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ABSTRACT 

 

The safe and efficient movement of trains requires periodic inspection of the geometry of 

the track system and health of its components.  Railroads have used laser-based track geometry 

testing to comply with regulatory requirements and internal business practices for over 30 years.  

More recently, these systems have been supplemented by new technologies capable of inspecting 

many other attributes of the track including subgrade condition, track component health, and 

ballast profile.  Computational advances including machine vision and artificial intelligence, and 

the application of big data, have drastically increased the value that can be derived from the ever-

growing track health dataset.  In this thesis, I present a method to manage the flow of data in a 

railroad, starting from field data collection to multi-year capital plans.  In my case study, 

geometry and track component data were collected over a 115-mile (185 km) heavy haul Class I 

railroad subdivision in the US and were analyzed for correlations.  One of the primary challenges 

to using track-related data collected from multiple inspection systems on different days is 

aligning datasets.  In this research, datasets are aligned using fixed assets (switches and 

crossings).  After aligning the datasets, fixed windows and aggregation functions are used to 

analyze the data.  Correlation matrices and scatter plots of static data from both technologies 

showed little correlation between the two datasets.  This suggests that railroads should consider 

the use of both technologies to comply with federal regulations, monitor the condition of their 

components and infrastructure, and ensure the safe movement of trains.  Additionally, a trending 

framework is developed that is suitable for both geometry and component data, providing useful 

information to develop comprehensive maintenance plans to facilitate reliable and efficient 

passenger and freight movement. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Track Geometry Inspection and Regulatory Requirements 

The desired maximum operating speed for a segment of railway track dictates the required 

geometric tolerances and track quality that must be maintained.  These, in turn, relate to the 

frequency and magnitude of permissible wheel loads, desired level of service, risk, and network 

resiliency.  To benefit from the economies of scale that are inherent to rail transportation, axle 

loads must be maximized.  Axle load increases, while economically justified, have adverse 

impacts on the track structure and its components, and the geometry of the track system.    

Track classes refer to different categories or classifications of track based on their 

maximum allowable speed for freight and passenger trains.  These classifications help the 

railroads manage their infrastructure objectively and ensure the safe and efficient operation of 

trains.  In the United States (US), track classes are defined in the US Department of 

Transportation (DOT) Federal Railroad Administration (FRA) Track Safety Standards (CFR 

213) (FRA, 2022).  Table 1.1 provides a summary of the most common FRA track classes and 

maximum allowable train operating speeds.   

Table 1.1: FRA Track classes and allowable train speeds 

FRA Track Class 
Maximum Allowable Train Speed [mph (km/h)] 

Freight Trains  Passenger Trains  

0 (Excepted) 10 (16) Not Allowed  

1 10 (16) 15 (24) 

2 25 (40) 30 (48) 

3 40 (64) 60 (97) 

4 60 (97) 80 (129) 

5 80 (129) 90 (145) 
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Track quality is most commonly quantified through its geometry parameters (Esveld, 

2001).  To comply with FRA regulatory thresholds, avoid exceptions and fines, and to ensure the 

safe movement of trains, railroads conduct periodic geometry inspections.  FRA (2022) requires 

railroads to conduct inspections between one and four times per year depending on FRA track 

class and annual traffic measured in million gross tons (MGT) (Table 1.2).   

Table 1.2: FRA-mandated minimum number of inspections per year 

 Annual Tonnage (MGT) 
   Freight Trains    Passenger Trains 

Track Class  < 40 40 - 60  > 60  < 20  >= 20 

0 (Excepted) 0 0 0 n/a n/a 

1 0 0 0 0 0 

2 0 0 0 1 1 

3 1 2 2 2 2 

4 2 3 4 2 3 

5 and above 2 3 4 3 3 

 

For each track class, FRA defines the track geometry tolerances that must be maintained 

(Table 1.3).  If any of the thresholds are exceeded, temporary speed restrictions (i.e. slow orders) 

must be put in place and maintenance conducted to restore geometry to that of the original track 

class.  Temporary speed restrictions increase operating costs, reduce network velocity, and 

increase transit times for goods and people.  To avoid speed restrictions and optimize 

maintenance spending, railroads use forecasting to predict when and where geometry thresholds 

are met and exceeded (Esveld, 2014).   
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Table 1.3: FRA-mandated track geometry thresholds for each track class 

 
 

Track Geometry Condition  

Geometry thresholds [inch (mm)]  

0  
(Excepted) 

1  2  3  4  5  

Tight Gauge 
negative deviation from nominal gauge:  

4' 8.  5", 56.  5 in, 1435mm 
n/a 

0.5 
(13) 

0.5 
(13) 

0.5 
(13) 

0. 5 
(13) 

0. 5 
(13) 

Wide Gauge 
positive deviation from nominal gauge:  

4' 8.  5", 56.  5 in, 1435 mm 

1.8  
(45) 

1.5 
(38) 

1.3 
(33) 

1.3 
(33) 

1.0 
(25) 

1.0 
(25) 

Track Alignment 62' - Tangent 
Deviation from the mid-offset  

from a 62' (20m) chord 
n/a 

5 
(127) 

3  
(76) 

1.75 
(44) 

1.5 
(38) 

0.75 
(19) 

Track Alignment 62' - Curve 
Deviation from the mid-offset  

from a 62' (20m) chord 
n/a 

5 
(127) 

3  
(76) 

1.75 
(44) 

1.5 
(38) 

0.625 
(16) 

Track Alignment 31' - Tangent 
Deviation from the mid-offset  

from a 31' (10m) chord 
n/a n/a n/a 

1.25 
(32) 

1.0 
(25) 

0.5 
(13) 

Runoff 
Runoff in any 31' (10m) of rail  

at the end of a raise 
n/a 

3.5 
(89) 

3  
(76) 

2  
(51) 

1.5 
(38) 

1.0 
(25) 

Profile 62' 
The deviation from uniform profile at the  

mid-ordinate of a 62' (20m) chord 
n/a 

3  
(76) 

2  
(51) 

2.25 
(57) 

2  
(51) 

1.25 
(32) 

Profile 31' 
The deviation from uniform profile at the  

mid-ordinate of a 31' (10m) chord 
n/a n/a n/a 

1.0 
(25) 

1.0 
(25) 

1.0 
(25) 

Warp 62' 
Difference in crosslevel between any  
two points less than 62' (20m) apart 

n/a 
3  

(76) 
2.25 
(57) 

2 
(51) 

1.75 
(44) 

1.5 
(38) 

Warp 10' 
Difference in crosslevel between any two 

points less than 10' (3m) apart 
n/a 

2.25 
(57) 

2.25 
(57) 

1.75 
(44) 

1.25 
(32) 

1.0 
(25) 

Twist 31' 
The difference on crosslevel in spirals 

between two points 31' (20m) apart 
n/a 

2  
(51) 

1.75 
(44) 

1.25 
(32) 

1.0 
(25) 

0.75 
(19) 
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In addition to the aforementioned requirements for periodic track geometry inspections, the 

FRA requires railroads to conduct manual visual inspections.  These inspections are usually 

carried out by a designated (and qualified) railroad employee that is commonly referred to as a 

Track Inspector who travels over a length of track in a hi-rail vehicle.  A hi-rail vehicle can 

operate on both highways and railroad track and allow access to the track at highway-rail grade 

crossings of sufficient length.  The frequency of this type of inspection is also defined by the 

FRA (2022) (Table 1.4) with most of the primary rail corridors in the US (FRA Classes 4 and 5) 

requiring visual inspections twice per week.   

Table 1.4: FRA requirements for visual track inspection frequency 

FRA Track Class Track Type Required Frequency 

0 (Excepted),  
1, 2, 3  

Main track 
and sidings 

Weekly with at least 3 calendar days interval 
between inspections, or before use, if the track 
is used less than once a week, or twice weekly 
with at least 1 calendar day interval between 

inspections, if the track carries passenger 
trains or more than 10 million gross tons of 
traffic during the preceding calendar year. 

0 (Excepted),  
1, 2, 3 

Other than 
main track 
and sidings 

Monthly with at least 20 calendar days 
 interval between inspections. 

4 and 5 All tracks 
Twice weekly with at least 1 calendar day 

interval between inspections 

 

The FRA requires that this type of inspection be undertaken at slow speed due to its visual 

nature.  Some inspections are carried out at speeds of 30 mph (48 km/h) or less, and almost all 

inspections are carried out at speeds that are lower than the maximum train operating speed.  

This has an impact on train flow and operations and can present a challenge for accessing 

infrastructure given many of the primary rail corridors in the US are operating at or near 



 

5 

capacity.  Additionally, FRA rules do not allow this class of railroad employee to work more 

than 10 hours a day, thereby limiting the amount of track that can be inspected on a given day 

when considering track occupancy challenges.  The length of track that can reasonably be 

inspected in a single shift is around 100 miles (160 km).   

It is neither prudent nor economical to repair the same defects at a given location in a 

recurring and reactive manner.  Thus, developing and applying a framework for track geometry 

data trending is an essential step toward achieving a strategy for predictive maintenance.  

Predictive maintenance requires a large amount of data, which are used to create models that can 

predict when maintenance should be conducted to restore track quality.  Predictive maintenance 

models increase network reliability, reduce track infrastructure down time, and minimize the 

required use of slow orders (Neuhold et al., 2020).   

The trending framework I will present relies on a comprehensive, yet simple, model.  In 

some ways this model compromises accuracy due to its comprehensive nature when compared to 

a more sophisticated model with higher accuracy (albeit less comprehensive).  A simple model 

helps to disseminate information among many levels in the rail management hierarchy given the 

outputs are easier to understand and act upon (Jovanovic, 2004).  Having a more sophisticated 

model tends to produce information that is only relevant to certain levels of the company, 

limiting its acceptance and use throughout the organization and network (Liao et al., 2022).   

A case study is presented in Chapters 2 and 3 using geometry data collected from 

Autonomous Track Geometry Measurement Systems (ATGMS) from a Class I railroad in the 

US.  Additionally, track component inspection data were collected using the Laser Rail 

Inspection System (LRAIL) developed by Railmetrics Inc. (Harrington et al., 2022) for a period 

of approximately one year that overlaps with ATGMS data collection.  Both types of data were 
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collected on a 115-mile (185 km) section of a high-density (90 MGT annually) single-track rail 

corridor in the southeastern US.   

 

1.2 Railway Track Inspection Data 

To ensure the safe movement of trains, railroads routinely assess the condition of their 

track components including rails, crossties, and fastening systems.  This is most commonly 

conducted through human visual inspections as mandated by FRA (2022) and introduced in 

Section 1.1.  In addition to these visual assessments, the system-level condition of tracks is 

measured using its geometry parameters (Table 1.3).   

 

1.2.1 Geometry  

Geometry refers broadly to the geometric position and condition of railroads curves and 

tangents, related to their design, use, and maintenance (Hay, 1982).  Track geometry most 

commonly describes the position of the rails in horizontal, longitudinal, and vertical planes.  It 

includes design features (e.g. tangent, transition curves, curves, superelevation) as well as 

irregularities in which the track’s position deviates from the original design geometry (Keylin, 

2019).  These irregularities cause the track to deteriorate faster due to higher dynamic forces 

(Esveld, 2014).  When these irregularities exceed certain thresholds maintained and regulated by 

the FRA (2022), they are referred to as geometry defects or exceptions.   
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1.2.2 Geometry Inspection Vehicles 

Geometry inspection is conducted using a specialized vehicle, commonly referred to as a 

geometry inspection car or geometry recording car.  Geometry cars can be a rail-bound vehicle, 

either self-propelled or towed, or a hi-rail vehicle (Carr et al., 2009).   

Inspection vehicles can be either manned (when an operator rides inside the vehicle during 

inspection) or unmanned (when the system collects data autonomously without the need for an 

operator) (Figure 1.1).  The unmanned classification refers only to the geometry measurement 

system that is capable of operating autonomously, not to the operation of the car itself.  Hi-rail 

vehicles can only be unmanned if they are already on the railroad tracks (rail bound).  The 

following sub-sections discuss the advantages and disadvantages of each classification of 

geometry inspection system.   

