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ABSTRACT 

Tundra fires can dramatically influence plant species cover and abundance, organic layer depth, 

and the magnitude of seasonal permafrost thaw. However, the potential impact of wildfire on 

short and long-term interactions between vegetation and permafrost thaw remains poorly 

understood. We evaluated the spatial and temporal interactions between wildfire and surface 

subsidence on a remotely derived proxy for species diversity (i.e., spectral diversity). Spectral 

diversity and rates of surface subsistence were calculated using airborne hyperspectral AVIRIS-

NG imagery and spaceborne interferometric synthetic aperture radar (InSAR) data from 

Sentinel-1. Spectral diversity was measured as the spectral variance within a plant community 

(alpha-diversity), between plant communities (beta-diversity), and across terrain composed of a 

mosaic of communities (gamma-diversity). The Yukon-Kuskokwim Delta in southwestern 

Alaska is one of the warmest and most productive tundra regions, with a documented history of 

upland fires, 16 of which were examined within the Izaviknek and Kingaglia uplands which 

occurred between 1971 and 2015. Results indicate the burn scars had consistently lower total 

gamma diversity and higher rates of subsidence than paired unburned reference areas, where 

both gamma diversity (R2 = 0.74, p < 0.001) and subsidence (R2 = 0.75, p < 0.001) decreased 

with the time since burn. Where, younger burn scars had both a higher gamma diversity (0.013) 

and subsidence rates (-0.097 cm day-1) than old scars with 0.005 and -0.053 cm day-1, 

respectively. Gamma diversity was also found to have a negative relationship with subsidence 

rates (R2 = 0.63, p < 0.001) where communities subsiding at a higher rate were more diverse. 

This study suggests that the patterns of plant species diversity and succession following wildfires 

are amplified by the thickening of active layers and surface subsidence that results in increased 

spectral diversity over 15 years following fire. These findings highlight the short and long-term 
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ecological interactions that impact post-fire spectral-species succession that influence tundra 

ecosystem structure and function. 
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CHAPTER 1: INTRODUCTION 

Tundra ecosystems are warming four times faster than the global average (Jacobs et al., 

2021). As warmer and drier conditions increase the prevalence of wildfire activity (Hu et al., 

2015), rates of permafrost thaw and overall vegetation change may increase (Michaelides et al., 

2019; Mackay, 1995; Rocha et al., 2012; Jones et al., 2015). These interactions have been 

observed in the Yukon-Kuskokwim Delta as tundra fires were shown to alter spatial and 

temporal patterns of permafrost thaw and coincident recolonization of shrubs (Frost et al., 2020; 

Michaelides et al., 2019; Sae-Lim et al., 2019; AICC, 2023). Specifically, both deciduous and 

evergreen shrubs and bryophytes were found to colonize burn scars while lichen cover was found 

to be greatly diminished in recent burn scars and only significantly recovered in scars 45 years 

old or greater (Frost et al., 2020). Despite observations suggesting potential linkages between 

fire, vegetation, and permafrost thaw, knowledge of how these factors combine to affect the 

recovery of key ecosystem properties (i.e., biodiversity, productivity, permafrost) remains 

limited, yet important for understanding the potential consequences of the present and projected 

intensity and severity of tundra fires (French et al., 2015; Pastick et al., 2017). 

Spectral diversity has emerged as a useful remote sensing proxy of plant species 

diversity, which is computed as the variability of reflected electromagnetic radiation from plant 

functional types and plant species, where the collection of pixels with greater spectral variance is 

often more diverse (Rocchini et al., 2010; Wang and Gamon, 2019). A variety of approaches 

have been developed to estimate spectral diversity using the spectra from aerial hyperspectral 

imagery, satellite multispectral imagery, using new indices such as Rao’s Q, established indices 

such as measuring difference in NDVI, and directly measuring and quantifying variance in 

spectral bands (Wang and Gamon, 2019; Rossi et al., 2021). Few approaches have been able to 
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disaggregate spectral diversity into plant community metrics capable of simultaneously 

estimating alpha-diversity (i.e., diversity within a plant community), beta-diversity (i.e., diversity 

differences between plant communities), and gamma-diversity (i.e., landscape-level diversity), 

useful for evaluating the impact of regional-scale environmental change and disturbance 

processes on local-scale diversity (e.g., Whittaker, 1972). Laliberté et al (2020) recently 

developed methods to quantify these spectral diversity metrics from measuring spectral variance 

from hyperspectral imagery, though did not define communities used for the analysis by species 

or plant functional type composition. The use of hyperspectral imagery presents a further 

evolution of spectral diversity applications that have previously relied on larger landscape scale 

estimations of beta diversity from coarse multispectral satellite imagery. Nelson et al. (2022) 

conducted a dimensionality analysis revealing that in tundra ecosystems spectral diversity was 

variable across small scales (<10 km) and found that hyperspectral imagery presented a large 

advantage over multiband sensors in detecting spectral diversity in the studied ecosystem. 

