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ABSTRACT

In the digital landscape, defined by a multitude of mobile applications spanning various

platforms, our daily lives are shaped by the quality of digital experiences. The impact of

these experiences extends beyond individual satisfaction and directly influences the success

of organizations, driving the need for data-driven methods to evaluate and enhance user

interfaces. Traditional approaches like analytics and A/B testing, while valuable, require ac-

cess to an application’s codebase, limiting their utility for external applications. In response

to these limitations, interaction mining has emerged as a potent technique. Interaction min-

ing entails the capture of design and interaction data as users engage with an application,

resulting in the creation of interaction traces. However, existing interaction mining systems

rely on intricate OS-level interventions to enable comprehensive data capture.

This dissertation introduces On-Device Interaction Mining (odim), a framework that

democratizes interaction mining. odim enables data capture by enabling in-the-wild in-

teraction data collection from any Android app on personal devices, without the need for

specialized hardware or modifications to the operating system. odim empowers researchers,

designers, and industry practitioners to enhance task automation, ensure robust user pri-

vacy, and bridge the gap between analytics and UX testing. These contributions provide

the tools and methodologies needed to innovate digital experiences while safeguarding user

privacy. odim is a step towards a more accessible, principled, and privacy-conscious future

for interaction mining.
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CHAPTER 1: INTRODUCTION

The digital landscape we navigate daily is a tapestry of diverse mobile applications, each

offering its own unique user interface (UI) and user experience (UX). Whether it’s the

convenience of a weather app, the productivity boost of a task manager, or the entertainment

provided by a game, our daily interactions with these applications span across a multitude

of platforms, including smartphones, tablets, smartwatches, and more. The quality of these

digital experiences plays a pivotal role in determining user satisfaction, and in turn, has a

direct impact on the success and profitability of the organizations responsible for creating and

maintaining these applications. As a result, businesses and researchers alike have increasingly

turned to data-driven methods to evaluate and enhance user interfaces. In pursuit of this

goal, they rely on two primary tools: analytics and UX testing, often leveraging specialized

platforms dedicated to improving digital experiences.

Analytics provides comprehensive, real-world usage data across user segments, enabling

professionals to scrutinize critical user journeys, compute conversion metrics, and testing

the effectiveness of design alternatives [2, 4, 58, 62, 67, 120, 133, 135]. These tools work by

instrumenting an app’s source code to capture clickstream information and perform action

reporting. However, they necessitate access to an application’s underlying codebase, ren-

dering them impractical for collecting data from applications not under one’s ownership. In

contrast, UX testing tools offer the ability to gather nuanced behavioral and affective data

through scripted tests [72, 77, 114, 146, 156]. Yet, their effectiveness hinges on elaborate

test plans and flow design, particularly when conducting tests on external applications.

These limitations have spurred the development of an alternative approach, commonly

known as interaction mining. Interaction mining is a popular technique for capturing design

and interaction data while a mobile app is being used [33]. As a user interacts with an app,

interaction mining systems capture the user’s journey in the form of an interaction trace.

This trace comprises sequences of UI screenshots, enhanced with structural composition

and render-time properties (i.e., view hierarchies), alongside user actions (e.g., gestures)

performed on these screens. Since its inception [33], interaction mining has catalyzed the

creation of invaluable mobile UX datasets [13, 15, 34, 91, 121], empowering researchers to

investigate UI patterns at scale [22, 53, 118, 141, 148, 168], train generative design models [9,

89, 94, 100, 102, 108, 174], and automate user actions [5, 97, 98, 99, 101, 144].

Interaction mining frameworks operate by utilizing physical devices or emulators equipped

with a customized operating system designed to facilitate interaction capture. These frame-

works shift the responsibility of trace capture from individual apps to the operating system
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itself. Consequently, they enable the capture of interactions from any app, eliminating the

need for integration prerequisites.

However, while the promise of interaction mining is immense, existing systems are not

without challenges, primarily related to their reliance on OS-level interventions to facilitate

comprehensive data capture. One of the primary challenges has been the complexity as-

sociated with developing, maintaining, and distributing a custom mobile operating system.

Earlier approaches sought to mitigate this challenge by harnessing dedicated hardware with

predefined specifications, capable of running (or emulating) the modified operating system.

These systems pixel-streamed app content to end-users through a zero-configuration web

interface [33]. While effective, this infrastructure’s intricacy discouraged the release of its

software or source code, limiting widespread adoption. Consequently, the current constraints

in interaction mining architectures confine data collection efforts to supervised, in-laboratory

settings, limiting the feasibility of launching such initiatives due to high upfront costs. The

reliance on in-lab data collection results in out-of-date interaction mining repositories with

the rapid updates of popular apps [126]. The limitations of existing architectures also high-

light the need for collecting in-the-wild data to improve the ecological validity of interaction

traces.

This dissertation introduces the On-Device Interaction Mining (odim) framework, which

stands as the first fully-functional interaction mining framework, facilitating real-world data

capture from any Android app, directly on personal devices, without necessitating specialized

hardware or operating system modifications. odim empowers researchers, designers, and

industry practitioners to easily collect and leverage interaction mining data to build systems

that benefit everyone.

1.1 CONTRIBUTIONS

This dissertation advances the field of interaction mining and envisions a sustainable

ecosystem for interaction mining in the future by making the following contributions:

A Framework for Capturing In-the-Wild Interaction & Design Data: Addressing

the limitations of existing interaction mining frameworks that restrict their applicability

primarily to controlled lab environments, this dissertation introduces odim, an interaction

mining framework requiring no integration or infrastructure setup, thereby democratizing

the practice of interaction mining.
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Principles for Interaction Mining System Design: While prior work has explored var-

ious techniques for implementing interaction mining systems, this dissertation delineates fun-

damental design principles that should underpin any interaction mining framework. These

principles serve as a guidepost for the development of future interaction mining systems.

Enhancing Task Automation Through Interaction Data: In recognition of the cen-

tral role of task automation in contemporary mobile devices, this dissertation introduces

savant, an unsupervised search system that automates the generation of task shortcuts for

virtual assistants by mapping user tasks to relevant UI screens within apps, complementing

existing programming-by-demonstration (PBD) systems. savant serves as an example on

how end-users can benefit from having direct access to interaction data through odim.

Insights for User Privacy Concerns in Mobile Apps: In a digital landscape where

user privacy is of paramount concern, this dissertation sheds light on sensitive user informa-

tion beyond personally identifiable data (PII). Drawing from a user study, it identifies addi-

tional types of sensitive content that users often encounter in digital user interfaces. These

insights guide interaction mining systems like odim, enabling a privacy-first approach.

A Framework for Bridging Analytics and UX Test Data: Companies rely on two

key data sources to evaluate digital experiences: behavioral analytics for quantitative in-

sights and UX tests for qualitative feedback. Although both capture behavioral data, the

techniques and tools for working with them are disparate. By applying interaction mining

principles on these data sources, this dissertation bridges them to support richer workflows

for optimizing digital design.

These contributions drive interaction mining toward a future that is more accessible, prin-

cipled, and privacy-conscious, providing researchers, designers, and industry practitioners

with innovative tools and methodologies to enhance digital experiences and safeguard user

privacy effectively.

1.2 OVERVIEW

This dissertation is structured into seven chapters. These chapters encompass an explo-

ration of the existing body of work in design and interaction mining, introduce the odim

framework for democratizing interaction mining, and offer real-world use cases that are en-

abled by a more accessible interaction mining ecosystem.
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Chapter 2 provides background on interaction mining by presenting the existing body of

work, the datasets, and the applications in the field. In addition, it provides a review of the

prior work on user privacy in the realm of mobile applications and an overview of existing

evaluation methods for digital UIs.

Chapter 3 unveils the odim framework, which enables capturing in-the-wild interaction

data from any Android app without any infrastructure or integration requirements. Addi-

tionally, we outline design principles that should serve as guidelines for future interaction

mining systems.

Chapter 4 introduces savant, an interaction data fueled system that generates task

shortcuts for virtual assistants, elucidating how end-users stand to benefit from improved

access to interaction data.

Chapter 5 presents the results of a study on the privacy concerns of Android users, con-

ducted specifically for gaining a better understanding on how user perceive their interaction

data.

Chapter 6 showcases how UX researchers can benefit from systems that leverage inter-

action mining principles. It provides an example system that bridges disparate data sources

and provides opportunities to enhance the optimization workflows for digital design

Chapter 7 encapsulates considerations on how odim should be deployed in the real-

world, while also providing the vision for a democratized and sustainable interaction mining

ecosystem.

1.3 STATEMENT ON PRIOR PUBLICATIONS

The savant system was previously published and presented at the ACM User Interface

Software and Technology (UIST) Conference in 2021 [5]. Some of the materials included in

the remainder of the dissertation went through the peer-review process within the top HCI

venues, at least once. This dissertation presents the latest versions of these works, guided

by the comments and the suggestions of generous reviewers.
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CHAPTER 2: RELATED WORK

This chapter aims to provide a foundational understanding of the key concepts and existing

work associated with interaction mining. We navigate through prior research and existing

technologies in order to lay the groundwork for the relevant core concepts. We first provide a

brief exploration of interaction mining, underlining widely used datasets and its applications.

As interaction mining deals with personal data, we then provide an overview of user privacy

in mobile apps and discuss the developments and research on the topic. Additionally, we

explore existing methods for evaluating digital UIs which, similar to interaction mining, deal

with behavioral data.

