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ABSTRACT

Deep neural network based speech processing systems have found widespread

applications in daily life, being employed for tasks such as automatic speech

recognition (ASR), text-to-speech (TTS) synthesis, spoken language under-

standing (SLU), etc. With a sufficient amount of parallel speech-text train-

ing data, these systems attain performance levels comparable to, or in some

cases, even better than human capabilities. However, such sufficient data

assumption holds for only resource-rich languages such as English and Man-

darin Chinese, and is unrealistic for many existing low-resource languages,

posing a challenge for these systems to attain similar high performance. It is

therefore meaningful to improve speech processing systems in such conditions

to make speech technology accessible to a broader population.

Unsupervised learning has been an active research field to mitigate data

sparsity of low-resource languages. Depending on different source-target sce-

narios, unsupervised learning can be classified into four categories: (1) self-

supervised learning (SSL), (2) modality matching, (3) unsupervised transfer

learning, and (4) unsupervised multimodal learning. This thesis introduces

six projects that leverage unsupervised learning methods to improve speech

processing systems.

The first project pretrains the SSL models on monolingual, cross-lingual,

and multimodal data to study the cross-lingual transferability of SSL mod-

els. The second project improves the SSL representations using synthetic

speech generated by a diffusion-based unit-to-speech synthesizer. The third

project falls under modality matching, where we build the first unsupervised

speech-to-text system using unsupervised automatic speech recognition tech-

nology. The fourth project falls under unsupervised transfer learning, where

we improve zero-shot phonetic recognition system using language embeddings

derived from external linguistic databases, without requiring any training

data from the target languages. The fifth project also falls under transfer
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learning, where we build a multimodal few-shot SLU system by prompt-

ing a frozen pretrained language model with text and acoustic embeddings.

The sixth project falls under unsupervised transfer learning, where we im-

prove the current grapheme-to-phoneme (G2P) transducer by integrating the

grapheme-to-phoneme model with a unit-to-phoneme (U2P) model, aiming

to regularize G2P model outputs without relying on ground truth phoneme

transcripts as training labels.

This thesis demonstrates that unsupervised learning methods can signifi-

cantly improve the performance of speech recognition, speech synthesis, and

speech understanding in low-resourced application scenarios.
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CHAPTER 1

INTRODUCTION

As of now, there are 7,168 languages in the world according to Ethnologue [1],

among which only 4,178 languages have a developed writing system and the

remaining 2,990 languages are likely spoken only. In this context, speech

can be regarded as one of the most enduring and prevalent forms of com-

munication throughout human history. Speech conveys ideas, intentions,

emotions, and more. To extract these contents from speech and, conversely,

to synthesize speech from these contents, speech processing systems have

been meticulously designed and developed.

1.1 Neural Speech Systems for Low-Resource

Languages

Modern end-to-end neural network based speech processing systems can gen-

erally be divided into two components: the front-end and the back-end.

The front-end handles data preprocessing tasks, including speech denois-

ing, speech enhancement, text normalization, grapheme-to-phoneme conver-

sion, etc. In particular, the grapheme-to-phoneme (G2P) transducer, though

it does not directly deal with speech, is an important component of speech

systems. This is because many speech systems are trained using phoneme

transcripts rather than raw text (grapheme transcripts) and it is commonly

reported that phoneme transcripts typically result in a lower error rate than

using text transcripts [2, 3].

The back-end handles actual speech processing, such as automatic speech

recognition (ASR) systems [4, 5, 6, 7, 8, 9, 10, 11, 12], text-to-speech (TTS)

systems [13, 14, 15, 16, 17, 18, 19], spoken language understanding (SLU)

systems [20, 21, 22, 23, 24, 25, 26], etc. These systems have achieved great

success in transcribing speech into text, generating human-like speech from
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text, and determining the speaker’s intention.

While attaining performance levels comparable to or in some cases, even

better than human capabilities for resource-rich languages such as English

and Mandarin, where large parallel speech-text corpora are available, these

systems do not work as well for low-resource languages, a category encom-

passing the majority of the world’s languages. Out of the 7,186 languages in

the world, only 492 languages are considered institutional, meaning they are

used and sustained by institutions beyond the home and community. The

four most spoken languages - English, Mandarin Chinese, Hindi, and Span-

ish - account for a combined population of approximately 3.7 billion speak-

ers. This represents roughly only half of the world’s population. Common-

Voice [27], the largest public speech-text corpus collected by crowdsourcing,

initially contained around 2,500 hours of speech across 29 languages when

released in 2019. As of now, it has expanded to include approximately 30,000

hours from 107 languages. It is worth noting, however, that 89 of these in-

cluded languages have speech data of less than 100 hours. The abundance

of low-resource languages, coupled with their data scarcity, presents a se-

rious challenge for neural networks to achieve comparable accuracy levels

to those achieved in resource-rich languages. Speech-processing systems on

low-resource languages have, therefore, become an active research field, which

aims to improve existing systems under limited training data conditions and

to make speech technology accessible to a wider variety of users who speak

a minority language.

1.2 Unsupervised Speech Technology

Unsupervised learning methods have been actively studied to address the

data sparsity of low-resource languages. Unlike supervised learning, these

methods alleviate the need for human efforts in labeling data.

Denote the input source of the neural network as X and the output target

as Y . Depending on different source-target scenarios, unsupervised learning

can be classified into four categories: (1) self-supervised learning (SSL), (2)

modality matching, (3) unsupervised transfer learning, and (4) unsupervised

multimodal learning.
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1.2.1 Self-Supervised Learning

When the learning task involves only the source X itself rather than relying

on the target Y labeled by humans, unsupervised learning falls under self-

supervised learning. The goal of the self-supervised learner is to learn the

source data distribution P(X). The precision with which it needs to learn

P(X) depends on the downstream application: some applications need high-

precision models of the temporal dynamics of quantized modes of P(X) [11],

others need high-precision models of locally linearized approximations [28],

etc. In order to focus the learner on a type of learning relevant to the

downstream task, many recent classes of algorithms learn P(T (X)|X), where

T (X) captures some intuition about the aspects of P(X) that are most impor-

tant to the downstream application. In speech processing, Wav2vec2 [11]

and HuBERT [12] are probably the two most successful examples of self-

supervised learning methods. The training objective of Wav2vec2 is to

predict the quantized codeword of the current frame features given the sur-

rounding frame features and the training objective of HuBERT is to predict

the K-Means cluster centroids of the current frame features given the sur-

rounding features. This thesis includes one project that studies the perfor-

mance of SSL model trained using monolingual, cross-lingual, and multilin-

gual data and one project that improves the SSL pretraining of Wav2vec2

and HuBERT models using synthetic data generated by diffusion models.

1.2.2 Modality Matching

When both source X and target Y are present but no parallel X-Y data

is available for training, unsupervised learning to learn the conditional dis-

tribution P(Y |X) falls under modality matching of X and Y . Wang et al.,

2023 [29] prove conditions under which P(Y |X) can be learned from unpaired

examples of discrete X and discrete Y , but to the best of our knowledge, no-

body has yet proven conditions under which P(Y |X) can be learned from

unpaired data for continuous X and/or continuous Y . Despite the lack of

theoretical support for this task, unsupervised modality matching has re-

ceived extensive experimental study in recent years, with examples including

unsupervised machine translation [30, 31, 32], unsupervised speech recog-

nition [33, 34, 35, 36, 37, 2, 29] etc. This thesis includes one project that
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builds the first unsupervised speech synthesis system by leveraging unsuper-

vised ASR that matches the modality between the text and the speech.

1.2.3 Unsupervised Transfer Learning

When no label Y is available for training and we still want to learn P(Y |X),

we can train the model in a related domain where X
′
and Y

′
are available

and adapt it to the intended domain. We refer to this approach as unsu-

pervised transfer learning. This thesis includes two projects on unsupervised

transfer learning. The first project improves the zero-shot transferability of a

multilingual phonetic ASR system by incorporating language embeddings ex-

tracted from external linguistic databases, without the need for any training

data from the target language. The second project exploits the transfer-

ability of language models pretrained on massive text corpora to perform

few-shot SLU without being explicitly trained on the SLU task.

1.2.4 Unsupervised Multimodal Learning

Another strategy to improve the model on the intended domain is to incor-

porate information from additional modalities. Suppose an auxiliary modal-

ity Z exhibits correlation with the target Y . Incorporating this additional

modality can enhance the model’s performance. We refer to this approach

as unsupervised multimodal learning. This thesis includes one project on

unsupervised multimodal learning that improves the prediction of a G2P

transducer by incorporating additional acoustic information, without access

to groundtruth phonetic transcripts during training.

1.3 Organization of This Thesis

This thesis explores using unsupervised methods to improve speech process-

ing systems on low-resource languages. Six projects are introduced where

unsupervised speech technology, including self-supervised learning, modal-

ity matching, unsupervised transfer learning, and unsupervised multimodal

learning, is applied to improve ASR, TTS, and SLU systems.
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The first project studies the performance of SSL models trained using

monolingual, cross-lingual, and multilingual data and explores the best set-

ting to pretrain these models for downstream ASR tasks.

The second project explores improving theWav2vec2 andHuBERT pre-

training using synthetic data generated by diffusion models. While SSL in

speech has greatly reduced the reliance of speech processing systems on anno-

tated corpora, the success of SSL still hinges on the availability of a large-scale

unannotated corpus, which is still often impractical for many low-resource

languages or under privacy concerns. In this project, we investigate whether

existing SSL methods have been underutilizing the information in pretrain-

ing and explore ways to improve their information efficiency. Motivated by

the recent success of diffusion models in capturing the abundant informa-

tion in data, we propose DiffS4L, a synthetic speech SSL algorithm based

on diffusion models. DiffS4L introduces a diffusion model, which learns

from a given small pretraining dataset and expands it into a much larger

synthetic dataset with different levels of variations. The synthetic dataset

is then used to pretrain SSL models. Our experiments show that DiffS4L

can significantly improve the performance of SSL models, such as reducing

the WER of the HuBERT pretrained model by 6.26 percentage points in

the English ASR task. Notably, even the nonsensical babbles generated by

the diffusion model can account for a significant portion of the performance

improvement, which indicates the strong capability of diffusion models in

capturing coherent information in speech that has been overlooked by SSL

methods.

The third project falls under modality matching, where we build the first

unsupervised speech-to-text system using unsupervised automatic speech

recognition technology. An unsupervised TTS system learns to generate

the speech waveform corresponding to any written sentence in a language by

observing: (1) a collection of untranscribed speech waveforms in that lan-

guage; (2) a collection of texts written in that language without access to

any transcribed speech. Developing such a system can significantly improve

the availability of speech technology to languages without a large amount

of parallel speech and text data. This paper proposes an unsupervised TTS

system that trains on the pseudo-transcripts from an unsupervised ASR sys-

tem. Our unsupervised system can achieve comparable performance to the

supervised system in seven languages with about 10 to 20 hours of speech
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each. A careful study on the effect of text units and vocoders has also been

conducted to better understand what factors may affect unsupervised TTS

performance.

The fourth project falls under unsupervised transfer learning, where we

improve zero-shot phonetic recognition system using language embeddings

derived from external linguistic databases, without requiring any training

data from the target languages. Many existing languages are too sparsely

resourced for monolingual deep learning networks to achieve high accuracy.

Multilingual phonetic recognition systems mitigate data sparsity issues by

training models on data from multiple languages and learning a speech-to-

phone or speech-to-text model universal to all languages. However, despite

their good performance on the seen training languages, multilingual systems

have poor performance on unseen languages. This project argues that in the

real world, even an unseen language has metadata: linguists can tell us the

language name, its language family and, usually, its phoneme inventory. Even

with no transcribed speech, it is possible to train a language embedding using

only data from language typologies (phylogenetic node and phoneme inven-

tory) that reduces ASR error rates. Experiments on a 20-language corpus

show that our methods achieve phonetic token error rate (PTER) reduction

on all the unseen test languages. An ablation study shows that using the

wrong language embedding usually harms PTER if the two languages are

from different language families. However, even the wrong language embed-

ding often improves PTER if the language embedding belongs to another

member of the same language family.

The fifth project also falls under transfer learning, where we build a mul-

timodal few-shot SLU system by prompting a frozen pretrained language

model with text and acoustic embeddings. Large-scale auto-regressive lan-

guage models pretrained on massive text have demonstrated their impressive

ability to perform new natural language tasks with only a few text examples,

without the need for finetuning. Recent studies further show that such a

few-shot learning ability can be extended to the text-image setting by train-

ing an encoder to encode the images into embeddings functioning like the

text embeddings of the language model. Interested in exploring the possi-

bility of transferring the few-shot learning ability to the audio-text setting,

we propose a novel speech understanding framework, WavPrompt , where

we finetune a wav2vec model to generate a sequence of audio embeddings
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understood by the language model. We show that WavPrompt is a few-

shot learner that can perform speech understanding tasks better than a naive

text baseline. We conduct detailed ablation studies on different components

and hyperparameters to empirically identify the best model configuration.

In addition, we conduct a non-speech understanding experiment to show

WavPrompt can extract more information than just the transcriptions.

The sixth project falls under unsupervised transfer learning, where we im-

prove the current grapheme-to-phoneme (G2P) transducer by integrating the

grapheme-to-phoneme model with a unit-to-phoneme (U2P) model, aiming

to regularize G2P model outputs without relying on ground truth phoneme

transcripts as training labels. Most phoneme transcripts are generated using

forced alignment: typically a G2P transducer is applied to text sequences

to generate candidate phoneme transcripts, which are then time-aligned to

the waveform using an acoustic model. This project demonstrates, for the

first time, simultaneous optimization of the G2P, the acoustic model, and

the acoustic alignment to a corpus. To this end, we propose G2PU, a joint

CTC-attention model consisting of an encoder-decoder G2P network and an

encoder-CTC U2P network, where the units are extracted from speech. We

demonstrate that the G2P and U2P, operating in parallel, produce lower

phone error rates than those of state-of-the-art open-source G2P and forced

alignment systems. Furthermore, although the G2P and U2P are trained us-

ing parallel speech and text, their synergy can be generalized to text-only test

corpora if we also train a grapheme-to-unit (G2U) network that generates

speech units from text in the absence of parallel speech. Our G2PU model is

trained using phoneme transcripts generated by a teacher G2P tool. Our ex-

periments on Chinese and Japanese show that G2PU reduces the phoneme

error rate by 7% to 29% relative to its teacher. Finally, we include case

studies to provide insights into the system’s workings.

The remainder of this thesis is organized as follows. Chapter 2 introduces

the background of speech processing systems and reviews methods commonly

employed to address data sparsity issues. Chapter 3 introduces a project on

comparing the performance of pretraining SSL models using monolingual,

cross-lingual and multilingual data. Chapter 4 introduces a project on SSL,

where the monolingual pretraining of acoustic SSL models is improved with

synthetic data generated using a diffusion model. Chapter 5 introduces a

project on modality matching, where the first unsupervised TTS system is
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built to match text and speech modalities by leveraging unsupervised ASR

technology. Chapter 6 introduces a project on unsupervised transfer learning,

where linguistic knowledge extracted from language databases is utilized to

improve the performance of a multilingual phonetic ASR system in zero-shot

cross-lingual phonetic recognition. Chapter 7 introduces another project on

unsupervised transfer learning, where an SLU system is constructed using

a frozen language model that is prompted with continuous speech prompts

generated by a finetuned Wav2vec2. Chapter 8 introduces a project that

leverages both text and speech modalities to improve existing G2P trans-

ducers, a crucial component of phoneme-based speech systems. Chapter 9

discusses the pros and cons of these proposed methods. Finally, Chapter 10

summarizes this thesis.
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CHAPTER 2

BACKGROUND

2.1 Speech Processing Systems

This section introduces related works on automatic speech recognition (ASR)

systems, text-to-speech (TTS) synthesis systems, and spoken language un-

derstanding (SLU) systems.

2.1.1 Automatic Speech Recognition Systems

Traditional hidden Markov model (HMM) based ASR systems [38] decom-

pose the ASR task into four steps: acoustic feature extraction from speech

waveform, HMM-based acoustic modeling, count-based language modeling

and decoding [39]. As computing power has advanced, neural networks have

gradually replaced HMM networks in acoustic modeling due to their capacity

to model complex patterns and scalability to large datasets. Successful neural

ASR systems include connectionist temporal classification (CTC) [4] based

DeepSpeech [6] and attention-based Listen-Attend-Spell (LAS) [7].

Recently, self-supervised learning (SSL) has brought another advance in

ASR, especially for low-resource languages where the amount of parallel

speech-text data is limited. Instead of being trained directly on the par-

allel data in an end-to-end fashion, the ASR model is first pretrained on

large unlabeled speech corpora to learn better speech representations and is

then finetuned on the limited speech-text data. Examples of SSL models

include Wav2vec2 [11], HuBERT [12] and XLSR [40]. Building on the ad-

vancements in large language models and prompt engineering, Whisper [41]

trained on massive speech corpora achieves state-of-the-art performance on

speech recognition in many languages.
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2.1.2 Text-to-Speech Systems

Modern deep neural network based TTS systems are usually split into two

components: a text encoder to predict speech features (typically spectro-

gram) from text and a vocoder to predict waveforms from speech features.

The text encoder usually contains a duration predictor to align the text to-

ken sequence with the speech features as the former is usually much shorter

than the latter. WaveNet [13] is a generative audio model that uses dilated

causal convolution blocks to directly model the temporal dependency of raw

audio waveforms and generate speech samples in an autoregressive manner.

WaveNet usually serves as the vocoder and can also serve as the text en-

coder if equipped with an external duration predictor. Due to the autoregres-

sive nature of WaveNet, the generation cost of WaveNet is prohibitively

high. Other non-autoregressive speech synthesis methods such as flow-based

WaveGlow [42] and GAN-based Parallel-WaveGAN [43] and HiFi-

GAN [44] have been proposed to reduce the generation cost while main-

taining a satisfactory generation quality. Recently, diffusion models [45, 46]

has also been employed for speech synthesis such as Grad-TTS [47] and

ProDiff [48]

2.1.3 Spoken Language Understanding Systems

SLU is similar to natural language understanding (NLU), differing primarily

in that it involves speech input instead of text input. In a broader sense, SLU

and NLU include a range of sub-tasks, such as intent classification, slot fill-

ing, named entity recognition, emotion classification, sentient classification,

translation, question answering (QA), etc. The most common approach to

SLU is a pipelined approach in which a speech-to-text model is followed

by an NLU model. This approach is common because the accuracy benefits

gained by integrating the speech-to-text and the text understanding modules

into a single end-to-end training pipeline are usually small, but despite being

small, those benefits have been repeatedly demonstrated [49, 20, 21, 22, 23].

Additional textual information can be incorporated into the SLU model to

improve performance. WCN-BERT [20] inputs the word confusion lattice to

the BERT language model to provide richer information about possible alter-

nate transcriptions of the speech signal instead of only the best hypothesis.
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Sari et al., 2020 [49] leverages non-parallel speech and text data to improve

SLU performance by introducing a shared speech-text intent classifier. Sun-

der et al., 2022 [23] pretrains the SLU model with additional text information

to teach the speech encoder to produce semantic-aware speech embeddings

for better SLU performance.

Recently, with the paradigm of natural language processing shift towards

large language models (LLM) [50, 51, 52], spoken language understanding is

unified to the text generation task using language models [53, 54, 55, 56];

instead of prediction of the one-hot intent labels, LLM-based SLU models

treat the intent label as text and directly predict the sequence of subword

tokens that constitutes the intent word or phrase.

Another change brought by LLM is the generalizability to out-of-domain

problems. Due to the limited amount of parallel speech-text data, previ-

ous SLU methods use small models (typically around a few million param-

eters) and can only perform in-domain tasks, where models are trained and

tested on the same task. For example, Pengi [53] model uses a pretrained

GPT2 [51] with 124 million parameters and is trained and tested on the same

audio caption datasets. LMV [57] model uses a pretrained PaLM [58] with

350 million parameters and is trained and tested on the same spoken QA

datasets. It seems small language models are sufficient for in-domain genera-

tion. Leveraging the prior distribution learned from the extensive unlabeled

training text, LLMs broaden the objective of SLU from in-domain genera-

tion to out-of-domain generation, where models are trained and tested on

different tasks. For example, The LTU [55] and X-LLM [56] models perform

out-of-domain QA about audio and speech respectively, and the LLM in-

volved typically contains six to seven billion parameters, which is more than

20 times larger than the language model used LMV and Pengi.

2.1.4 Grapheme-to-Phoneme Systems

Many works on G2P have focused on transcription at the word level and are

evaluated using a lexicon with ground-truth phonetic transcriptions. LSTM-

G2P [59] is the first to approach word-level G2P using a long short-term mem-

ory network (LSTM) based sequence-to-sequence (S2S) architecture. More

recently, LSTM-based G2Ps were replaced with convolutional neural net-
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works based G2P [60] and Transformer-based G2Ps [61] for improved perfor-

mance on word-level G2P tasks. ByT5 [62] compares SentencePiece [63]

and byte-level tokenization schemes when finetuning pretrained large lan-

guage models for word-level G2P.

Recently, research efforts have shifted towards sentence-level G2P due to

the ability to incorporate contextual information. T5G2P [64] finetunes a

text-to-text transfer transformer (T5) model to perform sentence-level G2P

conversion and found improved performance over an encoder-decoder base-

line. Wang, 2021 [65] uses special annotations of both correct and incorrect

pronunciations (and parts of speech) in training data to improve disambigua-

tion of polyphones – or Chinese characters with multiple pronunciations – in

sentences when using a bidirectional LSTM-based text encoder. Rezaei et al.,

2022 [66] use a bidirectional GRU-based encoder-decoder module that yields

lower WER in Persian compared to a fully recurrent or fully transformer-

based network. SoundChoice [67] uses an S2S architecture for sentence-

level G2P that takes advantage of contextual word embeddings and a homo-

graph loss.

2.2 Speech Technology for Low-Resource Languages

This section introduces related works on different methods that have been

applied to low-resource languages to mitigate the data sparsity issue.

2.2.1 Self-Supervised Learning

Self-supervised large pretrained language models have advanced the state-of-

the-art (SOTA) performance in various natural language processing [68, 69]

and ASR [11, 12, 70] tasks. For example, large language models such as

BERT [68], RoBERTa [69] and GPT [51, 52] trained on large unlabeled

text corpora capture complex linguistic relationships and meaning between

words and generate better contextual representations for words, phrases, and

sentences that improve the performance in sentiment analysis, paraphrasing,

and question answering, etc [71].

This strategy is also shown to be effective in the speech domain as well.

Speech models such asWav2vec2 [11] and HuBERT [12] are trained on un-
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labeled speech waveforms using contrastive predictive coding or masked pre-

diction of hidden units. These models extract high-quality contextual speech

features from raw audio signals that improve a variety of speech-related down-

stream tasks such as phoneme recognition, emotion classification, speaker

identification, etc [72]. Besides improving state-of-the-art performance, pre-

trained language models greatly reduce the requirement for labeled data.

Finetuned on only 10 hours of parallel speech-text data, the Wav2vec2

trained on 960-hour LibriSpeech speech dataset [73] can achieve a word

error rate (WER) of 10.9% on the dev-clean set and the WER can be fur-

ther reduced to 3.8% when Wav2vec2 is decoded with a 4-gram language

model. Without pretraining, previous ASR systems such as DeepSpeech2

require 2400 hours of transcribed English speech to achieve similar WER on

English [6].

2.2.2 Modality Matching

Training good end-to-end speech-to-text or text-to-speech models usually

requires a large amount of paired data. However, such data is expensive to

obtain and is usually limited for most of the languages in the world. Modality

matching seeks to learn the conditional distribution of the target labels given

the source data using training examples drawn from the marginal source dis-

tribution and from the marginal target distribution, but without any paired

examples drawn from the joint distribution of the source and target. In ma-

chine translation, this is achieved by matching the marginal distribution of

text tokens in the source language and the target language [30, 31]. In speech

recognition, this is achieved by matching the marginal distribution of the text

tokens and discretized speech tokens as in unsupervised ASR work [35, 37].

