
© 2024 Weichao Mao

MULTI-AGENT REINFORCEMENT LEARNING FOR NONZERO-SUM
MARKOV GAMES

BY

WEICHAO MAO

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2024

Urbana, Illinois

Doctoral Committee:

Emeritus Professor Tamer Başar, Chair
Professor Ravishankar K. Iyer
Professor Rayadurgam Srikant
Professor Maxim Raginsky

Abstract

In recent years, multi-agent reinforcement learning (MARL) has shown remarkable capabilities in addressing

sequential decision-making problems that involve the strategic interactions of more than one decision-

maker. Motivated by the empirical successes, many research efforts have been devoted to lay the theoretical

foundations of MARL. In this dissertation, we contribute to this line of theoretical research by developing

MARL algorithms with convergence and sample complexity guarantees in nonzero-sum Markov games, a

regime that has been barely touched on in prior research. First, we design sample-efficient MARL algorithms

for learning (coarse) correlated equilibria in general-sum Markov games. Our algorithms integrate variants of

optimistic Q-learning for efficient exploration with uncoupled no-regret learning for policy updates. These

algorithms are decentralized in the sense that each agent makes decisions based on only its local information

with no need of communication or central coordination. We theoretically establish the sample complexity

guarantees for our algorithms, which appear to be the first for decentralized MARL in general-sum Markov

games. Second, we study reinforcement learning (RL) under environmental non-stationarity, a major challenge

faced by MARL agents. When both the reward functions and the state transition distributions may vary over

time, we propose a simple but effective restart-based algorithm particularly tailored to such non-stationary

environments. We analyze the dynamic regret of our algorithm and show that it is near-optimal by establishing

an almost matching information-theoretical lower bound. We demonstrate that our non-stationary RL method

can be readily applied to learning the team-optimal policies in a specific category of cooperative games with

slowly-changing opponents. Third, we propose to use meta-learning to transfer useful information across

multiple MARL tasks so as to learn related tasks collectively and more efficiently. We establish the first line

of theoretical results for meta-learning in a wide range of fundamental MARL settings, including learning

Nash equilibria in two-player zero-sum Markov games and Markov potential games, as well as learning coarse

correlated equilibria in general-sum Markov games. Under natural notions of task similarity, we show that

meta-learning achieves provable sharper convergence to various game-theoretical solution concepts than

learning each task separately. Numerical results are provided to corroborate our theoretical findings. Finally,

we conclude this dissertation and discuss future research directions.

ii

To XZX, for her love and support.

iii

Acknowledgments

First, I would like to express my sincere gratitude to my advisor, Professor Tamer Başar, for his continued

support, patience, and encouragement. My research has benefited in countless ways from his knowledgeability

and sharp insights. None of my achievements in this dissertation would ever be possible without his help.

His kindness, open-mindedness, and strong work ethic have shaped my personality as a researcher and will

continue to guide me for the rest of my life.

I am also grateful to the other members of my dissertation committee: Professor Ravishankar K. Iyer,

Professor Rayadurgam Srikant, and Professor Maxim Raginsky. They have provided many invaluable

comments and suggestions that helped significantly enhance the quality of this dissertation.

This dissertation has greatly benefited from the collaboration with many beautiful minds. I would like to

thank my long-time collaborator Haoran Qiu for the inspiring and fruitful discussions that led to multiple

research projects related to this dissertation. I would also like to express my gratitude to Kaiqing Zhang and

Erik Miehling, who introduced me to the fascinating field of multi-agent reinforcement learning and provided

valuable guidance in the early stage of my doctoral research. I am very thankful to Xiangyuan Zhang, Ruihao

Zhu, Chen Wang, Hubertus Franke, and Professor Zbigniew Kalbarczyk for sharing their knowledge and

expertise in numerous discussions.

Gratitude goes to my fellow labmates: Muhammad Aneeq uz Zaman, Raj Kiriti Velicheti, Shubham

Aggarwal, Melih Bastopcu, Abdullah Alawad, Erkan Bayram, and Arda Guclu. I appreciate the friendly,

collaborative and fun environment they created together in our group.

I would like to take this opportunity to thank all the fortunate friendships that I have made during my

stay at Urbana-Champaign. A special thanks goes to Dawei Sun, Jiaqi Guan, Mengchao Zhang, and Yifan

Zhu for being tremendously fun and caring. I would also like to thank my parents for their unconditional

support. Their encouragement helps me stay optimistic in the face of uncertainties in life.

iv

Table of contents

List of Commonly Used Acronyms . vi

Chapter 1 Introduction . 1

Chapter 2 Learning (Coarse) Correlated Equilibria in General-Sum Markov Games 5

Chapter 3 Non-Stationary RL and Cooperative Markov Games . 62

Chapter 4 Meta-Learning in Markov Games . 104

Chapter 5 Concluding Remarks . 152

References . 154

Appendix A Publications of Weichao Mao Related to the Thesis . 169

v

List of Commonly Used Acronyms

CCE Coarse correlated equilibrium.

CE Correlated equilibrium.

FTRL Follow-the-regularizer-leader.

MAML Model-agnostic meta-learning.

MARL Multi-agent reinforcement learning.

MDP Markov decision process.

MPG Markov potential game.

NE Nash equilibrium.

NFG Normal-form game.

OFTRL Optimistic follow-the-regularizer-leader.

OMD Online mirror descent.

RL Reinforcement learning.

vi

Chapter 1

Introduction

Reinforcement learning (RL) has achieved tremendous successes in recent years and has led to major

breakthroughs in artificial intelligence [1]–[4]. In RL, a learning agent tries to learn an optimal decision-

making policy by sequentially interacting with an unknown environment and maximizing its cumulative

rewards along the way [5]. Due to its natural and universal formulation, RL draws great interests from

many disciplines where optimal decision-making is concerned, including control theory, management science,

operations research, and multi-agent systems.

One such discipline that is particularly relevant to this dissertation is game theory [6]. Many real-world

sequential decision-making problems involve the strategic interactions of more than one agent in a shared

environment. Game-theoretical thinking naturally arises in resolving such complex systems with multiple self-

interested agents. These multi-agent decision-making problems are usually modeled under the mathematical

framework of stochastic games [7] (also known as Markov games), and oftentimes addressed with multi-agent

reinforcement learning (MARL) [8]. Well-known application scenarios of MARL include playing the game of

Go [2], Poker [3], real-time strategy games [9], autonomous driving [10], and robotics [11].

Despite the encouraging empirical successes, rigorous theoretical understandings of MARL still leave a

lot to be desired, and MARL algorithms with provable convergence and sample complexity guarantees are

relatively lacking. In practice, training MARL algorithms with deep neural-networks as function approximators

is known to be notoriously hard. Deep MARL agents often exhibit oscillating behaviors during training due to

the strong coupling of the agents’ running policies. When the number of agents is large, many MARL methods

may also require a significant number of training samples to thoroughly explore the state-action space. This

is due to the well-known curse of multiagents [12]: The joint action space in a MARL problem in general

amounts to the Cartesian product of all the agents’ individual action spaces, which scales exponentially in the

number of agents. These undesirable aspects of empirical MARL solutions pressingly call for the development

of sample-efficient MARL algorithms with provable convergence guarantees. In the following, we identify

some key limitations in existing theoretical results of MARL research and seek to make improvements along

these directions.

First, prior theoretical efforts in MARL have been primarily focused on simplified game settings with

special reward structures, such as fully competitive or cooperative settings. One prevalent setting is MARL

in two-player zero-sum Markov games [13], [14], where the two agents have exactly opposite objectives. This

is mainly due to the fundamental computational difficulty in more general scenarios, since calculating a

Nash equilibrium (NE) in a generic general-sum game is known to be PPAD-complete [15]. Consequently,

1

many prior works often fail to justify the empirical successes of MARL to application scenarios beyond these

simplified settings. A broad spectrum of games in the generic form (such as general-sum Markov games) are

still left largely open.

Second, a major challenge faced by MARL is non-stationarity of the environment, yet a rigorous treatment

of RL in non-stationary environments is relatively lacking in earlier works. Specifically, in MARL, the state

transitions and rewards depend on the collective actions of all the agents. As a result, the environment often

looks non-stationary from each agent’s own perspective when the agents learn and update their local policies

simultaneously, because the environment may be altered by the unobserved behavior of the other agents.

Conventional RL results no longer apply to such a non-stationary environment, as these results are mostly

established under the assumption of a stationary Markov decision process (MDP) where the state transition

and reward functions are fixed. To address the challenge of non-stationarity, one needs to specifically design

and analyze RL algorithms suitable for non-stationary environments, and to establish their connections to

the non-stationarity faced by MARL agents.

Third, prior research in MARL focuses on solving an individual task in isolation but often neglects the

potential connections between multiple related tasks. In many practical scenarios of MARL, the environment

is dynamically evolving, and hence a MARL algorithm needs to not only solve a single task alone but instead

to collectively resolve a set of related tasks. By exploiting the knowledge obtained from other tasks, a

sample-efficient MARL algorithm should ideally be able to solve an unseen task using much fewer training

samples than learning from scratch, especially when the tasks share some inherent similarities. Such a

practical consideration poses the important question of designing a MARL method that can exploit the

connections across multiple related tasks and use its prior knowledge to expedite the learning process on a

new task.

Our goal in this dissertation is to develop theoretically well-founded RL algorithms that can address the

aforementioned limitations in existing MARL research. Our results in this regard are summarized in the

following subsections.

1.1 MARL in General-Sum Markov Games

To address the first limitation above, we propose multiple sample-efficient MARL algorithms for general-sum

Markov games with no specialized reward structure assumptions [16], [17]. Given the fundamental difficulty

of calculating a Nash equilibrium (NE), we aim at two weaker solution concepts, namely coarse correlated

equilibrium (CCE) and correlated equilibrium (CE). Both CCE and CE are standard game-theoretical notions

that generalize NE by allowing possible correlations among the agents’ strategies.

To avoid the exponential sample complexity implied by the curse of multiagents, our algorithms are

specifically designed to be decentralized. In our algorithms, each agent makes decisions based on only its

local information. Neither communication nor centralized coordination is required during learning. In fact,

each agent can be completely oblivious to the presence of others. This way, each agent optimizes its policy

in its own action space instead of the Cartesian product action space of all agents. Hence, our algorithms

can readily scale up to a large number of agents, without suffering from the exponential dependence on the

number of agents.

Though seemingly restrictive, we show that decentralized learning dynamics suffice to efficiently find

(coarse) correlated equilibria in general-sum Markov games. Specifically, we propose multiple V-learning-based

algorithms, where each agent independently runs optimistic V-learning (a variant of Q-learning) to efficiently

2

explore the unknown environment, while using a no-regret learning subroutine for policy updates. In episodic

general-sum Markov games, we show that our algorithms can learn an ε-approximate CCE in Õ(H5SAmax/ε
2)

episodes, and an ε-approximate CE in Õ(H5SA2
max/ε

2) episodes, where S is the number of states, Amax is

the size of the largest individual action space, and H is the length of an episode. Our results appear to be

the first sample complexity guarantees for decentralized MARL in generic general-sum Markov games. In

addition, we extend our results to the full-information feedback setting where each agent can observe the

complete reward vector. By exploiting the “self-play” structure, we develop new algorithms that converge to

CCE or CE in general-sum Markov games at a fast rate of Õ(T−1) within T iterations of policy updates

when the same algorithms are run by all the agents. Numerical simulations are also provided to corroborate

our theoretical findings.

1.2 Non-Stationary RL and Cooperative Markov Games

In view of the second limitation identified above, we present an RL algorithm for non-stationary MDPs,

and demonstrate its connection to an important subclass of MARL problems named cooperative Markov

games. In non-stationary MDPs, both the reward functions and the state transition distributions are allowed

to vary over time, either gradually or abruptly, as long as their cumulative variation magnitude does not

exceed certain budgets. In addition to its close connection to MARL, non-stationary RL is an interesting

topic on its own, as it can also capture time-varying environments in a wide range of intriguing sequential

decision-making problems such as online advertisement auctions [18], [19], dynamic pricing [20], and inventory

control [21], [22].

We propose an RL algorithm named Restarted Q-Learning with Upper Confidence Bounds (RestartQ-

UCB) [23] that is particularly tailored to non-stationary environments. Our algorithm adopts a simple

but effective restarting strategy that resets the memory of the agent according to a predefined schedule.

The restarting strategy ensures that our algorithm only refers to the most up-to-date experience in the

time-varying environment for decision-making. Compared to conventional RL algorithms in stationary MDPs,

RestartQ-UCB also utilizes an extra optimism term (in addition to the standard Hoeffding/Freedman-based

bonus) to encourage additional exploration in the non-stationary environment.

Our analysis shows that RestartQ-UCB outperforms existing non-stationary RL solutions in terms of

dynamic regret, a notion commonly utilized to measure the performance of online learning algorithms in

non-stationary environments. In particular, RestartQ-UCB with Freedman-type bonus terms achieves a

dynamic regret bound of Õ(S
1
3A

1
3∆

1
3HT

2
3), where S and A are the numbers of states and actions, respectively,

∆ > 0 is the total variation magnitude, H is the number of time steps per episode, and T is the total number

of time steps. We further show that our algorithm is nearly optimal by establishing an information-theoretical

lower bound of Ω(S
1
3A

1
3∆

1
3H

2
3T

2
3), which is the first impossibility result that characterizes the fundamental

limits in non-stationary RL. We also illustrate how our non-stationary RL algorithm is connected to the

non-stationarity issue inherent in MARL. Specifically, we show that RestartQ-UCB can be readily applied to

learning the team-optimal policies in cooperative smooth games against a slowly-changing opponent.

1.3 Meta-Learning in Markov Games

In response to the third aforementioned issue, we propose to use meta-learning to learn multiple related

Markov games collectively. Meta-learning [24]–[27] studies the use of data samples from existing tasks to learn

3

useful representations that enable quick adaptation to new tasks. We focus on the classic model-agnostic

meta-learning (MAML) [28] type of algorithms that aim to learn a good initialization such that running a

few steps of gradient descent from this initialization quickly leads to a desirable policy on any new task. To

study the convergence of MAML, an important prerequisite is to understand how the convergence of MARL

algorithms depends on the quality of policy initialization, but such a result is missing in the literature.

We make an initial attempt toward characterizing some of the central theoretical properties of meta-

learning in a wide range of fundamental MARL settings, and, along the way, we develop multiple MARL

algorithms with initialization-dependent convergence guarantees [29]. First, for learning Nash equilibria (NE)

in two-player zero-sum Markov games, we first propose an optimistic online mirror descent algorithm with a

refined convergence analysis that explicitly characterizes the dependence on policy initialization. Based on

such refined analysis, we show that meta-learning provably achieves faster convergence to NE when learning

a sequence of “similar” zero-sum games collectively, where our similarity metric naturally depends on the

closeness of the games’ NE policies. Second, we consider learning NE in Markov potential games (MPGs),

an important subclass of MARL tasks where the agents are largely cooperative with objectives aligned by

a global potential function. For MPGs, we show that a simple refinement of an existing policy gradient

ascent algorithm suffices to provide initialization-dependent guarantees. We establish sharper convergence

rates of meta-learning when the potential functions of the MPGs have small deviations. In addition, with a

properly chosen policy update rule, we prove non-asymptotic convergence of the exact MAML algorithm

in MPGs, despite the convoluted learning dynamics of multiple loosely-coupled agents. Third, for learning

coarse correlated equilibria in general-sum Markov games, we analogously design an initialization-dependent

MARL algorithm, and then establish the sharper convergence rate of meta-learning under natural similarity

metrics. Finally, we provide numerical results to illustrate the expedited convergence and scalability of our

algorithms. Our work appears to be the first to investigate the theoretical properties of meta-learning in

MARL and provide reliable justifications of its benefits.

1.4 Outline

The rest of this dissertation is organized as follows. In Chapter 2, we present decentralized MARL algorithms

for learning (coarse) correlated equilibria in general-sum Markov games and analyze their sample complexities

or convergence rates. In Chapter 3, we study RL in non-stationary environments and illustrate its connection

to cooperative Markov games. In Chapter 4, we present our meta-learning method that achieves faster

convergence by learning multiple Markov games collectively. Finally, in Chapter 5, we conclude this dissertation

and suggest future research directions.

4

Chapter 2

Learning (Coarse) Correlated

Equilibria in General-Sum Markov

Games

Multi-agent reinforcement learning (MARL) algorithms often suffer from an exponential sample complexity

dependence on the number of agents, a phenomenon known as the curse of multiagents. In this chapter, we

address this challenge by investigating decentralized sample-efficient MARL algorithms that efficiently learn

equilibria in general-sum Markov games. Given the fundamental difficulty of calculating a Nash equilibrium

(NE), we aim at learning a coarse correlated equilibrium (CCE) or correlated equilibrium (CE), two solution

concepts that generalize NE by allowing possible correlations among the agents’ strategies.

We first propose the V-learning OMD algorithm, where each agent independently runs optimistic V-

learning (a variant of Q-learning) to efficiently explore the unknown environment, while using a stabilized

online mirror descent (OMD) subroutine for policy updates. In episodic general-sum Markov games, we show

that the agents can find an ε-approximate CCE in at most Õ(H6SAmax/ε
2) episodes, where S is the number

of states, Amax is the size of the largest individual action space, and H is the length of an episode. This

appears to be the first sample complexity result for decentralized MARL in generic general-sum Markov

games. Our results rely on a novel investigation of an anytime high-probability regret bound for OMD with a

dynamic learning rate and weighted regret, which would be of independent interest.

One key feature of the V-learning OMD algorithm is that it is decentralized, where each agent can make

decisions based on only its local information. Neither communication nor centralized coordination is required

during learning. In fact, each agent can be completely oblivious to the presence of others. This way, this

algorithm can readily scale up to a large number of agents, without suffering from the exponential dependence

on the number of agents.

We further generalize and improve V-learning OMD in multiple different aspects. First, we propose stage-

based V-learning algorithms that significantly simplify the algorithmic design and analysis of V-learning OMD,

and circumvent a rather complicated no-weighted -regret bandit subroutine. We also show that stage-based

V-learning improves the sample complexity of V-learning OMD for learning (coarse) correlated equilibria

in general-sum Markov games. In particular, stage-based V-learning can learn an ε-approximate CCE in

Õ(H5SAmax/ε
2) episodes, and an ε-approximate CE in Õ(H5SA2

max/ε
2) episodes. Second, we extend the

5

V-learning framework to the full-information feedback setting where each agent can observe the expected

rewards it would have received had it played any candidate action. We develop no-regret learning algorithms

with accompanying value update procedures and establish their fast Õ(T−1) convergence to CCE or CE

in full-information general-sum Markov games when the same algorithms are adopted by all the players.

Numerical simulations are provided to corroborate these theoretical findings.

2.1 Introduction

Reinforcement learning (RL) has recently shown the capability to solve many challenging sequential decision-

making problems, ranging from the game of Go [2], Poker [3], and real-time strategy games [9], to autonomous

driving [10], and robotics [11]. Many of the RL applications involve the interaction of multiple agents, which

are modeled systematically within the framework of multi-agent reinforcement learning (MARL). These

success stories have inspired a remarkable line of studies on the theoretical aspects of MARL.

Most of the theoretical efforts in MARL, however, have been devoted to Markov games with special reward

structures, such as fully competitive or cooperative games. One prevalent setting is MARL in two-player

zero-sum Markov games [13], [14], where the two agents have exactly opposite objectives. Such prevalence is

mostly due to the fundamental computational difficulty in more general scenarios: Finding a Nash equilibrium

(NE) is known to be PPAD-complete both for two-player general-sum games [15] and zero-sum games with

more than two players [30]. Given the daunting impossibility results, convergence to NE in generic games

with no special structure seems hopeless in general. As a result, many important problems in the multi-player

general-sum settings, which can model broader and more practical interactive behaviors of decision makers,

have been left relatively open.

In this chapter, we make an initial attempt toward understanding some of the theoretical aspects of MARL

in decentralized general-sum Markov games. Given the inherent challenges for computing Nash equilibria, we

need to target a slightly weaker solution concept than NE. One reasonable alternative is to find a coarse

correlated equilibrium (CCE) [31], [32] of the game. Unlike NE, CCE can always be found in polynomial

time for general-sum games [33], and due to its tractability, calculating CCE has also been commonly used as

an important subroutine toward finding Nash equilibria in two-player zero-sum Markov games [14], [34].

Our interest in CCE is mostly motivated by the following folklore result for learning in normal-form

games: When the agents independently run no-regret learning algorithms in general-sum normal-form

games, their empirical frequency of plays converges to the set of CCE of the game [35], [36]. In no-regret

learning, each agent independently adapts its policy to minimize the cumulative regret based on only its local

information, irrespective of the actions or rewards of the other agents. Well-known examples of no-regret

learning algorithms include multiplicative weights update (MWU) [37] and online gradient descent [38]. Such

a folk result hence suggests that CCE is a natural outcome of the simple and uncoupled learning dynamics of

the agents. A natural question to ask is whether a similar result also holds for Markov games. Specifically,

in this chapter, we ask the following questions: Can we find CCE in general-sum Markov games using

decentralized/uncoupled learning dynamics? If so, can we achieve such a result efficiently, by showing an

explicit sample complexity upper bound?

Before answering these questions, we would like to remark that MARL in general-sum games can be highly

challenging due to the well-known curse of multiagents [12]: The joint action space in a MARL problem is

equal to the Cartesian product of the individual action spaces of all agents, which scales exponentially in

the number of agents. Typical algorithms that easily fail at this challenge are those using centralized/joint

6

learning [39], [40]. Specifically, centralized learning assumes the existence of a single coordinator who can

access the local information of all the agents, and learns policies jointly for all of them. This centralized

training (though possibly decentralized execution) approach has become a common practice in empirical

MARL [41]–[46]. Centralized learning essentially reduces the multi-agent problem to a single-agent one, but

unfortunately suffers from the exponential dependence as it usually needs to exhaustively search the joint

action space. Such a computation bottleneck can be partially resolved by allowing communications among

the agents and hence distributing the workload to each of them [47]–[49]. However, communication-based

methods instead suffer from the additional communication overheads, which can be unrealistic in some

real-world scenarios where communication may be expensive and/or unreliable, such as in unmanned aerial

vehicle (UAV) field coverage [50].

Given the aforementioned limitations, in this thesis, we are interested in a more practical setting:

decentralized learning1. We focus on solutions where each agent can make decisions based on only its local

information (e.g., local actions and rewards), and need not communicate with its opponents or be coordinated

by any central controller during learning. In fact, in our algorithms, the agents can be completely oblivious to

the presence of other agents. Under such weak assumptions, decentralized algorithms are suitable for many

practical MARL scenarios [59], and do not suffer from the exponential sample & computation complexity.

Such algorithms are naturally model-free, as they do not maintain explicit estimates of the transition functions.

Compared with model-based algorithms, model-free ones typically enjoy higher time- and space-efficiency,

and are more compatible with the modern deep RL architectures [60], [61].

In decentralized learning, since both the reward and the transition are affected by the other agents, the

environment becomes non-stationary from each agent’s own perspective, especially when the agents learn and

update their policies simultaneously. Hence, an agent needs to efficiently explore the unknown environment

while bearing in mind that the information it gathered a while ago might no longer be accurate. This makes

many successful single-agent RL solutions, which assume that the agent is learning in a stationary Markovian

environment, inapplicable. Furthermore, compared with RL in two-player zero-sum games, an additional

challenge in general-sum games is equilibrium selection. In zero-sum games, all NE have the same value [62],

and there is no ambiguity in defining the sub-optimality of a policy. However, in general-sum games, multiple

equilibria can have different values. We hence need to first identify which equilibrium to compare with when

we are trying to measure the performance of a policy.

Contributions. Despite the challenges identified above, we answer both of the aforementioned questions

affirmatively, by presenting an algorithm in which the agents can find a CCE in general-sum Markov games

efficiently through decentralized learning. In the first part of this chapter (Sections 2.4-2.6), we study provably

efficient exploration in decentralized general-sum Markov games. We propose an algorithm named Optimistic

V-learning with Stabilized Online Mirror Descent (V-learning OMD), where V-learning [34] is a simple

variant of Q-learning. In V-learning OMD, each agent independently runs an optimistic V-learning algorithm

to explore the unknown environment, while using an online mirror descent procedure for policy updates.

Following the learning process, the CCE can be extracted by simply letting the agents randomly repeat

their previous strategies using a common random seed. We also show that if all agents in the game run

the V-learning OMD algorithm, they can find an ε-approximate coarse correlated equilibrium in at most

Õ(SAmaxH
6/ε2) episodes, where S is the number of states, Amax is the size of the largest action space among

the agents, and H is the length of an episode. Our result complements its counterpart in normal-form games

1This setting has been studied under various names in the literature, including individual learning [51], decentralized
learning [52], agnostic learning [53], [54], and independent learning [40], [55]. It also belongs to a more general category of
teams/games with decentralized information structure [56]–[58].

7

that uncoupled no-regret learning dynamics lead to CCE. We further show that our sample complexity is

nearly-optimal in that it matches all the parameter dependences in the information-theoretical lower bound,

except the horizon length H. As an important building block of our analysis, we conduct a novel investigation

of a high-probability regret bound for OMD with a dynamic learning rate and weighted regret, which

might be of independent interest. We emphasize that due to the decentralization property, our algorithm

readily generalizes to a large number of agents without suffering from the exponential dependence on the

number of agents. Our work appears to be the first to provide non-asymptotic guarantees for MARL in

generic general-sum Markov games with efficient exploration, with an additional appealing feature of being

decentralized.

Despite being the first decentralized algorithm for learning CCE in general-sum Markov games, an

undesirable aspect of the V-learning OMD algorithm is the need of the complicated no-weighted -regret bandit

analysis. This turns out to be a routine yet painful procedure that many existing V-learning-based methods

[12], [16], [63] need to go through. In the second part of this chapter (Section 2.7), we provide a solution to this

problem and improve the V-learning OMD algorithm in multiple different aspects. Specifically, we propose two

variants of V-learning OMD that use a stage-based V-learning method. We show that stage-based V-learning

helps significantly simplify the algorithmic design and analysis of V-learning OMD, and circumvent the rather

complicated no-weighted-regret bandit subroutine. We also demonstrate that stage-based V-learning can be

combined with any off-the-shelf no(-average)-regret learning algorithm to improve the sample complexity of

V-learning OMD. In particular, stage-based V-learning can learn an ε-approximate CCE in Õ(H5SAmax/ε
2)

episodes, and an ε-approximate CE in Õ(H5SA2
max/ε

2) episodes.

The Õ(1/ε2) sample complexities of our V-learning-based algorithms rely on establishing an O(
√
T) regret

bound for an adversarial bandit procedure. Such an O(
√
T) regret is unimprovable against an adversarial

environment, but it need not be the case for learning equilibria in games because each player in a game is

interacting with other learning players who may not necessarily act adversarially. In the third part of this

chapter (Section 2.8), we exploit this structure and seek to establish faster convergence to CCE/CE in full-

information general-sum Markov games [64]. For CE, we consider the optimistic follow-the-regularizer-leader

(OFTRL) algorithm with a log-barrier regularizer and integrate it with the celebrated external-to-swap-regret

reduction [65] and smooth value updates. For CCE, we consider OFTRL with negative entropy regularization

and combine it with a stage-based value update scheme. We show that our algorithms converge to CCE

or CE in full-information general-sum Markov games at a fast convergence rate of Õ(T−1), matching the

best-known results in normal-form games.

Outline. The rest of the chapter is organized as follows: We start with a literature review in Section 2.2. In

Section 2.3, we introduce the mathematical model of our problem and necessary preliminaries. In Section 2.4,

we present our V-learning OMD algorithm for learning coarse correlated equilibria in general-sum Markov

games. A sample complexity analysis of V-learning OMD is given in Section 2.5. In Section 2.6, we analyze a

specific adversarial multi-armed bandit problem, which plays a central role in our analysis of the V-learning

OMD algorithm. In Section 2.7, we improve the V-learning OMD algorithm by using a stage-based V-learning

method, and analyze its sample complexities for learning CCE and CE. In Section 2.8, we extend our results

to the full-information setting and establish the fast Õ(T−1) convergence rates to CCE/CE. For clarity of

presentations, most proofs are deferred to Sections 2.9-2.14. Finally, we conclude this chapter in Section 2.15.

8

2.2 Related Work

A common mathematical framework of multi-agent RL is stochastic games [7], which are also referred to

as Markov games. Given the PPAD completeness of finding a Nash equilibrium in generic games [15], [30],

convergence to NE has mostly been studied in games with special structures, such as two-player zero-sum

games or cooperative games. Early attempts to learn Nash equilibria in Markov games include [8], [66]–[68],

but they either assume the transition kernel and rewards are known, or only yield asymptotic guarantees. In

particular, [8] has proposed a Q-learning based algorithm named minimax-Q, whose asymptotic convergence

guarantee has later been established in [69].

More recently, various sample efficient methods have been proposed [13], [14], [34], [70]–[73], mostly for

learning in two-player zero-sum Markov games. Most notably, several works have investigated two-player

zero-sum games in a decentralized environment similar to ours: [55] has shown non-asymptotic convergence

guarantees for independent policy gradient methods when the learning rates of the two agents follow a

two-timescale rule. [53] has studied online learning when the actions of the opponents are not observable, and

have achieved the first sub-linear regret Õ(K
3
4) in the decentralized setting for K episodes. More recently,

[54] has proposed an Optimistic Gradient Descent Ascent algorithm with a slowly-learning critic, and have

shown a strong finite-time last-iterate convergence result in the decentralized/agnostic environment. Overall,

these works have mainly focused on two-player zero-sum games. These results do not carry over in any way

to general-sum games or MPGs that we consider in this thesis.

MARL has also been studied in teams or cooperative games. Without enforcing a decentralized environment,

[39] has proposed to coordinate the agents by letting them take actions in a lexicographic order. In a similar

setting, [74] has studied optimal adaptive learning that converges to the optimal NE in Markov teams. [75]

has presented an independent learning algorithm that achieves a Pareto optimal NE in common interest

games with limited communication. These methods critically relied on communications among the agents

(beforehand) or observing the teammates’ actions. In contrast, the distributed Q-learning algorithm in

[76] is decentralized and coordination-free, which, however, only works for deterministic tasks, and has no

non-asymptotic guarantees. More recently, [52] has shown that decentralized Q-learning can converge to NE

in weakly acyclic games, which cover Markov teams and potential games as important special cases. Later,

[77] has further improved [52] and achieved convergence to the team-optimal equilibrium.

A few works have considered games beyond the zero-sum or cooperative settings: [67], [66], and [78]

have established convergence guarantees under the assumptions that either a saddle point equilibrium

or a coordination equilibrium exists. [79] has bypassed the computation of NE in general-sum games

by targeting correlated equilibria instead, but no theoretical convergence result has been given. Other

approaches for finding NE in general-sum games include minimizing the Bellman-like residuals learned

from offline/batch data [80], or using a two-timescale algorithm to learn the policy of each player from an

optimization perspective [81]. Nevertheless, none of these works has considered sample-efficient exploration

in a decentralized environment, a more challenging objective that we pursue in this thesis. More recently,

[82] has studied the non-asymptotic properties of learning CCE in general-sum Markov games, but their

sample complexity bound scales exponentially in the number of agents as a consequence of using a centralized

learning approach.

In general-sum normal-form games, a folklore result is that when the agents independently run no-regret

learning algorithms, their empirical frequency of plays converges to the set of coarse correlated equilibria

(CCE) of the game [35]. However, a CCE may suggest that the agents play obviously non-rational strategies.

For example, [83] has constructed an example where a CCE assigns positive probabilities only to strictly

9

dominated strategies. On the other hand, given the PPAD completeness of finding a Nash equilibrium,

convergence to NE seems hopeless in general. An impossibility result [84] has shown that uncoupled no-regret

learning does not converge to Nash equilibrium in general, due to the informational constraint that the

adjustment in an agent’s strategy does not depend on the reward functions of the others. Hence, convergence

to Nash equilibria is guaranteed mostly in games with special reward structures, such as two-player zero-sum

games [85] and potential games [86], [87].

For learning in general-sum Markov games, [88] has shown a sample complexity lower bound for NE

that is exponential in the number of agents. Recently, [72] has presented a line of results on learning NE,

CE, or CCE, but their algorithm is model-based, and suffers from such exponential dependence. Since the

publication of the first part of this chapter [16], a few closely related works [12], [63] have also used V-learning

based methods for learning CCE and/or CE, and avoid the exponential dependence. Our methods in the

second part of this chapter significantly simplify the algorithmic design and analysis in these related works, by

introducing a stage-based V-learning update rule that circumvents their rather complicated no-weighted-regret

bandit subroutine.

Another line of research has considered RL in Markov potential games (MPGs) [89]–[91]. [52] has shown

that decentralized Q-learning style algorithms can converge to NE in weakly acyclic games, which cover

MPGs as an important special case. Their decentralized setting is similar to ours in that each agent is

completely oblivious to the presence of the others. Later, such a method has been improved in [77] to achieve

team-optimality. However, both of them require a coordinated exploration phase, and only yield asymptotic

guarantees. Decentralized learning has also been studied in single-stage weakly acyclic games [92] or potential

games [87], [93]. [94] has shown that independent Natural Policy Gradient also converges to NE in MPGs,

though only asymptotic convergence has been established. Finally, MPGs have also been studied in [63], but

their model-based method is not decentralized, and requires the agents to take turns to learn the policies.

Efficient exploration has also been widely studied in the literature of single-agent RL, see, e.g., [60],

[95]–[97]. For the tabular episodic setting, various methods [61], [97], [98] have achieved the sample complexity

of Õ(H3SA/ε2), which matches the information-theoretical lower bound. When reduced to the bandit

case, decentralized MARL is also related to the cooperative multi-armed bandit (MAB) problem [99], [100],

originated from the literature of cognitive radio networks. The difference is that, in cooperative MAB, each

agent is essentially interacting with an individual copy of the bandit, with an extra caution of action collisions;

in the MARL formulation, the reward function is defined on the Cartesian product of the action spaces,

which allows the agents to be coupled in more general forms. [101] has studied cooperative multi-player

multi-armed bandits with information asymmetry. Nevertheless, [101] requires stronger conditions than our

decentralized setting as their algorithm relies on playing a predetermined sequence of actions.

2.3 Preliminaries

An N -player episodic Markov game is defined by a tuple (N , H,S, {Ai}Ni=1, {ri}Ni=1, P), where (1) N =

{1, 2, . . . , N} is the set of agents; (2) H ∈ N+ is the number of time steps in each episode; (3) S is the finite

state space; (4) Ai is the finite action space for agent i ∈ N ; (5) ri : [H]×S×A → [0, 1] is the reward function

for agent i, where A = ×Ni=1Ai is the joint action (or action profile) space; and (6) P : [H]× S ×A → ∆(S)
is the transition kernel. We remark that both the reward function and the state transition function depend

on the joint actions of all the agents. We assume for simplicity that the reward function is deterministic.

Our results can be easily generalized to stochastic reward functions. Let S = |S|, Ai = |Ai|,∀i ∈ N , and

10

Amax = maxi∈N Ai.

The agents interact in an unknown environment for K episodes, and we let T = KH be the total number

of time steps. We assume for simplicity that the initial state s1 of each episode is fixed. At each time step

h ∈ [H], the agents observe the state sh ∈ S, and take actions ah,i ∈ Ai, i ∈ N simultaneously. Agent i

then receives its private reward rh,i(sh,ah), where ah = (ah,1, . . . , ah,N), and the environment transitions to

the next state sh+1 ∼ Ph(·|sh,ah). Note that the state transition here is general and not restricted to be

deterministic. This makes learning considerably more challenging, as the agents cannot implicitly coordinate

by enumerating/rehearsing all possible states. We focus on the decentralized setting, where each agent only

observes the states and its own rewards and actions, but not the rewards or actions of the other agents.

In fact, in our algorithms, each agent is completely oblivious of the existence of the others, and does not

communicate with each other. This decentralized information structure requires each agent to learn to make

decisions based on only its local information.

Policy and value function. A (Markov) policy πi : [H]× S → ∆(Ai) for agent i ∈ N is a mapping from

the time index and state space to a distribution over its own action space. We use Πi to denote the space of

Markov policies for agent i, and let Π = ×Ni=1Πi. Each agent seeks to find a policy that maximizes its own

cumulative reward. A joint policy (or policy profile) π = (π1, . . . , πN) induces a probability measure over the

sequence of states and joint actions. For notational convenience, we use the subscript −i to denote the set of

agents excluding agent i, i.e., N\{i}. For example, we can rewrite π = (πi, π−i) using this convention. For a

policy profile π, and for any h ∈ [H], s ∈ S, and a ∈ A, we define the value function and the state-action

value function (or Q-function) for agent i as follows:

V πh,i(s) := Eπ
[H∑
h′=h

rh′,i(sh′ ,ah′) | sh = s

]
, (2.1)

Qπh,i(s,a) := Eπ
[H∑
h′=h

rh′,i(sh′ ,ah′) | sh = s,ah = a

]
.

For ease of notation, we also write V
(πi,π−i)
h,i (s) as V

πi,π−i

h,i (s), and similarly for Q
(πi,π−i)
h,i (s,a).

Best response and Nash equilibrium. For agent i, a policy π⋆i ∈ Πi is a best response to π−i for a given

initial state s1 if V
π⋆
i ,π−i

1,i (s1) = supπi
V
πi,π−i

1,i (s1). A policy profile π = (πi, π−i) ∈ Π is a Nash equilibrium

(NE) if πi is a best response to π−i for all i ∈ N . We also have an approximate notion of Nash equilibrium as

follows:

Definition 1. (ε-approximate Nash equilibrium). For any ε > 0, a policy profile π = (πi, π−i) ∈ Π is an

ε-approximate Nash equilibrium for an initial state s1 if V
πi,π−i

1,i (s1) ≥ supπi′
V
πi′ ,π−i

1,i (s1)− ε, ∀i ∈ N .

Correlated policy. More generally, we define π = {πh : R×(S×A)h−1×S → ∆(A)}h∈[H] as a (non-Markov)

correlated policy, where for each h ∈ [H], πh maps from a random variable z ∈ R and a history of length h− 1

to a distribution over the joint action space. We assume that the agents following a correlated policy can

access a common source of randomness (e.g., a common random seed) for the random variable z. We let πi

and π−i be the proper marginal policies of π whose outputs are restricted to ∆(Ai) and ∆(A−i), respectively.

For non-Markov correlated policies, we can still define their value functions at step h = 1 in a sense similar

to (2.1). A best response π⋆i with respect to the non-Markov policies π−i is a policy (independent of the

randomness of π−i) that maximizes agent i’s value at step 1, i.e., V
π⋆
i ,π−i

1,i (s1) = supπi
V
πi,π−i

1,i (s1). The best

response to the non-Markov policies of the opponents is not necessarily Markov.

11

(Coarse) correlated equilibrium. Given the PPAD-hardness of calculating Nash equilibria in general-sum

games [30], we introduce two relaxed solution concepts, namely coarse correlated equilibrium (CCE) and

correlated equilibrium (CE). A CCE states that no agent has the incentive to deviate from a correlated policy

π by playing a different independent policy.

Definition 2. (Coarse correlated equilibrium). A correlated policy π is an ε-approximate coarse correlated

equilibrium for an initial state s1 if V
π⋆
i ,π−i

1,i (s1)− V π1,i(s1) ≤ ε, ∀i ∈ N .

CCE relaxes NE by allowing possible correlations in the policies. For illustrative purposes, let us compare

the definitions of NE and CCE in a simple normal-form game named Hawk-Dove (with no state transitions).

There are two players in this game. The row player has the action space A = {a1, a2}, and the column player’s

action space is B = {b1, b2}. The reward matrix of the Hawk-Dove game is described in Table 2.1. There are

three Nash equilibria in this game: (a1, b2) and (a2, b1) are two pure strategy NE, and ((0.5, 0.5), (0.5, 0.5)) is

a NE in mixed strategies. Table 2.2 gives a CCE distribution of the Hawk-Dove game, which assigns equal

probabilities to three action pairs: (a1, b1), (a1, b2), and (a2, b1). We can see that NE defines for each player

an independent probability distribution over a player’s own action space; in contrast, a CCE is a probability

distribution over the joint action space of the players. In this sense, CCE generalizes NE by allowing possible

correlations among the strategies of the agents. In our proposed algorithm, such correlation is implicitly

achieved by letting the players use a common random seed.

Table 2.1: The Hawk-Dove game.

b1 b2

a1 4,4 1,5

a2 5,1 0,0

Table 2.2: A CCE in the Hawk-Dove game.

b1 b2

a1 1/3 1/3

a2 1/3 0

Before introducing the definition of CE, we need to first specify the concept of a strategy modification.

Definition 3. (Strategy modification). For agent i, a strategy modification ψi = {ψsh,i : h ∈ [H], s ∈ S} is a

set of mappings from agent i’s action space to itself, i.e., ψsh,i : Ai → Ai.

Given a strategy modification ψi, for any policy π, step h and state s, if π selects the joint action

ah = (ah,1, . . . , ah,N), then the modified policy ψi ⋄ π will select (ah,1, . . . , ah,i−1, ψ
s
h,i(ah,i), ah,i+1, . . . , ah,N).

Let Ψi denote the set of all possible strategy modifications for agent i. A CE is a distribution where no agent

has the incentive to deviate from a correlated policy π by using any strategy modification. It is known that

{NE}⊂{CE}⊂{CCE} in general-sum games [102].

Definition 4. (Correlated equilibrium). A correlated policy π is an ε-approximate correlated equilibrium for

initial state s1 if

sup
ψi∈Ψi

V ψi⋄π
1,i (s1)− V π1,i(s1) ≤ ε, ∀i ∈ N .

To better illustrate the difference between CCE and CE, it is helpful to consider the equivalent forms of

their definitions in normal-form games. Specifically, in an N -player normal-form game, let Ai denote the

action space for agent i and let A = ×Ni=1Ai. Let ui : A → R denote the utility function for agent i. The

equivalent forms of Definitions 2 and 4 in normal-form games are as follows, respectively:

Definition 5. (Coarse correlated equilibrium, normal-form game). A probability distribution σ ∈ ∆(A) is an

12

ε-approximate coarse correlated equilibrium for a normal-form game if

Ea∼σ [ui(a
⋆
i , a−i)]− Ea∼σ [ui(a)] ≤ ε, ∀a⋆i ∈ Ai, i ∈ N .

Definition 6. (Correlated equilibrium, normal-form game). A probability distribution σ′ ∈ ∆(A) is an

ε-approximate correlated equilibrium for a normal-form game if

Ea∼σ′ [ui(a
⋆
i , a−i) | ai]− Ea∼σ′ [ui(a) | ai] ≤ ε, ∀a⋆i ∈ Ai, i ∈ N .

Intuitively, in normal-form games, a CE is a probability distribution σ′ ∈ ∆(A) such that after a joint

action a = (ai, a−i) is drawn from σ′, playing ai is a best strategy for agent i conditioned on seeing ai, given

that all the other players will play according to a−i. A CCE σ ∈ ∆(A) is different in the sense that playing

the recommended action ai when a is drawn from σ is player i’s best strategy in expectation, before agent i

sees ai. CCE is suitable for the scenarios when each agent is committed to following the recommended action

up front and is not able to deviate from the recommended action after seeing it.

For notational convenience, for the first part of this chapter (Sections 2.4-2.6), we illustrate our V-learning

OMD algorithm and its results for the special case of two-player general-sum games, i.e., N = 2. It is

straightforward to extend such results to the general N -player games as we defined above. With two players,

we use A and B to denote the action spaces of players 1 and 2, respectively. Let S = |S|, A = |A| and B = |B|.
We also rewrite the correlated policies (π1, π2) as (µ, ν). In the second part of this chapter (Section 2.7), we

will present the results in the generic N -player general-sum games.

2.4 V-Learning OMD

In this section, we introduce our algorithm Optimistic V-learning with Stabilized Online Mirror Descent

(V-learning OMD) for learning coarse correlated equilibria in general-sum Markov games.

V-learning OMD naturally integrates the idea of optimistic V-learning in single-agent RL [60] with

Online Mirror Descent (OMD) [38], [103] in online convex optimization. First, our algorithm uses optimistic

V-learning to efficiently explore the unknown environment, as in single-agent RL. Second, each agent selects

its actions following a no-regret OMD algorithm in order to achieve a CCE. The intuition of using no-regret

learning here is to defend against the unobserved behavior of the opponents, by presuming that the opponents’

behavior will impair the reward sequence arbitrarily. Seemingly conservative, we will show that this suffices to

find the CCE. The use of no-regret learning is also reminiscent of the well-known result in normal-form games

that if all agents run a no-regret learning algorithm, the empirical frequency of their actions converge to a

CCE [36]. These components also make our algorithm decentralized, which can be implemented individually

using only the local rewards received and the local actions executed, without any communication among the

agents.

The algorithm run by agent 1 (with action space A) is presented in Algorithm 1. The algorithm for agent

2 (or other agents in the setting with more than two agents) is symmetric, by simply replacing the action

space A with the agent’s own action space. We thus omit the index of an agent in the notations for clarity.

We use θh(a | sh) to denote the probability of taking action a at state sh and step h, where θh(· | sh) ∈ ∆(A).
At each step h of an episode, the agent first takes an action ah according to a policy θh(· | sh) for the current

state sh, and observes the reward rh and the next state sh+1. It also counts the number of times t := Nh(sh)

that state sh has been visited, and constructs a bonus term βt = c
√

H4Aι
t (c is some absolute constant and

13

Algorithm 1: Optimistic V-learning with Stabilized Online Mirror Descent (V-learning OMD)

1 Define: F (θ) =
∑A
a=1(θ(a) log(θ(a))− θ(a)) for θ ∈ RA+, DF (u, v) = F (u)− F (v)− ⟨u− v,∇F (v)⟩

for u, v ∈ RA+.
2 Initialize: V h(s) = Vh(s)← H − h+ 1, Nh(s)← 0, θh(a | s)← 1/A, ∀h ∈ [H + 1], s ∈ S, a ∈ A.
3 for episode k ← 1 to K do
4 Receive s1;
5 for step h← 1 to H do
6 Take action ah ∼ θh(· | sh);
7 Observe reward rh and next state sh+1;
8 Nh(sh)← Nh(sh) + 1, t← Nh(sh);

9 αt ← H+1
H+t , βt ← c

√
H4Aι
t , γt ←

√
logA
At , ηt ←

√
logA
At ;

10 Vh (sh)← (1− αt)Vh (sh) + αt
(
rh + V h+1 (sh+1) + βt

)
;

11 V h(sh)← min{Vh(sh), H − h+ 1};
12 for action a ∈ A do

13 l̂h(sh, a)← (H − rh − V h+1(sh+1))1 {ah = a} / (θh(a | sh) + γt);

14 θ′ ← argminθ∈∆(A)

{
ηt

〈
θ, l̂h(sh, ·)

〉
+DF (θ, θh(· | sh))

}
;

15 θh(· | sh)← λtθ
′ + (1− λt)1/A, where λt = ηt+1αt(1−αt+1)

ηtαt+1
;

ι is a log factor to be defined later) that is used to upper bound the state value function. The agent then

updates the optimistic state value functions by:

Vh (sh)← (1− αt)Vh (sh) + αt
(
rh + V h+1 (sh+1) + βt

)
, (2.2)

where the learning rate is αt = (H +1)/(H + t). This update rule essentially follows the optimistic Q-learning

algorithm [60] in the single-agent scenario, except that instead of estimating the Q-functions, we maintain

optimistic estimates of the state value functions. This is because the definition of Q(s, a) explicitly depends

on the joint actions of all the agents, which cannot be observed in a decentralized environment. Such an

argument is also consistent with the Optimistic Nash V-learning [34] and the V-OL [53] algorithms for RL in

two-player zero-sum games.

Unlike RL in the single-agent problem where the agent takes an action with the largest optimistic

Q-function, in a multi-agent environment, the agent proceeds more conservatively by running an adversarial

bandit algorithm to account for the unobserved effects of other agents’ policy changes. At each step h ∈ [H]

and each state sh ∈ S, we use a variant of online mirror descent with bandit feedback to compute a policy

θh(· | sh). OMD is an iterative process that computes the current policy by carrying out a simple gradient

update in the dual space, where the dual space is defined by a mirror map (or a regularizer) F . In our algorithm,

we use a standard unnormalized negentropy regularizer F (θ) =
∑A
a=1(θ(a) log(θ(a))−θ(a)) for θ ∈ RA+. Given

a mirror map F , the F -induced Bregman divergence is defined as DF (u, v) = F (u)− F (v)− ⟨u− v,∇F (v)⟩ .
Given the (bandit-feedback) loss vector l̂h(sh, ·) at step h and state sh, the OMD update rule is given by

(Line 13 of Algorithm 1):

θnew(· | sh)← arg min
θ∈∆(A)

{
ηt

〈
θ, l̂h(sh, ·)

〉
+DF (θ, θ

old(· | sh))
}
,

where ηt =
√
logA/(At) is the learning rate. We remark that OMD itself is a well-developed algorithmic

framework with a rich literature. But in our case, to be consistent with the changing learning rate in the

14

V-learning part and the high-probability nature of the sample complexity bounds, we additionally require

an OMD algorithm to have (1) a dynamic learning rate and (2) a high probability regret bound, with

respect to (3) a weighted definition of regret. Such a result is absent in the literature, as far as we know.

Interestingly, incorporating OMD with a dynamic learning rate is an active and challenging sub-area per se:

An impossibility result [104] has shown that standard OMD with an ηt ∝
√
1/t learning rate can incur linear

regret when the Bregman divergence is unbounded, which actually covers our choice of DF . A stabilization

technique [105] was later introduced to resolve this problem, by replacing the policy at each step with a

convex combination of this policy and the initial policy. This stabilization technique is also helpful in our

method (Line 14 in Algorithm 1), although the design of the convex combination is a little more involved,

due to the weighted regret. We provide a more detailed description of the bandit subroutine and an analysis

of our OMD algorithm in Section 2.6.

2.5 Theoretical Analyses

In this section, we present our main results on the sample complexity upper bound of V-learning OMD, and

characterize the fundamental limits of the problem by providing a lower bound.

We first introduce a few notations to facilitate the analysis. For a given step h ∈ [H] of episode k ∈ [K],

we denote by skh the state that the agents observe at this step. Let µkh : S → ∆(A) and νkh : S → ∆(B) be
the (interim) strategies at step h of episode k specified by θh in Algorithm 1 to agents 1 and 2, respectively.

Let akh ∈ A and bkh ∈ B be the actual actions taken by the two agents. Let V
k

h(s
k
h), V

k
h (s

k
h), and Nk

h (s
k
h),

respectively, be the values of V h(sh), Vh(sh), and Nh(sh) in Algorithm 1 calculated by agent 1 at the beginning

of the k-th episode. Symmetrically, define Ṽ kh (s
k
h) to be the value of V h(sh) calculated by agent 2, which

does not necessarily take the same value as V
k

h(s
k
h). For notational convenience, we often suppress the

sub/super-scripts (h, k) when there is no possibility of any ambiguity. When the state skh is clear from the

context, we also sometimes abbreviate Nk
h (s

k
h) as n

k
h or even simply as t. For a fixed state s ∈ S, let t = Nk

h (s),

and suppose that s was visited at episodes k1 < k2 < · · · < kt at the h-th step before the k-th episodes. If we

further define α0
t :=

∏t
j=1 (1− αj) and αit := αi

∏t
j=i+1 (1− αj), one can show that the update rule in (2.2)

can be equivalently expressed as

V kh (s) = α0
t (H − h+ 1) +

t∑
i=1

αit

[
rh

(
s, ak

i

h , b
ki

h

)
+ V

ki

h+1

(
sk

i

h+1

)
+ βi

]
. (2.3)

This update rule follows the standard optimistic Q-learning algorithm [60] in single-agent RL, and has also

appeared in RL for two-player zero-sum games [34]. In the following lemma, we recall several properties of αit

that are useful in our analysis.

Lemma 1. (Properties for αit, Lemma 4.1 in [60]).

1.
∑t
i=1 α

i
t = 1 and α0

t = 0 for t ≥ 1.

2.
∑t
i=1 α

i
t = 0 and α0

t = 1 for t = 0.

3. 1√
t
≤∑t

i=1
αi

t√
i
≤ 2√

t
for every t ≥ 1.

4. maxi∈[t] α
i
t ≤ 2H

t and
∑t
i=1

(
αit
)2 ≤ 2H

t for every t ≥ 1.

5.
∑∞
t=i α

i
t = 1 + 1

H for every i ≥ 1.

15

Algorithm 2: Construction of (µ̄kh, ν̄
k
h)

1 Require: A common random seed shared by both agents.

2 Input: The strategy trajectories {(µkh, νkh)}H,Kh=1,k=1 specified by Algorithm 1.

3 for step h′ ← h to H do
4 Receive sh′ ;

5 t← Nk
h′(sh′);

6 Sample m from [t] with P(m = i) = αit using the common random seed;
7 Let k be the index of the episode in which sh′ was visited for the m-th time during the execution

of Algorithm 1;

8 Execute the strategy pair (µkh′(· | sh′), νkh′(· | sh′));

Based on the strategy trajectories {(µkh, νkh)}H,Kh=1,k=1 of the two agents specified by Algorithm 1, we

construct an auxiliary pair of correlated policies (µ̄kh, ν̄
k
h) for each (h, k) ∈ [H] × [K]. The construction of

such correlated policies, largely inspired by the construction of the “certified policies” in [34], is formally

defined in Algorithm 2. Such auxiliary correlated policies will play a significant role throughout our analysis,

and are closely related to the CCE correlated policy that we will construct later. In words, (µ̄kh, ν̄
k
h) proceeds

as follows: It first observes the current state sh, and let t = Nk
h (sh). Then, it randomly samples an episode

index kj from {k1, k2, . . . , kt}, the set of episodes in which the state sh was previously visited during the

execution of the first k episodes of Algorithm 1. Each index ki has a probability of αit to be selected. It is

easy to verify that
∑t
i=1 α

i
t = 1, and, hence, we have specified a well-defined probability distribution over the

episode index set. Finally, (µ̄kh, ν̄
k
h) executes the sampled strategy (µkh(· | sh), νkh(· | sh)) at step h, and then

repeats a similar procedure using (µ̄k
j

h+1, ν̄
kj

h+1) at step h+ 1, and so on.

From the collection of such auxiliary correlated policies {(µ̄kh, ν̄kh)}H,Kh=1,k=1, we finally construct a correlated

policy (µ̄, ν̄), which we will show later is a CCE. A detailed description of the construction of (µ̄, ν̄) is

presented in Algorithm 3. By construction, (µ̄, ν̄) first uniformly samples an index k from [K] using a common

random seed, and then proceeds by following the auxiliary correlated policy (µ̄k1 , ν̄
k
1). One can see that the

notations we have defined are related through the following equation: V µ̄,ν̄1 (s1) =
1
K

∑K
k=1 V

µ̄k
1 ,ν̄

k
1

1 (s1). We

also remark that the common random seed used in Algorithms 2 and 3 implicitly plays the role of the “trusted

coordinator” typically used in the language of correlated equilibria.

For notational convenience, we further introduce the operator PhV (s, a, b) = Es′∼Ph(·|s,a,b)V (s′) for any

value function V , and Dµh×νhQ(s) = E(a,b)∼(µh×νh)Q(s, a, b) for any strategy pair (µh, νh) and any state-

action value function Q. With these notations, for any (s, a, b, h) ∈ S ×A× B × [H] and for any policy pair

(µ, ν), the Bellman equations can be rewritten more succinctly as Qµ,νh (s, a, b) =
(
rh + PhV µ,νh+1

)
(s, a, b), and

V µ,νh (s) = (Dµh×νhQ
µ,ν
h) (s). Recalling the definitions of the best responses, we further define V

⋆,ν̄k
H+1

k,H+1 (s) =

0,∀k ∈ [K], s ∈ S. Then, we know that for each (k, h, s) ∈ [K]× [H]× S,

V
⋆,ν̄k

h

k,h (s) ≤ max
µh

t∑
i=1

αitDµh×νki

h

(
rh + PhV

⋆,ν̄k
h+1

ki,h+1

)
(s), (2.4)

In what follows, we will simply write V
⋆,ν̄k

h

k,h as V ⋆,ν̄k,h for notational convenience, because the time step (h, k) is

always clear from the subscripts. We can also define V µ̄,⋆k,h (s) analogously.

Remark 1. Our definition of the correlated policy is inspired by the “certified policies” [34] for learning in

two-player zero-sum Markov games, but with additional challenges to address: In the zero-sum setting, the

16

Algorithm 3: Construction of the Correlated Policy (µ̄, ν̄)

1 Require: A common random seed shared by both agents.

2 Input: The strategy trajectories {(µkh, νkh)}H,Kh=1,k=1 specified by Algorithm 1.

3 Uniformly sample k from [K] using the common random seed.
4 for step h← 1 to H do
5 Receive sh;

6 t← Nk
h (sh);

7 Sample m from [t] with P(m = i) = αit using the common random seed;
8 Let k be the index of the episode in which sh was visited for the m-th time during the execution

of Algorithm 1;

9 Execute the strategy pair (µkh(· | sh), νkh(· | sh));

Nash equilibrium value is always unique, and the regret with respect to the equilibrium value can be easily

defined a priori (by means of the “duality gap”). But in general-sum games, the equilibrium value is not

necessarily unique. We hence need to first specify an equilibrium before we are able to define the regret. In our

analysis, the equilibrium value we choose is the one associated with the correlated policy (µ̄, ν̄). In addition,

we also emphasize that the correlated policy is only used for analytical purposes; the actual strategies adopted

by the agents during the execution of Algorithm 1 are still {(µkh, νkh)}.

We start with an intermediate result, which states that the optimistic V
k

h(s) and Ṽ
k
h (s) values are indeed

high-probability upper bounds of V ⋆,ν̄k,h (s) and V
µ̄,⋆
k,h (s), respectively. The proof is deferred to Section 2.9 for

clarity of presentation. It relies on a delicate investigation of a high-probability regret bound for OMD with a

dynamic learning rate, which we will elaborate on in Section 2.6.

Lemma 2. For any p ∈ (0, 1], let ι = log(2Smax{A,B}T/p). It holds with probability at least 1 − p that

V
k

h(s) ≥ V ⋆,ν̄k,h (s) and Ṽ
k
h (s) ≥ V µ̄,⋆k,h (s), for all (s, h, k) ∈ S × [H]× [K].

By construction of the auxiliary correlated policies (µ̄kh, ν̄
k
h), we know that for any (s, h, k) ∈ S × [H]× [K],

the corresponding value function can be written recursively as follows:

V µ̄,ν̄k,h (s) =

t∑
i=1

αitDµki

h ×νki

h

(
rh + PhV µ̄,ν̄ki,h+1

)
(s),

and V µ̄,ν̄k,H+1(s) = 0 for any k ∈ [K], s ∈ S, where again notice that we have dropped the dependence on (h, k).

The following result shows that, on average, the agents have no incentive to deviate from the correlated

policies, up to a regret term of the order Õ(
√
H6SA/K).

Theorem 1. For any p ∈ (0, 1], let ι = log(2Smax{A,B}T/p). With probability at least 1− p,

1

K

K∑
k=1

(
V ⋆,ν̄k,1 (s1)− V

µ̄,ν̄
k,1 (s1)

)
≤ O(

√
H6SAι/K), and

1

K

K∑
k=1

(
V µ̄,⋆k,1 (s1)− V µ̄,ν̄k,1 (s1)

)
≤ O(

√
H6SBι/K).

The proof of Theorem 1 can be found in Section 2.9. From the relationship between (µ̄, ν̄) and (µ̄k1 , ν̄
k
1),

and that V µ̄,ν̄1 (s1) =
1
K

∑K
k=1 V

µ̄k
1 ,ν̄

k
1

1 (s1), we can immediately conclude from Theorem 1 that the correlated

policy (µ̄, ν̄) constitutes an approximate CCE.

17

Corollary 1. (Sample complexity of V-learning OMD). For any p ∈ (0, 1], set ι = log(2Smax{A,B}T/p),
and let the two agents run Algorithm 1 for K episodes with K = Ω(H6Smax{A,B}ι/ε2). Then, with

probability at least 1− p, the two agents can obtain an ε-approximate coarse correlated equilibrium using a

common random seed.

Finally, to obtain a sample complexity lower bound for the problem, one simple way is to consider a

Markov game instance where either A or B is a singleton, i.e., A = 1 or B = 1. In this case, there is no

need to correlate the actions of the agents, and hence a CCE in such a game reduces to a NE. In addition,

learning a NE against an opponent with a fixed policy is equivalent to learning an optimal policy in a fixed

environment. Hence, we have reduced the problem of learning a CEE in a Markov game to a single-agent RL

problem either for agent 2 or for agent 1. Applying the regret lower bound of single-agent RL yields the

following result for RL in Markov games.

Corollary 2. (Corollary of Theorem 5 in [96]). For any algorithm, the sample complexity on achieving an

ε-approximate CCE in two-player general-sum Markov games is at least Ω(H3Smax{A,B}/ε2).

Comparing Corollaries 1 and 2, we see that the sample complexity of Algorithm 1 matches the information-

theoretical lower bound in terms of the dependences on S,A,B and ε, leaving a gap only in the dependence

of H. Notably, the tight dependence on max{A,B} is a natural benefit from decentralized learning, which

would not have been achieved by centralized approaches.

2.6 Adversarial Bandits with Weighted Regret

In this section, we close the gap in the proof of Lemma 2 by formally presenting a bandit regret bound that

we used in (2.12). Specifically, we consider an adversarial multi-armed bandit problem, and propose an online

mirror descent based algorithm for this problem, which also serves as an important subroutine in Algorithm 1.

Our OMD algorithm achieves an anytime high probability bound with respect to a weighted definition of

regret. Such a result complements the Follow the Regularized Leader based algorithm in [34] and might be of

independent interest.

Specifically, we consider an A-armed bandit problem, i.e., the action space is A = {1, 2, . . . , A}. The arms

are associated with an adversarial sequence of loss vectors (lt)
T
t=1, where lt ∈ [0, 1]A. The bandit proceeds

for T rounds. At each round t, the player specifies a distribution θt ∈ ∆(A) over the actions, and takes an

action at sampled from this distribution. We consider bandit feedback, where the player only observes the

loss associated with the chosen action lt(at). The player’s objective is to minimize the weighted regret with

respect to the best fixed policy in hindsight for any time step t ∈ [T]:

Regt(θ
⋆) :=

t∑
i=1

wiEa∼θ⋆ [li(ai)− li (a) | Fi] =
t∑
i=1

wi ⟨θi − θ∗, li⟩ ,

where θ⋆ ∈ ∆(A) is an arbitrary but fixed policy, 0 ≤ wi ≤ 1 is the weight of the regret for round i, and Fi is
the σ-algebra generated by the events up to and including round i− 1. We can check that such a problem

formulation indeed captures the adversarial bandit subroutine with weighted regret used in the analysis of

Lemma 2.

We present our OMD-based algorithm in Algorithm 4. We again use the unnormalized negentropy

regularizer F (θ) =
∑A
a=1(θ(a) log(θ(a))− θ(a)) with domain D = dom(F). Direct calculation shows that the

18

Algorithm 4: Stabilized Online Mirror Descent with Weighted Regret

1 Input: The weight of the regret wt ∈ [0, 1] for each round t.

2 Initialize: θ1 ← 1/A := (1
A , . . . ,

1
A).

3 for t← 1 to T do

4 Take action at ∼ θt, and observe loss l̃t(at);

5 l̂t(a)← l̃t(a)1 {at = a} / (θt(a) + γt) for all a ∈ A, where γt =
√

logA
At ;

6 θ̃t+1 ← argminθ∈D

{
ηt

〈
θ, l̂t

〉
+DF (θ, θt)

}
, where ηt ←

√
logA
At ;

7 θ′t+1 ← argminθ∈∆(A)DF (θ, θ̃t+1);
8 θt+1 ← βtθ

′
t+1 + (1− βt)θ1, where βt ← ηt+1wt

ηtwt+1
;

Bregman divergence with respect to F is

DF (u, v) = F (u)− F (v)− ⟨u− v,∇F (v)⟩ =
A∑
a=1

u(a) log(u(a)/v(a)),

which coincides with the Kullback–Leibler divergence when u and v are defined on the simplex.

The structure of Algorithm 4 essentially follows the well-developed OMD framework, but with the following

two critical refinements in order to achieve an anytime high-probability regret bound: First, to establish

high-probability regret guarantees, we use an implicit exploration technique [106], and deliberately maintain

a biased estimate of the true losses as

l̂t(a)←
l̃t(a)

θt(a) + γt
1 {at = a} .

We can show (in Lemma 7 below) that with an appropriately chosen γt > 0, loss estimates of this form

constitute a lower confidence bound of the true losses, and hence are critical in establishing high-probability

regret guarantees of the bandit problem. Second, to achieve an anytime regret bound, we use a stabilization

technique [105] by replacing the policy at each step with a convex combination of this policy and the initial

policy (Line 8). It has been shown in [104] that standard OMD with an ηt ∝
√
1/t learning rate can incur

linear regret when the Bregman divergence is unbounded. To resolve this unboundedness, the stabilization

technique mixes a small fraction of θ1 into each iterate θt. In this sense, every iterate θt remains somewhat

close (with respect to the Bregman divergence) to the point θ1. Since the distance between θ1 and any other

point in ∆(A) is small (due to our initialization of θ1), we know that each iterate θt is also not too far from

all the other points in ∆(A). This hence ensures that the Bregman divergences involved with the iterates are

always bounded. In the original stabilization technique [105], a (1− ηt+1

ηt
)-fraction of θ1 is mixed into each

iterate θt; while in our algorithm, this fraction is set to 1− ηt+1wt

ηtwt+1
because we need to additionally address

the weighted regret. The following theorem presents the regret guarantee of Algorithm 4.

Theorem 2. For any p ∈ (0, 1], let ι = log(AT/p). For any t ∈ [T], suppose ηi ≤ 2γi, 0 ≤ wi ≤ 1,

βi ∈ (0, 1],∀i ∈ [t], and γi is non-increasing in i. Then, with probability at least 1− 3p, the weighted regret of

Algorithm 4 is upper bounded by:

Regt(θ
⋆) ≤ 2max

i≤t
wi
√
Atι+

3
√
Aι

2

t∑
i=1

wi√
i
+

1

2
max
i≤t

wiι+

√√√√2ι

t∑
i=1

w2
i .

19

We can verify that our choices of the parameter values in Algorithm 1 indeed satisfy the requirements

in Theorem 2, that is, ηi ≤ 2γi, 0 ≤ wi ≤ 1, βi ∈ (0, 1],∀i ∈ [t], and γi is non-increasing in i. Therefore,

the regret bound in Theorem 2 can be applied to the proof of Lemma 2. The only caution is that in this

section we have assumed for simplicity that the loss function is bounded in [0, 1], while the actual losses in

Section 2.5 are bounded in [0, H]. Hence, multiplying the regret bound in Theorem 2 by a factor of H leads

to the result in (2.12).

A final remark is that Algorithm 4 assumes that the weights of the regret wi for 1 ≤ i ≤ t are given a

priori; but when Algorithm 4 is utilized as a subroutine in Algorithm 1, the weight wi at round i actually

corresponds to αit, which cannot be pre-computed when t is not given. To address this subtlety, we specifically

design Algorithm 4 in a way such that the weights wi influence the algorithm only through βi ← ηi+1wi

ηiwi+1
(Line

8). By the definition of αit, we see that wi

wi+1
=

αi
t

αi+1
t

= αi(1−αi+1)
αi+1

can be calculated even when the value of t

is unknown. In this way, Algorithm 1 has bypassed the subtlety that the weights of the regret should be

given beforehand, as required in Algorithm 4.

Proof. (of Theorem 2). The weighted regret Regt(θ
⋆) can be decomposed into three terms:

Regt(θ
⋆) =

t∑
i=1

wi ⟨θi − θ⋆, li⟩

=

t∑
i=1

wi

〈
θi − θ⋆, l̂i

〉
︸ ︷︷ ︸

A

+

t∑
i=1

wi

〈
θi, li − l̂i

〉
︸ ︷︷ ︸

B

+

t∑
i=1

wi

〈
θ⋆, l̂i − li

〉
︸ ︷︷ ︸

C

.

