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ABSTRACT

The recent advancements in machine learning (ML) have marked significant progress
across various fields, delivering high-quality solutions in computer vision, natural lan-
guage processing, and virtual reality, among others. This leap forward is largely due to
the innovations in deep learning and neural networks, which have opened new avenues
in data analysis and decision-making processes, profoundly affecting people’s lives and
how society functions.

However, ML systems encounter considerable challenges in terms of resource effi-
ciency, grappling with complex issues such as network bandwidth exhaustion, compu-
tational intensity, energy consumption, and hardware diversity. These challenges are
interconnected, making the task of managing resources efficiently even more daunting.
To enhance the effectiveness of machine learning models, it’s crucial that these systems
are optimized across multiple dimensions to strike a balance between performance, effi-
ciency, and scalability, thereby ensuring sustainable operation at a larger scale.

In this thesis, we introduce a multi-objective resource optimization framework aimed
at addressing the overarching resource challenges in large-scale machine learning sys-
tems. Leveraging the optimization opportunities presented by data redundancy and
hardware configurability, we detail three initiatives that demonstrate optimizations for
resource constraints within large-scale ML systems. Specifically, CROSSROI tackles net-
work bandwidth and computational intensity by leveraging data redundancy in video
streams, significantly reducing the amount of data required for processing and transmis-
sion. BOFL targets energy consumption and the timeliness of learning tasks, employing
dynamic hardware configuration to enhance the power efficiency of devices involved in
time-sensitive federated learning, which in turn prolongs battery life and lowers opera-
tional expenses. FEDCORE addresses the straggler effect in federated learning through
the implementation of distributed coresets, minimizing the data processed by slower de-
vices and thus boosting the overall efficiency of the system without sacrificing accuracy.

Collectively, these frameworks embody a comprehensive approach to multi-objective
resource optimization, illustrating their effectiveness through significant enhancements
across various resource dimensions. Moreover, our experiments confirm that adopting
a holistic design that leverages both data and hardware opportunities can substantially
elevate the efficiency of resource usage in machine learning systems.
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CHAPTER 1: INTRODUCTION

Recent advancements in machine learning (ML) have heralded unprecedented success
across various domains, including computer vision, natural language processing, and vir-
tual reality, among others. These achievements have been propelled by the utilization of
advanced machine learning models, such as deep neural networks (DNNs). To harness
the full potential of these sophisticated models, researchers and engineers have devel-
oped large-scale distributed systems. These systems are designed to train and deploy
DNNs for a myriad of applications. For instance, DNN-powered computer vision so-
lutions have been extensively implemented in numerous cities, utilizing real-time video
data from thousands of surveillance cameras to enhance public safety and contribute to
societal well-being [1, 2, 3, 4, 5, 6, 7].

Prominent examples include Google and Meta, which have rolled out vast systems
across millions of devices worldwide to refine their keyboard query suggestion and so-
cial network recommendation applications [8, 9], showcasing the broad applicability and
impact of these technologies. The architecture of such machine learning systems typically
encompasses a wide array of heterogeneous hardware, including cameras, edge devices,
and cloud clusters, all interconnected through networks. From a functional perspective,
these systems can be classified into two main categories: (a) inference systems, and (b)
training system.

(a) Inference system: Inference system is a serving system where a well-trained model
is deployed to generate inference results. For example, real-time video analytic sys-
tem [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] is a typical inference system. Figure 1.1(a)
presents a typical architecture for video analytics systems. Cameras and edge de-
vices are responsible for data collections. The videos collected at the edges are
streamed to the cloud server through networks, where the DNN models are de-
ployed to generate ML-based video analytical results for various computer vision
tasks, such as human recognition, object detection & tracking and beyond.

(b) Training system: The training system is designed for collecting data to either initiate
the training of a machine learning model from the ground up or to enhance the per-
formance of an existing model through fine-tuning. Among these, federated learning
(FL) systems have emerged as a focal point of recent studies [20, 21, 22, 23, 24]. As
illustrated in Figure 1.1(b), federated learning architecture enables millions of end
devices to use their private data for the collaborative training of a unified model
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Figure 1.1: Examples of Machine Learning Systems.

with a cloud server. This approach addresses privacy concerns by allowing only the
transmission of local model training gradients to the cloud, rather than the training
data itself. This gradient exchange continues through multiple rounds until a model
with satisfactory performance is achieved.

The remarkable progress in machine learning, both in inference and training systems,
has unlocked capabilities previously deemed unattainable. However, this advancement
comes at a cost: it generates a significant increase in data traffic and imposes a mas-
sive computational workload. These challenges are particularly pronounced at scale,
where the sheer volume of data and the complexity of computations can strain resources,
leading to inefficiencies that hinder the broader application and effectiveness of machine
learning systems.

In summary, while the rapid evolution of machine learning systems has brought signif-
icant benefits to society, it also introduces new challenges in terms of resource efficiency,
particularly at a large scale. This thesis aims to delve into these challenges, proposing
methods and solutions to address the resource constraints faced by large-scale machine
learning systems, ensuring their sustainable and efficient operation.

1.1 MOTIVATION AND CHALLENGES

The conventional design of large-scale machine learning systems, as depicted in Fig-
ure 1.1, faces significant challenges stemming from their substantial resource demands.
For instance, video analytics systems necessitate considerable network bandwidth to
stream real-time video data to cloud-based infrastructures for processing. Concurrently,
cloud servers encounter limitations in computational capacity due to the voluminous re-
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quests for video analysis. These challenges are further exacerbated in federated learning
systems, where the burden of intensive model training workloads and the bandwidth-
intensive task of exchanging parameters are placed on mobile and edge devices. This can
lead to rapid depletion of device power. Additionally, the diversity in hardware across
the federated learning network introduces another layer of complexity, as devices with
slower processing capabilities can bottleneck the overall system efficiency and delay the
training process.

Indeed, the resource challenges faced by these machine learning systems are diverse
and include network bandwidth exhaustion, computational intensity, energy consumption, hard-
ware heterogeneity, and the potential degradation of model performance. Often, these chal-
lenges are interrelated, compounding the difficulty of managing resources efficiently. For
instance, video analytics systems may simultaneously encounter network and computa-
tional constraints, amplifying the resource challenge. To better scale the power of ma-
chine learning models, such systems must be jointly optimized from multiple perspec-
tives to remedy the resource intensive challenges. In this thesis, Wepresent a multi-
objective resource optimization solution, aiming to enhance the efficiency of machine
learning training and inference systems across the board.

1.2 OPTIMIZATION OPPORTUNITIES IN ML SYSTEMS

Achieving resource efficiency in machine learning (ML) systems is a complex challenge
that necessitates a holistic approach to tackle the multifaceted, resource-intensive issues
inherent in these systems. By exploring and integrating the following various optimiza-
tion opportunities, it is possible to significantly enhance the efficiency of ML systems.

• The first opportunity lies in addressing the inference data redundancy. In many cases,
data, particularly video, inherently contains significant redundancy that can be ex-
ploited for optimization. For instance, in video analytics systems, reducing frame rates
and resolutions has been shown to effectively save network bandwidth and enhance
system efficiency without compromising analytical outcomes [6, 25]. Furthermore, in
systems analyzing multiple video streams, leveraging cross-camera data redundancy
can further diminish data intensity, showcasing the potential for substantial efficiency
improvements in broader contexts [5, 26].

• The second opportunity revolves around hardware configurability. Modern comput-
ing hardware offers various power configurations to accommodate different work-
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loads, presenting a viable pathway to improve energy efficiency. Techniques like dy-
namic voltage frequency scaling (DVFS) exemplify how adjusting the power and per-
formance settings of hardware components, such as CPUs and GPUs, can lead to sig-
nificant energy savings in ML tasks [27, 28, 29, 30, 31]. Optimizing hardware configu-
rations through strategies like DVFS enables a balance between operational speed and
energy consumption, crucial for sustainable ML operations [32, 33].

• The third opportunity focuses on the training data redundancy. The vast quantities
of data typically required for training ML models often contain redundant informa-
tion, which, if effectively managed, can reduce the necessary data volume without
impacting training efficacy. Techniques such as Coreset methods have proven effec-
tive in this regard. By selecting a representative subset of the original dataset, these
methods retain critical information while substantially lowering both computational
complexity and memory requirements. This approach has been successfully applied
across various domains, including image classification, natural language processing,
and federated learning. [34, 35, 36, 37, 38, 39].

In summary, by systematically addressing these optimization opportunities, it is feasible
to construct ML systems that are not only resource-efficient but also maintain, or even
enhance, their performance and effectiveness.

1.3 THESIS STATEMENT

In this thesis, We claim the following argument is true that The design of resource-efficient
large scale machine learning systems must consider the multi-objective optimizations of network
bandwidth, computation throughput, execution latency, energy consumption and model accuracy
via opportunities of data redundancy and hardware configurability.

1.4 ROADMAP OF RESEARCH

In this thesis, We demonstrate a framework that describes how we utilize the aforemen-
tioned optimization opportunities to solve the resource efficiency challenges in machine
learning systems, as shown in Figure 1.2. In the remainder of this section, We will present
a roadmap of the thesis research, which focuses on resource-efficient optimizations for
video analytics systems and federated learning systems.
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Figure 1.2: Overview of Thesis Works.

1.4.1 CROSSROI: Towards Resource-Efficient Real Time Video Analytics at Scale

Video cameras are pervasively deployed in city scale for public good or community
safety (i.e. traffic monitoring or suspected person tracking). However, analyzing large
scale video feeds in real time is data intensive and poses severe challenges to today’s
network and computation systems.

In the first part of this thesis (Figure 1.2, left), We present CROSSROI, a resource-efficient
system that enables real time video analytics at scale via harnessing the videos content
associations and redundancy across a fleet of cameras. CROSSROI exploits the inference
data redundancy of cross-camera viewing fields to drastically reduce the network band-
width and improve computational throughput.

CROSSROI removes the repentant appearances of same objects in multiple cameras
without harming comprehensive coverage of the scene. CROSSROI operates in two phases
- an offline phase to establish cross-camera correlations, and an efficient online phase for
real time video inference. Experiments on real-world video feeds show that CROSSROI
achieves 42% ∼ 65% reduction for network overhead and 25% ∼ 34% reduction for re-
sponse delay in real time video analytics applications with more than 99% query accuracy,
when compared to baseline methods. If integrated with SotA frame filtering systems, the
performance gains of CROSSROI reaches 50% ∼ 80% (network overhead) and 33% ∼ 61%.
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1.4.2 BOFL: Bayesian Optimized Energy-Efficient Federated Learning

Federated learning is a machine learning paradigm that enables a cluster of decen-
tralized edge devices to collaboratively train a shared machine learning model without
exposing users’ raw data. However, the intensive model training computation is energy-
demanding and poses severe challenges to end devices’ battery life.

In the second part of this thesis research (Figure 1.2, middle), we present BOFL, a train-
ing pace controller deployed on edge devices. It leverages hardware configurability to
adjust chips’ frequencies, aiming for energy-efficient federated learning. This approach
ensures learning is both efficient and accomplished in a timely manner.

BOFL operates in an explore-then-exploit manner within limited rounds of FL tasks.
BOFL first explores the large hardware frequency space strategically with a tailor de-
signed Bayesian optimization algorithm to find a set of good operational configurations
within few task training rounds. BOFL then exploits these configurations in the remain-
ing rounds to achieve minimized energy consumption for model training. Experiments
on multiple edge devices with different FL tasks suggest that BOFL can reduce energy
consumption of model training by around 26%, and achieve near-optimal energy effi-
ciency.

1.4.3 FEDCORE: Straggler Free Federated Learning with Distributed Coresets

In federated learning, the distributed nature of model training across client devices is
often impeded by the straggler effect, where slower clients delay the overall process. In
the third part of this thesis research (Figure 1.2, right), we introduce FEDCORE, a novel al-
gorithm that addresses the straggler issue using distributed coresets, representative sub-
sets of training data on each client. We show that FEDCORE, by utilizing the training data
redundancy, can greatly reduce the federated learning training latency without degrad-
ing the machine learning models’ accuracy.

FEDCORE addresses FL’s heterogeneity by creating coresets that adapt to evolving
models, effectively reducing the data processed by slower clients. This solution is in-
tegrated seamlessly into FL systems with minimal overhead, transforming coreset opti-
mization into a tractable k-medoids clustering problem. Theoretical analysis validates
FEDCORE’s convergence, while practical evaluations demonstrate an 8x reduction in FL
training time without sacrificing model accuracy. FL training time, without compromis-
ing model accuracy.
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1.5 THESIS ORGANIZATION

In the following chapters, We will introduce the the technical details of each of the four
aforementioned works. To be more specific,

• Chapter 2 delves into the CROSSROI framework, illustrating the utilization of in-
ference data redundancy to mitigate network and computational demands in video
analytics systems.

• Chapter 3 explores the BOFL framework, explaining how hardware configurability
enhances energy efficiency and timeliness in federated learning applications.

• Chapter 4 outlines the FEDCORE framework, presenting algorithms and theoretical
insights on addressing training data redundancy to alleviate straggler problems in
federated learning systems without compromising model performance.

Finally, in Chapter 5, We conclude the thesis and provide some future research direc-
tions for multi-objective resource optimizations for large scale machine learning systems.
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CHAPTER 2: CROSSROI: CROSS-CAMERA REGION OF INTEREST
OPTIMIZATION FOR EFFICIENT REAL TIME VIDEO ANALYTICS AT SCALE

In this chapter, we delve into the intricacies of the first thesis work, CROSSROI. We lay
out a multi-objective resource optimization framework designed to reduce network com-
munication and enhance server computational throughput for real time video analytics
systems. This is achieved by capitalizing on the inference data redundancy opportunity,
as detailed in Section 1.2.

2.1 INTRODUCTION

Driven by plummeting camera prices and advances of intelligent video inference al-
gorithms, video cameras are being deployed ubiquitously in recent days. For exam-
ple, many cities in the world now deploy tens of thousands of cameras at key loca-
tions, such as highway entrances or roads intersections, to collect rich video data for
applications ranging from traffic monitoring, public safety and suspected target tracking
[1, 2, 3, 40, 41, 42, 43]. As tremendous data are being generated by the cameras in ev-
ery second, organizations usually rely on live video analytics to retrieve key information,
such as objects locations and identities, in real time. Two key enablers for fast and accu-
rate video inference are the rapid development of deep neural networks, especially Con-
volutional Neural Networks (CNNs), and their hardware accelerators which empower
fast and large-scale neural networks training and inference.

However, live video analytics in large scale are usually network-exhaustive and compute-
intensive. In a typical video analytics pipeline, real time video feeds from widely deployed
cameras are streamed to a cloud server or geographically close edge clusters where pow-
erful hardware (e.g. GPUs) and fine-trained CNNs (e.g. YOLO [44]) are prepared. The
server immediately loads videos into the inference pipelines and aims for accurate and
low latency analytic results. The high network demands for video streaming and compu-
tation demands for CNN-based inference pose severe challenges to such video analytics
framework, especially when organizations are steadily increasing their deployment scale,
which amplifies the problems.

Significant work has been presented to improve the efficiency of video analytics pipe-
lines, which can be categorized into two groups: (1) frame filtering on single camera
[6, 10, 11, 12, 45], and (2) target oriented cross-camera analytics [4, 5, 13, 46, 47]. Works in
group one (e.g. Reducto [6]) optimize the cost/accuracy tradeoffs of single-video analyt-
ics with frame sampling or CNN-based filters for discarding frames. Reductos’ optimiza-
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Figure 2.1: An application scenario of CROSSROI. Red arrows show the viewing angles
of cameras.

tions are within single video streams independent of other streams, resulting in linear
growth of resource demands and limitations to scaling. Works in group two (e.g. Spatula
[5]) schedule the on and off of geographically distributed cameras to track a predefined
target object across cameras. While Spatula substantially reduces network/computation
demands by turning off the majority of cameras at any time, it fails to provide a compre-
hensive coverage to every scene where cameras are deployed.

In this work, we present CROSSROI to address the resource-intensive challenges for
real time video analytics on a fleet of closely located cameras (e.g. the cameras installed
at a traffic intersection) via harnessing the video content associations and redundancy
across the group of cameras. As shown in Figure 2.1, 5 cameras are deployed at a road
intersection with their viewing field overlapped. An object in the scene may appear in
the field-of-view of multiple cameras at the same time. In many video analytics tasks (e.g.
vehicle or suspect person detection), any capture of the interesting target is effective to
fulfill the mission. For example in Figure 2.1 either detection of the black car in camera
1 or 2 is enough to locate it at this traffic crossing at this moment (t1). Removing the
lower left region (shadow region) of camera 2’s frame at t1 does not influence the com-
prehensiveness of vehicle detection results at all 1. We argue that both network traffic
and computation demands can be substantially reduced without harming inference ac-

1Different applications may have different requirements to define a detection as effective. For example
in a vehicle plate detection scenario, only the detection of the front or the back view is effective. In this
chapter, we assume an application that a detection from any viewpoint is sufficient to fulfill the mission.
However, our system can be easily scaled to other scenarios given clear effectiveness definition, i.e., we
only take the front/back views into our system in the vehicle plates detection scenario.
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curacy for video analytics pipelines if the intrinsic associations across cameras could be
discovered and harnessed properly.

CROSSROI highlights three challenges to discover the intrinsic data associations and
harness the content redundancy across multiple cameras as follows.

(C1) How to establish data association among a fleet of cameras on unlabeled video data
automatically and accurately?

(C2) How to calculate cross-camera region-of-interest (RoI) collectively to remove redun-
dancy without harming the comprehensiveness of detection coverage?

(C3) How to leverage cameras’ regions-of-interest to drastically reduce network overhead
and boost sever inference throughput in the video analytics pipeline?

To tackle these challenges, we design CROSSROI to operate in two distinct phases-an of-
fline phase and an online phase. In the offline phase, CROSSROI establishes the data
association and calculates the optimized RoI information. In the online phase, cameras
filter their real time video streams according to the RoI information to reduce overall
system data intensity. To establish cross-camera data association, we augment existing
re-identification solutions with statistical filters to generate highly-accurate ReID results,
and hence, use the cross-camera appearances of same objects to represent data correla-
tions among cameras (C1). We slice camera frames into fine-grained tiles and develop a
combinatorial optimization framework to calculate least-sized regions of interest among
the camera fleet collectively without missing detection of any object (C2). To best alleviate
resource-intensive challenges, we apply the optimized RoI information in each camera as
a filter to prevent non-interesting data being dumped into the analytics pipeline. We fur-
ther specially design video compression module and RoI based CNN inference pipeline
to boost overall system performance(C3). Overall, this thesis chapter makes the following
contributions:

1. We augment existing re-identification (ReID) algorithms to establish cross-camera
data association automatically and accurately.

2. We develop an multi-objective optimization framework to harness cross-camera
data redundancy and significantly reduce the data intensity of the video analytics
pipeline.

3. Our specially designed video compression module and RoI-based CNN inference
pipeline boost the overall system performance even further.
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4. Evaluations on real-world traffic videos suggest our system achieves network over-
head reduction up to 65% and end-to-end response latency reduction by 34% com-
pared to baselines.

5. Compared to most frame-filtering based existing solutions, e.g., Reducto [6], CROSS-
ROI exemplifies an extra layer of optimization from spatial domain. When inte-
grated with frame-filtering module, CROSSROI outperforms original frame-filtering
systems by 2×, and outperforms baselines up to 5×, in terms of network usage.

The rest of the chapter is organized as follows. In Section 2.2, we survey related litera-
ture and present backgrounds about video analytics, streaming and ReID frameworks. In
Section 2.3, we present our ReID based cross-camera data associations and optimization
framework to generate RoI masks for each camera. We present CROSSROI system work-
flow and design details in Section 2.4. Section 2.5 shows our evaluations of CROSSROI
system. Finally, Section 2.6 concludes the chapter.

2.2 BACKGROUNDS AND RELATED WORK

2.2.1 Multi-Objective Optimizations on Video Analytics Systems

Video analytics systems have been widely studied in recent literature. [4, 5, 6, 7, 10, 11,
12, 13, 14, 15, 16, 17, 25, 48, 49, 50]. While all these works focus on solving the resource-
intensive challenge, different approaches have been proposed. We categorize all existing
works in terms of (1) their system architectures, (2) capabilities to fulfill real-time process-
ing, and (3) processing multiple-camera videos independently or collectively, as follows.

Most works fells in either a three-layered camera-edge-cloud [5, 7, 11, 12, 16, 17, 48, 50]
or a two-layered camera-cloud [6, 10, 15, 25, 51] architecture. The first class of work, ex-
emplified by Focus [12], deploys close-to-camera edge devices to augment the processing
power of cameras, and hence, prune redundant data using neural networks accurately
before sending videos to the cloud for deep analysis. While the two-layered works, i.e.
Glimpse [10], use heuristics and lower level features to remove video redundancy, which
fits better into current real-word deployment where cameras are usually cheap and the
edge servers are not available.

Real time video analytics systems [5, 6, 10, 14, 25] optimize the whole pipeline, includ-
ing camera processing delay, network overhead and server inference latency, to reduce
end-to-end respond time for the inference tasks. For example, Reducto [6] assigns tiny
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workload to the cameras to avoid exaggerating camera processing delay, and hence, ful-
fill real time missions. Non-real-time systems [12, 13] try to answer “after the fact” types
queries from large scale stored videos. The latter class of systems usually focus on the
efficiency of key frame searching and high inference throughput.

The majority of video analytics systems are designed to process video streams inde-
pendently [6, 10, 11, 12]. All optimization and redundancy pruning are within a single
video stream, which leads to its linear growth resource requirements. The other systems
[4, 5, 13] focus on the cross-camera analytics on a group of cameras. But they either fail to
achieve real time inference, i.e. Caesar [13], or fails to provide comprehensive coverage
to the surveillance scene, i.e. Spatula [5].

Different from all existing works, CROSSROI achieves real-time cross-camera video an-
alytics over a fleet of cameras and fulfills comprehensive scene coverage. CROSSROI fits
into a two-layered architecture which only assumes normal surveillance cameras without
the needs of advanced edge devices.

