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Abstract

In the forefront of materials science, 2D materials have emerged as a captivating research domain over

the past two decades. Among these, graphene stands out as an exceptional 2D material with distinctive

mechanical, thermal, and electrical properties, making it a critical component in applications spanning

lightweight structural materials, versatile coatings, and flexible electronics. However, the high cost and

complexity of experimental investigations have driven the adoption of computational simulations, particularly

molecular dynamics (MD), to unveil the underlying microscopic origins of graphene’s unique properties. Yet,

such simulations have yielded varying results, owing to the use of diverse empirical interatomic potentials

used in these MD simulations.

This dissertation aims to create an accurate interatomic potentials for 2D materials like graphene by

using an artificial neural network (ANN)-based interatomic potential. These ANN based machine learning

interatomic potentials for graphene are trained from the training data developed using first-principle based

atomistic simulations. Machine learning potential (MLP) helps us to run high-fidelity Molecular Dynamics

(MD) simulations approaching the accuracy of first principle simulations but with a fraction of computational

cost. These MLP enables larger-scale simulations and extended timeframes, thereby accelerating the design,

development and discovery of novel graphene/graphene based nanomaterials. Also, this dissertation aims

to showcase MLP’s capability in estimating critical material properties of graphene, including coefficient of

thermal expansion (CTE), lattice parameters, Young’s modulus, yield strength with comparable accuracy of

that of experimental and first-principle calculations found from previous literatures. Remarkably, MLP’s

capability in capturing dominant mechanisms governing the behaviour of CTE in graphene, including effects of

changing lattice parameters and increasing/decreasing out-of-plane rippling with temperature, is a significant

highlight of this dissertation. Furthermore, this MLP development method can be extended to other 2D

materials, promising to expedite research on novel 2D materials and their unique atomic structures.

Moving on to 2D materials-based nanocomposites, in today’s scientific and technological landscape,

have assumed a position of significant importance. These hybrid material systems merge organic molecules

with inorganic 2D materials, creating a new dimension of functional materials with varied applications i.e.

materials for photovoltaics, electronics, nanotribology to aerospace applications. The interfaces between

these 2D material and polymers serves as prototype material systems for studying confinement-induced

phase transitions in 2D material based nanocomposites. Thorough understanding of dynamic and static

behaviour of atoms in these interfaces at small length (nanometers) and time scales (nanoseconds) is critical

as it material behaviour at this scale dictates overall material property of the resulting material system.

Thus understanding the interfacial behaviour at atomic level will lead in the development of deliberately

engineered 2D material and polymer based nanocomposites. But till date, the complexities of experimental

testing at these small length and time scales as well as theoretical modeling have hindered a comprehensive

understanding of these hetero-interfaces and thereby our ability to use these materials for practical purposes.
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To address this issues, this dissertation aims to understand the behaviour of 2D material and polymer at

these interfaces using molecular dynamics (MD) simulations. By conducting MD simulations we focus on the

assembly of polyethylene chains on surface of two dimensional MoSe2 sheet (which serves as a representative

material system in this study to analyse the behaviour of 2D material based nanocomposites). All-atom

models were created to simulate the dynamic assembly of n-pentacosane chains, which serves as a proxy

for polyethylene in this study, on the surface of two dimensional MoSe2 sheet. This study reveals that

polyethylene molecules starts crystallizing from 2D MoSe2-polyethylene interface and the crystallization

growth front (plane of crystallized polymer chains) moves quickly towards the bulk polyethylene chains

starting from the 2D material-polymer interface. At equilibrium, the directional registry of polyethylene chains

on the 2D material surface happens through the interplay of free energy of the surface, adhesive interfacial

interactions, conformational entropy, and the presence of substrate corrugation. The results suggests the

potential of 2D materials, such as MoSe2, as a template for creating 2D material-polymer nanocomposites

with specific crystallization orientations creating deliberate anisotropy and thereby resulting in a material

system with tunable material properties.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

The rapid advancement in materials science has led to the discovery and exploration of two dimensional

(2D) materials, unveiling a new realm of possibilities for technological advancements. Among these novel

materials, graphene has gained substantial attention due to its exceptional mechanical, electrical, thermal and

chemical properties. Graphene is a single layer two dimensional material in which carbon atoms organized in

a hexagonal lattice. Graphene given its unique material properties has become one of the most researched

material till date. This surge of interest in graphene has paved the way in the discovery of other two

dimensional materials like Phosphorene, MoS2, h-BN, MoSe2 etc., each possessing unique attributes that

can be utilized for diverse applications. Graphene, among all the two dimensional materials, extraordinarily

stands out due to the combination of high electrical conductivity, high mechanical strength, high surface area,

and single atomic layer thickness. Over the years graphene has been used for variety of applications, ranging

from high specific strength materials such as bullet proof vests, energy storage materials like batteries, sensor

materials like gas detectors, flexible electronics like human-like skin in robots etc. to name a few.

Despite the immense potential of 2D materials, their utilization is often hindered by challenges arising

from their extremely small thickness and unique characteristics. Experimental characterization and testing

of these materials become particularly challenging and costly due to small relevant length and time scales

involved. Consequently, the need for innovative methods to systematically evaluate their properties has

increased over time. Computational simulations, such as first-principle calculations and classical molecular

dynamics (MD) simulations, offer a cost and time efficient method to explore the properties of these materials.

While first-principle calculations provide high accuracy in evaluating material properties but they come at a

computational cost that limits simulation size and time. On the other hand, classical MD simulations offer

computational efficiency, making them suitable for investigating larger and more realistic material models.

However, classical MD simulations rely on empirical potentials, whose accuracy is influenced by the fidelity of

empirical interatomic potentials. In recent years, the emergence of machine learning techniques has provided

a promising solution to bridge the gap between accuracy and efficiency in material simulations by developing

accurate interatomic potentials for MD simulations using machine learning methods. By training machine

learning models to represent potential energy surfaces derived from first-principle calculations, researchers

have unlocked the potential machine learning to combine the accuracy of first-principle calculations with

the computational efficiency of classical MD simulations. This has enabled the investigation of material
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behaviors at different scales, from the atomic level to the macroscopic properties of nanocomposites. From

this stems the first aim of this dissertation i.e. to develop better interatomic potentials for 2D materials

like graphene and to be able to use them in MD simulations to achieve an accuracy in evaluating material

properties that is comparable to that of first-principle calculations like Density Functional Theory (DFT)

simulations. The developed machine learning based interatomic potentials (MLPs) will help simulate 2D

materials like graphene with an accuracy of first-principle simulations and evaluate material properties of

graphene like coefficient of thermal expansion which are difficult to characterize experimentally due to small

thickness and size effects of 2D materials.

Once we have developed better interatomic potentials for 2D materials but stilling putting them to

practical applications is far fetched idea due to our limited understanding of behaviour of 2D materials with

3D materials (most 2D materials are used with combining them with 3D materials for practical purposes) as

2D materials can not be used solely due to their single atomic layer thickness that creates handling issues

(2D materials are usually fragile in out of plane direction). To, leverage the excellent material properties of

these 2D materials we need to use them with polymers to create 2D material based nanocomposites (which

are 3D materials) with superior material properties. This allows us to use these 2D materials in a practical

applications in our day to day life. In this study we are targeting one specific material system i.e MoSe2 (2D

material) and polyethylene (3D polymer) which creates a 2D material nanocomposite. From this stems the

second aim of this dissertation, i.e. design and development of nanocomposites based on 2D materials where

we will use MoSe2/graphene as our 2D material and polyethylene as our polymer. The focus in these 2D

materials based nanocomposites is on harnessing the potential of 2D materials like graphene and MoSe2 to

act as nucleating agents for specific crystallization behaviour of polyethylene. Note that polyethylene is a

semi-crystalline material where directionally crystallized polyethylene chains can create anisotropic behaviour

in crystallized polyethylene which is our focus in this study. Thus, directional assembly of polyethylene chains

on the surfaces of these 2D materials offers a unique opportunity to engineer the properties of resulting

nanocomposites. But till date we don’t have a very clear understanding on how these 2D materials guide

the crystallization of polymers such a polyethylene. For this understanding the interfacial interactions,

characteristics at 2D material and polymer interface is critical. As we have mentioned before, experimental

studies have limitations of capturing the material behaviour at these time and length scales. This steers us

to computational simulations which offers a powerful tool in unraveling the behavior of 2D materials based

nanocomposites at these small length and time scales. Thus by investigating the crystallization of polyethylene

on the surfaces of 2D material MoSe2/graphene through MD simulations, this study seeks to generate new

knowledge in the development of 2D materials based nanocomposites. This will open new directions for the

design of advanced nanocomposite materials with tailored properties. We also investigated the templating

effects of these 2D materials on the crystallization of polyethylene by straining the 2D materials to generate

positive reinforcement to crystallize polyethylene chains on 2D material surface in a particular direction. This

gives us a tuning knob (percentage strain in 2D material) to guide crystallization of polyethylene chains

thereby tunable material properties of the resulting 2D material based nanocomposite by deliberately creating

anisotropy in the nanocomposites. This can help in the development of flexible electronics, flexible human

like skin for robots etc. where different material properties are needed in different directions.
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1.2 Research Statement and Objectives

The research conducted in this dissertation is dedicated to utilize the potential of two dimensional (2D)

materials for the development of 2D material based nanocomposites. We have chosen graphene and MoSe2 as

our 2D material and polyethylene as our representative polymer in this study. The primary goal is to advance

our understanding of the intricate interplay between 2D materials and polymers, ultimately culminating in the

design and development of innovative 2D materials based nanocomposites with tunable material properties.

Objective 1: Machine learning for developing interatomic potentials for graphene

The first objective of this research is to use machine learning model to learn the complex interatomic

potential function of 2D material i.e graphene in this study. By developing artificial neural network-based

machine learning interatomic potentials (MLPs) for graphene (This method is equally applicable to other 2D

materials), we aim to fuse the accuracy of first-principle calculations with the computational efficiency of

classical molecular dynamics (MD) simulations. In this study, we developed artificial neural network-based

machine learning interatomic potentials for graphene that can be used in MD simulations which gives the

accuracy comparable to that of first-principle simulation but with a fraction of computational cost compared

to it.

Objective 2: Templating effects of 2D material for crystallization of polyethylene

The second objective is to understand the templating effects of 2D material i.e. MoSe2 in this study

for crystallizing polyethylene chains and creating deliberate anisotropy in the resulting 2D material based

nanocomposite. In this study, we have used MD simulations to investigate the assembly of polyethylene

chains on the surface of 2D material MoSe2. The aim of this study is to investigate and understand the

crystallization processes of polyethylene chains in the presence of MoSe2 by characterizing the crystallization

orientations of polyethylene chains, crystallographic behavior of crystallized polyethylene chains and change

in free energy of at the interface. Thus, through a systematic exploration of 2D-polymer interface, we seek

to uncover the underlying mechanisms that govern the formation of nanocomposites with tailored material

properties.

Objective 3: Comparing templating effects of different 2D materials

The third objective emphasizes a comprehensive characterization of 2D material polymer interface using

different 2D materials, i.e. graphene and MoSe2 in this study. In this section, we also aim to discern

the impact of strained 2D material substrate on the crystallization orientation of polyethylene chains

of MoSe2-polyethylene material system. This investigation will provide a deeper understanding of how

these interfacial characteristics influence the macro-level material properties, including mechanical strength,

electrical conductivity, and other relevant attributes. The insights gained will contribute to the strategic

design of nanocomposites with enhanced functionalities.
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Chapter 2

MACHINE LEARNING

INTER-ATOMIC POTENTIALS FOR

GRAPHENE

2.1 Introduction

The discovery of graphene, a unique 2D material with exceptional mechanical, electrical, and chemical

properties [1], [2], has opened a new chapter of 2D materials in materials science. This breakthrough discovery

of graphene sparked a rapid exploration of other 2D materials, such as h-BN, phosphorene, MoS2, and MoSe2

[3]–[5]. Graphene’s single layer of carbon atoms forming a honeycomb lattice structure creates the foundation

for its remarkable material properties. This honeycomb lattice structure of graphene makes it not only one of

the lightest materials but also one of the strongest [6] naturally occurring material on earth. The strong

covalent bonds (sp2 hybridization) between carbon atoms, in the hexagonal lattice structure of graphene,

contribute to graphene’s remarkable stability and the ability to form single layer long 2D sheets [1], [2].

These sp2 hybridized covalent bonds also give graphene exceptional high in-plane tensile strength [1], [2].

With three out of four valence electrons participating in covalent bonding of carbon atoms in graphene, the

remaining one valence electron provides graphene an outstanding electrical and thermal conductivity [7], [8].

Thus, unique combination of material properties make graphene a prime candidate for the development of

next-generation composite materials. The potential applications of graphene spans a wide range, including

bulletproof vests, mechanical resonators, high energy storage batteries, and gas detectors [7] etc. Given these

extraordinary material properties of graphene, it can be considered as a metamaterial with the potential to

revolutionize diverse fields in the future to come, like composites, batteries, and superconductors [7].

Over the last decade, there has been extensive experimental research on graphene and graphene-based

nanocomposites to unravel their unique material properties and establish their structure-property relationships.

Lee et al. [9] investigated the Young’s modulus of graphene, determining it to be 1 ± 0.1 TPa, thus confirming

graphene as the strongest material measured to date. Another investigation by Lee U. et al. [10] utilized

Raman spectroscopy to estimate the Young’s modulus of single-layer graphene and found it to be 2.4 TPa. Bao

et al. [11] experimentally determined the coefficient of thermal expansion of graphene, noting its transition

from negative to positive values between room temperature and 375 K, with a monotonic increase from 300 K
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to 400 K. Similarly, Yoon et al. [12] utilized Raman spectroscopy to predict a monotonically increasing, yet

negative, coefficient of thermal expansion across the temperature range of 200 K to 400 K. Yang et al. [13]

compiled experimental data on in-plane lattice parameter of graphene, suggesting a constant value of 2.46 Å

in the temperature range of 200 K to 1000 K. Manigandan et al. [14] explored the topological properties

of graphene-based nanocomposites doped in Kevlar, finding an increase in nanocomposite strength with

higher graphene percentages, ranging from 0% to 5%. These discrepancies in experimental data in evaluating

Young’s modulus and coefficient of thermal expansion of graphene may stem from the challenges associated

with characterizing and testing the extremely thin dimensions of 2D materials experimentally, making it

imperative to explore alternative methods for systematically evaluating graphene’s material properties.

Analytical and computational simulations offers a cost and time-efficient alternative to experimental

studies for investigating the behaviour of 2D materials. First-principle calculations and classical molecular

dynamics (MD) simulations are commonly used for such investigations [15], [16] where experimental scientists

find it difficult to characterize a material. First-principle calculations, utilizing Density Functional Theory

(DFT) simulations and ab initio MD simulations, explore the electronic structure of many-body systems

to assess material properties of 2D materials like graphene. Tianjiao et al. [15] conducted first-principle

calculations using quasi-harmonic approximations (QHA) to evaluate the Young’s modulus of graphene across

a temperature range of 20 K to 1000 K, yielding a constant value of 1.15 TPa. Mounet et al. [16] utilized DFT

simulations to determine the lattice parameter of graphene, observing a slight decrease in lattice parameter

with temperature within the temperature range of 20 K to 1000 K. Their study also analyzed the coefficient

of thermal expansion (CTE) of graphene with respect to temperature, noting a negative, non-monotonic

trend decreasing from 20 K to 250 K, followed by an increase in lattice parameter from 250 K to 2000 K.

Classical MD simulations are also prevalent for establishing, evaluating, and analyzing material properties

due to their computational efficiency [17]–[19]. These MD simulations rely on simplified empirical potentials,

often derived from parameter fitting based on experimental or first-principle calculation results. Consequently,

the success of classical MD simulations heavily depends on the fidelity and availability of empirical potentials.

Rahman et al. [20] investigated the mechanical performance and fracture behavior of silicon-doped graphene

using classical MD simulations. In another study employing classical MD simulations, Li et al. [19] explored

the effect of functionalized interfaces between graphene and polyethylene, revealing varied Young’s modulus

with differing numbers of different functional groups. These investigations, including that of Rahman et.al.

and Li et.al. [19], [20], demonstrate the feasibility of characterizing the mechanical properties of graphene and

graphene-based nanocomposites through classical MD simulations, overcoming experimental challenges. Also,

their study suggest the capability of classical MD simulations to simulate larger, more realistic material models

with reasonable accuracy, a task currently challenging for DFT and ab-initio MD simulations. First-principle

calculations delve into the electronic structure of atoms, yielding highly precise results for evaluating material

property and their behaviour. However, this precision comes with a computational burden that constrains the

size and duration of first-principle simulations for the targeted material system. Consequently, we encounter

a stalemate where one simulation type is computationally fast but less reliable (classical MD), while the other

emphasizes on accuracy (DFT) but is computationally expensive. Recently, a few studies have explored the

possibility of representing the potential energy surface of materials using machine learning techniques, derived

from DFT simulations SINGH2023112272 Wen˙et˙al, [21]. In this methodology, a machine learning

model is trained to depict the potential energy surface for a specific material system, offering scalability

and adaptability. Subsequently, this trained machine learning model can be integrated into classical MD

simulations to analyze material behaviors and assess material properties with an accuracy comparable to that
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of first-principle simulations. Such machine learning-driven interatomic potential (MLP) enables the accuracy

of DFT simulations with the computational efficiency of classical MD simulations [21], [22] helping us get the

better of both the computational simulation types. In this research, we have developed an artificial neural

network-based machine learning interatomic potential (MLP) specifically tailored for graphene. The training

dataset was constructed using first-principle calculations of graphene, as outlined in the study by Rowe et

al. [22]. Atomic configurations within the training dataset were encoded using a symmetry function-based

atom-centered coordinate system. The trained artificial neural network (ANN) with optimized weights

and biases effectively represents graphene’s interatomic potentials under diverse loading and experimental

scenarios which was extensively validated before being put to use in MD simulations. Classical molecular

dynamics (MD) simulations were conducted using LAMMPS [23], an open-source MD simulation software,

combined with n2p2 software [24] to incorporate machine learning interatomic potentials. In this study, we

evaluated lattice parameter, coefficient of thermal expansion, Young’s modulus, and ultimate tensile strength

of graphene to validate the accuracy and predicting power of ANN-based MLP. Finally, a comparative analysis

of these material properties of graphene with experimental findings and DFT simulations suggests the efficacy

and practical applicability of machine learning interatomic potentials in the context of graphene research.

2.2 Methodology

In this section, artificial neural network (ANN)-based machine learning model was used to develop interatomic

potentials that characterize the potential energy surface of graphene. To enable effective training of ANN,

atomic configurations were translated into a global representation using symmetry functions [25]. These

symmetry functions offered an invariant representation of atomic coordinates for the material system i.e new

coordinate system is universal in nature and does not depend on a reference frame. During the iterative

training process, the ANN’s weights and biases were optimized through backpropagation, aiming to minimize

the discrepancy between predicted energy values and reference energy values. The training iterations were

stopped for a specific ANN once a desired level of accuracy was attained for the network’s weights and biases.

The resulting ensemble of optimized weights and biases within a trained ANN encapsulates a sophisticated

interatomic potential function, which defines the intricate connection between atomic structure and energy

for the desired material system i.e graphene in this study. This ensemble, termed as machine learning

interatomic potential (MLP) for graphene, serves as a model capable of estimating energy values based on

atomic configurations. The subsequent content of this section is divided into two distinct subsections. First

subsection delves into the details of the symmetry functions used to encode the spatial coordinates of atoms

for graphene, while the second subsection focuses on the training methodology applied to the ANN to training

the MLP.

Symmetry Functions

Before initiating the training process for an artificial neural network (ANN), it’s imperative to represent each

atomic structure in the training dataset in a way that’s invariant to translation, rotation, and the exchange

of equivalent atoms. In this research, this invariance was achieved by encoding atomic structures using

symmetry functions [25], [26]. This approach ensured that each reference atomic structure was consistently

represented, obviating the need for a specific coordinate system. Since, the basis functions were centered

on individual atoms, the evaluation of energy after the training of machine learning interatomic potentials

remained independent of the choice of coordinate system. This eliminated the need of multiple coordinate
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transformations across datasets with various coordinate systems. Two different type of symmetry functions

were adopted for characterizing the atomic structures in this study: radial symmetry functions and angular

symmetry functions. Radial symmetry functions, detailed in Equations 1 and 2, accounts for two-body

interactions surrounding the central atom. On the other hand, angular symmetry functions, described in

Equation 3, consider the three-body interactions centered around the central atom. The combination of

radial and angular symmetry functions creates a comprehensive depiction of the atomic environment within a

material system comprising a single atomic species i.e graphene in this study.

A radial symmetry function can be defines as follows:

Gi
r(σ) =

nr∑
j ̸=i

gir(Rij) =

nr∑
j ̸=i

exp−η(Rij−Rs)
2

fc(Rij) (2.1)

Here, σ represents three-dimensional atomic coordinates, Rij = |Ri −Rj | signifies the distance between

the central atom i and its neighboring atom j, Rc is the cutoff radius, η is the radial parameter, nr denotes

the number of neighboring atoms around atom i within the specified cutoff distance, and fc is the cutoff

function.

An angular symmetry function can be expressed as follows:

Gi
a(θ) =

na∑
j ̸=i,k ̸=i,j ̸=k

gia(θijk) = 21−ζ
∑
j ̸=i

∑
k ̸=i,j ̸=k

(1 + λ cos(θijk))
ζ exp−η(R2

ij+R2
ik+R2

kj) fc (2.2)

In this equation, θijk denotes the angle between the central atom i and its neighboring atoms j and k.