2.1 INTERACTION MINING

The realm of mining design patterns from digital user interfaces has been extensively

explored [52], leading to systems designed for extracting website design information and

facilitating data-driven web design tools [84, 85]. However, with the proliferation of mobile

devices, the landscape of interaction mining evolved to accommodate the unique charac-

teristics of these platforms [92]. Notably, the introduction of ERICA marked a significant

milestone in the domain, kick-starting the field of mobile interaction mining [33].

Interaction mining is a technique for capturing design and interaction data while an app

is being used [33]. As users interact with an app, an interaction mining system records their

journey, encompassing sequences of UI screenshots, the structural composition, render-time

properties of these screens, and user actions. These recorded user journeys are encapsulated

as interaction traces.

Interaction mining frameworks function through physical devices or emulators equipped

with a custom operating system, specially tailored to facilitate interaction capture. This

approach eliminates the necessity for app-specific integration and enables the collection of

interaction data from any app. By installing these frameworks on devices and pixel streaming

app screens through a web interface, they offer a versatile means of capturing interactions

within digital UIs.

Interaction mining serves three primary user groups: UX researchers, machine learning

(ML) practitioners, and end-users. For UX researchers, it provides valuable insights into

design patterns, inspiration for UI creation, and performance evaluation. ML practitioners

leverage interaction data to train models for predicting user interactions, offer personalized

suggestions, and enhance design comprehension. End-users benefit from improved digital
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experiences, including personalized features, automation tools, and overall enhanced UX.

2.1.1 Datasets

The advent of interaction mining frameworks has spurred the creation of several datasets,

each offering valuable design and interaction data resources. Notable examples include:

Webzeitgeist [85]: As one of the first large-scale design repositories, Webzeitgeist com-

prises over 100k web pages and 100 million design elements. This dataset was collected to

pioneer design mining for the Web, as traditional data mining techniques did not include

render-time properties for web pages.

Rico [34]: This extensive repository encompasses over 66k UI screens from over 9.3k apps

spanning 27 categories, serving as the largest collection of mobile app designs. Rico exposes

various design properties and supports five data-driven applications, including design search,

UI layout generation, UI code generation, user interaction modeling, and user perception

prediction.

ReDraw [121]: To support the transformation of graphical user interface (GUI) mock-

ups into code, researchers have curated the ReDraw dataset. This dataset plays a pivotal

role in training deep convolutional neural networks (CNNs) for the classification of GUI

components. It encompasses over 14k screens and more than 190k GUI components, serving

as a valuable resource for UI design automation.

Enrico [91]: An enhancement of Rico, the Enrico dataset aims to delve deeper into UI

functionality through layout design categorization. It comprises human-supervised and high-

quality data for 1460 UIs and 20 design topics.

VINS [13]: Designed to facilitate the training of models for detecting similar UIs, the

VINS dataset offers an annotated collection of UI screens at two distinct design stages:

abstract wireframes and high-fidelity fully designed interfaces. With a total of 4800 images

encompassing UI designs (257 wireframes and 4543 screens), it provides a rich resource for

similarity detection across diverse UI screens.

MoTIF [15]: Catering to the domain of vision-language navigation, the MoTIF dataset

captures interaction traces for over 6.1k natural language tasks across 125 Android apps.
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This dataset serves as a valuable asset for research into vision-language interaction and

navigation systems.

WebUI [167]: As a dataset of 400k web UIs associated with their relevant metadata, the

WebUI dataset was used to incorporate semantic information in web pages to build more

performant mobile UIs understanding models.

While these datasets have significantly advanced interaction mining research, they are

not without limitations. Existing interaction mining systems with specialized infrastructure

often miss data from certain apps. Additionally, as apps frequently undergo updates, existing

datasets can quickly become outdated. Furthermore, concerns about the ecological validity

of interaction mining data persist, with some datasets relying on web interfaces or inorganic

executions of mobile apps to collect data, potentially impacting the authenticity of the

captured interactions in unfamiliar mobile environments.

2.1.2 Applications

The proliferation of design and interaction datasets has catalyzed the development of an

array of data-driven systems and applications. Researchers and practitioners have harnessed

the wealth of data obtained through interaction mining to create innovative solutions that

span various domains:

Researchers have developed systems that can autonomously extract semantic information

from UI components [108]. These annotations enhance the understanding of UI structures

and functionalities, aiding in various downstream tasks. Design and interaction data have

been instrumental in automating the generation of UI designs. Researchers have developed

systems that can analyze interaction mining data to propose novel UI layouts and design

elements [9, 94, 149]. Moreover, interaction traces serve as a valuable resource for retrieving

existing UI designs based on specific criteria, streamlining the design process [74, 121].

Interaction mining has also paved the way for transforming UI screens into human-readable

natural language descriptions [100, 159], augmenting accessibility features within mobile

apps [176]. Researchers have also leveraged interaction traces to automate UI testing and

evaluation [35, 104].

Interaction mining has presented rich opportunities for the development of task automa-

tion systems. Various programming-by-demonstration systems, including PUMICE [99],

KITE [97], SUGILITE [98], and VASTA [144], have capitalized on interaction mining data.

These systems operate on a supervised learning paradigm, where users demonstrate spe-

cific tasks within apps. Subsequently, the systems generalize these interactions and can
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autonomously execute similar tasks with varying parameters. Other systems have also been

devised to automatically navigate users through app interfaces by analyzing interaction

traces to autofill relevant information on task-relevant screens, enhancing user convenience

and efficiency [5, 101]. Emerging research has explored the application of task automation

to create functional app prototypes and perform dynamic analysis [65, 83].

Finally, interactive ML systems [3, 54] harnessed interaction mining data to build systems

that cater to diverse domains. These applications range from aiding in the creation of mu-

sical instruments [57] to automating complex data science projects [160], and to interactive

correction for grounding [95], enhancing the interaction between users and ML systems.

In essence, interaction mining has fueled a wide spectrum of applications. From automat-

ing UI design to enhancing accessibility and enabling task automation, the potential of in-

teraction mining is vast, offering valuable solutions to researchers, developers, and end-users

across diverse domains.

2.2 USER PRIVACY IN MOBILE APPS

Interaction mining data comprises user journeys within a mobile application. Since the

data is captured while apps are being used, interaction traces inevitably contain personal

data. In the rapidly evolving landscape of mobile applications, users already face critical

decisions regarding the extent to which they are willing to share their data.

From the user’s perspective, this decision-making process occurs at two primary levels:

permissions and settings. Upon the installation of an Android app, it commences with zero

permissions. Subsequently, when the app requires access to certain functionalities (such

as location data, camera usage, or contact information) that could potentially impinge on

the user’s privacy, it solicits permission. Existing research in this realm has concentrated

on assisting users in managing their permission preferences [106], automating permission

decisions to bolster privacy protection [163], and elucidating which components of an app

utilize specific permissions [103], thereby facilitating informed privacy-related decisions.

Concurrently, privacy settings, which govern the sharing of information, are accessible

through the app itself and are accompanied by default values that determine the level of

shared data. Notably, Chen and colleagues introduced Hound, a system capable of au-

tonomously identifying concealed privacy settings using a classifier trained through semantics-

based UI tracing [25].

Moreover, there have been research endeavors aimed at aiding app developers in recogniz-

ing potential privacy concerns during the app development process. UIPicker, for instance,

is designed to identify potentially sensitive user inputs, facilitating security analyzes of mo-
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bile apps [124]. Similarly, Coconut offers feedback to developers regarding potential privacy

issues, encouraging heightened awareness of privacy considerations throughout the app de-

velopment lifecycle [96]. While app permissions serve as an essential initial layer of defense

in safeguarding user privacy, it is imperative to acknowledge that they may not offer com-

prehensive protection.

2.2.1 Visual Privacy

Detecting privacy risks within visual media has been extensively studied. Recent research

has focused on the automatic detection of privacy-sensitive information in images using clas-

sifiers [130, 173], neural networks [153, 172], and crowdsourcing [82]. Datasets containing

visual privacy concerns have been compiled to support ongoing research in detecting pri-

vate information within images [64, 130, 131]. Although digital UIs are primarily visual,

they convey more than mere pixels, making the detection of privacy-sensitive elements a

challenging endeavor.

2.2.2 Designing for Privacy

Designers hold a pivotal role in shaping the treatment of user privacy within interactive

systems. The design process fundamentally determines the extent to which user information

is required and how this necessity is effectively conveyed to users. As a response to this

critical role, researchers have dedicated efforts to offer guidance for privacy-conscious design

practices.

Lederer et al., for instance, shed light on potential privacy pitfalls that designers should

remain vigilant about when crafting interactive systems [88]. Building upon these insights,

recent research by Hong et al. introduced a comprehensive design rationale aimed at en-

hancing privacy considerations within Android user interfaces [71].

Furthermore, the evolving concept of “privacy by design” has garnered significant atten-

tion. This approach advocates for the integration of privacy concerns into the initial phases of

product design rather than treating privacy as an afterthought [19, 122, 143]. Consequently,

researchers have explored methods and strategies to assist designers and HCI practitioners

in incorporating privacy considerations into their work [164].