Similar methods can be applied to unsupervised speech-to-sign-language sys-

tems [74].

2.2.3 Transfer Learning

In the transfer learning framework, the model is trained on one or a few tasks

and is then applied or finetuned on the target task. The general problem of

transfer learning is to figure out what type of knowledge learned from one
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distribution can be transferred to another distribution. In this sense, self-

supervised learning can be considered as a special case of transfer learning:

self-supervised models transfer the knowledge learned with self-supervised

criteria to the target task with supervised criteria. The methods to extract

transferable knowledge can be partially or fully fixing the model based on

prior knowledge, learning the transfer functions between the pretraining and

the target distributions, or some combination of both.

In the speech recognition domain, transfer learning is widely employed in

multilingual ASR systems where the ASR models are trained on a range of

languages and then applied to the target language with or without finetun-

ing. Since a large number of languages do not have enough parallel speech

and text data, deep learning models trained on them often produce high er-

ror rates [75]. Multilingual speech recognition mitigates the data sparsity by

training the network on a combined dataset from several languages. The net-

work usually has a common encoder that extracts acoustic information from

audio features and can either have a common decoder with a shared phoneme

inventory [76, 77] or language-specific decoders with private phone [78, 79, 80]

or character inventories [81, 82, 83].

Language or dialect embedding has been shown to improve the knowl-

edge transfer for multilingual ASR systems [84, 85, 86, 87]. The embedding

can be a one-hot vector specifying language ID [84, 86] or a vector learned

from acoustic data under a standard multilingual model [85, 87] and can be

used as additional input features to the network [84, 86], as adapter mod-

ules for language-specific adjustments [86] or as interpolation weights for the

encoder [85].

2.2.4 Multimodal Learning

The concept of multimodal learning is inspired by human perception, which

involves senses such as sight, sound, touch, and smell, each of which is consid-

ered one modality. Common modalities studied in machine learning include

speech, text, vision, etc.

Combining speech and visual modalities, VG-HuBERT [88] train a Hu-

BERT or Wav2vec2 model to associate speech with images using paired

image and spoken caption data. It is reported that the learned speech repre-
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sentations have a good performance in the SUPERB benchmark and can be

clustered to retrieve good word segmentations. SpeechCLIP finetunes the

pretrained HuBERT and CLIP model to align paired images and spoken

captions and achieves SOTA on image-speech retrieval and zero-shot speech-

text retrieval [89]. Combining the information in the different modalities,

multimodal learning generally yields models with better robustness compared

to single-modal learning [90].

Combining speech and text modalities, SpeechT5 [91] trains a unified-

modal representation and achieves SOTA performance on a variety of down-

stream speech processing tasks. SeamlessM4T [92] trains a semi-supervised

multilingual sequence-to-sequence model for a variety speech-to-text and

text-to-speech tasks.

Combining vision and text modalities, BERT-gen [93] train a vision en-

coder to embed the images into feature vectors understood by a pretrained

BERT model to perform visual question generation tasks. Tsimpoukelli et

al., 2021 [94] propose Frozen, where a large frozen auto-regressive lan-

guage model is prompted to perform zero-shot and few-shot visual question-

answering tasks via visual prompts. Different from the aforementioned mul-

timodal methods, Frozen is not directly trained on the intended task and

hence fits into the category of unsupervised multimodal learning.
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CHAPTER 3

COMPARING MONO-, CROSS- AND
MULTI-LINGUAL PRETRAINING OF
SELF-SUPERVISED SPEECH MODELS

In order to study the self-supervised speech models on different languages,

we1 pretrain six self-supervised Wav2vec2 [11] models on speech corpora

of six different languages, namely, English (EN), Bulgarian (BG), Chinese

(ZH), Russian (RU), Arabic (AR), and Japanese (JP), and compare their

performances in monolingual, cross-lingual, and multilingual settings. In the

monolingual setting, the Wav2vec2 models are pretrained on the target

language directly and finetuned on the same language. In the cross-lingual

setting, the Wav2vec2 model is pretrained on one language, English in this

work, and is finetuned on the target language. In the multilingual setting, the

Wav2vec2 models are pretrained on data from a set of different languages

and finetuned on the target language. In this work, we use the officially

released XLSR model [40] which is pretrained on 56k hours of raw speech

data from 53 languages.

3.1 Experiments Setup

We obtain raw speech data for pretraining Wav2vec2 models from Lib-

riSpeech [73] for English; VoxPopuli [95] for Bulgarian; United Na-

tions Proceedings Speech [96] for Chinese, Russian and Arabic; and

LaboroTVSpeech [97] for Japanese. We obtain transcribed speech data

from LibriSpeech for English; GlobalPhone [98] for Bulgarian and Chi-

nese; GALE Broadcast News Datasets [99] for Arabic; Corpus of

Spontaneous Japanese [100] for Japanese; andRussian LibriSpeech [101]

for Russian.

We uniformly sample 960 hours of raw speech from pretraining corpora for

1The experiments described in this chapter were conducted as part of an unpublished
small-group project, with co-authors Mahir Morshed, Shuju Shi, Liming Wang, and Junkai
Wu. The code is available in https://github.com/Hertin/Wav2vec
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Wav2vec2 pretraining and sample 10 hours of transcribed speech for fine-

tuning. We additionally sample 5 hours of transcribed speech for validation

and another 5 hours for testing. Such pretraining and finetuning data split

follows that of the Wav2vec2 work [11] for a fair comparison to the official

English Wav2vec2 model. The models are pretrained and fine-tuned using

four 16 GB NVIDIA V100 GPU. To emulate the 64-GPU pretraining of of-

ficial Wav2vec2, we set the update frequency to 16. The maximum token

per batch is reduced from 1.4 million to 1 million due to the 16 GB GPU

memory limit.

3.2 Results

The main results are shown in Table 3.1. The Wav2vec2 models are eval-

uated in character error rate (CER) rather than word error rate (WER)

because the computation of word error rate involves additional complexity

dependent on the writing system, which varies across languages and is un-

available for some languages such as Chinese and Japanese, where the division

of text into words is not well defined. The experiments are denoted in the

format of “{pretrain language}-{finetuning language}”.

3.2.1 Monolingual vs. Cross-lingual vs. Multilingual
Pretraining

By comparing the monolingual experiments to cross-lingual and multilingual

experiments, we find that the monolingual Wav2vec2 pretrained on 960

hours of target language beats the cross-lingual Wav2vec2 pretrained on

the same amount of data and even the multilingual XLSR model pretrained

on 56k hours of data. The exception of xlsr-en can be explained by the

fact that the multilingual dataset contains about 44k hours of English speech,

which is much more than 960 hours in the monolingual setting. On the other

side, although not as good as monolingual training, cross-lingual pretrain-

ing and multilingual pretraining do provide decent-performing Wav2vec2

models that have error rates close to the monolingual pretraining. This find-

ing indicates the existence of an imperfect common acoustic model that can

achieve decent performance when monolingual data are not enough.
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Table 3.1: Comparison of CER and WER of mono-lingual, cross-lingual
and multi-lingual Wav2vec2 pretraining-finetuning

Mono Dev CER Dev WER Test CER Test PER

en-en 3.51 9.87 2.97 3.19
bg-bg 1.85 8.78 1.89 11.28
zh-zh 10.43 - 10.60 15.03
ru-ru 5.57 23.06 6.98 7.87
ar-ar 3.62 12.32 3.45 4.20
jp-jp 10.38 - 9.91 3.32

Cross

en-en 3.51 9.87 2.97 3.20
en-bg 3.48 17.68 3.47 14.86
en-zh 15.20 - 15.41 18.05
en-ru 5.57 27.92 5.59 6.10
en-ar 6.49 20.41 5.47 6.55
en-jp 16.08 - 16.33 4.98

Multi

xlsr-en 1.91 6.58 1.91 2.29
xlsr-bg 2.67 13.79 2.70 17.38
xlsr-zh 14.15 - 14.56 16.10
xlsr-ru 5.84 28.21 4.84 5.26
xlsr-ar 4.67 17.56 4.58 5.24
xlsr-jp 14.67 - 14.35 4.51

3.2.2 Grapheme vs. Phoneme Transcripts

The CER of Chinese Wav2vec2 models (zh-zh, en-zh and xlsr-zh), and

Japanese models (jp-jp, en-jp and xlsr-jp) are obviously higher than oth-

ers. This can be attributed to the writing systems used by Chinese and

Japanese. Chinese and Japanese writing systems contain Chinese charac-

ters and Japanese Kanji, which greatly increases the character inventory

size to the magnitude of thousands while the character inventory sizes of

other languages are in the magnitude of tens. This results in a much larger

output space. To verify this hypothesis, we use LanguageNet grapheme-

to-phoneme transducer [102] to convert the grapheme transcripts to inter-

national phonetic alphabet (IPA) transcripts and use the IPA transcripts to
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Table 3.2: Comparison of PER of monolingual, cross-lingual and
multilingual Wav2vec2 finetuning on different grapheme or phoneme
transcripts.

zh-zh en-zh xlsr-zh

Char 10.60 15.41 14.56
IPA 15.03 18.05 16.10
IPA w/o tone 14.56 16.94 15.44
Pinyin 2.96 3.80 4.02
Pinyin w/o tone 2.31 2.97 2.79

finetune the Wav2vec2 models. The resulting models are evaluated using

phoneme error rates (PER) shown in Test PER column in Table 3.1. We

observe the PERs of Japanese models are lowered but the PERs of Chinese

models are even higher.

3.2.3 Case Study on Chinese Transcripts

We hypothesize that the increased PERs of Chinese models are due to the

quality of the IPA transcripts produced by the Chinese G2P tools. Therefore,

we conduct a case study comparing the performance of the rule-based FST

LanguageNet and the neural network based G2PW [103] on Mandarin

Chinese. We finetune the pretrained Wav2vec2 models using the Chinese-

character-based grapheme transcripts (Char), the IPA transcripts generated

by LanguageNet and pinyin transcripts by G2PW. For IPA transcripts

and pinyin transcripts, we experiment with and without tone annotations.

The results are shown in Table 3.2. By comparing the error rates of Char

and pinyin, we observe that the phoneme-based transcripts indeed have

lower error rates than the grapheme-based transcripts when used to finetune

Wav2vec2 models. The IPA annotation and the pinyin annotation are

equivalent; one can be converted to the other. Theoretically, the error rate

using IPA transcripts should be similar to that using pinyin transcripts.

However, we observe a large performance gap between using IPA and using

pinyin. These findings suggest the phoneme transcript can result in a lower

error rate compared to the text, as it better matches the actual pronunciation
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in the speech, and that the quality of the phoneme transcript produced by

the G2P tools is critical to the performance of the fine-tuned Wav2vec2

models.

3.3 Summary

This study compares the SSL models trained on monolingual, cross-lingual,

and multilingual data. The experimental results suggest that monolingual

pretraining achieves the best downstream ASR performance. On the other

side, cross-lingual pretraining achieves decent performance on the test lan-

guages, making it the preferred option when the amount of speech data

available for the target language is not sufficient.

The case study on Chinese suggests the quality of the G2P tool is essential

to the performance of the finetuned SSL models.
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CHAPTER 4

SPEECH SELF-SUPERVISED LEARNING
USING DIFFUSION MODEL SYNTHETIC

DATA

4.1 Introduction

Self-supervised learning (SSL) in speech has greatly reduced the reliance of

speech processing systems on large-scale annotated corpora. By pretraining

a speech representation network on a large-scale unannotated dataset, SSL

models only require a relatively small annotated dataset for finetuning, which

has significantly improved the efficiency and feasibility of speech processing,

particularly for low-resource languages. However, the success of such meth-

ods still hinges on the availability of a large-scale unannotated corpus. For

example, the training of HuBERT [12], one of the most widely-used speech

pretraining models, typically requires that the unannotated corpus contains

at least 1,000 hours of speech. If the dataset size drops to 100 hours, it tends

to produce degenerate results. Yet, in many scenarios, obtaining such a large-

scale dataset is still impractical due to various constraints, e.g., low-resource

languages, privacy concerns, etc.

Such limitations have prompted us to re-examine SSL from an information

efficiency perspective. Essentially, if we1 consider the pretraining dataset as

a source of information about speech data at various levels (from phonetics

to semantics), then SSL can be seen as a way to extract that information.

In situations where the pretraining dataset is limited, it becomes crucial to

maximize the amount of information captured from the dataset to achieve

the best performance in downstream tasks. This raises the question – do

existing SSL techniques have a high enough information efficiency? Could

there be additional information that SSL models fail to capture, which would

1The project described in this chapter is part of a manuscript currently under review,
with co-authors Kaizhi Qian, Junrui Ni, Chuang Gan, Mark A. Hasegawa-Johnson, Shiyu
Chang, and Yang Zhang. The code is available in https://anonymous.4open.science/

status/DiffS4L-CE41
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otherwise contribute to a better performance in downstream tasks?

On the other hand, generative models are also often considered models

that capture the distributional information about data. Recently, diffusion

models [104, 105], with their superior performance in computer vision, have

quickly attracted wide research attention. Researchers have found that com-

pared to other generative models, diffusion models can generate samples with

much better global coherence [106] and local details [107], an indication that

diffusion models may be able to capture more complete information from

a limited dataset that could complement those learnable by existing SSL

methods.

Motivated by this, in this paper, we conduct an extensive exploration of

using synthetic data generated by diffusion models to improve the perfor-

mance of existing SSL methods in a low-resource setting. In particular,

we propose a Synthetic Speech Self-Supervised Learning algorithm called

DiffS4L. DiffS4L introduces a diffusion model, which learns from a given

small pretraining dataset and then expands it into a much larger synthetic

dataset. The new dataset contains synthetic speech utterances with different

levels of variations, ranging from identical utterances in the original small

dataset to near-complete babbles. Finally, the synthetic dataset is used to

pretrain SSL models using existing algorithms. Since the diffusion model only

has access to the information in the original real dataset, the entire process

can be viewed as restructuring and recreating the information in the original

pretraining dataset into a more digestible form for existing SSL methods.

Our experiments on DiffS4L reveal many interesting findings. With only

100 hours of real data, DiffS4L can significantly improve the performance

of existing SSL algorithms over models pretrained on the real data alone.

In English ASR, for example, DiffS4L can reduce the WER by 6.26 per-

centage points for HuBERT pretrained models, which is a 26.4% relative

improvement. Notably, the babbles generated by diffusion models, which are

complete nonsense to humans, can account for a significant portion of the

performance improvement, while babbles generated by other generative mod-

els, such as WaveNet [13], only deteriorate the performance. These findings

suggest the information in pretraining datasets has been underutilized, and

diffusion models are very effective in capturing the information that has been

overlooked by existing SSL training methods and other generative models.
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4.2 Related Works

4.2.1 Data Augmentation with Synthetic Data

Training neural networks with synthetic data to improve performance has

been extensively studied in various computer vision tasks such as visual rep-

resentation learning [108, 109, 110, 111], image classification [112, 113], ob-

ject detection [114, 115, 116], anomaly detection [117], semantic segmentation

[118, 119], action recognition [120, 121], visual reasoning [122], and embodied

perception [123, 124, 125]. Recently, this direction has also been studied in

NLP tasks such as machine translation [126] and language model pretraining

[127] and finetuning [128].

Augmenting datasets with synthetic data has been shown effective in im-

proving speech processing systems. One research direction modifies speech

waveforms by adding random noise [129], warping spectrogram, masking

blocks of spectrograms in frequency and time domains [9], modifying pitch

and adding reverberation [130], and disentangling speaker information from

speech content [70].

Another line of research augments the dataset using speech data generated

from speech synthesizers and reports improvement on speech translations

[131], fake audio detection [132], speech recognition [133, 134, 135, 136, 137,

138, 139, 140], etc. Zheng et al., 2021 [141] use synthetic data to improve

the recognition of out-of-vocabulary words in ASR systems. Zhao et al.,

2022 [131] generate synthetic training data by retrieving and stitching clips

from a spoken vocabulary bank. Li et al., 2018 [135] train a Tacotron-2

[15] conditioned on Global Style Tokens [142] to generate speech with dif-

ferent speaking styles. Jin et al., 2022 [138] use a GAN-based generator

conditioned on dysarthric speech characteristics to generate synthetic speech

for dysarthric ASR. Krug et al., 2022 [139] generate articulatory speech for

phoneme recognition. These works improve traditional task-specific speech

systems by generating additional paired speech and text data while our work

aims to improve general-purpose self-supervised speech representations with-

out additional text data that benefits downstream ASR and other speech-

related tasks.
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Figure 4.1: The algorithm overview. Solid arrows represent the data flow
that generates the synthetic dataset. Dashed arrows mark the dataset on
which each network is trained.

4.2.2 Denoising Diffusion Probabilistic Models for Speech

Denoising diffusion probabilistic models (DDPMs) have recently demonstrated

great power in image synthesis [104, 107] and image impainting [143] tasks.

Recently various DDPM-based vocoders and text-to-speech (TTS) synthesiz-

ers have been proposed [144, 145, 146, 147, 148, 48] and achieved high quality.

WaveGrad [144] and DiffWave [146] are two concurrent works that study

the DDPM-based vocoder to synthesize audio waveform from spectrograms;

WaveGrad uses a neural architecture inspired by GAN-TTS [149] and

DiffWave inspired by WaveNet. FastDiff [148] and Prodiff [48] are

end-to-end TTS systems that use FastSpeech [17], a transformer-based

TTS encoder, to extract text feature to condition the DDPM and adopts the

noise scheduling algorithm proposed in BBDM [147] to shorten the sampling

steps for fast speech synthesis.

4.3 The DiffS4L Algorithm

In this section, we will formally introduce our proposed DiffS4L algorithm

to improve the speech self-supervised learning problem under a low-resource

scenario.

4.3.1 Problem Formulation

Denote a speech utterance as X. Speech self-supervised learning involves

training a speech representation network on an unannotated dataset, D0.

A successful speech self-supervised learning scheme would typically require

that D0 contains as much as around 1,000 hours of speech or more. In this
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paper, we will focus on the case where D0 contains much fewer data, e.g.

only around 100 hours of speech.

4.3.2 The Algorithm Overview

DiffS4L approaches the problem by synthesizing a much larger dataset

Dsyn, which is then used to pre-train the speech representation network. As

shown in Figure 4.1, the algorithm consists of four steps.

Step 1: Use D0 to train an initial speech representation network f0(·),
which can produce a primitive speech representation, denoted as R0 = f0(X).

Step 2: Use D0 to train a diffusion-model-based speech synthesizer g(·),
which generates speech X conditional on the partially masked primitive

speech representation R0 and speaker identity, denoted as I, i.e., X̃ =

g(R0, I).

Step 3: For each utterance X in D0, manipulate its speech representation

R0 and speaker identity I, and then fed to the speech synthesizer to generate

utterances with different levels of variations. Denote the resulting dataset as

Dsyn.

Step 4: Use Dsyn to train a new speech representation network.

It is worth noting that the diffusion model only has access to the origi-

nal pretraining dataset D0 during training and generation, so the synthetic

dataset Dsyn would contain no more information than D0, but may restruc-

ture and recreate it in a way that is more beneficial for SSL with existing

methods. The following subsection will provide more details on steps 1-3,

respectively.

4.3.3 Primitive Speech Representation

In our setting, the size of D0 is very small, and many existing SSL methods

tend to degenerate in such a low-resource scenario. In contrast, Wav2vec

[11] can still produce non-degenerate results, so we adopt the Wav2vec for

our primitive speech representation learning. Note that the algorithm used

to train the final speech representation network (step 4) need not be the

same as the one for the primitive speech representation learning. After the

Wav2vec is trained, we elicit the 5th-layer feature and quantize it into 500
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Figure 4.2: The intermediate denoising spectrograms of a 20-step DDPM
denoising process. As t decreases to zero, the spectrograms transform from
white noise to a speech spectrogram.

classes using k-means, which becomes the primitive speech representation R0

for the subsequent steps.

4.3.4 Diffusion-Model-Based Speech Synthesizer

Diffusion models refer to a family of generative models that denoise from noise

signals into clean signals through multiple denoising steps. In this work, we

adopt the canonical denoising diffusion probabilistic model (DDPM) [104]

to generate a speech spectrogram. Specifically, DDPM introduces a set of

intermediate variables, denoted as X0:T , where X0 is the original speech

spectrogram. Each Xt is generated by downscaling and adding Gaussian

noise to Xt−1, so that by the time it reaches XT , the signal becomes very

similar to Gaussian white noise.

Speech spectrograms are generated by the backward denoising process,

which introduces a denoising neural network that learns to predict Xt−1 from

Xt. Therefore, by feeding a Gaussian white noise XT to the denoising net-

work and going through all the T denoising steps, clean speech spectrograms

can be generated, as visualized in Figure 4.2. We encourage the readers to

refer to the original papers for further details and derivations.

In this work, we introduce two diffusion models, a fully-conditional model

and a partially-conditional model. For the fully-conditional model, the denois-

ing network is conditioned upon the entire primitive speech representation

R0, so that the diffusion model will generate speech that follows the content

depicted in R0. For the partially-conditional model, the denoising network is

still conditioned upon R0, but with a consecutive span of 80% of the frames

masked out. In this case, the diffusion model will follow the content in R0

only where it is unmasked, and try to generate novel content that fits into the

given context at the remaining frames. These two models are both crucial in

generating synthetic data with different levels of variations.
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Figure 4.3: An example of synthetic utterances at different levels of
variations. The transcription of the original utterance is ‘There were no
ferries and hobgoblins about’. The yellow dashed lines on the spectrogram
in (d) mark the boundaries of the masks on R0.

Besides R0, both models are also conditional on speaker labels. Speaker

labels can be either one-hot vectors or speaker embeddings produced by a pre-

trained speaker embedding network, depending on whether D0 comes with

speaker labels. We will compare different conditioning settings in Section 4.4.

Since the diffusion model generates spectrograms, a vocoder is needed to

convert the spectrograms into speech waveforms. To this end, we adopt a

HiFiGAN [44], which is also trained only on the small dataset D0.
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4.3.5 Synthetic Speech Generation

The synthetic speech generation uses the original speech dataset D0 as seeds.

Specifically, we first draw a speech utterance from D0 as the seed speech,

elicit its primitive speech representation R0 and speaker identity I, and then

generate a synthetic utterance by feeding a modified version of these con-

ditioning variables to the diffusion model synthesizer. The primary consid-

eration of designing the modification schemes for the conditioning variables

is the tradeoff between novelty and naturalness – if the generated speech is

identical to the original utterance, we can achieve maximum naturalness but

introduce no new information to the dataset; if the generated speech is a

complete babble, we can introduce maximum novelty but may significantly

compromise naturalness. Therefore, we introduce the following four different

levels of novelty, as shown in Figure 4.3:

• Original Speech (O): The seed speech is directly copied to the synthetic

dataset without modification. No resynthesis is involved for this level.

• Same Speaker (SS): R0 and I are fed as is to the fully-conditional diffu-

sion model. The resulting synthetic speech is almost the same as the seed

speech. However, since R0 tends to obscure the pitch information, the syn-

thetic speech will be in a different intonation, as shown in Figure 4.3(a).

• Novel Speaker (NS): R0 is still fed as is to the fully-conditional diffusion

model, but I is replaced with a different speaker ID. As a result, the

synthetic would still have the same content, but in a different voice and

intonation, as shown in Figure 4.3(c).

• Novel Content (NC): We mask out a consecutive span of 80% frames in

R0 and replace I before feeding them to the partially-conditional diffusion

model. As shown in Figure 4.3, the synthetic speech is almost completely

different from the seed speech in terms of content, speaker, and prosody,

except for the content information in the 20% unmasked frames. The

utterances are almost nonsensical babbles to human listeners. We are thus

interested in seeing whether utterances at this high level of randomness

could still contribute to SSL.

As we will show, all four levels of the speech are beneficial for the subsequent

speech pretraining and thus should all be included into Dsyn with appropriate

ratios.
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Table 4.1: Main results on (a) English automatic speech recognition and
(b) SUPERB benchmark. The bolded results show the best performance
among all but the topline models.

