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ABSTRACT 

  

Because most pigs worldwide are now bred by artificial insemination (AI), accurate 

estrus detection is essential. There is consensus that display of the lordosis response (“standing”) 

following physical boar contact or application of the back-pressure test (BPT) is the gold 

standard for estrus detection in pigs. However, little research has explored its true accuracy and 

evaluated whether automated measures could improve upon such a manually driven process. On 

commercial pig breeding farms, estrus detection relies on multiple trained technicians and daily 

efforts and occurs year-round. This places an undue burden on an already volatile and limited 

farm labor supply. And while research into automated technology specific to swine estrus 

detection is evolving, it remains underdeveloped. Although electronic estrus detection (EED) 

systems have been successfully integrated into the management of dairy and goat herds, use in 

swine breeding herds has faced challenges. Therefore, the aim of this thesis is to summarize 

current knowledge of estrus detection procedures in swine and extrapolate how these processes 

can be improved using computer vision technology. A YOLOv8 object detection model for 

distinguishing erect ear posture from neutral ear posture had a mean average precision (mAP) of 

98.3% at 0.5 intersection over union (IoU) for all classes. This is acceptable for automatic 

detection of ear posture in gilts. A YOLOv8 instance segmentation model detected the outline of 

gilts in single-stall housing with an overall mAP of 99.5% at 0.5 IoU; this model's performance 

was also satisfactory. A YOLOv8 movement classification model assigning three classes of 

behavioral responses to gilts receiving the back-pressure test (BPT) showed high false positive 

rates for one class and high false negative rates for two classes. This model is not yet satisfactory 
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in automatically classifying types of behavioral responses to the BPT. Additionally, a YOLOv8 

object detection model was trained to identify four postures (sitting, standing, kneeling, and 

lying) in prepubertal gilts, achieving an overall average of 0.976 mAP at 0.5 IoU. This model 

was then applied to a 24-hour dataset of gilts transitioning from proestrus into estrus and 

metestrus. Time budgets were created for each gilt according to the four postures detected. No 

statistically significant differences existed among the four postures between pre-puberty and the 

conclusion of estrus.
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CHAPTER 1: REVIEW OF LITERATURE 

 

Abstract 

Because most pigs worldwide are bred by artificial insemination (AI), accurately 

detecting estrus for timing insemination is more important than ever. There is consensus that 

display of the lordosis response (standing) with physical boar contact or when a human applies 

the back-pressure test (BPT), are each considered as the gold standards for accurate detection of 

estrus in pigs. However, very little research has explored its true accuracy and evaluated whether 

more automated measures could replace and improve upon such a manually driven process. In 

commercial pig breeding farms, detecting estrus relies on multiple trained technicians and daily 

efforts, year-round. This places an undue burden on an already volatile and limited farm labor 

supply. While research into automated technology specific to swine estrus detection is evolving, 

it is still quite underdeveloped. While electronic estrus detection (EED) systems have been 

integrated into the management of dairy herds, use in swine breeding herds has faced challenges. 

Therefore, the aim of this review is to summarize current knowledge of estrus detection 

procedures in pigs and extrapolate how advances in automated EED in other species could be 

applied to the development of different systems in pigs.  

 

Introduction 

A longstanding obstacle within the swine industry has been its need for and reliance on 

specialized human labor for many management procedures. While technology like radio 
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frequency identification (RFID) is often used to identify dairy cattle, and pedometers have been 

used to aid in estrus detection, these have had limited application in the swine industry. There are 

complexities and other factors that limit their application in pigs, such as type of housing, animal 

behavior, durability, and meeting the very high fertility measures under the current production 

systems (Knox, 2016). However, the process of estrus detection in swine is a critical component 

to high herd fertility, and in sows and gilts, can be characterized as a 1-to-3-day period of sexual 

receptivity within a 21 estrous cycle. The important aspect of estrus is that it allows for 

insemination to occur at or near the optimal times for fertilization, whether natural or artificial 

breeding occurs. Once a female is detected in estrus, ovulation can occur in a wide window of 24 

to 72 hours later (De Rensis and Kirkwood, 2016). Because of this, successful estrus detection is 

a critical part of pork production because it allows for more precise timing for insemination that 

leads to production of a large litter (Lammers et al., 2007). The standard method for estrus 

detection in the swine industry is the use of the back pressure test (BPT), in which an animal 

handler pushes on the back and flanks of a female in the presence of a boar to evaluate her 

reaction (Langendijk, 2001). The standing response (lordosis) is a physical indicator of sexual 

receptivity in most species. A clear standing response to the BPT will be characterized by a 

frozen posture, arched back, and an ear twitch or erect ears. These symptoms together indicate 

that the female is in estrus, close to ovulation, and should be inseminated. As the industry has 

shifted from natural mating to artificial insemination more than two decades ago, accurate 

detection of estrus has become increasingly vital in appropriately timing artificial insemination 

for high conception rates and large litter size, efficient utilization of genetically valuable semen, 

and maximizing labor and financial inputs required for sustainability. 
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Although producers have relied on the back pressure test for over 50 years (Reed, 1969), 

its efficacy is under-researched, and better alternatives have yet to see integration into the 

commercial industry. Because evaluating the standing response relies on the subjectivity of 

human judgment, and can be altered by environment, stress, and other confounding factors, 

accuracy in crucial behaviors may be misinterpreted or missed entirely. In dairy cows, over 50% 

of estrus events are missed, largely attributed to a lack of visual cues from silent estrus (Fauvel et 

al., 2019). This has prompted experimentation with alternative estrus detection technologies, 

including pedometers, mount detectors, and electrical resistance measurements. While often 

initially successful in cattle, these physical detectors of estrus have seen little crossover into the 

swine industry. Application options are limited due to physical body structure (for example, 

collars are more practical for dairy cows than pigs) and pigs’ proclivities for biting, chewing, or 

rubbing anything placed externally. Currently, nearly all estrus detection in pigs is visual, and 

data are lacking on the number of estrus events detected successfully. It is challenging to know 

the true accuracy of the BPT given silent estrus can occur. This occurs on every farm to some 

degree and is identified when a sow or gilt in estrus does not show a standing response to the 

back pressure test. Some estrus events are missed due to human error or failure of the animal to 

display the associated behaviors. While the proportion of missed estrus events is often unknown, 

preliminary research on electronic capture systems has demonstrated their potential to recognize 

estrus-positive behaviors that would be otherwise missed (Fauvel et al., 2019; Lee et al., 2019). 

Financial returns on swine farms can be impacted by the BPT’s accuracy in detecting 

estrus. In cases where estrus is not detected, animals will accumulate many open days and costs. 

In cases where estrus is detected late, AI timing may be less than optimal since ovulation 

windows can be variable, leading to conception failures and low litter size. These scenarios 
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reduce and delay financial returns on the breeding female. Successful AI procedures rely on a 

once or twice daily estrus detection system inseminations occurring on each day standing. 

Ensuring that animals receive two inseminations, and on each subsequent day standing is 

observed, increases the odds that a female will become pregnant (Lamberson et al., 2000). Still, 

with multiple inseminations, often one of the inseminations will fertilize most of the eggs. This 

means that the multiple AI approach essentially wastes 50% of the genetic resources and 

increases costs in semen, shipping, labor, and AI disposables. A more accurate and efficient 

method of estrus detection could enable farmers to be successful with a single insemination. 

A major problem that has faced the industry since the introduction of AI is the need for 

specialized labor in the manual detection of estrus using the BPT. On average, a farm worker 

must spend at least 1 to 2 minutes moving the boar to the female, allowing the animals to 

interact, and conducting the BPT (Knox et al., 2013). This would appear as an inefficient use of 

limited labor, especially if a faster alternative exists. Additionally, handling a sexually mature 

boar can be frustrating and dangerous, and therefore, a method of detection that functions 

without the physical presence of a boar would minimize the need for farms to keep boars on site.  

Detection of estrus in pigs can be physically straining on labor, and lead to back, limb, 

and soft tissue injuries resulting from close contact when pushing, climbing on, leaning over, or 

sitting on the pigs to detect estrus. When considering that physically manipulating many sows 

daily throughout the year – sows which often outweigh the technician several times over - it is 

perhaps not surprising this can lead to problems. The daily need for labor to meet physical 

demands over an extended period often results in employee burnout and work-related injuries in 

an already limited labor population. When an industry relies heavily on specialized human labor, 

it becomes vulnerable to labor market volatility. When the supply of labor decreases, farms rely 
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on fewer employees for more work, leading to burnout and decreased quality of work overall as 

corners are cut to finish daily tasks. This is especially detrimental to the estrus detection process, 

which relies on careful observation of often subtle behaviors. The physical process of checking 

which females are responsive to mating is known as heat check (Knauer et al., 2014). If an 

employee rushes to heat-check many animals, they may not allocate sufficient time for everyone, 

potentially missing signs of estrus that could have appeared with a few additional minutes of 

stimuli. 

To create a viable alternative to the BPT, a new system would need to meet some or all 

criteria to: (1) demonstrate superior accuracy when compared to existing methods, (2) function 

with lower human labor and animal handling requirements, (3) standardize criteria for 

identifying estrus behavior to avoid subjective disparities, (4) operate at lower cost, and (5) 

demonstrate broad application throughout the industry. An artificial intelligence model for estrus 

detection based on computer vision would facilitate continuous monitoring of individual animals, 

thus capturing behaviors indicative of estrus while lessening a farm’s reliance on highly qualified 

personnel for estrus detection and ensuring this activity could be overseen by less experienced 

employees. This system may also identify subtle behaviors that may be missed in the narrow 

timeframe spent administering the back pressure test due to human judgment error or lack of 

sufficient time to express standing heat. 

