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ABSTRACT

Sparse matrix dense matrix multiplication (SpMM) is commonly used in applications

ranging from scientific computing to graph neural networks. Typically, when SpMM is

executed in a distributed platform, communication costs dominate. Such costs depend on

how communication is scheduled. If it is scheduled in a sparsity-unaware manner, such as

with collectives, execution is often inefficient due to unnecessary data transfers. On the other

hand, if communication is scheduled in a fine-grained sparsity-aware manner, communicating

only the necessary data, execution can also be inefficient due to high software overhead. We

observe that individual sparse matrices often contain regions that are denser and regions that

are sparser. Based on this observation, we develop a model that partitions communication

into sparsity-unaware and sparsity-aware components. Leveraging the partition, we develop

a new algorithm that performs collective communication for the denser regions, and fine-

grained, one-sided communication for the sparser regions. We call the algorithm Two-Face.

We show that Two-Face attains an average speedup of 2.11x over prior work when evaluated

on a 4096-core supercomputer. Additionally, Two-Face scales well with the machine size.
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CHAPTER 1: INTRODUCTION

Sparse matrix dense matrix multiplication (SpMM) is a key kernel in sparse linear algebra.

It has applications across a wide range of domains. For example, SpMM is a key operation

in Latent Dirichlet Allocation, Non-negative Matrix Factorization, and Alternating Least

Squares [1]. It is the bottleneck primitive in various Graph Neural Networks [2, 3, 4] and an

integral part of popular graph learning frameworks such as PyTorch Geometric (PyG) [5]

and Deep Graph Library (DGL) [6].

The ever-increasing computing and memory demands of sparse matrix computations intro-

duce the need for efficient distributed SpMM. However, designing efficient distributed SpMM

algorithms is challenging [7, 8, 9]. Due to the low arithmetic intensity of this kernel, the

communication cost, rather than the computation cost, typically dominates the execution

time. Such cost depends on how communication is scheduled between nodes [8].

Communication can be scheduled in a sparsity-unaware manner, such as with bulk col-

lective communications. For example, assume that each node originally hosts a block of the

dense input matrix. This block may be sent to all the other nodes by using collectives or

RDMA accesses to fully replicate it [9] or by using shifting algorithms [8] similar to those

that would be used for dense computation. With this strategy, execution is often inefficient

due to redundant data transfers, since parts of the dense input matrix may not be needed

by some nodes.

On the other hand, communication can be scheduled in a fine-grained sparsity-aware

manner [10], communicating only the truly necessary data and computing asynchronously.

Specifically, when a node processes a sparse element but does not own the necessary dense

row for that computation, it gets that row with a fine-grained one-sided request. With this

strategy, execution can also be inefficient due to high software overheads and the need for

more network round-trips [8].

We observe that individual sparse matrices often contain a mix of relatively dense and

relatively sparse regions. Based on this observation, this thesis devlopes a model that par-

titions computation and communication into sparsity-unaware and sparsity-aware portions.

Relatively denser regions of the sparse matrix are broken down into Synchronous Stripes and

transfer the corresponding parts of the dense input matrix with Sparsity-Unaware Transfers

(SUT). Relatively sparser regions are broken down into Asynchronous Stripes and transfer

the corresponding parts of the dense input matrix with Sparsity-Aware Transfers (SAT).

Leveraging the partition, we develop a new algorithm that performs collective commu-

nication for the synchronous stripes, and fine-grained, one-sided communication and asyn-
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chronous computation for the asynchronous stripes. We call the algorithm Two-Face [11].

The synchronous and asynchronous parts of the sparse matrix are processed in parallel, and

the model aims at equalizing the runtimes of the two parts.

We evaluate Two-Face on a CPU-based supercomputer using large matrices and compare

it to state-of-the-art baselines. For a system with 32 nodes, 128 cores per node, and dense

matrices with 128 columns, Two-Face attains an average speedup of 2.11x against dense

shifting [8], a high-performing baseline. In addition, Two-Face is a scalable algorithm: its

average speedup over dense-shifting increases to 2.21x for 64 nodes. Finally, the overhead

introduced by the necessary matrix preprocessing step is small enough to make Two-Face

suitable for applications that use the same sparse matrix only a few dozen times..
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CHAPTER 2: BACKGROUND

This chapter provides background material helpful for understanding later chapters. First,

it describes the concept of sparsity in matrices and how this sparsity can be exploited for

data compression and performance. It then discusses the sparse-times-dense matrix multi-

plication operation, both in the abstract and in the case of a distributed system. Finally,

this chapter concludes with a discussion of some related works in the domain of processing

sparse workloads.

2.1 SPARSITY IN MATRICES

Consider the matrices B and S shown below:

B =


0 2 8 8

4 1 9 7

1 6 9 3

9 9 3 7

 , S =


0 2 0 0

0 0 0 0

0 0 9 3

0 0 0 0

 (2.1)

Both B and S are 4 × 4 matrices containing integer values (i.e., B, S ∈ Z4×4). However, S

is sparse: it contains very few elements which are non-zero. Instead of individually defining

every element of S, we can instead define the matrix only in terms of its non-zero elements,

and assume that any unspecified elements are zero, as shown below.

S1,2 = 2, S3,3 = 9, S3,4 = 3 (2.2)

Representing sparse matrices in terms of only their non-zero elements can reduce their

memory footprint in computer systems. In the case of the matrix S, only 3
16

of the elements

are non-zero. Representing S as a set of (row, column, value) integer tuples, requires a total

of 9 integers, which reduces the memory footprint by 43.75% compared to näıvely storing

all the elements of the matrix. Additionally, when using S in computations such as matrix

multiplications, taking advantage of the sparsity reduces amount of computation that needs

to be performed, since zeros can be skipped over implicitly. These memory and performance

gains become even more pronounced with greater sparsity, such as the sub-1% densities

observed in adjacency matrices of large graphs.
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2.2 SPARSE MATRIX DATA FORMATS

There exist a wide variety of data structures for representing sparse matrices. Some opti-

mize for compression, some optimize for performance during computation, and the optimal

choice is often dependent on the matrix’s sparsity pattern.
0 1 0 0
0 2 3 0
0 0 4 5
0 0 0 0


(a) An example sparse ma-
trix.
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(b) The matrix in COO form.
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(c) The matrix in CSR form.

Figure 2.1: A sparse matrix shown in three different representations: (a) A traditional matrix
format, which explicitly represents zeros, (b) a coordinate-list format, and (c) a compressed
sparse row format.

The sparse matrix representation used in Section 2.1, which represents matrices as a list of

coordinates and values, is commonly known as the Coordinate List (COO) format. COO rep-

resents the sparse matrices in a simple, easily understandable way, but it increases the mem-

ory requirement of each non-zero element substantially, since it stores both of its coordinates,

along with its value. Figure 2.1a shows an example sparse matrix, and Figure 2.1b shows

how this matrix might be encoded using COO. In this example, the non-zero located at (1, 2)

with the value 1 is stored in the sparse structure as the 3-tuple (row = 1, col = 2, value = 1).

The other nonzeros follow. In this case, the nonzeros are stored in row-major order, but this

is not required when using COO.

An alternative data format, which attempts to reduce the memory requirement of COO,

is the Compressed Sparse Row (CSR) format. Rather than storing a row index for each

nonzero, CSR stores each row contiguously and maintains pointers to the beginning of each.

Every non-zero entry is still stored with a column index. Figure 2.1c shows an example of

the CSR format. In this example, the row pointers store the indices of the beginning of each

of the four rows in the matrix. The first row (containing only the nonzero with the value 1)

begins at index 0 of the structure, which is indicated by the first entry in the row pointer
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list. The nonzero is additionally specified by a column (2) and value (1). The next row

contains two nonzeros, and begins at index 1 of the sparse structure. Along with the shared

row pointer, each nonzero in this row is specified by a column/value pair. A related format

to CSR is Compressed Sparse Column (CSC), which orders the non-zeros by column instead

of row and maintains column pointers instead of row pointers.

The optimal data format depends on the sparse matrix and the computation [12]. For

example, CSR may be better than COO when the matrix has many nonzeros in each row.

