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Abstract

A thorough understanding and characterization of the thermophysical and transport

properties of molten salts are essential for the efficient operation, optimized design,

and safety management of Molten Salt Reactors (MSR). However, experimental

investigations of molten salts for nuclear applications can be challenging due to

factors such as high temperatures, corrosion, purity and composition control, as well

as health and safety concerns. As an alternate approach, first-principles molecular

dynamics simulations were employed to calculate the thermophysical and structural

properties of eutectic LiF-NaF mixed with either UF4 or ThF4. The simulations

reveal that the addition of uranium or thorium results in a pre-peak in the structure

factor, which suggests intermediate-range ordering. The implications of this structural

rearrangement on the salt’s properties are analyzed. This study emphasizes the

connection between the salt’s structure and its properties, highlighting how the

incorporation of nuclear fuel can influence the properties of the salt in an unexpected

manner.
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Chapter 1

Molten Salt Reactors

The quest to develop advanced nuclear systems like Molten Salt Reactors (MSRs)

stems from the necessity to address global warming while ensuring both energy

sustainability and reliability. In this chapter, the history and potential benefits of

MSRs are dicussed.

1.1 History

The study of molten salt reactors dates back to the late 1940’s. The initial motivation

behind this research was to develop a nuclear-powered airplane [1]. The first MSR

was developed in Oak Ridge National Laboratory (ORNL) in the early 1950’s to

study the nuclear stability of the circulating fuel system. It used a ternary fluoride

salt composed of NaF, ZrF4, and UF4. Even though the concept of a nuclear-powered

airplane was eventually abandoned, the research findings from this program played a

crucial role in the development of MSRs for electricity generation as we know them

today.

In the early 1960’s ORNL and the U.S. Atomic Energy Commission (AEC)

acknowledged the potential of MSRs and the Molten-Salt Reactor Experiment was
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devised. It used LiF-BeF2-ZrF4-UF4 as primary coolant, LiF-BeF2 as secondary

coolant, and graphite as moderator. One of the key discoveries during this experiment

was the fact that LiF and BeF2 could be separated from rare earth elements by

vacuum distillation at temperatures around 1000 ◦C [1], [2].

In the early 1970s the funding from the AEC to develop molten salt reactors was

abruptly terminated due to corrosion issues observed during experiments [3]. Despite

limited funding, Oak Ridge National Laboratory (ORNL) continued its molten salt

reactor research program on a smaller scale until the early 1980s. It was not until

the beginning of the 21st century that the interest in MSRs resurged due to the

selection of MSRs as one of the six Generation IV advanced nuclear reactor designs.

In the present time, MSRs is an active area of research and it is hailed as one of the

most promising Generation IV designs [4]–[7], with multiple startups undertaking

the quest of developing reliable and efficient MSRs.

1.2 Overview

There are two main reactor designs that use molten salts. The first uses a standard

solid fuel and the molten salt acts as coolant. In the second the molten salt serves

both as coolant and fuel, and the term MSR is often used to specifically refer to this

second reactor design. MSRs feature a unique design in which the fuel, typically

ThF4 or UF4, is directly dissolved in the molten salt. In a conventional MSR, there

are two circuits moving around the molten salt. The primary loop contains the salt

with dissolved fuel. The molten salt in the primary loop of a molten salt reactor

circulates through the reactor core, serving simultaneously as the coolant and the

fuel. The secondary loop, on the other hand, contains pure molten salt with no

dissolved fuel. The molten salt in the primary loop of a molten salt reactor transfers

thermal energy to the molten salt in the secondary loop. This secondary loop then
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flows through another heat exchanger to generate steam, which drives a turbine. It’s

worth noting that the molten salts in the two loops can be different. In most designs

carbon is used as moderator.

There are several advantages associated with MSR. One of the main advantages is

online fuel processing. Because the fuel is dissolved in the coolant, it can be processed

during operations to remove undesired fission products that compete with fissile

and/or fertile materials for neutrons, which translates into a very high fuel efficiency.

Additionally, unlike traditional reactors, there is no need to shut down the reactor

for refueling as it can be refueled continuously. Since the fuel is dissolved in the

salt, there is also no need to fabricate fuel pellets. This avoids engaging in rigorous

and complex manufacturing processes, decreasing the overall operation complexity

and saving money [5]. On top of that, no cladding, fuel duct, nor grid spacers are

necessary. This simplified design decreases the neutron loss in the structure and

increases efficiency.

Regarding safety there are also several benefits unique to MSRs. Due to the high

boiling point of the salt, the reactor can operate at very high temperatures while

maintaining pressures near or at atmospheric levels. This feature reduces the need

for thick, robust containment vessels, thereby simplifying the reactor’s design, and

decreasing maintenance and capital costs. This is a substantial improvement over the

currently dominant light water reactors (LWR) which operate at pressures ranging

from approximately 70 to 160 atmospheres and require sturdy containment vessels.

Another safety perk of MSRs is the chemical inertness of the salt with water and air

[8], which eliminates the risk of hydrogen explosions. MSRs also have inherent safety

mechanisms, such as negative temperature and void coefficients [9]. Furthermore, in

case of an unexpected even where the temperature in the reactor rises excessively, a

freeze valve designed to melt at high temperature come into play. When the valve
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melts, the salt in the core is drained to a heat-sink tank that is filled with neutron

poison. This setup rapidly cools the salt and reduces the fission rate [10].

There are, however, some disadvantages and challenges related to MSR. One of

the main challenges is corrosion. Molten salts can be highly corrosive, particularly

at the high temperatures of operation [11]. Impurities seem to play a major role in

the corrosion process [12], mainly oxygen and water dissolved in the salt. Another

problem is the mobile fission products. Since the fuel is dissolved within the

circulating molten salt, the fission products also circulate in the reactor and interact

with the surrounding structure. Therefore, most of the material inside the reactor

becomes radioactive, complicating maintenance, material handling, and eventual

decommissioning. Also, in case of a power outage, heaters are necessary to keep the

salt in the liquid state.

1.3 Molten Salt Screening

Because the molten salt plays so many roles in a MSR, a thorough understand of

its physical properties is necessary. Thermophysical properties, such as thermal

conductivity, specific heat capacity, and thermal expansion, dictate how effectively the

reactor can transfer and dissipate heat. This directly affects the reactor’s operational

stability and efficiency. Failing in accurately determine these properties can lead to

inefficient reactor designs and even safety risks due thermal stresses. Other properties,

such as viscosity, are crucial for performing simulations and understanding the flow

of the molten salt in the reactor.

Out of all molten salt candidates, fluoride salts are particularly appealing due to

their low vapor pressure, high solubility of uranium, good heat transfer properties,

stability under irradiation, and neutron moderator capabilities [1], [13]. Using

variants of fluoride salts with a lower melting point is advantageous because it
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reduces the risk of the molten salt solidifying and makes the reactor start-up simpler.

Chloride salts are also a popular option, sharing many of the benefits of fluoride

salts due to the chemical similarities between fluorine and chlorine.

Experimentally characterizing the properties of molten salts poses several chal-

lenges. The high temperatures of interest of approximately 750 ◦C, and the inherent

corrosiveness of the salt require specially designed experimental settings and equip-

ment. There are also concerns regarding the salt’s purity. Contaminants can emerge

either from interactions between the salt and its container or be initially present in

the salt, and even small amounts of these contaminants can impact the measured

properties. Given these challenges, conducting an initial computational screen-

ing of candidate molten salts is essential to save time, resources, and avoide the

aforementioned problems.
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Chapter 2

Molecular Dynamics

Molecular Dynamics (MD) is a computer simulation tool used to evolve a system

of atoms and/or molecules over time to study their interactions and compute the

system’s properties. The system evolves in time according to some prescribed

interatomic potential in case of classical MD or according to a Hamiltonian in case

of AIMD.

