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Abstract

Representation learning models employing Siamese structures have consistently demonstrated excep-

tional performance across various fields, including deep learning, computer vision, and natural language

processing. Furthermore, the applicability of representation learning has broadened to encompass wider

domains such as agriculture, remote sensing, and earth observation, which are significantly challenged by

data scarcity. This dissertation aims to enhance the quality and adaptability of learned representations

across these diverse application domains. Meanwhile, we have also expanded the scope of our research to a

broader area of intelligent agricultural systems.

Initially, we delve into contrastive representation learning within the general computer vision domain

and introduce a novel “Hallucinator” module to reduce mutual information, increase the batch size of

positive pairs, and improve representation quality. Subsequently, we extend the representation framework

to agriculture and remote sensing, proposing spatial-temporal-aware architectures tailored to the unique

characteristics of remote sensing data. Furthermore, we introduce the Extended Agriculture Vision dataset

to address data scarcity issues and showcase the effectiveness of proposed representation frameworks.

Furthermore, we demonstrate that the learned representations are powerful features for few-shot tasks

in remote sensing and earth observation. We introduce GenCo, a generator-based representation learning
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framework that simultaneously pre-trains backbones and explores variants of feature samples. During

fine-tuning, the auxiliary generator enriches the limited labeled data samples in the feature space. We

validate the effectiveness of our method in enhancing few-shot learning performance on the Agriculture-

Vision and EuroSAT datasets. Notably, our few-shot approach surpasses purely supervised training in both

classification and semantic segmentation tasks trained over ten thousand images in the Agriculture-Vision

Dataset.

Lastly, we propose an intelligent nitrogen (N) management system utilizing deep reinforcement learning

(RL) in conjunction with crop simulations through the Decision Support System for Agrotechnology

Transfer (DSSAT). Initially, we framed the N management issue as an RL problem. Subsequently, we train

management policies using deep Q-network and soft actor-critic algorithms, along with the Gym-DSSAT

interface. This interface facilitates daily interactions between the simulated crop environment and RL

agents. According to our experiments with maize crops in both Iowa and Florida, USA, the RL-trained

policies surpass previous empirical methods.
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Chapter 1

Introduction

In the recent computer vision community, there has been rapid progress in self-supervised learning (SSL),

gradually closing the performance gap with supervised learning [1]–[5]. Among the diverse approaches

of SSL, contrastive learning methods, such as MoCoV1&V2 [2], [6], SimCLR [3], and SimSiam [7], show

promising results. Generally, contrastive learning treats each image as one class which will be augmented

into two separate views. These two views form one positive pair and should ideally be close if mapped to

feature space. With sufficient contrast in the feature space, contrastive learning models show a strong

capacity to learn transformation-invariant features that are transferable to various downstream tasks, such

as classification, object detection, and segmentation [8]–[10].

To ensure sufficient contrast, researchers from previous work address the issue from two essential

practices, either introducing large amounts of positive pairs or adding additional variants&transformation

among them. For example, SimCLR uses a batch size that generates thousands of positives to facilitate

the convergence of models [3]. Other research reduces mutual information of positive pairs using stronger

data augmentation, i.e., color distortion and jigsaw transformation [5], [11]. Likewise, the work from [12]
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One Similar Pair 

Similar Pairs 

Figure 1.1: The motivation of the proposed hallucination methods. Given one pair of images with the same
semantic meaning, such as a pair of horses, a person can envision further similar pairs by imagining one of
the horses in different poses and surroundings. If a contrastive learning model could do such hallucination,
it could have additional novel pairs to contrast given the same data. Note that this hallucination process
is for illustration only. In the implementation, all the hallucinated samples are computed in the feature
space.

introduces ContrastiveCrop, and the work from [13] proposes Un-Mix, respectively, to reduce the similar

semantic meaning of sample pairs in the original image space. Beyond the data augmentation and image

operations, researchers from [14] propose to apply a linear operation to generate hard positive samples in

feature space.

Despite the success of prior approaches, we argue that large batch sizes are not always achievable.

Meanwhile, all proposed techniques only focus on improving the original pairs. Given one positive pair

of positive samples, humans are born with the amazing ability to come up with additional positives by

imagining a sample from different surroundings and perspectives without much effort, as demonstrated in

Figure 1.1. This process of self-imagination, in turn, will benefit the human neurological system, improving

recognition capacity [15]. Similarly, if we could empower contrastive learning models with the ability
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to hallucinate or imagine an object to a novel view, additional positive pairs could be provided for the

learning tasks.

Unfortunately, exploring feasible methods to hallucinate novel positive pairs is challenging. Firstly,

while generative models produce realistic images that could form additional positive views [16]–[19], realistic

data do not necessarily benefit learning tasks [20]. More importantly, applying these approaches forces us to

fall back into a computational dilemma to the previous method. In other words, image-level hallucination

still suffers from expensive computation as we still need to encode the hallucinated images into feature

space. Lastly, if the generated positive pairs are similar to each other, training a discriminative model

would be too trivial, thus showing poor generalization capacity [5], [12], [14].

Therefore, the key insight of the dissertation is that the sample-generation process should aim for three

critical elements: (i) feature-space operation, (ii) sufficient variance of positive pairs, (iii) a differentiable

module optimized directly related to the learning task. To achieve this, we propose Hallucinator to improve

the performance of contrastive learning with Siamese structures. The Hallucinator is plugged in after the

encoder to manipulate feature vectors and improve the feature-level batch size for further contrast. To

ensure adequate variance is introduced, we propose an asymmetric feature extrapolation method inspired

by the work from [14]. More importantly, we present a non-linear hallucination process for the extrapolated

samples. Such a process is differentiable (i.e., learnable), therefore essentially boosting Hallucinator to

generate smooth and task-related features.

The proposed Hallucinator delivers extra positives and simultaneously enlarges the variance between

newly introduced pairs. Moreover, this approach only relies on positive samples. Therefore, it can be easily

applied to any Siamese structure by adding it after the encoders as a plug-and-play module. Without

the tedious exploration of hyper-parameters and much additional computation, we empirically prove the
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effectiveness of the proposed Hallucinator on popular contrastive learning models, including MoCoV1&V2,

SimCLR and SimSiam. We notice a stable improvement ranging from 0.3% to 3.0% under the linear

classification protocol, crossing the CIFAR10&100, Tiny ImageNet, STL-10 and ImageNet. We also observe

that models trained with Hallucinator show better transferability in downstream tasks like object detection

and segmentation.

In light of the success of representation learning in computer vision for addressing the need for large

labeled datasets, another key insight of this dissertation lies in expanding its power in broader application

domains, including agriculture and remote sensing.

While massive annotated datasets like ImageNet have fostered the development of powerful and robust

deep-learning models for natural images [21]–[25], creating large, complex datasets is costly, time-consuming,

and may be infeasible in domains like remote sensing and agriculture. To be more specific, obtaining

large quantities of accurate annotations is especially challenging for remote sensing tasks, particularly for

agriculture, as objects of interest tend to be very small, high in number (perhaps thousands per image),

possess complex organic boundaries, and may require channels beyond red-green-blue (RGB) to identify.

Approaches developed initially for natural images may work well on remote sensing imagery with only

minimal modification. However, this is not guaranteed due to the large domain gap. Additionally, initial

methods may fail to exploit the unique structure of earth observation data, such as geographic consistency

or seasonality [26]. Explicitly benchmarking approaches on domain-relevant data is critical.

In this dissertation, we focus on the Agriculture-Vision (AV) dataset [27]: a large, multi-spectral, high-

resolution (10 cm/pixel), labeled remote sensing dataset for semantic segmentation. Unlike low-resolution

public satellite data, this imagery enables within-field identification of key agronomic patterns such as

weeds and nutrient deficiency.
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While this dataset is noted for its size, most aerial agriculture datasets are quite small. Therefore, we

leverage the large amounts of un-annotated data which is readily available in this domain, benchmark

several representation learning approaches whose inductive bias reflects the structure of this data, and

evaluate the impact of these approaches in more data-limited settings.

Meanwhile, inspired by human’s highly efficient learning ability, research around learning from unlabeled

data, i.e. unsupervised or self-supervised learning [28], and the ability to generalize from only a few

examples, i.e. few-shot learning, have become key areas of interest in the machine learning community [29]–

[35]. Few-shot learning aims to realize the knowledge adaptation of embeddings from label-abundant data

to label-scarce classes. While the adapted representation aims to discriminate different levels of information

(e.g., instance level and semantic level) between classes, the embedding should be invariant to common,

irrelevant variations of the image, including different sizes, deformations, and lighting. The question is

then: How can we learn a representation invariant to common factors while maintaining differences for

diverse classes with limited labels in the Remote sensing (RS) and earth observation (EO) domain?

As raw RS-EO data is highly abundant, but ground-truth data is extremely scarce, leveraging contrastive

methods for few-shot learning offers a key opportunity in this domain. Additionally, most common

contrastive learning and few-shot methods were developed for natural scene imagery; e.g., [1]–[3], [36] show

that as the statistics of that domain (both source imagery and targets) are extremely different from RS-EO

data, there is no guarantee that the same benefit will be observed without adaptation. Therefore, we

investigate the improvement in the performance of few-shot learning in RS-EO classification and semantic

segmentation tasks using contrastive-learning-based pre-training.

Specifically, we focus on pre-training from the Extended Agriculture Vision dataset (AV+) [37], which

includes high-resolution aerial imagery over agricultural lands in the US Midwest. Obtaining ground-truth
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annotations for agriculture is particularly challenging due to patterns of interest being small in size, high

in number, and often possessing ambiguous boundaries; the ability to identify patterns from only a small

number of samples addresses key challenges in precision agriculture and food security.

Drawing inspiration from the work of [32], [38], [39], we have adopted a two-stage training approach that

involves contrastive-learning-based pre-training followed by fine-tuning. Specifically, we have developed a

contrastive learning framework, GenCo, with an auxiliary generator trained. During the pre-training, the

generator is tasked with exploring variants of encoded features and formulating additional positive pairs.

During the fine-tuning stage, we fixed the parameters of the encoders and trained only the classification

layer and decoder for classification and segmentation, respectively. Notably, only a limited number of

labeled data samples are provided during the fine-tuning stage. To address this, we introduced the generator

from the contrastive learning model to create further samples in feature space and enrich knowledge during

the few-shot tasks.

We find that the embeddings pre-trained from AV+ under this protocol show better adaptability

when compared to counterparts pre-trained on ImageNet [40] and COCO [10]. Our method outperforms

pre-trained ImageNet weights by 1 to 6 points on Agriculture-Vision and EuroSAT classification tasks

under the same number of supervised training samples. Similarly, our embeddings deliver a 5 to 7-point

improvement on mIoU compared with embeddings learned from COCO on the Agriculture-Vision semantic

segmentation task.

Meanwhile, we demonstrate the high learning efficiency of the proposed method for RS-EO imagery.

With a few labeled images, we find that the GenCo shows comparable or even better results under different

tasks and datasets when compared with supervised models trained on fully labeled data samples; our

proposed approach shows matching performance with less than 0.01 percent of labeled data.
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This dissertation also extends into practical applications in a vital field, i.e., agriculture management.

It highlights the pressing challenges in the agricultural industry, notably the need to meet the increasing

food demand for a growing global population projected to exceed nine billion by 2050. These challenges

are exacerbated by limited land and water resources, soil degradation, and climate change. Among various

factors, N management emerges as a crucial aspect, significantly impacting crop production and the

environment. Nitrogen, vital for crop growth and yield, can have adverse environmental effects when used

excessively. Consequently, effective N management is critical for optimizing crop yields, increasing farmer

income, and minimizing environmental harm. However, there’s uncertainty about the optimality of existing

N management practices among farmers, especially under adverse seasonal conditions. N management

is essentially a sequential decision-making problem, requiring precise decisions on nitrogen application

throughout the crop growth cycle.

In response to these agricultural challenges, the dissertation proposes an innovative framework for

optimizing N management using deep RL and crop simulations. This approach leverages the DSSAT

for crop modeling and the Gym-DSSAT interface, allowing for detailed simulation and interaction with

RL agents. By training N management policies using DQN and soft SAC for maize crops in Iowa and

Florida, the framework demonstrates significant advancements over standard practices. This approach

represents a major step forward compared to earlier RL-based crop management research, offering a more

comprehensive and scalable solution with larger state and action spaces. Unlike previous studies, the

widely-used DSSAT model underpins this research, enhancing its global applicability. The study also

includes an extensive experimental analysis covering multiple deep RL algorithms, geographic locations,

and scenarios such as partial observations and reduced action frequencies, showcasing its robustness and

comprehensive nature in addressing modern agricultural challenges.
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Continuing, we introduce an intelligent crop management framework utilizing deep RL and DSSAT

for crop simulations using more recent techniques. This approach is novel in its use of LMs to transform

simulation data into descriptive sentences, enhancing the RL agent’s understanding of complex crop

dynamics. The effectiveness of this LM-based approach is demonstrated in case studies on maize crops in

Florida and Zaragoza. The LM-based RL agents outperform traditional methods, offering improvements

in crop yield, resource utilization, and environmental impact. This pioneering research paves the way for

more advanced, sustainable agricultural practices and contributes significantly to addressing global food

security challenges.

1.1 Dissertation Outline

This dissertation has six chapters for which a brief overview is given below:

• Chapter 2 explores the nature of representation learning. The research seeks to pinpoint the

crucial factors underpinning the success of various contrastive representation learning models. Our

objective is to utilize these identified factors to bolster the robustness and generalization capacity of

representations. Ideally, this enhancement should be achieved without adding extra computational

overhead and be applicable across a spectrum of contrastive learning models with the Siamese

structure.

• Chapter 3 focuses on the creation of remote sensing datasets for agriculture patterns as well as the

application of self-supervised benchmarking. These efforts on both fronts enable us to better detect

key agricultural patterns of interest across a field from aerial imagery so that farmers may be alerted

to problematic areas in a timely fashion to inform their management decisions. Meanwhile, the
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release of these datasets will support numerous avenues of research for computer vision in remote

sensing for agriculture.

• Chapter 4 addresses the challenge of limited labeled data in remote sensing and earth observation by

introducing GenCo, a generative-based contrastive learning framework tailored for few-shot learning

tasks. Focusing on RS-EO applications, the study overcomes the data scarcity issue through a

two-stage training process involving contrastive-learning-based pre-training, along with an auxiliary

generator. Ultimately, the pre-trained generator will enrich the information by fine-tuning it with

minimal labeled data.

• Chapter 5 ventures into the realm of agricultural challenges, specifically focusing on N management,

a critical aspect in meeting the growing global food demand amidst declining natural resources and

climate change. Addressing the uncertainty in existing N management practices, the study proposes

an innovative deep RL framework integrated with crop simulations. This approach, advancing over

traditional methods, involves training N management policies with deep RL algorithms for maize

crops in diverse locations like Iowa and Florida, offering a more scalable and comprehensive solution.

• Chapter 6 introduces an innovative crop management framework, employing deep RL alongside

the Decision Support System for DSSAT for crop simulations. Uniquely, it incorporates LMs to

transform crop and environmental data into descriptive narratives, significantly enhancing the RL

agent’s decision-making capabilities.

• Chapter 8 discusses the broader domain of related research, concludes the dissertation by offering

final remarks and delves into discussing potential future directions.
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1.2 Related Work

1.2.1 Contrastive Representation Learning

Unsupervised and self-supervised learning (SSL) methods have proven to be very successful for

pre-training deep neural networks [37], [41]–[46]. Recently, methods like MoCo [2], [6], SimCLR [3],

BYOL [1] and others such as [47]–[49] based on contrastive learning methods have achieved state-of-the-art

performance. These approaches seek to learn by encouraging the attraction of different views of the

same image (“positive pairs”) as distinguished from “negative pairs” from different images [50]. Several

approaches have sought to build on these base frameworks by making modifications that better incorporate

the invariant properties and structure of the input data or task output. Specifically pertinent to the

current work, [51] extended the SimCLR framework through the incorporation of a pixel-to-propagation

module and additional pixel-level losses to improve performance on downstream tasks requiring dense pixel

predictions.

1.2.2 Remote Sensing Datasets

Aerial images have been widely explored over the past few decades [10], [37], [52]–[55], but the datasets

for image segmentation typically focus on routine, ordinary objects or street scenes [21]. Many prominent

datasets including Inria Aerial Image [56], AV+[37], EuroSAT [57], and DeepGlobe Building [58] are built

on low-resolution satellite (e.g. Sentinel-1, Sentinel-2, MODIS, Landsat) and only have limited resolutions

that vary from 800 cm/pixel to 30 cm/pixel and can scale up to 5000×5000 pixels. Those datasets featuring

segmentation tend to explore land-cover classification or change detection [59], [60].

Pertaining to aerial agricultural imagery, datasets tend to be either low-resolution (>10 m/pixel)
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satellite [61], [62] or very high-resolution (<1 cm/pixel) imagery taken from UAV or on-board farming

equipment [63], [64]. The Agriculture-Vision dataset [27], [65] introduced a large, high-resolution (10

cm/pixel) dataset for segmentation, bridging these two alternate paradigms.

1.2.3 Hallucination

Hallucination is initially proposed to solve the scarcity of data in the classification task [66]. Then, this

idea is kept updated and applied in different areas [20], [67]–[73], such as object detection, aerial navigation,

skeleton-based action recognition, and face generation. While image-level hallucination benefits few-shot

recognition by synthesis of novel view [74] or introducing random noises [20], most of the work applies

hallucination in the feature space. The work from [66] generates novel class features by transforming shared

features in base classes. Authors of [69] build a hallucination framework in the region of interest feature

space object to enhance the object detection performance. More recent work shows that this hallucination

mechanism also benefits 3D human pose estimation by generating novel motion sequences [75]. While

hallucination is effective in different learning tasks, to the best of our knowledge, the performance and

application of hallucination in SSL are fully unexplored.

1.2.4 Feature-Level Augmentation

Hallucination relies on effective feature-level augmentation or manipulations. For instance, in [76],

a task-agnostic feature augmentation approach is proposed to enrich the training data with minimal

additional computation. The authors of [77] also explore similar ideas in the domain of few-shot learning.

Building upon this, the concept is adapted to sentence representation learning [78], [79] and few-shot

learning tasks in remote sensing [80]. More recently, [81] applied feature augmentation based on a
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meta-learning technique.

1.2.5 Few-Shot Learning

Among various methods to speed up training and enhance label efficiency, such as neural network

pruning [82]–[84], simulation-based training [85], [86], or few-shot learning. Few-shot learning is the most

promising one in various application domains like healthcare [87], [88], remote sensing [33], learning tasks

including classification [84], [89], object detection [39], semantic segmentation [90], and robot learning [91].

Generally, previous works can be roughly cast into three categories: metric-based, optimization-based, and

hallucination-based.

The key idea of metric-based approaches is to learn good embeddings with appropriate kernels. Previous

results from [92] propose applying a siamese neural network for few-shot classification. Following that,

[31] presents a Relation Network by replacing the L1 distance between features with a convolutional

neural network (CNN)-based classifier and updating the mean squared error (MSE) with cross-entropy;

the triplet loss is utilized to improve the model’s performance [93]. The results in [94] further add extra

self-supervised tasks to enhance generalization capacity.

Optimization-based methods aim to learn through gradient backpropagation. Representative works

include MAML [30], which realizes quick adaptation from good initialization, Reptile [95], which simplifies

the learning process of MAML, and MetaOptNet [96], which incorporates the support vector machine

(SVM) as a classifier.

Hallucination-based methods seek to learn generators to generate unseen samples. Works from [20],

[71], [97] show that such a strategy of hallucination improves the test results and enhances the generation

of models.
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Few-Shot learning for RS-EO has received increased attention in recent years, [33]. While much of

the work is focused on scene classification [34], [98]–[100], other recent approaches examine semantic

segmentation tasks [101]–[103].

1.2.6 Pairing Supervised and Self-Supervised Learning

Some methods utilize the SSL loss as supplemental losses during the supervised training process [104],

[105]. Often, additional efforts are needed to calibrate (i.e., re-weight) these losses when crossing different

domains [106]. More straightforward and effective methods come from supervised fine-tuning [107]. While

SSL encourages the learning of general-purpose features, the adaptation of features on the new task can

be realized with only a few labeled samples. Within RS-EO, very recent work has looked to combine SSL

and few-shot learning for scene classification [108] and segmentation [109].

1.2.7 LM for Decision-making

In recent years, there has been a surge in studies utilizing pre-trained LMs as decision-making agents.

These models’ remarkable capabilities have been harnessed across various domains, generating improved

control plans for diverse robots and agents [110]–[120]. Notably, researchers of [121] developed LM-based

agents for user interface (UI) interactions, while ReAct [122] integrated action decisions with natural

language reasoning, demonstrating promising results.

1.2.8 Reinforcement Learning in Agricultural Management

Reinforcement learning, as a sub-field of machine learning, aims to solve SDM problems by letting an

agent directly interact with the environment and learn from trial and error [123]. As a pioneering work,
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[124] proposed to use a simple RL method and crop simulations to optimize the management of wheat

crops in France. [125] studied the use of SARSA(λ), an on-policy RL method, and crop simulations to

optimize the irrigation for the maize crop in Texas, US. However, the state and action spaces in [124], [125]

were quite small due to the curse of dimensionality from which early RL methods suffered. For instance,

the state space in [125] has only one state, i.e., total soil water (TSW) level. In contrast, modern RL

methods, represented by deep RL, are able to handle extremely large state and action spaces due to the

use of DNNs and have achieved remarkable or superhuman performance on a variety of high-dimensional

problems such as gaming [126], [127], data center cooling [128], and robotic control [129]–[131].