COO may be best when the matrix has many empty rows and columns, since CSR and CSC

would both maintain “useless” row/column pointers.

2.3 SPMM: SPARSE-TIMES-DENSE MATRIX MULTIPLICATION

The specific operation most relevant to this thesis is the multiplication of a sparse matrix,

A, with a dense matrix, B, to produce another dense matrix, C. I.e.,

C = AB, A ∈ Rm×n, B ∈ Rn×k, C ∈ Rm×k, (2.3)

where A is sparse. SpMM commonly appears during the aggregation phase in graph neural

networks [2, 3, 4], in which the sparse matrix A is the adjacency matrix and the dense matrix

B represents the node embeddings. It also appears in latent dirichlet allocation, non-negative

matrix factorization, alternating least squares [1], and graph learning frameworks [5, 6]. In

these iterative applications, A is square and reused during each iteration. The output matrix,

C, becomes the next iteration’s input matrix, B.

An example of an SpMM operation is shown in Figure 2.2. The access pattern to the

dense matrices are determined by the location of the non-zero elements of A. In the figure,

B is shown transposed to highlight this relationship. The non-zero Ai,j will read from the jth

row of B and accumulate onto the ith row of C. For example, in Figure 2.2, A1,6 is non-zero,

so the row B[6, 0 : K − 1] is accessed to load the corresponding dense input and the result

of the scalar-vector multiplication is accumulated onto row C[1, 0 : K− 1]. Note that in this

example, the rows of A with indices 0, 2, and 4 do not contain any non-zeros, so there is no

need to access the corresponding row of C. Likewise, columns 0, 3, 5, and 7 of A are empty,

so there are no accesses to their corresponding rows in B.

5



a b

c e a f

g i

j b

c l m

n d
o p e

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

K

Kc_id
r_id

x

=A

B[6,0:K-1]

B

C

C[1,0:K-1] = C[1,0:K-1] + a x B[6,0:K-1]

C[1,0:K-1]

Figure 2.2: An illustration of an SpMM operation. The dense matrix B (shown transposed
here) is multiplied by the sparse matrix A to produce the dense matrix C.

2.4 DISTRIBUTED-MEMORY COMPUTING

A distributed memory system is a parallel system of multiple independent processors or

nodes, each with its own memory space. Each processor may consist of multiple parallel

cores. The processors typically communicate via message passing, using an API such as the

Message Passing Interface (MPI) [13, 14]. Processors may us traditional interconnects such

as Ethernet or specialized interconnects such as Slingshot [15].

One example of a distributed-memory system is the National Center for Supercomputing

Application’s Delta Supercomputer [16]. This system contains 132 CPU nodes, each with a

dual-socket configuration of two AMD EPYC 7763 processors, as well as an additional 207

GPU nodes. Each of these nodes contains between 256GB-2TB of main memory and runs

its own operating system (in this case, Red Hat Enterprise Linux [17]). These nodes can be

programmed as logically separate machines, or they can take advantage of their high-speed

interconnects to perform a distributed computation for a single application.

2.4.1 Programming Distributed-Memory Systems

Each node in a distributed-memory system runs programs independently, synchronizing

with the others only when explicitly directly to. To run distributed HPC applications,

many systems are programmed using MPI [14]. This framework places the same code on

each machine (although the machines are aware of their unique IDs) and provides message

passing primitives to allow the machines to communicate.
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This message passing may consist of point-to-point communication, where one node di-

rectly sends or receives data from one other node. Alternatively, the messages may take

the form of collectives, such as Broadcast, AllGather, Reduce, or others. These collectives

can use optimized communication patterns to reduce latency and and better utilize system

bandwidth. For example, a Broadcast collective may use a tree pattern to communicate

data to all p processors in a system in O (log p) steps.

2.4.2 Modeling Bandwidth and Latency

In distributed-memory computing, the performance of an application often depends on the

network properties. Relvant properties include the bisection bandwidth, network latency,

and topology [18]. A first-order approximation of the cost of communicating data of size n

can often be modeled as C(n) = βn + α, where β is 1
bandwidth

and α is the latency of the

network. In supercomputers, typically β < α, so when the data transfer is small, the latency

dominates the transfer cost, while when the data size is large, the bandwidth is the limiting

factor.

2.5 DISTRIBUTED SPARSE MATRIX PROCESSING

Prior works have investigated using distributed-memory systems for a variety of sparse

kernels, including SpGEMM [19, 20], SDDMM [8, 19], and, most relevant to this work,

SpMM [7, 8, 9]. In this section, we discuss a simple scheme for partitioning matrices across

compute nodes in a distributed system and how a variant of this scheme has previously been

applied in practice.

In distributed SpMM, the input matrices, A and B, and the output matrix, C, are par-

titioned and/or replicated across the nodes. Each node in the system then computes its

portion of the operation. One possible way to partition an SpMM computation, called 1D

partitioning, is shown in Figure 2.3. In 1D partitioning, each node owns a set of contiguous

rows from each of the matrices.

A straightforward algorithm for computing SpMM with using 1D partitioning has each

node compute the output rows of C belonging to its local partition. This requires iterating

over the sparse non-zeros belonging to its local partition of A and multiplying each non-zero

by the vector in the corresponding row of B. In this algorithm, all accesses to elements in

A and C are local accesses, since they only require data found on the local node. However,

some accesses to B will be remote accesses, since they will require fetching data from another

node.
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Figure 2.3: 1D partitioning for SpMM using a four-node configuration.

For highly-sparse workloads, the communication costs of remote accesses are known to

dominate the cost of the SpMM operation.

2.6 PRIOR WORKS

There have been many recent works on sparse kernels, including distributed sparse ker-

nels, GNN training, and hardware for both local processing and network support of these

operations. Here, we discuss some of these prior works and their relation to the Two-Face

algorithm [11] described later in this thesis.

2.6.1 Sparse Matrix Processing

Sparse matrices have become more prominent in machine learning and graph-related work-

loads. This thesis is concerned primarily with highly-sparse matrices, like those found in

GNN aggregation steps. Thus, we will primarily discuss works related to these kinds of

sparsity, as opposed to sparsity found in pruned DNNs.

Distributed SpMM Existing work on distributed SpMM is rather limited, but there

are recent works exploring the topic. Bharadwaj et al. [8] investigate distributed SpMM,

SDDMM, and methods of fusing the two for machine learning applications. We use their

implementation of an algorithm which cyclically shifts the dense input matrix as a baseline

in the evaluation of Two-Face (Section 5). In addition to this algorithm, Bharadwaj et al. [8]
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also present a sparse-matrix shifting implementation. In our work, we did not evaluate this

approach, since it partitions the dense input and output matrices in a way that requires addi-

tional all-to-all communication for GNNs or other applications that interleave SpMM with a

row-wise operator. In their work, Bharadwaj et al. [8] compare their SpMM implementations

to the SpMM provided by PETSc [7]. Separately, Selvitopi et al. [9] investigate multiple

algorithms for SpMM, including algorithms that use bulk-synchronous collective commu-

nication and algorithms that use one-sided asynchronous RDMA communication. This is

directly relevant to the work presented later in this thesis. However, unlike the approach

presented in Section 4, they do not investigate combining these communication primitives

in a single algorithm.

Other Distributed Sparse Kernels Other distributed sparse kernels have recently re-

ceived attention. CombBLAS [19] is a library for distributed sparse kernels such as SpGEMM

and SpMV. CombBLAS provides a number of GPU SpMM implementations using different

partitioning and communication patterns. All of these SpMM implementations them use

sparsity-unaware collectives to communicate. In contrast, this thesis will discuss a hybrid

communication pattern that combines these collectives with sparsity-aware accesses. Hus-

sain et al. [20] investigate communication-avoiding algorithms for SpGEMM. DGCL [21] is

a library for distributed GNN training that partitions graphs and processes GNN computa-

tions at the level of nodes in the graphs, without explicitly expressing the computation with

SpMM operations.