Frequently, the goal of MD simulations is to compute the system’s equilibrium

properties, such as density, bulk modulus, specific heat, viscosity, and thermal

conductivity. According to statistical mechanics, calculating these equilibrium

properties analytically requires averaging them across the entire phase space, which

involves solving the following integral

⟨A({ri,pi})⟩ =
∫ ∞

−∞
...

∫ ∞

−∞
A({ri,pi}) ρ({ri,pi}) dr1 ... drN dp1 ... dpN (2.1)

where {ri,pi} denotes the set of all atomic coordinates and momenta in the sys-

tem {r1, ..., rN ,p1, ...,pN}, and ρ({ri,pi}) is the phase space probability density or

distribution function. However, solving this integral is a daunting task because of

two main reasons. The first reason is that it is a 6N -dimensional integral, where
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N is the number of atoms in the system. The second reason is that in order to

find the phase space distribution function ρ({ri,pi}), it is necessary to compute

the partition function of the system, which is virtually impossible for most systems

of interest. A workaround is to completely ignore the full partition function and

calculate the desired equilibrium property using only a set of points sampled from

the equilibrium phase space respecting the system’s macrostate. The real equilibrium

property ⟨A({ri,pi})⟩ is then approximated as a simple average over these sampled

points and this is the essence of MD. Simply put, MD samples the relevant portion

of the system’s phase space given a macrostate acting as constraint, thereby avoiding

the use of Equation 2.1. The term ”constraint” means that only certain regions of

the phase space have a non-zero probability density and thus can be sampled during

the simulation. In other words, only the points in phase space consistent with the

macrostate are sampled.

A macrostate is a set of thermodynamic properties that define the system’s state.

By maintaining certain properties constant, a specific thermodynamic ensemble is

defined. The most common ensembles are the microcanonical (NVE), canonical

(NVT), and isothermal-isobaric (NpT). These ensembles differ by the quantities they

keep fixed, where N stands for number of atoms, V for volume, E for energy, P for

pressure, and T for temperature. The functional form of the partition function is

also different for each ensemble. For instance, in the microcanonical ensemble each

microstate (i.e. each point in phase space) consistent with the macrostate has the

same probability density, whereas in the canonical ensemble the probability of a

microstate is Boltzmann-weighted according to the energy of that microstate.

The idea of approximating an ensemble average with a time average stems from the

ergodic hypothesis in statistical mechanics. The ergodic hypothesis is a fundamental

concept in statistical mechanics that allows for the substitution of ensemble averages
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for time averages and vice-versa. According to the ergodic hypothesis, given enough

time the system will visit all of its accessible microstates in phase space according to

the distribution function ρ({ri,pi}). Therefore, for an ergodic system, the long-time

average of a system’s property will be equal to its ensemble average.

2.1 Classical Molecular Dynamics

In classical MD, an interatomic potential V ({ri}) is defined and the atoms interact

over the course of the simulation according to the provided interatomic potential.

The atoms are treated as hard spheres and the electronic structure is completely

ignored. Interatomic potentials consist of a fixed functional form whose parameters

are fitted from experiments or quantum mechanical calculations. With the potential

V ({ri}) in hands, the total force acting on atom j can be easily calculated using

Fj = −∇rjV ({ri}) (2.2)

Since the potential is described by a closed analytical expression, the resulting force

is also a closed analytical expression. The typical procedure in a MD simulation

involves initializing the positions and velocities of particles, calculating the forces

acting on each atom using Equation 2.2, numerically integrating Newton’s equations

of motion F = m/a over a time step dt, and then updating the positions and

velocities of all particles. After updating the atomic positions and velocities, a new

phase space point is sampled. This entire process is repeated until the predetermined

number of time steps set by the user is reached. From this description, it is intuitive

to understand MD as essentially a technique for discretely exploring or sampling the

phase space. Thus, a MD simulation can be viewed as a trajectory or curve in the

phase space.
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2.2 Ab-Initio Molecular Dynamics

The second flavor of MD is ab-initio or first-principles molecular dynamics. Here, the

forces are calculated from first principles using quantum mechanics. To do so, the

many-body Schrödinger equation must be solved. This means finding the many-body

wave function ψ({Ri, ri}) where Ri refers to the coordinates of the nuclei and ri to

the coordinates of the electrons. The full Hamiltonian is of the form

Ĥ = T̂n + T̂e + V̂n−e + V̂n−n + V̂e−e (2.3)

where the first term on the right-handed sided is the kinetic energy of the nuclei,

the second term is the kinetic energy of the electrons, the third term is the nucleus-

electron interaction, the fourth term is the nucleus-nucleus interaction, and the fifth

term is the electron-electron interaction. Expanding each term of the Hamiltonian

operator yields

Ĥ({ri}, {Ri}) =−
∑
i

ℏ2

2Mi

∇2
Ri

−
∑
i

ℏ2

2me

∇2
ri
−
∑
i

∑
j

Zie
2

|Ri − rj|

+
∑
i

∑
j>i

ZiZje
2

|Ri −Rj|
+
∑
i

∑
j>i

e2

|ri − rj|

(2.4)

where e is the elementary charge, M the mass of the nucleus, me the mass of the

electron, Z the atomic number of the nucleus, and the factor of 1
4πϵ0

of the last

three terms on the right-handed side was set to 1 for conciseness. An analytical

solution to the many-body Schrodinger equation under the Hamiltonian described in

Equation 2.4 is impossible, and using traditional grid-based numerical methods is

unfeasible due to the very high dimensionality of the equation. Thus, we first need

to make some approximations. One of the main approximations used in AIMD is the

Born-Oppenheimer (BO) approximation. The idea is that the wave function of the
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electrons can be decoupled from the wave function of the nuclei, or mathematically

ψ({ri}, {Ri}) = ψ({Ri}) ψ({ri}; {Ri}) (2.5)

where ψ({Ri}) refers to the nuclei wave function and ψ({ri}; {Ri}) represents the

electronic wave function given a fixed nuclei configuration or geometry. Under this

approximation, the electronic wave function depends parametrically on the nuclei

coordinates {Ri}. Intuitively, the BO approximation is grounded on the fact that

the time-scale of electron motion is much faster than the nuclear motion. It assumes

that the wave function of the electrons instantaneously respond to a change in the

nuclei configuration (adiabatic assumption), and the nuclei move only in the potential

energy surface of the electronic ground state (there is no excited-state dynamics).

However, when these assumptions are not valid and the electronic motion is coupled

to nuclear motion, the BO approximation fails. In such cases, non-adiabatic molecular

dynamics has to be used [14].

By employing the BO approximation, the next step is to solve the Schrödinger

equation for the electrons, and find the electronic wave function ψ({ri}; {Ri}) and

eigenvalues ε({Ri}), both depending parametrically on the nuclei coordinates. Be-

cause the nuclei coordinates are fixed, the kinetic energy term T̂n in Equation 2.3 goes

to zero, the nuclei-nuclei interaction V̂n−n becomes a constant, and the nuclei-electron

interaction term V̂n−e simplifies since now it represents the energy of the electrons

under a static positive charge distribution or background. Note that now V̂n−e can

be effectively viewed as an external potential acting on the many-electron system.

However, even under this simplified Hamiltonian it is still impossible to exactly solve

the Schrödinger equation because it remains very complicated, mostly due to the

electron-electron interaction term Ve−e.