 

Figure 1.1: Common platforms for track geometry inspection cars 

 

1.2.2.1 Rail-bound Self-propelled Manned Vehicles 

Initial versions of geometry testing vehicles were rail-bound, manned cars equipped with 

facilities for railway personnel, generators, prime movers, and inspection equipment (Figure 1.2).  
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Due to their high utilization and need to travel over large networks for extended periods of time, 

these cars featured small kitchens and crew bedrooms.  Depending on FRA regulations and 

individual railroad operating practices, engineering staff could operate the car without a 

transportation crew or locomotive.  Their specialized design included independent power 

generation and allowed integration of additional inspection systems for rail and catenary.   

 

Figure 1.2: Rail-bound self-propelled manned vehicle (photo credit: CSX) 

 

Although some self-propelled vehicles can travel at typical mainline train speeds – or even 

at high speed, such as the geometry cars used in high-speed lines in Japan and Germany – this is 

not true for the majority of rail bound inspection cars.  This results in conflicts with revenue 

service train operations and also presents challenges with changing crews and storing the 

equipment in yards or storage tracks during overnight periods when testing is not typically 

conducted.   

 



 

9 

1.2.2.2 Rail-bound Manned Towed Vehicles 

Rail-bound manned towed vehicles are often repurposed passenger railcars (Figure 1.3) 

that are adapted to include measurement systems, power generation, and room for operating 

personnel.  They combine the benefits of self-propelled cars while retaining the structural 

elements and special design features (such as trucks and draft gears) found in passenger cars 

built for higher speed revenue service, thereby allowing these cars to travel up to the maximum 

allowable speed for passenger trains.  If a dedicated locomotive is assigned to this train, it can 

provide power to the railcars.  However, a drawback to this approach is that the locomotive must 

be equipped with all the train control systems used by the railroad and adhere to various 

operating requirements, including axle-load and axle count specifications.   

 

 

Figure 1.3: Example manned rail-bound geometry vehicle  

towed by a locomotive (photo credit: CSX) 

 

1.2.2.3 Hi-rail Manned Vehicles 

Hi-rail vehicles (Figure 1.4) are primarily employed for maintenance of way (MOW) tasks 

and visual inspections.  They offer flexibility in accessing the tracks at highway-rail grade 

crossings.  This reduces their impact on revenue trains caused by their reduced speed, which is 

typically limited to 45 mph (72 km/h).  Additionally, they do not require a dedicated storage 
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track, as they can be parked overnight at the railroad’s office or any other surface parking 

location.  Another element of their flexibility lies in their short stopping distance, enabling 

operators to easily stop the vehicle for defect verification or manual measurements.   

 

Figure 1.4: Example image of a hi-rail geometry vehicle 

 

1.2.2.4 Rail-bound Unmanned Towed Vehicles 

The most common form of rail-bound unmanned towed geometry inspection vehicle is the 

ATGMS.  Benefits of ATGMS stem primarily from their cost-effectiveness (Carr et al., 2009).  

Operating without a crew allows these systems to function around the clock, covering distances 

in excess of 500 miles in a single day, far surpassing what is possible with a manned vehicle.  

Such high utilization enables railroads to reduce inspection intervals on the busiest corridors 

from four times a year to as frequent as three times a week.  This increased frequency of 

inspections results in a substantial rise in the volume of collected data, necessitating the 

implementation of a robust asset management platform capable of handling large datasets.   
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When there is a crew onboard the geometry car, the operator is tasked with detecting 

outliers and monitoring the equipment’s health to identify erroneous data, such as measurement 

errors, which can lead to improper detection of exceptions.  In the absence of onboard personnel, 

defect validation must be performed using filters during the inspection process or manually 

validated after the inspection is conducted.   

Unmanned inspection vehicles rely on Global Positioning Systems (GPS) and encoders for 

location identification rather than the input from the operator.  This method, while generally 

reliable, is known to induce errors related to incorrect track labeling or milepost location, and 

these must be addressed in the office.  Some railroads use Differential GPS (DGPS) or Radio 

Frequency Identification (RFID) tags to increase location accuracy.  This is especially important 

for rail transit systems that operate in tunnels where GPS signals are non-existent.  Relying only 

on GPS also requires the railroad to provide an accurate and reliable Geographic Information 

System (GIS) database for the system for use in locating the measurements.  If a low precision 

GIS database is provided location determination (e.g. milepost and track) will be affected, 

resulting in errors such as misidentified track (e.g. Track 1 vs. Track 2) (Bilheri et al., 2023).   

The most common platform for ATGMS deployment is revenue vehicles, such as 

locomotives (Figure 1.5), boxcars (Figure 1.6), or passenger coaches (Figure 1.7).  Such vehicles 

offer the advantage of being used within the regular revenue service operational cycle, avoiding 

conflicts associated with track occupancy solely for the purpose of track inspection.  However, in 

the case of specially designed boxcars, the power supply must come from rooftop solar panels or 

an onboard generator.  In contrast, locomotives or passenger coaches already have the necessary 

power supply.  The system should be small enough to fit in the vehicle, without interfering with 
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other systems and have low maintenance requirements, including calibration, that should match 

the normal schedule of the host vehicle to avoid additional stops (Scott et al., 2010).   

 

 

Figure 1.6: Example of boxcar mounted ATGMS used in the US 

Figure 1.5: Example of locomotive mounted ATGMS used in Brazil  
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Figure 1.7: Example of passenger car mounted ATGMS in the US (photo credit: ENSCO) 

 

Certain railroads have opted to repurpose locomotives for ATGMS operations (Figure 1.8) 

by removing their prime mover, traction motors, control stands, and other devices and installing 

generators, air conditioning systems, and necessary measurement components (Railway Track 

and Structures, 2020).  This approach offers the advantage of utilizing a six-axle truck, which 

enhances lateral forces and tests the track under a more realistic loading environment without the 

need to invest in new assets.  These repurposed locomotives can operate on a special train or 

within a revenue service consist, functioning as a car without providing tractive effort.   

Other railroads have chosen to upgrade their manned geometry cars to operate 

autonomously, transforming them into crewless special trains.  While highly efficient for 

inspections, these systems still require their own operational windows and conflict with revenue 

trains (BNSF, 2021).   
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Figure 1.8: Example image of repurposed locomotive used for ATGMS operations 

 

1.2.2.5 Hi-rail Unmanned Vehicles 

This platform comprises a hi-rail trailer equipped with measurement systems capable of 

autonomous operation, being towed by another vehicle, or operating in a remote control scenario 

(RailPod, 2021). 

 

1.2.2.6 Sampling Frequency 

FRA (2022) regulations require geometry measurement systems to maintain a distance-

based sampling interval not exceeding five feet (1.52 m).  Presently, all commercial track 

geometry systems operate with a higher frequency, commonly capturing one measurement per 
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foot (0.30 m) or every 25 cm (0.8 ft) if the system operates in metric units.  This results in 5,280 

samples per mile or 4,000 samples per kilometer.   

 

1.2.2.7 Measurement Channels 

Geometry measurement types, which are individually referred to as channels, must include 

the FRA-mandated calculations as specified in Table 1.5.  However, most systems are capable of 

measuring many additional channels (FRA, 2022) (Table 1.5).  Additional channels and data can 

be used for studying correlations with other inspection tools (Goodarzi et al., 2020), running 

Multi-body Dynamic Simulation (MBS) tools (Keylin, 2019), or to generate Track Quality 

Indexes (TQI) to assess the condition and degradation of track (Neuhold et al., 2020).   
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Table 1.5: Geometry measurement channels and descriptions (FRA 2022) 

Measurement 
Required 
by FRA? 

Description 

Gauge Yes 
Distance between the two rail gauge faces,  

measured 5/8” below the top of the rail.   

Base Gauge No Distance between the closest points of the rail bases.   

Curvature Indirectly 
Track curvature:  

used to identify tangent, spirals and curve body.   

Cross level Yes Measured difference in height between both rails.   

Twist 31’ Yes 
Difference in cross level between two points 31’ apart.   

Also known as Long Twist.   

Twist 22’ No 
Difference in cross level between two points 21’ apart.   

Also known as Medium Twist.   

Twist 11’ Yes 
Difference in cross level between two points 11’ apart.   

Also known as Short Twist.   

Warp Yes 
Difference in crossover between  

any two points less than 62’ apart.   

Alignment Yes 
Deviation from uniform alignment of the left and right rail measured 

on the center of a 31’, 62’, and 124’ chord lengths 
(only for FRA Class 6 and above).   

Profile Yes 
Deviation from uniform Profile of the left and right rail measured on 

the center of a 31’, 62’ and 124’ chord lengths 
(only for FRA Class 6 and above).   

Alignment 
Space Curve 

No Absolute alignment deviation of the left and right rail from design.   

Profile Space 
Curve 

No Absolute profile deviation of the left and right rail from design.   

Gradient No Longitudinal gradient of the track.   

Rail Cant 
Yes, for 
concrete 
crossties 

The rotation of the left and right rail along the longitudinal axis.   

Speed No Recorded speed of the measuring vehicle.   
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In addition to the above measurements, other descriptive information is collected on a foot-

by-foot basis including GPS coordinates, milepost, inspection date, track inspected, railroad 

division and subdivision names, posted FRA track class, and current operating speed.  These 

additional forms of data help with subsequent data organization and storage.   

 

1.2.2.8 Data Reporting and Visualization 

Geometry information is commonly presented in one of two formats: exception reports and 

foot-by-foot data.  Exception reports include all identified anomalies within the inspected area, 

along with pertinent details such as defect type, length, peak value, severity, safe speed, class 

drop, GPS coordinates, milepost, and track information.  This data is crucial for field personnel 

tasked with track repairs and ensures compliance with safety standards set by the FRA (2022).  

Foot-by-foot data are commonly arranged as one row per foot and a corresponding column for 

each channel described in Section 1.1.2.7.   

To graphically display either of the aforementioned reporting methodologies railroads 

commonly employ a visualization method called a strip chart (Figure 1.9).  A strip chart consists 

of stacked line graphs that share the same x-axis which denotes the location on the tracks (e.g.   

milepost).  The y-axis corresponds to the measurement values for each channel, along with their 

respective units.  Typically, each page of the chart covers a length of only one or two miles, 

making it easier to read.  Each channel can be overlaid with the railroad's specified geometry 

inspection thresholds.  The red threshold corresponds to the current track class.  As an example, 

this could refer to the wide gauge threshold for Class 3 track during a Class 3 track inspection.  

The yellow threshold represents a class higher than the actual track class.  For instance, this 

could refer to a wide gauge threshold for Class 4 track during a Class 3 track inspection, which is 
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stricter.  This setup enables the railroad to proactively plan maintenance before reaching the red 

threshold, thereby avoiding speed restrictions that are mandated by the FRA.  

 

Figure 1.9: Example of a geometry stripchart for a single inspection over one mile of track 

 

Strip charts can also be used to compare two or more geometry inspections at different 

times by overlaying them in the same graph using different colors (Figure 1.10).   
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Figure 1.10: Geometry stripchart for two inspections over one mile of track 

 

1.3 Railroad Track Components Considered in this Research 

Railroad track is comprised of various components that must function as a system to 

facilitate the safe and efficient movement of trains.  In this study, I focus on crossties, spikes, tie 

plates, fasteners, ballast, and joint bars using data collected by LRAIL.  These data included 2D 

and 3D images of the aforementioned track components to enable height detection.  After data 

were collected, Deep Convolutional Neural Networks (DCNN) process the data to recognize 

components and evaluate their condition (Harrington et al., 2022).  The LRAIL system is capable 

of identifying and rating different component types, such as concrete and timber crossties, cut 

and screw spikes, and multiple types of tie plates and fasteners.   
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1.3.1 Data Formats 

The LRAIL system internally organizes data into two-meter (6.56 feet) by 3.5 meter (11.5 

feet) sections.  Raw information for each section is stored in Extensible Markup Language 

(XML) files, which are later parsed into Comma Separated Values (CSV) files.  The CSV format 

was selected for its tabular structure, making it easier to process and store data.  Each component 

has its own CSV file, and these will be described in detail later.  Additionally, each section is 

associated with two images: an intensity image, depicting the laser's reflected intensity to the 

sensor, and a range image, showing the angle of the reflected laser to the sensor, that is later 

converted to height.  Both images can be overlaid with labels from the DCNN or viewed as seen 

by the sensors (Figure 1.11).  Images are primarily used to validate other system outputs and 

provide a linear visualization of the track.  Point clouds (Figure 1.12) can also be used to verify 

components that are difficult to be seen in 2D images, such as sunken tie plates and high spikes.   