Non-Distributed Sparse Kernels SpMM optimization has been the topic of several

investigations. Works such as WACO [22], WISE [23], and DDB [24] attempt to optimize

sparse computations by using machine learning techniques to predict the performance of

various configurations. Many CPU and GPU tiling techniques and implementations have

been published [2, 25, 26, 27]. Other sparse kernels have also been subject to several inves-

tigations aiming to tame irregular access patterns [28, 29, 30, 31]. These optimizations for

non-distributed kernels may be applicable to the distributed case, but they tend to assume

a shared memory system, and they are largely orthogonal to our work.

Recently, SpMM, SpMV, and SpGEMM kernels for heterogeneous hardware have been

proposed [32, 33, 34]. Cheng et al. [32] tackle SpGEMM on asymmetric multicore processors.

HotTiles [34] partitions the SpMM sparse input matrix into two types of regions and assigns

each region type to a different accelerator by solving an optimization problem.

9



2.6.2 GNN Training

Prior work has addressed the issue of large graphs in GNN training via sampling tech-

niques [35]. However, the benefits of sampling can come at a cost to accuracy, leading prior

work to investigate full-batch distributed GNN training [36, 37]. However, in Tripathy et

al. [37], dense matrices used in SpMM operations are only transferred in a coarse-grained

sparsity-unaware fashion. Conversely, Jia et al. [36], using Lux [38], assume a GNN runtime

that operates via pushing/pulling node embeddings in a fine-grained manner. This is distinct

from Two-Face, which uses a combination of coarse and fine-grained transfers to leverage

the benefits of both approaches.

2.6.3 Domain-specific Architectures and Network Support:

Several architectural designs that offer hardware support for SpMM computation have

been recently proposed [39, 40, 41, 42, 43]. SPADE [39] is an accelerator for SpMM and

SDDMM designed to be tightly coupled with CPU cores. Tensaurus [40] and ExTensor [41]

are accelerators for a variety of sparse kernels. We believe that algorithms such as Two-Face

can be useful in orchestrating the communication in scaled-up multi-node versions of these

accelerators or for other large-scale graph analytics architectures [44, 45, 46]. In addition, we

believe that such algorithms can also be beneficial for inter-cube or inter-chip communication

in PIM-based architectures for graph analytics [47, 48, 49, 50]

Finally, scheduling algorithms for collectives such as Themis [51] have been proposed to

maximize the bandwidth utilization of multidimensional, heterogeneous networks. These

works could inspire network hardware support for Two-Face, but one would also require

innovations to support the asynchronous communication operations.
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CHAPTER 3: COMMUNICATION IN DISTRIBUTED SPMM

The choice of how data is communicated in a distributed computation tends to have a

large impact on performance. In the case of sparse workloads such as SpMM, algorithms can

either disregard the sparsity patterns, essentially treating all the matrices as dense for the

purpose of communication scheduling, or the algorithms can introspect the sparse workload

to determine the necessary data to transfer. Both these sparsity-unaware and sparsity-

aware communication techniques have trade-offs, as this chapter discusses. This chapter

also discusses a possible compromise between these approaches, which attempts to get the

best of both.

3.1 SPARSITY-UNAWARE COMMUNICATION

Algorithms which use sparsity-unaware transfers (SUTs) for SpMM do not schedule com-

munication based on the content of the sparse matrix A. Rather, they use regular com-

munications patterns, similar to those that would be used in dense matrix multiplications.

An algorithm using SUTs might communicate the whole dense input matrix B (shown in

Figure 2.2) to all nodes in the system using a broadcast operation, as illustrated in Figure 3.1.

N0 N1

N2 N3

Figure 3.1: Sparsity-unaware transfers may use coarse-grained all-to-all patterns.

This will often send unecessary data between nodes, since one particular node may not

need all rows of B to perform its local computation. However, the software overhead of

transferring large, contiguous blocks of data is relatively low when compared to parsing

sparse data structures and initiating many smaller transfers. Thus, SUTs are often good

choices for matrices exhibiting only limited sparsity or sparsity patterns that still require

large transfers.
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3.2 SPARSITY-AWARE COMMUNICATION

Algorithms which use sparsity-aware transfers (SATs) for SpMM schedule their commu-

nication based on the sparsity pattern of A. A simple SAT algorithm would iterate over

each non-zero element of A and compute its product with the corresponding input row of

B. When that corresponding row is not in the local compute node, a remote access is used

to get it. Figure 3.2 illustrates an exaple of a SAT pattern. In it, we can see that nodes N0,

N2, and N3 communicate, since each must either request or provide data to another, but N1

does not communicate with any other node, since it only requires rows of B that are in its

own partition.

x
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C
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c
d

e
N3N2

N0N3

N2N0

a:

c:

d:

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

Figure 3.2: SATs use a collection of fine-grained one-to-one transfers.

Compared to SUTs, this may reduce the total number of data elements communicated

during an SpMM operation. However, SATs often require more round trips and higher

software overheads, since their requests take place at a finer granularity. Typically, SAT

patterns are a good fit for highly-sparse matrices.

3.3 A MATRIX-DEPENDENT CHOICE

Due to the trade-offs presented by sparsity-aware and sparsity-unaware algorithms, the

optimal choice between the two is generally matrix-dependent [8]. To illustrate this, we

profiled the performance of distributed SpMM using a sparsity-unaware algorithm using

Collectives and a sparsity-aware algorithm using Async Fine-grained accesses. The Collec-

tives algorithm performs a single communication step, where the entirety of B is sent to all

compute nodes using an AllGather operation, before the computation begins. The Async

Fine algorithm is similar to the algorithm described in Section 3.2, where each node com-

putes asynchronously and performs a remote access for necessary data. Figure 3.3 shows

the measurements, which were evaluated on 32 nodes, each with 128 CPU cores. The figure
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shows the speedup of Async Fine over Collectives for K = 32 and K = 128. One workload

is omitted for K = 128 since it exceeded the memory capcity of the nodes in our system.
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Figure 3.3: Comparison of the performance of Async Fine and Collectives on sparse ma-
trices, for two different dense-matrix widths. The Collectives implementation ran out of
memory when evaluating kmer for K = 128. For details on experimental methodology, see
Section 5.1.

From Figure 3.3, we can see that the best algorithm depends on the matrix. Async

Fine is able to reduce the communication cost substantially on some matrices, but the

additional overheads that come from many small transfers make it inefficient on others. In

particular, three of the workloads that Async Fine performs comparatively well have very

few off-diagonal elements, and the other workload has a very large sparse matrix width,

which correlates to a very high communication cost when transferring the entire dense input

between nodes. Figure 3.3 also shows that as the size of the dense matrix increases, so does

the benefit of using Async Fine. Intuitively, this is because as the size of the dense matrix

rows increases, the amount of time saved by not transmitting unnecessary rows increases.

Figure 3.4: Density map of the VLSI/stokes matrix, from SuiteSparse [52]. Darker regions
are denser. Note how different regions of the matrix exhibit different sparsities, suggesting
different communication patterns.
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3.4 A HYBRID COMMUNICATION PATTERN

In the previous section, we illustrated how the optimal choice of communication pattern

for distributed SpMM can be matrix-dependent. However, sparse matrices often have com-

plex internal structures. Some parts of the matrix may be highly-sparse, while others may

be denser. To illustrate this, consider the heatmap of the stokes [52] matrix depicted in

Figure 3.4. Although it is highly sparse, this matrix also contains regions that are relatively

dense. During a distributed SpMM operation, we should expect the communication patterns

from Async Fine to be beneficial in the regions with low density, while the coarser-grained

Collectives should be more beneficial in denser regions.

Therefores, we propose tailoring the communication patterns of the SpMM operation to

particular regions of the sparse matrix A. The high-level idea is shown in Figure 3.5. In this

example, the matrix A has non-zero elements on the diagonal, which do not require data

transfer, and off-diagonal non-zeros, which require remote accesses to rows of B.
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7
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x

=A

B

C

Dense rows broadcast from 

N2 to N0, N1 and N3

local-input nonzeros

sync nonzeros

async nonzeros

N0N3

N2N0

async transfers:
N0 N1 N2 N3

N0

N1

N2

N3
N0 N1

N2 N3

sync transfers:

Figure 3.5: An illustration of how SUTs and SATs may be combined.