Precision management is an emerging sector of livestock production that provides 

technology-based solutions for farmers to remotely capture, track, and analyze large amounts of 

data on their herds (Berckmans, 2017). While discussion and application of precision livestock 

farming techniques have increased substantially over the past decade, there is a distinct gap in 

the research regarding specific applications in swine estrus detection. An in-depth review was 
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conducted of current estrus detection standards in the swine industry, followed by suggestions 

for the use of precision livestock farming technology to fill these gaps.  

Artificial Insemination in the Swine Industry 

Artificial insemination (AI) is the primary breeding technique used on modern commercial swine 

farms. In Western Europe, over 90% of sows are bred by AI (Gerrits et al., 2005). In the United 

States, the usage of AI exploded from 5% in 1986 to 50% in 1998 (Lamberson et al., 2000). In 

2002, the USDA’s National Animal Health Monitoring System (NAHMS) surveyed nearly 2,500 

swine production sites in seventeen states, accounting for 94% of the US pig inventory. Results 

from the NAHMS survey indicated more females were bred through artificial insemination than 

any other technique. Worldwide, over 90% of pigs are bred by artificial insemination (Waberski 

et al., 2019). Clearly, farrowing rates and reproductive efficiency on most US commercial farms 

are dependent on the success of that farm’s artificial insemination program. Successful AI relies 

on a cascade of factors, including volume of sperm per dose, number of doses per female, and 

accurate detection of estrus to establish an insemination schedule (Knox, 2016). 

The United States’ increasing reliance on AI over the past thirty years correlates with the 

expanding size of farming operations. Of all NAHMS surveyed sites that housed at least 500 

breeding females, 91.3% utilized artificial insemination, compared to 23.2% in surveyed sites 

that housed fewer than 250 females. Artificial insemination is the preferred breeding method for 

most producers due to its economic advantages, diverse genetic options, facilitation of improved 

health and hygiene practices, and decreased need to house and handle boars (Clapper, 2000). 

This technique has greatly accelerated genetic improvement in swine through selection 

differential, in which large quantities of females are inseminated with the sperm of fewer 
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superior sires (Roca et al., 2006). Artificial insemination is also highly efficient; sperm from a 

single boar ejaculate can breed up to twenty females, a process that would take significantly 

longer through natural service (Knox, 2016). 

In addition to genetic benefits, research also suggests that increased rates of AI are linked 

to increased farrowing rates and larger litter sizes. A farrowing rate of 85% or better is one 

success metric for commercial farms, which can be affected by estrus detection, insemination 

timing, and semen quality (Young, Dewey, and Friendship, 2010).  

While successful AI has numerous advantages, AI failure is a significant problem that 

can lead to reduced animal production, disrupted animal flow, problems in animal housing, labor 

scheduling, and increased costs (Lamberson et al., 2000). One source of AI failure is inaccurate 

insemination timing. Artificial insemination doses contain, on average, 1.5 - 4 billion sperm 

cells, and each female is usually inseminated two or three times (Bortolozzo et al., 2015). Sows 

checked twice daily for estrus often have higher average economic returns than sows checked 

once daily, and total performance (quantified by fertility rates and number of piglets born alive) 

depends on accurately timing insemination with expected ovulation (Lamberson et al., 2000). 

Administering multiple doses of semen can be an effective strategy to improve the chances of 

accurately timing estrus closer to ovulation, resulting in high fertilization rates with viable 

embryos. However, net returns from improved reproductive output are not guaranteed to exceed 

the extra costs associated with an additional dose. 

To decrease the cost of Artificial Insemination, the swine industry must pursue a goal of 

fewer AI doses administered per female per cycle. Most sows are inseminated multiple times per 

cycle due to variable lengths of estrus and unpredictable sperm viability (Bortolozzo et al., 

2015). Sow behavior and employee observations were used to predict optimal insemination 
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schedules, reducing the average number of inseminations on nine commercial farms from 2.3 to 

1.35 inseminations per female. The same researchers demonstrated that success from single 

insemination is possible when the timing is accurate. Indeed, a twelve-hour shift in insemination 

time can negatively impact conception rates by up to 12% (Germain, Labrecque, and Rivest, 

2019). Because preliminary research has demonstrated the success of single inseminations in 

some populations, an optimal model for electronic detection of estrus would identify preliminary 

behaviors indicative of estrus prior to visual observation by farm employees. This could facilitate 

earlier insemination, fewer additional doses per animal, and improved conception rates. 

When a female is in estrus, her expression of estrus-positive behaviors determines if and 

when she will be inseminated (Kemp et al., 2005). The goal for producers should be twofold: 1) 

detecting estrus as early and accurately as possible and 2) inseminating with the fewest doses of 

semen needed to create a viable pregnancy that ends with the farrowing of a large number of live 

piglets. 

Estrus detection may be achieved earlier within a female’s cycle if she is continuously 

monitored. While 24/7 in-person monitoring is not feasible given the large herd sizes and high 

employee turnover on many farms, continuous camera monitoring is both affordable and widely 

accessible for many producers. Machine-learning models of estrus detection are designed to 

analyze individual pig behavior 24/7 and may provide information about behavioral changes in 

real-time (Cowton et al., 2019; Nasirahmadi et al., 2017; Zhang et al., 2019). This is a significant 

advantage over current estrus detection methods, in which farm laborers have one or two 

scheduled windows per day to evaluate all eligible females, often amounting to 1 - 2 minutes per 

animal. This short window can be sufficient for females reacting to the back pressure test 

immediately with a strong estrus-positive response but can miss animals who display subtle 
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behaviors or demonstrate a delayed response. Because commercial farms are limited by available 

human labor, they have, in turn, a limited amount of time to spend observing each animal. A 

missed opportunity for insemination delays the farm’s breeding schedule and affects the 

producer’s bottom line. This occurs when labor investments are made on a healthy animal whose 

estrus is missed and, therefore, is not inseminated in time and does not farrow on the same 

timeline as the rest of the inseminated females. 

Current Standards of Estrus Detection 

Research tracing the origins of the back pressure test is lacking, though published 

mentions of this assessment as a measure of estrus detection appear as early as the late 1960s and 

early 1970s (Signoret et al., 1975; Bristol et al., 1971; Reed, 1969). Sixty percent of sows in 

estrus will stand for the back pressure test without the presence of a physical boar; the response 

rate increases to 90% with the addition of boar pheromones and auditory stimulation. Including 

fence-line contact with a physical boar, estrus expression reportedly increases to 100% (Kemp et 

al., 2005). While 100% expression may occur in research conditions or other isolated groups and 

would facilitate highly accurate insemination schedules, this figure is not representative of all 

farms when accounting for silent estrus or the large size of commercial farms. A sow or gilt in 

silent estrus is a cyclical animal that ovulates without exhibiting behaviors visibly indicative of 

estrus, such as lordosis or erect ears (Stancic et al., 2011). A female exhibiting silent estrus 

would not be positively identified by the back pressure test despite nearing ovulation (Belstra et 

al., 2007). 

Estrus expression is a spectrum, with responses indicative of no estrus (vocalization, 

movement away from stimulus, extrication from touch) on one end and the confirmed standing 
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response on the other end (lordosis, erect ears, swollen vulva, lack of vocalization) (Knox et al., 

2015; Van Eerdenburg et al., 2002). False positives, or females who stand for the back pressure 

test but lack the follicular growth that precedes ovulation, are possibly low or unknown. Such 

follicular growth is typically characterized as a follicle that evolves from 2 – 4 mm in diameter at 

the onset of the follicular phase to 7 – 8 mm in diameter just prior to ovulation (Soede et al., 

2011). And while false positive responses to the back pressure test are rare, false negative 

responses – so-called “silent estrus” – are more common and have greater repercussions on the 

industry, especially in gilts, and sows that may be bred while still nursing (Dovc et al., 2010). 

And between these strong positive and strong negative responses exists a gray area that may be 

difficult to visualize or interpret, resulting in more false negatives. With use of ultrasound to 

evaluate follicles on the ovaries, females that exhibit follicular growth may still respond 

negatively to the BPT. Alternatively, they may exhibit a more neutral or intermediary response 

by standing quietly for the BPT without erect ears or the full lordosis response. Estrus detection 

is dependent on visual cues displayed by the female, and variation in these independently or 

collectively can cause uncertainty and result in misinterpretation.  

Alternative Approaches 

 A potential confounding issue with alternative estrus detection technologies is the use of 

the BPT as a metric of accuracy in developing the product or research. Clark et al. (2011) used 

infrared thermography to measure changes in vulvar skin temperature of 25 gilts and 27 sows 

during estrus. The study demonstrated that vulvar skin temperature changed significantly during 

estrus, suggesting the use of digital infrared thermography as a complementary tool in assessing 

estrus. However, females in the study were only subjected to ultrasound and temperature 
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recordings if they exhibited a standing response to the BPT. While this may be a useful tool for 

females displaying a strong estrus-positive behavioral response, it omits animals with follicular 

growth who do not show a strong standing response. The mammalian estrous cycle is divided 

into four phases: proestrus, estrus, metestrus, and diestrus. These phases define the preparatory, 

ovulatory, luteal regressive, and sexually inactive portions of the estrous cycle, respectively. 

Sykes et al. (2012) used digital infrared thermal imaging to evaluate vulva temperature in 32 gilts 

and delineate metestrus and diestrus phases. The researchers proposed that estrus detection 

through thermal imaging could catch females in silent estrus. Like the previous study on vulva 

temperature, this group of gilts was exposed to a teaser boar and observed for signs of estrus. 