Spectral diversity applications have included broad mapping of diversity using 

multispectral satellites (Perrone et al., 2023; Rossi and Gholizadeh, 2023) and high-resolution 

aerial mapping of plot-scale communities, typically with hyperspectral imagery (Féret and Asner 

2014; Gholizadeh et al., 2019; Van Cleemput et al., 2023), however there has been relatively few 

applications within boreal-arctic landscapes, though increased knowledge of spectral diversity 

applications is being built on lower latitude grasslands and forests relative to the boreal-arctic 

(Wang and Gamon, 2019; Kacic and Kuenzer, 2022). Prior applications which used 

hyperspectral imagery were collected with a wide variety of sensors, some being private, with 

few applications using widely available imagery products, for example the Airborne Visible 

InfraRed Imaging Spectrometer (AVIRIS) platform which has been used to measure spectral 
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diversity with both Classic and Next Generation (NG) sensors. AVIRIS Classic has been used to 

measure spectral diversity between managed agriculture and a mixture of unmanaged forest, 

shrub, and herbaceous cover in western Michigan, USA to identify diversity variability between 

managed agriculture and unmanaged land cover (Dahlin, 2016). In Hawai’i, AVIRIS Classic was 

used to evaluate biodiversity trends via spectral diversity in rainforests which correlated with 

field data (Carlson et al., 2007). In India, AVIRIS-NG imagery was used by Jha et al. (2019) to 

characterize species and forest health using a map of alpha spectral diversity and by Chaurasia et 

al. (2020) to examine biodiversity across different climactic sites in western Indian forests. Using 

a different hyperspectral sensor, McPartland (2019) examined species and spectral diversity of 

tundra and boreal vegetation under warming and conditions and hydrologic change within 

peatlands at the Alaska Peatland Experiment (APEX) near Fairbanks, AK, USA and within 

boreal forests at the Spruce and Peatland Responses Under Changing Environments (SPRUCE) 

experiment in northern Minnesota, USA. Comparisons of aerial hyperspectral imagery, plot-

scale canopy spectra and vegetation cover samples found success in correlating spectral diversity 

with species diversity in both ecosystems. The AVIRIS-NG platform has a growing catalog of 

flights in Alaskan arctic-boreal ecosystems which spectral diversity methods can use to 

investigate diversity responses to disturbance including permafrost degradation and wildfire 

activity that affect ecosystem function.  

Here we expand upon previous spectral diversity methodologies for investigating the 

coincident impact of historical tundra fires and surface subsidence on alpha, beta, and gamma 

diversity on the Yukon-Kuskokwim River Delta in southwestern Alaska. To advance our 

understanding of interacting disturbance regimes, we compute alpha, beta, and gamma spectral 

diversity using AVIRIS-NG and compare spectral metrics (1) among newly synthesized plant 
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community boundaries derived from hierarchical clustering of existing plant functional type 

(PFT) maps, (2) within a chronosequence of fire scars between 1971 and 2015, and (3) with 

Interferometric Synthetic Aperture Radar (InSAR) derived decadal surface subsidence trends and 

existing InSAR-derived soil moisture and active layer thickness (Chen et al., 2022). Results 

provide new methodologies and knowledge of decadal patterns of post-fire vegetation responses 

to coincident patterns of surface subsidence and environmental change (e.g., active layer 

thickness and soil moisture). 
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CHAPTER 2: SITE DESCRIPTION AND METHODS 

2.1. SITE DESCRIPTION AND FIRE HISTORY 

 The Yukon-Kuskokwim Delta (YKD) is the largest river delta in western North America, 

with importance to coastal migratory bird populations, and contains a large indigenous 

population (Gill and Handel, 1990; Jorgenson et al., 2018; Rearden and Fienup-Riordan, 2014).  

The YKD has a well-documented fire history from modern monitoring programs (AICC, 2023) 

and historic reconstructions from charcoal records (Chipman et al., 2015) and is projected to 

experience continued permafrost degradation in part from increased wildfire activity (Pastick et 

al., 2015). Fire activity in the broader ecoregion has been episodic, with 8-14 years between 

seasons of higher fire activity and with recorded burns since 1953 totaling 5,818 km2 (Rocha et 

al., 2012; AICC 2023; Nowacki et al., 2001). This study focuses on one of the relatively active 

areas, the Izaviknek and Kingaglia uplands (IKU), located ~74 km northwest of Bethel (figure 

1). Annual maximum and minimum temperatures in July and January are 13.1 ℃ and -15.0 ℃, 

respectively (SNAP, 2022). Long-term precipitation normals from Bethel indicate the region 

experiences ~419 mm of annual precipitation, with monthly totals peaking in August at 83 mm 

(ACRC, 2023). Growing season length for this site typically starts on April 23rd and ends on 

October 27th, as we estimated from MODIS snow cover estimates between 2000-2022, following 

Hall et al. (2016). 

Fifteen wildfires occurred within the area imaged by AVIRIS-NG in our study region on 

the IKU between 1971 to 2015 (table 1). The 2015 fire season was particularly active with 

87,573 acres burned, almost double the area burned from all other years. Monitoring Trends in 

Burn Severity (MTBS) (only available for Aropuk, Kuka, Izavlknek River, and Kuka Creek 4) 

identified DNBR(x1000) values ranging from 229 to 368 with all fires being thematically 
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classified as of moderate severity (2023). Fire boundaries acquired from the Alaska Interagency 

Coordination Center (AICC) via the Alaska Forest Service were modified to address overlapping 

burn scars within the documented range and fires that occurred after AVIRIS-NG data collection. 