Deep RL based on the proximal policy optimization (PPO) algorithm was used in [132] to optimize

the fertilizer management for the wheat crop. Additionally, [133] studied the use of PPO to optimize

the irrigation management for russet potatoes. However, the study is quite coarse and the results are

not promising. For instance, in terms of results, [133] included only a simple learning curve showing the

normalized reward, while the variables farmers mostly care such as yield and management cost were not

included. Additionally, the trained policy performed much worse than a simple policy which applies a

constant amount of water.

1.2.9 Crop Models

Crop models can simulate crop growth in response to soil, water, nutrient, and weather dynamics.

They are playing increasingly important roles in the development of sustainable agricultural management

because field and farm experiments require large amounts of resources and may still not provide sufficient

information in space and time to identify appropriate and effective management practices [134]. The

development of crop models dates back to 1950s. In the past seven decades, many crop models of
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varying complexities have been developed by different groups, which include Agricultural Production

Systems Simulator (APSIM), CERES (now contained in the DSSAT Suite of crop suite), CROPSYST,

EPIC, WOFOST, and COUP. See the survey paper [134] and a comparison of different crop models

for yield response prediction [135]. Among the existing crop models, the ones that are extensively used

globally are APSIM and DSSAT, which are still constantly evolving and currently open-source to facilitate

community-based development.

Most of the existing crop models need the management practices to be pre-specified before the start

of a simulation, while RL-based training of management policies requires the management practices to

be determined according to the soil, plan and weather conditions on a daily or weekly basis during the

simulation. In light of this, the authors of [132] developed the CropGym environment for training of N

management policies, which provides an interface to Open AI Gym [136], a widely used toolkit for RL

research, and enables an RL agent to interact with the crop environment weekly. However, CropGym is

based on the LINTUL-3 model [137] for the wheat crop, which has limited use. In a similar spirit, [133]

presented another crop environment with the Open AI Gym interface for the russet potato based on the

SIMPLE crop model [138], which, again, has limited use, potentially because the model is over-simplified.

Recently, a Gym-DSSAT environment for the maize crop, which is based on the widely used DSSAT suite

of crop models and provides a Gym interface, was developed [139] and enables an RL agent to interact

with the environment on a daily basis. However, there have been no results on the use of Gym-DSSAT for

training crop management policies up to now.
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Chapter 2

Improving the Performance of

Unsupervised Visual Representation

Learning

2.1 Research Overview

Contrastive learning models based on Siamese structure have demonstrated remarkable performance

in self-supervised learning. Such a success of contrastive learning relies on two conditions, a sufficient

number of positive pairs and adequate variations between them. If the conditions are not met, these

frameworks will lack semantic contrast and be fragile on overfitting. To address these two issues, we

propose Hallucinator that could efficiently generate additional positive samples for further contrast. The

Hallucinator is differentiable and creates new data in the feature space. Thus, it is optimized directly
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with the pre-training task and introduces nearly negligible computation. Moreover, we reduce the mutual

information of hallucinated pairs and smooth them through non-linear operations. This process helps avoid

over-confident contrastive learning models during the training and achieves more transformation-invariant

feature embeddings. Remarkably, we empirically prove that the proposed Hallucinator generalizes well to

various contrastive learning models, including MoCoV1&V2, SimCLR and SimSiam. Under the linear

classification protocol, a stable accuracy gain is achieved, ranging from 0.3% to 3.0% on CIFAR10&100,

Tiny ImageNet, STL-10 and ImageNet. The improvement is also observed in transferring pre-train encoders

to the downstream tasks, including object detection and segmentation.

2.2 Improved Representations

In this section, we first introduce the overall process of hallucination for contrastive representation

learning in Section 2.2.1. Secondly, we highlight the center cropping method we used, which is crucial to

effective hallucination or generation of new samples in Section 2.2.2. Then, we introduce the Hallucinator

incorporated into our contrastive models in Section 2.2.3. Finally, we visualize and discuss the critical

properties of the hallucination method from two perspectives in Section 2.2.4: the similarity of positive

samples and the uniformity of the feature distribution.

2.2.1 The Overall Pipeline

Taking MoCo [6] as an example, we illustrate how a Hallucinator can be plugged into a contrastive

learning model in Figure 2.1. Our architecture takes one image x as input. Then, the input x is augmented

into two views x1 and x2. Each view will be processed by an encoder consisting of a backbone (e.g., ResNet)

and a projector (e.g., an MLP head). After the encoders, output vectors q and k are obtained, forming one
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Figure 2.1: Illustration of contrastive learning (MoCoV2 [6]) with Hallucinator. The Hallucinator is added
after the backbones and projector for feature-level manipulation. While Hallucinator feeds original feature
vector q forward, it additionally provides hallucinated feature q̂ for further contrast.

positive pair (q, k). Then, this positive pair (q, k) is fed to a Hallucinator. Notably, Hallucinator is only

added to one branch of the framework to generate an additional positive feature q̂. Together with feature

vector k, q̂ and k form as an extra positive pair (q̂, k) during the training. Based on different contrastive

learning models, the loss functions keep intact, and the average loss of these two positive pairs is computed

for back-propagation. The same paradigm could be applied to SimCLR, SiamSiam and other contrastive

learning models. We illustrate further details about pipelines and loss functions of other models in this

dissertation in the Supplementary Material (Section 1.1).

2.2.2 Center Cropping

In contrastive learning, data augmentations aim to ensure the performance of pre-trained representations

invariant to nuisances. Among all these methods, random crop plays the most critical role in all the

contrastive learning models. Generally, views (cropped tiles) generated by random cropping are diversified,

successfully covering all the semantic information over the whole image. However, such a cropping method

is likely to generate false positive patches [12]. In other words, patches randomly cropped from the original

images do not necessarily share the overlapped pixels and sufficient common information. Therefore, these
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false positive pairs may be fooling models during training, causing representations to be sub-optimal.

Importantly, the issue will be exacerbated if we generate further hallucinated samples based on false

positive pairs, which misleads the overall training beyond the sweet spot.

To tackle this issue, we first apply center cropping Ccrop to the original image, getting a relatively

smaller image Îx,y. Then, random cropping Rcrop is applied to Îx,y. More specifically, the center cropping

can be formulated as

Îx,y = Ccrop(Ix,y, p), (2.1)

where Ix,y is the input image with (x, y) as the coordinate of the images’ center. After center cropping, we

keep the center of Îx,y unchanged. Meanwhile, with the original shape of Ix,y defined as (h,w), we define

the shape of cropped image Îx,y as (ĥ, ŵ). The p denotes a ratio of cropped length over the original length,

i.e., p = ŵ
w = ĥ

h . Unless otherwise mentioned, we set p = 0.5 for all experiments in this dissertation.

While center cropping effectively avoids false positive pairs, it reduces the operable region for random

cropping and generates positive views with a similar appearance. We, therefore, adopt center-suppressed

sampling [12] with a sampling method following a beta distribution β(α, α) (i.e., a U-shaped distribution).

Concretely, β(α, α) assigns a lower probability to the center of the Îx,y and gives greater probability to its

boundary, increasing the variance between views x1 and x2. Together, we summarize the process to obtain

these two views as

x1 = T (Rcrop(Îx,y|α)), s.t. α < 1

x2 = T (Rcrop(Ix,y|α)), s.t. α < 1, (2.2)

19



MLP

Asymmetric Extrapolation Hallucination

ෝ𝐪

𝐪′

𝒌

𝐪

ෝ𝐪

𝐪

Output

𝐪′

𝐪

Figure 2.2: The Hallucinator. Stage 1: The original feature vector q is extrapolated to the opposite
direction of feature vector k, forming q̂ in a linear way. Stage 2: A non-linear transformation to smooth
extrapolated features concatenated with q and q′. Stage 3: Output original q and hallucinated q̂.

where T denotes data augmentations, including color jittering, random grayscale, Gaussian blur and

horizontal flipping. Further, Rcrop(...|α) represents random cropping following the β(α, α) distribution,

and α is set to less than 1 to ensure an increasing sampling probability as the pixel’s coordinates go

beyond the center. A visualization of the center sampling method can be found in Supplementary Material

(Section 1.2).

2.2.3 Hallucinator

Asymmetric Feature Extrapolation. The first objective of this module is to introduce an additional

positive pair without introducing extra computations. Therefore, the feature-level operation is preferred

compared to image-level operations. To achieve this, Hallucinator is plugged in after the views x1 and x2

are encoded. As a result, the hallucinated (generated) feature is purely based on the two feature vectors q

and k.

Meanwhile, since harder positives improve pre-trained encoders’ generalization capacity [5], the hal-

lucinated features in positive pairs are favorable if they share less mutual information. Previous work
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illustrates that a symmetric positive extrapolation is effective in generating hard examples for MoCo [14].

Concretely, two positive features are combined with weighted addition, pushing positive features apart.

However, the hallucination process is asymmetric, i.e., Hallucinator is only added in one of the branches

of the model. Then, we propose to apply the singe-side feature extrapolation to the feature vector q,

as shown in the first stage of Figure 2.2. Additionally, we simplify the sampling strategy of weights for

extrapolation from a beta distribution to a uniform distribution. To be specific, we summarize the positive

extrapolation in our method as follows:

q′ = (1 + λ)q − λk s.t. λ ∼ U(β1, β2), (2.3)

where λ is sampled from a uniform distribution U(β1, β2). The parameters β1 and β2, which define the

boundary of the uniform distribution, are set to 0 and 0.1 by default.

Hallucination. Positive extrapolation is based on mixup [140], i.e., a linear transformation. While positive

extrapolation has been proven beneficial to generating hard examples, this linear feature transformation

might have a relatively limited capacity to synthesize new feature vectors. This assumption is based on the

more satisfactory performance of the non-linear mixup over the original one [141]. Similarly, if non-linearity

is introduced to the feature generation, the generated vector will benefit more from the training and boost

the performance of downstream tasks.

To empower our model with the capacity of non-linear fitting, we introduce the hallucination process.

Specifically, we first concatenate q′ from the equation 2.3 and the feature vector q together. Then, we

use the concatenated feature (q, q′) as an input of a non-linear transformation function Hθ(.) that can be

instantiated with n linear layers and a ReLU layer between two successive layers. When n = 0, Hθ(.) is a
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Figure 2.3: Similarity of positive pairs in training. Smaller values indicate less mutual information and
better representation [5], [12], [14]. As Hallucinator incorporates non-linearity extrapolation, it guarantees
smooth training and harder positive features.

non-parametric module, forming an identity function. Such a setting performance is relatively sub-optimal.

Empirically, we find that n = {2, 3} performs well as the hallucinator becomes non-linear and more

powerful. We set n = 3 by default as its results are slightly better. With the transformation function

Hθ(.), the hallucinated feature is defined as

q̂ = Hθ(q, q
′), (2.4)

where θ is the parameters of Hθ(.). Notably, Hθ(.) is differentiable, allowing us to back-propagate the

loss of contrastive learning. Therefore, we update not just the parameters of the encoders and projectors

but also the parameters θ of the hallucinator. The second stage of Figure 2.2 illustrates the proposed
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Figure 2.4: A measure of uniformity based on G2 potential. We plot 10,000 feature vectors with Gaussian
kernel density estimation (KDE) in R2. The left subplot illustrates the feature vectors from a uniform
distribution. The three feature distributions on the right in the first row visualize the features from MoCoV2
[6]. The other three feature distributions in the second row demonstrate MoCoV2 with Hallucinator.
Hallucinator benefits the uniformity with a smaller value of G2.

hallucination process. Following that, we take q and q̂ as the output of Hallucinator.

2.2.4 Discussion and Visualization

To better understand the behavior of Hallucinator, we discuss two critical properties that may contribute

to and explain its effectiveness. For visualization, we train MoCoV2 [6] with a standard ResNet-18 [22] on

Cifar-10 [142].

Similarity of Positive Pair. While hard positives share less mutual information, thus having a smaller

cosine similarity value, the performance of downstream tasks will be enhanced [14]. Based on Figure 2.3,

the proposed Hallucinator generates harder positives with smaller values of similarity. Consequently, it

helps contrastive learning models obtain more nuisances-invariant features. More importantly, different

from linear symmetric extrapolation, our training curve is relatively stable without many oscillations

introduced. This observation indicates that Hallucinator is successfully optimized with the overall

framework. Meanwhile, hallucinated features nicely fit into the contrastive learning task.
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Uniformity. We continue to analyze the performance of the proposed model from the perspective of

uniformity. Notably, feature vectors from contrastive learning should be roughly uniformly distributed

on a unit hyper-sphere, which ensures maximal information is preserved in the feature space [143]. In

other words, the closer the feature distribution is to the uniform distribution, the more the feature benefits

downstream tasks. To quantize uniformity, we follow previous work [143] to compute the average value of

the Gaussian potential kernel (i.e., Radial Basis Function kernel) of positive features:

Gt(q, k) ≜ e−t∥q−k∥2
2 s.t. t > 0, (2.5)

where t is a fixed parameter set as 2 for all the experiments. We visualize the feature vectors by mapping

them to two-dimension feature space and applying l2 normalization in Figure 2.4. G2 = 0.2070 for uniformly

distributed samples, whereas features from MoCoV2 have G2 = 0.2089. If we plugin Hallucinator into

MoCo, Hallucinator provides further contrast during the training with extra positives introduced, giving

more uniformly distributed features and a decreased G2 value, i.e., 0.2081. Additionally, we visualize

the features of two classes of Cifar-10. Each of these features is well-clustered. With better uniformity,

clusters’ overlapping decreases, forming more linearly separable features. Therefore, we could observe

that the overlapping of feature clusters between class 1 and class 6 in MoCo is larger than the one with

Hallucinator plugged in.
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Dataset CIFAR-10 CIFAR-100 Tiny ImageNet STL-10

Hallucinator ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

MoCoV1 88.31 88.94 60.94 61.81 44.65 45.53 88.19 90.09
MoCoV2 87.21 89.23 59.70 61.26 47.12 47.95 89.32 90.46
SimCLR 89.66 90.11 60.94 61.43 45.22 46.30 89.07 89.98
SimSiam 90.47 90.78 63.39 64.38 43.66 44.96 87.79 88.16

Table 2.1: Linear classification results for different contrastive methods and datasets in small scales.

Method Backbone Epoch IN-200 IN-1K

MoCoV1 ResNet-50 100 62.19 57.27
MoCoV1(Ours) ResNet-50 100 63.46 59.17
MoCoV2 ResNet-50 100 62.57 64.41
MoCoV2(Ours) ResNet-50 100 63.58 64.97
SimCLR ResNet-50 100 62.22 61.23
SimCLR(Ours) ResNet-50 100 63.02 61.71
SimSiam ResNet-50 100 62.80 63.11
SimSiam(Ours) ResNet-50 100 63.52 63.55

Table 2.2: Linear classification results on IN-200 and IN-1K.

2.3 Experiments and Results

2.3.1 Linear Classification Protocol

Following the previous protocol, we first evaluate the proposed method by linear classification of frozen

features. For each dataset, we report the top-1 classification accuracy on the validation set.

Results on Small-Scale Datasets. The classification results on Cifar10&100, Tiny ImageNet and

STL-10 are reported in Table 2.1. With Hallucinator introduced, we notice a stable improvement over the

baselines ranging from 0.31% to 1.98%. Notably, such improvements do not introduce extra computations

and generalize well to various models.

Results on ImageNet. For the results of ImageNet, we report the results at two different scales. First,

we evaluate its performance on standard IN-1K (i.e. ImageNet-1K), which consists of 1000 classes. Second,

we test the proposed method in IN-200 (i.e. ImageNet-200) with 200 randomly selected classes. We report
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Acc.(%)
Center

Cropping
Asymmetric
Extrapolation

Hallucination

62.57 ✗ ✗ ✗
63.58(+1.01) ✓ ✓ ✓

62.58(+0.01) ✓
62.82(+0.25) ✓
62.84(+0.27) ✓
63.07(+0.50) ✓ ✓

Table 2.3: Ablation of the different modules in the proposed method.

the corresponding results in Table 2.2. We found that Hallucinator essentially benefits MoCoV1 with

1.27% and 1.89% improvements for IN-200 and IN-1K accordingly. For MoCoV2, SimSiam and SimCLR,

we notice a gain in accuracy ranging from 0.44% to 1.01%. On average, the gains are more salient in

IN-200.

2.3.2 Ablation Studies: Contributions of Modules

We report the results with or without crucial modules introduced in Section 2.2. According to Table 2.3,

center cropping shows a similar performance to the original cropping method, successfully covering major

semantic information of images. However, it successfully avoids false positives in pre-training, which is

critical for hallucination. Asymmetric extrapolation benefits the performance of representation learning

with reduced mutual information. This observation is consistent with the results shown in the symmetric

extrapolation [14]. If we combine asymmetric extrapolation and the hallucination method, the performance

of the model could be further boosted. However, it is still sub-optimal because of possible false positives in

cropping.
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Method 1N-1k VOC detection COCO detection COCO instance segmentation
Top-1 AP AP50 AP75 AP bb AP bb

50 AP bb
75 APmk APmk

50 APmk
75

Random init - 33.8 60.2 57.27 26.4 44.0 27.8 29.3 46.9 30.8
Supervised 76.1 53.5 81.3 58.8 38.2 58.2 41.2 33.3 54.7 35.2
InfoMin [5] 70.1 57.6 82.7 64.6 39.0 58.5 42.0 34.1 55.2 36.3

MoCoV1 [2] 60.6 55.9 81.5 62.6 38.5 58.3 41.6 33.6 54.8 35.6
MoCoV1(Ours) 63.8 56.7 81.8 63.2 38.9 58.5 41.9 33.8 55.2 36.0

MoCoV2 [6] 67.5 57.0 82.4 63.6 39.0 58.6 41.9 34.2 55.4 36.2
MoCoV2(Ours) 68.0 57.4 82.7 63.9 39.3 58.8 42.3 34.6 55.5 36.4

Table 2.4: Fine-tuning results on object detection tasks on PASCAL VOC and COCO, and instance
segmentation on COCO. All models are pre-trained for 200 epochs on ImageNet-1K.

2.3.3 Transferring Features

The primary goal of representation is to learn transferrable features. We evaluate the transferability of

features from the proposed method following the previous protocol [2], [3], [6], [7]. Then, we compare the

representation quality by transferring them to downstream tasks, including VOC [8] object detection and

COCO [10] object detection and instance segmentation. Notably, we re-implement all these experiments

using the same settings in MoCo’s detectron2 codebase [144].

Object Detection on PASCAL VOC. Following the paradigm of previous work [2], we use Faster

R-CNN[145] as the object detection method using R50-C4 as the detector [9]. We train the model

end-to-end on the trainval2007+2012 and evaluate its performance on test2007. As shown in Table 2.4,

we observe a stable gain range from 0.3 to 0.8 under different metrics on MoCoV1 and MoCoV2.

Object Detection and Instance Segmentation on COCO. We continue to report the detection and

segmentation results on COCO using Mask R-CNN [9]. Similarly, we use the R50-C4 as the backbone.

The model is trained in an end-to-end way on train2017. Then, the model is evaluated on val2017.

Again, the proposed method benefits the object detection and segmentation tasks with various metrics as

demonstrated in Table 2.4.
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Chapter 3

Extended Agriculture-Vision: An

Extension of a Large Aerial Image

Dataset for Agricultural Pattern

Analysis

3.1 Research Overview

A key challenge for much of the machine learning work on remote sensing and earth observation

data is the difficulty in acquiring large amounts of accurately labeled data. This is particularly true for

semantic segmentation tasks, which are much less common in the remote sensing domain because of the

28



incredible difficulty in collecting precise, accurate, pixel-level annotations at scale. Recent efforts have

addressed these challenges both through the creation of supervised datasets as well as the application

of self-supervised methods. We continue these efforts on both fronts. First, we generate and release

an improved version of the Agriculture-Vision dataset [27] to include raw, full-field imagery for greater

experimental flexibility. Second, we extend this dataset with the release of 3600 large, high-resolution

(10cm/pixel), full-field, red-green-blue and near-infrared images for pre-training. Third, we incorporate

the Pixel-to-Propagation Module [51] originally built on the SimCLR framework into the framework of

MoCo-V2 [6]. Finally, we demonstrate the usefulness of this data by benchmarking different contrastive

learning approaches on both downstream classifications and semantic segmentation tasks. We explore

both CNN and Swin Transformer [146] architectures within different frameworks based on MoCo-V2.

Together, these approaches enable us to better detect key agricultural patterns of interest across a field

from aerial imagery so that farmers may be alerted to problematic areas in a timely fashion to inform

their management decisions. Furthermore, the release of these datasets will support numerous avenues of

research for computer vision in remote sensing for agriculture.

3.2 Datasets Analysis and Generation

3.2.1 Agriculture-Vision Dataset

The original AV dataset [27] consists of 94,986 labeled high-resolution (10-20 cm/pixel) RGB and

near-infrared (NIR) aerial imagery of farmland. Special cameras were mounted to fixed-wing aircraft and

flown over the Midwestern United States during the 2017-2019 growing seasons, capturing predominantly

corn and soybean fields. After annotation, 512× 512 tiles were extracted from the full-field images and
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Figure 3.1: Left: Full-field imagery (RGB-only) constructed from the AV dataset. A field of this size is
approximately 15,000×15,000 pixels which can yield many smaller tiles. Right: Sample imagery and labels
for the fine-grained segmentation task.

then pre-processed and scaled. While this pre-processing produces a uniformly curated dataset, it naturally

discards important information about the original data.