Parameters ζ, λ, and η are used to define the angular symmetry function. na represents the number of atoms

around atom i within the designated cutoff distance, and, fc is the cutoff function. A composite vector

denoted as Gi = [Gr1, Gr2, ..., Gr10, Ga1, Ga2, ..., Ga20] was constructed based on a collection of all the radial

and angular symmetry functions. This vector was used to encode the atomic surroundings for each atom

contained within the reference dataset. Consequently, the total energy of an individual atomic structure was

represented as the sum of energies contributed by each atom. This summation could be further expressed in

terms of radial and angular symmetry functions, as outlined in Equation 4. The formulation for the total

energy of a single structure can be expressed as follows:

Etot =

n∑
i=1

Ei ≈
n∑

i=1

EANN
i (Gr(R), Ga(R, θ)) (2.3)

In this equation, Etot signifies the total energy of the reference dataset, Ei represents the energy of

the individual atom indexed as i, n corresponds to the total count of atoms present in the structure, and

EANN
i (Gr(R), Ga(R, θ)) denotes the energy attributed to atom i through the artificial neural network potential,

that is determined by the radial and angular symmetry functions. As a result, for each distinct structure,

the input provided to the artificial neural network is a matrix of dimensions n by m, where n denotes the

number of atoms within the structure, and m signifies the total count of symmetry functions associated with

each atom. Here is the tabular information for the parameters related to the radial symmetry functions (Gr

type) with Rc = 6.5 Å and Rs = 0:
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Figure 2.1: Diagram of atomic artificial neural network deployed in this study. Input to the atomic ANN are
the symmetry function values. This atomic ANN has two hidden layers with 10 neurons each. Output from
the atomic ANN is atomic energy of the given atom. Reprinted (adapted) with permission from Singh et.al.
https://doi.org/10.1016/j.commatsci.2023.112272. Copyright 2023 Elsevier

Table 2.1: Parameters for Gr type of radial symmetry functions (Rc = 6.5 Å and Rs = 0)

S.No η S.No η
1 0.004938 6 0.493827
2 0.012404 7 1.240438
3 0.031158 8 3.115839
4 0.078266 9 7.826633
5 0.196596 10 19.659613

Table 2.2: Parameters for Ga type of angular symmetry functions (Rc = 6.5 Å and Rs = 0)

S.No η ζ λ S.No η ζ λ
1 0.000049 2 1 11 0.000049 2 -1
2 0.000124 4 1 12 0.000124 4 -1
3 0.000312 6 1 13 0.000312 6 -1
4 0.000783 8 1 14 0.000783 8 -1
5 0.001966 10 1 15 0.001966 10 -1
6 0.004938 12 1 16 0.004938 12 -1
7 0.012404 14 1 17 0.012404 14 -1
8 0.031158 16 1 18 0.031158 16 -1
9 0.078266 18 1 19 0.078266 18 -1
10 0.196596 20 1 20 0.196596 20 -1

Artificial Neural Network

The feedforward artificial neural network [27] is one of the earliest machine learning neural networks developed.

In this particular type of neural network functions the information flows in a single direction without any

cyclic processes, as depicted in Figure 2.1. The configuration of an artificial neural network is characterized by

three fundamental parameters: the quantity of hidden layers, the activation functions used, and the number

of nodes situated within hidden layers.
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Figure 2.2: Schematic of artificial neural network (ANN) potential for graphene. Each atom is represented
by a line with cartesian coordinates Ri. First step converts cartesian coordinates into symmetry func-
tion values Gi using the cartesian coordinate information of all the other atoms with the cutoff radius
i.e in the local environment of that atom, shown by blue dotted arrows. Then, the symmetry function
values are fed to the ANN providing energy contribution from each atom Ei. Finally the total struc-
tural energy is evaluated as the sum of all Ei. Reprinted (adapted) with permission from Singh et.al.
https://doi.org/10.1016/j.commatsci.2023.112272. Copyright 2023 Elsevier

For training the artificial neural network, an energy-based loss function was used. This loss function is

used to minimize the discrepancy between the predicted energy outcomes derived from the artificial neural

network and the reference energy values extracted from a dataset established through Density Functional

Theory (DFT) simulations. In this study, root mean squared error (RMSE) function was evaluated as the

loss function between ANN and DFT results, as shown in Equation 5.

ϵ(wm, bm) =
1

2

c∑
s=1

[EANN
s (σ,w, b)− Eref

s ]2 =
1

2

c∑
s=1

[
n∑

i=1

EANN
s,i ((Gi

r, G
i
a), w, b)− Eref

s

]2

(2.4)

Here, c is the total number of configurations in the dataset, ref is utilized to signify the reference dataset.

The term EANN
s denotes the energy evaluated using artificial neural network, while Eref

s is the reference

energy computed using DFT calculations. Given that the neural network predicts the energy values on an

atomic scale, whereas DFT calculations do not directly provide atomic energies, therefore all the atomic

artificial neural networks are concurrently trained across all atoms present in each dataset (evaluating total

energy of each dataset). The cumulative energies predicted by the individual atomic neural networks are then

summed to yield the total energy, as shown in Figure 2.2. During the training process of atomic artificial

neural networks (ANNs), the gradient of the loss function which is used to evaluate the weight parameters,

was computed using the backpropagation technique. This enabled iterative adjustments to the weights. Two

distinct training methods, namely Gradient Descent (GD) and Levenberg-Marquardt (LM), were used to

fine-tune the ANN weights. The weight parameters were updated within each training epoch using the

following formulations:

For Gradient Descent:

wi+1 = wi +∆wi (2.5)

∆wi = −h∇ϵ (2.6)
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For Levenberg-Marquardt:

∆wi = −(JT,i−1J i−1 + λI)−1∇ϵ (2.7)

The expression for the gradient of the loss function (∇ϵ) is given by Equation 8, where ϵ represents the

loss function, EANN
s denotes the ANN-predicted energy, Eref

s signifies the reference energy, n is the total

number of atoms, and
δ[EANN

S,i (Gi
r,G

i
a,w,b)]

δwm
symbolizes the derivative of the ANN-predicted energy with respect

to the weight parameter wm.

For our material system i.e. graphene the Levenberg-Marquardt backpropagation method converges

quickly compared to Gradient Descent method due to its second-order correction. However, since the size of

the Hessian matrix that needs to be inverted increases rapidly if the dimensions of artificial neural network

becomes large that usually make Levenberg-Marquardt more inefficient. Under such circumstances, alternative

training algorithms like BFGS should be considered. Fortunately, the complexity of our training dataset did

not necessitate such an approach and Levenberg-Marquardt worked flawlessly for us.

2.2.1 Training and Validation of Machine Learning Potentials for Graphene

This section outlines the creation of training data, necessary coordinate transformation involved, training

methods, and validation steps used for the development of machine learning interatomic potential for graphene.

First subsection outlines the process of generating the training dataset, second subsection delves into the

depiction of graphene’s atomic environment, third subsection explores the two training methods used for the

machine learning potentials (MLP) and their effectiveness, while fourth subsection outlines the validation

steps taken to assess the performance of the MLP.

Training Dataset

The efficacy of the developed machine learning potential relies heavily on the quality and representation of

structures within the training dataset. Our training dataset was constructed by using finely-tuned Density

Functional Theory (DFT) simulations on reference configurations derived while taking snapshots of cartesian

coordinates while straining the graphene sheet along armchair and zig-zag directions at regular intervals.

This dataset is called the reference dataset in this study where all the reference graphene structures (atomic

coordinates) of each carbon atom consisted of a single layer with 24 carbon atoms in each structure. For

straining the graphene and creating the reference dataset, Molecular Dynamics simulations were conducted

to induce stretching in graphene sheets, generating different atomic configuration structures. Note only

atomic coordinates were captured using MD simulations for each structure but not the atomic energies. For

each atomic configuration captured, i.e atomic coordinates/cartesian coordinates for a configuration, the

reference energy was evaluated using DFT simulations. A total of 320 reference configurations (each with a

different coordinates of all 24 carbon atoms depending on the level of applied strain) were created, obtained by

systematically extracting snapshots from stretched trajectories of graphene i.e. 160 configurations snapshots

were obtained by stretching graphene along the armchair direction, while the remaining 160 snapshots

were captured from stretching graphene along the zigzag direction. DFT simulations for each reference

configuration were conducted which evaluated the total potential energy of each reference structure in the

dataset. This was accomplished utilizing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional,

implemented through the PWSCF module of the Quantum ESPRESSO package [28]. The wave functions

were represented using in-plane wave basis sets with energy cutoffs set at 40 Ry and 120 Ry, respectively.

GBRV ultrasoft pseudopotentials were used for the core regions of atoms. For the integration of the Brillouin
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zone, a gamma-centered k-point mesh (4-16-1 k-points) was used for the crystal cell containing 24 carbon

atoms.

Symmetry Functions and Description of Graphene’s Atomic Environment

Graphene, being composed solely of carbon atoms, represents a relatively simple material system. The choice

of symmetry function parameters plays a pivotal role in enhancing the stability and accuracy of the developed

MLP. To achieve this, a strategy proposed by Artrith et.al. [29] for selecting symmetry function descriptors

was adopted in this study. This strategy involves employing combined descriptors to effectively represent the

local atomic structure and composition. Artrith’s findings suggest that the mathematical completeness of

descriptors isn’t necessary for nonlinear machine learning models, as long as they can adequately distinguish

between pertinent samples. Consequently, the potential energy surface can be depicted using a compact basis

set, corresponding to a coarse depiction of radial and angular symmetry functions.

Radial symmetry functions, as represented in Equation 2.1, incorporated a Gaussian function suffixed

with a cutoff function. The cutoff function fc serves to encode energetically significant regions proximal to

the central atom within atom-centered symmetry functions. Parameters η and Rs regulate the width and

positioning of the Gaussian function, respectively. For angular symmetry functions, as per Equation 2.2,

the term within the brackets characterizes the angular distribution. Parameter λ shifts the angular term’s

peak value between 0◦ and 180◦, while parameter ζ controls the Gaussian function’s angular width. The

introduction of terms involving rij introduces asymmetry into angular functions. This leads to the selection

of four parameters (η,Rs, λ, ζ) for constructing appropriate sets of atom-centered symmetry functions.

Choosing λ and ζ for angular symmetry functions is relatively straightforward. Typically, utilizing two

sets of angular symmetry functions with λ = 1 and λ = -1 is the general approach, as it covers the full range

of angles present in the local environment. Parameter ζ governs angular resolution, where lower values of ζ

yielding higher resolution. In our case, values of ζ ranging from 2 to 24 in increments of 2 units were used.

Rs parameter horizontally displaces the Gaussian function. In our study, Rs was set to 0 for the symmetery

functions either radial or angular. Among all the parameters, η exerts the most significant impact on descriptor

the performance for both radial and angular symmetry functions. Typically, the value of η for the radial

symmetry function with the smallest effective range (corresponding to the shortest interatomic distances in

the dataset) is determined by spatial extension. The choice of lowest η for radial symmetry functions is guided

by the correlation between symmetry function values (with at least 90% linear independence) for all atoms

present in the reference training dataset. To ensure even spatial coverage from ro to rc, an auxiliary radial

grid is introduced. This auxiliary grid comprises N equidistant points spanning from ro to rc. Consequently,

the values of η are defined as ηi = 1/2r2i while adhering to the aforementioned constraints. In our study, a

total of 10 radial and 20 angular symmetry functions were used to characterize the local atomic environment

in the simulation system. This results in a 30-dimensional transformed coordinates that serves as an input

vector for the training of atomic ANN. All the parameter selections used in the calculations of radial and

angular symmetry functions can be found in Table 2.1 and Table 2.2.

Training of Machine Learning Potential (MLP)

This study employs a high-dimensional atom-based artificial neural network, depicted in Figure 2.2, comprising

N atoms, with each line signifying a graphene atom. The initial step involves converting the Cartesian

coordinates Ri = (Xi, Yi, Zi) into symmetry functions Gi, which serve as suitable inputs for the atomic ANNs.

These atomic ANNs predict the energy associated with each atom, the sum of which yields the total energy of
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the structure. The feedforward ANN architecture utilized in this research encompasses 2 hidden layers, each

comprising 10 nodes. The hyperbolic tangent function serves as the activation function within the hidden

layers, which helps in the MLP training creating smoothly terminating functions. The reference dataset was

divided in a manner where we allocated 90% of reference dataset for training the MLP and the remaining 10%

for testing the MLP. The training progress was monitored through the evolution of the root mean squared

error (RMSE) of the reference structures, depicted in Equation 2.8.

RMSE =

√√√√ 1

n

nt∑
i=1

(Ei − EANN
i )2 (2.8)

Two distinct training methods, Gradient Descent (GD) and Levenberg-Marquardt (LM), were implemented

and compared in this study. The GD method is known for its computational efficiency in comparison to

the LM method. Thus, to compare the performance of these two methods, error histories of the predicted

energy against reference DFT values were plotted during the training process, as displayed in Figure 2.3.

Notably, both methods can achieve well-converged ANN structures within a reasonable number of iterations.

However, it is evident that LM method can attain an accuracy of 5 meV/atom in less than 50 iterations for

our reference training dataset, while the GD method converges to a lower accuracy, exhibiting an RMSE

error of 115 meV/atom even after 400 iterations. Although the number of training iterations doesn’t directly

correlate with computing time, considering the dimensions of the current ANN and the relatively small

training dataset used in this study, the LM method proves to be more efficient. As a result in this study, the

weights and biases corresponding to the LM training method were used to develop the MLP in its current

form.

Figure 2.3: Training error of MLP with error history using Gradient Descent method and Levenberg-Marquardt
method is shown. It can be noted that LM method converges quickly for our training dataset
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(a) (b)

(c) (d)

Figure 2.4: Figure: (a) Correlation of ANN energies with training and testing dataset with DFT energies (b)
Histogram of energy error distribution for training and testing datasets (c) Potential energy fluctuations for
different configurations for ANN and DFT simulations (d) Effect of different time steps on potential energy
evaluated from ANN potentials

Validation of the Machine Learning Potential

Validating the accuracy and reliability of the developed machine learning potential (MLP) is a crucial step in

ensuring its effectiveness. The correlation between predicted MLP energies and the corresponding reference

energies obtained through density functional theory (DFT) is a fundamental aspect of validation. As depicted

in Figure 2.4a, this correlation demonstrates a strong agreement between the predicted and reference energies

for both the training and testing datasets. The fitting function y = x indicates that the predicted energies

closely match the reference energies across a variety of atomic configurations, attesting to the MLP’s accuracy

in capturing the potential energy landscape. The distribution of energy errors is another insightful measure

of MLP performance. Illustrated in Figure 2.4b, the energy error histogram for both the testing and training

datasets showcases the error distribution in electron-volts. Approximately 75% of the training errors and 70%

of the testing errors are below the designated target accuracy, indicating the MLP’s capability to achieve

accurate energy predictions. To further assess MLP reliability, monitoring the potential energy fluctuations

within different molecular dynamics (MD) simulation trajectories is also critical. Figure 2.4c presents the
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MLP-predicted energies with the corresponding DFT energies for 36 reference structures. The results reveal

the MLP’s robust performance in estimating the energy of metastable atomic configurations, with deviations

of less than 3 meV/atom. MLP’s ability to yield a smooth and continuous potential energy surface is equally

important as it facilitates easy numerical integration of equations of motion during MD simulations with

unseen atomic configurations. Demonstrated in Figure 2.4d, the total energy profiles of a single-layer graphene

sheet over 500 fs using time steps of 0.5 fs, 1 fs, and 2 fs within the NVE ensemble at room temperature

are compared. The plots indicate that the total energy of the material system remains well conserved, with

fluctuations confined to a few meV for MD simulations using step sizes of 0.5 fs and 1 fs. However, a slight

drift is observed for the 2 fs step size case, warranting further investigation. Another crucial metric for

assessing the efficacy of the MLP lies in its capacity to accurately predict atomic forces. Since our MLP was

exclusively trained on DFT-derived potential energies, evaluating its performance in force prediction is very

important. To this end, a selection of 300 random samples from MD simulations was utilized to compare the

forces predicted by the MLP with those from DFT simulations. The results, depicted in Figure 2.5, reveal

some scattering in predicted force values, yet it suggests a robust correlation between the forces predicted by

the MLP and those obtained through DFT simulations. Notably, the predicted forces largely remain within

1.5 eV/Å of the standard deviation. Furthermore, the alignment of the majority of force vectors predicted by

the MLP was also investigated, as demonstrated in Figure 2.6. It can be observed that the direction of these

force vectors exhibits a strong correlation with the DFT simulation results, with deviations within 20 degrees.

This suggests the MLP’s ability not only to predict magnitude of forces accurately but also to approximate

their directional components effectively.

Figure 2.5: Correlation of magnitude of atomic forces in graphene predicted by ANN and corresponding DFT
simulations

In atomistic simulations, accurately calibrated phonon dispersion is a fundamental prerequisite for

interatomic potentials to yield a precise representation of lattice dynamics. Phonon dispersion, a property

that can be experimentally measured, also serves as an excellent independent metric for validating the overall

quality of an interatomic potential. Hence, the validation of phonon dispersion was also done for MLP
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Figure 2.6: Histogram plot showing similarity in angle predicted by ANN and corresponding DFT forces

developed in this study using the small displacement method.

Figure 2.7 illustrates the phonon map of graphene as predicted by the MLP, employing different reference

datasets. The green lines depict the outcomes of atomistic simulations, while the red lines correspond to the

findings of experimental studies. In Figure 2.7 (a), an MLP trained with 124 samples in training dataset

accurately captures the general shape and trend of most phonon branches but exhibits an underestimation of

absolute values. Subsequently, in Figure 2.7 (b), an enhancement in predicted phonon energies can be observed

upon increasing the sample size of training dataset to 300. This enhancement is particularly pronounced for

the low-energy branches, where predictions display strong correlation, while overestimations persist for higher

energy branches. Interestingly, additional refining of representation strategy for atomic configurations in the

reference dataset was done by expanding the cutoff distance from 4.5 Å to 6.5 Å which leads to improved

phonon dispersion predictions, as demonstrated in Figure 2.7 (c). This implies that the quality of the MLP

can be systematically enhanced by adjusting various parameters, such as the size of the training dataset

and the degree of the digitization process. However, a comprehensive understanding of the complete set

of factors governing an optimal tuning strategy for the MLP necessitates further systematic uncertainty

quantification. Through comprehensive validation procedures shown above, the developed MLP exhibits

strong predictive accuracy, reliability in capturing metastable structures, and the capability to sustain smooth

energy profiles using MD simulations. These findings collectively highlight the effectiveness of the developed

machine learning interatomic potential for graphene in this study.

2.3 Prediction of thermal and mechanical properties

This section presents temperature dependence of mechanical and thermal properties of graphene by conducting

Machine Learning interatomic Potentials based Molecular Dynamics (MLMD) simulations. Section 2.3.1

discusses the evaluation of thermal properties of graphene i.e. coefficient of thermal expansion and lattice

parameter between 125 K - 1000 K temperature range. Section 2.3.2 discusses the mechanical performance of
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Figure 2.7: Comparison of predicted phonon dispersion using MLP (small displacement method) with
experimental results (a) using 124 samples with a cutoff distance 4.5 Å (b) using 300 samples with a cutoff
distance 4.5 Å (c) using 300 samples with increased cutoff distance of 6.5 Å
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graphene i.e. Young’s modulus and ultimate tensile strength between 125 K - 2000 K temperature range.

These estimated mechanical and thermal properties of graphene are also compared with first principle

calculation and experimental results from previous literatures in this section.

2.3.1 Lattice parameter and coefficient of thermal expansion

Lattice parameter stands out as a critical property of a material system that can be evaluated for an

atomistic model of graphene. It influences various intrinsic material properties of graphene, such as Young’s

modulus, yield strength, coefficient of thermal expansion etc. In nanocomposites, the nature and extent of

interaction between graphene and polymers can significantly alter material properties, contingent upon the

degree of lattice matching between the two materials [30]. Our investigation compares lattice parameters

predicted by MLMD simulations with those from computational and experimental studies documented in

the literature [15], [16], [31]–[33], as shown in Figures 2.8a and 2.8c. We evaluated the in-plane lattice

parameter for a freestanding graphene sheet containing 12400 atoms over a temperature range of 125 K to

1000 K. MLMD simulations were conducted using NPT ensemble using Nosé-Hoover thermostat, maintaining

isobaric-isothermal conditions with pressure set at 1 bar. Simulations at 300 K were equilibrated for 10 ns, and

three realizations were used for each temperature. Lattice parameters were computed and averaged over a 20

ns duration for each simulation. Figure 2.8a illustrates that DFT simulations by Mounet et al. [16] predicting

a marginally decreasing lattice parameter, measuring 2.469 Å at 125 K and 2.463 Å at 1000 K. In another

study by Tianjiao et al. [15], DFT simulations employing quasi-harmonic approximation (QHA) suggested

a constant lattice parameter around 2.454 Å over the temperature span of 125 K to 1000 K. Monte Carlo

simulations by Zakharchenko et al. [34] and classical MD simulations using the empirical potential LCBOP

[31] suggest a similar prediction of the lattice parameter, remaining constant at 2.457 Å over the temperature

range of 125 K to 1000 K. Classical MD simulation using AIREBO [32] potential predicts a much smaller

lattice parameter of 2.418 Å compared to the predictions in other works. Our MLMD simulation forecasts a

comparable lattice parameter with DFT simulations, approximately around 2.456 Å, within the explored

temperature range. Figure 2.8c presents the normalized lattice parameter (lattice parameter normalized with

the value of the lattice parameter at 20 K), demonstrating the temperature-dependent lattice parameter’s

variations. DFT simulations by Mounet et al. depict a monotonically decreasing lattice parameter, while

DFT-QHA simulations by Tianjiao et al. show a non-monotonic and slightly increasing lattice parameter in

the temperature range of 125 K to 1000 K. Classical MD simulations based on AIREBO potential display a

similar non-monotonic trend as the DFT-QHA simulation results, while MD simulations using the LCBOP

potential reveal a monotonic decreasing lattice parameter. Our MLMD simulation results follow a similar

trend as the DFT simulation by Mounet et al. [16], indicating a monotonically decreasing lattice parameter

between 20 K and 1000 K.