English SUPERB
ASR KS IC SID ER Qbe SF ASV SD

Task/Metric CER↓ WER↓ ACC↑ ACC↑ ACC↑ ACC↑ MTWV↑ F1↑ CER↓ EER↓ DER↓

High-Resource Setting (960-hour real speech)
Wav2vec2-Real 3.18 10.49 96.23 92.35 66.20 60.55 0.0233 87.64 25.37 6.67 6.65
HuBERT-Real 3.03 10.30 96.30 98.26 66.27 60.74 0.0736 88.53 25.20 5.80 6.30
Wav2vec2-DiffS4L 2.98 9.93 96.17 94.73 65.79 61.29 0.0630 88.50 24.71 6.60 6.63
HuBERT-DiffS4L 2.95 9.87 96.47 98.50 64.36 61.40 0.0766 88.93 24.03 5.78 6.26

Low-Resource Setting (100-hour real speech)
Wav2vec2-Real 7.37 23.48 91.92 88.64 47.68 58.99 0.0311 81.31 37.06 8.78 8.45
HuBERT-Real 7.43 23.71 91.82 78.43 57.53 61.84 0.0419 78.87 40.69 8.91 8.53
Wav2vec2-Aug 6.92 22.06 92.18 92.83 48.65 58.34 0.0377 81.99 36.39 8.37 8.84
Wav2vec2-DiffS4L 5.19 16.67 93.57 91.01 45.41 59.86 0.0331 83.13 33.60 8.02 7.14
Wav2vec2-OneHot 5.19 16.65 93.23 91.41 48.94 61.64 0.0364 83.00 34.64 8.14 7.28
HuBERT-DiffS4L 5.33 17.45 94.68 95.94 44.22 62.02 0.0469 84.61 32.68 7.42 7.09
HuBERT-OneHot 5.36 17.47 94.26 95.89 44.25 62.60 0.0445 83.98 32.33 7.64 7.44

4.4 Experiments

In this section, we will present our experimental results on training different

SSL models integrating DiffS4L.

4.4.1 Implementation Details

The entire training pipeline is constructed based on two existing code repos-

itories: Fairseq2 [150], ProDiff3 [48].

Pretraining SSL models We use Fairseq [150] to pretrain all the speech

SSL models. In particular, We use the same hyperparameter as specified in

the wav2vec2 base librispeech and hubert base librispeech configura-

tion files in Fairseq to pretrainWav2vec2 andHuBERT respectively. The

training of Wav2vec2 models requires 64 Tesla V100-SXM2-32GB GPUs

and that of HuBERT models requires 32 GPUs. The pretraining dataset

for both models is the 100-hour seed dataset, D0 for the initial speech rep-

resentation network and is the augmented dataset Dsyn for the final speech

representation network as described in Sec 4.4.7 Dataset Composition. The

2https://github.com/facebookresearch/fairseq
3https://github.com/Rongjiehuang/ProDiff
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Table 4.2: ASR results (CER/WER) on selected languages from MLS and
CommonVoice. The languages are (from left to right, top to bottom)
English, German, Spanish, French, Italian, Dutch, Polish, Portuguese,
Bashki, Central Kurdish, Welsh, Meadow Mari, Swahili, and Tamil.

Languages en de es fr it

Wav2vec-100R 7.4/23.5 8.3/30.4 7.1/27.2 16.2/45.5 8.3/35.1
Wav2vec-DiffS4L 5.2/16.8 6.4/23.3 4.5/16.7 11.9/34.8 6.2/27.2

Languages nl pl po ba ckb

Wav2vec-100R 17.8/50.9 11.4/44.2 13.8/45.8 10.2/43.8 7.2/39.0
Wav2vec-DiffS4L 14.7/44.8 7.1/31.0 8.9/37.1 8.9/37.1 6.7/29.7

Languages cy mhr sw ta

Wav2vec-100R 20.6/62.1 10.7/45.4 8.8/31.5 9.2/47.2
Wav2vec-DiffS4L 16.7/52.3 9.4/37.5 7.0/25.9 7.5/41.0

SSL models are trained for 400k updates with a learning rate of 5 × 10−4.

Each batch contains 1.4M audio samples. The checkpoint with the best

validation loss is selected for downstream tasks.

Finetuning SSL models We use the base 10h configuration in Fairseq

for Wav2vec2 and HuBERT fine-tuning on a 10-hour limited supervision

dataset. We follow the same finetuning procedure as in [11] and [12] where

we add a linear projection layer on top and finetune with the CTC loss. The

model is trained for 40k updates on two V100-SXM2-32GB GPUs with each

batch containing 3.2M audio samples and a learning rate of 5 × 10−5. The

checkpoint with the best CER on the validation set is selected for further

evaluation.

Training Diffusion Speech Synthesizer The speech synthesizer consists

of a Fastspeech2 encoder and a 20-step DDPM model. The fastspeech2

encoder contains 4 Transformer encoder layers each with 4 heads. Using the

initial speech representation network, we extracted the speech units from D0

and substitute them for the text inputs. We replace the Duration Predictor

with an upsampling network consisting of a transposed convolution with a

kernel size of 9, a stride of 5, and a padding of 2, followed by a convolution

layer with a kernel size of 8, a stride of 5, and a padding of 2, that resam-
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ples the HuBERT units from 50Hz to 62.5Hz to match the length of 80-bin

mel-spectrogram. The Fastspeech2 encoder encodes the speech units into

hidden embeddings, which are combined with the broadcasted speaker em-

beddings to condition the training and inference of the DDPM model. The

speech synthesizer is trained for 200k iterations using one V100-SXM2-32GB

GPU with a batch size of 64 and a learning rate of 1. The synthesizer is

optimized for the weighted sum of L1 reconstruction loss and structural sim-

ilarity index (SSIM) loss [48] with the weight being 0.5 for each loss. We use

adam optimizer with β1 = 0.9, β2 = 0.98, and ϵ = 10−9 and inverse square

root scheduler with 2000 warmup updates.

We use aHifiGAN vocoder4 [44] to convert mel-spectrogram to waveform.

The vocoder is trained on the same seed dataset D0 for 1M iteration using

four V100-SXM2-32GB GPU.

4.4.2 Configurations

The majority of our experiments and ablation studies are performed in

English, where the seed dataset D0 is the train-clean-100 subset of the

LibriSpeech-960 dataset [73]. The synthetic dataset consists of 960 hours

of speech containing: 1) the 100 hours of real speech in D0; 2) 430 hours of

SS/NS speech, which is generated by replacing the speaker ID with a uni-

formly randomly chosen one from all the speakers in D0 (can be the same as

the original speaker); and 3) 430 hours of NC speech. We will evaluate the ef-

fect of changing the composition of the dataset in Section 4.4.7. Experiments

in other languages are discussed in Section 4.4.4.

We use Dsyn to pretrain two models, Wav2vec2 and HuBERT. The

training configuration for Wav2vec2 is the same as in the initial speech

representation learning, except for the dataset. For HuBERT, we adopt

two rounds of training, following the 500-cluster configurations described in

[12].

For comparison, we introduce two topline models, denoted asWav2vec2-

960R and HuBERT-960R, which are Wav2vec2 and HuBERT trained

on 960-hours of real data. Since the topline systems have access to much more

information, we expect they can achieve better performance. We also intro-

4https://github.com/jik876/hifi-gan
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duce two baseline models, denoted as Wav2vec2-100R and HuBERT-

100R, which are Wav2vec2 and HuBERT trained on D0 only. We are

interested to see how far DiffS4L models are away from the topline and

baseline models.

4.4.3 Automatic Speech Recognition (ASR)

To see whether DiffS4L can extract additional information to improve the

pretraining performance, we first finetune all the pretraining models to the

English ASR task on 10 hours of annotated data from LibriLight [151]. The

ASR performance is evaluated by two metrics, character error rate (CER)

and word error rate (WER). Note that we do not use language models in all

the ASR results. The results are shown in Table 4.1 section (a). As shown,

not only can DiffS4L improve the performance, but it can also improve

it by a large margin. In particular, DiffS4L is able to reduce the CER

by over 2 percentage points and WER by over 6 percentage points for both

Wave2vec and HuBERT models compared to the corresponding baselines.

Notably, DiffS4L can bring both metrics down to the midpoint between the

topline and baseline results, which shows the great potential that even 100

hours of pretraining data can have compared to what has been realized.

4.4.4 Extension to Other Languages

To test whether the performance improvement of DiffS4L can generalize

to other languages, we select all the seven non-English languages from the

Mulingual LibriSpeech (MLS) dataset [152] and six languages from the

CommonVoice dataset [27]. The languages in the CommonVoice dataset

are chosen based on the criterion that they have just over 100 hours of vali-

dated data in the dataset. For each language in MLS, we sample 100 hours

from training split for pretraining and use the limited supervision subset for

finetuning. Both cases use the provided dev and test split for validation and

testing. For each language in CommonVoice, we create a 100-hour split for

pretraining, and a 10-hour split for finetuning. The provided dev and test

split are used for validation and testing, respectively. We only evaluate the

Wav2vec2 systems due to the substantial time cost for pretraining and due
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to our observation that the relative improvements in both Wav2vec2 and

HuBERT are similar. Also, since most of these languages do not have 960

hours of data in the dataset, we cannot compute the topline results, so we

show only the baseline and DiffS4L models.

Table 4.2 demonstrates a consistent performance advantage of DiffS4L

across all the languages. In particular, DiffS4L can reduce the CER by

an average of 2.6 percentage points, and WER by an average of 8.3 percent-

age points, which is a significant improvement for ASR. Notice that these

languages are from different language families and each has very unique pho-

netic, lexical, and syntactic structures, so these results show that the diffusion

models can successfully capture various structures in all these languages.

4.4.5 Extension to Other Tasks

So far, our evaluations have only focused on the ASR tasks. We would

also like to see whether the performance improvement of DiffS4L can be

generalized to other tasks. To this end, we introduce the SUPERB bench-

mark [72], which is a collection of speech-processing tasks. We evaluate our

models on KS (keyword spotting), IC (intent classification), SID (speaker

identification), ER (emotion recognition), Qbe (query by example spoken

term detection), SF (slot filling), ASV (automatic speaker verification) and

SD (speaker diarization), We did not include the ASR and PR (phoneme

recognition), as we have evaluated on extensive similar tasks in the previ-

ous sections. The results are shown in Table 4.1 section (b). Note that the

topline results are copied from the original paper [72].

The results consistently demonstrate that DiffS4L-based models outper-

form the baseline models in almost all the tasks, affirming the versatility of

DiffS4L. Interestingly,DiffS4L underperforms the baselines in the speaker

identification (SID) task. One potential explanation is that the speaker re-

placement operation when generating the DS and NC data may obscure the

speaker information. Between the two models, HuBERT has a slight per-

formance advantage, consistent with the observations in [72].
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Table 4.3: ASR Performance on improving multilingual XLSR-53 and
XLSR-128 models.

Model ba ckb

XLSR-53 6.98/32.54 5.29/26.99
XLSR-53-100R 6.94/31.91 5.05/26.41
XLSR-53-DiffS4L 6.61/30.11 4.71/24.55

XLSR-128 6.69/31.28 4.62/24.46
XLSR-128-100R 6.45/30.28 4.59/25.00
XLSR-128-DiffS4L 6.32/29.77 4.29/21.69

4.4.6 Extension to Large Multi-lingual Pretraining

So far, all our experiments are performed on models pre-trained in at most

960 hours of English only. We would like to find out whether DiffS4L is

still useful if the pre-trained model sees even more data in many languages.

To this end, we select two multilingual pre-trained models, XLSR-53 [40] and

XLSR-128 [153], which were pretrained 53 and 128 languages respectively.

We then select two low-resource languages, Bashki and Central Kurdish. For

each language and each pre-trained model, we derive two other pre-trained

models, one by further pre-training the XLSR models on 100 hours of the

low-resource data, and the other by further pre-training on 100 hours of

low-resource data plus the DiffS4L-augmented data. All three pre-trained

models are then finetuned on the ASR task with 10 hours of labeled data,

and the results are reported in Table 4.3, which shows a clear advantage of

DiffS4L despite the abundance of pre-training data.

4.4.7 Dataset Composition

In all the previous experiments, we fixed the synthetic dataset composition

to 100 hours of real speech, 430 hours of SS/NS speech, and 430 hours of

NC speech. In the following, we will use x + y + z to denote x hours of real

speech, y hours of SS/NS, and z hours of NC. So the aforementioned dataset

composition can be abbreviated as 100+430+430.

To better understand the contribution of each component, we perform an

ablation study where we change the dataset composition. Since the time cost
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for training HuBERT systems, which need to be trained for two rounds,

is much larger than that of Wav2vec2, and there are a large number of

different settings, to keep our computation tractable, we will only perform

experiments on Wave2vec2.0 and on the English ASR tasks in all the

remaining ablation studies.

In our first experiment, we fix the total hours of the dataset to 960 and

fix hours of real data to 100, but we vary the ratio of the SS/NS and NC

from 100+860+0 to 100+0+860. The results are shown in Figure 4.4. There

are two important observations. First, the performance curve exhibits a U-

shape, with the lowest CER and WER achieved when both SS/NS and NC

are of comparable amounts. This indicates that both the recombination of

speaker information and the innovation of content plays crucial roles in im-

proving the performance of SSL models. In particular, note that NC data

is essentially nonsensical babbles reflecting the limited knowledge of phone

transitions learned by the diffusion models from the small real dataset, and

that one of the purposes of SSL models is also to learn the phone transi-

tion structures. The fact that the nonsensical babble can still help the SSL

performance implies the DDPM synthesizer is able to generate, in a man-

ner consistent with the original dataset, examples of phone transitions and

speech sound variants that are not well represented in the original dataset.

Our second observation of Figure 4.4 is that comparing the two extreme

cases, the performance without the SS/NS data (the left endpoint) is worse

than that without the NC data (the right endpoint). Recall that SS/NS data

are generated conditional on the true content information and therefore are

of high quality, whereas NC data generally sound messier and noisier. This

observation may be ascribed to the quality differences in the synthetic data.

Now that we have verified the contribution of synthesizing novel content,

we will investigate the effect of synthesizing novel speaker combinations in

the next experiment. In particular, we start with the standard dataset com-

position, i.e. 100+430+430, but instead, we do not replace the speaker in any

of the synthesis types; hence there is no longer NS data and the NC data are

of reduced speaker variations. The corresponding result, shown in Table 4.5

(Wav2vec-SS), shows a marked performance degradation (1.7 percentage

points in CER and 5.0 percentage points in WER) compared to the stan-

dard dataset composition, which verifies that the novel speaker combination

is crucial to the performance.
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Figure 4.4: Performance over different dataset compositions by varying the
ratios of SS/NS and NC speech while fixing the amount of real speech,
ranging from 100+860+0 to 100+0+860.
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Figure 4.5: Performance over different synthetic dataset sizes, 100+x+0,
where x ranges from 0 to 1820.

Finally, to test the contribution of including the original dataset, we remove

the real data and expand the synthetic data proportionally to 960 hours, i.e.

0+480+480. The result, as shown in Table 4.5 (Wav2vec-NoReal), shows
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Table 4.4: English ASR performance in CER/WER of Wav2vec2
pretrained on DiffS4L-generated data versus that on Wavenet-generated
data.

Model 100+860+0 100+430+430 100+0+860

DiffS4L 5.58/17.43 5.19/16.67 7.88/24.91
Wavenet 6.07/18.95 6.71/21.90 12.57/39.02

an even larger performance degradation. In fact, we find that without the real

data, the SSL training has difficulty converging. This shows that including

the real data is essential for successful SSL training with synthetic data.

4.4.8 Dataset Size

Since we have verified that synthetic data improve SSL training, a natural

follow-up question is whether increasing the amount of synthetic data is al-

ways beneficial. To answer this question, we fix the real data to 100 hours and

NC data to 0 hours, but vary the hours of SS/NS data, i.e., 100+x+0, with

x ranging from 0 to 1820. Figure 4.5 shows the corresponding Wav2vec2

results on English ASR. As can be observed, the performance does not al-

ways improve as the amount of synthetic data increases. When the amount

of synthetic data is small, increasing synthetic data can drastically improve

performance. However, as synthetic data continues to increase, the perfor-

mance gradually saturates and then starts to degrade, with the optimal per-

formance achieved at around 630 hours. Combining the previous results, we

can conclude that although adding synthetic data can inject new knowledge

and variations, adding too much can dilute the contribution of the real data,

which have been shown essential for the training, and, hence, will negatively

impact the performance.

4.4.9 Comparison with WaveNet

To test whether the diffusion model can be replaced with other generative

models, we conduct a new set of experiments by switching from the diffu-

sion model to WaveNet [13]. We also trained two versions of WaveNet, a
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Table 4.5: Additional ablation studies on the English ASR task
(CER/WER), including removing speaker variations, removing real speech,
and replacing the speaker embedding with one-hot.

Model English ASR

Wav2vec2-DiffS4L 5.19/16.67
Wav2vec2-SS 6.91/21.69
Wav2vec2-NoReal 18.26/52.79

fully-conditional one on the speech representation R0 and speaker identity I,

and a partially-conditional one only on I. To generate the SS+DS data, we

randomly replace the I the same way as in the diffusion model experiments,

and then feed the R0 and replaced I to the fully conditional WaveNet. To

generate the NC babbles, we randomly select 3 seconds of real speech as the

prompt and use the partially-conditional WaveNet to generate the subse-

quent waveforms conditional on I. We then pretrain Wav2vec2 using three

synthetic data compositions, 100+860+0, 100+430+430, and 100+0+860,

and compare the English ASR results with the diffusion model counter-

parts, as shown in Table 4.4. As shown, both WaveNet results are worse

than the corresponding diffusion model ones, which suggests that WaveNet-

generated speech may have a lower overall quality. More importantly, unlike

the case of diffusion models, where an adequate amount of NC babble im-

proves performance, WaveNet-generated NC babbles are always detrimental

to performance, and the more NC babble is introduced, the worse the per-

formance. This comparison underlines the unique advantage of the diffusion

model in generating babble that better captures the inherent structure in

speech, which is essential to the success of DiffS4L, as already shown in

Figure 4.5.

4.4.10 Speaker Identity

To test the impact of different forms of the speaker identity I, we retrain a

diffusion model with I replaced with the one-hot speaker embedding, rather

than the embedding generated from the pretrained speaker embedding net-

work. We reevaluate the English ASR performance on the 100+430+430
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dataset composition. As can be observed from Table 4.1 (row Wav2vec2-

OneHot andHubERT-OneHot), there is no significant difference between

the performances of different forms of the speaker identity, which rules out

the possibility that the superior performance of the DiffS4L is due to the

additional knowledge leaked in from the speaker embedding network.

4.4.11 Full ASR results on LibriSpeech English

We provide the full ASR results on LibriSpeech English dataset in Ta-

ble 4.6, including the CER/WER evaluated on dev-clean, dev-other,

test-clean and test-other subset of LibriSpeech-960 dataset. The ex-

periments are labeled as ‘EN-X-Y’, where ‘X’ denotes the number of hours of

untranscribed real speech for pretraining and ‘Y’ denotes the number of hours

of transcribed real speech for finetuning. We use the 10-hour limited supervi-

sion set from LibriLight for Y=10 and the ‘train-clean-100’ subset from Lib-

riSpeech for Y=100. We additionally provide the results of Wav2vec-Aug

in EN-100-10 for comparison with Wav2vec2 and Wav2vec-DiffS4L.

Language Models It has been widely known that introducing language

models will rectify the ASR results, and thus tends to obscure the perfor-

mance gap between different ASR algorithms. We, therefore, would like to

see whether DiffS4L is still helpful in the presence of a language model. To

this end, we introduce a 4-gram language model to the English ASR task. As

can be observed from the rows marked with ‘4-gram’ in Table 4.7, not only

does the performance advantage persist when the 4-gram language model is

introduced, but also the gap is largely the same as that without the language

model. These results verify the robustness of DiffS4L regardless of the use

of the language models.

Size of Finetuning Dataset To study the impact of the size of the

finetuning dataset on performance, we finetune SSL models on the train-

clean-100 subset of LibriSpeech-960 dataset and compare the results

to those obtained from the 10-hour supervision set of LirbriLight. We ob-

serve that in the 100-hour low-resource setting (EN-100-100) Wav2vec2-

DiffS4L systems still have a relatively large gain compared to the baseline
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Wav2vec-Real. In the high-resource setting (EN-960-100) where there is

a sufficient amount of labeled speech, the gain diminishes.

4.4.12 Full ASR results on MLS and CommonVoice

We provide the full ASR results on MLS and Commonvoice dataset in

Table 4.7. To better examine the robustness of DiffS4L under different

settings, we perform some additional experiments on the MLS ASR task

(Wav2vec-SS/NS in Table 4.7).

Additional Test Set The MLS and Commonvoice datasets come with

a dev set and a test set for each language, both of which can be utilized as test

sets to evaluate the ASR performance. In the main paper, we reported the

dev set performance. Here, we include the results on the test set to show the

statistical significance of the performance advantage of DiffS4L. As shown

in the columns under ‘Test’ in Table 4.7, DiffS4L maintains a consistent

advantage over the baseline, which is trained on the 100 hours of real speech

alone, and the performance gaps are similar to that in the dev set. These

results confirm the significance of the benefit induced by DiffS4L-generated

data.

Dataset Compositions In the main results, we only examined the effect

of varying dataset compositions for English ASR. In this section, we extend

the experiment to different languages by introducing the Wav2vec-SS/NS,

which are trained on the 100+860+0 dataset composition, i.e., without NC

speech. As can be observed from the rows marked with ‘Wav2vec-SS/NS’

in Table 4.7, the performance always deteriorates when NC speech is re-

moved. This is a rather impressive finding because different languages have

different structures, some of which are easier to capture than others. The fact

that NC speech is able to improve the performance for all these languages

indicates that the diffusion model can successfully capture all the different

types of structural information.
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Table 4.6: Full ASR results on LibriSpeech English dataset, including the
CER/WER of Wav2vec2 model pretrained on 100/960 hours and
fine-tuned on 10/100 hours. Results of Wav2vec-Aug are included for
EN-100-10 experiment for a comparison with Wav2vec2 and
Wav2vec-DiffS4L.