There are several different methods to approximate the solution of the Schrödinger
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equation for a many-electron system. These approaches range from the simple

Hartree-Fock method, to more complex post-Hartree-Fock methods such as Coupled

Cluster[15] and Møller-Plesset Perturbation theory [16]. However, the most popular

one used in AIMD packages is Density Functional Theory (DFT), which is based in the

Hohenberg-Kohn (HK) theorems [17]. The first HK theorem proves that the ground

state properties of a many-electron system are functionals of the system’s electron

density n(r), and therefore n(r) uniquely determines all ground state properties

of a many-electron system including the many-body wave function. This means

that finding the electron density is equivalent to finding all equilibrium properties

of interest. By focusing on the electron density which is a function of only three

spatial coordinates, the many-electron problem is reduced from dealing with 3N

variables to just three spatial variables, where N is the total number of electrons in

the system. This simplification is one of the cornerstones of DFT’s computational

efficiency. The second HK theorem shows that the true electron density minimizes

an energy functional of the form

E[n(r)] = T [n(r)] + Vext[n(r)] + EHartree[n(r)] + Exc[n(r)]. (2.6)

where T [n(r)] is the kinetic energy of the many-electron system, Vext[n(r)] is a general

external potential that the many-electron system is subjected to, the Hartree energy

EHartree[n(r)] describes the electron-electron Coulombic repulsion, and the exchange-

correlation (XC) energy Exc[n(r)] represents the rest of the energy not captured by

the kinetic and Hartree terms. Note that while the term external potential is very

broad and can potentially encompass any effect that can be modeled as an external

potential acting on the many-electron system, it primarily describes the Coulombic

interactions between the electrons and the fixed nuclei background.

The main issue with Equation 2.6 is the XC energy term. More specifically, the
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XC energy describes exchange interactions that arises from the antisymmetrization

requirements of fermionic wave functions (Pauli exclusion principle), and N-body

correlations in the electron dynamics. It essentially describes complex interactions

not addressed by the other terms in the energy functional. The exact form of the

XC energy functional is not known, so approximations must be made. Two of the

most common approximations are the local density approximation (LDA) and the

generalized gradient approximations (GGA) [18], [19]. Generally speaking, the former

considers only the electron density at each point in space, while the latter considers

both the electron density and its gradient. More accurate approximations to the

XC energy such as the Meta Generalized Gradient Approximation (MetaGGA) also

considers the Laplacian of the electron density.

By choosing an approximation for the XC functional, the total energy of the

many-electron system can be calculated provided that the electron density n(r)

is known. Yet, finding the electron density is not easy and requires solving the

Schrödinger equation for the many-electron system which is intractable even under

the BO approximation, and here is where DFT comes into play. The electron density

of a many-electron system can actually be determined by solving a Schrödinger-like

equation, known as the Kohn-Sham (KS) equations [20]. The KS equations describe

a fictitious system of non-interacting particles that has the same electron density

as the original system of interacting particles. Thus, there is a one-to-one mapping

between the electron density of this fictitious system and the real system of interest.

The KS equations are given by

(
− ℏ2

2m
∇2 + Veff (r)

)
φi = εiφi (2.7)

where φi and εi are, respectively, the i-th Kohn-Sham orbital and energy, and Veff is

the effective external potential to which the fictitious system of fermions is subjected.
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Note that the XC energy, the Hartree energy, and the external potential in the

original system were all lumped into Veff . There are N KS equations to solve, where

N is the number of electrons in the original system. Because the KS system is

non-interacting, the total KS wave function becomes a single Slater determinant

constructed from the ground state KS orbitals φi, which considerably facilitates

things.

Because the effective potential Veff in which each particle moves depends on

the distribution of all the other particles, the KS equations have to be solved in a

self-consistent manner. When the KS equations are solved to yield the KS oribtals

and energies, the density n(r) that mimics the electron density of the original system

is straightforward to calculate through

n(r) =
∑
i

|φi|2 (2.8)

Solving the KS equations is the essence of DFT. Additionally, note that DFT is

an exact theory in principle. However, in practical applications, exact calculations

cannot be performed because the true form of the exchange-correlation functional is

not known. This means that DFT only produces approximate results because the an

approximation to the XC functional is used. If the exact XC functional for a system

were known, then the results obtained from DFT calculations would also be exact.

By solving the KS equations and finding the electron density of the many-body

system, the ground state properties are found, and the forces acting on each atom

can be calculated using Hellmann-Feynman’s theorem. Therefore, AIMD is the

propagation of atoms in time using Hellmann-Feynman forces derived from electronic

structure calculations.
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Chapter 3

Results and Discussion

3.1 Computational Methods

The AIMD simulations were performed using Vienna Ab-Initio Simulation Package

(VASP) version 5.4.4 [21], [22]. The simulation cell contained eutectic salt LiF-NaF

(3:2 mol%) plus the fuel additive UF4 and ThF4. The uranium system consisted

of 56 F, 24 Li, 16 Na, and 4 U atoms, while the thorium system consisted of 56 F,

24 Li, 16 Na, and 4 Th atoms. In both cases, the molar concentration of the fuel

correspond to 9.1 mol%.

Periodic boundary conditions were used to avoid surface effects since the goal is

to calculate bulk properties. Six temperatures were simulated: 973 K, 1073 K, 1173

K, 1273 K, 1373 K, and 1474 K. Perdew-Burke-Ernzerhof (PBE) functional [23] was

used as the generalized gradient approximation to the exchange-correlation energy.

The projector augmented wave (PAW) method [24] was used to avoid using many

Fourier components to describe the rapid oscillations of the valence electrons wave

function near the nuclei. The chosen PAW-PBE pseudopotentials were F (2s2 2p5),

Li sv (1s2 2s1), Na pv (2p63s1), U (6s2 7s2 6p6 6d2 5f2), and Th (6s2 7s26p6 6d1 5f1)

where the parenthesis specifies the electrons not included in the pseudopotential and
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therefore treated explicitly. The energy cutoff for the plane-wave basis set was 600

eV and a Γ-centered 1× 1× 1 k-point mesh was used. Sampling only the Γ-point of

the Brillouin Zone (BZ) is justified because the simulation box size is large, which

means that the BZ is small. DFT-D3 [25] with zero damping was used as a dispersion

correction to the self-consistent Kohn-Sham energy. For the simulations that involved

uranium atoms, DFT+U method was used to improve the description of its highly

correlated d- and f- valence electrons. More specifically, Dudarev et al. rotationally

invariant approach to DFT+U [26] was used. The U parameter, which sets the

effective on-site Coulombic interactions, was taken from Reference [27] and set to 2.0

eV for the uranium atoms.

First, a NpT simulation was performed for all three systems to determine the

respective equilibrium simulation cell size. For the NpT runs, Langevin thermostat

and the friction coefficient was set to 10 ps−1 for all atoms. A 90 ps was performed

at each temperature. The first 40 ps were considered pre-equilibration and thus

discarded. The last 50 ps were used to find the equilibrium simulation box. Next, a

100 ps simulation in the NVT ensemble was performed with the equilibrium volumes

calculated from the NpT runs. Again, the first 40 ps were considered pre-equilibrium

and the last 60 ps were used to calculate the properties of the salt.

3.2 Thermophysical and Transport Properties

3.2.1 Density

Density is one of the most important properties because it is presented in virtually

all equations that describes the system. In the NpT ensemble, the volume of the

simulation box is allowed to fluctuate to maintain the specified pressure fixed. Over

the course of the simulation, the average density can be found by dividing the mass
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Figure 3.1: Comparison between simulated densities and experimental results.

of the system by the average box volume ⟨V ⟩.