Coefficient of thermal expansion (CTE) serves as a crucial thermal property of graphene, offering insights

into the anharmonicity of bonding interactions between atoms, relative strengths of in-plane and out-of-plane

forces within the material system, and the vibrational coupling between harmonic and anharmonic modes.

Equation 2.9 outlines the mathematical formulation utilized in this investigation for computing the coefficient

of thermal expansion for graphene.

CTE =
1

At

∂At

∂T
(2.9)

where At represents the area of the graphene sheet at temperature T in Kelvin. To evaluate the derivative
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Figure 2.8: (a) Comparison of temperature dependence of lattice parameter for different interatomic potentials
from literature and machine learning potentials (MLP) developed in this study (b) Comparison of MLP
evaluated coefficient of thermal expansion for graphene as a function of temperature between 125 K to 1000 K
with different interatomic potentials from literature (c) Thermal dependence of normalised lattice parameter
with lattice parameter value at 20 K - a varied range of predictions were observed i.e. monotonically increasing,
decreasing to more complex non monotonic behaviour. Third order polynomial fitting was used to evaluate
the lattice parameter value at 20 K
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of the area with respect to temperature, spline interpolation was used between the evaluated areas at each

temperature. In-plane CTE was determined using MLMD simulations on freestanding graphene sheets

containing 12400 atoms across a temperature range of 125 K to 1000 K. CTE was assessed at discrete

temperatures within this range. MD simulations were conducted under NPT ensemble using (Nosé-Hoover

thermostat) isobaric-isothermal conditions, with pressure set at 1 bar and temperature at 300 K. Simulations

were equilibrated for 10 ns at 300 K, followed by a temperature increase to reach the desired temperature with

a ramping rate of 25 K/ns. Three similar simulations were conducted for CTE at a particular temperature,

and the final CTE was averaged for each temperature. The behavior of CTE concerning temperature for

graphene remains a contentious topic, with conflicting findings from previous literature studies. Experimental

research by Bao et al. [11] suggests a transition of CTE from negative to positive (approximately at 375

K) within the temperature range of 300 - 400 K, while another experimental study by Yoon et al. [12]

predicts only negative CTE within the temperature range of 200 - 400 K. Overall, experimental studies

suggest that the coefficient of thermal expansion of graphene is negative at moderate temperatures (0 - 500

K) [11], [12], indicating that low lying bending phonon modes cause graphene to crumple and thereby shrink

in the in-plane direction. Raman spectroscopy and micromechanical measurements suggest graphene to have

a negative in-plane coefficient of thermal expansion within the temperature range of 30 K - 300 K [35]–[37].

However, typical experimental evaluations of graphene involve graphene adsorbed on a substrate material,

inducing strain from the substrate that significantly affects the lattice parameter and coefficient of thermal

expansion value, making the study of freestanding graphene an intriguing topic for theoretical scientists [34],

[38]. Ab-initio MD simulation results broadly agree that the coefficient of thermal expansion of graphene is

negative over a moderate temperature range but differ in predicting its magnitude. Non-equilibrium green

function (NGF) study [39] demonstrates a non-monotonic behavior of CTE with negative CTE observed

at moderate temperatures and positive CTE at high temperatures (500 K and above). CTE switches sign

at 600 K in this study. Another study using density functional theory by Mounet et al. [16] also predicts

a non-monotonic behavior for CTE, but suggests CTE remains negative up to 1000 K, with a minimum

value of CTE observed at 300 K. Studies using empirical potential show even more variations in predicting

CTE. Adaptive intermolecular reactive empirical bond order (AIREBO) potentials predict a monotonously

increasing CTE which remains positive over a wide temperature range and only turns negative below 200 K.

Another empirical potential, long-range bond-order potential (LCBOP), predicts CTE to be entirely negative

between 0 - 1000 K but with a monotonously increasing behavior [40].

Our MLMD simulations, illustrated in Figure 2.8b, reveal a similar trend in the coefficient of thermal

expansion (CTE) as observed in the experimental study by Yoon et al. [12]. Our MLMD simulations suggest

that the CTE increases with rising temperature within the range of 125 K to 600 K, with a transition from

negative to positive CTE occurring at around 375 K. Beyond 600 K, the CTE stabilizes and does not show

further increase up to 1000 K. Classic MD simulations conducted by Gao et al. [41] propose that thermal

fluctuations and out-of-plane rippling at moderate temperatures may cause the graphene membrane to

contract, exhibiting a negative coefficient of thermal expansion. Such behavior might not be readily apparent

in DFT simulations due to the limited number of atoms used to observe rippling. However, classic MD

simulations employing empirical potentials may not offer reliable predictions regarding the lattice parameter

of graphene, as previously depicted in Figure 2.8a. Experimental studies face limitations in conducting tests

on freestanding graphene sheets. Therefore, our MLMD simulations serve as a bridge, facilitating efficient

classic MD simulations with comparable accuracy to DFT simulations. In our MLMD simulations, we adopted

high sampling of data within the moderate temperature range (125 K - 500 K), obtaining CTE values at
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every 25 K interval to precisely capture thermal rippling and out-of-plane fluctuations. Moreover, our model

incorporates a much larger graphene sheet size (18 nm x 18 nm), enabling an accurate representation of the

rippling effect. Consequently, within the moderate temperature range, MLMD simulations predict that the

CTE of graphene should be more negative compared to the findings of Mounet et al. [16], aligning closely

with the experimental studies of Yoon et al. [12]. In the high-temperature range (500 K - 1000 K), our results

indicate positive CTE values, consistent with the NGF studies conducted by Jiang et al. [39].

The coefficient of thermal expansion (CTE) of graphene is believed to be influenced by two competing

mechanisms. Firstly, the rippling effect leading to a linear decrease in CTE with increasing temperature.

Secondly, thermal strain which initially results in a non-linear decrease in CTE (0 K - 300 K), followed by a

non-linear increase with temperature (300 K - 1000 K) [41]. These mechanisms collectively contribute to

an increasing, yet negative, CTE within the temperature range of 0 K - 300 K. During this temperature

range, the rate of decrease in thermal strain diminishes with rising temperature, consequently leading to a

reduced rate of increase in CTE. Simultaneously, the rippling effect leads in a steady decrease of CTE in the

temperature range of 0 K - 1000 K. At approximately 300 K, an inflection point is observed in the thermal

strain curve concerning temperature [41]. Beyond 300 K, thermal strain starts to increase with increasing

temperature, counteracting the decreasing effect of thermal rippling on CTE. Consequently, CTE undergoes

a sign change from negative to positive at 375 K. In the temperature range of 375 K - 1000 K, the increasing

thermal strain (with a diminishing slope, which tends to become linear beyond 600 K) and the linear decrease

in CTE due to the rippling effect contribute to the stabilization of CTE, eventually reaching a constant value.

This behavior of CTE is accurately captured by MLP, as shown in Figure 2.8b.

2.3.2 Young’s modulus and ultimate tensile strength

The uniaxial tensile test stands out as one of the most effective method to validate the mechanical properties

of graphene and thus was used to assess the efficacy of MLP. The computation of the stress-strain curve

in this study involved loading graphene in the armchair direction at a strain rate of 1% per ns across a

temperature range of 300 K to 1800 K, as shown in Figure 2.9a. MLMD simulations were conducted using

the NPT ensemble with a Nosé-Hoover thermostat, maintaining a constant pressure set at 1 bar. For each

temperature at which Young’s modulus and ultimate tensile strength needed evaluation, simulations were

equilibrated for 10 ns before conducting the uniaxial tensile test. Three tensile tests were performed for each

temperature, and Young’s modulus and ultimate tensile strength were determined by averaging the results

of three similar simulations. As illustrated in Figure 2.9a, the stress-strain curve exhibits a monotonically

increasing stress response with increasing strain. Notably, the curve does not display a specific yield point,

and the rate of stress increase diminishes with increasing strain. At higher temperatures, a decrease in

ultimate tensile strength, strain to failure, and maximum stress can be observed.

Graphene demonstrates an exceptionally high elastic modulus, also known as Young’s modulus, making it

one of the stiffest naturally occurring materials. In this study, secant modulus was utilized to assess Young’s

modulus for graphene. Experimental investigations conducted by Lee et al. [9] at 300 K predicted a Young’s

modulus of 1000 ± 100 GPa. Similarly, DFT-QHA studies [15] reported a consistent Young’s modulus

of approximately 1044 GPa for graphene across a temperature range of 10 K to 1000 K. MD simulations

employing empirical potentials by Shen et al. [42] projected a Young’s modulus of 1002 GPa within the

temperature range of 300 K to 700 K. Our MLMD simulations indicated a constant Young’s modulus of 975 ±
80 GPa in the temperature range of 300 K to 1800 K, suggesting a close agreement with previously conducted

experimental, DFT, and MD studies, as shown in Figure 2.9b. The stability of Young’s modulus with
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Figure 2.9: (a) Stress Strain curves for single layer graphene when stretched in armchair direction using
MLMD simulations for temperature range of 300 K- 2000 K. It can be noticed that slope of all stress-strain
curves at all temperatures are constant but a decrease in ultimate tensile strength with temperature can be
observed (b) Temperature independence of Young’s modulus and its comparison with other theoretical and
experimental results from previous literature studies (c) Monotonically decreasing ultimate strength found
using MLMD simulations and comparison with theoretical and experimental results from previous literature
studies
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(a)

(b)

Figure 2.10: Training history of MLPs using training data generated using 29 symmetry functions is shown
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temperature suggests graphene’s ability to maintain its exceptional mechanical properties even at elevated

temperatures, rendering it a promising candidate for aerospace applications where superior Young’s modulus

is a sought-after attribute.

Ultimate tensile strength denotes the maximum stress a material can withstand while being stretched just

before breaking. The ultimate tensile strength for graphene was compared with experimental, DFT, and

MD simulations, as shown in Figure 2.9c. Experimental findings by Lee et al. [9] at 300 K reported an

ultimate tensile strength of 129.7 GPa. DFT-QHA simulations by Tianjiao et al. [15] indicated a linearly

decreasing ultimate tensile strength with temperature, i.e., 119.9 GPa at 50 K and 114.7 GPa at 1000 K.

MD studies conducted by Zhao et al. [43] also suggested a linearly decreasing ultimate tensile strength with

increase in temperature, with 93.2 GPa at 300 K and 77.1 GPa at 900 K. The softening in ultimate strength

in graphene arises from weaker inter-atomic interactions due to stronger atomic vibrations with increasing

temperature. Our MLMD simulations also demonstrated a linearly decreasing ultimate tensile strength, with

104.3 GPa at 300 K and 84.85 GPa at 1800 K. The results from MLMD simulations for ultimate tensile

strength closely align with experimental, DFT, and MD studies, exhibiting a similar trend and thereby

validating the effectiveness of MLPs.

2.4 Uncertainty quantification of machine learning potentials

Machine learning potentials (MLPs) have the power to change the way of conducting atomistic simulations by

enabling reliable and efficient high-throughput computations, which accelerate material discovery and design

with unique functionalities and properties. MLPs addresses the challenges of parameterization encountered

by empirical potentials and minimize model bias by employing machine learning techniques to interpolate

complex potential energy surfaces based on first-principles calculations. Despite their numerous advantages,

such as automation and flexible model functions, accurately quantifying systematic uncertainty remains a

significant challenge in the development of MLPs. This uncertainty management is crucial for assessing

and reducing uncertainties inherent in the developed machine learning interpolated atomic potential energy

surface. In this section, we aim to identify the sources of uncertainty associated with the development of

machine learning potentials. Subsequently, we will perform systematic sensitivity analysis to quantify the

uncertainty and evaluate the reliability of the developed machine learning potential for graphene, a promising

two-dimensional material.

2.4.1 Introduction of Uncertainty quantification in machine learning potentials

Despite the construction of machine learning potentials for various material systems in the past two decades,

two major challenges persist in applying this new class of potentials for molecular dynamics simulations.

Firstly, there’s the challenge of quantifying model uncertainty considering various uncertainty resources.

Secondly, there’s the challenge of mitigating uncertainty to ensure the tractability and fidelity of the developed

machine learning potential efficiently. To fully realize the potentials of machine learning force field interatomic

potentials, these questions need answers by developing efficient methodologies for uncertainty quantification

and management to enhance the validity and predictability of their applications in atomistic simulations. In

our previous studies [21], [44], we quantified and illustrated the uncertainty associated with the configuration

and training process of artificial neural networks used for developing machine learning potential. Here, we

focus on the uncertainty resources in symmetry functions. In this section, sensitivity analysis is conducted for

machine learning potentials to investigate the influence of encoding methods on the fidelity of the developed
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potential. Specifically, we employ the Behler–Parrinello (B-P) approach combined with high-dimensional

ANNs potential for the development of machine learning potentials. Sensitivity analysis is conducted to study

the effects of encoding methods to represent the atomic structures in the reference dataset on the quality of

the developed machine learning potential. We demonstrate this using sensitivity analysis for graphene with

the 30 symmetry functions we used in the previous section.

(a)

(b)

Figure 2.11: Histogram of converged RMSE for the cases using 29 symmetry functions (a) training dataset
(b)testing dataset

2.4.2 Uncertainty quantification in machine learning interatomic potentials

Typically, the density of the encoding process in symmetry function-based systems is determined by the

number of symmetry functions employed to transform the coordinates from 3 dimensional cartesian to

atomic centered coordinates. Increasing the number of symmetry functions can improve the system’s ability

to differentiate between various atomic environments and predict their corresponding energies, which is

crucial for conducting dynamic trajectory calculations in molecular dynamics (MD) simulations. However, a
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higher number of symmetry functions also leads to increased computational costs associated with evaluating

the developed machine learning potential at each time step. Additionally, the choice of encoding systems

determines the configuration of inputs for training artificial neural networks (ANNs). An increase in the

number of symmetry functions results in a higher dimensionality of input layer nodes in ANNs, potentially

impact the training process and the final performance of the machine learning potential. Therefore, it is

essential to determine the optimal number of symmetry functions and parameters to strike a balance between

the accuracy and efficiency of the encoding process.

Figure 2.12: Correlation of predicted ANN energy and corresponding DFT energy from first principle
calculations for the training data

In our study on graphene, we used a total of 30 symmetry functions, consisting of 10 radial and 20 angular

symmetry functions. As a result, the input vector had a dimensionality of 30, corresponding to the number

of symmetry functions utilized. To evaluate how the encoding system affects the performance of the machine

learning potential, we vary the number of symmetry functions by excluding certain types and quantities

of symmetry functions from the encoding system. The baseline scenario involves 30 symmetry functions,

resulting in a converged root mean square error (RSME) of approximately 0.57 meV per atom. Initially, we

remove one symmetry function, resulting in 30 different cases with 29 symmetry functions each. The RSME

history for six different trials with 29 symmetry functions is depicted in Figures 2.10a and 2.10b.

The training process demonstrates rapid convergence of root mean square error (RMSE) within 20 steps,

as shown in Figure 2.10b. Although the converged errors vary across the six trials (as shown in the inset

of Figure 2.10a), they all remain below 5 meV per atom, meeting the target criterion. To visualize the

statistical distribution of the converged error, a histogram of the RMSE for the training data with 29

symmetry functions is presented as shown in Figure 2.11a. Remarkably, the prediction errors are centered

around 0.4 meV per atom, with only four cases showing RMSE values exceeding 0.8 meV per atom. This

indicates that the removal of one symmetry function out of 30 generally does not significantly affect the

training of the ANN-based machine learning potential. However, while the training error is satisfactory, it is
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essential to evaluate the performance of the machine learning potential on testing data. As shown in Figure

2.11b, the errors in the testing data are centered around 1.1 meV per atom, which suggests an increase in

testing error but the error remains below our target threshold. Note that RMSE is assessed to indicate the

weighted average error regarding the performance of the machine learning potential. Figure 2.12 illustrates

the correlation of energy between the predicted ANN values and DFT calculation results among the training

dataset, revealing the error distribution among sampled configurations. It is noteworthy that the majority

of the six trials exhibit a strong correlation of energy between the predicted values and the reference DFT

results. However, Trial 3 displays a slight discrepancy between the ANN prediction and the DFT reference

values, with underestimation for low-energy states and over-prediction for relatively high-energy states in

the training data. Following the removal of two symmetry functions from the initial set of 30, a total of 28

symmetry function cases were generated, resulting in the creation of 100 machine learning potentials. As

depicted in Figures 2.13a and 2.13b, the RMSE sharply decreases within the first four steps and converges to

relatively low values within 20 steps. The histogram of the converged RMSE for all 100 cases is illustrated in

Figure 2.14a for the training data and Figure 2.14b for the testing data. The errors for the training data

cluster around 0.5 meV per atom, while those for the testing data center around 1.2 meV per atom. This

suggests that removing one additional symmetry function does not substantially affect the performance of the

machine learning potential. Although seven cases exhibit RMSE beyond 1.4 meV per atom for training and

1.7 meV per atom for testing, 93% of cases have RMSE values below 0.8 meV per atom for training and 1.5

meV per atom for testing. These findings are promising and indicate the necessity for further exploration into

determining the size of the encoding system based on symmetry functions. Further analysis of the RMSE

data reveals that removing angular symmetry functions is more likely to result in machine learning potentials

with lower accuracy. Additionally, machine learning potentials with converged RMSE values at the higher end

of the histogram plots in Figures 2.14a and 2.14b often have the 29th angular symmetry function removed or

have two angular symmetry functions removed. A small number of trials were conducted for cases with three

and four symmetry functions removed, showing low converged RMSE values, approximately 0.5 meV per

atom for the training data and 1.25 meV per atom for the testing data. These results suggest redundancy in

the encoding system, which should be impacting the computational efficiency of the current MLPs. However,

the this study is limited by the size of the training and testing data (100 training samples and 30 testing

samples) due to the computational cost of developing machine learning potentials. This limitation may

introduce bias, as the data may be confined to certain phases or deformed conditions, potentially yielding

incomplete results. Increasing the size of the training and testing data will be necessary in future studies to

draw robust conclusions and identify critical symmetry functions essential for ensuring the reliability of the

developed machine learning potential.

2.5 Conclusions

The emergence of machine learning potential represents significant advancement in research, automating

the development of high-fidelity interatomic potentials for atomistic simulations aimed at characterizing

materials at a fraction of the cost compared to experimental testing and first-principle calculations. In this

study, we embarked on developing machine learning potentials employing artificial neural networks (ANNs)

and subsequently conducted molecular dynamics (MD) simulations utilizing these interatomic potentials.

The potential energy within these MLMD simulations is assessed through the interpolation of the potential

energy surface of graphene, derived from ANN models at each time step or as and when needed by the
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(a)

(b)

Figure 2.13: The training history of machine learning potentials based on training data generated using 28
symmetry functions
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MD simulation software. To construct our MLP, we generated a training dataset using Density Functional

Theory (DFT) simulations by subjecting graphene to stretching in both armchair and zigzag directions. To

represent the atomic environment of reference structures for ANN training, we adopted radial and angular

symmetry functions. In our investigation, we used two distinct training methods: Gradient Descent (GD) and

Levenberg-Marquardt (LM). Our comparative analysis revealed that the LM method showcased remarkable

computational efficiency in achieving the target accuracy of the developed Machine Learning Potentials

(MLP), outperforming the GD method in this regard.

(a)

(b)

Figure 2.14: The histogram of converged RMSE for the cases with 28 symmetry functions. (a) is for training
data and (b) is for testing data.

We conducted thorough validation to assess the quality of the developed MLPs in this study. Our findings

illustrate that by leveraging Artificial Neural Networks (ANN) and symmetry functions, we can establish

a dependable interatomic potential for graphene. This MLP offers precise predictions of crucial material

properties of graphene such as lattice parameter, Young’s modulus, ultimate tensile strength, and coefficient

of thermal expansion. We observed that the size of the reference training dataset, which serves as a structural
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representation of the phase space, and the strategy used for representing the atomic environment significantly

influence the accuracy of the developed MLP. Our study demonstrates that by systematically controlling

these pivotal factors, the fidelity of ANN-based MLP can be effectively enhanced. Also, we noted that our

MLMD simulations effectively capture the transition in the governing mechanism of the Coefficient of Thermal

Expansion of graphene across a broad temperature range from 125 K to 1000 K. This investigation suggests

the feasibility of employing ANN to streamline the development of interatomic potential for graphene, thereby

accelerating the discovery and design of novel graphene-based functional materials. We also investigated

the impact of the encoding system on the performance of the machine learning potential and performed

uncertainty quantification through sensitivity analysis. We conducted sensitivity analysis by removing a

certain number of symmetry functions to decrease the dimension of training and testing inputs. In our initial

study, we examined cases where one or two symmetry functions out of the initial 30 symmetry functions were

removed, revealing that all trails in both scenarios exhibited reasonably low Root Mean Square Error (RSME)

values for both training and testing data, below the target value. In some case we observed above-average

RSME errors, typically involving the removal of certain angular symmetry functions. Moreover, further

elimination of symmetry functions, resulting in cases with 27 and 26 symmetry functions, had minimal impact

on the performance of the developed machine learning potentials, displaying consistently low RSME values.

These preliminary findings suggest significant redundancy in the current encoding system and suggest the

potential for dimension reduction in MLP. While further investigation is necessary to mitigate potential

biases in the adopted training and testing data, our study suggests the importance of enhancing the encoding

system based on the Behler-Parinello method to achieve reduced-dimension training inputs for developing

machine learning potential. This will enhance computational efficiency and accuracy, paving the way for

future studies aimed at developing MLPs for graphene with structural motifs to characterize unique material

behaviors.

In the next chapter, we will delve into the design and development of nanocomposites based on 2D materials.