Dev-clean Dev-other Test-clean Test-other

Model LM CER WER CER WER CER WER CER WER

EN-100-10
Wav2vec-Real None 7.13 22.17 15.06 37.57 7.17 22.62 15.74 39.24

4-gram 9.79 19.91 18.45 36.05 9.80 20.20 19.40 37.71

Wav2vec-Aug None 6.92 22.06 14.83 37.17 6.95 22.48 15.64 39.01
4-gram 9.24 19.36 18.28 36.02 9.47 19.64 19.22 37.35

Wav2vec-SS/NS None 5.58 17.43 12.84 32.58 5.59 17.78 13.31 33.99
4-gram 7.84 15.41 15.92 31.26 7.91 15.74 16.47 32.54

Wav2vec-DiffS4L None 5.19 16.67 11.85 30.03 5.31 17.39 12.17 31.27
4-gram 7.70 15.00 14.99 28.73 7.57 15.01 15.40 29.91

EN-960-10
Wav2vec-Real None 3.18 10.49 6.69 18.03 3.07 10.39 6.64 18.53

4-gram 5.17 9.14 9.35 16.98 5.1 9.06 9.31 17.43

Wav2vec-DiffS4L None 2.98 9.93 6.31 17.19 3.03 10.14 6.27 17.55
4-gram 4.97 8.42 8.80 15.91 5.08 8.76 8.92 16.36

EN-100-100
Wav2vec-Real None 4.44 13.95 14.43 34.47 4.56 14.60 15.50 36.90

4-gram 6.42 12.25 17.62 33.44 6.67 12.87 18.81 35.75

Wav2vec-DiffS4L None 2.93 9.56 10.51 25.94 3.03 9.98 10.74 26.77
4-gram 4.81 8.22 13.32 24.76 5.02 8.69 13.75 25.91

EN-960-100
Wav2vec-Real None 1.65 5.60 5.03 13.62 1.65 5.74 4.76 13.4

4-gram 3.33 4.60 7.33 12.77 3.43 5.07 6.98 12.49

Wav2vec-DiffS4L None 1.61 5.58 4.80 12.91 1.63 5.66 4.63 12.93
4-gram 3.33 4.60 7.19 12.26 3.41 5.01 7.02 12.16
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Table 4.7: ASR performance of Wav2vec2 pretrained on
DiffS4L-generate data on LibriSpeech, MLS and CommonVoice dataset

Dev Test Dev Test

Model CER WER CER WER CER WER CER WER

EN PO
Wav2vec-100R 7.13 22.17 7.17 22.62 13.83 45.75 16.48 50.92
Wav2vec-SS/NS 5.58 17.43 5.59 17.78 10.37 35.17 12.45 40.16
Wav2vec-DiffS4L 5.19 16.67 5.31 17.39 9.88 34.60 11.96 39.78

DE BA
Wav2vec-100R 8.33 30.44 9.93 33.83 10.16 43.81 11.82 47.99
Wav2vec-SS/NS 6.67 24.48 7.96 27.45 - - - -
Wav2vec-DiffS4L 6.37 23.27 7.55 26.11 8.90 37.07 9.12 37.09

ES CKB
Wav2vec-100R 7.10 27.22 7.08 27.33 7.23 39.04 7.75 40.86
Wav2vec-SS/NS 6.20 23.46 6.29 23.44 - - - -
Wav2vec-DiffS4L 4.49 16.65 4.48 16.83 6.71 29.70 6.48 26.65

FR CY
Wav2vec-100R 16.16 45.50 14.49 41.84 20.58 62.05 17.25 49.37
Wav2vec-SS/NS 12.12 35.80 10.61 31.65 - - - -
Wav2vec-DiffS4L 11.91 34.77 10.61 31.13 16.70 52.28 12.48 37.45

IT MHR
Wav2vec-100R 8.33 35.08 7.80 33.62 10.74 45.41 12.91 49.43
Wav2vec-SS/NS 8.09 34.39 7.35 32.10 - - - -
Wav2vec-DiffS4L 6.24 27.22 5.54 24.43 9.44 37.52 10.04 39.19

NL SW
Wav2vec-100R 17.83 50.92 11.55 39.09 8.80 31.54 8.83 29.71
Wav2vec-SS/NS 15.31 46.78 9.49 33.85 - - - -
Wav2vec-DiffS4L 14.69 44.83 9.37 33.25 6.99 25.92 7.55 24.55

PL TA
Wav2vec-100R 11.42 44.22 9.92 43.20 9.16 47.20 11.19 54.07
Wav2vec-SS/NS 7.80 32.75 7.67 35.72 - - - -
Wav2vec-DiffS4L 7.14 30.95 7.56 34.90 7.51 40.98 8.58 45.17
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Table 4.8: ASR performance across the number of clusters for speech units.

#Clusters 100 200 300 500

CER/WER 32.9/51.0 27.9/43.7 28.3/42.2 23.0/34.1

4.4.13 Number of Clusters for Speech Units

In the preliminary experiment, we train a WaveNet conditioned on the speech

units of 100 cluster, 200 clusters, 300 clusters and 500 clusters, to synthesize

the English speech. We then measure the quality of synthesized speech using

a Wav2vec2-CTC model. The results are show in Table 4.8. The 500-

cluster speech units yield the best ASR performance, indicating the 500-

cluster units better capture the speech information.

In addition, we perform the ABX test from Zero Resource Speech Chal-

lenges 2020 [154, 155] on the 500-cluster units and get the ABX within/across

speaker score of 7.87/10.29, which is not too far away from the 200-cluster

‘hubert l6’ units reported in [155], which has an ABX score of 5.99/7.31.

4.4.14 Masking Length

Recall that the NC data is generated by conditioning on R0 with 80% frames

masked out, as shown in Figure 4.3(d). We would like to investigate whether

the masking length has an impact on the performance. We thus retrain two

partially-conditional diffusion models, one with 50% masking length and the

other with 100% (which becomes totally unconditional). We then gener-

ate two synthetic datasets, whose compositions are both 100+430+430, but

whose NC data are generated with 50% and 100% masking length, respec-

tively. The corresponding Wave2vec English ASR results are shown in

Figure 4.6. As shown, there are only slight differences in the performance,

with the optimal achieved by 80% masking length. We conjecture that two

factors influence the performance when changing the mask length. One is

the amount of novel content, which increases as masking length increases;

the other is the quality of the generated speech, which tends to decrease

as masking length increases. Therefore, pushing the mask length to both

extremes negatively impact the performance.
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Figure 4.6: Performance over different masking ratios when
synthesizing NC speech.

4.4.15 Additional Experiment using EDM

We experiment with another diffusion model EDM [156], instead of DDPM

to generate synthetic data. The dataset configurations and evaluation pro-

cedures are exactly the same as described in Section 4.4, except that the

diffusion process is changed. The architecture of the speech synthesizer re-

mains the same while the diffusion training and inference pipeline follow the

official implementation of EDM5. We keep the default hyperparameters of

the original EDM implementation except for the data standard deviation,

which is calculated from our training data. The diffusion model is trained

for 300k iterations on eight V100-SXM2-32GB GPU with a batch size of

32 per GPU and a learning rate of 5 × 10−4. We use adam optimizer with

β1 = 0.9, β2 = 0.999, and ϵ = 10−8 and inverse square root scheduler with

32000 warmup updates. The sampling process for data generation uses 18

steps.

The results of Wav2vec-DiffS4LEDM and HuBERT-DiffS4LEDM

trained using synthetic data are shown in Table 4.9. We get similar ASR

and SUPERB performances as using DDPM, suggesting that the diffusion

models consistently generate babble that better captures the inherent speech

5https://github.com/NVlabs/edm
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Table 4.9: Results of EDM on (a) English automatic speech recognition and
(b) SUPERB benchmark. The Wav2vec-960R and HuBERT-960R are
topline models.

(a) English (b) SUPERB
ASR KS IC SID ER Qbe SF ASV SD

Task/Metric CER↓ WER↓ ACC↑ ACC↑ ACC↑ ACC↑ MTWV↑ F1↑ CER↓ EER↓ DER↓

Wav2vec-DiffS4LEDM 5.20 16.81 92.99 93.94 47.28 61.24 0.0327 81.66 35.15 7.88 7.30
HuBERT-DiffS4LEDM 5.21 17.03 94.55 95.94 43.78 61.80 0.0501 82.68 34.32 7.42 7.26

structure.

4.5 Summary

In this study, we examined SSL from an information efficiency perspective

and found that performance can be greatly improved by utilizing the informa-

tion present in the pretraining dataset, particularly in low-resource settings.

We discovered that synthetic data is an effective way to extract informa-

tion and enhance SSL performance. Specifically, diffusion models were found

to be particularly capable of capturing complex structures in speech that

traditional pretraining methods cannot; thus even synthetic babbles contain

valuable information for SSL training. DiffS4L opens the door to a new

approach to speech SSL. One limitation of DiffS4L is that it is a time-

consuming process, as it involves training of multiple networks sequentially.

As a next step, we plan to investigate more efficient methods of information

sharing between diffusion models and SSL models to reduce the need for

synthetic data generation and prolonged pretraining.
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CHAPTER 5

UNSUPERVISED TEXT-TO-SPEECH
SYNTHESIS BY UNSUPERVISED

AUTOMATIC SPEECH RECOGNITION

5.1 Introduction

Text-to-speech (TTS) synthesis is an essential component of a spoken di-

alogue system. While being capable of generating high-fidelity, human-like

speech for languages such as English and Mandarin, the existing state-of-the-

art TTS systems such as Tacotron 1&2 [157, 15], Deep Voice 3 [158],

FastSpeech [159] and TransformerTTS [160] are trained with a large

amount of parallel speech and textual data. The reliance on a large amount

of transcribed speech makes such systems impractical for the majority of the

languages in the world. Training a supervised text-to-speech (TTS) system

requires dozens of hours of single-speaker high-quality recordings [161], but

collecting a large amount of single-speaker, clean, and transcribed speech

corpus can be quite time-consuming and expensive [162]. A potential way

to relax such a requirement is to use non-parallel untranscribed speech and

text corpora in the same language. Such corpora are much easier to obtain

in practice since no human annotators are required in the data collection

process, thanks to the abundance of text data on the Internet. Learning

to perform TTS using non-parallel speech and text, or unsupervised TTS,

poses unique challenges: first, standard supervised training criteria, such

as autoregressive mean-squared error, are no longer applicable; further, to

learn the latent alignment between the spoken frames of an utterance and

its transcript, the model now needs to search over every utterance and every

transcript in the entire corpus instead of limiting the search space within a

single utterance-transcript pair. As a result, instead of learning to memorize

the correspondence between text and speech, an unsupervised TTS model

needs to decompose and generalize information shared by the two sources to

reduce the search space.
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Figure 5.1: Network architecture for unsupervised speech synthesis

This paper proposes the first model for solving the unsupervised TTS

problem. We1 decompose training the model into two tasks, one unsuper-

vised ASR task and one supervised TTS task. The second supervised TTS

task uses pseudo-transcripts obtained by solving the first task. Our model

takes advantage of Wav2vec-U [163], the best publicly available unsuper-

vised ASR system, and can generalize seamlessly to future updates of the

Wav2vec-U model. We conduct our unsupervised TTS experiments on

seven languages. We further provide an in-depth analysis of the effect of sev-

eral components on unsupervised TTS performance, including the grapheme-

to-phoneme (G2P) converter and the vocoder.

5.2 Related works

Several recent works have attempted to develop TTS systems for low-resource

scenarios. One direction of research is to replace ground truth phoneme

or grapheme labels required for supervised TTS with other units obtained

with less or no supervision, such as articulatory features [164], or acous-

tic units discovered by self-supervised speech representation models such

as vector-quantized variational auto-encoder (VQ-VAE) [165, 166] and Hu-

BERT [167, 168, 169]. The unsupervised, textless approach can be applied

to any language, including those without any written form. However, the per-

1The project described in this chapter is part of [3], with co-authors Junrui Ni, Liming
Wang, Yang Zhang, Kaizhi Qian, Shiyu Chang, and Mark Hasegawa-Johnson. The sam-
ples generated by our models are available in https://cactuswiththoughts.github.io/

UnsupTTS-Demo. The code is available in https://github.com/lwang114/UnsupTTS.
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formance of such a system is limited by the quality of the acoustic units used,

which can be quite noisy due to the difficulty of acoustic unit discovery. To

address this limitation, [170, 171, 172, 173] have studied the use of other sen-

sory modalities such as images in place of textual transcripts as a weaker form

of supervision for conditional generation of speech, or “TTS without T”, us-

ing various attention mechanisms over the visual features. Another approach

to address this issue is to allow a small amount of transcribed speech and

train the TTS in a semi-supervised fashion [174, 161]. Specifically, [174] lever-

aged unpaired speech and text data by constructing pseudo-corpora via dual

transformation between ASR and TTS systems with on-the-fly refinement

followed by knowledge distillation, while LRSpeech [161] trained an ASR

and a TTS system that used only several minutes of paired single-speaker,

high-quality speech for TTS, and several hours of low-quality, multi-speaker

data for ASR.

Our approach relies on the most recently published unsupervised automatic

speech recognition (ASR) system [163], which learns to recognize phones by

leveraging one-hot phone sequences from an unpaired text corpus. Earlier

works on unsupervised ASR typically try to match the empirical prior and

posterior distributions of phonemes either using cross-entropy [175] or ad-

versarial loss [176]. Using powerful large-scale, self-supervised, pre-trained

acoustic features such as Wav2vec2 [177] and a generative adversarial net-

work (GAN) based system, the adversarial approach achieves comparable

performance to its supervised counterpart on large-scale speech datasets for

multiple languages [163].

5.3 Proposed method

The proposed unsupervised TTS system contains two stages: training an

unsupervised ASR system and training a supervised TTS system. We first

evaluate the proposed unsupervised TTS system in English. To examine the

generality of this method in other languages, we also train the two-stage

system in Hungarian, Spanish, Finnish, German, and Japanese.

48



5.3.1 Unsupervised ASR with Wav2vec-U

An unsupervised ASR system is trained with unpaired speech and text. We

use Wav2vec-U [163] as the unsupervised ASR system. The Wav2vec-U

system follows a two-step approach: GAN training and self-training. In the

GAN training step, a simple 1-layer CNN acts as the generator, which takes

the segment representations extracted from a pre-trained Wav2vec2 model

[177] and outputs a sequence of distributions over text units, where consecu-

tive segments with the same argmax value are collapsed. The discriminator,

a 3-layer CNN, tries to tell which source (real or generated) the input se-

quence is from, and the generator is trained against the discriminator. This

is achieved by iteratively maximizing the likelihood of the generated phoneme

sequence to train the generator and minimizing the binary cross-entropy loss

to train the discriminator.

In addition, since GAN training can be very unstable, we search over

the weights for regularization losses such as gradient penalty loss, segment

smoothness penalty, and phoneme diversity loss as described in [163]. We

also validate the model with 50-100 transcribed utterances from the corpus

to ensure convergence instead of using the unsupervised metric as described

in [163]. After GAN training, greedy decoding is applied to the genera-

tor’s output over the training set. We then train a hidden Markov model

(HMM) with framewise speech representations extracted from a Wav2vec2

model as input and pseudo-text decoded by the generator as output. Finally,

we decode the entire corpus again using the newly-trained HMM to obtain

pseudo-transcripts for the supervised TTS system. Except for English, we

opt not to further finetune a Wav2vec2 model with the pseudo-transcripts

from the HMM.

5.3.2 Supervised TTS with Tacotron2

A supervised TTS system takes the pseudo-transcripts from the unsupervised

ASR system and outputs mel-spectrograms. A modified Tacotron2 [15] is

used with an additional guided attention loss [178]. We perform an unsuper-

vised model selection process by feeding the model with pseudo-transcripts

instead of ground truth transcripts when computing validation loss. Dur-

ing the evaluation, ground truth transcripts are used as inputs to the TTS.
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Character error rates (CER) and word error rates (WER) are used to mea-

sure how much linguistic content is preserved by the TTS. We train a fully

supervised TTS system using real text instead of pseudo-text and calculate

the CER and WER on the same subset for a meaningful comparison. To

obtain the CER and the WER on each language, we either directly use a

publicly available Wav2vec2 speech recognizer (for English) or finetune a

pre-trained Wav2vec2 model on each language individually.

5.4 Experiments

5.4.1 Unsupervised TTS on English

We first evaluated the two-stage unsupervised TTS system on English. To

train the first-stage Wav2vec-U system, we used speech utterances from

the 24-hour single-speaker LJSpeech corpus [179] and text samples from

the LibriSpeech language modeling corpus [73]. We set aside about 300

utterances for validation and about 500 utterances from the LJSpeech cor-

pus for testing. We kept the ground truth transcripts for validation and test

sets and used the rest for training without ground truth transcripts. The

speech representations were extracted using a publicly available Wav2vec2

Large model trained on LibriLight [151], and the segment representations

were built following the pre-processing procedures in [163].

Table 5.1: Unsupervised ASR results on the LJSpeech dataset using
English Wav2vec2 pre-trained features

Language Duration (hr)
Unsup ASR (PER)

No ST ST

English 24 12.37 3.59

The non-parallel text samples used for training, as well as the ground truth

transcripts for the validation and test utterances, were converted to phones

using a grapheme-to-phoneme (G2P) converter [180]. The best weights for

the auxiliary penalties of the Wav2vec-U system, i.e., code penalty, gra-

dient penalty, and smoothness weight, c.f. [163], were determined by grid

search, and we chose the best model based on its PER over the validation
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Table 5.2: Unsupervised TTS results on the LJSpeech dataset using
English Wav2vec2 pre-trained features

Language Unsup TTS Supervised TTS

CER WER CER WER

English 4.56 11.95 3.93 10.76

set after 150k steps with a batch size of 160. Wav2vec-U GAN training

is sometimes unstable in ways that we could only detect by using 50-100

supervised validation examples, which were the only places during training

where we used paired data. The results of this stage is shown in Table 5.1.

After determining the best Wav2vec-U model, its output phone sequence

was then refined using a self-training (ST) process [163] as follows. First,

we used framewise Wav2vec2 features after PCA transformation as input

and pseudo phone sequences transcribed by the Wav2vec-U generator as

targets to train a triphone HMM. The triphone output from the HMM was

decoded into words with an HCLG decoding graph, and we further fine-tuned

a Wav2vec2 Large model using the pseudo character targets obtained from

the above step, under the Connectionist Temporal Classification (CTC) loss

[4]. Both steps were validated with the corresponding pseudo-text for the

validation set. As shown in Table 5.1, ST reduces the phone error rate on

the test set by 70% relative and provides very accurate transcripts for the

second-stage TTS system. We used the Fairseq toolkit [150] to train the

GAN of Wav2vec-U and used the Kaldi toolkit [181] to train the triphone

HMM and to build the decoding graph.

To train the second stage, we used the Tacotron2 [15] model imple-

mented by ESPnet [182] as the TTS component of the system. The ES-

Pnet Tacotron2 follows the original Tacotron2 model, except that an-

other guided attention loss [178] was calculated on top of the encoder-decoder

attention matrix to ensure that the attention matrix was not too far from

diagonal. During training, the Tacotron2 system takes pseudo phone tran-

scripts as inputs. These pseudo phone transcripts are converted by G2P from

the word-level hypotheses generated by the fine-tuned Wav2vec2 model (in

the final step of Wav2vec-U training). The outputs of the Tacotron2 sys-

tem are 80-dimensional mel-spectrograms. The TTS component was trained

for 80 epochs, with the same validation and test splits as the Wav2vec-U
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Figure 5.2: Mel-spectrograms for ground truth (upper) and synthetic
speech by the unsupervised TTS model (lower) for the English sentence “in
being comparatively modern.”

system. During validation of the Tacotron2 model, we calculated the re-

construction loss based on pseudo-text instead of real text. During testing,

we fed the trained TTS component with real, phonemicized text transcripts

for the test set to obtain mel-spectrograms fromTacotron2 and synthesized

raw audios with HiFiGAN [183]. We calculated the CERs and raw WERs

without additional language models using a publicly available Wav2vec2

Large model fine-tuned on LibriSpeech. Table 5.2 shows the two error

rates on the synthesized test utterances using our proposed unsupervised sys-

tem (Unsup TTS). Compared with another fully-supervised Tacotron2

model trained and validated with real, phonemicized text transcripts, our

unsupervised system only lags behind 0.63% absolute in terms of CER and

1.19% absolute in terms of WER. Figure 5.2 plots the mel-spectrogram of

a synthetic speech example by our unsupervised model, which shows that

except for the temporal patterns, the mel-spectrogram by the unsupervised

TTS looks very similar to the ground truth with very little loss of linguistic

content.
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Table 5.3: Unsupervised ASR results on the CSS10 dataset using English
Wav2vec2 pretrained features

Language Duration (hr)
Unsup ASR (CER)

No ST ST

Japanese 15 26.12 17.81
Hungarian 10 25.08 15.26
Spanish 24 20.80 14.57
Finnish 10 29.78 21.00
German 17 26.31 19.47
Dutch 14 45.65 39.24

Table 5.4: Unsupervised TTS results on the CSS10 dataset using English
Wav2vec2 pretrained features

Language
Unsup TTS Supervised TTS

CER WER CER WER

Japanese 17.98 47.81 17.87 36.23
Hungarian 27.78 76.82 18.05 63.14
Spanish 23.03 55.52 18.19 36.74
Finnish 36.05 84.46 22.84 58.67
German 17.25 56.78 11.28 40.94
Dutch 53.01 89.41 34.53 76.71

5.4.2 Unsupervised TTS on CSS10 Languages

We evaluated our unsupervised TTS system on six additional languages:

Japanese, Hungarian, Spanish, Finnish, German and Dutch from the CSS10

dataset [184]. The total duration of each language is listed in Table 5.3. The

experiments followed the same steps as the English experiment in Sec 5.4.1.

We used the same English Wav2vec2 Large model to extract speech repre-

sentations, the same training pipeline to train the Wav2vec-U system, fol-

lowed by self-training, on the extracted audio features, and the Tacotron2

model for TTS. The unsupervised ASR results are shown in Table 5.3. There

were still a few differences in details in this multilingual experiment. While

the previous English experiment used audio and text from different datasets,

due to resource limits, these multilingual experiments used a potentially eas-

ier setting where both the audio and text were drawn from the same CSS10

dataset with their paired relationship broken up. We did not convert the
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Table 5.5: The effect of different pretrained vocoders (Griffin-Lim,
HiFiGAN) on unsupervised TTS results for LJSpeech and various
languages from CSS10

Language
Griffin-Lim HiFiGAN

CER WER CER WER

English 5.02 12.83 4.56 11.95
Japanese 17.98 47.81 20.58 54.09
Hungarian 27.78 76.82 26.92 76.60
Spanish 23.03 55.52 29.41 68.82
Finnish 36.05 84.46 37.66 87.48
German 17.25 56.78 18.45 59.90

Table 5.6: The effect of different text units on unsupervised TTS using
Griffin-Lim vocoder

Language
Phoneme Grapheme

CER WER CER WER

Hungarian 22.73 68.80 27.78 76.82
Finnish 27.58 67.87 36.05 84.46
Dutch 22.04 56.85 53.01 89.41

graphemes into phonemes but instead directly used the characters in each

language to train and evaluate the model. We split the audio and text data

into train and validation sets with a ratio of 99 to 1, which gave us about 50

to 100 validation utterances depending on the dataset size. The self-training

step of the first stage only contained a character-based HMM (instead of

a triphone HMM with HCLG decoding) for generating pseudo labels, and

we did not have a second step of fine-tuning a Wav2vec2 model as in the

English experiment. During the evaluation in the second stage, we used a

Griffin-Lim vocoder to synthesize the audios from the mel-spectrogram

generated by Tacotron2, and the results reported in Table 5.4 were calcu-

lated using audios from the Griffin-Lim vocoder instead of the HiFiGAN

vocoder. We switched to the Griffin-Lim vocoder because we empirically

found that it yielded lower error rates on these languages. To calculate CER

and raw WER, we fine-tuned a publicly available Wav2vec2 Base model

for each language individually, using paired speech and character-level tran-

scripts from each CSS10 corpus.
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The multilingual results in Table 5.4 confirm the conclusions we reach in

the English experiments. Although the self-training step is simplified to only

a character-based HMM in CSS10 multilingual experiments, the self-training

step still greatly reduces the error rates by 25% to 40% relative to all the

languages. Compared to the fully-supervised Tacotron2 model trained us-

ing real text transcripts, the CERs of our unsupervised systems differ from

those of the supervised counterparts by only about 9% absolute on average

while requiring only a few paired utterances during validation. Further, we

observe that the gap in WER between supervised and unsupervised TTS sys-

tems generally is about 10-20% absolute for all languages except Finnish, a

much larger gap than CER. We hypothesize that it may be due to the lack of

a robust language model in the TTS systems, making it harder for the model

to preserve word-level information when training with the noisy (pseudo-)

transcripts. Last but not least, we observe that the unsupervised ASR per-

formance does not always limit the performance of unsupervised TTS. In

the case of German, the TTS trained with pseudo-transcripts achieves a

lower CER compared to the unsupervised ASR system, which suggests that

the TTS has some internal mechanism to correct the noise in the pseudo-

transcripts provided by the ASR.

5.4.3 Comparison Between Griffin-Lim and HiFiGAN

A comparison between the error rates of using Griffin-Lim and HiFi-

GAN vocoders is presented in Table 5.5. We observe that the Griffin-

Lim vocoder yields lower CERs and WERs than the HiFiGAN vocoder in

all languages except English and Hungarian, even though informal listening

suggests that HiFiGAN generates more natural speech with fewer artifacts.