 
Figure 1.11: Example output images from the LRAIL system and options for data overlay  
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Figure 1.12: Example LRAIL 3D point cloud rendering used to assess tie plate condition 

 

For each component, the LRAIL system outputs one CSV file, with one row per 

component identified (Table 1.6).  All components are referenced by section, distance (e.g. 

milepost), and GPS coordinates.   

 

Table 1.6: Relevant data and LRAIL outputs for track component inspection 

Component Relevant Data and Measurements 

Crosstie Material, Rating, and Skew angle 

Fastener Type, Condition, and Position  

Tie plate Type, Condition, and Position 

Anchor Type, Condition, Position, and Distance to Crosstie   

Spike Type, Condition, Position, and Height   

Joint bars Length, Number of Bolts, Joint Gap, and Left/Right Rail  

Ballast  
Surface Fouling 

Area 
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Crosstie ratings are calculated using crack length, area, and depth.  They are scaled with 

zero being a good crosstie and two or three being a failed concrete crosstie or timber crosstie, 

respectively.   

LRAIL ballast data provides two distinct outputs that are recorded at one-meter (3.2 feet) 

intervals.  The first output, known as the ballast shoulder report, measures the height of the 

shoulder ballast at predefined distances from the rail (448, 548, 648, 748, and 848 mm; 17.6, 

21.6, 25.5, and 33.4 inches).  This information can be used to determine the shoulder ballast 

slope.  The second report offers a cross-sectional view of the ballast, with points recorded every 

eight mm (0.31 inches) from the centerline.  These data are used to calculate the variance in 

ballast quantity within each cross section by comparing it to the design cross section (Figure 

1.131.13).   

 

Figure 1.13: Ballast cross section output from LRAIL 

 

1.4 Track-related Data within a Railroad Company  

The railroad industry has recently begun to embrace the study and use of “big data” due in 

large part to the vast amount of track inspection data collected.  To put this into perspective,  

Class I railroads operate a total length of 140,000 track miles and conduct an average of two 
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geometry inspections per year over most of their track, with 5,280 samples collected per mile.  

This results in the annual collection of approximately 1.5 billion data points, and fails to fully 

capture additional high-frequency inspections by ATGMS that may occur as often as three times 

per week.  Transforming this massive dataset into meaningful information requires several levels 

of analysis and processing.  In addition to these data, there are other safety-related datasets that 

include ultrasonic rail flaw, vehicle-track interaction, and rail wear data (Zarembski, 2014).   

The levels of data analysis in the railroad industry are commonly related to the company's 

organizational hierarchy.  At the operational level, tasks like corrective maintenance and speed 

restrictions management require detailed, raw data.  Moving up the data use hierarchy to tactical 

and strategic levels, responsibilities expand to include capital planning and resource allocation 

over larger areas, like multiple subdivisions, divisions, or the entire network.  As we further 

ascend the organizational structure, the need for intricate data decreases and is replaced by 

consolidated results derived through multiple data processing steps.  The strategic level, which is 

focused on prioritization of future investments, demands minimal data but requires processing 

over time for forecasting and trend analysis.  Thereby, the strategic level relies on a well-

structured data flow from the lower levels.  The entirety of the aforementioned data and 

information generation workflow can be presented as a pyramid (Figure 1.14).   
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Figure 1.14: Data pyramid and examples of quantity, users, and type of information 

 

The initial analysis involves a check against regulatory requirements, necessitating a 

thorough evaluation of all data to identify defects or other anomalies.  Operational teams utilize 

these data, which are often presented in strip charts, exception, or defect reports from different 

sources (e.g. geometry, ultrasonic testing (UT), and vehicle-track interaction (VTI)).  Data are 

commonly used to identify locations that require immediate action such as corrective 

maintenance or implementing of temporary speed restrictions.  Although this dataset covers a 

long section of tracks, it pertains to shorter sections of the network, thereby making it more 

manageable and concise for operational teams to interpret and act upon.   

At the tactical level, aggregated data is vital for determining resource allocation, including 

decisions related to crosstie and rail capital replacement operations and capital ballast 

undercutting jobs.  Allocation considerations must account for the broader network-level 

perspective, factoring in availability and cost-effectiveness.  Equally crucial is proper scheduling 
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of activities through the optimization of resource allocation across the network.  This “tactical” 

dataset comprises rail wear reports, track quality indexes (TQI), and component data.   

Strategic levels oversee the entire network, making decisions on capital investments, 

equipment acquisition, and long-term goals.  Despite the grand scale of these decisions, they do 

not necessitate big data but require concise and summarized datasets.  While originating from the 

lower levels, these data undergo additional processing steps to provide the necessary insights.   

Achieving the above objectives within this workflow poses challenges.  First, the enormity 

of data necessitates efficient storage, processing, and visualization methods, often utilizing cloud 

computing and asset management platforms (Zarembski, 2014).  Secondly, the railroad industry 

as a whole can be slow to adopt new technologies and processes, hindering the acceptance of 

data-driven decision-making practices.  This is due, in part, to how new methods, metrics, and 

tools integrate with existing FRA inspection requirements.  In contrast to other industries, 

railroads have been slower to establish a robust data pipeline that reaches the highest levels of 

the pyramid (Figure 1.14).  Using the framework provided in this research railroads will be able 

to process and digest huge amounts of data, collected using state-of-the-art equipment, to provide 

reliable and safe train movements and communicate to a variety of levels in the railway 

organizational structure. 
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CHAPTER 2: INVESTIGATION INTO THE RELATIONSHIP BETWEEN TRACK 

COMPONENT HEALTH AND TRACK GEOMETRY DATA 

 

2.1 Background 

Deviations from design track geometry conditions induce heightened dynamics within the 

vehicle-track system (Esveld, 2014).  These geometry irregularities, which include perturbations 

to alignment, curvature, elevation, and cross-level, not only affect the movement of trains by 

causing speed restrictions, but also influence passenger ride quality and accelerate degradation 

rates of both track geometry and track components (Esveld, 2014).   

Every component (e.g. rails, fasteners, crossties, ballast) within the track structure plays a 

crucial and unique role in maintaining the integrity of the railway track.  Rails are the primary 

structural members upon which trains operate, can experience stress points and wear patterns due 

to irregular geometry, especially when geometry defects are present, leading to premature 

deterioration (Zarembski et al., 2016).  Crossties support the rails, provide a means of 

distributing loads to the ballast, anchor the track against movement, and maintain track gauge 

(through engagement with fastening systems).  When crossties wear, decay, or split, they 

introduce localized instabilities in the track alignment and amplify the overall irregularities in 

track geometry (Alsahli et al., 2019).  Ballast is designed to facilitate drainage and attenuate 

crosstie loads to a level that can be passed to the subgrade without causing permanent 

deformation.  A lack of ballast can adversely influence track geometry, compromising its 

effectiveness and leading to instability in the vertical, lateral, and longitudinal directions 

(Zarembski et al., 2017).  Fastening systems (e.g. clips and spikes) secure the rails to the 

crossties.  Misalignments caused by irregular geometry can accelerate fastener deterioration 

which, if left unaddressed, can lead to heightened derailment risk.  Thus, understanding the 
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relationship between track geometry measurements and the condition of track components is of 

great importance to infrastructure managers.   

Previous studies on crosstie life prediction have made significant strides in development of 

methods and models for the prioritization of railway track maintenance.  Zarembski and Holfeld 

(1997) developed a model for the prediction of crosstie life using mathematical and statistical 

methods.  Their models considered various track characteristics, including curvature, tonnage, 

speed, axle load, rail section, and environmental conditions and predicted the lifespan of timber 

crossties with cut spikes - which represent over 90% of the US railroad network.  Soufiane et al. 

(2022) extended the exploration of crosstie life by investigating how crosstie longevity is 

affected by adjacent crosstie failures.  Their research developed a dynamic machine learning 

model that considered the gradual deterioration of all crossties as a function of time (Soufiane et 

al., 2023).  Notably, both studies utilized data collected from Aurora®, an automated crosstie 

inspection tool that is owned and operated by Loram Technologies, Inc.   

While these studies provided valuable insight into crosstie health, their focus did not 

include other components or the interaction of components within the railway track system.  

Incorporating a broader analysis encompassing all track components could offer a more 

comprehensive understanding of the railway infrastructure's overall condition, enabling more 

accurate predictions and targeted maintenance strategies.  By integrating data on crossties, 

ballast, fastenings, and other components into similar predictive models, railways can further 

improve their ability to ensure safe operations and long track component and system life cycles.   

 



 

28 

2.2 Introduction 

In this chapter, the relationship between geometry and component inspection data will be 

investigated using statistical approaches.  These approaches and applications will be compared 

across different components using revenue service data from a Class I railroad mainline as the 

subject test corridor.  Unlike previous studies such as in Alsahli et al. (2019), which focused 

solely on locations with geometry defects, this investigation will encompass a holistic evaluation 

that is independent of geometry condition and track component heath.  Both geometry and 

component health test data were collected coincident with one another for this research effort.     

 To facilitate this comparative analysis, the subdivision that was selected for the test 

corridor will be divided into fixed-length windows of 30 feet (9.14 m) as presented in Section 

2.6.  Subsequently, an aggregation function will be applied (Section 2.7) that aligns with 

established FRA track geometry thresholds (Table 1.3).  Results from the aggregation functions 

for each window are then analyzed using a correlation matrix, which allows for the calculation 

and interpretation of the Spearman correlation index (Daniel, 1990).   

It is important to note that this study will focus on the relationship between a single 

geometry run and a corresponding single component inspection run.  This approach aims to 

capture a snapshot (in the time and tonnage domain) of both geometry conditions and component 

rating at a specific time step, offering a detailed understanding of their concurrent conditions.  

Future work will cover the relationship between the degradation of both components as a 

function of time, using the framework that will be presented in Chapter 3.   
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2.3 Data Collection 

The data for this project was collected over a 115-mile (185 km) section of a Class I 

railroad subdivision in the southern US.  The subdivision is primarily single track with periodic 

passing sidings and one 10-mile (16 km) double track segment.  The route is mostly tangent 

track with occasional shallow curves and three moderate curves of approximately 6.5 degrees.  

The line is made up of approximately 72% timber crossties and 28% concrete crossties.  The 

concrete crossties were installed in the 1990’s and have either Fastclips or e-clips.  The concrete 

crossties are currently being replaced by timber crossties due to maintenance challenges.  Cut 

spikes are used for most of the timber crossties, with the exception of the 6.5-degree curves 

which have victor plates and e-clips.  Gauge face rail lubricators are used on this corridor.  The 

track is maintained to FRA Track Class 4 and the timetable maximum operating speed for freight 

trains is 60 miles per hour (96 km/h).  There are no regularly scheduled passenger trains 

operating on the route.  The tracks are well maintained and are in good condition overall.   

The component inspection data collected for this research were obtained during seven data 

collection efforts during calendar years 2021-2023.  In total, approximately 600 miles (965 km) 

of data were collected (Table 2.1).  
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Table 2.1: Component data collection campaigns 

Data 
Collection 
Campaign 
(number) 

Collection Date 
(month/day/year) 

MP Start 
(milepost) 

MP End 
(milepost) 

Length 
(miles) 

Interval 
between 

inspections 
(days) 

1 12/4/2021 587.99 695.45 107.46 - 

2 1/30/2022 587.48 695.56 108.08 57 

3 3/18/2022 587.99 683.21 95.22 47 

4 
6/2/2022 587.98 648.95 60.97 

76 
6/3/2022 649.96 685.24 35.28 

5 
10/19/2022 587.99 640.39 52.40 

139 
10/20/2022 641.02 648.68 7.66 

6 11/17/2022 587.90 694.73 106.83 28 

7 6/21/2023 587.97 658.45 70.48 216  

 

At the start of the project the target inspection interval was 60 days.  Upon collection, 

processing, and review of the initial datasets the research team determined that this interval was 

too short to detect any major changes in the component condition.  As such, the inspection 

interval was increased to allow for more component degradation between consecutive inspection 

runs.   