(figure 1). Repeatedly burned terrain between 1971 and 2015 were removed from our dataset and 

not considered in further analysis to minimize any potential artifacts or inconsistencies in our 

spectral or subsidence products that we were unable to constrain due to limited observations. 

Further, we created unburned reference areas using 1 km buffers around all burn scars, where 

overlapping burn and unburned buffer areas were removed (figure 1). 

 

Figure 1. Map of selected known fires in the Izaviknek-Kingaglia uplands of the Yukon-

Kuskokwim Delta from 1971 - 2015 with AVIRIS-NG flightline coverage. Fire perimeters 

adapted from the Alaska Fire Service, edited to remove overlapping burns. Unburned reference 

areas created from manually adjusted 1 km buffers shown. 
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Table 1. Summary of fire characteristics including estimated monitoring trends in burn severity 

(MTBS) mean severity where available. 

Map 

No. 
Name 

Burn 

Year 

Fire Out 

Date 

Square Km 

Burned 

1 Water 1971 7/7/1971 23.3 

2 Smitty 1972 n/a 6.4 

3 Dry Gulch 1972 n/a 3.7 

4 Hobbs Knobb 1972 n/a 3 

5 POM 1972 n/a 5.5 

6 Long Lake 1972 7/11/1972 9.8 

7 Yukon Delta NWR 2 1985 9/1/1985 17.8 

8 Kasigluk 1985 8/14/1985 12.6 

9 Tik Hill 1987 6/19/1985 14.5 

10 DOF No. 8014014 1988 7/2/1988 1.3 

11 Aropuk 2002 7/21/2002 81.8 

12 Kuka 2007 8/9/2007 9.7 

13 Izavlknek River 2015 8/26/2015 91.5 

14 Kuka Creek 1 2015 7/7/2015 38.1 

15 Kuka Creek 3 2015 6/30/2015 56.4 

16 Kuka Creek 4 2015 8/6/2015 168.4 

 

2.2 MAPPING OF PLANT COMMUNITIES 

To calculate and partition spectral diversity, a spatial definition of community is required. 

Previous work has used a community delineation in the sense of a “sampling unit” where 

imagery is split into gridded near-uniform square plots of a given size, in the aforementioned 

application, a 20 m x 20 m grid was used (Wang and Gamon, 2019). While artificial, this unit 

was chosen as it corresponds to sampling plots that ecologists broadly use and is appropriate for 

situations where there is not a priori knowledge of the community composition of the entire 

spectral product, producing dozens or more communities depending on the resolution and spatial 

extent of the imagery as well as the selected plot size. Therefore, we defined plant communities 

using existing PFT fractional cover maps for use in subsequent spectral diversity calculations. 

Macander et al. (2022) derived a 30 m spatial resolution PFT maps (i.e., lichen, graminoid) on 5-



8 

 

year intervals for the state of Alaska using visual and quantitative vegetation cover estimates 

from the ground, helicopters, planes, and unmanned aerial systems. Because of high fire activity 

in 2015 on the IKU, and the collection of five AVIRIS-NG flights occurring in 2018 (table 2), 

we only used the 2020 PFT map in subsequent community definitions. 

Similar to traditional plant community definitions using plot-level species cover and 

abundance data, a hierarchical clustering analysis was used to determine community 

classifications from the mapped fractional cover with a variety of linkage methods tested to 

compare agglomerative coefficients (McCune and Grace, 2002). Prior to clustering, the 

fractional PFT cover layers were masked to remove (1) pixels sourced from years prior to or 

including 2015 when major fires occurred, (2) pixels outside our selected fires and corresponding 

unburned areas, and (3) pixels that had 0% cover in all PFTs, representing standing water or bare 

ground. To perform the clustering 15,000 pixels were randomly selected from the seven PFT 

map layers within the combined burn scars and unburned area from the PFT maps. The fractional 

cover of each functional type passed a Kolmogorov-Smirnov similarity test at the 0.05 level 

indicating the sample was representative of the whole PFT dataset. 

This sample was clustered with five linkage methods (average, complete, single, Ward’s, 

and weighted average) using the agnes function of the cluster R package (Maechler et al., 2022) 

and their agglomerative coefficients were compared to determine the best method, with Ward’s 

distance method being the most successful (table 2). Ward’s distance method was implemented 

following Ward’s Criterion to cluster communities (McCune and Grace, 2002; Murtagh and 

Legendre, 2014). To identify how many clusters should be generated, the gap statistic K was 

generated for cluster numbers 1 to 25, and breaks were considered at points where diminishing 

returns on K from increasing the number of clusters was observed (see figure 4 in section 3.1). 
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Nine clusters were selected to best represent in situ plant community definitions, similar to that 

described in Frost et al. (2020). The clustered samples were used as an input to a random forest 

classifier, where 70% of the points were used as training and 30% as validation to classify the 

entire PFT fractional cover dataset into a plant community map. Cluster selections were also 

informed by the spectral diversity calculation’s requirement, described later, of using the same 

number of spectra from each community which limits the sample size of spectra used to the 

smallest community. Higher numbers of clusters results in additional smaller communities which 

are not well represented across all fires scars, and this limit spectra sample size and the 

representative ability of the spectral diversity calculation. 