We bound each of the three terms A , B and C in Lemmas 9, 10, and 11 of Section 2.10, respectively. By

setting ηt = γt =
√

logA
At , we can verify that the conditions in Lemma 9 and Lemma 11 are satisfied. We

specifically define ηt+1 = ηt and wt+1 = wt. One can verify that these two parameters influence the algorithm

only through βt, and the results stated in the lemmas still hold. Plugging back the results and taking a union

bound, it holds with probability at least 1− 3p:

Regt(θ
⋆) ≤wt+1 logA

ηt+1
+
A

2

t∑
i=1

ηiwi +
1

2
max
i≤t

wiι

+A

t∑
i=1

γiwi +

√√√√2ι

t∑
i=1

w2
i +max

i≤t
wiι/γt

=2max
i≤t

wi
√
Atι+

3
√
Aι

2

t∑
i=1

wi√
i
+

1

2
max
i≤t

wiι+

√√√√2ι

t∑
i=1

w2
i .

This completes the proof of Theorem 2.

2.7 Stage-Based V-Learning for General-Sum Markov Games

So far, we have presented V-learning OMD, the first decentralized MARL algorithm for learning CCE in

general-sum Markov games. However, V-learning OMD involves a complicated no-weighted -regret bandit

analysis (Section 2.6), which turns out to be an undesirable routine that appears in the analysis of many

prior V-learning-based methods [12], [16], [63].

20

In this section, we improve V-learning OMD by presenting a stage-based V-learning method. We show

that stage-based V-learning helps significantly simplify the algorithmic design and analysis of V-learning

OMD, and circumvent the rather complicated no-weighted-regret bandit subroutine. We demonstrate that

stage-based V-learning can be combined with any off-the-shelf no-regret learning algorithm to improve the

sample complexity of V-learning OMD. We also show that, when combined with a no-swap-regret learning

algorithm, stage-based V-learning can be used to learn a correlated equilibrium (CE) in general-sum Markov

games, a stronger solution concept than CCE.

Algorithm 5: Stage-Based V-Learning for CCE (agent i)

1 Initialize: V h,i(s)← H − h+ 1, Ṽh,i(s)← H − h+ 1, Nh(s)← 0, Ňh(s)← 0, řh,i(s)← 0, v̌h,i(s)← 0,

Ťh(s)← H,µh,i(a | s)← 1/Ai, and Lh,i(s, a)← 0, ∀h ∈ [H], s ∈ S, a ∈ Ai.
2 for episode k ← 1 to K do
3 Receive s1;
4 for step h← 1 to H do
5 Nh(sh)← Nh(sh) + 1, ň := Ňh(sh)← Ňh(sh) + 1;
6 Take action ah,i ∼ µh,i(· | sh), and observe reward rh,i and next state sh+1;

7 řh,i(sh)← řh,i(sh) + rh,i, v̌h,i(sh)← v̌h,i(sh) + V h+1,i(sh+1);

8 ηi ←
√
ι/AiŤh(sh), γi ← ηi/2;

9 Lh,i(sh, ah,i)← Lh,i(sh, ah,i) +
[H−h+1−(rh,i+V h+1,i(sh+1))]/H

µh,i(ah,i|sh)+γi ;

10 µh,i(a | sh)← exp(−ηiLh,i(sh,a))∑
a′∈Ai

exp(−ηiLh,i(sh,a′))
,∀a ∈ Ai;

11 if Nh(sh) ∈ L then
12 //Entering a new stage

13 Ṽh,i(sh)← řh,i(sh)
ň +

v̌h,i(sh)
ň + bň, where bň ← 6

√
H2Aiι/ň;

14 V h,i(sh)← min{Ṽh,i(sh), H − h+ 1};
15 Ňh(sh)← 0, řh,i(sh)← 0, v̌h,i(sh)← 0, Ťh(sh)←

⌊
(1 + 1

H)Ťh(sh)
⌋
;

16 µh,i(a | sh)← 1/Ai, Lh,i(sh, a)← 0,∀a ∈ Ai;

2.7.1 Learning CCE

The Stage-Based V-Learning for CCE algorithm run by a generic agent i ∈ N is presented in Algorithm 5. The

agent maintains upper confidence bounds on the value functions to actively explore the unknown environment

and uses a stage-based rule to independently update the value estimates.

For each step-state pair (h, s) ∈ [H] × S, we divide the visitations to this pair into multiple stages,

where the lengths of the stages increase exponentially at a rate of (1 + 1/H) [61]. Specifically, we let

e1 = H, and ei+1 = ⌊(1 + 1/H)ei⌋, i ≥ 1 denote the lengths of the stages, and let the partial sums

L := {∑j
i=1 ei | j = 1, 2, 3, . . . } denote the set of ending times of the stages. For each (h, s) pair, we update

our optimistic estimates V h(sh) of the value function at the end of each stage (i.e., when the total number of

visitations to (s, h) lies in the set L), using samples only from this single stage (Lines 11-16). This way, our

stage-based V-learning ensures that only the most recent O(1/H) fraction of the collected samples are used

to calculate V h(sh), while the first 1−O(1/H) fraction is forgotten. Such a stage-based update framework

in some sense mimics the celebrated optimistic Q-learning algorithm with a learning rate of αt =
H+1
H+t [60],

which also roughly uses the last O(1/H) fraction of samples for value updates. Stage-based value updates also

create a stage-wise stationary environment for the agents, thereby partly alleviating the well-known challenge

of non-stationarity in MARL. As a side remark, stage-based Q-learning has also achieved near-optimal regret

21

Algorithm 6: Construction of the Output Policy π̄

1 Input: The distribution trajectory specified by Algorithm 5: {µkh,i : i ∈ N , h ∈ [H], k ∈ [K]};
2 Uniformly sample k from [K];
3 for step h← 1 to H do
4 Receive sh;

5 Take joint action ah ∼ ×Ni=1µ
k
h,i(· | sh);

6 Uniformly sample j from {1, 2, . . . , Ňk
h (sh)};

7 Set k ← ľk
′

h,j , where ľ
k
h,j is the index of the episode such that state sh was visited the j-th time

(among the total Ňk
h (sh) times) in the last stage;

bounds in single-agent RL [61].

At each time step h and state sh, agent i selects its action ah,i by following a distribution µh,i(· | sh),
where µh,i(· | sh) is updated using an adversarial bandit subroutine (Lines 9-10). This is consistent with the

recent works under the V-learning framework [12], [16], [63], but with a vital improvement: Existing works

using the celebrated αt =
H+1
H+t learning rate for V-learning inevitably entail a no-weighted -regret bandit

problem, because such a time-varying learning rate assigns different weights to each step in the history. A

few methods such as weighted follow-the-regularized-leader [12], [63] and stabilized online mirror descent [16]

have been recently proposed to address such a challenge, by simultaneously dealing with a changing step

size, a weighted regret, and a high-probability guarantee, at the cost of less natural algorithms and more

sophisticated analyses. In contrast, our stage-based V-learning assigns uniform weights to each step in

the previous stage, and hence leads to a standard no(-average)-regret bandit problem. This allows us to

directly plug in any off-the-shelf adversarial bandit algorithm and its analysis to our problem. For example,

Algorithm 5 utilizes a simple Exp3 [107] subroutine for policy updates, and a standard implicit exploration

technique [106] to achieve high-probability guarantees. We provide a more detailed discussion on such an

improvement in Remark 2 of Section 2.11.

Based on the policy trajectories from Algorithm 5, we construct an output policy profile π̄ that we will

show is a CCE. For any step h ∈ [H] of an episode k ∈ [K] and any state s ∈ S, we let µkh,i(· | s) ∈ ∆(Ai) be
the distribution prescribed by Algorithm 5 at this step. Let Ňk

h (s) denote the value of Ňh(s) at the beginning

of the k-th episode. Our construction of the output policy is presented in Algorithm 6, which follows the

“certified policies” introduced in [34]. We further let the agents sample the episode indices using a common

source of randomness, and hence the output policy is correlated by nature. Such common randomness is also

termed a correlation device, and is standard in decentralized learning [108]–[110]. In practice, this can be

achieved by letting the agents agree on a common random seed at the very beginning of the game, which only

requires exchanging a single scalar value. Note that the correlation device is never used during the learning

process to coordinate the exploration, but is simply used to synchronize the selection of the policies after

they have been generated. A common random seed is generally considered as a mild assumption and does

not break the decentralized paradigm. It is also worth remarking that our stage-based update rule simplifies

the generating procedure of the output policy: In the original construction of [34], the certified policy plays

a weighted mixture of {µkh,i(· | s) : k ∈ [K]}, while in Algorithm 6, we only need to uniformly sample an

episode index from the previous stage.

The following theorem presents the sample complexity guarantee of Algorithm 5 for learning CCE in

general-sum Markov games. Our sample complexity bound improves over [16] and matches those established

in [12], [63], while significantly simplifying their algorithmic design and analysis. The proof is deferred to

22

Algorithm 7: Stage-Based V-Learning for CE (agent i)

1 Initialize: V h,i(s)← H − h+ 1, Ṽh,i(s)← H − h+ 1, Nh(s)← 0, Ňh(s)← 0, řh,i(s)← 0, v̌h,i(s)← 0,

Ťh(s)← H, ph,i(a | s)← 1/Ai, L
s
h,i(a

′ | a)← 0, ∀h ∈ [H], s ∈ S, a, a′ ∈ Ai.
2 for episode k ← 1 to K do
3 Receive s1;
4 for step h← 1 to H do
5 Nh(sh)← Nh(sh) + 1, ň := Ňh(sh)← Ňh(sh) + 1;
6 Take action ah,i ∼ ph,i(· | sh), and observe reward rh,i and next state sh+1;

7 řh,i(sh)← řh,i(sh) + rh,i, v̌h,i(sh)← v̌h,i(sh) + V h+1,i(sh+1);

8 ηi ←
√
ι/Ťh(sh), γi ← ηi;

9 for action a ∈ Ai do
10 for action a′ ∈ Ai do
11 Lsh,i(a

′ | a)← Lsh,i(a
′ | a) + ph,i(a|sh)[H−h+1−(rh,i+V h+1,i(sh+1))]

H(ph,i(ah,i|sh)+γi) I{ah,i = a};
12 qshh,i(a

′ | a)← exp(−ηiL
sh
h,i(a

′|a))∑
b∈Ai

exp(−ηiL
sh
h,i(b|a))

;

13 Set ph,i(a | sh) such that ph,i(· | sh) =
∑
a∈A ph,i(a | sh)qshh,i(· | a);

14 if Nh(sh) ∈ L then
15 //Entering a new stage

16 Ṽh,i(sh)← řh,i(sh)
ň +

v̌h,i(sh)
ň + bň, where bň ← 11

√
H2A2

i ι/ň;

17 V h,i(sh)← min{Ṽh,i(sh), H − h+ 1};
18 Ňh(sh)← 0, řh,i(sh)← 0, v̌h,i(sh)← 0, Ťh(sh)←

⌊
(1 + 1

H)Ťh(sh)
⌋
;

19 ph,i(a | sh)← 1/Ai, L
sh
h,i(a

′ | a)← 0,∀a, a′ ∈ Ai;

Section 2.11 for the clarity of presentation.

Theorem 3. (Sample complexity of learning CCE). For any p ∈ (0, 1], set ι = log(2NSAmaxKH/p), and let

the agents run Algorithm 5 for K episodes with K = O(SAmaxH
5ι/ε2). Then, with probability at least 1− p,

the output policy π̄ of Algorithm 6 is an ε-approximate CCE.

2.7.2 Learning CE

In this subsection, we aim at learning a more strict solution concept named correlated equilibrium. Our

algorithm for learning CE, formally presented in Algorithm 7, also relies on stage-based V-learning, but replaces

the no-regret learning subroutine in Algorithm 5 with a no-swap-regret learning algorithm. Our no-swap-regret

algorithm follows the generic reduction introduced in [65], and converts a follow-the-regularized-leader (FTRL)

algorithm with sublinear external regret to a no-swap-regret algorithm [12]. A detailed description of such a

no-swap-regret FTRL subroutine, as well as its regret analysis, is presented in Section 2.12. Again, due to the

stage-based update rule, we can avoid the additional complication of dealing with a weighted swap regret as

faced by recent works [12], [63]. The construction of the output policy π̄ is the same as Algorithm 6 and thus

omitted. The following theorem shows that our sample complexity guarantee for learning CE improves over

[63] and matches the best known result in the literature [12]. The proof of the theorem can also be found in

Section 2.12.

Theorem 4. (Sample complexity of learning CE). For any p ∈ (0, 1], set ι = log(2NSAmaxKH/p), and let

the agents run Algorithm 7 for K episodes with K = O(SA2
maxH

5ι/ε2). Then, with probability at least 1− p,
the output policy π̄ is an ε-approximate CE.

23

As a final remark, notice that both the V-learning and the no-regret learning components of our algorithms

are decentralized, which can be implemented using only the states observed and the local action and reward

information, without any communication or central coordination among the agents. In addition, the sample

complexity of our algorithms only depend on Amax instead of
∏N
i=1Ai. This allows our methods to easily

generalize to a large number of agents.

2.7.3 Simulations

In this section, we demonstrate the empirical performances of our algorithm, and compare their perfor-

mances with various benchmarks. We evaluate Algorithm 5 on two Markov games, namely GoodState and

BoxPushing [111].

The GoodState task is a simple Markov team problem inspired by [77]. It has two states S = {s0, s1},
where s0 is the “good state” and s1 is the “bad state”. Each agent has two candidate actions A1 = {a0, a1}
and A2 = {b0, b1}. The reward function at each state is presented in Table 2.3. Specifically, at state s1, both

agents get a reward of 0 no matter what actions they select, while at state s0, they will obtain a strictly

positive reward if they either take the joint action (a0, b1) or the one (a1, b0). The state transition function is

defined as follows:

Ph(s0 | s0 or s1, a0, b1) = 1− ε, Ph(s1 | s0 or s1, not (a0, b1)) = 1− ε, ∀h ∈ [H],

and all the other transitions happen with probability ε. Intuitively, no matter which state the agents are

in, they will transition to the good state s0 with a high probability 1− ε at the next step as long as they

select the action pair (a0, b1). All the other joint actions will lead to the bad state s1 with a high probability

1 − ε. The task hence rewards the agents who learn to consistently play the action pair (a0, b1). We run

Algorithm 5 on this example for K = 50000 episodes, each episode containing H = 10 steps. We set the

transition probability ε = 0.1. For Algorithm 5, the step size is set to be ηi =
1

5
√
AiŤh(sh)

, and the implicit

exploration parameter is γi = ηi/2.

s0 b0 b1

a0 -2 5

a1 2 -2

s1 b0 b1

a0 0 0

a1 0 0

Table 2.3: Reward tables for GoodState.

The BoxPushing task [111] is a classic DecPOMDP problem with with ∼100 states. It has two 2 agents,

where each agent has 4 candidate actions. In the original BoxPushing problem, each agent only has a partial

observation of the state. We make proper modifications to the task so that the agents can fully observe the

state information and fit in our problem formulation. For Algorithm 5 on this task, the step size is set to be

ηi =
1

20
√
AiŤh(sh)

, and the implicit exploration parameter is γi = ηi/2.

We compare Algorithm 5 with two meaningful benchmarks. The first benchmark is a “Centralized”

oracle. This oracle acts as a centralized coordinator that can control the actions of both agents. Such an

oracle essentially converts the multi-agent task into a single-agent RL problem. In our simulations, we

implement “Centralized” by using a Hoeffding-based variant of a state-of-the-art single-agent RL algorithm

UCB-ADVANTAGE [112]. This algorithm has achieved a tight sample complexity bound for single-agent RL

in theory, and has also demonstrated remarkable empirical performances in practice [23]. Such an algorithm

24

0 10000 20000 30000 40000 50000
Iterations

0

10

20

30

40

Re
wa

rd

Centralized
Independent
V-Learning

(a) GoodState

0 20000 40000 60000 80000 100000
Iterations

0

20

40

60

80

100

Re
wa

rd

Centralized
Independent
V-Learning

(b) BoxPushing

Figure 2.1: Rewards of Algorithm 5 on the (a) GoodState and (b) BoxPusing tasks. “V-Learning” denotes
the policies at the current iterate t of Algorithms 5. “Centralized” is an oracle that can control the actions of
the agents in a centralized way. In “Independent”, each agent runs a näıve single-agent Q-learning algorithm
independently, by taking greedy actions with respect to its local Q-function estimates. All results are averaged
over 20 runs.

could provide a strong performance upper bound in our task. The second benchmark we consider is the

näıve “Independent” Q-learning. Specifically, we let each agent run a single-agent Q-learning algorithm

independently, without being aware of the existence of the other agent or the structure of the game. Each

agent maintains an local optimistic Q-function, and takes greedy actions with respect to such optimistic

estimates, without taking into account the other agents’ actions. Since the agents update their policies

simultaneously, the stationarity assumption of the environment in single-agent RL quickly collapses, and the

theoretical guarantees for single-agent Q-learning no longer hold. This is also reminiscent of the “independent

learner” approach proposed in an early work [40] for learning in Markov teams. We believe that such a

benchmark could provide meaningful intuitions about the consequences of not taking care of the multi-agent

structure in decentralized methods. In our simulations, we implement such a benchmark by letting each

agent running a variant of the single-agent UCB-ADVANTAGE [112] algorithm independently.

Figure 2.1 illustrates the performances of our Algorithm 5 and the two benchmark methods in terms of

the collected rewards, where “V-Learning” denotes the policy at the current iterate t of Algorithms 5. Notice

that the actual policy trajectories of the algorithm numerically converge and achieve high rewards. This is

more encouraging than our theoretical guarantees, because for Algorithm 5, our Theorem 3 only holds for a

“certified” output policy but not the last-iterate policy. Further, Algorithm 5 outperforms the “Independent”

learning benchmark on the two tasks. On the other hand, the “Independent” benchmark converges, albeit

faster, to a clearly suboptimal value. This reiterates that the näıve idea of independent learning does not

work well for MARL in general, and a careful treatment of the game structure (like our adversarial bandit

subroutine) is necessary. Finally, the implemented algorithm takes much fewer samples to converge than our

theoretical results suggested. This indicates that the theoretical bounds might be overly conservative, and

our algorithm could converge much faster in practice.

25

Table 2.4: No-regret learning convergence rates in NFGs and Markov games.

Learning objective Normal-form games Markov games

Nash equilibrium

(two-player zero-sum)
Õ(T−1) [113] O(T−1) [122]

Correlated

equilibrium
Õ(T−1) [120]

Õ(T−1/4) [123]

Õ(T−1) (Theorem 5)

Coarse correlated

equilibrium
Õ(T−1) [118]

Õ(T−3/4) [121]

Õ(T−1) (Theorem 6)

2.8 Õ(T−1) Convergence in Full-Information Markov Games

So far, we have primarily considered MARL algorithms that run an adversarial bandit procedure at each

state. We have shown that such algorithms achieve an Õ(
√
T) regret2 with respect to an arbitrary reward

sequence after T iterations, which directly implies an Õ(1/
√
T) convergence rate to a (coarse) correlated

equilibrium. While the O(
√
T) regret is unimprovable against an adversarial environment, it need not be the

case for learning equilibria in games because each player in a repeated game is not facing adversarial payoffs,

but instead is interacting with other players who also exhibit certain learning behavior. In this section, we

exploit this structure and seek to establish a faster Õ(T−1) convergence to CCE/CE in full-information

general-sum Markov games.

Faster convergences than Õ(1/
√
T) are indeed shown to be possible for certain scenarios of learning in

games. For learning Nash equilibria (NE) in two-player zero-sum normal-form games (NFGs), the seminal

work [113] developed an algorithm based on the Nesterov’s excessive gap technique and established its

Õ(T−1) convergence when the algorithm is adopted by both players. Recent works [114]–[120] significantly

strengthened this line of results by devising other no-regret learning dynamics that find different equilibrium

solutions at a faster rate than O(1/
√
T). Notably, [115] showed that if all the players in a general-sum NFG

employ an optimistic version of follow-the-regularizer-leader (henceforth OFTRL), the players’ strategies

converge to the set of CCE at a fast rate of O(T−3/4); such a rate was later improved to Õ(T−1) by [118].

More recently, the Õ(T−1) rate was established for swap regrets and CE in NFGs [119], [120]. Despite the

encouraging fast convergence results in NFGs, very few results are known for the more challenging regime

of Markov games. The only exceptions include [121] and [122], who established the Õ(T−1) convergence of

OFTRL (together with smooth value updates) to NE in two-player zero-sum full-information Markov games,

matching the best rates in NFGs. As for general-sum Markov games, the best known results for CCE and

CE are Õ(T−3/4) [121] and Õ(T−1/4) [123], respectively, which largely lag behind their Õ(T−1) counterparts

in NFGs. In fact, establishing Õ(T−1) convergence to CCE or CE in general-sum Markov games has been

raised as an important open question by [122].

In this section, we close this gap by developing no-regret learning algorithms with accompanying value

update procedures and establishing their fast Õ(T−1) convergence to CCE or CE in general-sum Markov

games. For CE (Section 2.8.1), we consider the OFTRL algorithm with a log-barrier regularizer, and

integrate it with the celebrated external-to-swap-regret reduction [65] and smooth value updates. Our Õ(T−1)

convergence analysis builds on a Regret bounded by Variation in Utilities (RVU) property [115] for the

weighted swap regret at each state. We make a seemingly trivial observation that swap regrets are always

non-negative and use it to easily bound the second-order path lengths of the learning dynamics. For CCE

2In this section, we use Õ(·) to suppress the poly-logarithmic dependence on T .

26

Algorithm 8: Optimistic follow-the-regularized-leader for correlated equilibria (agent i)

1 Initialize: Q0
h,i(s,a)← 0, π0

h,i(s, ai)← 1/Ai,∀s ∈ S, h ∈ [H], ai, a
′
i ∈ Ai,a ∈ Aall;

2 for iteration t← 1 to T do
3 Policy update:
4 for action ai ∈ Ai do
5 ℓt,aih,i (s, a

′
i)←

∑t−1
j=1 wjπ

j
h,i(s, ai)[Q

j
h,iπ

j
h,−i](s, a

′
i) + wtπ

t−1
h,i (s, ai)[Q

t−1
h,i π

t−1
h,−i](s, a

′
i);

6 qt,aih,i (s, ·)← argmaxx∈∆(Ai)

(
⟨x, ηℓt,aih,i (s, ·)/wt⟩ − R(x)

)
,∀s ∈ S, h ∈ [H];

7 Find πth,i such that πth,i(s, ·) =
∑
ai∈Ai

πth,i(s, ai)q
t,ai
h,i (s, ·),∀s ∈ S, h ∈ [H], ai ∈ Ai;

8 Value update:
9 for h← H to 1 do

10 Qth,i(s,a)← (1− αt)Qt−1
h,i (s,a) + αt

(
rh,i + Ph[Q

t
h+1,iπ

t
h+1]

)
(s,a),∀s ∈ S,a ∈ Aall;

11 Output policy: π̄ = π̄T1 , where π̄
t
h is defined in Algorithm 9.

(Section 2.8.2), we consider standard OFTRL with negative entropy regularization but combine it with a

stage-based value update scheme. We show that this algorithm induces a no-average-regret problem within

each stage, which allows us to apply existing analysis for the individual regret of the players [118]. Table 2.4

compares our results with the best-known convergence rates of no-regret learning in NFGs and Markov games.

We further provide numerical results (Section 2.8.3) to validate the Õ(T−1) convergence behavior of our

algorithms.

Notations. For notational convenience, for any value function V : S → R (as defined in Section 2.3),

we define [PhV] (s,a) := Es′∼Ph(·|s,a) [V (s′)] . For an arbitrary Q-function Qh,i : S × Aall → R, we write

[Qh,iπh](s) := ⟨Qh,i(s, ·), πh(s, ·)⟩ and [Qh,iπh,−i](s, ai) := ⟨Qh,i(s, ai, ·), πh,−i(s, ·)⟩ for short.
Full-information feedback. Following [54], [121]–[123], we consider the full-information feedback setting

where each agent can observe the expected rewards it would have received had it played any candidate action.

In our formulation, this can be interpreted as an oracle from which each agent i can query [Qh,iπh,−i](s, ai)

for each candidate action ai ∈ Ai at any state s ∈ S.

2.8.1 Convergence to Correlated Equilibria

In this subsection, we present our optimistic follow-the-regularized-leader (OFTRL) algorithm for learning

correlated equilibria in general-sum Markov games and then establish its Õ(T−1) convergence.

Algorithm 8 describes the OFTRL procedure run by agent i ∈ N . Since the algorithms run by all the

agents are exactly symmetric, in the following, we only illustrate our algorithm using a single agent i as

an example. Algorithm 8 consists of three major components: The policy update step that computes the

strategy for each matrix game, the value update step that updates the (Q-)value functions, and the policy

output step that generates a CE policy.

Policy update. At each fixed (s, h) ∈ S × [H], the agents are essentially faced with a sequence of matrix

games, where the payoff matrix for agent i in the t-th matrix game is given by the estimated Q-function

Qth,i(s, ·) at the corresponding iteration t. For learning CE in matrix games, a folklore result suggests

that each agent should employ a no-swap-regret learning algorithm. Specifically, suppose that each agent

employs a no-swap-regret algorithm such that the cumulative swap regret up to time T ∈ N+ is upper

bounded by SwapRegT ; then, the empirical distribution of the joint actions played by the players is an

(SwapRegT /T)-approximate CE [35].

27

For a fixed matrix game at (s, h)× S × [H], we follow the generic reduction introduced in [65] to obtain

a no-swap-regret learning algorithm Aswap from a no-(external-)regret base algorithm A . Specifically, [65]

maintain a separate no-regret algorithm Aa for each candidate action a ∈ Ai of the agent. Aswap computes a

strategy by combining the strategies of the Ai base algorithms. At time step t ∈ [T], each base algorithm Aa

outputs a distribution qt,a(·) ∈ ∆(Ai), where qt,a(a′) is the probability that it selects a′ ∈ Ai. Then, a (row)

stochastic matrix qt ∈ RAi×Ai is constructed, where the a-th row of qt is equal to the qt,a vector. Aswap

obtains the action selection strategy by computing a stationary distribution3 πt ∈ ∆(Ai) of qt such that

(qt)⊤πt = πt. Upon receiving the payoff vector ut ∈ RAi (in the case of Algorithm 8, ut = [Qjh,iπ
j
h,−i](s, ·)

for agent i) from the environment, Aswap returns to each Aa base algorithm a πt(a) fraction of the received

utility, so that Aa is updated with a utility vector of πt(a)ut ∈ RAi . It is shown that Aswap guarantees

no-swap-regret as long as each base algorithm Aa has sublinear (external) regret in T .

In Algorithm 8, we use weighted OFTRL as the no-regret base algorithm A . OFTRL [115] extends the

standard FTRL paradigm by maintaining a prediction sequence mt of the utilities. Given a utility sequence

(u1, . . . ,uT), OFTRL computes the strategies by

xt := argmax
x∈∆(Ai)

{
η
〈
x,mt +

t−1∑
j=1

uj
〉
−R(x)

}
, (2.5)

where η > 0 is the learning rate, and R is the regularizer. In Algorithm 8, we instantiate (2.5) with

mt = ut−1 and the log-barrier regularizer R(x) = −∑ai∈Ai
log(x[ai]). Such a log-barrier regularizer satisfies

the self-concordant condition in [120], which is used to establish the Regret bounded by Variation in Utilities

(RVU) property [115] of the swap regret. Due to the time-varying learning rates in the value update step (to

be discussed momentarily), we additionally use a weighted variant of OFTRL that considers a weighted sum

over the utility sequence. The choice of the weights {wj}j∈[t] will also be defined shortly. Combining the

OFTRL base algorithm, the utility weights and the external-to-swap-regret reduction, we arrive at the policy

update rule as presented in Algorithm 8. With the [65] reduction, we name our no-swap-regret algorithm

BM-OFTRL.

Value update. For any (h, s,a), we update the Q-value estimates at each iteration in a Bellman manner

using a weighted average of previous estimates. We perform incremental updates using the classic step size

αt = (H + 1)/(H + t) proposed by [60]. With this step size, the value update rule in Algorithm 8 effectively

becomes:

Qth,i(s,a) =

t∑
j=1

αjt

(
rh,i + Ph[Q

j
h+1,iπ

j
h+1]

)
(s,a),∀s ∈ S,a ∈ Aall, (2.6)

where αjt := αj
∏t
j′=j+1(1− αj′) and αtt := αt. One can verify that

∑t
j=1 α

j
t = 1. Given the time-varying

weights αjt , to ensure that our policy update step is no-swap-regret in the matrix games defined by the

Q-value estimates, we define the weights of our weighted OFTRL procedure in Algorithm 8 to be wj := αjt/α
1
t

for any fixed t ∈ [T].

Policy output. Our output policy π̄ is a state-wise weighted average of the history policies, where the

weights are again related to the step sizes αjt . The construction of π̄ is formally defined in Algorithm 9, which

is closely related to the “certified policies” from [34]. Specifically, Algorithm 9 takes the policy trajectory

{πth}h∈[H],t∈[T] of Algorithm 8 as input. For each step h ∈ [H], Algorithm 9 randomly samples a joint policy

from the policy trajectory using the sampling probabilities αjt and let all the agents play this joint policy at

3It is known that such a distribution πt exists and is computationally efficient.

28

Algorithm 9: Policy π̄th

1 Input: Policy trajectory {πth}h∈[H],t∈[T] of Algorithm 8;
2 for step h′ ← h to H do

3 Sample τ ∈ [t] with probability P(τ = j) = αjt ;
4 Play policy πτh′ at step h′;
5 Set t← τ .

the given step. The constructed policy π̄ is a correlated policy because the agents implicitly use a common

source of randomness to select the same history iteration. We will show that the output policy constitutes an

approximate CE.

Analysis. In the following, we present the analysis of Algorithm 8. We use the following notion of CE-Gap

to measure the distance of a correlated policy to a CE:

CE-Gap(π) := max
i∈N

max
ϕi∈Φi

(
V ϕi⋄π
1,i (s1)− V π1,i(s1)

)
,

where recall that Φi is the set of strategy modifications for agent i. The following theorem states that

Algorithm 8 finds an Õ(T−1)-approximate CE in T iterations.

Theorem 5. If Algorithm 8 is run on an N -player episodic Markov game for T iterations with a learning

rate η = 1
256NH

√
HAmax

, the output policy π̄ satisfies:

CE-Gap(π̄) ≤ 2048NH
7
2A

5
2
max log T

T
.

Theorem 5 improves the existing Õ(T−1/4) rate [123] of no-regret learning to CE in full-information

Markov games. The parameter dependences in Theorem 5 also match the best known rate for normal-form

games [120], except that Theorem 5 introduces an additional O(H
7
2) dependence on the Markov game episode

length. We remark that we make no effort to improve the constant factors in the bounds, which can certainly

be tightened.

The proof structure of Theorem 5 is conceptually similar to those for learning Nash equilibria in two-player

zero-sum Markov games [121], [122] . We first introduce a few notations to facilitate the proof. For any

(s, h) ∈ S × [H], we define the per-state weighted swap regret up to iteration t ∈ [T] in the corresponding

matrix game as

SwapRegth,i(s) := max
ϕs
h,i:Ai→Ai

t∑
j=1

αjt

〈
ϕsh,i ⋄ πjh,i(s, ·)− π

j
h,i(s, ·), [Q

j
h,iπ

j
h,−i](s, ·)

〉
,

SwapRegth := max
i∈N

max
s∈S

SwapRegth,i(s).

For any (h, t) ∈ [H]× [T], we further define the best response CE value gap as

δth := max
i∈N

max
ϕi

max
s∈S

(
V
ϕi⋄π̄t

h

h,i (s)− V π̄
t
h

h,i (s)
)
,

where π̄th is defined in Algorithm 9 and we slightly abuse the notation ϕi to denote a strategy modification

that is only effective starting from step h. By the definition of δth and π̄, one can easily see that CE-Gap(π̄) =

CE-Gap(π̄T1) ≤ δT1 . To control δT1 , we first use the following lemma to establish the recursive relationship of

29

the best response CE value gaps between two consecutive steps h and h+ 1:

Lemma 3. (Recursion of best response CE value gaps) For any fixed (h, t) ∈ [H]× [T], we have

δth ≤
t∑

j=1

αjtδ
j
h+1 + SwapRegth . (2.7)

Therefore, upper bounding CE-Gap(π̄) breaks down to controlling the per-state weighted swap regrets for

every (s, h) ∈ S × [H]. We can further establish the upper bound of SwapRegth,i(s) in the next lemma. The

proof of this lemma relies on an RVU bound for the swap regret of BM-OFTRL under time-varying learning

rates in normal-form games.

Lemma 4. (Per-state weighted swap regret bounds) For any t ∈ [T], h ∈ [H], s ∈ S and i ∈ N , Algorithm 8

ensures that

SwapRegth,i(s) ≤
4A2

iH log t

ηt
+

32ηH3N2

t
+ 8ηNH2

t∑
j=2

∑
k ̸=i

αjt

∥∥∥πjh,k(s, ·)− πj−1
h,k (s, ·)

∥∥∥2
1
. (2.8)

If η ≤ 1
256NH

√
HAmax

, we further have

N∑
i=1

SwapRegth,i(s) ≤
4NA2

maxH log t

ηt
+

32ηNH2(N2 +H)

t

− 1

2048ηH

N∑
i=1

t∑
j=2

αjt
Ai

∥∥∥πjh,i(s, ·)− πj−1
h,i (s, ·)

∥∥∥2
1
. (2.9)

We note that there is a discrepancy between (2.7) and (2.9). Specifically, (2.7) requires an upper bound

for the maximum of the swap regrets over the agents while (2.9) controls the sum of them. This poses some

additional challenges for learning NE (in zero-sum Markov games) or CCE in existing works [121], [122],

because some players may experience negative regret [124] and the sum of regrets in general does not upper

bound the maximum individual regret of the players. For CE, however, we can take advantage of a seemingly

trivial property that the swap regret is always non-negative. This is in sharp contrast to the (external)

regret and one can easily verify this property by letting all the strategy modifications ϕsh,i in SwapRegth,i(s)

be identity mappings. In this case, the discrepancy will not impede us, as we can easily upper bound the

maximum (2.7) by the sum (2.9), which already yields an Õ(t−1) convergence rate. Our proof of Theorem 5

instead follows a different route that upper bounds the second-order path lengths of the learning dynamics,

which leads to an improved rate in terms of the dependence on N .

2.8.2 Convergence to Coarse Correlated Equilibria

In this subsection, we turn to learning coarse correlated equilibria. We start by introducing our stage-based

OFTRL algorithm followed by presenting its analysis.

Algorithm 10 describes the stage-based OFTRL procedure run by agent i ∈ N for learning CCE. Similar

to Section 2.8.1, Algorithm 10 also consists of three components: policy update, value update, and policy

output. The policy update step is standard OFTRL with a negative entropy regularizer, which is also known

as the optimistic Hedge (see e.g., [117]). Our policy output step, formally described in Algorithm 11, is also

conceptually similar to Algorithm 9 for CE.

30

Algorithm 10: Stage-based OFTRL for coarse correlated equilibria (agent i)

1 Initialize: Q1
h,i(s,a)← 0, π0

h,i(s, ai)← 1/Ai,∀s ∈ S, h ∈ [H], ai, a
′
i ∈ Ai,a ∈ Aall;

2 Set stage index τ ← 1, tstartτ ← 1, and Lτ ← H;
3 for iteration t← 1 to T do
4 Policy update: For all s ∈ S, h ∈ [H], and ai ∈ Ai,

ℓth,i(s, ai)←
t−1∑

t′=tstartτ

[Qτh,iπ
t′

h,−i](s, ai) + [Qτh,iπ
t−1
h,−i](s, ai);

πth,i(s, ·)← argmax
x∈∆(Ai)

(
⟨x, ητ ℓth,i(s, ·)/H⟩ − R(x)

)
;

5 if t− tstartτ + 1 ≥ Lτ then
6 tendτ ← t, tstartτ+1 ← t+ 1, Lτ+1 ← ⌊(1 + 1/H)Lτ⌋;
7 Value update: For each h ∈ [H], s ∈ S,a ∈ Aall, i ∈ N :

Qτ+1
h,i (s,a)← 1

Lτ

tendτ∑
t′=tstartτ

(
rh,i + Ph[Q

τ
h+1,iπ

t′

h+1]
)
(s,a);

8 τ ← τ + 1; πth,i(s, ai)← 1/Ai,∀s ∈ S, h ∈ [H], ai ∈ Ai;
9 Output policy: Sample t ∼ Unif([T]). Output π̄ := π̄t1 where π̄th is defined in Algorithm 11.

Algorithm 11: Policy π̄th for stage-based OFTRL

1 Input: Policy trajectory {πth}h∈[H],t∈[T] of Algorithm 10;
2 for step h′ ← h to H do
3 Uniformly sample j from {tstartτ(t)−1, t

start
τ(t)−1 + 1, . . . , tendτ(t)−1};

4 Play policy πjh′ for step h′;
5 Set t← j.

The value update step here is substantially different from that of Section 2.8.1. Rather than performing

incremental updates as in Algorithm 8, we instead employ stage-based value updates by dividing the total T

iterations into multiple stages and only updating the value estimates at the end of a stage. We use τ ∈ N+

to index the stages and use Lτ to denote the length (i.e., number of iterations) of the τ -th stage. We set

the lengths of the stages to grow exponentially at a rate of (1 + 1/H) so that Lτ+1 = ⌊(1 + 1/H)Lτ⌋. The
exponential growth ensures that the total T iterations can be covered by a small number of stages, while the

(1 + 1/H) growth rate guarantees that the value estimation error does not blow up during the H steps of

recursion. Such a mechanism was initially proposed in single-agent RL [61] and has later been advocated for

creating a piece-wise stationary environment in MARL [17]. The benefit of using stage-based value updates

here is that we only need to bound the per-state average regret in the corresponding matrix games (in

contrast to the weighted regret as in Section 2.8.1), which allows us to easily apply existing regret analysis

results for normal-form games.

Analysis. We use the following notion of CCE-Gap to measure the distance of a correlated policy to a CCE:

CCE-Gap(π) := max
i∈N

(
V

†,π−i

1,i (s1)− V π1,i(s1)
)
.

In the following theorem, we show that Algorithm 10 finds an Õ(T−1)-approximate CCE in T iterations.

Theorem 6. If Algorithm 10 is run on an N -player episodic Markov game for T iterations with a learning

31

Table 2.5: Reward matrices for Player 1.

s0 b0 b1
a0 0.8 0.2
a1 0.0 1.0

s1 b0 b1
a0 1.0 0.2
a1 0.5 0.8

Table 2.6: Reward matrices for Player 2.

s0 b0 b1
a0 0.2 1.0
a1 0.5 0.0

s1 b0 b1
a0 0.5 1.0
a1 1.0 0.2

rate ητ = Θ(1
N log4 Lτ

) in each stage τ , then the output policy π̄ satisfies:

CCE-Gap(π̄) = O

(
NH3 logAmax · log5 T

T

)
.

Theorem 6 improves the best-known rate of Õ(T−3/4) [121] for OFTRL in general-sum Markov games.

Since CCE reduces to NE in two-player zero-sum games [34], Theorem 6 additionally suggests that a simple

variant of Algorithm 10 leads to an Õ(T−1) convergence to NE in two-player zero-sum Markov games, which

can further improve the existing O(H5 logAmax/T) result [122] when log T = O(H2/5). Compared to its

counterpart O(N logAmax · log4 T/T) in normal-form games [118], Theorem 6 incurs an extra O(log T) factor

due to the stage-based value estimates.

The proof of Theorem 6 starts by showing a recursive relationship of the best response CCE value gaps

between two consecutive steps h and h + 1. As a consequence of stage-based value updates, CCE-gap(π̄)

breaks down to the sum of the per-state average regret over the stages, which allows us to apply each player’s

individual (average) regret bound in NFGs [118] for each stage. The proof is then completed by upper

bounding the total number of stages. We defer the complete proof of Theorem 6 to Section 2.14 for clarity of

presentation.

2.8.3 Numerical Results

In this subsection, we numerically evaluate Algorithm 8 (denoted by “Smooth OFTRL CE”) and Algorithm 10

(“Stage-based OFTRL CCE”) to validate our Õ(T−1) theoretical convergence guarantees. Our simulations

additionally consider an OFTRL algorithm with incremental value updates similar to that of Algorithm 8 for

learning CCE (“Smooth OFTRL CCE”). We did not prove the convergence of such an algorithm but would

be interested to see its numerical performance given its intuitive form. Our numerical studies are conducted

on a simple general-sum Markov game with 2 players, 2 states S = {s0, s1} and H = 2 steps per episode.

Each player has 2 candidate actions A = {a0, a1} and B = {b0, b1}, respectively. The reward matrices for

Player 1 and Player 2 at the two states are given in Tables 2.5 and 2.6, respectively. The state transition

function is defined as follows: In both states s0 and s1, if the two players take matching actions (namely

(a0, b0) or (a1, b1)), the system stays at the current state with probability 0.8, and transitions to the other

state with probability 0.2. On the other hand, if the two players take opposite actions (namely (a0, b1) or

(a1, b0)), the environment will stay at the current state with probability 0.2, and will transition to the other

state with probability 0.8. We choose a constant learning rate η = 0.2 for all the three algorithms. We

have also experimented with other choices of the transition and reward functions and have observed similar

behavior, as shown in Figures 2.2 and 2.3.

Figure 2.2 illustrates the convergence of the three algorithms to their corresponding equilibrium solutions

as the number of iterations increases. To clearly demonstrate their convergence rates, we further plot the

behavior of CCE/CE-Gap(π̄)×T as T increases. We can observe from Figure 2.3 that for all three algorithms,

CCE/CE-Gap(π̄) × T essentially become a constant for any reasonably large value of T . This indicates

32

0 2000 4000 6000 8000 10000

Iterations T

0.00

0.05

0.10

0.15

C
C

E
/C

E
-g

ap
(π̄

)

Smooth OFTRL CE

Stage-based OFTRL CCE

Smooth OFTRL CCE

Figure 2.2: Convergence of CCE/CE-Gap(π̄)

0 2000 4000 6000 8000 10000

Iterations T

0

5

10

15

20

25

C
C

E
/C

E
-g

ap
(π̄

)
×
T Smooth OFTRL CE

Stage-based OFTRL CCE

Smooth OFTRL CCE

Figure 2.3: Convergence of CCE/CE-Gap(π̄)× T

that our algorithms indeed converge at a rate of Õ(T−1) numerically. We also observe that OFTRL with

stage-based value updates numerically converges faster than its incrementally-updated counterpart despite

using the same learning rate, which advocates the use of stage-based value updates in Markov games.

2.9 Proofs for Section 2.5

2.9.1 Proof of Lemma 2

Proof. In the following, we provide a proof for the first inequality. The second inequality can be shown using

a similar argument.

Notice that it suffices to show V kh (s) ≥ V ⋆,ν̄k,h (s), because V
k

h(s) = min{V kh (s), H − h+ 1}, and V ⋆,ν̄k,h (s) ≤
H − h + 1 always holds. Our proof relies on backward induction on h ∈ [H]. First, the claim holds for

h = H +1 by the definition of V kH+1(s). Now, suppose V
k
h+1(s) ≥ V ⋆,ν̄k,h+1(s) for all s ∈ S. By the definition of

V ⋆,ν̄k,h (s) and the induction hypothesis,

V ⋆,ν̄k,h (s) ≤max
µh

t∑
i=1

αitDµh×νki

h

(
rh + PhV ⋆,ν̄ki,h+1

)
(s)

≤max
µh

t∑
i=1

αitDµh×νki

h

(
rh + PhV

ki

h+1

)
(s). (2.10)

Further, define

Rt = max
µh

t∑
i=1

αitDµh×νki

h

(
rh + PhV

ki

h+1

)
(s)−

t∑
i=1

αitDµki

h ×νki

h

(
rh + PhV

ki

h+1

)
(s). (2.11)

One may observe that from the perspective of player 1, Rt is the weighted sum of the differences between the

actual value that player 1 collected for the first t times that state s is visited, and the value that could have

been achieved using the best fixed policy in hindsight. Rt can hence be thought of as the weighted regret of

an adversarial bandit problem, which we formally present and analyze in Section 2.6. Specifically, the loss

function of the bandit problem is defined as

li(a) = E
b∼νki

h (s)

{
H − h+ 1− rh(s, a, b)− PhV

ki

h+1(s, a, b)

}
.

33

The weight of the regret at round i is wi = αit. If we define

µ⋆h := argmin
µh

t∑
i=1

wi ⟨µh, li⟩ = argmax
µh

t∑
i=1

αitDµh×νki

h

(
rh + PhV

ki

h+1

)
(s),

then, Rt can be equivalently rewritten as

Rt =

t∑
i=1

wi

〈
µ⋆h − µk

i

h , li

〉
.

Later in Section 2.6, we will analyze an adversarial bandit problem in exactly the same form. Applying the

regret bound (which is presented in Theorem 2 of Section 2.6) of this bandit problem, we obtain the following

result with probability at least 1− p/(2SHK):

Rt ≤2Hαtt
√
Atι+

3H
√
Aι

2

t∑
i=1

αit√
i
+

1

2
Hαttι+H

√√√√2ι
t∑
i=1

(
αit
)2

≤4H2
√
Aι/t+ 3H

√
Aι/t+H2ι/t+

√
4H3ι/t

≤10H2
√
Aι/t, (2.12)

where in the first step we have used the fact that wi is increasing and maxi≤t wi = αtt, and the second step is

due to Lemma 1.

Finally, let Fi be the σ-algebra generated by all the random variables before episode ki. Then, we can see

that {rh(s, ak
i

h , b
ki

h) + V
ki

h+1(s
ki

h+1)}ti=1 is a martingale with respect to {Fi}ti=1. From the Azuma-Hoeffding

inequality, it holds with probability at least 1− p/(2SHK) that

t∑
i=1

αitDµki

h ×νki

h

(
rh + PhV

ki

h+1

)
(s)

≤
t∑
i=1

αit

[
rh

(
s, ak

i

h , b
ki

h

)
+ V

ki

h+1

(
sk

i

h+1

)]
+ 2
√
H3ι/t,

(2.13)

where ι suppresses logarithmic terms. Finally, combining the results in (2.10), (2.11), (2.12), (2.13), and

applying a union bound, we obtain that

V ⋆,ν̄k,h (s) ≤max
µh

t∑
i=1

αitDµh×νki

h

(
rh + PhV

ki

h+1

)
(s)

≤
t∑
i=1

αitDµki

h ×νki

h

(
rh + PhV

ki

h+1

)
(s) + 10H2

√
Aι/t

≤
t∑
i=1

αit

[
rh

(
s, ak

i

h , b
ki

h

)
+ V

ki

h+1

(
sk

i

h+1

)]
+ 10H2

√
Aι/t+ 2

√
H3ι/t

≤α0
tH +

t∑
i=1

αit

[
rh

(
s, ak

i

h , b
ki

h

)
+ V

ki

h+1

(
sk

i

h+1

)
+ βi

]
=V kh (s),

34

where the second to last step is by the definition of βt = c
√

H4Aι
t for some large constant c, and Lemma 1. In

the last step we used the formulation of V kh (s) in (2.3). This completes the proof of the induction step.

2.9.2 Proof of Theorem 1

Proof. We provide a proof for the first bound. The second one can be shown using a similar argument. For

analytical purposes, we introduce two new notations V and V˜ that serve as lower confidence bounds of the

value estimates for agent 1. Specifically, for any (s, h, k) ∈ S × [H + 1]× [K], we define V kh(s) = V˜kh(s) = 0 if

h = H + 1 or the (h, s) pair has not been visited before episode k, and otherwise define

V˜kh(s) =
t∑
i=1

αit

[
rh

(
s, ak

i

h , b
ki

h

)
+ V k

i

h+1

(
sk

i

h+1

)
− βi

]
, and V kh(s) = max{V˜kh(s), 0}.

Notice that these two notations are only introduced for ease of analysis, and the agent does not need to

explicitly maintain such values during the learning process. In the following, we show that V kh(s) ≤ V µ̄,ν̄k,h (s), for

all (s, h, k) ∈ S × [H]× [K]. Again, it suffices to show that V˜kh(s) ≤ V µ̄,ν̄k,h (s), because V kh(s) = max{V˜kh(s), 0},
and V µ̄,ν̄k,h (s) ≥ 0 always holds. Our proof relies on backward induction on h ∈ [H]. The claim trivially holds

for h = H + 1. Suppose V˜kh+1(s) ≤ V µ̄,ν̄k,h+1(s) for all s ∈ S. By the definition of V˜kh(s),
V˜kh(s) =

t∑
i=1

αit

[
rh

(
s, ak

i

h , b
ki

h

)
+ V k

i

h+1

(
sk

i

h+1

)
− βi

]
≤

t∑
i=1

αitDµki

h ×νki

h

(
rh + PhV k

i

h+1

)
(s)

≤
t∑
i=1

αitDµki

h ×νki

h

(
rh + PhV µ̄,ν̄ki,h+1

)
(s)

=V µ̄,ν̄k,h (s).

where the second step uses the Azuma-Hoeffding inequality and the definition of βi, and the third step is by

the induction hypothesis. This completes the proof of the induction.

Together with Lemma 2, we know that

K∑
k=1

(
V ⋆,ν̄k,1 (s1)− V

µ̄,ν̄
k,1 (s1)

)
≤

K∑
k=1

(
V
k

1(s1)− V k1(s1)
)
,

and so we only need to find an upper bound for the RHS. Define δkh := V
k

h(s
k
h)− V kh(skh). The main idea of

the proof is similar to optimistic Q-learning in the single-agent setting [60]: We seek to upper bound
∑K
k=1 δ

k
h

by the next step
∑K
k=1 δ

k
h+1, and then obtain a recursive formula.

35

By the definitions of V
k

h(s
k
h) and V

k
h(s

k
h), we know that

δkh =V
k

h(s
k
h)− V kh(skh)

≤α0
tH +

t∑
i=1

αit

[
V
ki

h+1

(
sk

i

h+1

)
− V kih+1

(
sk

i

h+1

)
+ 2βi

]

=α0
tH +

t∑
i=1

αitδ
ki

h+1 + 2

t∑
i=1

αitβi

≤α0
tH +

t∑
i=1

αitδ
ki

h+1 + c
√
AH4ι/t,

for some constant c, and the last step is due to Lemma 1. Summing over k, notice that

K∑
k=1

α0
nk
h
H =

K∑
k=1

H1
{
nkh = 0

}
≤ HS,

because there are at most SH pairs of (s, h) to be visited. Further,

K∑
k=1

nk
h∑

i=1

αink
h
δ
kih(s

k
h)

h+1 ≤
K∑
k′=1

δk
′

h+1

∞∑
i=nk′

h +1

α
nk′
h
i

≤
(
1 +

1

H

) K∑
k=1

δkh+1,

where the first step is by switching the order of summation, and the second uses the fact that
∑∞
t=i α

i
t =

1 + 1
H for every i ≥ 1 from Lemma 1. Therefore,

K∑
k=1

δkh ≤
K∑
k=1

α0
nk
h
H +

K∑
k=1

nk
h∑

i=1

αink
h
δ
kih(s

k
h)

h+1 +

K∑
k=1

c
√
AH4ι/nkh

≤HS +

(
1 +

1

H

) K∑
k=1

δkh+1 +

K∑
k=1

c
√
AH4ι/nkh. (2.14)

Applying this formula recursively for h = H,H − 1, . . . , 1 yields

K∑
k=1

δk1 ≤ eSH2 + ec

H∑
h=1

K∑
k=1

√
AH4ι/nkh,

where we used the fact that (1 + 1
H)H ≤ e. Finally, for any h ∈ [H],

K∑
k=1

√
AH4ι/nkh =

∑
s∈S

NK
h (s)∑
n=1

√
AH4ι/n ≤ O(

√
H4SAKι),

where the last step holds because
∑
s∈S N

K
h (s) = K, and the LHS is maximized when NK

h (s) = K/S for all

36

s ∈ S. Summarizing the results above leads to the desired bound

K∑
k=1

(
V ⋆,ν̄k,1 (s1)− V

µ̄,ν̄
k,1 (s1)

)
≤

K∑
k=1

δk1 ≤ O(
√
H6SAKι).

2.10 Proofs for Section 2.6

In this section, we present some lemmas that were used in the proof of Theorem 2. We first recall the following

two properties of the Bregman divergence that will be useful in our analysis.

Lemma 5. (Pythagorean theorem for Bregman divergence, Lemma 4.1 in [125]). Let X ⊆ Rn be a convex

set, y ∈ Rn, and z = argminu∈X DF (u, y). Then, for any x ∈ X ,

DF (x, y)−DF (z, y) ≥ DF (x, z).

Lemma 6. (Convexity). Let X ⊆ Rn be the (n − 1)-dimensional simplex, and let F be the unnormalized

negentropy regularizer. For any x, y ∈ X , the mapping DF (x, ·) is convex on X .

We start with the following technical result given in [34], which was in turn adapted from Lemma 1 in

[106]. This lemma allows us to construct high probability regret bounds for Algorithm 4, rather than only

regret bounds in expectation.

Lemma 7. (Lemma 18 in [34]) For any sequence of coefficients c1, c2, . . . , ct s.t. ci ∈ [0, 2γi]
A

is Fi
-measurable, we have with probability at least 1− p/AT ,

t∑
i=1

wi

〈
ci, l̂i − li

〉
≤ max

i≤t
wiι.

Lemma 8. Suppose βi ∈ (0, 1],∀i ∈ [t]. For any fixed policy θ ∈ ∆(A) and for any time step t ∈ [T], the

weighted regret of Algorithm 4 with respect to θ can be bounded by:

t∑
i=1

wi

〈
θi − θ, l̂i

〉
≤ wt+1DF (θ, θ1)

ηt+1
+

t∑
i=1

wiDF (θi, θ̃i+1)

ηi
.

Proof. Since θ̃i+1 = argminθ∈D

{
ηi

〈
θ, l̂i

〉
+DF (θ, θi)

}
, the first-order optimality condition implies that

ηi l̂i +∇F (θ̃i+1)−∇F (θi) = 0.

Reordering and using the definition of the Bregman divergence,〈
θi − θ, l̂i

〉
=

1

ηi
⟨θi − θ,∇F (θi)−∇F (θi+1)⟩

=
1

ηi
(DF (θ, θi)−DF (θ, θ̃i+1) +DF (θi, θ̃i+1)). (2.15)

37

By the Pythagorean theorem for Bregman divergence (Lemma 5),

βi(DF (θ, θ̃i+1)−DF (θ
′
i+1, θ̃i+1)) + (1− βi)DF (θ, θ1)

≥βiDF (θ, θ
′
i+1) + (1− βi)D(θ, θ1)

≥DF (θ, θi+1),

where the second step is by the convexity of DF (θ, ·) (Lemma 6) and the fact that θi+1 = βtθ
′
i+1 + (1− βi)θ1.

Rearranging the terms yields

DF (θ, θ̃i+1) ≥
1

βi
DF (θ, θi+1)−

1− βi
βi

DF (θ, θ1) +DF (θ
′
i+1, θ̃i+1).

Plugging this into (2.15) and recalling the definition that βi = ηi+1/ηi, we obtain

wi

〈
θi − θ, l̂i

〉
=
wi
ηi

(DF (θ, θi)−DF (θ, θ̃i+1) +DF (θi, θ̃i+1))

≤wi
ηi

(DF (θ, θi)−
1

βi
DF (θ, θi+1) +

1− βi
βi

DF (θ, θ1)−DF (θ
′
i+1, θ̃i+1) +DF (θi, θ̃i+1))

=
wiDF (θ, θi)

ηi
− wi+1DF (θ, θi+1)

ηi+1
+

(
wi+1

ηi+1
− wi
ηi

)
DF (θ, θ1)

− wiDF (θ
′
i+1, θ̃i+1)

ηi
+
wiDF (θi, θ̃i+1)

ηi
.

Summing over i and telescoping leads to

t∑
i=1

wi

〈
θi − θ, l̂i

〉
≤w1DF (θ, θ1)

η1
+

t∑
i=1

(
wi+1

ηi+1
− wi
ηi

)
DF (θ, θ1) +

t∑
i=1

wi(DF (θi, θ̃i+1)−DF (θ
′
i+1, θ̃i+1))

ηi

=
wt+1DF (θ, θ1)

ηt+1
+

t∑
i=1

wiDF (θi, θ̃i+1)

ηi
,

where in the last step we used the fact that DF (θ
′
i+1, θ̃i+1) ≥ 0 (by the convexity of F).

Lemma 9. If ηi ≤ 2γi and 0 ≤ wi ≤ 1 for all i ≤ t, it holds with probability at least 1− p that

t∑
i=1

wi

〈
θi − θ⋆, l̂i

〉
≤ wt+1 logA

ηt+1
+
A

2

t∑
i=1

ηiwi +
1

2
max
i≤t

wiι.

Proof. Our proof relies on the following regret bound of OMD given in Lemma 8: For any θ ∈ ∆(A) and any

t ∈ [T],
t∑
i=1

wi

〈
θi − θ, l̂i

〉
≤ wt+1DF (θ, θ1)

ηt+1
+

t∑
i=1

wiDF (θi, θ̃i+1)

ηi
. (2.16)

Since θ̃i+1 = argminθ∈D

{
ηi

〈
θ, l̂i

〉
+DF (θ, θi)

}
, the minimum is achieved when ηi l̂i + ∇F (θ̃i+1) −

38

∇F (θi) = 0. Direct calculation shows that θ̃i+1(a) = θi(a) exp(−ηi l̂i(a)) for all a ∈ A. Hence,

DF (θi, θ̃i+1) =

A∑
a=1

θi(a) log

(
θi(a)

θ̃i+1(a)

)
−

A∑
a=1

θi(a) +

A∑
a=1

θ̃i+1(a)

=

A∑
a=1

θi(a)
(
ηi l̂i(a)− 1 + exp(−ηi l̂i(a))

)
≤η

2
i

2

A∑
a=1

θi(a)l̂i(a)
2,

where the last step holds because exp(x) ≤ 1 + x+ x2/2 for x ≤ 0. Plugging this back to Equation (2.16), we

have that

t∑
i=1

wi

〈
θi − θ, l̂i

〉
≤wt+1DF (θ, θ1)

ηt+1
+

1

2

t∑
i=1

A∑
a=1

ηiwiθi(a)l̂i(a)
2

≤wt+1DF (θ, θ1)

ηt+1
+

1

2

t∑
i=1

A∑
a=1

ηiwi l̂i(a) (2.17)

≤wt+1DF (θ, θ1)

ηt+1
+

1

2

t∑
i=1

A∑
a=1

ηiwili(a) +
1

2
max
i≤t

wiι (2.18)

≤wt+1 logA

ηt+1
+
A

2

t∑
i=1

ηiwi +
1

2
max
i≤t

wiι,

where (2.17) holds because l̂i(a) ̸= 0 only if 1{ai = a} = 1, and hence it follows that
∑A
a=1 θi(a)l̂i(a)

2 =

θi(ai)l̂i(ai)
2 = θi(ai)

l̃i(ai)
θi(ai)+γi

l̂i(ai) ≤ l̂i(ai) =
∑A
a=1 l̂i(a). Step (2.18) is by applying Lemma 7, with ci(a) = ηi

for all 1 ≤ a ≤ A. The last step holds because DF (θ, θ1) ≤ logA for θ1 = 1/A and any θ ∈ ∆(A).

Lemma 10. (Lemma 20 in [34]) With probability at least 1− p, for any t ∈ [T],

t∑
i=1

wi

〈
θi, li − l̂i

〉
≤ A

t∑
i=1

γiwi +

√√√√2ι

t∑
i=1

w2
i .

Lemma 11. (Lemma 21 in [34]) With probability at least 1− p, for any t ∈ [T] and any θ⋆ ∈ ∆(A), if γi is
non-increasing in i, then

t∑
i=1

wi

〈
θ∗, l̂i − li

〉
≤ max

i≤t
wiι/γt.

2.11 Proofs for Section 2.7.1

We first introduce a few notations to facilitate the analysis. For a step h ∈ [H] of an episode k ∈ [K], we denote

by skh the state that the agents observe at this time step. For any state s ∈ S, we let µkh,i(· | s) ∈ ∆(Ai) be
the distribution prescribed by Algorithm 5 to agent i at this step. Notice that such notations are well-defined

for every s ∈ S, even if s might not be the state skh that is actually visited at the given step. We further

let µkh,i = {µkh,i(· | s) : s ∈ S}, and let akh,i ∈ Ai be the actual action taken by agent i. For any s ∈ S, let
Nk
h (s) and Ň

k
h (s) denote, respectively, the values of Nh(s) and Ňh(s) at the beginning of the k-th episode.

39

Note that it is proper to use the same notation to denote these values from all the agents’ perspectives,

because the agents maintain the same estimates of these terms as they can be calculated from the common

observations (of the state-visitation). We also use V
k

h,i(s) and Ṽ
k
h,i(s) to denote the values of V h,i(s) and

Ṽh,i(s), respectively, at the beginning of the k-th episode from agent i’s perspective.

Further, for a state skh, let ň
k
h denote the number of times that state skh has been visited (at the h-th

step) in the stage right before the current stage, and let ľkh,j denote the index of the episode that this state

was visited the j-th time among the ňkh times. For notational convenience, we use ň to denote ňkh, and ľj to

denote ľkh,j , whenever h and k are clear from the context. With the new notations, the update rule in Line 13

of Algorithm 5 can be equivalently expressed as

Ṽh,i(sh)←
1

ň

ň∑
j=1

(
rh,i(sh,a

ľj
h) + V

ľj
h+1,i(s

ľj
h+1)

)
+ bň. (2.19)

For notational convenience, we introduce the operators PhV (s,a) = Es′∼Ph(·|s,a)V (s′) for any value

function V , and Dµh
Q(s) = Ea∼µh

Q(s,a). With these notations, the Bellman equations can be rewritten

more succinctly as Qπh(s,a) =
(
rh + PhV πh+1

)
(s,a), and V πh (s) = (Dµh

Qπh) (s) for any (s,a, h) ∈ S ×A× [H],

where µh = πh. In the following proof, we assume without loss of generality that the initial state s1 is fixed,

i.e., ρ is a point mass distribution at s1. Our proof can be easily generalized to the case where the initial

state is drawn from a fixed distribution ρ ∈ ∆(S).
In the following, we start with an intermediate result, which justifies our choice of the bonus term.

Lemma 12. With probability at least 1− p
2 , it holds for all (i, s, h, k) ∈ N × S × [H]× [K] that

max
µh,i

1

ň

ň∑
j=1

D
µh,i×µ

ľj
h,−i

(
rh,i + PhV

ľj
h+1,i

)
(s)− 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h) + V

ľj
h+1,i(s

ľj
h+1)

)
≤ 6
√
H2Aiι/ň.

Proof. For a fixed (s, h, k) ∈ S× [H]× [K], let Fj be the σ-algebra generated by all the random variables up to

episode ľj . Then,

{
rh,i(s,a

ľj
h,i) + V

ľj
h+1,i(s

ľj
h+1)− D

µ
ľj
h

(
rh,i + PhV

ľj
h+1,i

)
(s)

}ň
j=1

is a martingale difference

sequence with respect to {Fj}ňj=1. From the Azuma-Hoeffding inequality, it holds with probability at least

1− p/(4NSHK) that

1

ň

ň∑
j=1

D
µ

ľj
h

(
rh,i + PhV

ľj
h+1,i

)
(s)− 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h) + V

ľj
h+1,i(s

ľj
h+1)

)
≤
√
H2ι/ň.

Therefore, we only need to bound

R⋆ň := max
µh,i

1

ň

ň∑
j=1

D
µh,i×µ

ľj
h,−i

(
rh,i + PhV

ľj
h+1,i

)
(s)− 1

ň

ň∑
j=1

D
µ

ľj
h

(
rh,i + PhV

ľj
h+1,i

)
(s). (2.20)

Notice that R⋆ň can be considered as the averaged regret of visiting the state s with respect to the optimal

policy in hindsight. Such a regret minimization problem can be handled by an adversarial multi-armed bandit

problem, where the loss function at step j ∈ [ň] is defined as

ℓj(ai) = E
a−i∼µ

ľj
h,−i

(s)

[
H − h+ 1− rh,i(s,a)− PhV

ľj
h+1,i(s,a)

]
/H.

40

Algorithm 5 applies the Exp3-IX algorithm [106], which ensures that with probability at least 1− p
4NHS , it

holds for all k ∈ [K] that

R⋆ň ≤
√

8H2Ai logAi
ň

+

(√
2Ai

ň logAi
+

1

ň

)
H log(2/p).

A union bound over all (i, s, h, k) ∈ N × S × [H]× [K] completes the proof.

Remark 2. We would like to discuss the alternative of using V-learning with the celebrated learning rate

αt =
H+1
H+t [60] to update V h instead of employing stage-based updates. This is the case for several recent

works also under the V-learning formulation for MARL [12], [16], [34], [63]. Such a learning rate induces an

update rule as follows:

V h,i (sh)← (1− αt)V h,i (sh) + αt
(
rh,i (sh,ah) + V h+1,i (sh+1) + βt

)
, (2.21)

where t is the number of times that sh has been visited, and βt is some bonus term. In this way, V h,i(sh) is

updated every time the state sh is visited. With such a learning rate, the update rule (2.21) of V h,i can be

equivalently expressed as

V
k

h,i(sh) = α0
tH +

t∑
j=1

αjt

[
rh,i

(
s,ak

j

h

)
+ V

kj

h+1,i

(
sk

j

h+1

)
+ βj

]
,

where kj is the index of the episode such that sh is visited the j-th time. The weights αjt are given by

α0
t =

t∏
j=1

(1− αj) , and αjt = αj

t∏
k=j+1

(1− αk) ,∀1 ≤ j ≤ t.

Compared with stage-based updates (2.20), we now need to upper bound a regret term of the following form:

R⋆t (s) = max
µh,i

t∑
j=1

αjtDµh,i×µkj

h,−i

(
rh,i + PhV

kj

h+1,i

)
(s)−

t∑
j=1

αjtDµkj

h,i×µ
kj
h,−i

(
rh,i + PhV

kj

h+1,i

)
(s).

Notice that the above definition of regret induces a adversarial bandit problem with a time-varying weighted

regret, where the loss at time j is assigned a weight αjt . As t varies, the weight αjt assigned to the same step j

also changes over time. These weights also cannot be pre-computed, because it relies on knowing the total

number of times that a certain state sh is visited during the entire horizon, which is impossible before seeing

the output of the algorithm. To address such an additional challenge, [34] proposed a Follow-the-Regularized-

Leader (FTRL) algorithm that simultaneously achieves with a changing step size, a weighted regret, and a

high-probability guarantee, which inevitably leads to a more delicate analysis. In contrast, we have shown in

(2.20) that our stage-based update rule leads to an adversarial bandit problem with a simple averaged regret. In

our approach, it suffices to plug in any existing adversarial bandit solution with a high-probability regret bound,

such as the Exp3-IX method that we used in Algorithm 5. Therefore, our stage-based update significantly

simplifies both the algorithmic design and the analysis of V-learning in MARL.

Based on the trajectory of the distributions {µkh,i : i ∈ N , h ∈ [H], k ∈ [K]} specified by Algorithm 5,

we construct a correlated policy π̄kh for each (h, k) ∈ [H]× [K]. Our construction of the correlated policies,

41

Algorithm 12: Construction of the Correlated Policy π̄kh

1 Input: The distribution trajectory {µkh,i : i ∈ N , h ∈ [H], k ∈ [K]} specified by Algorithm 5.

2 Initialize: k′ ← k.
3 for step h′ ← h to H do
4 Receive sh′ ;

5 Take joint action ah′ ∼ ×Ni=1µ
k′

h′,i(· | sh′);

6 Uniformly sample j from {1, 2, . . . , Ňk′

h′ (sh′)};
7 Set k′ ← ľk

′

h′,j , where ľ
k′

h′,j is the index of the episode such that state sh′ was visited the j-th time

(among the total Ňk′

h′ (sh′) times) in the last stage;

largely inspired by the “certified policies” [34] for learning in two-player zero-sum games, is formally presented

in Algorithm 12. We further define an output policy π̄ that first uniformly samples an index k from [K], and

then proceed with π̄k1 . A more formal description of π̄ has been given in Algorithm 6. By construction of the

correlated policies π̄kh, we know that for any (i, s, h, k) ∈ N × S × [H + 1] × [K], the corresponding value

function can be written recursively as follows:

V
π̄k
h

h,i (s) =
1

ň

ň∑
j=1

D
µ
ľj
h

(
rh,i + PhV

π̄
ľj
h+1

h+1,i

)
(s),

and V
π̄k
h

h,i (s) = 0 if h = H + 1 or k is in the first stage of the corresponding (h, s) pair. We also immediately

obtain that

V π̄1,i(s1) =
1

K

K∑
k=1

V
π̄k
1

1,i (s1).