Two of these off-diagonal elements, A1,6 and A5,1, are in low-density regions: Node 0 only

requires one row of B from Node 3, and Node 2 only requires one row of B from Node 0.

These rows of B are also not required by any other node. Thus, we choose to transfer these

elements in a sparsity-aware manner with fine-grained transfers.

In contrast, the shaded region of Figure 3.5 shows a relatively dense region of the sparse

matrix. Every node requires data from Node 2, and most nodes require both of its rows.

Since it would not make sense to have each node individually request each of these rows,

we prefer to use coarse-gained SUTs to avoid software overheads and reduce the number of
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network round-trips. Note that these colletive operations do not necessarily have to include

all nodes; they can be multicast operations that include only a subset. For certain systems,

it may be a good decision to have nodes N1, N2, and N3 participate in this SUT collective,

while N0 performs a fine-grained SAT-style access for the single row it requires.

By combining fine-grained point-to-point transfers and coarse-grained collectives, we can

schedule our communication to get the best of both. In the next chapter, we will discuss

how this idea can be implemented in practice, in the form of the Two-Face algorithm [11].
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CHAPTER 4: DESIGN OF THE TWO-FACE SPMM ALGORITHM

Building on the idea of a hybrid communication pattern for SpMM, this chapter details the

Two-Face algorithm [11]. Two-Face consists of a preprocessing step that performs a one-time

analysis of a matrix and a runtime algorithm that actually evaluates the SpMM operation.

It partitions a matrix into small blocks, which we call stripes. The preprocessing step

determines the most appropriate communication method for each stripe, and the runtime

algorithm follows that communication plan.

In this chapter, we will discuss how Two-Face partitions a matrix, the details of the

preprocessing algorithm used to plan communication, and the design of the main Two-Face

algorithm itself. Finally, we will discuss our evaluation of Two-Face and the preprocessor.

4.1 PARTITIONING THE MATRIX

Two-Face deals with a modified 1D matrix partitioning for distributed SpMM, shown in

Figure 4.1. The sparse matrix is partitioned between the nodes in a 1D fashion (as previously

shown in Figure 2.3). Additionally, the sparse matrix is further logically partitioned into

megatiles and sparse stripes. We define a megatile as the largest collection of non-zeros that

share a common input tile (in B) and output tile (in C). For example, all nonzeros in the

shaded megatile in Figure 4.1 use input data from N0 and write their output to N0. The

megatile to the right of the shaded one reads data from N1 and writes data to N0.

W

N/p

dense stripe

B

CM/p

N0 N1

N2

N3

N0

N1

N2

N3sparse stripe

A

Megatile

Figure 4.1: Partitioning a sparse matrix into megatiles and stripes.

Each megatile consists of a number of 1D partitions called sparse stripes, which are sets

of contiguous columns (painted black in Figure 4.1). Each sparse stripe in A also has a

corresponding dense stripe in B that it potentially requires rows from for its portion of the
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computation. In Two-Face, we classify these stripes as either local-access stripes, whose

corresponding dense stripes reside on the local node, sync stripes, which use coarse-grained

collectives to retrieve entire dense stripes, or async stripes, which use fine-grained one-sided

remote accesses to retrieve a subset of rows from their corresponding dense stripe.

Finally, computation on the local-input and sync stripes operates on row panels (not

shown): groups of contiguous rows of nonzeros. This is primarily a work sharing mechanism:

when parallelizing computation, each row panel is assigned to a thread.

4.2 THE PREPROCESSING ALGORITHM

To determine which stripes should be treated as sync or async, Two-Face uses a pre-

processing step. This preprocessing algorithm takes a sparse matrix and description of the

system as input and outputs a classification of stripes as either async or sync.

During the main Two-Face algorithm these sync and async stripes will be processed in

parallel. Therefore, the preprocessor attempts to balance the estimated execution time of

the sync and async stripes. To do this, we create a cost model for each type of sparse stripe.

The cost model intentionally neglects the time taken to perform local computation on

sync/local-input stripes. This is reasonable, since the sync and local-input stripes are stored

in a format that provides good locality and are processed in a highly-parallel manner. In

contrast, the cost model includes the cost of computing on the async stripes, since they are

stored in a format with less locality and processed with fewer threads. More details on the

rationale behind these decisions can be found in Section 4.3.1.

The costs of sync communication, async communication, and async computation for a

node are modeled as shown below.

CommS = SS (βSKW + αS) (4.1)

CommA = βAKLA + αASA (4.2)

CompA = γAKNA + κASA (4.3)

Equation 4.1 describes CommS, the cost of synchronous communication. This is a function

of SS, the number of synchronous stripes processed by the node; K, the width of the dense

input matrix B; and W , the width of a stripe. βS and αS are empirical coefficients that

describe the per-element communication cost and per-stripe overheads, respectively.

Next, Equation 4.2 describes CommA, the cost of asynchronous communication. This is

also a function of K, as well as the number of rows of B transferred by the asynchronous

accesses, LA, and the number of asynchronous stripes, SA. The empricial coefficients βA and
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αA represent the same costs as their counterparts in Equation 4.1, but for the asynchronous

stripes.

The last part of the cost model, Equation 4.3, describes CompA, the cost of computing on

the asynchronous stripes. In addition to K and SA, this is also a function of NA, the total

number of nonzeros among all asynchronous stripes. This equations emprical coefficients,

γA and κA, correspond to the per-nonzero computational cost and per-stripe computational

overheads, respectively.

The empirical coefficients βS, αS, βA, αA, γA, and κA, are determined by a process of linear

regression [53] during a calibration step. These parameters are dependent on the system’s

configuration. A system with a large bisection bandwidth should have relatively small β

terms. A system with high round-trip latency (including latency introduced in the software

stack) should have relatively high α terms.

As discussed previously, the preprocessing step should aim to balance the execution time

of the sync and async stripes. Thus, we aim to satisfy Equation 4.4.

CommS = CommA + CompA (4.4)

To rework this equation, we define ST = SS + SA to be the total number of non-local-

input stripes processed by a node. We can then reformulate the requirement expressed in

Equation 4.4 as:

SS(βSKW + αS) = βAKLA + αASA + γAKNA + κASA (4.5)

=⇒ (ST − SA)(βSKW + αS) = K(βALA + γANA) + SA(αA + κA) (4.6)

=⇒ ST (βSKW + αS) = K(βALA + γANA) + SA(αA + κA + βSKW + αS) (4.7)

Although Equation 4.7 may initially appear to be more complex than what we started

with, it is really more useful. The left-hand side depends only on ST , K, and W , which

are all independent of how the stripes are classified. The right-hand side of the equation is

expressed in terms of SA, the number of async stripes. Using this equation, we can construct

a greedy algorithm for stripe classification as described below.

We begin with all non-local stripes marked as sync stripes. This makes the right-hand side

of Equation 4.7 equal to 0. Then, for each stripe i, we compute its hypothetical contribution

to the right-hand side of that equation if it were instead to be classified as an async stripe.
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This contribution is given by zi:

zi = vi + u, (4.8)

where vi = K(βAli + γAni), (4.9)

u = αA + κA + βSKW + αS, (4.10)

where stripe i requires li dense rows from B and contains ni nonzeros. The variable u

depends only on the empirically-derived coefficients, K, and W , so this is constant for all

stripes in the sparse matrix A.

Because the synchronous communication cost is directly proportional to number of sync

stripes, we attempt to minimize SS while meeting the constraint imposed by Equation 4.7.

Equivalently, this means maximizing the number of async stripes within this constraint.

Thus, we sort all the node’s sparse stripes by their zi in ascending order. We then greedily

classify stripes as async stripes until we have r async stripes, where r is the greatest number

that satisfies

ST (βSKW + αS) ≥
r−1∑
i=0

zi. (4.11)

The remaining stripes are classified as sync stripes.