Table 2. Agglomerative coefficients of tested cluster linkage methods. 

Linkage Method 
Agglomerative 

Coefficient 

Ward 0.998 

Complete 0.965 

Weighted 0.976 

Average 0.951 

Single 0.849 

 

2.3 AVIRIS-NG DATA PREPARATION 

 Five AVIRIS-NG scenes were retrieved from the NASA JPL AVIRIS-NG Data Portal as 

orthocorrected radiance data with reflectance data (table 3). All flightlines were near cloud free, 

collected on August 8th, 2018. Topographic and BRDF corrections were applied to the imagery 

following the FlexBRDF method developed by Queally et al. (2022). Corrected imagery was 

then mosaicked in R, and the plant community map was downsampled to the AVIRIS-NG 

resolution and joined to the imagery. Several preprocessing steps were used to prepare the 

spectra for analysis. Similar to others (Laliberté et al., 2020; Badola et al., 2021), several groups 
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of “bad” bands were removed from our AVIRIS-NG product (table 4). Spectra were smoothed 

with a Savitzky-Golay filter which applies a polynomial fit to a filter window moved along each 

spectra, estimating the center of each window from the polynomial fit at that point, ultimately 

seeking to minimize least-squares error in fitting a polynomial to noisy spectra (Savitzky and 

Golay, 1964; Kienzle et al., 2021). A filter length of 7, and 3rd order polynomial fit was applied 

similar to Laliberté et al. (2020). This technique addresses spectral noise that could artificially 

inflate the measured spectral variability without overfitting and has been applied to AVIRIS-NG 

spectra in a variety of similar applications (Singh et al., 2021; Majeed et al., 2023). A polynomial 

order and filter width is provided and in this application a filter length of 7 and 3rd order 

polynomial fit was applied. NDWI was calculated and used to mask out water pixels from 

AVIRIS-NG data with values greater than 0.6, where all remaining pixels had their brightness 

normalized (equation 1). 

Table 3. AVIRIS-NG Flightlines used. 

Flight ID Date Site ID 
Stated Pixel 

Size 

ang20180818t194758 8/18/2018 AB_B10_L002_FL175_YKDelta 5.4m 

ang20180818t200730 8/18/2018 AB_B10_L003_FL175_YKDelta 5.4m 

ang20180818t203358 8/18/2018 AB_B10_L002_FL175_YKDelta 5.4m 

ang20180818t205326 8/18/2018 AB_B10_L002_FL175_YKDelta 5.4m 

ang20180818t211227 8/18/2018 AB_B10_L002_FL175_YKDelta 5.4m 

 

Table 4. Removed AVIRIS-NG bands. Justifications adapted from Badola et al 2021 and 

Laliberte et al 2020. 

Bands Wavelength (nm) Justification 

1-6 376.86 – 401.9 Atmospheric scattering 

194-214 1343.53 - 1443.71 Water vapor absorption bands 

283-317 1789.3 - 1959.6 Water vapor absorption bands 

405-425 2400.36 - 2500.54 
Bands with poor radiometric calibration and absorption of 

water vapor and methane 
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𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎 =
𝑠𝑝𝑒𝑐𝑡𝑟𝑎

√∑ 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑏𝑎𝑛𝑑𝑠2
 

Equation 1. Normalization of AVIRIS-NG spectra. 

2.4 SPECTRAL DIVERSITY CALCULATION 

Spectral diversity was calculated using the functions published by Laliberté et al. (2020) 

with new alterations to accept predefined spatially heterogeneous communities as opposed to 

grid-defined communities. To compute the overall contribution of alpha and beta diversity to 

gamma diversity, we calculated spectral diversity independently for each fire scar and unburned 

area. The method, as it is based on the sum of squared spectral variance, requires that each 

community is represented with the same number of spectra, thus when communities are of 

different sizes, spectral diversity is calculated with a sample equal to the number of spectra in the 

smallest community, utilizing bootstrapping to obtain good representation of larger communities. 

With large relative differences in community sizes within our study area (see table 6 in 

section 3.1) there were concerns that resulting sample sizes of spectra would be too small, which 

was a concern addressed in the following steps. Prior to calculating spectral diversity, 

communities accounting for less than 0.1% of the total fire scar or unburned area were filtered 

out of the analysis (see table 7 in section 3.1). Most of these removed communities were 

represented by approximately 100 AVIRIS-NG pixels or fewer. Next, all spectral diversity 

outputs were averaged across 50 bootstrap samples which minimized the standard deviation of 

endpoints. Resulting metrics from different areas were merged and used to reclassify the area 

and community layers to produce a rasterized spectral diversity product. In addition to the 

gamma, alpha, and beta diversities calculated, the feature and local contributions to spectral 
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diversity were calculated. The local contribution to beta diversity (LCSD𝛽) was calculated for 

each community, which finds the proportion of beta diversity each community contributed to 

therefore identifying which communities are more spectrally unique than others. The feature-

specific contribution to spectral diversity (FCSD) identifies the proportion of total spectral 

variance contributed by each spectral feature, or band, for a given partition (alpha, beta, gamma) 

allowing for the understanding of which bands capture the most spectral diversity. 