Only for analytical purposes, we introduce two new notations V and V˜ that serve as lower confidence bounds

of the value estimates. Specifically, for any (i, s, h, k) ∈ N ×S× [H+1]× [K], we define V kh,i(s) = V˜kh,i(s) = 0

if h = H + 1 or k is in the first stage of the (h, s) pair, and

V˜kh,i(s) = 1

ň

ň∑
j=1

(
rh,i(sh,a

ľj
h) + V

ľj
h+1,i(s

ľj
h+1)

)
− bň, and V kh,i(s) = max

{
V˜kh,i(s), 0} .

Notice that these two notations are only introduced for ease of analysis, and the agents need not explicitly

maintain such values during the learning process. Further, recall that V
⋆,π̄k

h,−i

h,i (s) is agent i’s best response

value against its opponents’ policy π̄kh,−i. Our next lemma shows that V
k

h,i(s) and V
k
h,i(s) are indeed valid

upper and lower bounds of V
⋆,π̄k

h,−i

h,i (s) and V
π̄k
h

h,i (s), respectively.

Lemma 13. It holds with probability at least 1− p that for all (i, s, h, k) ∈ N × S × [H]× [K],

V
k

h,i(s) ≥ V
⋆,π̄k

h,−i

h,i (s), and V kh,i(s) ≤ V
π̄k
h

h,i (s).

Proof. Consider a fixed (i, s, h, k) ∈ N × S × [H]× [K]. The desired result clearly holds for any state s that

is in its first stage, due to our initialization of V
k

h,i(s) and V
k
h,i(s) for this special case. In the following, we

only need to focus on the case where V h,i(s) and V
k
h,i(s) have been updated at least once at the given state

s before the k-th episode.

We first prove the first inequality. It suffices to show that Ṽ kh,i(s) ≥ V
⋆,π̄k

h,−i

h,i (s) because V
k

h,i(s) =

42

min{Ṽ kh,i(s), H − h + 1}, and V
⋆,π̄k

h,−i

h,i (s) is always less than or equal to H − h + 1. Our proof relies on

induction on k ∈ [K]. First, the claim holds for k = 1 due to the aforementioned logic. For each step h ∈ [H]

and s ∈ S, we consider the following two cases.

Case 1: Ṽh,i(s) has just been updated in (the end of) episode k − 1. In this case,

Ṽ kh,i(s) =
1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h) + V

ľj
h+1,i(s

ľj
h+1)

)
+ bň. (2.22)

By the definition of V
⋆,ν̄k

h

h (s), it holds with probability at least 1− p
2NSKH that

V
⋆,π̄k

h,−i

h,i (s) ≤max
µh,i

1

ň

ň∑
j=1

D
µh,i×µ

ľj
h,−i

(
rh,i + PhV

⋆,π̄
ľj
h+1,−i

h+1,i

)
(s)

≤max
µh,i

1

ň

ň∑
j=1

D
µh,i×µ

ľj
h,−i

(
rh,i + PhV

ľj
h+1,i

)
(s)

≤ 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h) + V

ľj
h+1,i(s

ľj
h+1)

)
+ 6
√
H2Aiι/ň

≤Ṽ kh,i(s), (2.23)

where the second step is by the induction hypothesis, the third step holds due to Lemma 12, and the last

step is by the definition of bň.

Case 2: Ṽh,i(s) was not updated in (the end of) episode k− 1. Since we have excluded the case that Ṽh,i

has never been updated, we are guaranteed that there exists an episode j such that Ṽh,i(s) has been updated

in the end of episode j − 1 most recently. In this case, Ṽ kh,i(s) = Ṽ k−1
h,i (s) = · · · = Ṽ jh,i(s) ≥ V

⋆,π̄j
h,−i

h,i (s), where

the last step is by the induction hypothesis. Finally, observe that by our definition, the value of V
⋆,π̄j

h,−i

h,i (s) is

a constant for all episode indices j that belong to the same stage. Since we know that episode j and episode

k lie in the same stage, we can conclude that V
⋆,π̄k

h,−i

h,i (s) = V
⋆,π̄j

h,−i

h,i (s) ≤ Ṽ kh,i(s).
Combining the two cases and applying a union bound over all (i, s, h, k) ∈ N × S × [H]× [K] complete

the proof of the first inequality.

Next, we prove the second inequality in the statement of the lemma. Notice that it suffices to show

V˜kh,i(s) ≤ V π̄k
h

h,i (s) because V
k
h,i(s) = max{V˜kh,i(s), 0}. Our proof again relies on induction on k ∈ [K]. Similar

to the proof of the first inequality, the claim apparently holds for k = 1, and we consider the following two

cases for each step h ∈ [H] and s ∈ S.
Case 1: The value of V˜h,i(s) has just changed in (the end of) episode k − 1. In this case,

V˜kh,i(s) = 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h) + V˜ ľjh+1,i(s

ľj
h+1)

)
− bň. (2.24)

43

By the definition of V
π̄k
h

h,i (s), it holds with probability at least 1− p
2NSKH that

V
π̄k
h

h,i (s) =
1

ň

ň∑
j=1

D
µ

ľj
h

(
rh,i + PhV

π̄
ľj
h+1

h+1,i

)
(s)

≥ 1

ň

ň∑
j=1

D
µ

ľj
h

(
rh,i + PhV˜ ľjh+1,i

)
(s)

≥ 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h) + V˜ ľjh+1,i(s

ľj
h+1)

)
−
√
H2ι/ň

≥V˜kh,i(s), (2.25)

where the second step is by the induction hypothesis, the third step holds due to the Azuma-Hoeffding

inequality, and the last step is by the definition of bň.

Case 2: The value of V˜h,i(s) has not changed in (the end of) episode k− 1. Since we have excluded the

case that V˜h,i has never been updated, we are guaranteed that there exists an episode j such that V˜h,i(s)
has changed in the end of episode j − 1 most recently. In this case, we know that indices j and k belong to

the same stage, and V˜kh,i(s) = V˜k−1
h,i (s) = · · · = V˜ jh,i(s) ≤ V

π̄j
h

h,i (s), where the last step is by the induction

hypothesis. Finally, observe that by our definition, the value of V
π̄j
h

h,i (s) is a constant for all episode indices j

that belong to the same stage. Since we know that episode j and episode k lie in the same stage, we can

conclude that V
π̄k
h

h,i (s) = V
π̄j
h

h,i (s) ≥ V˜kh,i(s).
Again, combining the two cases and applying a union bound over all (i, s, h, k) ∈ N × S × [H] × [K]

complete the proof.

The following result shows that the agents have no incentive to deviate from the correlated policy π̄, up

to a regret term of the order Õ(
√
H5SAmax/K).

Theorem 7. For any p ∈ (0, 1], let ι = log(2NSAmaxKH/p). Suppose K ≥ SH
Amaxι

, with probability at least

1− p, it holds that

V
⋆,π̄−i

1,i (s1)− V π̄1,i(s1) ≤ O
(√

H5SAmaxι/K
)
.

Proof. We first recall the definitions of several notations and define a few new ones. For a state skh, recall that

ňkh denotes the number of visits to the state skh (at the h-th step) in the stage right before the current stage,

and ľkh,j denotes the j-th episode among the ňkh episodes. Similarly, let nkh be the total number of episodes

that this state has been visited prior to the current stage, and let lkh,j denote the index of the episode that

this state was visited the j-th time among the total nkh times. For simplicity, we use lj and ľj to denote lkh,j
and ľkh,j , and ň to denote ňkh, whenever h and k are clear from the context.

From Lemma 13, we know that

V
⋆,π̄−i

1,i (s1)− V π̄1,i(s1) ≤
1

K

K∑
k=1

(
V
⋆,π̄k

1,−i

1,i (s1)− V π̄
k
1

1,i (s1)

)

≤ 1

K

K∑
k=1

(
V
k

1,i(s1)− V k1,i(s1)
)
.

We hence only need to upper bound 1
K

∑K
k=1(V

k

1,i(s1)− V k1,i(s1)). For a fixed agent i ∈ N , we define the

44

following notation:

δkh := V
k

h,i(s
k
h)− V kh,i(skh).

The main idea of the subsequent proof is to upper bound
∑K
k=1 δ

k
h by the next step

∑K
k=1 δ

k
h+1, and then

obtain a recursive formula. From the update rule of V
k

h,i(s
k
h) in (2.19), we know that

V
k

h,i(s
k
h) ≤ I[nkh = 0]H +

1

ň

ň∑
j=1

(
rh,i(sh,a

ľj
h) + V

ľj
h+1,i(s

ľj
h+1)

)
+ bň,

where the I[nkh = 0] term counts for the event that the optimistic value function has never been updated for

the given state.

Further recalling the definition of V kh,i(s
k
h), we have

δkh ≤I[nkh = 0]H +
1

ň

ň∑
j=1

(
V
ľj
h+1,i(s

ľj
h+1)− V

ľj
h+1,i(s

ľj
h+1)

)
+ 2bň

≤I[nkh = 0]H +
1

ň

ň∑
j=1

δ
ľj
h+1 + 2bň, (2.26)

To find an upper bound of
∑K
k=1 δ

k
h, we proceed to upper bound each term on the RHS of (2.26) separately.

First, notice that
∑K
k=1 I

[
nkh = 0

]
≤ SH, because each fixed state-step pair (s, h) contributes at most 1 to∑K

k=1 I
[
nkh = 0

]
. Next, we turn to analyze the second term on the RHS of (2.26). Observe that

K∑
k=1

1

ňkh

ňk
h∑

j=1

δ
ľkh,j

h+1 =

K∑
k=1

K∑
m=1

1

ňkh
δmh+1

ňk
h∑

j=1

1
[
ľkh,j = m

]

=

K∑
m=1

δmh+1

K∑
k=1

1

ňkh

ňk
h∑

j=1

1
[
ľkh,j = m

]
. (2.27)

For a fixed episode m, notice that
∑ňk

h
j=1 1[ľ

k
h,j = m] ≤ 1, and that

∑ňk
h
j=1 1[ľ

k
h,j = m] = 1 happens if and only

if skh = smh and (m,h) lies in the previous stage of (k, h) with respect to the state-step pair (skh, h). Define

Km := {k ∈ [K] :
∑ňk

h
j=1 1[ľ

k
h,j = m] = 1}. We then know that all episode indices k ∈ Km belong to the same

stage, and hence these episodes have the same value of ňkh. That is, there exists an integer Nm > 0, such that

ňkh = Nm,∀k ∈ Km. Further, since the stages are partitioned in a way such that each stage is at most (1+ 1
H)

times longer than the previous stage, we know that |Km| ≤ (1 + 1
H)Nm. Therefore, for every m, it holds that

K∑
k=1

1

ňkh

ňk
h∑

j=1

1
[
ľkh,j = m

]
≤ 1 +

1

H
. (2.28)

Combining (2.27) and (2.28) leads to the following upper bound of the second term in (2.26):

K∑
k=1

1

ňkh

ňk
h∑

j=1

δ
ľkh,j

h+1 ≤ (1 +
1

H
)

K∑
k=1

δkh+1. (2.29)

45

So far, we have obtained the following upper bound:

K∑
k=1

δkh ≤ SH2 + (1 +
1

H
)

K∑
k=1

δkh+1 + 2

K∑
k=1

bňk
h
.

Iterating the above inequality over h = H,H − 1, . . . , 1 leads to

K∑
k=1

δk1 ≤ O
(
SH3 +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1bňk

h

)
, (2.30)

where we used the fact that (1 + 1
H)H ≤ e. In the following, we analyze the bonus term bňk

h
more carefully.

Recall our definitions that e1 = H, ei+1 =
⌊
(1 + 1

H)ei
⌋
, i ≥ 1, and bň = 6

√
H2Aiι/ň. For any h ∈ [H],

K∑
k=1

(1 +
1

H
)h−1bňk

h
≤

K∑
k=1

(1 +
1

H
)h−16

√
H2Aiι/Ňk

h

=6
√
H2Aiι

∑
s∈S

∑
j≥1

(1 +
1

H
)h−1e

− 1
2

j

K∑
k=1

I
[
skh = s, Ňk

h (s
k
h) = ej

]
=6
√
H2Aiι

∑
s∈S

∑
j≥1

(1 +
1

H
)h−1w(s, j)e

− 1
2

j ,

where we define w(s, j) :=
∑K
k=1 I

[
skh = s, Ňk

h (s
k
h) = ej

]
for any s ∈ S. If we further let w(s) :=∑j≥1 w(s, j),

we can see that
∑
s∈S w(s) = K. For each fixed state s, we now seek an upper bound of its corresponding j

value, denoted as J in what follows. Since each stage is (1+ 1
H) times longer than its previous stage, we know

that w(s, j) =
∑K
k=1 I

[
skh = s, Ňk

h (s
k
h) = ej

]
=
⌊
(1 + 1

H)ej
⌋
for any 1 ≤ j ≤ J . Since

∑J
j=1 w(s, j) = w(s),

we obtain that eJ ≤ (1 + 1
H)J−1 ≤ 10

1+ 1
H

w(s)
H by taking the sum of a geometric sequence. Therefore, by

plugging in w(s, j) =
⌊
(1 + 1

H)ej
⌋
,

∑
j≥1

(1 +
1

H
)h−1w(s, j)e

− 1
2

j ≤ O

 J∑
j=1

e
1
2
j

 ≤ O (√w(s)H) ,
where in the second step we again used the formula of the sum of a geometric sequence. Finally, using the

fact that
∑
s∈S w(s) = K and applying the Cauchy-Schwartz inequality, we have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1bňk

h
=O

√H4Aiι
∑
s∈S

∑
j≥1

(1 +
1

H
)h−1w(s, j)e

− 1
2

j

≤O

(√
SAiKH5ι

)
. (2.31)

Summarizing the results above leads to

K∑
k=1

δk1 ≤ O
(
SH3 +

√
SAiKH5ι

)
.

In the case when K is large enough, such that K ≥ SH
Aiι

, the second term becomes dominant, and we obtain

46

the desired result:

V
⋆,π̄−i

1,i (s1)− V π̄1,i(s1) ≤
1

K

K∑
k=1

δk1 ≤ O
(√

SAiH5ι/K
)
.

This completes the proof of the theorem.

An immediate corollary is that we obtain an ε-approximate CCE when
√
SAmaxH5ι/K ≤ ε, which is

Theorem 3 in Section 2.7.

Theorem 3. (Sample complexity of learning CCE). For any p ∈ (0, 1], set ι = log(2NSAmaxKH/p), and

let the agents run Algorithm 5 for K episodes with K = O(SAmaxH
5ι/ε2). Then, with probability at least

1− p, the output policy π̄ constitutes an ε-approximate coarse correlated equilibrium.

2.12 Proofs for Section 2.7.2

We first present a no-swap-regret learning algorithm for the adversarial bandit problem, which serves as an

important subroutine to achieve correlated equilibria in Markov games. We consider a standard adversarial

bandit problem that lasts for T time steps. The agent has an action space of A = {1, . . . , A}. At each

time step t ∈ [T], the agent specifies a distribution pt ∈ ∆(A) over the action space, and takes an action

at according to pt. The adversary then selects a loss vector lt ∈ [0, 1]A, where lt(a) ∈ [0, 1] denotes the loss

of action a at time t. We consider partial information (bandit) feedback, where the agent only receives

the reward associated with the selected action at. The external regret measures the difference between the

cumulative reward that an algorithm obtains and that of the best fixed action in hindsight. Specifically,

Rexternal(T) = max
a⋆∈A

T∑
t=1

(lt(at)− lt(a⋆)) .

The swap regret, instead, measures the difference between the cumulative reward of an algorithm and the

cumulative reward that could be achieved by swapping multiple pairs of actions of the algorithm. To be more

specific, we define a strategy modification F : A → A to be a mapping from the action space to itself. For

any action selection distribution p, we let F ⋄ p be the swapped distribution that takes action a ∈ A with

probability
∑
a′∈A,F (a′)=a p(a

′). The swap regret4 is then defined as

Rswap(T) = max
F :A→A

T∑
t=1

(⟨pt, lt⟩ − ⟨F ⋄ pt, lt⟩) ,

where recall that pt is the distribution that the algorithm specifies at time t for action selection.

We follow the generic reduction introduced in [65], and convert a Follow-the-Regularized-Leader algorithm

with sublinear external regret to a no-swap-regret algorithm [12]. The resulting algorithm is presented as

Algorithm 13. The following lemma shows that Algorithm 13 is indeed a no-swap-regret learning algorithm.

Lemma 14. [12, Theorem 26]. For any T ∈ N and p ∈ (0, 1), let ι = log(A2/p). With probability at least

1− 3p, it holds that

Rswap(T) ≤ 10
√
A2Tι.

4This is a modified version of the swap regret used in [65], which is defined as Rswap(T) =

maxF :A→A
∑T

t=1 (lt(at)− lt(F (at))).

47

Algorithm 13: No-swap-regret learning

1 Initialize: p1(a)← 1/A, ∀a ∈ A, γ ←
√
logA/T , and η ←

√
logA/T .

2 for t← 1 to T do
3 Take action at ∼ pt(·), and observe loss lt(at);
4 for action a ∈ A do
5 for action a′ ∈ A do

6 l̂t(a
′ | a)← pt(a)lt(at)I{at = a′}/(pt(a′) + γ);

7 qt+1(a
′ | a)← exp(−η

∑t
i=1 l̂i(a

′|a))∑
b∈A exp(−η

∑t
i=1 l̂i(b|a))

;

8 Set pt+1 such that pt+1(·) =
∑
a∈A pt+1(a)qt+1(· | a);

It is worth noting that [12] presented a more general analysis with an anytime weighted swap regret

guarantee. Such complication can be avoided in our algorithm, as our stage-based learning approach only

entails a simple averaged swap regret analysis.

The complete Stage-Based V-Learning algorithm for CE is presented in Algorithm 7. In the following

analysis, we follow the same notations as have been used in the CCE analysis. We again start with the

following lemma that justifies our choice of the bonus term.

Lemma 15. With probability at least 1− p
2 , it holds for all (i, s, h, k) ∈ N × S × [H]× [K] that

max
ψi∈Ψi

1

ň

ň∑
j=1

D
ψs

h,i⋄µ
ľj
h

(
rh,i + PhV

ľj
h+1,i

)
(s)− 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h) + V

ľj
h+1,i(s

ľj
h+1)

)
≤ 11

√
H2A2

i ι/ň.

Proof. For a fixed (s, h, k) ∈ S× [H]× [K], let Fj be the σ-algebra generated by all the random variables up to

episode ľj . Then,

{
rh,i(s,a

ľj
h,i) + V

ľj
h+1,i(s

ľj
h+1)− D

µ
ľj
h,i

(
rh,i + PhV

ľj
h+1,i

)
(s)

}ň
j=1

is a martingale difference

sequence with respect to {Fj}ňj=1. From the Azuma-Hoeffding inequality, it holds with probability at least

1− p/(4NSHK) that

1

ň

ň∑
j=1

D
µ

ľj
h

(
rh,i + PhV

ľj
h+1,i

)
(s)− 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h) + V

ľj
h+1,i(s

ľj
h+1)

)
≤
√
H2ι/ň.

Therefore, we only need to bound

Rswap(ň) := max
ψi∈Ψi

1

ň

ň∑
j=1

D
ψs

h,i⋄µ
ľj
h

(
rh,i + PhV

ľj
h+1,i

)
(s)− 1

ň

ň∑
j=1

D
µ

ľj
h

(
rh,i + PhV

ľj
h+1,i

)
(s).

Notice that Rswap(ň) can be considered as the swap regret of an adversarial bandit problem at state s, where

the loss function at step j ∈ [ň] is defined as

ℓj(ai) = E
a−i∼µ

ľj
h,−i

(s)

[
H − h+ 1− rh,i(s,a)− PhV

ľj
h+1,i(s,a)

]
/H.

Such a problem can be addressed by a no-swap-regret learning algorithm as presented in Algorithm 13.

Applying Lemma 14, we obtain that with probability at least 1− p
4NHS , it holds for all k ∈ [K] that

Rswap(ň) ≤ 10

√
H2A2

i ι

ň
.

48

A union bound over all (i, s, h, k) ∈ N × S × [H]× [K] completes the proof.

We again define the notations π̄kh, π̄, V
π̄k
h

h,i , V
k
h,i, and V˜kh,i(s) in the same sense as in Section 2.11. The next

lemma shows that V
k

h,i(s) and V
k
h,i(s) are valid upper and lower bounds.

Lemma 16. It holds with probability at least 1− p that for all (i, s, h, k) ∈ N × S × [H]× [K],

V
k

h,i(s) ≥ max
ψi∈Ψi

V
ψi⋄π̄k

h

h,i (s), and V kh,i(s) ≤ V
π̄k
h

h,i (s).

Proof. Consider a fixed (i, s, h, k) ∈ N × S × [H]× [K]. The desired result clearly holds for any state s that

is in its first stage, due to our initialization of V
k

h,i(s) and V
k
h,i(s) for this special case. In the following, we

only need to focus on the case where V h,i(s) and V
k
h,i(s) have been updated at least once at the given state

s before the k-th episode.

We start with the first inequality. It suffices to show that Ṽ kh,i(s) ≥ maxψi∈Ψi
V
ψi⋄π̄k

h

h,i (s) because V
k

h,i(s) =

min{Ṽ kh,i(s), H − h+ 1}, and maxψi∈Ψi
V
ψi⋄π̄k

h

h,i (s) is always less than or equal to H − h+ 1. Our proof relies

on induction on k ∈ [K]. First, the claim holds for k = 1 due to the aforementioned logic. For each step

h ∈ [H] and s ∈ S, we consider the following two cases.

Case 1: Ṽh,i(s) has just been updated in (the end of) episode k − 1. In this case,

Ṽ kh,i(s) =
1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h) + V

ľj
h+1,i(s

ľj
h+1)

)
+ bň. (2.32)

By the definition of maxψi∈Ψi
V
ψi⋄π̄k

h

h,i (s), it holds with probability at least 1− p
2NSKH that

max
ψi∈Ψi

V
ψi⋄π̄k

h

h,i (s) ≤ max
ψi∈Ψi

1

ň

ň∑
j=1

D
ψi⋄µ

ľj
h

(
rh,i + Ph max

ψ′
i∈Ψi

V
ψ′

i⋄π̄
ľj
h+1

h+1,i

)
(s)

≤ max
ψi∈Ψi

1

ň

ň∑
j=1

D
ψi⋄µ

ľj
h

(
rh,i + PhV

ľj
h+1,i

)
(s)

≤ 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h) + V

ľj
h+1,i(s

ľj
h+1)

)
+ 11

√
H2A2

i ι/ň

≤Ṽ kh,i(s), (2.33)

where the second step is by the induction hypothesis, the third step holds due to Lemma 15, and the last

step is by the definition of bň.

Case 2: Ṽh,i(s) was not updated in (the end of) episode k − 1. Since we have excluded the case

that Ṽh,i has never been updated, we are guaranteed that there exists an episode j such that Ṽh,i(s)

has been updated in the end of episode j − 1 most recently. In this case, Ṽ kh,i(s) = Ṽ k−1
h,i (s) = · · · =

Ṽ jh,i(s) ≥ maxψi∈Ψi
V
ψi⋄π̄j

h

h,i (s), where the last step is by the induction hypothesis. Finally, observe that

by our definition, the value of maxψi∈Ψi
V
ψi⋄π̄j

h

h,i (s) is a constant for all episode indices j that belong to

the same stage. Since we know that episode j and episode k lie in the same stage, we can conclude that

maxψi∈Ψi
V
ψi⋄π̄k

h

h,i (s) = maxψi∈Ψi
V
ψi⋄π̄j

h

h,i (s) ≤ Ṽ kh,i(s).
Combining the two cases and applying a union bound over all (i, s, h, k) ∈ N × S × [H]× [K] complete

the proof of the first inequality.

49

Next, we prove the second inequality in the statement of the lemma. Notice that it suffices to show

V˜kh,i(s) ≤ V π̄k
h

h,i (s) because V
k
h,i(s) = max{V˜kh,i(s), 0}. Our proof again relies on induction on k ∈ [K]. Similar

to the proof of the first inequality, the claim apparently holds for k = 1, and we consider the following two

cases for each step h ∈ [H] and s ∈ S.
Case 1: The value of V˜h,i(s) has just changed in (the end of) episode k − 1. In this case,

V˜kh,i(s) = 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h) + V˜ ľjh+1,i(s

ľj
h+1)

)
− bň. (2.34)

By the definition of V
π̄k
h

h,i (s), it holds with probability at least 1− p
2NSKH that

V
π̄k
h

h,i (s) =
1

ň

ň∑
j=1

D
µ

ľj
h

(
rh,i + PhV

π̄
ľj
h+1

h+1,i

)
(s)

≥ 1

ň

ň∑
j=1

D
µ

ľj
h

(
rh,i + PhV˜ ľjh+1,i

)
(s)

≥ 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h) + V˜ ľjh+1,i(s

ľj
h+1)

)
−
√
H2ι/ň

≥V˜kh,i(s), (2.35)

where the second step is by the induction hypothesis, the third step holds due to the Azuma-Hoeffding

inequality, and the last step is by the definition of bň.

Case 2: The value of V˜h,i(s) has not changed in (the end of) episode k− 1. Since we have excluded the

case that V˜h,i has never been updated, we are guaranteed that there exists an episode j such that V˜h,i(s)
has changed in the end of episode j − 1 most recently. In this case, we know that indices j and k belong to

the same stage, and V˜kh,i(s) = V˜k−1
h,i (s) = · · · = V˜ jh,i(s) ≤ V

π̄j
h

h,i (s), where the last step is by the induction

hypothesis. Finally, observe that by our definition, the value of V
π̄j
h

h,i (s) is a constant for all episode indices j

that belong to the same stage. Since we know that episode j and episode k lie in the same stage, we can

conclude that V
π̄k
h

h,i (s) = V
π̄j
h

h,i (s) ≥ V˜kh,i(s).
Again, combining the two cases and applying a union bound over all (i, s, h, k) ∈ N × S × [H] × [K]

complete the proof.

Theorem 8. For any p ∈ (0, 1], let ι = log(2NSAmaxKH/p). Suppose K ≥ SH
A2

maxι
. With probability at least

1− p,
max
ψi∈Ψi

V ψi⋄π̄
1,i (s1)− V π̄1,i(s1) ≤ O

(√
H5SA2

maxι/K
)
,

Proof. The proof follows a similar procedure as the proof of Theorem 7. From Lemma 16, we know that

max
ψi∈Ψi

V ψi⋄π̄
1,i (s1)− V π̄1,i(s1) = max

ψi∈Ψi

1

K

K∑
k=1

(
V
ψi⋄π̄k

1
1,i (s1)− V π̄

k
1

1,i (s1)
)

≤ 1

K

K∑
k=1

(
max
ψi∈Ψi

V
ψi⋄π̄k

1
1,i (s1)− V π̄

k
1

1,i (s1)

)

≤ 1

K

K∑
k=1

(
V
k

1,i(s1)− V k1,i(s1)
)
.

50

We hence only need to upper bound 1
K

∑K
k=1(V

k

1,i(s1)− V k1,i(s1)). For a fixed agent i ∈ N , we define the

following notation:

δkh := V
k

h,i(s
k
h)− V kh,i(skh).

The main idea of the subsequent proof is to upper bound
∑K
k=1 δ

k
h by the next step

∑K
k=1 δ

k
h+1, and then

obtain a recursive formula. From the update rule of V
k

h,i(s
k
h) in (2.19), we know that

V
k

h,i(s
k
h) ≤ I[nkh = 0]H +

1

ň

ň∑
j=1

(
rh,i(sh,a

ľj
h) + V

ľj
h+1,i(s

ľj
h+1)

)
+ bň,

where the I[nkh = 0] term counts for the event that the optimistic value function has never been updated for

the given state.

Further recalling the definition of V kh,i(s
k
h), we have

δkh ≤I[nkh = 0]H +
1

ň

ň∑
j=1

(
V
ľj
h+1,i(s

ľj
h+1)− V

ľj
h+1,i(s

ľj
h+1)

)
+ 2bň

≤I[nkh = 0]H +
1

ň

ň∑
j=1

δ
ľj
h+1 + 2bň, (2.36)

To find an upper bound of
∑K
k=1 δ

k
h, we proceed to upper bound each term on the RHS of (2.36) separately.

First, notice that
∑K
k=1 I

[
nkh = 0

]
≤ SH, because each fixed state-step pair (s, h) contributes at most 1 to∑K

k=1 I
[
nkh = 0

]
. Next, we turn to analyze the second term on the RHS of (2.36). Observe that

K∑
k=1

1

ňkh

ňk
h∑

j=1

δ
ľkh,j

h+1 =

K∑
k=1

K∑
m=1

1

ňkh
δmh+1

ňk
h∑

j=1

1
[
ľkh,j = m

]

=

K∑
m=1

δmh+1

K∑
k=1

1

ňkh

ňk
h∑

j=1

1
[
ľkh,j = m

]
. (2.37)

For a fixed episode m, notice that
∑ňk

h
j=1 1[ľ

k
h,j = m] ≤ 1, and that

∑ňk
h
j=1 1[ľ

k
h,j = m] = 1 happens if and only

if skh = smh and (m,h) lies in the previous stage of (k, h) with respect to the state-step pair (skh, h). Define

Km := {k ∈ [K] :
∑ňk

h
j=1 1[ľ

k
h,j = m] = 1}. We then know that all episode indices k ∈ Km belong to the same

stage, and hence these episodes have the same value of ňkh. That is, there exists an integer Nm > 0, such that

ňkh = Nm,∀k ∈ Km. Further, since the stages are partitioned in a way such that each stage is at most (1+ 1
H)

times longer than the previous stage, we know that |Km| ≤ (1 + 1
H)Nm. Therefore, for every m, it holds that

K∑
k=1

1

ňkh

ňk
h∑

j=1

1
[
ľkh,j = m

]
≤ 1 +

1

H
. (2.38)

Combining (2.37) and (2.38) leads to the following upper bound of the second term in (2.36):

K∑
k=1

1

ňkh

ňk
h∑

j=1

δ
ľkh,j

h+1 ≤ (1 +
1

H
)

K∑
k=1

δkh+1. (2.39)

51

So far, we have obtained the following upper bound:

K∑
k=1

δkh ≤ SH2 + (1 +
1

H
)

K∑
k=1

δkh+1 + 2

K∑
k=1

bňk
h
.

Iterating the above inequality over h = H,H − 1, . . . , 1 leads to

K∑
k=1

δk1 ≤ O
(
SH3 +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1bňk

h

)
, (2.40)

where we used the fact that (1 + 1
H)H ≤ e. In the following, we analyze the bonus term bňk

h
more carefully.

Recall our definitions that e1 = H, ei+1 =
⌊
(1 + 1

H)ei
⌋
, i ≥ 1, and bň = 11

√
H2A2

i ι/ň. For any h ∈ [H],

K∑
k=1

(1 +
1

H
)h−1bňk

h
≤

K∑
k=1

(1 +
1

H
)h−111

√
H2A2

i ι/Ň
k
h

=11
√
H2A2

i ι
∑
s∈S

∑
j≥1

(1 +
1

H
)h−1e

− 1
2

j

K∑
k=1

I
[
skh = s, Ňk

h (s
k
h) = ej

]
=11

√
H2A2

i ι
∑
s∈S

∑
j≥1

(1 +
1

H
)h−1w(s, j)e

− 1
2

j ,

where we define w(s, j) :=
∑K
k=1 I

[
skh = s, Ňk

h (s
k
h) = ej

]
for any s ∈ S. If we further let w(s) :=∑j≥1 w(s, j),

we can see that
∑
s∈S w(s) = K. For each fixed state s, we now seek an upper bound of its corresponding j

value, denoted as J in what follows. Since each stage is (1+ 1
H) times longer than its previous stage, we know

that w(s, j) =
∑K
k=1 I

[
skh = s, Ňk

h (s
k
h) = ej

]
=
⌊
(1 + 1

H)ej
⌋
for any 1 ≤ j ≤ J . Since

∑J
j=1 w(s, j) = w(s),

we obtain that eJ ≤ (1 + 1
H)J−1 ≤ 10

1+ 1
H

w(s)
H by taking the sum of a geometric sequence. Therefore, by

plugging in w(s, j) =
⌊
(1 + 1

H)ej
⌋
,

∑
j≥1

(1 +
1

H
)h−1w(s, j)e

− 1
2

j ≤ O

 J∑
j=1

e
1
2
j

 ≤ O (√w(s)H) ,
where in the second step we again used the formula of the sum of a geometric sequence. Finally, using the

fact that
∑
s∈S w(s) = K and applying the Cauchy-Schwartz inequality, we have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1bňk

h
=O

√H4A2
i ι
∑
s∈S

∑
j≥1

(1 +
1

H
)h−1w(s, j)e

− 1
2

j

≤O

(√
SA2

iKH
5ι

)
. (2.41)

Summarizing the results above leads to

K∑
k=1

δk1 ≤ O
(
SH3 +

√
SA2

iKH
5ι

)
.

In the case when K is large enough, such that K ≥ SH
A2

i ι
, the second term becomes dominant, and we obtain

52

the desired result:

max
ψi∈Ψi

V ψi⋄π̄
1,i (s1)− V π̄1,i(s1) ≤

1

K

K∑
k=1

δk1 ≤ O
(√

SA2
iH

5ι/K

)
.

This completes the proof of the theorem.

An immediate corollary is that we obtain an ε-approximate CE when
√
SA2

maxH
5ι/K ≤ ε, which is

Theorem 4 in Section 2.7.

Theorem 4. (Sample complexity of learning CE). For any p ∈ (0, 1], set ι = log(2NSAmaxKH/p), and let

the agents run Algorithm 7 for K episodes with K = O(SA2
maxH

5ι/ε2). Then, with probability at least 1− p,
the output policy π̄ constitutes an ε-approximate correlated equilibrium.

2.13 Proofs for Section 2.8.1

Lemma 17. (Extension of Theorem 4.3 in [120] to time-varying learning rates) In a no-regret learning

problem as defined in Section 2.8, suppose that BM-OFTRL (2.5) is run with log-barrier regularization and a

time-varying learning rate ηt ≤ 1

128
√

|A|
,∀t ∈ [T]. Then, for any T ≥ 2, the swap regret is bounded by

SwapRegT ≤ 2 |A|2 log T
ηT

+ 4

T∑
t=1

ηt
∥∥ut − ut−1

∥∥2
∞ −

1

2048 |A|
T−1∑
t=1

1

ηt

∥∥xt+1 − xt
∥∥2
1
.

Proof sketch. The proof follows a similar procedure as that of Theorem 4.3 in [120], except that we need to

re-derive their Theorems B.1 and 3.1 under a time-varying learning rate. We skip the proof here as such an

extension is straightforward.

Lemma 3. (Recursion of best response CE value gaps) For any fixed (h, t) ∈ [H]× [T], we have

δth ≤
t∑

j=1

αjtδ
j
h+1 + SwapRegth .

Proof. For any fixed i ∈ N and s ∈ S, we know from the definition of π̄th from Algorithm 9 that

V
π̄t
h

h,i (s) =

t∑
j=1

αjt

〈
πjh,i(s, ·),

[(
rh,i + [PhV

π̄j
h+1

h+1,i]

)
πjh,−i

]
(s, ·)

〉
. (2.42)

For a fixed π̄th, we use ϕ⋆i to denote the best response strategy modification that maximizes the value function

starting from step h. In this case, we know from the definition of the value function that

V
ϕ⋆
i ⋄π̄

t
h

h,i (s) = max
ϕs
h,i:Ai→Ai

t∑
j=1

αjt

〈
ϕsh,i ⋄ πjh,i(s, ·),

[(
rh,i + [PhV

ϕ⋆
i ⋄π̄

j
h+1

h+1,i]

)
πjh,−i

]
(s, ·)

〉

=max
ϕs
h,i

t∑
j=1

αjt

〈
ϕsh,i ⋄ πjh,i(s, ·),

[(
rh,i + [PhV

π̄j
h+1

h+1,i] + [PhV
ϕ⋆
i ⋄π̄

j
h+1

h+1,i]− [PhV
π̄j
h+1

h+1,i]

)
πjh,−i

]
(s, ·)

〉

≤max
ϕs
h,i

t∑
j=1

αjt

〈
ϕsh,i ⋄ πjh,i(s, ·),

[(
rh,i + [PhV

π̄j
h+1

h+1,i]
)
πjh,−i

]
(s, ·)

〉
+

t∑
j=1

αjt max
s′∈S

(
V
ϕ⋆
i ⋄π̄

j
h+1

h+1,i − V π̄
j
h+1

h+1,i

)
(s′).

53

Subtracting (2.42) from the above equation leads to:

V
ϕ⋆
i ⋄π̄

t
h

h,i (s)−V π̄
t
h

h,i (s) ≤
t∑

j=1

αjt max
s′∈S

(
V
ϕ⋆
i ⋄π̄

j
h+1

h+1,i (s′)− V π̄
j
h+1

h+1,i(s
′)
)

+max
ϕs
h,i

t∑
j=1

αjt

〈
ϕsh,i ⋄ πjh,i(s, ·)− π

j
h,i(s, ·),

[(
rh,i + [PhV

π̄j
h+1

h+1,i]
)
πjh,−i

]
(s, ·)

〉
. (2.43)

In the following, we will show that (2.43) is equal to SwapRegth,i(s). It suffices to show that Qth,i(s,a) =(
rh,i + [PhV

π̄t
h+1

h+1,i]
)
(s,a),∀t ∈ [T],a ∈ Aall. We prove this claim by backward induction over h ∈ [H]. Notice

that the claim trivially holds for h = H as QtH,i(s,a) = rH,i(s,a),∀t ∈ [T],a ∈ Aall. Suppose that the claim

holds for h; then, for step h− 1, we have that

Qth−1,i(s,a) =

t∑
j=1

αjt

(
rh−1,i + Ph−1[Q

j
h,iπ

j
h]
)
(s,a)

=rh−1,i(s,a) + Ph−1

[t∑
j=1

αjtQ
j
h,iπ

j
h

]
(s,a)

=rh−1,i(s,a) + Ph−1

[t∑
j=1

αjt

(
rh,i + [PhV

π̄j
h+1

h+1,i]
)
πjh

]
(s,a)

=rh−1,i(s,a) +
[
Ph−1V

π̄t
h

h,i

]
(s,a),

where the first step is by (2.6), the second step changes the order of summation, the third step uses the induction

hypothesis, and the last step is due to (2.42). This completes the proof of Qth,i(s,a) =
(
rh,i+[PhV

π̄t
h+1

h+1,i]
)
(s,a).

Substituting it back to (2.43), we obtain that

V
ϕ⋆
i ⋄π̄

t
h

h,i (s)− V π̄
t
h

h,i (s) ≤
t∑

j=1

αjt max
s′∈S

(
V
ϕ⋆
i ⋄π̄

j
h+1

h+1,i (s′)− V π̄
j
h+1

h+1,i(s
′)
)
+ SwapRegth,i(s).

Since the above inequality holds for any i ∈ N and s ∈ S, and since V
ϕ⋆
i ⋄π̄

j
h+1

h+1,i (s′) ≤ maxϕi V
ϕi⋄π̄j

h+1

h+1,i (s′) at

step h+ 1, we can conclude that

δth ≤
t∑

j=1

αjtδ
j
h+1 + SwapRegth,

This completes the proof of the recursive relationship of best response CE value gaps.

Lemma 4. (Per-state weighted swap regret bounds) For any t ∈ [T], h ∈ [H], s ∈ S and i ∈ N , Algorithm 8

ensures that

SwapRegth,i(s) ≤
4A2

iH log t

ηt
+

32ηH3N2

t
+ 8ηNH2

t∑
j=2

∑
k∈N ,k ̸=i

αjt

∥∥∥πjh,k(s, ·)− πj−1
h,k (s, ·)

∥∥∥2
1

− 1

2048ηAi

t∑
j=2

αj−1
t

∥∥∥πjh,i(s, ·)− πj−1
h,i (s, ·)

∥∥∥2
1
.

54

Consequently, if η ≤ 1
256NH

√
HAmax

, we further have

N∑
i=1

SwapRegth,i(s) ≤
4NA2

maxH log t

ηt
+

32ηNH2(N2 +H)

t

− 1

2048ηH

N∑
i=1

t∑
j=2

αjt
Ai

∥∥∥πjh,i(s, ·)− πj−1
h,i (s, ·)

∥∥∥2
1
.

Proof. At each fixed (s, h) ∈ S × [H], the agents essentially face a no-swap-regret learning problem in a

matrix game, where the payoff matrix of agent i is Qth,i(s, ·) at iteration t. We can apply the weighted swap

regret bound (Lemma 17) of OFTRL under the Blum-Mansour reduction in normal-form games to obtain:

SwapRegth,i(s) = max
ϕs
h,i:Ai→Ai

t∑
j=1

αjt

〈
ϕsh,i ⋄ πjh,i(s, ·)− π

j
h,i(s, ·), [Q

j
h,iπ

j
h,−i](s, ·)

〉

=α1
t max
ϕs
h,i:Ai→Ai

t∑
j=1

〈
ϕsh,i ⋄ πjh,i(s, ·)− π

j
h,i(s, ·), wj [Q

j
h,iπ

j
h,−i](s, ·)

〉
(2.44)

≤2A2
iαt log t

η
+ 4

t∑
j=1

ηα1
t

wj

∥∥∥wj [Qjh,iπjh,−i](s, ·)− wj [Qj−1
h,i π

j−1
h,−i](s, ·)

∥∥∥2
∞

− α1
t

2048ηAi

t∑
j=2

wj−1

∥∥∥πjh,i(s, ·)− πj−1
h,i (s, ·)

∥∥∥2
1
, (2.45)

where (2.44) is due to the choice of the weights wj = αjt/α
1
t . (2.45) uses Lemma 17, by instantiating uj(·) in

Lemma 17 as wj [Q
j
h,iπ

j
h,−i](s, ·), the prediction mt = wj [Q

j−1
h,i π

j−1
h,−i](s, ·), and the learning rate ηj = η/wj .

To further upper bound the above equation, notice that

t∑
j=1

ηα1
t

wj

∥∥∥wj [Qjh,iπjh,−i](s, ·)− wj [Qj−1
h,i π

j−1
h,−i](s, ·)

∥∥∥2
∞

=

t∑
j=1

ηα1
twj

∥∥∥([Qjh,iπjh,−i]− [Qj−1
h,i π

j
h,−i] + [Qj−1

h,i π
j
h,−i]− [Qj−1

h,i π
j−1
h,−i]

)
(s, ·)

∥∥∥2
∞

≤2
t∑

j=1

ηα1
twj

(∥∥∥Qjh,i(s, ·)−Qj−1
h,i (s, ·)

∥∥∥2
∞

+H2
∥∥∥πjh,−i(s, ·)− πj−1

h,−i(s, ·)
∥∥∥2
1

)

≤2
t∑

j=1

ηα1
twj(αj)

2H2 + 2

t∑
j=1

ηα1
twjH

2
∥∥∥πjh,−i(s, ·)− πj−1

h,−i(s, ·)
∥∥∥2
1
, (2.46)

where the second step uses the observation that (a+ b)2 ≤ 2a2 + 2b2, the Hölder’s inequality, and the fact

that ∥Qj−1
h,i ∥∞ ≤ H. The third step is due to our value update rule in Algorithm 8, which yields∥∥∥Qjh,i(s, ·)−Qj−1

h,i (s, ·)
∥∥∥
∞

=
∥∥∥−αjQj−1

h,i (s, ·) + αj

(
rh,i + Ph[Q

j
h+1,iπ

j
h+1]

)
(s, ·)

∥∥∥
∞

≤αj max
{∥∥∥Qj−1

h,i (s, ·)
∥∥∥
∞
,
∥∥∥(rh,i + Ph[Q

j
h+1,iπ

j
h+1]

)
(s, ·)

∥∥∥
∞

}
≤αjH.

To continue from (2.46), we apply the properties that wj = αjt/α
1
t and

∑t
j=1 α

j
t (αj)

2 ≤ ∑t
j=1(αj)

2/t ≤

55

(H + 2)/t ≤ 3H/t (see Lemma 6 in [122] for a proof) to obtain:

(2.46) =2

t∑
j=1

ηα1
twj(αj)

2H2 + 2

t∑
j=1

ηα1
twjH

2
∥∥∥πjh,−i(s, ·)− πj−1

h,−i(s, ·)
∥∥∥2
1

≤6ηH3

t
+ 2

t∑
j=1

ηα1
twjH

2
∥∥∥πjh,−i(s, ·)− πj−1

h,−i(s, ·)
∥∥∥2
1

≤6ηH3

t
+ 2η(N − 1)H2

t∑
j=1

αjt
∑

k∈N ,k ̸=i

∥∥∥πjh,k(s, ·)− πj−1
h,k (s, ·)

∥∥∥2
1
. (2.47)

In the last step, we used that the total variation between two product distributions is bounded by the sum of

the total variations of each marginal distribution (see e.g. [126]):

∥∥∥πjh,−i(s, ·)− πj−1
h,−i(s, ·)

∥∥∥2
1
=

(∑
a−i∈A−i

∣∣∣πjh,−i(s,a−i)− πj−1
h,−i(s,a−i)

∣∣∣)2

=

(∑
a−i∈A−i

∣∣∣∣∏
k ̸=i

πjh,k(s, ak)−
∏
k ̸=i

πj−1
h,k (s, ak)

∣∣∣∣)2

≤
(∑
k ̸=i

∥∥∥πjh,k(s, ak)− πj−1
h,k (s, ak)

∥∥∥
1

)2

≤(N − 1)
∑
k ̸=i

∥∥∥πjh,k(s, ak)− πj−1
h,k (s, ak)

∥∥∥2
1
,

and the last step is by the Cauchy–Schwarz inequality. Substituting (2.47) back to (2.45) leads to

SwapRegth,i(s) ≤
2A2

iαt log t

η
+ 8η(N − 1)H2

t∑
j=1

αjt
∑

k∈N ,k ̸=i

∥∥∥πjh,k(s, ·)− πj−1
h,k (s, ·)

∥∥∥2
1

+
24ηH3

t
− α1

t

2048ηAi

t∑
j=2

wj−1

∥∥∥πjh,i(s, ·)− πj−1
h,i (s, ·)

∥∥∥2
1

≤4A2
iH log t

ηt
+ 8η(N − 1)H2

t∑
j=2

αjt
∑

k∈N ,k ̸=i

∥∥∥πjh,k(s, ·)− πj−1
h,k (s, ·)

∥∥∥2
1

+
32ηH2(H +N2)

t
− 1

2048ηAi

t∑
j=2

αj−1
t

∥∥∥πjh,i(s, ·)− πj−1
h,i (s, ·)

∥∥∥2
1
, (2.48)

where the second inequality uses αt = (H + 1)/(H + t) ≤ 2H/t. This step also takes out the term for j = 1

and upper bounds it by

8η(N − 1)H2α1
t

∑
k∈N ,k ̸=i

∥∥π1
h,k(s, ·)− π0

h,k(s, ·)
∥∥2
1
≤ 32η(N − 1)2H2

t
,

using the fact that α1
t ≤ 1/t (Lemma 6 in [122]). This proves the first claim in the lemma. To further

56

establish the second statement, we sum over (2.48) to obtain

N∑
i=1

SwapRegth,i(s) ≤
4NA2

iH log t

ηt
+ 8η(N − 1)2H2

N∑
i=1

t∑
j=2

αjt

∥∥∥πjh,i(s, ·)− πj−1
h,i (s, ·)

∥∥∥2
1

+
32ηNH2(H +N2)

t
− 1

2048η

N∑
i=1

t∑
j=2

αj−1
t

Ai

∥∥∥πjh,i(s, ·)− πj−1
h,i (s, ·)

∥∥∥2
1

≤4NA2
iH log t

ηt
+

32ηNH2(H +N2)

t

+

N∑
i=1

t∑
j=2

(
8η(N − 1)2H2 − 1

2048ηHAi

)
αjt

∥∥∥πjh,i(s, ·)− πj−1
h,i (s, ·)

∥∥∥2
1

≤4NA2
iH log t

ηt
+

32ηNH2(H +N2)

t

− 1

2048ηH

N∑
i=1

t∑
j=2

αjt
Ai

∥∥∥πjh,i(s, ·)− πj−1
h,i (s, ·)

∥∥∥2
1
,

where the second step uses the fact that αj−1
t /αjt = (j − 1)/(H + j − 1) ≥ 1/H, and the last step is due to

the condition that η ≤ 1
256NH

√
HAmax

.

Theorem 5. If Algorithm 8 is run on an N -player episodic Markov game for T iterations with a learning

rate η = 1
256NH

√
HAmax

, the output policy π̄ satisfies:

CE-Gap(π̄) ≤ 2048NH
7
2A

5
2
max log T

T
.

Proof. Using (2.9) from Lemma 4, we upper bound the second-order path lengths by

8ηNH2
N∑
i=1

t∑
j=2

αjt

∥∥∥πjh,i(s, ·)− πj−1
h,i (s, ·)

∥∥∥2
1

≤8ηNH2 · 2048ηHAmax

(
4NA2

maxH log t

ηt
+

32ηNH2(N2 +H)

t

)
,

where we used the crucial fact that the swap regret is non-negative. Substituting the above equation back to

(2.8) yields

SwapRegth,i(s) ≤
4A2

iH log t

ηt
+

32ηH3N2

t
+

216ηN2H4A3
max log t

t
+

219η3N4H6

t

≤2048NH
5
2A

5
2
max log t

t
, (2.49)

where the second step uses η = 1
256NH

√
HAmax

. Since (2.49) holds for any i ∈ N and s ∈ S, we can apply it

back to the recursion of best response CE value gaps from Lemma 3 to obtain

δth ≤
t∑

j=1

αjtδ
j
h+1 +

2048NH
5
2A

5
2
max log t

t
.

57

Starting from δtH+1 = 0, we can show via backward induction that for any (h, t) ∈ [H]× [T],

δth ≤
2048NA

5
2
max(H − h+ 1)H

5
2 log t

t
.

We conclude the proof of the theorem by referring to the property that CE-Gap(π̄) ≤ δT1 .

2.14 Proofs for Section 2.8.2

Lemma 18. (Theorem 3.1 from [118]) In a normal-form game with N players and Ai actions for player

i ∈ [N], suppose that all the players run OFTRL for T steps with negative entropy regularization and a

learning rate η = Θ(1
N log4 T

). Then, there exists a constant C > 1 such that the regret of player i satisfies

RegTi ≤ CN logAi · log4 T.

Lemma 19. (Recursion of best response CCE value gaps) For any fixed (h, t) ∈ [H]× [T], let τ = τ(t) denote

the stage of t. Then, we have

ζth ≤
1

Lτ−1

tendτ−1∑
j=tstartτ−1

ζjh+1 +Regτ−1
h .

Proof. For any fixed i ∈ N and s ∈ S, we know from the definition of π̄th from Algorithm 11 that

V
π̄t
h

h,i (s) =
1

Lτ−1

tend
τ−1∑

j=tstartτ−1

〈
πjh,i(s, ·),

[(
rh,i + [PhV

π̄j
h+1

h+1,i]

)
πjh,−i

]
(s, ·)

〉
. (2.50)

From the definition of the best response value function,

V
†,π̄t

h,−i

h,i (s) = max
π†
i (s,·)∈∆(Ai)

1

Lτ−1

tend
τ−1∑

j=tstartτ−1

〈
π†
i (s, ·),

[(
rh,i + [PhV

†,π̄j
h+1,−i

h+1,i]
)
πjh,−i

]
(s, ·)

〉

=max
π†
i

1

Lτ−1

tend
τ−1∑

j=tstartτ−1

〈
π†
i (s, ·),

[(
rh,i + [PhV

π̄j
h+1

h+1,i]− [PhV
π̄j
h+1

h+1,i] + [PhV
†,π̄j

h+1,−i

h+1,i]
)
πjh,−i

]
(s, ·)

〉

≤max
π†
i

1

Lτ−1

tend
τ−1∑

j=tstartτ−1

〈
π†
i (s, ·),

[(
rh,i + [PhV

π̄j
h+1

h+1,i]
)
πjh,−i

]
(s, ·)

〉

+
1

Lτ−1

tend
τ−1∑

j=tstartτ−1

max
s′∈S

(
V

†,π̄j
h+1,−i

h+1,i − V π̄
j
h+1

h+1,i

)
(s′).

58

Subtracting (2.50) from the above equation leads to:

V
†,π̄t

h,−i

h,i (s)−V π̄
t
h

h,i (s) ≤
1

Lτ−1

tendτ−1∑
j=tstartτ−1

max
s′∈S

(
V

†,π̄j
h+1,−i

h+1,i − V π̄
j
h+1

h+1,i

)
(s′)

+ max
π†
i

1

Lτ−1

tend
τ−1∑

j=tstartτ−1

〈
π†
i (s, ·)− πjh,i(s, ·),

[(
rh,i + [PhV

π̄j
h+1

h+1,i]
)
πjh,−i

]
(s, ·)

〉
. (2.51)

Using a similar inductive argument as in the proof of Lemma 3, we can show that the term in (2.51) is equal

to Regτ−1
h,i (s), which leads to

V
†,π̄t

h,−i

h,i (s)− V π̄
t
h

h,i (s) ≤
1

Lτ−1

tendτ−1∑
j=tstartτ−1

max
s′∈S

(
V

†,π̄j
h+1,−i

h+1,i − V π̄
j
h+1

h+1,i

)
(s′) + Regτ−1

h,i (s).

Since the above inequality holds for any i ∈ N and s ∈ S, we can conclude that

ζth ≤
1

Lτ−1

tendτ−1∑
j=tstartτ−1

ζjh+1 +Regτ−1
h .

This completes the proof of the recursive relationship of best response CCE value gaps.

Theorem 6. If Algorithm 10 is run on an N -player episodic Markov game for T iterations with a learning

rate ητ = Θ(1
N log4 Lτ

) in each stage τ , the output policy π̄ satisfies:

CCE-Gap(π̄) = O

(
NH3 logAmax · log5 T

T

)
.

Proof. We introduce a few more notations before presenting the proof. Let τ(t) denote the index of the stage

that iteration t belongs to. We denote by τ̄ the total number of stages, i.e., τ̄ := τ(T). For any (τ, h, s), we

define the per-state (average) regret for player i ∈ N in the τ -th stage of the corresponding matrix game as

Regτh,i(s) := max
π†
i (s,·)∈∆(Ai)

1

Lτ

tendτ∑
j=tstartτ

〈
π†
i (s, ·)− πjh,i(s, ·), [Qτh,iπ

j
h,−i](s, ·)

〉
,

Regτh := max
i∈N

max
s∈S

Regτh,i(s),

where Qτh,i is player i’s Q-function estimate at stage τ . For any (h, t) ∈ [H]× [T] and for the policy π̄th as

defined in Algorithm 11, we define the best response CCE value gap as

ζth := max
i∈N

max
s∈S

(
V

†,π̄t
h,−i

h,i (s)− V π̄
t
h

h,i (s)

)
.

59

By the definition of π̄ and ζth, we have

CCE-gap(π̄) =max
i∈N

(
V

†,π̄−i

1,i (s1)− V π̄1,i(s1)
)

≤ 1

T

T∑
t=1

max
i∈N

max
s∈S

(
V

†,π̄t
1,−i

1,i (s)− V π̄
t
1

1,i (s)

)
≤ 1

T

T∑
t=1

ζt1. (2.52)

We use Lemma 19 to establish the following recursive relationship of the best response CCE value gaps

between two consecutive steps h and h+ 1:

ζth ≤
1

Lτ−1

tendτ−1∑
j=tstartτ−1

ζjh+1 +Regτ−1
h . (2.53)

Hence, upper bounding CCE-gap(π̄) breaks down to controlling the per-state regret in the corresponding

matrix game for each (τ, s, h) ∈ [τ̄]× S × [H]. In our stage-based OFTRL, since the reward matrix Qτh,i in

each stage is fixed and Regτh,i(s) is the standard (average) regret, we can readily apply the individual regret

bound of each player when running OFTRL in normal-form games [118]. Specifically, Theorem 3.1 from [118]

(restated as Lemma 18) shows that with a learning rate ητ = Θ(1
N log4 Lτ

), there exists a constant C > 1 such

that for any (i, τ, s, h) ∈ N × [τ̄]× S × [H],

Regτh,i(s) ≤
CNH logAi · log4 Lτ

Lτ
. (2.54)

Notice that we multiplied the regret bound by H because [118] assumes the rewards to be from [0, 1] but our

rewards lie in [0, H]. According to the definition in Algorithm 11, the behavior of the policy π̄th is unchanged

for all t within the same stage τ as it always uniformly samples a time index from the previous stage and plays

the corresponding history policy. Consequently, the value estimation error ζth does not change within a stage

τ(t); that is, ζth takes the same value for all t ∈ [tstartτ , tendτ]. We occasionally slightly abuse the notation and

use ζτh to denote the estimation error for a stage τ . This immediately implies that 1
Lτ−1

∑tendτ−1

j=tstartτ−1
ζjh+1 = ζτ−1

h+1 .

Substituting (2.54) and the above equation back to the recursion (2.53), we obtain that

ζth ≤ζτ−1
h+1 +

CNH logAmax · log4 Lτ−1

Lτ−1

≤
H∑

h′=h

CNH logAmax · log4 T
Lτ−h′+h−1

(2.55)

≤3CNH2 logAmax · log4 T
Lτ

, (2.56)

where the second step is by applying the inequality recursively over h, and the last step holds because our

choice of the stage lengths Lτ+1 = ⌊(1 + 1/H)Lτ⌋ implies that

1

Lτ−h′+h−1
≤ 1

Lτ

(
1 +

1

H

)h′−h+1

≤ 1

Lτ

(
1 +

1

H

)H
≤ 3

Lτ
.

60

We then substitute (2.56) back to (2.52) and change the counting method to obtain

CCE-gap(π̄) ≤ 1

T

T∑
t=1

ζt1 ≤
1

T

τ̄∑
τ=1

tendτ∑
j=tstartτ

3CNH2 logAmax · log4 T
Lτ

≤3CNτ̄H2 logAmax · log4 T
T

.

It remains to bound the total number of stages τ̄ . Since the lengths of the stages increase exponentially as

Lτ+1 = ⌊(1 + 1/H)Lτ⌋ and the τ̄ stages sum up to T iterations, by taking the sum of a geometric series, it

suffices to find a value of τ̄ such that (1 + 1/H)τ̄ ≥ T/H. Using the Taylor series expansion, one can show

that (1 + 1
H)H ≥ e− e

2H , and hence any τ̄ ≥ H log T
log(e/2) satisfies the condition. This completes the proof of the

theorem.

2.15 Concluding Remarks

In this chapter, we have considered decentralized multi-agent reinforcement learning with efficient exploration

in general-sum Markov games. We have proposed the V-learning OMD algorithm that provably finds an

ε-approximate coarse correlated equilibrium in at most Õ(H6SA/ε2) episodes. As a useful side result, we have

introduced an anytime online mirror descent algorithm with a dynamic learning rate and a high-probability

regret bound.

We have also proposed stage-based V-learning algorithms that simplify the algorithmic design and analysis

of V-learning OMD and achieve sharper sample complexity bounds. We have shown that stage-based

V-learning can learn an ε-approximate CCE in Õ(H5SAmax/ε
2) episodes, and an ε-approximate CE in

Õ(H5SA2
max/ε

2) episodes. Our algorithms are decentralized and can readily scale up to a large number of

agents without suffering from the exponential dependence. Furthermore, we have extended the V-learning

framework to learning CCE/CE in full-information general-sum Markov games and established near-optimal

Õ(T−1) convergence of our methods.

An interesting future direction would be to further tighten the sample complexity upper and lower bounds

established in this chapter. In addition, in this chapter, we have considered the fully observable setup, where

the agents have full access to the state information. This is in contrast to the more general setting with

partially observable information structures [56], [127], [128], such as those modeled by decentralized partially

observable Markov decision processes (DecPOMDPs) [58], [129], [130], where each agent has only a private

partial observation of the state. Learning or even computing a NE in the latter case is much more challenging

and would be an interesting future direction.

61

Chapter 3

Non-Stationary RL and Cooperative

Markov Games

Reinforcement learning (RL) studies the problem where an agent maximizes its cumulative reward through

sequential interactions with an initially unknown environment, usually modeled by a Markov Decision Process

(MDP). The classical RL literature typically assumes that the state transition functions and the reward

functions of the MDP are time-invariant. Such a stationary model, however, cannot capture the dynamic

nature of many sequential decision-making problems in practice, especially those scenarios where multiple

agents are involved.

In this chapter, we consider the problem of reinforcement learning in non-stationary MDPs. In our

setting, both the reward functions and the state transition distributions are allowed to vary over time, either

gradually or abruptly, as long as their cumulative variation magnitude does not exceed certain budgets. We

propose an algorithm, named Restarted Q-Learning with Upper Confidence Bounds (RestartQ-UCB), for

this setting, which adopts a simple restarting strategy and an extra optimism term. We theoretically show

that RestartQ-UCB outperforms existing solutions in terms of dynamic regret, a notion commonly utilized

to measure the performance of an online learning algorithm in a non-stationary environment. Specifically,

RestartQ-UCB with Freedman-type bonus terms achieves a dynamic regret bound of Õ(S
1
3A

1
3∆

1
3HT

2
3),

where S and A are the numbers of states and actions, respectively, ∆ > 0 is the variation budget, H is

the number of time steps per episode, and T is the total number of time steps. We further show that our

algorithm is nearly optimal by establishing an information-theoretical lower bound of Ω(S
1
3A

1
3∆

1
3H

2
3T

2
3),

which appears to be the first impossibility result that characterizes the fundamental limits of non-stationary

RL in general.

We further demonstrate the power of our results in the context of multi-agent RL, where non-stationarity

is a key challenge. We show that RestartQ-UCB can be readily applied to learning team-optimal policies in

cooperative smooth games against a slowly-changing opponent. To the best of our knowledge, RestartQ-UCB

is the first model-free algorithm for non-stationary RL. Compared with model-based solutions, our algorithm is

more time- and space-efficient, flexible, and compatible with the model deep RL architectures. We empirically

evaluate RestartQ-UCB on RL tasks with both abrupt and gradual types of non-stationarity. Simulation

results validate the advantages of RestartQ-UCB in terms of cumulative rewards and computational efficiency.

62

3.1 Introduction

Reinforcement learning (RL) focuses on the class of problems where an agent maximizes its cumulative

reward through sequential interactions with an initially unknown but fixed environment, usually modeled

by a Markov Decision Process (MDP). In classical RL problems, the state transition functions and the

reward functions are assumed to be time-invariant, i.e., stationary. However, stationary models cannot

capture the time-varying environments in a wide range of sequential decision-making problems, such as

online advertisement auctions [18], [19], dynamic pricing [20], [131], traffic management [132], healthcare

operations [133], multi-agent RL [8], and inventory control [21], [22]. Among the many intriguing applications,

in the following, we specifically elaborate on two research areas, namely multi-agent RL and inventory control,

that can significantly benefit from progresses on non-stationary RL.

• Multi-agent RL: In multi-agent RL, a set of agents either collaborate or compete by taking actions in a

shared environment. This commonly occurs in many operational scenarios when multiple decision-makers

interact with each other, such as ads auctions [134] and dynamic pricing [135]. In such scenarios, each

agent faces a non-stationary environment, especially when the agents learn and update their policies

simultaneously, as the actions of the other agents can alter the environment. We discuss this connection

with more details in Section 3.8 through a concrete example, where we show that our non-stationary RL

solution can be readily applied to a multi-agent RL problem against a slowly-changing opponent.

• Inventory control across related but different products: In conventional inventory control [21],

[136], [137], the retailer typically focuses on managing the stock level of a single product. Nevertheless, the

sequential launch of new related products (e.g., the line of iPhone) provides us with the opportunity to

leverage experience from past products to inform inventory management for future products. In Section 3.9,

we discuss how one can apply our non-stationary RL solutions to guide the inventory management not

only for a single product but also across a sequence of related, but different, products.

Other areas that could benefit from non-stationary RL include sequential transfer in bandit [138] and

RL [139] and multi-task RL [140], which in turn are conceptually related to continual RL [141] and life-long

RL [142]. In the setting of sequential transfer/multi-task RL, the agent encounters a sequence of tasks

over time with different system dynamics, and seeks to bootstrap learning by transferring knowledge from

previously-solved tasks. Typical solutions in this area [139], [140], [143] need to assume that there are finitely

many candidate tasks, and every task should be sufficiently different from the others1. Only under this

assumption can the agent quickly identify the current task it is operating on, by essentially comparing the

system dynamics it observes with the dynamics it has memorized for each candidate task. After identifying

the current task with high confidence, the agent then invokes the policy that it learned through previous

interactions with this specific task. This transfer learning paradigm in turn causes another problem—it “cold

switches” between policies that are most likely very different, which might lead to unstable and inconsistent

behaviors of the agent over time. Fortunately, non-stationary RL can help alleviate both the finite-task

assumption and the cold-switching problem. First, non-stationary RL algorithms do not need the candidate

tasks to be sufficiently different in order to correctly identify each of them, because the algorithm itself can

tolerate some variations in the task environment. There will also be no need to assume the finiteness of the

candidate task set anymore, and the candidate tasks can be drawn from a continuous space. Second, since we

1Needless to say, this assumption itself also to some extent contradicts the primary motivation of transfer learning. After all,
we only want to transfer knowledge among tasks that are essentially similar to each other.

63

Table 3.1: Dynamic regret comparisons for RL in non-stationary MDPs. S and A are the numbers of states
and actions, L is the number of abrupt changes, D is the maximum diameter, d is the dimension of the
feature space for linear MDPs, H is the number of steps per episode, and T is the total number of steps. All
upper bounds listed in the table are high-probability results that hold with probability at least 1− δ for some
δ ∈ (0, 1), and Õ(·) suppresses logarithmic dependence on S,A, T and 1

δ . Gray cells denote results from this
thesis.

Setting Algorithm Regret
Model-
Free

Comment

Undis-
counted

[96] Õ(S
1
1A

1
2L

1
3D

1
1T

2
3) ✗ only abrupt changes

[145] Õ(S
2
3A

1
3L

1
3D

2
3T

2
3) ✗ only abrupt changes

[144] Õ(S
2
3A

1
2∆

1
3D

1
1T

2
3) ✗ requires local variations

[22] Õ(S
2
3A

1
2∆

1
4D

1
1T

3
4) ✗ does not require ∆

Lower bound Ω(S
1
3A

1
3∆

1
3D

2
3T

2
3)

Episodic

[146] Õ(S
1
1A

1
2∆

1
3H

4
3T

2
3) ✗ also metric spaces

RestartQ-UCB Õ(S
1
3A

1
3∆

1
3H

1
1T

2
3) ✓

Double-Restart Q-UCB Õ(S
1
3A

1
3∆

1
3HT

2
3 +H

3
4T

3
4) ✓ does not require ∆

Lower bound Ω(S
1
3A

1
3∆

1
3H

2
3T

2
3)

Linear
MDPs

[147] Õ(d
4
3∆

1
3H

4
3T

2
3) ✓

[148] Õ(d
5
4∆

1
4H

5
4T

3
4) ✓

are running the same non-stationary RL algorithm for a series of tasks, it improves its policy gradually over

time, instead of cold-switching to a completely independent policy for each task. This could largely help with

the unstable behavior issues.