To overcome this limitation, we obtained the original raw, full-field imagery. We are releasing this

raw data as full-field images without any tiling, as it has been demonstrated to be beneficial to model

performance [65]. A sample image is shown in Figure 3.1 (left). The original dataset can be recreated from

this new dataset by extracting the tiles at the appropriate pixel coordinates provided in the data manifest.

Raw Data for Pre-training

We identified 1200 fields from the 2019-2020 growing seasons collected in the same manner as in

Section 3.2.1. For each field, we selected three images, referred to as flights, taken at different times in the

growing season, resulting in 3600 raw images available for pre-training. We elect to include data from

2020 even though it is not a part of the original supervised dataset because it is of high quality, similar in

distribution to 2019, and we wish to encourage exploration around incorporating different source domains

into modeling approaches as this is a very central problem to remote sensing data. We denote this raw

imagery plus the original supervised dataset (in full-field format) as the “Extended Agriculture-Vision

Dataset” (AV+). Now, it is publicly available. The statistics of AV+ compared with AV are demonstrated
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in Table 3.1.

One characteristic of remote sensing is data revisiting: capturing images from the same locations

multiple times. Through data revisiting, the temporal information can serve as an additional dimension of

variation beyond the spatial information alone. In AV+, a typical revisit time ranges from seven days to

six months, capturing a field at different points during the pre-planting, growing, and harvest seasons. We

provide an example of a revisit in Figure 3.3.

Table 3.1: Statistics of Agriculture Vision [27] and Extended Agriculture Vision (the part of raw imagery).
We provide information about the number of images, image size, pixel numbers, color channels and the
ground sample resolution (GSD). “cls.”, “seg.” and “SSL” stand for classification, segmentation and
self-supervised learning, respectively.

Dataset # of Images Tasks Image Size Channels Resolution (GSD) # of pixels

AV 94,986 Cls./Seg. 512 × 512 RGB, NIR 10/15/20 cm/px 22.6B
AV+ 3600 SSL 15,000 × 15,000 RGB, NIR 10/15/20 cm/px 810.0B

Fine-grained segmentation tasks for high-resolution remote sensing data, particularly for agriculture,

are often overlooked because of the difficulty in collecting sufficient amounts of annotated data [147], [148].

To explore the transferability of the AV+ dataset and SSL methods to a very challenging, data-limited,

in-domain (i.e., same sensor and geography) task, we construct a densely annotated dataset.

We collected 68 flights from the 2020 growing season that were not included in AV+ for this task.

From these flights, 184 tiles with shape 1500×1500 were selected and densely annotated with four classes:

soil, weeds, crops, and unmanaged area (e.g., roads, trees, waterways, buildings); an “ignore” label was

used to exclude pixels which may be unidentifiable due to image collection issues, shadows, or clouds.

The annotations in this dataset are much more fine-grained than those in the AV+ dataset. For example,

whereas the AV+ dataset identifies regions of high weed density as a “weed cluster”, this dataset identifies

each weed individually at the pixel level and also labels any crop or soil in those regions by their appropriate

class. A sample image and annotation are shown in Figure 3.1 (right).
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The fine-grained nature and small dataset size make this a very challenging segmentation task: very

young crops often look like weeds; weeds growing among mature crops are only detectable through an

interruption in the larger structure of the crop row; unmanaged areas often contain grasses and other

biomass which closely resemble weeds but are not of concern to the grower, and classes are highly

imbalanced.

3.3 Methodology for Benchmarks

In this section, we present multiple methods for pre-training a transferable representation on the AV+

dataset. These methods include MoCo-V2 [6], MoCo-V2 with a Pixel-to-Propagation Module (PPM) [51],

the multi-head Temporal Contrast based on SeCo [26], and a combined Temporal Contrast model with PPM.

We also explore different backbones based on ResNet [22] and the Swin Transformer architecture [146].

3.3.1 Momentum Contrast

MoCo-V2 is employed as the baseline module for the pre-training task. Unlike previous work focusing

only on RGB channels [2], [6], [26], we include the information and learn representations from RGB and

NIR channels. In each training step of MoCo, a given training example x is augmented into two separate

views, query xq and key xk. An online network and a momentum-updated offline network map these two

views into close embedding spaces q = fq(x
q) and k+ = fk(x

k) accordingly; the query q should be far from

the negative keys k−, coming from a random subset of data samples different from x. Therefore, MoCo

can be formulated as a form of dictionary lookup, in which k+ and k− are the positive and negative keys.

We define the instance-level loss Linst with temperature parameter τ for scaling [149] and optimize the

dictionary lookup with InfoNCE [150]:
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Linst = − log
exp(q · k+/τ)∑

k− exp(q · k−/τ) + exp(q · k+/τ)
. (3.1)

3.3.2 Momentum Contrast with Pixel-to-Propagation Module

Compared with classical datasets such as ImageNet [21], COCO [10], and LVIS [54] in the machine

learning community, low-level semantic information from AV+ is more abundant, with regions of interest

corresponding more closely to “patterns” (i.e. areas of weed clusters, nutrient deficiency, storm damage)

and less to individual instances. Therefore, pre-training MoCo-V2 beyond image-level contrast should be

beneficial to downstream pattern analysis tasks.

Pixel-to-Propagation Module. Researchers of [51] added a Pixel-Propagation-Module (PPM) to the

SimCLR framework and achieved outstanding results on dense downstream tasks. In PPM, the feature of

a pixel xi is smoothed to qsi by feature propagation with all pixels xî within the same image I following

the equation:

qsi =
∑
xj∈I

S(xi, xî) ·G(xî), (3.2)

where G(·) is a transformation function instantiated by linear and ReLU layers. S(·, ·) is a similarity

function defined as

S(xi, xî) = (max(cos(xi, xî), 0))
γ (3.3)

with a hyper-parameter γ to control the sharpness of the function.

Extend Pixel-to-Propagation Module to MoCo. Notably, previous work based on SimCLR requires
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a large batch size, which is not always achievable. To generalize the PPM and make the overall pre-training

model efficient, we incorporate the pixel-level pretext tasks into basic MoCo-V2 models to learn dense

feature representations. As demonstrated in Figure 3.2, we add two extra projectors for pixel-level pretask

compared with MoCo-V2. The features from the backbones are kept as feature maps instead of vectors

to ensure pixel-level contrast. To decide positive pairs of pixels for contrast, each feature map is first

warped to the original image space. Then the distances between the pixel i and pixel j from each of the

two feature maps are computed and normalized. Given a hyper-parameter τ (set as 0.7 by default), i and

j are recognized as one positive pair if their distance is less than τ . Then, we can compute the similarity

between two pixel-level feature vectors, i.e., smoothed qsi from PPM and kj from the feature map for each

positive pair of pixels i and j. Since two augmentation views both pass the two encoders, we use a loss in

a symmetric form following [51]:

LPixPro = −cos(qsi , kj)− cos(qsj , ki). (3.4)

During the training, the loss LPixPro from the PPM is integrated with the instance-level loss as shown

in the equation (3.5). These two complementary losses are balanced by a factor α, set to 0.4 in all the

experiments (see Supplemental: Additional Results - Balance Factor):

L = αLinst + LPixPro. (3.5)
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Figure 3.2: A. Diagram of MoCo-V2 with Pixel-to-Propagation Module (MoCo-PixPro). P includes a
normally updated projector and a momentum-updated projector. For pixel-level pre-task, P P1 is updated
by gradient descent and P P2 is the momentum projector. B. Diagram of Temporal Contrast with
Pixel-to-Propagation Module (TemCo-PixPro). Query view xq and key view xk0 contain both artificial
and temporal variance. Query view xq and key view xk1 contain only temporal variance. Query view
xq and key view xk2 only contain artificial variance. Identical cropping Tcrop is applied to xt1 and xt3 .
Pixel-level contrast in only computed on xq and xk2 . For these two sub-plots, modules in navy blue serve
as encoders for feature extraction. Modules in brown are designed for pixel contrast, which includes
projectors, pixel propagation modules and the loss being used. Pink modules represent instance-level
contrast with embeddings space invariant to all kinds of augmentations. Similarly, modules in green
and sky blue mean instance-level contrast but extract features invariant to artificial augmentation and
temporal augmentation, respectively.

3.3.3 Temporal Contrast

While a pixel-level pretext task learns representations useful for spatial inference, we would like to

learn a representation that takes advantage of the temporal information structure of AV+. Following

the work of SeCo [26], additional embedding sub-spaces that are invariant to time are created. Since the

backbones learn temporal-aware features through extra sub-spaces, it offers a more precise and general

pattern analysis in downstream tasks. More specifically, we define a positive temporal pair by obtaining

one pair of images from the same area (i.e., of the same field) but at different times, as shown in Figure 3.3.

We explore whether the structure provided by the temporal alignment of positive temporal pairs provides

more semantically significant content than naive artificial transformations (i.e., flipping, shifting) for

pre-training.
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Unlike in SeCo where images were separated with a constant time (3 months), the time difference

between images from our data varies from 1 week to 6 months. We adapt SeCo as follows. First, we

randomly select three tiles with 512× 512 from the same field at identical locations but different times,

which will be defined as xt1 , xt2 and xt3 . Only random cropping Tcrop is applied to the query image to

generate the query view, i.e., xq = Tcrop(x
t1). The first key view that contains both temporal and artificial

variance is defined as xk0 = T (xt1), where the T is the typical data augmentation pipeline used in MoCo.

The second key contains only temporal augmentation compared with the query view. Therefore, we apply

the exact same cropping window applied to the query image, xk1 = Tcrop(x
t2). The third key contains only

artificial augmentations, xk2=T (xt0). Following the MoCo and SeCo learning strategy [2], [26], these views

can be mapped into three sub-spaces that are invariant to temporal augmentation, artificial augmentation

and both variance. In this way, we fully explore the multi-time scale information in AV+ to improve the

temporal sensitivity of encoders further. Since the temporal contrast does not necessarily cross seasons

or enforce alignment of seasonality within a sub-space, we denote our approach as Temporal Contrast

(TemCo).

3.3.4 Temporal Contrast with Pixel-to-Propagation Module

We create an integrated model (TemCo-PixPro) to capture the dense, spatiotemporal structure of

AV+. Concretely, we merge PPM and TemCo into a single model to increase the encoders’ spatial and

temporal sensitivity.

To ensure efficient computation, we do not compute pixel-wise contrastive updates in each temporal

sub-space. Instead, we assign two extra projectors for pixel-level contrastive learning. We include the

PPM after the online backbone and one of the pixel-level projectors to smooth learned features. Then, we
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Figure 3.3: Visualization of temporal contrast in AV+.

calculate the similarity of the smooth feature vectors and the momentum encoder features through a dot

product. We illustrate the overall architecture of this model in Figure 3.2B.

3.4 Experimental Results

3.4.1 Downstream Classifications

Linear Probing. Following standard protocol, we freeze the pre-trained backbone network and train only

a linear head for the downstream task. We train the models for 50 epochs using Adam optimizer with an

initial learning rate of 0.0001 and report the top-1 classification validation set.

Figure 3.4 shows the impact of different weight initialization and percentages of labeled data in the

downstream task. Consistent with previous research [26], there is a gap between remote sensing and

natural image domains: ImageNet weights are not always an optimal choice in this domain.

MoCo-PixPro obtains the highest accuracy for the ResNet-18 backbone. As we compare the results of
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Figure 3.4: Accuracy under the linear probing protocol on AV+ classification. Results are shown from
different pre-training approaches with different backbones.
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Figure 3.5: Accuracy under the non-linear probing protocol on AV+ classification. Results are shown
from different pre-training approaches with different backbones, ResNet-18 (left), ResNet-50 (middle), and
Swin-T (right), under different percentages of labeled data for the downstream task.

ResNet50 and Swin-T with fully labeled data, all Swin-T models underperformed their CNN counterparts.

Non-Linear Probing. We evaluate the frozen representations with non-linear probing: a multi-layer

perceptron (MLP) head is trained as the classifier for 100 epochs with Adam optimization.

Classification results on AV+ classification under non-linear probing are shown in Figure 3.5. Consistent

with results in the natural image domain [151], non-linear probing results surpass linear probing. Our SSL

weights exceed ImageNet’s weights by over 5% regardless of the amount of downstream data or backbone

type. From the results of ResNet-18, the optimal accuracy between different pre-training strategies comes

from either MoCo-PixPro or TemCo-PixPro, which is different from linear probing. Overall, MoCo-PixPro

performs better than the basic MoCo model across different backbones.
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Figure 3.6: The accuracy under the end-to-end classification protocol on AV+. Results cover different
pre-training approaches and backbones, varying from ResNet-18 (left), ResNet-50 (middle), and Swin-T
(right). We also report the model’s performance, tuned with different percentages of the fully labeled
dataset, ranging from one percent to a hundred percent.

Fine-Tuning. Finally, we examine end-to-end fine-tuning with different percentages of labeled AV+ data

for classification. We use the same architecture, learning schedule and optimizer as non-linear probing.

Our SSL weights show outstanding results in the low-data regions (<10% of data). For ResNet-18,

MoCo-PixPro is better than the other models in all cases, whereas other SSL models demonstrate similar

performance to ImageNet when labeled data is abundant. As we increase the backbone size to ResNet-50,

our MoCo and MoCo-PixPro stably outperform ImageNet’s model across all amounts of data, suggesting a

greater capacity to learn domain-relevant features.

In Figure 3.6 (right), all models perform agreeably well in the Swin-T framework compared with

weights from ImageNet. While fine-tuning was performed in the same manner as the ResNet models for

fair comparisons, Swin-T shows the most promising performance in this end-to-end setting.

3.4.2 Semantic Segmentation on Extended Agriculture-Vision

As results are shown in Table 3.2, MoCo-PixPro performs the best for the ResNet-18 backbone when the

encoder remains fixed during supervised training; this result is similar to that seen for classification. This

result supports our hypothesis that AV+ has abundant low-level semantic information and including pixel-
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Table 3.2: Results of Downstream Segmentation Task on AV+ using mean-IoU metric

Pretrained Weights Backbone
mIoU (%)
Fixed
1%

mIoU (%)
Fixed
100%

mIoU (%)
Fine-Tuned

1%

mIoU (%)
Fine-Tuned

100%

Random ResNet-18 18.89 21.37 19.02 26.94
ImageNet ResNet-18 19.02 23.39 19.73 29.23
MoCo-V2 ResNet-18 22.36 27.83 22.53 31.80
MoCo-PixPro ResNet-18 23.71 30.60 20.04 30.56
TemCo ResNet-18 23.71 26.85 21.09 31.76
TemCo-PixPro ResNet-18 22.97 28.60 21.32 31.66
Random ResNet-50 19.42 21.82 18.71 26.37
ImageNet ResNet-50 21.21 25.94 20.31 30.52
MoCo-V2 ResNet-50 24.25 31.03 21.47 31.87
MoCo-PixPro ResNet-50 25.76 32.35 21.36 31.58
Random Swin-T 15.89 20.10 22.68 37.14
ImageNet Swin-T 20.00 22.40 30.96 43.01
MoCo-V2 Swin-T 25.51 30.60 28.12 41.02
MoCo-PixPro Swin-T 27.61 32.96 32.06 43.33

level pre-task is critical for downstream learning tasks. When the encoder is unfrozen during supervised

training, the basic MoCo-V2 shows the best results, but is not significantly better than TemCo or TemCo-

PixPro. By scaling from ResNet-18 to ResNet-50, MoCo-PixPro outperforms ImageNet, especially when

the encoder remains fixed. Importantly, unlike the ResNet-based models, the Swin Transformer-based

MoCo-PixPro shows the best results across all variations in the setting. Another important observation is

that the PPM benefits more as we scale up the models from ResNet-18 to ResNet-50 and then Swin-T. As

the training epochs are all the same for all the pre-training, smaller backbones like ResNet-18 are more

likely to get overfitted. When trained with ResNet-50, the performance drop of MoCo-PixPro is very small

compared with MoCo. As we move to Swin-T, MoCo-PixPro eventually shows the best performance over

other methods.

3.4.3 Comparison with Agriculture-Vision Results

The AV dataset was benchmarked on a downstream segmentation task with architectures based on

the DeepLabV3 [152] framework. Since the previous results report mean Intersecion-over-Union (mIoU)
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for 8 agricultural patterns, we re-trained our models using a U-Net architecture [153] including one more

pattern, i.e., the storm damage. With a lightweight U-Net, smaller backbone, and much less training, our

SwinT-based model outperforms the best results from [27] in the Table 3.3, demonstrating the effectiveness

of our approach. Additionally, we demonstrate the effectiveness of pre-training and fine-tuning this

multi-spectral data. AV and AV+ are beyond most conventional images, consisting of NIR-Red-Green-Blue

(NRGB) channels. Therefore, we investigate the differences in semantic segmentation performance from

multi-spectral images, including regular RGB and RGBN images. According to Table 3.3, NIR channels

benefit the segmentation results over different backbones and segmentation methods.

For this eight-class segmentation task, we train the nine-class models using an Adam optimization with

an initial learning rate of 0.01 and the one-cycle policy [154] for the learning rate adjustment. For fair

comparisons and to be consistent with the supervised learning settings in [27], we use a batch size of 40

and 25,000 iterations with warmup training for 1,000 iterations.

Table 3.3: Comparison of mIoUs between the Agriculture-Vision model and our proposed U-Net-based
model on Agriculture-Vision validation set.

Methods Pre-trained Weights Backbone Channels mIOU(%) # Parameters

FPN[27] ImageNet ResNet-101 RGB 40.48 45.10M
U-Net MoCo-V2 Swin-T RGB 44.77 32.40M
U-Net MoCo-PixPro Swin-T RGB 45.92 32.40M

FPN[27] ImageNet ResNet-101 RGBN 43.40 45.11M
U-Net MoCo-V2 Swin-T RGBN 46.15 32.40M
U-Net MoCo-PixPro Swin-T RGBN 48.75 32.40M

3.4.4 Fine-Grained Semantic Segmentation

Unlike AV+, this dataset is severely limited by the availability of fine-grained segmentation labels.

There are 184 tiles (from 68 flights) in this dataset that are split into training (70%), validation (15%),

and test (15%). Again, we use a U-Net architecture with a ResNet-18 encoder. For training, we use a
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Table 3.4: IoU for each model in the fine-grained semantic segmentation task considering different encoder
weight initialization, architectures, and weight fixing schemes.

Weights Architecture IoU (Fixed-Weights) IoU (Fine-Tuned)

Random ResNet-18 39.05 42.19
ImageNet ResNet-18 40.81 45.47
MoCo-V2 ResNet-18 44.05 43.97
MoCo-PixPro ResNet-18 42.03 44.62
TemCo ResNet-18 42.30 44.48
TemCo-PixPro ResNet-18 43.45 43.91
MoCo-V2 ResNet-50 40.03 40.54
MoCo-V2 Swin-T 40.25 40.00
MoCo-PixPro Swin-T 37.56 40.67
TemCo. Swin-T 39.52 40.26

Figure 3.7: A sample output on the fine-grained segmentation task using fixed-encoder weights from
ImageNet and MoCo-V2. The segmentation outputs are compared with both the original RGB image and
the segmentation labels.

multi-class focal loss [155] to account for the strong class imbalance.

Results are shown in Table 3.4, and sample output is shown in Figure 3.7. Results improve across the

board when both the encoder and decoder are fine-tuned. Although less dramatic than the results seen on

the AV+ classification and segmentation tasks, some improvement over ImageNet weights is seen using the

MoCo-v2 framework with ResNet-18 backbone for fixed weights. As seen on the other tasks, when the

entire network undergoes fine-tuning, the ImageNet and SSL weights, specifically MoCo-PixPro, produce

roughly the same performance on the downstream task. Additional per-class analysis is provided in the

Supplemental. The ResNet-50 and Swin-T models performed relatively worse compared to the ResNet-18

models, which is unsurprising given the extremely small size of this dataset.
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3.4.5 Land-Cover Classification on EuroSAT

We further prove that pretraining on the AV+ dataset benefits the downstream task in the broader

remote sensing community. We conduct downstream classification experiments on EuroSAT [57]. EuroSAT

addresses the classification challenge of land use and land cover with images from Sentinel-2. It consists of

27,000 labeled images and 10 classes over 34 European countries. We use the splits protocol of train/val

following the work of [156].

We freeze the pre-trained backbones and add a linear layer to evaluate the learned representation in

this classification task. The linear layer is tuned with 100 epochs using the Adam optimizer. The initial

learning rate is set to 0.001 and is divided by 10 at the 60th and 80th epochs.

The results shown in the Table 3.5 compare the weights pre-trained from AV+ against other baselines.

We notice that MoCo-V2 and our proposed MoCo-PixPro achieve 1.21% and 6.25% higher accuracy

compared with ImageNet’s weights accordingly. These results confirm not only the effectiveness of

pre-training on AV+ but also AV+’s significant potential to generalize to the broader remote sensing field.