Geometry data were collected using ATGMS mounted in boxcars operated by the Class I 

host railroad.  This ATGMS boxcar runs on a premium intermodal train that operates over the 

corridor and passes over the route between two to three times per week.  To minimize the large 

volume of data required for this project, an average interval of 30 days between inspections was 

selected for down sampling of geometry data.  The period of geometry data sampling was from 

June 2021 to April 2023 and comprised of 24 geometry inspections (Table 2.2).  This provided a 

sufficiently large sample size to facilitate data trending (Section 1.2.1).   
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Table 2.2: Geometry data collection campaigns 

Data 
Collection 
Campaign 
(number) 

Collection Date 
(month/day/year) 

MP Start 
(milepost) 

MP End 
(milepost) 

Length 
(miles) 

Interval 
between 

inspections 
(days) 

1 6/6/2021 587.04 697.00 109.96 - 

2 7/12/2021 587.04 697.00 109.96 36 

3 7/16/2021 586.96 697.00 110.04 4 

4 9/12/2021 586.80 663.33 76.53 58 

5 10/1/2021 587.00 697.00 110.00 19 

6 ½/2022 587.01 697.00 109.99 93 

7 1/30/2022 586.80 697.00 110.20 28 

8 2/8/2022 586.80 697.00 110.20 9 

9 2/15/2022 587.00 697.00 110.00 7 

10 3/27/2022 600.07 697.00 96.93 40 

11 4/6/2022 593.90 695.22 101.31 10 

12 4/15/2022 606.14 619.44 13.30 9 

13 5/22/2022 586.80 697.00 110.20 37 

14 5/26/2022 638.55 696.83 58.28 4 

15 6/2/2022 596.89 697.00 100.11 7 

16 7/13/2022 586.80 697.00 110.20 41 

17 9/19/2022 586.80 697.00 110.20 68 

18 10/15/2022 586.80 697.00 110.20 26 

19 10/19/2022 586.80 697.00 110.20 4 

20 1/30/2023 586.80 697.00 110.20 103 

21 2/24/2023 586.80 697.00 110.20 25 

22 3/8/2023 586.80 697.00 110.20 12 

23 3/10/2023 586.80 697.00 110.20 2 

24 4/29/2023 586.80 697.00 110.20 50 

 

Additionally, geometry data from collection runs in close proximity to component 

inspection runs were selected given the focus of this project is the direct comparison of 

component heath data and track geometry data.  In total, 2,428 miles (3,907 km) of geometry 

data ware used, made up of 5,280 samples per mile (3,280 per km) and a total data set of 

12,824,161 rows.   
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2.4 Data Processing and Storage 

Due to the substantial volume of data generated, processed, and used in this research, local 

data processing and storage was impractical.  In response, a scalable and efficient approach was 

adopted.  All CSV files containing data from both geometry and component inspections were 

transferred to the Microsoft Azure cloud computing environment.  Within Azure, advanced data 

processing techniques were applied utilizing PySpark notebooks, a powerful tool known for its 

ability to handle large-scale data processing tasks.   

Upon completion of the data processing steps, the refined data was then stored in a more 

optimized format.  Specifically, the processed data were saved as Parquet files, a columnar 

storage file format that is highly efficient for data analytics purposes.  This format not only 

ensures data integrity but significantly reduces storage space requirements, facilitating effective 

management and analysis of extensive datasets.   

 

2.5 Data Alignment 

The effective alignment of diverse railroad track condition datasets poses a significant 

challenge.  Ensuring seamless comparison across disparate inspection runs and tools, each 

operating with distinct sample distances, demands sophisticated alignment methodologies.  In 

this project, the use of 30-foot (9.14 m) windows offered a strategy to mitigate the impact of 

alignment errors over the window’s length (Neuhold et al., 2020).  It is worth noting that the 

geometry data, though collected using the same system, often originated from different 

inspection vehicles.  However, alignment accuracy remained consistent due to the uniformity of 

the location determination systems across different vehicles.   
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An initial approach for component data alignment involved synchronizing the data with the 

nearest geometry inspection through Dynamic Time Warping (DTW) as outlined by Palese et al. 

(2020) based on the GPS coordinates.  This method, described theoretically by Salvador and 

Chan (2007), was initially designed for aligning time-series data for applications such as 

movement and speech recognition.  The DTW algorithm computes the piecewise distance 

between two signals, generating a distance matrix.  Given the computational intensity of this 

process, cloud computing was imperative.  Prior studies explored methods to minimize 

computational costs by altering signal resolutions and implementing constraints on the matrix 

size (Xu et al., 2015).  DTW operates by finding the shortest path, known as the warping path, 

between the end points of the signals.  This path permits the stretching or shrinking of signals, a 

critical capability when aligning geometry data prone to errors.  The length of this path can be 

used as a similarity proxy between two signals.   

Although the DTW method produced fair alignment between the datasets, there was still 

room to improve the process with the objective of achieving tie-by-tie alignment between 

multiple component inspection runs.  Since the system outputs the downward images of the 

tracks, it is possible to identify specific fixed assets (e.g. grade crossings, switch points, and 

wayside defect detectors) that do not commonly change over time, and relate those with the 

Positive Train Control (PTC) database provided by the railroad.  The PTC database contains the 

milepost for each asset and is the same database used by the ATGMS for data collection.  After 

identifying these assets, linear interpolation of the milepost is used between assets (Figure 2.1).  

This procedure yields good results when the distance between fixed assets is small (c.a. less than 

one mile).  However, as the distance increases, the accuracy diminishes.   
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Figure 2.1: Alignment between PTC database location and component inspection data 

 

Future work will apply DTW algorithms between fixed assets in lieu of linear 

interpolation.  This may increase the accuracy of the alignment and is also computationally 

feasible for locations in which the distance  between assets is longer.  This is possible given the 

start and end points match and the warping matrix can be simplified.  The longest such distance 

on our test corridor is approximately three miles long. 

 

2.6 The Windowing Process 

Windowing, also known as track segmentation, is a crucial process in railway track 

analysis in which track is divided into segments with similar characteristics and expected 

behavior over time (Tzanakakis, 2013).  Researchers have employed different strategies for 

windowing (Table 2.3) and generally aim to strike a balance between accuracy and data 

availability.   
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Table 2.3: Track data windowing methods and applications 

Research Question 
Windowing 

Interval 
Reference 

Generic degradation model 
Variable, 

characteristic 
based 

Jovanovic, 2004; Guler et al., 2011; 
Tzanakakis, 2013 

Degradation between tamping cycles 16.4 ft (5 m) Neuhold et al., 2020 

Degradation between tamping cycles 200 ft (60.96 m) Goodarzi et al., 2020 

Different TQI Comparison 328 ft (100 m) Offenbacher et al., 2020 

TQI Development 528 ft (160.9 m) Sung, 2005 

Geometry defects prediction 528 ft (160.9 m) Sharma et al., 2018 

Track quality prediction 984.5 ft (200 m) Quiroga and Schnieder, 2010 

Effects of tamping in track quality 984.5 ft (200 m) Andrews, 2013 

Long term degradation model 1640 ft (500 m) Fendrich and Fengler, 2019   

 

Researchers have chosen variable window lengths based on factors such as asset 

characteristics (e.g. curvature, tunnels, bridges, turnouts, crossings), maintenance records (e.g. 

crosstie and rail type, material, and age), and operational data (e.g. axle load, maximum speed, 

tonnage).  Using asset characteristics provides a nuanced representation of track segments, 

especially in network-wide studies.  However, it demands extensive and specific data, which is 

not always readily available.   
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In contrast, other researchers have opted for fixed windows.  Fixed windows are 

predefined segments of consistent length.  The advantage of fixed windows lies in the simplicity 

of data analysis; it reduces the complexity of computations by ensuring uniform segment sizes.  

This approach is particularly useful when dealing with large datasets, making analysis more 

manageable.   

A combination of both methods is often utilized to capitalize on the advantages of each, 

provided the necessary data are available.  In this hybrid approach, fixed windows are employed, 

and each window is tagged with information indicating its specific characteristics (e.g. whether it 

is a tunnel, switch, or a specific crosstie type).  This hybrid method leverages the simplicity of 

fixed windows while incorporating detailed information about each segment, thus offering a 

balanced approach to track segmentation and data analysis.   

Shorter windows ranging from 31 to 62 feet (10 to 20 meters) are commonly used for 

generating detailed maintenance plans for execution by local track maintenance forces 

(Jovanovic, 2004).  These shorter windows allow precise analyses and are instrumental in the 

scheduling of tamping activities.  Longer windows ranging from 1,640 to 3,280 feet (500 to 1000 

meters) are useful for budgeting and long-term prediction on the order of 30 to 50 years (Guler et 

al., 2011).  Additionally, even longer sections spanning 3.1 to 12.5 miles (5 to 20 km) are 

employed for planning the deployment of large capital maintenance equipment such as ballast 

undercutters or track renewal machines, as well as for conducting network-wide assessments 

(Guler et al., 2011).   

The selection of an appropriate window length is crucial to the modeling process and 

should align with the specific research objectives and hypotheses under investigation.  Opting for 

longer windows (e.g. 52.8 feet (16.1 meters)) results in larger sections containing approximately 
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30 crossties, potentially diluting the impact of defective components within that window.  

Choosing a 30-foot (9.14 meter) window reduces the number of crossties to 18, intensifying the 

influence of defective components compared to a longer window.  To best achieve the objectives 

of this research, a shorter fixed window of 30 feet (9.14 meters) was chosen to ensure a more 

pronounced effect of defective components.   

Additionally, the windowing process plays a role in addressing the challenges posed by 

poorly aligned datasets (Neuhold et al., 2020).  Even if two data collection runs remain 

misaligned after the alignment process outlined in Section 2.4, as long as the error falls within 

the window length, it does not pose a significant issue.  In contrast, execution of a sample-by-

sample analysis necessitates perfect alignment of foot-by-foot data which requires substantial 

time and effort.  The appropriate and strategic use of windows can alleviate the burden of 

achieving precise alignment, thereby ensuring more efficient data analysis.   

The use of fixed windows offers several advantages in the analysis of continuous data (e.g. 

geometry, rail wear, and component health).  Breaking down continuous datasets into discrete 

segments significantly reduces the volume of data thus making it more manageable for analysis.  

Additionally, fixed windows enable the comparison of datasets collected at different sampling 

rates, a common challenge encountered when comparing different track-focused datasets.  For 

instance, geometry data are typically collected every foot, while component data are organized 

on a crosstie-by-crosstie basis (as explained in Chapter 1).  With a crosstie spacing of 20 inches 

(50.8 cm), each crosstie would be associated with one or two geometry samples.  This would 

require a very precise alignment technique between two datasets captured with different 

sampling rates, the complexity of which falls outside the scope of this research.  In summary, 

applying the same fixed windowing process to both datasets reduces the need for meticulous 
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alignment, standardizes the data, and organizes it in a manner that facilitates comparative 

analyses.   

 

2.7 The Data Aggregation Function 

To effectively reduce the amount of continuous data generated, it is necessary to apply a 

function that takes the continuous data for each window and outputs a single representative value 

for each window.  This is referred to as an aggregation function (Table 2.4), which can be 

developed to map to the required thresholds imposed by the FRA (Table 1.3).   
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Table 2.4: Aggregation functions for track inspection parameters 

Inspection 
Type 

Parameter Aggregation Function 
Threshold defined 

by the FRA? 