We hypothesize that HiFiGAN works better for English because it is pre-

trained on the English LJSpeech dataset and may not generalize very well

when applied to datasets of different languages.

5.4.4 Comparison Between Phoneme and Grapheme

We trained additional phoneme-based unsupervised TTS models in Hun-

garian, Finnish, and Dutch to study how the text units affect the TTS
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performance. The training procedure was the same as that described in

Sec 5.4.2, except that in the very beginning, we converted the language-

specific graphemes to the phonetic annotations, i.e., the International Pho-

netic Alphabet IPA, using LanguageNet G2Ps [102]. The CERs and

WERs are reported in Table 5.6. The table shows that the phone-based

systems yield significantly lower error rates than the grapheme systems. As

graphemes are the smallest functional unit of a writing system, it involves

extra complexity on top of the phone systems. Thus, modeling the grapheme

systems is harder than modeling the phone systems, as indicated by its higher

error rates. The gap between grapheme and phoneme systems is considerably

smaller for Hungarian and Finnish than for Dutch. One probable explana-

tion is that spelling and phonetic transcription is far more regular for the

former two languages than for Dutch.

5.5 Summary

In this work, we designed a two-stage system for training an unsupervised

TTS system without paired data. Our systems do not require paired speech

and text during training except for a small validation set to ensure the con-

vergence. The final unsupervised TTS system demonstrates competitive in-

telligibility in English and a slight degradation in intelligibility in six other

languages on the level of supervised TTS models. We further show that

phonemes work better than graphemes as text units for our systems. In the

future, we would like to explore unsupervised TTS with truly non-parallel

datasets for languages other than English and ways to improve the stability

of the unsupervised ASR system in the first stage of our system.
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CHAPTER 6

LANGUAGE EMBEDDING FOR
ZERO-SHOT CROSS-LINGUAL TRANSFER

6.1 Introduction

Modern end-to-end neural network based speech recognition systems (ASR)

have achieved great success on resource-rich languages such as English and

Mandarin [8]. However, most existing languages are resource-deficient, mak-

ing it hard for neural networks to achieve similar accuracy.

Multilingual and Cross-lingual phonetic recognition attempt to partially

solve the low-resource problem by building a universal phone recognizer

that transcribes speech from different languages into corresponding phone

sequences, under the assumption that there exists a universal acoustic model

shared by all languages. If this assumption holds, an ideal recognizer should

have low error rates on not only the languages it is trained on, i.e. multilin-

gual error rates, but also the unseen languages, i.e. cross-lingual error rates,

in a zero-shot setting.

However, although multilingual training is shown to improve the perfor-

mance on seen languages [185, 78, 76], it does not greatly benefit zero-shot

generalization to unseen languages [75]. This implies that acoustic models

implicitly captured in these multilingual systems are language-specific, and

thus would not generalize to unseen languages unless additional information

about the unseen languages is supplied.

Motivated by this, we1 propose to improve the zero-shot cross-lingual

recognition accuracy by incorporating a language embedding that captures

two types of external knowledge – phylogenetic similarity and phone inven-

tory. For phylogenetic similarity, we extract phylogenetic information from

Glottolog [186], which is a large graph specifying the belonging relations

1The project described in this chapter is part of [77], with co-authors Junrui Ni, Yang
Zhang, Kaizhi Qian, Shiyu Chang, and Mark Hasegawa-Johnson. The code is available in
https://github.com/Hertin/zeroshot_langemb

57

https://github.com/Hertin/zeroshot_langemb


between nodes of dialects, languages, and language families. Assuming the

closeness of the two languages in the graph captures the phylogenetic sim-

ilarities between the languages, we use Node2vec [187] to extract vector

representations for each node. For the phone inventory information, we ex-

tract a binary vector to represent the phoneme inventory for each language

from Phoible [188]. The two vectors are combined and fed into a language

encoder and produce the language embedding, on which the multilingual

phoneme classifier is conditioned. The phone inventory information is also

imposed by masking on the output logits with the binary vector.

The experiments show that the proposed algorithm with language em-

bedding and masking improves the performance over the baselines on the

unseen languages in the zero-shot setting by a large margin (4%–8% abso-

lute). Ablation study shows that both the phylogenetic and phone inventory

information are crucial for performance improvement.

6.2 Related Works

There has been active research on multilingual recognition. A large number

of languages do not have enough parallel speech and text data, and deep

learning models trained on these languages usually have high error rates [75].

Multilingual speech recognition mitigates the data sparsity by training the

network on a combined dataset from several languages. The network usually

has a common encoder that extracts acoustic information from audio features

and can either have a common decoder with a shared phoneme inventory [76]

or language-specific decoders with private phone [78, 79, 80] or character

inventories [81, 82, 83]. Multilingual ASR can benefit from the use of self-

supervised pretraining algorithms such as contrastive predictive coding [37,

10, 11], which pretrains a model on large amounts of unlabeled raw audio

data to predict neighboring frame representations given the center frame.

Multilingual models generally have better accuracy and robustness compared

to monolingual models [75, 76, 78, 79, 80], as they benefit from increased

amount and diversity of data.

Language or dialect embedding that models the language-dependent or

dialect-dependent biases has been shown to improve multilingual ASR sys-

tems [84, 85, 86, 87]. The embedding can be a one-hot vector specifying
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language ID [84, 86] or a vector learned from acoustic data under a standard

multilingual model [85, 87] and can be used as additional input features to the

network [84, 86], as adapter modules for language-specific adjustments [86]

or as interpolation weights for the encoder [85]. However, the embeddings

in all these previous works depend on the test language being either one of

the training languages (in the case of a one-hot embedding) or recorded in

a fashion that makes its acoustic embedding vector a useful predictor of its

phoneme-to-sound acoustic models.

However, studies have found that multilingual models do not generalize

well to unseen languages [75], without adapting to parallel data from that

language. While multilingual training can yield error rates 10–20% below

monolingual training, the leave-one-out cross-lingual error rate when ap-

plying the multilingual model to an unseen language can be 70–90%. Be-

cause of the high error rates of zero-shot cross-lingual ASR, most researchers

studying cross-lingual ASR have chosen pragmatically to define that term

to mean few-shot rather than zero-shot recognition, e.g., by finetuning using

one hour [189, 190] or a few hours [191] of transcribed data in the target

language. Perhaps the prior work most similar to the work in this paper is

a set of experiments using the Phoible [188] phoneme inventory of a lan-

guage to define an untrained, knowledge-based linear output layer called the

“signature matrix” [192, 76]; our phone token masking strategy is a simpli-

fication of the signature matrix, and our proposed language encoding is an

enrichment of the same.

6.3 Methods

Previous works have shown that it is hard to achieve good performance on

zero-shot cross-lingual recognition without any knowledge of the testing lan-

guage. We, therefore, consider incorporating extra information about the

testing language. Figure 6.1 shows the overview of the proposed architec-

ture. The proposed system is a CTC+Attention system based on [75], with

three additions: (1) Wav2vec2-based feature extraction based on [10], (2)

phoneme inventory masking similar to [76], and (3) the proposed typology-

based language encoder.

The language encoder The language encoder includes two sets of in-
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Figure 6.1: Architecture overview

formation about the test language. The first is the language phylogenetic in-

formation extracted from Glottolog, which is a graph containing dialects,

languages, and language families as nodes and the belonging relationships as

edges. We use Node2vec [187] to embed the nodes so that the languages

that are close in the graph have larger cosine similarities.

Similar to the multilingual allophone system in [76], we also include phone

inventory information from Phoible [188], a cross-linguistic phonological

inventory database for over 2000 distinct languages. We combine inventories

for all the languages to create a shared phoneme inventory and use a binary

vector to represent the phoneme set of each language.

The language node embedding and the binary phoneme inventory vector

are concatenated, forming a general representation applicable to at least

2,000 languages. The vector is then fed into the language encoder, producing

a language embedding as an additional input to the phoneme classifier.

Wav2vec2 Feature Extraction Considering the remarkable performance

boost brought by pretrained unsupervised acoustic representation, we exper-

iment on the feature extractor (referred to as feature encoder in [11]) from

Wav2vec22 that is pretrained on 1000 hours of LibriSpeech [73].

Phone Inventory Masking In addition to feeding the phone inventory

asks as an input to the language encoder, we also directly use it to mask out

the non-existing phonetic tokens in the output layer, which has been shown

to be effective in reducing the error rate, especially for unseen languages.

2https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
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Table 6.1: Sources of data used in our cross-lingual experiment. The upper
part is the training languages and the lower part is the testing languages.
Type column denotes whether the corpus contains spontaneous (Sp.) or
read speech. Len column shows the total duration of all utterances in
hours. Family column shows the language family.

Language Abbr Corpus Type Family Len

Bengali 103 Babel Sp. Indo-Aryan 215
Vietnamese 107 Babel Sp. Vietic 215
Zulu 206 Babel Sp. Bantu 211
Amharic 307 Babel Sp. Ethiopic 204
Javanese 402 Babel Sp. Austronesian 204
Georgian 404 Babel Sp. Kartvelian 190
Dutch N CGN Read Germanic 64
Czech CZ GP Read West Slavic 29
French FR GP Read Romance 25
Mandarin CH GP Read Sinitic 31
Thai TH GP Read Tai 22
German GE GP Read Germanic 18
Portuguese PO GP Read Romance 26
Turkish TU GP Read Turkic 17
Bulgarian BG GP Read South Slavic 21

Cantonese 101 Babel Sp. Sinitic 215
Lao 203 Babel Sp. Tai 207
Croatian CR GP Read South Slavic 16
Spanish SP GP Read Romance 22
Polish PL GP Read West Slavic 24

6.4 Experiment Setup

6.4.1 Dataset

The performance of our model is evaluated on a corpus that consists of 20

languages, 8 from IARPA Babel project corpora, 1 from CGN (Spoken Dutch

Corpus) [193] and 11 from GlobalPhone [98] (GP), as summarized in Ta-

ble 6.1. We only use the read speech part of CGN corpus. We use the default

8:1:1 train-dev-test partition provided by Babel corpora and split CGN and

GlobalPhone corpora into 8:1:1 partitions with non-overlapping speak-

ers. Since our task is cross-lingual phonetic token recognition, the train and

dev partitions of the testing languages are not used. We select 5 languages,
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Table 6.2: Phonetic token error rates (PTER) in percentage. The rows from
“103” to “BG” are PTER’s evaluated on the 15 seen languages and the
rows from “101” to “PL” are PTER’s evaluated on the 5 unseen languages.
The row AvgS the is the average PTER over the 15 seen languages and the
row AvgU are the average PTER over the 5 unseen languages.

Exp Base W2v W2vm W2vl W2vlm W2vg W2vgm

103 40.2 41.3 41.1 39.0 39.0 38.2 38.2
107 52.3 36.6 36.6 32.6 32.6 32.0 32.0
206 42.4 39.0 38.8 35.9 35.9 35.2 35.2
307 44.7 43.1 43.1 39.1 39.1 38.0 38.0
402 47.0 48.9 48.4 44.9 44.9 44.2 44.2
404 38.0 42.2 41.7 39.1 39.1 38.6 38.6
N 21.3 15.3 15.3 14.0 14.0 13.2 13.2
CZ 11.0 10.5 10.5 9.1 9.1 8.5 8.5
FR 13.7 14.8 14.8 12.9 12.9 12.1 12.1
CH 30.0 17.2 17.2 15.9 15.9 15.5 15.5
TH 26.1 22.2 22.2 19.9 19.9 18.9 18.9
GE 26.1 25.1 25.1 23.2 23.2 22.3 22.3
PO 18.4 18.7 18.7 16.3 16.3 16.0 16.0
TU 21.3 21.0 21.0 19.3 19.3 18.4 18.4
BG 27.0 30.2 30.2 28.2 28.2 26.9 26.9

101 77.0 77.9 76.5 74.6 73.1 76.1 73.1
203 78.2 79.3 76.8 76.3 72.8 72.4 69.3
CR 47.8 47.3 42.8 41.3 35.2 50.8 39.6
SP 38.1 39.0 36.8 37.3 34.4 37.5 35.3
PL 62.5 66.7 61.2 59.8 54.0 61.9 56.3

AvgS 30.6 28.4 28.3 26.0 26.0 25.2 25.2
AvgU 60.7 62.0 58.8 57.9 53.9 59.7 54.7
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namely Cantonese, Lao, Croatian, Spanish, and Polish as the testing lan-

guage set and use the remaining 15 languages as a training language set.

Each testing language is selected to have a similar language belonging to the

same language family in the training set.

6.4.2 Data Preprocessing

We use ESPnet as our ASR framework [194] since ESPnet offers a com-

plete ASR pipeline including data preprocessing, Transformer implementa-

tion, network training and decoding.

Due to the sampling rate difference between different corpora, we upsample

all audio signals to 16kHz. Using Kaldi [181], we then extract 80-dim log

Mel spectral coefficients with 25ms frame size and 10ms shift between frames,

and augment the frame vectors with 3 extra dimensions for pitch features.

The transcripts are converted to IPA symbols using LanguageNet [102]

G2P models and the unique IPA symbols, including base phones, diacritics

and suprasegmentals, in all 15 training languages are collected as the shared

phonetic token inventory. The resulting inventory size is 95. The test lan-

guages contain phones that are not present in any training languages, which

causes an out-of-vocabulary (OOV) problem as our network cannot predict a

phone it has never seen. We map each OOV phone to its closest in-vocabulary

phone according to its articulatory features defined by IPA. For example, /B/

in Spanish is mapped to /v/.

6.4.3 Language Embedding

We experiment with two types of transformations to generate the language

embedding, a 3-layer fully-connected transformation and a 3-layer graph-

convolutional transformation3 on the language representations extracted from

Glottolog [186] and Phoible [188]. Each transformation layer is followed

by a ReLU activation and a dropout layer with a dropout rate of 10%. The

output of the transformation networks is used as language embedding and

as input to the self-attention based ASR network.

3https://github.com/tkipf/gcn
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6.4.4 Model

We experiment with two audio embedding modules. One consists of two 2D

convolutional layers (randomly initialized) with a subsampling factor of 4

that takes the extracted 83-dim audio features as input, and the other is the

feature extractor of a pretrained Wav2vec2 [11] model that directly takes

the 16kHz waveform as input. We fix the weights of the Wav2vec2 feature

extractor during training.

The encoder of our model architecture is similar to the transformer archi-

tecture in [195]. The audio embeddings are fed into 12 self-attention encoder

layers, each having 4 heads, an attention dimension of 256 and a 2048-dim

position-wise feed-forward layer. The only difference is that input to each en-

coder layer is additionally concatenated with the correct language embedding

to provide language information to the transformer.

Our preliminary experiments indicate that the self-attention decoder frame-

work does not outperform a simple CTC decoder in cross-lingual recognition,

which is consistent with the findings in [191]. Therefore, we discard the self-

attention decoder in [195] and apply a dense layer to the encoder output to

compute the frame-wise phoneme posteriors and the CTC loss.

6.4.5 Evaluation

We use phonetic token error rate (PTER) [75] to evaluate our models. It is

calculated the same way as character error rate except that the model pre-

dicts a set of language-universal IPA tokens instead of normal orthographic

characters. It treats diacritics (such as aspiration /h/), suprasegmentals (such

as long vowels /:/ and primary stress symbol /"/), and tones (such as high

tone /
Ă
£/ and low tone /Ă£/) as separate tokens. It also splits diphthongs and

affricates into individual symbols. For example /"ta:/ would be viewed as

4 tokens. Therefore, our PTER metric slightly differs from the phone error

rate (PER) calculated in other multilingual literature such as [76].
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6.5 Results

6.5.1 Multilingual and Cross-lingual Phonetic Recognition

We train and test on our 20-language dataset with 7 different models: Base,

W2v, W2vm, W2vl, W2vlm, W2vg, W2vgm. All the models have a

self-attention encoder and a CTC decoder. Base model uses a randomly

initialized 2D convolutional feature extractor and the models with ‘W2v’

prefix instead use a pretrained Wav2vec2 feature extractor. The models

with ‘l’ and ‘g’ suffices have an additional linear or graph-convolutional

transformation network to compute the language embeddings. Models with

‘m’ suffix apply phone inventory masking to the softmax output layer of the

decoder.

The performance is shown in Table 6.2, where both proposed models

(W2vlm andW2vgm) outperform theBasemodel; W2vgmmodel achieves

the lowest multilingual error rate, while W2vlm model achieves lowest cross-

lingual error rate.

By comparing Base and W2v, we see that a pretrained Wav2vec2 fea-

ture extractor reduces the average multilingual recognition error rate. In

particular, the reduction is 15.7% on Vietnamese (107), 6% on Dutch (N)

and 12.8% on Mandarin (CH). Although it slightly increases the cross-lingual

error rate, we decide to build on W2v model instead of Base model.

Comparing the average test PTER (AvgU) of W2v, W2vl and W2vg

with that of W2vm, W2vlm and W2vgm, we see that masking out the

non-existing phonetic tokens in the test language greatly improves the recog-

nition accuracy, possibly due to the reduced prediction space. The W2vgm

model, which places the most emphasis on language-family structure, gains

the largest improvement from phone masking, but still does not outperform

the W2vlm model, suggesting that applying the graph constraint a second

time (GCN on top of Node2vec embeddings) provides no extra reduction

of PTER.
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Figure 6.2: PTER of W2vlm model tested on Croatian with correct and
fake language labels.

6.5.2 Cross-lingual Phonetic Recognition with Fake Language
Labels

To better understand how language embedding affects the model’s perfor-

mance, we feed both true and fake language embeddings to the model and

plot the test PTERs across epochs. Figure 6.2 shows the PTER of W2vlm

model tested on Croatian. The blue and orange triangle points are PTERs

of the W2v and W2vm models respectively. The blue solid line labeled

“CR CR” is the PTER curve with correct Croatian embedding and the dash-

dotted lines or dotted lines are PTER’s of the model when provided with fake

language embeddings.

When provided with the correct language embedding (CR CR), the model

outperforms the masked wav2vec baseline (W2vm). The PTER of the model

when provided with fake embedding varies from 35% to 80%. In particular,

when provided with fake embeddings of languages from the same language

family, Slavic family in this example, the model generally has a lower PTER

compared to others, as shown by the curves of Polish (CR PL), Bulgarian

(CR BG) and Czech (CR CZ). This indicates that our model is able to lever-

age the phylogenetic and phonetic similarities for better accuracy.
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Figure 6.3: t-SNE plot of language embedding. The left plot is the
embedding from W2vl and the right plot is the embedding from W2vg.

6.5.3 Visualization of Language Embedding

We visualize the language embeddings of W2vl andW2vg using t-SNE [196]

in Figure 6.3. The small and light circles are the embeddings from earlier

epochs and the large and solid circles are from later epochs. We use small and

light text to label the embeddings’ initial-epoch position and large and solid

text to label the final-epoch position. In the right plot, we observe that graph

convolutional transformation on language vectors largely preserves the phy-

logenetic information; the languages that are close in the initial epoch remain

close in the final epoch. In contrast, the left plot shows that linear transfor-

mation preserves the phylogenetic information only partially. For example,

while the Sinitic-language embeddings (CH and 101) are close initially, Can-

tonese (101) moves away from Mandarin (CH) towards the Slavic-languge

embeddings (CR, CZ, PL and BG) as the training epoch increases. This ob-

servation indicates the linear transformation has larger flexibility to learn its

embeddings; as shown in Table 6.2, this flexibility reduces the cross-lingual

error rate.
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Table 6.3: Phonetic token error rates (PTER) Ablation Study.

W2vlm 101 203 CR SP PL Avg

Glottolog+phoible 73.1 72.8 35.2 34.4 54.0 53.9
Glottolog 69.5 73.4 35.1 34.8 55.7 53.7
Phoible 76.0 71.9 36.6 38.8 53.4 55.3

6.5.4 Ablation Study on Language Representation

We conduct an ablation study to see the role of the Glottolog vector

and Phoible vector in error rate reduction by training W2vl model with

only Glottolog vector, with only Phoible vector and with both. The

results are shown in Table 6.3. First, providing external information reduces

error: all three settings (Glottolog, Phoible, Glottolog+Phoible)

beat the W2vm baseline. Second, using only Glottolog vectors reduces

the Cantonese (101) error rate to 69.5% but raises the Lao (203) error rate to

73.4%, which is close to the performance of the W2vgm model, while using

only Phoible vectors does the reverse, raising the Cantonese error rate but

reducing the Lao error rate. These results show both vectors improve the

performance in different ways; W2vlm finds a good trade-off between relying

on phylogenetic information and phonetic information. Finally, we notice

that using only Glottolog vectors (Glottolog) has nearly the same

performance as both vectors (Glottolog+Phoible). We hypothesize that

phoneme masking is functioning as a substitution, reducing the necessity of

the Phoible vector.

6.6 Summary

We propose to use external phylogenetic and phonetic knowledge from lan-

guage typologies to improve the cross-lingual phoneme recognizer. We study

the performance of learning language embeddings using a linear transforma-

tion network and a graph convolutional network and show that both mod-

els outperform the baseline. In particular, we show both phylogenetic and

phonetic knowledge are necessary for good cross-lingual accuracy and that a

linear transformation network can flexibly leverage both types of information

to learn a better phonetic model than a graph convolutional network.
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CHAPTER 7

TOWARDS FEW-SHOT SPOKEN
LANGUAGE UNDERSTANDING WITH

FROZEN LANGUAGE MODELS

7.1 Introduction

Large-scale pretrained language models (PLM) [68, 50, 51, 52] have brought

great success in natural language processing (NLP) [197]. Recently, re-

searchers have discovered that PLMs demonstrate a strong capability for

few-shot learning on many NLP tasks [52, 198]. Specifically, if we1 feed to a

language model a prefix containing several text-prompt-answer demonstra-

tions of a task, as well as a new question, a language model can generate

a decent answer to the new question upon seeing the prefix. Furthermore,

by pretraining an image encoder to generate feature vectors that are mean-

ingful to a PLM, the PLM can be given the ability to solve few-shot image

understanding tasks [200].

We are therefore interested in whether such few-shot learning capabilities

can generalize to spoken language understanding (SLU) tasks as well. More

specifically, our setting is as follows. Given a certain task, the task demon-

strations are in the form of triplets containing (1) a speech utterance, (2)

a text question/prompt, and (3) a text answer. We also have a new ques-

tion that is in a similar form to the demonstrations but without an answer.

Our goal is to convert the task demonstrations and the new question into

a text prefix and feed it to a fixed language model, so that it can produce

answers to the new question. Figure 7.1( b) shows an example, where the

model is being taught to identify the gender of the person discussed in the

speech utterance by seeing a few short demonstrations, each containing three

components: first, a speech utterance (saying, e.g., ‘a woman in a red suit’),

then a text prompt (‘the speaker is describing a’), and finally the text an-

1The project described in this chapter is part of [199], with co-authors Junrui Ni, Yang
Zhang, Kaizhi Qian, Shiyu Chang, and Mark Hasegawa-Johnson. The code is available in
https://github.com/Hertin/WavPrompt.
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swer (‘woman’). Concatenated to the end of the training demonstrations is

a question in a similar form but without the answer; the model is judged

to perform correctly if it generates the correct answer (e.g., either ‘man’ or

‘woman’).

The main challenge of this task is to convert the speech into a form that

can be accepted by the language model as the text prefix. One näıve way is

simply to convert the speech to text using an automatic speech recognition

(ASR) system, and then perform few-shot learning on the transcribed demos

the same way as in NLP tasks. However, such a näıve paradigm would

propagate the errors in ASR to the language model, thereby undermining

its few-shot learning performance. Also, this näıve solution could not handle

non-speech audio understanding tasks. We thus ask: are there better end-

to-end solutions to speech understanding tasks?

In this paper, we propose WavPrompt, an end-to-end few-shot learning

framework for speech or audio understanding tasks. WavPrompt consists of

an audio encoder and a language model. The audio encoder is pretrained as

part of an ASR, so that it learns to convert the speech in the demonstrations

into embeddings digestible to the language model. After pretraining, the

entire framework is frozen and ready to perform few-shot learning upon seeing

the demonstrations.