9



2.2.3 Perceptions and Expectations

Prior research has explored user perceptions of privacy, particularly in the context of social

media and interactive systems [138]. These studies investigate how socioeconomic factors re-

late to user privacy concerns [137] and what users expect from interactive systems regarding

privacy [105]. Additionally, researchers have proposed methods for measuring user privacy

expectations and comparing them with the reality of how systems handle privacy [113]. Con-

ventional definitions of privacy and private information often fall short in capturing what

users may consider private, highlighting the importance of aligning design and functionality

with user perceptions and expectations.

2.3 EVALUATING DIGITAL UIS

To evaluate how digital products perform, companies use many professional systems to

collect user interaction data. They examine two major data sources for this purpose: an-

alytics and UX assessments. Behavioral analytics provides large-scale, coarse-grained data

which is often used to identify how much a certain behavior occurs within an experience.

UX assessments yield smaller-scale affective data focusing on why a behavior occurs. Both

methods are directed at understanding user behavior, which interaction mining can provide

data for.

2.3.1 Behavioral Analytics

Early works in web analytics outlined the significance of gaining insights into how cus-

tomers interact with products [26, 158]. Over time, the industry has widely embraced the

value of behavioral analytics data, recognizing it as pivotal in understanding customer behav-

ior within digital products. A multitude of services offer comprehensive behavioral analytics

data. These platforms provide information about user interactions, including screen navi-

gation, button clicks, device specifications, session duration, self-reported opinions through

surveys, and more. Notable platforms such as Google Analytics [62], Adobe Experience

Cloud [2], Flurry [58], Heap Analytics [67], Mixpanel [120], Amplitude [4], Qualtrics [135],

and Pendo Analytics [133] empower businesses to track user activity, identify drop-off points,

and measure key performance indicators (KPIs).

Transforming raw usage data into meaningful and actionable insights has been a subject

of considerable research. Studies have explored various approaches, including the evaluation

of different flow chart shapes in web analytics using eye-tracking methods [87]. Additionally,
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novel visualization techniques have been proposed to represent user navigation in web pages,

offering diverse aggregate metrics to enhance decision-making [69, 86].

Recent advancements have introduced session recordings and replays as part of behav-

ioral analytics services. These recordings allow businesses to gain deeper insights into user

interactions by programmatically replaying user sessions or providing video recordings from

the user’s perspective. Services like FullStory [60], Contentsquare [29], and Quantum Met-

ric [117] offer these capabilities, providing a more detailed understanding of user behavior.

Although these advancements provide a deeper insight into what users are doing, existing

behavioral analytics solutions are still limited to only tracking the organic behavior, without

having access to user intent. These tools are still largely provide quantitative data, lacking

a coherent link with qualitative information on the human context.

2.3.2 UX Testing

Commercial platforms like UserTesting [77], UserZoom [156], Maze [114], Hotjar [72], and

Sprig [146] have become essential tools for organizations seeking to gain valuable user insights

through UX testing. These platforms facilitate tests in which representative users are tasked

with completing typical actions within a digital product while their journeys and feedback

are recorded. The collected data aids in improving UX design, identifying potential new

features, and assessing overall user satisfaction. Typically, these tools provide visual data

in the form of screenshots or screen recordings along with think-aloud data through which

users share their mental models.

Beyond commercial platforms, innovative research systems have augmented traditional

UX testing methodologies. Examples includeWebQuilt, which introduced remote UX testing

capabilities and data augmentation to visualize participant paths [70, 161, 162]. UX-Handle

enhances the experience of user researchers by providing a semi-automatic web-based system

for the analysis of UX testing data [11]. InteracDiff offers UX visualization tools to enhance

the interpretation of collected data [47]. Researchers have also investigated the integration

of machine learning systems into the workflows of UX designers [171].

Researchers have explored automating the inclusion of additional data sources during UX

tests. For instance, Ferre et al. proposed leveraging Google Analytics to collect quantita-

tive metadata during usability evaluations, enriching insights [56]. Jeong et al. introduced

a framework for collecting interaction logs during asynchronous UX assessment tests, sub-

sequently generating visualizations based on these logs [79]. Buono et al. developed flow

visualization techniques that leverage recorded user interaction data during UX tests to

identify “usability smells” and areas of improvement [14].
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CHAPTER 3: ON-DEVICE INTERACTION MINING

This chapter introduces On-Device Interaction Mining (odim), a framework designed to

make interaction mining accessible to everyone. odim empowers users to capture in-the-wild

interaction data directly on their Android devices, entirely eliminating the need for custom

mobile operating systems or specialized hardware (Figure 3.1). By simply downloading

the odim app, users can record interaction traces as they naturally interact with their

favorite apps. odim enables efficient workflows that benefit UX researchers, machine learning

practitioners, and end-users alike, democratizing interaction mining.

Figure 3.1: odim is the first fully-functional interaction mining framework that enables
in-the-wild capture of any Android app without requiring a custom OS or hardware.

Users can collect interaction data simply by downloading the odim app and toggling

its capture feature. As users interact with various apps, odim records these interactions

in the background. Users maintain full control over their data; they have the option to

review and redact any sensitive information before deciding to upload a trace to the cloud.

odim comprises an Android accessibility service for recording interaction traces, an Android

app for managing these traces, a web application for exploring interaction data, and a web

API for allowing programmatic access to collected data. The core principles driving odim’s

design are rooted in accessibility, simplicity, and privacy. odim allows collecting high-quality,

ecologically valid interaction data while maintaining user privacy and control.

In the sections that follow, we first explore the key design principles that guide odim’s

implementation. We then walk through how the odim system is designed, outlining each
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of its components. We also provide insights into the evaluation of odim, underpinned

by a live repository of interaction traces contributed by users from a broad spectrum of

apps. Additionally, we showcase the various workflows that odim facilitates, catering to the

distinct needs of users across different domains. odim presents a leap towards democratizing

interaction mining, enhancing digital experiences for all, and catalyzing innovation in the

fields of UI research, machine learning, and app development.

3.1 DESIGN PRINCIPLES FOR INTERACTION MINING

To democratize interaction mining, odim embodies five fundamental design principles that

collectively underpin to its efficacy and versatility in enabling interaction data capture:

Native Interaction Capture: To ensure the quality and ecological validity of interac-

tion data, odim captures interactions as they naturally occur on Android devices. This is

achieved through an Android accessibility service, integrated within the odim app. This

service operates unobtrusively in the background, allowing for the capture of interactions

without imposing any notable performance overhead on their devices. By capturing on-

device interactions, odim enhances the value of collected data for both UX researchers and

ML practitioners, ensuring that it remains ecologically valid.

Zero Integration and Infrastructure Setup: Overcoming the challenge of requiring

specialized infrastructure or code integration is a key aspect of odim’s design philosophy.

While behavioral analytics platforms like Google Analytics [62] require some code instru-

mentation but no setup, systems like ERICA [33] demand infrastructure setup but do not

require code changes. odim removes these barriers by imposing no integration or infras-

tructure setup requirements; users simply need to download an app to commence recording

interaction traces. Once recorded, these traces are uploaded to the cloud and made pub-

licly accessible through the odim explorer. odim’s minimal reliance on external components

ensures that the system remains agile and adaptable, with rare updates required when

backwards-incompatible alterations are made to the Android accessibility service.

Crowdsourcing Simplicity: odim is intentionally designed to facilitate crowdsourcing

efforts. Researchers can collect interaction data by directing participants to download the

odim app. Researchers can monitor participant progress by reviewing interaction traces

via the web explorer. Scaling up and adding new participants to ongoing projects incurs

minimal overhead. After data collection, researchers can download organized interaction
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traces. Users interact with odim through an extensible web explorer that allows for potential

advanced features like user accounts, workspace creation, and worker tracking, simplifying

the crowdsourcing of interaction data further.

Privacy-First Approach: Given the inherent need to capture natural interactions, safe-

guarding user privacy becomes a paramount concern in interaction mining systems. Without

built-in mechanisms to protect user privacy, many recorded traces would potentially include

sensitive personal information. odim addresses this challenge by providing two essential

features: a start/stop toggle that allows users to pause recording when entering sensitive

information, and a redaction interface that permits users to review traces before uploading

and redact any screen regions they consider sensitive. These redactions automatically ex-

tend to the recorded programmatic screen representations, effectively eliminating any data

contained within the redacted regions from the corresponding view hierarchies.

Versatile Data Access: To cater to diverse use cases, odim ensures that the interaction

data it collects is accessible and adaptable for various purposes. Practitioners may require

interaction data for research, UX testing, session inspection, or large-scale training data.

odim’s codebase is designed to accommodate all these access patterns. By making a simple

adjustment to the odim Web API, users can collect a private corpus of interaction traces

instead of uploading to the public cloud. Additionally, the odim Web API supports both

serial and batch access to trace data, providing versatility in data retrieval methods.

3.2 SYSTEM DESIGN

odim comprises four components (Figure 3.1):

• An Accessibility Service responsible for capturing screens and user interactions on

the user’s device, ensuring the comprehensive collection of interaction data.

• An Android Application designed to efficiently organize the collected data into

traces, equips users with the capability to review, edit, and upload their interactions.

• An explorer Web Application empowering users to delve into the uploaded traces,

fostering deeper insights and understanding.