2.2.2 Classic & Tile-Based Video Compression

The vanilla video compression standard, i.e. H.264 AVC [52] and HEVC [53], are widely
applied to significantly reduce data sizes in video storage/streaming applications. These
compressors usually encode videos with two steps. (1) The encoders first split every
frame into many small pixel blocks (for example, 16 pixels× 16 pixels block size for H.264
standard). For every block in a video frame, the compressor searches similar blocks either
within the already-encoded portion of current frame or in nearby frames that are buffered
by the encoder. When a closely matched block is identified, it encodes the position of
this similar block in a motion vector. (2) The encoder calculates the pixels level difference
between current block and the reference block, and encodes this sparse residual difference
with quantization and entropy encoding. Video compression efficacy can be impacted by
the frame size in such codecs. For example, a block has more reference block options
when the frame size is large, and hence, more easily get encoded into space-efficient
motion vector and sparse residual difference.

Tile-based video compression are widely used in data-intensive applications, for exam-
ple, panoramic video streaming. [54, 55, 56, 57] Tile-based video encoder splits the whole
frame spatially into several rectangular tiles. Every tile of the video is processed inde-
pendently by a classic video compressor (i.e. H.264) and can be encoded into different
qualities. For example, a compressor can encode the region-of-interest parts of a video
with high bitrates and the other parts with low bitrates. While tile-based compression
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reduces video size through the semantic region-of-interest information, splitting a large
video into several smaller ones degrades the overall efficacy of the compressors.

In CROSSROI, we applied tile-based video compression to include only the interesting
regions of the surveillance videos. To alleviate the compression efficacy degradation, we
design a tile grouping algorithms to merge small tiles into larger ones, which reduces net-
work overhead even further compared to existing tile-based approaches (Section 2.4.4).

2.2.3 Computer Vision Based Object Re-Identification

CROSSROI establishes the cross-camera region associations through profiling object re-
identification (ReID) results among the group of cameras. ReID is a challenging problem
in computer vision [58, 59, 60]. A typical ReID pipeline starts with automatic object de-
tection with object detectors, i.e. YOLO [44], FasterRCNN [61] and SSD [62]. ReID al-
gorithms then extracts deep image features from the detected objects and computes the
similarity of two detection based on their feature distance [62, 63, 64, 65]. Some works
[63, 64] apply object movement patterns as spatial-temporal cues to further improve the
identification accuracy. Although many ReID algorithms are proposed, the ReID results
are still not perfect, especially in crowded scenes and large camera networks where ab-
lations and significantly different lighting conditions and viewing angles are common.
Different from computer vision communities, we do not reinvent new ReID algorithms
in this chapter, but apply statistical filters to augment existing ReID algorithms to obtain
highly-confident region associations from error prone ReID results (Section 2.4.3).

2.3 CROSSROI BASIC MODELS, CONCEPTS AND PROBLEM DEFINITION

The CROSSROI system has two entities, which are CROSSROI cameras and CROSSROI
server. CROSSROI cameras are the video providers. They capture videos of the mission
scene and transmit them back to CROSSROI server for inference and analytics, e.g., car
detection and counting. The workflow of CROSSROI contains an offline phase and an on-
line phase. In offline phase, the CROSSROI server collects synchronized video clips from
each CROSSROI camera. Through profiling and analyzing these clips, the server can cal-
culate optimal RoI masks for the cameras. These RoI masks will then be applied in the
online phase to reduce network overhead and boost inference throughput at the CROSS-
ROI server. In the rest of this section, we focus on the offline video profiling process of
CROSSROI to explore the following two questions:
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• How to establish the data associations between multiple cameras covering the same
scene?

• How to calculate the optimal RoI masks for these cameras without losing any interest-
ing object?

2.3.1 CROSSROI Data Model

(a) C1 (b) C2

Figure 2.2: Video captures from two different cameras at timestamp t1. Each frame is
divided into 24 tiles. Red shadow represents the optimized RoI masks generated for

these two cameras based on profiling on t1 only.

We consider a CROSSROI system containing N cameras, named C1, C2, . . . , CN . In the
offline phase, the CROSSROI server collects synchronized video clips from all the CROSS-
ROI cameras for profiling. “Synchronized” here refers that all N video clips have the
same frame rate f , start at the same time2 t1, as well as the same video length. The k-th
frame of every video clip is then corresponding to the same timestamp tk = t1 +

k−1
f

, for
any k within the length of the videos. In this manner, the frames from CROSSROI cam-
eras with the same indices are just image captures of the same scene at the same time from
different perspectives. We further define the profile time window being a list of discrete
timestamp T = {t1, t2, . . . , tL}, where ti is the timestamp of the i-th frames in the video
clips and L is the index of the last frame.

In order to study the fine-grained data associations between cameras, we further cut
every video into tiles. Tiles are smaller rectangular spatial regions which cumulatively
cover the whole frame. As shown in Figure 2.2(a), the whole frame area of C1 is divided
into 24 tiles indexed from 1 to 24 in an top-to-bottom, left-to-right order. We formally

2We consider two cross-camera timestamps as the same if their difference is small enough for frame
alignment, i.e. < 1

2f , which can be achieved by NTP protocol.
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Timestamps Detected Objects Appearance Regions

t1 Ot1 = {O1, O2, O3, O4, O5, O6, O7}

R1
t1
= {{G1,9,G1,10,G1,15,G1,16},
{G2,7,G2,8,G2,13,G2,14}}

R2
t1
= {{G1,3,G1,4,G1,9,G1,10}}

R3
t1
= {{G1,4,G1,5,G1,10,G1,11}}

R4
t1
= {{G1,11}},R5

t1
= {{G2,2,G2,8}}

R6
t1
= {{G2,3}},R7

t1
= {{G2,3,G2,9}}

· · · · · · · · ·

Table 2.1: Cross-camera association lookup-table for the example in Figure 2.2.

define Gi as the set of tiles for camera Ci, where 1 ≤ i ≤ N .3 The j-th tile of Ci can then
be referred as Gi,j . For example, the left top tile of C1 in Figure 2.2(a) is G1,1. It is worth
mentioning that a tile is not corresponding to any specific frame or timestamp. Tiling is a
spatial description of how we divide the field of views of cameras into finer granularity.

In CROSSROI, we define RoI mask as the region in camera frames that may contain
interesting objects, for example, vehicles or trucks. The regions outside of a RoI mask are
ignored in the video analytics pipeline because no interesting targets may appear in these
areas. In our system, a tile is the smallest spatial unit to constitute a RoI mask. The RoI
mask for camera Ci, denoted asMi, is a subset of all its tiles, i.e.,Mi ⊂ Gi. For example,
in Figure 2.2(a), if we want RoI region to only include the four detected cars, then the
minimum-sized RoI mask will be as follows.

M1 = {G1,3,G1,4,G1,5,G1,9,G1,10,G1,11,G1,15,G1,16} (2.1)

2.3.2 Cross-Camera Regions-Association Concept

We establish cross-camera region associations based on existing object re-identification
(ReID) algorithms, which take visual or geographical features to associate common ob-
jects across multiple frames/ cameras. ReID algorithms assign an ID for every detected
object. Detection of the same object across different cameras will be assigned to the same
ID. For example, Figure 2.2(a) and Figure 2.2(b) are two synchronized frames from C1

and C2, respectively. Every detected car in both frames is assigned an ID by the ReID
algorithm. Cars O2, O3, and O4 are unique to C1. Cars O5, O6, and O7 are unique to C2.
While car O1 appears at the overlapping region of both views and can be identified in C1

and C2 simultaneously.4

3In this chapter, we use “tiles of Ci” and “tiles of the video generated by Ci” interchangeably.
4We only show detection of large objects in the two frames in Figure 2.2 for clarity of illustration.
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We establish the cross cameras association by profiling the ReID results over the whole
time window T . At any timestamp tm, we record the following two elements:

• All objects being detected at this timestamp, denoted as Otm ,

• The appearance regions for each object being detected at this timestamp.

We define the appearance region of an object Ok on camera Ci at timestamp tm as the least
set of tiles that can cover Ok, denoted as Rk

i,tm . As the object may appear on multiple
cameras simultaneously, we further define the appearance regions of Ok at timestamp tm,
denoted as Rk

tm , as the collection of its appearance regions over all CROSSROI cameras,
s.t.,

Rk
tm = {Rk

i,tm |1 ≤ i ≤ N and Rk
i,tm ̸= ∅} (2.2)

Take Figure 2.2 as an example. There are seven objects being detected at t1 in total, s.t.,
Ot1 = {O1, O2, O3, O4, O5, O6, O7}. O1 appears in both frames, therefore its appearance
regions contains two elements, s.t.,

R1
t1
= {{G1,9,G1,10,G1,15,G1,16}, {G2,7,G2,8,G2,13,G2,14}} (2.3)

The other objects appear only once and thus have single-length appearance regions, e.g.
R5

t1
= {{G2,2,G2,8}}. Profiling through the whole time window, we can build a lookup-

table which ensembles the ReID based region associations, as shown in Table 2.1.
ReID algorithms are still not perfect. In order to achieve accurate region associations

based on the error prone ReID results, we apply statistical filters on the raw ReID re-
sults to obtain highly-confident ReID results and establish the region association with the
selected data instead.

2.3.3 RoI Masks Optimization

The optimization objective is to include least number of tiles into the RoI masks cumulatively
across all the N cameras. In order to avoid missing any object at any timestamp in the time
window, we set the optimization constraints as any object occurred at timestamp tm has at
least one appearance region included by the RoI masks, for any tm ∈ T . We define variableM
as the union set of all the N RoI masks, s.t. M = ∪Ni=1Mi ⊂ ∪N

i=1Gi. The optimization
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problem can be formally presented as follow:

min |M| (2.4)

s.t.
∑

R∈Rk
tm

(
1(R ∈M)

)
≥ 1, ∀ tm ∈ T , ∀ k, s.t., Ok ∈ Otm (2.5)

Note that 1(·) in equation 2.5 is an indicator function with its range being {0, 1}. It will
return 1 if the input condition, e.g., R ∈M in equation 2.5, is true and return 0, otherwise.
Solving the above combinatorial optimization will generate the optimal RoI masks which
include least number of tiles while ensuring every object being detected. In the example
of Figure 2.2, if we set the time window to include t1 only, the optimized RoI masks
M will be {G1,3,G1,4,G1,5,G1,9,G1,10,G1,11,G1,15,G1,16,G2,2,G2,3,G2,8,G2,9}, which are shown
in the Figures with pink shadow. All the appearance of O2, . . . , O7 are covered by the RoI
masks. As O1 appears simultaneously on both cameras, the algorithms will only include
one of its appearance regions that introduce least overheads, e.g., its appearance region
in C1 in this example. The optimized RoI masks will then be applied in the online phase
to boost overall system performance.

2.4 CROSSROI DESIGN AND IMPLEMENTATION

As mentioned in Section 2.3, the CROSSROI system has an offline phase and an on-
line phase. In offline phase, the server generates optimal RoI masks for each camera
through profiling synchronized video clips. In online phase, the server runs video ana-
lytics tasks, e.g. car detection, on the streams from CROSSROI cameras in real time, where
the RoI masks serve as a guidance to reduce network burden and boost server through-
put. Figure 2.3 depicts the high-level framework of CROSSROI. We show more details of
the workflow as follows.

2.4.1 Offline Phase

Offline Server Re-Identification 1 . The CROSSROI server first applies re-identification
algorithms over several minutes of synchronized raw videos collected from all the CROSS-
ROI cameras to characterize the view relations among different cameras. We choose DiDi-
MTMC [63] algorithm as the CROSSROI server ReID module, which integrates vision fea-
tures together with geographic information to achieve best accuracy on our experiment
dataset (more descriptions about the dataset are presented in Section 2.5). At the end of
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Figure 2.3: System Overview of CROSSROI

the re-identification step, every interesting object (cars and vehicles in our scenario) in ev-
ery frame of the videos will be associated with a bounding box and an ID, in the form of
(left, top, width, height, id). Left and top information locate the top left corner of the bound-
ing box, while width and height information characterize the bounding box size. All four
values are measured in terms of pixel(s). These ReID results will be further processed in
modules 2 , 3 and finally be used to generate the optimized RoI masks.

Raw ReID Results Filtering 2 . Although DiDi-MTMC algorithm achieves state-of-the-
art accuracy in object ReID, its ReID results still contain a lot of errors and mismatches.
In order to establish accurate region associations among the CROSSROI cameras, we pass
the ReID results through two tandem statistical filters to remove the “suspicious” ID as-
signments and only keep highly-confident ReID results. Specifically, we first apply a
regression filter to decouple any two different objects that are mismatched together by the
ReID algorithm, then apply an SVM filter to remove the “falsely isolated objects” in every
frame. A “falsely isolated object” here refers to the case when the same object being as-
signed different IDs in different cameras or frames, then each of its appearance becomes
a falsely isolated object. At the end of this step, we get a selected set of highly-confident
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ReID results, which will be used in module 3 for cross camera region associations. It is
worth mentioning that the two filters do not improve overall ReID accuracy compared
to existing ReID algorithms. The design goal of statistical filters is to select a subset of
highly-confident object identification results, which are effective to represent the cross-
camera associations.

Regions Association & RoI Masks Generation 3 , 4 . Based on the filtered ReID results
obtained in step 2 , the server build a lookup table, e.g. Table 2.1, that ensembles the
region associations across all the cameras over the whole profiling time window. The
CROSSROI server then takes the table as data source into the optimization framework and
generates the optimal RoI masks for every camera by solving the optimization problem,
as described in Section 2.3. We use commercial optimization solver (i.e. Gurobi [66])
to obtain the optimal RoI masks in the offline phase. At the end of the offline phase,
CROSSROI server sends the corresponding RoI mask to each CROSSROI camera. Hence,
the cameras can use RoI masks to crop and further compress their video streams in online
phase, as shown in 5 . The CROSSROI server will also keep the RoI masks in memory
and applies them onto the CNN inference tasks (e.g., YOLO object detection) to boost its
execution speed, as shown in 6 .

2.4.2 Online Phase

Online Phase Video Compression and Streaming 5 . In the online phase, CROSSROI
cameras stream their video feeds to the server in real time. The server runs neural net-
work based inference algorithm on these video streams for the query tasks (e.g., vehicles
detection or counting). In order to reduce the huge server side bandwidth consumption
caused by receiving so many videos streams at the same time, all the CROSSROI cameras
will (1) crop their videos and only stream the areas included by RoI masks, and (2) apply
modern video compressor (e.g., H.264) to greatly reduce the video size.

Tile is the smallest spatial unit for tile-based video streaming. As our RoI masks are
designed to be tile-based, it is natural for the CROSSROI cameras to stream videos in a
tile-based manner, which (1) avoids transmitting non-interesting tiles and (2) can directly
apply existing video compressors. However, a naive tile-based streaming may still be
sub-optimal. As the compression efficacy of video compressors will drop significantly
when being applied to small tiles. In order to best utilize the power of well-engineered
video compressors, we develop a tile grouping algorithm which merges the fine-grained
small tiles into larger ones, and hence, further reduces the videos size.
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S
D C1 C2 C3 C4 C5

TP FP FN TN TP FP FN TN TP FP FN TN TP FP FN TN TP FP FN TN
C1 335 253 263 7542 358 22 560 7453 162 15 336 7880 101 0 642 7650
C2 333 253 291 4317 161 81 397 4551 242 56 401 4497 50 2 773 4371
C3 358 22 977 8246 161 81 868 8558 434 40 951 8243 155 24 1871 7618
C4 162 15 512 6784 242 56 917 6258 434 40 809 6190 138 22 1402 8583
C5 101 0 694 8568 50 2 1074 8237 155 24 1552 7632 138 22 1328 7875

Table 2.2: Characterization of raw ReID results. S/D represents the source/destination
camera. For each pair of cameras, we count the number of identifications with four

different labels, which are TP, FP, FN, TN, representing true positive, false positive, false
negative and true negative, respectively.

RoI Based Real-Time CNN Inference 6 . Once the tile streams are received by the
CROSSROI server, they will be merged together to reconstruct frames. Note that the non-
RoI regions of a frame will be empty (purely black) as the corresponding tiles are not
streamed to the server. These recovered frames are then pushed into a RoI based CNN
inference pipeline. In our system, we choose YOLO [44] as the inference handler for ob-
ject detection task. Different from traditional object detection tasks, where an interesting
target may appear everywhere in the whole frame, a RoI based object detection task has
prior knowledge of the RoI regions, and thus, can greatly reduce the detection space (i.e.
only run YOLO on the RoI regions). In CROSSROI system, we build an RoI-YOLO de-
tector based on SBNet [67] which takes the RoI masks as cues to boost YOLO detection
speed by 1.2x.

2.4.3 Raw RoI Results Analysis and Filtering (Offline)

Raw ReID Results Analysis We first present a comprehensive analysis towards the
raw ReID results, which sheds light to our design of the two tandem statistical filters to
remove “suspicious” ReID data points. We investigate pairwise ReID results between two
different cameras to understand the structure of these raw results and where mistakes
happen. In the study of a pair of cameras, we categorize any ID assignment of a source
camera, into one of the two types, positive and negative, in terms of whether the detected
object has an appearance in the destination camera at the same timestamp.

To better illustrate the concepts, we use C1 and C2 in Figure 2.2 as an example pair of
cameras in the rest of this paragraph. We set C1 as the source camera and C2 as the des-
tination camera. Every object being detected in this frame will be assigned a positive or
negative label, i.e. O1 is positive and O2, O3, O4 are negative. In our example, every object
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is identified correctly. However, the ReID algorithm may make mistakes, e.g. assigning
same ID to two different objects or assigning different IDs to multiple appearances of the
same one. To illustrate the correctness of the identification, we further associate a correct-
ness label, being either true or false, to each detected object in the source camera. Hence,
there are four types of labels associated with all the identification results as follows:

• True Positive (TP). A true positive label is assigned to an object in the source cam-
era which has a corresponding appearance in the destination cameras, and these two
appearances are given the same ID, e.g., O1 in C1 is a true positive data point.

• False Positive (FP). A false positive label covers either of the following two cases: (1) a
negative object being matched to an object in the destination camera, i.e. in case O2 in
C1 and O5 in C2 being assigned the same ID, and (2) a positive object being matched to
a wrong object in the destination camera, e.g., in case O1 in C1 being matched O7 in C2.

• True Negative (TN). A true negative label refers to an object which has no appearance
in the destination camera and that its identification is correct, e.g., O2, O3, O4 in C1.

• False Negative (FN). A false negative label is corresponding to the case when a positive
object being mistakenly identified as a negative object. For example, in case the ReID
algorithms fails to find the appearance of O1 in C2 and assign different IDs to these two
appearance of the same object.

Both false data (FP and FN) will sabotage the optimized RoI generation framework as
mentioned in Section 2.3. Specifically, (1) the false positive data will make the generated
RoI masks incorrect, as it introduces wrong region associations between cameras, and (2)
the false negative will significantly degrade the efficacy of non-RoI tiles reduction, as we
try to ensure every object has a least one appearance at any time. For example, if O1 in C1

and C2 are assigned different IDs at t1, we must include both {G1,9,G1,10,G1,15,G1,16} and
{G2,7,G2,8,G2,13,G2,14} into the RoI masks forever no matter what identification happens in
later timestamps.

To better understand the distribution of the above four types of ReID results. We pro-
file a dataset containing synchronized videos from five traffic cameras watching the same
crossing (we will describe more details about the dataset in Section 2.5). We compare
DiDi-MTMC ReID algorithm to the ReID ground truth of the dataset and get the distri-
butions of the pairwise ReID results as shown in Table 2.2. It can be observed that there
are large amount of falsely identified cases, especially the false negative identifications
which usually outweigh the total number of true/false positive samples. Applying raw
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Figure 2.4: Statistical filters for raw ReID results. Outliers are circled out in red color.

ReID results to the optimization pipeline will definitely lose many optimization opportu-
nities and degrade the system efficacy.

Although the raw ReID results are error prone, we make two important observations
after close scrutiny of the application scenario and results distribution (Table 2.2), which
can help remove the false ReID results significantly. The two observations are as follows:

(O1) The region-associations between two cameras have intrinsic physical relation. For
example, the two appearances of O1 at t1 suggest that region {G1,9,G1,10,G1,15,G1,16}
in C1 and region {G2,7,G2,8,G2,13,G2,14} in C2 are actually the same area in physical
means. In any future frames, this mapping relation will also work.

(O2) In both positive and negative identifications of the ReID results, the number of true
samples is always greater than that of false samples, and usually greater in several
times or magnitudes.

Based on the above two observations, we decide to apply statistical filters to remove the
false ReID results. Specifically, we design a regression filter to remove the false positive
samples and a SVM filter to remove the false negative samples.

Regression Filter Design & Implementation As shown in Figure 2.4, we push raw
ReID data through two tandem filters to get cleaned. The first filter is a regression filter.
We dump all the positive results into a regression module to learn the intrinsic region
mappings between a pair of cameras. We use regression method here for its reliable and
successful applications to model correlations between a pair of dependent variables, e.g.,
appearances of same objects in source/destination cameras. The outliers of the trained
model are regarded as false positive samples and will be rectified.
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Specifically, we feed the two bounding boxes of a positive object in its source camera
and its destination camera to the regression function, i.e. (bbox1

C1
, bbox1

C2
) for our example

at t1, where bbox1
C1

represents the bounding box of O1 from C1 and bbox1
C2

represents that
from C2. All the bounding boxes are 4D vectors in the form of (left, top, width, height).
We apply regression filter mechanism based on our observation that similarly localized
bounding boxes with similar sizes are objects at the same physical locations and their
corresponding appearances on the destination camera should also be homogeneous. An
outlier of the regression results is very likely to be a false positive sample. After the
regression filter, we get a subset of positive data outliers and regard them as the false
positive samples. Instead of directly removing these data, we choose to decouple the
incorrect association between its counterpart in destination by assign it a new ID. This
data point will then be regarded as a negative data sample to go through the SVM filter.