Gilts were subjected to thermal imaging of the vulva at the time of the first standing estrus and 

again ten days later. The study concluded that gilts in estrus had higher average vulva surface 

area temperatures than gilts in diestrus. The initial results of the study, combined with the non-

invasive nature of the thermal imaging process, make this a promising addition to current estrus 

detection tools. However, unlike Clark et al. (2011)’s study, researchers did not use ultrasound 

on the gilts to confirm follicular growth before or after standing heat. So, while the study 

proposes using this imaging tool on animals exhibiting silent estrus, its methods facilitated use 

on gilts expressing standing heat exclusively. Had researchers verified the existence of follicular 

growth (or lack thereof) with transrectal ultrasound following boar exposure, they may have 

identified one or more gilts who did not stand for the back pressure test but continued to grow 

medium to large ovarian follicles, indicating silent estrus. It is still quite possible that digital 

infrared thermal imaging could be used to detect silent estrus, but this has yet to be applied 

directly. Ultimately, the application of digital infrared thermal imaging on animals in silent 

estrus (or those displaying weak behavioral responses to the BPT) is unknown. 
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The Limitations of Farm Labor 

Current methods of swine estrus detection rely heavily on human labor, especially when 

animals are housed in groups. Estrus detection in group housing with a teaser boar usually 

requires two people, one to handle the boar and another to conduct the back pressure test. After 

an initial fence line interaction between the boar and female, a farm laborer rubs the female’s 

back, attempting to provoke lordosis. If the response is ambiguous or does not exist, the 

employee progresses to pushing and even sitting on the female, mimicking the pressure of a boar 

mount (Knauer et al., 2014). This process quickly becomes strenuous for the laborer tasked with 

rubbing, pushing, and sitting on dozens or even hundreds of animals in a row.  

Because the use of AI requires boars on the farm, it also requires specialized human labor 

to interact and manage the boars. Rising farm wages and lessened availability of migrant workers 

from Mexico have contributed to the tightening farm labor market (Zahniser et al., 2018). The 

Covid-19 pandemic ravaged the agriculture industry, infecting workers, forcing widespread 

shutdowns, and depleting the labor supply. Farms and meat packing plants became immediate 

hotspots of virus transmission, and the agricultural sector reflected one of the highest outbreak 

rates of all industries (Murti et al., 2020). From March 1, 2020, to March 31, 2021, agricultural 

producers and laborers accounted for up to 9.5% of all Covid deaths in the United States (Lusk et 

al., 2021). In April and May 2020, daily slaughter volumes of pigs and cattle plummeted as much 

as 40% compared to the equivalent period in 2019 (Lusk et al., 2021).  

Employee turnover is an additional contributor to the volatility of the agriculture labor 

market. Average yearly turnover (percent of total turnover among full-time positions) was 92% 

in eleven North American commercial swine farms recently studied, with high turnover rates for 

nearly all surveyed operations (Black et al., 2021). In comparison, the 2017 animal caretaker 
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turnover rate for US swine farms was estimated between 20 and 35%, according to the National 

Pork Board (2017). Although high turnover is expected in the industry, it is expensive for 

producers and can decrease overall productivity. Costs associated with a turnover event include 

recruiting, hiring, and training a replacement as well as opportunity costs associated with 

interrupted productivity. These costs can be estimated at 30 - 150% of the employee’s salary 

(Hinkin et al., 2000; Boushey et al., 2912; Park et al., 2012; Moore, 2012; as referred to in Black 

et al., 2021). And while turnover is not exclusive to the swine industry, its effects are magnified 

due to the sheer number of workers employed. As one of the largest pork exporters in the world, 

the US housed nearly 60,000 swine operations in 2021 and was responsible for approximately 

half a million jobs in all facets of the production system (Gialva, 2014; Work in Pork, 2021). 

With such a large industry that employs hundreds of thousands of employees, constant labor 

turnover interrupts production, increases labor costs, and negatively impacts animal welfare and 

reproductive outcomes. The effect of a turnover event on production was assessed two months 

after the onset of the turnover event (Black et al., 2021). Employee-mediated voluntary turnover 

has been associated with decreased production for two parameters: number of pigs weaned per 

sow (PWS) and pre-weaned pig mortality (PWM).  

The Covid-19 pandemic and subsequent shortage of migrant workers have highlighted 

how quickly the swine industry can be affected by volatility in the labor market.   

Current Precision Livestock Farming Technologies in the Swine Industry 

The world population is expected to surpass 9 billion people by 2050, and agricultural 

producers must optimize production to feed that population (United Nations, 2017). Strategies 

for optimizing production lie in precision management, an emerging sector of livestock 
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production that equips producers with technology to remotely capture, track, and analyze large 

amounts of data on the welfare and production efficiency of herds too large to individually 

monitor at regular intervals. One goal of precision livestock farming is to achieve continuous, 

fully automated monitoring of animals (Tzanidakis et al., 2021). This can be accomplished in 

numerous ways, such as image and video-based capture systems. These are quickly emerging as 

some of the most popular, effective, and broadly applicable technologies (Kakani et al., 2020; 

Lovarelli et al., 2020; Neethirajan et al., 2021).  

Precision livestock technologies have been used to conduct continuous welfare 

assessments, subsequently detecting deleterious behaviors (such as tail biting or piglet crushing) 

and notifying producers promptly upon detection. As the number of individual farms decreases 

and the number of animals per farm increases, producers lose the ability to manually monitor 

individual animals for signs of stress or discomfort. By the time an animal has elicited a bio-

response in the form of behavioral change, the impact of that stress has already occurred 

(Berckmans, 2017). A pervasive goal of livestock production is minimizing the stress 

experienced by each animal. Stress responses can diminish performance in multiple areas, 

including immune function and response, feed intake, and reproductive performance (Manteca et 

al., 2013).  

Varieties of precision livestock technology include 2D and 3D cameras for evaluating 

behavior and physiology; microphones for analyzing sound patterns; thermometers and infrared 

imaging to assess health status; accelerometers to track movement patterns; radio frequency 

identification (RFID) tags; and facial recognition software (Benjamin et al., 2019). Multiple 

types of precision livestock technologies may be integrated to improve the overall accuracy and 

efficiency of estrus detection. 
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Computer Vision in Precision Livestock Farming 

Although current research on swine estrus-specific applications with precision livestock 

farming is limited, several continuous capture systems have shown promise in improving 

behavioral recognition of individual animals of various livestock species including cows and 

goats (Wang et al., 2013; Vayssade et al., 2023). A fundamental component of these systems is 

the ability to automatically identify individual animals and distinguish them from others in the 

herd. Deep learning methods that detect individual pig faces and/or bodies can be used as a tool 

to objectively evaluate pig health and behavior. Convolutional neural networks (CNN) can be 

used to automatically detect individual pig faces and eyes; when such an algorithm was applied 

to 10 randomly selected pigs, results showed 83% accuracy in assessing 320 images (Marsot et 

al., 2020). The study was limited by the relatively low number of test images, and most false 

positives erroneously confused open mouths, snout openings, or dirt spots for eyes. However, 

this approach demonstrates the ability of deep learning models to track individual identifiers, 

tackling the first step in automated livestock assessment. Because estrus detection relies on 

physical cues from the animal’s ears, head, and back, individual identification and behavior 

recognition are essential components of the process. 

Four types of video-based behavior recognition include (1) postural, (2) locomotive, (3) 

area-related, and (4) interactive (Yang et al., 2020). Video-based models of behavior recognition 

rely on two techniques: segmentation and detection. Segmentation stratifies the outline of an 

individual pig using pixels to distinguish that outline from the background image. Detection 

locates each pig within a rectangular area (bounding box), which may contain parts of the 

background, according to the pig’s features. These features are critical for object detection and 
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include color, texture, and shape. Pig segmentation “is the basis for analyzing the body size, 

weight and posture of pigs” (Yang et al., 2020).  

Further, 2D and 3D imaging systems can effectively identify pig behaviors and improve 

livestock production (Arulmozhi, 2021). Proposed benefits include improved production 

efficiency and performance, earlier disease detection, better environmental management, 

increased sustainability, and more robust data collection and data analysis of individual animals. 

The affordability, widespread availability, and ease of use of camera sensors make them ideal for 

achieving these outcomes. Camera sensors allow producers to monitor pigs closely and 

accurately at an affordable price – a necessary feature when looking for potentially subtle signs 

of estrus that may come and go quickly. One notable drawback is that many producers lack 

comfort and experience utilizing targeted software systems to analyze the camera images. 

Cameras are one static piece of a robust computer vision system, and they are minimally useful 

without accompanying software to analyze and interpret the resulting images. Additionally, 

camera placement must be carefully considered when monitoring group-housed pigs. Occlusion 

is a common problem in which poles, feeders, or other objects (including other animals) disrupt 

the camera’s view of an animal. This is more likely to happen in group-housing scenarios due to 

the variable number of objects in each pen, so thought must be given to placement in which the 

least amount of visual obstruction is likely.  

Threshold segmentation can also serve an integral function in the process of detecting 

individual livestock within a video frame. Using cattle as a model, animals were segmented from 

their background, and a Mask R-CNN deep learning framework was applied to detect the cattle 

in motion, enhance the images, and perform body contour extraction (Qiao et al., 2019). Results 

showed that the Mask R-CNN approach resulted in a Mean Pixel Accuracy of ninety-two 
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percent. Individual detection is often valuable for cattle farmers for feedlots or chutes when 

accounting for overlapping animals. In the swine industry, this approach can also help detect 

behavioral differences or anomalies amongst group-housed animals.  