The preprocessing algorithm is summarized as Algorithm 4.1. Each node in the system is

processed individually within the loop starting at Line 3. We iterate over each of a node’s

non-local sparse stripes (Lines 4-5). We initially classify each stripe as sync (Line 6) and

compute the zi values according to Equation 4.8 (Lines 7-10). We then sort the stripes by

their zi (Line 13). Finally, we compute the limit imposed by Equation 4.7 (Line 15) and

greedily classify stripes as async until the limit until that limit is reached (Lines 18-22).

It is worth noting that there may be other preprocessing schemes that are worthy of

investigation, but which are not treated here. For example, the algorithm presented here

does not consider whether two or more nodes both require the same data when making its

decisions. Such information could potentially allow for better stripe classification. However,

inter-node analysis would also increase the runtime of the preprocessor, which may limit

the applicability of the algorithm as a whole. We provide an analysis of our preprocessor’s

overheads in Section 5.4.
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Algorithm 4.1 The Two-Face preprocessing algorithm

1: procedure PreProc(p, A, K, W , βS, αS, βA, αA, γA, κA)
2: u← αA + κA + βSKW + αS

3: for j ∈ 0 . . . p do ▷ Each node in the system is processed separately.
4: stripes← A.getStripes(j)
5: for i ∈ 0 . . . |stripes| do ▷ Compute the stripe’s zi according to Equation 4.8.
6: stripes[i].class← sync
7: li ← stripes[i].numNonzeroColumns()
8: ni ← stripes[i].numNonzeros()
9: vi ← K(βAli + γAni)
10: zi ← vi + u
11: end for
12:

13: stripes← sort(stripes, z)
14:

15: limit← |stripes|(βSKW + αS)
16: sum← 0
17: i = 0
18: while sum+ zi < limit do ▷ Greedily classify async stripes while Equation 4.11

is satisfied.
19: stripes[i].class← async
20: sum← sum+ zi
21: i← i+ 1
22: end while
23: end for
24: end procedure

4.3 THE TWO-FACE ALGORITHM

Once the matrix A has been preprocessed and we know the sets of sync and async stripes,

the Two-Face algorithm can compute an SpMM operation. In this section, we will discuss

the details of the data structures used in Two-Face, the Two-Face algorithm itself, and the

portability and applicability of Two-Face to different systems and applications.

4.3.1 Sparse Matrix Representation

Two-Face represents the sparse input matrix A using three separate data structures. The

sync stripes and local-input stripes are stored together using a COO format and row-major

ordering. Additionally, Two-Face maintains pointers to the beginning of each row panel

to assist with locally parallelizing computation. The async stripes are stored in a separate

COO structure, which additionally maintains pointers to the beginning of each stripe. This
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async sparse matrix stores stripes in row-major order, but stores the nonzeros within each

stripe in column-major order. We store the async nonzeros in column-major order so that

we can quickly iterate over them to identify the unique indices for remote accesses of B. An

example of the sync/local-input and async structures can be seen in Figure 4.2.
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Figure 4.2: An example of the sparse matrix representation used by Two-Face, assuming a 4-
node system, W = 2, and a row panel height of 1. (a) An example input sparse matrix A with
nonzeros classified as either local-input, sync, or async. (b) The corresponding sync/local-
input sparse matrix structure. (c) The corresponding async sparse matrix structure.

4.3.2 Two-Face Algorithm Description

We describe the Two-Face algorithm in three parts: the top-level algorithm, which de-

scribes how the sync/non-local and async stripes are processed in parallel; the algorithm

for computing on sync row panels; and the algorithm for communicating and computing on

async stripes. Figure 4.3 graphically depicts the control flow of the algorithm. The rest of

this sub-section describes the algorithm’s parts in more detail.

Top-Level Algorithm Algorithm 4.2 describes the top-level control flow of the Two-Face

algorithm. The algorithm begins by initializing a flag and two atomic queues for worksharing

between local threads (Lines 2-3). Then, the algorithm enters a parallel region. One thread

begins all the sync stripe transfers (Lines 5-8) while a separate group of threads processes
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Figure 4.3: Two-Face’s control flow. The sync processing (blue, left) and async processing
(green, right) threads execute in parallel, motivating the cost-balancing discussed in Sec-
tion 4.2.

the async stripes (Lines 9-14). Once the dense stripes from the sync transfer have been

received (Line 15), computation on them begins (Lines 16-20).

Processing Synchronous Row Panels Algorithm 4.3 describes the process of computing

on sync and local-input row panels. The operation starts by initializing a thread-local

Accumulation Buffer to zero (acc in Line 2) and reading the row panel (panel in Line 3).

Then, the algorithm iterates through all of the nonzeros in the row panel, accumulating each

result onto acc (Line 10). When we either complete a row of nonzeros (Line 7) or complete

the whole row panel (Line 13), we add acc to the corresponding row of C. Atomics are

required in this operation because some threads operating on asynchronous stripes may also

be writing to the same rows of C.

Processing Asynchronous Stripes Algorithm 4.4 describes the process of communi-

cating and computing on async stripes. A thread reads the asynchronous stripe (stripe

in Line 2) and iterates over the nonzeros in the stripe to identify the unique c ids of the

nonzeros (Line 3). These determine the indices of the dense rows from B that are re-

quired. The asynchronous thread then initiates the remote access of the dense rows by

calling GetRemoteRows (Line 4). This procedure uses MPI_Rget and a custom MPI datatype

defined with MPI_Type_indexed to select only the rows of interest for the transfer.
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Algorithm 4.2 Top-Level Two-Face Pseudo-code.

1: procedure DistSPMM(A, B, C)
2: sync transfer done← False
3: async q, sync q ← InitQueues(A)
4: DoParallel
5: if tid = 0 then ▷ Sync Transfers
6: TransferDenseStripes(A, B)
7: sync transfer done← True
8: end if
9: if tid ∈ AsyncThreads then ▷ Async Processing
10: while async q.nonempty() do
11: n← async q.pop()
12: ProcessAsyncStripe(A, B, C, n)
13: end while
14: end if
15: WaitForFlag(sync transfer done)
16: while sync q.nonempty() do ▷ Sync Compute
17: n← sync q.pop()
18: ProcessSyncRowPanel(A, B, C, n)
19: end while
20: EndParallel
21: end procedure

Once the dense rows arrive, they are stored in drows (Line 4), and multiple threads begin

computing on them. Each thread processes a subset of the nonzeros in the sparse stripe.

Each nonzero is multiplied with the corresponding row of drows and accumulated into C

(Line 6). Atomics are required for correct accumulation into C, just as in the synchronous

stripe case. However, since asynchronous nonzeros are stored in column-major order, we

cannot easily use thread-local buffers to reduce the number of atomics.

To reduce transfer overheads, inside the GetRemoteRows routine, we coalesce the transfer of

nearby rows of B. For example, if a sparse stripe requires B rows {2, 3, 6, 8}, we transfer three
groups of rows, with (offset, size) pairs equal to {(2, 2), (6, 1), (8, 1)}. This optimization

reduces software overheads. For small K, we also coalesce rows separated by unused rows,

potentially reducing the software overhead further, but transferring some useless data. Using

the example from before, we might transfer groups of rows {(2, 2), (6, 3)}, retrieving one

unnecessary row (row 7).
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Algorithm 4.3 Two-Face Sync Compute Pseudo-code

1: procedure ProcessSyncRowPanel(A, B, C, n)
2: acc← {0, ..., 0} ▷ Output row buffer
3: panel← A.panel ptrs[n]
4: prev row ← panel[0].row ▷ Initialize to first row
5: for nz ∈ panel do
6: if nz.row ̸= prev row then
7: AtomicAdd(C[prev row], acc)
8: acc← {0, ..., 0}
9: end if
10: acc← acc+ nz.val ∗B[nz.col]
11: prev row ← nz.row
12: end for
13: AtomicAdd(C[prev row], acc)
14: end procedure

Algorithm 4.4 Two-Face Async Pseudo-code

1: procedure ProcessAsyncStripe(A, B, C, n)
2: stripe← A.async stripe ptrs[n]
3: drow ids← stripe.UniqueColIDs()
4: drows← GetRemoteRows(drow ids)
5: for nz ∈ stripe do in parallel
6: AtomicAdd(C[nz.row], nz.val ∗ drows[nz.col])
7: end for
8: end procedure

4.3.3 Portability

Two-Face has several parameters that may need to be calibrated for each individual system

to achieve maximal performance. Among these are the coefficients used in the preprocessing

cost model (βS, αS, βA, αA, κA, γA). As mentioned before, in our evaluation, we determine

the values of these coefficients via linear regression on a small number of workloads. These

parameters only need to be calibrated once for a system, possibly at installation time.