Our focus so far has been on enhancing interatomic potentials for 2D materials to obtain accurate material

properties. While 2D materials possess remarkable properties, their practical use as standalone materials is

limited due to challenges associated with their one-atomic-layer thickness. To harness the exceptional material

properties of 2D materials, a new class of materials known as 2d material based nanocomposites has gained

prominence in the last two decades. 2D material based nanocomposites utilize 2D materials as fillers or fibers

within a polymer matrix. The domain of nanocomposites presents several challenges, and we have chosen one

material system i.e. MoSe2/graphene and polyethylene to address certain material characteristics such as

deliberate creation of anisotropy in the developed nanomaterials using 2D materials. The fundamental idea is

to adjust the material properties of nanomaterials by incorporating 2D materials. However, understanding

the interaction between polymers and 2D materials is crucial, as the interfacial characteristic between these

two materials becomes of untmost importance. In the next chapter, our focus will be on investigating

the templating effect of 2D materials in conjunction with polymers. We have selected MoSe2/graphene as

the 2D material and polyethylene as the polymer to initiate our exploration. By studying the interfacial

crystallography, we aim to gain insights into how these materials interact and how this information can serve

as a means to modulate the material properties of the resulting nanocomposites. This understanding will

provide us with a valuable tuning mechanism to tailor the properties of nanocomposites effectively.
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Chapter 3

TEMPLATING EFFECTS OF 2D

MATERIALS

3.1 Introduction

Two-dimensional materials possess distinct properties such as large surface area, low specific weight, high

specific strength, and well-ordered atomic structure [5], [44], [45] as compared to 3D materials. Graphene,

discovered in 2004 by Novoselov et al. [1], was the first naturally occurring 2D material discovered. Sub-

sequently, other 2D materials like h-BN, Phosphorene, MoS2, MoSe2, among many other 2D materials,

have been identified till date. These 2D materials find themselves useful for diverse applications including

gas/chemical sensors, electrochemical energy storage devices, aerospace components, membranes, solar cells,

flexible electronics [46]–[49] etc. To exploit their exceptional material properties, 2D materials are frequently

combined with various polymers to create nanocomposites, offering enhanced material properties compared

to polymers for specific applications. These enhancements include improved mechanical strength, thermal,

electrical properties, over pure polymer materials. Previous studies [26], [50]–[53] have demonstrated that

the addition of 2D materials to polymers, introduces new functionalities in the resulting 2D material based

nanocomposites. The overall performance of 2D material based nanocomposites is influenced by multiscale fac-

tors, ranging from nanoscale chemical composition to microscale dispersion and alignment of 2D materials, to

macroscale constituent composition. Extensive research has highlighted the critical role of interface/interphase

(between 2D material and polymer) in determining nanoscale transport behavior between 2D materials and

polymer chains [54]. Studies by Hanieh et al. [54] also reveal that mechanical properties of these 2D material

based nanocomposites are sensitive to moisture and molecular adhesion effects, indicating interface adhesion

degradation when wetted by water for certain 2D material based nanocomposites. Researchers have devoted

considerable efforts in characterizing the interface/interphase and its relationship with overall performance of

nanocomposites [18], [55], [56]. At the nanoscale level, Li et al. [18] investigated the effect of interfacial load

transfer in carbon nanotube–polyethylene nanocomposites on macroscopic bulk elastic material properties

of the nanocomposite. Similarly, Pande et al. [56] demonstrated that macroscopic geometric parameters

of carbon nanofibers can be altered by using different adhesive layers of catalysts, indicating the impact of

change in interfacial behaviour on macrolevel properties of carbon nanofibers.

The microscopic characteristics of the interface/interphase properties in nanocomposites stem from both

the interfacial crystallographic form and the morphology of the interphase region, which are outcomes of the
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polymer assembly process during crystallization around 2D materials. This process involves heterogeneous

nucleation and growth, wherein new phases form on the surface of 2D materials in the case of 2D materials

based nanocomposites. Heterogeneous nucleation plays a critical role in determining various material

properties of the resulting 2D materials based nanocomposites, such as polymorph selection, crystalline

size distribution, melting temperature, stiffness, hardness, chemical resistance [57] etc. In heterogeneous

nucleation, nucleating agents often facilitate the crystallization process at the interface between nucleating

agent and crystallizing melt. These nucleating agents can be either 2D or 3D in terms of their crystal structure.

Compared to 3D nucleation agents which has less controlled surface atomic patterns, 2D materials offer

highly controllable atomic patterns, smooth surfaces, and high surface area to mass ratio which facilitates

efficient crystallization. Understanding the polymer assembly along the surface of 2D materials, under the

influence of interfacial interactions, atomistic structure, processing and environmental conditions, is vital for

controlling the crystallization process in polymer-based nanocomposite fabrication. This understanding is

critical for us to be able to tailor interface/interphase properties, enabling the design of novel 2D materials

based nanocomposites with precise molecular-level design and predictable material properties [55], [58],

[59]. Previous studies have delved into the effects of functional groups on interfacial shear properties in

nanocomposites, as well as the wettability of 2D materials and their interactions with liquids. These studies

have utilized molecular dynamics (MD) simulations to characterize load transfer between functionalized

graphene-polymer interfaces and investigate normal and sliding mode force-separation responses [55], [58],

[59]. However, there has been limited exploration of dynamic polymer assembly during the crystallization

process along the surface of 2D materials, considering nanoscale material structure details. Experimental

exploration becomes even more difficult due to relevant (extremely small) length and temporal scales during

the crystallization process. Till date, most insights into the crystallization process of 2D materials based

nanocomposites have relied on passive evidences such as macroscopic characterization rather than direct

observation [60], [61].

In materials science, interface-induced crystallization stands as a complex phenomenon emerging at the

intersection of crystalline polymers and solid substrates. While this research extensively delves into the

intricate mechanisms governing this process, it’s crucial to recognize the pivotal roles of adsorption and

pre-freezing phenomena in shaping the interaction between polymers and surfaces. Adsorption is phenomenon

where polymer chains adhere to substrate surfaces and fundamentally influences the crystallization kinetics

and structural organization of polymers [62]. The attachment of polymer chains to solid substrates precedes

crystallization and significantly affects the nucleation and growth of crystalline domains on/around the

surface of nucleating agent. Another phenomenon known as pre-freezing in which polymer segments near

the substrate experiences reduced mobility and undergo amorphous-to-ordered transition is also critical in

understanding the initial stages of interface-induced crystallization [63] processes. These phenomena have

been investigated across various material systems, including polymer-metal interfaces, polymer-graphene

interfaces, and polymer-semiconductor interfaces [64] in the previous studies. Acknowledging the influence of

adsorption and pre-freezing is crucial in understanding the complexities of polymer behavior at interfaces.

Thus, adsorption and pre-freezing process understanding is particularly relevant in the context of current

study where we investigate crystallization of polyethylene on MoSe2 surface (which is explored in this study).

Computational methods such as molecular dynamics (MD), Monte Carlo simulations, and multi-physics

simulations serve as invaluable tools for simulating material behavior, especially in cases where experimental

studies face challenges in providing insights due to limitations in technology, cost, and time scales of material

activity [65]–[68]. MD simulations, in particular, have gained widespread adoption for simulating and
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unraveling material behaviors at small length and time scales [69], offering a new perspective to already

present experimental studies. Previous MD simulation studies by researchers have explored the dynamic

assembly of organic and inorganic molecules under varying environmental and processing conditions [70]–[72].

For instance, Bourque et al. [71] used MD simulations to systematically vary interatomic interactions,

enabling a comprehensive screening of entire material families for nucleating agent activity. Bourque et

al. [71] found that the induction time for heterogeneous nucleation during polyethylene crystallization on

tetrahedrally coordinated crystals depends on the crystallographic registry between the nucleating agent and

the size of critical nucleus of polyethylene. Another study by Ming et al. [72] investigated crystal nucleation

and growth in structurally restricted polymer systems using MD simulations, revealing that the presence

of more grafted chains increases the number of crystal nuclei, shortens the nucleation induction time and

accelerates crystallization process. Previous studies, in general, provide valuable insights into the dynamic

crystallization process of polymer molecules at the nano-level and shed some light on the mechanism governing

the assembly of polymer molecules in the presence of nucleating agents. Additionally, MD simulations offer

valuable insights into the macro-level material properties of 2D material based nanocomposites, particularly

the effects of interphase/interface, which can be challenging to establish experimentally [73], [74]. For example,

Chanwook et al. [73] demonstrated through MD simulations that the bulk-level mechanical properties of

graphene-reinforced nanocomposites, including shear modulus, depends strongly on the interfacial adhesion

between graphene and the epoxy matrix. They also suggested that functionalizing the interface between

graphene and epoxy can alter the shear modulus significantly. Similarly, Xiong et al. [74] investigated the

interfacial mechanical characteristics of carbon nanotube (CNT)-reinforced epoxy composites using MD

simulations. They found that the interfacial shear strength of CNT-epoxy nanocomposites can be improved

by adjusting parameters such as epoxy density, CNT length and diameter of CNT. These studies suggests

the utility of MD simulations in characterizing the interfaces of nanocomposites, which play a crucial role in

determining the macro-level mechanical properties of resulting nanocomposites.

Numerous studies have delved into the crystallization of polyethylene, but little attention has been paid

to investigating the heterogeneous nucleation process using 2D materials as nucleating agents. Moreover,

molecular-level investigations of the crystallization and assembly of polyethylene chains on the surface of 2D

materials are exceedingly rare. In this research, we conducted all-atom simulations to analyze the assembly

of polyethylene chains on the surface of MoSe2 using molecular dynamics (MD) simulations. MoSe2, a

member of the transition metal dichalcogenide family MX2 (M=Mo, W, X=S, Se), crystallizes in 2H-MoS2

structures and is renowned for its superior electrical conductivity, finding applications in the development of

solar cells [75]–[77]. Conversely, polyethylene stands as one of the most prevalent semi-crystalline polymers

in contemporary usage, boasting commendable chemical and physical attributes coupled with economical

production costs. Among all the variants of polyethylene available, low density polyethylene (LDPE), high

density polyethylene (PE), and ultra-high molecular weight polyethylene (UHMWPE) enjoy widespread

popularity. LDPE finds utility in products where attributes like low tensile strength, heightened flexibility,

and reduced density are paramount, such as grocery bags, plastic wraps, and food containers. HDPE is

favored for structural applications where attributes like abrasion resistance and superior mechanical properties,

including stiffness and tensile strength, are critical for example HDPE is usually seen in drainage pipes and

outdoor furniture. UHMWPE is used in contexts where characteristics like low friction, high wear resistance,

impact strength, and resistance to corrosive chemicals are vital, for example UHMWPE is used in packaging

machinery parts and making bulletproof vests. Polyethylene, being a semi-crystalline polymer, undergoes

crystallization below its melting temperature [78]. Notably, different types of polyethylene exhibit varying
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melting temperatures, with LDPE crystallizing at 367 ± 5 K [79], PE crystallizing at 402 ± 5 K [80], and

UHMWPE crystallizing at 419 ± 5 K and below. Accurately simulating the crystallization temperature of

polyethylene becomes important as it mirrors the diverse behaviors of its variants and helps in simulating the

accurately interfacial registry of polyethylene on the MoSe2 surface, in this study.

Combination of MoSe2 and polyethylene forms a hybrid material system with potential applications in

flexible electronics, solar cells, electrochemical devices, healthcare equipment, and beyond [3], [5], [81]. Given

its wide-ranging applications, the MoSe2-polyethylene composite stands out as a crucial material system

poised to transform various aspects of our lives, thus meriting attention in this study. This research focuses on

exploring the process of polyethylene crystallization on the surface of MoSe2, including the resulting crystal

orientation and other pertinent parameters governing the assembly process. MD simulations, conducted by

the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [23], were used to model the

behavior of the MoSe2-polyethylene material system. To the best of our knowledge, there exist no prior MD

simulation studies investigating MoSe2 as a nucleating agent for polyethylene crystallization. Our hypothesis

posits that the larger surface area and regular patterns exhibited by MoSe2 may promote more efficient

polymer crystallization, leading to the formation of polymer chains with uniform assembly and long-range

order. The primary objective of this study is to showcase the utility of MD simulations in systematically

capturing the activity of 2D nucleating agents and elucidating their mechanisms of action. Key aspects of

the MoSe2-polyethylene material system investigated in this study include simulating an accurate melting

temperature of polyethylene, understanding/analyzing crystallization process of polyethylene on MoSe2

surface, effect of separation distance between crystallized polyethylene and the MoSe2 surface at the interface,

adsorption of polyethylene on the MoSe2 surface, interfacial crystallography, pre-freezing effects and crystalline

structure of the polyethylene in MoSe2-polyethylene nanocomposites.

3.2 Methodology

This section explains the methodology used for conducting molecular dynamics simulations in the present

study. It is divided into two main subsections. The first subsection explores the interatomic potentials and the

associated mathematical formulations utilized to facilitate the investigation. The second subsection delves into

the specifics of the molecular dynamics simulations, covering details such as the chosen ensemble, operational

parameters, and other pertinent factors utilized to mimic the real-world behavior of MoSe2-polyethylene

nanocomposite in MD simulations.

3.2.1 Interatomic potentials

To conduct molecular dynamics simulations of the MoSe2-polyethylene hybrid material system, all-atomic

models were created. The simulation setup comprised n-pentacosane (n=91) chains to simulate the behavior of

polyethylene, while a single-layer MoSe2 sheet with 360 atoms represented the nucleating agent present in all

simulations condcuted in this study. For interactions within the MoSe2 layer, Stillinger-Weber (SW) potentials

were used. Intrachain interactions within the polyethylene chains were determined using the Consistent

Valence Forcefield (CVFF) potential, incorporating bonds, angles, and dihedral interactions. Harmonic

potentials governed bond and angle interactions, while OPLS potentials described dihedral interactions.

Interactions between polyethylene chains themselves and the interface with Mo and Se atoms were characterized

using Lennard-Jones (LJ) potentials. The Stillinger-Weber potential integrates two-body and three-body

interactions, considering the bond energy’s reliance on atomic distances and bond angles. The total energy in
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the SW potential is expressed as a summation of two-body and three-body interactions. Specifically, the SW

potential is represented by Equation 3.1, while the equations governing the two-body interactions (3.2) and

three-body interactions (3.3) are provided as follows:

ϕsw =
∑
i

∑
j>i

ϕ2 (rij) +
∑
i

∑
j =i

∑
k>j

ϕ3 (rij , rik, θijk) (3.1)

ϕ2 (rij) = Aijϵij

[
Bij

(
σij

rij

)p

ij

−
(
σij

rij

)q

ij

]
× exp

(
σij

rij − aijσij

)
(3.2)

ϕ3 (rij , rik, θijk) = λijkϵijk (cos θijk − cos θ0ijk)
2 × exp

(
γijσij

rij − aijσij

)
× exp

(
γikσik

rik − aikσik

)
(3.3)

Here, rij represents the bond length between ith and jth atoms, θijk signifies the bond angle formed by

the bonds rij and rjk at the jth vertex. Parameters like A, B, p, and q are utilized for the evaluation of

two-body interactions, while λ and θ0 are used for both two and three-body interactions. γ parameter is only

used in three-body interactions.

In the case of polyethylene, the total energy associated with the stretching of covalent bonds can be

described using a two-body potential that captures the change in distance between two atoms bonded together.

This potential is formulated as shown in Equation 3.4:

Eb =

nb∑
i=1

Ki
b

(
ri − rio

)2
(3.4)

Here, ri represents the distance between two atoms connected by the ith covalent bond, rio is the equilibrium

distance between these atoms for the ith covalent bond, Ki
b denotes the stiffness of the covalent bond, and

nb signifies the total number of covalent bonds in the system. Note that each covalently bonded atom has

preferred angular orientations. Hence, there exists a potential energy component associated with these angular

orientations, described by Equation 3.5:

Ea =

na∑
i=1

Ki
θ

(
θi − θio

)2
(3.5)

In this equation, θi represents the angle formed between the ith pair of two covalent bonds, θio is the

equilibrium angle for this pair, Ki
a is the stiffness parameter used for angular interactions, and na indicates

the total number of angles in the system. Similarly, the torsional interaction involving four adjacent atoms,

known as dihedrals, contributes to the potential energy. This interaction is shown in Equation 3.6:

Et =

nd∑
i=1

Ki
ϕ

[
1 + di cos

(
mi

(
ϕi − ϕi

o

))]
(3.6)

Here, ϕi
o represents the equilibrium dihedral angle between atoms i, j, k, and l, di is a parameter defining

the sign convention (which can be either +1 or -1), mi is a non-negative integer coefficient, Ki
ϕ is the stiffness

parameter used for dihedral interactions, and nd represents the total number of dihedrals in the material

system. Lastly, a non-bonded pair potential arises from interactions between non-covalently bonded atoms,

commonly referred to as van der Waals interactions. This interaction is described by the Lennard-Jones
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potential, as shown in Equation 3.7:

Ep = 4

n∑
i=1,j =i

ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]
, r < rc (3.7)

In this equation, ϵij represents the energy well depth between the ith and jth atoms, rij is the distance

between ith and jth atoms, σij denotes the equilibrium distance between ith and jth atoms, n stands for the

total number of atoms in the system, and rc is the cutoff distance beyond which the force between the atoms

can be considered negligible. Consequently, the total potential energy of the MoSe2-polyethylene composite

system can be established by summing up the six distinct potential energy components, as shown in Equation

3.8.

Etotal = Epoly
b + Epoly

a + Epoly
t + Epoly−poly

p + EMoSe2
sw + Epoly−MoSe2

p (3.8)

Here, Epoly
b represents the bonded energy of polyethylene, which can be computed using Equation 3.4.

Epoly
a signifies the angular energy stored in polyethylene chains, which can be derived from Equation 3.5.

Epoly
t denotes the torsional energy stored in polyethylene chains, computed using Equation 3.6. Epoly−poly

p

corresponds to the non-bonded van der Waals interaction between different polyethylene chains, computed

using Equation 3.7. EMoSe2
sw encompasses the total energy of MoSe2, which can be obtained using Equations

3.1-3.3 using Stillinger-Weber potentials. Lastly, Epoly−MoSe2
p characterizes the non-bonded van der Waals

interaction between polyethylene and MoSe2, computed using Equation 3.7.

Tuning interatomic potentials for establishing melting temperature of polyethylene

The behavior of n-pentacosane chains, representing polyethylene in this study, is heavily influenced by

interchain interactions, particularly impacting their crystallization and melting behavior. Therefore, to

accurately model the crystallization behavior of polyethylene chains, the Lennard-Jones (LJ) potentials

governing the intermolecular interactions among n-pentacosane chains were adjusted. In this study, the LJ

potential parameters based on the work of Li et al. [55] were utilized as a reference in this investigation.

These parameters include values of ϵ = 0.0034692 eV and σ = 3.4745Å for the van der Waals interaction

between carbon atoms within different polyethylene chains i.e. interchain interactions.

Evaluation of melting temperature (Tm) across different polyethylene models was conducted via MD

simulations, utilizing varied interchain interactions and temperatures, as shown in Figure 3.1. To gauge the

crystallization process and monitor the transition between crystallization and melting, a global crystalline

parameter, denoted as P2 [71], was used. This parameter, derived from the global average of the local

order parameter p2(i), aids in characterizing the degree of crystallinity within polyethylene. In all the MD

simulations presented in this study, the starting point is a partially crystallized polyethylene system with an

initial P2 value of 0.311 that underwent equilibration for 5 ns with different value of interaction parameter

(each in a different MD simulation). The temporal evolution of P2 was recorded across various combinations of

different LJ parameters and temperatures, as shown in Figure 3.1. An upward trend in P2 over time signifies

the onset of nucleation and crystallization, while a decline in P2 over time indicates a melting process. Thus,

the melting temperature can be estimated as the average of two temperatures, T1 and T2, where P2 increases

at T1 and decreases or stabilizes at T2. In this study, LJ parameters were borrowed from Li et al.’s study [55]

which served as a reference interatomic interactions between polyethylene chains. The interchain interaction

within polyethylene was adjusted by applying a common factor to the van der Waals interaction between
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Figure 3.1: The effect of the Lennard-Jones parameter governing polyethylene-polyethylene (PE-PE) in-
teractions on the melting temperature of polyethylene (n-pentacosane chains) is examined. In (a), the
crystallization of polyethylene on the MoSe2 surface is depicted with a PE-PE interaction parameter set to
0.25 times interaction parameter from Li et al.’s investigation [19]. This graph suggests a melting temperature
range of 350 - 360 K. Similarly, in (b), with a PE-PE interaction parameter of 0.27 times interaction parameter
from Li et al.’s investigation [19], the estimated melting temperature of polyethylene falls within the range of
370 - 380 K. (c) illustrates the polyethylene melting temperature range between 370 - 380 K with a PE-PE
interaction parameter of 0.26 times interaction parameter from Li et al.’s investigation [19]. Finally, in (d),
for a PE-PE interaction parameter of 0.255 times interaction parameter from Li et al.’s investigation [19], the
polyethylene melting temperature range spans 360 - 370 K.
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carbon-carbon, carbon-hydrogen, and hydrogen-hydrogen interactions, as represented by the Lennard-Jones

interaction parameter ϵ in the MD simulations. Figure 3.1 (a) depicts the MoSe2-polyethylene system

with a 0.25-times interchain interaction from Li et al.’s study [55]. Notably, the parameter P2 decreases

at 360 K and increases at 350 K. This behavior suggests that the melting temperature Tm falls between

350 K and 360 K, yielding an estimated melting temperature of approximately 355 K. In Figure 3.1 (b),

the MoSe2-polyethylene system with a 0.27-times interchain interaction from Li et al.’s study [55] exhibits

an estimated Tm of around 375 K. Similarly, in Figure 3.1 (c), the system with a 0.26-times interchain

interaction from Li et al.’s study [55] shows a comparable Tm of approximately 375 K. In Figure 3.1 (d), the

scenario with a 0.255-times interchain interaction from Li et al.’s study [55] suggests a melting temperature

of about 365 ± 5 K. Interestingly, this value corresponds well with experimental observations [79], which

reported a melting temperature of polyethylene as Tm = 367 K. Consequently, an interchain interaction of

0.255-times has been adopted for all subsequent simulations. These findings indicate a consistent increase in

Tm with a rise in the PE-PE interchain interaction, thereby providing a valuable parameter to control the

behavior of short/long alkane chains to accurately represent the melting temperature in longer polyethylene

chains.