2.5 SURFACE SUBSIDENCE MAPPING 

To examine possible relationships between wildfire, biodiversity, and permafrost 

degradation, estimating surface deformation using interferometric synthetic aperture radar 

(InSAR) at a resolution comparable to the community maps is advantageous to examine 

subsidence at large scale and with high resolution, where extensive fieldwork is not practical. 

Surface subsidence was mapped by estimating the annual surface deformation rate using 

interferogram pairs from Sentinel-1 C-band synthetic aperture radar (InSAR) at 60 m spatial 

resolution collected from post-fire 2015 to 2022 data acquired between mid-April to October 

(table 5). The estimate was calculated from the mean deformation rate over each thaw season. 

Thaw depth has been shown to follow a NADDT2 dependence, where NADDT is the normalized 

accumulated degree days of thaw in a given thaw year (Hinkel and Nicholas, 1995). Therefore, 

the interferometric deformation rate from each pair can be thought of as a tangent line 

approximation to this curve (e.g., figure 2). These deformation rates were then averaged to derive 

an estimate of the seasonal subsidence deformation rate as a linear approximation to the NADDT 

curve for 2015-2021, as 2022 was shown to be an outlier with a late thaw season. The plant 

community map was resampled to match this resolution, and deformation rates were averaged 

within each community in each area. For further details on this product, see Michaelides and 
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Siegfried, though a summary of their InSAR processing is reproduced in figure 9 (2023). 

Additionally, soil moisture, surface saturation fraction, and active layer thickness estimates from 

an airborne SAR campaign were retrieved and similarly joined to the plant community map 

(Chen et al., 2022). 

 

Figure 2. Normalized accumulated degree days of thaw (NADDT) and 1-NADDT2 throughout 

the year estimated from Sentinel-1 interferometric pairs for 2015-2022. Time spans of 

interferometric pairs shown in horizontal bars, color coded with trend lines. 
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Table 5. List of Sentinel-1 interferometric pairs used in surface deformation analysis. 

Interferometric Pair 
20150617_20150711.int 
20150711_20150804.int 
20150828_20150921.int 
20160822_20160915.int 
20170513_20170618.int 
20170525_20170618.int 
20170525_20170630.int 
20170618_20170712.int 
20170922_20171016.int 
20180508_20180520.int 
20180426_20180601.int 
20180508_20180601.int 
20180520_20180601.int 
20210715_20210727.int 
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Figure 3. Process diagram for AVIRIS-NG imagery processing, plant community map creation, 

and InSAR methods reproduced from Michaelides and Siegfried (2023). 
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CHAPTER 3: RESULTS 

3.1 PLANT COMMUNITY MAP 

Hierarchical cluster analysis identified nine unique plant communities from the sample of 

15,000 PFT fractional cover pixels, selecting a number of clusters past which there would be 

diminishing returns in the gap statistic (figures 4, 5). The sample and each points clustered 

community was used to classify the PFT fractional cover layers into the resulting plant 

community map (figure 6) with 70% of points used for training and 30% of points reserved for 

validation with an accuracy of 93% and kappa statistic of 0.93. The resulting communities were 

dominated largely by lichens, tussocks, dwarf shrubs, and tall shrubs. Shrub dominated 

communities cumulatively covered 54.8% of the study area and were generally more moist than 

others with overall mean surface saturation of 82%. Communities largely dominated by shrubs, 

evergreen, mixed, and deciduous, had little variation in soil moisture between burn scars (86%) 

and unburned areas (84%). Tussock tundras, occupying 7.1% of the study area, were the driest 

community with 58% soil saturation in burn scars and 50% in unburned areas, with graminoid 

tundras being the next driest at 77% in burn scars and 60% in unburned areas while covering 

6.4% of the study area. Lichens were discriminated somewhat by moisture levels as the 

communities had similar cover proportions but slightly different soil moisture (60% dry, 63% 

moist-dry) and soil surface saturation (70% dry, 77% moist-dry). 

Nine communities were produced through hierarchical cluster analysis by selecting a 

point along the gap-statistic plot that represented a point of diminishing returns with a higher 

number of clusters (figure 5). Plant communities included lichen dominated to shrub dominated 

tundra type which varied in stature, coverage, moisture, and deformation rates (table 6). Surface 
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soil saturation was also used to assist in the characterization of lichen communities that were 

similar in composition but varied in moisture (table 6, figure 7). 

Plant community composition markedly varied within and among fire scars (figure 7). 

Unburned areas maintained high proportions of lichen tundra, whereas burn scars had a greater 

proportion of evergreen shrub-tussock and tussock-shrub tundra communities. Recent 2015 burn 

scars had mixed and evergreen shrub growth within 5 years after burn, though this growth was 

not observed in older scars. As time since burn increased, so also did the abundance of 

evergreen-shrub tussock communities, whereas moist-dry lichen communities remained in small 

amounts and drier lichen communities started to recover (e.g., POM, Long Lake, Dry Gulch, 

Water). Communities comprising less than 0.1% of cover in a fire scar or unburned area was 

removed to preserve the sample size of spectra used in the spectral diversity calculation (table 7). 

 

Figure 4. Gap-statistic of PFT fractional cover clustering at 1-25 clusters. 
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Table 6. Characteristics of mapped plant communities. 