In addition to the preprocessing cost model coefficients, the runtime algorithm is parame-

terized by the number of threads assigned to sync/async stripe processing, the aggressiveness

of row coalescing in async stripe transfers, the height of the row panels used for computation

in the sync stripes, and the width of the stripes. The optimal choice for these parameters

may vary between systems and workloads, but we show in Chapter 5 that choosing reason-

able, static values can provide good performance. In practice, these parameters could be

determined at installation time similarly to the preprocessing coefficients.
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Thus, although Two-Face relies on knowledge of system characteristics to make decisions

about how to schedule the work, porting to a new system just requires a one-time profiling

step during installation.

4.3.4 Applicability to GNN Training

While SpMM is used in a variety of domains, one of the most important ones is GNN

training. GNN training is often done in relatively small-scale systems, where the amount of

memory is a limitation. To alleviate this problem, GNN training algorithms have recently

resorted to the use of sampling [35] and mini-batching. While these techniques reduce

the memory footprint requirements, they may introduce some inaccuracy [35, 36], and may

introduce runtime overhead which can sometimes increase the end-to-end execution time [54].

In Two-Face, like in most of the prior work in distributed GNN training [36, 37], we are less

concerned about the lack of memory because we can use the full aggregate memory of a very

large cluster [37]. As a result, we do not consider sampling or mini-batching and, instead,

support full-graph GNN training.

It is interesting, however, to consider the application of Two-Face to an environment

with sampling or mini-batching. In principle, in its current form, Two-Face is incompatible

with sampling or mini-batching. This is because, in sampling or mini-batching algorithms,

different iterations of the SpMM computation use a different reduced (or sampled) matrix.

As a result, Two-Face would have to re-run the preprocessing step every time the reduced

matrix changes.

Future work may involve adapting Two-Face to apply to GNNs with sampling. One

possible approach may involve making preprocessing decisions offline once, based on the

expected stripes’ densities, given knowledge of the sampling to be done at runtime. Then,

stripes that are expected to be dense enough even after sampling would still be classified

as synchronous, and the other stripes would be classified as asynchronous. At runtime, the

graph would still be stored as shown in Figure 4.2, but with the addition of masks to filter

nonzeros eliminated by the sampling at each iteration.

In current full-graph GNN training [55, 56], the preprocessing cost can be easily amortized.

We quantify the exact cost of the preprocessing step in Section 5.4. In GNN training, the

same sparse matrix is used for hundreds or even thousands of SpMM iterations. Additionally,

in many GNN applications, the same graph is used for both training and inference. This is

the case in most GNNs for semi-supervised node classification applications [55, 56]. Since the

sparse matrix does not change, the preprocessing done in training can be reused for inference.

Thus, the overhead of Two-Face preprocessing in full-graph GNN training is negligible.

25



CHAPTER 5: EVALUATION OF TWO-FACE

In this chapter, we discuss our evaluation of the Two-Face algorithm’s performance in a

distributed system. First, we discuss our methodology, including our system configuration,

parameterization of the algorithm, and the baselines for our comparison. Then, we present

the results of our evaluations, including runtime comparisons against our baselines, a break-

down of the algorithm’s runtime, and a scaling analysis. We finally conclude with a discussion

of the preprocessing cost and the preprocessor’s sensitivity to the system’s characterization.

5.1 METHODOLOGY

Here, we describe our evaluation methodology. We begin with details about the hardware

configuration and software libraries used to evaluate Two-Face, as well as the sparse matrices

used as benchmarks. Then, we discuss how we determined the values of various parameters.

Finally, we describe the other algorithms which we use as baselines to compare to Two-Face.

5.1.1 Overview & Workloads

We evaluate Two-Face and multiple baseline algorithms using large matrices on Delta [16],

a supercomputer at the National Center for Supercomputing Applications (NCSA). We use

up to 64 CPU nodes, with a default of 32 CPU nodes. Each Delta node is a dual-socket

system with two 64-core AMD EPYC 7763 processor chips running at 2.45 GHz and a total

of 256 GiB of DRAM. The nodes are connected through a Cray Slingshot interconnect [15].

We build on the code published by Bharadwaj et al. [8], adapting it as necessary to

support our algorithms and larger matrices. We use hybrid OpenMP / MPI programming,

with one MPI rank and 128 OpenMP threads per node. We use OpenMP 4.5 [57] and Open

MPI 4.1.2 [13, 14] with UCX 1.11.2 [58]. All of the baseline algorithms use the Intel Math

Kernel Library [59] (version 2022.0.2) for local SpMM computations. These baselines also

rely on CombBLAS [19] for I/O. Our implementation of Two-Face handles I/O by way of

custom data loaders for our preprocessed sparse matrix format. All algorithms used in these

experiments make use of Eigen [60] for handling dense matrices locally.

We use eight large sparse matrices from SuiteSparse [52], described in Table 5.1. These

matrices are derived from a variety of domains, including internet traffic, social networks,

web crawls, and scientific applications.

Our evaluation in Section 5.2 supports the claim that distributed SpMM is typically a
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Table 5.1: Matrices used in the evaluation. All matrices are among the largest in SuiteS-
parse [52] and are square. Stripe widths are chosen to scale with the number of columns.

Matrix Name # Rows # Nonzeros Stripe
Long Short (Million) (Million) Width

mawi 201512020030 mawi 68.86 143.41 128K
Queen 4147 queen 4.15 316.55 8K
stokes stokes 11.45 349.32 32K
kmer V1r kmer 214.01 465.41 512K
arabic-2005 arabic 22.74 640.00 64K
twitter7 twitter 41.65 1,468.37 128K
GAP-web web 50.64 1,930.29 128K
com-Friendster friendster 65.61 3,612.13 128K

communication-bound workload. Thus, we expect that extending Two-Face to other com-

puting hardware would provide similar results. For example, using GPUs in the nodes may

accelerate the local computation, but communication will remain a bottleneck. Thus, we

expect that Two-Face will still see speedups if used with GPUs. Here, we evaluate a CPU

implementation.

5.1.2 Two-Face Parameterization

Two-Face is a parameterizable algorithm. To determine its parameters for our system, we

analyzed several combinations of parameters on a small set of workloads.

To determine the appropriate width of stripes, we analyzed the performance of SpMM

using the queen, arabic, and twitter matrices with various choices for W . There was in-

creasing overhead in both the preprocessing and runtime steps as the number of stripes

grew, suggesting that the stripe width should not be made too small, relative to the size of

the matrix. We decided to scale the stripe width proportionally to the dimensions of the

matrices, rounding to the nearest power of two. Table 5.1 shows the stripe widths we chose.

All run-time parameters other than the stripe width are held constant across matrices.

Table 5.2 shows these parameters. Each node runs 128 OpenMP threads. Since a large

number of one-sided transfers results in high resource contention, we limit the number of

threads communicating asynchronous data to 2 per node. We allow each of these threads to

fork up to four ways (for a total of 8 threads) when computing on the asynchronous stripes.

We dedicate the remaining 120 threads in the node to computation on the synchronous

and local-input stripes. We define the maximum row coalescing distance for asynchronous

transfers to be proportional to 1
K
, since the cost of transferring unnecessary dense rows grows

with K.
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Table 5.2: Constant runtime parameters used in Two-Face.

Parameter Name Value

Async Communication Threads per Node 2
Async Computation Threads per Node 8
Sync/Local-Input Computation Threads per Node 120
Max Async Coalescing Distance (127/K) + 1
Row Panel Height of Sync/Local-Input Sparse Matrix 32 rows

To determine the values of the preprocessing parameters used in stripe classification (Sec-

tion 4.2), we employ linear regression [53]. We collect data by processing the twitter ma-

trix [61] using K = 32, p = 32, and nine different combinations of stripe widths and asyn-

chronous/synchronous stripe classifications. The number of samples is kept small to ensure

that it is reasonable to calibrate these coefficients when installing Two-Face on a new sys-

tem. The derived coefficient values, which we use when preprocessing all matrices in our

evaluation (unless otherwise specified), are shown in Table 5.3.