Table 3.5: Accuracy of the EuroSAT land-cover classification task using ResNet-18

Weights Random ImageNet MoCo-V2 MoCo-PixPro

Accuracy (%) 63.21 86.32 87.53 89.97

3.4.6 Ablation Study: Number of Flights

We use a ResNet-18 backbone and basic MoCo-V2 for experiments. When the number of flights used

for SSL is increased from 300 to 3600, we observe stable improvement in the downstream classification

task under the non-linear probing setting; this gain is confirmed regardless of the fraction of the labeled

dataset for tuning (see ’Supplemental: Additional Results’ for more detailed exposition).
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Figure 3.8: Ablation study on the pre-training size of data on different pre-training methods on two
downstream tasks. Solid lines represent accuracy from 3600 flights while dashed lines represent accuracy
from 1200 flights. Left: results from non-linear probing on downstream classification. Right: fine-tuning
results on entire networks for downstream AV+ segmentation.

This improvement is seen for all examined SSL methods Figure 3.8 when the raw dataset is increased

from 1200 to 3600 flights and evaluated under non-linear probing for classification and full-network

fine-tuning for AV+ segmentation. Our SSL models’ performance steadily grows as raw data size increases,

suggesting that even more data may lead to even greater performance.
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Chapter 4

GenCo: An Auxiliary Generator from

Contrastive Learning for Enhanced

Few-Shot Learning in Remote Sensing

4.1 Research Overview

Classifying and segmenting patterns from a limited number of examples is a significant challenge in

remote sensing and earth observation due to the difficulty in acquiring accurately labeled data in large

quantities. Previous studies have shown that meta-learning, which involves episodic training on query and

support sets, is a promising approach. However, there has been little attention paid to direct fine-tuning

techniques. This dissertation repurposes contrastive learning as a pre-training method for few-shot learning

for classification and semantic segmentation tasks. Specifically, we introduce a generator-based contrastive
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learning framework (GenCo) that pre-trains backbones and simultaneously explores variants of feature

samples. In fine-tuning, the auxiliary generator can be used to enrich limited labeled data samples in feature

space. We demonstrate the effectiveness of our method in improving few-shot learning performance on two

key remote sensing datasets: Agriculture-Vision and EuroSAT. Empirically, our approach outperforms

purely supervised training on the nearly 95,000 images in Agriculture-Vision for both classification and

semantic segmentation tasks. Similarly, the proposed few-shot method achieves better results on the

land-cover classification task on EuroSAT compared to the results obtained from fully supervised model

training on the dataset.

4.2 Methodology

In this section, we first introduce the overall pipeline of pre-training and downstream few-shot learning

in Section 4.2.1. Following this, we describe the proposed GenCo in Section 4.2.2. Lastly, we demonstrate

how the generator from the contrastive learning model helps the downstream few-shot task by generating

extra samples in feature space 4.2.3.

4.2.1 The Pipeline of Learning

In the first stage, we pre-trained different backbones with contrastive learning models on unlabeled

data, as shown in Figure 4.1. To be more specific, there are roughly 1,300,000 images with shapes 512 ×

512. These images are all randomly cropped from the raw images from AV+. We use all these unlabeled

images as input to pre-train backbones without any supervision. After the pertaining, we move to the

second stage, which fine-tunes the pre-trained backbones for the downstream few-shot tasks. Since the

proposed contrastive learning is unsupervised, there is no information on any base classes, unlike the usual
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Figure 4.1: Illustration of the pre-training stage of GenCo. In the pre-training stage, we follow the training
strategy of contrastive learning to train the backbones and projectors jointly with abundant unlabeled
images. An additional feature vector q′ is added by passing the real feature vector q and a noise vector z
to the generator. The generator is trained end-to-end along with the contrastive learning framework.

settings for few-shot learning. Only k samples are provided for fine-tuning during the evaluation, where k

varies from 1-10. The evaluation will include both base and novel classes based on different downstream

tasks to optimize the classification accuracy or mIoU of agricultural patterns on Agriculture-Vision and

land covers on EuroSAT.

4.2.2 Pre-training with Generator-based Contrastive Learning

Basic Framework. The framework of GenCo is shown in Figure 4.1. Specifically, GenCo can be

trained with natural scene images that contain information about red, green, and blue channels similar to

previous papers [3], [6], [7]. However, AV+ has extra information in the NIR channel. To fully explore

knowledge from the pre-training dataset, we further add one channel to the backbones following the work

of from [37].

In every training iteration, a training sample x is augmented into two different views named query xq

and key xk. These views contain the same semantic meaning but also variations introduced from data

augmentations, including spatial and color transforms. With an online network and a momentum-updated

offline network proposed in [2], the training encourages these two views to be mapped into two similar
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embedding spaces, i.e., q, k, as a positive pair. For feature vectors that are not encoded from x, we define

them as k−.

Feature Generation. Sufficient positive pairs in feature space help the performance of contrastive

learning [3]. However, the large number of positive features relies on large batch sizes that may not always

be accessible. To address this, we design a generator G that takes the query feature q and random noise z

as input. Entries of z are assumed to follow a normal distribution with mean 0 and variance 0.1. We then

generate a new sample q′ in the feature space where q′ = G(q, z|θ). Notably, G is a lightweight module

with parameters θ. It is instantiated with three linear layers and a ReLU layer between two successive

layers.

With this simple design, we eventually obtain an additional positive pair p(q′, k). Along with the original

positive p(q, k) one, the framework provided enhanced contrast and improve the quality of embeddings

during the training with an additional little computation. Together, based on positive and negative pairs

and a temperature parameter τ for scaling, the training loss function, i.e., InfoNCE [150], is then defined

as follows:

L = − log
exp(q · k/τ) + exp(q′ · k/τ)∑

k− exp(q · k−/τ) + exp(q · k/τ) + exp(q′ · k/τ)
. (4.1)

4.2.3 Downstream Few-Shot Learning with Generator

Given the strong data augmentations in contrastive learning, the backbone features encoded can capture

the key representation features. It should adapt to different data classes and types of downstream tasks
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Figure 4.2: Illustration of the fine-tuning stage. In the fine-tuning stage with limited labeled images,
we adapt the pre-trained backbone from stage 1 for feature extraction. The generator is brought from
the GenCo to generate additional labeled data. During the tuning, the feature extractors are fixed, and
fine-tuning is only involved in the generator, classifier and segmentation decoder.

without much learning effort. Therefore, one of the critical steps of the proposed method is to separate

representation learning and downstream task learning into two stages.

With contrastive learning applied in the first stage, we freeze the encoder and fine-tune models with a

few labeled images. We first create a small balanced training set with K images per class, i.e., K shots.

These classes can either be seen or be novel classes. Then, each image is encoded into feature space,

forming a vector q with label y. While the traditional fine-tuning method applied the feature q directly

to downstream tasks, we take advantage of the generator G from the contrastive learning framework to

generate labeled samples following the equation q′ = G(q, z|θ), as shown in Figure 4.2. The q′ shares the

same label y with q, forming an extra label data (q′, y). In other words, we eventually obtained 2K labeled

data points given K images for each class, largely enriching the information for downstream learning tasks.

During the fine-tuning stage, the generator G is differentiable and optimized simultaneously with the

fine-tuning stage.

In the few-shot classification task, we add one fully connected layer to the backbones without introducing

extra non-linearity. We assign randomly initialized weights to the added classification layer. In the few-shot
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semantic segmentation task, we choose the lightweight segmentation model U-Net [153] for fine-tuning

given limited training samples. Concretely, we add a five-layer decoder based on the encoders pre-trained

from contrastive learning. In each layer of the decoder, it performs up-sampling by a 2×2 deconvolution

layer to recover the original image sizes. While the size of the feature images increases, the number of

channels reduces by half after each up-sampling. Empirically, this asymmetric encoder-decoder shows

exceptional performance in the segmentation task on Agriculture-Vision.

4.3 Experiments and Results

In this study, we conduct various experiments to prove the effectiveness of our proposed methods. In

Section 4.3.1, we introduce the used datasets in this dissertation. Then, we illustrate the evaluation

metrics in Section 4.3.2. In the following Section 4.3.3, we demonstrate the necessary details to reproduce

the experiments. Lastly, in Section 4.3.4, we report all the results based on the proposed metrics.

4.3.1 Datasets

Agriculture-Vision

Agriculture-Vision (AV) is a large aerial image database for agricultural pattern analysis. It contains

94,986 high-quality images over 3432 farmlands across the US. Totally, there are nine classes selected in

the dataset under the advisement of agronomists, which include double plant, dry-down, endrow, nutrient

deficiency, planter skip, storm damage, water, waterway, and weed cluster. With extreme label imbalance

across categories, it is a challenge to train well-performing models for classification and segmentation tasks

[157]. The original dataset is designed for semantic segmentation; we also create a ”classification” version

of the dataset by assigning a positive label if any presence of that class is included in the tile.
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Extended Agriculture-Vision

For contrastive pre-training, we use the large-scale remote-sensing dataset, Extended Agriculture-Vision

[37]. While the original Agriculture-Vision dataset contained only 512x512 tiles with semantic segmentation

labels for agricultural patterns such as waterways, weeds, nutrient deficiency, etc., AV+ includes several

thousand additional raw full-field images (upwards of 10,000 x 10,000 in dimension). Images consist of

RGB and Near-infrared (NIR) channels with resolutions as high as 10 cm per pixel. As it also covers

data that varies from 2017 to 2020, encoders pre-trained on this dataset should capture remote sensing,

agriculture, and temporal features. Therefore, the embeddings pre-trained on Extended Agriculture-Vision

should be adapted well to diverse downstream tasks such as agricultural pattern recognition and land-cover

classification.

EuroSAT

EuroSAT is a dataset for the classification task of land use and land cover. All the satellite images

are collected from Sentinel-2, covering 34 countries. There are 27,000 images in total, with ten types of

labels corresponding to different land use cases. The class labels are evenly distributed, with each category

consisting of 2,000 to 3,000 images. We use the split method for training and evaluation following the

work from [26], [37], [57]. While there is a total of 13 channels in total, in this work, we focus on the RGB

channels since it is a more general modality.

4.3.2 Experiment Setup and Evaluation Metrics

We evaluate the proposed method from two perspectives, i.e., the quality of embeddings and the

required amount of labeled data for model adaptation. First, in the few-shot classification task, we compare
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the performance of features from the backbone pre-trained on ImageNet, and the backbone pre-trained

on AV+ using contrastive learning models. Similarly, in the few-shot semantic segmentation task, our

embeddings pre-trained on AV+ and embeddings from COCO’s weights are compared [10]. Second, to

illustrate the learning efficiency of our method, we compare the two models’ performances, one of which is

fine-tuned on a few samples, and the other is trained in a supervised way with complete labeled data.

4.3.3 Implementations Details

Firstly, we introduce implementation details of the generator-based contrastive learning model to

pre-train backbones, as shown in the left part of Figure 4.1 in Section 4.3.3. Then, we demonstrate details

of few-shot experiments on classification and semantic segmentation tasks on Agriculture-Vision shown

in the right part of Figure 4.2 in Section 4.3.3. Following this, we list the key parameters for evaluation

in the few-shot semantic segmentation task in Section 4.3.3. Lastly, we report the necessary details for

EuroSAT in Section 4.3.3.

Pre-training on Extended Agriculture-Vision

GenCo uses different ResNet as its encoder and two layers of MLP as a projector as the basis for our

contrastive learning framework. The following generator G is instantiated with three linear layers and a

ReLU layer between two successive layers. The output feature vectors, i.e., q, q′, and k, have dimensions

of 128, and there are 16,384 negative keys stored in the memory bank. We pre-train the generator-based

contrastive learning model for 200 epochs using an SGD optimizer, a learning rate of 0.3, and a weight

decay of 0.0001. The learning rate is adjusted to 0.03 and 0.003 at the 140th and 160th epochs accordingly.

As this data is hyperspectral, we add one more channel to the encoder during the training for the NIR
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input, and this extra channel is initialized with the same weights as the red channel.

Besides the proposed GenCo, we also conduct experiments using MoCo-V2 [6], SimSiam [7] and

SimCLR [3] as alternative methods for pre-training. Results are also reported in the following sections.

For MoCo-V2, we train the model with the exact same hyperparameters as the proposed method, given

the similarity of the structure. For SimSiam, we train the models for 200 epochs with a batch size of

256. The learning rate = 0.05 with an SGD optimizer is used. The weight decay is 0.0001 and the SGD

momentum is 0.9. For pre-training of SimCLR, we reproduce SimCLR with a smaller batch size of 512

and cosine appealed learning rate of 0.05. We follow the self-supervised learning paradigm in [158] without

distillation for a fair comparison of the other two contrastive learning methods. All the experiments are

conducted on a server with 8 GPUs.

Few-Shot Classification on Agriculture-Vision

The first set of experiments focuses on the classification formulation of the Agriculture-Vision task. We

use ResNet-18, ResNet-50, and ResNet-101 as the backbones for fine-tuning. All backbones are fixed except

the last fully connected layer and the generator G, which are learnable. Different from the optimization

methods used in [2], we use Adam as an optimizer for all experiments with an initial learning rate set to

0.001. We train the classification models for 100 epochs with a batch size of 64.

Few-Shot Segmentation on Agriculture-Vision

Following the work from [27], we ignore storm damage annotations when performing evaluations due to

their extreme scarcity. Similar to the fine-tuning strategy we used in the classification task, we freeze all

backbones during training but with a learnable five-layer decoder. The decoders are randomly initialized

and attached to the encoders, forming a lightweight and imbalanced U-Net. We use the AdamW optimizer
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Table 4.1: Comparison of fine-tuning results between weights from supervised ImageNet and weights from
GenCo on AV+ for the 10-shot classification

Pre-trained Weight Backbone Accuracy(%)

Sup. on ImageNet ResNet-18 55.22 ±0.34
SimSiam on AV+ ResNet-18 63.12 ±0.71
SimCLR on AV+ ResNet-18 63.59 ±0.83
MoCoV2 on AV+ ResNet-18 64.17 ±0.62
GenCo on AV+ ResNet-18 65.51 ±0.68

ImageNet ResNet-50 56.53 ±0.43
SimSiam on AV+ ResNet-50 62.41 ±0.78
SimCLR on AV+ ResNet-50 63.55 ±0.77
MoCoV2 on AV+ ResNet-50 63.80 ±0.72
GenCo on AV+ ResNet-50 64.82 ±0.70

Sup. on ImageNet ResNet-101 54.34 ±0.45
SimSiam on AV+ ResNet-101 62.27 ±0.89
SimCLR on AV+ ResNet-101 63.50 ±0.80
MoCoV2 on AV+ ResNet-101 64.12 ±0.78
GenCo on AV+ ResNet-101 64.62 ±0.49

with the learning rate set to 6e-5 and the one learning rate cycle scheduler proposed by [159]. In total, we

train the segmentation models for 100 epochs with 300 steps per epoch. For all experiments, we use a

batch size of 64 during fine-tuning.

Few-Shot Classification on EuroSAT

We additionally illustrate that embeddings learned from GenCo on AV+ help few-shot learning tasks

in the more general remote sensing community. To achieve this, we evaluate our proposed method on the

few-shot classification task of EuroSAT [57]. Following experiments in previous sections, we evaluate the

quality and adaptability of pre-trained features from the proposed methods in this land-cover classification

task.

We add one fully connected layer to pre-trained backbones, building the classifier for EuroSAT. We

train the model for 100 epochs with an AdamW optimizer and a batch size of 256. The initial learning

rate is 0.001.
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Table 4.2: Comparison of the classification task between the 10-shot results of GenCo and end-to-end
training using the full Agriculture-Vision on ResNet-18.

Pre-trained
Weight

Freeze
Backbone

Number of
Images

Accuracy
(%)

Random False 9,000 57.30 ±0.81
Random False 94,986 62.31 ±0.25

GenCo on AV+ True 10 65.51±0.68

Table 4.3: 9-way few-shot classification accuracy on Agriculture-Vision based on weights pre-trained from
GenCo.

Backbone \ Shots
Accuracy
10 shots
(%)

Accuracy
5 shots
(%)

Accuracy
1 shot
(%)

ResNet-18 65.51 ±0.68 61.61 ±0.71 16.72 ±1.32
ResNet-50 64.82 ±0.70 59.44 ±0.79 29.64 ±1.28
ResNet-101 64.62 ±0.49 59.56±0.66 28.84 ±1.73

4.3.4 Results of Experiments

Few-shot Learning on Agriculture-Vision

Quality of Pre-Trained Embeddings. We first prove the quality and adaptability of pre-trained

embeddings from the proposed methods. As shown in Table 4.1, our pre-trained weights show significantly

better results than those from ImageNet, with over 10 points improvement on average. These results prove

the adaptability of embeddings encoded from our pre-trained weights and better generalization capacity

in this few-shot classification task for agricultural patterns. The best result is obtained from ResNet-18

instead of the larger ResNet-50 or ResNet-101. With only 10 shots, this observation is due to the last

layer attached to ResNet-18 being smaller than the fully connected layers in larger backbones. MoCoV2,

SimSiam and SimCLR show sub-optimal results compared with GenCo. However, with our two-stage

training strategy, all AV+ pre-trained weights enable better performance than any ImageNet weights.

Learning Efficiency. Next, we continue to demonstrate the learning efficiency of GenCo by comparing

it with the model trained with 94,986 labeled images. For models training in an end-to-end manner, there
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Table 4.4: Comparison of fine-tuning results between weights pre-trained on COCO and weights from
GenCo on AV+ for the 10-shot semantic segmentation task.

Pre-trained Weight Backbone mIoU - 8 Classes

COCO ResNet-18 15.61
GenCo on AV+ ResNet-18 23.56

COCO ResNet-50 15.60
GenCo on AV+ ResNet-50 23.00

COCO ResNet-101 15.19
GenCo on AV+ ResNet-101 21.04

Table 4.5: Comparison of the segmentation task between the 10-shot results of the proposed method and
end-to-end training using the full Agriculture-Vision on ResNet-18 and ResNet-50.

Pre-trained Weight Backbone Freeze Backbone Number of Images mIoU - 8 Classes

Random ResNet-18 False 9000 19.02
Random ResNet-18 False 94986 21.37

SimSiam on AV+ ResNet-18 True 10 21.30
SimCLR on AV+ ResNet-18 True 10 22.13
MoCo on AV+ ResNet-18 True 10 22.11
GenCo on AV+ ResNet-18 True 10 23.56

Random ResNet-50 False 9000 19.58
Random ResNet-50 False 94986 21.82

SimSiam on AV+ ResNet-50 True 10 21.06
SimCLR on AV+ ResNet-50 True 10 21.98
MoCo on AV+ ResNet-50 True 10 21.21
GenCo on AV+ ResNet-50 True 10 23.00
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Table 4.6: Ablation of the proposed generator with different contrastive learning frameworks.

Shots \ Modules
No Generator
(MoCo-V2)

Generator with
Pre-training

GenCo

10 shot 64.17 64.61 65.51
5 shot 59.32 59.91 61.61
1 shot 15.21 15.23 16.72

is a noticeable drop once we reduce the number of models for training. However, as shown in Table 4.2,

GenCo outperforms model training with numerous images with little computation and much fewer labels

for agricultural pattern classification. This observation is important as it illustrates the potential of training

diverse deep-learning tasks in agriculture and remote sensing with minimum effort but still providing

satisfactory results.

Table 4.3 demonstrates the 9-way few-shot classification results with different sizes of backbones. All

results are averaged from 3 trials and use the same training setup for a fair comparison. While ResNet-18

gives the best results when trained with five shots or ten shots, ResNet-50 shows the best results when

there is only one labeled sample for each class. The performance of ResNet-50 and ResNet-101 are very

similar. Generally, favorable results can be acquired when the number of shots is five or greater.

Ablation Study of Few-shot Classification

In this section, we aim to prove the effectiveness of the proposed generator G in the contrastive learning

framework. We conduct experiments on GenCo with ResNet-18 as the backbones for pre-training on AV+.

We then report the results of the downstream 10-shot classification tasks on the agriculture vision dataset.

We conducted a comparative analysis of three frameworks: MoCo-V2, MoCo-V2 with a generator, and

our proposed GenCo. Our experimental results, as summarized in Table 4.6, demonstrate that the use

of a generator improves the learned embeddings even when introduced solely during pre-training. This

improvement can be attributed to the additional variance and contrast introduced by the positive feature
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vectors. However, the performance gain achieved is relatively marginal. Notably, the largest gain occurs

when we adopt the pre-trained generator to few-shot learning, which provides additional labeled data in the

feature space. As such, the generator can enhance both pre-training and downstream tasks simultaneously,

thereby improving the overall performance of the framework.

Few-shot Segmentation on Agriculture-Vision

Quality of Pre-Trained Embeddings. Since U-Net’s structures contain skip connections from

different layers [153], we don’t evaluate a single embedding but features from different scales. Concretely,

features from GenCo and features from encoders pre-trained on COCO are compared using the mean

intersection over union (mIoU) metric. As reported in Table 4.4, our proposed method shows around 6-8

points of improvement compared with weights pre-trained on COCO. Consistent with the results from the

classification task, the best mIoU is reached by ResNet-18 with a smaller decoder attached. The other

conclusion we can draw is that the feature distribution pre-trained from natural images (COCO) and

remote sensing images (AV+) is significantly different. Therefore, we can observe a noticeable improvement

in the results pre-trained on AV+.