Tundra Plant 

Community 

Percent 

of 

Study 

Area 

Total 

Area 

(km2) 

Mean Soil 

Saturation 

at Surface 

(m3/m3, 

burn scar) 

Mean Soil 

Saturation 

at Surface 

(m3/m3, 

unburned) 

Mean 

Deformation 

(cm/day, 

burn scar) 

Mean 

Deformation 

(cm/day, 

unburn 

scar) 

Moist-Dry 

Lichen 
18.5 144 0.83 0.67 -0.085 -0.067 

Dry Lichen  13.1 102 0.83 0.65 -0.086 -0.067 

Graminoid  6.4 50 0.77 0.60 -0.086 -0.068 

Tussock  7.1 55 0.58 0.50 -0.081 -0.070 

Tussock-

Shrub  
18.8 146 0.85 0.69 -0.076 -0.066 

Evergreen 

Shrub-

Tussock  

15.7 122 0.85 0.68 -0.077 -0.066 

Evergreen 

Shrub 
7.5 50 0.90 0.93 -0.100 -0.096 

Mixed Shrub 12.1 94 0.84 0.81 -0.096 -0.084 

Deciduous 

Shrub 
0.7 6 0.71 0.74 -0.072 -0.061 

 

 

Figure 5. Plant functional type composition of hierarchically clustered tundra communities. 
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Figure 6. Plant Community Map at 1:375,000 
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Figure 7. Proportion of community types in each burned and unburned area. 
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Table 7. Community occurrences cut from spectral diversity calculation due to small size. 

Community Area 

Number of 

AVIRIS-NG 

Pixels 

Percent of 

Area 

Evergreen Shrub Tundra 8014014 30 0.079 

Mixed Shrub Tundra 8014014 30 0.079 

Mixed Shrub Tundra Aropuk 2504 0.1 

Evergreen Shrub Tundra Aropuk (unburned) 146 0.012 

Evergreen Shrub Tundra Dry Gulch 59 0.052 

Mixed Shrub Tundra Dry Gulch (unburned) 161 0.1 

Deciduous Shrub Tundra Dry Gulch (unburned) 55 0.033 

Evergreen Shrub Tundra Hobbs Knob (unburned) 171 0.06 

Evergreen Shrub Tundra Izavlknek River (unburned) 112 0.018 

Dry Lichen Tundra KASIGLUK (504039) 35 0.008 

Evergreen Shrub Tundra KASIGLUK (504039) (unburned) 56 0.026 

Deciduous Shrub Tundra Kuka Creek 1 1114 0.091 

Evergreen Shrub Tundra POM (unburned) 86 0.026 

Mixed Shrub Tundra Smitty 55 0.028 

Mixed Shrub Tundra Smitty (unburned) 113 0.059 

Deciduous Shrub Tundra Smitty (unburned) 123 0.059 

Evergreen Shrub Tundra Tik Hill 86 0.029 

Evergreen Shrub Tundra Tik Hill (unburned) 25 0.014 

Mixed Shrub Tundra Tik Hill (unburned) 165 0.082 

Evergreen Shrub Tundra WATER 115 0.016 

Evergreen Shrub Tundra WATER (unburned) 274 0.1 

Evergreen Shrub Tundra Yukon Delta NWR 2 (unburned) 96 0.051 

 

3.2 FIRE-SCALE SPECTRAL DIVERSITY 

 We found a strong positive correlation between gamma diversity and time since fire (R2 = 

0.74, p < 0.001, figure 8), and this strong statistical effect of time since fire also held for alpha 

diversity (R2 = 0.79, p <0.001), but not with beta diversity (R2 = 0.16, p = 0.01). With the 

exception of the two recent 2015 fires, a pairwise examination (i.e., paired t-test) shows a greater 

gamma diversity in the unburned areas versus the burn scars, with a mean difference of -0.00185 

(p < 0.001). The partitioning of alpha and beta spectral diversities revealed on average 72% of 
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gamma spectral diversity across fires was attributed to alpha diversity, with the rest attributable 

to beta diversity, though there was no significant relationship between the partition proportion 

and burn scar age nor significant difference of partition proportion between burn scars and paired 

unburned areas (figure 9). 

 

Figure 8. Gamma spectral diversity (A) and relative gamma spectral diversity compared to 

unburned (B) of each burn scar. Each area’s gamma diversity is calculated using up to 4.35 

million AVIRIS-NG pixels depending on the size of the area (see section 2.3). 
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Figure 9. Proportion of alpha to beta spectral diversity when partitioned from gamma. 

3.3 COMMUNITY LEVEL DIVERSITY METRICS 

 Alpha diversity was highest in tussock and graminoid dominated communities, while all 

shrub dominated communities’ diversity was in a consistent range between about 0.01 and 

0.0025. Lichen dominated communities had the lowest alpha diversity, generally below 0.005. 

Unburned communities had higher alpha diversity, generally following the fire scar-level trends, 

except dry lichen communities which had lower alpha diversity within unburned areas (0.0016) 

compared to burn scars (0.0023). The patterns of LCSD𝛽 among communities were similar 

within two groups, where deciduous shrub, evergreen shrub, dry lichen, and tussock 

communities had higher contributions (20 - 30 % on average) and greater variability, while all 

others had low (generally <15% on average) and consistent LCSD𝛽 (figure 12). 