RL in a non-stationary MDP is highly non-trivial due to the following challenges. First, similar to

stationary RL, the agent faces the exploration vs. exploitation dilemma: it needs to explore the uncertain

environment efficiently while maximizing its rewards along the way. In [96], the authors proposed to leverage

the “optimism in the face of uncertain” principle to guide exploration. Another challenge, which is unique

to non-stationary RL, is the trade-off between remembering and forgetting. On the one hand, since the

underlying MDP varies over time, data samples collected in prior interactions can become obsolete. In fact, it

has been shown that a standard stationary RL algorithm might incur a linear regret if the non-stationarity is

not handled properly [144]. On the other hand, the agent needs to extract a sufficient amount of information

from historical data to inform future decision-making.

To resolve the aforementioned challenges, [144] and [22] have proposed algorithms to guide learning in non-

stationary MDPs. Although both model-based and model-free algorithms have been proposed for stationary

RL, existing solutions for non-stationary RL are often built upon model-based methods. Nevertheless, it has

been observed that model-based solutions often suffer from the following shortcomings:

• Time- and space-inefficiency: Model-based methods are in general more time- and space-consuming,

and are less compatible with the design of modern deep RL architectures [60], [61].

• Inefficient exploration: In [22], [149], an example was given to show that under non-stationarity, the

estimated model can incorrectly indicate that transitioning between states is very unlikely. This suggests

that model-based methods, which try to estimate the latent model, might suffer “The Perils of Drift” [22].

64

• Limited applicability: In an important application of nonstationary RL — decentralized multi-agent

RL, the agents cannot observe the actions taken by the other agents. This information structure precludes

model-based methods, as the explicit estimation of the state transition functions is hardly possible without

observing all the agents’ actions.

These observations have thus motivated us to turn our attention to model-free methods, which, instead of

maintaining estimates of the unknown underlying model, directly learn the Q-values.

Main Contributions. In this chapter, we focus on the problem of designing model-free algorithms with

near-optimal performances for non-stationary RL. Our contributions are as follows:

1. We introduce an algorithm named Restarted Q-Learning with Upper Confidence Bounds (RestartQ-UCB),

which is the first model-free algorithm in the general setting of non-stationary RL. Our algorithm adopts

a simple but effective restarting strategy [96], [150] that resets the memory of the agent according to a

calculated schedule. The restarting strategy ensures that our algorithm only refers to the most up-to-date

experience for decision-making. RestartQ-UCB also utilizes an extra optimism term (in addition to the

standard Hoeffding/Freedman-based bonus) for exploration to counteract the non-stationarity of the MDP.

This additional bonus term, depending on the local variation budgets (i.e., the environmental variation in

each restarting interval), guarantees that our optimistic Q-value is still an upper bound of the optimal

Q⋆-value even when the environment changes. Our analysis shows that RestartQ-UCB achieves the lowest

dynamic regret bound when compared to existing works in the literature;

2. We present a variant of RestartQ-UCB that does not require knowledge of the local variation budget.

Furthermore, we also show that our algorithm can completely remove the dependence on prior knowledge

of the variation budget, a critical assumption commonly made in the literature [144], [147]. To accomplish

that, we propose a parameter-free algorithm that leverages a “double restart” strategy to adaptively learn

the variation budget [151];

3. We conduct simulations showing that RestartQ-UCB achieves highly competitive cumulative rewards

against a state-of-the-art solution [147], while only taking 0.18% of its computation time;

4. We establish the first lower bounds in non-stationary RL, which suggest that our algorithm is optimal in

all parameter dependences except for an H
1
3 factor, where H is the episode length;

5. To further showcase the flexibility and potential of non-stationary RL, we illustrate how it can be utilized

to address the non-stationarity issue inherent in multi-agent RL. Specifically, we show that RestartQ-UCB

can be readily applied to a multi-agent RL example against a slowly-changing opponent [152], [153].

The setting we consider is a more practical and general decentralized learning setting, which entails

model-free solutions. We also discuss the application of our non-stationary RL algorithm in inventory

control. Specifically, we demonstrate how to implement our RestartQ-UCB algorithm for the problem of

inventory control across related, but different products with time-varying demands.

Related Works. Dynamic regret of non-stationary RL has been mostly studied using model-based

solutions. [96] considers the setting where the MDP is allowed to change abruptly for L times. A sliding

window approach is proposed in [145] under the same setting. [144] generalizes the previous setting by

allowing the MDP to vary either abruptly or gradually at every step, subject to a total variation budget. [22]

considers the same setting and introduce a Bandit-over-RL technique that adaptively tunes the algorithm

without knowing the variation budget. Directly applying their method to our episodic setting will lead to a

dynamic regret of Õ(S
2
3A

1
2∆

1
4HT

3
4). Although it may be possible to further obtain an improved dependence

on T , this is sub-optimal in terms of S and A. We remark that a recent (but later than ours) version of [22]

65

develops a lower bound tailored to the infinite horizon undiscounted non-stationary RL, but it is not directly

applicable to our episodic non-stationary RL setting.

In a setting most similar to ours, [146] investigates non-stationary RL in the episodic setting, and propose

a kernel-based approach when the state-action set forms a metric space. Their results can be reduced

to an Õ(SA
1
2∆

1
3H

4
3T

2
3) regret in the tabular case. [154] assumes stationary transitions and adversarial

full-information rewards, and their setting is not directly comparable with ours. Two concurrent works [147]

and [148] consider non-stationary RL in linear MDPs, but their regret bounds, Õ(S
4
3A

4
3∆

1
3H

4
3T

2
3) and

Õ(S
5
4A

5
4∆

1
4H

5
4T

3
4) when reduced to the tabular RL setting, respectively, are less competitive than ours.

After an earlier version of this work was made publicly available, [155] has proposed a black-box reduction

procedure that turns an RL algorithm in a (nearly-)stationary environment to a non-stationary RL algorithm.

In the episodic setting, [155] has achieved a strong dynamic regret bound of Õ(S
1
3A

1
3∆

1
3H

5
3T

2
3) (with or

without knowledge of the degree of non-stationarity). However, their regret bound has a worse dependence

on H when compared to ours, and it has been pointed out in [155] that such a sub-optimality cannot be

improved upon by using a Freedman-style confidence bound as we do. Their compelling theoretical guarantees

also come at the cost of a rather sophisticated and memory-inefficient algorithmic design, which needs to

maintain many instances of the stationary subroutine, and constantly switch among them. Interested readers

are referred to [156] for a comprehensive survey on RL in non-stationary environments. Table 3.1 compares

our regret bounds with existing results that tackle similar settings as ours. It can be seen that our result is

the first one that achieves the optimal dependence on S and A, and also establishes the tightest dependence

on H/D and T among existing solutions in the literature, without relying on their assumptions.

Another related line of research studies online/adversarial MDPs [157]–[164], but they mostly only allow

variations in reward functions, and use the static regret as a performance metric. In addition, RL with low

switching cost [165] also shares a similar spirit as our restarting strategy since it also periodically forgets

previous experiences. However, such algorithms do not address the non-stationarity of the environment, and

their dynamic regret in terms of the variation budget is unclear.

Non-stationarity has also been considered in bandit problems [166]. Within different non-stationary

multi-armed bandit (MAB) settings, various methods have been proposed, including decaying memory and

sliding windows [167], [168], as well as restart-based strategies [107], [150], [169]. These methods largely

inspired later research on non-stationary RL. A more recent line of work developed methods that do not

require prior knowledge of the variation budget [170], [171] or the number of abrupt changes [172]. Other

related settings considered in the literature include Markovian bandits [173]–[175], non-stationary contextual

bandits [176], [177], linear bandits [178], [179], continuous-armed bandits [180], and learning with seasonal

patterns [181].

Outline. The rest of this chapter is organized as follows: In Sections 3.2, we introduce the mathematical

model of our problem and necessary preliminaries. In Section 3.3, we present our RestartQ-UCB algorithm.

A dynamic regret analysis of RestartQ-UCB is provided in Section 3.4. In Section 3.5, we further propose a

parameter-free algorithm that does not require prior knowledge of the variation budget. In Section 3.6, we

establish information-theoretical lower bounds. Simulation results are presented in Section 3.7. In Sections 3.8

and 3.9, we discuss the applications of our method to two important scenarios: multi-agent RL and inventory

control, respectively. For clarity of presentations, some supplementary material and the proofs of most results

are deferred to Sections 3.10 to 3.15. Finally, we conclude this chapter in Section 3.16.

66

3.2 Preliminaries

We consider an episodic RL setting where an agent interacts with a non-stationary MDP for M episodes,

with each episode containing H steps. We use a pair of integers (m,h) as a time index to denote the h-th

step of the m-th episode. The environment can be denoted by a tuple (S,A, H, P, r), where S is the finite set

of states with |S| = S, A is the finite set of actions with |A| = A, H is the number of steps in one episode,

P = {Pmh }m∈[M],h∈[H] is the set of transition kernels, and r = {rmh }m∈[M],h∈[H] is the set of mean reward

functions. Specifically, when the agent takes action amh ∈ A in state smh ∈ S at the time (m,h), it will receive

a random reward Rmh (smh , a
m
h) ∈ [0, 1] with expected value rmh (smh , a

m
h), and the environment transitions to a

next state smh+1 following the distribution Pmh (· | smh , amh). It is worth emphasizing that the transition kernel

and the mean reward function depend both on m and h, and hence the environment is non-stationary over

time. The episode ends when smH+1 is reached. We further denote T =MH as the total number of steps.

A deterministic policy π : [M]× [H]× S → A is a mapping from the time index and state space to the

action space, and we let πmh (s) denote the action chosen in state s at time (m,h). Define V m,πh : S → R to

be the value function under policy π at time (m,h), i.e.,

V m,πh (s) := E

[
H∑

h′=h

rmh′ (sh′ , πmh′ (sh′)) | sh = s

]
,

where sh′+1 ∼ Pmh′ (· | sh′ , ah′). Accordingly, the state-action value function Qm,πh : S ×A → R is defined as:

Qm,πh (s, a) := rmh (s, a) + E

[
H∑

h′=h+1

rmh′ (sh′ , πmh′ (sh′)) | sh = s, ah = a

]

For simplicity of notation, we let Pmh Vh+1(s, a) := Es′∼Pm
h (·|s,a) [Vh+1(s

′)]. Then, the Bellman equation gives

V m,πh (s) = Qm,πh (s, πmh (s)) and Qm,πh (s, a) = (rmh + Pmh V
m,π
h+1)(s, a), and we also have V m,πH+1(s) = 0,∀s ∈ S

by definition. Since the state space, the action space, and the length of each episode are all finite, there

always exists an optimal policy π⋆ that gives the optimal value V m,⋆h (s) := V m,π
⋆

h (s) = supπ V
m,π
h (s),∀s ∈

S,m ∈ [M], h ∈ [H]. From the Bellman optimality equation, we have V m,⋆h (s) = maxa∈AQ
m,⋆
h (s, a), where

Qm,⋆h (s, a) := (rmh + Pmh V
m,⋆
h+1)(s, a), and V

m,⋆
H+1(s) = 0,∀s ∈ S.

Dynamic Regret: The agent aims to maximize the cumulative expected reward over the entire M

episodes, by adopting some policy π. We measure the optimality of the policy π in terms of its dynamic regret

[22], [146], which compares the agent’s policy with the optimal policy of each individual episode in hindsight:

R(π,M) :=

M∑
m=1

(
V m,⋆1 (sm1)− V m,π1 (sm1)

)
,

where the initial state sm1 of each episode is chosen by an oblivious adversary [61]. Dynamic regret is a

stronger measure than the standard (static) regret, which only considers the single policy that is optimal over

all episodes combined.

Variation: We measure the non-stationarity of the MDP in terms of its variation budget in the mean

reward function and transition kernels:

∆r :=

M−1∑
m=1

H∑
h=1

sup
s,a
|rmh (s, a)− rm+1

h (s, a)|, ∆p :=

M−1∑
m=1

H∑
h=1

sup
s,a

∥∥Pmh (· | s, a)− Pm+1
h (· | s, a)

∥∥
1
,

67

Algorithm 14: RestartQ-UCB (Hoeffding/Freedman)

1 for epoch d← 1 to D do
2 Initialize: Vh(s)← H − h+ 1, Qh(s, a)← H − h+ 1, Nh(s, a)← 0, Ňh(s, a)← 0,

řh(s, a)← 0, v̌h(s, a)← 0, µ̌h(s, a)← 0, σ̌h(s, a)← 0, µref
h (s, a)← 0, σref

h (s, a)← 0, V ref
h (s)← H,

for all (s, a, h) ∈ S ×A× [H];
3 for episode k ← (d− 1)K + 1 to min{dK,M} do
4 observe s1;
5 for step h← 1 to H do
6 Take action ah ← argmaxaQh(sh, a), receive Rh(sh, ah), and observe sh+1;
7 řh(sh, ah)← řh(sh, ah) +Rh(sh, ah), v̌h(sh, ah)← v̌h(sh, ah) + Vh+1(sh+1);

8 µ̌(sh, ah)← µ̌(sh, ah) + Vh+1(sh+1)− V ref
h+1(sh+1);

9 σ̌(sh, ah)← σ̌(sh, ah) +
(
Vh+1(sh+1)− V ref

h+1(sh+1)
)2
;

10 µref(sh, ah)← µref(sh, ah) + V ref
h+1(sh+1), σ

ref(sh, ah)← σref(sh, ah) + (V ref
h+1(sh+1))

2;

11 n := Nh(sh, ah)← Nh(sh, ah) + 1, ň := Ňh(sh, ah)← Ňh(sh, ah) + 1;
12 if Nh(sh, ah) ∈ L then
13 // Reaching the end of the stage

14 bh ←
√

H2

ň ι+
√

1
ň ι, b∆ ← ∆

(d)
r +H∆

(d)
p ;

15 bh←2
√

σref/n−(µref/n)2

n ι+ 2
√

σ̌/ň−(µ̌/ň)2

ň ι+ 5(Hιn +Hι
ň +Hι3/4

n3/4 +Hι3/4

ň3/4)+
√

1
ň ι;

16 Qh(sh, ah)← min
{
ř
ň+

v̌
ň+bh+2b∆,

ř
ň+

µref

n + µ̌
ň+2bh+4b∆,Qh(sh, ah)

}
; (∗)

17 Vh(sh)← maxaQh(sh, a);

18 Ňh(sh, ah)← 0, řh(sh, ah)← 0, v̌h(sh, ah)← 0, µ̌h(sh, ah)← 0, σ̌h(sh, ah)← 0;

19 if
∑
aNh(sh, a) = N0 then // Learn the reference value

20 V ref
h (sh)← Vh(sh);

where ∥·∥1 is the L1-norm. Note that our definition of variation budgets only imposes restrictions on the

summation of non-stationarity across two different episodes and does not put any restriction on the difference

between two consecutive steps in the same episode; that is, Pmh (· | s, a) and Pmh+1(· | s, a) are allowed to be

arbitrarily different. We further let ∆ = ∆r +∆p, and assume ∆ > 0.

3.3 Algorithm: RestartQ-UCB

We present our algorithm Restarted Q-Learning with Hoeffding/Freedman Upper Confidence Bounds

(RestartQ-UCB Hoeffding/Freedman) in Algorithm 14. For illustrative purposes, we start with a sim-

pler RestartQ-UCB algorithm with Hoeffding-style bonus terms, which only executes the pseudocode colored

in black in Algorithm 14. Further incorporating the gray parts in Algorithm 14 leads to the RestartQ-UCB

algorithm with Freedman-style bonus terms and reference-advantage decomposition [61], which achieves a

sharper dynamic regret bound at the cost of a slightly more involved analysis.

Common to both the Hoeffding and the Freedman bonus terms, RestartQ-UCB breaks the M episodes

into D epochs, with each epoch containing K = ⌈MD ⌉ episodes (except for the last epoch which possibly

has less than K episodes). With a large value of D, Algorithm 14 restarts more frequently to adjust to

the potential variations of the environment, at the cost of spending more time searching for new optimal

policies. On the contrary, a small value of D would lead to running stable policies for long periods of time

with less frequent restarts, but the resulting algorithm might not be able to adjust to the environmental

variations rapidly enough. To strike a balance, we set the number of epochs to be D = S− 1
3A− 1

3∆
2
3H− 2

3T
1
3

68

so as to achieve the optimal dynamic regret bound, and such a choice will be justified later in our analysis.

RestartQ-UCB periodically restarts a Q-learning algorithm with UCB exploration at the beginning of each

epoch, thereby addressing the non-stationarity of the environment. For each d ∈ [D], define ∆
(d)
r to be the

local variation budget of the mean reward function within epoch d. By definition, we have
∑D
d=1 ∆

(d)
r ≤ ∆r.

Define the local variation budget of transitions ∆
(d)
p analogously.

Since our algorithm essentially invokes the same procedure for every epoch, in the following, we focus our

analysis on what happens inside one epoch only (and without loss of generality, we focus on epoch 1, which

contains episodes 1, 2, . . . ,K). At the end of our analysis, we will merge the results across all epochs.

For each triple (s, a, h) ∈ S × A × [H], we divide the visitations (within epoch 1) to the triple into

multiple stages, where the length of the stages increases exponentially at a rate of (1 + 1
H). Specifically,

let e1 = H, and ei+1 = ⌊(1 + 1
H)ei⌋, i ≥ 1 denote the lengths of the stages. Further, let the partial sums

L := {∑j
i=1 ei | j = 1, 2, 3, . . . } denote the set of the ending times of the stages. We remark that the stages

are defined for each individual triple (s, a, h), and for different triples the starting and ending times of their

stages do not necessarily align in time. Such a definition of stages is mostly motivated by the design of the

learning rate αt =
H+1
H+t in [60]. It ensures that only the last O(1/H) fraction of samples is given non-negligible

weights when used to estimate the optimistic Qh(s, a) values, while the first 1−O(1/H) fraction is forgotten

[61]. We set ι := log
(
2
δ

)
, where δ is an input parameter that can be set by us.

Recall that the time index (k, h) represents the h-th step of the k-th episode. At each step (k, h), we

take the optimal action with respect to the optimistic Qh(s, a) value (Line 6 in Algorithm 14), which is

designed as an optimistic estimate of the optimal Qk,⋆h (s, a) value of the corresponding episode. For each

triple (s, a, h), we update the optimistic Qh(s, a) value at the end of each stage, using samples only from this

latest stage that is about to end (Line 16 in Algorithm 14). The optimism in Qh(s, a) comes from two bonus

terms bh/bh and b∆, where bh/bh is a standard Hoeffding/Freedman-based optimism that is commonly used

in upper confidence bounds [60], [61], and b∆ is the extra optimism that we need to take into account because

of the non-stationarity of the environment. The definition of b∆ requires knowledge of the local variation

budget in each epoch, which is a rather strong assumption in practice. However, we can further show (later in

Theorems 10 and 11) that if we simply replace Equation (∗) in Algorithm 14 with the following update rule:

Qh(sh, ah)← min

{
ř

ň
+
v̌

ň
+ bh,

ř

ň
+
µref

n
+
µ̌

ň
+ 2bh,Qh(sh, ah)

}
(3.1)

then our algorithm can achieve the same regret without assumptions on the local variation budget.

Compared with the Hoeffding-based algorithm, there are two major improvements in the Freedman-based

one. The first improvement is the replacement of the Hoeffding-based bonus term bkh with a tighter term bkh.

The latter term takes into account the second moment information of the random variables, which allows

sharper tail bounds that rely on second moments to come into use (in our case, the Freedman’s inequality).

The second improvement is a variance reduction technique, or more specifically, the reference-advantage

decomposition as coined in [61]. The intuition is to first learn a reference value function V ref that serves as a

roughly accurate estimate of the optimal value function V ⋆ in each epoch. The goal of learning the optimal

value function V ⋆ = V ref + (V ∗ − Vref) can hence be decomposed into estimating the two terms V ref and

V ∗ − Vref. The reference value V ref is a fixed term, and can be accurately estimated using a large number of

samples (in Algorithm 14, we estimate V ref only when we have N0 = cSAH6ι samples for a large constant c).

The advantage term V ∗ − V ref can also be estimated more accurately due to the reduced variance.

69

3.4 Analysis

In this section, we present our main result—a dynamic regret analysis of the RestartQ-UCB algorithm. Our

first result on RestartQ-UCB with Hoeffding-style bonus terms is summarized in the following theorem.

Complete proofs of its supporting lemmas are given in Section 3.10.

Theorem 9. (Hoeffding) For T = Ω(SA∆H2), and for any δ ∈ (0, 1), with probability at least 1− δ, the
dynamic regret of RestartQ-UCB with Hoeffding bonuses is bounded by Õ(S

1
3A

1
3∆

1
3H

5
3T

2
3), where Õ(·) hides

poly-logarithmic factors of S,A, T and 1/δ.

Our proof relies on the following technical lemma, stating that for any triple (s, a, h), the difference of

their optimal Q-values at two different episodes 1 ≤ k1 < k2 ≤ K is bounded by the variation of this epoch.

Lemma 20. For any triple (s, a, h) and any 1 ≤ k1 < k2 ≤ K, it holds that |Qk1,⋆h (s, a) − Qk2,⋆h (s, a)| ≤
∆

(1)
r +H∆

(1)
p .

Let Qkh(s, a) denote the value of Qh(s, a) at the beginning of the k-th episode in RestartQ-UCB Hoeffding.

The following lemma states that the optimistic Q-value Qkh(s, a) is an upper bound of the optimal Q-value

Qk,⋆h (s, a) with high probability. Note that we only need to show that the event holds with probability

1− poly(S,A,K,H)δ, because we can replace δ with δ/poly(S,A,K,H) in the end to get the desired high

probability bound without affecting the polynomial part of the regret bound.

Lemma 21. (Hoeffding) For δ ∈ (0, 1), with probability at least 1 − 2KHδ, it holds that Qk,⋆h (s, a) ≤
Qk+1
h (s, a) ≤ Qkh(s, a),∀(s, a, h, k) ∈ S ×A× [H]× [K].

Building upon Lemmas 20 and 21, a complete proof of Theorem 9 is given in Section 3.11. We remark that

Algorithm 14 relies on the assumption that the local variations b∆ are known a priori, which is a strong but

commonly made assumption in the literature on non-stationary RL [144], [147]. To the best of our knowledge,

existing restart-based solutions either crucially rely on this local variation assumption [144], or suffer a severe

regret degeneration after removing this assumption [147]. Interestingly, in the following theorem, we show

that this assumption can be safely removed in our approach without affecting the regret bound. The only

modification to the algorithm is to replace the Q-value update rule in Equation (∗) of Algorithm 14 with the

new update rule in Equation (3.1).

Theorem 10. (Hoeffding, no local budgets) For T = Ω(SA∆H2), and for any δ ∈ (0, 1), with probability at

least 1− δ, the dynamic regret of RestartQ-UCB with Hoeffding bonuses and no knowledge of local budgets is

bounded by Õ(S
1
3A

1
3∆

1
3H

5
3T

2
3), where Õ(·) hides poly-logarithmic factors of S,A, T and 1/δ.

To understand why this simple modification works, notice that in (∗) we add exactly the same value

2b∆ to the upper confidence bounds of all (s, a) pairs in the same epoch. Subtracting the same value from

all optimistic Q-values simultaneously should not change the choice of actions in future steps. The only

difference is that the new “optimistic” Qkh(sh, ah) values would no longer be strict upper bounds of the optimal

Qk,⋆h (sh, ah) anymore, but instead “upper bounds” subject to some error term induced by b∆. Specifically,

since Qh(sh, ah) is updated using Vh+1(sh+1), which, in turn, contains some error in terms of b∆, the error

will propagate across the steps. By properly tracking such error terms, we can see that there are in total

H −h+1 copies of the 2b∆ error accumulated from step H back to step h. This leads to the following variant

of Lemma 21 that quantifies the error terms in the new “optimistic” bounds.

70

Lemma 22. (Hoeffding, no local budgets) Suppose that we have no prior knowledge of the local variations and

replace the update rule (∗) in RestartQ-UCB Hoeffding with Equation (3.1). For δ ∈ (0, 1), with probability at

least 1−2KHδ, it holds that Qk,⋆h (s, a)−2(H−h+1)b∆ ≤ Qk+1
h (s, a) ≤ Qkh(s, a),∀(s, a, h, k) ∈ S×A×[H]×[K].

Remark 3. The easy removal of the local budget assumption is non-trivial in the design of the algorithm,

and to the best of our knowledge is absent in the non-stationary RL literature with restarts. In fact, it has

been shown in a concurrent work [147] that removing this assumption could lead to a much worse regret bound

(cf. Corollary 2 and Corollary 3 therein).

Replacing the Hoeffding-based upper confidence bound with a Freedman-style one will lead to a tighter

regret bound, summarized in Theorem 11 below. To remove the local budget assumption, we also need to

replace the update rule (∗) in Algorithm 14 with Equation (3.1). The proof of the theorem follows a similar

procedure as in the proof of Theorem 10, and is given in Section 3.13. It relies on a reference-advantage

decomposition technique for variance reduction as in [61].

Theorem 11. (Freedman, no local budgets) For T greater than some polynomial of S,A,∆ and H, and

for any δ ∈ (0, 1), with probability at least 1 − δ, the dynamic regret of RestartQ-UCB with Freedman

bonuses (Algorithm 14 including the gray parts) is upper bounded by Õ(S
1
3A

1
3∆

1
3HT

2
3), where Õ(·) hides

poly-logarithmic factors of S,A, T and 1/δ.

Remark 4 (From High Probability Regret Bound to Expected Regret Bound). We note that δ is an input

parameter, and our high probability regret bounds can immediately imply expected regret bounds. In all the

above theorems presented in this section, the dynamic regret depends on 1/δ through logarithmic terms. Since

the regret can at most be O(T), by setting δ = 1/T , one can retain the same regret bound in an expectation

sense. For instance, in Theorem 11, by setting δ = 1/T, we have that with probability at least 1− δ, the regret

is Õ(S
1
3A

1
3∆

1
3HT

2
3), while with probability at most δ, the regret is O(T). Hence, the expected regret of the

algorithm is (1− δ)Õ(S
1
3A

1
3∆

1
3HT

2
3) + δO(T) = Õ(S

1
3A

1
3∆

1
3HT

2
3)

3.5 Unknown Variation Budgets

In Theorem 11, we have removed the assumption on the knowledge of “local” variation budgets ∆
(d)
r and

∆
(d)
p for d ∈ [D], but the design of the algorithm still relies on knowledge of the “total” variation budget ∆.

Specifically, to achieve the dynamic regret bound presented in Theorem 11, we need to set the number of

epochs to D⋆ = S− 1
3A− 1

3∆
2
3T

1
3 , which clearly requires to know ∆ in advance. To further overcome such a

limitation, in this section, we propose a parameter-free algorithm that adaptively learns the variation budget

∆ when it is unknown a priori, while still achieving sublinear dynamic regret in T .

Our new algorithm, Double-Restart Q-UCB, for the unknown variation budget setting is presented in

Algorithm 15. Inspired by the Bandit-over-Bandit algorithm [22], [171] that adaptively tunes the algorithm

parameters in a linear bandit problem, we also use a multi-armed bandit algorithm as a master procedure to

learn the optimal value D⋆ of D. Given a set J of candidate values for D, the idea of our algorithm is to first

divide the time horizon T into multiple phases, and then in each phase we experiment with one candidate

value from the set J . If we choose values from J properly using a bandit algorithm, the cumulative reward

we obtain through this experimentation procedure should be close to the performance of using the best fixed

candidate from J in hindsight. Since the underlying environment need not drift according to any statistical

pattern, we use an adversarial bandit algorithm Exp3.P [107] to defend against the possibly adversarial

changes of the best D value in each phase.

71

Algorithm 15: Double-Restart Q-UCB

1 Input: Parameters W,J , α, and γ as given in Equation (3.2) and (3.3).

2 Initialize: Weights of the bandit arms s1(j) = exp

(
αγ
3

√
⌈M/W⌉
J+1

)
for j = 0, 1, . . . , ⌈lnW ⌉.

3 for phase i← 1 to
⌈
M
W

⌉
do

4 pi(j)← (1− γ) si(j)∑J
j′=0

si(j′)
+ γ

J+1 ,∀j = 0, 1, . . . , J ;

5 Draw an arm Ai from {0, . . . , J} randomly according to the probabilities pi(0), . . . , pi(J);

6 Set the estimated number of epochs Di ←
⌊
TW

Ai
J

SAH2W

⌋
;

7 Run a new instance of Algorithm 14 (including gray parts) for W episodes with parameter value
D ← Di;

8 Observe the cumulative reward Ri from the last W episodes;
9 for arm j ← 0, 1, . . . , J do

10 R̂i(j)← RiI{j = Ai}/ (WHpi(j));

11 si+1(j)← si(j) exp

(
γ

3(J+1)

(
R̂i(j) +

α

pi(j)
√

(J+1)⌈M/W⌉

))
;

Episode 𝟏 𝑾 𝑴/𝑾 − 𝟏 𝑾+ 𝟏 𝑴

Phase 1

RestartQ-UCB(𝑫𝟏)

Phase 𝑴/𝑾

RestartQ-UCB(𝑫 𝑴/𝑾)

Epoch 𝟏 Epoch
𝑫𝟏𝑾

𝑴
Epoch 𝟏 Epoch

𝑫 𝑴/𝑾 𝑾

𝑴

……

……

……

…… ……

…… ……

Figure 3.1: Structure of the Double-Restart Q-UCB algorithm.

We sketch the high-level structure of the Double-Restart Q-UCB algorithm in Figure 3.1 to help clarify

any possible confusion regarding our definitions of “phases”, “epochs”, and “episodes”. Concretely, we divide

the overall M episodes into
⌈
M
W

⌉
phases, each phase containing W ∈ N+ episodes (except that the last phase

could have less than W episodes). At the beginning of each phase i, we start a new instance of Algorithm 14

(including gray parts) with a candidate value of Di ∈ J to be experimented in this phase. Since Algorithm 14

itself is a restart-based process, it further sub-divides the W episodes in phase i into
⌈
DiW
M

⌉
epochs. To

understand this value, suppose Di is an appropriate value for D, such that dividing the overall horizon into

Di epochs leads to near-optimal dynamic regret. Then, since the overall horizon contains M episodes while

each phase only contains W episodes, we should only divide each phase into
⌈
DiW
M

⌉
epochs to reflect the

corresponding consequence of choosing Di as the overall number of epochs. Since we restart Algorithm 14 in

each phase and Algorithm 14 in turn restarts an optimistic Q-learning sub-routine in each epoch, our overall

algorithm exhibits a double-loop restarting behavior, and hence the name Double-Restart Q-UCB.

In the following, we instantiate the choices of the set J , the phase length W , as well as the parameter

values used in the Exp3.P bandit algorithm. First, we define

W =
√
HT, J = ⌈lnW ⌉ , and J =

{⌊
T

SAH2W

⌋
,

⌊
TW

1
J

SAH2W

⌋
,

⌊
TW

2
J

SAH2W

⌋
, . . . ,

⌊
TW

SAH2W

⌋}
, (3.2)

72

where J is the set of candidate values for D and we can see that |J | = ⌈lnW ⌉+ 1 = J + 1. Each candidate

value in J is also called an “arm” in the language of bandits, and we use “arm j” to refer to the candidate value⌊
TW

j
J

SAH2W

⌋
for j = 0, 1, . . . , J . We initialize the weights of the bandit arms by s1(j) = exp

(
αγ
3

√
⌈M/W⌉
J+1

)
for

j = 0, 1, . . . , J , where as specified in [107],

α = 2
√
ln (⌈M/W ⌉ (J + 1)/δ), and γ = min

{
3

5
, 2

√
3

5

(J + 1) ln(J + 1)

⌈M/W ⌉

}
, (3.3)

for some failure probability δ > 0. At the beginning of each phase i ∈ {1, 2, . . . ,
⌈
M
W

⌉
}, we randomly draw an

arm j with probability pi(j) that is calculated from the weights

pi(j) = (1− γ) si(j)∑J
j′=0 si(j

′)
+

γ

J + 1
,∀j = 0, 1, . . . , J.

We set our estimated parameter Di to be the value associated with the selected arm j in the set J . We

then run Algorithm 14 for W episodes by setting the number of epochs to be D = Di. To put it in another

way, we execute a new instance of Algorithm 14 for
⌈
DiW
M

⌉
epochs, where each epoch contains Ki =

⌊
M
Di

⌋
episodes. We collect the cumulative reward Ri from the aforementioned W episodes. The normalized value

Ri/(WH) ∈ [0, 1] hence corresponds to the reward of playing the selected arm in time step i of the bandit

problem. Finally, we update the weights of the bandit arms based on the observed reward, using the following

update rule specified in the Exp3.P algorithm:

si+1(j)← si(j) exp

(
γ

3(J + 1)

(
R̂i(j) +

α

pi(j)
√

(J + 1) ⌈M/W ⌉

))
,

where R̂i(j) = RiI{j = Ai}/ (WHpi(j)) ,∀j = 0, 1, . . . , J , and Ai denotes the arm selected at phase i.

The following result states that our Double-Restart Q-UCB algorithm achieves a sublinear dynamic regret

in T , without requiring knowledge of the (total) variation budget ∆.

Theorem 12. (Freedman, no total budgets) For T greater than some polynomial of S,A,∆ and H, and for

any δ ∈ (0, 1), with probability at least 1− δ, the dynamic regret of Double-Restart Q-UCB with Freedman

bonuses and no prior knowledge of the total variation budget ∆ is bounded by Õ(S
1
3A

1
3∆

1
3HT

2
3 +H

3
4T

3
4),

where Õ(·) hides poly-logarithmic factors.

The regret bound in Theorem 12 consists of two terms: The first term is the dynamic regret of using

the optimal candidate value D† ∈ J of the number of epochs. This term is in the same order as the

known-variation case (Theorem 11), because we have discretized the candidate value set J at a proper

granularity such that the optimal candidate value D† ∈ J approximates the actual optimal value D⋆. The

second regret term in Theorem 12 is caused by the regret of learning the optimal candidate value inside

J using the Exp3.P algorithm. Due to the additional step of estimating the unknown variation budget,

the overall dynamic regret bound becomes slightly worse in terms of its dependence on T (from Õ(T
2
3) in

Theorem 11 to Õ(T
3
4)). Such a degradation seems unavoidable under the current framework as it has also

appeared in a similar bandit scenario [178].

Remark 5 (Comparison with [149]). We follow the Bandit-over-RL technique to utilize a separate bandit

algorithm to select the key parameters for our algorithm. But we have to emphasize that the resulting algorithm

73

is simpler and more practical for implementation. This is because our Double-Restart Q-UCB algorithm is

essentially running a stationary Q-UCB algorithm in between restarts. In contrast, the algorithm in [149])

relies on a carefully tuned sliding-window update schedule. More importantly, we point out that such a design

(together with our new analysis) can lead to an improved dynamic regret bound in terms of S and A (even

with the Hoeffding-style bonus terms similar to [149]). This exhibits the advantage of our design compared to

that of [149], which combines restart and sliding-window.

3.6 Lower Bounds

In this section, we provide information-theoretical lower bounds of the dynamic regret to characterize the

fundamental limits of any algorithm in non-stationary RL.

Theorem 13. For any algorithm, there exists an episodic non-stationary MDP such that the dynamic

regret of the algorithm is at least Ω(S
1
3A

1
3∆

1
3H

2
3T

2
3).

Proof sketch. The proof of our lower bound relies on the construction of a “hard instance” of non-stationary

MDPs. The instance we construct is essentially an MDP with piecewise constant dynamics on each segment of

the horizon, and its dynamics experience an abrupt change at the beginning of each new segment. Specifically,

we divide the horizon T into L segments2, where each segment has T0 :=
⌊
T
L

⌋
steps and contains M0 :=

⌊
M
L

⌋
episodes. Within each segment, the system dynamics of the MDP do not vary, and we construct the dynamics

for each segment in a way such that the instance is a hard instance of stationary MDPs on its own. The

MDP within each segment is essentially similar to the hard instances constructed in [60], [182]. Between two

consecutive segments, the dynamics of the MDP change abruptly, and we let the dynamics vary in a way

such that no information learned from previous interactions with the MDP can be used in the new segment.

In this sense, the agent needs to learn a new hard MDP in each segment. Finally, optimizing the value of L

and the variation magnitude between consecutive segments (subject to the constraints of the total variation

budget) leads to our lower bound.

Remark 6. We emphasize that in our construction of the worst-case non-stationary MDP, we only let

the state transition kernel vary over time but keep the reward functions fixed. By doing so, we are able to

provide a lower bound of order Ω(S
1
3A

1
3∆

1
3H

2
3T

2
3). Recall that the upper bound stated in Theorem 11 is

O(S
1
3A

1
3∆

1
3HT

2
3), and hence our upper and lower bounds match in terms of ∆ (= ∆r +∆p).

Remark 7 (Tightness of Our Results). For our setting, we conjecture that the lower bound can be improved.

Our current construction of the lower bound relies on a chain of H copies of “JAO MDPs” [96]. The

non-stationarity is achieved by changing the transitions abruptly after a fixed time period, and such a change

applies simultaneously across all H copies of JAO MDPs. One possible direction is to construct the lower

bound instances such that the state transition kernel is allowed to vary within the same episode, which we

have not taken advantage of. Including this extra ingredient into the construction could potentially lead to a

sharper lower bound, and we leave this as future work.

A useful side result of our proof is the following lower bound for non-stationary RL in the un-discounted

setting, which is the same setting as studied in [145], [144] and [22].

2The definition of segments is irrelevant to, and should not be confused with, the notion of epochs we previously defined.

74

0 1000 2000 3000 4000 5000
Episodes

0

1000

2000

3000

4000
Cu

m
ul

at
iv

e
Re

wa
rd

s
RestartQ-UCB
LSVI-UCB-Restart
Q-Learning UCB
Epsilon-Greedy

(a) Abrupt variations

0 1000 2000 3000 4000 5000
Episodes

0

500

1000

1500

2000

2500

3000

3500

Cu
m

ul
at

iv
e

Re
wa

rd
s

RestartQ-UCB
LSVI-UCB-Restart
Q-Learning UCB
Epsilon-Greedy

(b) Gradual variations

Algorithm Time per episode

RestartQ-UCB 0.102 ms

LSVI-UCB-Restart 57.65 ms

Q-Learning UCB 0.098 ms

Epsilon-Greedy 0.123 ms

(c) Time usage

Figure 3.2: Cumulative rewards of the four algorithms under (a) abrupt variations, and (b) gradual variations,
respectively, as well as their (c) time usage. Shaded areas denote the standard deviations of rewards. Note
that RestartQ-UCB significantly outperforms Q-Learning UCB and Epsilon-Greedy, and matches LSVI-UCB-
Restart while being much more time-efficient.

Proposition 1. Consider a reinforcement learning problem in un-discounted non-stationary MDPs with

horizon length T , total variation budget ∆, and maximum MDP diameter D [22]. For any learning algorithm,

there exists a non-stationary MDP such that the dynamic regret of the algorithm is at least Ω(S
1
3A

1
3∆

1
3D

2
3T

2
3).

3.7 Simulations

In this section, we empirically evaluate RestartQ-UCB on reinforcement learning tasks with various types of

non-stationarity.

We compare RestartQ-UCB with three baseline algorithms: LSVI-UCB-Restart [147], Q-Learning UCB,

and Epsilon-Greedy [183]. LSVI-UCB-Restart is a state-of-the-art non-stationary RL algorithm that combines

optimistic least-squares value iteration with periodic restarts. It is originally designed for non-stationary

RL in linear MDPs, but in our simulations we reduce it to the tabular case by setting the feature map to

be essentially an identity mapping, i.e., the feature dimension is set to be d = S ×A. Q-Learning UCB is

simply our RestartQ-UCB algorithm with no restart. It is a Q-learning based algorithm that uses upper

confidence bounds to guide the exploration. Epsilon-Greedy is also a Q-learning based algorithm with restarts.

Compared with RestartQ-UCB, Epsilon-Greedy does not employ a UCB-based bonus term to explicitly force

exploration. Instead, it takes the greedy action according to the estimated Q function with a high probability

1− ε, and explores an action from the action set uniformly at random with probability ε.

We evaluate the cumulative rewards of the four algorithms on a variant of a reinforcement learning task

named Bidirectional Diabolical Combination Lock [184], [185]. This task is designed to be particularly difficult

for exploration. At the beginning of each episode, the agent starts at a fixed state. According to its first

action, the agent transitions to one of the two paths, or “combination locks”, each of length H. Each path is

a chain of H states, where the state at the endpoint of each path gives a high reward. At each step on the

path, there is only one “correct” action that leads the agent to the next state on the path, while the other

A− 1 actions lead it to a sinking state that yields a small per-step reward of 1
8H ever since. Since we are

considering a non-deterministic MDP, each intended transition “succeeds” with probability 0.98; that is, even

if the agent takes the correct action at a certain step, there is still a 0.02 probability that it will end in the

sinking state. The agent obtains a 0 reward when taking a correct action and gets a 1
8H reward at the step

when it transitions to the sinking state. Finally, the endpoint state of one path gives a reward of 1, while

75

the other endpoint only gives a reward of 0.25. As argued in [184], the following properties make this task

especially challenging: First, it has sparse high rewards, and uniform exploration only has a A−H probability

of reaching a high reward endpoint. Second, it has dense low rewards, and a locally optimal policy will lead

to the sinking state quickly. Third, there is no indication which path has the globally optimal reward, and

the agent must remember to still visit the other one. Interested readers can refer to Section 5.1 of [184] for

detailed descriptions of the task.

We introduce two types of non-stationarity to the Bidirectional Diabolical Combination Lock task, namely

abrupt variations and gradual variations. For abrupt variations, we periodically switch the two high-reward

endpoints: One high-reward endpoint gives a reward of 1 at the beginning, and abruptly changes to a reward

of 0.25 after a certain number of episodes, and then switches back to the reward of 1 after the same number

of episodes. The other high-reward endpoint goes the other way around. For gradual changes, we gradually

vary the transition probability at the starting state: At the first episode, one action leads to the first path

with 0.98 probability, and to the second path with 0.02 probability. We linearly decrease its probability of

leading to the first path and increase its probability to the second path. As a result, at the last episode, this

action would lead to the first path with 0.02 probability, and to the second path with 0.98 probability instead.

The same is true for the other actions.

For simplicity, we use Hoeffding-based bonus terms in the simulations for RestartQ-UCB. We set M =

5000, H = 5, S = 10, and A = 2. For abrupt variations, we switch the two high-reward endpoints after every

1000 episodes. The hyper-parameters for each algorithm are optimized individually. For RestartQ-UCB,

LSVI-UCB-Restart, and Epsilon-Greedy, we restart the algorithms after every 1000 episodes both for abrupt

variations and gradual variations. This is the same frequency as the abrupt variation of the environment

(because the restart frequency is optimized as a hyper-parameter), although it turns out that other restart

frequencies lead to very similar results. For Epsilon-Greedy, we set the exploration probability to be ε = 0.05.

All results are averaged over 30 runs on a laptop with an Intel Core i5-9300H CPU and 16 GB memory.

The cumulative rewards of the four algorithms in the abruptly-changing and gradually-changing envi-

ronments are shown in Figures 3.2(a) and 3.2(b), respectively. As we can see, RestartQ-UCB outperforms

Q-Learning UCB and Epsilon-Greedy under both types of environment variations. For the abruptly-changing

environment as an example, RestartQ-UCB achieves 1.36 and 2.52 times of the cumulative rewards of

Q-Learning UCB and Epsilon-Greedy, respectively. This demonstrates the importance of both addressing

the environment variations (using restarts) and actively exploring the environment (using UCB-based bonus

terms) in non-stationary RL. LSVI-UCB-Restart nearly matches the performance of RestartQ-UCB, which

is unsurprising because both of them use the restarting strategy and optimistic exploration. Nevertheless,

LSVI-UCB-Restart requires a higher time and space complexity. It needs to store all the history information

in one epoch and solve a regularized least-squares minimization problem at every time step. This is indeed

evidenced by our simulation results (shown in Figure 3.2(c)) that RestartQ-UCB only takes 0.18% of the

computation time of LSVI-UCB-Restart.

Remark 8. The heavy computation in LSVI-UCB-Restart mostly comes from the usage of a high-dimensional

feature. In our simulations, we followed Example 2.1 in [164] to convert a linear MDP algorithm to a tabular

one, which results in a feature dimension of d = S ×A. This is essentially the most efficient feature encoding

when no special structure is imposed on the tabular MDP. We believe that designing low-dimensional features

for specific MDP instances can possibly reduce the computations for LSVI-UCB-Restart by a large amount,

and is an interesting future direction for learning in linear MDPs per se.

76

3.8 Application to Multi-Agent RL

In this section, we discuss an application of our non-stationary RL method to multi-agent RL in episodic

stochastic games [7], which by nature leads to a non-stationary RL problem from each agent’s perspective.

3.8.1 Problem Setup

In general, an N -player episodic stochastic game is defined by a tuple (N , H,S, {A(i)}Ni=1, {r(i)}Ni=1, P), where

(1) N = {1, 2, . . . , N} is the set of agents; (2) H ∈ N+ is the number of time steps in each episode; (3) S is

the finite state space; (4) A(i) is the finite action space for agent i ∈ N ; (5) r
(i)
h : S ×A → [0, 1] is the reward

function at step h ∈ [H] for agent i ∈ N , where A = ×Ni=1A(i); and (6) Ph : S ×A → ∆(S) is the transition

kernel at step h ∈ [H], where the next state depends on the current state and the joint actions of all the

agents. The game lasts for M episodes, and we let T = MH be the total number of time steps. At each

time step (m,h), the agents observe the state smh ∈ S, and take actions a
(i),m
h ∈ A(i), i ∈ N simultaneously.3

We let amh = (a
(1),m
h , . . . , a

(N),m
h). Agent i receives a reward with an expected value of r

(i)
h (smh , a

m
h), and the

environment transitions to the next state smh+1 ∼ Ph(·|smh , amh). For each agent i, a policy is a mapping from

the time index and state space to (possibly a distribution over) the action space. We denote the set of policies

for agent i by Π(i) = {π(i) : [M]× [H]×S → ∆(A(i))}. The set of joint policies are denoted by Π = ×Ni=1Π
(i).

Each agent seeks to find a policy that maximizes its own reward.

For notational convenience, and without much loss of conceptual generality, we consider two-player games,

i.e., N = 2. For ease of notations, we consider the problem where we can control the policy of agent 1,

while agent 2 is an opponent that is adapting its own policy in an unknown way. Since the two agents play

symmetric roles in the problem we study (to be specified later), such a notational simplification is also without

loss of generality. Achieving sublinear regret in the face of an arbitrarily changing opponent is known to be

computationally hard [152]. Therefore, existing works [152], [153] often focus on a setting where the opponent

is only “slowly changing” its policy over time. One such example is when the opponent is using a relatively

stable learning algorithm. We also focus on the decentralized setting4, where an agent cannot observe the

actions and rewards of the other agent. This is generally considered to be a more practical multi-agent RL

paradigm, and also more challenging than those that we will compare with in the literature [152], [153].

A joint policy induces a probability measure on the sequence of states and joint actions. For a joint policy

π = (π(1), π(2)) ∈ Π, and for each time step (m,h) ∈ [M]× [H], state s ∈ S, we define the state value function
for agent 1 as follows:

V m,πh (s) := E

[
H∑

h′=h

r(1)
(
sh′ , π

(1),m
h′ (sh′) , π

(2),m
h′ (sh′)

)
| sh = s

]
.

For a joint policy (π(1), π(2)), we again evaluate the optimality of agent 1’s policy π(1) in terms of its dynamic

regret, which compares the agent’s policy with the optimal policy of each individual episode in hindsight:

Rπ(2)

(π(1),M) :=

M∑
m=1

(
sup
π(1)⋆

V
m,(π(1)⋆,π(2))
1 (sm1)− V m,(π

(1),π(2))
1 (sm1)

)
.

3Note that we use superscripts in parentheses to index the agents, while a superscript with no parenthesis denotes the index
of an episode.

4This setting has been studied under various names in the literature, including individual learning [51], decentralized
learning [52], [186], online agnostic learning [53], and independent learning [55]. It is also related to the broader category of
teams and games with decentralized information structure [56]–[58].

77

The initial state of each episode sm1 is again chosen by an oblivious adversary.

3.8.2 Regret Against a Slowly-Changing Opponent

We model the slowly-changing behavior of agent 2 by requiring it to have a low switching cost [165], [187].

This is a standard notion in the literature to measure the changing behavior of an RL algorithm. We consider

the following definition of the (local) switching cost from [165].

Definition 7. The switching cost between any pair of policies (π, π′) is the number of (h, s) pairs on which π

and π′ act differently:

nswitch(π, π
′) := |{(h, s) ∈ [H]× S : πh(s) ̸= π′

h(s)}| .

For a policy trajectory (π1, . . . , πM) across M episodes, its switching cost is defined as Nswitch :=
∑M
m=1

nswitch(π
m, πm+1).

[165] develops a learning algorithm that achieves a switching cost of O(SAH3 log T), while [61] improves

the switching cost to O(SAH2 log T). For the sake of generality, we characterize the behavior of agent 2 by

assuming that the switching cost of its policy trajectory is upper bounded by O(T β) for some 0 < β < 1.

Clearly, the two state-of-the-art RL algorithms mentioned above satisfy this upper bound. A direct application

of RestartQ-UCB leads to the following result for agent 1:

Theorem 14. Suppose that the switching cost of agent 2 satisfies Nswitch = O(T β) for 0 < β < 1. Let agent

1 run the RestartQ-UCB (Hoeffding/Freedman) algorithm. For T large enough, the dynamic regret of agent 1

is upper bounded by Õ(T
β+2
3).

3.8.3 Learning Team-Optimality

Theorem 14 can be readily applied to learning team-optimal policies in “smooth games”, which is the setting

considered in [152]. This corresponds to the setting where a team of agents learn to collaborate. Before we

present our results, a few definitions are in order.

Definition 8. A two-player stochastic game is called a stochastic team (or simply a team) if there exists a

reward function rh : S ×A → [0, 1] such that r
(i)
h = rh,∀i ∈ {1, 2}, h ∈ [H].

Definition 9. In a two-player team, a joint policy π⋆ = (π(1)⋆, π(2)⋆) ∈ Π is called team-optimal if

V
(π(1)⋆,π(2)⋆)
h (s) = sup

π(1),π(2)

V
(π(1),π(2))
h (s),∀s ∈ S, h ∈ [H],

where V
(π(1),π(2))
h (s) := E[

∑H
h′=h rh′(sh′ , π

(1)
h′ (sh′) , π

(2)
h′ (sh′)) | sh = s] is the value function.

In a stochastic team, the agents share the same objective, and aim to maximize the accumulated reward

for the team. Team optimality is achieved when the joint policy of the agents induces the highest possible

accumulated reward.

Since we cannot control the behavior of agent 2, its behavior might be sub-optimal and drive us away

from team-optimality. To avoid such scenarios, we impose a structural assumption that allows us to quantify

the distance from optimality. In particular, we assume that the team is (λ, µ)-smooth, following the definition

in [152].

78

Definition 10. (Adapted from Definition 1 in [152]) A two-player stochastic team is (λ, µ)-smooth if there

exists a pair of policies (π(1)⋆, π(2)⋆) such that for every policy pair (π(1), π(2)) and every h ∈ [H], s ∈ S:

V
(π(1)⋆,π(2)⋆)
h (s) ≥ V (π(1),π(2))

h (s),

V
(π(1)⋆,π(2))
h (s) ≥ λ · V (π(1)⋆,π(2)⋆)

h (s)− µ · V (π(1),π(2))(s).

The (λ, µ)-smoothness ensures that agent 2’s sub-optimal behavior only has a bounded negative impact on

the joint value. Our definition of smoothness is adapted from [152], where the infinite-horizon average-reward

setting is considered. We adapt it to the finite-horizon case. This notion of smoothness is motivated by the

definition of smooth games in [115], [188], as stated in [152].

Applying our RestartQ-UCB algorithm for agent 1 would lead to the following theorem, which implies

that the time-average return of the agents converges to a λ
1+µ factor of the team-optimal value as T grows.

This is the same factor as has been achieved in [152].

Theorem 15. Let π(2) denote the policy of agent 2, and suppose that the switching cost of agent 2 satisfies

Nswitch = O(T β) for 0 < β < 1. Assume that the team problem is (λ, µ)-smooth. Let agent 1 run the

RestartQ-UCB algorithm, and let π(1) denote its induced policy. For T large enough, the return of the

algorithm is lower bounded by:

M∑
m=1

V
(π(1),π(2))
1 (sm1) ≥ λ

1 + µ

[
M∑
m=1

V
(π(1)⋆,π(2)⋆)
1 (sm1)− Õ(T

β+2
3)

]
.

Proof. We first show that when the switching cost of agent 2 satisfies Nswitch = O(T β) for 0 < β < 1, the

dynamic regret of agent 1 is upper bounded by Õ(T
β+2
3). To see this, notice that from the perspective of

agent 1, the environment is non-stationary due to the fact that agent 2 is changing its policy over time. Since

the switching cost of agent 2 is upper bounded by O(T β), by the definitions of ∆r and ∆p in Section 3.2,

we know that the variation of the environment from the perspective of agent 1 is upper bounded by O(T β).

Substituting the value of ∆ with O(T β) in Theorem 10 or Theorem 11 leads to the desired result.

From the (λ, µ)-smoothness of the MDP, it follows that

λ · V (π(1)⋆,π(2)⋆)
h (s)− µ · V (π(1),π(2))

h (s) ≤ V (π(1)⋆,π(2))
h (s),∀s ∈ S, h ∈ [H].

Therefore, it holds that

M∑
m=1

(
λ · V (π(1)⋆,π(2)⋆)

1 (sm1)− (1 + µ) · V (π(1),π(2))
1 (sm1)

)
≤

M∑
m=1

(
V

(π(1)⋆,π(2))
1 (sm1)− V (π(1),π(2))

1 (sm1)
)

≤
M∑
m=1

(
sup
π(1)⋆

V
(π(1)⋆,π(2))
1 (sm1)− V (π(1),π(2))

1 (sm1)

)
=Rπ(2)

(π(1),M) = Õ(T
β+2
3),

where the last step follows from the Õ(T
β+2
3) dynamic regret bound of agent 1, as we discussed above.

Rearranging the terms leads to the desired result.

79

Remark 9. (Comparison with [152] and [153].) It might first appear to the reader that our regret guarantee is

weaker than the bounds of O(Tmax{1− 3
7α,

1
4}) and O(Tmax{1− 3

2α,0}) given in [152] and [153], respectively, where

α can be essentially translated5 to 1− β. However, we would like to emphasize that our setting significantly

generalizes the other two works and is inherently more challenging due to the following facts: First, we are

considering a learning problem where the transition and reward functions are unknown; the other two works

essentially consider planning with a known MDP model. Second, we are using the more challenging dynamic

regret as a measure of optimality, while the other two use the static regret. Third, we study decentralized

learning, where the agents cannot observe the actions and rewards of each other; the algorithms proposed in

the other two works critically rely on the observation of one agent on the other agent’s policies.

Remark 10. (Significance of model-freeness.) Decentralized multi-agent RL is generally only possible with

model-free approaches (see, e.g., [52], [53], [55]); model-based methods proceed by explicitly estimating the

transition and reward functions, which crucially relies on observing the other agents’ actions. This further

demonstrates the flexibility and significance of model-free methods, when one addresses the non-stationarity

issues in multi-agent RL through the lens of non-stationary RL.

3.9 Application to Inventory Control Across Related Products

In this section, we discuss the application of our non-stationary RL algorithm to the problem of inventory

control across related products. Different from conventional inventory control problems (e.g., [136]) that only

consider one product, we investigate the case where a sequence of related products are being sold, and the

products share similar but different demand distributions. This is motivated by the sequential launch of

related products (e.g., the line of iPhone) that allows us to leverage experience from past products to inform

inventory management for future ones. Following [149], [189] (who only consider a single product being sold),

we focus on the setting of zero lead time, fixed cost, and lost sales.

3.9.1 Problem Setup

The inventory control problem has M episodes, representing M different but related products. Each

episode/product lasts for H time steps.6 For each time step h ∈ [H] of an episode m ∈ [M], the following

sequence of events happens in order:

1. The seller observes her stock level smh ≥ 0 for product m at the beginning of time step h, and decides

on the quantity amh ≥ 0 to order.

2. If amh > 0, the order arrives immediately, and the seller’s stock level becomes smh + amh . The seller pays

a fixed cost f and a c per-unit ordering cost.

3. The random demand Xm
h is realized. The seller only observes the actual sales quantity, or censored

demand Y mh = min{Xm
h , s

m
h + amh }. She will not know the actual demand if Xm

h ≥ smh + amh . Following

prior works [22], [184] and [189], we assume that the demands Xm
h are independent random variables

over m, but they do not necessarily follow identical distributions since we consider different products

across the episodes.

5The other two works model the slowly-changing behavior of agent 2 using the small “policy change magnitude” criterion.
Our setting is in this sense not completely comparable with theirs.

6We assume for simplicity that the life cycle of each product is of the same length.

80

4. All unfulfilled demands are permanently lost and incur a per-unit lost sales cost p. Excess inventory

incurs a per-unit holding cost q. The total cost at step h can be expressed as

Cmh (smh , a
m
h) = f · I[amh > 0] + c · amh + p · [Xm

h − smh − amh]
+
+ q · [smh + amh −Xm

h]
+
.

5. The inventory carried over to the next step h+ 1 is smh+1 = [smh + amh −Xm
h]+.

Following [149], [189], we assume that the seller has a finite storage capacity S, in the sense that she can

hold at most S − 1 units of inventory at any time. The seller’s objective is to minimize her cumulative cost∑M
m=1

∑H
h=1 C

m
h (smh , a

m
h). At the end of each episode, as a product is reaching the end of its life cycle, we

assume for simplicity that the storage is emptied at no cost. Such an inventory control problem can be easily

formulated as an instance of the non-stationary RL model that we defined in Section 3.2. Concretely, we

treat the stock level smh at the beginning of each time step as the state of the environment, and regard the

order quantity amh as the action at the corresponding time step. Consequently, we define the state space of

the problem as S = {0, 1, . . . , S − 1}, and the state-dependent action space as As = {0, 1, . . . , S − 1 − s}.
One can verify that Algorithm 14 and its analysis easily generalize to state-dependent action spaces.

The reward function of the non-stationary MDP is defined as Rmh (smh , a
m
h) = −Cmh (smh , a

m
h), and we let

rmh (smh , a
m
h) = E[Rmh (smh , amh)] be the expected value of the reward. For any smh , s

m
h+1 ∈ S and amh ∈ As, we

define the state transition function as

Pmh (smh+1 | smh , amh) = P
(
smh + amh −min{smh + amh , X

m
h } = smh+1

)
.

Our definitions of the policy π, the value function V m,πh , the state-action value function Qm,πh , as well as the

optimal policy π⋆ and its corresponding value functions V m,⋆h , Qm,⋆h directly carry over from Section 3.2 to

this problem instance, and we do not repeat such definitions here for simplicity. The variation budget ∆

is also defined in the same way as in Section 3.2, which captures the differences in the products’ demand

distributions for this problem. The dynamic regret of the agent’s policy is defined analogously as

R(π,M) =

M∑
m=1

(
V m,⋆1 (sm1)− V m,π1 (sm1)

)
.

3.9.2 Implementation of RestartQ-UCB

Notably, one major difference between the inventory control problem we considered in Section 3.9.1 and

our non-stationary MDP formulation in Section 3.2 is that due to demand censoring, the seller cannot

calculate the actual cost Cmh (smh , a
m
h), and hence the immediate reward Rmh (smh , a

m
h) is also not observable.

Nevertheless, we will show that one can bypass such an issue by using a pseudo-reward technique, which

was originally introduced for a stationary problem [21]. Specifically, for every time step h ∈ [H] in episode

m ∈ [M], and for every state s ∈ S and action a ∈ As, we define the pseudo-reward as

Rm,pseudoh (s, a) := Rmh (s, a) + p ·Xm
h = −f · I[a > 0]− c · a− q · [s+ a− Y mh]+ + p · Y mh ,

where we recall that the censored demand Y mh = min{Xm
h , s+ a} is perfectly observable. Similarly, we can

also define the mean pseudo-reward as

rm,pseudoh (s, a) := E[Rm,pseudoh (s, a)] = E[Rmh (s, a) + p ·Xm
h] = rmh (s, a) + p · E[Xm

h].

81

Therefore, the mean pseudo-reward can be considered as shifting the mean reward function uniformly by an

amount of p·E[Xm
h]. Without loss of generality, we normalize the pseudo-reward to the range [0, 1]. We use the

tupleM =
{
S,A, H, {Pmh }m∈[M],h∈[H], {rmh }m∈[M],h∈[H]

}
to denote the non-stationary MDP with respect

to the original reward function, and letMpseudo =
{
S,A, H, {Pmh }m∈[M],h∈[H], {rm,pseudoh }m∈[M],h∈[H]

}
be

the one corresponding to the pseudo-reward. We further define π⋆,pseudo to be the (episode-wise) optimal

policy for Mpseudo, and let V m,⋆,pseudoh and Qm,⋆,pseudoh , respectively, be the corresponding value function

and state-action value function.

Since only the pseudo-reward is observable, we can only apply our RestartQ-UCB algorithm toMpseudo

rather than M. A natural question, then, is whether we can generalize the performance guarantee from

Mpseudo to M. Interestingly, the following result (adapted from [21]) shows that, for any (possibly non-

Markovian) policy π induced by Algorithm 14, the dynamic regret onMpseudo andM are equal.

Lemma 23. (Adapted from Lemma 3.1 in [21]). Let Fmh be the set of all historical information collected

up to the beginning of time step h of episode m. Let π be the (possibly non-Markovian) policy induced by

Algorithm 14, such that πmh (smh ,Fmh) maps the state and history to a distribution over the action space. Then,

π incurs the same dynamic regret onM andMpseudo:

M∑
m=1

(
V m,⋆1 (sm1)− V m,π1 (sm1)

)
=

M∑
m=1

(
V m,⋆,pseudo1 (sm1)− V m,π,pseudo1 (sm1)

)
.

Proof. First, we show that

M∑
m=1

(
V m,⋆1 (sm1)− V m,⋆,pseudo1 (sm1)

)
= −

M∑
m=1

H∑
h=1

p · E[Xm
h]. (3.4)

Recall that the pseudo-reward is constructed by uniformly shifting the reward function by an amount of

p · E[Xm
h]. Since the difference between the reward and the pseudo-reward does not depend on the action

taken, for any realization of the demands {Xm
h }m∈[M],h∈[H], the optimal policies π⋆ and π⋆,pseudo induce

the same distribution over the action space, which in turn leads to the same distribution over state-action

trajectories. We can hence conclude that (3.4) holds.

Similarly, one can show by induction that for any realization of the demands {Xm
h }m∈[M],h∈[H], Al-

gorithm 14 also induces the same distribution of action sequences on M and Mpseudo. This leads us

to
M∑
m=1

(
V m,π1 (sm1)− V m,π,pseudo1 (sm1)

)
= −

M∑
m=1

H∑
h=1

p · E[Xm
h]. (3.5)

Combining (3.4) and (3.5) yields the desired result.

Together with Theorem 9, we obtain the following dynamic regret bound for running Algorithm 14 on the

inventory control problem across related products.

Theorem 16. For T = Ω(SA∆H2), and for any δ ∈ (0, 1), with probability at least 1− δ, the dynamic regret

of running Algorithm 14 on the inventory control problem formulated in Section 3.9.1 with pseudo-rewards

and Freedman bonuses is bounded by Õ(S
1
3A

1
3∆

1
3HT

2
3), where Õ(·) hides poly-logarithmic factors of S,A, T

and 1/δ.

Remark 11 (Comparison with [22]). Although both our work and [22] consider applications in inventory

control and utilizes techniques from [21], the foci are quite different. In [22], the authors only study single

82

product inventory, whereas in contrast, our work studies the setting where there is a sequence of related, but

different products.

Specifically, in [22], variation budget has been defined with respect to demand changes within a single

product selling horizon, and the corresponding regret upper bound scales with this budget, whereas in ours no

constraint has been put to limit the demand changes within a single product’s selling horizon (an episode),

and the variation budget captures the difference across products. This is similar to a meta/transfer learning

setting where the goal is to leverage data obtained from inventory learning for similar products to accelerate

inventory learning for the new product.

Moreover, as discussed in Section 3.1, a direct application of the results in [22] to this setting may lead to

a worse regret upper bound.

Remark 12. Our results can be extended to a multi-product inventory control problem with a warehouse-

capacity constraint, similar to the setting studied in [190]. Specifically, we have an episodic setting with n

products and M episodes, where each episode lasts for H time steps. For each time step h ∈ [H] of an episode

m ∈ [M], a demand is specified for every product i ∈ [n]. In our non-stationary formulation, the demands

need not follow identical distributions over time. An overall warehouse capacity constraint is also imposed on

the total number of products simultaneously in the inventory. At each time step, the seller observes the stock

level and decides on the quantity to order for each product at a certain per-unit ordering cost. Unfulfilled

demands are permanently lost and incur a per-unit lost sales cost. Excess inventory also incurs a per-unit

holding cost. The seller’s objective is to minimize the cumulative cost. Such a multi-product problem can also

be cast as an MDP, where we define the stock levels of all products to be the state of the environment, and

define the joint ordering quantity across all products as the action of each step. We also let the action space

be state-dependent to handle the joint capacity constraint; in particular, an action is considered invalid at a

certain state if the corresponding ordering quantity causes the stock levels to exceed the warehouse capacity.

Applying Algorithm 14 to such a non-stationary multi-product problem leads to the same dynamic regret

bound as in Theorem 16, though the state space should now be interpreted as the possible combinations of

stock levels across all products that do not exceed the warehouse capacity, which is significantly larger than

the single-product case. The same is true for the action space. A final remark is that the multi-product

formulation above does not consider upgrading [191], the situation where a high-quality product is used to

serve the demand of a lower-quality one that has been sold out. Upgrading adds an additional element of

difficulty to the decision-making process, as the seller now needs to consider the ordering and upgrading

decisions jointly. We leave the treatment of such a more intricate scenario to our future work.

3.10 Proofs of the Technical Lemmas

3.10.1 Proof of Lemma 20

Proof. For each d ∈ [D], define ∆
(d)
r to be the local variation of the mean reward function within epoch d. By

definition, we have
∑D
d=1 ∆

(d)
r ≤ ∆r. Further, for each d ∈ [D] and h ∈ [H], define ∆

(d)
r,h to be the variation

of the mean reward at step h in epoch d, i.e.,

∆
(d)
r,h :=

min{dK,M}−1∑
m=(d−1)K+1

sup
s,a

∣∣rmh (s, a)− rm+1
h (s, a)

∣∣ .

83

It also holds that
∑H
h=1 ∆

(d)
r,h = ∆

(d)
r by definition. Define ∆

(d)
p and ∆

(d)
p,h analogously.

In the following, we will prove a stronger statement:
∣∣∣Qk1,⋆h (s, a)−Qk2,⋆h (s, a)

∣∣∣ ≤∑H
h′=h∆

(1)
r,h′+H

∑H
h′=h∆

(1)
p,h′ ,

which implies the statement of the lemma because
∑H
h′=h∆

(1)
r,h′ ≤ ∆

(1)
r and

∑H
h′=h∆

(1)
p,h′ ≤ ∆

(1)
p by definition.