Additionally, computer vision applications can be refined to detect more specific 

behavioral anomalies in individual animals. Because lameness is a common condition in cattle 

that causes pain and affects locomotion, health, welfare, and productivity, it is in a producer’s 

best interest to be aware of a lameness problem early so that the problem can be addressed 

promptly (Cramer et al., 2023). Much like estrus detection in pigs, lameness in cattle is assessed 

visually, with behavioral indicators including a reduction in walking speed, alteration to walking 

pace, arched spine, and lowered head when walking (Alsaaod et al., 2019). A review by Qiao et 

al. (2021) explored the ways that precision livestock farming can autonomously improve 

lameness detection by providing a means for real-time continuous welfare monitoring, ultimately 

improving cattle productivity. Sensor options include force platforms, 2D and 3D cameras, and 

wearable accelerometers. These sensor measurements – which included vertical kinetic leg force, 

walking speed, and laying time - were used in algorithms to generate lameness traits such as step 

overlap or back curvature. Purported benefits of these automatic electronic lameness detection 

systems included more objective, consistent assessments (Gardenier et al., 2018). This is 

applicable to similar thematic struggles within the swine industry regarding the estrus detection 

process. 

Developments in Electronic Estrus Detection 

Various computer vision applications have seen early adoption and even success in the 

cattle, sheep, and goat industries. Potential uses have been proposed since the 1990s, and several 
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studies have shown preliminary success with dairy cow models (Blair et al., 1994; Senger, 1994). 

An “ideal” estrus detection system for dairy cattle would improve efficiency rates when 

compared to visual detection. Proposed requirements for this system, as suggested in 1994 by 

P.L. Senger, stipulate (1) continuous cow surveillance, (2) accurate and automatic identification, 

(3) long-lasting operation, (4) low or no labor inputs, and (5) accuracy rates of at least 95% in 

correctly identifying behaviors correlated with ovulation. While it has taken over a decade to 

develop and implement technology in line with such a framework, today’s precision livestock 

technologies (PLT) may align with these standards. 

Image processing and artificial intelligence can be used to develop non-invasive, non-

contact methods of estrus detection in dairy cattle, thus removing human bias from the visual 

assessment of estrus-type behaviors (Arrago et al., 2020). Two custom convolutional neural 

network (CNN) models were trained to visualize bounding boxes of predicted cow objects and 

verify if overlapping boxes constituted activities of estrus. Using top-view cameras, researchers 

monitored seventeen cows, one bull, and one water buffalo. TensorFlow Object Detection API 

software was used to localize and identify multiple objects in an image frame. Results indicated 

significant variations in confidence scores between individual animals, and estrus events were 

detected at an efficiency rate of 50%. While this preliminary trial suffered from low-efficiency 

rates, several impacting factors were identified, including “trade-offs between speed and 

accuracy,” the limitations of identifying individual animals based on coat pattern, and the need to 

define additional estrus detection criteria. 

A similar study (Noe et al., 2020) has reduced system costs by using image analysis 

alone. For that, two primary behavioral signs of estrus are mounting and following; these 

behaviors were tracked, and the results were used to compare the efficacy of three supervised 
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machine learning methods [Support Vector Machine (SVM), Logistic Regression (LR), and 

Multiple Linear Regression (MLR)]. Using a dataset of 2265 color images, results indicated that 

SVM outperformed LR and MLR with accuracies of 97%, 94%, and 94%, respectively, when 

detecting the primary behaviors. Notably, the researchers assessed estrus using two behaviors 

and did not track other primary or secondary signs of estrus, such as restlessness, swollen vulva, 

or mucosal discharge. 

Non-visual methods of estrus detection were examined in cattle and compared in 2002 by 

Rorie, Bilby, and Lester. The three methods tested were pedometers, electrical resistance 

measurement, and mount detectors. Cattle in estrus are three to four times more active at the 

onset of estrus; thus, pedometers are used to track individual animals within a herd and single out 

those individuals with higher-than-average activity levels (Reimers et al., 1985). The researchers 

concluded that pedometers were more accurate when combined with visual observation for the 

detection of heat. Intravaginal resistance probes, designed to measure changes in reproductive 

tract secretions, were considered the least practical method due to their high labor requirement. 

Mount monitors, used to track the number of times an animal is mounted within a four-hour 

period, displayed the broadest application for dairy cattle by detecting 100% of heifers in heat. 

While there are a variety of precision livestock tools both in development and currently 

on the market, an important piece of the conversation is weighing the benefits and downsides of 

invasive devices with less invasive technologies.  

On the most invasive end are surgically implanted bioimpedance devices, which have 

been inserted vaginally in dairy cattle and rely on body temperature to assess and predict the 

different stages of an animal through its estrous cycle. While they have displayed promising 
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accuracy in small research trials, because they are implanted surgically under anesthesia, these 

devices are the most invasive option and not cost-effective for large farms (Miranda et al., 2009). 

While considered somewhat invasive, wearable sensors can be administered quickly and 

easily to an upright animal without the need for anesthesia or pain medication and without 

obstructing the animal’s natural movement patterns. Inertial Measurement Unit (IMU) sensors, 

such as those worn commonly on the neck or ears of dairy cattle and sheep, measure activity in 

the field and can be a cost-effective measure for large herds. In recent years, they have also 

become a more attractive and attainable option for farmers in less developed countries (Parikesit 

et al., 2013). 

Another non-invasive option on the opposite end of the spectrum is measuring acoustic 

vocalization. Several preliminary studies have analyzed different acoustic features of water 

buffalo sounds, such as call duration, amplitude, and mean pitch, to determine a potential 

correlation with the onset of estrus. In a sample of 20 Murrah buffalo, call duration during 

proestrus and metestrus phases of the estrous cycle was notably prolonged compared to other 

phases (Devi et al., 2016). Vocal intensity was also much higher in proestrus than in other 

phases, while pitch was found to be highest during metestrus. While this research is still 

preliminary, and many questions are yet to be answered, the authors suggest that this may be a 

valuable metric for detecting asymptomatic estrus, which is a recurring problem in the swine 

industry. However, because it is so preliminary, it is difficult to imagine what this system would 

look like as a commercial tool or interface allowing producers to interact with their herd’s 

results, especially in large group settings. 

While image-based capture systems have shown promise in certain applications of swine 

production, such as monitoring eating and drinking behavior and identifying aggressive 
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interactions in group housing, the extension of these systems into estrus detection is 

underdeveloped. Estrus detection in pigs is highly subjective, with human laborers responsible 

for evaluating individual responses to the back pressure test. Pigs are limited in their natural 

expression of estrus due to body type and housing structure. Unlike cattle, whose estrus 

behaviors are expressed spontaneously via mounting and following other members of the herd 

through open fields, many female pigs are housed in individual stalls. Stall-based housing limits 

social interactions between females; therefore, estrus-positive behaviors that may be seen in 

group housing are lacking. This renders the BPT the sole opportunity for workers to observe 

estrus responses in females. An electronic capture system using image segmentation would allow 

producers to monitor their herds 24/7 and alert to estrus-correlated behaviors outside of back 

pressure assessments. 

One currently available commercial product that aims to address this problem is Ro-

Main’s smaRt Tracking system. Comprised of a network of surveillance cameras, the Ro-Main 

system processes and analyzes images of sow posture and behavior in real-time, exporting the 

information to a user interface that alerts producers to optimal breeding times based on sow 

behavior (Labrecque et al., 2019). 

Additionally, a Belgian study by Verhoeven et al. (2023) employed the Ro-Main smaRt 

Tracking system on three farms, following a total of 6717 sows over three years (18 months 

before implementation of the system through 18 months post- insemination). Metrics followed 

included farrowing rate, percentage of repeat breeders, farrowing rate after first insemination, 

and number of piglets born per litter. Results were variable between farms, but Farm A 

experienced notable increases in all metrics following the implementation of the Ro-Main 
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system. Farm B saw a decrease in the number of piglets born per litter with the caveat of an 

insufficiently low insemination dose, and Farm C’s metrics remained mostly constant. 

Thermal imaging cameras have also been used as a non-invasive visual means to measure 

changes in vulvar skin temperature of both gilts and multiparous sows to determine whether 

temperature changes correlate with the onset of estrus. A study by Clark et al. (2011) of 25 gilts 

and twenty-seven sows showed that thermographic imaging detected a rise and subsequent fall in 

vulvar skin temperature several hours before ovulation, which may be helpful when paired with 

an existing conventional method of estrus detection such as boar exposure. While this remains an 

attractive non-invasive option, it is not yet validated as a stand-alone option for estrus detection.  

 

Conclusion 

Existing literature has established the critical importance of accurate estrus detection in 

successful swine insemination, but methods to achieve and improve the accuracy of detection are 

under-researched. For over 50 years, the industry standard for assessing heat has been the back 

pressure test. Interestingly, despite highly variable accuracy rates (Alvarenga et al., 2006), 

intensive labor requirements, and ineffectuality when used on animals in silent estrus, there is 

little published research proposing alternative methods. 

Precision livestock farming (PLF) strives to provide continuous, real-time data to 

producers of large herds incompatible with individual monitoring. Advances in PLF technology 

have already benefited the dairy industry. Automated methods of estrus detection, such as 

pedometers, mount detectors, and electrical resistance measures, have laid the groundwork for 

more advanced techniques that may one day rival the accuracy of visual detection but with lower 
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costs and reduced labor inputs. While the physical detectors used in dairy studies may lack 

practical application with swine, the software used to analyze these metrics remains transferable. 