Geometry 

Gauge Maximum Yes 

Twist/Warp Maximum of the absolute value Yes 

Alignment** Maximum, Minimum and 
Standard Deviation 

Yes, maximum and 
minimum 

Profile** Maximum, Minimum and 
Standard Deviation 

Yes, maximum and 
minimum 

TQI Maximum No 

Crosslevel Average Yes* 

Component 
 

Superficial Fouling Sum No 

Defective Crossties Count Yes* 

% of Defective Crossties Normalization**** No 

Crosstie Rating Average No 

Weighted Crosstie 

Rating*** 
Maximum No 

Defective Fasteners Count No 

% of Defective Fasteners Normalization**** No 

Defective Tie Plates Count No 

% of Defective Tie Plates Normalization**** No 

Defective Spikes Count No 

% of Defective Spikes Normalization**** No 

* Not directly defined.   
** Both sides (left and right) for 62’ chord length and space curve channels.   
*** As defined by Alsahli et al. (2019). 
**** Dividing the number of defective components by the total number of that component in the 
window.   

 

Through the application of an aggregation function the trending framework can be used to 

predict when a geometry defect will occur within a given window.  The aggregation function can 

also be related to track quality.  Track Quality Index (TQI) is a broad term used to describe a 

mathematical relationship that describes the overall quality of track.  The most commonly 
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accepted and used TQI is the average standard deviation of profile (Audley and Andrews, 2013; 

Offenbacher et al., 2020), which is a measure of the roughness of the track in a certain location.   

Each measured parameter can have one or multiple aggregation functions applied to it 

depending on the purpose of the analysis.  For gauge measurements, for example, the 

aggregation function can be the maximum value within each window.  A maximum value works 

well for aggregating data given gauge degradation leads to wider gauge and the value increases 

in the positive direction as a function of time.  In the case of twist and warp measurements, 

which can take on either positive or negative values, the maximum function should be combined 

with an absolute value function since there is no practical difference between positive and  

negative values.  For measurements that can have positive and negative values that indicate 

degradation of interest, such as alignment and profile, both maximum and minimum functions 

should be applied.  For some specific measurements, such as cross level and rail wear the 

average value can be returned.  Twenty seven unique geometry parameters were studied in this 

research.   

For component inspection data, which are captured at a sampling rate lower than what is 

used for geometry, a simple counting function can be used.  For example, counting the number 

of defective crossties in a certain window or the average condition of the crossties (Alsahli et al., 

2019) and considering the range from 1 (good) to 3 (defective).  One could also consider the 

number of a specific model of fasteners to provide an inventory of different systems.  Simply 

counting the defective components makes the aggregated data easy to interpret for field 

personnel that may need to inspect that section prior to planning and executing maintenance.  

The number of defective components can be divided by the total number of that specific type of 
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component to obtain a normalized (percentage) number of defective components in that section.  

In this research effort I will study 11 component inspection parameters.   

The influence length of a TQI plays an important role in its calculation.  TQIs can be 

calculated using either moving or fixed windows.  By using moving windows, the calculations 

are influenced less by bad spots and the number of samples are not reduced.  Thus, for every 

sample there will be an associated TQI calculated, increasing required memory and 

computational costs.  On the other hand, when using fixed-length windows, if there is a problem 

on the border of two windows, both windows will be marked as a defect thus increasing the 

length identified for maintenance (Neuhold et al., 2020).  To mitigate this effect the TQI used in 

my research will be calculated using a 200 feet (60 m) moving window (Goodarzi et al., 2020) 

(Equation 2.1).  Subsequent to that, the maximum over the fixed 30 feet (9.14 m) window will 

also be calculated.   

 

𝑇𝑄𝐼 = MAX(𝑆𝐷 (
𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝐿𝑒𝑓𝑡 + 𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑅𝑖𝑔ℎ𝑡 

2
)

𝑜𝑣𝑒𝑟 200 𝑓𝑒𝑒𝑡

)𝑜𝑣𝑒𝑟 30 𝑓𝑒𝑒𝑡 Eq. 2.1 

 

 

2.8 Methodology 

For each 30 ft (9.14 m) window, both of the aforementioned component and geometry 

metrics were calculated and then compared.  This process was repeated for all combinations of 

runs to account for different stages of degradation and maintenance cycles.  Images generated by 

LRAIL were used to validate component condition.  Scatter plots and correlation matrices, using 

the Spearman correlation index, were also used to identify relationships.   
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2.9 Crosstie Condition 

The first step in the analysis of crosstie condition is to check for gauge defects.  There were 

very few geometry defects in all datasets from the test section, showing that this subdivision is 

well-maintained.  In one location of tangent track constructed with concrete crossties, a yellow 

tag wide gauge defect (e.g. one class higher) was found with a maximum value of 0.86 in (21.8 

mm) (Figure 2.2).  This condition is not yet a concern for the railroad, since the safety (red) 

threshold was not reached, but maintenance in this location should be planned.   

 

Figure 2.2: Gauge strip chart for the first example window 

 

The crosstie condition was assessed using the metrics described in Section 2.7.  There were 

15 concrete crossties within this zone, four of which were marked as defective (condition two, 

black bounding box) and three were identified as poor (condition one, bounding box red).  The 

remaining eight crossties were marked as good (condition zero, bounding box green).  A 

summary of the crosstie metrics for this section is provided in Table 2.5.   
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Table 2.5: Crosstie metrics for the first example window 

Number of 
defective crossties 

Normalized defective 
crossties (%) 

Average crosstie 
rating 

Weighted crosstie 
rating 

4 26.67 1.73 2.15 

 

By checking the images for this section (Figure 2.3), it is noteworthy that the failed 

crossties are not in sequence – a condition common for a wide gauge defect.  In fact, every fifth 

crosstie has been intentionally broken to support a capital replacement strategy driven by the 

company, which has no effect on the safety for this section.   

 

 

Figure 2.3: Range images for the first example window 

 

In another section containing a 6.75-degree curve constructed with timber crossties, a red 

tag wide gauge defect was found with a maximum value of 1.26 inches (32 mm) (Figure 2.4).  In 

this location, no failed crossties were found and the overall condition is very good, although 

some contaminated ballast is present (Figure 2.5).   
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Figure 2.4: Gauge strip chart for the second example window 

 

 

 

Figure 2.5: Range images for the second example window 

 

These two example locations reveal that – even when there is a geometry defect – the 

crosstie condition can still be good.  The opposite is also true – when the crossties are degraded – 

the geometry may not have a FRA geometry defect.  This trend is observed throughout the entire 
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dataset when reviewing results from other variables.  The scatter plot (Figure 2.6) shows no 

visible relationship between maximum wide gauge and average crosstie rating.  The correlation 

matrix (Table 2.6: Correlation matrix for ) also does not show any relevant number for other 

variables.   

 

Figure 2.6: Scatter plot maximum gauge and average crosstie rating per window 
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Table 2.6: Correlation matrix for crosstie data 

 

 

2.10 Fastener Condition 

Defective fasteners can lead to wide gauge, poor rail (roll over) restraint, and Rail Seat 

Deterioration (RSD).  While traditional track geometry systems can quantity gauge and gauge 

deviations, rail restraint and RSD are best quantified by measuring rail cant or through the use of 

Geometry Parameter

Number of 

Defective 

Ties

Average 

Crosstie 

Rating

Normalized 

Defective 

Crossties (%)

Weighted 

Crosstie Rating

Max Gauge 0.06 0.03 0.06 0.04

Min Left Profile 62 -0.07 -0.02 -0.07 -0.02

Max Left Profile 62 0.06 0.01 0.06 0.02

Min Right Profile 62 -0.07 -0.01 -0.07 -0.02

Max Right Profile 62 0.06 0.01 0.06 0.01

Min Left Profile Space Curve -0.05 -0.03 -0.05 -0.03

Max Left Profile Space Curve 0.00 0.00 0.00 0.00

Min Right Profile Space Curve -0.06 -0.03 -0.06 -0.03

Max Right Profile Space Curve 0.00 0.00 0.00 0.00

Min Left Alignment 62 -0.01 -0.01 -0.01 -0.02

Max Left Alignment 62 0.01 0.01 0.01 0.02

Min Right Alignment 62 -0.02 0.00 -0.02 -0.01

Max Right Alignment 62 0.01 0.00 0.01 0.00

Min Left Alignment Space Curve -0.01 0.00 -0.01 0.00

Max Left Alignment Space Curve 0.00 -0.01 0.00 -0.01

Min Right Alignment Space Curve -0.01 0.00 -0.01 0.00

Max Right Alignment Space Curve 0.00 -0.01 0.00 -0.01

Max TQI 0.07 0.04 0.08 0.05

Max Std. Mean Alignment -0.01 0.00 -0.02 0.01

Max Std. Left Profile 62 0.07 0.04 0.07 0.05

Max Std. Right Profile 62 0.08 0.03 0.08 0.04

Max Std. Left Alignment 62 -0.01 0.02 -0.01 0.03

Max Std. Right Alignment 62 -0.01 0.01 -0.01 0.02

Average Cross Level 0.01 0.01 0.01 0.01

Average Curvature 0.00 -0.01 0.00 -0.01

Max Twist 31 0.06 -0.03 0.06 -0.03

Max Warp 62 0.07 -0.04 0.07 -0.03

Normalized Gauge 0.06 0.03 0.06 0.04
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a Gauge Restraint Measurement System (GRMS).  No GRMS or rail cant data were available for 

our test section, thus wide gauge will be used as a geometry-based proxy for fastener condition.   

In the example section of tangent track constructed of concrete crossties and Fastclips 

shown in Figure 2.7 there are 61 fasteners identified by the LRAIL system.  Seventeen were 

identified as loose (purple marker) and the remaining 44 were found to be in good condition 

(blue marker).  The loose fasteners are primarily located on the gauge side of right rail (bottom 

portion of Figure 2.7).   

 

 

Figure 2.7: Range images for section with defective fasteners 

 

The strip chart for this section (Figure 2.8) does not show any relevant gauge deviation, 

although the gauge seems to have high variation over a relatively a short distance.   
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Figure 2.8: Strip chart for the section with defective fasteners 

  

The scatter plot of maximum gauge and normalized defective fasteners (Figure 2.9) do not 

present any obvious relationship.   

 

Figure 2.9: Scatter plot of normalized defective fasteners and maximum gauge deviation 
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The correlation matrix (Table 2.7) also fails to reveal a correlation with other parameters as 

all of the values are close to zero.  Higher values (closer to 1 or -1) indicate stronger correlations.  

Positive values show direct correlation (e.g. both parameters are getting positive or negative 

together) and negative values presents inverse correlation (e.g. one parameter gets more positive 

and the other one gets more negative). 
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Table 2.7: Correlation matrix for fastener data 

 

 

Geometry Parameter

Number of 

Defective 

Fasteners

Normalized 

Defective Fasteners 

(%)

Max Gauge 0.09 0.08

Min Left Profile 62 -0.07 -0.06

Max Left Profile 62 0.07 0.05

Min Right Profile 62 -0.07 -0.06

Max Right Profile 62 0.07 0.06

Min Left Profile Space Curve -0.03 -0.03

Max Left Profile Space Curve 0.03 0.02

Min Right Profile Space Curve -0.03 -0.03

Max Right Profile Space Curve 0.04 0.02

Min Left Alignment 62 -0.05 -0.04

Max Left Alignment 62 0.05 0.04

Min Right Alignment 62 -0.05 -0.04

Max Right Alignment 62 0.05 0.04

Min Left Alignment Space Curve -0.02 -0.02

Max Left Alignment Space Curve 0.00 0.00

Min Right Alignment Space Curve -0.03 -0.02

Max Right Alignment Space Curve 0.00 0.00

Max TQI 0.09 0.08

Max Std. Mean Alignment 0.04 0.03

Max Std. Left Profile 62 0.09 0.07

Max Std. Right Profile 62 0.09 0.08

Max Std. Left Alignment 62 0.04 0.04

Max Std. Right Alignment 62 0.04 0.04

Average Cross Level -0.01 -0.02

Average Curvature 0.00 -0.01

Max Twist 31 0.07 0.06

Max Warp 62 0.08 0.07

Normalized Gauge 0.09 0.08
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2.11 Tie Plate Condition 

Tie plates are components within the track system that support the rails and distribute loads 

to the crossties at a level that should not exceed the compressive strength of the timber, thereby 

avoiding plate cutting.  Their condition is mostly assessed through rail cant which identifies plate 

cutting, and lateral tie plate movement can be assessed using GRMS.  In the case that neither 

type of data are available wide gauge may be used as a proxy if it is collected under load.   