Our proof relies on backward induction on h. First, the statement holds for h = H because for any (s, a), by

definition

∣∣∣Qk1,⋆H (s, a)−Qk2,⋆H (s, a)
∣∣∣ = ∣∣∣rk1H (s, a)− rk2H (s, a)

∣∣∣ ≤ k2−1∑
k=k1

∣∣rk+1
H (s, a)− rkH(s, a)

∣∣
≤
K−1∑
k=1

∣∣rk+1
H (s, a)− rkH(s, a)

∣∣ ≤ ∆
(1)
r,H , (3.6)

where we have used the triangle inequality. Now suppose the statement holds for h + 1; by the Bellman

optimality equation,

Qk1,⋆h (s, a)−Qk2,⋆h (s, a)

=P k1h V k1,⋆h+1 (s, a)− P k2h V k2,⋆h+1 (s, a) + rk1h (s, a)− rk2h (s, a)

≤P k1h V k1,⋆h+1 (s, a)− P k2h V k2,⋆h+1 (s, a) + ∆
(1)
r,h (3.7)

=
∑
s′∈S

P k1h (s′ | s, a)V k1,⋆h+1 (s
′)−

∑
s′∈S

P k2h (s′ | s, a)V k2,⋆h+1 (s
′) + ∆

(1)
r,h

=
∑
s′∈S

(
P k1h (s′ | s, a)Qk1,⋆h+1(s

′, πk1,⋆h+1(s
′))− P k2h (s′ | s, a)Qk2,⋆h+1(s

′, πk2,⋆h+1(s
′))
)
+∆

(1)
r,h, (3.8)

where inequality (3.7) holds due to a similar reasoning as in (3.6), and in (3.8) πk1,⋆ and πk2,⋆ denote the

optimal policy in episodes k1 and k2, respectively. Then by our induction hypothesis on h+ 1, for any s′ ∈ S,

Qk1,⋆h+1(s
′, πk1,⋆h+1(s

′)) ≤Qk2,⋆h+1(s
′, πk1,⋆h+1(s

′)) +

H∑
h′=h+1

∆
(1)
r,h′ +H

H∑
h′=h+1

∆
(1)
p,h′

≤Qk2,⋆h+1(s
′, πk2,⋆h+1(s

′)) +

H∑
h′=h+1

∆
(1)
r,h′ +H

H∑
h′=h+1

∆
(1)
p,h′ , (3.9)

where inequality (3.9) is due to the optimality of the policy πk2,⋆ in episode k2 over πk1,⋆. Then,

Qk1,⋆h (s, a)−Qk2,⋆h (s, a)

≤
∑
s′∈S

(P k1h (s′ | s, a)− P k2h (s′ | s, a))Qk2,⋆h+1(s
′, πk2,⋆h+1(s

′)) +

H∑
h′=h

∆
(1)
r,h′ +H

H∑
h′=h+1

∆
(1)
p,h′

≤
∥∥∥P k1h (·|s, a)− P k2h (·|s, a)

∥∥∥
1

∥∥∥Qk2,⋆h+1(·, π
k2,⋆
h+1(·))

∥∥∥
∞

+

H∑
h′=h

∆
(1)
r,h′ +H

H∑
h′=h+1

∆
(1)
p,h′ (3.10)

≤∆(1)
p,h(H − h) +

H∑
h′=h

∆
(1)
r,h′ +H

H∑
h′=h+1

∆
(1)
p,h′ (3.11)

≤
H∑

h′=h

∆
(1)
r,h′ +H

H∑
h′=h

∆
(1)
p,h′ ,

84

where (3.10) is by Hölder’s inequality, and (3.11) is by the definition of ∆
(1)
p,h and by the definition of optimal Q-

values that Qk2,⋆h+1(s, a) ≤ H−h,∀(s, a) ∈ S×A. Repeating a similar process gives us Qk2,⋆h (s, a)−Qk1,⋆h (s, a) ≤∑H
h′=h∆

(1)
r,h′ +H

∑H
h′=h∆

(1)
p,h′ . This completes our proof.

3.10.2 Proof of Lemma 21

Proof. It should be clear from the way we update Qh(s, a) that Qkh(s, a) is monotonically decreasing in

k. We now prove Qk,⋆h (s, a) ≤ Qk+1
h (s, a) for all s, a, h, k by induction on k. First, it holds for k = 1 by

our initialization of Qh(s, a). For k ≥ 2, now suppose Qj,⋆h (s, a) ≤ Qj+1
h (s, a) ≤ Qjh(s, a) for all s, a, h and

1 ≤ j ≤ k. For a fixed triple (s, a, h), we consider the following two cases.

Case 1: Qh(s, a) is updated in episode k. Then with probability at least 1− 2δ,

Qk+1
h (s, a) =

řh(s, a)

Ňk
h (s, a)

+
v̌h(s, a)

Ňk
h (s, a)

+ bkh + 2b∆

≥ řh(s, a)
ň

+
1

ň

ň∑
i=1

V ľi,⋆h+1(s
ľi
h+1) +

√
H2

ň
ι+

√
ι

ň
+ 2b∆ (3.12)

≥ řh(s, a)
ň

+
1

ň

ň∑
i=1

P ľih V
ľi,⋆
h+1(s, a) +

√
ι

ň
+ 2b∆ (3.13)

=
řh(s, a)

ň
+

1

ň

ň∑
i=1

(
Qľi,⋆h (s, a)− rľih (s, a)

)
+

√
ι

ň
+ 2b∆ (3.14)

≥Qk,⋆h (s, a) + b∆. (3.15)

Inequality (3.12) is by the induction hypothesis that Qľih+1(s
ľi
h+1, a) ≥ Qľi,⋆h+1(s

ľi
h+1, a),∀a ∈ A, and hence

V ľih+1(s
ľi
h+1) ≥ V

ľi,⋆
h+1(s

ľi
h+1). Inequality (3.13) follows from the Azuma-Hoeffding inequality. (3.14) uses the Bell-

man optimality equation. Inequality (3.15) is by the Hoeffding’s inequality that 1
ň

(∑ň
i=1 r

ľi
h (s, a)− řh(s, a)

)
≤√

ι
ň with high probability, and by Lemma 20 that Qľi,⋆h (s, a)+b∆ ≥ Qk,⋆h (s, a). According to the monotonicity

of Qkh(s, a), we know that Qk,⋆h (s, a) ≤ Qk+1
h (s, a) ≤ Qkh(s, a). In fact, we have proved the stronger statement

Qk+1
h (s, a) ≥ Qk,⋆h (s, a) + b∆ that will be useful in Case 2 below.

Case 2: Qh(s, a) is not updated in episode k. Then there are two possibilities:

1. If Qh(s, a) has never been updated from episode 1 to episode k: It is easy to see that Qk+1
h (s, a) =

Qkh(s, a) = · · · = Q1
h(s, a) = H − h+ 1 ≥ Qk,⋆h (s, a) holds.

2. If Qh(s, a) has been updated at least once from episode 1 to episode k: Let j be the index of the latest

episode that Qh(s, a) was updated. Then, from our induction hypothesis and Case 1, we know that

Qj+1
h (s, a) ≥ Qj,⋆h (s, a) + b∆. Since Qh(s, a) has not been updated from episode j + 1 to episode k,

we know that Qk+1
h (s, a) = Qkh(s, a) = · · · = Qj+1

h (s, a) ≥ Qj,⋆h (s, a) + b∆ ≥ Qk,⋆h (s, a), where the last

inequality holds because of Lemma 20.

A union bound over all time steps completes our proof.

3.10.3 Proof of Lemma 22

Proof. This proof follows a similar structure as the proof of Lemma 21. It should be clear from the way we

update Qh(s, a) that Q
k
h(s, a) is monotonically decreasing in k. We now prove Qk,⋆h (s, a)− 2(H − h+ 1)b∆ ≤

85

Qk+1
h (s, a) for all s, a, h, k by induction on k. First, it holds for k = 1 by our initialization of Qh(s, a). For

k ≥ 2, now suppose that Qj,⋆h (s, a) − 2(H − h+ 1)b∆ ≤ Qj+1
h (s, a) ≤ Qjh(s, a) for all s, a, h and 1 ≤ j ≤ k.

For a fixed triple (s, a, h), we consider the following two cases.

Case 1: Qh(s, a) is updated in episode k. Then, with probability at least 1− 2δ,

Qk+1
h (s, a) =

řh(s, a)

Ňk
h (s, a)

+
v̌h(s, a)

Ňk
h (s, a)

+ bkh

≥ řh(s, a)
ň

+
1

ň

ň∑
i=1

V ľi,⋆h+1(s
ľi
h+1)− 2(H − h)b∆ +

√
H2

ň
ι+

√
ι

ň
(3.16)

≥ řh(s, a)
ň

+
1

ň

ň∑
i=1

P ľih V
ľi,⋆
h+1(s, a) +

√
ι

ň
− 2(H − h)b∆ (3.17)

=
řh(s, a)

ň
+

1

ň

ň∑
i=1

(
Qľi,⋆h (s, a)− rľih (s, a)

)
+

√
ι

ň
− 2(H − h)b∆ (3.18)

≥Qk,⋆h (s, a)− b∆ − 2(H − h)b∆. (3.19)

Inequality (3.16) is by the induction hypothesis that Qľih+1(s
ľi
h+1, a) ≥ Q

ľi,⋆
h+1(s

ľi
h+1, a)− 2(H − h)b∆,∀a ∈ A,

and hence V ľih+1(s
ľi
h+1) ≥ V ľi,⋆h+1(s

ľi
h+1) − 2(H − h)b∆. Inequality (3.17) follows from the Azuma-Hoeffding

inequality. (3.18) uses the Bellman optimality equation. Inequality (3.19) is by the Hoeffding’s inequality that
1
ň

(∑ň
i=1 r

ľi
h (s, a)− řh(s, a)

)
≤
√

ι
ň with high probability, and by Lemma 20 that Qľi,⋆h (s, a) ≥ Qk,⋆h (s, a)−b∆.

According to the monotonicity of Qkh(s, a), we know that Qk,⋆h (s, a)−2(H−h+1)b∆ ≤ Qk+1
h (s, a) ≤ Qkh(s, a).

In fact, we have proved the stronger statement Qk+1
h (s, a) ≥ Qk,⋆h (s, a)− b∆ − 2(H − h)b∆ that will be useful

in Case 2 below.

Case 2: Qh(s, a) is not updated in episode k. Then there are two possibilities:

1. If Qh(s, a) has never been updated from episode 1 to episode k: It is easy to see that Qk+1
h (s, a) =

Qkh(s, a) = · · · = Q1
h(s, a) = H − h+ 1 ≥ Qk,⋆h (s, a)− 2(H − h+ 1)b∆ holds.

2. If Qh(s, a) has been updated at least once from episode 1 to episode k: Let j be the index of the latest

episode that Qh(s, a) was updated. Then, from our induction hypothesis and Case 1, we know that

Qj+1
h (s, a) ≥ Qj,⋆h (s, a)− b∆ − 2(H − h)b∆. Since Qh(s, a) has not been updated from episode j + 1 to

episode k, we know that Qk+1
h (s, a) = Qkh(s, a) = · · · = Qj+1

h (s, a) ≥ Qj,⋆h (s, a) − b∆ − 2(H − h)b∆ ≥
Qk,⋆h (s, a)− 2(H − h+ 1)b∆, where the last inequality holds because of Lemma 20.

A union bound over all time steps completes our proof.

3.10.4 Proof of Proposition 2

In the following, we will bound each term in Λkh+1 separately in a series of lemmas.

Lemma 24. With probability 1, we have that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1(3bkh + 5b∆) ≤ O(

√
SAKH5ι+KH∆(1)

r +KH2∆(1)
p).

Proof. First, by the definition of b∆, it is easy to see that
∑H
h=1

∑K
k=1(1+

1
H)h−15b∆ ≤

∑H
h=1

∑K
k=1O(∆

(1)
r +

H∆
(1)
p) ≤ O(KH∆

(1)
r +KH2∆

(1)
p). Recall our definition that e1 = H and ei+1 =

⌊
(1 + 1

H)ei
⌋
, i ≥ 1. For a

86

fixed h ∈ [H], since H2 ≥ 1,

K∑
k=1

(1 +
1

H
)h−13bkh ≤

K∑
k=1

(1 +
1

H
)h−112

√
H2

Ňk
h (s

k
h, a

k
h)
ι

=12H
√
ι
∑
s,a

∑
j≥1

(1 +
1

H
)h−1

√
1

ej

K∑
k=1

1
[
(skh, a

k
h) = (s, a), Ňk

h (s
k
h, a

k
h) = ej

]
=12H

√
ι
∑
s,a

∑
j≥1

(1 +
1

H
)h−1w(s, a, j)

√
1

ej
,

where w(s, a, j) :=
∑K
k=1 1

[
(skh, a

k
h) = (s, a), Ňk

h (s
k
h, a

k
h) = ej

]
, and w(s, a) :=

∑
j≥1 w(s, a, j). We then

know that
∑
s,a w(s, a) = K. For a fixed (s, a), let us now find an upper bound of j, denoted as J .

Since each stage is (1 + 1
H) times longer than the previous stage, we know for 1 ≤ j ≤ J , w(s, a, j) =∑K

k=1 1
[
(skh, a

k
h) = (s, a), Ňk

h (s
k
h, a

k
h) = ej

]
=
⌊
(1 + 1

H)ej
⌋
. From

∑J
j=1 w(s, a, j) = w(s, a), we get eJ ≤

(1 + 1
H)J−1 ≤ 10

1+ 1
H

w(s,a)
H . Therefore,

∑
j≥1

(1 +
1

H
)h−1w(s, a, j)

√
1

ej
≤ O

 J∑
j=1

√
ej

 ≤ O (√w(s, a)H) .
Finally, by the Cauchy-Schwartz inequality, we have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−13bkh = O

H2
√
ι
∑
s,a

∑
j≥1

w(s, a, j)

√
1

ej

 ≤ √SAKH5ι.

Combining the bounds for bkh and b∆ completes the proof.

Lemma 25. With probability at least 1− δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ϕkh+1 ≤ O(

√
KH3ι+KH∆(1)

r +KH2∆(1)
p).

Proof. We have that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ϕkh+1

=

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1 1

ň

ň∑
i=1

(
P kh − eskh+1

)(
V ľi,⋆h+1 − V

k,π
h+1

)
(skh, a

k
h)

=

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1 1

ň

ň∑
i=1

(
P kh − eskh+1

)(
V ľi,⋆h+1 − V

k,⋆
h+1 + V k,⋆h+1 − V

k,π
h+1

)
(skh, a

k
h)

≤
H∑
h=1

K∑
k=1

(1 +
1

H
)h−12b∆ +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1

(
P kh − eskh+1

)(
V k,⋆h+1 − V

k,π
h+1

)
(skh, a

k
h),

where the last inequality follows from Lemma 20 and the definition of b∆. From the proof of Lemma 24, we

87

know that the first term can be bounded as

H∑
h=1

K∑
k=1

(1 +
1

H
)h−12b∆ ≤ O(KH∆(1)

r +KH2∆(1)
p).

Further, the second term is bounded by the Azuma-Hoeffding inequality as

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1

(
P kh − eskh+1

)(
V k,⋆h+1 − V

k,π
h+1

)
(skh, a

k
h) ≤ O(

√
KH3ι).

Combining the two terms completes the proof.

Lemma 26. With probability at least 1− (KH + 1)δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1 ≤ O(

√
SAKH3ι+KH2∆(1)

p).

Proof. We have that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1

=

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1 1

ň

ň∑
i=1

(
P kh − e

s
ľi
h+1

)(
V ľih+1 − V

ľi,⋆
h+1

)
(skh, a

k
h)

=

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1 1

ň

ň∑
i=1

(
P kh − P ľih + P ľih − e

s
ľi
h+1

)(
V ľih+1 − V

ľi,⋆
h+1

)
(skh, a

k
h)

≤O(KH2∆(1)
p) +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1 1

ň

ň∑
i=1

(
P ľih − e

s
ľi
h+1

)(
V ľih+1 − V

ľi,⋆
h+1

)
(skh, a

k
h), (3.20)

where the last step is by the fact that V ľih+1(s
k
h, a

k
h) ≥ V ľi,⋆h+1(s

k
h, a

k
h) from Lemma 21, and then by Hölder’s

inequality and the triangle inequality. The following proof is analogous to the proof of Lemma 15 in [61]. For

completeness we reproduce it here. We have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1 1

ň

ň∑
i=1

(
P ľih − e

s
ľi
h+1

)(
V ľih+1 − V

ľi,⋆
h+1

)
(skh, a

k
h)

=

H∑
h=1

K∑
k=1

K∑
j=1

(1 +
1

H
)h−1 1

ňkh

ňk
h∑

i=1

1
[
ľkh,i = j

] (
P jh − esjh+1

)(
V jh+1 − V

j,⋆
h+1

)
(skh, a

k
h)

=

H∑
h=1

K∑
k=1

K∑
j=1

(1 +
1

H
)h−1 1

ňkh

ňk
h∑

i=1

1
[
ľkh,i = j

] (
P jh − esjh+1

)(
V jh+1 − V

j,⋆
h+1

)
(sjh, a

j
h), (3.21)

where (3.21) holds because ľkh,i(s
k
h, a

k
h) = j if and only if j is in the previous stage of k and (skh, a

k
h) = (sjh, a

j
h).

For simplicity of notations, we define θkh+1 := (1 + 1
H)h−1

∑K
j=1

1

ňj
h

∑ňj
h
i=1 1

[
ľjh,i = k

]
. Then, we further have

88

(note that we have swapped the notation of j and k)

(3.21) =

H∑
h=1

K∑
k=1

θkh+1

(
P kh − eskh+1

)(
V kh+1 − V k,⋆h+1

)
(skh, a

k
h).

For (k, h) ∈ [K] × [H], let xkh denote the number of occurrences of the triple (skh, a
k
h, h) in the current

stage. Define also θ̃kh+1 := (1 + 1
H)h−1 ⌊(1+ 1

H)xk
h⌋

xk
h

≤ 3. Define K := {(k, h) : θkh+1 = θ̃kh+1}, and K̄ := {(k, h) ∈
[K]× [H] : θkh+1 ̸= θ̃kh+1}. Then, we have that

(3.21) =

H∑
h=1

K∑
k=1

θ̃kh+1

(
P kh − eskh+1

)(
V kh+1 − V k,⋆h+1

)
(skh, a

k
h)

+

H∑
h=1

K∑
k=1

(θkh+1 − θ̃kh+1)
(
P kh − eskh+1

)(
V kh+1 − V k,⋆h+1

)
(skh, a

k
h).

Since θ̃kh+1 is independent of skh+1, by the Azuma-Hoeffding inequality, it holds with probability at least 1− δ
that

H∑
h=1

K∑
k=1

θ̃kh+1

(
P kh − eskh+1

)(
V kh+1 − V k,⋆h+1

)
(skh, a

k
h) ≤ O(

√
KH3ι). (3.22)

It is easy to see that if k is in a stage that is before the second last stage of the triple (skh, a
k
h, h), then (k, h) ∈ K.

For a triple (s, a, h), defineK⊥
h (s, a) := {k ∈ [K] : k is in the second last stage of the triple (s, a, h), (skh, a

k
h) =

(s, a)}. We have that

H∑
h=1

K∑
k=1

(θkh+1 − θ̃kh+1)
(
P kh − eskh+1

)(
V kh+1 − V k,⋆h+1

)
(skh, a

k
h)

=
∑
s,a,h

∑
k:(k,h)∈K̄

1
[
(skh, a

k
h) = (s, a)

]
(θkh+1 − θ̃kh+1)

(
P kh − eskh+1

)(
V kh+1 − V k,⋆h+1

)
(s, a)

=
∑
s,a,h

(θh+1(s, a)− θ̃h+1(s, a))
∑

k∈K⊥
h (s,a)

(
P kh − eskh+1

)(
V kh+1 − V k,⋆h+1

)
(s, a), (3.23)

where for a fixed triple (s, a, h), we have defined θh+1(s, a) := θkh+1, for any k ∈ K⊥
h (s, a). Note that θh+1(s, a)

is well-defined, because θk1h+1 = θk2h+1,∀k1, k2 ∈ K⊥
h (s, a). Similarly, let θ̃h+1(s, a) := θ̃kh+1 for any k ∈ K⊥

h (s, a),

and θ̃h+1(s, a) is also well-defined. By the Azuma-Hoeffding inequality and a union bound, it holds with

probability at least 1−KHδ that

(3.23) ≤
∑
s,a,h

O

(√
H2
∣∣K⊥

h (s, a)
∣∣ ι)

=
∑
s,a,h

O

(√
H2ŇK+1

h (s, a)ι

)

≤O
(√

SAH3ι
∑
s,a,h

ŇK+1
h (s, a)

)
(3.24)

≤O
(√

SAKH3ι
)

(3.25)

where ŇK+1
h (s, a) is defined to be the total number of visitations to the triple (s, a, h) over the entire K

89

episodes. (3.24) is by the Cauchy-Schwartz inequality. (3.25) holds because, by the way stages are defined,

for each triple (s, a, h), the length of its last two stages is at most an O(1/H) fraction of the total number of

visitations.

Combining (3.20), (3.22) and (3.25) completes the proof.

3.11 Proof of Theorem 9

We introduce a few terms to facilitate the analysis. Denote by skh and akh respectively the state and action

taken at step h of episode k. Let Nk
h (s, a), Ň

k
h (s, a), Q

k
h(s, a) and V

k
h (s) denote, respectively, the values of

Nh(s, a), Ňh(s, a), Qh(s, a) and Vh(s) at the beginning of the k-th episode in Algorithm 14. Further, for the

triple (skh, a
k
h, h), let n

k
h be the total number of episodes that this triple has been visited prior to the current

stage, and let lkh,i denote the index of the episode that this triple was visited the i-th time among the total

nkh times. Similarly, let ňkh denote the number of visits to the triple (skh, a
k
h, h) in the stage right before the

current stage, and let ľkh,i be the i-th episode among the ňkh episodes right before the current stage. For

simplicity, we use li and ľi to denote lkh,i and ľkh,i, and ň to denote ňkh, when h and k are clear from the

context. We also use řh(s, a) and v̌h(s, a) to denote the values of řh(s
k
h, a

k
h) and v̌h(s

k
h, a

k
h) when updating

the Qh(s
k
h, a

k
h) value in Line 16 of Algorithm 14.

We now proceed to analyze the dynamic regret in one epoch, and at the very end of Section 3.11, we will

see how to combine the dynamic regret over all the epochs to prove Theorem 9. The following analysis will

be conditioned on the successful event of Lemma 21.

The dynamic regret of Algorithm 14 in epoch d = 1 can hence be expressed as

R(d)(π,K) =

K∑
k=1

(
V k,∗1

(
sk1
)
− V k,π1

(
sk1
))

≤
K∑
k=1

(
V k1
(
sk1
)
− V k,π1

(
sk1
))
. (3.26)

From the update rules of the value functions in Algorithm 14, we have

V kh (s
k
h)≤1

[
nkh = 0

]
H+

řh(s
k
h, a

k
h)

Ňk
h (s

k
h, a

k
h)

+
v̌h(s

k
h, a

k
h)

Ňk
h (s

k
h, a

k
h)

+bkh+2b∆

=1
[
nkh = 0

]
H+

řh(s
k
h, a

k
h)

Ňk
h (s

k
h, a

k
h)

+
1

ň

ň∑
i=1

V ľih+1(s
ľi
h+1)+b

k
h+2b∆.

For ease of exposition, we define the following terms:

δkh := V kh (s
k
h)−V k,⋆h (skh), ζ

k
h := V kh (s

k
h)−V k,πh (skh). (3.27)

We further define r̃kh(s
k
h, a

k
h) :=

řh(s
k
h,a

k
h)

Ňk
h (skh,a

k
h)
− rkh(skh, akh). Then by the Hoeffding’s inequality, it holds with high

probability that

r̃kh(s
k
h, a

k
h) ≤

1

ň

ň∑
i=1

rľih (s
k
h, a

k
h) +

√
ι

ň
− rkh(skh, akh)

≤ bkh + b∆. (3.28)

90

By the Bellman equation V k,πh (skh) = Qk,πh (skh, π(s
k
h)) = rkh(s

k
h, a

k
h) + P khV

k,π
h+1(s

k
h, a

k
h), we have

ζkh ≤1
[
nkh = 0

]
H +

1

ň

ň∑
i=1

V ľih+1(s
ľi
h+1) + bkh + 2b∆ + r̃kh(s

k
h, a

k
h)− P khV k,πh+1(s

k
h, a

k
h)

≤1
[
nkh = 0

]
H +

1

ň

ň∑
i=1

P ľih V
ľi
h+1(s

k
h, a

k
h)− P khV k,πh+1(s

k
h, a

k
h) + 3bkh + 3b∆ (3.29)

=1
[
nkh = 0

]
H +

1

ň

ň∑
i=1

(
P ľih − P kh

)
V ľih+1(s

k
h, a

k
h)︸ ︷︷ ︸

1

+
1

ň

ň∑
i=1

P kh

(
V ľih+1 − V

ľi,⋆
h+1

)
(skh, a

k
h)︸ ︷︷ ︸

2

+3bkh + 3b∆

+
1

ň

ň∑
i=1

P kh

(
V ľi,⋆h+1 − V

k,π
h+1

)
(skh, a

k
h)︸ ︷︷ ︸

3

, (3.30)

where (3.29) is by the Azuma-Hoeffding inequality and by (3.28). In the following, we bound each term

in (3.30) separately. First, by Hölder’s inequality, we have

1 ≤ 1

ň

ň∑
i=1

∆(1)
p (H − h) ≤ b∆. (3.31)

Let ej denote a standard basis vector of proper dimensions that has a 1 at the j-th entry and 0s at the others,

in the form of (0, . . . , 0, 1, 0, . . . , 0). Recall the definition of δkh in (3.27), and we have

2 =
1

ň

ň∑
i=1

(
P kh − e

s
ľi
h+1

)(
V ľih+1 − V

ľi,⋆
h+1

)
(skh, a

k
h)︸ ︷︷ ︸

ξkh+1

+
1

ň

ň∑
i=1

δľih+1 = ξkh+1 +
1

ň

ň∑
i=1

δľih+1. (3.32)

Finally, recalling the definition of ζkh in (3.27), we have that

3 =
1

ň

ň∑
i=1

(
V ľi,⋆h+1(s

k
h+1)− V k,πh+1(s

k
h+1)

)
+

1

ň

ň∑
i=1

(
P kh − eskh+1

)(
V ľi,⋆h+1 − V

k,π
h+1

)
(skh, a

k
h)︸ ︷︷ ︸

ϕk
h+1

=
1

ň

ň∑
i=1

(
V ľi,⋆h+1(s

k
h+1)−V k,⋆h+1(s

k
h+1)

)
+ζkh+1−δkh+1+ϕ

k
h+1

≤b∆ + ζkh+1 − δkh+1 + ϕkh+1 (3.33)

where inequality (3.33) is by Lemma 20. Combining (3.30), (3.31), (3.32), and (3.33) leads to

ζkh ≤1
[
nkh = 0

]
H +

1

ň

ň∑
i=1

δľih+1 + ξkh+1 + ζkh+1 − δkh+1 + ϕkh+1 + 3bkh + 5b∆. (3.34)

To find an upper bound of
∑K
k=1 ζ

k
h , we proceed to upper bound each term on the RHS of (3.34) separately.

91

First, notice that
∑K
k=1 1

[
nkh = 0

]
≤ SAH, because each fixed triple (s, a, h) contributes at most 1 to∑K

k=1 1
[
nkh = 0

]
. In the following, we upper bound the second term in (3.34). Notice that

K∑
k=1

1

ňkh

ňk
h∑

i=1

δ
ľkh,i

h+1 =

K∑
k=1

K∑
j=1

1

ňkh
δjh+1

ňk
h∑

i=1

1
[
ľkh,i = j

]
=

K∑
j=1

δjh+1

K∑
k=1

1

ňkh

ňk
h∑

i=1

1
[
ľkh,i = j

]
. (3.35)

For a fixed episode j, notice that
∑ňk

h
i=1 1[ľ

k
h,i = j] ≤ 1, and that

∑ňk
h
i=1 1[ľ

k
h,i = j] = 1 happens if and only

if (skh, a
k
h) = (sjh, a

j
h) and (j, h) lies in the previous stage of (k, h) with respect to the triple (skh, a

k
h, h). Let

K := {k ∈ [K] :
∑ňk

h
i=1 1[ľ

k
h,i = j] = 1}; then, we know that every element k ∈ K has the same value of ňkh, i.e.,

there exists an integer Nj > 0, such that ňkh = Nj ,∀k ∈ K. Further, by our definition of the stages, we know

that |K| ≤ (1 + 1
H)Nj , because the current stage is at most (1 + 1

H) times longer than the previous stage.

Therefore, for every j, we know that

K∑
k=1

1

ňkh

ňk
h∑

i=1

1
[
ľkh,i = j

]
≤ 1 +

1

H
. (3.36)

Substituting it back into (3.35) leads to

K∑
k=1

1

ňkh

ňk
h∑

i=1

δ
ľkh,i

h+1 ≤ (1 +
1

H
)

K∑
k=1

δkh+1. (3.37)

Combining (3.34) and (3.37), we now have that

K∑
k=1

ζkh ≤SAH2 +
1

H

K∑
k=1

δkh+1 +

K∑
k=1

(
ξkh+1 + ζkh+1 + ϕkh+1 + 3bkh + 5b∆

)
≤SAH2 + (1 +

1

H
)

K∑
k=1

ζkh+1 +

K∑
k=1

(
ξkh+1 + ϕkh+1 + 3bkh + 5b∆

)︸ ︷︷ ︸
Λk

h+1

, (3.38)

where in (3.38) we have used the fact that δkh+1 ≤ ζkh+1, which in turn is due to the optimality that

V k,⋆h (skh) ≥ V k,πh (skh). Notice that we have ζkh on the LHS of (3.38) and ζkh+1 on the RHS. By iterating (3.38)

over h = H,H − 1, . . . , 1, we conclude that

K∑
k=1

ζk1 ≤ O
(
SAH3 +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λkh+1

)
. (3.39)

We bound
∑H
h=1

∑K
k=1(1 +

1
H)h−1Λkh+1 in the proposition below. Its proof relies on a series of lemmas in

Section 3.10 that upper bound each term in Λkh+1 separately.

Proposition 2. With probability at least 1− (KH + 2)δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λkh+1≤Õ(

√
SAKH5 +KH∆(1)

r +KH2∆(1)
p).

Now we are ready to prove Theorem 9.

92

Proof. (of Theorem 9) By (3.26) and (3.39), and by replacing δ with δ
KH+2 in Proposition 2, we know that

the dynamic regret in epoch d = 1 can be upper bounded with probability at least 1− δ by:

R(d)(π,K) ≤ Õ(SAH3+
√
SAKH5+KH∆(1)

r +KH2∆(1)
p), (3.40)

and this holds for every epoch d ∈ [D]. Suppose T = Ω(SA∆H2); summing up the dynamic regret

over all the D epochs gives us an upper bound of Õ(D
√
SAKH5 +

∑D
d=1KH∆

(d)
r +

∑D
d=1KH

2∆
(d)
p).

Recall the definition that
∑D
d=1 ∆

(d)
r ≤ ∆r,

∑D
d=1 ∆

(d)
p ≤ ∆p, ∆ = ∆r + ∆p, and that K = Θ(T

DH). By

setting D = S− 1
3A− 1

3∆
2
3H− 2

3T
1
3 , the dynamic regret over the entire T steps is bounded by R(π,M) ≤

Õ(S
1
3A

1
3∆

1
3H

5
3T

2
3), which completes the proof.

3.12 Proof Sketch of Theorem 10

Proof sketch. We only outline the difference with respect to the proof of Theorem 9. The reader should

have no difficulty recovering the complete proof by following the same routine as in the proof of Theorem 9.

Specifically, it suffices to investigate the steps that are involved with Lemma 21.

The dynamic regret of the new algorithm in epoch d = 1 can now be expressed as

R(d)(π,K) =

K∑
k=1

(
V k,∗1

(
sk1
)
− V k,π1

(
sk1
))
≤

K∑
k=1

(
V k1
(
sk1
)
− V k,π1

(
sk1
))

+ 2KHb∆, (3.41)

where we applied the results of Lemma 22 instead of Lemma 21. The reader should bear in mind that from

the new update rules of the value functions, we now have

V kh (s
k
h) ≤ 1

[
nkh = 0

]
H +

řh(s
k
h, a

k
h)

Ňk
h (s

k
h, a

k
h)

+
v̌h(s

k
h, a

k
h)

Ňk
h (s

k
h, a

k
h)

+ bkh, (3.42)

where the RHS no longer has the additional bonus term b∆. If we define ζkh , ξ
k
h+1, and ϕ

k
h+1 in the same way

as before, the reader can easily verify that all the derivations until Equation (3.39) still holds, although the

value of Λkh+1 should be re-defined as Λkh+1 := ξkh+1 + ϕkh+1 +3bkh +3b∆ due to the new upper bound in (3.42)

that is independent of b∆. Proposition 2 also follows analogously, though some additional attention should be

paid to the proof of Lemma 26 where the results of Lemma 21 have been utilized. Finally, we obtain the

dynamic regret upper bound in epoch d = 1 as follows:

R(d)(π,K) ≤ Õ
(
SAH3 +

√
SAKH5 +KH∆(1)

r +KH2∆(1)
p

)
+ 2KHb∆, (3.43)

where the additional term 2KHb∆ comes from (3.41). From our definition of b∆, we can easily see that

2KHb∆ ≤ O(KH∆
(1)
r +KH2∆

(1)
p). Therefore, we can conclude that the dynamic regret upper bound in one

epoch remains the same order, which leaves the dynamic regret over the entire horizon also unchanged.

3.13 Proof of Theorem 11

Similar to the proofs of Theorems 9 and 10, we start with the dynamic regret in one epoch, and then extend

to all epochs in the end. The proof follows the same routine as in the proofs of Theorems 9 and 10. Given

that a rigorous analysis on the Freedman-based bonus with variance reduction is present in [61], one should

93

not find it difficult to extend our Hoeffding-based algorithm to a Freedman-based one. Therefore, rather

than providing a complete proof of Theorem 11, in the following, we sketch the differences and highlight the

additional analysis needed that is not covered by the proof of Theorem 10 and [61].

To facilitate the analysis, first recall a few notations Nk
h , Ň

k
h , Q

k
h(s, a), V

k
h (s), n

k
h, l

k
h,i, ň

k
h, ľ

k
h,i, li and ľi that

we have defined in Section 3.11. In addition, when (h, k) is clear from the context, we drop the time indices

and simply use µ̌, σ̌, µref, σref to denote their corresponding values in the computation of the Qh(s
k
h, a

k
h) value

in Line 16 of Algorithm 14.

We start with the following lemma, which is an analogue of Lemma 22 but requires a more careful

treatment of variations accumulated in µref and µ̌h. It states that the optimistic Qkh(s, a) is an “upper bound”

of the optimal Qk,⋆h (s, a) subject to an error term of the order 2(H − h+ 1)b∆ with high probability.

Lemma 27. (Freedman, no local budgets) For δ ∈ (0, 1), with probability at least 1− 2KHδ, it holds that

Qk,⋆h (s, a)− 4(H − h+ 1)b∆ ≤ Qk+1
h (s, a) ≤ Qkh(s, a),∀(s, a, h, k) ∈ S ×A× [H]× [K].

Proof. It should be clear from the way we update Qh(s, a) that Q
k
h(s, a) is monotonically decreasing in k.

We now prove Qk,⋆h (s, a)− 4(H − h+ 1)b∆ ≤ Qk+1
h (s, a) for all s, a, h, k by induction on k. First, it holds for

k = 1 by our initialization of Qh(s, a). For k ≥ 2, now suppose Qj,⋆h (s, a)− 4(H − h+ 1)b∆ ≤ Qjh(s, a) for all
s, a, h and 1 ≤ j ≤ k. For a fixed triple (s, a, h), we consider the following two cases.

Case 1: Qh(s, a) is updated in episode k. Notice that it suffices to analyze the case where Qh(s, a) is

updated using bkh, because the other case of bkh would be exactly the same as in Lemma 22. With probability

at least 1− δ,

Qk+1
h (s, a) =

řh(s, a)

Ňk
h (s, a)

+
µref(s, a)

Nk
h (s, a)

+
µ̌h(s, a)

Ňk
h (s, a)

+ 2bkh

=
řh(s, a)

ň
+

1

n

n∑
i=1

(
V ref,li
h+1 (slih+1)− P lih V

ref,li
h+1 (s, a)

)
︸ ︷︷ ︸

χ1

+
1

ň

ň∑
i=1

[(
V ľih+1(s

ľi
h+1)− V

ref,ľi
h+1 (sľih+1)

)
−
(
P ľih V

ľi
h+1 − P ľih V

ref,ľi
h+1

)
(s, a)

]
︸ ︷︷ ︸

χ2

+
1

n

n∑
i=1

P lih V
ref,li
h+1 +

1

ň

ň∑
i=1

(
P ľih V

ľi
h+1 − P ľih V

ref,ľi
h+1

)
(s, a)︸ ︷︷ ︸

χ3

+2bkh. (3.44)

In the following, we will bound each term in (3.44) separately. First, we have that

χ3 =
1

n

n∑
i=1

(
P lih V

ref,li
h+1 − P khV

ref,li
h+1

)
(s, a) (3.45)

− 1

ň

ň∑
i=1

(
P ľih V

ref,ľi
h+1 − P khV

ref,ľi
h+1

)
(s, a) (3.46)

+
1

n

n∑
i=1

P khV
ref,li
h+1 (s, a)− 1

ň

ň∑
i=1

P khV
ref,ľi
h+1 (s, a) +

1

ň

ň∑
i=1

P ľih V
ľi
h+1(s, a) (3.47)

≥ 1

ň

ň∑
i=1

P ľih V
ľi
h+1(s, a)− 2b∆, (3.48)

94

where (3.45)≥ −b∆ and (3.46)≥ −b∆ by Hölder’s inequality and the definition of b∆. In (3.47), we have that
1
n

∑n
i=1 P

k
hV

ref,li
h+1 (s, a)− 1

ň

∑ň
i=1 P

k
hV

ref,ľi
h+1 (s, a) ≥ 0, because V ref,k

h+1 (s) is non-increasing in k.

Following a similar procedure as in Lemma 10, Lemma 12, and Lemma 13 in [61], we can further bound

|χ1| and |χ2| as follows:

|χ1| ≤ 2

√
νrefι

n
+

5Hι
3
4

n
3
4

+
2
√
ι

Tn
+

2Hι

n
, (3.49)

|χ2| ≤ 2

√
ν̌ι

ň
+

5Hι
3
4

ň
3
4

+
2
√
ι

T ň
+

2Hι

ň
, (3.50)

where νref := σref

n −
(
µref

n

)2
and ν̌ := σ̌

ň −
(
µ̌
ň

)2
. These are the steps where Freedman’s inequality [192]

come into use, and we omit these steps since they are essentially the same as the derivations in [61]. We can

see from (3.49), (3.50), and the definition of bkh that |χ1|+ |χ2| ≤ bkh.
Substituting the results on χ1, χ2 and χ3 back to (3.44), it holds that with probability at least 1− δ,

Qk+1
h (s, a) =

řh(s, a)

ň
+ χ1 + χ2 + χ3 + 2bkh

≥ řh(s, a)
ň

+
1

ň

ň∑
i=1

P ľih V
ľi
h+1(s, a) + bkh − 2b∆ (3.51)

≥ řh(s, a)
ň

+
1

ň

ň∑
i=1

P ľih V
ľi,⋆
h+1(s, a)− 4(H − h)b∆ + bkh − 2b∆ (3.52)

=
řh(s, a)

ň
+

1

ň

ň∑
i=1

(
Qľi,⋆h (s, a)− rľih (s, a)

)
+ bkh − 4(H − h)b∆ − 2b∆

≥ 1

ň

ň∑
i=1

Qľi,⋆h (s, a)− 4(H − h)b∆ − 2b∆ ≥ Qk,⋆h (s, a)− 4(H − h)b∆ − 3b∆, (3.53)

where in (3.51) we used (3.48), (3.49), (3.50), and the definition of bkh in Algorithm 14. (3.52) is by the

induction hypothesis that Qľih+1(s
ľi
h+1, a) ≥ Q

ľi,⋆
h+1(s

ľi
h+1, a)− 2(H − h)b∆,∀a ∈ A, 1 ≤ ľi ≤ k. The second to

last inequality holds due to the Hoeffding’s inequality that 1
ň

(∑ň
i=1 r

ľi
h (s, a)− řh(s, a)

)
≤
√

ι
ň ≤ bkh with

high probability. Finally, the last inequality follows from Lemma 20.

According to the monotonicity of Qkh(s, a), we can conclude from (3.53) that Qk,⋆h (s, a)−4(H−h+1)b∆ ≤
Qk+1
h (s, a) ≤ Qkh(s, a). In fact, we have proved the stronger statement Qk+1

h (s, a) ≥ Qk,⋆h (s, a)− 4(H − h+
1)b∆ + b∆ that will be useful in Case 2 below.

Case 2: Qh(s, a) is not updated in episode k. Then, there are two possibilities:

1. If Qh(s, a) has never been updated from episode 1 to episode k: It is easy to see that Qk+1
h (s, a) =

Qkh(s, a) = · · · = Q1
h(s, a) = H − h+ 1 ≥ Qk,⋆h (s, a) holds.

2. If Qh(s, a) has been updated at least once from episode 1 to episode k: Let j be the index of the latest

episode that Qh(s, a) was updated. Then, from our induction hypothesis and Case 1, we know that

Qj+1
h (s, a) ≥ Qj,⋆h (s, a)−4(H−h+1)b∆+b∆. Since Qh(s, a) has not been updated from episode j+1 to

episode k, we know that Qk+1
h (s, a) = Qkh(s, a) = · · · = Qj+1

h (s, a) ≥ Qj,⋆h (s, a)− 4(H −h+1)b∆ + b∆ ≥
Qk,⋆h (s, a)− 4(H − h+ 1)b∆, where the last inequality holds because of Lemma 20.

A union bound over all time steps completes our proof.

95

Conditional on the successful event of Lemma 27, the dynamic regret of RestartQ-UCB Freedman in

epoch d = 1 can hence be expressed as

R(d)(π,K) =

K∑
k=1

(
V k,∗1

(
sk1
)
− V k,π1

(
sk1
))
≤

K∑
k=1

(
V k1
(
sk1
)
− V k,π1

(
sk1
))

+ 4KHb∆. (3.54)

From the update rules of the value functions in Algorithm 14, we have

V kh (s
k
h) ≤ 1

[
nkh = 0

]
H +

řh(s
k
h, a

k
h)

ň
+
µref,k
h

n
+
µ̌kh
ň

+ 2bkh

=1
[
nkh = 0

]
H+

řh(s
k
h, a

k
h)

ň
+

1

n

n∑
i=1

V ref,li
h+1 (slih+1)+

1

ň

ň∑
i=1

(V ľih+1(s
ľi
h+1)−V

ref,ľi
h+1 (sľih+1))+2bkh.

If we again define ζkh := V kh (s
k
h) − V k,πh (skh), we can follow a similar routine as in the proof of Theorem 9

(details can be found in [61]) and obtain

K∑
k=1

ζk1 ≤ O
(
SAH3 +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λkh+1

)
,

where Λkh+1 := ψkh+1 + ξkh+1 + ϕkh+1 + 4bkh + 4b∆ with the following definitions:

ψkh+1 :=
1

nkh

nk
h∑

i=1

(
P khV

ref,li
h+1 − P khV

ref,K+1
h+1

)
(skh, a

k
h),

ξkh+1 :=
1

ňkh

ňk
h∑

i=1

(
P kh − e

s
ľi
h+1

)(
V ľih+1 − V

ľi,⋆
h+1

)
(skh, a

k
h),

ϕkh+1 :=
(
P kh − eskh+1

)(
V ľi,⋆h+1 − V

k,π
h+1

)
(skh, a

k
h).

An upper bound on the first four terms in Λkh+1 is derived in the proof of Lemma 7 in [61] (There is an extra

term of
√

1
ň ι in our defnition of bkh compared to theirs, but it does not affect the leading term in the upper

bound). By further recalling the definition of b∆, we can obtain the following lemma.

Lemma 28. (Lemma 7 in [61]) With probability at least (1−O(H2T 4δ)), it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λkh+1=O

(√
SAH3Kι+

√
KH3ι log(KH)+S2A

3
2H

33
4 K

1
4 ι+KH∆(1)

r +KH2∆(1)
p

)
.

Combined with (3.54) and the definition of ζkh , we obtain the dynamic regret bound in a single epoch:

R(d)(π,K) = O
(√

SAH3Kι+
√
KH3ι log(KH)+S2A

3
2H

33
4 K

1
4 ι+KH∆(1)

r +KH2∆(1)
p +KHb∆

)
,∀d ∈ [D].

From our definition of b∆, we can easily see that KHb∆ ≤ O(KH∆
(1)
r +KH2∆

(1)
p). Finally, suppose T is

greater than a polynomial of S,A,∆ and H,
√
SAH3Kι would be the leading term of the dynamic regret in

96

a single epoch. In this case, summing up the dynamic regret over all the D epochs gives us an upper bound of

Õ

(
D
√
SAH3K +

D∑
d=1

KH∆(d)
r +

D∑
d=1

KH2∆(d)
p

)
. (3.55)

Recall that
∑D
d=1 ∆

(d)
r ≤ ∆r,

∑D
d=1 ∆

(d)
p ≤ ∆p, ∆ = ∆r + ∆p, and that K = Θ(T

DH). By setting

D = S− 1
3A− 1

3∆
2
3T

1
3 , the dynamic regret over the entire T steps is bounded by

R(π,M) ≤ Õ
(
S

1
3A

1
3∆

1
3HT

2
3

)
.

This completes the proof of Theorem 11.

3.14 Proof of Theorem 12

First, we define D† to be the optimal candidate value in J that leads to the lowest dynamic regret. Recall

that since J is a discretized set and only covers values in the range of
[⌊

T
SAH2W

⌋
,
⌊

T
SAH2

⌋]
, it might not

contain the actual optimal value D⋆ = S− 1
3A− 1

3∆
2
3T

1
3 for the number of epochs D. Further, let Ri(D) be

the cumulative reward collected in phase i due to choosing the value D for the number of total epochs. Then,

the dynamic regret of Algorithm 15 can be decomposed into two parts:

R(π,M) =

M∑
m=1

(
V m,⋆1 (sm1)− V m,π1 (sm1)

)
=

 M∑
m=1

V m,⋆1 (sm1)−
⌈M/W⌉∑
i=1

Ri(D
†)

+

⌈M/W⌉∑
i=1

Ri(D
†)−

⌈M/W⌉∑
i=1

Ri(Di)

 , (3.56)

where the first term is the dynamic regret of using the optimal candidate value D† of the number of epochs,

and the second term is caused by the regret of learning the optimal candidate value using the Exp3.P

algorithm. Applying the regret bound of the Exp3.P algorithm ([107]), for any choice of D†, the second term

in (3.56) is upper bounded by

⌈M/W⌉∑
i=1

Ri(D
†)−

⌈M/W⌉∑
i=1

Ri(Di) ≤ Õ(WH
√
⌈M/W ⌉ (J + 1)) = Õ(

√
HTW) = Õ(H

3
4T

3
4), (3.57)

where in the last step we used that W =
√
HT .

From the proof of Theorem 11 (e.g., Equation (3.55) with the fact that K = Θ(T
DH)), and applying the

Azuma-Hoeffding inequality and a union bound, we can upper bound the first term in (3.56) by

M∑
m=1

V m,⋆1 (sm1)−
⌈M/W⌉∑
i=1

Ri(D
†) ≤ Õ

(√
SATD†H2 +

TH∆

D† +
√
TH

)
. (3.58)

To derive a further upper bound of (3.58), we need to distinguish between two cases: Whether D⋆ is covered

in the range of J or not. Since we have assumed that the horizon is sufficiently long, i.e., T is greater than

some polynomial of S,A,∆ and H, it holds that D⋆ = S− 1
3A− 1

3∆
2
3T

1
3 ≤

⌊
T

SAH2

⌋
. Therefore, to determine

whether D⋆ is covered in the range of J , we only need to compare D⋆ with the lower bound
⌊

T
SAH2W

⌋
in J .

97

• If D⋆ is covered in the range of J , i.e., D⋆ ≥
⌊

T
SAH2W

⌋
: Since J is discretized in a way that two

consecutive values differ from each other by a factor of at most W 1/J , we know that there exists a value

D† ∈ J , such that D⋆ ≤ D† ≤W 1/JD⋆. In this case, we can upper bound the RHS of (3.58) by

Õ

(√
SATD†H2 +

TH∆

D† +
√
TH

)
≤ Õ

(√
SATW 1/JD⋆H2 +

TH∆

D⋆

)
≤ Õ

(
S

1
3A

1
3∆

1
3HT

2
3

)
,

where in the last step we used the facts that D⋆ = S− 1
3A− 1

3∆
2
3T

1
3 and thatW 1/J =W 1/⌈lnW⌉ ≤ exp(1).

• If D⋆ is not covered in the range of J , i.e., D⋆ <
⌊

T
SAH2W

⌋
: Since D⋆ = S− 1

3A− 1
3∆

2
3T

1
3 <

⌊
T

SAH2W

⌋
,

it implies that ∆ < S−1A−1H− 15
4 T

1
4 . The optimal candidate value in J would be the smallest one,

and hence D† =
⌊

T
SAH2W

⌋
. In this case, we can upper bound the RHS of (3.58) by

Õ

(√
SATD†H2 +

TH∆

D† +
√
TH

)
≤ Õ

(√
SATH2

⌊
T

SAH2W

⌋
+

TH∆⌊
T

SAH2W

⌋) ≤ Õ (H 3
4T

3
4

)
,

where in the last step we used that ∆ < S−1A−1H− 15
4 T

1
4 and W =

√
HT .

Combining the above two cases with (3.56), (3.57), and (3.58), we can conclude that the dynamic regret of

Algorithm 15 is upper bounded by

R(π,M) ≤ Õ
(
S

1
3A

1
3∆

1
3HT

2
3 +H

3
4T

3
4

)
.

This completes the proof of Theorem 12.

3.15 Proof of Theorem 13

The proof of our lower bound relies on the construction of a “hard instance” of non-stationary MDPs. The

instance we construct is essentially a switching-MDP: an MDP with piecewise constant dynamics on each

segment of the horizon, and its dynamics experience an abrupt change at the beginning of each new segment.

More specifically, we divide the horizon T into L segments7, where each segment has T0 :=
⌊
T
L

⌋
steps and

contains M0 :=
⌊
M
L

⌋
episodes, each episode having a length of H. Within each such segment, the system

dynamics of the MDP do not vary, and we construct the dynamics for each segment in a way such that the

instance is a hard instance of stationary MDPs on its own. The MDP within each segment is essentially

similar to the hard instances constructed in stationary RL problems [60], [182]. Between two consecutive

segments, the dynamics of the MDP change abruptly, and we let the dynamics vary in a way such that no

information learned from previous interactions with the MDP can be used in the new segment. In this sense,

the agent needs to learn a new hard stationary MDP in each segment. Finally, optimizing the value of L

and the variation magnitude between consecutive segments (subject to the constraints of the total variation

budget) leads to our lower bound.

We start with a simplified episodic setting where the transition kernels and reward functions are held

constant within each episode, i.e., Pm1 = · · · = Pmh = . . . PmH and rm1 = · · · = rmh = . . . rmH ,∀m ∈ [M]. This is

a popular but less challenging episodic setting, and its stationary counterpart has been studied in [97]. We

further require that when the environment varies due to the non-stationarity, all steps in one episode should

7The definition of segments is irrelevant to, and should not be confused with, the notion of epochs we previously defined.

98

𝑠∘ 𝑠|

𝛿

𝛿 1 − 𝛿1 − 𝛿

1− 𝜖 − 𝛿

𝜖 + 𝛿

Figure 3.3: The “JAO MDP” constructed in [96]. Dashed lines denote transitions related to the good action
a⋆.

𝑠∘

𝑠|

1 − 𝛿

𝛿

1 − 𝜖 − 𝛿

𝑠∘

𝑠|

1 − 𝛿

𝛿

𝜖 + 𝛿

1 − 𝜖 − 𝛿

1 − 𝛿

𝜖 + 𝛿

𝛿

𝛿

1 − 𝛿

𝑠∘

𝑠|

1 − 𝛿

𝛿

1 − 𝜖 − 𝛿

𝑠∘

𝑠|

1 − 𝛿

𝛿

𝜖 + 𝛿

……

Figure 3.4: A chain with H copies of JAO MDPs correlated in time. At the end of an episode, the state
should deterministically transition from any state in the last copy to the s◦ state in the first copy of the
chain, the arrows of which are not shown in the figure. Also, the s state in the first copy is actually never
reached and is redundant.

vary simultaneously in the same way. This simplified setting is easier to analyze, and its analysis conveniently

leads to a lower bound for the un-discounted setting as a side result along the way. Later we will show

how the analysis can be naturally extended to the more general setting we introduced in Section 3.2, using

techniques that have also been utilized in [60]. For simplicity of notations, we temporarily drop the h indices

and use Pm and rm to denote the transition kernel and reward function whenever there is no ambiguity.

Consider a two-state MDP as depicted in Figure 3.3. This MDP was initially proposed in [96] as a hard

instance of stationary MDPs, and following [60] we will refer to this construction as the “JAO MDP”. This

MDP has 2 states S = {s◦, s} and SA actions A = {1, 2, . . . , SA}. The reward does not depend on actions:

state s always gives reward 1 whatever action is taken, and state s◦ always gives reward 0. Any action taken

at state s takes the agent to state s◦ with probability δ, and to state s with probability 1− δ. At state s◦,
for all but a single “good” action a⋆, the agent is taken to state s with probability δ, and for the good action

a⋆, the agent is taken to state s with probability δ + ε for some 0 < ε < δ. The exact values of δ and ε will

be chosen later. Note that this is not an MDP with S states and A actions as we desire, but the extension to

an MDP with S states and A actions is routine [96], and is hence omitted here.

To apply the JAO MDP to the simplified episodic setting, we “concatenate” H copies of exactly the same

JAO MDP into a chain as depicted in Figure 3.4, denoting the H steps in an episode. The initial state of

this MDP is the s◦ state in the first copy of the chain, and after each episode the state is “reset” to the

initial state. In the following, we first show that the constructed MDP is a hard instance of stationary MDPs,

without worrying about the evolution of the system dynamics. The techniques that we will be using are

essentially the same as in the proofs of the lower bound in the multi-armed bandit problem [107] or the

reinforcement learning problem in the un-discounted setting [96].

99

The good action a⋆ is chosen uniformly at random from the action space A, and we use E⋆[·] to denote

the expectation with respect to the random choice of a⋆. We write Ea[·] for the expectation conditioned on

action a being the good action a⋆. Finally, we use Eunif[·] to denote the expectation when there is no good

action in the MDP, i.e., every action in A takes the agent from state s◦ to s with probability δ. Define the

probability notations P⋆(·),Pa(·), and Punif(·) analogously.
Consider running a reinforcement learning algorithm on the constructed MDP for T0 steps, where

T0 = M0H. It has been shown in [107] and [96] that it is sufficient to consider deterministic policies.

Therefore, we assume that the algorithm maps deterministically from a sequence of observations to an action

at at time t. Define the random variables N,N◦ and N⋆
◦ to be the total number of visits to state s , the total

number of visits to s◦, and the total number of times that a⋆ is taken at state s◦, respectively. Let st denote

the state observed at time t, and at the action taken at time t. When there is no chance of ambiguity, we

sometimes also use smh to denote the state at step h of episode m, which should be interpreted as the state st

observed at time t = (m− 1)×H + h. The notation amh is used analogously. Since s◦ is assumed to be the

initial state, we have that

Ea[N] =

T0∑
t=1

Pa(st = s) =

M0∑
m=1

H∑
h=2

Pa(smh = s)

=

M0∑
m=1

H∑
h=2

(
Pa(smh−1 = s◦) · Pa(smh = s | smh−1 = s◦) + Pa(smh−1 = s) · Pa(smh = s | smh−1 = s)

)
=

M0∑
m=1

H∑
h=2

(
δPa(smh−1 = s◦, a

m
h ̸= a⋆) + (δ + ε)Pa(smh−1 = s◦, a

m
h = a⋆) + (1− δ)Pa(smh−1 = s)

)
≤δEa[N◦ −N⋆

◦] + (δ + ε)Ea[N⋆
◦] + (1− δ)Ea[N],

and rearranging the last inequality gives us Ea[N] ≤ Ea[N◦ −N⋆
◦] + (1 + ε

δ)Ea[N
⋆
◦].

For this proof only, define the random variable W (T0) to be the total reward of the algorithm over the

horizon T0, and define G(T0) to be the (static) regret with respect to the optimal policy. Since for any

algorithm, the probability of staying in state s◦ under Pa(·) is no larger than under Punif(·), it follows that

Ea[W (T0)] ≤ Ea[N] ≤ Ea[N◦ −N⋆
◦] + (1 +

ε

δ
)Ea[N⋆

◦]

=Ea[N◦] +
ε

δ
Ea[N⋆

◦] ≤ Eunif[N◦] +
ε

δ
Ea[N⋆

◦]

=T0 − Eunif[N] +
ε

δ
Ea[N⋆

◦]. (3.59)

Let τm◦ denote the first step that the state transits from state s◦ to s in the m-th episode; then

Eunif[N] =

M0∑
m=1

H∑
h=1

Punif(τ
m
◦ = h)Eunif[N | τm◦ = h] =

M0∑
m=1

H∑
h=1

(1− δ)h−1δEunif[N | τm◦ = h]

≥
M0∑
m=1

H∑
h=1

(1− δ)h−1δ
H − h

2
=

M0∑
m=1

(
H

2
− 1

2δ
+

(1− δ)H
2δ

)
≥T0

2
− M0

2δ
. (3.60)

Since the algorithm is a deterministic mapping from the observation sequence to an action, the random

variable N⋆
◦ is also a function of the observations up to time T . In addition, since the immediate reward only

100

depends on the current state, N⋆
◦ can further be considered as a function of just the state sequence up to T .

Therefore, the following lemma from [96], which in turn was adapted from Lemma A.1 in [107], also applies

in our setting.

Lemma 29. (Lemma 13 in [96]) For any finite constant B, let f : {s◦, s}T0+1 → [0, B] be any function

defined on the state sequence s ∈ {s◦, s}T0+1. Then, for any 0 < δ ≤ 1
2 , any 0 < ε ≤ 1− 2δ, and any a ∈ A,

it holds that

Ea[f(s)] ≤ Eunif[f(s)] +
B

2
· ε√

δ

√
2Eunif [N⋆

◦].

Since N⋆
◦ itself is a function from the state sequence to [0, T0], we can apply Lemma 29 and arrive at

Ea[N⋆
◦] ≤ Eunif [N

⋆
◦] +

T0
2
· ε√

δ

√
2Eunif [N⋆

◦]. (3.61)

From (3.60), we have that
∑SA
a=1 Eunif [N

⋆
◦] = T0 − Eunif [N] ≤ T0

2 + M0

2δ . By the Cauchy-Schwarz inequality,

we further have that
∑SA
a=1

√
2Eunif [N⋆

◦] ≤
√
SA(T0 +

M0

δ). Therefore, from (3.61), we obtain

SA∑
a=1

Ea[N⋆
◦] ≤

T0
2

+
M0

2δ
+
T0
2
· ε√

δ

√
SA(T0 +

M0

δ
).

Together with (3.59) and (3.60), it holds that

E⋆[W (T0)] ≤
1

SA

SA∑
a=1

Ea[W (T0)]

≤T0
2

+
M0

2δ
+
ε

δ

1

SA

(
T0
2

+
M0

2δ
+
T0
2
· ε√

δ

√
SA(T0 +

M0

δ
)

)
. (3.62)

3.15.1 The Un-discounted Setting

Let us now momentarily deviate from the episodic setting and consider the un-discounted setting (with

M0 = 1). This is the case of the JAO MDP in Figure 3.3 where there is not reset. We could calculate the

stationary distribution and find that the optimal average reward for the JAO MDP is δ+ε
2δ+ε . It is also easy to

calculate that the diameter of the JAO MDP is D = 1
δ . Therefore, the expected (static) regret with respect

to the randomness of a∗ can be lower bounded by

E⋆[G(T0)] =
δ + ε

2δ + ε
T0 − E⋆[W (T0)]

≥ εT0
4δ + 2ε

− D

2
− εD(T0 +D)

2SA
− ε2T0D

√
D

2
√
SA

(
√
T0 +

√
D).

By assuming T0 ≥ DSA (which in turn suggests D ≤
√

T0D
SA) and setting ε = c

√
SA
T0D

for c = 3
40 , we further

have that

E⋆[G(T0)] ≥
(
c

6
− c

2SA
− cD

2SAT0
− c2

2
− c2

2

√
D

T0

)√
SAT0D −

D

2

≥
(

3

20
c− c2 − 1

200

)√
SAT0D =

1

1600

√
SAT0D.

101

It is easy to verify that our choice of δ and ε satisfies our assumption that 0 < ε < δ. So far, we have

recovered the (static) regret lower bound of Ω(
√
SAT0D) in the un-discounted setting, which was originally

proved in [96].

Based on this result, let us now incorporate the non-stationarity of the MDP and derive a lower bound for

the dynamic regret R(T). Recall that we are constructing the non-stationary environment as a switching-MDP.

For each segment of length T0, the environment is held constant, and the regret lower bound for each segment

is Ω(
√
SAT0D). At the beginning of each new segment, we uniformly sample a new action a∗ at random from

the action space A to be the good action for the new segment. In this case, the learning algorithm cannot

use the information it learned during its previous interactions with the environment, even if it knows the

switching structure of the environment. Therefore, the algorithm needs to learn a new (static) MDP in each

segment, which leads to a dynamic regret lower bound of Ω(L
√
SAT0D) = Ω(

√
SATLD), where let us recall

that L is the number of segments. Every time the good action a∗ varies, it will cause a variation of magnitude

2ε in the transition kernel. The constraint of the overall variation budget requires that 2εL = 3
20

√
SA
T0D

L ≤ ∆,

which in turn requires L ≤ 4∆
2
3T

1
3D

1
3S− 1

3A− 1
3 . Finally, by assigning the largest possible value to L subject

to the variation budget, we obtain a dynamic regret lower bound of Ω
(
S

1
3A

1
3∆

1
3D

2
3T

2
3

)
. This completes

the proof of Proposition 1.

3.15.2 The Episodic Settings

Now let us go back to our simplified episodic setting, as depicted in Figure 3.4. One major difference with the

previous un-discounted setting is that we might not have time to mix between s◦ and s in H steps. (Note

that we only need to reach the stationary distribution over the (s◦, s) pair in each step h, rather than the

stationary distribution over the entire MDP. In fact, the latter case is never possible because the entire MDP

is not aperiodic.) It can be shown that the optimal policy on this MDP has a mixing time of Θ
(
1
δ

)
[60],

and, hence, we can choose δ to be slightly larger than Θ(1
H) to guarantee sufficient time to mix. All the

analysis up to inequality (3.62) carries over to the episodic setting, and essentially we can set δ to be Θ
(

1
H

)
to get a (static) regret lower bound of Ω(

√
SAT0H) in each segment. Another difference with the previous

setting lies in the usage of the variation budget. Since we require that all the steps in the same episode should

vary simultaneously, it now takes a variation budget of 2εH each time we switch to a new action a∗ at the

beginning of a new segment. Therefore, the overall variation budget now puts a constraint of 2εHL ≤ O(∆)

on the magnitude of each switch. Again, by choosing ε = Θ
(√

SA
T0H

)
and optimizing over possible values of

L subject to the budget constraint, we obtain a dynamic regret lower bound of Ω
(
S

1
3A

1
3∆

1
3H

1
3T

2
3

)
in the

simplified episodic setting.

Finally, we consider the standard episodic setting as introduced in Section 3.2. In this setting, we essentially

will be concatenating H distinct JAO MDPs, each with an independent good action a∗, into a chain like

Figure 3.4. The transition kernels in these JAO MDPs are also allowed to vary asynchronously in each step

h, although our construction of the lower bound does not make use of this property. As argued similarly

in [60], the number of observations for each specific JAO MDP is only T0/H, instead of T0. Therefore, we

can assign a slightly larger value to ε and the learning algorithm would still not be able to identify the good

action given the fewer observations. Setting δ = Θ
(

1
H

)
and ε = Θ

(√
SA
T0

)
leads to a (static) regret lower

bound of Ω(H
√
SAT0) in the stationary RL problem. Again, the transition kernels in all the H JAO MDPs

vary simultaneously at the beginning of each new segment. By optimizing L subject to the overall budget

constraint 2εHL ≤ O(∆), we obtain a dynamic regret lower bound of Ω
(
S

1
3A

1
3∆

1
3H

2
3T

2
3

)
in the episodic

102

setting. This completes our proof of Theorem 13.

3.16 Concluding Remarks

In this chapter, we have considered model-free reinforcement learning in non-stationary episodic MDPs. We

have proposed an algorithm named RestartQ-UCB that adopts a simple restarting strategy. RestartQ-UCB

with Freedman-type bonus terms achieves a dynamic regret of Õ(S
1
3A

1
3∆

1
3HT

2
3), which nearly matches

the information-theoretical lower bound Ω(S
1
3A

1
3∆

1
3H

2
3T

2
3). We have further presented a parameter-free

algorithm named Double-Restart Q-UCB that removes the assumption on knowing the variation budget.

Numerical experiments have validated the advantages of RestartQ-UCB in terms of both cumulative rewards

and computational efficiency. Examples in multi-agent RL and inventory control have been discussed as

applications to illustrate the power of our method. An interesting future direction would be to close the

Õ(H
1
3) factor gap between the upper and lower bounds that we have established for the non-stationary RL

problem. It would also be interesting to explore if non-stationary RL can be helpful in other multi-agent RL

or inventory control scenarios.

103

Chapter 4

Meta-Learning in Markov Games

Multi-agent reinforcement learning (MARL) has primarily focused on solving a single task in isolation, while

in practice the environment is often evolving, leaving many related tasks to be solved. In this chapter, we

investigate the benefits of meta-learning in solving multiple MARL tasks collectively. We establish the first

line of theoretical results for meta-learning in a wide range of fundamental MARL settings, including learning

Nash equilibria in two-player zero-sum Markov games and Markov potential games, as well as learning coarse

correlated equilibria in general-sum Markov games. Under natural notions of task similarity, we show that

meta-learning achieves provable sharper convergence to various game-theoretical solution concepts than

learning each task separately. As an important intermediate step, we develop multiple MARL algorithms

with initialization-dependent convergence guarantees. Such algorithms integrate optimistic policy mirror

descents with stage-based value updates, and their refined convergence guarantees (nearly) recover the best

known results even when a good initialization is unknown. To our best knowledge, such results are also

new and might be of independent interest. We further provide numerical simulations to corroborate our

theoretical findings.

4.1 Introduction

Many real-world sequential decision-making problems involve multiple agents interacting in a shared en-

vironment, a scenario commonly captured by game theory and addressed using multi-agent reinforcement

learning (MARL). Existing research in MARL has primarily focused on solving a single task (i.e., a game)

independently. In practice, however, one often needs to collectively solve a set of similar tasks due to the

dynamically evolving environment. For example, in sponsored search auctions [193], the advertising spaces

and search results are dynamic, and each bidder with an active bid will participate in a sequence of related

auctions. In multi-robot cooperation [194], [195], the learning agents are often first pre-trained in simplified

environments and are then asked to quickly adapt to more complicated ones. In cloud computing [196], [197],

a learning-based autoscaling policy needs to achieve fast model adaptation to deal with varied application

workloads or constantly evolving cloud infrastructures. All of these intriguing applications call for the

development of intelligent multi-agent systems that can continuously build on previous experiences to enhance

the learning of new tasks.

Meta-learning, or learning-to-learn [24]–[27], is a rapidly developing approach that is particularly suitable

for learning in a set of related tasks. In essence, meta-learning studies the use of data from existing tasks

104

to learn representations or model parameters that enable quick adaptation to new tasks. By exploiting

the knowledge obtained from prior tasks, the meta-learner can ideally solve an unseen task using much

fewer training samples than learning from scratch, especially when the tasks share some inherent similarities.

Despite many empirical successes [194], [195], [198], the theoretical results of meta-learning in multi-agent

scenarios are still relatively lacking. It remains elusive whether meta-learning can provably expedite the

convergence of MARL, and, if so, what the proper task similarity assumptions to impose are. In fact, it is

even unclear whether a meta-learner converges at all in a highly non-stationary system with loosely-coupled

learning agents and diverse task setups.

In this chapter, we make an initial attempt toward characterizing some of the central theoretical properties

of meta-learning in a wide range of fundamental MARL settings. We focus on the classic model-agnostic

meta-learning (MAML) [28] type of algorithms that aim to learn a good initialization for quick adaptation to

new tasks. To study the convergence rate of MAML, an important prerequisite is to understand how the

convergence of MARL algorithms depends on the quality of policy initialization. However, the convergence

guarantees of most existing MARL algorithms are initialization-independent: They fail to track how the

sub-optimality of the initial policy propagates during the learning process, and only provide pessimistic

guarantees with respect to worst-case initialization. As a crucial intermediate step to meta-MARL, we need

to establish refined initialization-dependent convergence guarantees for MARL. Our main contributions are

thus summarized as follows.