Figure 3.1 shows the simulated density for the three simulated systems and the

experimental results [28] of the pure eutectic system. The error bars are the standard

deviation of the density throughout the simulation. For the systems with uranium

and thorium comparison was not possible because no experimental data was available.

However, for the pure system, there is a very good agreement between simulation

results and experimental data. At low temperatures, the simulation error is less than

1%, increasing to 2% at the highest temperature. This close agreement validates

the parameters used in the simulation. Figure 3.1 shows that when ThF4 and UF4

are added to the pure system, the density increases by roughly 50%. A increase is

expected because F, Li, and Na are very light elements while Th and U are one of

the heaviest ones.

16



3.2.2 Thermal Expansion

The volumetric thermal expansion coefficient is a measure of how much the volume of

the material changes as temperature increases. It is an important property for MSRs

because it appears in the calculation of the temperature coefficient of reactivity. In a

MSR, the fuel and moderator are dissolved in the salt. In case of a nuclear accident

where the reactor’s temperature rises, the expansion of the salt would cause the

molar concentrations of both the moderator and the fuel to decrease. The decrease in

the moderator concentration hinders the moderator’s ability to slow down neutrons,

and the decrease in the fuel molar concentration decrease the fission density. Both

effects put together results in a negative contribution to the temperature coefficient

of reactivity. Therefore, it is desirable to have a salt that expands as the temperature

increases. The thermal expansion coefficient can be directly calculated from the

density

αv = −1

ρ

∂ρ

∂T
. (3.1)

Figure 3.2 depicts the volumetric thermal expansion of all three simulated systems

and the experimental results [28]. The experimental thermal expansion coefficient was

roughly 20% higher than the simulated one. In classical MD, the thermal expansion

depends on the shape of interaction potential. In DFT, it will depend mostly on the

choice of exchange-correlation functional. Although the result was relatively close to

the experimental value, choosing a different exchange-correlation function, especially

one with a stronger non-local character that better capture dispersion effects [29], may

improve the agreement. The downside is that such exchange-correlation functionals

are more computationally expensive and the calculations are harder to converge.

Nevertheless, from the simulation results it seems like adding the fuel has little to

no impact on the thermal expansion coefficient of the molten salt.
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Figure 3.2: Thermal expansion coefficient αv for the three simulated systems and the experimental
result for the pure system [28]. The full line indicates the experimental result whereas the dashed
lines depicts the results of the simulation.

3.2.3 Heat Capacity

Heat capacity is one of the most important quantities in the screening of molten salts

for energy storage applications because it quantitatively describes the capacity of the

salt to store heat. It tells the amount of energy needed to increase the temperature of

the system by one degree Kelvin. The heat capacity is closely related to the degrees

of freedom of the system. When energy is added into a system, it is partitioned

among the terms of the Hamiltonian. This partition depends on how the Hamiltonian

depends on the microscopic variables r (position) and p (momentum). More degrees

of freedom translates into more ways to share the energy that is being added, and

therefore more energy is required to elevate the system’s temperature.

At low temperatures the heat capacity increases with the temperature because

new modes become accessible as temperature rises. However, beyond a certain
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threshold temperature, all vibrational modes are already unlocked, causing the heat

capacity to plateau and remain constant even if the temperature keeps increasing.

As a result, the total energy of the system will linearly increases with temperature.

This holds true until the system becomes a gas, in which case there is a sharp drop

in the heat capacity.

Classically, heat capacity is defined as the derivative of the energy with respect

to temperature at a constant pressure

Cp =
∂E

∂T

∣∣∣
P

(3.2)

or volume

Cv =
∂E

∂T

∣∣∣
V
. (3.3)

An alternative way to calculate Cp and Cv [30][31] in MD simulations is by looking

at the the fluctuation of the enthalpy in the NpT ensemble

Cp =
⟨H2⟩ − ⟨H⟩2

kbT 2
(3.4)

or the fluctuation of the total energy in the NVT ensemble

Cv =
⟨E2⟩ − ⟨E⟩2

kbT 2
(3.5)

This is a fundamental result that can be derived by working Equations 3.2

and 3.3 for each ensemble. This method is sometimes employed to calculate the

specific heat in MD simulations because the standard deviation of the total energy

is straightforward to obtain. However, McGaughey et al.[32] recommend using

Equations 3.2 and 3.3. Although these two methods in principle should yield the

same result, the classic thermodynamic definition often produces more accurate
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results. For that reason, the specific heat capacity at constant pressure reported

here was calculated using Equation 3.2.

Figure 3.3 shows the enthalpy as a function of temperature for each system.

As expected at high temperatures, the enthalpy is increasing linearly with the

temperature. As a consequence, the heat capacity is a constant at the simulated

temperature range as shown in 3.4. Figure 3.4a shows the specific heat capacity and

Figure 3.4b shows the molar heat capacity. When uranium and thorium are added

into the system, the specific heat capacity decreases a lot. This result was anticipated

because with the inclusion of uranium and thorium, the density of the system rises,

leading to a reduction in the degrees of freedom per unit mass which in turn results

in a lower specific heat capacity. Conversely, when comparing the molar specific

heat of the three simulated systems, it is observed that they are approximately the

same. The addition of fuel appears to have a minimal impact on the molar specific

heat. In fact, Figure 3.2b shows that adding the fuel slightly increases the molar

heat capacity.

3.2.4 Viscosity

Viscosity is also an property important for nuclear applications because it plays an

important role in equations governing fluid dynamics. Physically, viscosity is related

to the transport of momentum between layers of the fluid. In a viscous fluid, this

momentum transport is inefficient, and this leads to a “sluggish“ flow. In a MD

simulation, viscosity can be calculated through a specific Green-Kubo relations. In

its most general flavor, the Green-Kubo relation reads [33]

ψ(ω) = lim
τ ′→∞

∫ τ ′

0

exp(−iωτ) ⟨A(t0 + τ)B(t0)⟩ dτ (3.6)
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a)

Figure 3.3: Specific enthalpy as a function of temperature for a) pure FLiNa, b) FLiNa + UF4, c)
FLiNa + UF4.
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a) b)

Figure 3.4: a) shows the specific heat capacity and b) depicts the molar heat capacity for the three
different systems.

where ψ(ω) is a generalized susceptibility, ⟨A(t0+ τ)B(t0)⟩ is the cross-correlation be-

tween two phase space functionsA({p(t),q(t)}) andB({p(t),q(t)}) where {p(t),q(t)}

denotes the set of 3N momenta {piα} and coordinates {qiα} of all N atoms in the

system at a given time t, and the integral is over the time delay τ = t− t0 between

A(t) and B(t). Intuitively, we can understand A(t) or B(t) as time series describing

the realizations of a random variable that represents some property of the system

in equilibrium. The Green-Kubo relations are extremely useful in MD simulations

because they allow the calculation of transport property from time-correlations of

equilibrium properties. It is a very general result that draws from the Fluctuation-

Dissipation theorem [34] and describes the collective dissipative response of a system

to thermal fluctuations. The transport quantity that is calculated from the Green-

Kubo relation depends entirely on the phase space functions A({p(t),q(t)}) and

B({p(t),q(t)}). A low-frequency limit of Equation 3.6 is often taken, so it simplifies

to

ψ(ω) = lim
τ ′→∞

∫ τ ′

0

⟨A(t0 + τ)B(t0)⟩ dτ (3.7)
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For viscosity, the Green-Kubo relation becomes

η = lim
τ ′→∞

V

kbT

∫ τ ′

0

⟨σαβ(t0 + τ)σαβ(t0)⟩ dτ (3.8)

where ⟨σαβ(t0+τ)σ
αβ(t0)⟩ is the autocorrelation of the three off-diagonal elements of

the stress tensor, V the volume of the simulation box, T the temperature of the system

and kb is the Boltzmann constant. Thus, under the Green-Kubo formalism, viscosity

is proportional to the amount of correlation of each shear stress component acting

on the simulation box with itself. Because liquids are isotropic, the calculation of the

viscosity using σxy, σxz, or σyz should yield identical results in the thermodynamic

limit. For that reason, the viscosity is determined by considering independent

calculations from the three shear components and taking an average.