In our system implementation, we use the robust regression module of sklearn [68]
as our regressor. As the mapping relation between two cameras may not be simply lin-
ear, we apply higher order features of the data to make the filter fit ReID results better.
Specifically, we use RANSAC [69] algorithm as the kernel algorithms of regression as its
regression process naturally splits data samples into inliers and outliers, and hence, fits
the purpose of our regression filter design. We fine-tune its residual-threshold pa-
rameter, which determines threshold distance for a sample to be regarded as an outlier,
to find the best performance. We will show more evaluations about our filter mechanism
in Section 2.5.

SVM Filter Design & Implementation After the regression filter, we push all the raw
ReID data, both positive and negative samples, into the SVM [70] filter. In this step , we
want to learn an accurate two-class clustering between positive and negative ReID data
samples based on their position-and-shape features (i.e., bounding box position and size).
We choose SVM as the second step filtering model for its widely successful application in
two or multiple class classification.

In our case, we feed positive data to SVM in the form of (bbox, 1) and negative data
in form of (bbox, 0). We push all data samples into SVM to train a model and apply this
model back to the ReID data to obtain outliers. It is worth mentioning SVMs are usually
trained and tested with different data. However, we train and use the SVM model on
the same data because we are not generating a classifier for future data but applying it
as a filter on existing samples. We fine tune hyper parameters in SVM to avoid model
overfitting, and hence, generate no outliers. The outliers here refer to negative samples
appeared in positive regions and positive samples in negative regions, as shown in Figure
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2.4. As we have much less positive data and have already removed positive outliers in the
regression filter, we do not further remove positive outliers in SVM filter. We regard the
negative outliers as false negative samples and directly remove these data from entering
the optimization process. We choose to remove false negative samples only because (1)
it is impossible to correctly make this sample “positive” by locating its counter part in
destination camera, which is not achieved even by the state-of-the-art ReID algorithms,
and (2) due to the redundancy of region associations, i.e. different objects at different
timestamp usually convey the same regions mapping, the region associations usually do
not change without several pairs of data samples. At the end of SVM filtering, we remove
the false negative data samples. The remaining ReID results are highly confident and will
go through the profiling and optimization framework in 3 and 4 .

In our system implementation, we use the SVM module with sklearn [68] as our filter.
We fine-tune its γ parameter, which determines the SVM kernel non-linearity, to explore
the best performance.

Discussion As both regression filter and SVM filter are statistical, it is impossible to
ensure the filtering is perfectly accurate. It is possible that we can not remove all the
false identification. The filtering mechanism may even remove true identification results,
either true positive or true negative. However, due to the redundancy of region asso-
ciations, especially when we profile through videos long enough (containing thousands
of frames), the CROSSROI system accuracy will not be degraded by the harsh filtering,
while the system efficacy gets boosted significantly. We will show more CROSSROI sys-
tem evaluations in Section 2.5.

2.4.4 Tile Based Video Compression and Streaming (Online)

Characterizing Tile-Based Video Compression In online phase, the CROSSROI cam-
eras apply RoI masks on their video captures to crop the videos and remove all the non-
RoI tiles. The tiles included in RoI masks will be further compressed by video compres-
sors to reduce their file sizes before being streamed over the network, as shown in 5 .
However, applying video compressor on each tile of video separately greatly degrades
the efficacy of modern video compressors, e.g. H.264. As mentioned in Section 2.2, com-
pressors reduce video size by exploring the content similarity among existing blocks,
cutting videos into small tiles reduces the number of references each block may refer to
and thus degrades compression efficacy. To better illustrate the performance degradation,
we profile on our dataset (Section 2.5) by cutting five different videos into different-sized
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original 2× 2 2× 4 4× 4 4× 8 8× 8

C1
82.7

(1)
85.9

(1.03)
86.2

(1.04)
89.0

(1.07)
90.4

(1.09)
97.3

(1.17)

C2
121.2

(1)
124.5
(1.03)

124.8
(1.03)

127.6
(1.05)

129.6
(1.07)

136.2
(1.12)

C3
102.2

(1)
103.3
(1.01)

103.6
(1.01)

105.2
(1.03)

106.4
(1.04)

112.9
(1.10)

C4
97.9

(1)
99.3

(1.01)
99.5

(1.01)
100.0
(1.02)

101.7
(1.04)

108.6
(1.11)

C5
40.9

(1)
41.1

(1.01)
41.4

(1.01)
42.0

(1.03)
43.2

(1.06)
47.4

(1.16)

Table 2.3: Efficacy characterization of tile-based video compression. Videos are either
compressed with original H.264 standard or split into m× n tiles (e.g., 2× 4) and

compressed with tile-based method accordingly. Video-sizes are measured in unit of
MB. Bold numbers represent the video size amplifications compared to original video

compression without tiling.

tiles and encoding them in H.264 format to characterize the compression efficacy of the
video compressor. As shown in Table 2.3, we split the videos according to five settings,
each split the videos into m × n tiles evenly (e.g. 2 × 4). As we split the video in finer-
grained tiles, the total video sizes grow larger, which indicates a degradation of video
compression efficacy.

Tile Grouping Algorithm In order to improve video compression efficacy, we develop
a straight-forward greedy-based tile grouping algorithm to merge fine-grained small tiles
in RoIs masks into larger ones to further reduce the video-sizes being sent to the CROSS-
ROI server over network. As shown in Figure 2.5(a), the video is cut into 6 × 5 small
tiles. The white tiles are included in the RoI mask, while the shadow tiles are in non-RoI
region. The tile grouping algorithm interactively find the largest inscribed rectangular
in the RoI masks and merge all small tiles in this rectangule into a large tile until every
tile in RoI mask is processed. For example, in Figure 2.5(b), we first merge all the 12 tiles
covering region 1 into a large tile, and then merge the remaining 4 tiles into two large
tiles, respectively. In this way, we merge the original 16 small tiles into 3 larger ones, and
hence, improve the compression efficacy.

Finding largest inscribed rectangular in a binary grid can be easily solved with dy-
namic programming in O(M) time, where M is the number of small tiles in the video.
The overall time complexity of the tile grouping is hence upper bounded by O(M2). Fur-
thermore, the tile grouping results can be calculated in offline phase once the RoI masks
are generated. Therefore, the tile grouping algorithm will introduce zero overhead to the
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Figure 2.5: Tile grouping algorithm.
White tiles are corresponding to

the RoI mask regions. Shadow tiles
are out of the RoI mask.

Figure 2.6: SBNet architecture illustrated
with the RoI mask as shown in Figure

2.2(a). This figure is modified based on the
SBNet chapter [67].

CROSSROI cameras in online phase. It is worth mentioning that our tile grouping algo-
rithm is a heuristic greedy algorithm which cannot ensure the generated groups is exactly
the optimal way to merger tiles. However, we show the significant improvement of video
compression efficacy when applying our algorithm through experimental evaluations in
Section 2.5.

Implementation In CROSSROI cameras, we choose ffmpeg [71] H.264 implementation
as our video compressor. The video compressor will queue a segment of video frames,
i.e. 2s or 20 frames, and compress these images into a short video before sending it to
the server. A longer segment benefits video compression efficacy, as the more temporal
redundancy can be reduced, but increases server response delay for detecting objects in
video. We will show more evaluations on video segment length in Section 2.5.

2.4.5 RoI Based CNN Inference (Online)

Once the CROSSROI server receives video feeds from the cameras, it will dump these
videos into the video analytics pipeline, which loads both video data and CNN-based
machine inference models (e.g. YOLO object detector) to GPU and finally return the
detection results (e.g. bounding boxes of vehicles) 6 . Traditional CNN models usually
have a respective field of the whole frame, which is not optimized for our case where the
prior knowledge of RoI masks is available. In CROSSROI server, we prefer a RoI-based
inference pipeline, where the CNN model works on the RoI covered data only, and hence,
boosts the system inference speed.

In the CROSSROI server, we choose to implement the RoI-based CNN inference pipeline
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based on SBNet [67], which is an optimized CUDA kernel specially designed for RoI
based CNN inference tasks. Image data is usually transformed into 4D tensors, in the
form of ¡batch, height, width, channel¿, when being processed in GPU. SBNet divides the
input tensor into small tiles in the height and width dimensions. It gathers all the RoI
“tensor-tiles” and stacks them together to generate a small and deep tensor constituting
of RoI-covered data only. As presented in Figure 2.6, SBNet kernel adds a gather module
before each convolutional layer of a CNN model to generate the “RoI tensor”. SBNet then
passes the new tensor through the convolutional module to get the data manipulated by
the model. After the convolutional layer, SBNet adds another scatter module to transform
the narrow tensor back to the original shape.

Based on SBNet, we build a RoI-YOLO object detector with Tensorflow [72]. It is
worth mentioning that although SBNet can boost the system inference speed significantly
(i.e. 1.5 ∼ 2.5×) when the RoI area is small (10% ∼ 20%) compared to the whole frame,
SBNet introduces computational overhead (i.e. gather and scatter) compared to tradi-
tional CUDA kernel and may not perform as well when the RoI area is close to the whole
frame. In practice, we load both RoI-YOLO and normal YOLO into GPU and push large
RoI-area videos to normal YOLO model instead to achieve best performance. More eval-
uations about our CNN inference model will be presented in Section 2.5.

2.5 EVALUATION

2.5.1 Methodology

Dataset We evaluate our system with AI City Challenge 2020 traffic video dataset pub-
lished by NVIDIA [73]. The dataset consists of two types of scenes where the traffic cam-
eras are deployed either along long streets or around a traffic intersection, in a northern
American city. We choose the most challenging scene of type two to evaluate CROSSROI,
where 5 cameras are deployed around a traffic crossing with complicated inter-camera
viewpoint overlapping. We present the locations and viewing angles of the five cam-
eras in Figure 2.1. The dataset provides 5 synchronized videos taken from five cameras
with 10 fps frame rate. The length of the videos ranges from 193 ∼ 215 seconds. We
choose their overlapped 180s to evaluate the CROSSROI system. All the five videos have
1920 pixels × 1080 pixels resolutions (1080p) except the video generated by C5, which is
1280 pixels× 960 pixels.

The five videos in scene 1 capture more than 30K vehicle bounding boxes over 3 min-
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Figure 2.7: Illustration of ReID ground truth augmentation. Blue bboxes represent
original detection provided by the dataset ground truth. The green bbox is missing in the

ReID ground truth due to ablation, we use Kalman filter to recover its occurrence and
the corresponding vehicle id. Red bboxes are not included in original ground truth

because they are out of the view-overlapping region of the cameras. We recover these
vehicle appearances with YOLO object detection results and assign each of these

vehicles (vehicles with red bboxes) a unique id.

utes. Ground truth for vehicle re-identification (ReID) is provided with the dataset. How-
ever, the ReID ground truth has a shortcoming that it is very sensitive to occlusion, i.e.
when vehicle A occludes vehicle B slightly, the ground truth will miss the detection and
identification of B, while B could actually be detected by object detectors clearly. This
usually leads to the “disappearance” of a vehicle for several frames, when it is partially
occluded by other cars, in its continuous occurrence over the scene. Hence, we apply
Kalman filter to fill the disappearance gaps in vehicles consecutive appearance. Another
shortcoming of the ReID ground truth is that it only detects vehicles passing through
multiple cameras and misses those vehicles appearing in a single camera only. We solve
this limitation by augmenting the ReID ground truth with YOLO object detection results
and assign unique ids to the vehicles not originally included in ReID ground truth. Figure
2.7 shows an illustrative example of our ground truth augmentation method.

Evaluation Scenario & Metrics In our evaluation, we consider the query scenario as
unique vehicle detection. Specifically, we want to detect every unique vehicle across all
cameras at the scene in real time. As shown by the example in Figure 2.2, there are 7 vehi-
cles across the scene covered by C1 and C2 with 8 appearance bounding boxes. Our query
scenario requires at least one detection bounding box for each unique object. Therefore,
reporting either one of the two bounding boxes of O1 fulfills the query requirement. As
the CROSSROI system has two phases, we apply first 60s of the five videos as the input
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of offline phase to generate the RoI masks and evaluate the online phase system per-
formance with the last 120s. The performance evaluation consists of the following four
metrics:

1. Results Accuracy. We define accuracy error as the absolute value of the percentile
difference on the number of detected unique cars between the correct and system re-
turned value. Hence, the accuracy is defined as one minus the error. As the dataset
does not provide ground truth for vehicle detection, we fuse the ReID ground truth
and raw YOLO detection results as the correct reference in our evaluation.

2. Network Overhead. We define network overhead as the average bandwidth usage
for CROSSROI server to download online video feeds from the cameras in real time.

3. System Throughput. We define the system throughput as two parts: (1) the speed
for the CROSSROI server to run vehicle detection inference in the online phase, and
(2) the speed for CROSSROI cameras to compress video streams in real time.

4. End-to-end Respond Latency. The average delay for CROSSROI server to gener-
ate vehicle detection results in the online phase. This latency includes camera side
processing delay, networked latency and CROSSROI server processing overhead.

Hardware & Implementation We deploy CROSSROI service on a server with 2 GeForce
RTX 2080 Graphics Card, each with 2944 CUDA cores. The server has an Intel i7-9700K
8-core CPU and 64GB memory. The CROSSROI cameras are emulated on a laptop com-
puter with an Intel i7-8850H 6-core CPU with 16GB memory. The laptop achieves 23 fps
throughput for H.264 video compression on 1080p videos. Its performance is similar to
most surveillance cameras which can achieve 25 ∼ 30 fps throughput on 1080p videos
(e.g. Arecont Vision MegaVideo [74] and Logitech C930e [75]). The recorded videos are
stored onto the laptop and streamed out to the server in real time with ffmpeg. The cam-
eras and server are connected with emulated WiFi networks of 30 Mbps bandwidth and
10 ms round-trip-time.

2.5.2 Ablation Studies

We compare CROSSROI with four alternative methods to verify its merits and some
of our design choices. Each alternative achieves “partial” functionality of CROSSROI by
turning off one or some of CROSSROI’s functional modules. The details of the alternatives
are as follows.
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Figure 2.8: Performance Evaluations between CROSSROI and alternative methods.

1. Baseline: All CROSSROI functions are turned off. Video streams are compressed
with original H.264 compressor. The server runs off-the-shelve YOLOv3 [76] model
as object detector to handle vehicle detection queries.

2. No-Filters: Regression & SVM Filters 2 are turned off, but the other modules remain.
Raw ReID results are dumped into the RoI masks generation framework. Cameras
crop their video streams in online phase based on the corresponding RoI masks.

3. No-Merging: Tile Grouping Algorithm 5 is turned off, but the other modules remain.
The cameras compress their video streams into fine-grained tiles without merging
them into larger ones.

4. No-RoIInf: RoI-based CNN inference 6 is turned off, but the other modules remain.
RoI-YOLO model is replaced with traditional off-the-shelve YOLOv3 model in the
GPU inference step 6 .

The evaluation results between CROSSROI and the four alternatives are shown in Fig-
ure 2.8.
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Accuracy As the dataset does not provide ground truth for vehicle detection, we set
the detection results generated by Baseline method as the correct reference and fuse it
with ReID ground truth to obtain the correct baseline for unique vehicle detection task. The
Baseline method achieves 100% accuracy naturally as it sends full video data. We present
the accuracy achieved by CROSSROI and No-Filters in Figure 2.8(a). CROSSROI achieves
an accuracy of 99.9% that only 8 vehicles are missed in total 15424 vehicle appearances
over the 1200 timestamps. We plot the distribution of the 1200 timestamps in Figure 2.8(b)
in terms of how many vehicles are missed at each timestamp. It is easily observed that
CROSSROI achieves correct detection for 1192 timestamps over the two minutes interval.
There is at most one vehicle missed in the other 8 timestamps. The accuracy of No-Filters
method is 99.8%. CROSSROI achieves a higher accuracy than No-Filters with less video
data because the regression filter rectifies false positive associations in raw ReID results
and improves the overall accuracy.

Network Overhead We present the network overhead for each camera and the server
in Figure 2.8(c). CROSSROI consumes least network bandwidth compared to all other
alternatives. The network overhead of CROSSROI (15.2 Mbps) is 42% reduced compared
to Baseline method (26.2 Mbps). Comparing with No-Filters (16.5 Mbps), CROSSROI re-
duces more video redundancy by applying the SVM filter, which removes false negative
samples in raw ReID results and generates smaller-sized RoI masks. CROSSROI reduces
30% network overhead compared to No-Merging method due to applying tile grouping
algorithm to further improve the video compression efficacy.

System Throughput We present the server inference throughput in Figure 2.8(d) and
camera video compression throughput in Figure 2.8(e). The red lines represent the the
minimum requirements for real time execution. That is, the server inference speed needs
to be at least 50 Hz and the camera H.264 encoding throughput should be no less than 10

fps.5 It can be observed that CROSSROI achieves highest throughput on both server (61.3
Hz) and camera (33.9 fps) sides. The RoI-based YOLO model improves overall server
inference throughput by 18%. Compared with No-Merging method (33.9 fps), CROSSROI
improves compression efficacy (i.e., reducing video sizes) without degrading compres-
sion processing speed.

End-To-End Respond latency As shown in Figure 2.8(f), CROSSROI generates least end-
to-end response delay (1.61 s) comparing to all the other alternatives. Compared with the

5We reduce the video resolutions to 540 p for server inference due to the lack of strong GPUs.
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Baseline case (2.104 s), CROSSROI reduces the latency by 25%. CROSSROI achieves less
latency compared to the other alternatives because either less network overhead turns
out to be less network delay or RoI-YOLO design boosts server inference speed. In this
evaluation, we set the video streaming segment length as 1s. We notice that segment
length is a critical parameter to system end-to-end response delay. We will provide more
detailed discussion shortly in Section 2.5.3.

2.5.3 Sensitivity to Parameters

We investigate how three hyperparameters influence the performance of CROSSROI as
follows:

1. SVM Model Non-Linearity. We fine tune the γ parameter to manipulate the non-
linearity of the SVM filter model. A small γ associates to a low non-linearity SVM
kernel which usually can not fit training data perfectly and generates more outliers.
A large γ corresponds to a kernel model of high non-linearity which usually fits all
the training data and cannot find outliers from the training samples.

2. RANSAC Threshold Distance. In the regression filter, we manipulate the residual
threshold parameter of RANSAC, which determines the threshold distance for a
sample to be regarded as an outlier. Specifically, we set residual threshold =

θ ∗ mad, where mad is the median absolute deviation of the training data and the
default residual-threshold value of RANSAC algorithm. We fine tune different θ in
the following evaluations instead.

3. Segment Length. Segment length is the smallest temporal unit when cameras stream
live videos to the CROSSROI server. Cameras compress all frames captured in the
last segment in one shot before send it to the server. Segment length has significant
influence on the network overhead and end-to-end latency.

The evaluation results are shown in Figure 2.9, 2.10 and 2.11.

SVM Model Non-Linearity As shown in Figure 2.9, the system accuracy, network over-
head and end-to-end response latency increase as γ increases. A very small γ causes the
SVM Filters to remove too much negative outliers, which usually includes true negative
samples. Hence, accuracy gets hurt when SVM non-linearity is very low. On the other
hand, a small γ leads to a smaller RoI mask for each camera as it removes negative ReID
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Figure 2.9: CROSSROI performance with different hyperparameter γ, which represents
SVM model non-linearity.
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Figure 2.10: CROSSROI performance with different hyperparameter θ, which represents
RANSAC threshold distance.

results fiercely, and thus, performs most significantly in reducing network overhead and
end-to-end delay. We choose γ = 10−4 in our system to achieve best system accuracy.

RANSAC Threshold Distance As shown in Figure 2.9, the system accuracy, network
overhead and end-to-end response latency decrease as θ increases. A very low residual

threshold causes more positive ReID samples being detected as outliers, which usually
leads to larger RoI regions for the cameras, and hence, improves the system accuracy but
hurts its efficiency. We use θ = 0.01 in our system to achieve highest system accuracy.

Segment Length We present the network-latency trade-offs in Figure 2.11 by tuning
segment length parameter. segment length is a very significant impact factor for end-to-
end response latency due to the queuing mechanism for video compression and stream-
ing. Comparing to frame-by-frame image sending, chunked-video-based streaming leads
to data being queued at cameras memory, network interfaces and the server, and hence,
increases the end-to-end latency. However, longer segment size provides better chance
for cameras to compress the videos and significantly reduces the network overhead. We
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Figure 2.11: CROSSROI performance with different segment length.

choose 1s segment length in CROSSROI to achieve least end-to-end delay.

2.5.4 Comparison & Integration with Frame Filtering Systems

As mentioned in Section 2.2, significant frame filtering works have been presented to
alleviate resource contention for video analytics. For example, REDUCTO [6], the SotA
frame filtering system, optimizes the cost/accuracy trade-offs by discarding frames in
each segment when streaming videos from camera to the server. Such systems usually
perform well when the query accuracy requirement is not high, e.g. counting vehicle
numbers roughly to understand current traffic condition.

As CROSSROI exploits spatial redundancy between closely located cameras fleets, we
treat frame filtering as an extra layer of optimization to augment our system when the
query accuracy requirement is not very high (i.e. ≤ 95%). Specifically, we integrate RE-
DUCTO into our system to build CROSSROI-REDUCTO. Similar to CROSSROI, REDUCTO

also operates in two phases. It profiles video clips in offline phase to learn video patterns
and applies the learned-patterns as frame filters to discard frames at the cameras in online
phase. It is natural to merge the two systems and generate CROSSROI-REDUCTO, which
also operates in an offline-online mode.

The system workflow of CROSSROI-REDUCTO is shown in Figure 2.12. In the offline
phase, the CROSSROI module profiles offline video clips to generate RoI masks. REDUCTO

module profiles “masks-cropped” offline video clips to learn the video patterns and gen-
erates frame filters for each camera. In the online phase, the video frames first go through
RoI masks to remove spatial repentant content and then go through the frame filter to
eliminate temporal redundancy. The remaining data is compressed by the video com-
pressor as described in and sent to server for CNN inference.
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Figure 2.12: CROSSROI-REDUCTO system overview.