Contributions. 1) For learning Nash equilibria (NE) in two-player zero-sum Markov games, we first

propose an MARL algorithm blessed with a refined convergence analysis that explicitly characterizes the

dependence on policy initialization (Section 4.3.1). Our algorithm runs optimistic online mirror descent for

policy optimization and performs stage-based value function updates. Even when initialized with random

policies, our algorithm still matches the best-known convergence rates in the literature except for an extra

logarithmic term. Our algorithm and analysis appear to be new and might be of independent interest. 2)

Based on such refined analysis, we show that meta-learning provably achieves faster convergence to NE when

learning a sequence of “similar” zero-sum games collectively, where our similarity metric naturally depends

on the closeness of the games’ NE policies (Section 4.3.2). 3) For learning NE in Markov potential games

(MPGs), we show that a simple refinement of an existing algorithm suffices to provide initialization-dependent

guarantees. We establish sharper convergence rates of meta-learning when the MPGs have similar potential

functions (Section 4.4.1). In addition, with a properly chosen policy update rule, we prove the non-asymptotic

convergence of the exact MAML algorithm in MPGs (Section 4.4.2), despite the convoluted learning dynamics

of multiple loosely-coupled agents. 4) For learning coarse correlated equilibria (CCE) in general-sum Markov

games (Section 4.5), we analogously start by designing an initialization-dependent MARL algorithm, and

then establish the sharper convergence rate of meta-learning under natural similarity metrics. 5) We provide

numerical results to corroborate our theoretical findings (Section 4.6).

Related Work. Gradient-based meta-learning is a simple and effective approach that can be easily applied

to any learning problem trained with gradient descent. The seminal MAML method [28] tries to learn a good

model parameter initialization that leads to quick model adaptation. Theoretical properties of MAML have

been investigated in a series of works [199]–[203]. In particular, [200], [203] have established the convergence

of MAML to first-order stationarity for non-convex objectives. [202] has designed an unbiased gradient

estimator for MAML in reinforcement learning tasks. Various first-order approximations [28], [200], [204] of

MAML have been proposed to avoid the heavy computation of the Hessian. Meta-learning has also been

studied in online convex optimization [205]–[208], where regret bounds have been established under different

105

metrics of task similarity. Another line of research [209]–[211] views meta-learning through the lens of task

inference, where an RL policy is conditioned on a belief over tasks and perform Bayesian updates through

interactions to adapt to different tasks.

MARL has been widely studied under the formulation of stochastic games (i.e., Markov games) [7]. Due

to the fundamental difficulty of computing NE in generic games [15], most MARL research has focused on

learning NE in games with special structures (such as zero-sum Markov games [13], [14], [34], [54], [55], [70],

[122], [212], [213] and Markov potential games [89], [91], [214]–[218]) or learning weaker solution concepts such

as (coarse) correlated equilibria [16], [17], [72], [123], [219]–[221]. The most relevant works are [121], [122],

which have studied the convergence of optimistic no-regret learning and smooth value updates in MARL

with full-information feedback. For learning NE in MPGs, [91], [214], [215] have studied independent policy

gradient methods and established their sample complexity results. These works have focused on learning

a single game in isolation but have not considered exploiting the connections between multiple games to

expedite the learning process.

Most related to ours, [222] has studied meta-learning in normal-form games. Under different notions

of game similarities, [222] has shown faster convergences of meta-learning in zero-sum, general-sum, and

Stackelberg games. [223] has investigated no-regret learning in time-varying zero-sum normal-form games.

Compared to [222], [223], we consider meta-learning in the more generic and challenging Markov game setup

with state transitions. Other related works include meta-learning for regret minimization in a distribution of

games [224] and meta-safe RL for quick adaptation in constrained Markov decision processes (CMDPs) under

task similarity [225]. Finally, meta-learning has also been empirically applied to many important MARL

scenarios, including multi-intersection traffic signal control [198], multi-agent communication with natural

language [195], and multi-agent collaboration with first-person pixel observations in open-ended tasks [226].

4.2 Preliminaries

Markov game. An N -player episodic Markov game is defined by a tuple G = (N , H,S, {Ai}Ni=1, {ri}Ni=1, P),

where (1) N = {1, 2, . . . , N} is the set of agents; (2) H ∈ N+ is the number of time steps in each episode; (3)

S is the finite state space; (4) Ai is the finite action space for agent i ∈ N ; (5) ri : [H]×S×Aall → [0, 1] is the

reward function for agent i, where Aall = ×Ni=1Ai is the joint action space; and (6) P : [H]×S ×Aall → ∆(S)
is the transition kernel. The agents interact in an unknown environment for T episodes. Without loss of

generality, we make a standard assumption [219], [220] that each episode starts from a fixed initial state s1. Our

results can be easily generalized to the setting where the initial state is sampled from a fixed distribution. At

each time step h ∈ [H], the agents observe the state sh ∈ S, and take actions ah,i ∈ Ai, i ∈ N simultaneously.

Agent i then receives its reward rh,i(sh,ah), where ah = (ah,1, . . . , ah,N), and the environment transitions to

the next state sh+1 ∼ Ph(·|sh,ah). Let S = |S|, Ai = |Ai|,∀i ∈ N , and Amax = maxi∈N Ai.

Policy and Nash equilibrium. A (Markov) policy πi ∈ Πi : [H]×S → ∆(Ai) for agent i ∈ N is a mapping

from the time index and state space to a distribution over its own action space. Each agent seeks to find a

policy that maximizes its own cumulative reward. A joint, product policy π = (π1, . . . , πN) ∈ Π induces a

probability measure over the sequence of states and joint actions. We use the subscript −i to denote the

set of agents excluding agent i, i.e., N\{i}. We can rewrite π = (πi, π−i) using this convention. For a joint

106

policy π, and for any h ∈ [H], s ∈ S, and a ∈ Aall, we define the value function and Q-function for agent i as

V πh,i(s) := Eπ
[H∑
h′=h

rh′,i(sh′ ,ah′)|sh = s
]
, Qπh,i(s,a) := Eπ

[H∑
h′=h

rh′,i(sh′ ,ah′)|sh = s,ah = a
]
.

For agent i, a policy π†
i is a best response to π−i if V

π†
i ,π−i

1,i (s1) = supπi
V
πi,π−i

1,i (s1). A joint (product) policy

π = (πi, π−i) ∈ Π is a Nash equilibrium (NE) if πi is a best response to π−i for all i ∈ N . Similarly, for any

ε > 0, a joint policy π = (πi, π−i) is an ε-approximate NE if V
πi,π−i

1,i (s1) ≥ V π
†
i ,π−i

1,i (s1)− ε, ∀i ∈ N .

Correlated policy and coarse correlated equilibrium. We define π = {πh : R × (S × A)h−1 × S →
∆(A)}h∈[H] as a (non-Markov) correlated policy, where for each h ∈ [H], πh maps from a coordination device

z ∈ R and a history of length h − 1 to a distribution over the joint action space. Let πi and π−i be the

proper marginal distributions of π whose outputs are restricted to ∆(Ai) and ∆(A−i), respectively. The value

functions for non-Markov correlated policies at step h = 1 are defined in a similar way as for product policies.

Given the PPAD-hardness of calculating NE in general [30], people often study a relaxed solution concept

named coarse correlated equilibrium (CCE), which allows possible correlations in the policies: In particular, for

any ε > 0, a correlated policy π = (πi, π−i) is an ε-approximate CCE if V
πi,π−i

1,i (s1) ≥ V π
†
i ,π−i

1,i (s1)−ε, ∀i ∈ N .
Two-player zero-sum Markov game. An important special case of Markov games is (two-player) zero-sum

Markov games, where there are two players (N = 2) with exactly opposite rewards (r1 = −r2). In a zero-sum

game, we simply use r, V , and Q to denote the reward and (Q-)value functions for the max-player, i.e., agent

1. Correspondingly, the min-player has −r,−V , and −Q. For notational convenience, we denote the action

space for the max-player (resp. min-player) by A (resp. B), and let A = |A|, B = |B|. We also write their

policies (π1, π2) as (µ, ν) for short. In zero-sum games, it is known that although the NE policy (µ⋆, ν⋆) may

not be unique, all the NE have the same values. We use V ⋆h and Q⋆h to denote the NE value function and the

NE Q-function. For any fixed (h, s) ∈ [H]×S and an arbitrary function Q : S ×A×B → R, we may consider

Q(s, ·, ·) as an A×B matrix. Then, for any policy pair (µh, νh) at step h ∈ [H], we can write in shorthand:[
µ⊤
hQνh

]
(s) := Ea∼µh(·|s),b∼νh(·|s)[Q(s, a, b)] = ⟨µh, Qνh⟩ (s),[

µ⊤
hQ
]
(s, ·) := Ea∼µh(·|s)[Q(s, a, ·)], and [Qνh] (s, ·) := Eb∼νh(·|s)[Q(s, ·, b)].

Given the transition function P and an arbitrary function V : S → R, we define

[PhV] (s, a, b) := Es′∼Ph(·|s,a,b) [V (s′)] .

The Bellman equations can hence be rewritten more succinctly as

V µ,νh (s) =
[
µ⊤
hQ

µ,ν
h νh

]
(s), and Qµ,νh (s, a, b) = rh(s, a, b) +

[
PhV

µ,ν
h+1

]
(s, a, b).

Markov potential game. Another important class of games is Markov potential games [89], [215], [227].

MPGs cover Markov teams [76], a fully cooperative setting where all agents share the same rewards. A

Markov game is an MPG if there exists a global potential function Φ : Π× S → [0,Φmax] that can capture

the variations of the agents’ individual values: Specifically, ∀i ∈ N and s ∈ S,

Φs(πi, π−i)− Φs(π
′
i, π−i) = V

πi,π−i

1,i (s)− V π
′
i,π−i

1,i (s),∀πi, π′
i ∈ Πi, π−i ∈ Π−i.

Throughout the chapter, we consider the classic full-information feedback setting [36], [54], [85], [115],

107

[212], where the players are assumed to have exact information of the consequences of each of their candidate

actions. In the case of zero-sum games, this implies that for any (h, s), the max-player and min-player can

query [Qhνh](s, ·) and [µ⊤
hQh](s, ·), respectively. Our meta-learning results can be easily extended to the

stochastic bandit feedback setting using standard techniques, as in [16], [34], [91], [220].

Meta-learning. Let G = {Gk} be a set of different Markov games. Each game is defined by Gk =

(N , H,S, {Ai}Ni=1, {rki }Ni=1, P
k), where we assume without loss of generality that the games share the same

agent set and state & action spaces, but can have different transition and reward functions. Most of our

results are established in the online learning setting where we encounter a sequence of K games (G1, . . . ,GK)

one by one. To achieve faster convergence, the learning agents should use the knowledge obtained from

previous games to expedite the learning process in future games.

The underlying principle of MAML [28] is to learn a good initialization such that running a few training

steps from this initialization can lead to well-performing model parameters on any new task. An MAML-type

algorithm in the context of RL typically involves two nested stages. The inner stage (or “base algorithm”) ψ

performs T iterations of policy updates to optimize for an individual task Gk:

πk,t ← ψ(πk,t−1;Gk),∀t ∈ [T]. (4.1)

When task Gk is completed, the outer stage (or “meta-algorithm”) Ψ learns to form a good initialization

πk+1,0 for a new task Gk+1 using all the knowledge obtained from all previous tasks:

πk+1,0 ← Ψ({πk′,t}k′∈[k],t∈[T];G1, . . . ,Gk). (4.2)

In this chapter, we seek to properly instantiate both the base algorithm ψ and the meta-algorithm Ψ for a

variety of MARL problems. We aim to show that a proper design of the meta-learning procedure (ψ,Ψ) can

largely reduce the number of iterations T required to find NE or CCE in a new game.

4.3 Meta-Learning for Two-Player Zero-Sum Markov Games

In this section, we study meta-learning for Nash equilibria in zero-sum Markov games, where players are

fully competitive. Since MAML-type algorithms seek to learn a good initialization for quick adaptation, it is

crucial to explicitly characterize how the convergence behavior of an MARL algorithm depends on the initial

policy. To our best knowledge, such results are not directly achievable using existing algorithms. For this

reason, in Section 4.3.1, we start by proposing a new base algorithm (4.1) for zero-sum Markov games that

has a refined initialization-dependent convergence guarantee. Based on that, we present our meta-algorithm

(4.2) in Section 4.3.2 and establish its sharper convergence rates.

4.3.1 Initialization-Dependent Convergence in an Individual Zero-Sum Markov

Game

Algorithm 16 presents our optimistic online mirror descent algorithm with stage-based value updates for

learning NE in a zero-sum Markov game. To establish initialization-dependent convergence, Algorithm 16

performs optimistic online mirror descent (OMD) [114], [115] for policy updates (Lines 5 and 6), in contrast

to the popular optimistic follow the regularized leader (FTRL) method in recent MARL policy optimization

[121], [122]. We choose the negative entropy as our regularizer R, in which case the Bregman divergence

108

DR(·, ·) reduces to the Kullback–Leibler divergence and optimistic OMD becomes an optimistic variant of

the classic multiplicative weights update (MWU) algorithm.

Algorithm 16: Optimistic Online Mirror Descent for Zero-Sum Markov Games

1 Input: Initial policies µ̃ : [τ̄]× [H]× S → ∆(A) and ν̃ : [τ̄]× [H]× S → ∆(B);
2 Set stage index τ ← 1, tstartτ ← 1, and Lτ ← H;
3 Initialize: µ0

h = µ̂0
h ← µ̃1

h, ν
0
h = ν̂0h ← ν̃1h, and Q

τ
h ← 0,∀h ∈ [H];

4 for iteration t← 1 to T do
5 Auxiliary policy update: for each step h ∈ [H] and state s ∈ S:

µ̂th(·|s)← argmax
µ̂∈∆(A)

η
〈
µ̂, [Qτhν

t−1
h](s, ·)

〉
−DR(µ̂, µ̂

t−1
h (·|s));

ν̂th(·|s)← argmax
ν̂∈∆(B)

η
〈
ν̂, [(µt−1

h)⊤Qτh](s, ·)
〉
−DR(ν̂, ν̂

t−1
h (·|s));

6 Policy update: for each step h ∈ [H] and state s ∈ S:

µth(·|s)← argmax
µ∈∆(A)

η
〈
µ, [Qτhν

t−1
h](s, ·)

〉
−DR(µ, µ̂

t
h(·|s));

νth(·|s)← argmax
ν∈∆(B)

η
〈
ν, [(µt−1

h)⊤Qτh](s, ·)
〉
−DR(ν, ν̂

t
h(·|s));

7 if t− tstartτ + 1 ≥ Lτ then
8 tendτ ← t, tstartτ+1 ← t+ 1, Lτ+1 ← ⌊(1 + 1/H)Lτ⌋;
9 Value update: for each h ∈ [H], s ∈ S, a ∈ A, b ∈ B:

Qτ+1
h (s, a, b)← 1

Lτ

tendτ∑
t′=tstartτ

(
rh + Ph[(µ

t′

h+1)
⊤Qτh+1(ν

t′

h+1)]
)
(s, a, b);

10 τ ← τ + 1; µth = µ̂th ← µ̃τh, ν
t
h = ν̂th ← ν̃τh ,∀h ∈ [H];

11 Output policy: µ̄h(·|s) = 1
T

∑T
t=1 µ

t
h(·|s) and ν̄h(·|s) = 1

T

∑T
t=1 ν

t
h(·|s),∀s ∈ S, h ∈ [H].

In order to establish convergence to (approximate) NE, we need to show that our optimistic OMD policy

updates achieve “no regret” with respect to the value estimate sequence at each state, i.e., to upper bound

(4.3). If we were to use the celebrated αt =
H+1
H+t learning rate [60] to update the value function estimates, we

will inevitably need to show a no-weighted-regret guarantee for optimistic OMD, because such a time-varying

learning rate assigns non-uniform weights to each history step. However, incorporating OMD with a dynamic

learning rate is known to be challenging and can easily lead to linear regret [104]. While a stabilization

technique [228] has been introduced to tackle this challenge, we take a different route by resorting to an

alternative value update method, namely stage-based value updates [61]. Specifically, we divide the total

T iterations into multiple stages and only update our value estimates at the end of a stage (Line 9). We

let the lengths of the stages grow exponentially at a rate of (1 + 1/H) (Line 8) [23], [61]. The exponential

growth ensures that the total T iterations can be covered by a small number of stages, while the (1 + 1/H)

growth rate guarantees that the value estimation error does not blow up during the H steps of recursion

(Lemma 38). Compared with the incremental αt =
H+1
H+t update rule that modifies the value estimates at

every step, stage-based updates are more stationary and allow us to assign uniform weights to each history

step. This leads to a simpler no(-average)-regret problem [17] that can be easily addressed by (optimistic)

OMD.

109

We introduce a few notations before presenting the convergence analysis of Algorithm 16. Let τ(t) denote

the index of the stage that iteration t belongs to. We denote by τ̄ the total number of stages, i.e., τ̄ := τ(T).

For any (τ, h, s) ∈ [τ̄]× [H]× S, define the per-state regrets for the max-player as

regτh,1(s) := max
µτ,†
h (·|s)∈∆(A)

1

Lτ

tendτ∑
j=tstartτ

〈
µτ,†h − µ

j
h, Q

τ
hν

j
h

〉
(s). (4.3)

The per-state regret regτh,2(s) for the min-player can be defined symmetrically (see (4.14) in Section 4.8). We

define the maximal regret (over the states and the two players) as regτh := maxs∈S maxi=1,2{regτh,i(s)}. An
upper bound for the per-state regrets is provided in Lemma 37 of Section 4.8, which is useful in the analysis

of Algorithm 16. We use the standard notion of

NE-gap(µ, ν) := V †,ν
1 (s1)− V µ,†1 (s1)

to measure the optimality of a policy pair (µ, ν). The initialization-dependent convergence rate of Algorithm 16

is as follows.

Theorem 17. If Algorithm 16 is run on a two-player zero-sum Markov game for T iterations with a learning

rate η ≤ 1/(8H2), the output policy pair (µ̄, ν̄) satisfies:

NE-gap(µ̄, ν̄) ≤ 192H3

T

H∑
h=1

τ̄∑
τ=1

max
s

(
DR(µ

τ,†
h (·|s), µ̃τh(·|s)) +DR(ν

τ,†
h (·|s), ν̃τh(·|s))

)
.

In addition, if the players’ policies are initialized to be uniform policies, i.e., µ̃τh(·|s) = 1/A and ν̃τh(·|s) =
1/B, ∀s ∈ S, τ ∈ [τ̄], h ∈ [H], we further have

NE-gap(µ̄, ν̄) ≤ 768H5 log T log(AB)

T
. (4.4)

Compared to existing results [121], [122], Theorem 17 directly associates the convergence rate with the

quality of the initial policy (µ̃, ν̃). Even when a good policy initialization is unknown and the algorithm

is initialized with uniformly random policies, our convergence rate in (4.4) still matches the best-known

result in the literature [122] except for an extra factor of O(log T). When suppressing the logarithmic terms,

Theorem 17 immediately implies that for any ε > 0, Algorithm 16 takes no more than T = Õ(H5/ε) steps to

learn an ε-approximate NE in an individual zero-sum Markov game.

4.3.2 Sharper Convergence with Meta-Learning

Having settled the initialization-dependent convergence in a zero-sum game, we proceed to show how meta-

learning can learn a set of related games collectively and more rapidly. We consider an online setting

with a sequence of K games G = (G1, . . . ,GK). For the max-player, let µ̃k and µ̄k, respectively, denote

the initial policy and output policy of Algorithm 16 on game Gk. By putting together µτ,†h (·|s) over all

(τ, h, s) ∈ [τ̄]× [H]× S, we let µk,† : [τ̄]× [H]× S → ∆(A) denote the best fixed policies in hindsight on Gk.
Define ν̃k, ν̄k and νk,† analogously for the min-player. Let µ⋆ = 1

K

∑K
k=1 µ

k,† and ν⋆ = 1
K

∑K
k=1 ν

k,† be the

empirical averages of the best response policies. To ensure that the knowledge gained from previous games is

useful for learning future tasks, we need to impose some similarity assumptions on the games G. We consider

110

the following similarity metric:

∆µ,ν :=

K∑
k=1

(
KL
(
µk,†∥µ⋆

)
+KL

(
νk,†∥ν⋆

))
.

Intuitively, since {νk,t}t∈[T] converges to an equilibrium policy for Gk when T is large, the best fixed responses

µk,† can be considered as an approximation of the max-player’s NE policy on Gk. In this sense, ∆µ,ν

essentially measures the distances between the NE policies of different games. It considers a set of games G
to be “similar” if their NE policies lie in a close neighborhood of each other. We remark that there might be

multiple NE policies (with the same value) in a zero-sum game, and ∆µ,ν only takes into account the NE

policy pairs that Algorithm 16 actually delivers.

Our meta-learning procedure proceeds as follows: Within each game Gk, we run Algorithm 16 as our base

algorithm (4.1) to find a NE of Gk. In a new game Gk+1, the initial policy of Algorithm 16 is given by the

following meta-updates in the outer loop (4.2), which essentially averages the best response policies of the

previous tasks under α-greedy parameterization:

µ̃k+1 =
1

k

k∑
k′=1

[µk
′,†]α, and ν̃k+1 =

1

k

k∑
k′=1

[νk
′,†]α. (4.5)

In particular, for any vector x ∈ Rd, we define its α-greedy parameterization [x]α := (1− α)x+ α
d1 to be

a weighted average with a uniform vector 1/d ∈ Rd of a proper dimension, where α ∈ (0, 1/2). Since µk,†

denotes a set of vectors, we apply the operator [·]α element-wise to each of the vectors. The reason for

using α-greedy is mainly technical: KL (·∥·) is not Lipschitz continuous near the boundary of the probability

simplex, and α-greedy parameterization helps to stay α-distance away from the boundary. We are now ready

to present our sharper convergence rates for meta-learning.

Theorem 18. In a sequence of K two-player zero-sum Markov games, if Algorithm 16 is run for T iterations

as the base algorithm and (4.5) with α = 1/
√
K as the meta-updates, we have

1

K

K∑
k=1

NE-gap(µ̄k, ν̄k) ≤ 192H5

T

(
∆µ,ν

KH2
+

10(A+B) logK√
KH2

+
16 log T log(ABK)√

K

)
. (4.6)

Consequently, for any ε > 0, T = Õ(H
3

ε (
∆µ,ν

K + A+B+H2
√
K

)) steps on average suffice to find an ε-approximate

Nash equilibrium in each game.

When the number of games K is large, the last two terms on the RHS of (4.6) become negligible. Hence,

compared to the best-known results Õ(H5/T) of learning each game individually, Theorem 18 implies a

significantly sharper convergence rate when the games are similar, i.e., when ∆µ,ν ≪ KH2.

4.4 Meta-Learning for Markov Potential Games

In this section, we study meta-learning for NE in Markov potential games. We show that a straightforward

refinement to the analysis of an existing algorithm [91] provides initialization-dependent bounds. Building

on it, in Section 4.4.1, we first investigate the sharper convergence of meta-learning in a sequence of similar

MPGs. Further, since there exists an optimization objective universally agreed on by all the players in an

111

MPG (i.e., the potential function), we can formulate the meta-learning problem in the same way as MAML

[28]. In Section 4.4.2, by choosing a proper base algorithm, we establish the non-asymptotic convergence of

MAML in the highly non-stationary multi-agent scenario, without even imposing any smoothness assumptions

as in existing works [200], [202], [203].

4.4.1 Sharper Rates in Similar Games

To be consistent with existing results in the literature, in this section, we consider an infinite-horizon

γ-discounted reward setting for MPGs [89], [91], [215], [227]. A detailed description of the setup is provided

in Section 4.9 for completeness. Equivalent results for the finite-horizon episodic setting (as we defined in

Section 4.2) can be derived in a straightforward way. We choose an existing state-of-the-art algorithm, namely

independent projected Q-descent [91], as our base algorithm (4.1). Specifically, in an MPG Gk, each agent

independently runs policy gradient ascents to update its own policy for T iterations:

πk,ti (·|s)← Proj∆(Ai)

(
πk,t−1
i (·|s) + αQ̄π

k,t−1

i (s, ·)
)
,∀t ∈ [T], (4.7)

where Q̄πi is the “averaged” Q-function formally defined in Section 4.9. Let Φ(· ;Gk) denote the potential

function of Gk. Through a simple refinement of the analysis in [91], we can establish the following initialization-

dependence bound for our base algorithm (4.7).

Proposition 3. (Theorem 1 in [91]) Suppose that all players in a Markov potential game Gk run independent

projected Q-descent (4.7) for T iterations with α ≤ (1−γ)4
8κ3NAmax

. Then, we have

1

T

T−1∑
t=0

NE-gap(πk,t) ≤
√
κ(Gk)(Φ(πk,T ;Gk)− Φ(πk,0,Gk))

αT (1− γ)2 ,

where κ(Gk) is the standard distribution mismatch coefficient for Gk formally defined in Section 4.9.

Proposition 3 immediately implies that if we learn each MPG individually, it takes T = O(NAmaxκ
4Φmax

(1−γ)6ε2)

steps to find an ε-approximate NE. To show the effectiveness of meta-learning, we consider the following

similarity metric for a sequence of K games, which measures the maximal point-wise deviations of the

potential functions:

∆Φ :=

K−1∑
k=1

max
π

(
Φ(π;Gk)− Φ(π;Gk+1)

)
. (4.8)

As for the meta-updates, we simply instantiate (4.2) as πk,0i ← πk−1,T
i , which lets each agent play the

converged policy in the previous game. The intuition is that after running T steps on Gk−1, the agents

will converge to an approximate NE policy of Gk−1. Since (4.8) requires the potential functions to be close,

the converged policy πk−1,T should serve as a good starting point to search for NE in Gk. We formally

characterize such an intuition in the following theorem, which shows the sharper convergence of meta-learning

in a large set of similar MPGs (i.e., when K is large and ∆Φ is small):

Theorem 19. In a sequence of K Markov potential games, if (4.7) is run for T iterations as the base

algorithm and πk,0i ← πk−1,T
i as the meta-updates, then, for any ε > 0, T = O(NAmaxκ

4(Φmax+∆Φ)
K(1−γ)6ε2) steps on

average suffice to find an ε-approximate Nash equilibrium in each game.

112

4.4.2 Convergence to MAML Objective

In this subsection, we study meta-learning for MPGs under exactly the same formulation as in the seminal

work of MAML [28]. Let G = {Gj} be a set of different MPGs, where the games are now drawn from a

fixed distribution p that we can sample from. We consider parametric policy classes where agent i’s policy is

parameterized by θi = {θi(ai|s) ∈ R}s∈S,ai∈Ai . We focus on softmax parameterization where

πθi(ai|s) =
exp(θi(ai|s))∑

a′i∈Ai
exp(θi(a′i|s))

.

Let ζ(· ;G) denote the operator of performing one step of policy gradient update on game G, i.e., ζ(θ;G) :=

θ + α∇Φ(θ;G), where α > 0 is the learning rate. The T -step MAML objective [28], [202], [203] can be

formulated as

max
θ∈Θ

FT (θ) := EG∼p(G) [Φ (ζ(. . . (ζ(θ;G)) . . .);G)] , (4.9)

where θ = (θ1, . . . , θN) ∈ Θ, and the operator ζ(· ;G) is applied T times. Intuitively, MAML tries to find a

good parameter initialization from which running T steps of gradient ascents on any new task G leads to

well-performing policy parameters.

Similar to Section 4.2, the MAML procedure consists of two nested stages. For the inner stage (4.1), we

let each agent independently run T steps of policy gradient ascents to update its policy parameter θ
(t)
i on each

encountered MPG. It is known (Theorem 5 of [218]) that T = O(1/ε2) steps will find an ε-approximate NE

for each individual MPG. For the outer stage (4.2), MAML directly performs gradient ascents with respect

to the meta-objective (4.9). The gradient of FT can be written in closed-form as

∇FT (θ) = EG∼p(G)

[(T−1∏
t=0

(
I + α∇2Φ(θ(t);G)

))
∇Φ(θ(T);G)

]
. (4.10)

A detailed discussion of MAML and its instantiation in our problem are provided in Section 4.9. Most

importantly, Section 4.9 shows that both the policy gradient ∇Φ(θ) and the policy Hessian ∇2Φ(θ) can be

written in closed-form, which allows us to construct unbiased estimators of (4.10) from samples. Despite the

fact that the learning agents update their policies independently in an intertwined multi-agent system, our

next result shows that the MAML updates converge to a stationary point of the meta-objective (4.9) in a

non-asymptotic manner. A key step of the proof is to prove (rather than assume, as in existing works [200],

[203]) that the meta-objective is Lipschitz smooth in the policy parameter θ. The smoothness constant can

also be written in a closed form (Lemma 43).

Theorem 20. Suppose that the agents run independent policy gradient ascents with softmax parameterization

on each encountered MPG as the inner stage, and perform gradient ascents w.r.t the MAML objective as

the outer stage. For any ε > 0, K = 4NLF

(1−γ)ε2 iterations of MAML updates can find a policy θ⋆ such that

∥∇FT (θ⋆)∥ ≤ ε, where LF is given in Lemma 43 of Section 4.9.

4.5 Meta-Learning for General-Sum Markov Games

In this section, we consider learning coarse correlated equilibria in general-sum Markov games with no

assumption on reward structures. Similar to Section 4.3, we start by developing an initialization-dependent

algorithm, followed by investigating the sharper convergence of meta-learning.

113

Algorithm 17: Optimistic Online Mirror Descent for CCE in General-Sum Markov Game

1 Input: Initial policies π̃ : [τ̄]× [H]× S → ∆(Aall);
2 Set stage index τ ← 1, tstartτ ← 1, and Lτ ← H;
3 Initialize: π0

h = π̂0
h ← π̃1

h, and Q
τ
h ← 0,∀h ∈ [H];

4 for iteration t← 1 to T do
5 Auxiliary policy update: for each player i ∈ N , step h ∈ [H] and state s ∈ S:

π̂th,i(·|s)← argmax
µ∈∆(Ai)

η
〈
µ, [Qτh,iπ

t−1
h,−i](s, ·)

〉
−DR(µ, π̂

t−1
h,i (·|s));

6 Policy update: for each player i ∈ N , step h ∈ [H] and state s ∈ S:

πth,i(·|s)← argmax
µ∈∆(Ai)

η
〈
µ, [Qτh,iπ

t−1
h,−i](s, ·)

〉
−DR(µ, π̂

t
h,i(·|s));

7 if t− tstartτ + 1 ≥ Lτ then
8 tendτ ← t, tstartτ+1 ← t+ 1, Lτ+1 ← ⌊(1 + 1/H)Lτ⌋;
9 Value update: for each h ∈ [H], s ∈ S,a ∈ Aall, i ∈ N :

Qτ+1
h,i (s,a)← 1

Lτ

tendτ∑
t′=tstartτ

(
rh,i + Ph[Q

τ
h+1,iπ

t′

h+1]
)
(s,a);

10 τ ← τ + 1; πth = π̂th ← π̃τh,∀h ∈ [H];

11 Output policy: Sample t ∼ Unif([T]). Output π̄ := π̄t1 as defined in Algorithm 18.

Our base algorithm for learning CC in a general-sum Markov game is presented in Algorithm 17. Similar

to Algorithm 16 for zero-sum Markov games, Algorithm 17 performs optimistic online mirror descent [114],

[115] for policy updates in order to establish initialization-dependent convergence. Algorithm 17 also utilizes

stage-based value updates to avoid the need for a complicated no-weighted-regret analysis. Different from

Algorithm 16, the output policy π̄ of Algorithm 17 is no longer a state-wise average policy but rather a

correlated policy. The construction of π̄, similar to the construction of the “certified policies” in the literature,

is described in Algorithm 18.

We introduce a few more notations to facilitate the analysis. For any correlated policy π, we use the

notion

CCE-gap(π) := max
i∈N

V
†,π−i

1,i (s1)− V π1,i(s1)

to measure its distance to a CCE. Let τ̄ denote the total number of stages of Algorithm 17. Similar to

zero-sum games (4.3), for any (τ, h, s) ∈ [τ̄]× [H]×S, we define the per-state regret for each player i ∈ N as

regτh,i(s) := max
πτ,†
h,i(·|s)∈∆(Ai)

1

Lτ

tendτ∑
j=tstartτ

〈
πτ,†h,i − π

j
h,i, Q

τ
h,iπ

j
h,−i

〉
(s),

where Qτh,i is player i’s Q-function estimate at stage τ . We define the maximal regret (over the states and all

the players) as

regτh := max
s∈S

max
i∈N
{regτh,i(s)}.

Finally, we define δth,i := maxs∈S(V
†,π̄t

h,−i

h+1,i −V
π̄t
h

h,i)(s), and let δth := maxi∈N δth,i. Lemma 46 provides an upper

114

Algorithm 18: Construction of π̄th

1 Input: Policy trajectory {πth}h∈[H],t∈[T] of Algorithm 17;
2 for step h′ ← h to H do
3 Uniformly sample j from {tstartτ(t)−1, t

start
τ(t)−1 + 1, . . . , tendτ(t)−1};

4 Execute policy πjh for step h;
5 Set t← j;

bound of the per-state regret, which further leads us to the following initialization-dependent convergence

guarantee of Algorithm 17.

Theorem 21. If Algorithm 17 is run on a general-sum Markov game for T iterations with a learning rate

η > 0, the output policy π̄ satisfies:

CCE-gap(π̄) ≤ 3

ηT

τ̄∑
τ=1

H∑
h=1

max
i∈N ,s∈S

DR(π
τ,†
h,i(·|s), π̃τh,i(·|s)) + 36N2η2H4.

In addition, if the players’ policies are initialized to be uniform policies π̃τh,i(·|s) = 1/Ai,∀i ∈ N and η is

chosen as η = H−2/3T−1/3(N − 1)−2/3, then we have

CCE-gap(π̄) ≤ 12N
2
3H

8
3 log T logAmax

T
2
3

. (4.11)

Compared to existing results, Theorem 21 directly associates the convergence rate with the quality of the

initial policy π̃. With uniform initialization, the convergence rate in (4.11) has a slightly worse dependence

on T than the best known result Õ(
√
NH11/4/T 3/4) [121]. Such deterioration is due to the potential lack of

a smoothness condition for optimistic OMD that directly connects the stability of policies to the stability of

utility functions (Lemma 47), unlike in optimistic FTRL. Although we believe that our rate in (4.11) can

almost certainly be improved via a refined stability analysis, we leave the tightening of it to our future work,

as it would be a departure from the main focus of this chapter.

Let π̃k and π̄k, respectively, denote the initial policy and output policy of Algorithm 17 on game Gk. For
player i ∈ N , by putting together πτ,†h,i(·|s) over all (τ, h, s), we use πk,†i : [τ̄]× [H]× S → ∆(Ai) to denote

the best fixed policies in hindsight on Gk. We consider a game similarity metric defined as

∆π :=

K∑
k=1

N∑
i=1

KL(πk,†i ∥π⋆i), where π⋆i =
1

K

K∑
k=1

πk,†i .

The following theorem presents the convergence rate of meta-learning, which again is sharper than learning

each game individually when the games are similar, i.e., when ∆π is sufficiently small.

Theorem 22. In a sequence of K general-sum Markov games, if Algorithm 17 is run for T iterations

as the base algorithm and the meta-updates π̃ki = 1
k−1

∑k−1
k′=1[π

k′,†
i]α,∀i ∈ N are used with α = 1/

√
K for

policy initializations, then, for any ε > 0, T = Õ(HN
ε3/2

(
∆3/2

π

K5/4 +
A3/2

max+H
3

K1/2)) steps on average suffice to find an

ε-approximate CCE in each game.

115

4.6 Simulations

In this section, we present our simulation results. We first evaluate our algorithms on a sequence of handcrafted

two-player zero-sum Markov games (Section 4.6.1) and Markov potential games (Section 4.6.2). Then, in

Section 4.6.3, we further demonstrate the scalability of our methods by considering larger-scale tasks, including

a simplified version of the Poker endgame considered in [222] and a 1D linear-quadratic tracking task [229].

4.6.1 Zero-Sum Markov Games

We first evaluate our meta-learning procedure presented in Section 4.3 on a sequence of K = 10 two-player

zero-sum Markov games. We generate a sequence of K similar games by first specifying a “base game” and

then adding random perturbations to its reward function to get K slightly different games. For our base

game, we consider a simple zero-sum game with two states S = {s0, s1}, where each player has two candidate

actions A = {a0, a1} and B = {b0, b1}, respectively. The reward matrices for the max-player at the two states

are given in Table 4.1. We add independent N (0, 0.1) Gaussian perturbation to each entry of the reward

matrix to generate K = 10 slightly different games.

s0 b0 b1

a0 0.5 0

a1 -1 0.5

s1 b0 b1

a0 0.5 0

a1 0.2 1

Table 4.1: Reward matrices for the max-player in the base game.

To better visualize the similarity level of these games, we plot the NE policies of the two perturbed matrix

games in each of the K = 10 games. In particular, let µ⋆ = (µ⋆0, µ
⋆
1) ∈ [0, 1]2 and ν⋆ = (ν⋆0 , ν

⋆
1) ∈ [0, 1]2

denote the NE policies of the two players in a certain game. Since µ⋆0 + µ⋆1 = 1 and ν⋆0 + ν⋆1 = 1, it suffices

to simply use the two values µ⋆0 ∈ [0, 1] and ν⋆0 ∈ [0, 1] to characterize the NE policies. Figure 4.1 (c) plots

the relative position of the (µ⋆0, ν
⋆
0) pairs of the K × 2 games in the space of [0, 1]× [0, 1] to illustrate their

closeness, where the [0, 1]× [0, 1] space is large enough to cover all possible zero-sum games of the same form.

We note that Figure 4.1 (c) only plots the NE pairs with respect to the perturbed matrix games as defined in

Table 4.1. Due to the existence of the state transitions, the NE policies with respect to the stage Q-functions

can be more diversified. In this sense, we can see that our similarity assumption of the games is not too

stringent, as it allows the games to have relatively diverse NE policies.

0 250 500 750 1000
Iterations

0

2

4

N
E

-g
ap

Individual NE-gap

Meta-learning NE-gap

(a) Zero-sum game NE-gap

0 250 500 750 1000
Iterations

0

1

2

V
al

ue

Individual value

Meta-learning value

(b) Zero-sum game value

0.0 0.2 0.4 0.6 0.8 1.0
µ?0

0.00

0.25

0.50

0.75

1.00

ν
? 0

State s0

State s1

(c) NE visualization

Figure 4.1: Average (a) NE-gaps and (b) values of the policies output by individual learning and meta-learning
in zero-sum Markov games. Shaded areas denote the standard deviations. (c) visualizes the NE policies of
the K games in the normalized space [0, 1]× [0, 1] to illustrate their closeness.

116

The state transition function is defined as follows: In both states s0 and s1, if the two players take

matching actions (namely (a0, b0) or (a1, b1)), the system stays at the current state with probability 0.9, and

transitions to the other state with probability 0.1. On the other hand, if the two players take opposite actions

(namely (a0, b1) or (a1, b0)), the environment will stay at the current state with probability 0.1, and will

transition to the other state with probability 0.9.

Each of the K games lasts for H = 10 steps, and we run our algorithm for T = 1000 iterations on each

game. We use a learning rate of η = 0.02 for Algorithm 16. We evaluate the convergences of the algorithms

in terms of NE-gap(µ, ν) := V †,ν
1 (s1)− V µ,†1 (s1), which measures the distances from the output policies to

each agent’s best response policy. Figure 4.1 (a) compares the average NE-gap over the K games between

individual learning and meta-learning. Figure 4.1 (b) further compares the average values achieved by the

two methods. We see that compared to learning each task individually, meta-learning can utilize knowledge

from previous tasks to attain better policy initialization in a new task and converges to an approximate NE

policy (and value) using much fewer iterations.

4.6.2 Markov Potential Games

We now evaluate our meta-learning algorithm from Section 4.4 on a sequence of Markov potential games. We

illustrate our algorithm in cooperative games, an important class of MPGs where the agents share the same

rewards. We again generate a sequence of K similar games by first specifying a base game and then adding

random perturbations to its reward function to get K slightly different games. Our base game has two states

S = {s0, s1}, and each player has two candidate actions A = {a0, a1} and B = {b0, b1}. The shared reward

matrices for both players at the two states are given in Table 4.2. We add independent N (0, 0.1) Gaussian

perturbation to each entry of the reward matrix to generate K = 10 slightly different games.

s0 b0 b1

a0 0.1 0.5

a1 0.5 1

s1 b0 b1

a0 0.8 0.2

a1 0.2 0.8

Table 4.2: Reward matrices for both players in the base game.

The state transition function is defined in the same way as in Section 4.6.1: In both states s0 and s1,

if the two players take matching actions (namely (a0, b0) or (a1, b1)), the system stays at the current state

with probability 0.9, and transitions to the other state with probability 0.1. On the other hand, if the two

players take opposite actions (namely (a0, b1) or (a1, b0)), the environment will stay at the current state with

probability 0.1, and will transition to the other state with probability 0.9.

Each of theK games lasts for H = 10 steps, and we run our algorithm for T = 1000 iterations on each game.

We use a learning rate of α = 0.05 for the independent projected Q-descent algorithm (4.7). We evaluate

the convergences of the algorithms in terms of NE-gap(µ, ν) := 1
2 (V

†,ν
1 (s1) + V µ,†1 (s1)) − V µ,ν1 (s1), which

measures the distances from the algorithm’s output policies to each agent’s best response policy. Figure 4.2

(a) compares the average NE-gap over the K games between individual learning and meta-learning. Figure 4.2

(b) further compares the average values achieved by the two methods. Again, we see that meta-learning finds

better policy initialization in a new task and converges to an approximate NE policy (and value) using much

fewer iterations.

117

0 250 500 750 1000
Iterations

0.0

0.5

1.0

1.5

N
E

-g
ap

Individual NE-gap

Meta-learning NE-gap

(a) Potential game NE-gap

0 250 500 750 1000
Iterations

6

8

10

V
al

ue

Individual value

Meta-learning value

(b) Potential game value

Figure 4.2: Average (a) NE-gaps and (b) values of the policies output by individual learning and meta-learning
in Markov potential games. Shaded areas denote the standard deviations.

4.6.3 Scalability

To demonstrate the scalability of our algorithms, we further provide simulation results on some larger-scale

tasks including a Poker endgame and a 1D linear-quadratic tracking task.

The Poker endgame that we consider here is a simplified version of the one used in [222]. We use a public

River endgame (“Endgame A” of [222]) that was released in the Brains vs AI competition [3]. This task is a

zero-sum game with 2 players and roughly 1.7 million states. We simplify the game setup by restricting to 2

actions (namely calling and folding) for each player. Poker is a partially observable game, but we found that

our algorithm still performs well if each agent simply uses its local observation as the state. We generate a

sequence of K = 10 similar games by adding N (0, 0.5) perturbations to the normalized stack amounts of the

players, which essentially perturbs the reward functions. The convergence of the average NE-gap over the K

games in Figure 4.3(a) shows that our method can handle such a large state space, and our meta-learning

method can converge to an approximate NE policy faster than individual learning.

0 25000 50000 75000 100000
Iterations

0.2

0.4

0.6

N
E

-g
ap

Individual NE-gap

Meta-learning NE-gap

(a) Poker endgame NE-gap

0 2000 4000
Iterations

0.5

1.0

1.5

N
E

-g
ap

Individual NE-gap

Meta-learning NE-gap

(b) LQ tracking NE-gap

0 2000 4000
Iterations

−6

−4

−2

V
al

ue

Individual value

Meta-learning value

(c) LQ tracking value

Figure 4.3: Average NE-gaps and values of the policies output by individual learning and meta-learning in
the Poker endgame and linear-quadratic tracking task. Shaded areas denote the standard deviations.

In the 1D linear-quadratic tracking problem, each agent tries to track the positions of the other agents and

stay close to them. We adopt the discrete setting as has been utilized in a few recent works [229]–[231], which

is an approximation of the classic continuous linear-quadratic formulations. This task has primarily been

formulated as a mean-field game, but we consider a finite-agent variant of it in our simulations. Specifically,

the task we consider can be modeled as a Markov potential game with 4 players, 625 states, and a joint action

space of size 81. For each agent i, let st,i ∈ Si and at,i ∈ Ai, respectively, denote its local state (i.e., position)

and local action at time step t, and we write st = (st,1, . . . , st,4) and at = (at,1, . . . , at,4). Each agent has

118

3 candidate actions Ai = {−1, 0, 1} and can stay at 5 different positions S = {−2,−1, 0, 1, 2}. The state

transition of agent i is given by st+1,i = st,i + at,i∆t + σεt
√
∆t, where ∆t is the time duration, and εt is the

i.i.d. noise taking values from {−2,−1, 0, 1, 2} following a normal distribution. Let µt denote the empirical

mean of all the agents’ positions at time t, i.e., µt =
1
4

∑4
i=1 st,i. The reward function for agent i is specified

as ri(s, a) = (− 1
2a

2
t,i − κ

2 (µt − st,i)2)∆t. Intuitively, this reward function incentivizes agents to track and stay

close to the population (despite the random drift εt), but discourages agents from taking large-magnitude

actions. We do not consider terminal costs in our simulations. The parameters are set as ∆t = 1, σ = 1,

and κ = 0.5. We generate a sequence of similar games by adding N (0, 0.5) perturbations to the local state

transition drift magnitudes. Figures 4.3(b) and 4.3(c) demonstrate that our meta-learning method achieves

faster NE-gap and value convergences than individual learning in the linear-quadratic tracking task.

4.7 Technical Lemmas

Lemma 30. Let x, y ∈ Rd be two probability distributions lying in the d-dimensional simplex for d ≥ 2. For

α ∈ (0, 1/2), let [x]α = (1−α)x+ α
d 1 denote a weighted average between x and a uniform vector 1/d ∈ Rd of a

proper dimension. Denote by KL (x∥y) the Kullback–Leibler divergence between x and y. If yi ≥ α/d,∀i ∈ [d],

then we have

KL (x∥y) ≤ KL (x̃∥y) + 4α ln
d

α
.

Proof. From the three-points identity of the Bregman divergence (Lemma 3.1 of [232]),

KL (x∥y)−KL (x̃∥y) = KL (x∥x̃) + ⟨ln x̃− ln y, x− x̃⟩ (4.12)

The first term in (4.12) can be bounded by

KL (x∥x̃) =
d∑
i=1

xi ln
xi
x̃i

=

d∑
i=1

xi ln
xi

(1− α)xi + α
d

≤
d∑
i=1

xi ln
1

1− α ≤ ln
1

1− α.

By the Hölder’s inequality, the second term in (4.12) is bounded as

⟨ln x̃− ln y, x− x̃⟩ ≤ ∥ln x̃− ln y∥∞ ∥x− x̃∥1 . (4.13)

We handle the two terms in (4.13) separately. First,

∥ln x̃− ln y∥∞ = sup
i∈[d]

∣∣∣∣ln x̃iyi
∣∣∣∣ ≤ sup

i∈[d]

max

{
ln
x̃i
yi
, ln

yi
x̃i

}
≤ ln

1− α+ α
d

α/d
≤ ln

d

α
,

where the second to last step uses the facts that α/d ≤ x̃i ≤ 1 and α/d ≤ yi ≤ 1,∀i ∈ [d]. The last step is

simply due to the fact that d ≥ 1. To bound the second term in (4.13), notice that

∥x− x̃∥1 = ∥x− (1− α)x− α1/d∥1 = α ∥x− 1/d∥1 ≤ 2α.

Putting everything together, (4.12) can be bounded by

KL (x∥x̃) + ⟨ln x̃− ln y, x− x̃⟩ ≤ ln
1

1− α + 2α ln
d

α
≤ α2 + α+ 2α ln

d

α
≤ 4α ln

d

α
,

119

where the second to last step is derived using the Taylor expansion, and the last step holds due to the

assumptions that α ∈ (0, 1/2) and d ≥ 2. This completes the proof of the lemma.

Lemma 31. (Proposition B.1 of [208]) Let R : Θ→ R be 1-strongly convex with respect to ∥·∥ and consider

any θ1, . . . , θK ∈ Θ. Then, when run on the loss sequence α1DR(θ1,)̇, . . . , αKDR(θK ,)̇ for any positive scalars

α1, . . . , αK ∈ R+, the follow-the-leader (FTL) algorithm obtains regret

regK ≤ 2CD

K∑
k=1

α2
kGk

αk + 2
∑k−1
k′=1 αk′

,

for C such that ∥θ∥ ≤ C ∥θ∥2 ,∀θ ∈ Θ, D = maxθ,θ′∈Θ ∥θ − θ′∥2 the L2 diameter of Θ, and Gk the Lipschitz

constant of DR(θk, ·) over Θ with respect to ∥·∥.

Lemma 32. (Lemma 2 of [202]) For any i ∈ {1, . . . , n}, let fi : Rd → Wi be a continuous function

with Wi ∈ {R,Rd,R1×d,Rd×d} such that g(θ) = fn(θ) . . . f1(θ) is well-defined. Suppose fi is Bi-bounded

and Li-Lipschitz, i.e., ∥fi(θ)∥ ≤ Bi and ∥fi(θ)− fi(θ′)∥ ≤ Li ∥θ − θ′∥ ,∀θ, θ′ ∈ Rd for some non-negative

constants Bi and Li. Then, g(θ) is Lipschitz with constant Lg =
∑n
i=1(Li

∏
j ̸=iBj), i.e., ∥g(θ)− g(θ′)∥ ≤

Lg ∥θ − θ′∥ ,∀θ, θ′ ∈ Rd.

Lemma 33. (Lemma 3 of [202]) For any i ∈ {1, . . . , n}, let fi : Rd → Rm be a continuously differentiable

function that is Bf -bounded and Lf -Lipschitz continuous. Let p(·; θ) be a distribution on {fi}ni=1 where the

probability of drawing fi is p(i; θ). Suppose there exists a non-negative constant Bp such that ∥∇θ log p(i; θ)∥ ≤
Bp for any i and θ. Then, the function g(θ) = Ep(i;θ)[f(i; θ)] is Lipschitz continuous with constant BfBp+Lf .

Lemma 34. Consider a block diagonal matrix C that is a square matrix such that the main-diagonal consists

of N block matrices A1 ∈ Rd1×d1 , . . . , AN ∈ RdN×dN and all off-diagonal blocks are zero matrices. Then, it

holds that ∥C∥ ≤ max1≤i≤N ∥Ai∥.

Proof. We prove the lemma via induction on N . For the induction basis N = 2, we need to show

∥C∥ =
∥∥∥∥∥
[
A1 0

0 A2

]∥∥∥∥∥ ≤ max{∥A1∥ , ∥A2∥}.

To see this, let x ∈ Rd1 and y ∈ Rd2 be such that

∥∥∥∥∥
[
x

y

]∥∥∥∥∥
2

= ∥x∥2 + ∥y∥2 = 1. Then, by the definition of the

matrix norm,∥∥∥∥∥C
[
x

y

]∥∥∥∥∥
2

= ∥A1x∥2 + ∥A2y∥2 ≤ ∥A1∥2 ∥x∥2 + ∥A2∥2 ∥y∥2 ≤ max{∥A1∥2 , ∥A2∥2},

where the last step uses the fact that ∥x∥2 + ∥y∥2 = 1. This completes the proof of the induction basis

N = 2. Now, suppose that the lemma holds for N = k − 1. We next show that it also holds for

N = k. Let C =

A1 0 . . . 0

0 A2 . . . 0
...

...
. . .

...

0 0 . . . Ak

 . Note that we can rewrite the matrix as C =

[
Ck−1 0

0 Ak

]
, where

120

Ck−1 =

A1 . . . 0
...

. . .
...

0 . . . Ak−1

 is a block diagonal matrix consisting of k − 1 matrices. Invoking the induction

hypothesis for N = k − 1, we know that ∥Ck−1∥ ≤ max1≤i≤k−1 ∥Ai∥. Finally, using the induction hypothesis

for N = 2, we conclude that ∥C∥ ≤ max{∥Ck−1∥ , ∥Ak∥} ≤ max1≤i≤k ∥Ai∥. This completes the induction

proof.

Lemma 35. Consider a block matrix A(θ) with N ×N blocks parameterized by θ ∈ Rd:

A(θ) =

A1,1(θ) . . . A1,N (θ)

...
. . .

...

AN,1(θ) . . . AN,N (θ)

 ,
where Ai,j(θ) ∈ Rdi×dj ,∀1 ≤ i, j ≤ N and d =

∑N
i=1 di. Suppose that the norm of each matrix block is

Lipschitz continuous with respect to θ, i.e., ∥Ai,j(θ)−Ai,j(θ′)∥ ≤ Li,j ∥θ − θ′∥ ,∀θ, θ′ ∈ Rd, 1 ≤ i, j ≤ N . Let

L = max{Li,j : 1 ≤ i, j ≤ N}. Then, the norm of A(θ) is also Lipschitz, i.e.,

∥A(θ)−A(θ′)∥ ≤ NL ∥θ − θ′∥ ,∀θ, θ′ ∈ Rd.

Proof. Let x ∈ Rd be a vector such that x =
[
x⊤1 x⊤2 . . . x⊤N

]⊤
and ∥x∥2 =

∑N
i=1 ∥xi∥

2
= 1, where

xi ∈ Rdi ,∀1 ≤ i ≤ N . We have

∥(A(θ)−A(θ′))x∥2 =

∥∥∥∥∥∥∥∥

∑N
j=1 (A1,j(θ)−A1,j(θ

′))xj
...∑N

j=1 (AN,j(θ)−AN,j(θ′))xj

∥∥∥∥∥∥∥∥
2

=

N∑
i=1

∥∥∥ N∑
j=1

(Ai,j(θ)−Ai,j(θ′))xj
∥∥∥2

≤N
N∑
i=1

N∑
j=1

∥(Ai,j(θ)−Ai,j(θ′))xj∥2

≤N
N∑
i=1

N∑
j=1

∥Ai,j(θ)−Ai,j(θ′)∥2 ∥xj∥2 ,

where the first inequality follows from the Cauchy-Schwarz inequality, and the last step is due to the definition

of the matrix norm. Applying the Lipschitz continuity of each matrix block ∥Ai,j(θ)−Ai,j(θ′)∥ ≤ Li,j ∥θ − θ′∥
yields

∥(A(θ)−A(θ′))x∥2 ≤N
N∑
i=1

N∑
j=1

∥Ai,j(θ)−Ai,j(θ′)∥2 ∥xj∥2

≤N
N∑
i=1

N∑
j=1

L2
i,j ∥θ − θ′∥

2 ∥xj∥2

≤N2L2 ∥θ − θ′∥2 ,

where the last step uses the facts that Li,j ≤ L,∀1 ≤ i, j ≤ N and
∑N
j=1 ∥xj∥

2
= 1. Since the above condition

121

holds for any vector x with ∥x∥ = 1, we know from the definition of the matrix norm that

∥A(θ)−A(θ′)∥ ≤ NL ∥θ − θ′∥ ,∀θ, θ′ ∈ Rd.

This concludes the proof for the Lipschitz continuity of A(θ).

4.8 Proofs for Section 4.3

4.8.1 Proof of Theorem 17

We introduce one more notation before presenting the proof. For each iteration t ∈ [T] and step h ∈ [H],

define the Q-function estimation error as

δth := ∥Qτ(t)h −Q⋆h∥∞.

Note that since Algorithm 16 performs stage-based value updates, the value estimation error δth does not

change within a stage τ(t); that is, δth takes the same value for all t ∈ [tstartτ , tendτ]. For this reason, we will

sometimes abuse the notation and simply use δτh to denote the estimation error for a stage τ . In the rest of

this chapter, we will write δτh and δth interchangeably since one of them will be more convenient than the

other in certain contexts.

Further, recall that for any (τ, h, s) ∈ [τ̄]× [H]×S, the per-state regrets for the two players are defined as

regτh,1(s) := max
µτ,†
h ∈∆(A)

1

Lτ

tendτ∑
j=tstartτ

〈
µτ,†h − µ

j
h, Q

τ
hν

j
h

〉
(s),

regτh,2(s) := max
ντ,†
h ∈∆(B)

1

Lτ

tendτ∑
j=tstartτ

〈
νjh − ν

τ,†
h , (Qτh)

⊤µjh

〉
(s). (4.14)

Note that the best response policies µτ,†h (·|s) and ντ,†h (·|s) should be state-dependent, but we will oftentimes

omit the dependence on s for notational convenience. This leads us to the initialization-dependent convergence

rate of Algorithm 16, which we re-state and prove as follows.

Theorem 17. If we run Algorithm 16 on a two-player zero-sum Markov game for T iterations with a

learning rate η ≤ 1/(8H2), the output policy pair (µ̄, ν̄) satisfies:

NE-gap(µ̄, ν̄) ≤ 192H3

T

H∑
h=1

τ̄∑
τ=1

max
s

(
DR(µ

τ,†
h (·|s), µ̃τh(·|s)) +DR(ν

τ,†
h (·|s), ν̃τh(·|s))

)
.

In addition, if we initialize the players’ policies to be uniform policies, i.e., µ̃τh(·|s) = 1/A and ν̃τh(·|s) =

1/B, ∀s ∈ S, τ ∈ [τ̄], h ∈ [H], we further have

NE-gap(µ̄, ν̄) ≤ 768H5 log T log(AB)

T
.

Proof. The proof of the theorem follows from a series of lemmas, which we state and prove in the next few

subsections. In particular, we first show in Lemma 36 that upper bounding the NE-gap breaks down to

controlling the per-state regrets regτh,1(s) + regτh,2(s) and the value estimation errors δτh, in a similar fashion

122

as in the analysis of [122]. For this purpose, Lemma 37 provides an upper bound on the per-state regrets,

while Lemma 38 and Lemma 39 together bound the value estimation error via a recursive argument. The

rest of the proof follows by putting all the aforementioned results together.

Specifically, for η ≤ 1/(8H2), by plugging in the results of Lemma 37 and Lemma 38 to Lemma 36, we

obtain that

NE-gap(µ̄, ν̄) ≤ 2

T

H∑
h=1

τ̄∑
τ=1

Lτ max
s∈S

(
regτh,1(s) + regτh,2(s)

)
+

2

T

H∑
h=1

τ̄∑
τ=1

Lτδ
τ
h

≤16H2

T

H∑
h=1

τ̄∑
τ=1

max
s∈S

(
DR(µ

τ,†
h , µ̃τh(·|s)) +DR(ν

τ,†
h , ν̃τh(·|s))

)
+

192H2

T

H∑
h=1

τ̄∑
τ=1

H∑
h′=h+1

max
s∈S

(
DR(µ

τ−h′+h,†
h′ , µ̃τ−h

′+h
h′ (·|s)) +DR(ν

τ−h′+h,†
h′ , ν̃τ−h

′+h
h′ (·|s))

)

≤192H2

T

H∑
h=1

τ̄∑
τ=1

H∑
h′=h

max
s∈S

(
DR(µ

τ−h′+h,†
h′ , µ̃τ−h

′+h
h′ (·|s)) +DR(ν

τ−h′+h,†
h′ , ν̃τ−h

′+h
h′ (·|s))

)
≤192H3

T

H∑
h=1

τ̄∑
τ=1

max
s

(
DR(µ

τ,†
h , µ̃τh(·|s)) +DR(ν

τ,†
h , ν̃τh(·|s))

)
, (4.15)

where the last step is by switching the order of counting. This proves the first claim in the Theorem.

We now proceed to establish the second statement. Recall that we chose the negative entropy as the

regularizer R. In this case, the Bregman divergence DR(·, ·) reduces to the Kullback–Leibler divergence.

Since µτ,†h lies in the simplex, when we initialize µ̃τh(·|s) = 1/A to be a uniform distribution, we naturally

have DR(µ
τ,†
h , µ̃τh(·|s)) ≤ logA,∀s ∈ S, h ∈ [H]. A similar result holds for DR(ν

τ,†
h , ν̃τh(·|s)). We can hence

obtain that

max
s

(
DR(µ

τ,†
h , µ̃τh(·|s)) +DR(ν

τ,†
h , ν̃τh(·|s))

)
≤ log(AB). (4.16)

To prove the statement, it remains to upper bound the total number of stages τ̄ . Recall that we have defined

the lengths of the stages to increase exponentially with Lτ+1 = ⌊(1 + 1/H)Lτ⌋. Since the τ̄ stages sum up

to T iterations in total, by taking the sum of a geometric series, it suffices to find a value of τ̄ such that

(1 + 1/H)τ̄ ≥ T/H. Using the Taylor series expansion, one can show that (1 + 1
H)H ≥ e − e

2H . Hence, it

reduces to finding a minimum τ̄ such that (
e− e

2H

)τ̄/H
≥ T

H
. (4.17)

One can easily see that any τ̄ ≥ H log T
log(e/2) satisfies the condition. Together with (4.15) and (4.16), we obtain

that

NE-gap(µ̄, ν̄) ≤ 768H5 log T

T
log(AB).

This completes the proof of the theorem.

4.8.2 Supporting Lemmas for Section 4.3

Before presenting the supporting lemmas of the section, we remark that we will reload the notations µth
and νth with some slight abuse of notations. Specifically, when t is the last iteration of a stage, µth can be

used to denote not only the policy at iteration t, but also the initial policy of the next stage (see Line 10 of

123

Algorithm 16). In the following proofs, it should be clear from the context which specific policy µth refers to.

A similar rule applies to νth.

Lemma 36. Let (µ̄, ν̄) be the output policies of Algorithm 16. Then,

NE-gap(µ̄, ν̄) ≤ 2

T

H∑
h=1

τ̄∑
τ=1

Lτ max
s∈S

(
regτh,1(s) + regτh,2(s)

)
+

2

T

H∑
h=1

τ̄∑
τ=1

Lτδ
τ
h.

Proof. From Lemma C.1 in [121], we know that

NE-gap(µ̄, ν̄)

=V †,ν̄
1 (s1)− V ⋆1 (s1) + V ⋆1 (s1)− V µ̄,†1 (s1)

≤2
H∑
h=1

max
s

{
max
µ†
h,ν

†
h

[
⟨µ†
h, Q

⋆
hν̄h⟩ − ⟨ν†h, (Q⋆h)⊤µ̄h⟩

]
(s)

}

=2

H∑
h=1

max
s

{
max
µ†
h,ν

†
h

1

T

T∑
t=1

[
⟨µ†
h, Q

⋆
hν

t
h⟩ − ⟨ν†h, (Q⋆h)⊤µth⟩

]
(s)

}

≤2
H∑
h=1

max
s

{
max
µ†
h,ν

†
h

1

T

T∑
t=1

[
⟨µ†
h, Q

τ(t)
h νth⟩ − ⟨ν†h, (Q

τ(t)
h)⊤µth⟩

]
(s)

}
+

2

T

H∑
h=1

T∑
t=1

δth, (4.18)

where the last step is by adding and subtracting the estimated values Q
τ(t)
h , and invoking the definition that

δth =
∥∥∥Qτ(t)h −Q⋆h

∥∥∥
∞
. To further bound the first term in (4.18), notice that

max
s

{
max
µ†
h,ν

†
h

1

T

T∑
t=1

[
⟨µ†
h, Q

τ(t)
h νth⟩ − ⟨ν†h, (Q

τ(t)
h)⊤µth⟩

]
(s)

}

≤ 1

T

τ̄∑
τ=1

max
s

 max
µτ,†
h ,ντ,†

h

tendτ∑
j=tstartτ

[
⟨µτ,†h , Qτhν

j
h⟩ − ⟨ν

τ,†
h , (Qτh)

⊤µjh⟩
]
(s)

≤ 1

T

τ̄∑
τ=1

Lτ max
s

(
regτh,1(s) + regτh,2(s)

)
. (4.19)

The first step holds because the LHS uses a fixed pair of best responses (µ†
h, ν

†
h) for the entire T iterations,

while the RHS uses a separate best response pair (µτ,†h , ντ,†h) for each individual stage τ and then puts them

together. The RHS clearly upper bounds the LHS as the RHS maximizes over each stage separately. The last

step in (4.19) holds due to the definitions of regτh,1(s) and regτh,2(s) that

regτh,1(s) + regτh,2(s) = max
µτ,†
h ,ντ,†

h

1

Lτ

tendτ∑
j=tstartτ

[
⟨µτ,†h , Qτhν

j
h⟩ − ⟨ν

τ,†
h , (Qτh)

⊤µjh⟩
]
(s).

To control the second term in (4.18), we use the fact that with stage-based value updates, the value estimation

error δth does not change within a stage. Therefore,

2

T

H∑
h=1

T∑
t=1

δth =
2

T

H∑
h=1

τ̄∑
τ=1

tendτ∑
j=tstartτ

δjh =
2

T

H∑
h=1

τ̄∑
τ=1

Lτδ
τ
h. (4.20)

124

Finally, substituting (4.19) and (4.20) back to (4.18) completes the proof.

Lemma 37. For every stage τ ∈ N+, every step h ∈ [H] and every state s ∈ S, the per-state average regret

is bounded by:

regτh,1(s) ≤
1

ηLτ
DR(µ

τ,†
h , µ̃τh(·|s)) +

2ηH2

Lτ

tendτ∑
j=tstartτ

∥∥∥νjh(· | s)− νj−1
h (· | s)

∥∥∥2
1

− 1

8ηLτ

tendτ∑
j=tstartτ

∥∥∥µjh(· | s)− µj−1
h (· | s)

∥∥∥2
1
, (4.21)

regτh,2(s) ≤
1

ηLτ
DR(ν

τ,†
h , ν̃τh(·|s)) +

2ηH2

Lτ

tendτ∑
j=tstartτ

∥∥∥µjh(· | s)− µj−1
h (· | s)

∥∥∥2
1

− 1

8ηLτ

tendτ∑
j=tstartτ

∥∥∥νjh(· | s)− νj−1
h (· | s)

∥∥∥2
1
. (4.22)

In particular, for η ≤ 1/(8H2), we further have

regτh,1(s) + regτh,2(s) ≤
1

ηLτ

(
DR(µ

τ,†
h , µ̃τh(·|s)) +DR(ν

τ,†
h , ν̃τh(·|s))

)
−

tendτ∑
j=tstartτ

4ηH3

Lτ

(
∥νjh(·|s)− ν

j−1
h (·|s)∥21 + ∥µjh(·|s)− µ

j−1
h (·|s)∥21

)
. (4.23)

Proof. We prove the regret bound for the max-player, i.e., regτh,1(s). The bound for the min-player holds

analogously. Notice that the policy update steps in Algorithm 16 are exactly the same as the optimistic

online mirror descent algorithm [114], [115], with the loss vector gt = [Qτhν
t
h](s, ·) and the recency bias

M t = [Qτhν
t−1
h](s, ·). Since our stage-based value updates assign equal weights to each iteration, we end up

with a classic no-(average-)regret learning problem instead of a no-(weighed-) regret learning problem as in

[121], [122]. This allows us to directly apply the standard optimistic OMD results (e.g., Lemma 1 in [114]

and Proposition 5 in [115]) to obtain

regτh,1(s) = max
µτ,†
h ∈∆(A)

1

Lτ

tendτ∑
j=tstartτ

〈
µτ,†h − µ

j
h, Q

τ
hν

j
h

〉
(s)

≤ 1

ηLτ
DR(µ

τ,†
h , µ̃τh(·|s)) +

η

Lτ

tendτ∑
j=tstartτ

∥∥∥[Qτhνjh −Qτhνj−1
h](s, ·)

∥∥∥2
∞

(4.24)

− 1

8ηLτ

tend
τ∑

j=tstartτ

∥∥∥µjh(· | s)− µj−1
h (· | s)

∥∥∥2
1
. (4.25)

To further upper bound the term in (4.24), notice that∥∥∥[Qτhνjh −Qτhνj−1
h

]
(s, ·)

∥∥∥2
∞
≤ 2H2

∥∥∥νjh(· | s)− νj−1
h (· | s)

∥∥∥2
1
,

where we used the Hölder’s inequality and the fact that ∥Qτh(s, ·)∥∞ ≤ H. Substituting the above result back

125

to (4.25) yields

regτh,1(s) ≤
1

ηLτ
DR(µ

τ,†
h , µ̃τh(·|s)) +

η

Lτ

tendτ∑
j=tstartτ

2H2
∥∥∥νjh(· | s)− νj−1

h (· | s)
∥∥∥2
1

− 1

8ηLτ

tend
τ∑

j=tstartτ

∥∥∥µjh(· | s)− µj−1
h (· | s)

∥∥∥2
1
.