Theory of crystallization

To understand the crystallization process, it is essential to introduce key concepts crucial for subsequent

discussions. One such concept is the local orientation parameter denoted as p2, which is fundamental in

assessing the crystallinity of carbon atoms within polyethylene as established by Rutledge et al and Bourque

et al. [71], [82]. In this study of MoSe2-polyethylene material system, p2 was computed for all 25 carbon

atoms in each of the 91 polyethylene chains. This parameter, p2, is defined by Equation 3.9:

p2(i) = ⟨(3 < cos2 θij > −1)/2⟩j (3.9)

Here, p2(i) represents the local orientation parameter for the ith carbon atom. It is computed for each

atom i within the material system, considering another atom j within a specified cutoff distance rij . θij

denotes the angle between the vector linking the (i− 1)th carbon atom and the (i+ 1)th carbon atom, and

the vector connecting the (j − 1)th carbon atom to the (j +1)th carbon atom. While p2 parameter quantifies

crystallization for individual carbon atoms, it doesn’t capture the overall crystallization state of the material

system.nTo quantitatively determine the crystallization state of the entire material system at each time step,

polyethylene in this study, an ensemble average of p2 is computed, referred to as the global orientation order

parameter P2. Equation 3.10 outlines the definition of the global orientation order parameter P2.

P2 = ⟨(3 < cos2 θij > −1)/2⟩i ̸=j (3.10)

In this equation, the average of p2 is computed over all pairs of i and j carbon atoms within the material

system, irrespective of the distance between them. To categorize an atom as crystallized, a threshold p2,th is

selected, where carbon atoms with p2 values exceeding p2,th are designated to the crystal phase. Moreover,

the determination of whether two carbon atoms, i and j, belong to the same crystal nucleus involves verifying

that rij < rth. To understand crystallization in polyethylene, appropriate values for rp2, rth, and p2,th must

be chosen. Referring to the findings of Rutledge et al. [82], we have chosen rij = 1.5 σpp, rp2 = 2.5 σpp, and

p2,th = 0.4, where σpp represents σij from Equation 3.10, related to the polyethylene-polyethylene van der

Waals interaction within this investigation.
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3.2.2 Molecular dynamics simulations

Molecular dynamics (MD) simulations conducted in this study were carried out using isothermal-isobaric

ensemble, maintaining a temperature of 360 K and a pressure of 1 atmospheric unit. The positions and

velocities at each time step (ts = 1 fs) were generated using non-Hamiltonian equations based on the

Nose-Hoover style. To smooth pressure and temperature fluctuations, a barostat with a pressure damping

frequency of ωP =
(

1
1000fs

)
and a thermostat with a temperature damping frequency of ωT =

(
1

100fs

)
were

utilized. The MoSe2-polyethylene simulation box had a triclinic shape due to the inherent symmetry of

MoSe2, with dimensions of 46 x 33.5 x 42 Å3 and an inclination of 120◦ in the xy plane. All side lengths of

the box were allowed to independently fluctuate, while periodic boundary conditions were applied in all three

directions. The MoSe2 sheet was positioned at the lowermost part of the simulation box, and the polyethylene

model consisted of 91 chains, each containing 25 carbon atoms. In total, the material system comprised 7367

atoms, including the 2D MoSe2 sheet with 360 atoms.

The initial configuration involved positioning fully extended polyethylene chains into 7 layers, with each

layer containing 13 chains, resulting in an initial density of 0.945 g/cc. An energy minimization using the

conjugate gradient algorithm was performed to establish a stable initial configuration and alleviate internal

stresses. Following energy minimization, the MD simulations were initiated under the NPT ensemble. The

MoSe2-polyethylene model was equilibrated at 20 K for 100 picoseconds (ps) to mitigate pressure fluctuations

and achieve stabilization. Subsequently, the temperature was gradually increased from 10 K to 500 K over

100 ps to establish a temperature well above the melting point of polyethylene to achieve a randomly mixed

polyethylene chains. Afterward, the system was equilibrated for 1 nanosecond (ns) at the elevated temperature

to stabilize the polyethylene in a liquid state. To simulate the assembly process of the polymer, the simulation

model was rapidly cooled from 500 K to 360 K within 100 ps, creating a temperature just below the melting

point. Following this, the MoSe2-polyethylene material system was allowed to crystallize for 100 ns at a

temperature of 360 K, observing the dynamic assembly process during this period.

Crystallization process

After adjusting the interchain interaction parameters to achieve a melting temperature of approximately

365± 5 K, in the next phase we observed the crystallization process of polyethylene chains on 2D MoSe2

surface. The initial mixture of polyethylene chains at 500 K was allowed to crystallize at 360 K for 100 ns.

To monitor the progress of crystallization, the MoSe2-polyethylene model was divided into multiple layers

with a thickness of 0.36 nm each, starting from the MoSe2-polyethylene interface moving along the positive z

direction (as illustrated in Figure 3.2). The chosen slice thickness corresponds to the typical thickness of

single crystallized layers of polyethylene chain segments in the direction of crystal growth found from previous

literatures.

To track the advancement of crystallization within each slice over time, the number of crystalline

carbon atoms (Nc(z)) were monitored using the local order parameter p2(ij) as well as the fractional

crystallization parameter X(z). Crystalline carbon atoms are identified within each slice based on specific

criteria: p2(ij) > 0.4, rij < 1.5σpp [71], and both atoms i and j should belong to the same slice. The fractional

crystallization of a slice, denoted as X(z), is calculated as the ratio of the total number of crystallized atoms

to the total number of atoms in the slice along the z direction, expressed as X(z) = Nc(z)/NT (z) [71], [82].

Figure 3.2 illustrates the progression of fractional crystallinity X(z) profiles at different timesteps i.e.

from 0 to 100 ns after the quenching process. Each line in the figure represents the fractional crystallization
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Figure 3.2: (a) This figure illustrates the fractional crystallization profiles of MoSe2 over time just after
quenching to 360 K from 500 K. The solid curves represent curve fits of a hyperbolic tangent function to
the fractional crystallinity profiles. A vertical line parallel to the y-axis can be drawn that will denote a
crystallization growth front at time t suggesting fractional crystallization (X > 0.4) on the left side of the
crystallization growth front and (X < 0.4) on the right side of the crystallization growth front. The images
below showcase the crystallization process of polyethylene on the MoSe2 surface with the Miller-Braivais
direction index [1210] at (b) 0 ns, (c) 5 ns, (d) 10 ns, (e) 25 ns, (f) 50 ns, and (g) 100 ns after the quenching
process
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at a specific time, plotted against the distance from the polyethylene-MoSe2 interface in the positive z

direction. At the beginning, t = 0 ns, X(z) is around 0.3, indicating minimal crystallization. Within the

initial 5 ns, X(z = 0) experiences a swift increase from 0.3 to 0.75, marking the onset of crystallization at the

MoSe2-polyethylene interface. As time elapses, the z value corresponding to X(z) = 0.4 shifts from 1.83 Å at

5 ns to 8.96 Å at 100 ns, indicating that the crystallization growth front starts at the MoSe2-polyethylene

interface and moves parallel to the interface towards the bulk polyethylene with the increase in time.

The crystallization growth front can be envisioned as a theoretical plane parallel to the MoSe2-polyethylene

interface, moving along the positive z direction starting from the interface. On one side of this crystalliza-

tion growth front, significant crystallization occurs or crystallized polyethylene, while on the other side,

crystallization is minimal or a melted polyethylene. It’s important to note that due to periodic boundary

conditions, there are two polyethylene-MoSe2 interfaces in our simulation model, situated on opposite sides

of the MoSe2 surface and converging toward each other in the z direction. However, Figure 3.2 illustrates the

fractional crystallization and crystallization profiles from only one MoSe2-polyethylene interface for clarity.

Initially after the quenching process, limited crystallization is observed during the first 5 ns. Then, the

crystallization growth front advances rapidly until around 25 ns when multiple layers of highly ordered

crystalline polyethylene chains form. Between 25 and 75 ns, the growth front progresses at a slower rate

due to competition between the growth fronts from both interfaces, which try to converge and attempt to

crystallize the middle section of the simulation box. These two crystallization growth fronts often have

different crystallization orientations, leading to incompatibility and slower growth in the intermediate region.

Snapshots of ordered and aligned polymer chains growing from the polyethylene-MoSe2 interface is provided

in Figure 3.2 (b)-(g) at time points of 0, 5, 10, 25, 50, and 100 ns. These visualizations only display the

crystalline carbon atoms, with different colors indicating crystalline carbon atoms in distinct layers for clarity.

It’s evident that the polymer chains crystallize within their respective layers and subsequently propagate to

neighboring layers. After 100 ns, a total of five layers of aligned polymer chains are observed on top of the

MoSe2 surface in our MD simulations model.

3.3 Interfacial crystallography and surface guided crystallisation

of polyethylene chains on MoSe2 surface

Several MD simulations were carried out to explore how 2D MoSe2 influences the crystallization pattern

of polyethylene chains. The interface between polyethylene and MoSe2 was studied to understand their

templating effects on polyethylene crystallization. In each simulation run, MoSe2-polyethylene system

underwent an initial equilibration phase at 500 K, lasting for 1 ns. Subsequently, the system was rapidly

cooled to 360 K to create a temperature below melting temperature and observe the polyethylene crystallization

process on MoSe2 surface. Snapshots of the system were taken every 100 ps during the 2.4 ns equilibration

period, and these 24 snapshots served as the starting configurations for the crystallization simulations. In

total, 24 distinct MD simulations were conducted to capture various realizations of the crystallization process

with different starting mix of polyethylene chains on MoSe2 suraface.

Figure 3.3 illustrates the interfacial crystallographic orientations observed in the first layer of polymer

chains on the MoSe2 surface. Miller-Bravais direction indices are utilized to represent the crystallographic

planes and orientations, employing a 4-axis coordinate system commonly used for characterizing hexagonal

crystal structures in three dimensions. In Figure 3.3 (a), (b), and (c), the crystallized polyethylene in the first

layer exhibits chain directions aligned with [1210], [2110], and [1120] on the (0001) plane of MoSe2. Notably,
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Figure 3.3: Six distinct crystallization orientations were identified from a total of 24 MD simulations where
each MD simulation was conducted for 100 ns after quenching from 500 K to 360 K. The reference Miller-
Bravais direction index, marked by black arrows, represents 0 degrees/[1210]. Green and red arrows denote the
angles measured counterclockwise from the Miller-Bravais direction index, 0 degrees/[1210]. For clarity, only
one layer of crystallized polyethylene is shown in each orientation: (a) 0 degrees/[1210], (b) 60 degrees/[2110],
(c) 120 degrees/[1120], (d) 30 degrees/[1100], (e) 90 degrees/[1010], and (f) 150 degrees/[0110]. Image (g)
illustrates the Miller-Bravais indices of directions for equivalent configurations. The principal hexagonal
directions, X1, X2, and X3, represent symmetric/equivalent valleys between adjacent Se lines. Similarly, U1,
U2, and U3 are three other symmetric/equivalent directions representing valleys between mixed Mo/Se lines.
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Figure 3.4: The histogram represents the distribution of angles observed counterclockwise with the Miller-
Bravais direction index [1210] across 24 individual crystallization simulations of polyethylene on the MoSe2
surface. Crystallization orientations at 0◦, 60◦, and 120◦ are displayed in green, while those at 30◦, 90◦, and
150◦ are displayed in red
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the polyethylene chains align in the valleys between Se lines, denoted by the green lines in Figure 3.3 (g).

On the other hand, Figure 3.3 (d), (e), and (f) depict crystallized polyethylene chains oriented along [1100],

[1010], and [0110] on the (0001) plane of MoSe2. These orientations suggest that the polyethylene chains

tend to align between mixed Mo/Se lines, illustrated by the red lines in Figure 3.3 (g). By using [1210]

as the reference direction at 0◦, the orientations [1210]/[2110]/[1120] are considered for 0◦/120◦/60◦, while

[1100]/[1010]/[0110] are considered for 30◦/90◦/150◦ for specifying crystallization orientations. Each direction

within these two sets of crystallographic orientations exhibits a 60◦ difference. Importantly, these two sets of

crystallization orientations [1210]/[2110]/[1120] and [1100]/[1010]/[0110] maintain symmetry relative to the

(0001) plane of MoSe2, owing to the atomic structure symmetry of molybdenum and selenium atoms. These

observed crystallographic orientations of the crystalline polyethylene chains exhibit a standard deviation of ±
5◦ when characterizing the angles.

Table 3.1: The crystallization orientations were observed across 24 independent MD simulations, each
starting with mixed polyethylene on the MoSe2 surface. The angles, measured in degrees, represent the
deviation in a counter-clockwise direction from the reference Miller-Bravais direction index [1210] The total
number of crystallized structures corresponding to each Miller-Bravais direction index out of the total 24
simulations has also been indicated

Angle
(in degrees) Miller-Bravais dir. No. of Config.

0 [1210] 1
60 [2110] 5
120 [1120] 8
30 [1100] 1
90 [1010] 4
150 [0110] 5

From Table 3.1, it is evident that 58.3% of the MD simulations, accounting for 14 out of 24 simulations,

exhibit interfacial crystallographic orientations aligned with (0◦/[1210], 60◦/[2110], 120◦/[1120]). Similarly,

41.7% of the MD simulations, comprising 10 out of 24 simulations, demonstrate crystalline polyethylene

chains oriented towards (30◦/[1100], 90◦/[1010], and 150◦/[0110]). Figure 3.4 illustrates the frequency of

observed crystallographic orientations showing orientation angles with the reference direction set at 0◦/[1210],

for all 24 MD simulations. It is apparent that the guided assembly of polyethylene chains on MoSe2 surface

tends to favor the crystallization orientation (0◦/[1210], 60◦/[2110], 120◦/[1120]).

To analyze the difference between two interfacial crystallographic orientations, we closely examined how

polymer chains align on the MoSe2 surface. Figure 3.5 illustrates the mutual interfacial crystallographic

orientation in the directions [2110] (a) and [0110] (b). In Figure 3.5, the polyethylene chains are numbered,

while the Se lines and mixed Mo/Se lines are labeled to illustrate the positioning of polymer chains on the

MoSe2 surface. Note that in Figure 3.5, selenium (green) atoms are depicted on top, molybdenum (red) atoms

are in the middle, and bottom selenium (green) atoms are obscured due to overlap from the top selenium

atoms. Carbon atoms are represented in purple, and hydrogen atoms are omitted for clarity. In Figure 3.5

(a), for the interfacial crystallographic orientation (0◦/[1210], 60◦/[2110], 120◦/[1120]), alternate polyethylene

chains 2, 4, and 6 reside in the Se valleys, while chains 1, 3, and 5 lie atop Se lines. In contrast, for orientations

30◦/[1100], 90◦/[1010], and 150◦/[0110], polyethylene chains tend to align within the narrow valleys of mixed

Mo/Se lines, as depicted in Figure 3.5 (b). Further investigation into epitaxial lattice matching along the

contact plane in the hybrid polyethylene/MoSe2 system aimed to understand the preference of interfacial

crystallographic orientations. Epitaxy typically entails order in the relative orientation of identical crystals
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Figure 3.5: (a) Illustrates the crystallization of polyethylene on the MoSe2 surface with a 60 degrees/[2110]
orientation. Domain epitaxial matching between polyethylene chains and the MoSe2 surface is evident as
polyethylene chains number 2, 4, and 6 (highlighted in red circles) align themselves in Se valleys, meaning
every alternate polyethylene chain is positioned between two adjacent Se lines (b) Depicts the crystallization
of polyethylene on the MoSe2 surface with a 150 degrees/[0110] orientation. Domain epitaxial matching
between polyethylene chains and the MoSe2 surface is observed as polyethylene chains number 3, 4, and 5
(highlighted in red circles) are positioned between alternate mixed Mo/Se lines, leaving one mixed Mo/Se line
between two crystallized polyethylene chains
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nucleated and grown on a large single-crystal seed surface, where the deposited crystalline film is termed an

epitaxial film or layer. This study is a case of heteroepitaxy where the crystalline seed is 2D MoSe2, while

the crystal film/layer is polyethylene, with the mutual orientations along the contact plane defined as (0001)

for MoSe2 and (100) for polyethylene. The interfacial orientation relationship is largely determined by the

intralayer strain energy or lattice misfit along the interface, defined as ∆ = 100(dp−ds)/ds [83], where dp and

ds are the lattice parameters of polyethylene and MoSe2, respectively. According to Wittmann and Lotz [84],

∆ < ±15% is an acceptable range of lattice mismatch for continuous epitaxial growth. For the orientation

(0◦/[1210], 60◦/[2110], 120◦/[1120]), with ds1 = 0.332 cos 30◦ nm and dp1 = 0.4837 nm, the lattice mismatch

is 68.24%, suggesting a large mismatch. However, domain epitaxial growth is observed, where every alternate

polyethylene chain lies between two adjacent Se lines (Se valleys), resulting in a minimized intralayer strain

and small domain lattice-mismatch strain. A region of the substrate with a size of nds1 is aligned with mdp1

of the epilayer, resulting in a slight residual domain mismatch strain. In Figure 3.5 (a), it can be observed

that every second polyethylene chain lies between two neighboring Se lines (Se valleys), while the remaining

chains overlap the Se lines. This configuration corresponds to n=3 and m=2, leading to dp2 = 2dp1 and

ds2 = 3ds1. The domain lattice-mismatch, calculated using dp2 and ds2, is 12.1%, indicating a minor domain

lattice-mismatch strain. Similarly, for the orientation 30◦/[1100], 90◦/[1010], and 150◦/[0110], the lattice

mismatch is estimated to be 183.7%, suggesting unfavorable growth. For the domain lattice-mismatch, this

configuration results in n=1 and m=3, leading to dp2 = dp1 and ds2 = 3ds1. The domain lattice-mismatch

calculated using dp2 and ds2 is -8.1%. This minimizes intralayer strain within the epilayer, thereby facilitating

epitaxial growth in orientations such as 30◦/[1100], 90◦/[1010], and 150◦/[0110]. Hence, it can be inferred

that in systems with significant lattice mismatch, such as the hybrid polyethylene/MoSe2 system studied

here, the epitaxial orientation relationship is governed by domain epitaxial growth, resulting in a substantial

reduction in energy from the fully coherent state.

Another crucial aspect influencing epitaxial growth alongside lattice misfit is the density of coincident atom

sites at the interface, which correlates with the steric hindrance among atoms along the MoSe2-polyethylene

interface. Notably, the primary steric hindrance arises from the interaction between selenium atoms in the

top layer of 2D MoSe2 and carbon atoms in the polyethylene chains. Examining the atomic arrangements

along the interface in the two interfacial crystallographic orientations, Figure 3.6 showcases detailed images

of one polyethylene chain. In orientation 0◦/[1210], 60◦/[2110], 120◦/[1120], carbon atoms within chains 2,

4, and 6 encounter minimal steric hindrance from selenium atoms as they are positioned between two Se

lines. Similarly, in orientations 30◦/[1100], 90◦/[1010], and 150◦/[0110], all carbon atoms experience steric

hindrance with the top selenium atoms. The observed interfacial cohesive energy for orientations 0◦/[1210],

60◦/[2110], 120◦/[1120] is notably lower compared to 30◦/[1100], 90◦/[1010], 150◦/[0110]. Through MD

simulations, the interfacial cohesive energy for orientations 0◦/60◦/120◦ is estimated to be 5.32± 1.81 eV

lower on average than that for orientations 30◦/90◦/150◦. Thus, it can be inferred that crystallographic

orientations (0◦/[1210], 60◦/[2110], 120◦/[1120]) are more favorable for epitaxial growth than orientations

(30◦/[1100], 90◦/[1010], 150◦/[0110]). This observation aligns with the higher frequency (58.3%) of occurrences

of orientations (0◦/[1210], 60◦/[2110], 120◦/[1120]) among the 24 simulations conducted, as indicated in Table

3.1 and Figure 3.4.

3.3.1 Experimental Characterization

The crystallization process of polyethylene on the MoSe2 surface was also explored using experiments. To

get truncated triangles of 2D MoSe2 with selenium edges, a chemical vapor deposition (CVD) method was
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Figure 3.6: (a) Depicts the positioning of carbon and hydrogen atoms on the MoSe2 surface during crys-
tallization at 60 degrees/[2110]. One can observe that carbon atoms are situated between the vacancies of
adjacent Mo/Se lines (b) Illustrates the arrangement of carbon and hydrogen atoms on the MoSe2 surface
during crystallization at 150 degrees/[0110]. Here, carbon atoms are observed to settle atop the vacancy of
the mixed Mo/Se line, marked by the imaginary line between the two red arrows

used. This involved growing of 2D MoSe2 at 760°C for 10 minutes using CVD in a quartz tube. A silicon

substrate with a 285-nm thick top SiO2 layer supported the weight of 2D MoSe2 layer. The process began

with a silicon substrate facing downward, with one ceramic boat containing 15 mg of molybdenum oxide

powder (MoO3) and another boat containing 700 mg of selenium powder placed upstream in the quartz

tube. The selenium crucible and molybdenum oxide were positioned 18 cm apart. The temperature was

ramped up to 1033 K at a rate of 50 K/min for 10 minutes, followed by rapid cooling. To obtain truncated

triangles of 2D MoSe2 with selenium edges, one side of the MoO3 crucible was removed, and the MoO3 was

placed upstream, promoting an enriched Se environment with low MoO3 concentration conducive to forming

truncated triangles or triangles with Selenium edges/0◦/[1210]. High-density polyethylene (Sigma-Aldrich,

MFI 12 g/10 min) was dissolved in p-xylene (0.1 mg/mL) at 403 K with continuous stirring for 30 minutes.