Accuracy
Target

Accuracy
Achieved

Frames
Reduced

Network
Overhead (Mbps)

Server
Throughput (Hz)

End-to-end
Respond Latency (s)

REDUCTO

1.00 1.000 0 26.48 52.07 2.104
0.95 0.971 979 23.85 62.32 1.884
0.90 0.947 2098 19.29 80.19 1.602
0.85 0.902 4116 10.16 166.01 1.063

CrossRoI-
Reducto

1.00 0.999 0 15.73 (-40.6%) 61.28 (1.18 ×) 1.601 (-23.9%)
0.95 0.962 1072 13.28 (-44.3%) 74.17 (1.19 ×) 1.406 (-25.4%)
0.90 0.943 2389 10.48 (-45.7%) 101.22 (1.26 ×) 1.189 (-25.8%)
0.85 0.893 4483 5.25 (-48.3%) 240.95 (1.45 ×) 0.821 (-22.8%)

Table 2.4: Performance Comparison between REDUCTO and CROSSROI-REDUCTO. Bold
number represents performance gains (server throughput) or resource reduction
(network or latency overhead) of CROSSROI-REDUCTO compared to REDUCTO.
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REDUCTO can adjust how fiercely to filter the frames based on a given accuracy target
(e.g. 90%). We set different accuracy targets from 85% to 100% and compare the sys-
tem performance between REDUCTO and CROSSROI-REDUCTO. The evaluation results
are presented in Table 2.4. As shown in Table 2.4, we measure the the frame-filtering
capabilities of the two systems by showing how many frames are removed, from total
6000 frames (5 cameras × 120 seconds × 10 fps), in the video analytics process. RE-
DUCTO and CROSSROI-REDUCTO removes different number of frames under same ac-
curacy targets because full video and cropped videos exhibit different patterns, which
REDUCTO depends on to filter frames. When we set the accuracy target as 100%, the
frame filtering mechanism fails to work. REDUCTO degenerates to be the Baseline scenario
and CROSSROI-REDUCTO degenerates to the original CROSSROI. In all other scenarios,
both REDUCTO and CROSSROI-REDUCTO achieves the corresponding accuracy targets.
While CROSSROI-REDUCTO outperforms REDUCTO in all three system performance met-
rics significantly, i.e. network overhead reduction by 48.3%, server throughput boosting
by 1.45× and end-to-end response latency reduction by 25.8%.

2.6 CONCLUDING REMARK

In this chapter, we present CROSSROI, a resource-efficient system that enables real-time
video analytics at scale by removing video content redundancy across a fleet of cameras.
We develop a two-phase workflow in CROSSROI. In the offline phase, CROSSROI estab-
lishes cross-camera region associations to generate optimized RoI masks. In the online
phase, CROSSROI applies these RoI masks to enhance real-time analytics performance.
Experiments on real-world traffic videos demonstrate that CROSSROI reduces network
overhead by 42% ∼ 65% and end-to-end response latency by 25% ∼ 34%, compared to
baseline methods, while maintaining 99.9% detection accuracy. Through this work, we
have shown that inference data redundancy is a pivotal opportunity to achieve multi-
objective resource optimization for large-scale video analytics systems.
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CHAPTER 3: BOFL: BAYESIAN OPTIMIZED LOCAL TRAINING PACE CONTROL
FOR ENERGY-EFFICIENT FEDERATED LEARNING

In this chapter, we explore the nuanced aspects of the second thesis project, FEDCORE.
We introduce a multi-objective resource optimization framework aimed at reducing en-
ergy consumption in edge devices and ensuring the timely delivery of federated learn-
ing tasks. This framework leverages the hardware configurability to optimize resource
use efficiently, as elaborated in Section 1.2.

3.1 INTRODUCTION

Federated learning (FL) is a privacy-preserving machine learning architecture that per-
forms collaborative model training with large amount of resource-constrained edge de-
vices (e.g., IoT devices, smartphones, etc.) in a distributed way, while keeping all the raw
data locally on each device [20, 21, 22]. With FL, diverse privacy-sensitive domains have
been drastically improved by the advancement of AI power. Such domains include cancer
diagnosis [23, 24], human action detection [78], surveillance video analytics [18, 26, 79],
and clinical decision support for COVID-19 [80]. Google also deployed a large-scale fed-
erated learning system over millions of real-world devices to improve their keyboard
query suggestion model [8].

In a typical FL system, as depicted in Figure 3.1, all the edge devices are organized
around a central server, which orchestrates the distributed model training in a round-by-
round manner. Within each round, the central server first selects a group of participants
from the large client pool to train the model. All selected devices will download a shared
model from the server, and train it with their private-owned data. The participants are
required to compute the gradient updates timely before a server-specified deadline, and
then upload their local gradients back to the server. The server will aggregate the gradi-
ents from all the devices into a synchronized update to the global model, and initiate a
new round of training accordingly.

Despite the success of FL across various domains, it poses critical energy challenges
to the edge devices, which are usually resource-constrained with limited battery power.
For each edge device, the on-device model training involves intensive cooperation across
multiple hardware processing units, i.e. CPU, GPU, and memory controller. This pro-
cedure is energy-consuming and usually burns out the device’s battery in short time.
Several works [32, 81, 82, 83] propose to pursue better energy efficiency in FL, but most
of them approach this problem from the server’s perspective. For example, AutoFL [81]
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Figure 3.1: Standard Federated Learning Workflow. This figure is modified based on the
FedScale paper [77].

reduces the overall energy consumption by selecting a smaller group of participants in
each round that are more likely to complete the model training before deadline. Although
such design achieves global energy efficiency, it does not solve the energy challenge for in-
dividual devices. SmartPC [32] proposes an energy-aware training pace control solution
based on CPU dynamic voltage and frequency scaling (DVFS) for edge devices (e.g., slow
down CPU clock rate to achieve better energy efficiency). But this solution only works for
CPU devices, and cannot be extended to modern edge devices that train neural networks
jointly through GPU and CPU. Meanwhile, SmartPC models a linear relation between the
training speed and CPU operational frequency. Such linear assumption fails to generalize
to modern edge devices with multi-axes DVFS configurations, such as Nvidia Jetson AGX
board [84], and the actual relation between performance and hardware configurations is
highly-nonlinear (Section 3.2.2).

In this work, we present BOFL (Bayesian Optimized Federated Learning), a system
deployed on each FL client locally to achieve energy-efficient training pace6 control over
multi-axes of DVFS configurations. As shown in Figure 3.2, model training performance,
i.e., training speed and energy efficiency, can be drastically affected by different opera-
tional frequencies of CPU, GPU and memory controller. A proper DVFS configuration
may lead to 8× faster training speed and 4× less energy consumption. However, the

6In this chapter, training pace refers to the hardware processing speed, i.e, the operational frequencies of
CPU, GPU, and memory controller, when training neural networks.
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‘configuration-to-performance’ correspondence is highly non-linear and task-dependent
(Section 3.2.2), thus, it is difficult to find and apply good configurations directly. Different
from works such as [32] that builds explicit performance models on 1-D DVFS configura-
tions, BOFL treats the multi-dimensional performance metric on multi-axes DVFS space
as a blackbox function, and searches for the Pareto set with blackbox optimization tools.
BOFL operates in a fully online manner within limited rounds of a FL task, and achieves
near-optimal energy efficiency.

BOFL highlights three challenges to find the Pareto optimal configurations over mul-
tiple various-length training rounds and achieves optimal energy efficiency, as follows.

(C1) How to search for the set of Pareto optimal configurations in terms of energy effi-
ciency and training speed efficiently in an online manner?

(C2) How to balance the effort between exploring the Pareto front and exploiting local op-
timal configurations within limited number of task rounds?

(C3) How to embed the non-trivial exploration algorithms with time-critical training jobs,
while satisfying multifaceted system constraint and requirements?

To tackle these challenges, we design BOFL to operate in an explore-then-exploit manner. In
the limited rounds of FL tasks, BOFL first explores the DVFS configuration space with a
few trials, and then exploits the remaining rounds with the best configurations observed.
Specially, BOFL strategically explores the large configuration space with multi-objective
Bayesian optimization (MBO) framework, which searches for a set of Pareto trade-offs
in the energy-latency 2-D performance space efficiently in just a few steps. The obtained
Pareto optimal configurations can be exploited in later rounds adaptively with respect
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to the various deadlines (C1). To balance exploration and exploitation, we categorize
the multi-round FL task into three phases: two short phases for exploration and one
long phase for exploitation. We use hypervolume improvement indicator (Section 3.4)
to determine the length of exploration phases, so that BOFL can construct near-optimal
Pareto front within few rounds of exploration (C2). We run MBO calculation and the
model training separately to avoid introducing extra latency overhead to the time-critical
FL tasks. To cope with the uncertainty caused by exploring the whole configuration space
(for example, BOFL may explore a straggler configuration and exacerbate the deadline
challenge), we design a safe exploration algorithm to make sure every training deadline is
being met (C3). Overall, this chapter makes the following contributions:

(1) We depict the complex relation between hardware operational frequencies and Neu-
ral Network (NN) training performance through a comprehensive measurements with
multiple network models over different devices (Section 3.2.2).

(2) We develop a blackbox optimization framework for the energy-aware training pace
control problem, and propose a MBO based solution which achieves near-optimal
energy efficiency in an online manner (Section 3.3).

(3) We tailor-design the MBO workflow to embed it into the time-critical FL tasks (Sec-
tion 3.4), and implement the BOFL solution which achieves both smart exploration
and efficient exploitation, despite multifaceted system constraints (Section 3.5).

(4) We perform comprehensive experiments over multiple neural networks and devices
to evaluate BOFL’s effectiveness. Evaluation results suggest that BOFL can reduce
more than 20% of energy consumption compared to a performant baseline. The en-
ergy overhead of BOFL is as low as 1.2% - 3.4% compared to an optimal oracle target
(Section 3.6).

The rest of the chapter is organized as follows. In Section 3.2, we present backgrounds
about federated learning and Bayesian optimization. We also depict the complexity of
NN training performance with different hardware frequency settings to motivate our so-
lution. In Section 3.3, we present the BOFL system model and optimization framework.
We present BOFL system workflow and design details in Section 3.4. Section 3.5 and Sec-
tion 3.6 present the implementation and evaluations of BOFL system. We survey related
literature in Section 3.7. Finally, Section 3.8 concludes the chapter.

40



3.2 BACKGROUND AND MOTIVATION

3.2.1 Energy Efficient Federated Learning

Federated learning is a machine learning paradigm that enables collaborative model
training from a large pool of edge devices with locally stored data. While a lot of works
have been proposed to achieve fast model convergence [85, 86, 87, 88], protect client data
privacy [89, 90, 91], defend against malicious attacks [92, 93, 94], and address source of
data bias [95, 96], not many works have been presented to improve the energy efficiency
of federated learning tasks.

SmartPC [32] and AutoFL [81] are two representative works that aim to optimize the
energy efficiency of federated learning clients. They both adopt a two-level energy op-
timization solution, where (1) the cloud server, from global level, strategically selects a
small group of devices with high energy efficiency, and assigns them a well-designed
training deadline7. (2) The selected devices, from local level, adapt their training paces
(e.g., CPU frequencies) to minimize energy consumption and finish all training work-
loads before the assigned deadline. While this two-level solution can successfully reduce
energy usage, SmartPC and AutoFL both oversimplify the complexity of local pace con-
trol on edge devices. They model the training speed as a linear dependent variable of
CPU or GPU frequency, which is not accurate for modern edge devices where the clock
rates of CPU, GPU and memory controller jointly influence the training performance in a
highly nonlinear way (Section 3.2.2).

In BOFL, we focus on an efficient and effective local training pace control algorithm that
jointly controls hardware frequencies over multiple axes to achieve energy-efficient fed-
erated learning. BOFL is deployed on each edge device locally, and can smartly find the
best DVFS configurations for this hardware within a few training rounds. BOFL assumes
a cloud server which assigns a training deadline for each training round. Any deadline
assignment algorithm, either strategically designing round deadlines [32, 81, 82, 83] or
using a static timeout value 8, as shown in the vanilla system design [22], can function
well with BOFL.

7The training deadline is referred to as execution target in AutoFL [81].
8There are two types of deadline definitions in the FL literature: (1) a training deadline before which

the clients must finish the gradient calculation; and (2) a reporting deadline before which the server must
receive the model updates from clients, which includes the model training delay and parameter uploading
latency. In BOFL, we assume the first deadline model. For servers that only specify a reporting deadline,
BOFL can be easily extended to work well with a network bandwidth measurement module that can infer
its training deadlines from the reporting deadlines.
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3.2.2 Complicated Correspondence Between DVFS Configurations and Training
Performance

Dynamic voltage and frequency scaling (DVFS) technique has been widely applied
in modern computers for energy efficient purpose, especially for resource constrained
mobile or edge devices. For example, Nvidia Jetson AGX, a newly released edge device
for AI workloads, has a large discrete DVFS configuration space, i.e., CPU (0.4-2.3GHz),
GPU (0.1-1.4GHz) and memory controller (0.2-2.7GHz), which leads to more than 2K
unique combinations.

In federated learning applications, it is important to make good choices in the large
configuration space to achieve high-performance model training. For example, a good
frequency choice can increase the training speed by 8×, and energy efficiency by 4×.
However, it is non-trivial to find the good configurations due to the complicated cor-
respondence between the configuration and the model training performance. Specially,
we observe that the correspondence has three-fold complexities through a measurement
experiment, which trains three representative neural networks (e.g. ViT, ResNet50 and
LSTM) on two different devices (Nvidia Jetson AGX and Jetson TX2), as follows.

(1) Non-linearity. As shown in Figure 3.3(a), when the CPU clock is set to 0.4 GHz, the
training speed of the ViT model sees a diminishing improvement after 1.0 GHz GPU fre-
quency. This is because the job does not benefit from faster GPU clocks, when the slow
CPU becomes the bottleneck. The energy consumption curve in Figure 3.3(b) presents
an even higher complexity that it is neither linear nor monotonic. When the GPU fre-
quency is low, i.e., 0.7 GHz, ViT achieves better energy efficiency with 0.4 GHz CPU clock
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than that of 2.2 GHz CPU setting. While the GPU is configured to high frequencies, i.e.,
1.4 GHz, a slow CPU saves no more energy and slows down the training speed by half.
In general, we observe that the training performance is influenced by the hardware fre-
quencies in a non-linear way. Different configurations may have different bottlenecks over
multiple axes, which leads to a complicated correspondence.

(2) NN-model dependence. As shown in Figure 3.4(a), the execution latencies of the
three neural networks show different patterns as the CPU frequency increases. The train-
ing speeds of ViT and ResNet50 almost remain the same, while LSTM reduces its execu-
tion latency by half when increasing CPU clock rate from 0.6 GHz to 1.7 GHz. For energy
consumption as shown in Figure 3.4(b), we can see ResNet50 exhibits a steadily increas-
ing curve, while LSTM shows a consistently decreasing curve. In general, we observe
that the relation between DVFS configurations and the training performance is NN-model
dependent. Different network models may be influenced by the hardware configurations
differently.

(3) Hardware dependence. Figure 3.5 shows the normalized training performance of
the three models on Jetson AGX compared to that of Jetson TX2 (unit performance as
the red line shows). Both devices are configured with maximum operational frequen-
cies. As a newer version with stronger hardware and updated architectures, the AGX
board can significantly reduce the training time as well as the energy consumption, com-
pared to TX2. However, the performance improvement does not apply uniformly to all
three models. E.g., ResNet50 reduces its training time by 70% on AGX, while LSTM only
achieves 20% execution latency reduction. The above measurements suggest that the cor-
respondence between hardware configurations and the training performance is hardware
dependent. E.g., it is non-trivial to estimate the performance curve of AGX board based on
measurements from TX2.

In summary, the correspondence between DVFS configurations and neural network
training performance is complicated and hard to be accurately modeled in an explicit
way. This motivates us to model this correspondence as a blackbox function and search
for the good configurations with Bayesian optimization. Our solution can search for good
configuration points efficiently, and can be generally applied to any NN model on any
hardware.
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3.2.3 Multi-Objective Bayesian Optimization for Blackbox Optimization Problems

The search for desirable DVFS configurations can be formulated as an optimization
problem involving a multi-dimensional blackbox performance metric function (see Sec-
tion 3.3.1 for details). A popular and sample-efficient solution for such optimization prob-
lem is multi-objective Bayesian optimization (MBO). MBO is an optimization framework
that leverages a probabilistic surrogate model to solve optimization problems involving
multiple blackbox objectives. The goal of MBO is to construct an approximated Pareto
set (see Section 3.3.1) for those conflicting objectives, within a limited budget of function
evaluations.

MBO sequentially selects new points to evaluate the blackbox function based on the
surrogate model, and updates the model to incorporate new observations. To decide
which point to evaluate next, MBO employs an acquisition function that specifies the utility
of evaluating a new point based on the surrogate model’s predictive distribution. A good
choice of the acquisition function helps to balance the trade-off between exploration of
unknown regions and exploitation of the current best-performing ones [97, 98].

MBO has been extensively studied in the literature [99, 100], and has enjoyed substan-
tial successes in many applications, including environmental engineering [101], structural
design [102] and high-energy physics [103].

We design BOFL with MBO embedded as the core algorithm for balancing exploration
and exploitation in the Pareto search. The MBO workflow in BOFL as well as the choice
of acquisition function is carefully designed to better fit the MBO module with other
ingredients in the federated learning task. More details and reasoning of BOFL system
design can be found in Section 3.4.
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3.3 PROBLEM DEFINITION AND PRELIMINARIES

3.3.1 Problem Formulation

Federated Learning Task A federated learning task is initialized by the server and
trained with a pool of edge devices in a round-by-round manner. At each round, the
server selects a small group of participants from the device pool and trains the machine
learning model for E epochs of the Stochastic Gradient Descent algorithm (SGD) with
minibatch size of B on the selected devices using their private-owned data. The partic-
ipants are required to finish the gradient calculation before a server specified training
deadline, and then upload the model gradients back to the server where the gradients get
averaged into a shared model. The deadline is calculated by the server as regards to the
training data size and computation capabilities of the selected participants in this round.
E.g., a training round using devices with stronger hardware or less training data may be
assigned a shorter deadline by the server. The server usually forms different group of
devices for each round to make sure the model is trained with heterogeneous data and
thus not biased, which leads to various deadlines for different rounds.

In BOFL, a federated learning task can be formally defined as (B,E,T, N) from the
perspective of a local device, where (1) B and E represent the aforementioned global
parameters, minibatch size and training epoch number; (2) T is a vector, representing the
training deadlines for the rounds when this device is selected to participate; and (3) N
represents the number of minibatches of training data available on this device. E.g., a
client with 1k images, joining a federated classifier training task of minibatch size 10, has
N = 1k/10 = 100 in this case.

DVFS Configuration Space Our goal is to find the optimal or near-optimal device train-
ing pace for every round of the federated training that satisfies the corresponding train-
ing deadlines and minimizes the total energy consumption.The training pace can be con-
trolled by configuring the operational frequencies of the device’s CPU, GPU and memory
controller. We thus define the DVFS configuration space as X = FCPU × FGPU × FMC ,
where the F(·)s represent the discrete operational frequencies of the three hardware units
(CPU, GPU and memory controller), respectively.

Energy Optimization Problem For any given federated learning task on a specific de-
vice, the training speed and energy efficiency can be characterized as functions of the
DVFS configurations. Formally, we define the two metrics as follows:
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• T (x) is the execution latency to compute one minibatch of the training data under
configuration x;

• E(x) is the energy consumed on one minibatch of data when trained with configu-
ration x.

x ∈ X is a three-element tuple encoding the operational frequencies of CPU, GPU and
memory controller. In our system, we define the processing of a minibatch of data as a job.
E.g., for an FL task that trains a ResNet50 model, a job refers to the process of feeding a
minibatch of data (images) into the ResNet50 model and generating the gradient updates.
We can always apply a different DVFS configuration for the next job, but no more than
one configuration in the same job. We further define W = E × N , which is the number
of jobs in any single training round. The optimization problem can, thus, be formally
presented as follows:

min
xr,i∈X

|T|∑
r=1

W∑
i=1

E(xr,i)

s.t.
W∑
i=1

T (xr,i) ≤ Tr ∀ 1 ≤ r ≤ |T|

(3.1)

The variable xr,i is the DVFS configuration applied in the r-th training round on the i-
th job. The optimization goal of BOFL is to minimize the overall energy consumption
during the |T| rounds of training by carefully selecting DVFS configurations for every
job, while satisfying the unique training deadline for each round.

3.3.2 Solution Sketch with MBO Searched Pareto Set

While the whole configuration space is large, the optimizers of Eqn. (3.1) can be chosen
from a small Pareto set, defined as the set of Pareto optimal points in X, in terms of the
two metric functions, E and T . More formally, letM(x) = (E(x), T (x)) be a two-objective
function defined on X, a point x1 ∈ X is Pareto dominated by another point x2 ∈ X,
iff E(x1) ≥ E(x2) and T (x1) ≥ T (x2), and either E(x1) > E(x2) or T (x1) > T (x2). We
denote this byM(x1) ≺ M(x2). A point is Pareto optimal if it is not Pareto dominated
by any other point. We use P ⊆ X to denote the set of Pareto optimal points for function
M. The images of the Pareto optimal points Pf :=M(P) are called the Pareto front.

It is intuitive that the variable space in Eqn. (3.1) can be reduced from X to P without
affecting the solution: any DVFS configuration outside the Pareto front could be replaced
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Figure 3.6: BOFL Workflow

by its dominant point in P to further minimize the energy objective without causing extra
delay. Once the Pareto set P is given, it is straightforward to reformulate Eqn. (3.1) as an
integer linear programming problem, which can be solved efficiently.