The swine industry has aggregated multiple applications of PLF, and cameras have been 

used with image segmentation to monitor feed and water intake and incidences of piglet 

crushing, with the overarching goal of improving animal welfare.  

This review has addressed a significant gap in the existing literature, highlighting the variability 

of the back pressure test. While current precision livestock systems have primarily seen 

integration in cattle systems, there are opportunities for computer vision-based systems to see a 

practical application in the swine industry, particularly in estrus detection. A computer vision 

system of estrus detection using an electronic capture system can potentially be utilized as a 

more cost-effective, labor-efficient alternative to existing estrus detection methods, such as the 

back-pressure test. 
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CHAPTER 2: A COMPUTER VISION MODEL FOR CLASSIFYING MOVEMENT IN 

PREPUBERTAL GILTS 

 

Abstract 

Because most pigs worldwide are bred by artificial insemination, accurately timing estrus 

is essential in predicting an animal’s ovulation window and ultimately achieving a successful 

pregnancy. Determining the exact time of ovulation is difficult, so most producers assess animals 

for estrus using the back-pressure test (BPT). However, conducting the BPT is often time-

consuming, and an animal’s reaction to the assessment can be subtle or difficult to interpret. 

Although the BPT is subjective and prone to error, it can be improved with computer vision 

technology that autonomously measures animal movement. The aims of this thesis research were 

to 1) assemble a dataset of images capturing stall-housed gilts during the BPT, 2) create a 

movement classification model using YOLO (You Only Look Once) model to correlate the 

degree of animal movement with three categories of BPT responses, and 3) test a movement 

detection model on the dataset of stall-housed gilts to automatically identify three categories of 

BPT responses. Digital images of gilts from pre-puberty through completion of the first estrus 

were segmented using one class of image (“pig”). A model was then trained on the images using 

YOLOv8, achieving an overall mean average precision (mAP) of 0.995 at 0.5 intersection over 

union (IoU). The resulting model was applied to a dataset of images containing stall-housed gilts 

receiving the BPT. This model was used to determine how much an animal moved during the 

BPT when in estrus vs not in estrus. Although the model achieved high accuracy in automatically 

detecting the presence of gilts in a stall, the resulting movement detection model showed 

substandard performance in distinguishing the three categories of BPT responses. 
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Introduction 

The swine industry has long been constrained by its dependency on specialized labor, 

especially in the reproductive sector. Artificial insemination (AI) is used by over 90% of swine 

production systems worldwide (Waberski et al., 2019), engendering emphasis on accurate estrus 

detection and insemination timing.  

For over fifty years, the standard method of estrus detection in pigs has been the back-

pressure test (BPT), a visual assessment of a female’s receptiveness to mating. The BPT often 

begins with fence line exposure between a female and an on-site boar. After an initial contact 

period, a farm laborer will begin to push on and rub the flanks of the female to provoke a 

reaction (Langendijk, 2001). If a female responds to the BPT by freezing, arching her back, 

perking her ears, and/or remaining silent, then she is said to have a strong standing response. 

This strong response allows the producer to assume the likely start of ovulation, which is 

typically within 48 hours of the first positive response to BPT. The anticipated date of ovulation 

will then determine that animal’s insemination schedule. Thus, accurate estrus detection is 

critical in the timing of artificial insemination. 

Although the industry has relied on the back-pressure test as early as the late 1960s and 

early 1970s (Reed, 1969 and Signoret et al., 1975), it is not infallible. A central problem with the 

BPT is its reliance on subjective judgment. Because there is not a universally standardized metric 

with which to evaluate the BPT, and because assessment of the test relies on human judgment, it 

is liable to misinterpretation. Additionally, an estrus response is not always a binary yes or no. 

Some animals exhibit a so-called weak response, with mixed attributes of positive and negative 

tendencies.  
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Currently, few systems exist to automatically evaluate a pig’s response to the BPT. An 

automatic system for detecting estrus would need to: (1) demonstrate clear accuracy and (2) 

detect ambiguous or weak behavioral responses. Our hypothesis is that gilts in estrus will engage 

in less movement during administration of the BPT, allowing a segmentation and movement 

classification-based computer vision model to automatically assess whether an animal is in estrus 

or not based on their reaction to the BPT. 

This thesis sheds light on the need for supplementary technology to assist swine 

producers in the estrus detection process. We suggest a computer vision approach that may 

contribute to this objective.  

 

Materials and Methods 

Animal and Housing Specifics 

This study was conducted at the Swine Research Center (SRC) at the University of 

Illinois in Champaign, Illinois. Images were collected from five populations of Yorkshire x 

Landrace gilts between April 2022 and September 2022. All gilts were prepubertal and age-

matched within replicates. Ages ranged from 168 to 180 days at the start of each replicate. 

Animals were housed in single-stall confinement, and stalls were arranged in groups of three 

(Figure 1). Animals were fed once daily and had ad libitum access to water.  
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Figure 1. Diagram of the room configuration at the Swine Research Facility. One Microsoft 
Kinect camera is centered over each cluster of three stalls and affixed to the ceiling. During 
the back-pressure test, the boar enters from the bottom right and proceeds around all stalls 
in a clockwise fashion.  

 

Images for the first replicate, containing five gilts, were collected over a period of five 

days. The second and third replicates contained six gilts each and were followed for six and 

seven days, respectively. The final two replicates each contained twelve gilts followed for six 

days. Images were recorded once daily during the administration of the back-pressure test.  

 

Data Collection 

Four Microsoft Kinect V2 cameras were installed at SRC to capture image data. Each 

group of three stalls was recorded by one camera, which was centered and attached to the ceiling. 

Digital color images were captured at one-second intervals and later converted using an image 

acquisition program created in MATLAB.  

PG600 was administered on day zero of each replicate to synchronize estrus. In the first 

replicate, two gilts received PG600 as part of the treatment group. In replicates two and three, 
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three of the six gilts were injected with P6600. In replicate four, six of twelve gilts received the 

treatment, and in the final replicate, all twelve animals received the treatment. The latter decision 

was made to maximize the number of gilts exhibiting strong positive behavioral responses to the 

back pressure test. All forty-one gilts were exposed to once-daily fence line contact with a boar 

while the back-pressure test was administered by members of the research team.  

All five replicates used transrectal ultrasound on day 0 to determine which gilts would be 

part of the PG600 treatment group. These ultrasounds established baseline measurements for 

ovarian health and follicular growth. On day 4, all gilts again received transrectal ultrasounds to 

measure follicular growth and confirm ovulation. Animals who showed ovarian abnormalities on 

day 0 were excluded from the treatment group and did not receive PG600.  

Notes describing each gilt’s response to the back-pressure test were recorded on a paper 

log. Replicates were followed until all gilts injected with PG600 returned to negative displays of 

estrus. This was to ensure the collection of data before, during, and after estrus, and accounts for 

the variable length of each replicate. 

 

Data Analysis 

Top-view images from forty-one gilts were labeled using LabelStudio, an open-source 

data labeling platform. Five hundred images, each containing three gilts, were segmented and 

assigned one class name (“Pig”). Outlining each animal in the image allows the computer to 

apply a “mask” and extract its exact shape, distinguishing it from other items in the background. 

Labels and images were exported in YOLO format to facilitate model development. This dataset 

was then used to train and validate an Ultralytics YOLOv8 instance segmentation model. 80% of 
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images were used to train the model and the remaining 20% for validation. The instance 

segmentation model was trained for 30 epochs.  

Next, three BPT behavioral responses were defined: Strong Yes, indicated by a locked 

back and erect ears; Weak Yes, indicated by a combination of locked posture and relaxed ears or 

erect ears with some degree of bodily movement; and No, characterized by relaxed ears and 

extrication from touch (Table 1). The dataset of forty-two gilts was searched for examples of all 

three behavioral responses. Because the Strong Yes response occurred less often than the Weak 

Yes and No responses, an effort was made to maximize the number of examples from this 

category. Over 300 images of the Strong Yes response were collected. The shortest video clip 

demonstrating this response was seven frames in duration; thus, the three hundred images were 

divided into short videos each containing seven sequential frames. The frame rate was one image 

per second. Therefore, the resulting video clips were seven seconds in length. The same process 

was applied to videos of Strong Yes and No responses, resulting in (44) seven-frame videos for 

each of the three behavioral responses.  

 

Table 1. Ethogram of back-pressure test behavioral responses, for use in image labeling 
Image Class Description 
Strong Yes Animal stops moving and arches back with erect ears that are flush 

to head 
Weak Yes Animal stops moving and arches back with flaccid ears or animal 

exhibits slight movement with erect ears that are flush to head 
No Animal extricates from touch with flaccid ears  

 

This collection of videos was used to train a new YOLOv8 segmentation model that 

pulled mask activity at five-frame intervals. The intervals chosen were 1st and 5th frame, 2nd 

and 6th frame, and 3rd and 7th frame. The resulting image revealed the amount of movement 

exhibited between the start and end of each interval (every five seconds), reflected in the amount 
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of white seen in each image. As seen in Figure 2, images of animals displaying the Strong Yes 

response are faint, empty outlines on a black background, whereas images of animals exhibiting 

the No response reveal partially or fully filled outlines. 

 

Figure 2. Predicted responses to the back-pressure test, resulting from an image 
classification model run for 30 epochs. The white mask in each image represents the 
amount of movement displayed over a 5-second sequential interval.  

