach, with ENS-CVXNet achiev-

ing a 20% decrease in AbsRel from 0.093 to 0.0744, outperforming the baseline method.

The ensemble approach effectively combines the strengths of various models, leveraging

geometric summaries and adapting to diverse scene characteristics, thereby improving the

overall precision and quality of convex decomposition for indoor scenes. Moreover, the

ability to select the most accurate convex decomposition for each input image based on

depth predictions allows ENS-CVXNet to tailor its output to the specific characteristics of

the scene, further enhancing its performance.

Looking ahead, further research could explore the integration of additional geometric cues,

such as segmentation information, to further refine the convex decomposition process.
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APPENDIX A: EXPERIMENTAL RESULTS FOR CONVEX
DECOMPOSITION ALGORITHMS

Table A.1: Trying on different COACD Parameters
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Res. Depth Concavity Plane Ds. α β γ δ Mode Max Vert. Absrel Used Parts

100000 20 0.0025 4 0.05 0.05 0.01 0.05 0 16 0.1498 11.925
100000 20 0.0025 8 0.05 0.05 0.01 0.05 0 64 0.1550 11.933
100000 20 0.1 4 0.05 0.05 0.01 0.05 0 64 0.1917 6.375
100000 20 0.0025 4 0.75 0.05 0.01 0.05 0 64 0.1553 11.941
100000 20 0.0025 4 0.05 0.75 0.01 0.05 0 64 0.1550 12.475
100000 8 0.0025 4 0.05 0.05 0.01 0.05 0 64 0.1548 11.95
100000 20 0.0025 4 0.05 0.05 0.01 0.05 0 64 0.1549 11.925
100000 20 0.0025 4 0.05 0.05 0.01 0.05 0 128 0.1549 11.925
100000 20 0.005 4 0.05 0.05 0.01 0.05 0 64 0.1554 11.933
100000 20 0.0025 2 0.05 0.05 0.01 0.05 0 64 0.1548 11.917
100000 12 0.0025 4 0.05 0.05 0.01 0.05 0 64 0.1549 11.925
100000 20 0.0025 4 0.05 0.05 0.01 0.05 0 256 0.1549 11.925
100000 20 0.01 4 0.05 0.05 0.01 0.05 0 64 0.1562 11.692
100000 20 0.0025 4 0.01 0.05 0.01 0.05 0 64 0.1545 11.983
100000 20 0.0025 4 0.25 0.05 0.01 0.05 0 64 0.1553 11.817
100000 2 0.0025 4 0.05 0.05 0.01 0.05 0 64 0.2223 3.95
100000 20 0.0025 4 0.05 0.99 0.01 0.05 0 64 0.1570 12.167
100000 20 0.0025 4 0.1 0.05 0.01 0.05 0 64 0.1548 11.908
100000 20 0.0025 4 0.05 0.25 0.01 0.05 0 64 0.1535 12.067
100000 20 0.05 4 0.05 0.05 0.01 0.05 0 64 0.1673 9.633
100000 20 0.0025 4 0.99 0.05 0.01 0.05 0 64 0.1546 11.875
100000 4 0.0025 4 0.05 0.05 0.01 0.05 0 64 0.1647 9.883
100000 20 0.0025 4 0.05 0.05 0.01 0.05 0 8 0.2363 11.925
100000 20 0.0025 12 0.05 0.05 0.01 0.05 0 64 0.1565 11.8
100000 20 0.0025 4 0.05 0.1 0.01 0.05 0 64 0.1547 11.942
10000 20 0.0025 4 0.05 0.05 0.01 0.05 0 64 0.1694 11.075
100000 24 0.0025 4 0.05 0.05 0.01 0.05 0 64 0.1549 11.925
100000 20 0.0025 4 0.05 0.01 0.01 0.05 0 64 0.1549 11.833
100000 32 0.0025 4 0.05 0.05 0.01 0.05 0 64 0.1549 11.925
100000 20 0.0025 4 0.05 0.05 0.01 0.05 0 1024 0.1549 11.925
100000 20 0.5 4 0.05 0.05 0.01 0.05 0 64 0.2841 2.083
100000 20 0.0025 16 0.05 0.05 0.01 0.05 0 64 0.1565 11.825
100000 20 0.0025 4 0.05 0.05 0.01 0.05 1 64 0.1623 12.716
1000000 20 0.0025 4 0.05 0.05 0.01 0.05 0 64 0.1181 14.617
100000 20 0.0001 4 0.05 0.25 0.01 0.05 0 64 0.1535 12.092
100000 20 0.0005 4 0.05 0.25 0.01 0.05 0 64 0.1534 12.1
100000 20 0 4 0.05 0.25 0.01 0.05 0 64 0.1535 12.092
100000 20 0.0002 4 0.05 0.25 0.01 0.05 0 64 0.1534 12.133
1000000 20 0.0025 4 0.05 0.25 0.01 0.05 0 64 0.1198 14.383
10000000 20 0.0025 4 0.05 0.25 0.01 0.05 0 64 0.1123 14.875
16000000 20 0.0025 4 0.05 0.25 0.01 0.05 0 64 0.1116 14.833
10000000 20 0.0025 4 0.05 0.25 0.04 0.05 0 64 0.1645 5.483
10000000 20 0.0025 4 0.05 0.25 0.02 0.05 0 64 0.1340 9.067
10000000 20 0.0025 4 0.05 0.25 0.1 0.05 0 64 0.2180 2.817
10000000 20 0.0025 4 0.05 0.25 0.02 0.05 0 1024 0.1341 9.067
10000000 20 0.0025 4 0.05 0.25 0.02 0.05 0 8 0.2830 9.067
10000000 20 0.0025 4 0 0.25 0.02 0.05 0 64 0.1346 9.008
10000000 20 0.0025 4 0.05 0 0.02 0.05 0 64 0.1308 9.292
10000000 20 0.0025 4 0.05 0.1 0.02 0.05 0 64 0.1330 9.208
10000000 20 0.0025 4 0.8 0.25 0.02 0.05 0 64 0.1332 9.058
10000000 20 0.0025 4 1 0.25 0.02 0.05 0 64 0.1333 9.083
10000000 20 0.0025 4 0.6 0.25 0.02 0.05 0 64 0.1325 9.225
10000000 20 0.0025 4 0.9 0.25 0.02 0.05 0 64 0.1329 9.233