• A Web API facilitates streamlined access to the collected data, enabling a range of

interaction data-driven applications to harness its insights.
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3.2.1 Accessibility Service

The Android platform’s AccessibilityService API is designed to support the devel-

opment of accessibility services that enhance the usability of Android devices and appli-

cations, particularly for users with disabilities [39]. Once enabled, accessibility services

actively monitor user interface actions and generate AccessibilityEvents in response to

significant interactions [37]. These AccessibilityEvents furnish valuable insights into

the UI, encompassing details about the involved UI elements, their content, the current

UI state, and any interactions that transpired. Key to accessing this information is the

AccessibilityNodeInfo, which facilitates the extraction of structural and visual particu-

lars from these events [38]. The structural composition and render-time attributes of a screen

are encapsulated in a tree formed by AccessibilityNodeInfo nodes. This tree commences

with the root node, serving as the entry point for extracting screen representations.

In the context of odim, an Android accessibility service assumes a pivotal role in detecting

user actions. This service also creates an overlay that captures user touches on the device

screen. These two data streams merge to form an event – the fundamental building block

of an interaction trace. An event combines both the visual and structural representations

of a UI screen with any concurrent user interactions (gestures). When the accessibility

service is active, odim triggers a transparent overlay that spans the entirety of the device

screen, monitoring user touches. Upon detecting a touch event, odim captures a screenshot

and retrieves the root AccessibilityNodeInfo of the active screen. Through a recursive

preorder depth-first traversal of the screen’s node tree, odim gathers the visual properties of

all UI elements. This gathered information is then structured into a JSON-formatted string,

referred to as the view hierarchy.

To ensure the efficient transformation of the AccessibilityNodeInfo tree into a JSON

view hierarchy string, odim employs a streaming approach facilitated by the Gson library [63].

Initially, we utilized a recursive process to extract node properties into a tree of maps, which

was subsequently deserialized into a JSON string. However, this method encountered mem-

ory constraints when dealing with extensive view hierarchy trees, as the entire map tree

had to be loaded into memory for conversion. The current streaming approach improves

parsing efficiency and robustness by writing node properties into a stream token by token

during the recursive traversal of the AccessibilityNodeInfo tree. odim maintains the

latest screenshot and view hierarchy data from a user touch as global variables.

Simultaneously, while the overlay monitors user touches, the accessibility service listens

for AccessibilityEvents. Upon detecting an event, odim performs an in-depth analysis of

its properties to discern whether it signifies a user interaction. This analysis encompasses
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the identification of the interaction type, the specific UI element implicated, and the package

name of the app where the event unfolded. AccessibilityEvents also encapsulate gesture

information, including a pair of (x, y) coordinates for touch interactions and a quartet of (x,

y, scrollDx, scrollDy) for scroll motions. Gesture coordinates are calculated based at the

center of the UI element involved in the interaction. When odim identifies a user interaction

within an AccessibilityEvent, it integrates the event data with the most recent stored

screenshot and view hierarchy, and generates a complete event.

Figure 3.2: The odim App groups recorded interaction traces by app.

3.2.2 Android App

odim consolidates interaction data into traces. These traces consist of sequential events,

including screenshots, user gestures, and view hierarchies for each UI screen. They represent

continuous interactions within an app, with a new trace initiated when users launch an

application and concluding when they tap either the “Home” or “Back” button, or simply

when they return to the home screen. When the accessibility service generates a new event,

it is incorporated into the ongoing trace or triggers the initiation of a fresh trace. Traces are

organized by the associated app and presented in a reverse-chronological order (Figure 3.2).

Users can review screens within each trace by selecting the trace of interest. The trace view

offers a sequence of event screenshot thumbnails, while clicking on these thumbnails reveals

the complete screen view, accentuated with red box borders that delineate the UI elements

derived from the recorded view hierarchy. Positioned at the bottom of the trace view, a

button invites users to upload the complete trace data to the connected database, preceded

by a prompt soliciting a trace description for contextualization.
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Recognizing that odim possesses the capability to capture intricate user data, it is prudent

to address potential concerns regarding data sharing, particularly when the app in question

may contain personally identifiable information. In response to this, the odim application

introduces a redaction interface within the full screen view. This interface empowers users

to review and redact sensitive portions of the recorded content. The redaction interface is

designed with red box highlights overlaid on privacy-sensitive UI elements, accompanied by

a floating action button that toggles between “draw” or “erase” modes, as well as another

button for confirming and “saving” (Figure 3.3) the redaction changes.

Figure 3.3: The odim app provides users with a redaction interface to review traces and
redact screen regions that contain private information.

To redact, users simply touch and drag over the privacy-sensitive area, creating a protective

and opaque gray rectangle. Each redaction prompts users to provide a descriptive label,

ensuring transparency and context. In the event of an accidental redaction, the “erase” mode

permits users to rectify the situation by touching the affected area. Upon completion, users

can switch back to “draw” mode and confirm the redaction changes by clicking the “save”

button. The redacted areas within the screenshot bitmap are marked with black boxes, while

the redacted UI elements within the view hierarchy undergo a transformation that replaces

fields potentially containing sensitive information (e.g., text or content description) with

“REDACTED”. Importantly, this entire redaction process transpires exclusively on users’

mobile devices, thereby affording users full control over the data they choose to display or

conceal before any uploading occurs. The motivation behind and design choices for this

17



redaction interface are described more in detail in Chapter 5.

3.2.3 Web Application

The odim Explorer1, provides easy access to the collection of recorded interaction traces.

The homepage of this explorer presents users with a grid view, showcasing apps for which

interaction traces have been captured (Figure 3.4). Upon selecting an app card, users are

taken to a paginated list of these recorded traces (Figure 3.5). These traces are displayed as

horizontal sequences of screens, with user gestures represented as orange circles. These cir-

cles convey touch interactions, including their precise (x, y) coordinates, as well as scrolling

actions—depicted by repeated orange circles featuring gradually decreasing radii that eluci-

date scrollDx and scrollDy values. In accordance with data privacy norms, any redacted

UI screens are obscured with black boxes, accompanied by user-provided descriptions located

at the bottom of each trace, affording context to the viewer.

The odim Explorer further enhances the user experience with a search feature, enabling

users to efficiently filter and search for traces by app names. Once a user uploads a trace

and receives confirmation, it immediately becomes accessible to a wider audience via the

web explorer. Additionally, users are able to download the raw interaction data, thereby

equipping them with the flexibility and control they require for further analysis or use.

3.2.4 Web API

The odim Web API is crucial for storing and making collected interaction data accessible.

The odim app communicates with the API through HTTP requests. When it sends a POST

request with local trace data, the API saves the metadata in a dedicated MongoDB instance

in the cloud. Simultaneously, it uploads the corresponding screenshots and view hierarchies

to a designated AWS S3 bucket.

When a trace is uploaded, the odim app provides the package name for the app it corre-

sponds to, along with the interaction data. If a trace is from an app not in the database, the

odim API dynamically scrapes the Google Play Store using the app’s package name. This

fetches additional details such as descriptions, ratings, and promotional screens, which are

then used to create a new trace collection for the app.

The odim Explorer serves as a user-friendly interface for accessing the stored interaction

data and allows users to interactively explore it. Additionally, it serves as a proof-of-concept

for potential interaction data-driven applications. In the future, the odim Web API can

1The odim Explorer is available at https://odim-explorer.vercel.app/
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Figure 3.4: The homepage of the odim Explorer presents a grid view of apps from which
traces have been captured.

Figure 3.5: The detail view of the odim Explorer showcases interaction traces recorded
with the odim app.
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be enhanced with advanced search capabilities, allowing users to search for specific screen

content or recurring UI concepts within traces. This adaptability makes the odim Web API

a valuable tool for interaction data analysis.

3.3 EVALUATION

To assess the usability and effectiveness of odim, we conducted a pilot data collection to

establish the initial public repository. Ten users participated in this data collection effort.

We selected 32 app categories from the Google Play Store, excluding categories like games,

library demos, and watch faces that were unlikely to yield substantial interactions. From

each category, we retrieved the top 20 apps, resulting in a total of 640 target apps. For each

app, we generated five target tasks by using ChatGPT [129] with the prompt “Give a concise

list of 5 user tasks for the [APP NAME] Android app ([APP PACKAGE NAME])”. This process

yielded a set of 3.2k target traces. Our users were then instructed to record traces from

this list using sock puppet accounts. In instances where task descriptions were unworkable

or poorly defined (for example, due to the necessity of pre-existing account data), the task

was skipped. In just six days, our users successfully collected over 1,000 labeled traces from

more than 500 apps, creating a valuable initial dataset that is now accessible via the odim

Explorer 3.2.3. Unlike previous interaction mining repositories, anyone can contribute new

traces to odim simply by downloading the odim Android Package (APK).

During this process, we encountered a single major usability issue with odim. Some users

reported crashes in the accessibility service while interacting with certain apps. These crashes

stemmed from an early design decision to maintain the entire view hierarchy in memory

during capture. To mitigate this issue, we transitioned to a streaming memory model using

the Gson library, as detailed in Section 3.2.1, and implemented persistent storage within the

app to prevent data loss.

For comparison, the prior state-of-the-art interaction mining system, erica[33], invested

six months in collecting interaction traces from 9.3k to form the Rico dataset [34]. They

relied on paid participants recruited from Upwork [155] for this task. This initial comparison

underscores the efficiency, reduced setup complexity, cost-effectiveness, scalability, and sus-

tainability of odim. It is worth noting that odim’s interaction traces are task-oriented and

include descriptions, augmenting the value of the collected interaction data when compared

to the Rico dataset.
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3.4 WORKFLOWS

odim offers the capability to directly capture in-situ data on Android devices without

the requirement of complex setups. Its design ensures that interaction mining is accessible

to a broad spectrum of users, facilitating efficient workflows for collecting interaction data.