FCSD at the individual fire level was consistent between gamma, beta, and mean alpha 

diversity, and almost all burn scars had similar FCSD curves across all wavelengths. FCSD alpha 

(FCSDɑ) values of each community demonstrate elevated importance within the red-edge, NIR, 



24 

 

and different portions of the SWIR (1300 - 1350 nm, 1450 - 1800 nm) and was generally low in 

the visible spectrum and portions of the SWIR range (950 - 1000 nm, 1150 - 1250 nm, 2300 - 

2400 nm, figure 11). Tussock and graminoid communities were consistent exceptions to this 

trend, as they had high importance in the visible range and decreased importance within the NIR 

and SWIR ranges of 1450 nm and higher. Recent 2015 fires all showed consistent alpha 

diversities between burn scars and corresponding unburned areas, and a paired t-test of all (figure 

10). However, fire scars older than 15 years since burn showed significantly lower alpha 

diversities (mean difference of -0.0014, p < 0.001) than their unburned counterparts. 

 

Figure 10. Alpha Spectral Diversity organized at the region (A), community (B), and area (C) 

scales.
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Figure 11. Feature-specific contribution to alpha diversity showing relative percent importance of each wavelength to spectral 

diversity by community type with selected Sentinel-2 MSI bands overlaid. Higher values indicate a wavelength accounted for more 

spectral variation than others. 
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Figure 12. Local contribution to beta spectral diversity between communities showing the 

relative proportion of total spectral variance each community contributed to beta diversity. 
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Figure 13. Gamma (upper) and alpha (lower) spectral diversity mapped across burn scars and communities within. 
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3.4 DIVERSITY AND SUBSIDENCE INTERACTIONS 

 Surface deformation was found to be significantly higher in magnitude within burn scars 

than paired unburned areas when examined with a paired student’s t-test (mean difference -0.007 

cm day-1, p = 0.01). Among community types, deformation rates were highly variable 

particularly amongst communities in burn scars, for example mixed shrub communities in burn 

scars had deformation range from -0.07 cm day-1 to -0.1 cm day-1 due to the strong burn-age 

relationship with deformation rates (figure 14). Evergreen shrub communities and to a lesser 

extent mixed shrub communities had the highest deformation rates, considering that evergreen 

and mixed shrubs mostly occurred in fire scars from 2015 with little presence on the landscape in 

other scars and unburned areas. However most other communities had similar means and spread 

of deformation rates as they are heavily influenced by fire scar age. Surface subsidence’s 

relationship with burn scar age was strong (R2 = 0.75, p < 0.001), where recent fire scars had 

higher deformation rates relative to their unburned counterparts than older fire scars (R2 = 0.87, p 

< 0.001, figures 14, 15). Burn scars older than 15 years had a reduced difference between fire 

scar and unburned area deformation compared to recent burn scars (mean difference of -0.0014 

cm day-1, older, vs -0.0176 cm day-1, recent). Deformation was strongly correlated with gamma 

spectral diversity (R2 = 0.63, p < 0.001) and mean alpha spectral diversity (R2 = 0.74, p < 0.001) 

of fire scars, and these patterns were consistent with active layer thickness (R2 = 0.61, p < 

0.001). This deepening of active layers had weaker correlations with gamma (R2 = 0.35, p = 

0.01) and mean alpha diversity (R2 = 0.47, p = 0.003) than subsidence. 
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Figure 14. Surface deformation of communities grouped by burn status alone (A), community 

type (B), and individual fires (C) sorted by burn year. 

 

Figure 15. Relative surface deformation between burned and unburned pairs correlated with year 

of burn (A), gamma spectral diversity (B), mean alpha diversity (C), and mean active layer 

thickness (D). 
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Figure 16. Remotely sensed environmental variables active layer thickness, soil moisture though 

the active layer, and surface soil saturation fraction at the community level shown organized by 

burn and by community, separated by burn or unburned status (Chen et al., 2022).
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Figure 17. 2015-2022 InSAR-derived surface deformation rate across fire scars and unburned reference areas.
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CHAPTER 4: DISCUSSION AND CONCLUSIONS 

4.1 SPECTRAL DIVERSITY AND DEFORMATION INTERACTIONS 

 The effects of 47 years of tundra fires on the YK Delta resulted in major ecological 

changes in the distribution of plant functional types, surface subsidence, and spectral diversity 

metrics. Our plant community maps describe similar spatiotemporal patterns from that reported 

by ground-based post-fire vegetation succession observations (Frost et al., 2020). Spatial 

community products also identify a reduction in lichen cover and increase in shrub cover relative 

to unburned terrain, with evergreen shrub-tussock and tussock-shrub communities becoming 

dominant in burn scars older than 15 years. Overall, we identified multiple shrub-dominated 

communities to exhibit lower alpha diversities than lichen, graminoid and tussock dominated 

communities. This is potentially due to differences in the similarity in canopy structure between 

shrubs and smaller species, which can occupy larger portions of spectral signal (Nelson et al., 

2022). Therefore, due to the prevalence of shrub communities across the IKU, we anticipate a 

reduction in spectral diversity of burn scars over time, likely reducing the biodiversity of the 

tundra per unit area.  