The solution was then transferred to an oil bath maintained at a fixed crystallization temperature of 373

K for 30 minutes. A preheated MoSe2 in pure xylene solution at 373 K was swiftly combined with the

polymer/xylene at 373 K for the crystallization process. After 30 minutes of crystallization, the sample was

removed and rinsed immediately with xylene at 373 K, followed by drying with nitrogen gas. The scanning

electron microscope image in Figure 3.7 illustrates crystallized polyethylene lamellas on the MoSe2 surface. A

magnified schematic shows two polyethylene lamellas with crystallized polyethylene chains perpendicular to
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Figure 3.7: The scanning electron microscope (SEM) image depicts crystallized polyethylene lamellas on the
surface of MoSe2. In the image, only three crystallization orientations (0◦/60◦/120◦) of polyethylene are
observable relative to the 0◦/[1210] reference line marked in black on the MoSe2 surface. A closer view of
a polyethylene lamella reveals that the axis of the polyethylene chains is perpendicular to the axis of the
crystallized polyethylene lamella

the lamella orientation. The image highlights polyethylene chains crystallized at 0◦/[1210], 60◦/[2110], and

120◦/[1120] (indicated by green arrows) relative to the 0◦/[1210] reference line (depicted by black arrows)

on the MoSe2 surface. The image reveals multiple domains of aligned polyethylene lamellas, indicating a

preference for crystallization orientations in 0◦/[1210], 60◦/[2110], and 120◦/[1120]. Notably, no crystallized

polyethylene orientations were observed in the 30◦/[1100], 90◦/[1010], and 150◦/[0110] directions. This

suggests that polyethylene preferentially crystallizes on the MoSe2 surface following selenium valleys through

specific manufacturing processes. While this example indicates crystallization of polyethylene in 0◦/[1210],

60◦/[2110], and 120◦/[1120] orientations together on the MoSe2 surface, further investigations are needed

to induce polyethylene crystallization in only one specific orientation on the MoSe2 surface, potentially by

straining the 2D MoSe2 surface and introducing asymmetry to the crystallization directions, allowing one

selenium valley to become more conducive to crystallization.

3.3.2 Effect of interfacial confinement on polymer assembly

This study investigated how local geometric confinement affects the assembly and crystallization behavior

of polyethylene chains on MoSe2 surface by analyzing the separation distance at the interface between

polyethylene and MoSe2. This separation distance was determined as the average distance between carbon

and selenium atoms at the top layer along the interface for two distinct crystallization orientations, depicted

in Figure 3.8. In both cases, the separation distance decreased from the initial value of 4.72 Å during the

polymer assembly process and eventually stabilized around 4.35 Å for the 0◦/60◦/120◦ orientations, and

4.54 Å for 30◦/90◦/150◦. This reduction in separation distance is attributed to the geometric interface

confinement imposed by MoSe2 on the surrounding polymer chains, which significantly influences the
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Figure 3.8: Average distance between carbon atoms of polyethylene at the interface and selenium atoms at
the top of the interface over 100 ns at 360 K is plotted. Throughout the simulation, it is evident that the
interfacial distance decreased over time for all crystallization orientations. Specifically, for crystallization
orientations at 0◦/60◦/120◦, the average interfacial distance reached 4.35 Angstrom at the end of 100 ns.
Conversely, for crystallization at 30◦/90◦/150◦, the average interfacial distance at the end of 100 ns measured
4.54 Angstrom
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Figure 3.9: The Gibbs free energy of polyethylene on the MoSe2 surface was analyzed over 100 ns during NPT
simulations at 360 K. Black line represents the Gibbs free energy of the polyethylene-MoSe2 system when
they are sufficiently far apart. The adsorption energy is determined as the difference between the Gibbs free
energy of the polyethylene-MoSe2 system and the sum of the individual Gibbs free energies of polyethylene
and MoSe2. For crystallization at 0◦/60◦/120◦ orientations, the average adsorption energy at 100 ns was
found to be -54.34 ± 3.98 meV/Mo atom. In contrast, for crystallization at 30◦/90◦/150◦ orientations, the
average adsorption energy at 100 ns was -38.32 ± 4.12 meV/Mo atom.

arrangement and orientation of polyethylene chains during crystallization. Particularly for the 0◦/60◦/120◦

crystallization orientation, there was a more pronounced decrease in separation distance, suggesting a relatively

stronger interface confinement. This enhanced confinement likely facilitates the formation of these specific

crystallographic orientations 0◦/60◦/120◦.

3.3.3 Adsorption energy between polyethylene and MoSe2

In this study, the change in Gibbs free energy (∆G) is utilized to assess the adsorption energy of polyethylene

on MoSe2 surface, defined by equation:

∆G = ∆U − T∆S

Here, ∆G denotes the change in Gibbs free energy, ∆U represents the change in internal energy, T is the

temperature of the simulation in Kelvin, and ∆S indicates the change in entropy. When polyethylene chains

adhere to the MoSe2 surface, the Gibbs free energy changes through two components: first through the

total internal energy of the system (∆U) and second through the change in system’s entropy (T∆S). As the

polyethylene chains become adsorbed on the MoSe2 surface, the internal energy of the system decreases as

well as it is accompanied by a reduction in the randomness of the polyethylene chains (decrease in entropy),

leading to a decrease in Gibbs free energy. The Free Energy Perturbation method in LAMMPS is commonly
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Figure 3.10: The crystallized polyethylene chains exhibit an orthorhombic unit cell structure, depicted in
the left figure. To enhance clarity, an enlarged schematic of the orthorhombic unit cell structure of the
crystallized polyethylene chains is presented in the middle. The right figure illustrates the radial distribution
function for the lattice parameters a, b, and c (in nm) of the crystallized polyethylene

used to evaluate the change in Gibbs free energy of different systems which was used to evaluate Gibbs free

energy in this study. The adsorption energy (∆Gads) of the current system can thus be calculated as the

energy difference between the change in Gibbs free energy of the polyethylene-MoSe2 system and the sum of

changes in individual Gibbs free energies of polyethylene and MoSe2.

∆Gads = ∆Gpolyethylene-MoSe2 − (∆Gpolyethylene +∆GMoSe2)

The symbols ∆Gpolyethylene-MoSe2 , ∆Gpolyethylene, and ∆GMoSe2 denote the changes in Gibbs free energy

for the polyethylene-MoSe2 system, polyethylene alone, and MoSe2 surface, respectively. The quantity ∆Gads

provides a measure of the strength of interaction between polyethylene and MoSe2. In molecular dynamics

(MD) simulations, ∆Gads is computed by averaging over various configurations or snapshots obtained from

the simulation trajectory. This adsorption energy serves to elucidate the thermodynamics of adsorption,

determining whether it is favorable (negative ∆Gads) or unfavorable (positive ∆Gads). For the two identified

interfacial crystallographic orientations, we analyzed the Gibbs free energy profiles over 100 ns and calculated

the adsorption energy, as shown in figure 3.9. To normalize the results, we divided the adsorption energy by

the total number of Molybdenum (Mo) atoms in our system, yielding the change in adsorption energy per unit

Mo atom. Notably, the adsorption energy for the 0◦/60◦/120◦ crystallization orientation (Adsorption energy

-54.34 ± 3.98 meV/Mo atom) is lower than that of the 30◦/90◦/150◦ crystallization orientation (Adsorption

energy -38.32 ± 4.12 meV/Mo atom). Negative adsorption energy values for both orientations imply stable

adsorption and crystallization configurations. The magnitude of the adsorption energy reflects the strength

of interaction between the polymer chains and the MoSe2 surface. A higher adsorption energy indicates a

stronger binding affinity between the polymer and the substrate. Therefore, it suggests that the 0◦/60◦/120◦

crystallization orientation is more stable/favorable than the 30◦/90◦/150◦ crystallization orientation.

3.3.4 Prefreezing of polyethylene chains on MoSe2 at elevated temperature

The Figure 3.11 illustrates the radial distribution function (RDF) showing the crystallization behavior of

carbon atoms in polyethylene chains in the presence of MoSe2 surface at two different temperature conditions.

Two curves are presented: the green curve represents a temperature of 360 K, below the melting point,

while the blue curve corresponds to 500 K, above the melting point. In the green curve obtained at 360 K

for crystallization at 0◦/60◦/120◦, a distinct first peak is observed at approximately 4.35 Angstroms. The
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Figure 3.11: Radial distribution function to understand the prefreezing of polyethylene chains on 2D MoSe2
surface below and above melting temperature

spacing between alternate peaks corresponds to the lattice parameter of polyethylene when it crystallizes

into orthorhombic unit cells. Additionally, peaks emerge towards the end of the simulation box, indicating

polyethylene crystallization from the second interface due to periodic boundary conditions. In contrast,

the blue curve at 500 K shows a first peak around 4.54 Angstroms. A second peak suggests that some

carbon atoms have crystallized due to the MoSe2 surface even at 500 K. The positioning of the first peak

at 4.54 Angstroms in the blue curve implies randomly oriented polyethylene chains not crystallized within

the Selenium valleys. The RDF value for the blue curve is approximately 15% lower than the peak in the

green curve, indicating either incomplete crystallization or reduced mobility of some atoms at 500 K. This

indicates that the MoSe2 surface can induce pre-freezing in polyethylene, serving as nucleation initiation sites

upon cooling. The presence of pre-frozen regions above the melting temperature suggests the importance of

interfacial effects in influencing crystallization of polyethylene chains on MoSe2 surface.

3.3.5 Crystalline structure of the interphase region

Table 3.2: The lattice parameters of crystallized polyethylene is examined for two different crystallization
orientations. Case 1 corresponds to crystallization of polyethylne at (0◦/[1 2 1 0], 60◦/[2 1 1 0], 120◦/[1 1 2
0]), while Case 2 represents crystallization at (30◦/[1 1 0 0], 90◦/[1 0 1 0], 150◦/[0 1 1 0]). The outcomes
display the average values of lattice parameters derived from 24 MD simulations and compare them with
experimental investigations. Note that all dimensions are presented here are in nanometers

LP Expt.[85] Case 1 Case 2
a 0.7121 0.7284 ±0.012 0.7263 ±0.014
b 0.4821 0.4837 ±0.057 0.4709 ±0.122
c 0.2548 0.2554 ±0.003 0.2536 ±0.004

The crystal structure of polyethylene was initially characterized by Bunn et al. [86], indicating that
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Figure 3.12: The evaluation of lattice parameters a, b, and c for two crystallization orientations is shown:
0◦/60◦/120◦, representing crystallization of polyethylene in Se valleys (shown in blue color), and 30◦/90◦/150◦,
representing crystallization of polyethylene in between mixed Mo/Se lines (shown in orange color). These
parameters are also compared with experimental findings from Alsaygh et al. [85]. It is worth noting that
there is no significant deviation observed in the in-chain lattice parameter c and the out-of-plane lattice
parameter a for both cases. However, high deviation is observed in the inter-chain lattice parameter b for
crystallization of polyethylene in between mixed Mo/Se lines compared to crystallization of polyethylene
chains in between Se valleys
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Figure 3.13: Edge guided crystallization of polyethylene chains on MoSe2 surface. Note, MoSe2 is adsorbed
on SiO2 surface in the image shown

polyethylene crystallizes into orthorhombic unit cells, which is considered as the most stable crystal structure

of crystallized polyethylene below its melting point. Under specific mechanical loading conditions, polyethylene

can also adopt a monoclinic crystal structure as suggested by Olsson et al. [87]. Detailed atomic structure of

crystalline polyethylene on a 2D MoSe2 sheet, with orthorhombic crystal structure, is shown in Figure 3.10.

The radial distribution function of carbon atoms confirms the orthorhombic lattice parameter of crystallized

polyethylene. In the radial distribution function plot, the first peak represents adjacent carbon atoms within

the same polyethylene chain, followed by peaks corresponding to lattice parameters c, a, and b. The crystalline

polyethylene structures are further characterized in terms of unit cell parameters using the crystallinity

parameter p2 of carbon atoms. Experimental data from Alsaygh et al. [85] reveal that the orthorhombic

unit cell of polyethylene has parameters a = 0.7407 nm, b = 0.49491 nm, and c = 0.25511 nm, where

lattice parameter c is along the chain axis. Two different types of interfacial crystallographic orientations

were identified, displaying different registrations with the MoSe2 substrate, denoted by the Miller-Bravais

direction indices: first case (0◦ /[1210], 60◦/[2110], 120◦/[1120]) and second case (30◦/[1100], 90◦/[1010],

150◦/[0110]). For these two cases with different interfacial crystallographic orientations of polyethylene chains

on MoSe2 surface, the lattice parameters of crystallized polyethylene chains were evaluated and compared to

experimental results of Alsaygh et al. [85]. In both cases, the mean values of the estimated lattice parameter

a and c align well with the experimental values. However, for the mean value of lattice parameter b, the

former crystallographic orientation (0◦ /[1210], 60◦/[2110], 120◦/[1120]) matches the reported experimental

value, while the latter case (30◦/[1100], 90◦/[1010], 150◦/[0110]) exhibits a slightly smaller value, deviating

from the experimental results of Alsaygh et al. [85]. Lattice parameter a represents the inter-layer lattice

parameter, b indicates the inter-chain lattice parameter in different planes/layers of crystallization, and c

signifies the intra-chain lattice parameter within the same plane. It’s noteworthy that the inter-chain distance

(i.e., b value) in different planes/layers varies in cases with different interfacial crystallographic orientations,

while the intra-chain and inter-layer lattice parameters remain consistent. The lower mean value of lattice

parameter b observed in the second set of crystallization orientations (30◦/[1100], 90◦/[1010], 150◦/[0110])

suggests higher steric hindrance between carbon and selenium atoms at the interface might be leading to

lower mean value of lattice parameter b with a higher standard deviation. This implies that interface-induced

epitaxial crystallization can potentially modify the crystalline polymer structure in the interphase region

through interfacial registration.
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3.4 Edge guided crystallization of polyethylene on MoSe2 surface

2D MoSe2 helps crystallize polyethylene along its well-defined atomic edge configurations. In this section

experimental, ab-initio and atomistic MD simulations are used to study how atomic edges interact with

polyethylene (PE) chains in a dilute solution of 2D MoSe2 and polyethylene and understand the assembly

process [3] of polyethylene chains on 2D MoSe2. Our results reveal that Mo-terminated zigzag (Mo-ZZ) edges

act as preferred nucleation sites and strongly interact with PE chains as shown in Figure 3.13. The PE

chains align in parallel with the Mo-ZZ edges and form arrays of lamellae that are perpendicular to the edges.

Atomic edge configurations are dramatically change the crystallization orientations of PE on MoSe2 surface.

In experimental setup we observed different crystallization orientations on different edges using a same piece

of MoSe2 with had different types of edges. To validate and get deeper understanding we conducted ab

initio and MD simulations using n - alkane (n = 5 and 25 carbon atoms segment of PE) and MoSe2 using

Mo-ZZ edge atomic structures of MoSe2 and studied the edge effects on crystallization orientation in n

-alkane/polyethylene chains. In these computational studies, Mo-ZZ edge was preferred nucleation initiation

site where long range alignment of PE lamellae/chains can be realized by creating multiple layer of MoSe2

with parallel atomic steps. This study opens up a new dimension in atomic level crystallization of polymers

using 2D nanomaterial. This study also bridges the gap between atomic-level nanocomposites and describes

their long-range mesoscopic structures. This also introduces a new mechanism (edge induced crystallization)

for creating long-range structural order in semi crystalline polymers such as polyethylene.

3.4.1 Experimental edge guided crystallization of PE on MoSe2 surface

In this subsection we analyze the Mo-ZZ and Se-ZZ edges based specific crystallization of polyethylene in

MoSe2-PE nanocomposite via chemical vapor deposition (CVD). Firstly, we need to create planar MoSe2

with specific edges. The edge termination of 2D MoSe2 can be influenced by the precursor ratio/distribution

which is controlled by the flow field and precursor-substrate distance during the CVD process. MoSe2 exhibits

stability under ambient conditions with organic solvents at elevated temperatures, making it a controllable

material for studying interactions with polymer chains. Polyethylene (PE) is chosen as a polymer material

because of its simple chain structure which enables clear observation of interactions with atomic structure of

MoSe2. For MoSe2-PE nanocomposites a diluted solution, at an elevated temperature, creates a controlled

environment which helps heterogeneous nucleation and lamella growth processes. This helps in investigation

of interactions between individual MoSe2 edges and PE chains. Figure 3.13 (a) illustrates the crystallization

process and the resultant structure of MoSe2-PE nanocomposite. Single-crystal monolayer to multilayer

MoSe2, with triangular morphology, is grown on a SiO2/Si substrate with a 280 nm thick thermal oxide layer

used using CVD growth process. Figure 3.13 (b) displays a typical optical image of a monolayer/single layer

MoSe2 on a SiO2/Si substrate. Characterization techniques like scanning transmission electron microscopy

(STEM), Raman, and photoluminescence (PL) spectra were used to confirm the monolayer quality in triangle

domains. Amorphous SiO2 surface does not actively interact with PE chains, providing a clear background for

observing MoSe2 edge-induced PE crystallization. Crystallization results at 90◦C for 30 minutes demonstrate

that MoSe2 edges not only serve as preferred nucleation sites but also guide lamellae growth. Polymer chains

align parallel to the MoSe2 edge, facilitating perpendicular lamellae growth, as shown in Figure 3.13 (b,c and

d). These lamellae exhibit parallel alignment with an average periodicity of 166 ± 100 nm and a length of 223

± 83 nm. The length of these lamellae, defined as the correlation distance, indicates a range affected by edge

guided crystallization of PE. The guiding effect of edge is further evident at the step between the first layer
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Figure 3.14: Experimental results for preferential edge crystallisation of PE (a) Schematic of solution
crystallization process and the resultant hybrid structure. (b) Optical image of a single crystal monolayer of
MoSe2 with Mo-ZZ termination edges on SiO2/Si substrate. (c) SEM image showing the PE crystallization
on monolayer MoSe2 surface. The inset shows the enlarged view. (d) SEM image shows the PE crystallization
on monolayer MoSe2 and bilayer MoSe2 surface. (e) AFM image of PE crystallization under 100 °C for 5 min
(f) The height profile, in panel (e) along the white dashed line is indicated in panel (g) Schematic showing
the process of the edge-initiated crystallization process
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and the second layer of a multilayer MoSe2, where aligned lamellae were observed. Nucleation of PE chains

on the MoSe2 edge leads to lamella growth in two directions: inward toward the MoSe2 and outward toward

the bare SiO2 surface. Outward growth from the edge terminates approximately at 58 ± 10 nm. Inward

growth competes with basal plane-induced crystallization. As one moves toward the center of MoSe2, the

influence of edge guided crystallization diminishes, leading to macroscopically random crystallization arrays

on the basal plane. This aligns well with previous studies demonstrating PE chain epitaxial assembly on

crystalline planes. However, previous studies focused on bulk crystal assemblies and did not clearly explained

the edge-induced crystallization in semi-crystalline polymers. Thus, 2D MoSe2 is one of the few special

materials that elucidate edge-preferred crystallization phenomena in polyethylene chains.

The basal plane’s also has the potential to initiate nucleation and lamellae growth. This raises a critical

question that whether the MoSe2 edge is genuinely the preferred site for PE nucleation and crystallization

or not. Thus, to capture the initial crystallization stage, we increased the crystallization temperature to

100°C and reduced the assembly time to 5 minutes. Using the atomic force microscope (AFM), we examined

the morphology, as shown in Figure 3.13 (e), near the edge of a 2D MoSe2 (0.7 nm thick). The line profile,

as shown in Figure 3.13 (f), indicates that the lamella’s height at the edge is 5.1 nm. Conversely, on the

basal plane, the AFM image displays ultrathin, irregular-shaped patches of adsorbed PE ( 0-1.3 nm) with

cracks among them, suggesting a very early stage of polymer crystallization. Our experiment suggests that

Mo-ZZ edges are indeed preferred sites for nucleation as crystallization initiates at the MoSe2 edge whereas

at basal plane the crystallization has still not started. Based on our experimental observations, we propose a

Mo-ZZ edge-preferred crystallization mechanism (Figure 3.13 (f)). Initially, in a dilute polymer solution, PE

chains exhibits conformational flexibility and are uniformly dispersed (I). When a PE chain encounters a

hetero edge/surface, it can be adsorbed to the edges or the basal plane to reduce the Gibbs free energy. In

the heterogeneous crystallization process, adsorption and orientation on the nuclei surfaces are believed to

be essential steps in determining the crystallization rate. The orientation of PE lamellae (perpendicular to

the edge) suggests that the Mo-ZZ edge of MoSe2 is favorable for both adsorption and orientation processes

(II). The orientation process of the PE segment concludes when it is absorbed onto an aligned Mo atoms

line due to the possible geometric confinement effect. Adsorption and re-orientation of polyethylene chain

occur simultaneously, forming stable and parallel to Mo-ZZ edge oriented PE chains. Finally, the orientation

of the formed nuclei initiates the crystallization process, and lamellae grow perpendicular to the edge and

propagate towards both directions, i.e., the basal plane and the bare SiO2 (III). While crystallization on

the basal plane is possible, it possibly has lower free energy change compared to MoSe2 Mo-ZZ edge. The

nucleating capability of PE chains on different atomic motifs is further examined using ab-initio and MD

simulations in the following discussion.