This completes the proof of (4.21). The regret bound in (4.22) can be shown via symmetry.

Combining (4.21) and (4.22) leads to

regτh,1(s) + regτh,2(s)

≤ 1

ηLτ

(
DR(µ

τ,†
h , µ̃τh(·|s)) +DR(ν

τ,†
h , ν̃τh(·|s))

)
+

tend
τ∑

j=tstartτ

(
2H2η

Lτ
− 1

8ηLτ

)(
∥νjh(·|s)− ν

j−1
h (·|s)∥21 + ∥µjh(·|s)− µ

j−1
h (·|s)∥21

)
.

When η ≤ 1/(8H2), we further have

regτh,1(s) + regτh,2(s) ≤
1

ηLτ

(
DR(µ

τ,†
h , µ̃τh(·|s)) +DR(ν

τ,†
h , ν̃τh(·|s))

)
−

tend
τ∑

j=tstartτ

4ηH3

Lτ

(
∥νjh(·|s)− ν

j−1
h (·|s)∥21 + ∥µjh(·|s)− µ

j−1
h (·|s)∥21

)
.

This completes the proof of the lemma.

Lemma 38. With η ≤ 1/(8H2), for any iteration t ∈ [T] and any step h ∈ [H], we have that

δth ≤
12

ηLτ(t)

H∑
h′=h+1

max
s

(
DR(µ

τ(t)−h′+h,†
h′ , µ̃

τ(t)−h′+h
h′ (·|s)) +DR(ν

τ(t)−h′+h,†
h′ , ν̃

τ(t)−h′+h
h′ (·|s))

)
.

Proof. In the following, when we consider a fixed iteration t ∈ [T], we drop the notational dependence on t

and simply use τ (instead of τ(t)) to denote the stage that iteration t belongs to. For any h ∈ [H − 1], we can

use Lemma 39 (similar to Lemma C.2 of [121]) to establish the following recursion for the value estimation

error:

δth ≤ δτ−1
h+1 + regτ−1

h+1, (4.26)

where recall that regτh = maxs∈S{regτh,1(s), regτh,2(s)}. Using Lemma 37, we can upper bound the individual

regrets regτh,1(s) and regτh,2(s) by

regτh,1(s) ≤
1

ηLτ
DR(µ

τ,†
h , µ̃τh(·|s)) +

2ηH2

Lτ

tendτ∑
j=tstartτ

∥∥∥νjh(· | s)− νj−1
h (· | s)

∥∥∥2
1
, (4.27)

regτh,2(s) ≤
1

ηLτ
DR(ν

τ,†
h , ν̃τh(·|s)) +

2ηH2

Lτ

tendτ∑
j=tstartτ

∥∥∥µjh(· | s)− µj−1
h (· | s)

∥∥∥2
1
. (4.28)

126

where we have dropped the negative terms in (4.21) and (4.22). Following a similar approximate non-negativity

argument as in Lemma 5 of [122] (reproduced in Lemma 40 for our stage-based approach), we obtain that

regτh,1(s) + regτh,2(s) ≥ −2δτh.

Together with (4.23) in Lemma 37, we obtain that

2ηH2

Lτ

tend
τ∑

j=tstartτ

(
∥νjh(·|s)− ν

j−1
h (·|s)∥21 + ∥µjh(·|s)− µ

j−1
h (·|s)∥21

)
≤δ

τ
h

H
+

1

2HηLτ

(
DR(µ

τ,†
h , µ̃τh(·|s)) +DR(ν

τ,†
h , ν̃τh(·|s))

)
Since the above inequality holds for any state s ∈ S, substituting it back to (4.27) and (4.28) yields

regτh ≤ max
s

3

2ηLτ

(
DR(µ

τ,†
h , µ̃τh(·|s)) +DR(ν

τ,†
h , ν̃τh(·|s))

)
+
δτh
H
. (4.29)

We can further substitute the regret bound above back to the recursion 4.26 to get that

δτh ≤
3

2ηLτ−1
max
s

(
DR(µ

τ−1,†
h+1 , µ̃τ−1

h+1(·|s)) +DR(ν
τ−1,†
h+1 , ν̃τ−1

h+1(·|s))
)
+ (1 +

1

H
)δτ−1
h+1, (4.30)

where we used the fact that the value estimation error δth does not change within a stage τ since we perform

stage-based value updates. Using a backward inductive argument (starting from the induction basis that

δτH = 0,∀τ), the above recursion in (4.30) leads us to the following result:

δτh ≤
H∑

h′=h+1

3

2ηLτ−h′+h

(
1 +

1

H

)h′−h−1

max
s

(
DR(µ

τ−h′+h,†
h′ , µ̃τ−h

′+h
h′ (·|s)) +DR(ν

τ−h′+h,†
h′ , ν̃τ−h

′+h
h′ (·|s))

)

≤ 3

2ηLτ

H∑
h′=h+1

(
1 +

1

H

)2(h′−h)−1

max
s

(
DR(µ

τ−h′+h,†
h′ , µ̃τ−h

′+h
h′ (·|s)) +DR(ν

τ−h′+h,†
h′ , ν̃τ−h

′+h
h′ (·|s))

)

≤ 3

2ηLτ

H∑
h′=h+1

(
1 +

1

H

)2H

max
s

(
DR(µ

τ−h′+h,†
h′ , µ̃τ−h

′+h
h′ (·|s)) +DR(ν

τ−h′+h,†
h′ , ν̃τ−h

′+h
h′ (·|s))

)

≤ 12

ηLτ

H∑
h′=h+1

max
s

(
DR(µ

τ−h′+h,†
h′ , µ̃τ−h

′+h
h′ (·|s)) +DR(ν

τ−h′+h,†
h′ , ν̃τ−h

′+h
h′ (·|s))

)
, (4.31)

where the second step uses our choice of the stage lengths that Lτ+1 = ⌊(1 + 1/H)Lτ⌋, which further implies

that
1

Lτ−h′+h
≤ 1

Lτ

(
1 +

1

H

)h′−h

.

The last step in (4.31) is due to the fact that (1 + 1/H)H ≤ e ≈ 2.71828. This completes the proof of the

lemma.

Lemma 39. (Value estimation error recursion) For any iteration t ∈ [T] and any step h ∈ [H], we have the

following recursion for the value estimation error δth:

δth ≤ δτ(t)−1
h+1 + reg

τ(t)−1
h+1 .

127

Proof. The proof essentially follows a similar procedure as that of Lemma C.2 in [121]. Let τ = τ(t). For any

(h, s, a, b) ∈ [H]× S ×A× B, we know from the definition of Q⋆h that

Q⋆h(s, a, b) =rh(s, a, b) + max
µh+1∈∆(A)

min
νh+1∈∆(B)

Ph
[
µ⊤
h+1Q

⋆
h+1νh+1

]
(s, a, b)

≤rh(s, a, b) + max
µh+1

Ph

µ⊤
h+1Q

⋆
h+1

 1

Lτ−1

tendτ−1∑
j=tstartτ−1

νjh+1

 (s, a, b)

≤rh(s, a, b) + max
µh+1∈

1

Lτ−1

tendτ−1∑
j=tstartτ−1

Ph

[
µ⊤
h+1Q

⋆
h+1ν

j
h+1

]
(s, a, b)

≤rh(s, a, b) + max
µh+1∈

1

Lτ−1

tendτ−1∑
j=tstartτ−1

(
Ph

[
µ⊤
h+1Q

τ−1
h+1ν

j
h+1

]
(s, a, b) +

∥∥Q⋆h+1 −Qτ−1
h+1

∥∥
∞

)
,

where the second step holds because 1
Lτ−1

∑tendτ−1

j=tstartτ−1
νjh+1(·|s) ∈ ∆(B). Using the definitions of regτ−1

h+1 and

δτ−1
h+1, the above inequality further leads to

Q⋆h(s, a, b) ≤rh(s, a, b) +
1

Lτ−1

tendτ−1∑
j=tstartτ−1

Ph

[
(µjh+1)

⊤Qτ−1
h+1ν

j
h+1

]
(s, a, b) + δτ−1

h+1 + regτ−1
h+1

≤Qτh(s, a, b) + δτ−1
h+1 + regτ−1

h+1

where the last step is due to the value update rule in Algorithm 16. This implies that

Q⋆h(s, a, b)−Qτh(s, a, b) ≤ δτ−1
h+1 + regτ−1

h+1 .

Using a similar argument, we can show a symmetric result for the min-player:

Qτh(s, a, b)−Q⋆h(s, a, b) ≤ δτ−1
h+1 + regτ−1

h+1 .

Combining both directions yields the desired result.

Lemma 40. (Approximate non-negativity) For any τ ∈ [τ̄] and h ∈ [H], we have that

regτh,1(s) + regτh,2(s) ≥ −2δτh.

Proof. This lemma can be considered as a stage-based variant of Lemma 5 in [122]. From the definitions of

128

regτh,1(s) and regτh,2(s), we have that

regτh,1(s) + regτh,2(s)

= max
µτ,†
h ,ντ,†

h

1

Lτ

tend
τ∑

j=tstartτ

(〈
µτ,†h , Qτhν

j
h

〉
−
〈
ντ,†h , (Qτh)

⊤µjh

〉)
(s)

= max
µτ,†
h ,ντ,†

h

1

Lτ

[tend
τ∑

j=tstartτ

(〈
µτ,†h , Q⋆hν

j
h

〉
−
〈
ντ,†h , (Q⋆h)

⊤µjh

〉)
(s)

+

tend
τ∑

j=tstartτ

(〈
µτ,†h , (Qτh −Q⋆h)νjh

〉
−
〈
ντ,†h , (Qτh −Q⋆h)⊤µjh

〉)
(s)

]

≥ max
µτ,†
h ,ντ,†

h

1

Lτ

 tend
τ∑

j=tstartτ

(〈
µτ,†h , Q⋆hν

j
h

〉
−
〈
ντ,†h , (Q⋆h)

⊤µjh

〉)
(s)

− 2δτh, (4.32)

where the second step is by adding and subtracting the same term, and the last step uses the definition that

δτh = ∥Qτh −Q⋆h∥∞. Since both 1
Lτ

∑tend
τ

j=tstartτ
µjh(·|s) and 1

Lτ

∑tendτ

j=tstartτ
νjh(·|s) are valid probability distributions

over the action spaces, the first term in (4.32) is always non-negative:

max
µτ,†
h ,ντ,†

h

1

Lτ

 tend
τ∑

j=tstartτ

(〈
µτ,†h , Q⋆hν

j
h

〉
−
〈
ντ,†h , (Q⋆h)

⊤µjh

〉)
(s)

= max
µτ,†
h ,ντ,†

h

〈µτ,†h , Q⋆h

(
1

Lτ

tend
τ∑

j=tstartτ

νjh

)〉
(s)−

〈
ντ,†h , (Q⋆h)

⊤
(

1

Lτ

tendτ∑
j=tstartτ

µjh

)〉
(s)

≥
〈(

1

Lτ

tend
τ∑

j=tstartτ

µjh

)
, Q⋆h

(
1

Lτ

tend
τ∑

j=tstartτ

νjh

)〉
(s)−

〈(
1

Lτ

tendτ∑
j=tstartτ

νjh

)
, (Q⋆h)

⊤
(

1

Lτ

tendτ∑
j=tstartτ

µjh

)〉
(s)

=0.

Plugging the above inequality back into (4.32) completes the proof.

4.8.3 Proof of Theorem 18

Proof. First, recall the definitions of (µ̃k, ν̃k), (µ̄k, ν̄k) and (µk,†, νk,†). Since we use a negative entropy

regularizer R, the Bregman divergence DR(·, ·) reduces to the Kullback–Leibler divergence. Using these

notations, our convergence results of learning in an individual zero-sum game Gk (Theorem 17) can be written

more succinctly as

NE-gap(µ̄k, ν̄k) ≤ 192H3

T

(
KL
(
µk,†∥µ̃k

)
+KL

(
νk,†∥ν̃k

))
,

where for ease of notations, we write

KL
(
µk,†∥µ̃k

)
:=

H∑
h=1

τ̄∑
τ=1

max
s

KL
(
µk,τ,†h (·|s)∥µ̃kh(·|s)

)
.

129

Here, µk,τ,†h (·|s) represents the value of µτ,†h (·|s) in game Gk. The notation DR(ν
k,†, ν̃k) can be decomposed

in a similar manner. By running Algorithm 16 on a sequence of K games, we have that

1

K

K∑
k=1

NE-gap(µ̄k, ν̄k) ≤ 192H3

KT

K∑
k=1

(
KL
(
µk,†∥µ̃k

)
+KL

(
νk,†∥ν̃k

))
. (4.33)

In the following, we will focus on the term for the maximizing player in (4.33). The results for the minimizing

player’s term can be obtained via symmetry.

Recall the notation that [x]α = (1− α)x+ α
d1 for x ∈ Rd. By applying this notation entry-wise to each

probability distribution in µk,† and invoking Lemma 30, we obtain that

1

K

K∑
k=1

KL
(
µk,†∥µ̃k

)
≤ 1

K

K∑
k=1

KL
(
[µk,†]α∥µ̃k

)
+ 4Hτ̄α ln

A

α
. (4.34)

Notice that the conditions of Lemma 30 are satisfied here because we select our initial policies to be

µ̃k = 1
k−1

∑k−1
k′=1[µ

k′,†]α, which assigns a probability of at least α1/A to each action. Adding and subtracting

the same term leads to

K∑
k=1

KL
(
[µk,†]α∥µ̃k

)
=min

µ

K∑
k=1

KL
(
[µk,†]α∥µ

)
+min

µ

K∑
k=1

(
KL
(
[µk,†]α∥µ̃k

)
−KL

(
[µk,†]α∥µ

))
≤min

µ

K∑
k=1

KL
(
[µk,†]α∥µ

)
+

8A(1 + lnK)

α
, (4.35)

where the minimum µ is taken over all policies of the form of µ : [τ̄]× [H]× S → ∆(A). We now turn to

establish the second step in (4.35), which reduces to bounding the following regret where the loss functions

are given by the Bregman divergences:

reg = min
µ

K∑
k=1

(
KL
(
[µk,†]α∥µ̃k

)
−KL

(
[µk,†]α∥µ

))
.

It is known that the unique minimum of
∑k
k′=1 KL([µk

′,†]α∥·) is attained at 1
k

∑k
k′=1[µ

k′,†]α (see Proposition 1

of [233] for a proof of this claim). Therefore, by letting µ̃k = 1
k−1

∑k−1
k′=1[µ

k′,†]α, we are essentially running the

follow-the-leader (FTL) algorithm (separately for each entry (τ, h, s) ∈ [τ̄]× [H]×S) on the sequence of losses

defined by
∑K
k=1 KL([µk,†]α∥·). We can then invoke the logarithmic regret guarantee of FTL with respect to

Bregman divergences, which was established in [208] and was reproduced as Lemma 31 in Section 4.7 for

completeness. To show that Lemma 31 is applicable, we remark that the Kullback–Leibler divergence is

not Lipschitz continuous near the boundary of the probability simplex, which breaks condition required by

Lemma 31. However, by restricting to policies of the form [µ]α = (1− α)µ+ α
A1, which is at least α

A -distance

away from the simplex boundary, the Kullback–Leibler divergence is indeed Lipschitz continuous within this
α
A -restricted domain. One can show that the Lipschitz constant of each entry of KL([µk,†]α∥·) is 2A

α within

the α
A -restricted domain. This allows us to apply Lemma 31 to obtain the result in (4.35).

Moving forward from (4.35), we again apply the property that the unique minimum of
∑K
k=1 KL([µk,†]α∥·)

130

is attained at µ = 1
K

∑K
k=1[µ

k,†]α, which leads to

K∑
k=1

KL
(
[µk,†]α∥µ̃k

)
≤min

µ

K∑
k=1

KL
(
[µk,†]α∥µ

)
+

8A(1 + lnK)

α

=

K∑
k=1

KL
(
[µk,†]α∥[µ⋆]α

)
+

8A(1 + lnK)

α

≤ (1− α)
K∑
k=1

KL
(
µk,†∥µ⋆

)
+

8A(1 + lnK)

α
, (4.36)

where the second step uses the definition that µ⋆ = 1
K

∑K
k=1 µ

k,†, and the last step is by the (joint) convexity

of the Kullback–Leibler divergence. Substituting (4.36) to (4.34) yields

1

K

K∑
k=1

KL
(
µk,†∥µ̃k

)
≤ 1

K

K∑
k=1

KL
(
µk,†∥µ⋆

)
+

8A(1 + lnK)

Kα
+ 4Hτ̄α ln

A

α
.

By a similar argument, we can show an analogous result for the minimizing player:

1

K

K∑
k=1

KL
(
νk,†∥ν̃k

)
≤ 1

K

K∑
k=1

KL
(
νk,†∥ν⋆

)
+

8B(1 + lnK)

Kα
+ 4Hτ̄α ln

B

α

Substituting the above results back into (4.33) and using the definition

∆µ,ν =

K∑
k=1

(
KL
(
µk,†∥µ⋆

)
+KL

(
νk,†∥ν⋆

))
,

we obtain that

1

K

K∑
k=1

NE-gap(µ̄k, ν̄k) ≤ 192H3

KT

(
∆µ,ν +

10(A+B) lnK

α
+ 4KHτ̄α ln

AB

α2

)

Further using the conditions that α = 1/
√
K and τ̄ ≤ 4H log T (see (4.17) for a proof) yields

1

K

K∑
k=1

NE-gap(µ̄k, ν̄k) ≤192H3

T

(
∆µ,ν

K
+

10(A+B) logK√
K

+
16H2 log T log(ABK)√

K

)
.

This completes the proof of the theorem.

4.9 Proofs for Section 4.4

4.9.1 Definitions

To be consistent with existing results in the literature, we consider an infinite-horizon γ-discounted reward

setting for MPGs [89], [91], [215], [227]. An N -player, infinite-horizon, discounted stochastic (or Markov)

game G is defined by a tuple (N ,S, {Ai}Ni=1, P, {ri}Ni=1, γ, ρ), where (1) N = {1, 2, . . . , N} is the set of

players (or agents); (2) S is the finite state space; (3) Ai is the finite action space for agent i ∈ N ; (4)

131

P : S ×A → ∆(S) is the transition kernel, where A = ×Ni=1Ai is the joint action space, and P (·|s, a) ∈ ∆(S)
denotes the distribution over the next state for a ∈ A; (5) ri : S × A → [−1, 1] is the reward function for

agent i; (6) γ ∈ [0, 1) denotes the discount factor; and (7) ρ ∈ ∆(S) is the initial state distribution. Both the

reward function and the state transition function depend on the joint actions of all the agents. We use ai ∈ Ai
to denote the individual action of agent i ∈ N . The subscript −i to denotes the set of agents excluding

agent i, i.e., N\{i}. We can rewrite a = (ai, a−i) using this convention. Let S = |S|, Ai = |Ai|,∀i ∈ N , and

Amax = maxi∈N Ai.

A (Markov) policy πi : S → ∆(Ai) for agent i ∈ N is a mapping from the state space to a distribution over

the action space. We let agent i’s policy be parameterized by θi = {θi(ai|s) ∈ R}s∈S,ai∈Ai
, and denote the

policy by πθi to emphasize such parameterization. Important examples include direct policy parameterization

πθi(ai|s) = θi(ai|s) and softmax parameterization πθi(ai|s) = exp(θi(ai|s))/
∑
a′i∈Ai

exp(θi(a
′
i|s)),∀s ∈ S, ai ∈

Ai. Let Θi denote the parameterization-dependent1 space where θi takes values from, and let Θ = ×Ni=1Θi.

A joint (product) policy πθ = (πθ1 , . . . , πθN) induces a probability measure over the sequence of states and

joint actions. When the policy parameterization scheme is fixed, we sometimes denote a policy πθ (resp. πθi)

simply by its parameter θ (resp. θi). For a joint policy θ = (θ1, . . . , θN), and for any s ∈ S and a ∈ A, we
define the value function and the state-action value function (or Q-function) for agent i as follows:

V si (θ;G) := Eθ,G
[∞∑
t=0

γtri(s
t, at) | s0 = s

]
, (4.37)

Qs,ai (θ;G) := Eθ,G
[∞∑
t=0

γtri(s
t, at) | s0 = s, a0 = a

]
.

For each agent i, by averaging over the other agents’ policies, we define the averaged Q-function Q̄s,aii of a

joint policy θ = (θi, θ−i) for any s ∈ S, ai ∈ Ai as:

Q̄s,aii (θ;G) :=
∑

a−i∈A−i

θ−i(a−i|s)Qs,(ai,a−i)
i (θ;G).

With a slight abuse of notation, we write V ρi (θ;G) := Es∼ρ[V si (θ;G)] for a state distribution ρ ∈ ∆(S). We

sometimes also suppress the notation of G when it is clear from context.

Each agent seeks to find a policy that maximizes its own cumulative reward. The notion of Nash

equilibrium in such an infinite-horizon discounted reward setting is defined as follows.

Definition 11. (Nash Equilibrium). For any ε ≥ 0, a joint (product) policy θ⋆ = (θ⋆i , θ
⋆
−i) is an ε-approximate

(Markov perfect) Nash equilibrium of a game G if

V si (θ
⋆
i , θ

⋆
−i;G) ≥ V si (θi, θ⋆−i;G)− ε,∀i ∈ N , θi ∈ Θi, s ∈ S.

In the infinite-horizon setting, a Markov game G is a Markov potential game (MPG) if there exists a

global potential function Φ : Θ × S → R, such that for any state s ∈ S, any i ∈ N , and any θi, θ
′
i ∈ Θi,

θ−i ∈ Θ−i:

Φs(θi, θ−i;G)− Φs(θ
′
i, θ−i;G) = V si (θi, θ−i;G)− V si (θ′i, θ−i;G). (4.38)

Intuitively, MPGs capture the variations of the agents’ individual values by a single global potential function.

1For example, direct parameterization requires that θs,ai ≥ 0 and
∑

ai∈Ai
θs,ai = 1, ∀s ∈ S, ai ∈ Ai, while softmax

parameterization allows for Θi = R|S||Ai|.

132

MPGs cover Markov teams [76] as a special case, a cooperative setting where all agents share the same reward

function r = ri,∀i ∈ N . We also write Φ(θ;G) := Es∼ρ[Φs(θ;G)] for the initial state distribution ρ ∈ ∆(S).
By linearity of expectation, Φ(θi, θ−i;G) − Φ(θ′i, θ−i;G) = V ρi (θi, θ−i;G) − V ρi (θ′i, θ−i;G). One can easily

show that there exists a constant Φmax ∈ [0, 2N
1−γ], such that |Φ(θ;G)− Φ(θ′;G)| ≤ Φmax,∀θ, θ′ ∈ Θ. Finally,

we define the discounted state visitation distribution of policy θ on game G as

dθρ(s;G) = (1− γ)Es0∼ρ
∞∑
t=0

γtPθ,G(st = s|s0).

Subsequently, the distribution mismatch coefficient of game G is defined as κ(G) = supθ∈Θ ∥dρθ(· ;G)/ρ∥∞.

For a set G of games, we let κ = supG∈G κ(G).

4.9.2 Proof of Theorem 19

Proof. Proposition 3 implies that if the agents run projected Q-descent on the Markov potential game Gk for

T iterations, we have

T−1∑
t=0

max
i∈N

(
max
θ′i∈Θi

V ρi (θ
′
i, θ

k,t
−i ;G

k)− V ρi (θk,ti , θk,t−i ;G
k)

)
≤
√
κ(Gk)T (Φ(θk,T ;Gk)− Φ(θk,0,Gk))

α(1− γ)2 . (4.39)

From the Cauchy-Schwarz inequality, we have that

1

K

K∑
k=1

√
Φ(θk,T ;Gk)− Φ(θk,0;Gk) ≤

√√√√ 1

K

K∑
k=1

(Φ(θk,T ;Gk)− Φ(θk,0;Gk))

≤

√√√√ 1

K

(
2Φmax +

K−1∑
k=1

(Φ(θk,T ;Gk)− Φ(θk+1,0;Gk+1))

)

≤

√√√√ 1

K

(
2Φmax +

K−1∑
k=1

(Φ(θk,T ;Gk)− Φ(θk,T ;Gk+1))

)

≤
√

1

K
(2Φmax +∆Φ)

where the third inequality uses the outer stage update rule that θk+1,0 = θk,T , and the last inequality follows

from the definition of the similarity metric ∆Φ. Plugging the above result into (4.39), we have that

1

K

1

T

K∑
k=1

T−1∑
t=0

max
i∈N

(
max
θ′i∈Θi

V ρi (θ
′
i, θ

k,t
−i ;G

k)− V ρi (θk,ti , θk,t−i ;G
k)

)

≤
√
κ(2Φmax +∆Φ)

α(1− γ)2KT ≤
√

8κ4NAmax(2Φmax +∆Φ)

(1− γ)6KT ,

where in the second inequality we set the learning rate as α = (1−γ)4
8κ3NAmax

. Therefore, for an average game,

T = O
(
NAmaxκ

4(Φmax+∆Φ)
K(1−γ)6ε2

)
steps in the inner stage suffice to find an ε-approximate Nash equilibrium.

133

4.9.3 Model-Agnostic Meta-Learning in Markov Potential Games

In what follows, we study meta-learning in MPG under the same formulation as MAML [28], [200], [203].

Let G = {Gj} be a set of different infinite-horizon discounted reward Markov potential games. The

games are drawn from a fixed distribution p that we can sample from. Each game is defined by a tuple

Gj = (N ,S, {Ai}Ni=1, P
j , {rji }Ni=1, γ, ρ

j), where we assume without loss of generality that the games share

the same agent set, state & action spaces and discount factor, but can have different transition and reward

functions and initial state distributions. MAML tries to learn a good initialization from which running one or

a few steps of gradient descents/ascents with respect to a new task lead to well-performing model parameters.

In the case of multi-agent meta-reinforcement learning with one gradient ascent step, the problem can be

formulated as

max
θ∈Θ

F1(θ) := EG∼p(G) [Φ (θ + α∇Φ(θ;G);G)] , (4.40)

where α > 0 is the step size of the policy gradient update. Such a formulation can also be extended to multiple

steps of policy gradients. Let ζ(· ;G) denote the operator of performing one step of policy gradient update

on game G, i.e., ζ(θ;G) := θ + α∇Φ(θ;G). The T -step extension of the objective (4.40) can be written as

max
θ∈Θ

FT (θ) := EG∼p(G) [Φ (ζ(. . . (ζ(θ;G)) . . .);G)] , (4.41)

where the operator ζ(· ;G) is applied T times.

Optimizing the multi-step MAML objective typically involves two nested stages: The inner stage (or

base algorithm) runs multiple steps of gradient ascents for each individual task, while the outer stage (or

meta-algorithm) is an iterative process that updates the meta-parameter θ over different tasks. Specifically,

suppose the outer stage runs for K iterations. Let θk denote the value of θ at the beginning of the k-th

iteration of the outer stage. In each iteration, we sample games from the set G according to the distribution

p. For each individual game G ∈ G encountered during iteration k, the inner stage runs T steps of gradient

ascent (or its variants) on it:

θk,t+1(G)← ψ(θk,t(G);G), for 0 ≤ t ≤ T − 1, (4.42)

where θk,0(G) = θk,∀G ∈ G. We often suppress the notation of G in θk,t(G) when there is no ambiguity.

Finally, the outer stage updates the meta-parameter by

θk+1 ← Ψ(θk,G), (4.43)

using a certain update rule Ψ. The meta-parameter θk+1 is then used as the initialization θk+1,0 for iteration

k + 1. For simplicity of presentation, we present our results in the same setting as in [201] where G consists

of a finite set of M games and p is a uniform distribution. Our results can be easily extended to the settings

where there is an infinite number of games and p is a generic probability distribution, as has been done in

existing works [200], [202], [203].

In the following, we develop a meta-learning procedure (ψ,Ψ) that finds a stationary point of the meta-

objective (4.41) while at the same time converging to an approximate Nash equilibrium for each individual game

encountered, assuming a sufficient number of policy gradient steps are taken in each game. We focus on softmax

parameterization where each agent’s policy is given by πθi(ai|s) = exp(θi(ai|s))/
∑
a′i∈Ai

exp(θi(a
′
i|s)),∀s ∈

S, ai ∈ Ai. In the inner stage, each agent independently runs gradient ascents with respect to its own value

134

functions to update its parameters. Specifically, on each game G ∈ G encountered during the k-th outer

iteration, agent i updates its policy parameter θi by

θk,t+1
i (G)← θk,ti (G) + α∇θiV ρi (θk,t(G);G),∀0 ≤ t ≤ T − 1. (4.44)

We sometimes omit the dependence of θk,ti (G) on G when the game is clear from the context. Using (the

multi-agent extension of) the policy gradient theorem [215], [234], the gradient ∇θiV ρi (θ;G) can be calculated

as
∂V ρi (θ;G)

∂θi(ai|s)
=

1

1− γ d
θ
ρ(s;G)πθi(ai|s)Ās,aii (θ;G), (4.45)

where dθρ(s;G) = (1 − γ)Es0∼ρ
∑∞
t=0 γ

tPθ,G(st = s|s0) is the discounted state visitation distribution, and

Ās,aii (θ;G) is the averaged advantage function. Unbiased estimators of the policy gradient can be constructed

by using the sampler from [235]. For simplicity, we assume that the exact policy gradients are given. It

follows from the definition of the potential function (4.38) that ∇θiV ρi (θ;G) = ∇θiΦ(θ;G), which indicates

that independent policy gradient updates with individual value functions (4.44) is equivalent to running

centralized gradient ascents with respect to the potential function (4.42). Hence, the base algorithm for

each individual game can be executed in a decentralized way. Finally, we invoke Theorem 5 of [218] to show

that under mild assumptions, our policy gradient updates with softmax parameterization (4.44) find an

approximate Nash equilibrium of each individual game. Specifically, for any ε > 0, if we run the inner stage

for sufficient number of steps T = O(1/ε2), our method will find an ε-approximate NE for each individual

game.

Our outer stage follows the MAML algorithm by running gradient ascent with respect to the meta-objective

FT from (4.40). The gradient of FT can be written as

∇FT (θ) = EG∼p(G)

[(T−1∏
t=0

(
I + α∇2Φ(θ(t)(G);G)

))
∇Φ(θ(T)(G);G)

]
, (4.46)

where θ(0)(G) = θ and θ(t+1)(G) = Ψ(θ(t)(G);G). Accordingly, we instantiate the outer stage update (4.43)

as

θk+1 ← θk +
η

|G|
∑
G∈G

(T−1∏
t=0

(
I + α∇2Φ(θk,t(G);G)

))
∇Φ(θk,T (G);G), (4.47)

where η > 0 is the learning rate of the outer stage. We assume for simplicity that the exact values of the

policy gradient ∇Φ(θk,T (G);G) and the policy Hessian ∇2Φ(θk,t(G);G) are given. In practice, one can

construct unbiased estimators of the policy gradient from samples, as the policy gradient and policy Hessian

can be written explicitly in a closed form that is compatible with samplers (Lemma 44). We remark that the

policy Hessian depends on the cross terms of the agents’ policy parameters, which can only be calculated in a

centralized way. Our inner stage, though, can still be executed in a decentralized manner. Our algorithm

hence falls into in the regime of centralized (meta-)training with decentralized (meta-)execution [43], a popular

strategy used for training MARL algorithms.

In order to establish the convergence of (4.47) to the stationary point of the meta-objective (4.40), we

first show the smoothness of the meta-objective through the following sequence of lemmas.

Lemma 41. Under softmax parameterization, for any policy parameter θ ∈ Θ, any state s ∈ S and any

joint action a ∈ A, we have (i) ∥∇θ log πθ(a|s)∥ ≤
√
2N , and (ii)

∥∥∇2
θ log π(a|s)

∥∥ ≤ 2. Furthermore, for any

policy parameters θ, θ′ ∈ Θ, we have (iii)
∥∥∇2

θ log πθ(a|s)−∇2
θ log πθ′(a|s)

∥∥ ≤ 12 ∥θ − θ′∥.

135

Lemma 42. Under softmax parameterization, for any Markov potential game G ∈ G, any policy parameters

θ, θ′ ∈ Θ, any state s ∈ S and any joint action a ∈ A, the potential function Φ satisfies the following

properties:

(i) Bounded policy gradient: ∥∇Φ(θ;G)∥ ≤ BG :=
√
2N

(1−γ)2 ;

(ii) Bounded policy Hessian:
∥∥∇2Φ(θ;G)

∥∥ ≤ LG := 6N
(1−γ)3 ;

(iii) Lipschitz policy Hessian:
∥∥∇2Φ(θ;G)−∇2Φ(θ′;G)

∥∥ ≤ LH ∥θ − θ′∥, where LH := 56N3/2

(1−γ)4 .

Lemma 43. (Meta-objective smoothness). Consider running (4.44) with softmax parameterization and

α = (1−γ)3
2NγAmax

as the inner stage and running (4.47) as the outer stage. Then, the meta-objective (4.41) is

LF -smooth for LF = (αTBGLH + LG)2
2T .

The smoothness constant LF has an exponential dependence on the number of inner stage update steps

T , which seems unavoidable even in supervised meta-learning. Based on the smoothness property, we can

show that our method finds a stationary point of the meta-objective (Theorem 20).

4.9.4 Proof of Lemma 41

Proof. For agent i ∈ N , for any state s ∈ S and action ai ∈ Ai, the softmax policy with parameter θi can be

written as

πθi(ai|s) =
exp(1⊤

s,aiθi)∑
a′i∈Ai

exp(1⊤
s,a′i

θi)
,

where θi ∈ R|S||Ai|, and 1s,ai is an |S||Ai|-dimensional one-hot vector that has a 1 at index (s, ai) and 0s at

all the other indices. It is known that (see, e.g., [235])

∂ log πθi(ai|s)
∂θi(a′i|s′)

= 1[s = s′](1[a = a′]− πθi(a′|s)),

where 1[·] is the indicator function. Hence, we have

∥∇θi log πθi(ai|s)∥ ≤
√
2. (4.48)

Since we consider product policies, for any joint action a = (a1, . . . , aN), we have πθ(a|s) =
∏N
i=1 πθi(ai|s).

Therefore, it holds that

∥∇θ log πθ(a|s)∥2 ≤
N∑
i=1

∥∇θi log πθi(ai|s)∥2 ≤ 2N.

We can hence conclude that ∥∇θ log πθ(a|s)∥ ≤
√
2N . This completes the proof of result (i). Next, to show

result (ii), we first write the Hessian ∇2
θi
log πθi(ai|s) as (see, e.g., [202] for a proof)

∇2
θi log πθi(ai|s) = −Ea′i∼πθi

(a′i|s)

[(
1s,a′i − Ea′′i ∼πθi

(a′′i |s)[1s,a′′i]
)(
1s,a′i − Ea′′i ∼πθi

(a′′i |s)[1s,a′′i]
)⊤]

.

To find the upper bound and Lipschitz constant of ∇2
θi
log πθi(ai|s), we will rely on two technical lemmas

from [202], reproduced as Lemmas 32 and 33 in Section 4.7. Since ∥∇θi log πθi(ai|s)∥ ≤ 2, from Lemma 33,

we know that Ea′′i ∼πθi
(a′′i |s)[1s,a′′i] is Lipschitz continuous with constant 2. By the definition of 1s,ai , we

have
∥∥∥Ea′′i ∼πθi

(a′′i |s)[1s,a′′i]
∥∥∥ ≤ 1. Since for any matrix A, a sub-multiplicative matrix norm ∥·∥ satisfies

136

∥A∥22 ≤ ∥A∥1 ∥A∥∞, we can conclude that∥∥∥(1s,a′i − Ea′′i ∼πθi
(a′′i |s)[1s,a′′i]

)(
1s,a′i − Ea′′i ∼πθi

(a′′i |s)[1s,a′′i]
)⊤∥∥∥ ≤ 2. (4.49)

Further, by Lemma 32, the term in (4.49) is Lipschitz continuous with constant 8. By applying Lemma 33

one more time, we know that

∥∥∇2
θi log πθi(ai|s)

∥∥ ≤ 2, and
∥∥∥∇2

θi log πθi(ai|s)−∇2
θ′i
log πθ′i(ai|s)

∥∥∥ ≤ 12 ∥θi − θ′i∥ . (4.50)

Since ∇2
θ log πθ(a|s) is a block diagonal matrix, we apply the result on the block diagonal matrix norm in

Lemma 34 to show that ∥∥∇2
θ log πθ(a|s)

∥∥ ≤ max
i∈N

∥∥∇2
θi log πθi(ai|s)

∥∥ ≤ 2.

This completes the proof of result (ii). To show result (iii), we again apply Lemma 34 to conclude that

∥∥∇2
θ log πθ(a|s)−∇2

θ log πθ′(a|s)
∥∥ ≤ max

i∈N

∥∥∥∇2
θi log πθi(ai|s)−∇2

θ′i
log πθ′i(ai|s)

∥∥∥ ≤ 12 ∥θ − θ′∥ ,

where the last step is by (4.50). This completes the proof of the lemma.

4.9.5 Proof of Lemma 42

In the following, since there is no possibility of ambiguity, we drop the dependence on G and simply write

∇Φ(θ;G) and V ρi (θ;G) as ∇Φ(θ) and V ρi (θ), respectively.
To establish Lemma 42, we first derive an explicit formula for the policy Hessian ∇2Φ(θ). Notice that

∇2Φ(θ) can be written as a block matrix with N ×N blocks:

∇2Φ(θ) =

∇2

1,1Φ(θ) . . . ∇2
1,NΦ(θ)

...
. . .

...

∇2
N,1Φ(θ) . . . ∇2

N,NΦ(θ)

 , (4.51)

where in each block ∇2
i,jΦ(θ) ∈ R|Ai|×|Aj | we first take the gradient of Φ with respect to agent i’s policy

parameters θi and then take the gradient with respect to agent j’s parameters θj , i.e., ∇2
i,jΦ(θ) =

∂2Φ
∂θi∂θj

,∀i, j ∈
N . The following lemma states that each ∇2

i,jΦ(θ) block can be written in an explicit form. This lemma can

be considered as a multi-agent extension of Theorem 3 in [236]. For clarity of presentation, we defer its proof

to Section 4.9.6.

Lemma 44. Each matrix block ∇2
i,jΦ(θ) in the policy Hessian matrix (4.51) takes the form

∇2
i,jΦ(θ) = Hi,j1 (θ) +Hi,j2 (θ) +Hi,j12 (θ) + (Hi,j12)⊤(θ).

137

The matrices Hi,j1 (θ),Hi,j2 (θ), and Hi,j12 (θ) can be written as

Hi,j1 (θ) =
1

1− γ
∑
s∈S

∑
a∈A

dθρ(s, a)Q
s,a
i (θ)∇θi log πθ(a|s)∇⊤

θj log πθ(a|s),

Hi,j2 (θ) =
1

1− γ
∑
s∈S

∑
a∈A

dθρ(s, a)Q
s,a
i (θ)∇2

θiθj log πθ(a|s),

Hi,j12 (θ) =
1

1− γ
∑
s∈S

∑
a∈A

dθρ(s, a)∇θi log πθ(a|s)∇⊤
θjQ

s,a
i (θ),

where we define dθρ(s, a) := dθρ(s) · πθ(a|s) for dθρ(s) = (1− γ)Es0∼ρ
∑∞
t=0 γ

tPθ(st = s|s0).

The next lemma states that each matrix block ∇2
i,jΦ(θ) is Lipschitz continuous with respect to θ. The

proof is deferred to Section 4.9.7.

Lemma 45. Each matrix block ∇2
i,jΦ(θ) in the policy Hessian matrix (4.51) is Lipschitz continuous:

∥∥∇2
i,jΦ(θ)−∇2

i,jΦ(θ
′)
∥∥ ≤ Lij ∥θ − θ′∥ ,∀i, j ∈ N ,

where the Lipschitz constant satisfies Lij ≤ 56
√
N

(1−γ)4 .

Equipped with the results from Lemma 44 and Lemma 45, we are now ready to prove Lemma 42.

Proof (of Lemma 42).

Proof of (i): From the definition of the potential function (4.38), we know that ∇θiΦ(θ) = ∇θiV ρi (θ), and
hence ∇Φ(θ) = (∇θ1V ρ1 (θ), . . . ,∇θNV ρN (θ)). For each agent i, the policy gradient theorem states that

∇θiV ρi (θ) =
1

1− γEs∼dθρ,ai∼πθi
(·|s)

[
∇θi log πθi(ai|s)Q̄s,aii (θ)

]
.

Since (4.48) from Lemma 42 suggests that ∥∇θi log πθi(ai|s)∥ ≤
√
2, we obtain ∥∇θiV ρi (θ)∥ ≤

√
2

(1−γ)2 . Hence,

∥∇Φ(θ)∥ ≤
√
2N

(1−γ)2 .

Proof of (ii): See Lemma 29 of [218].

Proof of (iii): From the above reasoning, we know that ∇2Φ(θ) can be written as a block matrix

∇2Φ(θ) = [∇2
i,jΦ(θ)]1≤i,j≤N , and Lemma 45 implies that each such block is Lipschitz continuous

∥∥∇2
i,jΦ(θ)−∇2

i,jΦ(θ
′)
∥∥ ≤ Lij ∥θ − θ′∥ ,∀i, j ∈ N ,

with Lij ≤ 56
√
N

(1−γ)4 . We can then use Lemma 35 to conclude that ∇2Φ(θ) is also Lipschitz

∥∥∇2Φ(θ)−∇2Φ(θ′)
∥∥ ≤ 56N3/2

(1− γ)4 ∥θ − θ
′∥ .

This completes the proof of Lemma 42.

4.9.6 Proof of Lemma 44

Proof. The proof follows steps similar to those used in the proof of Theorem 3 in [236]. We first introduce

a few notations. Let s0:t denote the sequence of states (s0, . . . , st), and let a0:t := (a0, . . . , at), where

138

at = (at1, . . . , a
t
N) is the joint action at time step t. Further, let

pθ(s
0:t, a0:t | ρ) := Pθ(s0:t, a0:t|s0 ∼ ρ) = ρ(s0)

t−1∏
τ=0

(
πθ(a

τ |sτ)P (sτ+1|sτ , aτ)
)
πθ(a

t|st). (4.52)

From the definition in (4.37), we have

V ρi (θ) = Eθ

[∞∑
t=0

γtri(s
t, at) | s0 ∼ ρ

]
=

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t|ρ)ri(st, at).

Using the definition of the potential function (4.38), we know that

∇θiΦ(θ) = ∇θiV ρi (θ) =
∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | ρ)∇θi log pθ(s0:t, a0:t | ρ)ri(st, at),

where we used the fact that ∇pθ = pθ∇ log pθ. The second-order partial derivative can hence be written as

∇2
i,jΦ(θ) =

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | ρ)∇2

θiθj log pθ(s
0:t, a0:t)ri(s

t, at)︸ ︷︷ ︸
1

+

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | ρ)∇θi log pθ(s0:t, a0:t | ρ)∇⊤

θj log pθ(s
0:t, a0:t | ρ)ri(st, at)︸ ︷︷ ︸

2

From (4.52), we can see that ∇2
θiθj

log pθ(s
0:t, a0:t | ρ) =∑t

τ=0∇2
θiθj

log πθ(a
τ |sτ). Hence, the first term in

the above equation can be written as

1 =

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | ρ)

t∑
τ=0

∇2
θiθj log πθ(a

τ |sτ)ri(st, at)

=

∞∑
τ=0

γτ
∑
sτ

∑
aτ

pθ(s
τ , aτ | ρ)∇2

θiθj log πθ(a
τ |sτ)

∞∑
t=τ

γt−τ
∑
st

∑
at

Pθ(st, at|sτ , aτ)ri(st, at)

=

∞∑
τ=0

γτ
∑
sτ

∑
aτ

pθ(s
τ , aτ | ρ)∇2

θiθj log πθ(a
τ |sτ)Qs

τ ,aτ

i (θ)

=
1

1− γ
∑
s∈S

∑
a∈A

dθρ(s, a)Q
s,a
i (θ)∇2

θiθj log πθ(a|s)

=Hi,j2 (θ).

139

The second term can be written as

2 =

∞∑
t=0

t∑
τ=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t|ρ)∇θi log πθ(aτ |sτ)∇⊤

θj log πθ(a
τ |sτ)ri(st, at)

+

∞∑
t=0

t∑
τ2=0

τ2−1∑
τ1=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t|ρ)∇θi log πθ(aτ1 |sτ1)∇⊤

θj log πθ(a
τ2 |sτ2)ri(st, at)

+

∞∑
t=0

t∑
τ1=0

τ1−1∑
τ2=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t|ρ)∇θi log πθ(aτ1 |sτ1)∇⊤

θj log πθ(a
τ2 |sτ2)ri(st, at).

(4.53)

By switching the order of summations and following a similar procedure as in the derivation of 1 , we can

show that the first term on the RHS of (4.53) is equal to Hi,j1 (θ). The second and third terms on the RHS of

(4.53) can be shown to be Hi,j12 (θ) and (Hi,j12)⊤(θ), respectively. We skip the rest of the proof as it follows the

same procedure as in the proof of Theorem 3 in [236].

4.9.7 Proof of Lemma 45

Proof. Recall from Lemma 44 that

∇2
i,jΦ(θ) = Hi,j1 (θ) +Hi,j2 (θ) +Hi,j12 (θ) + (Hi,j12)⊤(θ).

For any (s, a), we write

hi,j1 (θ) =Qs,ai (θ)∇θi log πθ(a|s)∇⊤
θj log πθ(a|s),

hi,j2 (θ) =Qs,ai (θ)∇2
θiθj log πθ(a|s),

hi,j12 (θ) =∇θi log πθ(a|s)∇⊤
θjQ

s,a
i (θ),

and hence ∇2
i,jΦ(θ) can be rewritten as

∇2
i,jΦ(θ) =

1

1− γ
∑
s∈S

∑
a∈A

dθρ(s, a)
(
hi,j1 (θ) + hi,j2 (θ) + hi,j12 (θ) + (hi,j12)

⊤(θ)
)
.

In the following, we proceed by showing that each of the three terms hi,j1 (θ), hi,j2 (θ), and hi,j12 (θ) is bounded

and Lipschitz.

(i) Analysis of hi,j1 (θ): First, notice that |Qs,ai (θ)| ≤ 1
1−γ . From the Bellman equation Qs,ai (θ) =

ri(s, a) + γEs′∼P (·|s,a)[V
s′

i (θ)], we have ∇Qs,ai (θ) = γEs′∼P (·|s,a)[∇V s
′

i (θ)]. The policy gradient theorem

states that

∇θiV ρi (θ) =
1

1− γEs∼dθρ,ai∼πθi
(·|s)

[
∇θi log πθi(ai|s)Q̄s,aii (θ)

]
.

Since (4.48) from Lemma 41 suggests ∥∇θi log πθi(ai|s)∥ ≤
√
2, we obtain ∥∇θiV ρi (θ)∥ ≤

√
2

(1−γ)2 . Hence,

∥∇Qs,ai (θ)∥ ≤
√
2γ

(1−γ)2 , and Qs,ai (θ) is Lipschitz continuous with constant
√
2γ

(1−γ)2 . In addition, the proof

of Lemma 41 implies that ∇θi log πθ(a|s) is bounded by
√
2 and is 2-Lipschitz continuous. Further using

Lemma 32, we can conclude that

∥∥∥hi,j1 (θ)
∥∥∥ ≤ 2

1− γ and
∥∥∥hi,j1 (θ)− hi,j1 (θ′)

∥∥∥ ≤ 2
√
2(2− γ)

(1− γ)2 ∥θ − θ′∥ . (4.54)

140

(ii) Analysis of hi,j2 (θ): From step (i) of the proof, we know that Qs,ai (θ) is bounded by 1
1−γ and is

√
2γ

(1−γ)2 -

Lipschitz continuous. Since πθ is a product policy, for i ̸= j, we simply have ∇2
θiθj

log πθ(a|s) = 0. For i = j,

we know from (4.50) that ∥∇2
θiθj

log πθ(a|s)∥ ≤ 2, and ∥∇2
θiθj

log πθ(a|s)−∇2
θiθj

log πθ′(a|s)∥ ≤ 12 ∥θi − θ′i∥ .
Therefore, we obtain from Lemma 32 that

hi,j2 (θ) = 0, if i ̸= j; and
∥∥∥hi,j2 (θ)

∥∥∥ ≤ 2

1− γ ,
∥∥∥hi,j2 (θ)− hi,j2 (θ′)

∥∥∥ ≤ 8(2− γ)
(1− γ)2 ∥θ − θ

′∥ , if i = j. (4.55)

(iii) Analysis of hi,j12 (θ): In the following, we first establish the Lipschitz continuity of ∇θjQs,ai (θ), which can

be shown in a similar manner as in Lemma A.2 of [237] and is reproduced below for completeness. Let

pθ(s
0:t, a0:t | s, a) := Pθ(s0:t, a0:t|s0 = s, a0 = a) =

t−1∏
τ=0

πθ(a
τ+1|sτ+1)P (sτ+1|sτ , aτ).

By the definition of the Q-function (4.37),

Qs,ai (θ) =

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | s, a)ri(st, at)

The gradient of Qs,ai (θ) can hence be written as

∇θjQs,ai (θ) =

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | s, a)∇θj log pθ(s0:t, a0:t | s, a)ri(st, at)

=

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ(s
0:t, a0:t | s, a)

t∑
τ=1

∇θj log πθ(aτ |sτ)ri(st, at).

To show the Lipschitz continuity of Qs,ai (θ), we first write

∣∣∇θjQs,ai (θ)−∇θjQs,ai (θ′)
∣∣

≤
∞∑
t=0

∑
a0:t

∑
s0:t

γt
∣∣pθ(s0:t, a0:t|s, a) t∑

τ=1

∇θj log πθ(aτ |sτ)− pθ′(s0:t, a0:t|s, a)
t∑

τ=1

∇θj log πθ′(aτ |sτ)
∣∣

≤
∞∑
t=0

∑
a0:t

∑
s0:t

γt
∣∣pθ(s0:t, a0:t|s, a)− pθ′(s0:t, a0:t|s, a)∣∣

∥∥∥∥∥
t∑

τ=1

∇θj log πθ(aτ |sτ)
∥∥∥∥∥ (4.56)

+

∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ′(s
0:t, a0:t|s, a)

∥∥∥∥∥
t∑

τ=1

(
∇θj log πθ(aτ |sτ)−∇θj log πθ′(aτ |sτ)

)∥∥∥∥∥ . (4.57)

In the following, we upper bound each of the two terms above separately. To analyze (4.56), we first apply

141

the mean-value theorem to the function
∏t
τ=1 πθ(a

τ |sτ) of θ and obtain

∣∣∣∣∣
t∏

τ=1

πθ(a
τ |sτ)−

t∏
τ=1

πθ′(a
τ |sτ)

∣∣∣∣∣ =
∣∣∣∣∣∣(θ − θ′)⊤

 t∑
m=1

∇πθ̃(am|sm)

t∏
τ ̸=m,τ=1

πθ̃(a
τ |sτ)

∣∣∣∣∣∣
≤∥θ − θ′∥ ·

t∑
m=1

∥∥∇ log πθ̃(a
m|sm)

∥∥ · t∏
τ=1

πθ̃(a
τ |sτ)

≤
√
2Nt ∥θ − θ′∥ ·

t∏
τ=1

πθ̃(a
τ |sτ),

where θ̃ = λθ + (1 − λ)θ′ for some λ ∈ [0, 1], the first inequality uses the fact that ∇πθ̃(am|sm) =

πθ̃(a
m|sm)∇ log πθ̃(a

m|sm), and the second inequality is due to Lemma 41 (i). Using the above property, we

obtain ∣∣pθ(s0:t, a0:t|s, a)− pθ′(s0:t, a0:t|s, a)∣∣
=

∣∣∣∣∣
t−1∏
τ=0

πθ(a
τ+1|sτ+1)P (sτ+1|sτ , aτ)−

t−1∏
τ=0

πθ′(a
τ+1|sτ+1)P (sτ+1|sτ , aτ)

∣∣∣∣∣
≤
t−1∏
τ=0

P (sτ+1|sτ , aτ) ·
√
2Nt ∥θ − θ′∥ ·

t∏
τ=1

πθ̃(a
τ |sτ)

=pθ̃(s
0:t, a0:t|s, a) ·

√
2Nt ∥θ − θ′∥ .

Substituting the above equation back into (4.56) yields

(4.56) ≤
∞∑
t=0

∑
a0:t

∑
s0:t

√
2Ntγtpθ̃(s

0:t, a0:t|s, a) ·
∥∥∥∥∥

t∑
τ=1

∇θj log πθ(aτ |sτ)
∥∥∥∥∥ · ∥θ − θ′∥

≤
∞∑
t=0

∑
a0:t

∑
s0:t

2
√
Nt2γtpθ̃(s

0:t, a0:t|s, a) ∥θ − θ′∥ ,

where the second step uses (4.48) from Lemma 41 and the fact that πθ is a product policy.

To upper bound (4.57), we apply Lemma 41 (ii) and obtain

(4.57) ≤
∞∑
t=0

∑
a0:t

∑
s0:t

γtpθ′(s
0:t, a0:t|s, a)

t∑
τ=1

∥∥∇θj log πθ(aτ |sτ)−∇θj log πθ′(aτ |sτ)∥∥
≤

∞∑
t=0

∑
a0:t

∑
s0:t

2tγtpθ′(s
0:t, a0:t|s, a) ∥θ − θ′∥ .

Substituting the above upper bounds back into (4.56) and (4.57), we have∣∣∇θjQs,ai (θ)−∇θjQs,ai (θ′)
∣∣

≤
∞∑
t=0

∑
a0:t

∑
s0:t

γt
(
2
√
Nt2pθ̃(s

0:t, a0:t|s, a) + 2tpθ′(s
0:t, a0:t|s, a)

)
∥θ − θ′∥

=

∞∑
t=0

γt
(
2
√
Nt2 + 2t

)
∥θ − θ′∥

≤4
√
Nγ(1 + γ)

(1− γ)3 ∥θ − θ′∥ ,

142

where the second step holds because
∑
a0:t
∑
s0:t pθ̃(s

0:t, a0:t|s, a) = 1. The last step uses the facts that

2t ≤ 2
√
Nt2, and that

∞∑
t=1

γt · t2 =
1

1− γ
∞∑
t=0

(1− γ)γt · t2 =
1

1− γ · E[T
2] =

1

1− γ ·
γ(1 + γ)

(1− γ)2 ,

where T is a random variable following a geometric distribution. We have hence derived that ∇θjQs,ai (θ) is

Lipschitz continuous with constant 4
√
Nγ(1+γ)
(1−γ)3 .

Following the same reasoning as in step (i), we obtain that ∇θi log πθ(a|s) is bounded by
√
2 and is

2-Lipschitz continuous. Similar to step (i), we can also use the Bellman equation and the policy gradient

theorem to show that ∥∇⊤
θj
Qs,ai (θ)∥ ≤

√
2γ

(1−γ)2 . Again, by applying Lemma 32, we can conclude that

∥∥∥hi,j12 (θ)∥∥∥ ≤ 2γ

(1− γ)2 and
∥∥∥hi,j12 (θ)− hi,j12 (θ′)∥∥∥ ≤ 6

√
2Nγ(1 + γ)

(1− γ)3 . (4.58)

(iv) Putting everything together: Let h(θ) := hi,j1 (θ) + hi,j2 (θ) + hi,j12 (θ) + (hi,j12)
⊤(θ). Using the simple

observation that the sum of two Lipschitz continuous functions is also Lipschitz continuous, we obtain from

(4.54), (4.55), and (4.58) that

∥h(θ)∥ ≤ 4

(1− γ)2 , and ∥h(θ)− h(θ
′)∥ ≤ 50

√
N

(1− γ)3 ∥θ − θ
′∥ . (4.59)

Recall from Lemma 44 that

∇2
i,jΦ(θ) =

1

1− γ
∑
s∈S

∑
a∈A

dθρ(s, a)h(θ).

By adding and subtracting the same value,∥∥∇2
i,jΦ(θ)−∇2

i,jΦ(θ
′)
∥∥

≤ 1

1− γ
∑
s∈S

∑
a∈A

∥∥∥dθρ(s, a)h(θ)− dθ′ρ (s, a)h(θ′)∥∥∥
≤ 1

1− γ
∑
s∈S

∑
a∈A

(∣∣∣dθρ(s, a)− dθ′ρ (s, a)∣∣∣ ∥h(θ)∥+ dθ
′

ρ (s, a) ∥h(θ)− h(θ′)∥
)

≤ 4

(1− γ)3
∑
s∈S

∑
a∈A

∣∣∣dθρ(s, a)− dθ′ρ (s, a)∣∣∣+ 50
√
N

(1− γ)4 ∥θ − θ
′∥
∑
s∈S

∑
a∈A

dθ
′

ρ (s, a)

≤ 56
√
N

(1− γ)4 ∥θ − θ
′∥ .

The third step uses the upper bounds from (4.59). The fourth step can be derived by using the following

result from Equation (A.67) of [237]:

∑
s∈S

∑
a∈A

∣∣∣dθρ(s, a)− dθ′ρ (s, a)∣∣∣ ≤ √2N1− γ ∥θ − θ
′∥ .

This completes the proof of the Lipschitz continuity that
∥∥∇2

i,jΦ(θ)−∇2
i,jΦ(θ

′)
∥∥ ≤ Lij ∥θ − θ′∥ ,∀i, j ∈ N

for Lij =
56

√
N

(1−γ)4 .

143

4.9.8 Proof of Lemma 43

Proof. Recall from (4.46) that the gradient of the meta-objective can be written as

∇FT (θ) = EG∼Unif(G)

[(T−1∏
t=0

(
I + α∇2Φ(θ(t)(G);G)

))
∇Φ(θ(T)(G);G)

]
,

where θ(0)(G) = θ and θ(t+1)(G) = Ψ(θ(t)(G);G). It suffices to show that for each individual game G ∈ G,
the term (T−1∏

t=0

(
I + α∇2Φ(θ(t)(G);G)

))
∇Φ(θ(T)(G);G) (4.60)

is Lipschitz continuous. In the following, we drop the dependence on G and simply write θ(t)(G) and

∇Φ(θ(t)(G);G) as θ(t) and ∇Φ(θ(t)), respectively.
We proceed by finding the upper bound and Lipschitz constant of each individual term in (4.60). First,

from Lemma 42(ii), we know that
∥∥I + α∇2Φ(θ(t))

∥∥ ≤ 1 + αLG,∀0 ≤ t ≤ T − 1. By using the chain rule, we

also know that

∇θθ(t) =
t−1∏
t′=0

(I + α∇2Φ(θ(t
′))).

Hence, since
∥∥I + α∇2Φ(θ(t))

∥∥ ≤ 1 + αLG,∀0 ≤ t ≤ T − 1, we know that θ(t) is Lipschitz continuous with

constant (1 + αLG)
t. Further, combining Lemma 42 (iii) with the fact that the Lipschitz constant of a

composite function is equal to the product of the Lipschitz constants of the base functions, we conclude that

I+α∇2Φ(θ(t)) is Lipschitz (with respect to θ) with constant αLH(1+αLG)
t. For the case of T ≥ 2, Lemma 32

thus implies that the
∏T−1
t=0 (I+α∇2Φ(θ(t))) factor from (4.60) is Lipschitz with constant αTLH(1+αLG)

2T−1,

while for T = 1, the Lipschitz constant is simply αLH .

For the ∇Φ(θ(T)) factor in (4.60), we know from Lemma 42(i) that it is bounded by BG. Using

Lemma 42(iii) and the Lipschitzness of a composite function, we also know that ∇Φ(θ(T)) is LG(1 + αLG)
T -

Lipschitz continuous. Finally, along with the results that the
∏T−1
t=0 (I + α∇2Φ(θ(t))) factor is bounded by

(1+αLG)
T and Lipschitz with constant αTLH(1+αLG)

2T−1, we again apply Lemma 32 to obtain that (4.60)

is Lipschitz continuous with constant αTBGLH(1 + αLG)
2T−1 + LG(1 + αLG)

2T . Using the fact that α ∈
(0, 1/LG], we can conclude that the meta-objective FT (θ) is LF -smooth with LF = (αTBGLH +LG)2

2T .

4.9.9 Proof of Theorem 20

Proof. Based on the aforementioned series of lemmas, we are now ready to establish Theorem 20. The proof

follows from standard analysis in non-convex optimization. Since the meta-objective function is LF -smooth

(Lemma 43), the smoothness property implies that

FT (θ
k+1) ≥ FT (θk) +∇FT (θk)⊤(θk+1 − θk)− LF

2

∥∥θk+1 − θk
∥∥2 .

Using the outer stage update rule (4.47) that

θk+1 = θk + η∇FT (θk),

144

we obtain

FT (θ
k+1) ≥ FT (θk) + η

∥∥∇FT (θk)∥∥2 − LF η
2

2

∥∥∇FT (θk)∥∥2 ≥ FT (θk) + 1

2LF

∥∥∇FT (θk)∥∥2 ,
where the last step uses η = 1/LF . Summing the above inequality over k and rearranging the terms lead to

K−1∑
k=0

∥∥∇FT (θk)∥∥2 ≤ 2LF

K−1∑
k=0

(FT (θ
k+1)− FT (θk)) = 2LF (FT (θ

K)− FT (θ0)) ≤
4NLF
1− γ ,

where the last step holds because |Φ(θ;G)− Φ(θ′;G)| ≤ Φmax ≤ 2N
1−γ ,∀θ, θ′ ∈ Θ,G ∈ G. Therefore, for

K ≥ 4NLF

(1−γ)ε2 , we have

min
0≤k≤K−1

∥∥∇FT (θk)∥∥2 ≤ 1

K

K−1∑
k=0

∥∥∇FT (θk)∥∥2 ≤ 4NLF
K(1− γ) ≤ ε

2.

This completes the proof of the theorem.

4.10 Proofs for Section 4.5

4.10.1 Proof of Theorem 21

Proof. From the construction of π̄ (Algorithm 18) and the definition of CCE-gap, we have

CCE-gap(π̄) =max
i∈N

V
†,π̄−i

1,i (s1)− V π̄1,i(s1)

≤ 1

T

T∑
t=1

max
i∈N

max
s∈S

(
V

†,π̄t
1,−i

1,i (s)− V π̄
t
1

1,i (s)

)

≤ 1

T

T∑
t=1

δt1.

Using Lemma 48, the above term can be further bounded by

CCE-gap(π̄) ≤ 1

T

T∑
t=1

δt1

≤
T∑
t=1

3

ηTLτ(t)

H∑
h=1

max
i∈N

max
s∈S

DR(π
τ(t)−h,†
h,i , π̃

τ(t)−h
h′,i (·|s)) + 36(N − 1)2η2H4

=
3

ηT

τ̄∑
τ=1

H∑
h=1

max
i∈N

max
s∈S

DR(π
τ−h,†
h,i , π̃τ−hh,i (·|s)) + 36(N − 1)2η2H4

≤ 3

ηT

τ̄∑
τ=1

H∑
h=1

max
i∈N ,s∈S

DR(π
τ,†
h,i , π̃

τ
h,i(·|s)) + 36(N − 1)2η2H4,

where the last step is simply by changing the counting method. This completes the proof for the first claim

in the Theorem.

We now proceed to establish the second statement, which follows a similar argument as in the proof of

145

Theorem 17 for the two-player zero-sum game setting. We repeat the proof below for completeness. Recall

that we chose the negative entropy as the regularizer R. The Bregman divergence DR(·, ·) reduces to the

Kullback–Leibler divergence. Since πτ,†h,i lies in the simplex, when we initialize π̃τh,i(·|s) = 1/Ai to be a uniform

distribution, we naturally have DR(π
τ,†
h,i , π̃

τ
h,i(·|s)) ≤ logAi,∀i ∈ N , s ∈ S, and h ∈ [H].

It remains to upper bound the total number of stages τ̄ . Recall that we have defined the lengths of the

stages to increase exponentially with Lτ+1 = ⌊(1 + 1/H)Lτ⌋. Since the τ̄ stages sum up to T iterations in

total, by taking the sum of a geometric series, it suffices to find a value of τ̄ such that (1 + 1/H)τ̄ ≥ T/H.

Using the Taylor series expansion, one can show that (1 + 1
H)H ≥ e − e

2H . Hence, it reduces to finding a

minimum τ̄ such that (
e− e

2H

)τ̄/H
≥ T

H
. (4.61)

One can easily see that any τ̄ ≥ H log T
log(e/2) satisfies the condition. Summarizing the above results, we can

conclude that

CCE-gap(π̄) ≤ 12H2 log T

ηT
logAmax + 36(N − 1)2η2H4.

Choosing η = H−2/3T−1/3(N − 1)−2/3 yields the second claim in the Theorem.

4.10.2 Supporting Lemmas for Section 4.5

Lemma 46. For every stage τ ∈ N+, every step h ∈ [H] and every state s ∈ S, the per-state average regret

of player i ∈ N is bounded by:

regτh,i(s) ≤
1

ηLτ
DR(π

τ,†
h,i , π̃

τ
h,i(·|s)) + 36(N − 1)2η2H3. (4.62)

Proof. Notice that the policy update steps in Algorithm 17 are exactly the same as the optimistic online

mirror descent algorithm [114], [115], with the loss vector gt = [Qτh,iπ
t
h,−i](s, ·) and the recency bias

M t = [Qτh,iπ
t−1
h,−i](s, ·). Since our stage-based value updates assign equal weights to each iteration, we end up

with a classic no-(average-)regret learning problem instead of a no-(weighed-)regret learning problem as in

[121], [122]. This allows us to directly apply the standard optimistic OMD results (e.g., Lemma 1 in [114]

and Proposition 5 in [115]) to obtain

regτh,i(s) = max
πτ,†
h,i∈∆(Ai)

1

Lτ

tend
τ∑

j=tstartτ

〈
πτ,†h,i − π

j
h,i, Q

τ
h,iπ

j
h,−i

〉
(s)

≤ 1

ηLτ
DR(π

τ,†
h,i , π̃

τ
h,i(·|s)) +

η

Lτ

tendτ∑
j=tstartτ

∥∥∥[Qτh,iπjh,−i −Qτh,iπj−1
h,−i](s, ·)

∥∥∥2
∞

− 1

8ηLτ

tend
τ∑

j=tstartτ

∥∥∥πjh,i(· | s)− πj−1
h,i (· | s)

∥∥∥2
1

≤ 1

ηLτ
DR(π

τ,†
h,i , π̃

τ
h,i(·|s)) +

η

Lτ

tendτ∑
j=tstartτ

2H2
∥∥∥πjh,−i(· | s)− πj−1

h,−i(· | s)
∥∥∥2
1
, (4.63)

where in the last step we used the Hölder’s inequality and the fact that ∥Qτh(s, ·)∥∞ ≤ H. To further upper

146

bound (4.63), we apply Lemma 47 to obtain that for any t ∈ [tstartτ , tendτ],∥∥∥πth,−i(· | s)− πt−1
h,−i(· | s)

∥∥∥2
1
≤ 18(N − 1)2ηH. (4.64)

We remark that the policy stability condition above has a slightly worse dependence on η than those of the

optimistic FTRL algorithms. In particular, Lemma G.4 of [121] has shown a
∥∥∥πth,−i(· | s)− πt−1

h,−i(· | s)
∥∥∥2
1
≤

16(N − 1)2η2H2 condition for optimistic FTRL. This is because unlike optimistic FTRL, optimistic OMD

lacks a smoothness condition that directly connects the stability of policies to the stability of utility functions

(e.g., Lemma A.5 of [121]). Plugging (4.64) back into (4.63) leads to the desired result.

Lemma 47. For a fixed τ and any t ∈ [tstartτ , tendτ], i ∈ N , h ∈ [H], s ∈ S, the optimistic online mirror descent

policy updates in Algorithm 17 satisfy:∥∥∥πth,i(· | s)− πt−1
h,i (· | s)

∥∥∥2
1
≤ 18ηH.