However, searching for the Pareto set P is a challenging task since the two metric E
and T are blackbox functions that are expensive to evaluate. Due to the computational
cost for configuration evaluation and the deadline requirement for training tasks, it is
crucial to obtain an approximated Pareto set within limited rounds. In BOFL, we use
multi-objective Bayesian optimization (MBO) as a sample-efficient method to search for
the Pareto optimal points with just a few trials, and get near-optimal solution for Eqn.
(3.1).

3.4 BOFL SYSTEM DESIGN

3.4.1 Overview

As shown in Figure 3.6, BOFL operates in three phases spanning all the training rounds
as follows:

(1) Safe random exploration samples and tries candidates from the configuration space uni-
formly to collect the first group of observations for MBO model initialization. It will
continue for one or a few rounds at the beginning of the FL task. We design a safe
exploration algorithm to make sure the training deadlines are being satisfied, and the
observed metrics (e.g., latency and energy consumption) are being accurate.
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(2) Pareto front construction tries on the candidates suggested by MBO. This phase will
continue for several rounds (e.g., 3 to 5 rounds) to search for the Pareto optimal
configurations. The MBO update is separated from the model training, using the
configuration and reporting time window, to minimize system overhead generated
by co-locating training and MBO calculation at the same time. To accelerate Pareto
searching, the MBO algorithm will propose multiple candidates (in batched form) to
be explored for the next round.

(3) Exploitation is a long phase, which usually takes more than 90% of the time in a FL
task. In this phase, we solve Eqn. (3.1) with the approximated Pareto optimal points
constructed from the second phase. The energy consumption is thus minimized with
the sweet spot configurations.

In the rest of this section, we present the design details of the three operational phases in
Section 3.4.2, Section 3.4.3 and Section 3.4.4, respectively.

3.4.2 Safe Random Exploration

The goal of the random exploration phase is to collect some starting points, uniformly
from the space, for the MBO model to estimate the objective functions. As we sample
the starting points randomly over the whole space, it is inevitable to select some bad
DVFS configurations that introduce longer delays than we expect, which exacerbates the
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challenge to meet every training deadline in this phase. We design a safe exploration
algorithm, as depicted in Figure 3.7, to ensure the training deadlines met. We present the
detailed design decisions as follows.

Sample Selection We sample a small group (e.g., 1% of the whole space) of starting
points, uniformly distributed over X, using a quasi-random number generator. This uni-
form exploration strategy helps the Bayesian model avoid making wrong assumptions
over the sample space.

Instead of trying the starting points from the very beginning, we manually choose xmax

as the first DVFS configuration to be applied in the FL task, where

xmax = (max(FCPU),max(FGPU),max(FMC)) (3.2)

refers to the DVFS configuration with the highest operational frequencies on all three
processing units (e.g., CPU, GPU and the memory controller). xmax is a configuration with
maximum processing capability where the training can be quickly finished. After T (xmax)

is observed, xmax could be used as a guardian configuration, so that we can always speed
up our pace to xmax in the middle of any exploration round to catch the training deadline
before it is too late.

Workload Assignment In each exploration round, we can try multiple DVFS configu-
rations through the W training jobs. It is important to assign a balanced workload to each
configuration. A transient workload (e.g., trying the configuration for only one job) will
lead to the execution being finished before the hardware voltage gets stable, and will gen-
erate large energy measurement error. Contrarily, a heavy workload prolongs exploration
phase, and squeezes the exploitation phase.

In practice, we define τ as a reference measurement duration (e.g., 5s). BOFL will keep
assigning a new job to configuration x until it has been explored for at least τ seconds.
When the current job finishes and the configuration has been measured for more than τ

seconds, BOFL will switch to explore the next candidate point.

Deadline Guardian Strategy As we randomly sample configurations to explore in the
first phase, we will inevitably meet some bad points that delay our training progress, and
exacerbates the challenge to catch the training deadlines. In BOFL, we make sure the
deadline requirements never violated by using the known guardian configuration xmax.
xmax is tested first so that T (xmax) is known before any exploration point is tried. Before
exploring an unknown configuration x, we run a quick deadline guardian check first to see
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if the remaining jobs could still be finished with xmax, even if the τ seconds of exploration
on x fails to finish any job. Formally, let Wremain and Tremain represent the number of
remaining jobs and the remaining time before deadline when configuration x is about to
be explored, the deadline guardian check criterion could be expressed as follows,

Tremain − τ ≥ Wremain × T (xmax) (3.3)

Configuration x would be explored only if Eqn. (3.3) satisfies. In case Eqn. (3.3) fails,
configuration exploration will terminate in this round, and all the remaining jobs will
be executed under configuration xmax. The random exploration phase will continue for
several rounds until all the uniformly sampled starting points are explored.

Last Round Exploitation In the last round of the random exploration phase, we may
finish exploring all the starting points early, leaving some jobs not executed. While we
can play safe to apply xmax on the remaining jobs, this method may consume more energy
than needed, as E(xmax) could be high. In BOFL, we apply an exploitation strategy to
finish the last random exploration round with observed configurations. We calculate
the best profile of configurations from the observed starting points to minimize energy
consumption, while satisfying the deadline requirement. More details of the exploitation
algorithm will be presented in Section 3.4.4.

3.4.3 Pareto Front Construction

The Pareto front construction phase is the main module that we apply MBO algorithms
to search for Pareto optimal configurations. As shown in Figure 3.6, this phase continues
for several rounds with the following two components.

(1) A MBO module that runs between two consecutive training rounds. It updates the
function estimation with the observations from the previous rounds, and provides a
batch of suggested configurations to explore for the next round.

(2) A FL task round in which the suggested configurations are explored. It ensures to
satisfy the corresponding deadline with the safe exploration algorithm as presented
in Section 3.4.2.

We present the reasoning and design decisions of the Pareto front construction phase as
follows.
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Separation of MBO Computation and Model Training The MBO calculation involved
in Pareto searching is nontrivial, and usually takes several seconds to complete. Running
the MBO module and training the learning task simultaneously can result in unexpected
running-time overhead, and increase the risk of missing deadline. Alternatively, in BOFL,
the MBO module is executed only during the configuration and reporting time window
as shown in Figure 3.1, while the module will idle during the training time. Such sep-
aration will effectively minimize the running-time influence of the MBO module on the
training task.

MBO Prior Function Without the loss of generality, in this project, two objective func-
tions T and E are modeled by two independent Gaussian processes [104], each of which
has a prior distribution with mean function m(x) = 0 and kernel function k(x,x′) =

C5/2(∥x− x′∥2). Here C5/2(∥x− x′∥2) is the widely-used Matérn-5/2 kernel function [104]
that can capture a large variety of function properties.

Pareto Front Approximation with Hypervolume Improvement Recall that the goal of
our MBO algorithm is to identify a finite approximated Pareto front. To measure the qual-
ity of an approximated Pareto front, hypervolume indicator (HV) is the most commonly
used metric in MBO. It quantifies the hypervolume of the region in the performance space
that is dominated by the approximated Pareto front and bounded from below by a refer-
ence point. Mathematically, given an approximated Pareto front

P′ = {pi =M(xi) : xi ∈ X, i = 1, . . . , n} (3.4)

and a reference point r ∈ R2, the hypervolume indicator HV(P′, r) is defined as

HV(P′, r) =

∫
R2

1H(P′,r)(z)dz, (3.5)

where H(P′, r) := ∪ni=i{z ∈ R2 : r ⪯ z ⪯ pi} is the region dominated by P′ and bounded
from above by r. The higher the HV(P′, r) is, the better the P′ approximates the true
Pareto front P. The reference point can be selected as the combination of the worst per-
formances, for T and E , we observed in phase 1, i.e., r = (max(E(x)),max(T (x′))),∀x,x′ ∈
X̂, where X̂ is the set of starting points explored in the random exploration phase.

To determine how much the hypervolume would increase if a set of new points Q =

{qj =M(x′
j) : x

′
j ∈ X, j = 1, . . . ,m} is added to the current Pareto front approximation
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P′, we define the hypervolume improvement (HVI) of Q with respect to P′ as

HVI(Q;P′, r) = HV(Q ∪P′, r)−HV(P′, r). (3.6)

EHVI Acquisition Function In general, the performance metric M(x) at any unob-
served point x ∈ X is unknown in the blackbox optimization. However, the GP surrogate
model in the Bayesian framework provides a posterior distribution P(M(x)|D) for any
unobserved point x ∈ X, where D is the set of all historical observations. This allows
one to define and compute the expected hypervolume improvement (EHVI) acquisition
function, conditioned on historical observations D, current approximated Pareto front P′,
and reference point r:

αEHVI(x|D,P′, r) = EM(x)∼P(·|D)[HVI({M(x)};P′, r)]. (3.7)

The algorithm will select the point with maximal EHVI to evaluate in the next iteration.
In practice, the 2-D EHVI value can be computed efficiently calculated in O(|D| log(|D|))
time complexity [105].

Batch Selection Strategy The classical formulation of EHVI (3.7) proposes only a single
point to evaluate. However, practically, the time scale of each round in the Pareto front
construction phase in BoFL allows the system to explore multiple configurations within
one round. Therefore, the MBO algorithm is required to propose a batch of configurations
to evaluate in the next round.

Note that the definition of EHVI (3.7) can be extended to a batch setting, by simply
replacing the input point x by a batch of points, and the expectation is taken over the
posterior distribution on the entire batch. However, finding the optimal batch based on
such acquisition function will suffer from the high computational cost, especially when
the batch size is large [106].

In BOFL, inspired by [106, 107], we adopt a batch selection strategy to select K points
for the next batch in a sequential greedy fashion with the following three steps:

(1) Choose the next point x to be explored based on the acquisition function (3.7);

(2) Fantasize the observation on x from our surrogate model, i.e. M̂(x) = E[M(x)|D],
and update posterior estimation accordingly;

(3) Repeat step (1) and (2) until K configurations are selected.

Our batching strategy leads to a diverse batch selection and scales well for large batches.
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MBO Batching Size Selection In every run of the MBO model, we generate a batch of
K = Tavg/τ suggestions, which roughly estimates the average number of explorations in
each round. Tavg here refers to the average deadline length that we have observed in the
safe random exploration phase. In practice, we can also set an upper threshold for the
MBO batch size (e.g. 10 suggestions) to avoid the MBO calculation running too long, and
affecting the proceeding training rounds.

MBO Stopping Condition The Pareto construction phase will continue until the fol-
lowing stopping condition is satisfied: when at least a certain number of configurations
(e.g. 3% of the whole space) are explored and the EHVI value increase is less than a thresh-
old (e.g., 1%). This stopping criterion ensures that the MBO module has explored enough
configurations before stopping and does not struggle too much for small improvements.

Training Round Execution Details After the MBO module generates a batch of K sug-
gestion points, they will be explored in the proceeding training round. As each round has
its unique deadline which is unknown beforehand, BOFL may not have enough time to
explore all the K configurations when the deadline length is short. Meanwhile, it is also
possible that there are jobs remained after the K configurations are all explored.

In the Pareto front construction phase, we still follow the safe exploration algorithm (Fig-
ure 3.7) to explore the Bayesian suggestion points. With deadline guardian checking, we
can drop extra suggestions to make sure the deadlines are caught. In case there are re-
maining jobs, we exploit the best profile of configurations we have observed to minimize
energy consumption. We will present the exploitation details in Section 3.4.4.

3.4.4 Exploitation

After the Pareto construction phase, we have explored sufficiently many DVFS config-
urations, from which an approximated Pareto set P′ can be selected. In the exploitation
phase, we use P

′ as a surrogate of the actual Pareto set P to solve for the energy mini-
mization problem in Eqn. (3.1).

Although we reduced the input space from X to P
′ , the optimization problem of Eqn.

(3.1) is still nontrivial to solve. In general, the Pareto front curve induced by P
′ is not

convex, and consequently, the minimizers of Eqn. (3.1) could be a combination of mul-
tiple configurations. In BOFL, we solve the Integer Linear Programming (ILP) problem
with branch-and-bound algorithm [108], which estimates the lower and upper bounds of
the search space regions efficiently, and is widely applied in many discrete optimization
problems.
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Jetson AGX Jetson TX2

CPU 8-core ARM v8.2
2-core Nvidia Denver2 +
4-core ARM Cortex-A57

Frequencies
0.42GHz→ 2.26GHz

(25 steps)
0.34GHz→ 2.03GHz

(12 Steps)
GPU 512-core Volta GPU 256-core Pascal GPU

Frequencies
0.11GHz→ 1.38GHz

(14 steps)
0.11GHz→ 1.30GHz

(13 steps)
Memory 32GB 256-bit LPDDR4x 8GB 128-bit LPDDR4

Frequencies
0.20GHz→ 2.13GHz

(6 steps)
0.41GHz→ 1.87GHz

(6 steps)

Table 3.1: BOFL Testbed Hardware Specifications

As mentioned in Section 3.4.2 and Section 3.4.3, the exploitation algorithm is also ap-
plied in the exploration phase (3.7) when the candidates are fully explored, but the jobs
are not finished. In such cases, we build Pareto front based on existing observations, and
solve for the minimizers on the remaining jobs before the training deadline.

3.5 IMPLEMENTATION

3.5.1 Hardware Testbed

We implement BOFL on two devices, Nvidia Jetson AGX [84] and Nvidia Jetson TX2
[109]. BOFL controls the CPU, GPU and memory controller frequencies on these testbeds
whose specifications are shown in Table 3.1. E.g., The CPU of Jetson AGX has a clock
frequency range of 25 discrete steps from 0.42GHz to 2.26GHz, and the GPU of Jetson
TX2 has 13-stepped operational frequencies ranging from 0.11GHz to 1.30GHz. Overall,
the DVFS configuration spaces of Jetson AGX and Jetson TX2 have 2100 and 936 unique
configurations, respectively.

3.5.2 Software Implementation

Figure 3.8 depicts an overview of BOFL’s software implementation. We implement
BOFL with Python in around 2K lines of code. It has five main modules as follows.

FL Task Executor The FL task executor 1 takes a deep learning model (e.g., ResNet50)
and executes the training loops with its local data. It follows the training parameters,
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Figure 3.8: Architecture of BOFL’s Implementation

e.g., minibatch size and number of epochs, specified by each FL task. We implement
this module based on Pytorch-1.10 [110], and it could be easily generalized to other
machine learning platforms, such as Tensorflow [72]and MXNet [111].

Performance Observer We implement the performance observer 2 to read the execu-
tion latency T (x) and energy consumption E(x) when any DVFS configuration x is ap-
plied. We use CUDA event recording APIs9 to accurately measure the execution latency.
We read the energy consumption with the built-in INA3221 power sensor [112], which
can be easily accessed through the sysfs in Linux kernel.

DVFS Controller The DVFS controller 3 implements the main workflow in Section 3.4
and directly actuates the hardware frequencies. During exploration, it takes the Bayesian
suggestions as the next-step exploration configurations. During exploitation, it actuates
the operational frequencies according to the optimization results (solution for the ILP as
shown in Eqn. 3.1). We modify the hardware frequencies by directly writing into the
corresponding sysfs kernel files10.

Optimization Solver The optimization solver 4 solves the ILP problem, Eqn.(3.1), with
observed Pareto optimal configurations. We build this module with Gurobi optimiza-
tion engine [66], which implements the branch-and-bound algorithm and solves Eqn. (3.1)
efficiently, i.e., within 20ms.

9torch.cuda.Event() and torch.cuda.synchronize().
10e.g., writing into "/sys/devices/*/devfreq/*/min(max) freq" to modify the corresponding

GPU frequencies.
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MBO Engine Our MBO engine 5 is built on top of Trieste [113] which is a Bayesian
optimization library implemented in Python. Trieste implements the standard BO
priors, as well as a wide range of acquisition functions and batching rules, including the
EHVI function and sequential greedy rule adopted by BOFL, as discussed in Section 3.4.
The MBO engine is triggered before each training round in the Pareto construction phase
to update the posterior estimation of T (·) and E(·), and generates the next-step sugges-
tions for the DVFS controller, 3 , to achieve efficient exploration.

3.6 EVALUATION

3.6.1 Methodology

Datasets & Neural Network Models We evaluate BOFL with three different federated
learning tasks spanning both computer vision (CV) and natural language processing
(NLP) applications. The three tasks cover three major types of neural network models,
i.e., CNN, RNN and Transformer, as follows:

(1) CIFAR10-ViT trains Vision-Transformer model [114] (ViT) for image classification on
the CIFAR10 dataset [115]. The CIFAR10 dataset contains 32p × 32p color images of
10 different classes. This dataset is widely applied in image classification tasks for its
lightweight.

(2) ImageNet-ResNet50 trains ResNet50 model [116] on ImageNet dataset [117] for image
classification. Compared to CIFAR10, ImageNet contains image data of more diverse
classes and higher resolutions. When training with ImageNet, the images are usually
cropped to 224p× 224p for normalized and convenient data loading.

(3) IMDB-LSTM trains LSTM-RNN model [118] for text semantic analysis with IMDB
movie review dataset [119]. This dataset contains more than 50K movie reviews with
ground truth binary semantic labels, i.e., positive or negative. It is a widely used
dataset for NLP model training.

Experiment Setup & FL Task Specifications To evaluate the performance of BOFL, we
train the above three FL tasks on the two testbeds, i.e., Jetson AGX and Jetson TX2, each
for 100 rounds. Table 3.2 presents the detailed specifications of the three FL tasks. For
each task, we first specify its global parameters B and E, representing the minibatch size
and number of training epochs in each round. We then load part of the datasets into
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CIFAR10-ViT ImageNet-ResNet50 IMDB-LSTM
B 32 8 8
E 5 2 4

N
AGX 40 90 40
TX2 15 30 20

|T| 100

Tmin
AGX 37.2s 46.9s 46.1s
TX2 36.0s 49.2s 55.6s

Tmax/ Tmin {2.0, 2.5, 3.0, 3.5, 4.0}

Table 3.2: Federated Learning Task Specifications

the two devices as their private training data. As mentioned in Section 3.3, N refers to
the number of minibatches. For example, we load 40 batches of data, each containing
32 images into the AGX device for task CIFAR10-ViT. Finally, We sample 100 deadlines
uniformly from the range [Tmin, Tmax]. Tmin is the execution latency to finish one round
of training when the device is configured with maximum operational frequencies, e.g.,
Tmin = T (xmax)×W . The Tmin values in Table 3.2 are experiment measurements on the
two testbeds when xmax is applied. A FL task can be finished on a device in time only if
the assigned deadline is no less than Tmin. Tmax is the deadline sampling upper bound.
To evaluate the performance sensitivity of BOFL with different range of deadlines, we
select a wide spectrum of Tmax ranging from 2.0×Tmin to 4×Tmin.

Comparison Targets To evaluate the effectiveness of BOFL, we compare it with two
other designs as follows:

(1) PERFORMANT. The Performant design is the default DVFS configuration for real-
time tasks. It turns all the hardware units into maximum operational frequencies,
i.e., xmax, to maintain stable performance, and make sure the deadlines will not miss.
We compare BOFL with the PERFORMANT design to show that our algorithm can
significantly reduce the energy consumption.

(2) ORACLE. In the ORACLE design, we profile T and E over the whole configuration
space offline, and only run exploitation over the FL training rounds to achieve optimal
energy usage. Note that ORACLE can not be achieved in practice as it requires long-
lasting offline profiling. We compare BOFL with the ORACLE design to show that we
achieve near-optimal energy efficiency with little regret.
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Figure 3.9: Energy consumption for the first 40 rounds of FL training on AGX testbed
with Tmax/Tmax = 2
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Figure 3.10: Energy consumption for the first 40 rounds of FL training on AGX testbed
with Tmax/Tmax = 4

3.6.2 BOFL Energy Efficiency

We evaluate the energy efficiency of BOFL as shown in Figure 3.9 and 3.10. We plot
the energy consumption of BOFL, as well as the two baselines, for the first 40 training
rounds. The deadlines for each round are presented together with the energy usage. We
also highlight the three algorithm phases of BOFL to better illustrate the exploration and
exploitation trade off in our solution.

Figure 3.9(a) depicts our experiment results for CIFAR10-ViT task measured on the
AGX testbed. As the figure shows, BOFL can reduce the overall energy consumption
substantially comparing to the PERFORMANT baseline, and achieves pretty close energy
usage comparing to the ORACLE target in the exploitation phase. BOFL takes the first
10 training rounds (phase 1 & 2) to explore the configuration space, and runs exploita-
tion in all the remaining rounds. BOFL outperforms PERFORMANT consistently over the
whole training process, except one round in phase 1 when BOFL inevitably meet some
bad configurations during random exploration. Comparing to the ORACLE design, it is
clear that the two energy curves, of BOFL and ORACLE, almost coincide in the exploita-
tion phase. The major energy overhead comes from phase 1 and 2 when BOFL focuses on
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the exploration but not energy optimization. Note that in practice, a FL model may take
500 ∼ 10000 rounds to converge [20]. An exploration phase of around 10 rounds gener-
ates negligible overhead comparing to that of the dominantly long exploitation phase.

Overall, BOFL reduces energy consumption by 22.3% compared with PERFORMANT

and generates 3.48% energy overhead compared to ORACLE for the experiment as shown
in Figure 3.9(a). Similar results can be observed from all remaining plots in Figures 3.9
and 3.10. Comparing Figure 3.9 and Figure 3.10, it is clear the longer deadlines reduce
the spikes in the energy curves, as it provides more space to pace down for energy opti-
mization. We will present more results to showcase how deadline length influences the
performance of BOFL in Section 3.6.4.

3.6.3 BOFL Pareto Construction
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Figure 3.11: A comparison between BOFL searched Pareto fronts and the actual Pareto
fronts on AGX testbed.