 
 

Finally, a YOLOv8 classification model was run for 30 epochs on the previous dataset 

and contained three class names: Strong Yes, Weak Yes, and No. The objective of creating this 

model was to automatically assess behavioral responses to the BPT.  

A supplementary detection model was also created in YOLOv8 to identify instances of 

erect ears. Bounding boxes were drawn around the ears of gilts in LabelStudio. Each of the 287 
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images contained at least one gilt displaying vertically perked ears that were flush to the head, 

often with a visible entry to the ear canal. One of two labels was assigned to each bounding box: 

“ears erect” or “ears neutral.” A YOLOv8 detection model was trained on the images, with 80% 

reserved for training and 20% for validation. The model was run for 10 epochs.  

Mean average precision (mAP, equation 1) and intersection over union (IoU, equation 2) 

were reported for each model. Additionally, calculations were conducted for positive predictive 

value (PPV, equation 3); negative predictive value (NPV, equation 4); sensitivity (equation 5); 

specificity (equation 6); precision (equation 7); recall (equation 8); accuracy (equation 9); and 

error (equation 10).   

𝑚𝐴𝑃 =	 !
"
∑ 𝐴𝑃#(2)"
#$!           [1] 

 
where  
mAP = mean average precision 
AP = average precision 
N = number of classes 
 
𝐼𝑜𝑈 = 	 |&∩(||&∪(|

(1)           [2] 
where 
IoU = intersection over union 
A = area of label box  
B = area of predicted box  
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 *+,-	/01#2#3-

*+,-	/01#2#3-45671-	/01#2#3-
       [7] 

 
 
𝑅𝑒𝑐𝑎𝑙𝑙 = 	 *+,-	/01#2#3-

*+,-	/01#2#3-45671-	"-862#3-
        [8] 

 
 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 *+,-	/01#2#3-4*+,-	"-862#3-

*+,-	"-862#3-45671-	/01#2#3-4*+,-	/01#2#3-45671-	"-862#3-
   [9] 
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*+,-	"-862#3-45671-	/01#2#3-4*+,-	/01#2#3-45671-	"-862#3-
    [10] 

 
 
 
 

Results and Discussion 

 

Model Training 

Trained at 30 epochs, the initial single-class segmentation model achieved a mean 

average precision (mAP) of 0.995 at 0.5 intersection over union (IoU). Because a desirable 

outcome for both mAP and IoU is close to 1.0, this model was considered successful in 

segmenting individual pigs within single stalls. A sample of the segmented images is shown in 

Figure 3. 
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Figure 3. Example of animals segmented for movement classification. The solid green 
masks can be extracted separately from the background image. 

 
 

The movement classification model, trained at 30 epochs, had positive predictive values 

(PPV) of 1.0, 0.60, and 0.67 for the Strong Yes, Weak Yes, and No classes, respectively. Negative 

predictive values for the Strong Yes, Weak Yes, and No classes were 0.75, 1.0, and 0.83, 

respectively. The accuracy and error rates for all classes were 77% and 22%, respectively. The 

Strong Yes class had a sensitivity and recall of 0.33; specificity of 1.0; and precision of 1.0. The 

Weak Yes class had a sensitivity and recall of 1.0; specificity of 0.66; and precision of 0.6. 

Lastly, the No class exhibited a sensitivity and recall of 0.66; specificity of 0.83; and precision of 

0.66. A confusion matrix of the results is shown in Figure 4, and the amount of loss experienced 

in model training and validation is presented in Figure 5. 
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Figure 4. Amount of loss reported from the movement classification model. A model that 
predicts perfectly has zero loss.  

 
 
 
Figure 5. Confusion matrix for the movement classification model.  

 
 
 

 



35 
 

Finally, the ear detection model was trained for a total of 10 epochs, achieving an overall 

mAP of 0.983 at 0.5 IoU for both classes. The Ears Erect class revealed a mAP of 0.995 at 0.5 

IoU, and the Ears Neutral class exhibited a mAP of 0.972 at 0.5 IoU. This model achieved 

acceptable performance for both mAP and IoU.  

 

Discussion 

Both the instance segmentation and ear detection models demonstrated acceptable 

performance in accordance with their mAP and IoU, serving as important building blocks for 

developing a more accurate movement classification model. 

However, the classification model likely suffered from a combination of limited datasets 

(especially for the Strong Yes class) and difficulty in interpreting Weak Yes responses. As 

discussed previously, criteria for a Weak Yes response could include no movement with relaxed 

ears or any amount of movement paired with erect ears. Although the latter is uncommon, it was 

observed a few times in this dataset. Because this model prioritizes the amount of movement 

over other qualifiers, an animal with perfectly erect ears who lacks full lordosis may be assigned 

to the No class. Likewise, an animal with a fully locked back but with relaxed ear posture may be 

incorrectly classified as a Strong Yes.  

Additionally, because Strong Yes responses were scarce, the 308 images trained and 

validated for this class were sourced from only three distinct applications of the BPT, whereas 

images from the Weak Yes and No classes were assembled from videos of six to ten individual 

animals, all on different days. A lack of subject diversity in one class (Strong Yes) may have 

contributed to the model’s failure to appropriately recognize other animals.  
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Ultimately, of the nineteen healthy gilts who were able to receive transrectal ultrasounds 

and produce reliable physiological data, 42% displayed the expected positive BPT response in 

congruence with large follicular growth; 32% displayed the expected negative BPT response in 

congruence with minimal to no follicular development; and 26% displayed no signs of estrus 

despite growing large follicles, a phenomenon known as silent estrus. The latter occurrence 

likely contributed to the lack of Strong Yes examples on which to train the model. 

Future iterations of this model may consider trialing shorter image intervals. While steps 

of five were used for this model, shorter intervals of two to four images may convey more 

accurate movement patterns.  

Another important consideration for improving this model is exploring the possibility of 

audio. Because most animals in estrus will remain silent while mounted, an audio component 

paired with the existing model may assist in correctly assigning Strong Yes and No classes.  

 

Conclusion 

 

A YOLOv8 instance segmentation model detected the outline of gilts in single-stall 

housing with an overall mean average precision (mAP) of 99.5% at 0.5 intersection over union 

(IoU). Therefore, the result was adequate for automatic instance segmentation of individually 

housed pigs. A YOLOv8 movement classification model assigning three classes of behavioral 

responses to gilts receiving the back-pressure test (BPT) showed high false positive rates for one 

class and high false negative rates for two classes. This model is not yet satisfactory in 

automatically classifying types of behavioral responses to the BPT. A YOLOv8 object detection 

model for distinguishing erect ear posture from neutral ear posture had a mAP of 98.3% at 0.5 
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IoU for all classes, which is satisfactory for automatic detection of ear posture in gilts. Future 

directions for this study include adding additional images of the Strong Yes response to the 

dataset and sourcing the images from multiple animals. Additionally, the model may be 

improved by incorporating an audio component. While our data does reflect that gilts in estrus 

display less general movement during the BPT, our segmentation and movement classification 

models of BPT images do not yet demonstrate the ability to accurately assess whether an animal 

is in estrus based on their reaction to the BPT. If the model can be improved to a higher positive 

predictive value (PPV) for both Strong Yes and No responses, it may eventually be useful in 

aiding farm laborers’ assessments of the BPT.  
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CHAPTER 3: A COMPUTER VISION MODEL FOR AUTOMATIC POSTURE 

IDENTIFICATION OF PREPUBERTAL GILTS 

 

Abstract 

Most pigs in the modern commercial swine industry are bred by artificial insemination. 

Appropriately timing ovulation is difficult, so producers typically rely on the back-pressure test 

to assess estrus, estimate ovulation, and determine the best time for insemination. However, 

conducting the back-pressure test is time-consuming and requires specialized knowledge. 

Producers assessing estrus in prepubertal gilts can reduce their dependency on specialized labor 

with the incorporation of computer vision technology that automatically detects postural 

changes. This thesis research aimed to 1) create a 24-hour dataset of images capturing behaviors 

of first estrus gilts from estrus through metestrus, 2) create an object detection model using 

YOLO (You Only Look Once) to detect postures in gilts, and 3) run the object detection model 

on the 24-hour dataset to assess whether postural changes are correlated with various stages of 

the estrous cycle. Digital images of gilts from pre-puberty through completion of first estrus 

were labeled for four postures (kneeling, sitting, lying and standing). A model was then trained 

on the images using YOLOv8 architecture, achieving an overall average 0.976 mean average 

precision (mAP) at 0.5 intersection over union (IOU). The resulting model was applied to a 24-

hour dataset containing images of five additional gilts from 2 days pre-estrus synchronization 

through day 8. This model was used to create time budgets for each animal according to the four 

postures detected. No statistically significant differences existed among the four postures 

between pre-puberty and the conclusion of estrus.  
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Introduction 

A longtime problem impacting the swine industry has been its reliance on specialized 

labor, particularly in the estrus detection process. Because artificial insemination (AI) is the 

reproductive means for over 90% of pigs worldwide, accurate and appropriate timing of estrus is 

more important than ever (Waberski et al., 2019). The estrus phase of the estrous cycle is 

punctuated by the maturation of antral follicles and subsequent ovulation, the latter of which 

typically occurs within 24 - 48 hours of estrus onset (Hines, 2023). To increase the chances of 

successful insemination, producers must strive to detect estrus - thus inferring the window of 

ovulation - as early and accurately as possible (Lammers et al., 2017).  