Figure 3.5 depicts the simulated viscosity for the three systems in an Arrhenius-

like plot log(η) vs 1000/T. For pure FLiNa, the viscosity decreases linearly with

temperature and is approximately a straight line in the semi-log plot as expected. For

the system with uranium, the trend closely resembles a straight line, while for thorium

there is a slight deviation from this linear behavior. This is probably due to the

high error bars in the simulations involving this two elements. As already discussed,

performing AIMD simulations with d- and f-block elements is very challenging due to

strong correlation effects of their valence electrons [26],[35]. Convergence of the SCF

procedure for these elements is difficult and requires setting additional parameters,

increasing the complexity of the simulation. This may explain the larger error bars

in the systems containing uranium and thorium compared to the pure system, as

well as the deviation from a straight line in the semi-log viscosity plot for the system

with thorium.

Overall, adding uranium and thorium has the overall effect to increase the salt’s

viscosity. For all other thermophysical properties discussed so far, the results for
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Figure 3.5: Viscosity as a function of temperature calculated of the three simulated systems.

the systems with thorium and uranium were very similar, but for viscosity they

seem to differ. While at high temperatures the two viscosities were very close, at

the intermediate simulated temperatures the calculated viscosity for the system

containing thorium was higher. However, this difference doesn’t necessarily mean

that the viscosity for the thorium system is in fact greater. The high temperature

results are more reliable because the shear stress decorrelation time (here defined

as the time delay where the autocorrelation first goes to zero) decreases with

increasing temperature. This happens because the system is getting farther from its

melting point and thermal effects are becoming more extreme, thereby enhancing

phenomena that decorrelate the atom’s properties such as collisions. This decrease

in the decorrelation time also explains why the error bars decrease with increasing

temperature. A detailed discussion on why the addition of uranium and thorium

significantly increases the viscosity of the salt is provided in a later section.
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3.3 Structural Quantities

3.3.1 Pair Distribution Function

The pair distribution function (PDF) gab tells us about the distribution of particles

of type b around particles of type a. More specifically, it quantifies how much larger

the distribution of particle b is around a when compared to its bulk density. Thus, it

tell us about the structure of the material. Mathematically,

gab(r) =
⟨ρab(r)⟩
ρb

. (3.9)

where ⟨ρab(r)⟩ is the average particle density of particle b at a distance r from a

particle a, and ρb is the bulk density of particle b. Intuitively, Equation 3.9 is

simply counting the average number of particles b that fall within a small volume

dV centered around a point in space represented by r when taking the position of a

particle a as the origin. For that reason, a perhaps more clear way to write the PDF

is

gab(r) =
1

dV ρb

〈
1

Na

∑
a

∑
b

δ[r− (rb − ra)]

〉
(3.10)

where the ensemble average ⟨...⟩ is over all frames in the MD simulation since the PDF

is a static quantity, and the sum is over all particles a and b in the system. However,

we are typically more interested in the radial distribution of one atom around another,

ignoring the angular dependence. Hence, the true quantity of interest is a specific

case of the pair distribution function, called the radial distribution function (RDF)

gab(r) =
1

4πr2drρb

〈
1

Na

∑
a

∑
b

δ(r − |rb − ra|)
〉
. (3.11)
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The RDF provides information on the relative density of the particle b with respect

to its bulk density within a spherical shell of thickness dr centered around particle a.

Numerically, the counting performed by the Kronecker delta δ(r− |rb − ra|) for each

r turns into a histogram whose bins represent different spherical shells. To calculate

the RDF we simply count the number of particles b within each spherical shell and

normalize it by the expected number of particles b to lie in that spherical shell

according to its bulk density ρb (i.e. assuming no structure). For example, g(r′)ab = c

means that the particle density of b at a distance of r′ from a is c times higher than

its bulk density ρb. Therefore, in a structureless material like a monoatomic ideal

gas the RDF is always equal to one beyond the rmin denoting the gas particle radius.

Figure 3.6 depicts the radial distribution function of F-F and F-cation for the

three simulated systems and their average coordination number over the simulated

temperature range. The addition of uranium and thorium, which are multivalent

cations, causes significant structural changes in the salt by pulling fluorine atoms

towards them. This is quantified by the steep peak on the RDF for F-U and F-Th

along with their respective coordination numbers of 7.6 and 8.0. These two features

suggest the existence of [XF7]
3−, [XF7]

3−, [XF8]
4−, and [XF9]

5− clusters where X =

Th or U. By inspecting the MD simulation using VMD [36], the existence of these

clusters were confirmed. [XF7]
3− was the most prevalent one, while [XF8]

4− and

[XF9]
5− only existed for short periods of time. These clusters were also observed by

Guo et al. [37] while studying ThF4 in unary fluoride salts such as LiF, NaF, and

KF. Furthermore, the slightly higher coordination number of the thorium system

can be tied to its marginally higher viscosity when compared to the uranium system.
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a)

c)

b)

Figure 3.6: Radial distribution function for a) pure FLiNa, b) FLiNa + UF4, c) FLiNa + ThF4.
Each color is representing the radial distribution function of F with a different cation, and each
curve is representing a different temperature. Among them, the lighter-shaded curves correspond
to the lower temperatures.
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3.3.2 Structure Factor

The structure factor is related to the pair distribution function by a Fourier transform

S(k) = 1 + ρ

∫
e(−ik·r)g(r) dr (3.12)

which means that the structure factor carries the same information as the pair

distribution function, but this information is encoded in a different domain. However,

the structure factor has the advantage that it can be directly obtained from neutron

and x-ray scattering experiments. Intuitively, the structure factor is connected to the

amplitude spectrum of the plane wave decomposition of the relative particle density

distribution. Mathematically, each S(k′) relates to the amplitude of a specific plane

wave exp(−ik′· r) used in the Fourier transform of the PDF. Thus, the structure factor

gives information on the range and degree of spatial correlations between particles.

More precisely, S(k) tells the amplitude of spatial correlations or variations along

the direction of the wave vector k̂ = k/|k| over length scales of 2π/|k|. Although

very useful, the structure factor encodes only amplitude information and misses all

phase information (i.e. the relative phase between the plane waves). An alternative

way to understand the structure factor is as a two-point correlation function

S(k) =
1

N
⟨ρk ρ-k⟩ (3.13)

where ρk is the Fourier transform of the local density ρ(r). Working on Equation

3.13 yields

S(k) =
1

N

∑
i

∑
j

e−ik·(ri−rj) (3.14)

where both sums are over all atoms in the system. Weighting the S(k) by the proper

coherent neutron scattering lengths allow it to be directly compared to neutron
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diffraction experiments [38]. In the same spirit as the PDF, our goal is often to

identify spatial correlations of specific length scales, regardless of its direction. This

means that we are concerned only with the magnitude of the plane wave’s k-vector,

rather than its direction in reciprocal space. The structure factor then becomes

S(k) =
1

N

∑
i

∑
j

e−ik|ri−rj | (3.15)

where k = |k| is the wavenumber. Figure 3.7 illustrates the neutron-weighted

structure factor for the three systems. Because the simulation box is finite and due

to the use of boundary conditions, there is a finite number of allowed k-vectors. Since

smaller k-vectors accounts for correlations in longer scales, the smallest k-vector

represents the longest spatial correlation detectable in the simulation box, and its

magnitude is constrained by the box size according to k = 2π/L where L is the

length of the cubic box. The small peak at the second smallest k, indicated by an

arrow in Figure 3.7, suggests that the addition of thorium and uranium to FLiNaK

introduces an intermediate structural ordering. This so-called pre-peak is located

at k = 1.12 Å−1 and corresponds to structures with length scales of 5.6 Å. These

structures most likely correspond to the clusters observed in the simulation and

discussed in the previous section. In fact, as shown in the snapshots in Figures 3.7b

and 3.7c, these clusters tend to aggregate and form longer networks. However, the

length scales needed to investigate such networks are not accessible via FPMD. A

potential approach to investigate these structures involves utilizing a neural network

potential trained on FPMD data. This method was employed by Chahal et al. [39]

in their study of ZrF4 networks in FLiNa.