Learning Efficiency. We also examine the learning efficiency of the segmentation task. To do this,

we use only ten sampled images per category and compare the results of GenCo with those of models

trained on the full Agriculture-Vision dataset. While our approach fixes the backbone, we unfreeze the

segmentation model’s encoder and the generator training on the full dataset. Based on the results presented

in Table 4.5, we observe an improvement of 2.19 points and 1.18 points for ResNet-18 and ResNet-50,

respectively, using the GenCo approach. However, for MoVo-V2, SimSiam, and SimCLR, the results are

comparable or only slightly better than those obtained using the end-to-end training method. Importantly,
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while the GenCo-based few-shot segmentation approach still outperforms models trained with a large

number of labeled images, we note that the improvement is not as significant as the improvement achieved

in the classification task. This observation is likely because the decoders used for segmentation have more

parameters to be tuned than a single-layer classifier. With limited labeled samples, smaller models are

better able to avoid overfitting and show better results. Therefore, in this few-shot segmentation task,

ResNet-18 performs the most satisfactorily.

Few-shot Classification on EuroSAT

Quality of Pre-Trained Embeddings. Results show that GenCo still leads to better embeddings

on this remote sensing dataset. As seen in Table 4.7, features from GenCo improve 1% of accuracy on

average compared to the features trained from ImageNet. Since EuroSAT shares much less similarity with

our pre-trained dataset, i.e., AV+, the improvement is moderate. However, the gain is still stably earned,

crossing different sizes of backbones. The results from MoCo-V2, SimSiam and SimCLR still outperform

the results of ImageNet but are sub-optimal compared with results from GenCo, proving the effectiveness

of the proposed generator.

Learning Efficiency. In the experiments on label efficiency, we continue to compare the few-shot

classification models with those models randomly initialized and trained on 27,000 labeled images. The

proposed method outperforms the end-to-end model by 3.66 points in this classification task with only ten

labeled images, as shown in Table 4.8. This result is crucial as it proves the effectiveness of our methods in

different domains. With a remarkably cheap effort of labeling, it re-verifies the vast possibility of deploying

our models to various downstream tasks in agriculture and remote sensing.

We show the results of the 10-way few-shot classification on EuroSAT in the following Table 4.9.
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Table 4.7: Comparison of fine-tuning results between weights pre-trained on supervised ImageNet and
weights from our GenCo on EuroSAT for the 10-shot classification

Pre-trained Weight Backbone Accuracy(%)

ImageNet ResNet-18 66.90 ±0.11
SimSiam on AV+ ResNet-18 67.20 ±0.43
SimCLR on AV+ ResNet-18 67.31 ±0.51
MoCo on AV+ ResNet-18 67.14 ±0.32
GenCo on AV+ ResNet-18 67.92±0.31

ImageNet ResNet-50 65.01 ±0.14
SimSiam on AV+ ResNet-50 65.61 ±0.38
SimCLR on AV+ ResNet-50 65.93 ±0.62
MoCo on AV+ ResNet-50 65.58 ±0.40
GenCo on AV+ ResNet-50 66.11 ±0.45

ImageNet ResNet-101 63.34 ±0.20
SimSiam on AV+ ResNet-101 63.32 ±0.35
SimCLR on AV+ ResNet-101 64.17 ±0.68
MoCo on AV+ ResNet-101 63.79 ±0.45
GenCo on AV+ ResNet-101 64.79 ±0.46

Table 4.8: Comparison of the classification task between the 10-shot results of GenCo and end-to-end
training using the full EuroSAT on ResNet-18. *: results referred from [26]

Pre-trained
Weight

Freeze
Backbone

Number of
Images

Accuracy
(%)

Random False 2,700 58.81±0.10
Random False 27,000 63.21 *
Random False 27,000 63.34 ±0.08

GenCo on AV+ True 10 66.90 ±0.31

Table 4.9: 10-way few-shot classification accuracy on EuroSAT based on weights pre-trained from GenCo.

Backbone \ Shots
Accuracy
10 shots
(%)

Accuracy
5 shots
(%)

Accuracy
1 shot
(%)

ResNet-18 67.92±0.31 63.20±0.37 11.50±0.82
ResNet-50 65.01±0.45 59.40±0.51 11.21±1.42
ResNet-101 63.70±0.46 58.70 ±0.66 11.40±1.71
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For a complete and fair comparison, we report the performance of backbones with different sizes and

average results over experiments with three random seeds. More specifically, the ResNet-18 shows the most

satisfactory performance crossing various backbones and shots. While we can notice a 1 to 4 points drop

in accuracy when we increase the size of backbones under 10 or 5 shots settings, one-shot classification

shows very similar performance regardless of encoder sizes.
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Chapter 5

Optimizing Nitrogen Management

with Deep Reinforcement Learning

and Crop Simulations

5.1 Research Overview

The world urgently needs to move towards more sustainable and resilient cropping systems [160].

Among different factors influencing crop production and the environment, nitrogen (N) management is a

key controllable one. Nitrogen is the main nutrient affecting crop growth and yield formation, but excessive

nitrogen has substantial negative environmental effects [161]. Effective nitrogen management is therefore

crucial for maximizing crop yields and farmer income and minimizing negative environmental impacts.

Although best-practice knowledge for N management for common scenarios exists among farmers,
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Figure 5.1: A framework for optimizing N management with deep RL and DSSAT-based crop simulations

it is unclear whether these practices are near-optimal, or whether some specific strategies transfer well

to adverse seasonal conditions of extreme temperature or precipitation. N management is essentially a

sequential decision-making (SDM) problem, as a few decisions on nitrogen application time and quantities

need to be made across the growth cycle of crops.

Modern reinforcement learning (RL) methods, represented by deep RL, have achieved remarkable or

superhuman performance on a variety of tasks involving SDM such as gaming [126], [127], data center

cooling [128], and robotic control [129]–[131]. We expect that RL has a potential for optimizing agricultural

management, improving the crop yield while minimizing the environmental impacts. Training a deep RL

policy often needs numerous interactions between the RL agent and the environment, which makes it

unrealistic to leverage field trial-based approaches [162]. Therefore, training the management policies in

simulations [163]–[165], using crop models to simulate the crop and soil dynamics and interact with the

RL agent, seems like a realistic solution.

In this work, we propose and evaluate a framework for optimizing N management using deep RL
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and crop simulations, depicted in Fig. 5.1. In particular, we leverage Decision Support System for

Agrotechnology Transfer (DSSAT), a widely used tool for crop modeling and simulation [166], [167], and

the Gym-DSSAT interface [139] that allows users to read the simulated crop and soil conditions and apply

management practices on a daily basis. As a demonstration of the use of the presented framework, we train

N management policies with two deep RL algorithms, namely deep Q-network (DQN) and soft actor-critic

(SAC), for the maize crop in Iowa and Florida, US. We further evaluate the performance of the trained

policies in comparison with standard practices, and under different scenarios including partial observations

and reduced action frequencies.

Compared to early work on RL-based crop management [124], [125], our framework, which leverages

deep RL, can handle much larger state and action spaces. Compared to recent work on deep RL-based

agricultural management [132], [133], the crop model adopted in our framework, i.e., DSSAT, is much

more widely used globally; additionally, our experimental study is significantly more comprehensive,

which involves two different deep RL algorithms, two geographic locations, and ablation study for partial

observations and reduced action frequencies.

5.1.1 MDP Problem Formulation

The N management problem can be formulated as a finite Markov decision process (MDP) problem. In

this formulation, a decision-making agent continuously interacts with the environment. At each day t, the

agent selects an action (i.e., management practice), at, from the action space A, based on the current state

st, which is an array of elements from the state space S. The selected action is applied to the environment

and a new state (st+1) is generated based on this action; meanwhile, a reward signal rt = r(st, at) is

produced to evaluate the immediate consequence of the selected action. This interaction repeats until the
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termination of the interaction, e.g., when the crop is harvested. The goal of the agent is to select optimal

actions to maximize the future discounted return. The future discounted return at time t is defined as

Rt =
∑T

τ=t γ
τ−trτ , where T is the time step at termination.

For N management, the action space A contains all possible amounts of nitrogen applied at a day. All

the states that compose the state space are listed in Table 5.7. The reward function r(st, at) at day t is

set as:

r(st, at)=


w1Y −w2at−w3Nl,t−w4Pt if harvest at t,

−w2at−w3Nl,t−w4Pt otherwise,

(5.1)

where at is the action (i.e. amount of nitrogen applied at day t), Nl,t is the nitrate leaching at day t, Y

is the crop yield at the harvest date represented by the top weight at maturity, and Pt is the additional

penalty on large total amount of nitrogen applied. In particular, Pt =
∑t

k=1 ak − threshold if at ≠ 0

and Pt = 0 if at = 0, where threshold represents the allowable total amount of nitrogen inputs. It may

be worth mentioning that nitrate leaching occurs when nitrate is washed out of the root zone by heavy

rainfall. Leaching is undesirable because it leads to the waste of the fertilizers, and more importantly,

causes environmental problems such as eutrophication of watercourses and soil degradation. Thus, we

include a penalty on nitrate leaching in the reward function. Finally, the positive constants w1 ∼ w4 are

selected to balance the different aspects mentioned above.

5.2 Training Management Policies using Deep RL

For solving the formulated MDP problem, we leverage the recently proposed deep RL algorithms, which

have achieved remarkable performance on a variety of tasks [126]–[131], [168]. We choose deep Q-network

(DQN) [126] and soft actor-critic (SAC) [169] for the experimental study, but other deep RL algorithms
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capable of handling continuous state spaces can also be applied.

5.2.1 Policy Training with DQN

DQN is a model-free deep RL algorithm, which uses a deep neural network (DNN) to approximate the

action-value function in Q-network [126]. The essential idea of DQN is to learn an optimal action-value

function Q⋆(s, a) = maxπ E[Rt|st = s, at = a, π], where π is a policy mapping a state st to an action at at

a given time t. With the Q⋆ function, given an action st, an optimal action a⋆t can be determined, e.g., by

following a greedy policy defined by a⋆t = maxa∈A Q⋆(st, a). From the interaction between the agent and

environment, tuples of (s, a, r, s′) are generated and stored in a replay buffer, where s, a, r and s′ denote

current state, current action, immediate reward obtained by applying the action a at the state s, and next

state, respectively. Due to the nature of continuity of the action space, we discretized the action space. At

iteration i, the Q network can be trained by minimizing the loss function:

Li(θi)≜ E
(s,a,r,s′)

[
r+γmax

a′∈A
Q(s′, a′; θ−i )−Q(s, a; θi)

]
, (5.2)

where the tuples (s, a, r, s′) are sampled from the replay buffer, θi are the parameters of the Q-network at

iteration i, and θ−i are the network parameters used to compute the target at iteration i. The optimization

problem can be solved using stochastic gradient descent algorithms [126].

5.2.2 Policy Training with SAC

SAC is a policy-gradient deep RL algorithm that represents the state of the art among model-free RL

algorithms in terms of sample efficiency and stability with respect to the hyperparameters [169]. Besides

the expected sum of rewards, SAC introduces the expected entropy to favor stochastic policies, which leads

66



to a cost function L defined by

L ≜ −
T∑

t=0

E(st,at)∼pπ [r(st, at) + αH(π(·|st))] , (5.3)

where p denotes the state-action marginals of the trajectory distribution, H determines the entropy for

the evaluation of randomness given the state st, and r(st, at) is the immediate reward at time t. The

temperature parameter α decides the trade-off between the entropy term and rewards.

5.3 Simulating the Crop Response using Gym-DSSAT

DSSAT has been used for various crop simulations worldwide in the last 30 years [166]. However,

limited interactions can be reached during the running period of simulation, leading to a possible delay

of adjustment for management decisions. Recently, Gym-DSSAT [139] has been developed to bridge

the communication gap between the simulation environment and daily management decisions. This

communication pipeline enables RL researchers to manipulate DSSAT like Open AI Gym in machine

learning and robotics [126], [127]. In Gym-DSSAT, the environment is defined at a field scale with a time

step corresponding to one day. An episode typically covers about 160 days from planting to harvest, and

its state is automatically set as “done” at crop maturity. Weather is randomly generated via WGEN’s

[170] built-in stochastic weather generator and can be fixed depending on simulation purposes.

With Gym-DSSAT, millions of daily interactions between an RL agent and the simulated crop

environment can be achieved in a few minutes, and used for training the management policies.
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5.4 Experiments and Results

We conducted experiments on training N management policies for the maize crop in both Florida and

Iowa. These two locations are selected since they have different weather and soil conditions, which can be

leveraged to test the general applicability of the proposed framework. Also, DSSAT includes templates for

simulating the maize crop in these two locations, which facilitates the implementation of our proposed

framework. We evaluated the performance of trained policies in comparison with the standard practice

proposed in [171].

5.4.1 Datasets for Florida and Iowa

Two experiments were studied. The first one is for the maize crop in Ames, Iowa, in 1999. The

simulation starts on April 25th, the planting happens on May 27th, and the crop is harvested no later than

Oct 24th. The soil has a depth of 151 cm, and the plant density is 7.6 plant/m2. The second experiment

is for the maize crop in Gainesville, Florida, in 1982. In the Florida setup, the simulation starts on Jan

30th, while the crop is planted on Feb 26th and harvested when reaching maturity. The soil in this case

has a depth of 180 cm, and the plant density is 7.2 plant/m2. For both simulations, the irrigation is set

to 0. This is consistent with the current practice in Iowa, where the maize crop is not irrigated. On the

other hand, irrigation is crucial to improve the maize yield in Florida in reality. Setting the irrigation to 0

for the Florida case can be considered as an emulation of the extreme case of severe drought and limited

water supply, which allows us to compare the RL-based management strategy with the standard practice

under this extreme case.
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5.4.2 Implementation Details

For all the experiments, weight parameters w1, w2, and w3 in the reward function (5.1) were set to

be 0.1, and w4 is set to be 1. For both DQN and SAC, we implemented the training using Pytorch, and

used the Adam [172] optimizer with an initial learning rate of 0.00005 and a batch size of 64 to train the

neural network. We trained the policies for 1200 episodes with the exploration rate ϵ decreasing from 1 to

0, following a decay factor of 0.994 for the Florida case and of 0.992 for the Iowa case.

For DQN, the discrete action space was defined to be A = {40k kg
ha |k = 0, 1, 2, 3, 4}. The discount factor

was set to be 0.99.

For SAC, the agent action asac varies from 0 to 200 and is discretized into the same action space as

the one used for DQN through the mapping: argmina∈A ∥asac − a∥, for both training and testing. The

discretization is for being consistent with farmers’ fertilization patterns, i.e., fertilize only a few times in

the whole growth cycle. The discount factor and smoothing constant for updating the target network were

set to be 0.98 and 0.001, respectively.

For comparison with the trained policies, we also implemented the standard management practice in

[171], which suggests to add nitrogen at vegetative growth stage (vstage) 5, the stage when crop reaches

five expanded leaves.

5.4.3 Results for the Iowa Maize

The training curve using DQN, averaged over five trials, is shown in Fig. 5.2. During the first 200

episodes of exploration, due to the large exploration rate, the DQN agent over-fertilizes causing significant

penalties. After 800 episodes of training, the learning converges, constantly giving a cumulative reward of

over 2000. Concretely, Table 5.1 compares the performance of the DQN-trained policy and three baseline
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strategies, corresponding to 160, 240, 280 kg/ha of nitrogen applied at stage v5, as suggested in [171]. The

trained DQN agent decides to apply a total of 240 kg/ha nitrogen input during the growing season, and

achieves 21711.8 kg/ha top weight of maize at maturity and a cumulative reward of 2126.3. Among three

baseline policies, the one with 280 kg/ha achieves the largest cumulative reward of 2142.9 and largest

top weight of 21709.5 kg/ha. Compared with the best baseline, DQN achieves slight improvement on

top weight at maturity while using 14% less nitrogen input, being more cost-efficient. Compared to the

baseline using same amount of nitrogen input, DQN achieves a 1% increment on the top weight at harvest.

In general, the trained DQN agent achieves better results than the baseline methods.

The performance of SAC is shown in Table 5.2. Although using less nitrogen that causes a smaller top

weight at maturity, the SAC policy still achieves a cumulative reward similar to that achieved by the DQN

policy. Thus, both RL algorithms succeeded in finding a better management policy than the baselines.

However, the learning process converged much faster with SAC. Specifically, the cumulative reward with

SAC reached 2100 within 700 episodes, while additional 300 episodes were needed to achieve similar results

with DQN.

Table 5.1: Performance comparison between DQN and baseline policies for Iowa. Baseline (X) indicates
that X kg/ha of nitrogen is applied at stage v5.

Methods Nitrogen input (kg/ha) Nitrate leaching (kg/ha) Nitrogen uptake (kg/ha) Top weight at maturity (kg/ha) Cumulative reward

Baseline (160) 160 0.11 219.1 21133.3 2097.3
Baseline (240) 240 0.11 264.0 21502.9 2126.3
Baseline (280) 280 0.11 272.3 21709.5 2142.9
DQN 240 0.12 290.4 21711.8 2147.1

Table 5.2: Performance comparison between SAC and DQN policies for Iowa.

Methods Nitrogen input (kg/ha) Top weight at maturity (kg/ha) Cumulative reward Episodes of convergence

DQN 240 21711.8 2147.1 1000
SAC 200 21503.3 2144.2 700
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Figure 5.2: Cumulative reward versus episodes with DQN for Iowa. Results are averaged over five trials,
with the light-red shaded area denoting the variance. Top: full view. Bottom: zoomed-in view for 400–1200
episodes

5.4.4 Results for Florida Case

As we mentioned in 5.4.1, the Florida case is not realistic due to the 0 irrigation setup, and can be

considered as an extreme weather case under severe drought with water shortage. Accordingly, the yields

obtained under this setup are much smaller compared to those in the Iowa case. The training curve under

DQN averaged over five trials is shown in Fig. 5.3. The performance comparison between our trained

DQN policies and baselines is summarized in Table 5.3. As one can see, the DQN policy shows a stable

improvement in terms of the top weight and rewards, which is consistent with the results for Iowa. The

performance comparison between SAC and DQN is shown in Table 5.4. Similar to the Iowa case, the SAC
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policy achieved a similar cumulative reward as the DQN policy but the training with SAC converged much

faster.

Figure 5.3: Cumulative reward versus episodes with DQN for Florida. Results are averaged over five
trials, with the light-red shaded area denoting the variance. Top: full view. Bottom: zoomed-in view for
400–1200 episodes

Table 5.3: Performance comparison between DQN and baseline policies for Florida. Baseline (X) indicates
that X kg/ha of nitrogen is applied at stage v5.

Methods Nitrogen input (kg/ha) Nitrate leaching (kg/ha) Nitrogen uptake (kg/ha) Top weight at maturity (kg/ha) Cumulative reward

Baseline (40) 40 46 55 4393.3 430.7
Baseline (80) 80 65 66 4673.1 452.8
Baseline (160) 160 97 86 5190.4 493.3
DQN 80 33 105 6310.8 619.7
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Table 5.4: Performance comparison between SAC and DQN policies for Florida.

Methods Nitrogen input (kg/ha) Top weight at maturity (kg/ha) Cumulative reward Episodes of convergence

DQN 80 6310.8 619.7 900
SAC 80 6308.0 610.2 700

5.4.5 Ablation Study

In practice, not all the states used in the training and testing of the management policies in the previous

sections are accessible. Additionally, from an economic perspective, farmers prefer to make decisions less

frequently, e.g., weekly and biweekly, instead of daily. Therefore, in this section, we study the effect of

full/partial observation and action frequencies on the performance of the proposed framework.

Full vs. Partial Observation

To understand the contribution of observed states in the fertilizer optimization process, we carry out

an ablation study on (i) full observation case, in which all the states listed in Table 5.7 are used for policy

training and testing and (ii) partial observation case, in which only 10 states (indicated in Table 5.7)

are used. The study on partial observation is motivated by the fact that not all the states output by

DSSAT can be accessed by farmers without professional agricultural tools for detection and inspection.

Experiments of full observation have been conducted in Section 5.4. The results under partial observation,

which are based on DQN, are shown in Fig. 5.4. For both Florida and Iowa, the policy training and testing

under partial observation were conducted three times, and Fig. 5.4 shows the results averaged over the

three trials.

For both Florida and Iowa setups, the policies under partial observation always underperformed those

under full observation. In particular, we observed 30.15% and 3.58% decreases in reward and 27.94% and

3.68 % drops in the final yield for Florida and Iowa, respectively. The decrease for Florida is relatively large

compared to that for Iowa. This could be attributed to the extreme weather condition associated with
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Florida which requires the RL agent to have more comprehensive information to make a good decision.

Action Frequency

We ablate the action frequency in the life cycle of maize to further understand the applied actions

during the simulation process. We continue to conduct all the experiments with DQN in a discrete space

to ensure the consistency with farmers’ fertilization patterns. Concretely, we experiment with the trained

DQN policy using two action frequencies: (i) RL agents are allowed to fertilize every day and (ii) RL

agents are only permitted to fertilize every ten days.

For Iowa, Fig. 5.5 shows the applied actions and Table 5.5 lists achieved cumulative reward and top

weight at maturity under different actions. The DQN agents fertilized 5 to 6 times. Both the baseline

method and the DQN policy with a 10-day action frequency used 280 kg/ha nitrogen input. However,

their results are relatively poor compared with the DQN policy with a 1-day action frequency.

The results for Florida are shown in Fig. 5.6 and Table 5.6. One can see that both baseline methods

and our RL agent chose to fertilize once across the crop’s life cycle. However, the RL agent tended to apply

less nitrogen, as shown in Fig. 5.6. According to Table 5.6, the performance of the DQN agent degrades a

little bit under the reduced action frequency of 10 days, but is still better than that of the best baseline.