We evaluate our model on speech classification tasks, and we can confirm

that the zero-shot learning capabilities of fixed language models do generalize

to simple speech understanding tasks. Furthermore, WavPrompt, with

its end-to-end pipeline, achieves a significant gain over the aforementioned

näıve ASR+NLP baseline. We further perform an extensive ablation study

in search of the best hyperparameter settings. The findings of this paper can

provide guidance and insights for research towards next-generation few-shot

learning for speech and audio understanding.

7.2 Methods

7.2.1 Model Architecture

Figure 7.1 shows the architecture of WavPrompt, which consists of a pre-

trained audio encoder fϕ, for which we use the wav2vec 2.0 base model [11],
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and a pretrained autoregressive language model, for which we use the GPT2 [51].

The audio encoder fϕ encodes the speech audio x into continuous audio em-

beddings s = [s1, s2, ..., sm] = fϕ(x). The language model contains a text

embedder hθ that converts the text y = [y1, y2, ..., yl] into a sequence of text

embedings t = [t1, t2, ..., tn] = hθ(y) and a transformer-based neural network

gθ that models the text distribution p(y) as

logP(y) =
n∑

i=1

logP(ti|t1, ..., ti−1) =
n∑

i=1

gθ(t1, ..., ti−1)ti (7.1)

7.2.2 Downsampling Layer

The wav2vec audio encoder takes 16 kHz audios and extracts feature vectors

at a frequency of 50 Hz. A simple calculation gives us that the LibriSpeech

ASR corpus [73] has an average of 2.7 words per second and 4.9 tokens per

second using GPT2’s tokenizer. This means the text embedding vectors

have a frequency of roughly 5 Hz, which is only 10% the rate of the audio

embeddings. Therefore, we append a downsampling layer after the audio

encoder to reduce the rate of audio embeddings, so that the rate of the audio

embedding can better match that of the text embeddings.

7.2.3 Speech Recognition Pretraining

We pretrain WavPrompt as an ASR, using the 100-hour train-clean split

of the LibriSpeech ASR corpus [73]. We also create 5-hour and 10-hour

pretraining datasets by sampling from the 100-hour split to simulate low

resource conditions.

We keep the language model fixed and only update the audio encoder

during pretraining. An overview of the pretraining interface is shown in Fig-

ure 7.1(a), where the red arrows denote the back-propagation of the gradients.

The audio embeddings s, together with the text embeddings tq = [tq1, t
q
2, ..., t

q
n]

of the question prompt yq are fed to the language model so that the language

model models the probability of the answer ya conditioned on the audio and
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the question prompt as

logP(ya|x,yq) =
l∑

i=1

P(tai |s, tq, ta1, ..., , tai−1) (7.2)

=
l∑

i=1

gθ(s1, ..., sm, t
q
1, ..., t

q
n, t

a
1, ..., t

a
i−1)tai (7.3)

We use the question ‘what did the speaker say?’ as a prompt during pre-

training.

7.2.4 Few-Shot Evaluation

We evaluate WavPrompt on few-shot binary classification tasks. During

evaluation, we do not update the model parameters. Instead, the model is

given a single prompt sequence that contains from 0 to 10 demonstrations

of a new task, followed by a question that it must answer using the form

specified in the demonstrations. An illustration of the inference interface

during evaluation is shown in Figure 7.1(b). As shown, the question is

usually a sentence with a gap at the end; WavPrompt must fill the gap

based on the content of the audio. Unlike the setting in [201], we restrict

each task to a finite output space (either two or nine possible answers), so

that the accuracy of the few-shot learner can be meaningfully compared to

chance performance.

7.2.5 Calibration

During the evaluation, we find that the performances of our models are not

stable. We therefore implement the calibration technique reported by [198] to

reduce the bias introduced by the language models. We empirically find the

calibration brings improvement to the classification accuracy in most cases.
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Figure 7.2: Results of speech understanding tasks.

7.3 Experiments

7.3.1 Datasets

We evaluate WavPrompt on four speech datasets: Flickr8k Audio Caption

Corpus (Flickr) [202], Fluent Speech Commands Corpus (Fluent) [203],

Spoken Language Understanding Resource Package (SLURP) [204] and Spo-

kenCOCO Audio Caption Corpus (SpokenCOCO) [205]. In addtion, we

evaluate WavPrompt on a non-speech dataset: Environmental Sound Clas-

sification (ESC50) [206]. Brief introductions and the preprocessing steps of

the dataset are as follows.

• The Flickr dataset contains 40,000 spoken captions of 8,000 natural

images. We drop the images and only use the spoken caption audios

and their transcripts. We then randomly sample 2000 captions and

manually assign four sets of labels to the captions. We form man-

woman label set by assigning ‘man’ and ‘woman’ labels to the captions

that contain either only ‘man’ or only ‘woman’ words respectively. We

create the male-female label set by replacing ‘man’ and ‘woman’ labels

with ‘male’ and ‘female’ labels. We repeat the procedure to form black-

white and dark-light label sets, but we additionally drop those that are

not describing the color of the clothes. The resulting subset contains

around 400 man-woman and male-female labeled samples and around

70 black-white and dark-light labeled samples. We use ‘the speaker

is describing a person in’ as the question prompt for the color labels

and ‘The speaker is describing a’ for the gender labels. This dataset

is mainly used to probe if the model can capture semantic relations

between word-pairs.

• The SpokenCOCO dataset contains approximately 600, 000 spoken
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captions describing the images in the Microsoft COCO (MSCOCO)

dataset [207]. The MSCOCO dataset classifies the images using 12

super-category labels, which we use as the labels of the spoken captions.

During evaluation, we ask the model to discern between the ‘vehicle’

labels and the rest of the labels, forming a total of 11 classification

tasks. We use ‘The speaker is describing’ as the question prompt.

• The Fluent dataset contains spoken commands that interact with

smart devices, such as ‘play the song’ and ‘increase the volume.’ Each

command is labeled with action, object and location. We define topic

labels to be the same as the object label most of the time, except that

when the action is ‘change language,’ the topic is set to ‘language’

instead of the actual language name. We use ‘The topic is’ as the

question prompt.

• The SLURP dataset is an SLU dataset that contains human interac-

tion with home assistants from 18 different domains. We select five

domains: ‘music’, ‘weather’, ‘news’, ‘email’ and ‘play’ and form ten

domain pairs for our model to perform binary classification. We use

‘This is a scenario of’ as the question prompt.

• The ESC50 dataset contains 2, 000 environmental sounds including an-

imal sounds, human non-speech sounds, natural soundscapes, domestic

and urban noises, etc. We use the sound label as groundtruth text and

pretrain additional WavPrompt models on the 100-hour Librispeech

dataset and ESC50 dataset for ASR and environment sound classifica-

tion tasks simultaneously. During pretraining, we prompt the model

with ‘What did the speaker say?’ for the ASR task and ‘What sound is

this?’ for the environment sound classification task. We test the model

on a subset of the training set that only contains sounds of nine animals:

dog, cat, bird, sheep, cow, pig, rooster, hen and frog. During testing we

assign a distinct verb to each of the nine animals: barks, chirps, bleats,

meows, moos, snorts, crows, clucks, and croaks. WavPrompt needs

to predict the correct verb given the animal sound and a few examples.

We use ‘=>’ as the question prompt during evaluation.
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7.3.2 Experiment Setup and Baseline

We modify the fairseq [150] training pipeline for our experiment. We use the

Wav2vec2 base model implemented in fairseq as the udio encoder and the

GPT2 model with 117 million parameters implemented in Huggingface [208]

as our language model.

For the speech classification tasks, we pretrain a total of 15 WavPrompt

models with five downsampling rates (2, 4, 8, 16, 32) under three resource

conditions (5, 10 and 100 hours of LibriSpeech data). For the non-speech

classification tasks, we pretrain five WavPrompt models with five down-

sampling rates (2, 4, 8, 16, 32) using 100 hours of LibriSpeech data.

During evaluation, we randomly sample several samples along with their

correct labels from the test set as shots. The shots are converted to embed-

dings and are prepended to the question prompt embeddings. We sample 250

samples from the rest of the test set to form an evaluation batch and drop

samples from the class containing more samples to evenly balance the class

labels in the batch. As a result, a binary classification accuracy greater than

50% is better than chance. We sample five batches with different random

seeds. The classification accuracy we report is the average accuracy over the

five batches.

We compare the WavPrompt with the Näıve baseline mentioned in

Section 7.1, which converts the speech into text and performs few-shot learn-

ing using the transcribed text. Specifically, Näıve uses the same model as

WavPrompt. It performs few-shot learning via two steps. First, the speech

is converted into text using an ASR. To achieve this, we use the pretrained

WavPrompt as an ASR by prompting the language model with the audio

embedding and the pretraining question ‘what did the speaker say?’. Sec-

ond, to perform few-shot learning, we prompt the language model with the

transcribed text embeddings instead of audio embeddings. In other words,

the only difference between WavPrompt and Näıve is that the audio em-

beddings are used in the prompt in the former, whereas the transcribed text

embeddings are used in the latter.
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7.3.3 Results on the Speech Understanding Tasks

Figure 7.2 shows the results on the four speech understanding tasks. To factor

out the influence of numbers of shots, we use the best accuracy achieved

over all numbers of shots to represent the model’s performance on individual

pairs of labels, for both WavPrompt and Näıve. We average the accuracy

over all label pairs in a dataset as the overall accuracy. We select the best-

calibrated model among all the downsampling rates for both WavPrompt

and the Näıve to make a fair comparison. We compute the overall accuracy

of the model across four speech understanding datasets under three resource

conditions.

We observe that both algorithms can achieve an accuracy significantly

above chance, which confirms that language models can perform zero-shot

learning on speech understanding tasks. Also, the performance increases as

the pretraining dataset size increases. Finally, WavPrompt consistently

outperforms Näıve in almost all cases across datasets and across resource

conditions, which verifies the advantage of the end-to-end framework. We

note the 100-hour Näıve achieves a word error rate of 9.07% on Librispeech,

but only 44.42% on the four test datasets due to domain mismatch, which

may explain its worse performance relative to WavPrompt.

7.3.4 Downsampling Rate

We use the best accuracy over all numbers of shots as the model performance

as in Sec 7.3.3. We average the best accuracy over all pairs of labels in

each dataset and present the results in Table 7.1. The results are consistent

across datasets, suggesting that a downsampling rate of 8 gives the best

accuracy when the model is pretrained using 10 or more hours of data and

a downsampling rate of 4 gives better accuracy when the model is trained

using 5 hours of data. The best downsampling rate being 8 is expected,

as it produces the audio embeddings at a rate closest to that of the text

embeddings as discussed in Sec 7.2.2.
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Table 7.1: Classification accuracy across downsampling rates.

Dataset 2 4 8 16 32

5h Flickr 57.82 57.99 60.27 56.63 52.28
COCO 55.08 58.74 56.92 56.62 53.79
Fluent 55.54 58.88 57.4 57.35 53.32
SLURP 54.40 56.23 53.94 54.85 51.97

10h Flickr 64.91 65.77 82.21 79.23 56.84
COCO 59.56 59.18 64.24 54.99 55.84
Fluent 64.21 72.01 79.80 64.58 53.41
SLURP 55.95 57.00 68.47 60.53 54.16

100h Flickr 82.61 88.03 85.73 79.96 79.40
COCO 68.52 67.68 75.15 67.77 65.72
Fluent 82.47 87.36 89.11 81.12 83.90
SLURP 72.05 72.07 73.37 68.69 68.63

7.3.5 Calibration

We compare the accuracy with calibration versus without calibration using

the best downsampling rate obtained in Table 7.1. For each dataset we av-

erage the best classification accuracy over all label pairs for both the model

with calibration and without calibration. The results are presented in Ta-

ble 7.2. Almost in every case the model with calibration outperforms that

without calibration by a large margin, suggesting necessity of the calibrating

the PLM. The only exception occurs in the model pretrained using 10 hours

of data and tested on Flickr dataset, but even in that case the accuracies

are comparable.

Table 7.2: Classification accuracy between the model with calibration and
without calibration denoted by Cali and NCali respectively.

5h 10h 100h

Cali NCali Cali NCali Cali NCali

Flickr 60.27 54.89 82.21 82.42 88.03 84.78
COCO 58.74 51.72 64.24 59.15 75.15 68.95
Fluent 58.88 58.50 79.80 66.85 89.11 87.54
SLURP 56.23 55.09 68.47 66.04 73.37 69.52
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7.3.6 Number of Shots

To study the effect of the number of shots, we plot the classification accu-

racy across different datasets under 100-hour LibriSpeech dataset in the

left subplot of Figure 7.3 and plot the accuracy across different resource con-

ditions on Fluent dataset in the right subplot of Figure 7.3. Although the

accuracy curves exhibit different patterns across different datasets and differ-

ent resource conditions, we observe that there usually exist two peaks: one

with zero demonstration examples and one with four to six demonstrations.

In Flickr and COCO experiments, zero-shot gives the best performance

and increasing numbers of shots does not bring any benefits. One possible

explanation is that the Flickr and COCO datasets are simpler than the

Fluent and SLURP datasets, in the sense that the class labels or their

near-synonyms occur directly in the speech; since the model has been pre-

trained as an ASR, the neurosymbolic representations of these answers may

be already activated in the language model, so that the extra activation pro-

vided by the question is sufficient to generate a correct answer, even with

zero demonstration examples. In Fluent and SLURP experiments, increas-

ing shots to four or six yields the best accuracy but further increasing shots

downgrades the performance. Using a larger language model might result in

a more consistent pattern, which we leave as future work to explore.

7.3.7 Generalizing to Non-Speech Tasks

We additionally conduct a classification experiment using ESC50, a non-

speech dataset. Prompted with a few examples, WavPrompt needs to pre-

dict the correct verb corresponding to the animal that makes the non-speech

sound. We also provide a text baseline that replaces audio embedding with

the text embedding of the animal’s name. As in previous sessions, we use the

best accuracy across number of shots to represent the model’s performance,

for both WavPrompt and the baseline. The results are presented in the

Table 7.3.

We observe that the classification accuracies are all better than chance,

which is 11.11% for a nine-way classification, and the best WavPrompt

with a downsampling rate of 8 is slightly better than the text baseline. These

results show that WavPrompt is able to extract information from non-
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Figure 7.3: Classification accuracy versus number of shots. Shaded region is
±1 standard deviations.

speech audio and then leverage commonsense knowledge from its pretrained

language model to solve problems.

Table 7.3: Classification accuracy across downsampling rates on ESC50
dataset.

2 4 8 16 32 text

ESC50 38.11 31.04 43.50 32.89 24.26 42.22

7.4 Summary

In this project, we propose a novel speech understanding framework,WavPrompt,

and show that WavPrompt is a few-shot learner that can perform both

speech and non-speech understanding tasks better than a näıve ASR base-

line. We conduct detailed ablation studies on different components and hy-

perparameters to empirically identify the best model configuration.
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CHAPTER 8

GRAPHEME-TO-PHONEME
TRANSDUCER WITH ACOUSTIC

INFORMATION

8.1 Introduction

Grapheme-to-phoneme (G2P) transducers have been extensively applied to

generate phoneme transcripts from grapheme transcripts to train phoneme-

based automatic speech recognition (ASR) and text-to-speech (TTS) sys-

tems. Since grapheme transcripts are the texts in many speech-text corpora,

in this paper, we1 use the terms “text” and “grapheme transcripts” inter-

changeably while distinguishing them from “phoneme transcripts.” Com-

pared to grapheme transcripts, phoneme transcripts have two advantages.

First, they directly specify the pronunciation of the utterance, making them

a better candidate for distribution matching between the speech and the tran-

scripts. This is supported by the findings in recent unsupervised speech recog-

nition [2] and unsupervised Text-to-Speech synthesis [3] works where lower

error rates are reported using phoneme transcripts converted from grapheme

transcripts than using grapheme transcripts directly. Second, writing sys-

tems vary across different languages. Multilingual training of an end-to-end

neural ASR reduces word error rates on languages in the training set [82], but

it is not possible to apply such a system to a previously-unseen test language

with previously-unseen characters, making it difficult to transfer knowledge

across different grapheme transcripts. Phoneme transcripts, such as the In-

ternational Phonetic Alphabet (IPA), which depicts speech pronunciation,

can have a universal annotation for different languages and are, therefore,

more suitable for multilingual or cross-lingual transfer learning [209, 77]. A

multilingual ASR trained using both grapheme and phoneme transcripts has

lower word error rate in under-resourced languages, apparently because it is

1The project described in this chapter is part of the submission accepted by ICASSP
2024, with co-authors Mark Hasegawa-Johnson and Chang D. Yoo. The code is available
in https://github.com/Hertin/g2pu
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better able to generalize acoustic knowledge across writing systems [83].

As suggested by the acronym, G2Ps generate phonemes from graphemes,

sometimes with the benefit of auxiliary input tags marking part of speech or

word sense [103]. A G2P may generate several candidate phone transcripts,

from which a forced aligner selects the one that best matches the wave-

form, and such phone transcripts have been used to re-train the acoustic

model [210] and/or the G2P [211], but our literature search has not discov-

ered any system that simultaneously optimizes the acoustic model, the G2P,

and the phoneme transcript of the training corpus.

We, therefore, propose our model G2PU (grapheme-to-phoneme trans-

ducer with speech units), which consists of a G2P sub-network to generate

phoneme transcripts from texts and a U2P sub-network to generate phoneme

transcripts from speech units.

We make three assumptions about the training resource: there exists a

sufficient amount of non-parallel speech and text data, a limited amount

of parallel speech-text data, and a teacher G2P tool. Sufficient non-parallel

speech and text data are used to train large self-supervised models to generate

speech and text representations that boost the downstream G2P and U2P

performance. The limited 100-hour parallel speech-text data are used to

train the G2PU that matches the distribution between speech, graphemes,

and phonemes. A teacher G2P tool generates coarse phoneme transcripts to

complete the parallel speech-text-phoneme triplet, which is the training data

for G2PU. The assumption of a teacher G2P is a reasonable compromise to

the sparsity of high-quality phoneme transcripts, given a minimal G2P can

be constructed from a small lexicon and descriptions of the pronunciation

rules of the language [102].

To measure the performance of the proposed G2PU model, groundtruth

phoneme transcripts are needed. We choose Chinese and Japanese for our

experiments as there are corpora available that contain parallel speech-text-

phoneme data. The experiments on these two languages demonstrate that

the G2PU model, with a proper weight between the G2P sub-network and the

U2P sub-network, can produce better phoneme transcripts than its teacher.

Specifically, our model reduces the phoneme error rate (PER) by 7% to 29%

relative compared to its teacher.
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8.2 Related Works

8.2.1 Existing Grapheme-to-Phoneme Transducers

The resource-rich languages such as English and Mandarin Chinese have

many deep neural network based G2P tools such as DeepPhonemizer2 [59,

212], T5G2P [64], and SoundChoice [67] for English and G2PM3 [213]

and G2PW4 [103] for Mandarin Chinese. While having low phonetic er-

ror rate of the generated phoneme transcripts, these deep G2P tools require

access to large corpora of text-phoneme pairs and additional linguistic anno-

tations such as part-of-speech (POS) tags. One example of such a model is

SoundChoice [67], which uses a combination of three large datasets includ-

ing LibriSpeech-Alignments [203], Google Wikipedia Homograph

Data [214] and CMUDICT5 to train a recurrent-neural-network-based G2P.

Another model, G2PW [103] finetunes the large pretrained BERT model [68]

on Chinese Polyphones with Pinyin (CPP) dataset [215] that contains around

99, 000 sentences augmented with additional POS label extracted using an

external tagging tool.

Low-cost G2P models such as LanguageNet can be created for a large

number of low-resource languages by training a finite-state transducer (FST)

on a small pronunciation lexicon and/or a table of letter-to-sound rules. How-

ever, these models suffer from varied PER ranging from 7% to 45% [102]. To

improve G2P models, additional linguistic knowledge can be incorporated

such as phrase segmentation and hand-crafted rules [216].

According to the case study comparing the performance of the rule-based

FST LanguageNet and the neural network based G2PW in Sec 3.2.3, the

performance of the G2P tools can largely affect the performance of the ASR

models trained on the transcripts they produce. In order to better study

the difference between the transcripts generated by the two G2P tools, We

convert the pinyin transcript to IPA transcript using DragonMapper6.

Using the DragonMapper IPA transcripts as a reference, we compute the

phoneme error rate (PER) of the LanguageNet IPA transcript, and the re-

2https://github.com/as-ideas/DeepPhonemizer
3https://github.com/kakaobrain/g2pM
4https://github.com/GitYCC/g2pW
5http://www.speech.cs.cmu.edu/cgi-bin/cmudict
6https://github.com/tsroten/dragonmapper
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Table 8.1: PER of LanguageNet IPA transcripts compared against
G2PW IPA transcripts.

G2P PER

LanguageNet 38.35
+Move Tone 24.25
+Map Diphthong 18.14
+Map Phone 11.98
+Remove Tone 5.51

sults are summarized in Table 8.1 which is 38.35%. we notice there are subtle

differences between the two IPA transcripts such as the places of tone anno-

tation and the phoneme inventory. For a fairer comparison, we normalized

the LanguageNet IPA transcripts by moving the tone annotations after

the nasals /n/ and /N/, and mapping the diphthongs and phones to the ones

used in DragonMapper IPA transcripts. The normalization reduces the

PER to 11.98%. After we remove tones in both IPA transcripts, the PER

is further reduced to 5.51%, which suggests half of the mistakes are tone

mistakes and half are phone mistakes. This case study indicates that there

is a large quality gap between the minimal rule-based LanguageNet and

the deep neural network based G2PW that is trained on large G2P corpora

and incorporates additional linguistic knowledge.

Although incorporating prior linguistic knowledge can improve G2P mod-

els, it can be challenging to apply this strategy to low-resource languages

due to the diversity of linguistic structures across languages. For example,

the G2PW model assumes limited phoneme combinations and a one-to-one

correspondence between characters and phoneme combinations, which may

not hold true for languages like English and Japanese. Consequently, the

G2P problem cannot be reduced to a simple classification task as in Chinese,

making it difficult to apply similar strategies to these languages.

8.2.2 Forced Aligner as Grapheme-to-Phoneme Transducer

Forced alignment [181, 210] iteratively trains acoustic models to estimate

the likelihood of a phone given its acoustic features and aligns the most
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probable phoneme from the lexicon to the corresponding speech frames. It

can be viewed as a G2P tool relying on additional acoustic information from

speech.

8.2.3 G2P Transducer with Pretrained Language Models

Self-supervised large pretrained language models have advanced state-of-the-

art performance in various downstream tasks in natural language processing

(NLP) [68, 69] and ASR [11, 12, 70]. G2P tools benefit from the pretrained

text models [217, 67, 215, 218, 103] which encode text tokens into high-quality

contextual embeddings. Recently, there have been works on textless NLP

that train language models [155] and synthesize speech [168, 70] using discrete

acoustic units rather than texts. The units are obtained by performing K-

Means clustering on the speech representations extracted from self-supervised

models such as Wav2vec2 [11] and HuBERT [12] and the cluster indices

serve as the speech units. Although these units are discretized, the audios

synthesized from them are of decent quality, indicating that the acoustic

units preserve the pronunciation information in the utterances.

8.3 Problem Formulation

Suppose we have a corpus of parallel speech-text samples D = {(xi,yi, zi)}Ni=1

where N is the total number of speech samples. Let xi = [xi
1, x

i
2, . . . , x

i
Ti
]

denote the ith sample of speech, yi = [yi1, y
i
2, . . . , y

i
Si
] denote its corresponding

text transcripts and zi = [zi1, z
i
2, . . . , z

i
Ri
] denote its corresponding phoneme

transcripts, where Ti, Si and Ri are the lengths of the speech sample, the

length of the text transcripts and the length of the phoneme transcripts

respectively. Typically, T is far greater than S and R: T > S and T > R.