To illustrate its adaptability, we present three distinct workflows, each tailored to empower

individuals across diverse domains: UX researchers, ML practitioners, and interactive ML

end-users.

Figure 3.6: odim gives UX researchers easy access to interaction data, enabling them to
understand design systems, find inspiration for designing new UIs, and analyze the

performance of existing UIs.

UX Researchers: With odim, UX researchers gain access to valuable interaction data,

empowering them to study design principles at-scale, seek inspiration for innovative UIs,

and evaluate the effectiveness of existing ones (Figure 3.6). Let’s consider the example of

Olivia, a UX researcher on a mobile team at an e-commerce company. Olivia is tasked with

enhancing the checkout process of their mobile app. She selects three apps for comparison

and enlists the help of five UX test participants. These participants utilize the odim app,

with the accessibility service enabled, to record interaction traces. Olivia instructs them to

start recording from the home screen of each app. The participants record interaction traces

for the checkout flows. After recording, they use the odim app to redact any private UI

elements before uploading the traces. Olivia collects and analyzes these 15 traces to identify

user-friendly UI features, highlight potential pain points, and ascertain preferred interaction

elements. She then shares her findings at the upcoming UX design meeting, contributing to

her team’s informed design decisions.

ML Practitioners: odim empowers ML practitioners by providing them with interaction

data for training ML models for predicting user interactions, assisting designers, and enhanc-

ing design comprehension (Figure 3.7). Take, for example, Nick, an ML practitioner working

on the development of a mobile task automation tool. Nick’s wants to train a model capable
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Figure 3.7: With odim, ML practitioners can collect interaction data for training ML
models. These models help other researchers, designers, and end-users.

of autonomously deducing user actions for common tasks. To achieve this, he runs a study

to identify prevalent mobile tasks, initially selecting a set of 10 such tasks. Nick recruits a

group of 100 participants through a crowdsourcing platform, guiding them to download and

configure odim. These participants continue their regular device usage for a period of three

days before reviewing the recorded interaction traces. Nick provides them with instructions

to upload traces corresponding to the designated 10 tasks. Participants choose relevant

traces, redact sensitive information as necessary, and securely upload the interaction data.

Nick leverages this raw interaction data, which encompasses redacted UI screens, gestures,

and structural representations, to effectively train his model. Subsequently, he releases his

task automation tool, Task-o-Tron 3000.

Figure 3.8: End-users benefit from odim as they are presented with new features,
automation capabilities, and better user experience.

Interactive ML End-Users: End-users also enjoy the advantages of odim’s interaction

data, providing them with personalized features, automation tools, and enriched digital ex-

periences (Figure 3.8). Let us take Patricia as an example –a regular end-user who downloads

Task-o-Tron 5000, an updated iteration of Nick’s task automation tool, now equipped with

interactive ML capabilities. After a week of using the tool, Patricia decides to enable au-

tomation for a task that isn’t officially supported within Task-o-Tron 5000. She leverages

odim to capture specific interaction traces tailored to her unique task. Patricia then directs

Task-o-Tron 5000 to integrate the locally captured interaction data from odim, thereby

enhancing the tool’s task automation capabilities to accommodate her new task. Later on,
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Patricia stumbles upon a public repository of odim-recorded traces, further elevating the

functionality of Nick’s tool. To contribute to this growing resource, users like Patricia share

their own redacted interaction traces, enabling them to access an even broader range of au-

tomation features. In Patricia’s case, she gladly contributes her redacted interaction traces

to enrich the repository.
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CHAPTER 4: TASK SHORTCUTS FOR VIRTUAL ASSISTANTS

In a rapidly evolving digital landscape, virtual assistants like Google Assistant, Siri, and

Alexa have become indispensable companions in our daily lives, expanding the boundaries

of what users can accomplish through voice and text-based interactions. These assistants

have evolved to automate a multitude of everyday tasks, providing users with information,

scheduling appointments, and even controlling smart devices in their homes. However, de-

spite their growing repertoire of skills, their capabilities still lag behind the vast landscape

of functionalities offered by the multitude of mobile apps.

Recognizing this limitation, virtual assistant platforms have started interfacing with mo-

bile apps to extend their capabilities. Through mechanisms such as Android App Actions [41]

and Siri Shortcuts [50], developers are empowered to programmatically expose the function-

alities of their apps to these virtual assistants. This, in turn, enables the virtual assistants

to accomplish a broader range of tasks, ultimately enhancing their utility to end users. Ad-

ditionally, end users themselves have the power to augment the skills of virtual assistants by

creating logic flows using platforms like IFTTT [75], Workflow [165], and Shortcuts [147].

While these options undoubtedly expand the horizons of virtual assistants, they all share a

common requirement: manual development effort.

Figure 4.1: SAVANT automatically generates task shortcuts for virtual assistants by
mapping user tasks to relevant UI screens in apps.

This chapter introduces savant (Shortcuts in Apps for Virtual Assistant New Tasks).

By leveraging interaction mining data, savant automatically generates task shortcuts for

virtual assistants by mapping user tasks to relevant UI screens in apps (Figure 4.1). savant

then uses these shortcuts to launch apps at the screens best suited to the task at hand. While

users can directly engage with savant using voice and text-based input, virtual assistants

can also interface with this system, gaining the ability to autonomously explore and initiate
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UI states within installed apps. This capability opens doors to perform tasks that virtual

assistants might not currently handle, enhancing the overall user experience.

When presented with a natural language task (e.g., “send money to Joe”), savant utilizes

text and semantic cues within UIs to identify relevant screens. It employs intent modeling

to map entities (e.g., “Joe”) to UI inputs, typically involving an action (e.g., “send”) and

its object (e.g., “money”). UI elements like icons and buttons denote actions, while object

inference occurs from nearby text fields. savant combines UI data (icons, buttons, text)

with app metadata from Google Play Store to efficiently match tasks to UI screens, gener-

ating task shortcuts. These shortcuts reference Android app UI screens (activity names) for

launching. They also include a pre-recorded interaction trace, capturing the path from an

app’s home screen to the shortcut’s UI screen. In cases where direct access is unfeasible,

savant navigates by replaying the interaction trace.

savant, at its core, functions as an unsupervised search system, sifting through vast

datasets of interaction traces to find the most fitting app screen for a given task. Beyond

this fundamental capability, savant extends its prowess to identify not just the apps rel-

evant to user tasks, but also the specific screens within those apps that can serve as a

launching point for task execution. In this way, it not only streamlines task automation

but also enriches the user experience by bridging the gap between virtual assistants and

the myriad functionalities offered by mobile applications. Importantly, savant can also in-

tegrate with existing programming-by-demonstration (PBD) systems, providing them with

valuable starting points for task demonstrations, fostering adaptability and generalization

in automation.

In this chapter, we explore how interaction mining, facilitated by the odim framework,

plays a pivotal role in enabling systems like savant that benefit end-users. We examine the

technical details of savant, its approach to automating task shortcuts, and the results that

validate its effectiveness.

4.1 BACKGROUND & MOTIVATION

Virtual assistants enhance everyday task automation through voice commands, with pop-

ular technologies like Google Assistant for Android and Siri for iOS now integrated into

smartphones. These virtual assistants offer extensive opportunities for task automation by

leveraging installed apps. However, their capabilities are limited by the functionalities ex-

posed by app developers. If developers do not explicitly make specific tasks accessible for

virtual assistants, these valuable features remain untapped.

Even when developers make such efforts, there are constraints in place on both Android
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and iOS platforms. In Android, an intent serves as a description of an operation to be

executed [44], and ”built-in intents” encompass predefined operations that Google Assistant

can perform. However, this system only supports a finite set of built-in intents, effectively

limiting the scope of interactions with apps. On the iOS platform, while developers can

encode custom intents to interact with Siri, end-users must still manually configure Siri to

enable per-app automations.

To illustrate, consider the PayPal app, which permits users to send money to one an-

other. Android developers for PayPal can use App Actions [41] to inform Google Assistant

of their app’s ability to handle the built-in intent for “create money transfer” [43]. To

activate an App Action, developers must add a specific file (actions.xml) to their app,

essentially declaring to Google Assistant that PayPal is equipped to manage a predefined

intent. Although the list of built-in intents is expanding, Google Assistant remains unable

to automatically use apps for entirely custom tasks.

The process on iOS for enabling Siri to send money via PayPal mirrors the Android

counterpart. iOS developers must include an Intent Definition File within their app,

detailing the tasks the app supports, known as iOS intents. Unlike Google Assistant, Siri

is compatible with custom intents in addition to system intents, offering more flexibility.

However, developers must create a mechanism to donate the shortcut to Siri every time a

user conducts a money transfer through PayPal [49]. Only once the app has donated the

shortcut does Siri begin to use it automatically. Alternatively, developers can expose app

capabilities to Siri via Suggested Shortcuts [51], which still requires end-user configuration

for task automation.