In Figure 3.11, we present the Pareto front constructed by BOFL (as shown in blue
squares), as well as the actual Pareto front derived from offline profiling (as shown in red
stars). It is clear that BOFL can successfully find a close approximation to the actual Pareto
front over all three tasks. We further plot all remaining BOFL explorations in blue circles,
and the unexplored configurations in gray dots. As the figure shows, BOFL makes most
of its explorations around the Pareto front while seldom trials in the less performant area,
because our solution can smartly search the configuration space with Bayesian optimized
suggestions and skip a lot of sub-optimal points. Note that we only plot a small part of
the whole configuration space around the Pareto front for presentation clarity. There are
much more sub-optimal and unexplored points than those as shown in Figure 3.11. In
our experiments, the Pareto front can be efficiently constructed after exploring just 3% of
the whole configuration space.
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CIFAR10-ViT ImageNet-ResNet50 IMDB-LSTM
Round # Exp # Pareto # Exp # Pareto # Exp # Pareto

1 9 1 17 2 16 1
2 2 0 4 0 5 0
3 8 1 10 2 5 0
4 2 0 10 0 10 3
5 10 1 10 5 10 4
6 6 4 7 2 10 3
7 10 2 10 2 10 3
8 7 2
9 8 6
10 8 3

Total 70 20 68 13 66 14

Table 3.3: The number of Explorations and searched Pareto points for each round in the
first two phases. Red numbers are for the safe random exploration phase. Blue numbers
are for the Pareto construction phase. E.g., In the first round of CIFAR10-ViT task, BOFL

is in the random safe exploration phase. It explores 9 configurations with one of them
being in the ultimate Pareto front.

We further present an example to walk through how BOFL explores the space and
searches for the Pareto optimal configurations, as shown in Table 3.3. For the CIFAR10-ViT
task, BOFL first randomly searches the whole configuration space for 4 rounds and ex-
plores 21 different configurations. After that, BOFL switches into the Pareto construction
phase and starts taking exploration suggestions from the MBO module. The second phase
continues for 6 rounds and explores 49 points before the ending criteria (Section 3.4.3) is
satisfied. During the whole exploration process, 70 configurations are explored, in which
20 of them constitute the Pareto front, i.e., the blue squares as shown in Figure 3.11(a).
It can be easily observed that most of Pareto front points, i.e., 18 out of 20, are searched
in the second phase, because the Bayesian optimization algorithm focuses on exploring
more promising regions and searches for Pareto front more efficiently than random sam-
pling. Similar patterns can also be observed in the other two tasks in Table 3.3.

3.6.4 Sensitivity to Deadline Length

We evaluate how deadline length influences BOFL’s effectiveness as follows. We run
6 set of experiments with different ranges of deadline length, i.e., Tmax/ Tmin ∈ [2, 4],
as shown in Table 3.2, measuring the following two metrics to evaluate BOFL’s perfor-
mance:
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Figure 3.12: BOFL’s effectiveness with different deadline length.

(1) Improvement compared to PERFORMANT. A metric represents the energy being reduced
by BOFL compared to PERFORMANT, i.e., 1− BOFL ENERGY USGAE

PERFORMANT ENERGY USGAE
.

(2) Regret compared to ORACLE. A metric represents how much energy overhead is gen-
erated by BOFL compared to ORACLE, i.e., BOFL ENERGY USGAE

ORACLE ENERGY USGAE
− 1.

The evaluation results are presented in Figure 3.12. As the figure shows, BOFL’s improve-
ment compared to PERFORMANT steadily increases as the FL tasks are assigned with
longer deadlines. As the deadlines are getting longer, BOFL has larger optimization space
for pace control, it can train the model slower to benefit from less energy consumption,
which explains the increasing curve. As the deadlines are getting longer, BOFL’s strat-
egy will gradually converge to choosing the most energy-efficient configuration, i.e., the
bottom point in the Pareto front as shown in Figure 3.11, which makes the overall energy
consumption stable. Overall, BOFL can reduce energy consumption by 20.3% ∼ 25.9%

compared to the PERFORMANT baseline.
As the deadline increases, BOFL’s regret compared to ORACLE steadily decreases. In

case the deadlines are short, BOFL tends to spend more time in exploration, which gener-
ates more energy regret. As shown in Figure 3.9(a) and 3.10(a) for CIFAR10-ViT task,
BOFL explores 10 rounds before exploitation when Tmax

Tmin
= 2, while only explores 6

rounds when Tmax

Tmin
= 4. The reason is that longer deadlines allow BOFL to explore more

configurations in one round, which leads to a well constructed Pareto in fewer rounds.
Overall, BOFL generates energy consumption regret by 1.2% ∼ 3.4% compared to the
ORACLE target.
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Figure 3.13: Overhead of the MBO module

3.6.5 MBO Module Overhead

In BOFL, we use MBO to smartly generate the next-step exploration points. However,
calculating these suggestions does not come for free. In the rest of this section, we evalu-
ate the overhead of the MBO module in terms of two metrics: (1) MBO calculation latency,
and (2) MBO energy consumption. We present the evaluation results in Figure 3.13. As
shown in Figure 3.13(a), the MBO module may take 6 ∼ 9 seconds to update its estima-
tion and generate next-step suggestions. Note that the MBO calculation happens outside
the time critical model training and introduces zero overhead to the FL workloads. In
practice, the Bayesian optimization calculation can be co-located when the client is send-
ing or receiving models from the server, which usually takes 10 ∼ 20 of seconds, and
is long enough for the MBO calculation. For weak devices that takes longer time to up-
date their Bayesian models, we can always speed up the MBO calculation by reducing its
suggestion batch size. As Figure 3.13(a) depicts, one round of MBO calculation usually
consumes 50 ∼ 70 Joule energy, which is much smaller than that of model training, which
usually takes 600 ∼ 1200 Joule, as shown in Figures 3.9 and 3.10. As MBO only happens
a few times during the Pareto construction phase, the overall energy overhead generated
by MBO is as small as 0.4% ∼ 0.7%, as presented in Figure 3.13(b).

3.7 RELATED WORK

Federated learning Federated learning brings collaborative intelligence into multiple
domains, including health care [120, 121, 122], smart transportation [123, 124], localization
service [125, 126], recommendation system [127, 128] and beyond. Significant work has
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been proposed to improve the performance of FL in multiple perspectives, which contains
but is not limited to model optimization [85, 129, 130], privacy preserving[91, 131], and
model personalization [132, 133]. In this chapter, we present BOFL to improve FL from
an energy efficient perspective.

Dynamic voltage frequency scaling Dynamic voltage frequency scaling (DVFS) is a
widely applied technique for managing power and performance of processors, such as
CPU and GPU. A large amount of research has been shown to achieve better energy
efficiency with the benefit of DVFS [27, 28, 29, 30, 31]. In this chapter, we design a model
training pace controller based on multi-axes DVFS to minimize the energy consumption
of edge devices during federated learning tasks.

Bayesian optimization and its applications Bayesian optimization (BO) is a sample-
efficient optimization framework for many blackbox functions that are expensive to eval-
uate. BO has been applied across multiple fields, i.e., A/B Testing [134, 135], robotics mo-
tion planing [136, 137], drug discovery [138], cherry picking cloud configurations [139],
and more recently as an important ingredient for neural architecture search [140, 141,
142], which automates the process of neural network design. CherryPick [139] is the
first work applying BO on system configuration selection for cloud clusters. It applies
single-object BO to minimize the overall operational cost. In this work, we apply BO to
efficiently search the vast DVFS design space for energy-aware federated learning. Com-
pared to CherryPick, our problem is more challenging due to the multi-dimensional op-
timization targets, i.e., a joint minimization of latency and energy consumption.

3.8 CONCLUDING REMARK

In this chapter, we present BOFL, a local training pace controller for edge devices to
achieve energy efficient federated learning. Experiments on multiple edge devices over
multiple neural network models show that BOFL can reduce energy consumption of
model training by more than 20% compared to the PERFORMANT baseline, and achieve
close to optimal energy efficient compared to the ORACLE target with as low as 1.2% -
3.4% energy regret. Through this work, we have illustrated that hardware configurabil-
ity is a crucial avenue for achieving multi-objective resource optimization in energy-
efficient federated learning systems.
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CHAPTER 4: FEDCORE: STRAGGLER-FREE FEDERATED LEARNING WITH
DISTRIBUTED CORESETS

In this chapter, we examine the complexities of the third thesis project, FEDCORE. We
introduce a multi-objective resource optimization framework aimed at mitigating the
stragglers’ issue in federated learning while enhancing the training speed and maintain-
ing the models’ performance. This achievement is made possible through the strategic
utilization of training data redundancy, as detailed in Section 1.2.

4.1 INTRODUCTION

Federated learning (FL) enables multiple clients to collaboratively train a shared ma-
chine learning model while retaining their data locally. It has greatly enhanced various
privacy-sensitive domains by harnessing the power of AI and providing tailored solu-
tions, including cancer diagnosis [23, 24, 143], urban transportation surveillance [78, 124],
financial services [144, 145] and beyond. Federated learning has given rise to several
research areas, including model convergence optimization [85, 129, 130], FL system effi-
ciency [33, 146, 147], privacy preservation [91, 131], and robustness against adversarial
attacks [148]. Among these areas, the straggler problem, caused by slow or unresponsive
clients, hinders overall training efficiency and scalability. Meta’s million-client FL system,
Papaya [9], demonstrated that per-client training time distribution spans over two orders
of magnitude, and the round completion time is 21x larger than the average training time
per client due to stragglers’ delays. Thus, efficient straggler mitigation is vital to unlock
FL’s full potential across diverse applications.

Motivations. Existing solutions like client selection mechanisms [146, 147, 149] and
asynchronous frameworks [9, 129, 150, 151, 152, 153] aim to mitigate the straggler issue
in federated learning (FL). However, these methods inherently treat the symptoms rather
than the cause. Client selection can result in biased training data due to the exclusion
of slower clients, while asynchronous approaches can encounter staleness and inconsis-
tency due to laggard updates from stragglers with slow hardware. These strategies don’t
directly address the root cause of the straggler issue, which is due to the system and data
volume heterogeneity among clients in FL. The disparities in both computational capacity
and data volume lead to varied training times, impacting overall efficiency.

Instead of sidestepping this fundamental challenge, our approach confronts it directly
by aligning each client’s data volume with its computational capability. Recognizing that up-
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grading clients’ hardware is impractical, we propose adjusting the amount of data pro-
cessed by each slow client. These straggler clients often hold more data than can be
efficiently processed within the allotted round time. To address this, we propose creating
a representative coreset, a compact subset of the full dataset that encapsulates essential
learning information. This strategy offers a more precise and direct solution to the strag-
gler problem in FL.

In contrast to existing coreset generation solutions [38, 154], where training data are
collected on a central server to create a single coreset, we propose a distributed approach
that forms training coresets on each client independently, maintaining the privacy integral
to FL. This task is challenging, particularly when dealing with heterogeneous data distri-
bution across numerous clients, each requiring different coreset sizes based on their com-
putational capabilities. Further complexity arises from the dynamic nature of machine
learning models, which is constantly updated during the training process, necessitating
the creation of adaptive coresets that can be adjusted according to different model param-
eters and training phases. To tackle these issues, we designed FEDCORE which addresses
two key questions:

(Q1) How can we select statistically unbiased coresets that adapt to continuously up-
dated models?

(Q2) How to seamlessly integrate coreset generation with minimal overhead into FL
frameworks?

Methods and Results. To generate statistically unbiased coresets that adapt to the evolv-
ing ML models, we design FEDCORE, which is applied independently to each client.
FEDCORE operates by periodically searching for a coreset at the start of each FL round,
ensuring that the selected coresets may differ between training rounds. This adaptabil-
ity allows for the provision of the most suitable learning samples, taking into account
the varying model parameters at different stages of training (Q1). To minimize coreset
generation overhead, we employ gradient-based methods that leverage the per-sample
gradients obtained during the gradient descent model training. By repurposing these
gradients as input for our coreset algorithm, we optimize the use of available resources
and eliminate the need for additional computations. Furthermore, we tackle the intri-
cate coreset optimization problem by transforming it into a more manageable k-medoids
clustering problem. This transformation allows for a more efficient resolution of the op-
timization task, streamlining the overall process and minimizing the system overhead
(Q2). Overall, this chapter offers the following contributions:
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(1) We design and implement the FEDCORE algorithm, a pioneering solution that lever-
ages distributed coreset training to address the straggler problem in FL with minimal
system overhead.

(2) We provide a theoretical convergence analysis for the FEDCORE algorithm, which
manages to incorporate the coreset gradient approximation error with the federated
optimization error, proving that federated model training with per-client coresets re-
sults in highly accurate models.

(3) We extensively evaluate FEDCORE against existing solutions and baselines. Evalu-
ation results indicate an 8x reduction in FL training time without degrading model
accuracy compared to baseline FEDAVG. In comparison to FEDPROX, which handles
stragglers through fewer local training epochs, FEDCORE consistently achieves faster
convergence and high model accuracy.

The rest of the thesis chapter is organized as follows. We survey related literature in
Section 4.2. In Section 4.3, we present the problem setups. In Section 4.4, we present de-
tailed FEDCORE algorithms and system framework. We provided convergence analysis
for FEDCORE in Section 4.5. Section 4.6 presents the implementation and evaluations of
FEDCORE system. Finally, Section 4.8 concludes the chapter.

4.2 RELATED WORK

Coreset Methods for Deep Learning Coreset methods are effective in reducing com-
putational complexity and memory requirements in deep learning. They are based on
selecting a representative subset, or coreset, from the original dataset to retain essential
information while significantly reducing data size. Coresets have been successfully ap-
plied to tasks like image classification [34, 35, 36], natural language processing [37, 38],
and reinforcement learning [155, 156, 157]. Several approaches for efficient coreset cre-
ation include:

1. Geometry Based Clustering [158, 159, 160], assuming data points in close proximity share
similar properties and forming a coreset by removing clustered redundant data points;

2. Loss Based Sampling [161, 162, 163], prioritizing training samples based on their contri-
bution to the error or loss reduction during neural network training and selecting the
most important samples to form the coreset;
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3. Decision Boundary Methods [164, 165], focusing on selecting data points near the deci-
sion boundary as the coreset, as they carry more informative content for model train-
ing; and

4. Gradient Matching Solutions [38, 154, 166], aiming to select a coreset that closely approx-
imates the gradients produced by the full training dataset during deep model training,
ensuring minimal gradient differences.

In this chapter, we adopt gradient matching methods to construct distributed coresets
across federated learning clients. By utilizing per-sample gradients produced during
model training, coresets can be efficiently computed with minimal overhead.

Straggler Prevention in Federated Learning. Stragglers, slow or unresponsive clients
in federated learning, can significantly impact training efficiency and model convergence.
Various strategies have been proposed to address this challenge, including:

1. Client Selection methods [146, 147, 149, 149] mitigate the impact of stragglers by adap-
tively selecting a subset of clients based on their performance, training speed, or other
criteria. However, this approach may introduce bias in heterogeneous settings, as
stragglers with unique and important learning samples could be excluded;

2. Asynchronous FL techniques [9, 129, 150, 151, 152, 153] eliminate the need for synchro-
nized communication, enabling clients to update local models and communicate with
the server independently. Although asynchronous FL can reduce straggler impact, it
may suffer from staleness and inconsistency issues affecting the model performance;

3. Accommodating Partial Work from Stragglers approaches [86, 167, 168] adjust local epoch
numbers or allow clients to perform partial updates. FEDPROX [86] introduces a proxi-
mal term in the optimization process, accommodating partial updates without severely
affecting model convergence.

In this chapter, we propose FEDCORE, a novel straggler-resilient training method based
on partial-work. Unlike most existing works reducing the number of local epochs, FED-
CORE reduces the number of training samples by creating a coreset. This approach en-
ables FEDCORE to perform more local optimization steps and explore gradients more
deeply, resulting in faster convergence speed and better model accuracy.
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4.3 PRELIMINARIES

4.3.1 Federated Leaning System Setup

Consider a set of clients, U = {1, . . . , n}. For each client ui, we define V i = {1, . . . ,mi}
as the index set of its training samples, where mi represents the size of the training set.
The j-th data point in the training set of client ui is denoted as (xi

j, y
i
j), with j ∈ V i. xi

j and
yij represent the data and label, respectively. In Federated Learning (FL), the primary ob-
jective is to minimize an empirical risk function using the training data from each client.
Given a loss function L, a machine learning model f , and the model parameter spaceW ,
the FL problem can be formulated as:

w∗ = argmin
w∈W

L(w), where L(w) :=
∑
i∈U

piLi(w), Li(w) :=
1

mi

∑
j∈V i

Li
j(w), (4.1)

Here, Li
j(w) := L(f(w, xi

j), y
i
j) represents the empirical loss for each sample (xi

j, y
i
j), and

pi = mi∑
i∈U mi is the weight proportional to the training set size. However, privacy concerns

prevent a central server from directly accessing the clients’ data and solving Eq.(4.1).
As an alternative, FL algorithms require each client to solve a local problem, wi,∗ =

argminw∈W Li(w), using their data independently. Through iterative rounds of communi-
cation, the central server aggregates the local models of each client and approximates the
solution to Eq.(4.1).

In FL, clients typically use gradient descent based algorithms like SGD and ADAM
for local training. The objective is to provide an unbiased estimate of the full gradient,
denoted as ∇Li(w) =

∑
j∈V i

∂Li
j

∂w . SGD optimizers calculate model-gradients based on ran-
domly selected mini-batches of training samples through all the training samples in V i.
This constitutes one epoch of training. In conventional FL, each client performs SGD for
multiple epochs, i.e., E epochs, before sending its gradients to the central server for global
model synchronization. This entire process constitutes one FL round. The central server
then aggregates the received gradients from participating clients and updates the global
model. After multiple rounds, i.e., R rounds, of training and synchronization, the global
model converges to a satisfactory performance.

The heterogeneity of client training data size and computational capabilities leads to
considerable variation in per round training times in Federated Learning. To illustrate,
let ci represent the computational capability of the i-th client, which can be inferred from
their hardware specifications. Here, ui takes 1/ci seconds to train one data sample. Hence,
the per-round training time is Emi

ci
, where E is the number of epochs per round. Due to
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the synchronous nature of FL, slower clients can significantly delay the overall training
process, resulting in the straggler problem.

4.3.2 Distributed Coresets for Federated Learning.

In FEDCORE, our goal is to address the straggler problem by strategically selecting a
small subset Si ⊆ V i of the full training set V i for each ui. This enables the model to be
trained only on the subset Si while still approximately converging to the globally optimal
solution (i.e., the model parameters that would be obtained if trained on the entire V i).

Inspired by existing works in gradient-based coreset construction [38, 154], the key
idea in FEDCORE is identifying a small subset Si with the weighted sum of its elements’
gradients closely approximating the full gradient over V i. Unlike previous works, our
approach generates distributed coresets across all clients ui, i ∈ U , while still providing
global model convergence properties.

To further resolve the straggler problem, we impose a training deadline τ on every
client, ensuring that each ui can complete one round of training within τ seconds using
the coreset Si. Consequently, ciτ represents the maximum number of data samples that
can be processed by ui within a single training round. We specifically formulate the dis-
tributed coresets generation problem as follows:

(Si,∗, δi,∗) = argmin
Si⊆V i,δi∈R|Si|

+

E i(w, Si, δi), s.t. |Si| ≤ ciτ/E, ∀i ∈ U. (4.2)

Here E i(w, Si, δi) :=
∥∥∥∑j∈V i∇Li

j(w)−
∑

k∈Si δik∇Li
k(w)

∥∥∥ is the 2-normed distance be-
tween the full-set gradient and the coreset gradient when the model parameter is w. δi is
the weight vector of the coreset elements with dim(δi) = |Si| .

Unfortunately, directly solving the aforementioned optimization problem is infeasible
due to three main obstacles:

a) Finding the optimal coreset (Si,∗, δi,∗) is an NP-hard task, due to the combinatorial
nature of the problem, even when the per-element gradient, Li

j , can be calculated
through SGD training.

b) Deep machine learning models have high-dimensional model gradients, contain-
ing millions of parameters. Solving the above optimization problem with high-
dimensional vectors is practically unmanageable.
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c) Eq.(4.2) needs to be recalculated for every time the model parameter w gets updated,
which further intensifies the computational complexity.

In the following sections, we introduce the design of FEDCORE and illustrate how it ef-
fectively addresses these challenges.

4.4 FEDCORE ALGORITHM AND SYSTEM

Figure 4.1: An example workflow of FEDCORE encompasses a single training round
consisting of 6 epochs.

Algorithm 4.1: FEDCORE Algorithm
Input: K: # selected clients per round; R: # training rounds; w0: initial model parameter.

E, τ , and V i, ci, mi, pi for all i ∈ U , as defined in Section 4.3.
for r = 0, 1, · · · , R do

Server randomly selects a subset of K clients Ur. Each ui is chosen with probability pi.
Server sends current model wr and round deadline τ to all chosen clients ui, i ∈ Ur.
for each i ∈ Ur do

if E ·mi < ciτ then
Client ui executes E epochs of local training with its full-set V i.

else
Client ui generates approximated gradient distance, either d̃ij,k or d̂ij,k for convex

models and neural networks, respectively, over the full-set V i in the first epoch.
Client ui constructs coreset (Si,∗, δi,∗) by solving the k-medoids problem.
Client ui executes E − 1 epochs of local training with its coreset (Si,∗, δi,∗).

end
Client ui sends its round-end local parameter wi

r back to the server.
end
Server aggregates the new global model: wr+1 = 1

K

∑
i∈Ur

wi
r.

end
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4.4.1 FEDCORE Algorithm Overview.

We present the FEDCORE workflow in Algorithm 4.1. FEDCORE operates in multiple
training rounds, denoted by R. Like most existing works [86], the server selects K clients
randomly, with probabilities proportional to their training set size, i.e., pi = mi∑

i∈U mi (line
4.1). The server sends the current model parameter and round deadline τ to the selected
clients for distributed training (line 4.1). Clients assess if they can complete full-set train-
ing within τ . If possible, they execute E epochs of SGD training over its full-set V i (line
4.1). Otherwise, they generate a training coreset and train using it (line 4.1 - 4.1). Finally,
clients send their local parameters to the server at the end of each training round, which
aggregates them to form a new global model (line 4.1).