We would like to model PZ|X,Y (z
i|xi,yi), the probability of the phoneme

transcripts given the text and the speech sample.

Assume we have a grapheme-to-phoneme transducer G2P that models

PZ|Y (z|y), the probability of the phoneme transcripts given the text and

a unit-to-phoneme transducer U2P that models PZ|X(z|x), the probability

of the phoneme transcripts given the speech. In the ideal case, the text and

the speech are two observations of the same phoneme sequence, and either
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the text or the speech alone is sufficient to determine the correct phoneme

transcription. In other words, the phoneme transcript and the text are con-

ditionally independent given the speech and likewise, the phoneme transcript

and the speech are conditionally independent given the text, or:

PZ|X,Y (z|x,y) = PZ|X(z|x), (8.1)

PZ|X,Y (z|x,y) = PZ|Y (z|y). (8.2)

We can combine the prediction from the U2P model and from the G2P

model to obtain a more robust prediction by making a weighted geometric

average over the probability of the phoneme transcripts predicted by the two

models, or:

PZ|X,Y (z|x,y) ≃ PZ|X(z|x)λPZ|Y (z|y)1−λ, (8.3)

where λ is a tune-able hyperparameter.

The G2P and the U2P model are two sequence-to-sequence (S2S) neural

network transducers. Given the training set of text-speech-phoneme triplets,

the loss function L can be written as:

L = − logPZ|X,Y (z|x,y)

≃ −λ logPZ|X(z|x)− (1− λ) logPZ|Y (z|y)

= λLU2P + (1− λ)LG2P. (8.4)

8.3.1 Connectionist Temporal Classification (CTC)

There are two popular neural architectures for S2S transducers. One is based

on the connectionist temporal classification (CTC) [4]. Denote the spectral

features of the ith utterance as a set of frames xi = [xi
1, x

i
2, . . . , x

i
Ti
] where

Ti is the number of speech frames. Denote the reference phoneme tran-

scription as zi = [zi1, z
i
2, . . . , z

i
Ri
] ∈ Z+, and the ASR output hypothesis as

ẑi = [ẑi1, ẑ
i
2, . . . , ẑ

i
R̂i
] ∈ Z+, where Ri and R̂i are the lengths of the reference

and hypothesis transcriptions of ith sample and Z is the set of all transcrip-

tion characters. The true conditional probability distribution PZ|X(z|x) is

unknown; the ASR computes an estimated distribution PẐ|X(z|x) in order
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to minimize the cross-entropy of the training corpus,

LCTC = −
|D|∑
i=1

logPẐ|X(z
i|xi), (8.5)

where D is the training corpus containing utterances with known transcrip-

tions.

CTC [4] performs time-scale modification by positing an alignment se-

quence, Πi = [Πi
1, . . . ,Π

i
Ti
] whose instance value is πi = [πi

1, . . . , π
i
T ]. Each

time-aligned character πi
t is either one of the transcription characters (πt = zr

for some r), or πt = ∅ where ∅ is a special “blank” character. For example,

suppose we have a 5-character text “hello” (R = 5) encoded in a 14-frame

speech waveform (T = 14); the transcription and alignment might be

z = [h, e, l, l, o], (8.6)

π = [h, h, e, e, e,∅,∅, l, l, l,∅, l,∅, o]. (8.7)

Training data are often provided with only the transcriptions, and the align-

ment information is not given. If the alignments are known, it would be

easier to estimate the CTC loss LCTC given in Eq. (8.5) by taking the sum

of the log-probabilities of the correct alignment at each frame.

Since alignment is not known, CTC computes the cross-entropy by marginal-

izing over all the possible alignments that can be mapped to the true tran-

scription using a surjective time-compression function defined as:

B : (Z ∪ {∅})+ → Z+. (8.8)

A commonly used B first removes repeated labels and then removes all

“blank” characters. For any valid alignment π, B(π) is a unique y. For

any valid y , B−1(y) is the set {π : B(π) = y}. The negative log-probability

88



of a transcription zi given the input frames xi can therefore be computed as

Li
CTC = − logPẐ|X(z

i|xi), (8.9)

= − log
∑

π∈B−1(z)

T∏
t=1

exp(et(πt)), (8.10)

= − logsumexp
π∈B−1(z)

T∑
t=1

et(πt). (8.11)

where et(πt) is the log output of a softmax layer predicting the transcription

label at time t. The input of this softmax layer can be a bidirectional LSTM,

Transformer, or other neural network parameterized by Θ and having access

to the whole sequence x.

Eq. 8.11 requires the enumeration of all possible alignments that produce

the transcript z, which is exponential over the input length using vanilla

approaches. Graves et al., 2006 [4] show that it can be computed efficiently

using the forward-backward algorithm as

PẐ|X(z|x) =
|z|∑
u=1

αt(r)βt(r)

et(zr)
, (8.12)

where αt(r) is the forward variable, representing the total probability of all

possible alignments for the prefixes z1:r that end with the rth label, and βt(u)

is the backward variable of all possible alignments for the suffixes (zr:R) that

start with the rth label. The network can then be trained with the back-

propagation by taking the derivative of the loss function with respect to

et(k) for the label k.

The training loss is, therefore, the summation over CTC loss of each speech

sample as

LCTC =

|D|∑
i=1

Li
CTC . (8.13)

8.3.2 Attention-Based Encoder-Decoder Transducer

Unlike the CTC-based architecture, the attention-based encoder-decoder trans-

ducer does not make the assumption that each frame corresponds to a phoneme
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label and that the phoneme labels are conditionally independent given their

frame features. Instead, it directly models the posterior probability PZ|X(z
i|xi).

As in the attention-based transducer framework [7], the log-probability is es-

timated by modeling each character output yis as a conditional distribution

given the previous characters yi1:s−1 and the input signal xi. Using the chain

rule, the loss Li
att, i.e., the negative log-probability is computed as

Li
ATT = − logPẐ|X(z

i|xi), (8.14)

= −
Ri∑
r=1

logP(zir|zi1:r−1,x
i). (8.15)

The training loss is, therefore, the summation of the attention loss of each

speech sample as

LATT =

|D|∑
i=1

Li
ATT . (8.16)

8.3.3 Joint CTC-Attention Learning and Decoding

Joint CTC-attention framework trains an encoder-decoder model using the

attention loss LATT and additionally trains the encoder using the CTC loss

LCTC . This approach has been shown to improve the CER and WER of the

deep neural ASR system [219]. During inference, the joint CTC-attention

beam search [220] is applied to find the most probable phoneme transcript ẑ

given the speech x:

ẑ = argmax
z′∈Z∗

logPẐ|X(z
′|x), (8.17)

= argmax
z′∈Z∗

[λ logPCTC(z
′|x) + (1− λ) logPATT (z

′|x)], (8.18)

where PCTC(z
′|x) is the posterior probability PẐ|X(ẑ|x) estimated by the

encoder-CTC model and PATT (z
′|x) is the posterior probability estimated

by the encoder-decoder model.

Following Kim et al., 2017 [219] and Hori et al., 2017 [220], we use an

encoder-decoder architecture as the G2P transducer to model PZ|Y (z|y),
the posterior probability of phoneme transcripts given the texts and use an

encoder-CTC architecture as the U2P transducer to model PZ|X(z|x), the
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posterior probability of phoneme transcripts given the speech. The reason to

use encoder-decoder architecture for the G2P transducer is that this archi-

tecture does not make assumptions about the linguistic structure of the text

and does not require the input length to be longer than the output length.

During inference, we adapt the one-pass decoding strategy [220] where the

hypotheses are scored using, gCTC(h,X) and gATT (h, Y ), the scores predicted

by the G2P and the U2P model respectively. The scores are computed as

gCTC(h,X) = logPCTC(h, . . . |X) (8.19)

= log
∑

ν∈(Z∪⟨eos⟩)+
PCTC(h · ν|X) (8.20)

= log
T∑
t=1

αt−1(|h| − 1)et(h|h|) (8.21)

gATT (h, Y ) = logPATT (h, . . . |Y ) (8.22)

=

|h|∑
r=1

logPATT (hr|h1:r−1, Y ), (8.23)

where h is the running hypothesis. Eq. 8.21 follows the definition by Seki et

al. [221].

8.4 Architecture

To incorporate both linguistic and speech information into the G2P conver-

sion, the G2PU model consists of three parts, a transformer-based encoder-

decoder grapheme-to-phoneme (G2P) network, an encoder-CTC unit-to-phoneme

(U2P) network and an optional grapheme-to-unit (G2U) network for cases

where parallel speech is missing in the test set. The overview of the architec-

ture is shown in Figure 8.1. Both the G2P and the U2P networks are trained

using phoneme transcripts generated from a teacher G2P tool, which can

be a forced aligner or a rule-based lexicon lookup table. We use the hybrid

beamsearcher [219] implemented in ESPNet [194] to jointly decode the G2P

and U2P networks.
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Figure 8.1: Architecture overview

8.4.1 Speech Units

We use the HuBERT model pretrained on 960 hours of English speech from

LibriSpeech [73] to extract speech representation, regardless of the target

language. Following the textless NLP [155], we use the representation from

the 6th layer as it yields the best ABX score in phoneme categorization.

Presumably a HuBERT model pretrained on large speech corpora from the

target languages, namely Chinese and Japanese in this work, can yield better

representation. The speech representations are K-Means clustered to 500

clusters, and the indices of the cluster centroids are used as speech units.

8.4.2 G2P

The G2P network is a transformer encoder-decoder architecture. The en-

coder is the pretrained BERT [68] model to extract contextual representa-

tions of the grapheme inputs. We use the bert-base-chinese for Chinese

and cl-tohoku/bert-base-japanese for Japanese, both of which are avail-

able in HuggingFace Transformers [208]. The decoder is a transformer

implemented in ESPNet [194] containing 6 self-attention encoder layers,

each having 4 heads, an attention dimension of 256 and a 2048-dim position-

wise feedforward layer. During training, the parameters of the BERT model
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are kept frozen. We take a weighted sum of the hidden representations from

all layers and tune only the weights. The decoder is a randomly initialized

transformer network and is trained from scratch.

8.4.3 U2P

The U2P network is a transformer-based encoder trained with a connectionist

temporal classification (CTC) loss. The encoder is a RoBERTa network [69]

implemented in fairseq [150] that is pretrained on the speech units.

8.4.4 G2U

The G2P and U2P network do not fully address the G2PU problem because

they rely on a parallel waveform which is not usually available for arbitrary

text. In such cases, we use a G2U model to predict acoustic units from

graphemes, leveraging the pronunciation knowledge learned from the par-

allel speech-text training set. We use transformer iwslt de en, a neural

machine translation model implemented in Fairseq [150] and select the best

model based on BiLingual Evaluation Understudy (BLEU) score. Although

the validation BLEU score ranging from 30 to 40 seems low, preliminary ex-

periments show that the audio synthesized using the generated unit sequences

is well-intelligible.

8.5 Experiment Setup

We conduct experiments on Mandarin Chinese and Japanese. For Chinese,

we use AISHELL-3 dataset [222], which contains 85 hours of speech from

218 native Chinese mandarin speakers and their transcripts in Chinese char-

acters and Mandarin Chinese pinyin. The character transcripts are used as

grapheme transcripts and the pinyin transcripts are used as the groundtruth

phoneme transcripts. The tone mark is placed on vowels and the two com-

bined are considered as one symbol. We use the original train split for train-

ing and randomly sample 20% utterances from the test split for validation

and randomly sample 1k utterances from the remaining for testing.

93



For Japanese, we use Corpus of Spontaneous Japanese (CSJ), which

contains about 650 hours of spontaneous speech by native speakers [100]

along with their transcripts in Japanese text and in katakana. The Japanese

text transcripts are used as grapheme transcripts and the katakana tran-

scripts are used as the groundtruth phoneme transcripts. We preprocess

the dataset using the CSJ recipe provided in ESPnet to split and segment

the audio and filter out noisy utterances. The scripts create three splits:

train nodup, train dev, and eval1. We randomly sample 100 hours of

speech data from the train nodup split for training and use train dev and

eval1 splits for validation and testing respectively. The katakana transcripts

contain long vowels denoted by “ー” that can be any one of the five Japanese

vowels depending on its preceding katakana. We additionally substitute the

long vowel symbol into the correct vowels 7. For example “コー” would be

expanded to “コウ”.

8.5.1 Teacher G2P

For Chinese, we generate the teacher phoneme transcripts using Montreal

Forced Aligner (MFA) [210] and G2PW [103]. MFA requires a lexicon

containing character pronunciations in pinyin for which we use CC-CEDICT

dictionary8. We train the G2PU model on the phoneme transcripts gener-

ated by MFA/G2PW and evaluate the model on the groundtruth phoneme

transcripts. For Japanese, we obtain the teacher phoneme transcripts using

MFA and Pykakasi9, a python wrapper for Kakasi [223]. We use the dic-

tionary provided in CSJ for MFA training. Similar to Chinese, the G2PU is

trained on the generated phoneme transcripts.

8.5.2 Training and Evaluation

The G2PU model is trained for 150 epochs until convergence and the check-

point with the best validation accuracy is used for evaluation. The evaluation

metric is PER, which is the edit distance between the generated phoneme

transcripts and the groundtruth transcripts.

7en.wikibooks.org/wiki/Japanese/Kana#Hiragana
8https://cc-cedict.org/wiki
9https://github.com/miurahr/pykakasi
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Table 8.2: PER of phoneme transcripts generated by G2PU evaluated
against groundtruth phonemes. ZH is the result for Chinese and JP is for
Japanese.

Teacher G2PU G2PU-PU

Lang Teacher dev test dev test dev test

ZH
MFA 6.8 5.9 4.9 4.2 5.1 4.3
G2PW 2.7 2.3 2.5 1.8 2.5 1.8

JP
MFA 2.4 2 1.9 1.5 2.3 1.9

Pykakasi 5.2 5.0 4.5 4.6 4.9 4.8

Table 8.3: PER of phoneme transcripts generated by G2PU and G2PU
with audio waveform.

G2PU G2PU-WAV

Lang Teacher dev test dev test

ZH MFA 4.9 4.2 4.9 4.2
JP Pykaksi 4.5 4.6 4.5 4.6

8.6 Results

8.6.1 Phoneme Transcription Performance

We train the G2PU model using teacher phoneme transcripts generated by

G2P tools. The results are shown in Table 8.2. By comparing Teacher

(MFA, G2PW and Pykakasi) and G2PU, We observe that although the

model is trained on Teacher transcripts, additional acoustic information

helps the G2PU model to achieve a lower PER in both Chinese and Japanese

compared to its teacher G2P. The Chinese experiments exhibit a larger gain

than the Japanese experiments. Besides the language differences, the quality

of the speech may also affect the model’s performance, as the CSJ contains

spontaneous speech, which has more irregular expression than the read speech

in AISHELL-3.
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Figure 8.2: Performance over different weight of U2P model.

8.6.2 Weight of U2P

During the joint decoding of the U2P and G2P networks, the beam search

takes a weighted sum of the score of the running hypotheses from both net-

works. We assign the weight λ to the U2P model and 1−λ to the G2P model

and vary the weight value from 0 to 1 to plot the PER curves of G2PU in

Chinese (teacher transcripts generated using G2PW) and Japanese (teacher

transcripts generated using Pykakasi), in Figure 8.2. On the leftmost side

where λ = 0, the G2PU model uses only the G2P network, and on the right-

most side where λ = 1, the G2PU model uses only the U2P network. As

shown, neither the G2P nor U2P network alone results in satisfactory tran-

scription. Instead, the best performance is achieved at λ = 0.05 for Chinese

and λ = 0.25 for Japanese. In the case of Chinese, the high error rate of

G2P at λ = 0 is partly due to the limited amount of training data avail-

able. A closer examination of the G2P outputs shows that the G2P network

terminates some predictions before finishing converting all the grapheme to-

kens. However, when additional acoustic information is integrated, even with

λ = 0.05, the early termination issue disappears.
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Table 8.4: Example transcripts generated by G2PU. “REF” denotes the
groundtruth phoneme transcripts. “MFA” and “Pykakasi” denote the
transcripts generated by existing G2P tools that are used to train the
G2PU model. The incorrect phonemes are underlined.

ZH
Grapheme 来自网购的竞争是原因之一

REF lái z̀ı wǎng gòu de j̀ıng zhēng sh̀ı yuán ȳın zh̄ı ȳı
MFA lái z̀ı wǎng gòu d́ı j̀ıng zhēng shi yuán ȳın zh̄ı ȳı
G2P lái z̀ı wǎng gòu de j̀ıng zhēng shi yuán ȳın zh̄ı ȳı
U2P lái z̀ı wǎng gòu d́ı jiàn zhēng sh̀ı yuán y̌ın zh̄ı ȳı
G2PU lái z̀ı wǎng gòu de j̀ıng zhēng sh̀ı yuán ȳın zh̄ı ȳı

Grapheme 以创造股东价值为主要目标

REF y̌ı chuàng zào gǔ dōng jià zh́ı wéi zhǔ yào mù biāo
MFA y̌ı chuàng zào gǔ dōng jià zh́ı wèi zhǔ yào mù biāo
G2P y̌ı chuàng zào gu dōng jià zh́ı wéi zhǔ yào mù biāo
U2P y̌ı chuāng zào gǔ dōng jià zh́ı wèi zhǔ yàng mù biāo
G2PU y̌ı chuàng zào gǔ dōng jià zh́ı wéi zhǔ yào mù biāo

JP
Grapheme 二通りの自動要約文を生成

REF フタトオリノジドウヨウヤクブンオセイセイ
Pykakasi ニニニトオリノジドウヨウヤクブンヲヲヲセイセイ
G2P ニニニトオリノジドドドウヨウヤクブンヲヲヲセイセイ
U2P フタトオリノジドウイイイヤクモヲヲヲセイセイ
G2PU フタトオリノジドウヨウヤクブンヲヲヲセイセイ

Grapheme クーボビーの実験ではレベルの上昇時

REF クーボビーノジッケンデワレベルノジョウショウジ
Pykakasi クーボビーノジッケンデハハハレベルノジョウショウトトトキキキ
G2P クーボビーノジッケンデハハハレベルノジョウショウトトトキキキ
U2P クククゴゴゴミミミノジッケンデハハハレベルノジョウショウジ
G2PU クーボビーノジッケンデハハハレベルノジョウショウジ

8.6.3 G2P performance with Pseudo Units

We evaluate the G2PU model using G2U-generated pseudo acoustic units in

place of the the real HuBERT units from waveforms. The results are shown

in the “G2P-PU” column in Table 8.2. Using the generated pseudo units

during the inference degrades the quality of the transcripts but G2PU-PU
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still outperforms the teacher G2P tool especially when the teacher G2P tools

(ZH-MFA and JP-Pykakasi) are not very good.

8.6.4 G2P performance with Waveform

We additionally finetune aWav2vec2-CTC ASRmodel that transcribes the

waveform into phonemes. The ChineseWav2vec2 is pretrained on 960 hours

of Chinese speech sampled from United Nations Proceedings Speech [96]

and the Japanese Wav2vec2 is pretrained on 960 hours of Japanese speech

sampled from LaboroTVSpeech [97]. We conducted experiments on the ZH-

MFA teacher and JP-Pykakasi G2PU’s. These choices were driven by their

higher error rates, thereby providing a greater scope for improvement if any.

We repeat the G2PU experiments but replace the U2P network with the

Wav2vec2-CTC model and show the PER result in the G2PU-WAV row

in Table 8.3. The best performance is achieved at λ = 0.05 and λ = 0.25 for

Chinese and Japanese, which is identical to using the units. Interestingly,

the PER using the Wav2vec-CTC network is nearly the same as using U2P

even though the waveform contains richer information than the units. This

finding indicates acoustic units encode enough information to regularize the

G2P predictions.

8.6.5 Qualitative Study on Transcripts

In Table 8.4, we show example phoneme transcripts of speech generated by

the G2PU networks along with the groundtruth transcripts from Chinese and

Japanese datasets. “REF” rows are the groundtruth phoneme transcripts.

MFA and Pykakasi rows are the transcripts generated by teacher G2P

tools and are used to train the G2PU networks. We underline the incorrectly

predicted phonemes compared to the “REF” transcripts.

As we can see from “MFA” and “Pykakasi” rows, the teacher transcripts

contain mistakes. In Chinese, MFA learns an acoustic model from parallel

speech and text, then selects pronunciations from the lexicon. However, it

mistakenly assigns “d́ı” to “的”, “shi” to “是”, and “wèi” to “为” because

the pronunciation by the speaker is ambiguous. The G2P and the U2P

networks trained on MFA transcripts partially inherit the mistakes from MFA
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transcripts and partially correct them. For example, in the left column, G2P

corrects the phonemes for “的” using context information and U2P corrects

the phonemes for “是” using acoustic information. By properly setting the

weights between the G2P and U2P logits, the G2PU network is able to

correct the mistakes in both networks and generate a transcript that is more

accurate than the teacher transcripts.

Similar observations can be made in Japanese experiments. The kanji

character “二” is sometimes pronounced “ニ” (/ni/) and sometimes “フタ”

(/fu ta/), depending on context; similarly, “時” is sometimes pronounced

“トキ” (/to ki/) and sometimes “ジ” (/ji/). The teacher Pykakasi knows

many compound words containing these characters, but it does not know the

compound words in these two test sentences. Therefore it must guess which

pronunciation to use; it guesses incorrectly. Such mistakes are inherited by

the G2P network trained on the Pykakasi transcripts. The U2P network

on the other hand is able to correct these mistakes using the actual speech

sound. However, the speaker pronounces the kanji “要” and the word “クー

ボビー” quickly, so the U2P mistranscribes these words as the short “イ”

(/i/) and “クゴミ” (/ku go mi/) instead of the longer “ヨウ” (/yo u/) and

“クーボビー” (/ku u bo bi i/). Again we see that a proper weight between

the two network outputs can yield a better phoneme transcript than the

teacher Pykakasi transcript.

The G2PU model is not perfect, however. In Japanese, the hiragana “は”

is pronounced as “ハ” (/ha/) in most cases but is pronounced as “ワ” (/wa/)

when used as a grammatical particle to mark the topic. Pykakasi does not

distinguish between the two pronunciations and assigns “ハ” (/ha/) to all

the occurrences of “は”. This mistake is learned by both the G2P and the

U2P networks and we observe that the U2P network cannot correct the “ハ”

(/ha/) to “ワ” (/wa/) using the speech units. This observation suggests

the U2P model is not entirely acoustic; it learns a language model from the

Pykakasi transcripts.

8.7 Summary

Grapheme-to-phoneme transducers (G2Ps) convert graphemes to phonemes.

Forced alignment can be used to select from among alternate pronuncia-
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tions, and the selected pronunciations can be used to re-train the G2P or the

acoustic model, but we know of no existing system that simultaneously opti-

mizes the G2P, the acoustic model, and the phone transcripts of the training

data. In this paper, we propose G2PU, a joint CTC-attention model that

is trained using teacher transcripts, and show that G2PU is able to output

better phoneme transcripts than its teacher when conditioned on both the

graphemes and the acoustic units.
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CHAPTER 9

DISCUSSION

We have introduced six research projects that apply unsupervised speech

technologies to improve speech processing systems on low-resource languages.

This chapter discusses these projects’ advantages and limitations.

9.1 On Resource-Limited Self-Supervised Learning

Since the success of SSL methods in natural language processing (NLP) [68,

69], computer vision (CV) [224] and Speech [10, 11, 12], various methods

have been proposed to improve it. In speech processing domain, for example,

XLSR [40] improves Wav2vec2 [11] by incorporating additional data from

different languages; VG-HuBERT [88] improvesHuBERT by incorporating

additional paired speech-image data; WavLM [225] improves HuBERT by

incorporating additional denoising objectives. These methods improve the

quality of SSL representation, assuming additional data is available, whereas

the reverse scenario, where data is limited, is less investigated. Differing from

these existing methods, DiffS4L proposed in Chapter 4 aims to improve

SSL in a resource-limited setting. The amount of data involved is strictly

controlled to be 100 hours of raw speech data without text labels. The seed

SSL, the refined SSL models, the diffusion-based speech synthesizers, and

the HiFiGan vocoder are all trained on 100 hours of real data. Such data

constraints underscore both the advantages and disadvantages of DiffS4L.