The emergence of intermediate-range ordering in FLiNa when uranium and

thorium are added is very important and carries multiple implications. This directly

influences thermophysical properties, like viscosity, and alters the dynamics of the
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liquid. It appears that in general the addition of a multivalent cation species to

fluoride salts promotes cluster formation. Chahal et al. [39] and Guo et al. [37]

observed the same structural changes when ZrF4 is added into LiF-NaF and when

ThF4 is added to unary fluoride salts such as LiF and KF, respectively. These

clusters, composed of multivalent cations surrounded by fluorine atoms, seem to

aggregate over time and form network structures. As a direct consequence of these

extended spatial correlations, the viscosity of the salt increases.

3.4 Dynamic Quantities

To study the diffusion of individual particles dynamic quantities are needed. In

statistical mechanics, time-correlation functions such as van Hove correlation and

intermediate scattering function are used to do so. Because the main interest lies in

understanding the bulk diffusion of thorium and uranium atoms in the molten salt,

only the self component of these two time correlation functions are calculated.

3.4.1 Self van Hove Correlation

The self van Hove correlation Gs(r, t) tells how likely it is to find a particle at position

r at time t given that it was at the origin r = 0 at t = 0. Mathematically, it is given

by

Gs(r, t) =

〈
1

N

∑
i

δ[r− (ri(t)− ri(0))]

〉
(3.16)

where the sum is over all particles of interest and ⟨...⟩ denotes an ensemble average

over different sets of particle’s initial conditions (i.e. over independent simulations

with different initial configurations). If the MD simulation is longer than the longest

time scale relevant to the study, it is possible to compute the ensemble average over

different time windows within that single simulation, with each time window being
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a)

b)

c)

Figure 3.7: Neutron-weighted structure factor for a) pure FLiNa, b) FLiNa + UF4, c) FLiNa +
ThF4. Each curve is representing a different temperature. Among them, the lighter-shaded curves

correspond to the lower temperatures. The pre-peak at k ≈ 1.12Å
−1

is indicated by an arrow.
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as long as the longest time scale of interest. In the flavor described by Equation 3.16,

the self van Hove correlation yields the fractional particle occupation at each chunk

of space as a function of time. Intuitively, it can be thought as a time-dependent

3-dimensional histogram of particle’s displacements. However, in most cases the self

van Hove is divided by the volume of that chunk of space (i.e. bin volume) and it

reads

Gs(r, t) =
1

dV

〈
1

N

∑
i

δ[r− (ri(t)− ri(0))]

〉
(3.17)

where dV is the volume of a tiny portion of space centered around r. In the format

of Equation 3.17, the self van Hove becomes a time-dependent volumetric probability

density, meaning that integrating it over the entire space yields 1. Note that Gs(r, t)

normalized by the volume is precisely the quantity we obtain when solving the

diffusion equation. In the same way as the structure factor and the PDF, it is

customary to neglect the angular dependency and focus on the net distance travelled

by the particle. In this case, the self van Hove correlation becomes

Gs(r, t) =
1

4πr2dr

〈
1

N

∑
i

δ[r − |ri(t)− ri(0)|]
〉

(3.18)

The difference is that now Gs(r, t) is a radial probability density, meaning that cal-

culating the integral
∫ r2
r1
Gs(r, t

′) 4πr2dr for a given time t = t′ yields the probability

of finding the particle inside a spherical shell centered at the particle’s origin and

defined by r = [r1, r2] at that specific time. Intuitively, we can think of Gs(r, t) as a

time-dependent histogram where each bin represents a spherical shell.

Figure 3.8 depicts the self van Hove correlation for uranium and thorium in

FLiNa. It shows that the time evolution profile of the radial probability density for

uranium and thorium in FLiNa are very similar. Each curve resembles a Gaussian

and illustrates the probability density of finding the particle at a distance r from
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a) b)

Figure 3.8: Self van Hove correlation for a) Uranium b) Thorium in FLiNa at the highest simulated
temperature 1473 K.

its reference origin after different time intervals. As time progresses, the probability

density becomes more spread out. This happens because as the simulation advances

in time, the particle gradually decorrelates with its initial state due to collisions with

other nearby particles. But since this is a random process, the uncertainty regarding

the distance range that the particle can be found from its origin increases with time,

and this is what Figure 3.8 is showing.

3.4.2 Self-Intermediate Scattering Function

The self-intermediate scattering function is the Fourier transform of the self van

Hove correlation and is generally given by

Fs(k, t) =

∫
e−ik·rGs(r, t) dr (3.19)

The self-intermediate scattering function depicts how the amplitudes of the plane

waves used in the Fourier decomposition of the self van Hove correlation evolve

in time. Since the Fs(k, t) is related to the Gs(r, t), it represents the diffusion of

individual particles. Because the particle at t = 0 is always at its reference origin, the
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self van Hove correlation is a delta function in space, and since the self intermediate

scattering function is its Fourier transform, it must be equal to one for all k’s at

t = 0. This is intuitive because to achieve infinitely precise spatial resolution and

construct a function that is perfectly localized (delta function), the superposition of

infinitely many plane waves with different wave vectors is required. Numerically, the

self-intermediate scattering function is calculated by

Fs(k, t) =
1

N

〈∑
i

e−ik·(ri(t)−ri(0))

〉
(3.20)

where the sum is performed over all particles of interest and the ensemble average ⟨...⟩

is over different initial conditions. Because we are often interested in the magnitude

of particle displacements and not on its direction, Equation 3.20 simplifies to

Fs(k, t) =
1

N

〈∑
i

e−ik|ri(t)−ri(0)|

〉
(3.21)

Figure 3.9 illustrates the self-intermediate scattering function of uranium and thorium

in FLiNa. Each curve in the plot depicts a diffusion mode. The relaxation time

τ of a mode is defined as the time it takes for the Fs(k, t) to decay to about 36%

(1/e) of its initial value. Figure 3.9 shows that as the wavenumber k increases,

the corresponding curve decays to zero faster, meaning that the relaxation time

decreases. Intuitively, plane waves with large wavenumbers are sensitive to small

spatial variations, and in this context they probe diffusion processes that happen

over small length scales. Thus, in a spatially smooth function the contribution of

these long plane waves would be very small, resulting in tiny amplitudes associated

with these modes. Since the Fs(k, t) and the Gs(r, t) are Fourier pairs, the rapid

decay in time of the amplitude of modes with high spatial frequency or wavenumber

k is related to the smoothing of the radial probability density 4πr2Gs(r, t) with time
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a) b)

Figure 3.9: Self-intermediate scattering function for a) Uranium b) Thorium in FLiNa at the
highest simulated temperature 1473 K.

shown in Figure 3.17. Therefore, the longer modes dominate at long time scales.