To circumvent the need to solve Eq.(4.2) for every different model parameter w (i.e.,
every epoch), we design FEDCORE to search for a suitable coreset periodically at the be-
ginning of each FL round. Figure 4.1 illustrates the workflow of FEDCORE during one FL
round. In the first epoch, FEDCORE processes the entire training set, taking a comprehen-
sive initial optimization step and generating per-sample gradients for coreset creation.
For the remaining epochs, FEDCORE operates on a coreset, significantly reducing train-
ing time and mitigating the effects of stragglers.

By minimizing the upper bound of gradient estimation dissimilarity (i.e., E i), we trans-
form Eq.(4.2) into a k-medoids problem, which can be solved approximately in polynomial
time (Section 4.4.2). We also use low-dimensional gradient approximations as input for
the coreset algorithm instead of high-dimensional model gradients, making coreset gen-
eration more efficient and lightweight (Section 4.4.3). The distributed coresets generated
through our approach provide strong global convergence guarantees (Section 4.5). In the
following sections, we detail the design of these algorithms and discuss practical tech-
niques to accelerate FEDCORE.

4.4.2 Upper Bounding Dissimilarity Estimation with K-Medoids

We aim to construct a coreset Si with bi elements for each client ui. In order to allow
for the first epoch of every training round to be full-set with mi training elements, we set
bi = ⌊ ciτ−mi

E−1
⌋ to meet the computational capability ciτ −mi of ui in the remaining E − 1

epochs.
To upper bound the dissimilarity between the full-set gradient and the weighted core-

set gradient on Si, first consider a mapping function Φi : V i → Si that, for every possible
model parameter w ∈ W , assigns each data point j ∈ V i to one of its coreset elements
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k ∈ Si, i.e., Φi(j) = k ∈ Si. Let Ci
k := {j : Φi(j) = k} ⊆ V i represent the set of data points

assigned to data point k ∈ Si, and let δik := |Ci
k| ∈ N+ denote the number of such points.

Thus, for any arbitrary w ∈ W , we have∑
j∈V i

∇Li
j(w)−

∑
k∈Si

δik∇Li
k(w) =

∑
j∈V i

(∇Li
j(w)−∇Li

Φi(j)(w)) (4.3)

By applying the triangle inequality on both sides, we derive an upper bound for the
normed error between the full-set gradient and the weighted coreset gradient, i.e.,

E i(w, Si, δi) =

∥∥∥∥∥∥
∑
j∈V i

∇Li
j(w)−

∑
k∈Si

δik∇Li
k(w)

∥∥∥∥∥∥ ≤
∑
j∈V i

∥∥∥∇Li
j(w)−∇Li

Φi(j)(w)
∥∥∥. (4.4)

Note that the upper bound in Eq.(4.4) is minimized when Φi assigns every data point
j ∈ V i to the element k ∈ Si with the most similar gradient, i.e., Φi(j) = argmink∈Si dij,k(w),
where dij,k(w) =

∥∥∇Li
j(w)−∇Li

k(w)
∥∥. Hence,

min
Si⊆V i,δi∈N|Si|

+

E i(w, Si, δi) ≤ min
Si⊆V i

∑
j∈V i

min
k∈Si

dij,k(w)

 . (4.5)

Recall that the minimum value of Eq.(4.2) is further upper bounded by the left hand side
of Eq.(4.5), as it has a larger feasible set for its weight vector δi ∈ R|Si|

+ . Hence, we can
adjust the optimization objective of Eq.(4.2) to the right hand side gradient dissimilarity
upper bound as follows:

(Si,∗, δi,∗) = argmin
Si⊆V i

∑
j∈V i

min
k∈Si

dij,k(w)

 , s.t. |Si| ≤ bi, ∀i ∈ U, (4.6)

where δi ∈ N|Si|
+ is the weight vector associated with Si, given by

δi,∗k =

∣∣∣∣{j ∈ V i : k = argmin
l∈Si,∗

dij,l(w)

}∣∣∣∣ . (4.7)

Note that Eq.(4.6) is a k-medoids problem with a budget size of bi. The goal is to minimize
the objective function by finding the bi medoids of the entire training set in the gradient
space.

The k-medoids problem is a clustering technique forming k clusters based on data point
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similarities. K-medoids use actual data points as cluster centers, i.e., the medoids, mini-
mizing dissimilarities between data points and their respective medoids. These medoids
form a coreset for our Federated Learning problem. Multiple algorithms [38, 169, 170]
have been proposed for this problem, offering diverse computational efficiency and qual-
ity trade-offs. In our case, we employ the FasterPAM algorithm, known for its speed and
accuracy in identifying optimal medoids, efficiently minimizing our equation Eq.(4.6). In
essence, FasterPAM quickly solves the k-medoids problem, generating coresets for large
datasets within one second.

4.4.3 Accelerating Coreset Generation with Gradient Approximation.

Solving the k-medoids problem for each w ∈ W , as illustrated in Eq.(4.6), requires cal-
culating every pairwise gradient difference for the entire training set (i.e., dij,k(w),∀j, k ∈
V i). Nonetheless, directly computing the gradient-distances is computationally costly
due to the typically high-dimensional nature of the full model gradient, especially in the
case of deep neural networks with millions of parameters. This leads to a computation-
ally burdensome k-medoids clustering process. Following the approach in [38], we tackle
this challenge by substituting the full gradient differences with lightweight approxima-
tions for two general types of machine learning models as below.

Convex Machine Learning Models. We utilize the method from [171] that allows for
effective gradient distance approximation in convex machine learning models like linear
regression, logistic regression, and regularized SVMs. This method approximates the gra-
dient difference between data points using their Euclidean distance, a principle that uni-
formly applies across the entirety of the parameter space,W . By substituting dij,k(w) with
d̃ij,k(w) =

∥∥xi
j − xi

k

∥∥ in Eq.(4.6), the coreset problem is reframed into a 2-norm k-medoids
clustering within the original data space. This adjustment facilitates coresets formation
using pre-calculated pairwise Euclidean distances, eliminating per-round generation and
reducing training-time cost.

Deep Neural Networks. In deep neural networks, gradient changes primarily reflect
the loss function’s gradient relative to the last layer’s input [172]. The normed differences
of gradients between data points can be effectively bounded as below:

∀i, j, k, dij,k(w) ≤ d̂ij,k(w) = c1 ·
∥∥∂Li

j(w)/∂z
i
j − ∂Li

k(w)/∂z
i
k

∥∥+ c2, (4.8)
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Here, zij is the input to the last neural network layer from data point xi
j , and c1 and c2

are constants. We substitute dij,k with d̂ij,k in Eq.(4.6) for optimization.
∥∥∂Li

j(w)/∂z
i
j

∥∥ is
attainable from the first epoch of full-set training and requires no extra computation. In
FEDCORE, we derive d̂ij,k for all pairs j, k ∈ Si in the first FL epoch, thus alleviating the
load of high-dimensional k-medoids clustering.

4.4.4 Discussions of Design Choices.

In designing FEDCORE, we intentionally set the first epoch to train on the entire dataset,
generating (approximated) per-sample gradients for k-medoids coreset generation. How-
ever, heavy loaded straggling clients may struggle to complete the initial epoch11, i.e.,
ciτ < mi. In such cases, FEDCORE can use faster coreset methods not requiring a full
epoch of forward and backward propagation. As explained in Section 4.4.3:

• Convex FL models can use static coresets to achieve model convergence and train
with pre-computed coresets in any epoch, i.e., calculate corsets with pre-computed
d̃ij,k;

• Deep neural networks compute approximated pairwise gradient distance, d̂ij,k that
is attainable almost as cheap as calculating the loss (with only one step of gradient
calculation for the last layer input), instead of a full epoch of forward and backward
propagation.

As long as the training deadline allows, FEDCORE prefers to retain the initial full-set
epoch, since it offers a more comprehensive representation of the training status by utiliz-
ing the entire dataset and establishing a more accurate, well-informed step in beginning
of each round of model training.

4.5 CONVERGENCE ANALYSIS

The convergence of FEDCORE is established for strongly convex functions L under
mild assumptions. It is important to note that most existing works on the convergence
analysis of federated learning (e.g., [86, 130, 173]) assume that local gradient estimations
at the client level are unbiased since the data is directly sampled from the full-set. How-
ever, in FEDCORE, gradients computed from coresets are biased approximations to full-
set gradients. As a result, the main technical contribution of our convergence analysis is

11Existing solutions like FEDPROX also fail in extreme cases.
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to meticulously incorporate the coreset gradient approximation error with the federated
optimization error.

Theorem 4.1. Assume that for any i ∈ U , the loss function Li is L-smooth and µ-strongly
convex, and the coreset (Si,∗, δi,∗) constructed in FEDCORE is an ϵ-approximation to the
full-set, i.e.

∀w ∈ W ,
1

mi

∥∥∥∥∥∥
∑
j∈V i

∇Li
j(w)−

∑
k∈Si,∗

δi,∗k ∇L
i
k(w)

∥∥∥∥∥∥ ≤ ϵ, (4.9)

Consider FEDCORE with R rounds with each round containing E epochs. Set the learning
rate ηt = Ω(1/t) for t ∈ {1, 2, · · · , ER}. The model wout output by FEDCORE after R rounds
satisfies

E [L(wout)− L(w∗)] ≤ O(ϵ) +O(1/R), (4.10)

where w∗ = argminw∈W L(w) is the global optimum of L in Eq.(4.1), and the expectation
is taken over the randomness in client selection, coreset construction and model initial-
ization.

The comprehensive collections of the technical assumptions and the detailed statement
of Theorem 4.1 can be found in Section 4.7.2 and Section 4.7.3. The bound in Theorem
4.1 indicates that FEDCORE converges to the global optimum at the rate O(1/R), with
an additional cost of O(ϵ) attributed to the coreset gradient approximation error. It is
worth noting that the rate O(1/R) aligns with the existing convergence results for feder-
ated learning [86, 130, 173]. The trade-off between full-set FL and coreset FL is explicitly
characterized in Theorem 4.1. While learning on the full-set may circumvent the gradient
approximation error, the straggler problem in full-set FL can lead to a small number of
training rounds R under a limited time budget. On the other hand, FEDCORE reduces
the impact of the straggler problem and allows for more training rounds to achieve a
smaller optimization error O(1/R), while keeping the gradient approximation error low
(only O(ϵ)), enabling both efficient and accurate optimization. The proof of Theorem 4.1
is deferred to Section 4.7.3.

4.6 EVALUATIONS

4.6.1 Experimental Setups

FL Datasets and Benchmarks We assess FEDCORE using three widely recognized fed-
erated learning benchmarks from computer vision, natural language processing, and
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Dataset Clients Samples
Samples / Client
mean std

MNIST 1,000 69,035 69 106
Shakespare 143 517,106 3,616 6,808
Synthetic 30 20,101 670 1,148

Table 4.1: Statistics of the benchmarks
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Figure 4.2: Distribution of training samples per client

feature-based classification domains. These tasks encompass major machine learning
model types, including CNN, RNN, and Logistic Regression (LR), as detailed below:

1) MNIST Dataset [174]: This dataset features a digit classification task using a three-
layer CNN for training. To create statistical heterogeneity, the data is allocated
among 1,000 clients, where each client has samples of just two distinct digits. The
quantity of samples per client adheres to a power-law distribution, highlighting the
diversity among clients.

2) Shakespeare Dataset [85]: This dataset represents a next-character prediction task
trained on the Complete Works of William Shakespeare using an LSTM model. Each of
the 143 speaking roles in the plays is associated with a distinct client. And

3) Synthetic Dataset [86]: This dataset involves a feature-based classification task with
30 clients training an LR model. Each client’s training data is generated from a ran-
dom function G(α, β), where α and β control the cross-client and within-client data
heterogeneity. Following the approach in [86], we evaluate our method with three
different parameter settings: (α, β) equals to (0, 0), (0.5, 0.5) and (1, 1), respectively.

In our evaluation, we train MNIST, Shakespare and Synthetic benchmarks for 100, 30
and 100 rounds, respectively. For all three tasks, each round comprises 10 local epochs.
Detailed statistics for these three datasets can be found in Table 4.1 and Figure 4.2.

Experimental Harware and Hyper-Parameters In our evaluations, we utilize a physical
server equipped with an Intel Core X Series Core i9 10920X CPU [175] and a NVIDIA
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Hyper-parameters MNIST Shakespeare Synthetic

Optimizer SGD SGD SGD
Learning Rate 0.03 0.03 0.001
Batch Size 8 8 8
Local Epoch 10 10 10
Communication Round 100 30 100
Number of Clients 1000 143 30
Number of Clients per Round 100 10 10
µ in FEDPROX 0.1 0.001 0.1

Table 4.2: FEDCORE Evaluation Hyper-parameters

GeForce RTX 2080 Ti GPU [176]. The server runs on the Linux Ubuntu 20.04 operating
system. The hyper-parameters used in our evaluations are detailed in Table 4.2.

Comparision Baselines We compare FEDCORE with the following three baselines.

a) FEDAVG [85] updates the global model by averaging local model updates from par-
ticipating clients. However, it does not consider training deadlines, and thus, is prone
to the stragglers issue.

b) FEDAVG-DS [85] is a variant of FEDAVG enforces training deadlines for each round
by excluding stragglers. This strategy, however, may negatively impact its overall
training performance.

c) FEDPROX [86] is designed to handle partial results from stragglers that might com-
plete fewer local epochs than anticipated, FEDPROX incorporates a quadratic proxi-
mal term that explicitly limits the magnitude of local model updates to accommodate
stragglers.

Implementations We develop FEDCORE along with all the baseline algorithms using
PyTorch [177], extending the simulation framework proposed in FedML[178]. For each
client ui, we sample its computational capability from a normal distribution, i.e., ci ∼
N (1, 0.25). As discussed in Section 4.3, the per-round training time for a client is propor-
tional to mi

ci
. To emulate the stragglers problem, we designate the slowest s% of clients

as stragglers by setting a per-round training deadline that these clients cannot complete
all their training tasks within the allotted time. When the training deadline is reached,
FEDAVG-DS simply excludes all stragglers and aggregates a global model using the non-
stragglers’ gradients. In contrast, FEDPROX and FEDCORE employ different strategies
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such as reducing local training epochs or training with coresets. In our evaluation, we
consider two different stragglers’ settings by choosing s to be 10 and 30, respectively.

4.6.2 Evaluation Results
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Figure 4.3: The training loss curves for FEDAVG-DS, FEDCORE, and FEDPROX at 10%
and 30% stragglers.

MNIST Shakespeare Synthetic (1, 1) Synthetic (0.5, 0.5) Synthetic (0, 0)
10% 30% 10% 30% 10% 30% 10% 30% 10% 30%

FedAvg 94.7 44.9 71.8 73.7 88.2
FedAvg-DS 94.1 93.1 39.0 25.2 23.0 19.9 32.2 23.6 36.3 34.6

FedProx 92.6 92.7 44.1 31.3 72.3 72.2 74.1 74.1 87.2 87.2
Test

Accuracy
FedCore 94.6 94.5 44.7 34.8 72.2 72.8 75.2 75.1 88.5 88.3
FedAvg 3.27 8.48 1.38 4.09 1.37 4.80 1.37 4.80 1.37 4.80

FedAvg-DS 0.94 0.95 0.60 0.67 0.69 0.79 0.69 0.79 0.69 0.79
FedProx 0.98 0.99 0.85 0.94 0.86 0.95 0.86 0.95 0.86 0.95

Mean Training
Time per Round

(normalized) FedCore 0.99 0.99 0.90 0.99 0.93 0.99 0.93 0.99 0.93 0.99

Table 4.3: Comparison of test accuracy and training time for FEDAVG, FEDAVG-DS,
FEDPROX, and FEDCORE at 10% and 30% stragglers. Bold: top accuracy; Red: exceeded

deadline. Normalized time of 1 is round deadline.

Model Performance We present the training loss curves in Figure 4.3 and model accu-
racy, along with normalized training time, in Table 4.3. For model training loss, FED-
CORE consistently achieves the fastest convergence speed and yields the lowest model
loss. In contrast, FEDAVG-DS struggles to converge well under synthetic benchmarks due
to its approach of dropping stragglers, which contain unique training samples essential
for learning. FEDPROX presents competitive performance, but with slower convergence
and higher loss compared to FEDCORE. Concerning test accuracy, FEDCORE consistently
achieves the highest or near-highest values across all datasets and stragglers’ settings,
highlighting its superior performance in maintaining or improving model accuracy even
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Figure 4.4: Round length distribution on MNIST benchmark, 30% stragglers. The y-axis
is presented in log-scale for better illustration.

with stragglers. FEDPROX also demonstrates competitive performance, owing to its abil-
ity to accommodate partial results from stragglers, which contain a significant amount
of unique training samples that improve model accuracy. However, FEDAVG-DS often
results in lower accuracy, particularly in the 30% stragglers setting, as its approach of
dropping straggler clients negatively impacts training performance. In terms of training
time, FEDCORE, FEDPROX, and FEDAVG-DS are deadline-aware, ensuring they do not
exceed the round deadlines. While FEDCORE does not always achieve the fastest training
time, it strikes a balance between efficiency and maintaining high accuracy. Conversely,
FEDAVG exhibits the longest training times, indicated in red, showcasing its vulnerability
to stragglers and lack of deadline-awareness.

Stragglers Handling Figure 4.4 presents the distribution of clients’ round times for the
MNIST benchmark with 30% stragglers. As the figure illustrates, FEDAVG, which is
oblivious to round deadlines, generates a tail distribution that can exceed 11 times the
allotted training time for a round. In contrast, deadline-aware algorithms like FEDCORE,
FEDAVG-DS, and FEDPROX consistently ensure that each training round is completed
before the deadline. Interestingly, the FEDCORE distribution is more tightly clustered
around the round deadline in comparison to FEDAVG-DS and FEDPROX, which signifies
a more effective utilization of the allotted training time to accurately follow the gradi-
ent direction. Table 4.3 shows that although FEDCORE requires slightly longer time than
the other two deadline-aware algorithms, it successfully meets the deadline requirements
and ultimately achieves the best model performance.

As depicted in Figure 4.5, FEDCORE takes advantage of coresets to perform more epochs
of local optimization and deeper gradient exploration, as opposed to FEDPROX’s fewer
epochs of full-set training. This approach leads to a faster convergence rate and improved
model accuracy, demonstrating the effectiveness of the FEDCORE algorithm in addressing
the straggler problem in federated learning.
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Figure 4.5: Faster FEDCORE convergence vs. FEDPROX, due to more coreset-based
gradient steps compared to FEDPROX’s fewer epochs of full-set training.

4.7 MATHEMATICAL PROOF FOR FEDCORE CONVERGENCE

4.7.1 Problem Settings and Notations

Problem Set-up First recall the notations defined in section 4.3. The federated learning
problem is to solve

w∗ = argmin
w∈W

L(w), where L(w) :=
∑
i∈U

piLi(w), Li(w) :=
1

mi

∑
j∈V i

Li
j(w). (4.11)

with Li
j(w) := L(f(w, xi

j), y
i
j) representing the empirical loss for each sample (xi

j, y
i
j) from

the i-th client, under the model f(w, ·). Here |U | = n is the total number of clients, and pi is
the weight of the i-th client, proportional to the size mi of its training set with

∑n
i=1 p

i = 1.
The proposed federated learning algorithm FEDCORE consists of R rounds, each of

which contains E epochs. We use the time index t ∈ {0, 1, 2, · · · , ER} to denote the time
step of each epoch, where t = 0 corresponds to the model initialization. Meanwhile,
denote wi

t to be the model parameter of client i at time step t. One typical round in
FEDCORE is described as follows.

Let t = (r−1)E be the beginning at the r-th round for some r = 1, 2, · · · , R. The central
server broadcasts the latest model, wt, to all the devices:

wi
t ←− wt, ∀i ∈ U. (4.12)

After that, the central server selects a set Ut of K clients randomly from U , according
to the sampling probabilities pi, i ∈ U . The coreset is then constructed for each client
(Si,∗, δi,∗), i ∈ Ut. Each client i ∈ Ut performs local updates on its model wi

t for the remain-
ing epochs in the current round, based on the data in its coreset (Si,∗, δi,∗):

wi
t+k+1 ←− wi

t+k − ηt+kg
i
t+k, for k = 0, 1, · · · , E − 1, (4.13)
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where ηt+k is the learning rate and git+k is the gradient computed from (Si,∗, δi,∗):

git+k =
1

mi

∑
j∈Si,∗

δi,∗j ∇Li
j(w

i
t+k). (4.14)

Finally, at the end of the r-th round, the server aggregates the local models
{
wi

t+E

}
i∈Ut

to
produce the new global model wt+E :

wt+E ←−
1

K

∑
i∈Ut

wi
t+E. (4.15)

Note that the current update in Eq.(4.13) is written in the form of gradient descent
(GD), meaning that the model will be updated once based on the full gradient computed
from (Si,∗, δi,∗). In practice, however, within one epoch, the update in Eq.(4.13) is usually
conducted sequentially using stochastic gradient descent (SGD): the entire coreset will
be randomly split into several mini-batches, and the parameter will be updated on each
mini-batch. In the following analysis, we focus on the gradient descent setting in Eq.(4.13)
for the ease of presentation. Convergence guarantees for SGD updates can be established
by using the similar arguments as in the proofs of our main results.

Notations In subsequent analysis, we use

Gi
t := ∇Li(wi

t) =
1

mi

∑
j∈V i

∇Li
j(w

i
t) (4.16)

to denote the full gradient from the full-set V i of client i at time t. And denote

Gt =
∑
i∈U

piGi
t =

∑
i∈U

pi∇Li(wi
t) (4.17)

as the full gradient of the population at time t. Meanwhile, denote

git =
1

mi

∑
j∈Si,∗

δi,∗j ∇Li
j(w

i
t), (4.18)

where (δi,∗, Si,∗) is defined in Eq.(4.6), as the gradient computed from the coreset of client
i at time t. And denote gt =

∑
i∈U pigit as the population coreset gradient at time t.