In contrast to these approaches that necessitate extra development effort, savant capi-

talizes on the information inherent in app UIs to correlate screens with tasks, facilitating the

automatic generation of shortcuts that launch task-relevant screens within apps. savant

is motivated by the recognition that task descriptions often exhibit semantic relationships

with UI components within apps. Therefore, it harnesses data gathered through interaction

mining to pinpoint UI screens that are semantically related to a given task description. Im-

portantly, savant eliminates the need for developers to manually modify an app’s code to

expose its capabilities externally. Instead, it autonomously discovers an app’s capabilities

based on recorded interaction traces. For instance, savant can automatically discern the

UI state in PayPal where a user initiates a money transfer and generate a shortcut for that

task. Subsequently, it utilizes this shortcut to directly navigate the virtual assistant, or the

end user, to the relevant UI screen.
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4.1.1 Related Work

Virtual Assistants: With the growing prevalence of virtual assistants [119], there has

been a notable trend in enhancing their functionality [55, 178] and enhancing the user ex-

perience [30, 140]. Virtual assistants have advanced in their capacity to furnish users with

additional information regarding on-screen content [68, 127]. Furthermore, solutions such as

JustSpeak have enabled virtual assistants to access labels for UI elements provided by de-

velopers [178]. Nevertheless, these existing systems primarily focus on offering information

about screen content and enhancing the user interface. In contrast, none of these systems

are explicitly designed to evaluate a screen in terms of its potential to assist users in complet-

ing specific tasks. savant, on the other hand, harnesses the power of semantic annotation

techniques to forge connections between UI screens, their individual elements, and the tasks

they are apt for, effectively bridging the gap between virtual assistants and task-related

functionality.

App and Feature Recommendation: Conventional systems focus on personalized app

discovery based on usage patterns [170], context (e.g., location, time) [80], and privacy pref-

erences [107, 179] but do not establish a direct linkage between user tasks and recommended

apps. In contrast, savant distinguishes itself by conducting a semantic analysis of UI el-

ements on app screens to offer task-specific app recommendations. Traditional methods

largely rely on predicting and recommending already installed apps for launch, leveraging

spatio-temporal [8], sensory [145], and usage pattern [150] data, which enhances quick access

to relevant apps. However, these approaches lack the capacity that savant possesses to di-

rectly launch apps at screens tailored to specific tasks. Furthermore, while some systems have

explored translating natural language task descriptions into application capabilities [1, 59] or

providing conversation-relevant shortcuts for messaging apps [21], they are limited in their

scope, as they primarily align tasks with specific app features, unlike savant, which can

operate with any app using pre-recorded interaction traces.

Mobile Deep Links: Deep linking conventionally refers to providing a uniform resource

identifier (URI) that provides direct access to a specific page on a website, rather than the

homepage. In the mobile application context, deep links extend this idea to direct users

to particular UI screens within apps instead of web pages. The significance of mobile deep

links has grown considerably, particularly in the context of evolving interaction methods

like virtual assistants. While virtual assistants rely on third-party apps to fulfill various

user queries, the responsibility still falls on app developers to manually expose and provide
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deep links for their apps. Android, for instance, offers developers the ability to manually

create deep links using intent filters, targeting navigation to specific content within apps [42].

To expand the range of actions available for use with virtual assistants, Google introduced

App Actions ; however, these actions necessitate manual developer support [41]. Various

research initiatives have explored methods to assist developers in integrating deep links into

their apps, including RESTful-style app models [111], developer libraries like uLink for user-

defined deep links [7], and Aladdin, a static and dynamic program analysis approach for

generating deep link APIs within apps [112]. However, these existing methods continue to

place the onus on developers for connecting virtual assistants with app functionality. In

contrast, savant offers an automatic task shortcut solution that streamlines navigation to

task-specific screens within an app, making it a zero-integration alternative to traditional

deep links that often require significant developer effort and exhibit low adoption rates [73,

112].

Intent Modeling: Intent modeling is a critical aspect of task automation, involving the

automatic parsing and mapping of expressions to specific desired tasks or outcomes, al-

lowing for the extraction of relevant entities. Earlier task automation systems [98, 99] and

conversational bots employ intent matching for interfacing with third-party applications [97].

Notably, SAVANT adopts Dialogflow, enabling it to train a robust agent [28] with only a

few example phrases for each intent-entity pair. SAVANT also maintains flexibility through

Dialogflow ’s “automated expansion” feature for entities, which recognizes new values for

entities based on pattern matching, enhancing its adaptability.

4.2 SYSTEM DESIGN

savant maps user tasks to relevant app screens, and then launches those apps directly at

those screens. savant’s screen search system leverages interaction mining data, which can

be collected with systems like odim 3. This data comprise screen sequences — interaction

traces — that capture each screen’s visual (i.e., screenshots) and structural (i.e., view hi-

erarchies) render-time properties. For each screen in the set of available interaction traces,

savant computes a representation, which is used to find screens that best match a given user

task and ultimately generate a task shortcut. savant leverages the shortcut to launch the

most task-relevant app screen and populates the screen’s UI elements with extracted entity

values associated with the task intent (Figure 4.2).
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Figure 4.2: SAVANT maps user tasks (e.g., “order food”) to app screen representations
generated through semantically annotated interaction data and app descriptions sourced
from the Google Play Store. SAVANT then instructs the Android OS to open the most

suitable app at the screen most relevant to the given task, and fills the screen’s UI
components with the relevant entity values linked to the task’s intent.

4.2.1 Generating a Task Shortcut

savant uses semantic information contained within the UI components to compute screen

representations, a kind of digital fingerprint for each screen. These screen representations

encapsulate the semantic attributes of UI elements, such as icons, buttons, and text fields.

Following Liu et al.’s approach, savant augments these representations with semantic an-

notations, making it easier to match UI elements with user queries. [108].

For instance, icons and buttons are often indicative of the main action, or verb, in a user’s

query, while text fields are more likely to contain objects or nouns in the query. However,

this approach isn’t without its challenges, as sometimes text within these components can

trigger false matches. For example, when a user queries “check email”, many screens may

contain the word “email” for various reasons. To refine these matches, savant incorporates

Google Play app descriptions, processed to eliminate common stop words.

savant’s screen representations include programmatic references that enable the direct

launch of an app at a specific UI state. A view hierarchy, in addition to encoding the

structural and rendering attributes of a UI, also contains the name of the screen’s Android

29



activity, essentially “an app component that provides a screen with which users can interact

in order to do something” [40]. In cases where a screen requires input parameters and cannot

be launched directly, savant retains a pointer to the relevant interaction trace to ensure

navigation through replay.

(a) (b)

Figure 4.3: Home screen for the PayPal app (a) and its computed screen
representation (b), which encodes semantic information — icons, texts, and app

description fields — and a programmatic reference for launching PayPal at this home
screen — the activity name.

To match user task queries with these screen representations, savant employs an off-the-

shelf cloud search service. The system pre-processes task queries by applying stemming and

filtering out common, non-informative words. Additionally, savant incorporates a set of

synonyms for common actions in mobile apps, derived from UX concepts presented in Liu et

al.’s work [108]. This approach ensures that task queries related to actions like “chat” also

match screens containing phrases like “message” and “comment”. The result is a collection

of screen representations, each with a relevance score indicating its suitability for the query.

These results are grouped by app, and an overall score is assigned to each app, emphasizing

those with more matching screens. Finally, savant presents the user with the top-rated

screen representation from the highest-scoring app, referred to as a task shortcut.
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Figure 4.4: Kotlin code required for creating an explicit intent to launch a new activity.
componentName contains the target app and the activity. FLAG ACTIVITY NEW TASK allows

creating the activity as a new task on the same history stack.

4.2.2 Using a Task Shortcut

A task shortcut contains the necessary information to launch an app launch an app at the

precise screen required for a specific task. To showcase how these shortcuts can be used, we

integrated savant with a system-level Android app. Android apps often impose restrictions

on launching their activities externally from other apps. However, system-level apps can

request a unique privilege – the START ANY ACTIVITY permission. This enables them to

override these restrictions and initiate activities within other apps.

Android apps primarily employ intents, essentially messaging objects [44], to request ac-

tions from components in other apps. There are two types of intents: explicit and implicit.

Explicit intent specify the exact component within an app that will handle the action and

are typically used to launch activities within the same app. In contrast, implicit intents

declare a general action but lack specific information about the component. They delegate

the action to another app chosen by the user. While implicit intents are apt for launching

other apps to perform tasks, they often necessitate user intervention to choose the preferred

app.

As a result, savant uses an explicit intent to start the activity specified in the activity

field of the task shortcut. This information includes the app (before the “/”) and the specific

activity within the app (after the “/”) (Figure 4.3). Combined, these elements constitute a

component name. savant leverages this name to craft an explicit intent, dispatching it to

the Android system (Figure 4.4).

However, some activities require specific user inputs for launching because they demand a

particular internal state within the screen to be accessible. In theory, these inputs could be

supplied externally via various putExtra methods of intents, enabling the inclusion of seri-

alizable data. Regrettably, task shortcuts do not currently support this approach, primarily

due to the challenges of understanding the intricacies of each activity ’s implementation. In

such cases, savant turns to the trace field within the task shortcut, enabling the replay of

interactions leading up to the target component.