For several decades, the standard method for estrus detection in pigs has been the back-

pressure test (BPT), an assessment that requires an animal handler to push and rub the flanks of a 

female in the presence of a physical boar or augmented boar stimuli to assess her reaction 

(Langendijk, 2001). This reaction is a physical indicator of sexual receptivity. Should a female 

exhibit a strong standing response (typically indicated by a stiff, frozen posture with an arched 

back and erect ears), the handler can infer that the female is in estrus and likely within 48 hours 

of ovulation. This physical cue would then prompt the producer to inseminate the female within 

the presumed ovulation window. As the industry has shifted away from natural mating services 

in the last three decades, accurate estrus detection has become imperative in the timing of 

artificial insemination and in maximizing the labor and financial resources invested into the 

process.  

However, despite the industry’s reliance on the back-pressure test dating back to the 

1970s (Reed, 1969 and Signoret et al., 1975), there is minimal data reporting its true accuracy, 
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and appropriate alternatives have yet to see widespread adoption in the commercial industry. 

Beyond its unknown accuracy, the back-pressure test is subject to additional problems such as 

the requirement for specialized labor to conduct and evaluate the assessment; the physical labor 

involved in handling an animal that weighs over 135 kg; and the lack of standardized metrics 

with which to evaluate the female’s response, leading to subjective assessments that may 

fluctuate based on the handler conducting the assessment.  

Because responses to the back-pressure test can be ambiguous regardless of the animal’s 

development of mature follicles (a problem known as silent estrus), and in combination with the 

BPT’s variable accuracy, producers tend to practice double - or even triple - insemination. 

Doubling the number of insemination doses increases the chances that a female will become 

pregnant (Lamberson et al., 2000). An animal of reproductive age who does not get pregnant is 

an unproductive animal. Therefore, producers are forced to choose between spending extra 

money on additional inseminations in the hope that one will stick, or gambling on a single 

insemination dose, thus accepting the risk of feeding and housing an unproductive animal until 

her next cycle should she not become pregnant.   

Currently, few viable alternatives to the BPT have seen widespread implementation in the 

swine industry. A new system for detecting estrus would need to: (1) demonstrate clear and 

consistent accuracy when compared to the BPT, (2) operate without the need for highly 

specialized labor, (3) properly identify and detect ambiguous postures and behaviors, and (4) 

demonstrate broad application. Our hypothesis is that gilts in estrus will display more active 

behaviors than resting behaviors during estrus when compared to metestrus. Additionally, we 

hypothesize that an object detection model can be used to identify these behavioral and postural 

changes, which may eventually be used for estrus detection. 
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This thesis sheds light on the need for alternatives to the back-pressure test that are 

standardized, cost effective, and easy to use. We suggest a computer vision approach that, with 

some alterations, may successfully address these criteria.  

 

Materials and Methods 

Animal and Housing Specifics 

This study was conducted at the Swine Research Center at the University of Illinois in 

Champaign, Illinois. Images were collected from six populations of Yorkshire x Landrace gilts at 

six separate time points between April 2022 and May 2023. All gilts were prepubertal and age-

matched within each replicate. The ages of the six replicates ranged from 168 to 185 days. 

Animals were housed in the same room, in single-stall confinement. Stalls were arranged in four 

clusters of three stalls each. The initial five replicates from April 2022 through September 2022 

were managed with lights on during daylight hours. Barn doors remained closed, but inside 

temperature was mediated by internal fans. Gilts were moved from finishing barn pens to single 

stall confinement within 24 hours of the first study treatment. The sixth replicate, in May 2023, 

moved gilts from finishing barn pens to single stall confinement 72 hours prior to the start of the 

initial study treatment. For ease of detecting images and scoring animal behavior, lights were left 

on 24/7 throughout the duration of this replicate. Temperatures ranged from a low of 52º on the 

morning of May 10 to a high of 82º on the afternoon of May 14. Across all ten days, mean 

temperature was 67º and mean humidity was 49.3%. Animals across all six replicates were fed 

once daily with ad libitum access to water. 
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Replicate one collected images of five gilts over a period of five days. Replicates two and 

three collected images of six gilts each over six and seven days, respectively. Replicates four and 

five collected images of twelve gilts each over six days. Finally, replicate six collected images of 

twelve gilts over ten days. The first five replicates were recorded and observed once per day 

during the administration of the back-pressure test only. The final replicate was recorded 

continuously for ten days.  

Data Collection 

 To capture image data, a Microsoft Kinect V2 camera was centered and installed above 

each cluster of three stalls. Digital color images were taken at one-second intervals and stored on 

external hard drives. They were later converted using an image processing program developed 

with MATLAB software. 

 Fifty percent of the animals in replicates one through four were injected with PG600 on 

day 0 to synchronize estrus (treatment was administered to two of the five gilts in replicate one). 

Due to a low number of positive estrus responses observed in the initial four replicates, all 

twelve gilts in replicate five were injected with P600 on day 0 with the goal of maximizing 

positive behavioral responses. Each gilt in the initial five replicates was exposed to once daily 

fence line boar contact, and the back-pressure test was administered to each gilt during this time.  

 In the sixth and final replicate, all twelve gilts were injected with PG600. All animals had 

once daily fence line boar contact, but the back-pressure test was only administered to six of the 

twelve gilts. The remaining six gilts were visually observed for signs of estrus but were not 

physically handled by the researchers during this time.  

 All six replicates relied on transrectal ultrasounds to assess antral follicular growth. 

Ultrasounds were performed on day 0 and day 4 of each replicate to establish baseline 
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measurements. Animals that did not exhibit healthy, 2 – 4 mm follicles on the initial ultrasound 

were excluded from the treatment group and did not receive PG600. Ultrasounds were again 

conducted on day 4 to measure follicular growth and confirm ovulation. Animals that 

subsequently developed cystic ovaries or other ovarian abnormalities were excluded from the 

analysis. 

 Information on each gilt’s response to the back-pressure test was recorded on a paper log. 

Each replicate was followed until each gilt within the replicate demonstrated a negative response 

to the back-pressure test following earlier expression of estrus, indicating a return to metestrus. 

Therefore, some replicates were followed for a longer period to allow all animals to return to 

baseline behavior. 

 

Data Analysis 

 Animals were divided into two datasets. Top-view images from forty-one gilts (obtained 

from replicates one through five) were labeled using the open-source data labeling platform 

LabelStudio. The four postures chosen for labeling were kneeling, sitting, standing, and lying 

(Table 2). Bounding boxes were drawn around each animal, and a posture was assigned to each 

box (Figure 6). In total, 1,361 images were labeled, amounting to 553 instances of kneeling; 929 

instances of sitting; 1,510 instances of standing; and 1,143 instances of lying. Labels and images 

were exported in YOLO format to facilitate model development. This dataset was then used to 

train an Ultralytics YOLOv8 object detection model. 80% of images were reserved for training 

the model and the remaining 20% were used for validation. The posture model was ultimately 

trained for 30 epochs.  
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Table 2. Ethogram of gilt postures, for use in image labeling 
Posture Description 

Kneeling Rear is raised and front legs are bent 

Lying Laying sternally or laterally with stomach touching the ground 

Sitting Rear is on ground with front legs upright 

Standing Upright with all four legs extended 

 

Figure 6. Example of postures labeled with bounding boxes for use in an image detection 
model. From left to right: lying, kneeling, and standing. 

 
 

 The second dataset was created by running the posture detection model on 1,420,815 

images of five gilts taken from replicate six. These five gilts were selected due to their 

predictable ovulation dates, which were inferred from a combination of ultrasound data and 

behavioral cues. The remaining seven gilts from replicate six were excluded due to a 

combination of development of cystic ovaries and ambiguous ovulation dates. 

 Mean average precision (mAP, equation 11) and intersection over union (IoU, equation 

12) were reported for each model. Additionally, calculations were conducted for positive 

predictive value (PPV, equation 13); negative predictive value (NPV, equation 14); sensitivity 
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(equation 15); specificity (equation 16); precision (equation 17); recall (equation 18); accuracy 

(equation 19); and error (equation 20).   

𝑚𝐴𝑃 =	 !
"
∑ 𝐴𝑃#(2)"
#$!           [11] 

where  

mAP = mean average precision 

AP = average precision 

N = number of classes 

 

𝐼𝑜𝑈 = 	 |&∩(||&∪(|
(1)          [12] 

where 

IoU = intersection over union 

A = area of label box  

B = area of predicted box  

 

𝑃𝑃𝑉 = 	 *+,-	/01#2#3-
*+,-	/01#2#3-45671-	/01#2#3-

        [13] 

 

𝑁𝑃𝑉 = *+,-	"-862#3-
*+,-	"-862#3-45671-	"-862#3-

	        [14] 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = *+,-	/01#2#3-
*+,-	/01#2#3-45671-	"-862#3-

       [15] 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	 *+,-	"-862#3-
*+,-	"-862#3-45671-	/01#2#3-

       [16] 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 *+,-	/01#2#3-
*+,-	/01#2#3-45671-	/01#2#3-

       [17] 
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𝑅𝑒𝑐𝑎𝑙𝑙 = 	 *+,-	/01#2#3-
*+,-	/01#2#3-45671-	"-862#3-

        [18] 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 *+,-	/01#2#3-4*+,-	"-862#3-
*+,-	"-862#3-45671-	/01#2#3-4*+,-	/01#2#3-45671-	"-862#3-

   [19] 

 

𝐸𝑟𝑟𝑜𝑟 = 	 5671-	"-862#3-45671-	/01#2#3-
*+,-	"-862#3-45671-	/01#2#3-4*+,-	/01#2#3-45671-	"-862#3-

    [20] 

 

 The goal of assembling this dataset was to create a 24-hour time budget comparing 

postural changes over the course of ten days, from pre-puberty through estrus and into metestrus. 