Figure 2.10 is an example window of 19 timber crossties on tangent track that is located 

approximately 13 ft (4 m) from a highway-rail grade crossing.  It contains 15 defective tie plates, 

most of them sunken (red bounding box) resulting in 37.5% normalized defective tie plates.  The 

example section also has three failed crossties (condition three, black bounding box), two in fair 

condition (condition two, red bounding box), and the remaining 15 crossties are good (condition 

one, green bounding box).  The average rating of the 19 crossties within this window is 2.15.   

 

 

Figure 2.10: Example window for tie plate condition 

 

Although some defective crossties are present, the maximum gauge deviation found in the 

window is 0.22 in (5.6 mm).  This may be explained by the fact that even sunken tie plates are 

capable of holding gauge.  However, since it is a section of tangent track, there is not enough 
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lateral force to cause gauge widening of a magnitude that is measurable by the ATGMS boxcar.  

The scatter plot (Figure 2.11) and the correlation matrix (Table 2.8) also do not show any explicit 

correlation.  

 

Figure 2.11: Scatter plot of maximum gauge deviation and normalized defective tie plates 
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Table 2.8: Correlation matrix for tie plate data 

 

2.12 Cut and Screw Spike Condition 

Cut and screw spikes are track components that hold down both the tie plate and the rails.  

They can be either driven or screwed into the crosstie.  Uplift of the rails causes the spikes to 

Geometry Parameter

Number of 

Defective Tie 

Plates

Normalized 

Defective Tie Plates 

(%)

Max Gauge 0.01 0.02

Min Left Profile 62 -0.02 -0.04

Max Left Profile 62 0.01 0.03

Min Right Profile 62 -0.01 -0.03

Max Right Profile 62 0.00 0.02

Min Left Profile Space Curve -0.02 -0.03

Max Left Profile Space Curve 0.00 0.01

Min Right Profile Space Curve -0.01 -0.02

Max Right Profile Space Curve 0.00 0.00

Min Left Alignment 62 -0.01 -0.01

Max Left Alignment 62 0.02 0.02

Min Right Alignment 62 0.00 0.00

Max Right Alignment 62 0.00 0.00

Min Left Alignment Space Curve 0.00 0.00

Max Left Alignment Space Curve 0.00 0.01

Min Right Alignment Space Curve 0.00 0.00

Max Right Alignment Space Curve 0.00 0.00

Max TQI 0.05 0.07

Max Std. Mean Alignment 0.03 0.03

Max Std. Left Profile 62 0.04 0.07

Max Std. Right Profile 62 0.03 0.05

Max Std. Left Alignment 62 0.05 0.05

Max Std. Right Alignment 62 0.03 0.04

Average Cross Level 0.00 0.00

Average Curvature 0.00 0.00

Max Twist 31 -0.02 0.00

Max Warp 62 -0.02 0.00

Normalized Gauge 0.01 0.02
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loosen, which lessens contact between the rail and tie plate and reduces the restraint of the rail.  

When spikes break due to high longitudinal stresses the fracture surface is commonly around 1.5 

in (38.1 mm) below the top of the crosstie surface, making these defects difficult to detect 

(Roadcap et al., 2019).  Currently, none of the commercially available track inspection systems 

can detect this failure mode.  However, using a 3D inspection system that is capable of detecting 

height can give some information on the health of the spikes.  The threshold for a spike to be 

considered defective (due to being raised) is 1 in (25 mm) above the surface of the tie plate.   

The example window in Figure 2.12 is timber crosstie track located on a ballasted deck 

bridge at the transition from concrete crossties.  There are 99 defective (high) spikes in this 

section (almost 79% of all spikes) and only three defective crossties.  The track gauge does not 

show any abnormal values other than being slightly tight toward the end of the bridge (Figure 

2.13).  Additionally, there were no visible relationships observed in the scatter plot (Figure 2.14) 

and correlation matrix (Table 2.9).   

 

 

Figure 2.12: Example window for defective spikes 
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Figure 2.13: Strip chart for the section with defective spikes 

 

 

 

Figure 2.14: Scatter plot of maximum gauge deviation and normalized defective spikes 
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Table 2.9: Correlation matrix for spike data 

 

2.13 Rail Anchor Condition 

The primary function of rail anchors is to restrain the rails from moving longitudinally 

through engagement with the side of the crosstie.  Anchors are most commonly used with timber 

Geometry Parameter

Number of 

Defective 

Spikes

Normalized 

Defective Spikes 

(%)

Max Gauge 0.00 -0.01

Min Left Profile 62 0.00 -0.03

Max Left Profile 62 0.00 0.02

Min Right Profile 62 0.00 -0.03

Max Right Profile 62 -0.01 0.02

Min Left Profile Space Curve -0.02 -0.03

Max Left Profile Space Curve 0.00 0.02

Min Right Profile Space Curve -0.02 -0.02

Max Right Profile Space Curve 0.00 0.01

Min Left Alignment 62 -0.03 -0.03

Max Left Alignment 62 0.03 0.03

Min Right Alignment 62 -0.01 -0.02

Max Right Alignment 62 0.02 0.02

Min Left Alignment Space Curve 0.01 0.01

Max Left Alignment Space Curve 0.00 0.00

Min Right Alignment Space Curve 0.01 0.01

Max Right Alignment Space Curve 0.00 0.00

Max TQI 0.06 0.10

Max Std. Mean Alignment 0.08 0.08

Max Std. Left Profile 62 0.06 0.09

Max Std. Right Profile 62 0.05 0.08

Max Std. Left Alignment 62 0.10 0.10

Max Std. Right Alignment 62 0.08 0.08

Average Cross Level 0.02 0.02

Average Curvature 0.02 0.01

Max Twist 31 -0.03 -0.01

Max Warp 62 -0.03 -0.02

Normalized Gauge 0.00 -0.01
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crossties and cut spikes given these systems have negligible longitudinal restraint absent anchors.  

Proper anchor function requires engagement with the side of the crosstie.  If they are not, and 

there is a gap between the crosstie and anchor, they will not provide restraint until the crosstie is 

displaced enough to engage the anchor.  Therefore, the metric used to rate anchor performance is 

the distance between anchor and crosstie.  If this distance is more than 12 mm (0.47 in) the 

anchor is considered defective.   

The example section of track shown in Figure 2.15 is constructed of timber crossties, cut 

spikes, and anchors that are applied to each side of all crossties (fully box anchored).  The 

section is approximately 31 ft (10 m) from the facing point direction of a turnout, which explains 

the box anchoring based on typical railroad maintenance practices.  Outside of locations with 

high longitudinal stiffness such as turnouts and grade crossings, it is more common for every 

other crosstie to be anchored.  There are 18 crossties, none of which are defective.  Out of the 83 

anchors in this section, 32 are defective (38%).  All of the defective anchors are located on the 

left side of the crosstie, which may indicate that the rails are moving in that direction.  There are 

no geometry defects in this window.   

 

Figure 2.15: Example window for defective anchors 
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The correlation matrix (Table 2.10) shows a -0.13 correlation between the number of 

anchors and maximum gauge.  This would indicate that the more anchors that are present in a 

window, the tighter the gauge is.  However, this correlation is too weak to be visually observed 

in the scatter plot (Figure 2.16).   

 

Table 2.10: Correlation matrix for spikes data 

 

Geometry Parameter

Number of 

Defective 

Anchor

Number of 

Anchors

Max Distance 

to tie

Normalized 

Defective Anchors 

(%)

Max Gauge 0.00 -0.13 -0.05 -0.01

Min Left Profile 62 -0.02 0.08 0.01 -0.03

Max Left Profile 62 0.02 -0.07 -0.01 0.03

Min Right Profile 62 -0.02 0.08 0.01 -0.03

Max Right Profile 62 0.01 -0.08 -0.02 0.02

Min Left Profile Space Curve -0.02 0.02 -0.01 -0.02

Max Left Profile Space Curve 0.00 -0.03 0.00 0.01

Min Right Profile Space Curve -0.02 0.03 0.00 -0.02

Max Right Profile Space Curve 0.00 -0.04 -0.01 0.01

Min Left Alignment 62 0.00 0.01 -0.01 -0.01

Max Left Alignment 62 0.00 -0.02 0.01 0.01

Min Right Alignment 62 0.00 0.02 -0.01 -0.01

Max Right Alignment 62 0.00 -0.02 0.00 0.00

Min Left Alignment Space Curve 0.00 0.01 0.02 0.00

Max Left Alignment Space Curve 0.00 0.00 0.01 0.00

Min Right Alignment Space Curve 0.00 0.01 0.02 0.00

Max Right Alignment Space Curve 0.00 0.00 0.01 0.00

Max TQI 0.06 -0.05 0.02 0.06

Max Std. Mean Alignment 0.03 0.06 0.06 0.03

Max Std. Left Profile 62 0.05 -0.05 0.01 0.05

Max Std. Right Profile 62 0.05 -0.06 0.01 0.05

Max Std. Left Alignment 62 0.03 0.05 0.06 0.03

Max Std. Right Alignment 62 0.03 0.05 0.06 0.03

Average Cross Level 0.00 0.00 -0.01 -0.01

Average Curvature 0.01 0.02 0.00 0.00

Max Twist 31 0.01 -0.09 -0.02 0.01

Max Warp 62 0.01 -0.09 -0.02 0.01

Normalized Gauge 0.00 -0.13 -0.05 -0.01
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The two regions of concentrated data in Figure 2.16 located around 72 and 40 anchors are 

due to the typical anchoring patterns of all crossties and every other crosstie anchored.   

 

Figure 2.16: Scatter plot between maximum gauge deviation and anchor count 

 

2.14 Ballast Surface Fouling 

Fouled ballast is usually related to mud spots or other contaminated regions that include 

the intrusion of fine particles into the ballast later.  From a track geometry perspective it mostly 

influences vertical parameters, namely surface (Goodarzi et al., 2020).  The primary substructure 

inspection technology used in the rail industry is Ground Penetrating Radar (GPR).  While GPR 

can output the layers of track substructure and identify the boundary between ballast and sub-

ballast, LRAIL is capable of detecting superficial ballast fouling by comparing the grain sizes 

with normal ballast.  If ballast particles are too small, the system outputs the area as fouled.  The 

metric used for tracking areas of surface fouled ballast is the sum of fouled area per window.   
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The first example window (Figure 2.18) is located on a tangent with timber crossties.  It 

has a mud spot with a total fouled area of 20.8 ft2 (1.93 m2).  There is a yellow tag alignment 

defect and, although the profile does not show a defect, it varies considerably within the window 

(Figure 2.18).   

 

Figure 2.17: Example window for ballast surface fouling 

 

 



 

61 

 

Figure 2.18: Alignment and profile strip chart for section with superficial ballast fouling 

 

Although a few examples can be identified, when considering all the windows with 

superficial ballast fouling, there is no clear relationship between both variables when reviewing 

the scatter plot (Figure 2.19) and correlation matrix (Table 2.11).  The highest correlation index 

found was 0.11 with maximum gauge and maximum TQI (as defined in Equation 2.1).   
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Figure 2.19: Scatter plot between minimum left profile and superficial ballast fouling area 
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Table 2.11: Correlation matrix for superficial ballast fouling 

 

2.15 Conclusion 

A comparison of geometry and component datasets for the study corridor revealed no clear 

relationship between the two inspections.  Although some examples can be found where both 

data types show irregularities, this is not strong enough to provide a correlation when 

Geometry Parameter Ballast Superficial Fouling

Max Gauge 0.11

Min Left Profile 62 -0.05

Max Left Profile 62 0.05

Min Right Profile 62 -0.04

Max Right Profile 62 0.05

Min Left Profile Space Curve -0.03

Max Left Profile Space Curve 0.00

Min Right Profile Space Curve -0.03

Max Right Profile Space Curve 0.00

Min Left Alignment 62 -0.02

Max Left Alignment 62 0.02

Min Right Alignment 62 -0.02

Max Right Alignment 62 0.02

Min Left Alignment Space Curve 0.01

Max Left Alignment Space Curve -0.01

Min Right Alignment Space Curve 0.01

Max Right Alignment Space Curve -0.01

Max TQI 0.11

Max Std. Mean Alignment 0.05

Max Std. Left Profile 62 0.11

Max Std. Right Profile 62 0.10

Max Std. Left Alignment 62 0.05

Max Std. Right Alignment 62 0.05

Average Cross Level -0.01

Average Curvature 0.05

Max Twist 31 0.06

Max Warp 62 0.07

Normalized Gauge 0.11
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considering the whole subdivision, especially when including sections with and without 

irregularities.  Even when comparing windows that all contain geometry deviations, no 

relationship was found with component inspection data. 