Although it is challenging to link the observed short and long-term responses of spectral 

diversity to fire and surface subsidence without controlling for multiple interacting factors (e.g., 

plant species replacement, soil moisture, soot deposition), our analysis suggests that spectral 

diversity is indeed negatively related to time since fire and positively related to surface 

subsidence. Tundra fires on the IKU removed or disturbed lichen dominated tundra, enabling the 

pervasive shift in shrub dominance over time. Our burn chronosequence indicates over 2-3 years 

following fire, spectral diversity and surface subsidence rapidly increased then declined and 

stabilized after ~20 years. These patterns in PFT cover and resulting spectral diversities are in 
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line with Frost et al. (2020), which found increases in evergreen shrubs, deciduous shrubs, and 

graminoid species in recent burn scars as lichens decreased relative to unburned areas, which 

likely increased spectral variation. The strong relationship between both alpha and gamma 

diversities and burn age, along with the high proportion of alpha diversity contribution to gamma 

estimates suggest observed diversity trends over time are highly dependent on alpha diversity. 

Though surface char and soot following fire may have increased the spectral diversity, we think 

this effect was reduced through masking out area with no vegetative cover from the PFT data, 

and as we still identified a significant correlation between fire scar age and gamma diversity, 

including normalized gamma diversity using unburned reference areas (figure 8). Therefore, 

spectral diversity was likely primarily driven by post-fire vegetation succession interacting with 

thickening active layers and surface deformation which for example can change local moisture 

regimes resulting in higher surface water saturation, making environmental conditions more 

favorable for sedges and grasses (graminoid dominated communities). 

4.2 SPECTRAL DIVERSITY APPLICATION AND UNCERTAINTY 

 Our use of a plant community map from clustered PFT cover is advantageous in remote 

regions as spectral diversity describes potential differences in measured plant cover within 

communities; thus inferences can be made upon community ecology from such spectral diversity 

metrics. Most previous assessments of spectral diversity have used uniform gridded communities 

drawn across study sites, in similar size to sampling plots in traditional ecology. This allows for 

quick community delineations when there is little spatial data to characterize species or 

functional type composition across the study area, but these communities are often arbitrary and 

would require additional field or image interpretation work to characterize such numerous plot-

style communities. However, there are some limitations and sources of uncertainty to our 
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method. A specific limitation of applying spectral diversity to a chronosequence of fire scars is 

recently burned areas can have artificially high spectral diversity from the inclusion of lower-

reflectance spectra from burn char or similarly darkened vegetation. This was mitigated by three 

growing seasons occurring between burn and imagery collection and by applying a bare ground 

zero PFT cover mask and a NDWI mask, after which an NDVI mask was considered, though 

remaining pixels had high NDVI values across area, and an appropriate 0.2 mask had little 

alterations to the imagery and resulting spectral metrics. It is possible that higher spatial 

resolutions would experience this issue to a greater degree as remaining char amongst healthy 

vegetation could be isolated to represent the majority of pixels. 

Further efforts to apply spectral diversity to examine disturbances like fire would help 

refine how to handle spectral variance from non-vegetated cover. A broader challenge of 

applying spectral diversity methods which rely on spectral variability is the sensor-dependency 

of results as each spectra can be dependent on sensor, calibration, processing, and time of 

acquisition (Wang and Gamon, 2019). This is particularly present where high resolution, but low 

spatial coverage aerial and drone imagery may not be spectrally harmonized between scenes 

from the same sensor and have other artefacts between time-separate scenes covering the same 

area. By expanding work in comparing spectral diversity across space (Schmidtlein, 2017) and 

time (Rossi et al., 2021) better methods can be developed to better apply spectral diversity to 

environmental disturbances where comparisons across a time-series and/or different sites are 

desired. 

4.3 CONCLUSIONS 

Tundra regions are experiencing rapid climate and environmental change that is 

influencing the prevalence of permafrost thaw and surface subsidence and wildfire occurrence, 
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with implications for plant community composition. Spectral diversity approximates species 

diversity and associated plant productivity metrics similar to functional and phylogenetic 

diversity which enables us to uncover new insights into interactions among ecological 

disturbances in permafrost regions (Rocchini et al., 2010; Schweiger, 2018). Along our burn scar 

chronosequence we found recent scars to have higher gamma (total) spectral diversity and 

surface subsidence, while in burn scars older than 15 years, deformation and gamma diversity 

reduced over time, resulting in subsidence similar to unburned areas and gamma diversity lower 

than unburned areas. We suggest that increased spectral diversity in recent burn scars is due 

primarily to a wider diversity of species attempting to recolonize and is partly driven by 

increased post-burn subsidence which thickens the active layer. 

Improved and spectrally consistent hyperspectral data collection on aerial platforms could 

facilitate examining spectral diversity at different timesteps and between different areas. 

Upcoming missions such as the Planet hyperspectral Tanager satellites and NASA’s Surface 

Biology and Geology (SBG) will allow new approaches to examining spectral diversity with a 

high input of spectral species at moderate resolution and large scale, which can be particularly 

advantageous for expansive remote areas in the arctic and sub-arctic. Improvements to spectral 

diversity application will aid mapping of biodiversity and examinations of community response 

to disruptions and aid insight into ecosystem functions.  
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