3.4.3 Singwi-Sjölander Jump Diffusion Model

The Singwi-Sjölander (S-S) model of jump diffusion [40] was employed to study the

diffusion process. In its simplest form, it models the diffusion process as a series

of discrete jumps interspaced by caging periods where the particle is essentially

trapped by its first coordination shell. Note that even though this is not the general

physical picture of what is happening in liquids, the S-S model is still useful as a

comparison tool due to its effectiveness in expressing the diffusion process in terms

of two simple variables: the residence time and the jump length. The residence

time corresponds to the average time interval between two consecutive jumps. It

indicates how strong the particle’s caging is, or the effectiveness of nearest neighbors

in restraining the particle’s diffusion. As for the jump length, it represents the average

distance travelled by a particle before it becomes trapped again. The S-S model

consists of fitting the inverse relaxation time (extracted from the self-intermediate
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scattering function) as a function of the wavenumber squared using the following

functional form

1

τ
=

Dk2

1 +Dk2τ0
(3.22)

where k is the wavenumber, D the diffusion coefficient, and τ0 the average residence

time. The fitting is shown in Figure 3.10. Except at the lowest temperature, there

is a very good agreement between the S-S model and the simulation results. The

lesser agreement at the lowest temperature is probably due to the closer proximity

to the salt’s melting point. The residence time is readily available from the fit since

it is just a fitting parameter, while the mean squared jump length can be calculated

using the following relation

⟨l2⟩ = 6Dτ0 (3.23)

The diffusion coefficient for uranium and thorium in FLiNa can be found from Figure

3.10 by doing a linear fit using the smallest k’s (hydrodynamic limit) and extracting

the slope of this line. Here, only the four smallest wavenumbers were used. The

reason why only the smallest k’s are considered is because they are representing

diffusion over larger length scales, which is our primary interest. The plane waves

with a large wave number represent diffusion processes over small length scales that

are noisy and not representative of the long-time diffusion behavior of the particle.

Figure 3.11 shows the average residence time, mean squared jump length and

diffusion coefficient for both thorium and uranium in FLiNa. Because the diffusion

coefficient increases with temperature, there is a corresponding increase of the jump

length and decrease of the residence time with temperature. Figures 3.11a and 3.11b

reveals that while the average jump length of uranium is longer than thorium, its

residence time is higher. This two factors offset each other and yield very similar

diffusion coefficients as shown in Figure 3.11c. The slightly higher diffusion coefficient
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a) b) c)

d) e) f)

Figure 3.10: Inverse relaxation time versus the wavenumber squared at different temperatures a)
973 K; b) 1073 K; c) 1173 K; f) 1273 K; e) 1373 K; f) 1473 K; for FLiNa + UF4 and FLiNa +
ThF4. The green and blue dashed lines correspond to the S-S fitting on the data points extracted
from the self-intermediate scattering function of uranium and thorium respectively. The linear fits
for uranium (yellow) and thorium (purple) considered only the four lowest k values. The slope of
this linear fit is the diffusion coefficient at that specific temperature.

of uranium can be connected to its smaller viscosity and coordination number. The

activation energies for uranium and thorium are also very similar, with values of 0.40

eV and 0.39 eV respectively. The close diffusion coefficients for uranium and thorium

are consistent with literature results, which suggests that the diffusion coefficients of

lanthanides and actinides ions in molten salts depend mostly on their valence, and

show almost no dependence on their crystallographic radii [41].

3.5 The Link Between Viscosity and Structure

In liquids, intermediate-range ordering refers to an organized arrangement of atoms

or molecules over distances ranging from 5-20 Å according to Elliot’s [42] definition.
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a)

b)

c)

Figure 3.11: a) Average jump length as a function of temperature for uranium (green) and thorium
(blue) in FLiNa. b) Average residence time as a function of temperature. c) Diffusion coefficient
for uranium and thorium as a function of temperature.
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These structures are nearly ubiquitous and encountered in a wide range of liquid

systems, such as ionic liquids, metallic melts, and protein solutions [43]–[47]. Their

hallmark is the appearance of a pre-peak in the structure factor [48]–[50], which

indicates spatial correlations beyond the length scales represented by the main

structure factor peak. Although intermediate-range ordering appears to impact

the thermophysical and transport properties of the liquid [39], [41], [51], a clear

connection or underlying mechanism has not been identified yet. For specific systems

such as polymer, there is a general connection between structure and viscosity.

Particularly, the structure and weight of the polymer chain is known to influence

viscosity [52], [53]. In molten salts, however, there isn’t any theory connecting

structural features to viscosity. In this section, this link for molten salts is discussed

and a mechanism that can explain the relation between intermediate-range ordering

and viscosity is proposed.

The big increase in the salt’s viscosity when uranium and thorium are introduced

into the pure salt indicates that something new is happening at the atomic level.

When uranium and thorium are added into the salt, a pre-peak appears in the

structure factor (see Figure 3.7), which is indicative of a intermediate-range ordering

that is absent in the pure salt. These extended structures or clusters interact with

each other and affect particle interactions, leading to additional fluid flow resistance

and therefore viscosity. In the atomic picture, viscosity is related to the degree of

correlation between atomic-level stresses [54], [55]. The amount of correlation is then

influenced by particle interactions [56], the local atomic environment, and the overall

structure of the system.

To further investigate this issue, a closer look into the Green-Kubo relation is

needed. As already discussed, this relation describes the macroscopic viscosity in

terms of the autocorrelation of the shear components of the macroscopic stress
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tensor. However, we can further breakdown the macroscopic stress σαβ into a sum

of individual atomic-level contributions:

σαβ =
∑
i

σαβ
i (3.24)

where σαβ
i is the atomic-level stress tensor and the sum is over all atoms in the

system. The atomic-level stress is formally defined as the first order local response

in energy to a homogeneous strain [57]. Intuitively, the atomic stress arises from a

mismatch between the size of the atom and the size and shape of its atomic site, i.e.

the volume of space in the system dedicated to it. If the designated atomic site is

larger than the actual atom size, a tensile stress develops. Conversely, if the atomic

site is smaller than the atom size, a compressive stress appears. The atomic stress

experienced by an atom is related to the spatial distribution of its neighbors, as this

determines the size and shape of the atomic site. The neighbor distribution, on the

other hand, depends on the interactions between atoms, so the atomic-level stress

ultimately depends on the potential energy surface. The Green-Kubo relation for

viscosity can then be rewritten in terms of the atomic-level stresses as

η = lim
τ ′→∞

V

kbT

∫ τ ′

0

〈∑
i

σαβ
i (t0 + τ) ·

∑
i

σαβ
i (t0)

〉
dτ (3.25)

and the autocorrelation can be further expanded as〈∑
i

σαβ
i (t0 + τ) ·

∑
i

σαβ
i (t0)

〉
=
∑
i

⟨σαβ
i (t0 + τ) σαβ

i (t0)⟩

+
1

2

∑
i

∑
j ̸=i

⟨σαβ
i (t0 + τ) σαβ

j (t0)⟩
(3.26)

for i = j = [1, N ] where N is the total number of atoms in the system. This

expansion is particularly informative because it breaks down the macroscopic stress
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autocorrelation into atomic-level stress autocorrelations and cross-correlations. The

first term on the right-hand side represents the correlation of the atomic stress of

an atom i with itself, while the second term refers to the correlation between the

atomic stress of atom i and all other atoms j in the system. Thus, Equations 3.25

and 3.26 put together directly connect the macroscopic viscosity to atomic-level

quantities. This link helps elucidate the role that intermediate-range structures play

in the macroscopic viscosity. Two atoms that are part of the same intermediate-

range structure (e.g. a cluster) are more correlated than two arbitrary atoms in the

bulk liquid. This means that the amplitudes of the atomic stress cross-correlations

between atoms within the same cluster are generally higher than the amplitudes of

the cross-correlations between atoms that are not. Atoms that are part of the same

cluster have stronger interactions tying them together, so it is reasonable to assume

that the properties of these atoms will exhibit a higher degree of correlation when

compared to bulk atoms. On top of that, because the atoms in these structures are

more restrained, it also takes longer for the atomic shear stress autocorrelations to

decay. As a direct consequence of these increased correlations of the atoms in the

cluster, the viscosity as described by Equations 3.25 and 3.26 increases.