3.4.2 Ab-initio simulations for edge guided crystallization of PE on MoSe2

surface

Ab-initio simulations were also utilized to investigate the interaction between a PE segment, represented by

a pentane molecule, and various atomic configurations of monolayer MoSe2 as shown in Figure 3.16. The

simulation setup involved triclinic simulation box containing 200 Selenium and 100 Molybdenum atoms,

representing a monolayer MoSe2, along with a pentane molecule comprising 5 Carbon and 12 Hydrogen

atoms. The triclinic simulation box was periodic in the y-direction while it is presumed to be in vacuum

from x and z directions. The pentane molecule was positioned in different orientations relative to the MoSe2

layer, including parallel and perpendicular to the Mo-ZZ and Se-ZZ edges, as well as atop the basal plane.
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Figure 3.15: Results from ab-initio simulations support the preferential crystallization of PE at the edges.
The interaction between a pentane molecule and MoSe2 is depicted in the figures above

In the latter scenario, the pentane was placed above the Se atoms forming the peaks of the surface and

the Mo atoms located in the valleys between these peaks. After relaxation, the final energy was computed

to determine the binding energy, which quantifies the interaction between the polymer and MoSe2. The

calculations used the VASP software, employing the Perdew-Burke-Ernzerhof (PBE) generalized gradient

approximation (GGA) with the semiempirical DFT-D3 method, a 1×1×1 Monkhorst-Pack grid, and an

energy cutoff of 400 eV. The results revealed that the binding energies to Mo sites, whether at the edges or

the basal plane, were stronger compared to their Se site counterparts. Notably, the binding energy to the

Mo-ZZ site exhibited a significantly higher value than other sites. This suggests a preference for PE to bind

to the Mo-ZZ edges initially, followed by alignment with the Mo sites along the valleys of the basal plane as

the polymer populates this plane. These findings support the concept of edge-guided crystallization, where

the Mo-ZZ edge facilitates both the adsorption and orientation of PE chains, with a preferable orientation

along the valleys of the basal plane. Additionally, on the basal plane, Mo valleys were identified as preferred

sites for pentane absorption over Se peaks, indicating stronger interactions between PE molecules and Mo-ZZ

edges.

3.4.3 MD simulations for edge guided crystallization of PE on MoSe2 surface

MD simulations were also conducted to simulate the assembly process of PE on a monolayer MoSe2. All-atom

models were utilized to accurately represent all atoms in the PE-MoSe2 system. To better capture the

long-chain structure of PE molecules, the MD simulations involved 91 polymer chains, each containing 25

carbon atoms, as shown in Figure 3.16. These polymer chains were initially fully extended across 7 layers

of 13 chains. Positioned adjacent to a monolayer of MoSe2 comprising 360 atoms, the simulations applied

periodic boundary conditions in the y- and z-directions, with vacuum added in the x-direction to expose

the Mo-ZZ and Se-ZZ edges on each side. Using NPT ensemble with a pressure of 1 atm, the simulations

starts with an equilibration phase at 500 K for 1 ns, above the melting temperature of PE, to achieve
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Figure 3.16: MD simulation results for the edge preferred crystallization of PE is shown as follows: (a)
An all-atom MD simulation model is shown, featuring a coloring scheme for each atom type and periodic
boundary conditions in all directions (b) The propagation of polymer chain crystallization is observed starting
from the Mo-ZZ edge where each PE chain is represented using a distinct color to differentiate oriented chains
(c) Surface atomic structure of the nucleating agent MoSe2 is displayed on the left, alongside a snapshot
illustrating the arrangement of polyethylene chains within the first layer on the surface of 2D MoSe2 is shown
on the right

a randomly mixed polymer chain configuration in the liquid phase. Subsequently, the temperature was

quenched to the crystallization temperature of 360 K within 100 ps to start the crystallization process of PE

chains. Crystallization initiation was observed at the surface of the MoSe2 substrate, propagating through

the z-direction perpendicular to the substrate surface, as shown in Figure 3.16 (b). The initial crystallization

state revealed a higher density of oriented PE chains at the Mo-ZZ edge compared to the basal plane and the

Se-ZZ edge, suggesting the Mo-ZZ edge’s enhanced nucleation ability. With increasing crystallization time,

layer-by-layer crystallization occurred, extending up to a maximum of 3 layers in the z-direction away from

the MoSe2 substrate surface. The alignment of crystallized chains at the MoSe2 surface exhibited a registry

with the underlying crystallographic planes, particularly overlaying with the Mo valleys on the basal planes

due to their stronger interaction compared to the Se peaks. MD simulations supported the concept of an

edge-guided crystallization mechanism, consistent with experimental findings and ab initio predictions. It’s

worth noting that n-alkanes (n = 5 and 25) may not fully represent PE’s behavior, especially considering

the conformational entropic effects of its long-chain structure. Extensive simulations utilizing coarse-grained

polyethylene models are necessary to explore the interplay between chain adsorption, crystallization, and

entropy, which is beyond the scope of the current study.

3.4.4 Edge type determined preferred crystallization

The ab-initio simulations suggest that the atomic arrangement of edges may influence their interaction with

polymer chains, given the significantly different binding energies observed in between different edge types i.e.

Mo-ZZ and Se-ZZ edges with n-alkane molecules. Our findings indicate that the Mo-ZZ edge of monolayer
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Figure 3.17: (a) The ball and stick model presented in (a) depicts the top-view microstructure of the monolayer
MoSe2 crystal, which adopts a truncated triangle shape showing Mo-ZZ and Se-ZZ termination edges. (b)
An optical image providing a clear illustration of the as-grown MoSe2 crystal showing the presence of two
distinct edge types. Following this, (c-h) present scanning electron microscope (SEM) and transmission
electron microscope (TEM) images showcasing the crystallization of PE on the edges of the as-grown MoSe2
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MoSe2 is preferred for PE crystallization due to its stronger binding energy compared to the basal plane.

Consequently, it is anticipated that the preferred alignment of PE lamellae perpendicular to the edge near

the Se-ZZ edge will be reduced, as the Se-ZZ edge exhibits a lower binding energy (-0.405 eV) compared to

Mo-ZZ edge. Monolayer transition-metal dichalcogenides often exhibit different edge terminations which is

influenced by the crystal growth process. In MoSe2, both Mo-ZZ and Se-ZZ terminations are energetically

favorable edges during CVD growth. The transformation of Se-ZZ edges to Mo-ZZ edges is common due to

the rapid growth of Se edges, resulting in truncated triangles with alternating Mo-ZZ and Se-ZZ terminations,

as shown in Figure 3.17 (a). Figure 3.17b illustrates the growth of MoSe2 in a Selenium rich environment,

where truncated triangles begin merging into a continuous film of MoSe2. Distinctive interactions between

different edge types and polymer chains is evident in SEM and TEM images (Figure 3.17c-h). Type 1 edges,

which are straight, initiate the preferred alignment of PE lamellae perpendicular to the edge (Figure 3.17d,g),

as previously demonstrated in Figure 3.14. Conversely, type 2 edges, which are curved, do not exhibit such a

preference with respect to the basal plane (Figure 3.17e,h). Although these type 1 and 2 edges are difficult to

image even with atomic-resolution SEM at low acceleration voltages (60 keV). Nevertheless, these results

support the predictions from ab-initio and MD simulations that changes in edge atomic configuration of a

MoSe2 sheet, such as the Se-ZZ or Mo-ZZ edge, can impact its ability to initiate polymer nucleation and

crystal growth. Further studies using atomic-resolution imaging of edge configurations are required as it will

offer more decisive evidence and understanding of interactions between different atomic edges with polymer

chains.

3.5 Strained 2D substrate to induce anisotropy in nanocomposite

In this section we investigate the effect of straining 2D material to investigate the crystallisation angle of PE

on top of 2D material. We hypothesize that by straining the 2D material, at interface we can deliberately

create preferred crystallization of polymer chains creating anisotropy in the resulting 2D material based

nanocomposite material. In this section we use graphene as our 2D material for the sake of simplicity and we

again use PE as our polymer to deliberately crystallize the polyethylene material in a desired orientation on

the surface of graphene.

A PE-graphene model was created with a PE density of 0.88 g/cc. The model was then allowed to

equilibrate at 500K to get rid of residual stresses. The equilibrated PE-graphene model with randomly mixed

polymer chains was used as an initial configuration to simulate the crystallization of polymer chains on

the surface of graphene. The developed PE-graphene model in our study has periodic boundary conditions

in the normal direction of the 2D graphene. Therefore, two crystallization growth fronts can be observed

during the crystallization process of the PE in our simulations. To evaluate the crystallization process,

fractional crystallization X(z) was estimated for each subdomain with a thickness of 0.35 nm in z direction at

certain time steps as shown in Figure 3.18. It can be noted that Figure 3.18 (a) shows propagation of a

crystallization front from the surface of graphene till the amorphous region in the middle. Each line represents

fractional crystallization at certain distance away from the interface of graphene and PE (in the z direction)

at a particular time during the crystallization process. The crystallization growth front proceeds away from

the interface, in the bulk polyethylene parallel to 2D material interface, with the progression of time. Very

low crystallisation was observed in the first 5 ns but after that crystallization growth front proceeds rapidly

until 25 ns when the chains became highly ordered and start competing from other crystallization growth

front starting from the second interface. Thus, between 25 ns and 75 ns crystal front moved at a very low
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Figure 3.18: Fractional crystallisation profiles for crystallisation of PE on graphene surface

pace. This can be attributed to the fact that crystal front from both ends were competing to crystallize in

the middle. Snapshots of polyethylene crystals growing from the surface of graphene is shown in Figure 3.18

(b)-(e). Ordering and densification of polyethylene chains was observed near the graphene surface at first

with the axes of crystallized chains aligned at 150 degrees from the zig-zag direction of graphene.

Crystal structure of polyethylene were first characterized by the Bunn [86] as an orthorhombic unit cell.

Orthorhombic unit cells are the most stable crystal structure for polyethylene when the temperature of

polyethylene is below melting temperature. Polyethylene also exhibits monoclinic unit cells monoclinic

but these crystal structures are only exhibited under high mechanical stress. Experimentally polyethylene’s

orthorhombic unit cell has lattice parameters a = 0.7407 nm, b = 0.49491 nm and c = 0.25511 nm where c is

along the chain axis shown in Figure 3.19. This gives the crystallized polyethylene a crystal density of 996.2

Kgm−3. Figure 3.19 illustrates the crystallized structure of self-assembled PE on graphene surface. Note, in

an enlarged schematic orthorhombic unit cells of crystallized polyethylene chains were observed are shown for

clarity.

3.5.1 Statistical quantification of crystallized PE on unstrained graphene surface

Multiple MD simulations were conducted to investigate templating effects of unstrained graphene for the

guided crystallization of polyethylene. The interfacial crystallography along the contact plane between

the polyethylene and graphene were characterized. In each simulation, graphene-polyethylene system was

left to equilibrate at 500 K for at least 1 ns before quenching it to 360 K to observe the crystallization

direction/orientation of polyethylene. To create initial crystallization models, after the 1 ns of equilibration,

snapshots of randomly mixed PE with MoSe2 at every 100 ps were captured. The snapshots were captured

between 0- 2.4 ns simulation time which leads to 24 different realizations in MD simulations. In the simulation

model we have two interfaces of graphene- polyethylene nanocomposite due to periodic boundary conditions
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Figure 3.19: Unit cell of crystallised PE on graphene surface. It can be noticed that PE crystallises in
orthorhombic crystal structure

in z direction. In x and y axes we have periodic boundary conditions which helps in simulating an infinitely

long graphene sheet. Our simulation box has dimensions of 54 x 25.5 x 54 Å3 with a total of 7631 atoms in

which our graphene sheet had 624 atoms.

Figure 3.20 shows the observed interfacial crystallographic orientations of the first layer of polyethylene

chains on graphene surface. The miller-bravais direction indices are adopted here to represent the crystallo-

graphic orientations and planes, which is a 4 axis coordinate system widely used to characterize 3 dimensional

hexagonal crystal structure. Figure 3.20 (a)-(f) shows that the crystallized polyethylene in the first layer can

have the chain directions at 85◦ and 165◦ for Figure 3.20 (a), 165◦ and 140◦ for Figure 3.20 (b), 120◦ for

Figure 3.20 (c), 60◦ for Figure 3.20 (d), 30◦ and 150◦ for Figure 3.20 (e) and 30◦ for Figure 3.20 (f). Note that

these crystallization orientations are not exhaustive and we observed other crystallization orientations too.

These images, i.e. Figure 3.20 (a)-(f), just show the sample of few crystallised PE orientations observed on

graphene surface. Figure 3.20 (g) shows the Miller-bravais indices of directions for equivalent configurations.

X1, X2 and X3 are principal hexagonal directions which are symmetric/equivalent and also represents valleys

between zigzag lines. U1, U2 and U3 are other three symmetric/equivalent directions representing valleys

between armchair lines. It can be noted that there are only two crystallisation directions for PE chains i.e.

PE chains can either choose to stay between zigzag valley or armchair valley on graphene surface.

From Figure 3.21 it can be observed that 33.3% of MD simulations i.e 14 out of 42 crystallisation

orientations, shows the interfacial crystallographic orientation in (0◦/[1210], 60◦/[2110], 120◦/[1120]). On the

other hand, 66.67% of the MD simulations i.e 28 out of 42 crystallisation orientations, have the crystalline

polyethylene chains in the directions (30◦/[1100], 90◦/[1010] and 150◦/[0110]). Figure 3.21 also shows the

frequency of observed crystallographic orientations in terms of exact orientation angles (the reference direction

is 0◦/[1210]) in all 24 MD simulations with 42 crystallisation orientations observed. This suggests that the

guided assembly of polyethylene chains on the MoSe2 surface prefer the orientation (30◦/[1100], 90◦/[1010]

and 150◦/[0110]).

To understand the armchair interfacial crystallographic orientation, we tried looking closely at how
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Figure 3.20: (a) Crystallisation of PE at 85◦ and 165◦ (b)Crystallisation of PE at 165◦ and 140◦ (c) Crystallisa-
tion of PE at 120◦ (d) Crystallisation of PE at 60◦ (e) Crystallisation of PE at 30◦ and 150◦ (f) Crystallisation
of PE at 30◦ (g) shows Miller-bravais indices of directions for equivalent configurations on graphene surface.
X1, X2 and X3 are principal hexagonal directions which are symmetric/equivalent and represents valleys
between zigzag lines on graphene surface. U1, U2 and U3 are other three symmetric/equivalent directions
representing valleys between armchair lines on graphene surface

Figure 3.21: Histogram of all the angles observed, in counter-clockwise direction with respect to miller-bravais
direction index [1210], in 24 independent crystallization simulations of polyethylene on graphene surface. 0◦,
60◦ and 120◦ crystallization orientations are shown with green color and 30◦, 90◦ and 150◦ crystallization
orientations are shown with red color
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Figure 3.22: Shows 20 degrees crystallisation of polyethylene on graphene surface. Domain epitaxial matching
between polyethylene chains and graphene surface can be observed as polyethylene chains repeat on graphene
surface after every two armchair valleys

polymer chains register on the graphene surface. Figure 3.22 shows mutual interfacial crystallographic

orientation at 20 degrees with horizontal/0 degrees crystallization orientation. Note that in Figure 3.22

carbon of first layer PE (blue) atoms are on top and carbon from graphene (green) atoms are shown at the

bottom. Hydrogen atoms are not shown for clarity. In Figure 3.22 for the orientations 30◦/[1100], 90◦/[1010]

and 150◦/[0110], it can be observed that polyethylene chains prefer to lie in alternate armchair valleys. We

further investigated epitaxial lattice matching along the contact plane in the hybrid polyethylene/graphene

system to understand the preference for an specific interfacial crystallographic orientations. Epitaxy usually

means order in the relative orientation of identical crystals nucleated and grown on a large single-crystal

seed surface where the deposited crystalline film is called an epitaxial film or epitaxial layer. In this study,

we observe a heteroepitaxy i.e crystalline seed and epitaxial layers are formed from different materials. The

crystalline seed is 2D graphene while the crystal film/epitaxial layer is polyethylene. The mutual orientations

along the contact plane is (0001) graphene and (100) polyethylene. The interfacial orientation relationship

can be largely determined by the intralayer strain energy or lattice misfit along the interface, which is defined

as follows ∆ = 100(dp − ds)/ds [83] where dp and ds are the lattice parameters of polyethylene and MoSe2

respectively. The epilayer trends to orient itself to minimize the lattice mismatch and lower the intralayer

strain. According to Wittmann and Lotz [84] ∆ < ±15% is an acceptable range of lattice mismatch for

continuous epitaxial growth. For the orientation 30◦/[1100], 90◦/[1010] and 150◦/[0110], dp1 is the interchain

distance in the polyethylene epilayer while ds1 for the (1000) plane of graphene is the distance between

alternate carbon atoms in the hexagonal ring of graphene, which were measured as shown in Figure 3.22.

With ds1 = 0.242 cos 30◦ nm and dp1 = 0.4837 nm, lattice mismatch using these parameters is -99.99 % which

suggests a large-lattice mismatch that is not favored by the epitaxial growth of polyethylene on graphene

surface. It is reported that domain epitaxial growth can be observed for large-lattice-mismatch system.

A domain of size nds1 of the substrate matches with mdp1 of the epilayer which leads to a small residual

domain mismatch strain. As shown in Figure 3.22 (a), we can observe that every alternate polyethylene

63



chain is lying between armchair line valley. This results in n=2 and m=1 that leads to dp2 = dp1 and

ds2 = 2ds1. And domain lattice-mismatch evaluated using dp2 and ds2 is -0.39 % which indicates a small

domain lattice-mismatch strain. We believe the minimized intralayer strain within the epilayer from the

small domain lattice-mismatch is responsible for domain epitaxial growth with the orientation in 30◦/[1100],

90◦/[1010] and 150◦/[0110].

3.5.2 Statistical quantification of crystallisation of PE on strained graphene

surface

Multiple MD simulations were conducted to investigate templating effects of strained graphene for the

guided crystallization of polyethylene. The interfacial crystallography along the contact plane between the

polyethylene and graphene were characterized. We strained graphene in vertical direction i.e. U3 direction/y-

axis from Figure 3.20 (g). We strained the graphene by 10%, 15% and 20% and observed the change in

crystallization orientations of crystallized polyethylene on the surface of graphene. The strain in graphene

was applied along the armchair direction i.e perpendicular to the zigzag direction. Graphene has a Poisson’s

ratio of approximately 0.19 therefore stretching graphene along armchair direction shrinks the graphene in

zigzag direction. In each simulation, graphene sheet was strained and kept at the bottom of randomly mixed

polyethylene chains. Then, the strained graphene-polyethylene system was left to equilibrate at 500 K for at

least 1 ns before quenching it to 360 K to observe the crystallization process of polyethylene on a strained

graphene sheet. After the 1 ns equilibration, snapshots with an increment of 100 ps were captured and

were used as the initial configurations for the crystallization process, which leads to 24 realizations in MD

simulations for each strained case. As mentioned in our unstrained case, we have two interfaces of graphene

polyethylene due to periodic boundary conditions in z direction. In x and y axes we again have periodic

boundary conditions which helps us simulate infinitely long graphene sheet. Our simulation box had a total

of 7631 atoms where our strained graphene sheet had 624 atoms.

10% strained graphene for crystallizing PE

Figure 3.23 shows the observed interfacial crystallographic orientations of the first layer of polymer chains on

10% strained graphene surface along armchair direction. The miller-bravais direction indices are again adopted

here to represent the crystallographic orientations and planes in the strained graphene. Figure 3.23 (a)-(f)

shows that the crystallized polyethylene in the first layer can have the chain directions at 150◦ for Figure 3.23

(a), 122◦ and 175◦ for Figure 3.23 (b), 150◦ and 30◦ for Figure 3.23 (c), 150◦ for Figure 3.23 (d), 155◦ and 35◦

for Figure 3.23 (e) and 30◦ and 15◦ for Figure 3.23 (f). Note that these crystallization orientations (shown in

Figure 3.23 ) are not exhaustive and we observed other crystallization orientations too. These images, i.e.

Figure 3.23 (a)-(f), just show the sample of crystallised PE orientations on 10 % armchair direction strained

graphene surface. Figure 3.23 (g) shows the Miller-bravais indices of directions for equivalent configurations.

X1, X2 and X3 are principal hexagonal directions which are symmetric/equivalent and also represents valleys

between zigzag lines. U1, U2 and U3 are other three symmetric/equivalent directions representing valleys

between armchair lines. It can be noted that there are only two crystallisation directions for PE chains. PE

chains can either choose to stay between zigzag valley or armchair valley.

From Figure 3.24 it can be observed that 50% of MD simulations i.e 21 out of 42 crystallisation orientations,

shows the interfacial crystallographic orientation in (0◦, 61◦, 122◦). On the other hand, 50% of the MD

simulations i.e 21 out of 42 crystallisation orientations, have the crystalline polyethylene chains in the directions
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Figure 3.23: (a) Crystallisation of PE at 150◦ (b)Crystallisation of PE at 122◦ and 175◦ (c) Crystallisation
of PE at 150◦ and 30◦ (d) Crystallisation of PE at 150◦ (e) Crystallisation of PE at 155◦ and 35◦ (f)
Crystallisation of PE at 30◦ and 15◦ (g) shows Miller-bravais indices of directions for equivalent configurations.
X1, X2 and X3 are principal hexagonal directions which are symmetric/equivalent and also represents valleys
between zigzag lines. U1, U2 and U3 are other three symmetric/equivalent directions representing valleys
between armchair lines. Note that U1, U2 and U3 are not 60 degrees apart and similarly X1, X2 and X3

directions are also not 60 degrees apart due to vertically strained graphene in this case

Figure 3.24: Histogram of all the angles observed counter-clockwise with respect to miller-bravais direction
index [1210] in 24 independent crystallization simulations of polyethylene on graphene surface. 0◦, 61◦

and 122◦ crystallization orientations are shown with green color and 30.5◦, 90◦ and 151◦ crystallization
orientations are shown with red color
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Figure 3.25: Shows 30◦ crystallisation of polyethylene on graphene surface. Domain epitaxial matching
between polyethylene chains and 10 % armchair strained graphene surface can be observed as polyethylene
chains repeat after every two armchair valleys

(30.5◦, 90◦ and 151◦). Figure 3.24 also shows the frequency of observed crystallographic orientations in terms

of exact orientation angles (the reference direction is 0◦) in all 24 MD simulations with 42 crystallisation

orientation. It can be observed that the guided assembly of polyethylene chains on the MoSe2 surface does

not prefer any of the two crystallisation orientations i.e. (30.5◦, 90◦ and 151◦)/(0◦, 61◦, 122◦) are almost

equally favorable.