In practice, within one round, only a subset of K randomly selected clients will update
their parameters, and the choices of clients vary each round. In order to facilitate the
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analysis under the random selection scheme, the following thought trick is introduced to
circumvent the difficulty: we assume that FEDCORE always activates all devices at the
beginning of each round, while only aggregates parameters from those sampled devices
an the end of one round. It is clear that this updating scheme is equivalent to the original.
More specifically, the updating scheme in FEDCORE is given by, ∀i ∈ U ,

vit+1 = wi
t − ηtg

i
t,

wi
t+1 =

vit+1 if t+ 1 /∈ IE,
1
K

∑
k∈Ut

vkt+1 if t+ 1 ∈ IE,

(4.19)

where IE = {rE | r = 1, 2, · · · , R} is the set of global synchronization steps, and Ut is the
set of K selected clients at time t. An additional variable vit+1 is introduced to represent
the immediate result of one step GD update from wi

t, and wi
t is the final model parameters

maintained by client i at time t, (possibly after the global synchronization).
In addition, two virtual sequences are introduced in the subsequent analysis to denote

the population-averaged model parameters, following the ideas from [130, 173, 179]:

vt =
∑
i∈U

pivit, and wt =
∑
i∈U

piwi
t, (4.20)

where vt+1 results from an single GD step of from wt:

vt+1 = wt − ηtgt. (4.21)

4.7.2 Assumptions and Convergence Results

The following are the detailed assumptions required for the convergence analysis.

Assumption 4.1 (L-smoothness). ∀i ∈ U,Li is L-smooth: for all v, w ∈ W ,

Li(v) ≤ Li(w) + (v − w)⊤∇Li(w) +
L

2
∥v − w∥22.

Assumption 4.2 (µ-strong convexity). ∀i ∈ U,Li is µ-strongly convex: for all v, w ∈ W ,

Li(v) ≥ Li(w) + (v − w)⊤∇Li(w) +
µ

2
∥v − w∥22.

Assumption 4.3 (ϵ-coreset). For any client i and time step t, with probability one, the core-
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set gradient git in Eq.(4.18) is an ϵ-approximation to the full-set gradient Gi
t in Eq.(4.16):

∥∥git −Gi
t

∥∥ ≤ ϵ, ∀i ∈ U, and t ∈ {0, 1, · · · , ER}, with probability one. (4.22)

Assumption 4.4 (D-bounded gradient). For any client i and time step t, with probability
one, 2-norms of the coreset gradient git in Eq.(4.18) and the full-set gradient Gi

t in Eq.(4.16)
are uniformly upper bounded by a constant D > 0:

max
{∥∥git∥∥ ,∥∥Gi

t

∥∥} ≤ D, ∀i ∈ U, and t ∈ {0, 1, · · · , ER}, with probability one. (4.23)

Assumption 4.5 (Γ-heterogeneity). Let L∗ and Li
∗ be the minimum values of L and Li,

respectively. Assume there is a positive constant Γ > 0 such that Γ ≥ L∗ −
∑

i∈U piLi
∗.

Assumption 4.6 (Random sampling). For any time step t, assume Ut contains a subset
of K indices randomly selected with replacement according to the sampling probabilities
{pi}i∈U .

Comments on Assumptions Assumption 4.1 and 4.2 are standard assumptions in con-
vex optimization [180]; typical examples are linear/ridge regression, logistic regression,
and regularized support vector machines. Assumption 4.3 characterizes the approxima-
tion capability of the coreset to the full-set, which is standard in the theoretical works on
coreset-based gradient descent methods [38, 166]. Assumption 4.4 on the bounded gra-
dient is a widely adopted setting in the existing theoretical works for federated learning
and coreset methods [38, 86, 130]. Meanwhile, note that Assumptions 4.3 and 4.4 are pre-
sented in a probabilistic form to account for the potential randomness resulting from the
coreset construction steps in FEDCORE. Assumption 4.5 quantifies the degree of hetero-
geneity among different clients. In the special case when data from all the clients are i.i.d.,
then L∗ −

∑
i∈U piLi

∗ → 0 as the number of samples grows. Assumption 4.6 assumes the
K clients are selected from the distribution {pi}i∈U independently and with replacement,
which is a common set-up in both theoretical and empirical works [86, 130].

Randomness in FEDCORE Note that randomness in FEDCORE can be attributed to
three sources: client selection, coreset construction and model initialization w0. Through-
out the subsequent analysis and statements, unless otherwise specified, the expectation
E[·] is be taken over all three sources of randomness. Meanwhile, the notation EUt [·] is
also introduced to denote the expectation over the random client selection at time t, con-
ditioned on the other sources of randomness.
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4.7.3 Proofs of Main Results

The convergence of FEDCORE is established by the following theorem, which can be
considered as a more detailed version of Theorem 4.1.

Theorem 4.2. Assume Assumptions 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 hold with constants L, µ, ϵ,D
and Γ. Consider FEDCORE with R rounds and each round contains E epochs. For t ∈
{0, 1, · · · , ER}, set the learning rate

ηt =
α

t+ β
, with α =

2

µ
and β = max

{
E,

8L

µ

}
. (4.24)

The model wout output by FEDCORE after R rounds of training satisfies

E
[
∥wout − w∗∥2

]
≤ A1 +

A2

ER + β
, (4.25)

where the constants A1 and A2 are given by:

A1 =
2ϵD

µ2
,

A2 = max

{
βE
[
∥w0 − w∗∥2

]
,
4

µ2

[
4E2D2

K
+ 8(E − 1)2D2 + 6LΓ + ϵ2 + 2ϵD

]}
.

(4.26)

Here w∗ = argminw∈W L(w) as defined in Eq.(4.11) and the expectation is taken over the
randomness in client selection, coreset construction and model initialization w0. Conse-
quently,

E [L(wout)− L(w∗)] ≤
L

2

(
A1 +

A2

ER + β

)
. (4.27)

The proof of Theorem 4.2 is based on the following three key lemmas, whose proofs
are deferred to Section 4.7.3.

Lemma 4.1. Under the setting of Theorem 4.2, for t+ 1 ∈ IE = {rE | r = 1, 2, · · · , R}, the
set of global synchronization steps,

EUt [wt+1] = vt+1. (4.28)

Lemma 4.2. Under the setting of Theorem 4.2, for t + 1 ∈ IE = {rE | r = 1, 2, · · · , R},
the set of global synchronization steps, the expected difference between vt+1 and wt+1 is
bounded by

EUt

[
∥vt+1 − wt+1∥2

]
≤ 4

K
η2tE

2D2. (4.29)
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Lemma 4.3. Under the setting of Theorem 4.2, for any time step t+ 1 ∈ {1, 2, · · · , ER},

E
[
∥vt+1 − w∗∥2

]
≤ (1− ηtµ)E

[
∥wt − w∗∥2

]
+ ηt · A3 + η2t · A4, (4.30)

where
A3 =

2ϵD

µ
, A4 = 8(E − 1)2D2 + 6LΓ + ϵ2 + 2ϵD. (4.31)

Proof of Theorem 4.2. First note the following decomposition:

∥wt+1 − w∗∥2 = ∥wt+1 − vt+1 + vt+1 − w∗∥2

= ∥wt+1 − vt+1∥2︸ ︷︷ ︸
H1

+2 ⟨wt+1 − vt+1, vt+1 − w∗⟩︸ ︷︷ ︸
H2

+ ∥vt+1 − w∗∥2︸ ︷︷ ︸
H3

. (4.32)

For the first term H1 in Eq.(4.32), note that when t+ 1 /∈ IE , we have vt+1 = wt+1, and H1

vanishes. Additionally, if t + 1 ∈ IE , then the expectation of H1 is bounded by Lemma
4.2:

For the second term H2 in Eq.(4.32), when t + 1 /∈ IE , H2 vanishes since vt+1 = wt+1.
Additionally, when t+ 1 ∈ IE , H2 vanishes under the expectation EUt [·], due to the unbi-
asedness of wt+1 stated in Lemma 4.1.

For the third term H3 in Eq.(4.32), its expectation is bounded by Lemma 4.3 for any
time step t+ 1 ∈ {1, 2, · · · , ER}.

Overall, combining the bounds on H1, H2 and H3 together, we have for any t + 1 ∈
{1, 2, · · · , ER},

E
[
∥wt+1 − w∗∥2

]
≤ (1− ηtµ)E

[
∥wt − w∗∥2

]
+ ηt · A3 + η2t ·

(
4E2D2

K
+ A4

)
, (4.33)

where A3, A4 are defined in Eq.(4.31). For simplicity, denote

A5; =
4E2D2

K
+ A4. (4.34)

Now we will prove by induction that under the diminishing step size ηt = α
t+β

with

α = 2
µ

and β = max
{
E, 8L

µ

}
, for any time step t ∈ {0, 1, · · · , ER},

E
[
∥wt − w∗∥2

]
≤ A1 +

A2

t+ β
, (4.35)

where A1, A2 are defined in Eq.(4.26).
First, note that the definition of A2 in Eq.(4.26) ensures that Eq.(4.35) holds for t = 0.

85



Assume Eq.(4.35) holds for some time step t. Then for time step t + 1, by Eq.(4.33), we
have

E
[
∥wt+1 − w∗∥2

]
≤
(
1− αµ

t+ β

)
·
(
A1 +

A2

t+ β

)
+

α

t+ β
· A3 +

(
α

t+ β

)2

· A5,

= A1 +

(
1− αµ

t+ β

)
· A2

t+ β
+

(
α

t+ β

)2

· A5 +
α(A3 − µA1)

t+ β
(4.36)

Note that by the definitions of A1 in Eq.(4.26) and A3 in Eq.(4.31),

A3 = µA1. (4.37)

Meanwhile,(
1− αµ

t+ β

)
· A2

t+ β
+

(
α

t+ β

)2

· A5 =
(t+ β − 1)A2

(t+ β)2
+

[
α2A5

(t+ β)2
− (αµ− 1)A2

(t+ β)2

]
≤ A2

t+ β + 1
+

[
α2A5

(t+ β)2
− (αµ− 1)A2

(t+ β)2

]
=

A2

t+ β + 1
+

1

(t+ β)2

[
4A5

µ2
− A2

]
≤ A2

t+ β + 1
. (4.38)

Here the second equality in Eq.(4.38) is due to the fact that α = 2
µ

, and the second inequal-
ity in Eq.(4.38) comes from the fact that A2 ≥ 4A5

µ2 , which is a direct consequence of the
definitions of A2 in Eq.(4.26) and A5 in Eq.(4.34).

Plugging Eq.(4.37) and Eq.(4.38) into Eq.(4.36) completes the proof of the induction
hypothesis in Eq.(4.35). Specifically, the model wout = wER output by FEDCORE after R

rounds satisfies Eq.(4.25).
Furthermore, by the L-smoothness of L (Assumption 4.1),

E [L(wout)− L(w∗)] ≤
L

2
· E
[
∥wout − w∗∥2

]
≤ L

2

(
A1 +

A2

ER + β

)
. (4.39)

QED.
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4.7.4 Proofs of Lemmas

Proof of Lemma 4.1. This lemma is a direct consequence of Assumption 4.6. More specifi-
cally, for t+ 1 ∈ IE = {rE | r = 1, 2, · · · , R},

EUt [wt+1] = EUt

[
1

K

∑
k∈Ut

vkt+1

]
=

1

K
·K · Ek∈Ut

[
vkt+1

]
=
∑
i∈U

pivit+1 = vt+1,

where the second equality comes from the linearity of expectation, and the third equality
is due to Assumption 4.6. QED.

Proof of Lemma 4.2. Lemma 4.2 is a direct consequence of Lemma 5 in [130]. The proof is
outlined as follows.

For t + 1 ∈ IE = {rE | r = 1, 2, · · · , R}, wt+1 = 1
K

∑
k∈Ut

vkt+1. Taking expectation over
Ut,

EUt

[
∥wt+1 − vt+1∥2

]
= EUt

[
1

K2

∑
k∈Ut

∥∥vkt+1 − vt+1

∥∥2] =
1

K
Ek∈Ut

[∥∥vkt+1 − vt+1

∥∥2]
=

1

K

∑
i∈U

pi
∥∥vit+1 − vt+1

∥∥2 (4.40)

where the first equality follows from Assumption 4.6 that
{
vkt+1

}
k∈Ut

are independent and
unbiased with Ek∈Ut

[
vkt+1

]
= vt+1.

To bound Eq.(4.40), first note that since t + 1 ∈ IE , t0 := t + 1 − E ∈ IE is also a
synchronization time, which implies

{
wi

t0

}
i∈U is identical. Then,∑

i∈U

pi
∥∥vit+1 − vt+1

∥∥2 =∑
i∈U

pi
∥∥(vit+1 − wt0

)
− (vt+1 − wt0)

∥∥2
=

(∑
i∈U

pi
∥∥vit+1 − wt0

∥∥2)− ∥vt+1 − wt0∥
2 ≤

∑
i∈U

pi
∥∥vit+1 − wt0

∥∥2 ,
(4.41)

where the second equality results from
∑

i∈U pi
(
vit+1 − wt0

)
= vt+1 − wt0 . Combining
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Eq.(4.40) and Eq.(4.41), we have

EUt

[
∥wt+1 − vt+1∥2

]
≤ 1

K

∑
i∈U

pi
∥∥vit+1 − wt0

∥∥2 = 1

K

∑
i∈U

pi
∥∥vit+1 − wi

t0

∥∥2
=

1

K

∑
i∈U

pi

∥∥∥∥∥
t∑

τ=t0

ητg
i
τ

∥∥∥∥∥
2

≤ 1

K

∑
i∈U

piE

t∑
τ=t0

∥∥ητgiτ∥∥2
≤ 1

K
E

t∑
τ=t0

η2τD
2 ≤ 1

K
E2η2t0D

2 ≤ 4

K
η2tE

2D2. (4.42)

Here, the second inequality in Eq. (4.42) follows from the Cauchy-Schwarz inequality.
The third inequality is a result of Assumption 4.4. The fourth inequality is justified by the
fact that ηt = α

t+β
is non-increasing. Lastly, the last inequality holds since, by definition,

β = max
{
E, 8L

µ

}
≥ E, and therefore ηt0 ≤ 2ηt0+E−1. QED.

Proof of Lemma 4.3. First, by Eq.(4.21), we have

∥vt+1 − w∗∥2 = ∥wt − w∗ − ηtgt∥2 = ∥wt − w∗∥2 + η2t ∥gt∥
2︸ ︷︷ ︸

F1

−2ηt ⟨wt − w∗, gt⟩︸ ︷︷ ︸
F2

(4.43)

To bound F1 in Eq.(4.43), note that
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Here the first inequality in Eq.(4.44) is due to the convexity of ∥·∥2. The second inequality
comes from Assumption 4.4 and Assumption 4.3. The last inequality follows from the fact

88



that for L-smooth Li (Assumption 4.1),

∥∥Gi
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. (4.45)

To bound F2 in Eq.(4.43), note that
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Here the last inequality in Eq.(4.46) is due to the Cauchy-Schwarz inequality and As-
sumption 4.3. Moreover, by the Cauchy-Schwarz inequality and the AM-GM inequality,

−2
〈
wt − wi

t, G
i
t

〉
≤ 1

ηt

∥∥wt − wi
t

∥∥2 + ηt
∥∥Gi

t

∥∥2 ≤ 1

ηt

∥∥wt − wi
t

∥∥2 + 2Lηt
(
Li(wi

t)− Li
∗
)
,

(4.47)

where the last inequality in Eq.(4.47) follows from Eq.(4.45). In addition, by the µ-strong
convexity of Li, Assumption 4.2,
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The µ-strong convexity of L, together with the optimality of w∗, also implies that

∥wt − w∗∥ ≤
1

µ
∥∇L(wt)−∇L(w∗)∥ =

1

µ
∥∇L(wt)∥ ≤

D

µ
, (4.49)

where the last inequality comes from Assumption 4.4.
Now combining Eq.(4.43) with Eq.(4.44), Eq.(4.46), Eq.(4.47), Eq.(4.48), and Eq.(4.49), it
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follows that
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To bound F3 in Eq.(4.50), it follows by the convexity of ∥ · ∥2 that

F3 ≤ ∥wt − w∗∥2 − ηtµ
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Meanwhile, it is shown by Lemma 1 of [130] that F4 in Eq.(4.50) is bounded by

F4 ≤ η2t · 6LΓ +
∑
i∈U

pi
∥∥wt − wi

t

∥∥2 . (4.52)

By combining Eq.(4.50) with Eq.(4.51) and Eq.(4.52), it follows that

∥vt+1 − w∗∥2 ≤ (1− ηtµ) ∥wt − w∗∥2 + ηt ·
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. (4.53)

Finally, to bound F5 in Eq.(4.53), one can apply the same argument used in bounding
Eq.(4.40). More specifically, for any t, there exists a t0 ≤ t such that t − t0 ≤ E − 1

and wi
t0

= wt0 for all i ∈ U . Then, by following the same arguments as in Eq.(4.41) and
Eq.(4.42), it is easy to verify that:

F5 ≤ η2t · 4(E − 1)2D2. (4.54)

By plugging Eq.(4.54) into Eq.(4.53), we complete the proof of Lemma 4.3. QED.
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4.8 CONCLUDING REMARK

In this chapter, we introduce FEDCORE, an innovative algorithm addressing the strag-
gler problem in federated learning using distributed coresets. FEDCORE effectively adapts
to updated models and integrates coreset generation with minimal overhead, signifi-
cantly outperforming traditional methods.

Our comprehensive analysis and evaluation demonstrate that FEDCORE substantially
reduces FL training time while maintaining high accuracy. With regards to broader im-
pacts, this research pioneers the use of coreset methods in efficient federated learning,
paving the way for more scalable and robust systems, especially in privacy-sensitive do-
mains where data protection is vital. Through this work, we have demonstrated that
training data redundancy is a critical path to achieving multi-objective resource opti-
mization for scalable, efficient, and reliable federated learning.
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CHAPTER 5: CONCLUSION

5.1 SUMMARY OF CONTRIBUTIONS

This thesis presents innovative solutions to enhance resource efficiency in large-scale
machine learning systems, through three key contributions:

• CROSSROI presents an innovative system for real-time video analytics that dras-
tically cuts down on communication and computation costs through the exploita-
tion of data redundancy across camera networks. By leveraging the inference data
redundancy from cross-camera viewing fields, CROSSROI effectively reduces net-
work bandwidth and boosts computational throughput, achieving up to a 65%
decrease in network overhead and a 34% reduction in end-to-end response delay.

• BOFL offers an energy-efficient federated learning solution by fine-tuning hardware
operational frequencies on edge devices. Employing a Bayesian optimization-based
”explore-then-exploit” strategy for hardware configurability in a timely manner.
This work achieves a significant reduction in energy use during model training by
26%, showing a sustainable federated learning approach on edge devices

• FEDCORE addresses federated learning’s straggler effect with distributed coresets
that reduce data processing for slower clients, seamlessly enhancing system inte-
gration. This approach can slash training times by 8x without compromising the
model accuracy, thanks to training data redundancy that boosts training speed
and preserves model performance.

Overall, the thesis validates the importance of multi-objective resource optimizations
in the design of large scale machine learning systems, showcasing significant advance-
ments in managing network bandwidth, computation, energy consumption, and model
accuracy through data redundancy and hardware configurability. These contributions
not only push the boundaries of current technology but also lay the groundwork for fu-
ture research in optimizing machine learning systems for sustainable and efficient real-
world applications.

5.2 FUTURE WORK AND OPPORTUNITIES

This section outlines potential directions for extending the research on multi-objective
resource optimization in machine learning systems. The comprehensive exploration of
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this thesis lays the groundwork for several promising areas of future inquiry:

ML Model Quantization. The escalating sizes of ML models, such as the GPT-3 [181]
with its 175 billion parameters, challenge federated learning, particularly regarding de-
ployment on user devices constrained by memory and computational demands for local
gradient computations. Parameter quantization offers a viable solution by compressing
model sizes (e.g., using 8-bit over 64-bit representations to achieve an 8x reduction). This
technique aims to optimize multiple system objectives like memory usage and communi-
cation overhead. However, its efficacy in diverse federated learning settings, considering
the variability in device hardware, remains to be thoroughly assessed.

Efficient ML Training Parallelization. The era of large ML models necessitates the use
of multi-GPU DNN training to manage the models’ substantial size and overcome single
GPU memory constraints. Strategies like pipeline and tensor parallelization [182, 183,
184, 185] have been proposed to enhance multiple performance objectives including
training speed and energy efficiency. Nonetheless, these parallelization strategies introduce
new challenges, such as low GPU utilization and the ”bubble” problem [182, 186], making
the optimization of such systems for improved efficiency a complex, yet unresolved issue.

Gradient Compression Over Communication. The increase in ML model sizes has led
to escalated gradient-parameter communication between federated learning clients and
the cloud, exacerbating the communication bottleneck. Gradient compression (GC) meth-
ods [187, 188, 189] provide a solution by diminishing the data volume required for trans-
mission, thereby optimizing multiple system metrics, including network bandwidth and
model performance. While existing works, such as HiPress [189], concentrate on gradient
compression within cloud clusters to reduce communication overhead, the application of
GC techniques in federated learning—where clients possess heterogeneous hardware and
might compress their local gradients to varying degrees—remains a significant challenge.

Addressing these areas not only builds upon this thesis’s contributions but also opens
new avenues for research, aiming to further enhance the scalability, efficiency, and effec-
tiveness of large scale machine learning systems.
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objective optimization,” in International Conference on Machine Learning. PMLR,
2013, pp. 462–470.

[100] S. Greenhill, S. Rana, S. Gupta, P. Vellanki, and S. Venkatesh, “Bayesian optimiza-
tion for adaptive experimental design: A review,” IEEE access, vol. 8, pp. 13 937–
13 948, 2020.

[101] D. C. Manheim and R. L. Detwiler, “Accurate and reliable estimation of kinetic
parameters for environmental engineering applications: A global, multi objective,
bayesian optimization approach,” MethodsX, vol. 6, pp. 1398–1414, 2019.

[102] A. Mathern, O. S. Steinholtz, A. Sjöberg, M. Önnheim, K. Ek, R. Rempling, E. Gus-
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