 

Results and Discussion 

Model Training 

 Mean average precision (mAP) indicates a model’s accuracy in predicting class names, 

and intersection over union (IoU) reflects a model’s ability to correctly predict the location of 

bounding boxes. A desirable metric for both mAP and IoU is close to 1.0. After training the 

model for 30 epochs, it achieved a mean average precision of 97.60% for all classes at 0.5 IoU 

and 86.69% at 0.5 – 0.95 IoU for all classes. The precision-recall curve and mean average 

precision at both 0.5 and 0.5 – 0.95 IoU for all classes are shown in Figure 7.  
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Figure 7. Precision-recall curve (a), mAP 0.5 (b), and mAP 0.5-0.95 (c) for all postures over 
30 epochs. Precision is a measure of quality and reflects the size and fit of each predicted 
bounding box or mask. Recall is a measure of quantity and reflects the number of boxes or 
masks predicted as a proportion of the total number of animals or objects that exist in the 
image. Balance is desired between the two metrics; thus, an optimal perfect precision-recall 
is close to 1.0.  

 
a 

. 

 

b             c 
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 Metrics were calculated for each posture using a confusion matrix generated from the 

validation set. Positive predictive values (PPV) for kneeling, sitting, standing, and lying were 

0.71, 0.99, 0.92, and 0.97, respectively. Negative predictive values (NPV) for the four postures 

were 0.99, 0.98, 0.96, and 0.90. The kneeling posture had an accuracy of 92% with an error rate 

of 8.0%. It achieved a sensitivity and recall of 0.96, a specificity of 0.91, and a precision of 0.71. 

The sitting posture had an accuracy of 98.5% with an error rate of 1.5%. It had a sensitivity and 

recall of 0.95, a specificity of 0.996, and a precision of 0.99. The standing posture achieved an 

accuracy of 95.2% with a 4.8% error rate, alongside a sensitivity and recall of 0.89; specificity of 

0.97; and precision of 0.92. Lastly, the lying posture demonstrated a 92.1% accuracy with an 

error rate of 7.8%. Its specificity and recall were 0.985; precision 0.97; and recall 0.81. These 

values are reflected in Table 3. 

 

Table 3. Performance metrics of the posture detection model 
 Strong Yes Weak Yes No 

PPV 1.0 0.6 0.67 

NPV 0.75 1.0 0.83 

Accuracy 0.77 0.77 0.77 

Error 

Precision 

Recall 

Specificity 

0.22 

1.0 

0.33 

1.0 

0.22 

0.6 

1.0 

0.66 

0.22 

0.66 

0.66 

0.83 
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Posture Prediction 

 The trained YOLOv8 model was used to predict postures for the five gilts in replicate six 

with predictable ovulation days. Data was used from five of the ten total days of observation 

(day -2 through day 2, with ovulation as day 0). Table 4 depicts the amount of time spent daily in 

each posture by each gilt. On average across the five gilts, the animals spent approximately 19 

hours and 14 minutes per day total in the lying position (80.16%); 2 hours and 22 minutes in the 

standing position (9.9%); 1 hour and 48 minutes in the sitting position (7.51%); and 13 minutes 

in the kneeling position (0.89%). Averages across all gilts are reflected in Figure 8. 

 

Table 4. Percentage of time spent in each posture per 24 hours, organized by gilt. 
Pig ID Day Kneeling Standing Sitting Lying 

13 -2 0.60 4.00 10.70 84.70 

13 -1 0.60 4.90 11.50 82.90 

13 0 0.50 3.90 11.30 84.30 

13 1 0.70 6.50 10.20 82.50 

13 2 1.30 11.80 13.70 73.20 

14 -2 0.20 2.60 2.60 94.60 

14 -1 0.30 10.40 6.60 82.70 

14 0 0.10 8.50 9.00 82.40 

14 1 0.10 13.10 10.60 76.00 

14 2 0.15 9.10 7.90 82.90 

22 -2 9.80 9.80 6.20 72.80 

22 -1 12.50 12.50 8.60 65.40 

22 0 14.30 14.30 6.50 65.50 

22 1 10.10 10.10 9.50 63.30 
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Table 4. (cont) 
 

22 2 9.20 9.20 11.50 62.40 

23 -2 0.65 16.60 4.60 78.00 

23 -1 0.65 16.20 4.20 78.90 

23 0 0.50 17.40 4.40 77.70 

23 1 0.30 12.90 7.20 79.50 

23 2 0.30 22.50 10.50 66.50 

24 -2 1.30 1.30 5.00 86.60 

24 -2 2.50 2.50 3.80 87.50 

24 0 2.00 2.00 4.70 87.00 

24 1 2.00 2.00 5.50 81.50 

24 2 2.70 2.70 3.50 86.10 

 

Figure 8. Graph representing the average amount of time spent in each posture. 

 
 

0

10

20

30

40

50

60

70

80

90

100

Day-2 Day-1 Day0 Day1 Day2

24 Hour Postural Time Budgets

Kneeling Standing Sitting Lying



51 
 

 The amount of time spent in each posture and during each phase of the estrous cycle was 

highly variable. A repeated-measures ANOVA was performed for each of the four postures using 

SPSS statistics software. Because the assumption of sphericity was not met, a Geisser-

Greenhouse correction was applied to the data. p-values for kneeling, sitting, standing, and lying 

were 0.437, 0.090, 0.296, and 0.088, respectively (Table 5). Therefore, results of the ANOVA 

indicated no statistical differences in time spent in each posture before, during, or after ovulation.  

 

Table 5. Analysis of variance results, with Greenhouse-Geisser correction applied. 
Posture Sum Sq. d.f. Mean Sq. F Sig. 
Kneeling 4.397 1.599 2.751 0.852 0.437 
Sitting 40.462 2.520 16.055 2.953 0.090 
Standing 44.710 2.038 21.940 1.422 0.296 
Lying 235.576 1.544 152.600 3.850 0.088 

    

Discussion  

 Ultimately, of the nineteen healthy gilts who were able to receive transrectal ultrasounds 

and produce reliable physiological data, 42% displayed the expected positive BPT response in 

congruence with large follicular growth; 32% displayed the expected negative BPT response in 

congruence with minimal to no follicular development; and 26% displayed no signs of estrus 

despite growing large follicles, a phenomenon known as silent estrus. The latter is a pervasive 

concern with prepubertal gilts, and the ability to visually detect estrus in this group was an 

objective of this thesis that has not yet been fulfilled by the aforementioned machine learning 

models. 

Because the 24-hour dataset was not manually annotated but rather validated using a 

posture detection model with 97% accuracy, the resulting postures can only be considered 

tendencies, as opposed to definite representations of actual postures. The most frequently 
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misidentified posture was kneeling (confusion matrix shown in Figure 9). Additionally, lateral 

lying was occasionally misinterpreted as standing when the animal’s legs were fully extended. 

This was largely an oversight in the initial model training process, as nearly all labeled lying 

postures were in the sternal position. Future iterations of the model could be improved by 

exposing the model to more side-lying postures during training. Ideally, an equal number of 

lateral left and lateral right postures would assist in further balancing the dataset.  

A surprising result was the total amount of time spent in the dog-sitting position. Dog-

sitting is a stereotypic behavior often associated with stress and sub-optimal welfare (Cagienard 

et al., 2005). Increasing occurrences of dog-sitting have been correlated with poor welfare 

conditions, of which boredom could be a factor (Vitali et al., 2021). Morita et al. (1998) found 

that pigs kept in narrow confinement with minimal enrichment were more likely to change 

position, including dog-sitting. This is reinforced by the finding that fattening pigs maintained in 

a free-range forest enclosure spent only 1.3% of their time on average in the sitting position. The 

average duration of a sitting event lasted between 10 and 90 seconds (Stabler et al., 2022). The 

amount of sitting time detected in this thesis research is comparatively considered abnormal. 

Explanations for this stereotypic behavior could include confinement in individual stalls with no 

enrichment; stress and discomfort from transrectal ultrasounds; and lack of a proper acclimation 

period. Gilts in this study were moved from group finishing barns to individual stalls only 24 – 

48 hours prior to the start of observation; future iterations of this research should consider a full 

acclimation period of 10 – 14 days prior to treatment and observation.  
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Figure 9. Confusion matrix for model of posture detection. 

 
 

  

Conclusion 

A YOLOv8 object detection model detected four postures (kneeling, sitting, lying, and standing) 

in prepubertal gilts with an overall mean average precision (mAP) of 97.60% at 0.5 intersections 

over union (IoU). The mAP for all four classes was above 94.80% at 0.5 IoU. Therefore, these 

results are adequate for automatic behavior analysis. There were no statistically significant 

differences between stage of estrus and amount of time spent in any one posture. Future 

directions for this study would include analyzing more instances of lateral recumbency to 

improve the model’s distinction between lying and standing. Additionally, the model may benefit 

from analysis of depth images in addition to color images, which would likely contribute to an 
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increased mAP for kneeling and lying postures. Currently, the model is 97.6% accurate in 

detecting four postures in prepubertal gilts, allowing us to confirm our hypothesis that an object 

detection model can be used to identify postural changes in gilts. If future iterations of the model 

can improve the accuracy of lying, standing, and kneeling postures and the model is tested on a 

larger dataset of gilts with known ovulation dates, there may be greater accuracy in determining 

whether postural changes exist between stages of the estrous cycle. If the latter is determined to 

be true, this model may eventually be useful in the detection of first estrus in prepubertal gilts.  
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