To understand the effect of strained graphene on armchair interfacial crystallographic orientation, we tried

looking closely at how polymer chains register to the 10% strained graphene surface. Figure 3.25 shows mutual

interfacial crystallographic orientation at 30◦ with horizontal/0 degrees crystallization orientation. Note that

in Figure 3.25 carbon atom of first layer PE (blue) atoms are on top and carbon atom from graphene (green)

atoms are at bottom. Hydrogen atoms are not shown for clarity. In Figure 3.25 for the orientations 30.5◦,

90◦ and 151◦, it can be observed that polyethylene chains prefer to lie in alternate armchair valleys. We

further investigated epitaxial lattice matching along the contact plane in the hybrid polyethylene/graphene

system to understand the preference of the interfacial crystallographic orientations. The mutual orientations

along the contact plane is (0001) graphene and (100) polyethylene. The interfacial orientation relationship

can be largely determined by the intralayer strain energy or lattice misfit along the interface, which is defined

as follows ∆ = 100(dp − ds)/ds [83] where dp and ds are the lattice parameters of polyethylene and MoSe2

respectively. The epilayer tends to orient itself to minimize the lattice mismatch and lower the intralayer strain.

According to Wittmann and Lotz [84] ∆ < ±15% is an acceptable range of lattice mismatch for continuous

epitaxial growth. For the orientation 30.5◦, 90◦ and 151◦, dp1 is the interchain distance in the polyethylene

epilayer while ds1 for the (1000) plane of graphene is the distance between alternate carbon atoms in the

hexagonal ring of graphene, which were measured as shown in Figure 3.25. With ds1 = 0.264 cos 30◦ nm and

dp1 = 0.4837 nm, lattice mismatch using these parameters is -82.61 % which suggests a large-lattice-mismatch

that is not favored by the epitaxial growth of polyethylene on graphene surface. It is reported that domain

epitaxial growth can be observed for large-lattice-mismatch system. A domain of size nds1 of the substrate
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Figure 3.26: (a) Crystallisation of PE at 155◦ and 45◦ (b)Crystallisation of PE at 175◦ and 150◦ (c)
Crystallisation of PE at 35◦ (d) Crystallisation of PE at 5◦ and 125◦ (e) Crystallisation of PE at 80◦ and
35◦ (f) Crystallisation of PE at 175◦ and 45◦ (g) shows Miller-bravais indices of directions for equivalent
configurations. X1, X2 and X3 are principal hexagonal directions which are symmetric/equivalent and also
represents valleys between zigzag lines. U1, U2 and U3 are other three symmetric/equivalent directions
representing valleys between armchair lines. Note that U1, U2 and U3 are not 60 degrees apart and similarly
X1, X2 and X3 directions are also not 60 degrees apart due to armchair (vertically) strained graphene

matches with mdp1 of the epilayer which leads to a small residual domain mismatch strain. As shown

in Figure 3.25 (a), we can observe that every alternate polyethylene chain is lying between armchair line

valley. This results in n=2 and m=1 that leads to dp2 = dp1 and ds2 = 2ds1. And domain lattice-mismatch

evaluated using dp2 and ds2 is -8.69 % which indicates a small domain lattice-mismatch strain. We believe

the minimized intralayer strain within the epilayer from the small domain lattice-mismatch is responsible for

domain epitaxial growth with the orientation in 30.5◦, 90◦ and 151◦.

15% strained graphene for crystallizing PE

Figure 3.26 shows the observed interfacial crystallographic orientations of the first layer of polymer chains

on 15% strained graphene surface along armchair direction. The miller-bravais direction indices are again

adopted here to represent the crystallographic orientations and planes in the strained graphene. Figure 3.26

(a)-(f) shows that the crystallized polyethylene in the first layer can have the chain directions at 155◦ and

45◦ for Figure 3.26 (a), 175◦ and 150◦ for Figure 3.26 (b), 35◦ for Figure 3.26 (c), 5◦ and 125◦ for Figure 3.26

(d), 80◦ and 35◦ for Figure 3.26 (e) and 175◦ and 45◦ for Figure 3.26 (f). Note that these crystallization

orientations are not exhaustive and we observed other crystallization orientations too. These images, i.e.

Figure 3.26 (a)-(f), just show the sample of crystallised PE orientations on 15 % strained graphene surface.

Figure 3.26 (g) shows the Miller-bravais indices of directions for equivalent configurations. X1, X2 and X3

are principal hexagonal directions which are symmetric/equivalent and also represents valleys between zigzag

lines. U1, U2 and U3 are other three symmetric/equivalent directions representing valleys between armchair

lines. It can be noted that there are only two crystallisation directions for PE chains. PE chains can either

choose to stay between zigzag valley or armchair valley.
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Figure 3.27: Histogram of all the angles observed counter-clockwise with respect to miller-bravais direction
index [1210] in 24 independent crystallization simulations of polyethylene on graphene surface. 0◦, 62◦ and
124◦ crystallization is shown with green color and 31◦, 90◦ and 152.5◦ crystallization is shown with red color

Figure 3.28: Shows 35◦ crystallisation of polyethylene on graphene surface. Domain epitaxial matching
between polyethylene chains and 15 % strained graphene surface can be observed as polyethylene chains
repeats after every two armchair valleys
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From Figure 3.28 it can be observed that 51.21% of MD simulations i.e 21 out of 41 crystallisation

orientations, shows the interfacial crystallographic orientation in (0◦, 62◦, 124◦). On the other hand, 48.79%

of the MD simulations i.e 20 out of 41 crystallisation orientations, have the crystalline polyethylene chains

in the directions (31◦, 90◦ and 152.5◦). Figure 3.27 also shows the frequency of observed crystallographic

orientations in terms of exact orientation angles (the reference direction is 0◦) in all 24 MD simulations with

41 crystallisation orientation. It can be observed that the guided assembly of polyethylene chains on the

MoSe2 surface does not prefer any of the two crystallisation orientations.

To understand the effect of strained graphene on armchair interfacial crystallographic orientation, we

tried looking closely at how polymer chains register to the 15% strained graphene surface. Figure 3.28 shows

mutual interfacial crystallographic orientation at 35◦ with horizontal/0 degrees crystallization orientation.

Note that in Figure 3.28 Carbon of first layer PE (blue) atoms are on top and carbon from graphene (green)

atoms are at bottom. Hydrogen atoms are not shown for clarity. In Figure 3.28 for the orientations 31◦, 90◦

and 152.5◦, it can be observed that polyethylene chains prefer to lie in alternate armchair valleys. We further

investigated epitaxial lattice matching along the contact plane in the hybrid polyethylene/graphene system to

understand the preference of the interfacial crystallographic orientations. The mutual orientations along the

contact plane is (0001) graphene and (100) polyethylene. The interfacial orientation relationship can be largely

determined by the intralayer strain energy or lattice misfit along the interface, which is defined as follows

∆ = 100(dp − ds)/ds [83] where dp and ds are the lattice parameters of polyethylene and MoSe2 respectively.

The epilayer trends to orient itself to minimize the lattice mismatch and lower the intralayer strain. According

to Wittmann and Lotz [84] ∆ < ±15% is an acceptable range of lattice mismatch for continuous epitaxial

growth. For the orientation 31◦, 90◦ and 152.5◦, dp1 is the interchain distance in the polyethylene epilayer

while ds1 for the (1000) plane of graphene is the distance between alternate carbon atoms in the hexagonal

ring of graphene, which were measured as shown in Figure 3.28. With ds1 = 0.275 cos 30◦ nm and dp1 = 0.4837

nm, lattice mismatch using these parameters is -75.3 % which suggests a large-lattice-mismatch that is not

favored by the epitaxial growth of polyethylene on graphene surface. It is reported that domain epitaxial

growth can be observed for large-lattice-mismatch system. A domain of size nds1 of the substrate matches

with mdp1 of the epilayer which leads to a small residual domain mismatch strain. As shown in Figure 3.28 (a),

we can observe that every alternate polyethylene chain is lying between armchair line valley. This results in

n=2 and m=1 that leads to dp2 = dp1 and ds2 = 2ds1. And domain lattice-mismatch evaluated using dp2 and

ds2 is -12.35 % which indicates a small domain lattice-mismatch strain. We believe the minimized intralayer

strain within the epilayer from the small domain lattice-mismatch is responsible for domain epitaxial growth

with the orientation in 31◦, 90◦ and 152.5◦.

20% strained graphene for crystallizing PE

Figure 3.29 shows the observed interfacial crystallographic orientations of the first layer of polymer chains

on 20% strained graphene surface along armchair direction. The miller-bravais direction indices are again

adopted here to represent the crystallographic orientations and planes in the strained graphene. Figure 3.29

(a)-(f) shows that the crystallized polyethylene in the first layer can have the chain directions at 115◦ and

85◦ for Figure 3.29 (a), 80◦ for Figure 3.29 (b), 35◦ for Figure 3.29 (c), 60◦ and 30◦ for Figure 3.29 (d), 65◦

and 125◦ for Figure 3.29 (e) and 80◦ and 135◦ for Figure 3.29 (f). Note that these crystallization orientations

are not exhaustive and we observed other crystallization orientations too. These images, i.e. Figure 3.29

(a)-(f), just show the sample of crystallised PE orientations on 15 % strained graphene surface. Figure 3.29

(g) shows the Miller-bravais indices of directions for equivalent configurations. X1, X2 and X3 are principal
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Figure 3.29: (a) Crystallisation of PE at 115◦ and 85◦ (b) Crystallisation of PE at 80◦ (c) Crystallisation of
PE at 60◦ and 30◦ (d) Crystallisation of PE at 65◦ and 125◦ (e) Crystallisation of PE at 80◦ and 135◦ (f)
Crystallisation of PE at 25◦ and 120◦ (g) shows Miller-bravais indices of directions for equivalent configurations.
X1, X2 and X3 are principal hexagonal directions which are symmetric/equivalent and also represents valleys
between zigzag lines. U1, U2 and U3 are other three symmetric/equivalent directions representing valleys
between armchair lines. Note that U1, U2 and U3 are not 60 degrees apart and similarly X1, X2 and X3

directions are also not 60 degrees apart due to armchair (vertically) strained graphene
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Figure 3.30: Histogram of all the angles observed counter-clockwise with respect to miller-bravais direction
index [1210] in 24 independent crystallization simulations of polyethylene on graphene surface. 0◦, 62.5◦ and
125◦ crystallization is shown with green color and 31.5◦, 90◦ and 153◦ crystallization is shown with red color

hexagonal directions which are symmetric/equivalent and also represents valleys between zigzag lines. U1, U2

and U3 are other three symmetric/equivalent directions representing valleys between armchair lines. It can

be noted that there are only two crystallisation directions for PE chains. PE chains can either choose to stay

between zigzag valley or armchair valley.

From Figure 3.31 it can be observed that 32.55% of MD simulations i.e 14 out of 43 crystallisation

orientations, shows the interfacial crystallographic orientation in (0◦, 62.5◦, 125◦). On the other hand, 67.45%

of the MD simulations i.e 29 out of 43 crystallisation orientations, have the crystalline polyethylene chains

in the directions (31.5◦, 90◦ and 153◦). Figure 3.30 also shows the frequency of observed crystallographic

orientations in terms of exact orientation angles (the reference direction is 0◦) in all 24 MD simulations with

43 crystallisation orientation. It can be observed that the guided assembly of polyethylene chains on the

MoSe2 surface does prefer the crystallisation orientations (31.5◦, 90◦ and 153◦).

To understand the effect of strained graphene on armchair interfacial crystallographic orientation, we

tried looking closely at how polymer chains register to the 20% strained graphene surface. Figure 3.31 shows

mutual interfacial crystallographic orientation at 38◦ with horizontal/0 degrees crystallization orientation.

Note that in Figure 3.31 Carbon of first layer PE (blue) atoms are on top and carbon from graphene (green)

atoms are at bottom. Hydrogen atoms are not shown for clarity. In Figure 3.31 for the orientations 31.5◦,

90◦ and 153◦, it can be observed that polyethylene chains prefer to lie in alternate armchair valleys. We

further investigated epitaxial lattice matching along the contact plane in the hybrid polyethylene/graphene

system to understand the preference of the interfacial crystallographic orientations. The mutual orientations

along the contact plane is (0001) graphene and (100) polyethylene. The interfacial orientation relationship

can be largely determined by the intralayer strain energy or lattice misfit along the interface, which is

defined as follows ∆ = 100(dp − ds)/ds [83] where dp and ds are the lattice parameters of polyethylene

and MoSe2 respectively. The epilayer trends to orient itself to minimize the lattice mismatch and lower
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Figure 3.31: Shows 38◦ crystallisation of polyethylene on graphene surface. Domain epitaxial matching
between polyethylene chains and 15 % strained graphene surface can be observed as polyethylene chains after
every two armchair valleys

the intralayer strain. According to Wittmann and Lotz [84] ∆ < ±15% is an acceptable range of lattice

mismatch for continuous epitaxial growth. For the orientation 31.5◦, 90◦ and 153◦, dp1 is the interchain

distance in the polyethylene epilayer while ds1 for the (1000) plane of graphene is the distance between

alternate carbon atoms in the hexagonal ring of graphene, which were measured as shown in Figure 3.31.

With ds1 = 0.283 cos 30◦ nm and dp1 = 0.4837 nm, lattice mismatch using these parameters is -70.35 % which

suggests a large-lattice-mismatch that is not favored by the epitaxial growth of polyethylene on graphene

surface. It is reported that domain epitaxial growth can be observed for large-lattice-mismatch system. A

domain of size nds1 of the substrate matches with mdp1 of the epilayer which leads to a small residual domain

mismatch strain. As shown in Figure 3.31 (a), we can observe that every alternate polyethylene chain is lying

between armchair line valley. This results in n=2 and m=1 that leads to dp2 = dp1 and ds2 = 2ds1. And

domain lattice-mismatch evaluated using dp2 and ds2 is -14.82 % which indicates a relatively large domain

lattice-mismatch strain. We believe that this large domain and epitaxial mismatch of intralayer strain is

responsible for not supporting the domain epitaxial growth with the orientation in 0◦, 62.5◦ and 125◦ and

now supports 31.5◦, 90◦ and 153◦ degrees crystallization orientation.

3.6 Conclusion

In this study, the dynamic polyethylene assembly on MoSe2/graphene surfaces was successfully analyzed by

conducting MD simulations. We have investigated the influence of the interchain interactions in polyethylene

and interfacial interaction between polyethylene and MoSe2/graphene on the assembly process of polyethylene.

It is noted that interchain interaction can strongly impact the melting temperature of polyethylene and the

crystallization process while the interfacial interaction shows less influence on the polyethylene assembly

process. The melting temperature is found to increase with increased interchain interaction. The assembly

process was characterized using fractional crystallization X to show the growth of crystalline polyethylene
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as a function of time. Initially we observe a high crystallisation growth rate (up to 25 ns) and then a

slow crystallization growth was observed from 25 ns - 75 ns. It is observed that the resulted crystalline

polyethylene structure is orthorhombic and in conformance with the experimental results of Alsaygh et.al.

[85]. Orthorhombic crystal phase of polyethylene exhibits pronounced anisotropic properties. Thus, oriented

crystallisation of polymer on MoSe2 surface can help in achieving directional crystallisation and thus controlled

material properties.

Interfacial crystallography was examined at the interface between polyethylene and MoSe2 to study

how MoSe2 influences the self-assembly of polyethylene. The study revealed that polyethylene chains align

with the surface of MoSe2 in two distinct orientations: (1) 0◦/[1210], 60◦/[2110], 120◦/[1120], and (2)

30◦/[1100], 90◦/[1010], 150◦/[0110] on the (0001) plane of MoSe2. Among the 24 MD simulations conducted,

approximately 58.3% exhibited the former orientation, while 41.7% showed the latter orientation. The lattice

mismatch between polyethylene and MoSe2 for full coherence was found to be significant (i.e., 68.24% for

the former orientation and 187.3% for the latter orientation), whereas the domain lattice mismatch was

relatively small (i.e., 12.1% for the former orientation and -8.1% for the latter orientation), indicating low

strain in the epitaxial layer. The reduced strain energy resulting from the domain lattice mismatch favors the

epitaxial growth of polyethylene on the MoSe2 surface. In the former orientation, half of the polyethylene

chains were observed to lie between Se lines to achieve domain epitaxial lattice matching and minimize

epitaxial strain. In contrast, for the latter orientation, polyethylene chains were situated in the narrow valleys

between mixed Mo/Se lines. Coincident atom sites observed at the MoSe2-polyethylene interface suggest a

preference for the 0◦/ [1210], 60◦/ [2110], 120◦/ [1120] orientation over the 30◦/ [1100], 90◦/ [1010], 150◦/

[0110] orientation. The steric hindrance between selenium and carbon atoms is less in the former orientation,

as carbon atoms settle in the valleys between selenium atoms. This is supported by the evaluation of cohesive

energy between the two crystallization orientations, further confirming the preference for the 0◦/ [1210],

60◦/ [2110], 120◦/ [1120] crystallization over the 30◦/ [1100], 90◦/ [1010], 150◦/ [0110] orientation. This

selective preference for the crystallization orientation of polyethylene on MoSe2 illustrates that 2D materials

can guide the self-assembly of polyethylene chains in specific orientation directions through epitaxial growth.

This presents a promising research direction to control the long-range order in the crystalline polymer and

tailor the properties of both the polymer layer and the overall hybrid material. With the ability to attach

different functional groups to the alkane chains, guided polymer assembly on 2D materials can be utilized to

develop functional hybrid materials with precisely positioned functional groups at the molecular scale in the

organic layer relative to the 2D materials substrate, thereby enabling the design of novel flexible electronic

and optoelectronic materials. We also investigated the selective crystallisation of PE on graphene and MoSe2

surface by two different strategies. In the first we investigated the selective crystallization of PE on MoSe2

surface through edge crystallisation and have proved that MoSe2 edges (Mo-ZZ) act as selective interfaces

and can help guide the crystallization of PE on MoSe2 surface. We also investigated the strained graphene

surface for crystallization of PE and have proved that by vertically straining the graphene substrate we can

selectively change the crystallization orientation of PE from armchair to zigzag direction ( within the physical

limit of graphene i.e. 20% strain)
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Chapter 4

CONCLUSIONS AND FUTURE

WORK

Molecular Dynamics simulations have been used for over two decades to simulate material system at small

time and length scales and evaluate material behaviour from non-continuum approach. MD simulations

has been used where experimentalists and theorists fail to characterize materials response. This makes MD

simulations to become a powerful tool to investigate material behaviour at small length and time scales.

This dissertation focuses on the development of computational methods for investigating 2D materials based

nanocomposites and address two problems in particular. First, is the development of better interatomic

potentials for MD simulations. Second, is the characterization of 2D material based nanomaterials and

understanding their interface to investigate their behaviour and potential templating effects of 2D materials

in these nanocomposites.

The fidelity of MD simulations has been dependent on the accuracy of empirical potentials used to

characterize the material behaviour. Density Functional theory simulations use quantum mechanical approach

to investigate the material behaviour at small length and time scale but due to high computational cost

associated with these simulations we cannot scale the size and simulation time of DFT simulations. In this

study we have created a method to develop machine learning based interatomic potentials for MD simulations

learnt from the simulation results of DFT simulations. This gives us the accuracy of DFT simulations in MD

simulations and thus we can simulate material properties of materials with higher accuracy with a fraction of

computational cost. This dissertation focuses on the development of machine learning potentials for graphene,

most prominent 2D material, and evaluate its material properties like coefficient of thermal expansion, lattice

parameter, young’s modulus and ultimate tensile strength. Especially evaluation of CTE for graphene is an

elusive material property for theorists and experimentalists and this dissertation has provided new insights in

the evaluation of CTE for graphene.

Once we have developed 2D material’s interatomic potentials we can now simulate 2D material based

nanocomposite with better accuracy. Now, using these MLPs we can investigate the templating effects of

2D material on crystallization of polymers. This dissertation specifically focuses on the templating effect of

MoSe2 and graphene on crystallization of polyethylene. We found through interfacial crystallography that

for MoSe2-PE material system 0◦/60◦/120◦ crystallization orientation of PE is preferred over 30◦/90◦/150◦

crystallization orientation due to higher adsorption energy, less domain mismatch, lower distance between PE

and MoSe2. We also found that for MoSe2-PE material system MoSe2 edge can be used as a template to
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specifically crystallize PE parallel to MoSe2 edge. In one other case study in this dissertation using graphene-

PE as the material system we have found that straining the graphene sheet can change the preferential

crystallization orientation of PE on graphene surface and thus can be used to create anisotropy (tuning knob)

to alter material properties in the resulting nanocomposite.

This dissertation still leaves a few open questions that needs to be investigated to get a better understanding

of 2D material based nanocomposites. We need to improve the efficiency of MLPs by doing uncertainty

quantification of symmetry functions for different materials. From initial studies we can conclude that their

is high level of redundancy in symmetry functions used in this study. Also, for understanding the templating

effects of 2D materials for the development of nanocomposites we need to further investigate the straining

effects of 2D materials in different directions and fine tuned values to help polymer selectively prefer just

one crystallization orientation. These questions if addressed will help us to characterize 2D materials based

nanocomposites with ease in the future to come.
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