Table 5.5: Performance of trained policies under different action frequencies for Iowa. DQN (1 Day): RL
agents are allowed to fertilize every day. DQN (10 Days): RL agents are only permitted to fertilize every
ten days.

Method Top weight at maturity (kg/ha) Cumulative reward

DQN (1 Day) 21710.7 2147.1
DQN (10 Days) 21700.6 2142.0
Baseline 21709.5 2142.9

Table 5.6: Performance of trained policies under different action frequencies for Florida.

Method Top weight at maturity (kg/ha) Cumulative reward

DQN (1 Day) 6310.8 619.8
DQN (10 Days) 5728.9 565.7
Baseline 5190.4 493.3
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Table 5.7: State space description

State Description Included in Partial Observation Study?
cumsumfert cumulative nitrogen fertilizer applications (kg/ha) ✓
dap days after simulation started ✓
dtt growing degree days for current day (C/d) ✓
istage DSSAT maize growing stage ✓
vstage vegetative growth stage (number of leaves) ✓
pltpop plant population density (plant/m2) ✓
rain rainfalls for the current day (mm/d) ✓
srad solar radiations during the current day (MJ/m2/d) ✓
tmax maximum temparature for current day (C) ✓
tmin minimum temparature for current day (C) ✓
sw volumetric soil water content in soil layers (cm3 [water] / cm3 [soil]) ✓
nstres index of plant nitrogen stress (unitless)
pcngrn massic fraction of nitrogen in grains (unitless)
swfac index of plant water stress (unitless)
tleachd daily nitrate leaching (kg/ha)
grnwt grain weight dry matter (kg/ha)
cleach cumulative nitrate leaching (kg/ha)
cnox cumulative nitrogen denitrification (kg/ha)
tnoxd daily nitrogen denitrification (kg/ha)
trnu daily nitrogen plant population uptake (kg/ha)
wtnup cumulative plant population nitrogen uptake (kg/ha)
xlai plant population leaf area index (m2 leaf/m2 soil)
topwt top weight (kg/ha)
es actual soil evaporation rate (mm/d)
runoff calculated runoff (mm/d)
wtdep depth to water table (cm)
rtdep root depth (cm)
totaml cumulative ammonia volatilization (kgN/ha)
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Figure 5.4: Comparison of cumulative rewards (top) and final above the ground population biomass
(bottom) obtained under partial observation and full observation. The results are averaged over three
trials.
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Figure 5.5: Applied actions under different action frequencies for Iowa.
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Figure 5.6: Applied actions under different action frequencies for Florida.
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Chapter 6

The New Agronomists: Language

Models are Experts in Crop

Management

6.1 Research Overview

Key factors in crop management, particularly fertilization with nitrogen (N) and irrigation with water

(W), significantly affect crop yields and environmental health [173]. However, the previous best practices

for these management aspects, derived from empirical experience and academic research [174], [175], face

uncertainty in their effectiveness against changing climate and market conditions. Therefore, the adequacy

of current strategies is questionable, highlighting a need for innovative, efficient, and adaptable management

systems. These systems should be capable of devising optimal strategies suitable for varying conditions and
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Arrays of States: 𝒔 
(weather, crop status, …)
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(Simulated w/                     )
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water nitrogen
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N2O
3.2 1.1 12.7 …

2.6 2.1 14.8 …

… … … …

Rainfall is 3.2mm/day, root 
depth is 1.1 cm, top weight 
is 12.7 …
  
Rainfall is 2.6mm/day, root 
depth is 2.1 cm, top weight 
is 14.8 …  

Descriptive Sentences

Figure 6.1: Framework and pipeline of the intelligent crop management system using LM-based RL

objectives, such as maximizing economic profit [176]. This research is anchored in this context, leveraging

advanced AI methods to improve agricultural practices and tackle these critical challenges.

Reinforcement learning (RL) has shown exceptional capabilities in tasks that involve sequential decision-

making (SDM), such as in robotics and gaming [126], [129]. This success suggests a significant potential for

RL in optimizing crop management, which at its core is an SDM problem. Given the need for numerous

interactions between the RL agent and the environment during policy training, field trial-based methods

are impractical. Consequently, the use of crop models to simulate both the crop and its environment,

providing a platform for interaction with the RL agent, appears to be the most feasible approach [163],

[164].

Recently, the authors of [85], [86] proposed to train management policies for crop management using

deep RL with DSSAT [166] and Gym-DSSAT [177], one of the most widely used crop models in the world.

Their trained policies, both under full and partial observations, outperformed baseline policies by achieving

higher yields or similar yields with reduced nitrogen (N) fertilizer input. However, there are limitations

to these approaches. Firstly, the models primarily employed Multilayer Perceptrons (MLPs), which,
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while effective, have limited fitting power compared to more complex architectures. This limitation could

potentially constrain the models’ ability to capture the intricate dynamics of crop growth and management

fully. Secondly, the reliance on MLPs limits the incorporation of additional descriptive features for state

representations in the model. These features could include various environmental, soil, and crop growth

parameters that are crucial for precise agricultural decision-making. This gap in the model’s design raises

a critical question: Can language models (LMs) serve as viable alternatives for RL agents in these crop

management tasks?

We present an intelligent crop management framework, depicted in Figure 6.1, that incorporates a

powerful LM, and crop simulations via DSSAT and Gym-DSSAT. Concretely, we transform the states from

simulation tools, typically arrays of numbers, into more descriptive sentences. This conversion enables

a significant shift in our approach: we replace the traditional MLP-based RL agent with an LM-based

RL agent. This new agent leverages LMs to encode these descriptive state sentences into embeddings,

thereby capturing a more informative and nuanced understanding of the states. Meanwhile, we notice that

LMs have shown distinctive cognitive capabilities, which include advanced thinking [178], robust memory

functions [179], and reflective skills [180]. As a result, the RL agent should be equipped with the ability to

comprehend complex aspects of crop growth and simulation environments. We, therefore, anticipate that

the incorporation of LMs will markedly improve the performance of the RL agent in crop management

tasks.

To demonstrate the effectiveness of the proposed method, we conduct case studies simulating maize

crop management in Florida, USA, and Zaragoza, Spain. This choice of locations aligns with the settings

used in previous studies [86]. In both scenarios, the policies trained by our framework exhibited superior

performance compared to the previous state-of-the-art approaches; the baseline was derived from either
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maize production guidelines recommended by agricultural experts as well as survey results on actual

management practices of maize farmers. Additionally, continuing in the vein of established research,

our investigation also includes the training of RL-based policies with well-recognized reward functions

[86]. These functions are designed to represent different balances among key factors: crop yield, resource

utilization, and environmental impact, particularly focusing on nitrate leaching during the crop growth

cycle. In summary, the primary contributions of our work can be delineated as follows:

• We investigate a critical yet under-explored question: Can LMs serve as better alternatives for RL

agents in crop management tasks to offer more nuanced and effective solutions and advance the state

of intelligent crop management systems?

• To the best of our knowledge, this work marks the first attempt to integrate descriptive language to

represent agricultural states and to employ LMs in the pursuit of optimal crop management policies.

• We empirically demonstrate that our proposed framework exceeds the performance of existing

state-of-the-art approaches in various key aspects, including crop yield, resource utilization, and

environmental impact.

6.2 Methods

6.2.1 Problem Formulation

In this study, we approach nitrogen fertilization and irrigation management as a finite MDP, following

the paradigm of previous work [85], [86]. Each day, denoted as day t, involves the agent receiving the

environmental state, st, and subsequently selecting an action at from the action space A. This selection is

guided by a policy π(st, θt), where θt symbolizes the policy parameters on that particular day, and notably,
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the policy in this context is a pretrained language model. The state st encompasses vital data pertaining

to weather, plant growth, and soil conditions, as simulated for that day. The action at is composed of two

key decisions: the quantity of nitrogen fertilizer, denoted as Nt, and the amount of irrigation water, Wt,

to be applied. The effectiveness of these decisions is quantified by the reward rt(st, at), which is calculated

based on the outcomes of st and at, defined as:

rt(st, at)=


w1Y −w2Nt−w3Wt−w4Nl,t if harvest at t,

−w2Nt−w3Wt−w4Nl,t otherwise,

(6.1)

where w1, w2, w3, w4, Y,Nl,t denote four custom weight factors, yield at harvest and the amount of nitrate

leaching on a given day, respectively. Both Y and Nl,t are derived from the state variable st. The design of

the reward function, characterized by the weights w1, w2, w3, w4, is pivotal in steering the agent’s strategy.

The agent’s objective is to identify the optimal policy π(st, θt) that selects action at to maximize the total

future discounted return. This return, defined as Rt =
∑T

τ=t γ
τ−trτ , captures the accumulated reward

from the current action at to the future rewards, discounted by factor γ.

6.2.2 LM-based RL Agent

To harness the full potential of LM in comprehending crop models and identifying optimal management

strategies, we made adaptations to the state variables from the simulation tool, specifically Gym-DSSAT.

Traditionally, the state in such simulations is represented by an array of variables reflecting various crop

and environmental conditions, like rainfall and root depth. However, this format does not provide a

direct correlation between the variables and their descriptive meanings, posing a challenge for RL agents

to interpret each variable independently. To overcome this, we transformed the raw data into a more

82



language-friendly format. Each variable name and its corresponding value were combined into coherent

sentences. This approach essentially transforms the state data into a format that is more accessible and

interpretable by LMs, allowing for a more intuitive and efficient exploration of management practices.

In our approach, we have innovated by substituting the traditional MLPs with a distilled and pre-

trained BERT model from [181] serving as the RL agent. This advanced model is utilized to encode

the concatenated sentences, which represent the state variables, into feature embeddings. Following this

encoding process, we introduce a few fully connected layers connected to the distilled BERT encoder. These

layers are responsible for transforming the generated feature embeddings into a format that aligns with

the action space of the RL agent. This novel architecture not only leverages the linguistic understanding

of BERT but also ensures that the complex relationships within the crop management data are effectively

captured and translated into actionable insights.

6.2.3 Policy Training with LM

In this study, we use the Deep Q-Network (DQN) from [126] to train our agent. The goal is to learn

an optimal policy that maximizes the future discounted return, denoted as Rt. A novel aspect of our

approach is the integration of the distilled BERT model to represent the action-value function, also known

as the Q function, within the DQN framework. This Q function, formally defined as Qπ(s, a) = E[Rt|st =

s, at = a, π], is essential for calculating the expected future discounted return from state s when action a

is taken, following policy π.

The objective is to refine the parameters of the Q-network to pinpoint the optimal Q function, Q⋆(s, a),

which indicates the highest return possible from state s by taking action a and adhering to the optimal policy.

For selecting the optimal action in state st, we employ a greedy policy defined as a⋆t = maxa∈A Q⋆(st, a).

83



Training the Q-network, which effectively means training the policy, involves minimizing the following loss

function:

Li(θi)≜ E
(s,a,r,s′)

[
r+γmax

a′∈A
Q(s′, a′; θ−i )−Q(s, a; θi)

]
. (6.2)

Here, s, a, r, s′ denote the state, action, reward, and next state, respectively, with γ representing the discount

factor, and θ−i representing the parameters of a target network defined earlier. The tuples (s, a, r, s′) for

the loss function are randomly sampled from the replay buffer, a collection of prior state-action-reward-next

state tuples accumulated during training.

6.2.4 Crop Simulations with Gym-DSSAT

Similar to [85], [86], we leverage Gym-DSSAT [177], a Gym interface for DSSAT that enables the

agent to interact with the simulated environment (i.e., reading the weather, soil, and crop information and

applying management practices) on a daily basis.

6.3 Experiments and Results

In this section, various experiments are conducted on real-world datasets to demonstrate the effectiveness

and superiority of the proposed framework. The experimental settings are introduced in Section 6.3.1.

Following this, the training and evaluation details are illustrated in Section 6.3.2, providing the necessary

details to reproduce the results. Then, we present the evaluation results, where the performance of our

proposed method is compared against existing baselines and SoTA approaches in Section 6.3.3. Lastly,

ablation studies are conducted for policy training in Section 6.3.4.
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6.3.1 Experimental Setup

The experiments focusing on training policies for nitrogen and irrigation management in maize crops

were conducted through two distinct case studies, both utilizing real-world data. The first of these case

studies was set in a simulated environment replicating Florida, USA, in 1982, while the second case study

was based on the simulated conditions of Zaragoza, Spain, in 1995. The primary objective of these case

studies was to test and demonstrate the viability and advantages of the proposed framework, rather than

preparing it for immediate real-world application. For those interested in the specifics of deploying this

framework in practical settings, further details are provided in Section 6.4.

For each case study, DQN was used to train the LM-based RL agent under full observation. The

performance of all trained policies was evaluated in simulation, and compared with baseline policies and

previous state-of-the-art methods as mentioned in [86]. The baseline for the Florida study was based on a

maize production guide for Florida farmers [174], and for the Zaragoza study it was derived from survey

data on maize farming practices in Zaragoza [175], [182].

The framework was implemented to train the RL agent under full observation. This approach involved

testing with five different reward functions, each designed to demonstrate the adaptability of the framework

to various trade-offs. These trade-offs include balancing crop yield, N fertilizer use, irrigation water use,

and environmental impact. This variety in reward functions allows the framework to be evaluated across a

range of scenarios and objectives, showcasing its flexibility in addressing different agricultural management

priorities.
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6.3.2 Implementation Details and Evaluation Metrics

Implementation Details. The RL agent in our study employs a combination of DistilBERT and a

three-layer fully connected neural network for feature adaptation. The process begins with DistilBERT

encoding the state inputs into 768-dimensional embeddings. Notably, the parameters of DistilBERT are

trained end-to-end in this model. After this initial encoding, the embeddings are passed through fully

connected layers, one with 512 units and the other with 256 units. The final layer in this sequence is

responsible for mapping these processed embeddings to the action space, completing the flow from the

input state to the actionable output in the RL framework. The discrete action space is defined as follows:

A = {40k kg
ha

N fertilizer & 6k
L

m2
Irrigation water}, (6.3)

where k = 0, 1, 2, 3, 4, resulting in a total of 25 possible actions. This action space design incorporates

standard quantities of N fertilizer and irrigation water that are typically applied by farmers in a single day.

It also allows for a wide range of options, aiding the discovery of effective policies. The discount factor is

meticulously set at 0.99. To facilitate the neural network’s updates, Pytorch is employed alongside the

Adam optimizer [172], characterized by an initial learning rate of 1e-5 and a batch size of 512. This setup

is strategically chosen to optimize the learning process while ensuring efficient computation.

The direct application of DistilBERT’s tokenizer to numerical values introduces significant training

instability. Concretely, numerical values are often segmented into multiple tokens, resulting in considerable

variance for small numerical differences. For instance, the number 360 tokenizes into [9475], while 361 splits

into [4029, 2487], indicating a disproportionate representation of adjacent numbers. This inconsistency can
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w1

(Y )
w2

(Nt)
w3

(Wt)
w4

(Nl,t)
Note

RF 1 0.158 0.79 1.1 0 Economic profit
RF 2 0.158 0.79 0 0 Free water
RF 3 0.158 0 1.1 0 Free N fertilizer
RF 4 0.158 1.58 1.1 0 Doubled N price
RF 5 0.2 1 1 5 With N Leaching

Table 6.1: Weights used in each reward function (RF) defined by equation (5.1)

amplify instability during training. Additionally, the tokenization of decimal numbers compounds this

issue. For example, 0.1 translates into [1014, 1012, 1015], where ‘0’ and the decimal point are tokenized

separately, leading to unnecessary token proliferation and computational inefficiency.

To address the tokenization challenges with numerical values in our model, we have developed a

straightforward yet effective data preprocessing technique. This method involves normalizing numerical

values to fit within the range of [0, 300] and subsequently utilizing only the integer portion for tokenization.

The decision to cap the range ensures that each normalized number corresponds to a single token, thereby

simplifying and stabilizing the tokenization process. Additionally, focusing solely on the integer part helps

to minimize the number of tokens used. We achieve a succinct representation comprising 27 distinct tokens,

which includes 25 feature-specific tokens plus two special tokens ([CLS] and [SEP]). This streamlined token

set not only improves the stability of the training process but also enhances its computational efficiency,

which is crucial for the complex task of crop management optimization using RL and language models.

Evaluation Metrics. In each case study, we employed reward functions in line with the approach

described in previous research [86]. Specifically, five distinct reward functions for rt derived from Equation

(5.1) were utilized to train the RL agent. For each reward function, a single trained policy was selected for

evaluation. The parameters for each reward function (RF) are detailed in Table 6.1.

RF1 quantifies the economic profit ($/ha) that farmers accrue, calculated based on the estimated

prices of maize and the costs of N fertilizer and irrigation water, as referenced from [183] and [174].
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RF2-RF4 represent variations of economic profit under different scenarios. Specifically, RF2 addresses the

hypothetical situation where irrigation water is free of cost; RF3 considers the case where N fertilizer is

free; and RF4 models a scenario in which the price of N fertilizer is doubled.

In contrast to RF1-RF4, which focus solely on economic profit, RF5 incorporates an additional

environmental aspect, specifically nitrate leaching. Nitrate leaching is a significant environmental concern

as it contributes to problems like eutrophication of water bodies and soil degradation [184]. RF5 is

structured to balance yield, N fertilizer, and irrigation use while assigning a substantially higher weight to

nitrate leaching. This approach aims to minimize nitrate leaching while still achieving favorable economic

outcomes.

Table 6.2: The evaluation results of our trained policies, comparing them with previous SoTA methods
and baseline policies. ‘Policy x’ refers to the policy optimized using the reward function ‘RF x’. The ‘RF
x’ column details the cumulative rewards for each policy, calculated in accordance with ‘RF x’. Details of
each reward function can be found in Table 6.1. The best value is highlighted in bold.

Florida Case
N Input
(kg/ha) ↓

Irrigation
(L/m2) ↓

Yield
(kg/ha) ↑ RF1 ↑ RF2 ↑ RF3 ↑ RF4 ↑ RF5 ↑

Empirical Baseline 360 394 10772 984 1417 1269 700 338

Policy1: Traditional Agent 200 120 10852 1425 1557 1538 1267 1673
Policy1: LM-based Agent (Ours) 122 192 11402 1464 1675 1590 1337 1748

Policy2: Traditional Agent 200 732 11244 813 1619 971 655 1020
Policy2: LM-based Agent (Ours) 160 510 11474 1126 1687 1252 999 1330

Policy3: Traditional Agent 19920 108 10865 -1.4e4 -1.4e4 1598 -3.0e4 -4.9e4
Policy3: LM-based Agent (Ours) 10000 264 13152 -6.1e3 -5.8e3 1788 -1.4e4 -3.8e4

Policy4: Traditional Agent 160 102 10358 1398 1510 1524 1272 1635
Policy4: LM-based Agent (Ours) 160 36 10192 1428 1468 1555 1302 1647

Policy5: Traditional Agent 200 138 10926 1417 1568 1575 1259 1651
Policy5: LM-based Agent (Ours) 160 60 11280 1590 1656 1716 1463 1841

6.3.3 Results of Experiments

The evaluation outcomes for the trained policies in both the Florida and Zaragoza case studies are

detailed in Table 6.2, Table 6.3, and Figure 6.2. It’s important to note that these results may not entirely

reflect the optimal potential of the policies due to the random initialization of the Q-network and its

88



0 200 400 600 800 1000
Episode

8000

6000

4000

2000

0

2000

C
um

ul
at

iv
e 

re
w

ar
d

LM-based RL Agent
MLP-based RL Agent

Figure 6.2: Cumulative reward versus episodes for policy training under RF1

episodic updates. Additionally, further refinement through hyperparameter tuning might yield more

competitive outcomes. However, such tuning was intentionally avoided in this study to maintain a focus on

generalizability and fair evaluation. Despite these deliverable-introduced constraints, the chosen policies

still illustrate the effectiveness of the LM-based RL agent in enhancing crop management strategies. These

policies also effectively demonstrate how different RFs can influence training outcomes.

The evaluation results, as detailed in Table 6.2 and Table 6.3, indicate that the proposed LM-based RL

agent outperforms previous SoTA and empirical baselines in most metrics and scenarios. Notably, the

LM-based RL agent consistently utilizes lower amounts of nitrogen and generally requires less irrigation,

yet it manages to secure higher yields. These improvements are consistent across various reward functions

that prioritize different optimization objectives, underscoring the agent’s adaptability and robustness in

optimizing for diverse agricultural goals. The findings validate the previous hypothesis that language models

have a heightened capacity to decipher complex crop management scenarios and simulate environments,

ultimately leading to the discovery of more optimal management practices. Compared with the baseline
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policies, the RL-trained policies achieve a 49% and a 67% increase in terms of profit, i.e., RF1, and almost

a 445% and a 37% increase in terms of RF5 for the Florida case and Zaragoza case, respectively. Notably,

the enormous negative values of the cumulative rewards of Trained Policy 3 from both case studies are the

results of the large amounts of N input, which are not punished during training with RF 3.

Consistent with prior studies [86], the choice of reward function significantly influences the strategy of

policies trained with LM-based RL agents. For instance, when trained with RF2, which posits irrigation

water as a free resource, Trained Policy 2 tends to maximize irrigation while minimizing nitrogen input.