The interaction trace data is contains gestures, representing user actions performed on
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the UI state, leading to transitions within the app. This data not only holds information

about the matched UI state but also encompasses the starting state and the sequence of

transitions that culminate in the desired UI state. By initiating these transitions and sim-

ulating gestures on the screen starting from the initial state, savant navigates the user to

the intended UI state. This is possible through another permission exclusive to system-level

apps: INJECT EVENTS, which allows simulating gestures on the screen, offering support for

two primary types of gestures: touch and swipe. These gestures cover most of the transitions

between UI states. However, for exceptional cases like pinch-and-zoom, additional gestures

might be needed. savant deploys these gestures as events on the screen, drawing from static

parameters in the interaction trace. To ensure users are aware of the choices that lead to

the task-relevant screen, savant presents a step-by-step replay. Should the replay process

encounter difficulties, or in cases of altered app interfaces, savant offers a fallback solution:

launching the app at its home screen. This ensures that the user can still access the app

even when direct navigation to a specific UI state is challenging.

In addition to its primary goal of assisting virtual assistants with unfamiliar tasks, sa-

vant’s system-level app implementation supports voice- and text-based inputs directly from

the user.

4.2.3 Slot-Filling and Intent Modeling

A typical user task, like “send money to Joe”, consists of an intent (“send money”) and

associated entities (in this case, “Joe”). To further improve the utility of a task shortcut,

apart from launching a relevant app screen, savant aims to autofill UI elements with user

inputs related to the intent’s entities. This problem, known as the slot-filling problem, is

addressed through the implementation of a Dialogflow agent [28]. The primary function of

this agent is to match user expressions to intents and entities, which can then be linked to

the corresponding UI elements on the app screen (Figure 4.5).

The Dialogflow agent employs a combination of rule-based grammar matching andmachine

learning techniques to identify the most likely intent for a given natural language phrase.

An intent in Dialogflow is defined as an “end-user’s intention for one conversation turn”.

In the context of savant, a “conversation” involves a single user task phrase, followed by

savant launching a specific application at a relevant UI screen. For instance, the trained

agent can identify a user utterance as the “book flight” intent when the user intends to book

a flight. In this analogy, intents are akin to verbs in sentences, while entities are used to

represent nouns and adjectives within natural language phrases. For example, based on the

user’s utterance, the agent may associate a “destination” entity if it contains information
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Figure 4.5: SAVANT’s Dialogflow agent matches user utterances to intents and entities;
the extracted entities are used to autofill the values of any corresponding UI elements on

task-relevant screens. The agent is trained on phrases generated by Chatito.

about where the user wants to fly.

We predefined the initial intent and entity catalog of the agent, drawing from application

concepts derived from prior research [108] and a formative study that identified common

smartphone tasks (Section 4.3.1). This manual approach proves to be versatile and efficient

since it establishes rules globally across all apps, rather than on a per-app basis. Automati-

cally deriving intents and entities from UI elements found in user traces would be challenging

due to the inherent lack of order among these elements. UI elements are more akin to a

“bag of words” representation rather than a structured language utterance, making them

less suited for training an agent. Extracting intents like book flight solely from analyzing the

UI screen of an app like Expedia is a complex task.

We’ve developed a robust and adaptable set of intents and entities that serve as the foun-

dation of savant’s Dialogflow agent. These sources collectively encapsulate common intents

across various Android applications, including actions like Add, Checkout, Forgot Password,

and Terms of Service. Some of these concepts can be directly expressed as Dialogflow in-

tents, while others, like Terms of Service, cannot. Intents that fall within this subset of

concepts also have corresponding entities. For instance, the Add intent may be associated

with an entity for adding a song to a playlist.

Dialogflow agents are trained using example phrases and values for each intent and entity,

respectively. For instance, a greeting intent might include a training phrase like “Hi, how are

you”, and a restaurant entity could have a sample value like “Olive Garden”. To streamline

the generation of Dialogflow training phrases, we employ Chatito, a widely used Domain

Specific Language (DSL) for dataset generation [134]. Instead of manually crafting training

phrases, we provide Chatito with template intent phrases like “book a flight from [origin]
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to [destination]” along with a list of values for the entities (such as origin and destination)

present in the template. Chatito then generates various combinations of the phrase with

different entity values, significantly reducing manual effort. For a DSL that encompasses 25

intent templates and 20 entities, Chatito produces approximately 100 training phrases for

each intent. We subsequently upload these generated phrases to Dialogflow and manually

annotate the intent and entities within the phrases using Dialogflow ’s web interface to train

the agent.

Once savant identifies the most relevant screen for a user task, it forwards the task phrase

to the trained Dialogflow agent, which returns the most probable intent and associated

entities extracted from the user’s input. These entities are then mapped to UI elements on

the application screen, and the values of corresponding components are set to the respective

entity values. Since Android OS restrictions prevent regular applications from accessing

elements in third-party apps, savant employs accessibility services to access and modify

elements on screens.

We employed Python scripts for the initial processing of interaction mining data and the

calculation of semantic annotations. To carry out the search and ranking of screen represen-

tations, we used AWS CloudSearch. A Node.js API is responsible for tasks like stemming

task descriptions, querying data within AWS CloudSearch, generating task shortcuts, and

consolidating them within applications. The system-level Android application, along with

the accessibility service used for slot-filling, was developed using Kotlin.

4.3 EVALUATION

We conducted a comprehensive user study to assess the effectiveness of SAVANT’s seman-

tic search in identifying task-relevant UI screens. While there have been numerous studies

examining smartphone usage at the app level [10, 17, 27, 48, 90, 93, 169, 177], the exploration

of smartphone usage at the task level is limited and lacks publicly available resources. To

address this gap, we first conducted a formative study aimed at identifying common user

tasks performed on smartphones. Subsequently, a second study was carried out to evaluate

SAVANT’s performance, focusing on the task set identified during the formative study.

4.3.1 Identifying Common User Tasks

The existing studies on common tasks performed on smartphones, such as the motivating

study for SUGILITE [98], while insightful, did not offer publicly accessible results, providing

only eight user tasks. Therefore, we conducted a new formative study involving 24 partic-
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ipants. Participants were recruited through a university web programming course mailing

list and were rewarded with a $10 Amazon gift card for their participation. Each session

lasted approximately 15 minutes, during which participants were asked to list five tasks they

typically perform on a smartphone. The tasks submitted by users predominantly featured

higher-level intents (e.g., “message friends”) rather than detailed, instance-level instructions

(e.g., “tell my roommate I’m running late”). savant’s purpose is to act as an intermediary

between virtual assistants and apps, primarily dealing with higher-level intents. Virtual

assistants are already adept at extracting higher-level intents from detailed instructions, so

savant primarily focuses on higher-level intents.

The initial set of 120 tasks was grouped based on the Google Play Store categories they

corresponded to, forming the initial task sets. Further examination of these initial groups

led us to categorize highly specific tasks into their unique classes. For instance, “video chat”

was separated from the initial “Communication” tasks category since the remaining tasks

all pertained to text-based communication. Additionally, we merged certain thematically

related task sets, such as “Tools” and “Weather”. This process resulted in 20 distinct task

sets, with the most frequently occurring task within each set serving as the representative

task. In the event of ties, we selected the task phrase that shared the most common words

with other tasks in the set (Table 4.1).

4.3.2 Measuring Task Relevance Precision

To evaluate the quality of the shortcuts recommended by SAVANT, we enlisted three par-

ticipants, who were recruited from the same mailing list as the formative study (Section 4.3.1)

and rewarded with a $10 Amazon gift card.

We initiated SAVANT with the Rico dataset [34, 108]. For each representative task

identified in the formative study, we computed the top-three task shortcuts. We opted to

display only the top three results, as some representative tasks had a maximum of three

shortcuts, consistent with how virtual assistants operate when multiple apps can assist with

a given task.

For each task, participants were presented with the top-three results generated by SA-

VANT and tasked with assessing the task relevance of each screen. Participants were only

informed that a relevant task shortcut should guide them to a UI screen conducive to com-

pleting the specified task. This methodology was akin to previous research by Chen et al.,

where participants were asked to identify the ‘top-3 relevant shortcuts for apps” based on

the context of a text message [21].

Measuring task success rate was not deemed relevant for SAVANT, as it does not aim to
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Figure 4.6: SAVANT’s screen matching results for representative tasks, in descending
screen relevance order from left to right. Matching elements are highlighted for clarity.
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Table 4.1: 20 unique task sets identified through the formative study along with
SAVANT’s precision at 3 values for each set. The representative tasks are highlighted. The
numbers in the parenthesis indicate the number of occurrence in the original 120 tasks.

fully automate tasks. Additionally, measuring recall was impractical, as it would necessitate

exhaustive labeling of over 66k UI screens for each task, rendering it infeasible. Moreover,

recall is not particularly advantageous for the general use case, where providing users with

top-k task shortcuts suffices to facilitate task completion, aligning with SAVANT’s primary

objective.

We calculated the top-three precision for each of the 20 task sets. The average precision

across all task sets was 70.1%. Impressively, SAVANT achieved 100% top-three precision

for five tasks: ”“send money”, “take photos”, “order food”, “find deals” and “practice

flashcards”. In 13 out of the 20 task sets (65%), SAVANT provided at least two relevant

task shortcuts, with an average top-three precision exceeding 66% (Figure 4.6).

However, it is essential to note that SAVANT encountered challenges in certain task sets.
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For “take notes” (44.4%), SAVANT returned shortcuts from domain-specific apps like myPill®
Birth Control Reminder and Blue Letter Bible, which offered note-taking as a side feature.