Table A.2: Trying on different VHACD Parameters
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Resolution Depth Concavity Plane Ds. α β γ δ Mode Max Vert. Absrel Used Parts Algorithm

1000000 20 0.0025 4 0.05 0.25 0.0015 0.05 0 64 0.0884 49.53 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0015 0.05 0 64 0.1705 49.53 1 Axis Aligned
1000000 20 0.0025 4 0.05 0.25 0.0027 0.05 0 64 0.1883 34.63 1 Parallelepiped
1000000 20 0.0025 4 0.05 0.25 0.0028 0.05 0 64 0.1894 33.86 1 Parallelepiped
1000000 20 0.0025 4 0.05 0.25 0.0014 0.05 0 64 0.0878 51.43 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0025 0.05 0 64 0.1852 36.43 1 Parallelepiped
1000000 20 0.0025 4 0.05 0.25 0.0011 0.05 0 64 0.0854 58.92 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0028 0.05 0 64 0.0955 33.86 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0016 0.05 0 64 0.0889 47.65 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0025 0.05 0 64 0.0939 36.43 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0016 0.05 0 64 0.1723 47.65 1 Parallelepiped
1000000 20 0.0025 4 0.05 0.25 0.0011 0.05 0 64 0.1619 58.92 1 Parallelepiped
1000000 20 0.0025 4 0.05 0.25 0.0027 0.05 0 64 0.0950 34.63 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0014 0.05 0 64 0.1689 51.43 1 Parallelepiped
1000000 20 0.0025 4 0.05 0.25 0.0025 0.05 0 64 0.1626 36.43 2 Parallelepiped
1000000 20 0.0025 4 0.05 0.25 0.0037 0.05 0 64 0.0998 28.18 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0038 0.05 0 64 0.1002 27.72 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0041 0.05 0 64 0.1015 26.28 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0040 0.05 0 64 0.1011 26.76 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0033 0.05 0 64 0.0981 30.32 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0032 0.05 0 64 0.0978 30.85 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0030 0.05 0 64 0.0968 32.23 0 Original
1000000 20 0.0025 4 0.05 0.25 0.0035 0.05 0 64 0.0991 29.09 0 Original

Table A.3: COACD with Axis Aligned and Parallelepiped
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