This approach leads to the highest yield and cumulative reward as per the criteria of RF2. In contrast,

RF3 assumes zero cost for nitrogen fertilizer, prompting Trained Policy 3 to favor high nitrogen use and

minimal irrigation in both case studies. Under RF4, which reflects a doubled cost of nitrogen fertilizer in

comparison to RF1, Trained Policy 4 leads to a reduction in nitrogen use. Despite the reduced nitrogen

input, this policy still achieves a substantial yield and notably saves over 64% of water resources, indicating

the agent’s capability to find a balance between cost efficiency and agricultural output.

In general, the results presented showcase the state-of-the-art capabilities of the LM-RL framework in

optimizing crop management. This optimization is proven to be effective under various criteria, across

different geographic locations, and within diverse environmental conditions. The framework’s adaptability

is highlighted by its ability to consistently apply LM-RL training to discover optimal management policies

that align with specific targets, as dictated by the design of the chosen reward function. This flexibility

and effectiveness affirm the potential of LM-RL as a powerful tool for agricultural management and

decision-making.
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Table 6.3: The evaluation results of our trained policies, comparing them with previous SoTA methods
and baseline policies. ‘Policy x’ refers to the policy optimized using the reward function ‘RF x’. The ‘RF
x’ column details the cumulative rewards for each policy, calculated in accordance with ‘RF x’. Details of
each reward function can be found in Table 6.1. The best value is highlighted in bold.

Zaragoza Case
N Input
(kg/ha) ↓

Irrigation
(L/m2) ↓

Yield
(kg/ha) ↑ RF1 ↑ RF2 ↑ RF3 ↑ RF4 ↑ RF5 ↑

Empirical Baseline 250 752 10990 712 1539 909 514 1176

Policy1: Traditional Agent 240 330 10477 1103 1466 1292 913 1525
Policy1: LM-based Agent (Ours) 160 354 10806 1192 1581 1318 1065 1617

Policy2: Traditional Agent 200 1068 10923 393 1568 551 235 888
Policy2: LM-based Agent (Ours) 160 1032 10856 453 1588 580 327 964

Policy3: Traditional Agent 10640 324 10626 -7083 -6727 1323 -1.5e4 -8839
Policy3: LM-based Agent (Ours) 10000 342 10903 -6553 -6177 1347 -8161 -8161

Policy4: Traditional Agent 120 336 9601 1053 1422 1147 958 1464
Policy4: LM-based Agent (Ours) 160 348 10250 1110 1493 1268 984 1542

Policy5: Traditional Agent 200 390 10589 1086 1515 1244 928 1528
Policy5: LM-based Agent (Ours) 160 362 10660 1160 1558 1286 1033 1610

6.3.4 Ablation Studies

Training Separately on Fertilization and Irrigation

In our previous research endeavors, we concurrently optimized N fertilization and irrigation practices,

subsequently comparing these results against both established baseline practices and previous SoTAs. To

further elucidate the efficacy of this joint optimization approach, this section introduces an ablation study

wherein the management policies for N fertilization and irrigation were trained independently. Specifically,

while one practice was subject to optimization, the other adhered to established baseline methods. For

instance, when optimizing an N management policy, the irrigation management followed the predefined

baseline protocol, and vice versa. To be specific, experiments were conducted within the framework of the

Florida case study, utilizing RF1 to guide the optimization process. The results, delineated in Table 6.4,

provide a clear indication of the advantages inherent in the simultaneous optimization of N fertilization and

irrigation management, as opposed to the independent optimization of each practice. This finding reveals

that synergistically managing nitrogen fertilization and irrigation together yields superior agricultural
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Fertilization Irrigation RF1↑

Baseline N Fertilization Baseline Irrigation 984
Baseline N Fertilization Training Irrigation 1376
Training N Fertilization Baseline Irrigation 1157

Training N Fertilization Training Irrigation 1464

Table 6.4: Performance comparison of the trained policies on both N fertilization and irrigation with the
trained policies on either N fertilization or irrigation. The best values are shown in bold.

outcomes compared to optimizing each practice in isolation.

Exploration of Framework

In order to investigate the most effective framework of RL agents, an ablation study was conducted.

This study aimed to ascertain the impact of the framework’s structure on management practices. Aligning

with the setup of our previous experiments, we present the results for the Florida case using the reward

function RF1. The outcomes, as depicted in Table 6.5, indicate that employing a three-layer MLP yields

the best results with a traditional RL agent. However, a notable decline in performance is observed when

scaling the agent size from an MLP to a ResNet152 [22]. This performance drop suggests the occurrence

of overfitting within the RL framework, implying that simply increasing the size of the neural network

does not necessarily enhance the exploration of optimal management practices.

Contrastingly, the use of LMs, such as Distilled Bert, demonstrated a different trend. Not only did

the LM exhibit improved performance, but it also provided valuable insights. The results suggest that

LMs possess a unique ability to comprehend the underlying patterns and logic of crop and environmental

models. This capability enables them to pinpoint more optimal solutions while successfully circumventing

the issue of overfitting, which was observed with larger neural network models.
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6.4 Path to Deployment

The effectiveness of management policies trained within the DSSAT-simulated environment may not

directly translate to real-world scenarios. This potential discrepancy arises from uncertainties in weather

conditions and differences between the crop models used for training and actual agricultural systems. This

phenomenon, known as the sim-to-real gap [185], highlights a common challenge in applying RL policies,

developed and refined in simulated settings, to practical, real-world environments.

6.4.1 Closing the Sim-To-Real Gap

To enhance the robustness of our trained management policies against the challenges posed by the

sim-to-real gap, we plan to incorporate domain and dynamics randomization techniques, as suggested in

previous studies [186], [187]. This approach involves introducing variations in critical parameters of the

model and randomizing weather conditions during policy training. Such perturbations are intended to

“force” the policies to become resilient to uncertainties in both the model and weather conditions.

While the primary focus of our current work is to establish the LM-based RL framework for crop

management and to assess its effectiveness, we acknowledge the importance of addressing the robustness of

these policies in real-world scenarios. Therefore, we aim to delve into this aspect in a forthcoming study,

which will specifically target and evaluate the robustness of our LM-based RL policies against real-world

variabilities and uncertainties.

6.4.2 Policy Evaluation with Measurement Noises

In order to assess the robustness of our method against random measurement noises, we conducted

experiments following previous work [86]. In practical scenarios, farmers rely on weather forecasts and soil
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Model Architecture # of Parameters RF1↑

Three-layer MLP 0.2M 1425
Five-layer MLP 0.5M 1312

ResNet18 11.0M 510
ResNet50 25.6M 230
ResNet101 44.7M 107
ResNet152 60.4M 110

Distilled Bert 60.3M 1464

Table 6.5: Performance comparison of different frameworks as RL agents. The best values are shown in
bold.

moisture measurements to make informed decisions. However, these data sources often contain inaccuracies

due to forecast errors and sensor limitations. To simulate this real-world scenario, we tested LM-based RL

under policy 1 from the Florida case study by introducing random measurement noises to key observable

state variables each day in the simulation. These noise values were determined based on the real-world

accuracy data of weather forecasts and commonly used soil moisture meters [188]–[191]. For each variable

of added noise, the policy’s performance was evaluated 400 times, with the average cumulative reward and

standard deviation reported. The results, detailed in Table 6.6, indicate that temperature and rainfall data

inaccuracies have the most significant impact on policy performance, while other variables have minimal

effects. Such an observation is consistent with previous research [86]. Notably, even with accumulated

noise with multiple variables, the trained policy managed to achieve an average cumulative reward of

1248.8. While 15.3% lower than the reward in a noise-free environment, it is still considerably higher than

that of the baseline policy. These findings demonstrate that the policies trained using our method can

yield relatively satisfactory and robust results compared to baseline approaches, even under real-world

scenarios.

94



Variables Noises RF 1 STD
Decrease

(%)

Empirical Baseline N/A 984.4 N/A N/A
No Noise N/A 1463.9 N/A N/A
Soil water content -+0.02 1463.9 0.0 0.0
Soil water content -+0.05 1462.2 1.9 0.1
Temperature -+1 1443.7 89.4 1.3
Temperature -+2 1289.0 361.0 11.9
Solar Radiation -+2% 1468.5 0.7 0
Solar Radiation -+10% 1468.8 7.6 0
Rain Fall 90 % Acc. 1416.5 220.7 3.2
Leaf Area Index -+10% 1457.1 1.2 0.4
Leaf Area Index -+20% 1451.8 5.8 0.8

Soil water content -+0.02
+Temperature -+2
+Solar Radiation -+2% 1248.8 386.8 15.3
+ Rain Fall 90 % Acc.
+ Leaf Area Index -+20%

Table 6.6: Performance of the LM-based RL with Policy1 under measurement noises evaluated with RF1.
The decrease (%) is calculated with respect to RF1, where no noise was applied.
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Chapter 7

Discussion, Conclusion and Future

Research

7.1 Discussion in Broader Domains

This dissertation is closely related to research in visual representation, agriculture, remote sensing,

and earth observation. Meanwhile, it may also illuminate broader research domains, such as the efficient

training of Generative Adversarial Networks(GANs). Brief related discussions on these topics will be

presented in the following sections.

7.1.1 Efficient Training of Unsupervised Learning Algorithms

GANs [16], [192]–[194] are a type of generative model that has gained significant attention in recent

years due to their impressive performance in image-generation tasks. However, the mainstream models in
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GANs are known to be computationally intensive, making them challenging to train in resource-constrained

settings. Therefore, it is crucial to develop methods that can effectively reduce the computational cost

of training GANs while maintaining their performance, making GANs more practical and applicable in

real-world scenarios.

Neural network pruning has recently emerged as a powerful tool to reduce the training and inference

costs of DNNs for supervised learning [195]. There are three main genres of pruning methods: pruning-at-

initialization, pruning-during-training, and post-hoc pruning methods. Post-hoc pruning [196]–[198] can

date back to the 1980s, which was first introduced for reducing inference time and memory requirements

for efficient deployment; hence does not align with our purpose of efficient training. Later, pruning-at-

initialization [199]–[201] and pruning-during-training methods [202] were introduced to circumvent the

need to fully train the dense networks. However, early pruning-during-training algorithms [203] do not

bring much training efficiency compared to post-hoc pruning, while pruning-at-initialization methods

usually suffer from significant performance drop [204]. Recently, advances in dynamic sparse training (DST)

[205]–[209] for the first time show that pruning-during-training methods can have comparable training

FLOPs as pruning-at-initialization methods while having competing performance to post-hoc pruning.

Therefore, applying DST on GANs seems to be a promising choice.

Although DST has attained remarkable achievements in supervised learning, the application of DST

on GANs is not successful due to newly emerging challenges. One challenge is keeping the generator

and the discriminator balanced. In particular, using overly strong discriminators can lead to overfitting,

while weaker discriminators may fail to effectively prevent mode collapse [210], [211]. Hence, balancing

the sparse generator and the (possibly) sparse discriminator throughout training is even more difficult.

To mitigate the imbalance issue, a recent work STU-GAN [212] proposes to apply DST directly to the
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generator. However, we find empirically that such an algorithm is likely to fail when the generator is

already more powerful than the discriminator. Consequently, it remains unclear how to conduct balanced

dynamic sparse training for GANs.

To this end, we propose a metric called balance ratio (BR), which measures the degree of balance of

the two components, to study sparse GAN training. We find that BR is useful in (1) understanding the

interaction between the discriminator and the generator, (2) identifying the cause of a certain training

failure/collapse [192], [213], and (3) helping stabilize sparse GAN training as an indicator. To our best

knowledge, this is the first study to quantify the imbalance of sparse GANs and may even provide new

insights into dense GAN training.

7.2 Conclusion and Further Research

This dissertation explored the nature of representation learning and possible techniques to improve its

quality. Additionally, we investigate representation learning’s ability and performance in three essential

and under-explored areas: agriculture, remote sensing, and earth observation.

In Chapter 2, we propose Hallucinator, which generates additional hard positive pairs for contrastive

learning models based on Siamese structure. Hallucinator generates novel data samples in the feature space

to provide the training with further contrast without additional computation. We design an asymmetric

feature extrapolation to avoid trivial positive pairs and innovatively introduce non-linear hallucination

to smooth the generated samples. We empirically prove the effectiveness and generalization capacity

of Hallucinator to well-recognized contrastive learning models, including MoCoV1&V2, SimCLR, and

SimSiam. Finally, we hope this work could bring the concept of “Hallucination” into the SSL domain and

unlock future research on sample generations&synthesis in contrastive learning across different areas and
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diverse modalities.

In Chapter 3, we step into the application of representation learning and its related datasets in

agriculture and remote sensing. Large, high-quality datasets are opening tremendous new opportunities

for computational agriculture, but they are extremely difficult to obtain. As in other domains, remote

sensing and earth observation data are marked by huge amounts of unlabeled data and relatively few

annotations; leveraging the information in this unlabeled data, therefore, becomes a critical task. In this

work, we contribute to the advancement of these efforts by releasing the AV+ dataset, which contains

annotated full-field imagery based on the original AV dataset [27], supplemented by more than 3TB of

raw full-field images taken at different times in the season. The improved supervised component of the

AV dataset will allow for greater flexibility in training and augmentation protocols and enable additional

possible lines of study around long-range context and large-scale imagery. The raw unlabeled data will

enable continued exploration in the self, semi, and weakly supervised methods which we have begun

to benchmark here. This extension of an already important dataset in computational agriculture will

open up many lines of research and investigation which benefit both the agriculture and computer vision

communities. Next, we conduct a thorough benchmark study on self-supervised pre-training methods based

on contrastive learning, which captures the fine-grained, spatiotemporal nature of this data. We analyze a

classification formulation of the AV+ dataset under linear probing, non-linear probing, and fine-tuning.

We also examined segmentation tasks, which are often overlooked in remote sensing approaches, based

on the original segmentation formulation of AV+ with a frozen and unfrozen encoder and an extremely

small fine-grained segmentation task under the same formulations. Our benchmark study explores both

traditional CNN architectures (ResNet-18 and ResNet-50) as well as the more recent Swin Transformer,

which offers unique potentials for computer vision, but requires huge amounts of data to train. Importantly,
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we incorporate the Pixel-to-Propagation Module, originally built in the SimCLR framework, into the

MoCo-V2 framework, which allows for training on larger batch sizes. Our results show that this module is

key for downstream segmentation and classification tasks, even though it was designed primarily for dense

detection and segmentation tasks. As our dataset contains richer low-level, high-frequency, fine-grained

features than traditional natural imagery like COCO or ImageNet, this suggests that PPM is beneficial for

learning dense, fine-grained features in addition to dense label structure. We further combine this module

with a TemCo, a modification of SeCo, into a rich framework that captures the dense, spatiotemporal

structure of our data. While this combined framework was not the highest-performing on the various task,

it again may have been at a disadvantage since it is a larger model and the number of steps was fixed

for a fair comparison. Additionally, extending how positive samples are generated could prove beneficial.

These improvements are the focus of future analysis. Self-supervised methods will be crucial for unlocking

opportunities in remote sensing, particularly for agriculture, and this dataset release and benchmark study

offer a significant step in that direction.

In Chapter 4, we continue the discussion of representation in few-shot learning settings in the remote

sensing and earth observation areas. We propose GenCo, a generator-based two-stage approach for

few-shot classification and segmentation on remote sensing and earth observation data. Our method

proved to be effective due to the sufficient contrast introduced by the generator during pre-training and

the remarkable adaptability of embeddings in downstream few-shot tasks. Furthermore, we demonstrated

that the generator could be integrated into the few-shot learning framework to further address the issue of

data scarcity and enrich the learning information. Most importantly, our approach provides an alternative

solution to the labeling challenges in agriculture and remote sensing domains. With our few-shot contrastive

learning-based approach, we believe that it is possible to deploy models in the real world with minimal
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labeled data and training effort.

In Chapter 5, we present a framework for optimizing N management with deep RL and crop simulations

based on DSSAT. With the proposed framework, we train management policies with deep Q-network

(DQN) and soft actor-critic (SAC) for the maize crop in Iowa and Florida, which are shown to outperform

standard management practices. We also evaluate the effect of partial observation and reduced action

frequencies. We believe our work demonstrates the potential of deep RL in optimizing crop management

for more sustainable and resilient agriculture.

In Chapter 6, We address the crucial challenge of optimizing crop management to maximize yield

while minimizing management costs and environmental impacts. We present an innovative framework

that combines deep reinforcement learning, language models, and crop simulations using Gym-DSSAT.

The experimental results clearly demonstrate that Language Model-based Reinforcement Learning agents

surpass baseline models and significantly outperform existing SoTA methods. This enhanced performance

stems from the LM-RL agents’ capacity to dynamically adjust their strategies according to different reward

function designs, coupled with their ability to think and infer like expert agronomists. This dual capability

enables them to maximize rewards in a variety of scenarios. Crucially, the framework has proven effective

even in the presence of measurement noise in observable state variables, which is particularly promising for

real-world applications. We aspire for our work to serve as a proof of concept for the potential of LMs as

adept agronomists, sparking interest and motivating further exploration in this area. The ultimate goal is

to encourage researchers and practitioners to investigate and implement more advanced language models

in practical agricultural settings. We believe that such advancements could significantly contribute to the

evolution of agricultural technology, leading to smarter, more efficient, and sustainable farming practices

worldwide.
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Appendix A

Improved Representation Learning

A.1 Additional Model Pipelines

We illustrate how Hallucinator plugged into other models. To be specific, Figure A.1 demonstrates the

overall pipeline of MoCoV1. The corresponding InfoNCE loss [150] could be defined as:

LMoCo = − log
exp(q · k/τ) + exp(q̂ · k/τ)∑

k− exp(q · k−/τ) + exp(q · k/τ) + exp(q̂ · k/τ)
, (A.1)

where τ is a temperature hyper-parameter, (q, k) and (q̂, k) are two positive pairs. (q, k−) are negative

pairs. All k− vectors are stored in a queue structure.

Following this, we demonstrate the pipeline of SimCLR [3] with the proposed Hallucinator in Figure A.2.

Again, (q, k) and (q̂, k) are defined as two positive pairs for consistency. For a positive pair (q, k), we define

the loss to be the same as before [3]:
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LSimCLR(q, k) = − log
exp(sim(q, k)/τ)∑4N

k− 1[k− ̸=q] exp(sim(q, k−)/τ)
, (A.2)

where sim(q, k) = qT k/ ∥q∥ ∥k∥, i.e., cosine similarity. N represents the batch size and τ is a temperature

hyper-parameter. Originally, we had 2N data points. The number increases to 4N as the Hallucinator is

added. 1[k− ̸=q] ∈ {0, 1} is an indicator function, which equals to 1 iff k− ≠ q. Notably, we compute the

loss for all the positives, including (q, k), (k, q), (k, q̂) and (q̂, k).

We continue to demonstrate the structure of SimSiam with Hallucinator in Figure A.3. Notably,

asymmetric extrapolation is applied in embedding space. Therefore, the projector is added before feeding

the feature vector k to Hallucinator. We define one side of the loss as follows:

D(p, k) = −
(

q

∥q∥2
· k

∥k∥2
+

q̂

∥q̂∥2
· k

∥k∥2

)
, (A.3)

where (p, k) are encoded from two views with and without a projector h respectively. If the encoder is

noted as f , then p = h(f(view1)) and k = f(view2). Notably, the total loss is symmetric. If we switch

two views by defining k′ = f(view1) and p′ = h(f(view2)), we get the final form of loss as follows:

LSimSiam =
1

2
D(p, k) +

1

2
(p′, k′). (A.4)
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Figure A.1: Illustration of the pipeline based on MoCoV1 [2] with Hallucinator.
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Figure A.2: Illustration of the pipeline based on SimCLR [3] with Hallucinator.
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Figure A.3: Illustration of the pipeline based on SimSiam [7] with Hallucinator.

A.2 The Center Sampling Method

We visualize the different cropping methods in Figure A.4. Importantly, random cropping sometimes

introduces false positive pairs [12], posing a negative influence on overall training. Such adverse influence
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is more noticeable when hallucinated sample is generated without sharing mutual semantic meaning with

the other positive feature vector. While center cropping reduces the sampling areas and successfully

avoids positive pairs, it contains less variance, thus gaining sub-optimal embeddings. If center-suppressed

sampling is introduced, the mutual information between positive pairs will be reduced. Then, the benefits

of hallucinated samples can be further enhanced.

Random Cropping

Center Cropping + Center-Suppressed Sampling 

Center Cropping

Figure A.4: Visualization of three different cropping methods. We demonstrate the sampling probability
(distribution) and operable regions for three settings on the left, and their sampled pairs on the right. Pairs
cropped by Random Cropping sometimes introduce false positives, which are highlighted in red boxes.
Center Cropping avoids false positives but fails to incorporate sufficient variance. Center Cropping with
center-suppressed sampling provides the idea views for Hallucinator with enough variance and mutual
semantic information.
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Appendix B

Extended Agriculture-Vision Dataset

B.1 Agriculture-Vision Dataset

B.1.1 Review of the Original Released Dataset

In the original work of Chiu et al.(2020) [27] choices surrounding the tiling, pre-processing, and data

format of the original dataset were largely made to allow for easy consumption by users. Specifically,

1. Although there are many images, each image is relatively small, roughly 100KB in size.

2. Images are compressed to JPEG further reducing the data size, and making it easier to move and

store.

3. The pre-processing used in the experiments was applied to the released data so the data was

“standardized” and results could be more easily reproduced.