Table 5.3: Coefficient values used in the preprocessing of matrices. The β parameters relate
to the system bandwidth, the α parameters relate to other communication overheads, and
the γ & κ terms relate to computational throughput and other overheads.

Coefficient Experimental Value

βS 1.95× 10−10

αS 1.36× 10−6

βA 3.61× 10−9

αA 1.02× 10−5

γA 2.07× 10−8

κA 8.72× 10−9

These coefficients provide some insight into the performance difference between one-sided

asynchronous and collective synchronous communication. For example, they suggest that

asynchronous transfers are more expensive per transferred element of B than synchronous

transfers by a factor of βA/βS ≈ 18.5.

In Section 5.4.2 of our evaluation, we evaluate the impact of different values of these

coefficients.

5.1.3 Algorithms Evaluated

In our evaluation, we compare Two-Face to other algorithms shown in Table 5.4. All the

algorithms use 1D partitioning. We divide the dense input matrix B into as many equally-

sized portions as the number of nodes p, and call each portion a “block”. The B matrix is

28



distributed across all nodes, where each node stores a single block.

Table 5.4: SpMM algorithms being compared.

Algorithm Name MPI Transfer Operations

Dense Shifting [8] MPI_Allgather, MPI_Sendrecv

Allgather MPI_Allgather

Async Coarse-Grained MPI_Get

Two-Face MPI_Rget, MPI_Ibcast

Async Fine-Grained MPI_Rget

Dense Shifting (DS) is a synchronous SpMM algorithm that has been investigated by

Bharadwaj et al. [8] and found to be highly competitive compared to other state-of-the-art

implementations. We use it as our main baseline. DS begins by using MPI_Allgather to

replicate a certain number of blocks in each node, as determined by a replication factor c.

It then continues by shifting the replicated blocks cyclically via MPI_Sendrecv after each

computation step. For instance, with c = 4, this algorithm replicates each block such that

each node holds four blocks at a time. It then performs p/c computation and shifting steps

to complete the SpMM operation. In our experiments, we evaluate this algorithm for c = 2,

c = 4, and c = 8, and refer to these settings as DS2, DS4, and DS8, respectively.

The next two algorithms replicate all or nearly all of the matrix B before beginning the

computation. In Allgather, each node uses MPI_Allgather to broadcast its block of B to all

others and receive theirs in turn. In Asynchronous Coarse-Grained, each node uses MPI_Get

to obtain the blocks that it needs for its computation. In both cases, substantial memory

has to be allocated, creating issues as the problem size scales.

Two-Face is the algorithm we propose. We use the parameters as described before. How-

ever, if the preprocessing algorithm determines that the chosen sync/async classification of

stripes would result in too much memory consumption in one or more nodes during SpMM

execution, it will classify additional stripes as async until the expected memory consumption

in those nodes is feasible.

Asynchronous Fine-Grained is implemented in the same way as Two-Face, except that

all stripes are asynchronous. This algorithm is used as an extreme example to illustrate

the tradeoffs made by a balanced Two-Face implementation. This baseline was used in

Section 3.3.

All algorithms are evaluated by averaging out the time of 5 consecutive SpMM operations.

By default, our experiments use p = 32 and K = 128. Some experiments use K = 32 or

K = 256, and others use p = 1, 2, 4, 8, 16, 32, or 64.
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5.2 BASELINE COMPARISON

Figures 5.1, 5.2, and 5.3 show the speedups of Two-Face and the other SpMM algorithms

over DS2 for K = 32, K = 128, and K = 512, respectively. We normalize to DS2 because,

unlike DS4 or DS8, DS2 does not run out of memory for any matrices or value of K in

our evaluation. From the figures, we see that, on average, across matrices and K values,

Two-Face is the fastest algorithm, and delivers substantial speedups.
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Figure 5.1: Speedups of various SpMM algorithms over DS2 for K = 32.
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Figure 5.2: Speedups of various SpMM algorithms over DS2 for K = 128.
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Figure 5.3: Speedups of various SpMM algorithms over DS2 for K = 512.

As K increases, the advantage of Two-Face over the dense shifting algorithms becomes

more prominent. This is because the cost of transferring unnecessary rows in the dense

shifting algorithms increases with K, providing a greater advantage to the fine-grained one-

sided accesses of Two-Face. At K = 32, Two-Face’s average speedup over the dense shifting

algorithm with the best choice of replication factor for each individual matrix is 1.53x. At

K = 128, the same speedup is 2.11x, and at K = 512, is it 2.35x. The average speedup

across all values of K shown here is 1.99x.

The Async Fine and dense shifting algorithms are on average faster than the Async Coarse
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Table 5.5: Absolute execution times of DS2 and Two-Face for the experiments in Figures 5.1,
5.2, and 5.3. The numbers are the average of five SpMM operations. All times are given in
seconds.

K web queen stokes arabic mawi kmer twitter friendster

32 DS2 1.97 0.28 0.96 1.32 6.46 6.33 4.17 8.79
Two-Face 0.56 0.08 0.23 0.26 8.50 6.70 5.71 8.41

128 DS2 7.20 0.86 2.22 3.85 19.78 35.77 11.57 20.61
Two-Face 1.10 0.19 0.94 0.65 15.18 14.98 20.24 30.08

512 DS2 38.86 2.89 9.34 21.46 97.95 136.21 52.77 83.02
Two-Face 4.46 0.634 3.552 2.74 55.40 62.77 86.62 117.31
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Figure 5.4: Breakdown of the total execution times of DS4 and Two-Face for K = 128. Two-
Face’s time is divided into synchronous and asynchronous components (left and right bars,
respectively), which operate in parallel. These are further broken down into computation
(Comp) and communication (Comm). DS4 only has a Sync component. The Other category
mainly consists of the initial setup of data structures for MPI. Execution times are normalized
to DS4.

and Allgather algorithms. Dense shifting is sometimes unable to run with higher replication

factors due to memory constraints. For example, for K = 512, DS8 fails to run for half of

the matrices, and DS4 fails in one matrix. As a reference, Table 5.5 provides the absolute

execution times of Two-Face and DS2 in these figures.

The figures also show that the speedups (or slowdowns) are highly dependent on the

matrix. For example, Two-Face is not the fastest algorithm for twitter and friendster and,

for K = 32, additionally for mawi and kmer. To understand this behavior, Figure 5.4 breaks

down the total execution time of DS4 and Two-Face for each matrix for K = 128. For

Two-Face, we break down the execution time into Sync Comp, Sync Comm, Async Comp,

and Async Comm. We stack the Sync components in the left bar and the Async components

in the right bar, and show both bars side-to-side, since the execution time is equal to the

highest of the two bars. Two-Face also has some Other overheads, which mainly consist of

initializing necessary MPI structures before the main communication/computation begins.

For DS4, only Sync Comp and Sync Comm are relevant. For each matrix, the bars are
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normalized to DS4.

We see that the dominant contributor to DS4’s execution time is its communication.

Two-Face is able to attain significant speedups over DS4 by reducing the amount of commu-

nication through fine-grained accesses. In five of the matrices, we can see that the sum of the

communication time spent by Two-Face in Sync Comm and Async Comm is significantly

less than the amount of time spent by DS4 in its communication.

Two exceptions are twitter and friendster. In these matrices, Two-Face’s Sync Comp

and Sync Comm have both increased over DS4, despite the fact that less data is being

transferred. We note that Two-Face’s synchronous broadcast operations are significantly

slower than the cyclic shifting operations in DS4 when a large portion of the input dense

matrix is required by many nodes. When Two-Face operates on a matrix like friendster,

each node participates in many more MPI calls than it does if dense shifting is used, due to

the finer granularity of the transfers.