This lack of relationship is likely due to two reasons.  First, a single 115-mile (185 km) 

subdivision is not statistically relevant to draw this type of relationship due to the lack of 

diversity of track components and maintenance scrutiny.  For example, a single subdivision is 

likely to have similar characteristics throughout, and it is difficult to find sections with different 

characteristics (e.g. track classes, tonnage, speed limits, grade, curvature), which makes the 

dataset more homogeneous and, thus, less statistically relevant.  Second, this subdivision is very 

well maintained, which reduces the number of defective geometry and or components, creating 

some unbalance in the datasets.  A statistically relevant dataset may require a network-level 

sampling of geometry and component data to better capture variability in track characteristics, 

components, maintenance procedures, and train operations. 

However, when two different datasets are correlated with each other, this usually means 

that one of them is not needed and can be considered redundant.  In this particular research 

problem, the lack or relationship between geometry and component inspection would indicate 

that both inspections should be carried out to best assess track component condition, efficiently 

and effectively plan maintenance activities, and ensure the safe movement of goods and people. 
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CHAPTER 3: TRACK DATA TRENDING 

 

3.1 Introduction 

As introduced and discussed in Chapter 1, railroads collect condition-related data on a 

variety of track components.  Measurements can be captured at either a fixed distance or at an 

interval based on a specific asset (e.g., every crosstie or turnout).  Measurements collected at a 

consistent interval (i.e. distance) along the track (e.g. rail wear and geometry) can be treated as a 

time series (Palese et al 2020) and visualized as a three dimensional (3D) graph (Figure 3.1).    

 

Figure 3.1: Conceptual three-dimensional qualitative graph of track geometry data 

 

The x-axis represents the location along the track, referenced by milepost, track stationing, 

or some other linear metric.  The y-axis represents the time domain, indicating when the 

measurement was taken, which can also be mapped to total accumulated tonnage or number of 



 

66 

axle passes, the latter of which is more common in transit applications.  The z-axis presents the 

data collected for a given type of measurement (e.g., rail wear, gauge, etc.).   

By breaking the 3D-graph (Figure 3.1) into two dimensions (2D), considering both the 

location and measurement axes, the data can be represented in a strip chart (Figure 3.2).  Strip 

charts are commonly used in the railroad industry for visualization of track-related data and were 

introduced in Section 1.2.2.8.  Each line on the graph represents a different data collection date.   

 

Figure 3.2: Example two-dimensional qualitative graph of track geometry data 

 

Returning to the 3D graphic shown in Figure 3.1 and using the date (y-axis) and 

measurement (z-axis) axes, it is possible to visualize changes over time (Figure 3.3). 
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Figure 3.3: Two-dimensional graph of geometry data over time 

 

Reducing the data points to a single value for each measurement requires a two-step 

process.  First, the data must be windowed as discussed in Section 2.6.  Second, a method for 

data aggregation within the window must be applied to generate a single value for each window 

(initially presented in Section 2.7).  These steps are critical to data processing and reduce the 

amount of data that is presented to the end user.  This type of data aggregation is consistent with 

upward movement in the pyramid (Section 1.4 and Figure 1.14).   

 

3.2 Track Age and Accumulated Tonnage 

The age of the track infrastructure and its components (represented on the x-axis) used in 

trending (modelling) refers to the life of the component (time since installation) or the time that 

has elapsed since the previous maintenance intervention.  Geometry has been shown to 

deteriorate linearly with tonnage and is quantified in units of MGT (Million Gross Tons) per year 

(Caetano and Teixeira, 2016) or time (Esveld, 2014).  For routes that have uniform traffic 

throughout the year (e.g. iron ore or coal-dominated routes) there is little difference between the 
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units of years or MGT.  For transit systems, which use comparatively lightweight rolling stock, 

the age of track and its components can be tracked by means of number of axle passes (Iwnicki 

et al., 2000).  The specific metric used will influence the deterioration rate output units given the 

unit will be determined by the age.  For example, if the standard deviation of track geometry 

profile and MGT are used, the degradation rate will be output in units of inches/MGT or 

mm/MGT.   

 

3.3 Track Degradation Model  

Generation of a railroad track degradation model can identify a maintenance activity (e.g. 

tamping) can be divided into three phases (Figure 3.4): 1) the rapid deterioration of track 

geometry quality due to initial ballast settlement immediately after tamping, usually between 0.5 

and 2 MGT (Lichtberger, 2005), 2) after the track is sufficient stabilized and starts to degrade 

linearly over the majority of the track’s life and 3) the increasingly rapid deterioration, which can 

be exponential, and should be avoided since it can pose risks to safety, due to the rapid decrease 

in track quality (Guler et al., 2011; Esveld, 2014; Offenbacher et al., 2023).   

 

Figure 3.4: Theoretical track deterioration behavior over time (Offenbacher et al., 2023) 
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Different models can be used to compare the degradation of track condition over time and 

tonnage.  Among the models that use only traditional computing and not machine learning, three 

models were selected for further evaluation in this research: 

• Linear: 

𝑌(𝑡) = 𝑎 ∗ 𝑡 + 𝑏 Eq. 3.1 

• Logarithmic: 

𝑌(𝑡) = 𝑎 ∗ ln(𝑡) + 𝑏 Eq. 3.2 

• Exponential: 

𝑌(𝑡) =  𝑒𝑎∗𝑡 ∗ 𝑏 Eq. 3.3 

 

Where Y(t) is the parameter at a certain time, t is time, and a and b are regression 

parameters.  The variable a is commonly used to describe the degradation rate and b is related to 

the initial value of the parameter.  I will evaluate the effectiveness of the three models by 

comparing the median values of the coefficient of determination (R2) error function to assess the 

most suitable regression model for each data aggregation function.   

 

3.4 Methodology 

To evaluate the suitability of the proposed trending frameworks for geometry and 

component data, three different regression models (Section 3.3) will be applied to the aggregated 

data (Section 2.7) within each of the chosen windows (Section 2.6).  The results of each model 

will be compared using R2 coefficients.  To compare all windows within the sample data the 

median R2 will be used.  Localized maintenance information was not available thus there was no 

means to easily identify locations that had unique maintenance and degradation cycles.   
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3.5 Results 

3.5.1 Geometry Data Trending 

Results of the regression models for track geometry are presented in Table 3.1, rank 

ordered by linear median R2.   

 

Table 3.1: Regression Results for Geometry Data 

Parameter 
Median R2 

Linear Log Exp 

Max TQI 0.126 0.058 0.123 

Max Gauge 0.119 0.082 0.115 

Min Left Profile Space Curve 0.086 0.049 0.071 

Max Left Profile Space Curve 0.086 0.049 0.074 

Min Right Profile Space Curve 0.082 0.046 0.069 

Min Left Alignment 62 0.080 0.050 0.063 

Max Left Alignment 62 0.080 0.050 0.075 

Min Right Alignment 62 0.079 0.049 0.061 

Max Std. Left Profile 62 0.079 0.050 0.075 

Max Right Profile 62 0.077 0.047 0.072 

Max Right Profile Space Curve 0.074 0.042 0.064 

Max Std. Right Profile 62 0.071 0.043 0.068 

Overall 0.049 0.033 0.042 

Max Left Alignment Space Curve 0.045 0.036 0.035 

Min Left Alignment Space Curve 0.044 0.035 0.029 

Min Right Alignment Space Curve 0.044 0.035 0.029 

Max Right Alignment Space Curve 0.043 0.036 0.034 

Max Left Alignment 62 0.043 0.029 0.038 

Min Left Alignment 62 0.043 0.029 0.030 

Min Right Alignment 62 0.041 0.028 0.028 

Max Right Alignment 62 0.039 0.028 0.034 

Max Twist 31 0.035 0.018 0.030 

Max Warp 62 0.034 0.015 0.030 

Average Curvature 0.021 0.012 0.019 

Max Std. Left Alignment 62 0.016 0.015 0.014 

Max Std. Right Alignment 62 0.015 0.010 0.013 

Average Crosslevel 0.011 0.029 0.018 
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The majority of the median R2 values are very low, and well below the value of 0.5 that is 

commonly used as a threshold between a reasonable or poor fit.  Additional details on the R2 

error function are provided in Section 3.6.2.   

The low median R2 values may be influenced by outliers which include measurement 

errors in frogs and grade crossings and the occurrence of flat lines, when the system is not 

capable of producing good measurements (e.g. low speed operation).  The measurements in 

windows with this issue (Figure 3.5) are noisy and those windows can be detected by a very low 

R2 value. 

 

Figure 3.5: Example track window with outliers 

 

Since geometry data were collected using an ATGMS, data cleaning is undertaken off of 

the vehicle in post processing within an asset management platform.  In a revenue service 

application with high frequency data collection (e.g. three times a week) outliers do not pose an 

challenge given the error would be diluted over multiple measurements.  However, in this project 

which consumes approximately one inspection run of data per month, outliers may decrease the 

R2 coefficient appreciably.  
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Track maintenance activities are expected to increase the quality of track, thereby 

generating significant changes to the parameters within that window (Goodarzi et al., 2020; 

Offenbacher et al., 2023).  When analyzing a single window, this change is noted by a significant 

drop in the data (Figure 3.6).  When maintenance is conducted, a new degradation cycle begins 

for that window and trending should be reset.  If the trend is not reset (e.g. considering all the 

maintenance cycles without separation) this may lead to a negative slope and a low R2 value, 

usually below 0.5.  Resetting the trend can increase the R2 for both maintenance cycles.  

Goodarzi et al. (2020) and Neuhold et al. (2020) have developed automated methods to detect 

maintenance based on the principles described here.  Since maintenance records were not 

provided from the partner railroad the maintenance cycle separation was not undertaken and this 

may have influenced the low R2 values. 

 

Figure 3.6: Example track window with maintenance activity 

 

In the context of this project R2 values measure how well the variance in one parameter 

(e.g. gauge) is explained by the other parameter (e.g. time).  This means, for example, that if the 
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gauge is not varying with time or tonnage the R2 will be very low (Figure 3.7).  This is a 

common occurrence when the tracks are well maintained and/or have very low degradation rates 

(e.g. a low slope).  While this does not present an issue in practice and only indicates that no 

maintenance is required in that section, it is likely to be reflected in low median R2 values. 

 

Figure 3.7: Example track window with low slope and correspondingly low R2 value 

 

TQI and maximum gauge are the parameters with the highest R2 values.  With the 

exception of the average of crosslevel, the linear regression model provides better median R2 

values than an exponential or logarithmic function.   

As identified by Esveld (2014), the linear degradation phase encompasses the majority of 

the life of the tracks, hence its higher R2 values.  The initial logarithmic and final exponential 

phases are difficult to model and are not the focus of this research.  These rates are important for 

modeling and tracking of initial degradation of ballast after tamping and other end-of-life 
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questions related to crossties and fastening systems.  The scope of this work is developing and 

validating a model to detect rate of change over the majority of the life of the track. 

For most of the aggregation functions the R2 value for both linear and exponential models 

were very close.  This is largely due to the fact that the parameters chosen for the exponential 

model were relatively small and it thereby demonstrated minimal curvilinear behavior.   

 

3.5.2 Component Data Trending 

The results of the component trending regression models are presented in Table 3.2.   