An alternative explanation is in terms of shear waves. Although liquids generally

don’t support the propagation of shear waves at macroscopic length scales, they do

support them at the atomic scale over lengths of tenths of Angstroms [54]. These

waves die-off very quickly because liquids lack the necessary rigidity to support

the transverse motion with respect to the direction of wave propagation. However,

because intermediate-range structures locally resemble amorphous solids (if we zoom

into these structures and ignore the background we cannot tell whether it is a piece

of an amorphous solid or an intermediate-range structure in a liquid), they can better

sustain shear waves when compared to the bulk liquid. Therefore, the presence
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of intermediate-range structures extends the range of propagation of shear waves,

causing them to take longer to be suppressed and disappear. Because shear waves

are the mechanism by which the atomic stress of two atoms in the system correlates

or “connects“, this extended propagation range leads to a greater atomic shear stress

cross-correlation and therefore to a higher viscosity. Mathematically, the second

term in the right-handed side of Equation 3.26 takes longer to decay to zero.
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Chapter 4

Conclusion & Future Work

4.1 Conclusion

This work connects the structure of the liquid to its thermophysical and dynamic

properties and therefore highlights the importance of understanding the salt’s struc-

ture. It shows how the properties of molten salts can evolve in an unexpected and

non-linear fashion over time, which has important implications in the field of MSRs.

As time evolves and fuel is burned, multivalent cation species appear in the molten

salt and form intermediate-range structures. As a consequence, the amplitude of the

atomic-level shear stresses correlations of atoms in these structure increases, and this

leads to an increases in the viscosity by a significant amount. For the examples shown

here, having only 9.1% mol of ThF4 or UF4 in pure FLiNa is enough to increase

viscosity by 20-30%. Because viscosity is an important part of any multiphysics

simulation of a MSR, it is important to consider its evolution over time to obtain

accurate simulation results. Moreover, the big increase in the viscosity contrasts with

other thermophysical properties, such as molar specific heat and thermal expansion,

that doesn’t seem to be affected much by the addition of fuel elements and subsequent

formation of intermediate-range ordering structures.
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4.2 Future Work

One promising venue to extend this work is to use machine-learned interatomic

potentials. It comprises of training a neural network using DFT data with the goal

of learning the forces exerted on each atom given its atomic environment. However,

to successfully train a neural network potential, several DFT simulations spanning

different pressures, temperatures, and system compositions must be performed. Thus,

on top of the already expensive network training, the dataset creation can also be

very costly. Additionally, the system can become trapped in a local free energy

minimum for most of the trajectory, resulting in a dataset comprised mostly of very

similar configurations, which negatively impacts the training of the neural network.

Therefore, efficient ways of sampling different configurations and creating a diverse

and reliable dataset must be sought.

An interesting approach to automate the creation of such datasets was proposed

by Justin Smith et al. in [58]. It involves initially training an ensemble of neural

network potentials using a dataset derived from single-point DFT calculations on

randomly initialized configurations. MD simulations driven by this neural network

ensemble are then performed. If there is a discrepancy among the ensemble members

regarding the energies and/or forces in a specific frame, the contentious configuration

is flagged and a single-point DFT calculation is performed on it. Such disagreement

is quantified by the standard deviation of the energies and forces; if the standard

deviation exceeds a predetermined threshold, then the frame is flagged. This whole

process is repeated until no more configurations are flagged, and at that point we

are left with a diverse and robust dataset.

Once a robust dataset has been constructed, the production training can start.

There are several neural network potential packages available, including Nequip
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[59], HIPPYNN [60], DeepMD [61], and TorchMD-Net [62] to name a few. The

most recent neural network potentials such as Nequip use equivariant graph neural

networks that respect the translational, permutational, rotational symmetries of

the potential energy surface. Once the training finishes, machine learning driven

molecular dynamics simulations are performed to probe length and time scales

that were previously inaccessible. By conducting large-scale MD simulations using

machine-learned interatomic potentials, it is now possible to calculate properties

such as thermal conductivity and melting point, which are challenging to compute

using FPMD. These properties require large simulation boxes and long trajectories

for accurate calculation that are often beyond the capabilities of FPMD. Thermal

conductivity can be calculated through its own G-K relation, in a similar fashion

to viscosity. The only difference is that instead of integrating the autocorrelation

of the shear stress, for thermal conductivity we integrate the autocorrelation of

the heat current. However, the time required for the autocorrelation of the heat

current to decay to zero can span hundreds of picoseconds, in contrast to the few

picoseconds typically needed in molten salts for the autocorrelation of the shear

stress to decay. For that reason, it is not possible to perform reliable calculations of

thermal conductivity using FPMD.

As for the melting point, which is one of the most difficult properties to calculate

using FPMD, there are several different methods available for its calculation using

classical MD. These methods are either free energy-based, or direct methods, and most

of the direct methods are interface-based methods. The most straightforward method

is to simulate a system that contains both liquid and solid phases in equilibrium

at different temperatures, and find the temperature where both phases coexist (i.e.

there is no change in the proportion of solid to liquid over time) [63]. Yong Zhang

et al. compared numerous different methods of calculating melting point from MD
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simulations in their literature review [64].

Ultimately, conducting large-scale MD simulations driven by machine-learned

potentials leverages GPU computing, offering a significant advantage as most of DFT

codes are CPU-bound. This approach facilitates even larger simulations, potentially

involving millions of atoms, while maintaining first-principles accuracy.

Another natural extension of this work is to attempt to prove the newly proposed

ideas. Specifically, this involves showing the relationship between intermediate-

range order and viscosity in general liquids, and the hypothesis that the addition of

multivalent cations to fluorine or chlorine salts results in the formation of intermediate-

range ordering structures.

The investigation of the connection between intermediate-range ordering and

viscosity can be conducted through large scale MD, either driven by classical force

fields or neural network potentials. Under this setting, the atomic stress tensor

of each atom can be computed, a feat that is not possible using FPMD. Then,

the atomic-level shear stress cross-correlation between atoms that are part of the

same intermediate-range structures can be computed and compared to the stress

correlation between atoms in the bulk liquid. If the amplitude of the cross-correlation

between the two atoms in the cluster is generally greater than the two atoms in

the bulk at equivalent distances, then this would prove the proposed link between

intermediate-range structures and viscosity. Furthermore, this idea leads us to expect

that the autocorrelation of the atomic shear stress for an atom that are part of an

intermediate-range structure will take longer to decay to zero when compared to a

bulk atom. This can also be readily evaluated given that the atomic-level stresses

were calculated.

Finally, large-scale MD simulations can be utilized to analyze the formation of

intermediate-range structures and network complexes in fluoride and chloride salts

46



upon the addition of multivalent cations. Simulations can encompass various salts

with distinct compositions and temperatures, as well as cations of different sizes and

valences. If the proposed idea is correct, then the formation and prevalence of these

structures and networks will depend primarily on the valance and concentration of the

multivalent cation. Although evaluating this idea is straightforward, it necessitates

performing several simulations.
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