An interesting case is mawi, where Two-Face is unable to reduce the execution time

over DS4 because of the cost of asynchronous computation. The mawi sparse matrix has

regions that have a relatively high density of nonzeros. Computing on such asynchronous

stripes is likely expensive due to the heavy use of atomics, as the nonzeros are organized in

column-major order. During this work, we conducted initial tests into storing the nonzeros

in row-major order instead. However, this change did not result in faster execution, as the

cost of identifying which columns contained nonzeros (and therefore which dense rows were

required) became drastically higher.

5.3 SCALING

Figure 5.5 shows the execution times of Two-Face and the dense shifting algorithm with

different replication factors (DS1, DS2, DS4, and DS8) as we scale the number of nodes from

1 to 64. There is a plot for each matrix and both axes are in logarithmic scale. Some data

points are missing, since some workloads either exceed the memory capacity of one or more

nodes (at small node counts or high replication factors) or take too long to run.

The figure shows that, in most of the matrices, Two-Face scales well with the number

of nodes and, in fact, as well or better than the dense shifting algorithm. The exceptions

are mawi, twitter, and, to a lesser extent, friendster. With mawi, none of the algorithms

scale particularly well due to the high load imbalance across nodes induced by the matrix.

With twitter and friendster, we saw in Figure 5.4 that Two-Face is impacted by inefficient

synchronous communication. This is the reason for the worse scaling performance.

To understand the behavior of twitter and friendster better, we profile the collectives in
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Figure 5.5: Execution time of Two-Face and the dense shifting algorithm with different
replication factors (DS1, DS2, DS4, and DS8) as the number of nodes changes. The K value
is 128. Some data points for the dense shifting algorithm are missing because they need too
much memory or take too long to execute. Both axes in the plots use a logarithmic scale.

the 64-node runs. We measure the number of recipients of each multicast operation. On

average, this number is 35.7 for twitter and 43.5 for friendster. In contrast, the matrix with

the next largest average recipient count is kmer, with an average of only 5.7. It appears

that the large collectives needed for Two-Face in twitter and friendster are responsible for

the inefficient execution and limited scaling. This effect does not appear at low node counts,

where the execution is primarily bottlenecked by local computation, but it dominates at

high node counts. Future work should investigate methods to reduce the size of collectives

in the algorithm or the design of more regular data movement patterns for the synchronous

stripes.

Overall, the performance of Two-Face improves as we scale from 1 to 64 nodes by 7.47x on

average, with a best-case speedup of 12.12x for queen and a worst-case of 0.76x for twitter.

Moreover, compared to the dense shifting algorithm with the optimal replication factor,

Two-Face sees an average speedup ranging from 1.25x at 4 nodes to 2.21x at 64 nodes.

5.4 PREPROCESSING

Two-Face requires a preprocessing step that involves, mainly: (1) running our model to

classify the stripes into synchronous and asynchronous, and (2) creating the asynchronous

and the synchronous/local-input sparse matrices. In this section, we give an idea of the
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execution time of the preprocessing step. Additionally, we provide some evaluation of the

sensitivity of Two-Face to the preprocessing coefficients determined by system characteriza-

tion (namely, βS, αS, βA, αA, γA, and κA).

Table 5.6: The overhead of preprocessing in Two-Face, normalized to the cost of a single
SpMM operation for K = 128.

Matrix tnorm I/O tnorm

web 428.74 102.00

queen 302.55 23.60

stokes 116.70 11.18

arabic 180.35 36.57

mawi 2.58 1.50

kmer 6.16 3.25

twitter 17.89 7.29

friendster 19.81 8.79

Average 134.35 24.27

5.4.1 Preprocessing Cost

Two-Face’s preprocessing step consitutes some additional overhead to the algorithm, which

can be amortized by reusing the preprocessing analysis for multiple operations with a par-

ticular sparse matrix. Here, we provide details about the execution time of the preprocessor.

Note that we have not fully optimized it; in particular, we have not parallelized it across

multiple nodes. Therefore, the numbers reported are a pessimistic bound.

Table 5.6 shows the overhead of the preprocessing step for 32 nodes and K=128 for each

matrix. Column 2 shows tnorm I/O, which is the time of the preprocessing step normalized to

the time of one SpMM operation. On average, tnorm I/O is 134.35. However, the preprocessing

step is dominated by I/O time, as the original sparse matrix is read from the file system in a

textual Matrix Market format [62] and the final asynchronous and synchronous/local-input

sparse matrices are written to the file system in a bespoke binary format.

Since in many realistic environments, this I/O will not be present, Column 3 shows the

more relevant tnorm, which is the preprocessing overhead without I/O normalized to the time

of one SpMM operation. In this case, the numbers have reduced substantially. We see that

tnorm ranges from 1.50 to 102.00, with an average of 24.27. For K = 512 (not shown in the

table), the average value of tnorm is 6.15.

From these numbers, we see that the cost of the preprocessing step can be easily amortized.

For the matrices where Two-Face demonstrates a speedup over dense shifting whenK = 128,

an average of only 15 SpMM operations need to be performed by Two-Face to already see
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a speedup when including preprocessing time. For K = 512, this decreases to only 3 SpMM

operations, on average. In contexts such as GNN training, with hundreds of epochs, we

can expect to perform many more SpMM operations with the same matrices than these

numbers. In addition, the preprocessing step from training may be reusable during inference

if the same graph is used in both steps.

5.4.2 Preprocessing Sensitivity

The model of execution that we use during preprocessing (Section 4.2) uses parameters

αA, βA, αS, βS, γA, and κA. In Section 5.1.2, we used linear regression to set their default

values. We used such values in all the experiments so far.
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Figure 5.6: Sensitivity of Two-Face’s execution time to the values of the parameters of the
execution model used during the preprocessing step. The default values of these parameters,
as set in Section 5.1.2 and used in all the earlier experiments, are represented with the 0
subscript (e.g., αA0).

In this section, we change the values of these parameters, repeat the experiments, and

measure the changes in Two-Face’s execution time. We perform three sets of changes. In

the first one, we vary αA and βA, keeping the other parameters unchanged. Specifically,

if αA0 and βA0 are the default values of αA and βA, we consider all combinations of {0.8 ·
αA0, αA0, 1.25 ·αA0}×{0.8 · βA0, βA0, 1.25 · βA0}. In the second set of changes, we vary αS

and βS in the same way, keeping the other parameters unchanged. Finally, we vary γA and

κA, again keeping the others unchanged.

Figure 5.6 shows the outcome of the three sets of changes for the average of three repre-

sentative matrices: web (Two-Face’s best case), twitter (Two-Face’s worst case), and stokes

(Two-Face’s median case). For example, Figure 5.6a corresponds to the experiments varying

αA and βA. The number in each box is Two-Face’s execution time with the new parameters

relative to Two-Face’s execution time with the default parameters. For example, if we use
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0.8 ·αA0 and 1.25 ·βA0, the Two-Face’s execution time becomes 1.31x higher than when using

the default values.

Overall, the figure shows that using the default parameters obtained using linear regression

is a good choice. Changes to the parameter values typically end up increasing Two-Face’s

execution time. The execution time decreases in only two cases, and the decrease is small.
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CHAPTER 6: CONCLUSION

Sparse matrices often contain regions that are denser and regions that are sparser. Based

on the observation, we introduced the Two-Face [11] algorithm for distributed SpMM, which,

leveraging a preprocessing model, performs coarse-grained collective communications for the

denser regions, and fine-grained one-sided communications for the sparser regions. Two-

Face attains an average speedup of 2.11x over dense shifting when evaluated on a 4096-core

supercomputer. Additionally, Two-Face scales well with the machine size.

The performance improvements that we observe with Two-Face suggests that distributed

sparse algorithms should be input-matrix aware, since different sections of a sparse in-

put matrix prefer using different communication methods. Such algorithms should also

be communication-oriented, since minimizing communication is a first-class concern.

With simple modifications, the Two-Face algorithm should also be applicable to sparse

kernels such as Sampled Dense-Dense Matrix Multiplication (SDDMM), which exhibits very

similar patterns to SpMM. Likewise, with proper parameter tuning, Two-Face may also be

applicable to accelerate SpMV, which is a special case of SpMM.
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