Table 3.2: Regression Results for Component Data 

Component Parameter 
Median R2 

Linear Log Exp 

Fouling Ballast Superficial Fouling 0.392 0.212 0.212 

Crosstie Average Crosstie Rating 0.299 0.184 0.299 

Crosstie Weighted Crosstie Rating 0.299 0.185 0.298 

Crosstie Normalized Defective Crossties 0.276 0.177 0.136 

Crosstie Number of Defective Crossties 0.276 0.181 0.142 

Tie Plate Normalized Defective Tie Plates 0.276 0.138 0.194 

Fastener Number of Defective Fasteners 0.274 0.210 0.109 

Tie Plate Number of Defective Tie Plates 0.274 0.137 0.193 

Anchor Number of Defective Anchors 0.274 0.122 0.240 

Anchor Normalized Defective Anchors 0.274 0.124 0.240 

Fastener Normalized Defective Fasteners 0.274 0.196 0.109 

Overall 0.274 0.162 0.197 

Anchor Number of Anchors 0.240 0.191 0.197 

Anchor Max Distance to Tie 0.209 0.192 0.156 

Spike Normalized Defective Spikes 0.166 0.139 0.118 

Spike Number of Defective Spikes 0.156 0.136 0.113 

 

Component data demonstrate similar behavior as geometry data, with both linear and 

exponential results lying very close to one another.  The aggregation functions that best explain 

crosstie degradation are average crosstie rating and weighted crosstie rating.  
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For other components, there is little difference between the absolute number of defective 

components in the window and the normalized number of defective components per window.  

This can be explained by the low variation in the number of components in each window since 

crosstie spacing is largely consistent throughout the test corridor.   

In summary, linear regression yields the highest median R2 values from among the three 

regression models, thus it was selected for use in this research.   

 

3.6 Discussion 

Compared to exponential and logarithmic regressions, the linear model has notable 

advantages.  Linear models are easy to interpret (Liao et al., 2022) given they are described by 

simple variables, thereby providing information to many levels of the railroad organizational 

structure.  Vulnerabilities of a linear track degradation model occur during early and late portions 

of the track life cycle.  These should be given due attention depending on the model’s objectives, 

but for most of the life cycle of track, its degradation is linear (Esveld, 2014). 

A linear model is most notably described by the slope (related to the degradation rate) and 

the intercept (related to the initial quality of maintenance) (Esveld, 2014).  Other parameters used 

in this research are the error function and last value obtained.  The error function is used to 

assess the goodness of the linear fit and identify outliers.  The last value obtained is relevant for 

data trending and indicates whether the segment is close to the specified defect threshold 

(Neuhold et al., 2020) (Figure 3.8).  These elements of linear trending will be described in more 

detail in the next sections. 
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Figure 3.8: Elements of the linear trending and track degredation prediction 

 

3.6.1 Slope 

The slope of the linearly-fitted line indicates the rate (or speed) at which the parameter is 

degrading.  It has the units of the measured parameter divided by the age referenced from the 

time since installation or the previous maintenance intervention.  In the example case of gauge 

and tonnage (MGT), the units are inches/MGT or mm/MGT.  A section with a higher slope will 

reach the pre-established geometry thresholds faster than a window with smaller slope.  Figure 

3.9 provides two example track sections with linear slopes calculated for maximum gauge over a 

window of 30 feet (9.14 m).  Section 1 (orange line) has a higher slope (0.0008 inches/day or 

0.292 inches/year) whereas Section 2 (blue line) has a lower slope (0.0003 inches/day or 0.109 

inches/year).  Section 1 (orange) will require maintenance sooner than Section 2 (blue).   
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Figure 3.9: Example data from track windows with high and low degredation slopes 

 

3.6.2 Error Function 

The error function is used to estimate the goodness of fit of the linear regression model for 

a set of data.  The error of a linear model is commonly quantified using the coefficient of 

determination (R2) (Neuhold et al. , 2020) using Equation 3.4: 

𝑅2 =  
∑ (𝑦𝑖̂ − 𝑦̅𝑛

𝑖=1 )2

∑ (𝑦𝑖 − 𝑦̅𝑛
𝑖=1 )2

 Eq. 3.4 

where 𝑦𝑖̂ is a point on the regression line, 𝑦̅ is the mean value of all measurements and 𝑦𝑖 is 

measured point.   

The R2 value describes the proportion of variance within the data that is explained by the 

model.  If the model perfectly describes the data the value for R2 is one.  If the model fails to 

describe any of the variance in the data, its R2 would be zero.  However, if the model has small 

variance (e.g. a flat line, no variation over time) the R2 is also at or near zero, even though there 

is likely a good fit.  This does not present a challenge for track maintenance applications since 

the railroads are interested in the windows which have higher variation over time (not flat lines 
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indicative of track that is showing little or no change).  Even including flat line cases the R2 

value is suitable for evaluating the model’s suitability.  R2 values can also be used to detect 

outliers that may be measurement errors.  If left untreated, these can cause the model to output 

incorrect results. 

In any case, R2 is a proven and trustworthy metric that can be used for filtering the relevant 

windows for practical planning of maintenance and evaluation of track degradation rates. 

Depending on the application and data collection methods used, a reasonable R2 threshold of 0.5 

must be met for the trend to be considered valid.  

 

3.6.3 Last Value 

If the aggregation function (defined in Chapter 2) is related to the regulatory thresholds 

(defined in Chapter 1) then the last measured value will indicate how close to the threshold the 

track geometry parameter is for a given window.  Figure 3.10 presents an example of left profile 

that shows a negative trend where the last value already exceeds the yellow threshold and is 

getting close to the red threshold.  The red threshold is commonly used by the railroads to denote 

the posted (actual) class threshold per the FRA (2022) CFR 213 regulations.  The yellow 

threshold is usually one class higher (i.e. more strict than the actual class) and is used for 

preventative maintenance purposes.  Unlike the red threshold, exceedance of the yellow 

threshold does not necessitate a speed restriction.  In this example window (Figure 3.10) there is 

already a yellow tag defect given the last value of -1.8 in (45.7 mm) exceeds the threshold of 

1.25 in (32 mm).  
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Figure 3.10: Left profile (62 ft chord) trending close to the red threshold 

 

3.6.4 Initial Quality  

The intercept (b parameter in the linear equation) represents the initial quality of the track 

or the state of the track after a maintenance intervention (Esveld, 2014).  When comparing 

consecutive maintenance cycles, the initial quality is the quality achieved immediately after the 

maintenance activity and is the highest quality that that particular section will experience during 

the maintenance cycle.  The initial condition of a track segment has a notable influence on the 

life cycle of the tracks, thus a small decrease in initial quality can shorten the maintenance cycle 

by a few months or tens of MGTs (Tzanakakis, 2013).   

The difference between the last measurement of the previous maintenance cycle and the 

first measurement of the next cycle can be used as a proxy metric for the effectiveness of 

maintenance.  This value is especially useful for tamping activities where the profile standard 

deviation can be used (Offenbacher et al., 2023).  This is particularly helpful when using high 
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frequency (e.g. three times a week) geometry measurements provided by ATGMS since it is 

possible to capture the initial quality of the tracks prior to degradation, right after the 

maintenance activity (Bilheri et al., 2023).  If the start of a new degradation cycle (after 

maintenance is conducted) is not known, the initial value should not be used for assessing 

maintenance quality given it is likely to overestimate the initial quality (and underestimate 

degradation rate) due to the scarcity of early life cycle data. 

 

3.7 Conclusions 

Comparing linear regression with logarithmic and exponential models has shown that 

linear regression is suitable for modeling the majority of a track segment’s life cycle.  In addition 

to its utility in interpreting track geometry data a linear model is also suitable for assessing track 

component degradation data.  The primary advantage of a linear model is its simplicity and 

ability to be easily interpreted by many levels within the railroad organizational structure.  The 

variables used in the linear equation explain practical aspects of the track, including degradation 

rate, initial quality, and regulatory defects and compliance.  These values can be used by 

railroads to build more effective and efficient maintenance plans. 
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CHAPTER 4: CONCLUSIONS AND FUTURE WORK 

 

This thesis explores the domain of railroad track geometry and component health data by 

presenting common data types, describing how the railroads commonly use these data, and 

introducing a framework that can be used to trend datasets and draw actionable conclusions 

about track and component life cycle. 

Chapter 1 describes the current federal regulatory requirements for track inspection in the 

US, summarizes the types of components and data, and provides an overview of track geometry 

inspection equipment and their advantages and disadvantages.  It also proposes a theoretical 

corporate track inspection data use and aggregation pyramid for a railroad.  In Chapter 2 the 

relationship between track geometry and component data is explored, and I present windowing 

and aggregation concepts.  Lastly, Chapter 3 presents a framework for data trending and 

compares three regression models through the application of revenue service Class I data. 

 

4.1 Summary of Findings 

4.1.1 Investigation into the Relationship Between Track Component Health and Track 

Geometry Data (Chapter 2) 

Fixed 30 feet (9.14 m) windows and aggregation functions were used to compare track 

geometry and component data.  Both datasets were collected using different vehicles on the same 

115-mile (185 km) subdivision.  The data were aligned using fixed assets that were provided by 

the host railroad.  Correlation matrices and scatter plots showed no correlations between the two 

datasets.  This suggests that railroads should consider the use of both technologies to comply 

with federal regulations, maintain a good state-of-repair, and ensure the safe movement of trains. 
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4.1.2 Track Data Trending (Chapter 3) 

Using the same fixed window and aggregation functions described in Chapter 2, a trending 

framework was developed.  Linear, logarithmic, and exponential regression models were tested.  

The linear model generated the best results for both datasets using R2 values.  Although the 

median R2 values were consistently low among all models, the linear model has utility for 

maintenance planning as elements of it are specifically useful in explaining track degradation.  

The slope of the linear model represents the degradation rate in a particular window, the last 

measured value indicates whether the window is close to an FRA (or other) defect threshold, and 

the error function (R2) can be used to detect outliers or windows that do not need maintenance. 

 

4.2 Recommendations and Future Work 

The collection and use of track-related data has evolved from a find-and-fix system 

primarily designed to comply with regulatory requirements to incorporate big data and data 

science, especially when using ATGMS.  The increasing volume of data generated by inspection 

systems has required railroads to develop innovative strategies to ingest, store, and process data.  

Through processing and refining these datasets, information is generated to achieve higher levels 

of the data pyramid (Chapter 1) which presents less (but more aggregated) data to railroad 

decision makers. 

Beyond traditional (laser-based) collection of track geometry data, technologies such as 

image vision, combined with AI models, can objectively characterize important track-related 

health information including crosstie, fastening system, and ballast condition.  However, the 

relationship between these two datasets has not shown promising results to date.  This is likely 
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due to the data used in this research only considering one subdivision, with little variability in 

track components, design, and use.  Applying the same framework presented here to a broader 

dataset with multiple subdivisions, track designs, annual traffic, and train operating speeds could 

increase the correlation between geometry and component data.  Another possibility for future 

work is to investigate the relationship between geometry and component inspection data as a 

function of time / tonnage (e.g. study the trending of both gauge and crosstie rating at the same 

track window).  

Specifically, when comparing geometry and component data, data alignment plays a very 

important role.  However, there are significant data alignment challenges when using disparate 

datasets collected with multiple technologies and platforms, on different dates, with different 

sample collection rates.  One way to avoid this alignment challenge is having both geometry and 

component collection devices installed in the same vehicle, and this is the direction at least one 

Class I railroad is heading through the use of ATGMS.  

However, both the geometry and component data analyzed in this study have small R2 

values.  This does not pose a practical problem when the model is used by a railroad company 

but does cause a problem in model validation.  To dilute the effect of outliers (e.g. measurement 

errors) data from high frequency (e.g. every three days) geometry collection can be used.  

Additionally, including a data cleaning step to remove spike and flat lines would increase the 

quality of the initial dataset and its resulting output.  Using track maintenance information from 

the railroad or detected automatically from the dataset to reset the trending windows has the 

potential to increase the accuracy of the model and can help railroad objectively assess the 

quality of maintenance activities. 
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