4. Binary images corresponding to label layers provides the target in a format requiring minimal

manipulation before training and enables the possibility of multiple classes to be present for a single
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Table B.1: Flights Per Field

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Flights 1391 394 183 82 39 18 5 3 0 0 0 0 0 1 0

Table B.2: Seasons Per Field

1 2 3
Seasons 1827 246 43

pixel.

While all of these considerations certainly contributed to an easing of use for reproducing the results of

that work, they also tend to limit further studies and modeling options. Instead in the present work, we

elect to recreate the full-field images, save labels as polygons as they were originally annotated, and leave

the data in its raw form without baked-in pre-processing.

B.1.2 Flights and Fields

While the original work described the data as collected from 3,432 farmlands across the Midwestern

United States, the imagery is actually from 3,432 unique full-field images, i.e., “flights”, over 2,116 farmlands

during the 2017-2019 growing period. That is, while most farmlands, i.e., “fields”, were annotated only

once, about half of the fields were annotated multiple times, potentially within the same season or different

seasons. This does not likely impact the modeling approach or structure in any significant way, however, it

is important to clarify this language.

The number of flights per field varies from 1 to 14 as seen in Table B.1. Most field imagery is from

only a single season, and about 14% are from multiple seasons as seen in Table B.2.
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B.1.3 Class labels

Label structure

In the original dataset, the target labels were represented as binary channels, one per class, for each tile.

This enabled the targets to be quickly consumed by most modeling frameworks with minimal modification

needed. Additionally, it enabled multiple classes per pixel.

As noted in the original work, most pixels have zero annotations, i.e., they are considered ‘background’.

In fact, 70.14% of the images have no annotations, making the label space largely empty. Of the remaining

images, 29.74% have a single class label, 0.13% have two labels, and 0.001% have more than three labels.

Figure B.1: The number of classes per pixel across the original Agriculture-Vision dataset. The data is
plotted on a log scale and the fraction of the total pixels is shown printed in the corresponding bar.

The label distribution can be seen in Figure B.1. We draw attention to this to emphasize how rare

multiple labels are. The choice to store each label as a separate channel may appear inefficient given this

rarity of overlap.

Therefore, we are releasing the labels as JSON files, where each label is described as a MultiPolygon of

pixel coordinates. The original annotations were stored as MultiPolygons of geo-coordinates, but these

have been mapped to pixel-coordinates so as to preserve anonymity and enable plotting on the full-field

images which also have had their geo-information removed. Each JSON file is on the order of bytes to

a few kilobytes, whereas each label channel in the original dataset was on the order of 1kB. The JSON

format also provides flexibility in that it places no constraints on overlapping or non-overlapping patterns.
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Although these MultiPolygons may appear like a collection of instances, we advise against using them

for instance-segmentation tasks as not all labels correspond to meaningful “instances”, with labels like

nutrient deficiency or drydown corresponding to regions experiencing a certain characteristic.

Label semantics

Images of the nine patterns are provided in [27]; however, descriptions and semantics of the patterns

are not included. Additional detail and clarification on the semantics of these annotations are important

for understanding the possibility of pattern co-occurrence.

Conceptually, these nine labels are not all mutually exclusive because they correspond to patterns at

different semantic levels across the field. For example, crops in a region of the field could be experiencing

a nutrient deficiency, a health pattern; in that same region, a mechanical pattern like double plants may

have also occurred. As another example, a weed cluster (which describes vegetation) could be located in a

pool of water (which describes the soil), which is actually quite common. However, because patterns like

double plants and planter skips correspond to the spacing of crops, they cannot occur together.

A description of the classes and their relationship to one another are as follows:

Waterways These are unmanaged areas of the field that do not include crops (for harvest), but instead

contain grasses and other vegetation, often to prevent erosion. Although “weeds” may grow in the

waterways (or spread into the field from waterways), they are not labeled as weeds because they are

growing in this non-crop region. Waterways are often excluded from the field bounds and therefore only

the portion of the waterways included inside the field bounds have been annotated.
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Clouds Clouds are the only pattern occurring above the ground and not describing the crop or field

itself. While certain patterns may be present on the field below the clouds, if they are not visible, only the

cloud pattern is annotated.

Water Water is a pattern describing the ground or soil. Often weeds will grow within pools of water.

Nutrient Deficiency Nutrient Deficiency describes the health of the crop and makes no statement

about how the crop is arranged in the field. Therefore patterns like a double plant or endrow may also

encompass nutrient-deficient crops.

Storm Damage Like nutrient deficiency, storm damage describes the health of the crop.

Drydown Drydown describes the state of the crop, in this case, the crop in its final phase of development

prior to harvest. Like nutrient deficiency, it can overlap with mechanical patterns.

Endrow Endrow is a mechanical pattern corresponding to the tracks of the planting and spraying

equipment. Endrows may overlap with any health or state patterns.

Planter skip This mechanical pattern is an unwanted gap in the regular planting of the crop. Weeds

could potentially grow in these gaps, although that is uncommon.

Double plant This mechanical pattern results from an overlap or over-planting of the crop. Crops in a

double plant may also be included in state or health labels as well as endrows.

Weeds Weeds are any plant growing in an undesired location. They can co-occur with mechanical

patterns or water. Weeds within waterways are ignored.
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B.1.4 Full-Field Imagery

Each raw flight image is quite large- often upwards of 10,000 × 10,000 pixels in dimension and over

1GB in size. Therefore the authors of [27] generated the dataset as 94,986 tiles 512 × 512 in size. While

this has the advantage of potentially being more manageable, it does place a limit on the types of models

constructed and approaches used.

A full-field image is seen in Figure B.2. This view shows the complexity of the field and how different

patterns are organized across it.

Figure B.2: An image of a full field and associated annotations. Due to the size and resolution of the
image, annotations appear as lines but, in fact, are tiny polygons when zoomed in. [Red] double plant,
[Green] endrow, [Blue] planter skip, [Purple] waterway, [Yellow] weed cluster

.

We have seen that using a full-field reconstruction is very useful for training. In the Second Agriculture-

Vision Challenge at CVPR 2021, the top team first reconstructed much of the full-field images by stitching

the tiles together based upon the pixels at which they were cropped [214]. This enabled them to take many

more random crops during training and introduce additional variety into their augmentation protocol.

Additionally, they used a full-field reconstruction for inference and averaged the different views of each
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pixel. Both tactics produced significant improvement in their results, suggesting that using the full-field

image will provide advantages for many different modeling frameworks.

Preprocessing

A key challenge with remote sensing data is the variety of sensors used and the potentially dramatically

different response curves they may have. Data from 2017 was captured with a sensor returning values

between 0 and 255. In contrast, data in 2018 and later was collected as int16 channels with values ranging

between 0 and 65,536. To address this, the original data was clipped between the following bounds:

Vlower = max(0, p5 − 0.4× (p95 − p5))

Vupper = min(255, p95 + 0.4× (p95 − p5))

(B.1)

where p5 and p95 are the 5th and 95th percentile pixel values for each of the four channels in a given

tile; pixels corresponding to invalid regions were excluded from this calculation. While creating a level of

normalization, this has the effect of making the images look artificial (pink/cyan/lime/purple) in some

cases. Additionally, this makes incorporating new sources of data challenging as the new data must be

mapped back in the same manner.

Normalization can provide performance and (training) speed gains. However, by releasing the dataset

raw, we leave the choice of normalization up to the researcher. Earth observation and remote sensing

analysis may bring in data sources from many different sensors over many years, all of which may cause

shifts to the underlying distribution. Similarly, because of the seasonality of the agricultural data, global

statistics over many images can be shifted based on the timing and frequency of image capture.

Additionally, agricultural data is unique in the meaningfulness of the specific colors in the images [215].
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Traditional computer vision algorithms for agriculture often relied on vegetative indices which are a

ratio of different channels [216]. In fact, the specific sensor designs used to collect this data were chosen

as narrow-band sensors such that these indices could be calculated with a high signal-to-noise ratio.

Therefore, normalizing channels independently can break this latent relationship which the sensor design

was specifically designed to capture. Furthermore, because much of this data is narrow-band, standard

normalization and color-augmentation approaches are often not appropriate.

Figure B.3: Pre-processing has a very significant impact on the appearance and statistics of the images.
(Raw) Because of the narrow-band nature of the data which predominantly occupies the lower half of the
allowed data range, images in their raw form appear dark. (Global Norm) Performing standard normal-
ization on the entire image produces an unusual appearance. (Per Channel Normalization) performing
standard normalization on each channel independently also produces an unnatural image and breaks the
ratios between the channels which have significance in agriculture. (CVPR Normalization) Normalization
of Equation (B.1). (Simple Scaling) Normalization according to the procedure in this section.

Images in their raw form appear dark because they are narrow-band and only tend to occupy the lower

half of the int16 range. For visualization purposes, the following procedure (written in python format) for

Simple Scaling may be useful.

def image norm (x , b=1):

y = x [ x >= 0 ]

x max = np . p e r c e n t i l e (y , 100−b)

x min = np . p e r c e n t i l e (y , b )

x = (x−x min ) / ( x max − x min + 1e−20)

x = x . c l i p (0 , 1)
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return x

}

All of the data we release here, both the supervised dataset and the new unsupervised dataset, is in

its raw form as it was collected for that year. 2017 data ranges between 0 and 255 and 2018-2020 ranges

between 0 and 65,536; any pixel falling outside of those limits is considered invalid and can be truncated

to the appropriate limit or mapped to a separate invalid indicator (e.g. -1) if desired.

The impact of different normalization approaches is of key interest, and by leaving the data in its raw

form, we hope to encourage significant research in this area in the future.

B.2 Fine-Grained Segmentation Task

B.2.1 Dataset

A sample of the imagery (combined RGB, as well as individual R-G-B-N channels) and annotations for

the downstream fine-grained segmentation task are shown in Figure B.4.

B.3 Additional Results

B.3.1 Balance Factor: Instance-level and pixel-level loss

To optimize the performance of the MoCo-PixPro model, we study different values of the balancing

factor of the loss function. We pre-trained the model on 1200 flights and reported the results from the

downstream non-linear classification task. Based on our experiments, α is set to 0.4 for all the pre-training.
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Figure B.4: An example field and associated labels in the field segmentation task. The RGB image (top-
left), segmentation labels (top-right), and individual RGBN channels in 16-bit integer format (bottom).

Table B.3: Ablation study on balance factor

Balance Factor α 0.10 0.30 0.40 0.50 0.70
Accuracy 73.26 75.75 78.38 77.02 76.04

B.3.2 Downstream Classification: Linear Probing

We show the exact accuracy under the linear classification protocol on labeled Extended Agriculture-

Vision in Table B.4, covering different pre-training approaches and backbones, varying from ResNet-18,

Resnet50, and Swin-T.

B.3.3 Downstream Classification: Non-Linear Probing

In Table B.5, we continue to show the accuracy under the non-linear classification protocol on labeled

Extended Agriculture-Vision. The study on label efficiency is more extensive under this setting. All the

weights are pre-trained from 3600 flights of images.
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Table B.4: Linear Probing

Weights Backbone
100.00%

labeled data
10.00%

labeled data

Random ResNet-18 62.31 55.34
ImageNet ResNet-18 68.52 60.87
MoCo-V2 ResNet-18 73.58 62.14
MoCo-PixPro ResNet-18 73.74 63.75
TemCo ResNet-18 73.34 63.55
TemCo-PixPro ResNet-18 72.24 63.59

Random ResNet-50 62.13 54.71
ImageNet ResNet-50 71.22 67.54
MoCo-V2 ResNet-50 77.65 69.59
MoCo-PixPro ResNet-50 77.98 70.49

Random Swin-T 58.39 56.30
ImageNet Swin-T 64.14 61.61
MoCo-V2 Swin-T 73.29 71.15
MoCo-PixPro Swin-T 75.53 73.07
TemCo Swin-T 74.11 71.92

B.3.4 Ablation Study: Number of flights for pre-training

We use a ResNet-18 backbone and basic MoCo-V2 for experiments. When the number of flights used

for SSL is increased from 300 to 3600, we observe stable improvement in the downstream classification task

under the non-linear probing setting; this gain is confirmed regardless of the fraction of labeled dataset for

tuning (Table B.6).

Ablation Study: Reduced Flights, Non-Linear Probing

We confirm that this result holds across SSL modules by examining performance using 1200 vs. 3600

flights for pre-training and evaluating under the non-linear probing paradigm for AV+ classification

(Table B.7).

End-to-End Fine-Tuning

We report the end-to-end accuracy under the end-to-end classification protocol on labeled Extended

Agriculture-Vision (AV+) in Table B.8. Results cover different pre-training approaches and backbones.
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Table B.5: Non-Linear Probing on 3600 Flights

Weights Backbone
100.00%

labeled data
80.00%

labeled data
50.00%

labeled data
20.00%

labeled data

Random ResNet-18 62.92 62.81 62.01 61.36
ImageNet ResNet-18 72.25 71.58 71.18 70.54
MoCo-V2 ResNet-18 77.58 77.03 76.60 76.16
MoCo-PixPro ResNet-18 78.38 77.77 77.28 76.82
TemCo ResNet-18 76.83 76.78 76.40 75.87
TemCo-PixPro ResNet-18 77.89 77.83 77.04 76.46

Random ResNet-50 63.49 62.81 62.95 62.26
ImageNet ResNet-50 75.35 75.15 73.75 72.84
MoCo-V2 ResNet-50 80.62 80.01 79.38 77.93
MoCo-PixPro ResNet-50 80.66 80.10 79.88 78.23

Random Swin-T 59.88 59.80 59.28 59.09
ImageNet Swin-T 75.35 75.15 73.75 72.84
MoCo-V2 Swin-T 79.31 78.81 78.56 77.59
MoCo-PixPro Swin-T 80.02 79.52 78.89 77.88
TemCo Swin-T 79.01 78.24 77.99 77.11

Weights Backbone
10.00%

labeled data
5.00%

labeled data
2.00%

labeled data
1.00%

labeled data

Random ResNet-18 60.18 59.05 59.00 58.15
ImageNet ResNet-18 68.72 67.76 65.20 61.79
MoCo-V2 ResNet-18 75.02 74.03 71.48 67.01
MoCo-PixPro ResNet-18 76.22 75.27 72.20 69.85
TemCo ResNet-18 75.05 74.21 70.62 65.32
TemCo-PixPro ResNet-18 76.13 75.02 72.19 69.66

Random ResNet-50 61.42 60.61 59.05 58.10
ImageNet ResNet-50 71.92 70.86 67.60 63.91
MoCo-V2 ResNet-50 77.66 75.72 74.32 71.58
MoCo-PixPro ResNet-50 77.92 76.77 75.52 71.61

Random Swin-T 58.33 57.81 57.62 57.08
ImageNet Swin-T 63.11 62.30 60.44 58.00
MoCo-V2 Swin-T 74.58 68.85 67.70 66.59
MoCo-PixPro Swin-T 76.24 70.50 68.88 66.59
TemCo Swin-T 74.51 68.62 66.99 65.58

Table B.6: Ablation study on the pre-training size of data for pre-training with MoCo-V2.

Number of Flights
100.00%

labeled data
20.00%

labeled data
1.00%

labeled data

300 71.91 69.30 62.53
1200 74.73 71.86 64.47
3600 77.58 76.16 67.01

Similar results are shown in the setting of weights pre-trained with only 1200 flights in Table B.9.
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Table B.7: Non-Linear Probing on 1200 Flights

Weights Backbone
100.00%

labeled data
80.00%

labeled data
50.00%

labeled data
20.00%

labeled data

Random ResNet-18 62.92 62.81 62.01 61.36
ImageNet ResNet-18 72.25 71.58 71.18 70.54
MoCo-V2 ResNet-18 73.02 72.93 72.17 71.86
MoCo-PixPro ResNet-18 73.53 72.42 72.12 71.12
TemCo ResNet-18 73.85 73.50 73.43 72.93
TemCo-PixPro ResNet-18 74.73 75.03 73.58 73.20

Weights Backbone
10.00%

labeled data
5.00%

labeled data
2.00%

labeled data
1.00%

labeled data

Random ResNet-18 60.18 59.05 59.00 58.15
ImageNet ResNet-18 68.72 67.76 65.20 61.79
MoCo-V2 ResNet-18 70.68 69.37 67.77 64.47
MoCo-PixPro ResNet-18 70.19 69.59 67.79 65.75
TemCo ResNet-18 71.60 71.12 68.83 66.17
TemCo-PixPro ResNet-18 71.94 71.92 69.48 66.45

B.3.5 Fine-Grained Semantic Segmentation

In this downstream task, we train each model for 30 epochs using the Adam optimizer. We use the

one-cycle learning rate with a maximum learning rate of 0.001, minimum learning rate of 1e-7, initial

learning rate of 4e-5, cosine annealing, base momentum of 0.85, and maximum momentum of 0.95 [154].

We show performance for each of the four classes of interest under the different training paradigms in the

fine-grained semantic segmentation task.
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Table B.8: End-to-End Fine-Tuning on 3600 Flights

Weights Backbone
100.00%

labeled data
80.00%

labeled data
50.00%

labeled data
20.00%

labeled data

Random ResNet-18 65.32 64.91 65.01 64.36
ImageNet ResNet-18 80.19 80.07 79.03 77.42
MoCo-V2 ResNet-18 80.57 79.84 79.23 78.10
MoCo-PixPro ResNet-18 81.47 80.40 80.21 78.11
TemCo ResNet-18 79.10 78.05 78.28 77.23
TemCo-PixPro ResNet-18 80.02 79.01 78.97 78.15

Random ResNet-50 78.42 77.17 76.15 71.55
ImageNet ResNet-50 81.01 80.94 80.77 80.09
MoCo-V2 ResNet-50 81.68 81.55 81.39 81.05
MoCo-PixPro ResNet-50 82.22 81.86 81.42 81.11

Random Swin-T 77.70 76.00 75.35 73.56
ImageNet Swin-T 81.06 80.94 80.77 80.09
MoCo-V2 Swin-T 84.49 84.39 84.12 81.76
MoCo-PixPro Swin-T 85.58 85.37 84.85 83.41
TemCo Swin-T 84.91 84.55 84.01 81.43

Weights Backbone
10.00%

labeled data
5.00%

labeled data
2.00%

labeled data
1.00%

labeled data

Random ResNet-18 64.18 64.15 62.58 59.95
ImageNet ResNet-18 75.45 73.90 64.98 62.90
MoCo-V2 ResNet-18 76.44 75.66 72.89 69.24
MoCo-PixPro ResNet-18 77.85 76.18 71.54 68.06
TemCo ResNet-18 76.60 75.35 71.90 70.01
TemCo-PixPro ResNet-18 76.49 75.23 71.70 70.16

Random ResNet-50 67.48 66.40 64.62 61.60
ImageNet ResNet-50 78.07 75.36 70.42 66.67
MoCo-V2 ResNet-50 79.13 77.08 74.55 71.80
MoCo-PixPro ResNet-50 80.14 78.06 74.95 71.86

Random Swin-T 70.19 68.84 61.56 55.26
ImageNet Swin-T 78.07 75.36 70.42 66.67
MoCo-V2 Swin-T 81.04 77.49 75.23 72.09
MoCo-PixPro Swin-T 81.15 78.46 76.53 73.88
TemCo Swin-T 80.85 77.51 75.33 72.40
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Table B.9: End-to-End Fine-Tuning on 1200 Flights

Weights Backbone
100.00%

labeled data
80.00%

labeled data
50.00%

labeled data
20.00%

labeled data

Random ResNet-18 65.32 64.91 65.01 64.36

ImageNet ResNet-18 80.19 80.07 79.03 77.42
MoCo-V2 ResNet-18 76.48 77.77 77.05 72.59
MoCo-PixPro ResNet-18 78.13 76.25 76.94 70.93
TemCo ResNet-18 78.20 76.42 77.10 74.36
TemCo-PixPro ResNet-18 78.02 77.46 75.93 75.95

Weights Backbone
10.00%

labeled data
5.00%

labeled data
2.00%

labeled data
1.00%

labeled data

Random ResNet-18 64.18 64.75 62.58 59.95
ImageNet ResNet-18 75.45 73.90 64.98 62.90
MoCo-V2 ResNet-18 72.03 71.08 64.24 63.05
MoCo-PixPro ResNet-18 71.15 70.41 65.77 62.77
TemCo ResNet-18 72.65 73.50 68.70 64.89
TemCo-PixPro ResNet-18 72.25 71.02 66.37 60.91

Figure B.5: (A) Average IoU in each class over the test dataset for each model in the field segmentation
task with a fixed backbone (top) and fine-tuned backbone (bottom). Each model architecture uses the
ResNet-18 encoder. (B) Average IoU in each class over the test dataset for each model in the field
segmentation task with a fixed backbone (top) and fine-tuned backbone (bottom). Each model uses the
same weight initialization from MoCo-V2 pre-training, but the encoder architecture is different between
the models. (C) Average IoU in each class over the test dataset for each model in the field segmentation
task with a fixed backbone (top) and fine-tuned backbone (bottom). The two models compared here use
weights initialized from MoCo+PixPro pre-training but have different architectures. (D) Average IoU in
each class over the test dataset for each model in the field segmentation task with a fixed backbone (top)
and fine-tuned backbone (bottom). The two models compared here use weights initialized from TemCo
pre-training but have different architectures. (E) Average IoU in each class over the test dataset for each
model in the field segmentation task with a fixed backbone (top) and fine-tuned backbone (bottom). Each
model architecture uses the Swin Transformer encoder but has different weight initializations.
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