The advantages of DiffS4L are twofold. First, DiffS4L shows that it ex-

tracts better speech representations compared to baseline SSL methods when

trained on equivalent amounts of data. Experimental findings in Chapter 4

suggest that diffusion-based speech synthesizers can learn the most possible

patterns in the speech and the resulting synthetic speech data with speaker

and content artificially perturbed exhibit a closer resemblance to the real
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speech distribution than the original 100-hour data. This observation sug-

gests the better information efficiency of DiffS4L. Second, DiffS4L uses

synthetic data to augment the original 100 hours of real speech data, and thus

is able to avoid the privacy and data security issues from the introduction of

the additional real data.

The disadvantages of DiffS4L originate from the data limitation. As ob-

served from Table 4.1, using 960 hours of real speech is still better than using

100 hours of real speech plus 860 hours of synthetic speech data, because the

real data drawn from the true speech distribution has a lower bias than the

synthetic data. Besides, the training pipeline is overly lengthy, requiring the

training of two diffusion models the training of two SSL models and the gen-

eration of around 1000 hours of synthetic speech, which is not efficient in

practice.

9.2 On Two-Stage Modality Matching

Given the modality matching has been shown successful in unsupervised

ASR [2], it is natural to question whether the unsupervised ASR can be

applied to train an unsupervised TTS where parallel speech-text is unavail-

able. The project introduced in Chapter 5 is the first affirmative response

to this question. In this project, a two-stage unsupervised TTS system is

designed, which consists of an unsupervised ASR module to transcribe the

speech into pseudo text labels and a traditional supervised TTS trained using

the pseudo text labels and the speech. This system is trained and evaluated

on a number of languages and the synthesized speech exhibits high intelligi-

bility. However, this system still has limitations, with the major limitation

being the cascading design containing the disjoint ASR and TTS systems.

Firstly, while the pseudo text labels generated by the ASR subsystem deter-

mine the overall performance of the supervised system, there is no feedback

mechanism to the ASR system to constrain error propagation. Secondly, the

proposed cascaded system complicates the training process, and end-to-end

designs of unsupervised TTS systems remain unexplored. Another limitation

comes from the specific choice of Tacotron2 as the supervised TTS model

in this project. Experimental results show that the Tacotron2 has con-

vergence issues on certain languages and both supervised and unsupervised
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Tacotron2 produce synthetic speech with noticeable artifacts. Other TTS

systems with stabler training processing can be explored.

9.3 On Unsupervised Transfer Learning

The difficulty of building a working low-resource speech processing system

stems from data sparsity; we are using a limited amount of data samples

to estimate the entire speech-text distribution. Apparently, prior knowledge

about the target space is necessary to achieve performance gain under such

limitations. Prior knowledge can come from a related domain. The project in

Chapter 6 transfers phonetic prior knowledge learned from multiple languages

to the ASR task on unseen languages. WavPrompt in Chapter 7 transfers

semantic prior knowledge learned from large text corpora to answer SLU

questions.

Prior knowledge can be classified as either theory-driven or data-driven,

i.e., summarized by experts or learned from data. The projects introduced

in Chapter 6 and in Chapter 7 can be considered as incorporating these two

types of prior knowledge, respectively.

In Chapter 6, two types of prior knowledge summarized by linguists, i.e.,

the phylogenetic relationships between languages and the phoneme inven-

tory, are introduced to a joint CTC-based Transformer model. The language

embeddings extracted from the linguistic knowledge exhibit patterns that

match human heuristic as shown in Figure 6.3; for example, although Span-

ish never appears in the training data, the model, relying on prior knowledge,

assumes it to be a language similar to Portuguese, as indicated by the dis-

tance between the two in Figure 6.3. Consequently, it adapts itself using the

Spanish language embedding to predict phonemes in a manner that aligns

closely with Portuguese. The limitation of this work mainly stems from

the language metadata involved. The metadata of phylogenetic information

and the phoneme inventory are both quite abstract, lacking more specific

knowledge about the training and the testing languages, such as syntax and

grammar. With the advancement of prompt engineering technology and large

language modeling, it might be interesting to see if LLMs can perform zero-

shot phonetic recognition with more detailed text descriptions describing the

syntactic and grammatical rules of the testing language.
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In Chapter 7, WavPrompt incorporates data-driven prior knowledge into

an SLU system through a frozen pretrained language model. WavPrompt

system consists of an audio encoder and a frozen language model. The audio

encoder is pretrained as part of an ASR system so that it learns to convert

the speech in the task demonstrations into embeddings digestible to the lan-

guage model. After pretraining, the entire framework is frozen and ready

to perform few-shot learning upon seeing the demonstrations. Notably, the

training and the testing tasks are different; the training task, ASR, requires

the system to transcribe the speech literally, whereas the test task, SLU,

requires the system to answer questions regarding the speech content. In

this sense, WavPrompt can be considered as an unsupervised SLU system

as it does not require labeled SLU data. The different question prompts

serve as adapters to adapt the language model to perform different tasks.

WavPrompt is among the earliest attempts to build a prompted-based SLU

model. The largest limitation of WavPrompt is it only performs intention

classification and is unable to perform generation-based question answering.

This can be due to the limited training data and the limited size of the

language model. The training data is only 960 hours of speech data in the

LibriSpeech corpus, and the language model involved is GPT2 with only

117 Million parameters. Using language models with more parameters and

stronger text-generation capacity is a future direction to explore.

9.4 On Unsupervised Multimodal Learning

Prior knowledge to improve the low-resource models can also come from a

different modality. In Chapter 8, we show that by combining the text and

speech modalities, G2PU can generate improved phoneme transcripts com-

pared to its teacher. As suggested in the qualitative results in Sec 8.6.5,

G2PU, leveraging the additional speech modality, corrects errors predicted

by the text-based G2P transducers. The entire training process does not in-

volve groundtruth phoneme transcripts as targets. In this sense, G2PU can

be classified as an unsupervised method for improving existing G2P tools.

The main limitation of G2PU is that it still requires groundtruth phoneme

transcripts to select the best model during evaluation, and there does not

exist an unsupervised metric to evaluate the generated phoneme transcripts.
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The lack of groundtruth transcripts for evaluation limits languages available

for experiments and also limits its application in practice. There are two

solutions to this limitation. One is to collect a test set with groundtruth

phoneme transcript for each target language. The other is to design an un-

supervised metric for phoneme transcripts, which can be a future exploration

direction.
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CHAPTER 10

CONCLUSION

This thesis explores applying unsupervised speech technologies to improve

speech processing systems. In Chapter 3, we study the transferability of

SSL models trained using monolingual, cross-lingual and multilingual data

and observe that even the monolingually trained Wav2vec2 models have

achieved decent performance in unseen languages. In Chapter 4, we pro-

pose DiffS4L to improve the data efficiency of the SSL models such as

Wav2vec2 and HuBERT, using synthetic data generated by diffusion mod-

els. In Chapter 5, we introduce the first attempt to build an unsupervised

TTS system using unsupervised ASR methods. In Chapter 6, we use ex-

ternal linguistic knowledge to improve the zero-shot cross-lingual phonetic

recognition systems without using any data from the testing languages. In

Chapter 7, we propose WavPrompt to leverage the few-shot learning abil-

ity of pretrained language models to perform SLU without any labeled SLU

data. In Chapter 8, we propose G2PU that improves the prediction of a G2P

transducer by incorporating additional acoustic information without access

to groundtruth phonetic transcripts during training.

These projects demonstrate that although unsupervised learning does not

provide the same benefit as an increased amount of labeled data, nevertheless,

unsupervised learning can significantly improve the performance of speech

recognition, speech synthesis, and speech understanding in under-resourced

application scenarios. All the projects in this thesis encode prior knowledge

into neural representations for knowledge transfer from one task to another.

These neural representations can be classified into three broad categories:

(1) trained model parameters, as in Chapter 3, Chapter 5, Chapter 7 and

Chapter 8 (2) synthetic data, as in Chapter 4, or (3) explicit encoding of

linguistic scientific knowledge about the target domain as in Chapter 6. All

three types of knowledge transfer have been demonstrated to reduce error

rates of speech processing systems.

106



There have been many studies on unsupervised speech technologies. The

methods included in this thesis are just small attempts to improve speech

processing systems on low-resource languages. I hope that this thesis could

invite other researchers to explore unsupervised speech technologies and bring

the benefits of modern speech processing systems to a wider user base.
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M. Dehghani, S. Dev, J. Devlin, M. C. D’iaz, N. Du, E. Dyer,
V. Feinberg, F. Feng, V. Fienber, M. Freitag, X. Garćıa, S. Gehrmann,
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[64] M. Řezáčková, J. Švec, and D. Tihelka, “T5g2p: Using text-to-text
transfer transformer for grapheme-to-phoneme conversion,” 2021.

[65] Q. Wang, “A method of polyphone disambiguation based on seman-
tic extension,” in 2021 IEEE 4th Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IM-
CEC), vol. 4. IEEE, 2021, pp. 1752–1756.

[66] M. Rezaei, N. Nayeri, S. Farzi, and H. Sameti, “Multi-module g2p con-
verter for persian focusing on relations between words,” arXiv preprint
arXiv:2208.01371, 2022.

[67] A. Ploujnikov and M. Ravanelli, “Soundchoice: Grapheme-to-phoneme
models with semantic disambiguation,” in Interspeech, 2022.

[68] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran,
and T. Solorio, Eds. Association for Computational Linguistics,
2019. [Online]. Available: https://doi.org/10.18653/v1/n19-1423 pp.
4171–4186.

115

https://doi.org/10.18653/v1/n19-1423


[69] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” ArXiv, vol. abs/1907.11692, 2019.

[70] K. Qian, Y. Zhang, H. Gao, J. Ni, C.-I. Lai, D. Cox,
M. Hasegawa-Johnson, and S. Chang, “ContentVec: An improved
self-supervised speech representation by disentangling speakers,” in
Proceedings of the 39th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, K. Chaudhuri,
S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato,
Eds., vol. 162. PMLR, 17–23 Jul 2022. [Online]. Available:
https://proceedings.mlr.press/v162/qian22b.html pp. 18 003–18 017.

[71] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“Glue: A multi-task benchmark and analysis platform for natural lan-
guage understanding,” arXiv preprint arXiv:1804.07461, 2018.

[72] S. wen Yang, P.-H. Chi, Y.-S. Chuang, C.-I. J. Lai, K. Lakhotia, Y. Y.
Lin, A. T. Liu, J. Shi, X. Chang, G.-T. Lin, T.-H. Huang, W.-C. Tseng,
K. tik Lee, D.-R. Liu, Z. Huang, S. Dong, S.-W. Li, S. Watanabe,
A. Mohamed, and H. yi Lee, “SUPERB: Speech Processing Universal
PERformance Benchmark,” in Proc. Interspeech 2021, 2021, pp. 1194–
1198.

[73] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
an ASR corpus based on public domain audio books,” in 2015 IEEE
international conference on acoustics, speech and signal processing
(ICASSP). IEEE, 2015, pp. 5206–5210.

[74] L. Wang, J. Ni, H. Gao, J. Li, K. C. Chang, X. Fan,
J. Wu, M. Hasegawa-Johnson, and C. Yoo, “Listen, decipher and
sign: Toward unsupervised speech-to-sign language recognition,” in
Findings of the Association for Computational Linguistics: ACL
2023, A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds. Toronto,
Canada: Association for Computational Linguistics, July 2023.
[Online]. Available: https://aclanthology.org/2023.findings-acl.424 pp.
6785–6800.
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J. Karadayi, V. Liptchinsky, R. Collobert, C. Fuegen, T. Likhoma-
nenko, G. Synnaeve, A. Joulin, A. Mohamed, and E. Dupoux, “Libri-
light: A benchmark for asr with limited or no supervision,” in
ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, https://github.com/
facebookresearch/libri-light. pp. 7669–7673.

[152] V. Pratap, Q. Xu, A. Sriram, G. Synnaeve, and R. Collobert, “Mls:
A large-scale multilingual dataset for speech research,” ArXiv, vol.
abs/2012.03411, 2020.

[153] A. Babu, C. Wang, A. Tjandra, K. Lakhotia, Q. Xu, N. Goyal,
K. Singh, P. von Platen, Y. Saraf, J. M. Pino, A. Baevski, A. Conneau,
and M. Auli, “Xls-r: Self-supervised cross-lingual speech representation
learning at scale,” ArXiv, vol. abs/2111.09296, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:244270531

[154] E. Dunbar, J. Karadayi, M. Bernard, X.-N. Cao, R. Algayres,
L. Ondel, L. Besacier, S. Sakti, and E. Dupoux, “The zero
resource speech challenge 2020: Discovering discrete subword and
word units,” in Interspeech, 2020. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:222310784

[155] K. Lakhotia, E. Kharitonov, W.-N. Hsu, Y. Adi, A. Polyak, B. Bolte,
T.-A. Nguyen, J. Copet, A. Baevski, A. Mohamed et al., “On gener-
ative spoken language modeling from raw audio,” Transactions of the
Association for Computational Linguistics, vol. 9, pp. 1336–1354, 2021.

[156] T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the design
space of diffusion-based generative models,” in Proc. NeurIPS, 2022.

[157] Y. Wang, D. S. RJ Skerry-Ryan, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards
end-to-end speech synthesis,” in arXiv, 2017. [Online]. Available:
preprintarXiv:1703.10135

[158] W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan, S. Narang,
J. Raiman, and J. Miller, “Deep voice 3: 2000-speaker neural text-to-
speech,” 2018.

[159] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,
“Fastspeech: Fast, robust and controllable text to speech,” in Advances
in Neural Information Processing Systems, 2019.

[160] N.Li, S.Liu, Y.Liu, S.Zhao, and M.Liu, “Neural speech synthesis with
transformer network,” in AAAI, vol. 33, 2019, p. 6706–6713.

125

https://github.com/facebookresearch/libri-light
https://github.com/facebookresearch/libri-light
https://api.semanticscholar.org/CorpusID:244270531
https://api.semanticscholar.org/CorpusID:222310784
https://api.semanticscholar.org/CorpusID:222310784
preprint arXiv:1703.10135


[161] J. Xu, X. Tan, Y. Ren, T. Qin, J. Li, S. Zhao, and T. Liu, “LRSpeech:
Extremely low-resource speech synthesis and recognition,” in KDD,
2020, pp. 2802–2812.

[162] K. Park and T. Mulc, “CSS10: A collection of single speaker speech
datasets for 10 languages,” 2019.

[163] A. Baevski, W.-N. Hsu, A. Conneau, and M. Auli, “Unsupervised
speech recognition,” 2021.

[164] P. K. Muthukumar and A. W. Black, “Automatic discovery of a pho-
netic inventory for unwritten languages for statistical speech synthesis,”
2014, pp. 2594–2598.

[165] A. H. Liu, T. Tu, H. Lee, and L. Lee, “Towards unsupervised speech
recognition and synthesis with quantized speech representation learn-
ing,” 2020, pp. 7259–7263.

[166] H. Zhang and Y. Lin, “Unsupervised learning for sequence-to-sequence
text-to-speech for low-resource languages,” 2020, pp. 3161–3165.

[167] K. Lakhotia, E. Kharitonov, W.-N. Hsu, Y. Adi, A. Polyak, B. Bolte,
T.-A. Nguyen, J. Copet, A. Baevski, A. Mohamed, and E. Dupoux,
“On generative spoken language modeling from raw audio,” in arXiv,
2021. [Online]. Available: https://arxiv.org/pdf/2102.01192.pdf

[168] A. Polyak, Y. Adi, J. Copet, E. Kharitonov, K. Lakhotia, W.-N. Hsu,
A. Mohamed, and E. Dupoux, “Speech Resynthesis from Discrete Dis-
entangled Self-Supervised Representations,” in Proc. Interspeech 2021,
2021, pp. 3615–3619.

[169] E. Kharitonov, A. Lee, A. Polyak, Y. Adi, J. Copet, K. Lakhotia, T.-A.
Nguyen, M. Rivière, A. Mohamed, E. Dupoux, and W.-N. Hsu, “Text-
free prosody-aware generative spoken language modeling,” in arXiv,
2021. [Online]. Available: https://arxiv.org/pdf/2109.03264.pdf

[170] M. Hasegawa-Johnson, A. Black, L. Ondel, O. Scharenborg, and
F. Ciannella, “Image2speech: Automatically generating audio descrip-
tions of images,” in ICNLSSP, 2017, p. 1–5.

[171] X. Wang, S. Feng, J. Zhu, M. Hasegawa-Johnson, and O. Scharenborg,
“Show and speak: directly synthesize spoken description of images,”
in icassp, 2021.

[172] W.-N. Hsu, D. Harwath, T. Miller, C. Song, and J. Glass, “Text-
free image-to-speech synthesis using learned segmental units,” in ACL-
IJCNLP, 2021, pp. 5284–5300.

126

https://arxiv.org/pdf/2102.01192.pdf
https://arxiv.org/pdf/2109.03264.pdf


[173] J. Effendi, S. Sakti, and S. Nakamura, “End-to-end image-to-speech
generation for untranscribed unknown languages,” IEEE Access, vol. 9,
pp. 55 144–55 154, 2021.

[174] Y. Ren, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “Almost
unsupervised text to speech and automatic speech recognition,” 2019,
pp. 5410–5419.

[175] C.-K. Yeh, J. Chen, C. Yu, and D. Yu, “Unsupervised speech recogni-
tion via segmental empirical output distribution matching,” 2019.

[176] K.-Y. Chen, C.-P. Tsai, D.-R. Liu, H.-Y. Lee, and L. shan Lee, “Com-
pletely unsupervised speech recognition by a generative adversarial net-
work harmonized with iteratively refined hidden Markov models,” 2019.

[177] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,” 2020.

[178] H. Tachibana, K. Uenoyama, and S. Aihara, “Efficiently trainable text-
to-speech system based on deep convolutional networks with guided
attention,” 2018, pp. 4784–4788.

[179] K. Ito and L. Johnson, “The lj speech dataset,” https://keithito.com/
LJ-Speech-Dataset/, 2017.

[180] K. Park and J. Kim, “g2pe,” https://github.com/Kyubyong/g2p, 2019.

[181] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stem-
mer, and K. Vesely, “The kaldi speech recognition toolkit,” in IEEE
2011 Workshop on Automatic Speech Recognition and Understand-
ing. IEEE Signal Processing Society, Dec. 2011, iEEE Catalog No.:
CFP11SRW-USB.

[182] T. Hayashi, R. Yamamoto, K. Inoue, T. Yoshimura, S. Watanabe,
T. Toda, K. Takeda, Y. Zhang, and X. Tan, “ESPnet-TTS: Unified,
reproducible, and integratable open source end-to-end text-to-speech
toolkit,” 2020, pp. 7654–7658.

[183] J. Kong, J. Kim, and J. Bae, “HiFi-GAN: Generative adversarial net-
works for efficient and high fidelity speech synthesis,” 2020.

[184] K. Park and T. Mulc, “Css10: A collection of single speaker speech
datasets for 10 languages,” in Interspeech, 2019.

[185] J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross-language
knowledge transfer using multilingual deep neural network with shared
hidden layers,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. IEEE, 2013, pp. 7304–7308.

127

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
https://github.com/Kyubyong/g2p


[186] H. Hammarström, R. Forkel, M. Haspelmath, and S. Bank,
Glottolog 4.3, Jena, 2020. [Online]. Available: https://glottolog.org/
accessed2021-03-30

[187] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[188] S. Moran, D. McCloy, and R. Wright, “Phoible online,” 2014.

[189] J. Li and M. Hasegawa-Johnson, “Autosegmental neural nets: Should
phones and tones be synchronous or asynchronous?” in Interspeech,
2020.

[190] M. Hasegawa-Johnson, P. Jyothi, D. McCloy, M. Mirbagheri, G. di Lib-
erto, A. Das, B. Ekin, C. Liu, V. Manohar, H. Tang, E. C.
Lalor, N. Chen, P. Hager, T. Kekona, R. Sloan, , and A. K. Lee,
“Asr for under-resourced languages from probabilistic transcription,”
IEEE/ACM Trans. Audio, Speech and Language, vol. 25, no. 1, pp.
46–59, 2017.

[191] C. Yi, J. Wang, N. Cheng, S. Zhou, and B. Xu, “Applying wav2vec2. 0
to speech recognition in various low-resource languages,” arXiv preprint
arXiv:2012.12121, 2020.

[192] X. Li, S. Dalmia, D. R. Mortensen, F. Metze, and A. W. Black, “Zero-
shot learning for speech recognition with universal phonetic model,”
2018.

[193] N. Oostdijk, “The spoken dutch corpus. overview and first evaluation.”
in LREC. Athens, Greece, 2000, pp. 887–894.

[194] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N.-E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen et al., “Espnet:
End-to-end speech processing toolkit,” Proc. Interspeech, pp. 2207–
2211, 2018.

[195] S. Karita, N. Chen, T. Hayashi, T. Hori, H. Inaguma, Z. Jiang,
M. Someki, N. E. Y. Soplin, R. Yamamoto, X. Wang et al., “A compar-
ative study on transformer vs RNN in speech applications,” in IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU).
IEEE, 2019, pp. 449–456.

[196] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.”
Journal of machine learning research, vol. 9, no. 11, 2008.

128

https://glottolog.org/ accessed 2021-03-30
https://glottolog.org/ accessed 2021-03-30


[197] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained
models for natural language processing: A survey,” Science China
Technological Sciences, vol. 63, no. 10, pp. 1872–1897, 2020.

[198] Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh, “Calibrate before
use: Improving few-shot performance of language models,” in Inter-
national Conference on Machine Learning. PMLR, 2021, pp. 12 697–
12 706.

[199] H. Gao, J. Ni, K. Qian, Y. Zhang, S. Chang, and M. A. Hasegawa-
Johnson, “Wavprompt: Towards few-shot spoken language under-
standing with frozen language models,” in Interspeech, 2022.

[200] M. Tsimpoukelli, J. Menick, S. Cabi, S. Eslami, O. Vinyals, and F. Hill,
“Multimodal few-shot learning with frozen language models,” Advances
in Neural Information Processing Systems, vol. 34, 2021.

[201] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts
for generation,” Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers),
vol. abs/2101.00190, 2021.

[202] D. F. Harwath and J. R. Glass, “Deep multimodal semantic embed-
dings for speech and images,” 2015 IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), pp. 237–244, 2015.

[203] L. Lugosch, M. Ravanelli, P. Ignoto, V. S. Tomar, and Y. Bengio,
“Speech Model Pre-Training for End-to-End Spoken Language Under-
standing,” in Proc. Interspeech 2019, 2019, pp. 814–818.

[204] E. Bastianelli, A. Vanzo, P. Swietojanski, and V. Rieser, “SLURP:
A spoken language understanding resource package,” in Proceedings
of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Online: Association for Computational
Linguistics, Nov. 2020. [Online]. Available: https://aclanthology.org/
2020.emnlp-main.588 pp. 7252–7262.

[205] W.-N. Hsu, D. F. Harwath, C. Song, and J. R. Glass, “Text-free image-
to-speech synthesis using learned segmental units,” in ACL, 2021.

[206] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,”
in Proceedings of the 23rd Annual ACM Conference on Multimedia.
ACM Press, 2015. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2733373.2806390 pp. 1015–1018.

129

https://aclanthology.org/2020.emnlp-main.588
https://aclanthology.org/2020.emnlp-main.588
http://dl.acm.org/citation.cfm?doid=2733373.2806390
http://dl.acm.org/citation.cfm?doid=2733373.2806390


[207] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[208] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison,
S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu,
T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush,
“Transformers: State-of-the-art natural language processing,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Online: Association
for Computational Linguistics, Oct. 2020. [Online]. Available:
https://www.aclweb.org/anthology/2020.emnlp-demos.6 pp. 38–45.
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