Consequently, ∥∥∥πth,−i(· | s)− πt−1
h,−i(· | s)

∥∥∥2
1
≤ 18(N − 1)2ηH.

Proof. In this proof, since we focus on a fixed (s, h)→ S × [H], we will drop the dependence on (s, h) for

notational convenience. To prove the first claim in the lemma, we first use the triangle inequality to obtain

that ∥∥πti − πt−1
i

∥∥
1
≤
∥∥πti − π̂ti∥∥1 + ∥∥π̂ti − π̂t−1

i

∥∥
1
+
∥∥π̂t−1

i − πt−1
i

∥∥
1
. (4.65)

In the following, we derive an upper bound for the first term on the RHS of the above inequality. The other

two terms on the RHS can be bounded in a similar way.

We know from the Pinsker’s inequality that

∥∥πti − π̂ti∥∥1 ≤√2KL (πti∥π̂ti). (4.66)

In the following, it suffices to find an upper bound of KL (π̂ti∥πti). Recall that Algorithm 17 updates the

policies as

πti = argmax
µ∈∆(Ai)

η
〈
µ, [Qτi π

t−1
−i]

〉
−DR(µ, π̂

t
i).

Since we chose the negative entropy as the regularizer R, the policy update rule above is known (see Section

5.4.2 of [238]) to be equivalent to the following multiplicative weights update:

πti(a) =
π̂ti(a) exp(η[Q

τ
i π

t−1
−i](a))∑

a′ π̂
t
i(a

′) exp(η[Qτi π
t−1
−i](a′))

,∀a ∈ Ai.

147

Hence, we have that

KL
(
πti∥π̂ti

)
=
∑
a∈Ai

πti(a) ln
πti(a)

π̂ti(a)

=
∑
a∈Ai

πti(a) ln
exp(η[Qτi π

t−1
−i](a))∑

a′ π̂
t
i(a

′) exp(η[Qτi π
t−1
−i](a′))

≤
∑
a∈Ai

πti(a) ln
exp(ηH)∑
a′ π̂

t
i(a

′)

=ηH,

where the inequality uses the facts that Qτi ≥ 0 and ∥Qτi ∥1 ≤ H. Substituting the above result back to (4.66)

leads to ∥∥πti − π̂ti∥∥1 ≤√2KL (πti∥π̂ti) ≤
√

2ηH.

Similar results also hold for the other two terms on the RHS of (4.65). Therefore, we can conclude that∥∥πti − πt−1
i

∥∥
1
≤ 3
√
2ηH and ∥∥πti − πt−1

i

∥∥2
1
≤ 18ηH.

This proves the first claim in the lemma. To establish the second claim, we use the following simple fact for

product distributions: ∥∥πt−i − πt−1
−i
∥∥
1
≤
∑
j ̸=i

∥∥πtj − πt−1
j

∥∥
1
.

Applying Jensen’s inequality yields

∥∥πt−i − πt−1
−i
∥∥2
1
≤

∑
j ̸=i

∥∥πtj − πt−1
j

∥∥
1

2

≤ (N − 1)
∑
j ̸=i

∥∥πtj − πt−1
j

∥∥2
1
≤ 18(N − 1)2ηH.

This proves the second claim in the lemma.

Lemma 48. For any iteration t ∈ [T] and any step h ∈ [H], we have that

δth ≤
3

ηLτ(t)

H∑
h′=h

max
i∈N

max
s∈S

DR(π
τ(t)−h′+h−1,†
h′,i , π̃

τ(t)−h′+h−1
h′,i (·|s)) + 36(N − 1)2η2H4.

Proof. In the following, when we consider a fixed iteration t ∈ [T], we drop the notational dependence on t

and simply use τ (instead of τ(t)) to denote the stage that iteration t belongs to. For any h ∈ [H − 1], using

a similar argument as in Lemma 39 for the zero-sum game setting, one can establish the following recursion

for the value estimation error:

δth ≤
1

Lτ−1

tendτ−1∑
j=tstartτ−1

δjh+1 + regτ−1
h , (4.67)

where we recall that regτh := maxs∈S maxi∈N {regτh,i(s)}. Using Lemma 46, we can upper bound the regret by

regτh ≤ max
i∈N

max
s∈S

1

ηLτ
DR(π

τ,†
h,i , π̃

τ
h,i(·|s)) + 36(N − 1)2η2H3.

148

We substitute the regret bound above back into the recursion 4.67 to get that

δth ≤ max
i∈N

max
s∈S

1

ηLτ−1
DR(π

τ−1,†
h,i , π̃τ−1

h,i (·|s)) + 36(N − 1)2η2H3 +
1

Lτ−1

tendτ−1∑
j=tstartτ−1

δjh+1. (4.68)

Notice that according to the definition in Algorithm 18, the behavior of the policy π̄th does not change with t

within the same stage τ , as it always uniformly sample a time index from the previous stage and execute the

corresponding history policy. Consequently, the δjh+1 term is also unchanged within a stage. Hence, we have

1

Lτ−1

tendτ−1∑
j=tstartτ−1

δjh+1 = δτ−1
h+1.

The recursion in (4.68) can hence be rewritten more succinctly as

δth ≤ max
i∈N

max
s∈S

1

ηLτ−1
DR(π

τ−1,†
h,i , π̃τ−1

h,i (·|s)) + 36(N − 1)2η2H3 + δτ−1
h+1.

Applying the above inequality recursively over h leads to

δth ≤
H∑

h′=h

max
i∈N

max
s∈S

1

ηLτ−h′+h−1
DR(π

τ−h′+h−1,†
h′,i , π̃τ−h

′+h−1
h′,i (·|s)) + 36(N − 1)2η2H3(H − h+ 1)

≤
H∑

h′=h

max
i∈N

max
s∈S

1

ηLτ

(
1 +

1

H

)h′−h+1

DR(π
τ−h′+h−1,†
h′,i , π̃τ−h

′+h−1
h′,i (·|s)) + 36(N − 1)2η2H4

≤ 3

ηLτ

H∑
h′=h

max
i∈N

max
s∈S

DR(π
τ−h′+h−1,†
h′,i , π̃τ−h

′+h−1
h′,i (·|s)) + 36(N − 1)2η2H4, (4.69)

where the second step uses our choice of the stage lengths that Lτ+1 = ⌊(1 + 1/H)Lτ⌋, which further implies

that
1

Lτ−h′+h−1
≤ 1

Lτ

(
1 +

1

H

)h′−h+1

.

The last step in (4.69) is due to the fact that (1 + 1/H)H ≤ e ≈ 2.71828.

4.10.3 Proof of Theorem 22

Proof. First, recall the definitions of π̃k, π̄k and πk,†i . Since we use a negative entropy regularizer R,

the Bregman divergence DR(·, ·) reduces to the Kullback–Leibler divergence. Using these notations, our

convergence results of learning CCE in an individual game Gk (Theorem 21) can be written more succinctly

as

CCE-gap(π̄k) ≤ 3

ηT
KL
(
πk,†∥π̃k

)
+ 36N2η2H4.

where for ease of notations, we write

KL
(
πk,†∥π̃k

)
:=

H∑
h=1

τ̄∑
τ=1

N∑
i=1

max
s∈S

KL
(
πk,τ,†h,i (·|s)∥π̃kh,i(·|s)

)
.

149

Here, πk,τ,†h,i (·|s) represents the value of πτ,†h,i(·|s) in game Gk. By running Algorithm 17 on a sequence of K

games, we have that

1

K

K∑
k=1

CCE-gap(π̄k) ≤ 3

ηKT

K∑
k=1

KL
(
πk,†∥π̃k

)
+ 36N2η2H4. (4.70)

Recall the notation that [x]α = (1 − α)x + α
d1 for x ∈ Rd. By applying this notation entry-wise to each

probability distribution in πk,† and invoking Lemma 30, we obtain that

1

K

K∑
k=1

KL
(
πk,†∥π̃k

)
≤ 1

K

K∑
k=1

KL
(
[πk,†]α∥π̃k

)
+ 4Hτ̄α ln

Amax

α
. (4.71)

Notice that the conditions of Lemma 30 are satisfied here because we select our initial policies to be

π̃ki = 1
k−1

∑k−1
k′=1[π

k′,†
i]α,∀i ∈ N , which assigns a probability of at least α1/Ai to each action. Adding and

subtracting the same term leads to

K∑
k=1

KL
(
[πk,†]α∥π̃k

)
=min

π

K∑
k=1

KL
(
[πk,†]α∥π

)
+min

π

K∑
k=1

(
KL
(
[πk,†]α∥π̃k

)
−KL

(
[πk,†]α∥π

))
≤min

π

K∑
k=1

KL
(
[πk,†]α∥π

)
+

8Amax(1 + lnK)

α
, (4.72)

where the minimum π is taken over all policies of the form of π = (π1, . . . , πN) such that πi : [τ̄]× [H]×S →
∆(Ai). We now turn to establish the second step in (4.72), which reduces to bounding the following regret

where the loss functions are given by the Bregman divergences:

reg = min
π

K∑
k=1

(
KL
(
[πk,†]α∥π̃k

)
−KL

(
[πk,†]α∥π

))
.

It is known that the unique minimum of
∑k
k′=1 KL([πk

′,†]α∥·) is attained at 1
k

∑k
k′=1[π

k′,†]α (see Proposition

1 of [233] for a proof of this claim). Therefore, by letting π̃ki = 1
k−1

∑k−1
k′=1[π

k′,†
i]α, we are essentially running

the follow the leader (FTL) algorithm (separately for each entry (τ, h, s) ∈ [τ̄]× [H]× S) on the sequence

of losses defined by
∑K
k=1 KL([πk,†]α∥·). We can then invoke the logarithmic regret guarantee of FTL with

respect to Bregman divergences, which was established in [208] and is reproduced as Lemma 31 in Section 4.7

for completeness.

To show that Lemma 31 is applicable, we remark that the Kullback–Leibler divergence is not Lipschitz

continuous near the boundary of the probability simplex, which breaks condition required by Lemma 31.

However, by restricting to policies of the form [πi]α = (1− α)πi + α
Ai

1, which is at least α
Ai

-distance away

from the simplex boundary, the Kullback–Leibler divergence is indeed Lipschitz continuous within this
α
Ai

-restricted domain. One can show that the Lipschitz constant of each entry of KL([πk,†i]α∥·) is 2Amax

α

within the α
Amax

-restricted domain. This allows us to apply Lemma 31 to obtain the result in (4.72).

Moving forward from (4.72), we again apply the property that the unique minimum of
∑k
k′=1 KL([πk

′,†]α∥·)

150

is attained at 1
k

∑k
k′=1[π

k′,†]α, which leads to

K∑
k=1

KL
(
[πk,†]α∥π̃k

)
≤min

π

K∑
k=1

KL
(
[πk,†]α∥π

)
+

8Amax(1 + lnK)

α

=

K∑
k=1

KL
(
[πk,†]α∥[π⋆]α

)
+

8Amax(1 + lnK)

α

≤ (1− α)
K∑
k=1

KL
(
πk,†∥π⋆

)
+

8Amax(1 + lnK)

α
, (4.73)

where the second step uses the definition that π⋆i = 1
K

∑K
k=1 π

k,†
i , and the last step is by the (joint) convexity

of the Kullback–Leibler divergence. Substituting (4.73) to (4.71) yields

1

K

K∑
k=1

KL
(
πk,†∥π̃k

)
≤ 1

K

K∑
k=1

KL
(
πk,†∥π⋆

)
+

8Amax(1 + lnK)

Kα
+ 4Hτ̄α ln

Amax

α
.

Further substituting the above result back into (4.70) and using the definition

∆π =

K∑
k=1

N∑
i=1

KL
(
πk,†i ∥π⋆i

)
,

we obtain that

1

K

K∑
k=1

CCE-gap(π̄k) ≤ 3

ηKT

(
∆π +

8Amax(1 + lnK)

α
+ 4KHτ̄α ln

Amax

α

)
+ 36N2η2H4.

Finally, using the conditions that α = 1/
√
K, η = K−1/6H−2/3T−1/3N−2/3, and τ̄ ≤ 4H log T (see (4.61)

for a proof) yields

1

K

K∑
k=1

CCE-gap(π̄k) ≤
(
HN

T

) 2
3
(

∆π

K5/6
+

10Amax lnK

K1/3
+

52H2 lnT log(AmaxK)

K1/3

)
.

This completes the proof of the theorem.

4.11 Concluding Remarks

In this chapter, we have introduced meta-learning to solve multiple MARL tasks collectively. Under natural

similarity metrics, we have shown that meta-learning achieves provably sharper convergence for learning

NE in zero-sum and potential games and for learning CCE in general-sum games. Along the way, we have

proposed new MARL algorithms with fine-grained initialization-dependent convergence guarantees. Our work

appears to be the first to investigate the theoretical properties of meta-learning in MARL and provide reliable

justifications for its usage. As for the future work, our convergence rate for learning CCE (Theorem 21) is

slightly less competitive than the best-known results when our policies are initialized conservatively, which

might be improved via a refined policy stability analysis. Other future directions include further generalization

of our results to alternative game similarity metrics and broader types of games (e.g., stochastic Stackelberg

games).

151

Chapter 5

Concluding Remarks

In this dissertation, we have discussed a series of results toward theoretical understandings of multi-agent

reinforcement learning. First, we have presented decentralized MARL algorithms for learning (coarse)

correlated equilibria in general-sum Markov games. We have started by introducing the V-learning OMD

algorithm and established the first line of sample complexity guarantees in this setting. We have strengthened

these results by proposing stage-based V-learning algorithms with simplified analysis and improved sample

complexity bounds. We have then extended the V-learning framework to the full-information setting and

derived their near-optimal convergence rates accordingly. Second, we have proposed a series of restart-based

RL algorithms for learning in non-stationary environments, a common challenge arising in many MARL

scenarios. We have proved near-optimal dynamic regret bounds of our algorithms and illustrated how our

non-stationary RL method can be readily applied to learning the team-optimal policies in cooperative smooth

games. Third, we have studied the use of meta-learning to transfer useful information across multiple Markov

games. We have developed multiple MARL algorithms with initialization-dependent convergence guarantees

as the basis, and derived the faster convergence rates of meta-learning to different equilibria in a sequence

of similar games. Our efforts have mostly been devoted to developing MARL algorithms with convergence

or sample complexity guarantees for the class of nonzero-sum Markov games, where very few results were

previously known.

The research conducted in the dissertation opens up several potential avenues for future research. An

important future direction would be to further tighten the bounds established in this dissertation, including the

sample complexity upper and lower bounds for learning CCE/CE in general-sum Markov games (Chapter 2)

and closing the Õ(H
1
3) gap for the dynamic regret bounds in non-stationary RL (Chapter 3). Our initialization-

dependent convergence rate for learning CCE is slightly less competitive than the best-known results when

our policies are initialized conservatively, which might also be improved via a refined policy stability analysis

(Chapter 4). In addition, in this dissertation, we have primarily considered the fully observable MARL setup

where the agents have full access to the state information. This is in contrast to the more general partially

observable Markov games [239] or decentralized partially observable Markov decision processes [58], [129],

where each agent has only a private partial view of the environment state. Learning or even computing a NE

under partial observability is much more challenging and would be an interesting future direction. Finally,

another promising direction is to see how the theoretical results established in this dissertation can be applied

to real-world application scenarios [240], [241]. In our own efforts, we have explored the opportunities of

applying our methodology to the resource management problem in cloud computing [242], [243]. In particular,

152

we have investigated the use of the mean-field approximation in MARL to deal with the scalability issues in

multi-tenant serverless computing platforms [244], [245] and applied the idea of meta-learning to address the

heterogeneity of the workloads in resource autoscaling [196], [246]. It would be interesting to identify other

real-world implications of our methods or results, as well.

153

References

[1] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through deep reinforcement learning,”

Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of Go with deep neural networks

and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] N. Brown and T. Sandholm, “Superhuman AI for heads-up no-limit poker: Libratus beats top

professionals,” Science, vol. 359, no. 6374, pp. 418–424, 2018.

[4] J. Schrittwieser, I. Antonoglou, T. Hubert, et al., “Mastering Atari, Go, chess and shogi by planning

with a learned model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT press, 2018.

[6] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory. Society for Industrial and Applied

Mathematics, 1998.

[7] L. S. Shapley, “Stochastic games,” Proceedings of the National Academy of Sciences, vol. 39, no. 10,

pp. 1095–1100, 1953.

[8] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning,” in International

Conference on Machine Learning, 1994, pp. 157–163.

[9] O. Vinyals, I. Babuschkin, W. M. Czarnecki, et al., “Grandmaster level in StarCraft II using multi-agent

reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[10] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent, reinforcement learning for

autonomous driving,” arXiv preprint arXiv:1610.03295, 2016.

[11] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” International

Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[12] C. Jin, Q. Liu, Y. Wang, and T. Yu, “V-learning–A simple, efficient, decentralized algorithm for

multiagent RL,” in ICLR Workshop on Gamification and Multiagent Solutions, 2022.

[13] C.-Y. Wei, Y.-T. Hong, and C.-J. Lu, “Online reinforcement learning in stochastic games,” in Interna-

tional Conference on Neural Information Processing Systems, 2017, pp. 4994–5004.

[14] Q. Xie, Y. Chen, Z. Wang, and Z. Yang, “Learning zero-sum simultaneous-move Markov games

using function approximation and correlated equilibrium,” in Conference on Learning Theory, 2020,

pp. 3674–3682.

[15] X. Chen, X. Deng, and S.-H. Teng, “Settling the complexity of computing two-player Nash equilibria,”

Journal of the ACM, vol. 56, no. 3, pp. 1–57, 2009.

154

[16] W. Mao and T. Başar, “Provably efficient reinforcement learning in decentralized general-sum Markov

games,” Dynamic Games and Applications, vol. 13, pp. 165–186, 2023.

[17] W. Mao, L. Yang, K. Zhang, and T. Başar, “On improving model-free algorithms for decentralized multi-

agent reinforcement learning,” in International Conference on Machine Learning, 2022, pp. 15 007–

15 049.

[18] H. Cai, K. Ren, W. Zhang, et al., “Real-time bidding by reinforcement learning in display advertising,”

in International Conference on Web Search and Data Mining, 2017, pp. 661–670.

[19] J. Lu, C. Yang, X. Gao, L. Wang, C. Li, and G. Chen, “Reinforcement learning with sequential

information clustering in real-time bidding,” in International Conference on Information and Knowledge

Management, 2019, pp. 1633–1641.

[20] S. Chawla, N. R. Devanur, A. R. Karlin, and B. Sivan, “Simple pricing schemes for consumers with

evolving values,” in ACM-SIAM Symposium on Discrete Algorithms, 2016, pp. 1476–1490.

[21] S. Agrawal and R. Jia, “Learning in structured MDPs with convex cost functions: Improved regret

bounds for inventory management,” in ACM Conference on Economics and Computation, 2019,

pp. 743–744.

[22] W. C. Cheung, D. Simchi-Levi, and R. Zhu, “Reinforcement learning for non-stationary Markov

decision processes: The blessing of (more) optimism,” arXiv preprint arXiv:2006.14389, 2020.

[23] W. Mao, K. Zhang, R. Zhu, D. Simchi-Levi, and T. Başar, “Near-optimal model-free reinforcement

learning in non-stationary episodic MDPs,” in International Conference on Machine Learning, PMLR,

2021, pp. 7447–7458.

[24] S. Thrun and L. Pratt, Learning to Learn. Springer Science & Business Media, 1998.

[25] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-learning with memory-

augmented neural networks,” in International Conference on Machine Learning, PMLR, 2016, pp. 1842–

1850.

[26] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., “Matching networks for one shot learning,”

Advances in Neural Information Processing Systems, vol. 29, 2016.

[27] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” Advances in Neural

Information Processing Systems, vol. 30, 2017.

[28] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,”

in International Conference on Machine Learning, 2017, pp. 1126–1135.

[29] W. Mao, H. Qiu, C. Wang, et al., “Multi-agent meta-reinforcement learning: Sharper convergence

rates with task similarity,” in Conference on Neural Information Processing Systems, 2023.

[30] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The complexity of computing a Nash

equilibrium,” SIAM Journal on Computing, vol. 39, no. 1, pp. 195–259, 2009.

[31] H. Moulin and J.-P. Vial, “Strategically zero-sum games: The class of games whose completely mixed

equilibria cannot be improved upon,” International Journal of Game Theory, vol. 7, no. 3-4, pp. 201–

221, 1978.

[32] R. J. Aumann, “Correlated equilibrium as an expression of Bayesian rationality,” Econometrica:

Journal of the Econometric Society, pp. 1–18, 1987.

155

[33] C. H. Papadimitriou and T. Roughgarden, “Computing correlated equilibria in multi-player games,”

Journal of the ACM, vol. 55, no. 3, pp. 1–29, 2008.

[34] Y. Bai, C. Jin, and T. Yu, “Near-optimal reinforcement learning with self-play,” Advances in Neural

Information Processing Systems, vol. 33, 2020.

[35] S. Hart and A. Mas-Colell, “A simple adaptive procedure leading to correlated equilibrium,” Econo-

metrica, vol. 68, no. 5, pp. 1127–1150, 2000.

[36] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. Cambridge University Press, 2006.

[37] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling in a rigged casino: The adversarial

multi-armed bandit problem,” in Foundations of Computer Science, IEEE, 1995, pp. 322–331.

[38] M. Zinkevich, “Online convex programming and generalized infinitesimal gradient ascent,” in Interna-

tional Conference on Machine Learning, 2003, pp. 928–936.

[39] C. Boutilier, “Planning, learning and coordination in multiagent decision processes,” in Conference on

Theoretical Aspects of Rationality and Knowledge, 1996, pp. 195–210.

[40] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in cooperative multiagent systems,”

AAAI Conference on Artificial Intelligence, vol. 1998, no. 746-752, p. 2, 1998.

[41] F. A. Oliehoek, M. T. Spaan, and N. Vlassis, “Optimal and approximate Q-value functions for

decentralized POMDPs,” Journal of Artificial Intelligence Research, vol. 32, pp. 289–353, 2008.

[42] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning to communicate with deep

multi-agent reinforcement learning,” in International Conference on Neural Information Processing

Systems, 2016, pp. 2145–2153.

[43] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed

cooperative-competitive environments,” Advances in Neural Information Processing Systems, vol. 30,

pp. 6379–6390, 2017.

[44] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson, “QMIX: Monotonic

value function factorisation for deep multi-agent reinforcement learning,” in International Conference

on Machine Learning, PMLR, 2018, pp. 4295–4304.

[45] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “Qtran: Learning to factorize with

transformation for cooperative multi-agent reinforcement learning,” in International Conference on

Machine Learning, PMLR, 2019, pp. 5887–5896.

[46] W. Mao, K. Zhang, E. Miehling, and T. Başar, “Information state embedding in partially observable

cooperative multi-agent reinforcement learning,” in IEEE Conference on Decision and Control, IEEE,

2020, pp. 6124–6131.

[47] S. Kar, J. M. F. Moura, and H. V. Poor, “QD-learning: A collaborative distributed strategy for

multi-agent reinforcement learning through consensus + innovations,” IEEE Transactions on Signal

Processing, vol. 61, no. 7, pp. 1848–1862, 2013.

[48] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Başar, “Fully decentralized multi-agent reinforcement

learning with networked agents,” in International Conference on Machine Learning, 2018, pp. 5872–

5881.

[49] A. Dubey and A. Pentland, “Provably efficient cooperative multi-agent reinforcement learning with

function approximation,” arXiv preprint arXiv:2103.04972, 2021.

156

[50] H. X. Pham, H. M. La, D. Feil-Seifer, and A. Nefian, “Cooperative and distributed reinforcement

learning of drones for field coverage,” arXiv preprint arXiv:1803.07250, 2018.

[51] D. S. Leslie and E. J. Collins, “Individual Q-learning in normal form games,” SIAM Journal on Control

and Optimization, vol. 44, no. 2, pp. 495–514, 2005.

[52] G. Arslan and S. Yüksel, “Decentralized Q-learning for stochastic teams and games,” IEEE Transactions

on Automatic Control, vol. 62, no. 4, pp. 1545–1558, 2016.

[53] Y. Tian, Y. Wang, T. Yu, and S. Sra, “Provably efficient online agnostic learning in Markov games,”

arXiv preprint arXiv:2010.15020, 2020.

[54] C.-Y. Wei, C.-W. Lee, M. Zhang, and H. Luo, “Last-iterate convergence of decentralized optimistic

gradient descent/ascent in infinite-horizon competitive Markov games,” Annual Conference on Learning

Theory, 2021.

[55] C. Daskalakis, D. J. Foster, and N. Golowich, “Independent policy gradient methods for competitive

reinforcement learning,” Advances in Neural Information Processing Systems, vol. 33, 2020.

[56] Y.-C. Ho, “Team decision theory and information structures,” Proceedings of the IEEE, vol. 68, no. 6,

pp. 644–654, 1980.

[57] A. Nayyar, A. Gupta, C. Langbort, and T. Başar, “Common information based Markov perfect

equilibria for stochastic games with asymmetric information: Finite games,” IEEE Transactions on

Automatic Control, vol. 59, no. 3, pp. 555–570, 2013.

[58] A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentralized stochastic control with partial history

sharing: A common information approach,” IEEE Transactions on Automatic Control, vol. 58, no. 7,

pp. 1644–1658, 2013.

[59] D. Fudenberg, F. Drew, D. K. Levine, and D. K. Levine, The Theory of Learning in Games. MIT

press, 1998, vol. 2.

[60] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan, “Is Q-learning provably efficient?” In Advances in

Neural Information Processing Systems, 2018, pp. 4863–4873.

[61] Z. Zhang, Y. Zhou, and X. Ji, “Almost optimal model-free reinforcement learning via reference-

advantage decomposition,” arXiv preprint arXiv:2004.10019, 2020.

[62] J. Filar and K. Vrieze, Competitive Markov Decision Processes. Springer Science & Business Media,

2012.

[63] Z. Song, S. Mei, and Y. Bai, “When can we learn general-sum Markov games with a large number of

players sample-efficiently?” arXiv preprint arXiv:2110.04184, 2021.

[64] W. Mao, H. Qiu, C. Wang, H. Franke, Z. Kalbarczyk, and T. Başar, “Õ(T−1) convergence to (coarse)

correlated equilibria in full-information general-sum Markov games,” arXiv preprint arXiv:2403.07890,

also to appear in Annual Learning for Dynamics and Control Conference, 2024.

[65] A. Blum and Y. Mansour, “From external to internal regret,” Journal of Machine Learning Research,

vol. 8, no. 6, 2007.

[66] M. L. Littman, “Friend-or-Foe Q-learning in general-sum games,” in International Conference on

Machine Learning, 2001, pp. 322–328.

157

[67] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic games,” Journal of Machine

Learning Research, vol. 4, no. Nov, pp. 1039–1069, 2003.

[68] T. D. Hansen, P. B. Miltersen, and U. Zwick, “Strategy iteration is strongly polynomial for 2-player

turn-based stochastic games with a constant discount factor,” Journal of the ACM, vol. 60, no. 1,

pp. 1–16, 2013.

[69] M. L. Littman and C. Szepesvári, “A generalized reinforcement-learning model: Convergence and

applications,” in International Conference on Machine Learning, 1996, pp. 310–318.

[70] Y. Bai and C. Jin, “Provable self-play algorithms for competitive reinforcement learning,” in Interna-

tional Conference on Machine Learning, 2020, pp. 551–560.

[71] A. Sidford, M. Wang, L. Yang, and Y. Ye, “Solving discounted stochastic two-player games with

near-optimal time and sample complexity,” in International Conference on Artificial Intelligence and

Statistics, PMLR, 2020, pp. 2992–3002.

[72] Q. Liu, T. Yu, Y. Bai, and C. Jin, “A sharp analysis of model-based reinforcement learning with

self-play,” in International Conference on Machine Learning, 2021.

[73] Y. Zhao, Y. Tian, J. D. Lee, and S. S. Du, “Provably efficient policy gradient methods for two-player

zero-sum Markov games,” arXiv preprint arXiv:2102.08903, 2021.

[74] X. Wang and T. Sandholm, “Reinforcement learning to play an optimal Nash equilibrium in team

Markov games,” Advances in Neural Information Processing Systems, vol. 15, pp. 1603–1610, 2002.

[75] K. Verbeeck, A. Nowé, T. Lenaerts, and J. Parent, “Learning to reach the Pareto optimal Nash

equilibrium as a team,” in Australian Joint Conference on Artificial Intelligence, Springer, 2002,

pp. 407–418.

[76] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement learning in cooperative

multi-agent systems,” in International Conference on Machine Learning, 2000.

[77] B. Yongacoglu, G. Arslan, and S. Yüksel, “Learning team-optimality for decentralized stochastic

control and dynamic games,” arXiv preprint arXiv:1903.05812, 2019.

[78] A. Zehfroosh and H. G. Tanner, “PAC reinforcement learning algorithm for general-sum Markov

games,” arXiv preprint arXiv:2009.02605, 2020.

[79] A. Greenwald and K. Hall, “Correlated-Q learning,” in International Conference on Machine Learning,

2003, pp. 242–249.

[80] J. Pérolat, F. Strub, B. Piot, and O. Pietquin, “Learning Nash equilibrium for general-sum Markov

games from batch data,” in Artificial Intelligence and Statistics, PMLR, 2017, pp. 232–241.

[81] H. Prasad, P. LA, and S. Bhatnagar, “Two-timescale algorithms for learning Nash equilibria in

general-sum stochastic games,” in International Conference on Autonomous Agents and Multiagent

Systems, 2015, pp. 1371–1379.

[82] Q. Liu, T. Yu, Y. Bai, and C. Jin, “A sharp analysis of model-based reinforcement learning with

self-play,” in International Conference on Machine Learning, PMLR, 2021, pp. 7001–7010.

[83] Y. Viossat and A. Zapechelnyuk, “No-regret dynamics and fictitious play,” Journal of Economic

Theory, vol. 148, no. 2, pp. 825–842, 2013.

158

[84] S. Hart and A. Mas-Colell, “Uncoupled dynamics do not lead to Nash equilibrium,” American Economic

Review, vol. 93, no. 5, pp. 1830–1836, 2003.

[85] Y. Freund and R. E. Schapire, “Adaptive game playing using multiplicative weights,” Games and

Economic Behavior, vol. 29, no. 1-2, pp. 79–103, 1999.

[86] R. Kleinberg, G. Piliouras, and É. Tardos, “Multiplicative updates outperform generic no-regret

learning in congestion games,” in ACM Symposium on Theory of Computing, 2009, pp. 533–542.

[87] J. Cohen, A. Héliou, and P. Mertikopoulos, “Learning with bandit feedback in potential games,” in

International Conference on Neural Information Processing Systems, 2017, pp. 6372–6381.

[88] A. Rubinstein, “Settling the complexity of computing approximate two-player Nash equilibria,” in 2016

IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2016, pp. 258–265.

[89] S. V. Macua, J. Zazo, and S. Zazo, “Learning parametric closed-loop policies for Markov potential

games,” arXiv preprint arXiv:1802.00899, 2018.

[90] D. Mguni, Y. Wu, Y. Du, et al., “Learning in nonzero-sum stochastic games with potentials,” arXiv

preprint arXiv:2103.09284, 2021.

[91] D. Ding, C.-Y. Wei, K. Zhang, and M. R. Jovanović, “Independent policy gradient for large-scale

Markov potential games: Sharper rates, function approximation, and game-agnostic convergence,”

arXiv preprint arXiv:2202.04129, 2022.

[92] J. R. Marden, H. P. Young, G. Arslan, and J. S. Shamma, “Payoff-based dynamics for multiplayer

weakly acyclic games,” SIAM Journal on Control and Optimization, vol. 48, no. 1, pp. 373–396, 2009.

[93] J. R. Marden, G. Arslan, and J. S. Shamma, “Cooperative control and potential games,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 6, pp. 1393–1407,

2009.

[94] R. Fox, S. McAleer, W. Overman, and I. Panageas, “Independent natural policy gradient always

converges in Markov potential games,” arXiv preprint arXiv:2110.10614, 2021.

[95] R. I. Brafman and M. Tennenholtz, “R-max-a general polynomial time algorithm for near-optimal

reinforcement learning,” Journal of Machine Learning Research, vol. 3, no. Oct, pp. 213–231, 2002.

[96] T. Jaksch, R. Ortner, and P. Auer, “Near-optimal regret bounds for reinforcement learning,” Journal

of Machine Learning Research, vol. 11, pp. 1563–1600, 2010.

[97] M. G. Azar, I. Osband, and R. Munos, “Minimax regret bounds for reinforcement learning,” in

International Conference on Machine Learning, 2017, pp. 263–272.

[98] P. Menard, O. D. Domingues, X. Shang, and M. Valko, “UCB momentum Q-learning: Correcting the

bias without forgetting,” arXiv preprint arXiv:2103.01312, 2021.

[99] L. Lai, H. Jiang, and H. V. Poor, “Medium access in cognitive radio networks: A competitive multi-

armed bandit framework,” in Asilomar Conference on Signals, Systems and Computers, IEEE, 2008,

pp. 98–102.

[100] O. Avner and S. Mannor, “Concurrent bandits and cognitive radio networks,” in Joint European

Conference on Machine Learning and Knowledge Discovery in Databases, 2014, pp. 66–81.

[101] W. Chang, M. Jafarnia-Jahromi, and R. Jain, “Online learning for cooperative multi-player multi-armed

bandits,” arXiv preprint arXiv:2109.03818, 2021.

159

[102] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic Game Theory. Cambridge

University Press, 2007.

[103] A. S. Nemirovskij and D. B. Yudin, Problem Complexity and Method Efficiency in Optimization.

Wiley-Interscience, 1983.

[104] F. Orabona and D. Pál, “Scale-free online learning,” Theoretical Computer Science, vol. 716, pp. 50–69,

2018.

[105] H. Fang, N. Harvey, V. Portella, and M. Friedlander, “Online mirror descent and dual averaging:

Keeping pace in the dynamic case,” in International Conference on Machine Learning, 2020, pp. 3008–

3017.

[106] G. Neu, “Explore no more: Improved high-probability regret bounds for non-stochastic bandits,”

Advances in Neural Information Processing Systems, vol. 28, pp. 3168–3176, 2015.

[107] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonstochastic multiarmed bandit

problem,” SIAM Journal on Computing, vol. 32, no. 1, pp. 48–77, 2002.

[108] D. S. Bernstein, C. Amato, E. A. Hansen, and S. Zilberstein, “Policy iteration for decentralized control

of Markov decision processes,” Journal of Artificial Intelligence Research, vol. 34, pp. 89–132, 2009.

[109] J. Arabneydi and A. Mahajan, “Reinforcement learning in decentralized stochastic control systems

with partial history sharing,” in American Control Conference, IEEE, 2015, pp. 5449–5456.

[110] K. Zhang, E. Miehling, and T. Başar, “Online planning for decentralized stochastic control with partial

history sharing,” in American Control Conference, IEEE, 2019, pp. 3544–3550.

[111] S. Seuken and S. Zilberstein, “Improved memory-bounded dynamic programming for decentralized

POMDPs,” in Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence,

2007, pp. 344–351.

[112] K. Zhang, S. Kakade, T. Başar, and L. Yang, “Model-based multi-agent RL in zero-sum Markov games

with near-optimal sample complexity,” Advances in Neural Information Processing Systems, vol. 33,

2020.

[113] C. Daskalakis, A. Deckelbaum, and A. Kim, “Near-optimal no-regret algorithms for zero-sum games,”

in ACM-SIAM Symposium on Discrete Algorithms, 2011, pp. 235–254.

[114] S. Rakhlin and K. Sridharan, “Optimization, learning, and games with predictable sequences,” Advances

in Neural Information Processing Systems, vol. 26, 2013.

[115] V. Syrgkanis, A. Agarwal, H. Luo, and R. E. Schapire, “Fast convergence of regularized learning in

games,” Advances in Neural Information Processing Systems, vol. 28, pp. 2989–2997, 2015.

[116] D. J. Foster, Z. Li, T. Lykouris, K. Sridharan, and É. Tardos, “Learning in games: Robustness

of fast convergence,” in International Conference on Neural Information Processing Systems, 2016,

pp. 4734–4742.

[117] X. Chen and B. Peng, “Hedging in games: Faster convergence of external and swap regrets,” Advances

in Neural Information Processing Systems, vol. 33, pp. 18 990–18 999, 2020.

[118] C. Daskalakis, M. Fishelson, and N. Golowich, “Near-optimal no-regret learning in general games,”

Advances in Neural Information Processing Systems, vol. 34, pp. 27 604–27 616, 2021.

160

[119] I. Anagnostides, C. Daskalakis, G. Farina, M. Fishelson, N. Golowich, and T. Sandholm, “Near-optimal

no-regret learning for correlated equilibria in multi-player general-sum games,” in Proceedings of the

54th Annual ACM SIGACT Symposium on Theory of Computing, 2022, pp. 736–749.

[120] I. Anagnostides, G. Farina, C. Kroer, C.-W. Lee, H. Luo, and T. Sandholm, “Uncoupled learning

dynamics with O(log T) swap regret in multiplayer games,” Advances in Neural Information Processing

Systems, vol. 35, pp. 3292–3304, 2022.

[121] R. Zhang, Q. Liu, H. Wang, C. Xiong, N. Li, and Y. Bai, “Policy optimization for Markov games:

Unified framework and faster convergence,” in Advances in Neural Information Processing Systems,

2022.

[122] Y. Yang and C. Ma, “O(T−1) convergence of optimistic-follow-the-regularized-leader in two-player

zero-sum Markov games,” arXiv preprint arXiv:2209.12430, 2022.

[123] L. Erez, T. Lancewicki, U. Sherman, T. Koren, and Y. Mansour, “Regret minimization and convergence

to equilibria in general-sum Markov games,” arXiv preprint arXiv:2207.14211, 2022.

[124] Y.-G. Hsieh, K. Antonakopoulos, and P. Mertikopoulos, “Adaptive learning in continuous games:

Optimal regret bounds and convergence to Nash equilibrium,” in Conference on Learning Theory,

2021, pp. 2388–2422.

[125] S. Bubeck et al., “Convex optimization: Algorithms and complexity,” Foundations and Trends® in

Machine Learning, vol. 8, no. 3-4, pp. 231–357, 2015.

[126] W. Hoeffding and J. Wolfowitz, “Distinguishability of sets of distributions,” The Annals of Mathematical

Statistics, vol. 29, no. 3, pp. 700–718, 1958.

[127] S. Yüksel and T. Başar, Stochastic Networked Control Systems: Stabilization and Optimization under

Information Constraints. Springer Science & Business Media, 2013.

[128] S. Bhatt, W. Mao, A. Koppel, and T. Başar, “Semiparametric information state embedding for

policy search under imperfect information,” in IEEE Conference on Decision and Control, 2021,

pp. 4501–4506.

[129] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The complexity of decentralized control

of Markov decision processes,” Mathematics of Operations Research, vol. 27, no. 4, pp. 819–840, 2002.

[130] W. Mao, K. Zhang, Z. Yang, and T. Başar, “Decentralized learning of finite-memory policies in

Dec-POMDPs,” IFAC World Congress, vol. 56, no. 2, pp. 2601–2607, 2023.

[131] W. Mao, Z. Zheng, and F. Wu, “Pricing for revenue maximization in IoT data markets: An information

design perspective,” in IEEE Conference on Computer Communications, 2019, pp. 1837–1845.

[132] C. Chen, H. Wei, N. Xu, et al., “Toward a thousand lights: Decentralized deep reinforcement learning

for large-scale traffic signal control,” in AAAI Conference on Artificial Intelligence, 2020, pp. 3414–

3421.

[133] S. M. Shortreed, E. Laber, D. J. Lizotte, T. S. Stroup, J. Pineau, and S. A. Murphy, “Informing

sequential clinical decision-making through reinforcement learning: An empirical study,” Machine

Learning, vol. 84, no. 1-2, pp. 109–136, 2011.

[134] S. R. Balseiro and Y. Gur, “Learning in repeated auctions with budgets: Regret minimization and

equilibrium,” Management Science, vol. 65, no. 9, pp. 3952–3968, 2019.

161

[135] J. R. Birge, H. Chen, N. B. Keskin, and A. Ward, “To interfere or not to interfere: Information

revelation and price-setting incentives in a multiagent learning environment,” SSRN 3864227, 2021.

[136] W. T. Huh and P. Rusmevichientong, “A nonparametric asymptotic analysis of inventory planning

with censored demand,” Mathematics of Operations Research, vol. 34, no. 1, pp. 103–123, 2009.

[137] H. Zhang, X. Chao, and C. Shi, “Closing the gap: A learning algorithm for the lost-sales inventory

system with lead times,” Management Science, vol. 66, no. 5, pp. 1962–1980, 2019.

[138] H. Bastani, D. Simchi-Levi, and R. Zhu, “Meta dynamic pricing: Transfer learning across experiments,”

Management Science (Forthcoming), 2021.

[139] A. Tirinzoni, R. Poiani, and M. Restelli, “Sequential transfer in reinforcement learning with a generative

model,” arXiv preprint arXiv:2007.00722, 2020.

[140] E. Brunskill and L. Li, “Sample complexity of multi-task reinforcement learning,” in Uncertainty in

Artificial Intelligence, 2013, p. 122.

[141] C. Kaplanis, M. Shanahan, and C. Clopath, “Continual reinforcement learning with complex synapses,”

in International Conference on Machine Learning, 2018, pp. 2497–2506.

[142] D. Abel, Y. Jinnai, S. Y. Guo, G. Konidaris, and M. Littman, “Policy and value transfer in lifelong

reinforcement learning,” in International Conference on Machine Learning, 2018, pp. 20–29.

[143] Y. Sun, X. Yin, and F. Huang, “Temple: Learning template of transitions for sample efficient multi-task

RL,” arXiv preprint arXiv:2002.06659, 2020.

[144] R. Ortner, P. Gajane, and P. Auer, “Variational regret bounds for reinforcement learning,” in

Uncertainty in Artificial Intelligence, 2019, pp. 81–90.

[145] P. Gajane, R. Ortner, and P. Auer, “A sliding-window algorithm for Markov decision processes with

arbitrarily changing rewards and transitions,” arXiv preprint arXiv:1805.10066, 2018.

[146] O. D. Domingues, P. Ménard, M. Pirotta, E. Kaufmann, and M. Valko, “A kernel-based approach to

non-stationary reinforcement learning in metric spaces,” arXiv preprint arXiv:2007.05078, 2020.

[147] H. Zhou, J. Chen, L. R. Varshney, and A. Jagmohan, “Nonstationary reinforcement learning with

linear function approximation,” arXiv preprint arXiv:2010.04244, 2020.

[148] A. Touati and P. Vincent, “Efficient learning in non-stationary linear Markov decision processes,”

arXiv preprint arXiv:2010.12870, 2020.

[149] W. C. Cheung, D. Simchi-Levi, and R. Zhu, “Non-stationary reinforcement learning: The blessing of

(more) optimism,” SSRN Preprint 3397818, 2020.

[150] O. Besbes, Y. Gur, and A. Zeevi, “Stochastic multi-armed-bandit problem with non-stationary

rewards,” in Advances in Neural Information Processing Systems, 2014, pp. 199–207.

[151] W. Mao, K. Zhang, R. Zhu, D. Simchi-Levi, and T. Başar, “Model-free non-stationary RL: Near-optimal

regret and applications in multi-agent RL and inventory control,” arXiv preprint arXiv:2010.03161,

also to appear in Management Science, 2024.

[152] G. Radanovic, R. Devidze, D. Parkes, and A. Singla, “Learning to collaborate in Markov decision

processes,” in International Conference on Machine Learning, 2019, pp. 5261–5270.

[153] C.-W. Lee, H. Luo, C.-Y. Wei, and M. Zhang, “Linear last-iterate convergence for matrix games and

stochastic games,” arXiv preprint arXiv:2006.09517v1, 2020.

162

[154] Y. Fei, Z. Yang, Z. Wang, and Q. Xie, “Dynamic regret of policy optimization in non-stationary

environments,” Advances in Neural Information Processing Systems, vol. 33, 2020.

[155] C.-Y. Wei and H. Luo, “Non-stationary reinforcement learning without prior knowledge: An optimal

black-box approach,” arXiv preprint arXiv:2102.05406, 2021.

[156] S. Padakandla, “A survey of reinforcement learning algorithms for dynamically varying environments,”

arXiv preprint arXiv:2005.10619, 2020.

[157] J. Y. Yu and S. Mannor, “Online learning in Markov decision processes with arbitrarily changing

rewards and transitions,” in International Conference on Game Theory for Networks, IEEE, 2009,

pp. 314–322.

[158] G. Neu, A. Antos, A. György, and C. Szepesvári, “Online Markov decision processes under bandit

feedback,” in Advances in Neural Information Processing Systems, 2010, pp. 1804–1812.

[159] R. Arora, O. Dekel, and A. Tewari, “Deterministic MDPs with adversarial rewards and bandit

feedback,” in Conference on Uncertainty in Artificial Intelligence, 2012, pp. 93–101.

[160] Y. A. Yadkori, P. L. Bartlett, V. Kanade, Y. Seldin, and C. Szepesvári, “Online learning in Markov

decision processes with adversarially chosen transition probability distributions,” in Advances in Neural

Information Processing Systems, 2013, pp. 2508–2516.

[161] T. Dick, A. Gyorgy, and C. Szepesvari, “Online learning in Markov decision processes with changing

cost sequences,” in International Conference on Machine Learning, 2014, pp. 512–520.

[162] J. Wang, Y. Liu, and B. Li, “Reinforcement learning with perturbed rewards,” arXiv preprint

arXiv:1810.01032, 2018.

[163] T. Lykouris, M. Simchowitz, A. Slivkins, and W. Sun, “Corruption robust exploration in episodic

reinforcement learning,” arXiv preprint arXiv:1911.08689, 2019.

[164] C. Jin, T. Jin, H. Luo, S. Sra, and T. Yu, “Learning adversarial MDPs with bandit feedback and

unknown transition,” arXiv preprint arXiv:1912.01192, 2019.

[165] Y. Bai, T. Xie, N. Jiang, and Y.-X. Wang, “Provably efficient Q-learning with low switching cost,” in

Advances in Neural Information Processing Systems, 2019, pp. 8004–8013.

[166] O. Besbes, Y. Gur, and A. Zeevi, “Optimal exploration–exploitation in a multi-armed bandit problem

with non-stationary rewards,” Stochastic Systems, vol. 9, no. 4, pp. 319–337, 2019.

[167] A. Garivier and E. Moulines, “On upper-confidence bound policies for switching bandit problems,” in

International Conference on Algorithmic Learning Theory, 2011, pp. 174–188.

[168] N. B. Keskin and A. Zeevi, “Chasing demand: Learning and earning in a changing environment,”

Mathematics of Operations Research, vol. 42, no. 2, pp. 277–307, 2017.

[169] R. Allesiardo, R. Féraud, and O.-A. Maillard, “The non-stationary stochastic multi-armed bandit

problem,” International Journal of Data Science and Analytics, vol. 3, no. 4, pp. 267–283, 2017.

[170] Z. S. Karnin and O. Anava, “Multi-armed bandits: Competing with optimal sequences,” in Advances

in Neural Information Processing Systems, 2016, pp. 199–207.

[171] W. C. Cheung, D. Simchi-Levi, and R. Zhu, “Hedging the drift: Learning to optimize under non-

stationarity,” arXiv preprint arXiv:1903.01461, 2019.

163

[172] P. Auer, P. Gajane, and R. Ortner, “Adaptively tracking the best bandit arm with an unknown

number of distribution changes,” in Conference on Learning Theory, 2019, pp. 138–158.

[173] C. Tekin and M. Liu, “Online algorithms for the multi-armed bandit problem with Markovian rewards,”

in 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2010,

pp. 1675–1682.

[174] W. Ma, “Improvements and generalizations of stochastic knapsack and Markovian bandits approxima-

tion algorithms,” Mathematics of Operations Research, vol. 43, no. 3, pp. 789–812, 2018.

[175] X. Zhou, Y. Xiong, N. Chen, and X. Gao, “Regime switching bandits,” arXiv preprint arXiv:2001.09390,

2020.

[176] H. Luo, C.-Y. Wei, A. Agarwal, and J. Langford, “Efficient contextual bandits in non-stationary

worlds,” in Conference On Learning Theory, 2018, pp. 1739–1776.

[177] Y. Chen, C.-W. Lee, H. Luo, and C.-Y. Wei, “A new algorithm for non-stationary contextual bandits:

Efficient, optimal, and parameter-free,” arXiv preprint arXiv:1902.00980, 2019.

[178] W. C. Cheung, D. Simchi-Levi, and R. Zhu, “Learning to optimize under non-stationarity,” in

International Conference on Artificial Intelligence and Statistics, 2019, pp. 1079–1087.

[179] P. Zhao, L. Zhang, Y. Jiang, and Z.-H. Zhou, “A simple approach for non-stationary linear bandits,”

in International Conference on Artificial Intelligence and Statistics, vol. 2020, 2020.

[180] W. Mao, K. Zhang, Q. Xie, and T. Başar, “POLY-HOOT: Monte-Carlo planning in continuous space

MDPs with non-asymptotic analysis,” Advances in Neural Information Processing Systems, vol. 33,

2020.

[181] N. Chen, C. Wang, and L. Wang, “Learning and optimization with seasonal patterns,” arXiv preprint

arXiv:2005.08088, 2020.

[182] I. Osband and B. Van Roy, “On lower bounds for regret in reinforcement learning,” arXiv preprint

arXiv:1608.02732, 2016.

[183] C. J. C. H. Watkins, “Learning from delayed rewards,” PhD thesis, King’s College, University of

Cambridge, 1989.

[184] A. Agarwal, M. Henaff, S. Kakade, and W. Sun, “PC-PG: Policy cover directed exploration for provable

policy gradient learning,” arXiv preprint arXiv:2007.08459, 2020.

[185] D. Misra, M. Henaff, A. Krishnamurthy, and J. Langford, “Kinematic state abstraction and provably

efficient rich-observation reinforcement learning,” in International Conference on Machine Learning,

2020, pp. 6961–6971.

[186] M. O. Sayin, K. Zhang, D. S. Leslie, T. Başar, and A. Ozdaglar, “Decentralized Q-learning in zero-sum

Markov games,” arXiv preprint arXiv:2106.02748, 2021.

[187] M. Gao, T. Xie, S. S. Du, and L. F. Yang, “A provably efficient algorithm for linear Markov decision

process with low switching cost,” arXiv preprint arXiv:2101.00494, 2021.

[188] T. Roughgarden, “Intrinsic robustness of the price of anarchy,” in Proceedings of the Forty-First

Annual ACM Symposium on Theory of Computing, 2009, pp. 513–522.

[189] H. Yuan, Q. Luo, and C. Shi, “Marrying stochastic gradient descent with bandits: Learning algorithms

for inventory systems with fixed costs,” Management Science, 2021.

164

[190] C. Shi, W. Chen, and I. Duenyas, “Nonparametric data-driven algorithms for multiproduct inventory

systems with censored demand,” Operations Research, vol. 64, no. 2, pp. 362–370, 2016.

[191] Y. Yu, X. Chen, and F. Zhang, “Dynamic capacity management with general upgrading,” Operations

Research, vol. 63, no. 6, pp. 1372–1389, 2015.

[192] D. A. Freedman, “On tail probabilities for martingales,” The Annals of Probability, pp. 100–118, 1975.

[193] D. Nekipelov, V. Syrgkanis, and E. Tardos, “Econometrics for learning agents,” in Proceedings of the

16th ACM Conference on Economics and Computation, 2015, pp. 1–18.

[194] H. Jia, B. Ding, H. Wang, X. Gong, and X. Zhou, “Fast adaptation via meta learning in multi-agent

cooperative tasks,” in Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing,

2019, pp. 707–714.

[195] A. Gupta, M. Lanctot, and A. Lazaridou, “Dynamic population-based meta-learning for multi-agent

communication with natural language,” Advances in Neural Information Processing Systems, vol. 34,

pp. 16 899–16 912, 2021.

[196] H. Qiu, W. Mao, C. Wang, et al., “AWARE: Automate workload autoscaling with reinforcement

learning in production cloud systems,” in USENIX Annual Technical Conference, 2023.

[197] S. Xue, C. Qu, X. Shi, et al., “A meta reinforcement learning approach for predictive autoscaling in the

cloud,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 4290–4299.

[198] S. Yang and B. Yang, “A meta multi-agent reinforcement learning algorithm for multi-intersection

traffic signal control,” in IEEE International Symposium on Dependable, Autonomic and Secure

Computing, 2021, pp. 18–25.

[199] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-learning with implicit gradients,”

Advances in Neural Information Processing Systems, vol. 32, 2019.

[200] A. Fallah, A. Mokhtari, and A. Ozdaglar, “On the convergence theory of gradient-based model-agnostic

meta-learning algorithms,” in International Conference on Artificial Intelligence and Statistics, 2020,

pp. 1082–1092.

[201] L. Wang, Q. Cai, Z. Yang, and Z. Wang, “On the global optimality of model-agnostic meta-learning,”

in International Conference on Machine Learning, 2020, pp. 9837–9846.

[202] A. Fallah, K. Georgiev, A. Mokhtari, and A. Ozdaglar, “On the convergence theory of debiased

model-agnostic meta-reinforcement learning,” Advances in Neural Information Processing Systems,

vol. 34, pp. 3096–3107, 2021.

[203] K. Ji, J. Yang, and Y. Liang, “Theoretical convergence of multi-step model-agnostic meta-learning,”

Journal of Machine Learning Research, 2022.

[204] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,” arXiv preprint

arXiv:1803.02999, 2018.

[205] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-learning,” in International Conference

on Machine Learning, PMLR, 2019, pp. 1920–1930.

[206] M.-F. Balcan, M. Khodak, and A. Talwalkar, “Provable guarantees for gradient-based meta-learning,”

in International Conference on Machine Learning, PMLR, 2019, pp. 424–433.

165

[207] G. Denevi, C. Ciliberto, R. Grazzi, and M. Pontil, “Learning-to-learn stochastic gradient descent with

biased regularization,” in International Conference on Machine Learning, PMLR, 2019, pp. 1566–1575.

[208] M. Khodak, M.-F. F. Balcan, and A. S. Talwalkar, “Adaptive gradient-based meta-learning methods,”

Advances in Neural Information Processing Systems, vol. 32, 2019.

[209] J. Humplik, A. Galashov, L. Hasenclever, P. A. Ortega, Y. W. Teh, and N. Heess, “Meta reinforcement

learning as task inference,” arXiv preprint arXiv:1905.06424, 2019.

[210] P. A. Ortega, J. X. Wang, M. Rowland, et al., “Meta-learning of sequential strategies,” arXiv preprint

arXiv:1905.03030, 2019.

[211] S. Liu, M. Lanctot, L. Marris, and N. Heess, “Simplex neural population learning: Any-mixture

bayes-optimality in symmetric zero-sum games,” in International Conference on Machine Learning,

PMLR, 2022, pp. 13 793–13 806.

[212] S. Cen, Y. Wei, and Y. Chi, “Fast policy extragradient methods for competitive games with entropy

regularization,” Advances in Neural Information Processing Systems, vol. 34, pp. 27 952–27 964, 2021.

[213] S. Zeng, T. Doan, and J. Romberg, “Regularized gradient descent ascent for two-player zero-sum

Markov games,” Advances in Neural Information Processing Systems, vol. 35, pp. 34 546–34 558, 2022.

[214] S. Leonardos, W. Overman, I. Panageas, and G. Piliouras, “Global convergence of multi-agent policy

gradient in Markov potential games,” arXiv preprint arXiv:2106.01969, 2021.

[215] R. Zhang, Z. Ren, and N. Li, “Gradient play in stochastic games: Stationary points, convergence, and

sample complexity,” arXiv preprint arXiv:2106.00198, 2021.

[216] Z. Gao, Q. Ma, T. Başar, and J. R. Birge, “Finite-sample analysis of decentralized Q-learning for

stochastic games,” arXiv preprint arXiv:2112.07859, 2021.

[217] R. Fox, S. M. Mcaleer, W. Overman, and I. Panageas, “Independent natural policy gradient always

converges in Markov potential games,” in International Conference on Artificial Intelligence and

Statistics, 2022, pp. 4414–4425.

[218] R. Zhang, J. Mei, B. Dai, D. Schuurmans, and N. Li, “On the global convergence rates of decentralized

softmax gradient play in Markov potential games,” in Advances in Neural Information Processing

Systems, 2022.

[219] Z. Song, S. Mei, and Y. Bai, “When can we learn general-sum Markov games with a large number of

players sample-efficiently?” In International Conference on Learning Representations, 2022.

[220] C. Jin, Q. Liu, Y. Wang, and T. Yu, “V-learning–A simple, efficient, decentralized algorithm for

multiagent RL,” in ICLR Workshop on Gamification and Multiagent Solutions, 2022.

[221] C. Daskalakis, N. Golowich, and K. Zhang, “The complexity of Markov equilibrium in stochastic

games,” arXiv preprint arXiv:2204.03991, 2022.

[222] K. Harris, I. Anagnostides, G. Farina, M. Khodak, Z. S. Wu, and T. Sandholm, “Meta-learning in

games,” arXiv preprint arXiv:2209.14110, 2022.

[223] M. Zhang, P. Zhao, H. Luo, and Z.-H. Zhou, “No-regret learning in time-varying zero-sum games,” in

International Conference on Machine Learning, 2022, pp. 26 772–26 808.

[224] D. Sychrovsky, M. Sustr, E. Davoodi, M. Lanctot, and M. Schmid, “Learning not to regret,” arXiv

preprint arXiv:2303.01074, 2023.

166

[225] V. Khattar, Y. Ding, B. Sel, J. Lavaei, and M. Jin, “A CMDP-within-online framework for meta-safe

reinforcement learning,” in International Conference on Learning Representations, 2022.

[226] A. A. Team, J. Bauer, K. Baumli, et al., “Human-timescale adaptation in an open-ended task space,”

arXiv preprint arXiv:2301.07608, 2023.

[227] S. Leonardos, W. Overman, I. Panageas, and G. Piliouras, “Global convergence of multi-agent policy

gradient in Markov potential games,” in International Conference on Learning Representations, 2021.

[228] H. Fang, N. J. Harvey, V. S. Portella, and M. P. Friedlander, “Online mirror descent and dual

averaging: Keeping pace in the dynamic case,” Journal of Machine Learning Research, vol. 23, no. 1,

pp. 5271–5308, 2022.

[229] M. Lauriere, S. Perrin, S. Girgin, et al., “Scalable deep reinforcement learning algorithms for mean

field games,” in International Conference on Machine Learning, PMLR, 2022, pp. 12 078–12 095.

[230] S. Perrin, J. Pérolat, M. Laurière, M. Geist, R. Elie, and O. Pietquin, “Fictitious play for mean

field games: Continuous time analysis and applications,” Advances in Neural Information Processing

Systems, vol. 33, pp. 13 199–13 213, 2020.

[231] W. Mao, H. Qiu, C. Wang, et al., “A mean-field game approach to cloud resource management with

function approximation,” Advances in Neural Information Processing Systems, vol. 35, pp. 36 243–

36 258, 2022.

[232] G. Chen and M. Teboulle, “Convergence analysis of a proximal-like minimization algorithm using

Bregman functions,” SIAM Journal on Optimization, vol. 3, no. 3, pp. 538–543, 1993.

[233] A. Banerjee, S. Merugu, I. S. Dhillon, J. Ghosh, and J. Lafferty, “Clustering with Bregman divergences,”

Journal of Machine Learning Research, vol. 6, no. 10, 2005.

[234] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for reinforcement

learning with function approximation,” Advances in Neural Information Processing Systems, vol. 12,

1999.

[235] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “On the theory of policy gradient methods:

Optimality, approximation, and distribution shift,” Journal of Machine Learning Research, vol. 22,

no. 98, pp. 1–76, 2021.

[236] T. Furmston, G. Lever, and D. Barber, “Approximate Newton methods for policy search in Markov

decision processes,” Journal of Machine Learning Research, vol. 17, 2016.

[237] K. Zhang, A. Koppel, H. Zhu, and T. Başar, “Global convergence of policy gradient methods to (almost)

locally optimal policies,” SIAM Journal on Control and Optimization, vol. 58, no. 6, pp. 3586–3612,

2020.

[238] E. Hazan, “Introduction to online convex optimization,” Foundations and Trends in Optimization,

vol. 2, no. 3-4, pp. 157–325, 2016.

[239] Q. Liu, C. Szepesvári, and C. Jin, “Sample-efficient reinforcement learning of partially observable

Markov games,” Advances in Neural Information Processing Systems, vol. 35, pp. 18 296–18 308, 2022.

[240] X. Zhang, W. Mao, S. Mowlavi, M. Benosman, and T. Başar, “Controlgym: Large-scale control

environments for benchmarking reinforcement learning algorithms,” arXiv preprint arXiv:2311.18736,

also to appear in Annual Learning for Dynamics and Control Conference, 2024.

167

[241] X. Zhang, W. Mao, H. Qiu, and T. Başar, “Decision transformer as a foundation model for partially

observable continuous control,” arXiv preprint arXiv:2404.02407, 2024.

[242] H. Qiu, W. Mao, C. Wang, et al., “When green computing meets performance and resilience SLOs,”

in Proceedings of the 54th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks, 2024.

[243] H. Qiu, W. Mao, A. Patke, et al., “Efficient interactive LLM serving with proxy model-based sequence

length prediction,” in Proceedings of the 5th International Workshop on Cloud Intelligence / AIOps,

2024.

[244] H. Qiu, W. Mao, A. Patke, et al., “Reinforcement learning for resource management in multi-tenant

serverless platforms,” in Proceedings of the 2nd European Workshop on Machine Learning and Systems,

2022, pp. 20–28.

[245] H. Qiu, W. Mao, A. Patke, et al., “SIMPPO: A scalable and incremental online learning framework for

serverless resource management,” in Proceedings of the 13th Symposium on Cloud Computing, 2022,

pp. 306–322.

[246] H. Qiu, W. Mao, C. Wang, et al., “On the promise and challenges of foundation models for learning-

based cloud systems management,” in Machine Learning for Systems Workshop at 37th NeurIPS

Conference, 2023.

168

Appendix A

Publications of Weichao Mao Related

to the Thesis

Publications Directly Related to the Thesis

[1] W. Mao, H. Qiu, C. Wang, H. Franke, Z. Kalbarczyk, and T. Başar, “Õ(T−1) Convergence to (Coarse)

Correlated Equilibria in Full-Information General-Sum Markov Games,” to appear in Annual Conference on

Learning for Dynamics and Control, 2024.

[2] W. Mao, K. Zhang, R. Zhu, D. Simchi-Levi, and T. Başar, “Model-free non-stationary RL: Near-optimal

regret and applications in multi-agent RL and inventory control,” arXiv preprint arXiv:2010.03161, also to

appear in Management Science, 2024.

[3] W. Mao, H. Qiu, C. Wang, H. Franke, Z. Kalbarczyk, R. Iyer, and T. Başar, “Multi-agent meta-

reinforcement learning: Sharper convergence rates with task similarity,” in Conference on Neural Information

Processing Systems, 2023.

[4] W. Mao and T. Başar, “Provably efficient reinforcement learning in decentralized general-sum Markov

games,” Dynamic Games and Applications, vol. 13, pp. 165–186, 2023.

[5] W. Mao, L. Yang, K. Zhang, and T. Başar, “On improving model-free algorithms for decentralized

multi-agent reinforcement learning,” in International Conference on Machine Learning, 2022.

[6] W. Mao, K. Zhang, R. Zhu, D. Simchi-Levi, and T. Başar, “Near-optimal model-free reinforcement

learning in non-stationary episodic MDPs,” in International Conference on Machine Learning, 2021.

Publications Independent of the Thesis

[1] H. Qiu, W. Mao, C. Wang, H. Franke, A. Youssef, Z. Kalbarczyk, T. Başar, and R. Iyer, “AWARE:

Automate workload autoscaling with reinforcement learning in production cloud systems,” in USENIX Annual

Technical Conference, 2023.

[2] W. Mao, H. Qiu, C. Wang, H. Franke, Z. Kalbarczyk, R. K. Iyer, and T. Başar, “A mean-field game

approach to cloud resource management with function approximation”, in Conference on Neural Information

Processing Systems, 2022.

[3] H. Qiu, W. Mao, A. Patke, C. Wang, H. Franke, Z. Kalbarczyk, T. Başar, and R. K. Iyer, “SIMPPO: A

scalable and incremental online learning framework for serverless resource management”, In ACM Symposium

on Cloud Computing, 2022.

[4] S. Bhatt, W. Mao, A. Koppel, and T. Başar, “Semiparametric information state embedding for policy

search under imperfect information”, in Conference on Decision and Control, 2021.

169

[5] W. Mao, K. Zhang, Q. Xie, and T. Başar, “POLY-HOOT: Monte-Carlo planning in continuous space

MDPs with non-asymptotic analysis”, in Conference on Neural Information Processing Systems, 2020.

[6] W. Mao, K. Zhang, E. Miehling, and T. Başar, “Information state embedding in partially observable

cooperative multi-agent reinforcement learning,” in IEEE Conference on Decision and Control, 2020.

170

	List of Commonly Used Acronyms
	Introduction
	MARL in General-Sum Markov Games
	Non-Stationary RL and Cooperative Markov Games
	Meta-Learning in Markov Games
	Outline

	Learning (Coarse) Correlated Equilibria in General-Sum Markov Games
	Introduction
	Related Work
	Preliminaries
	V-Learning OMD
	Theoretical Analyses
	Adversarial Bandits with Weighted Regret
	Stage-Based V-Learning for General-Sum Markov Games
	Learning CCE
	Learning CE
	Simulations

	O"0365O(T-1) Convergence in Full-Information Markov Games
	Convergence to Correlated Equilibria
	Convergence to Coarse Correlated Equilibria
	Numerical Results

	Proofs for Section 2.5
	Proof of Lemma 2
	Proof of Theorem 1

	Proofs for Section 2.6
	Proofs for Section 2.7.1
	Proofs for Section 2.7.2
	Proofs for Section 2.8.1
	Proofs for Section 2.8.2
	Concluding Remarks

	Non-Stationary RL and Cooperative Markov Games
	Introduction
	Preliminaries
	Algorithm: RestartQ-UCB
	Analysis
	Unknown Variation Budgets
	Lower Bounds
	Simulations
	Application to Multi-Agent RL
	Problem Setup
	Regret Against a Slowly-Changing Opponent
	Learning Team-Optimality

	Application to Inventory Control Across Related Products
	Problem Setup
	Implementation of RestartQ-UCB

	Proofs of the Technical Lemmas
	Proof of Lemma 20
	Proof of Lemma 21
	Proof of Lemma 22
	Proof of Proposition 2

	Proof of Theorem 9
	Proof Sketch of Theorem 10
	Proof of Theorem 11
	Proof of Theorem 12
	Proof of Theorem 13
	The Un-discounted Setting
	The Episodic Settings

	Concluding Remarks

	Meta-Learning in Markov Games
	Introduction
	Preliminaries
	Meta-Learning for Two-Player Zero-Sum Markov Games
	Initialization-Dependent Convergence in an Individual Zero-Sum Markov Game
	Sharper Convergence with Meta-Learning

	Meta-Learning for Markov Potential Games
	Sharper Rates in Similar Games
	Convergence to MAML Objective

	Meta-Learning for General-Sum Markov Games
	Simulations
	Zero-Sum Markov Games
	Markov Potential Games
	Scalability

	Technical Lemmas
	Proofs for Section 4.3
	Proof of Theorem 17
	Supporting Lemmas for Section 4.3
	Proof of Theorem 18

	Proofs for Section 4.4
	Definitions
	Proof of Theorem 19
	Model-Agnostic Meta-Learning in Markov Potential Games
	Proof of Lemma 41
	Proof of Lemma 42
	Proof of Lemma 44
	Proof of Lemma 45
	Proof of Lemma 43
	Proof of Theorem 20

	Proofs for Section 4.5
	Proof of Theorem 21
	Supporting Lemmas for Section 4.5
	Proof of Theorem 22

	Concluding Remarks

	Concluding Remarks
	References
	Publications of Weichao Mao Related to the Thesis