Additionally, SAVANT suggested a shortcut from the FlightView Free Flight Tracker app since

it interpreted the verb “take” as a synonym for “flight”, “take off”. The “post a picture”

task yielded the poorest results (11.1%) because SAVANT identified only shortcuts related

to posting on a forum or taking a picture. For ”read books” (33.3%), two of the results were

from unrelated apps like Hotels.com and SpiceJet, highlighting SAVANT’s current inability

to distinguish between verbs and nouns. The sole relevant shortcut for this task was from the

Free Books app. Finally, for the “turn off lights” task (33.3%), SAVANT suggested shortcuts

related to screen lighting configuration for the night, such as Night Light and Blue Light Filter
apps, while participants expected shortcuts for managing smart home devices. The only

relevant shortcut identified for this task was from the Color Lights Flashing app.

4.4 DISCUSSION

To ensure a robust real-world deployment of savant, several key challenges must be ad-

dressed. While bootstrapping savant with public interaction data repositories, such as

Rico, served as a convenient strategy for proof of concept, real-world implementation neces-

sitates a more sustainable approach. These challenges encompass sourcing app interaction

traces, security and privacy concerns, and expansion to platforms beyond Android.

Sourcing Traces: While crowdworkers have been valuable for sourcing high-quality app

traces, this approach is not scalable in the long term. Relying solely on crowdworkers is

costly and limits trace collection to popular apps. To overcome this, interaction traces can

be sourced in two additional ways. First, app developers could provide sample interaction

traces along with app updates. These traces, especially in subsequent updates, need to cover

new and updated UI screens. App developers could also source traces from crowdworkers

or users to ensure they are up-to-date. App developers would be motivated to contribute

traces to savant, to enhance their app’s visibility and utility through virtual assistants.

Secondly, end users could opt to share their own app interaction traces. Leveraging user-

contributed traces can result in more personalized task shortcuts and user experiences. For

new apps, public interaction data could serve as a temporary solution until users generate

their personalized traces. Both of these methods of providing interaction traces can be

streamlined through odim.
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Security and Privacy Concerns: Utilizing a system-level app like savant for UI au-

tomation raises security and privacy concerns. System-level apps possess unique permissions,

such as installing applications and simulating screen interactions, which are not available to

regular apps. savant uses these permissions exclusively for generating task shortcuts based

on interaction data, making the likelihood of security issues minimal. savant’s design in-

herently requires malicious UI screens and interactions to be included within the interaction

trace for a security problem to manifest. This is further mitigated by Google Play Store’s

own measures to detect and prevent the installation of apps containing malicious content [45].

Privacy concerns center around the exposure of personally identifiable information (PII).

Interaction mining, by its nature, captures sensitive data. One proposed solution involves

providing sock puppet accounts for trace contributors to protect their identity. For real

user data, automated PII detection and removal mechanisms could be applied to ensure

privacy compliance. Existing systems can identify conventional PII, like email addresses or

phone numbers, while additional research is needed to develop user-centered privacy models

addressing broader privacy concerns. Chapter 5 provides details on an initial exploration of

such privacy concerns in the context of Android apps.

Expanding to Other Platforms: While the core approach of leveraging previously

recorded app interaction traces for virtual assistant enhancement is platform-agnostic, sa-

vant is currently tailored to Android apps and Google Assistant. Expanding to iOS or

other platforms introduces additional challenges. iOS, despite offering some gesture au-

tomation capabilities, lacks a public interface for programmatically launching UI states,

requiring knowledge of unexposed mechanisms within iOS. Nevertheless, this expansion re-

mains a possibility. Moreover, savant’s applicability could extend beyond smartphones to

encompass a variety of devices, including smart TVs, speakers, and appliances with non-

touchscreen UIs, as long as mining and programmatically interacting with these interfaces

is feasible, expanding its reach beyond smartphones and further augmenting its utility.
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CHAPTER 5: EXPLORING PRIVACY CONCERNS IN MOBILE APPS

Interaction mining systems, like odim, collect data during app use, capturing screen con-

tents and user actions. This data naturally contains personal information, introducing an

obstacle that any given interaction mining system aiming to sustainably collect and dissemi-

nate interaction data must overcome: preserving user privacy. With the emergence of mobile

applications, This ever-growing concern in the digital age has raised new questions about

safeguarding users’ personal information.

The traditional focus on Personally Identifiable Information (PII), covering data like

names, email addresses, and phone numbers, has expanded with regulations like GDPR,

now defining PII as “any information which is related to an identified or identifiable natu-

ral person” [139]. In the evolving realm of mobile applications, where people spend nearly

four hours daily [128], a more nuanced approach to privacy is crucial. As apps integrate

into various aspects of life, the definition of sensitive information transcends conventional

PII safeguards. In apps like Venmo, users often choose to obscure payment memos from

other users by intentionally writing vague statements or using emojis [16]. Similarly, fitness

tracking app Strava offers “privacy zones” for users to protect sensitive locations such as

homes and offices, but even these safeguards can be breached [66]. These instances under-

score the need to acknowledge and protect user-defined sensitive data beyond traditional PII

boundaries.

This chapter presents an exploration of this emerging class of sensitive information in

digital user interfaces, Beyond PII. It presents the findings of a user study that goes beyond

the conventional scope of PII to identify types of content that users consider sensitive when

interacting with mobile apps. The study employs an earlier implementation of the redaction

interface within odim, which we refer to as the privacy probe. This probe allows users to

record their interactions with mobile applications and selectively redact regions within their

traces. By leveraging established interaction mining techniques, this research offers insights

into the elements users find sensitive and extends our understanding of sensitive data beyond

typical PII categories.

In the following sections, we detail the methodology of our study, provide an analysis of

the results, and discuss the implications for future privacy models. This chapter contributes

a comprehensive list of common UI elements that users consider sensitive, empowering a

more effective app design and development with user privacy in mind.
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5.1 BACKGROUND & MOTIVATION

Mobile applications have transformed the way we manage our tasks, offering us a wide

array of capabilities and conveniences. However, to unlock the full potential of these apps,

users are often required to share their personal information. One pattern is, through system

permissions at runtime, to ask users to allow access to private information that already

exists on their phones. More common way is for users to provide this information through

creating accounts and organically using the app. As many apps today have social features

like profiles and feeds to provide a digital presence for their users, this information is not

always fully kept private.

Consider the example of Venmo, a popular app used for monetary transactions among its

users. Venmo allows users to send and receive money, request payments, and even offers a

social component where transaction descriptions are publicly visible. While the app does

provide the option to keep transactions private, the default setting is to share them publicly,

a design choice that may not always align with users’ privacy preferences. Novice users,

in particular, may unknowingly share their transaction history with a broader audience,

potentially including individuals they do not intend to share this information with.

To illustrate, let’s follow the scenario of two coworkers, Matt and Rachel, who’ve just had

lunch together. Rachel, having covered the bill, asks Matt to reimburse her through Venmo.
Matt opens the app and navigates to Rachel’s profile to make the payment (Figure 5.1). As he

scrolls through Rachel’s transaction history, he encounters entries related to her interactions

with a person named Lee. These transactions reveal details about the type of transaction,

the individuals involved, the date, and even suggest shared living arrangements. Crucially,

Matt is not friends with Lee on Venmo, yet he gains access to private information related to

Lee.

In this context, Rachel may not even be aware that her transactions are shared publicly,

and yet, this inadvertent sharing shouldn’t extend to Lee’s private information. While Rachel

has control over her own data, she cannot govern the sharing of information that pertains to

other individuals. Lee’s privacy is compromised, as he lacks the means to influence the data-

sharing dynamics within the app. This dilemma underscores the importance of apps being

able to discern what users would consider private, extending beyond traditional definitions

of privacy.

To address this issue, our research presents the outcomes of a user study involving 19 par-

ticipants. We explore the nuances of privacy in digital user interfaces by investigating what

types of information users regard as sensitive. Our findings serve as a valuable complement

to existing systems and pave the way for the development of future user-centric approaches
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Figure 5.1: Profile page of a Venmo user. Users can see their friend’s feed showing all the
public transactions they have made including ones between other users who are not their

friends.

to privacy in app design and functionality.

5.2 PRIVACY PROBE FOR COLLECTING PRIVACY-SENSITIVE UI REGIONS

In our pursuit of understanding users’ privacy concerns within mobile applications, we

harnessed the capabilities of the ERICA infrastructure [33]. To empower a comprehensive

exploration of privacy considerations, we extended ERICA with a dedicated web interface

that permits users to identify privacy-sensitive areas within the captured app screens. The

outcome is a privacy probe, essentially a two-tiered system encompassing an infrastructure for

recording traces and a web-based client for marking areas of privacy sensitivity (Figure 5.2).

The data captured by the interaction mining infrastructure is subsequently made available

to the web client for the process of identifying and redacting privacy-sensitive areas. The

web client, in turn, displays all the screens encompassed within a trace, allowing users to

designate areas that they consider private by means of creating opaque rectangles over the

pertinent regions. The redaction interface provides a comprehensive view of screens overlaid

with user-defined privacy redactions. To redact a screen, users can select the screen they
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Figure 5.2: The privacy probe leverages existing interaction mining work to enable
recording and redacting traces to facilitate research on user privacy.

wish to edit, which then opens the redaction editor. This editor presents a view of the app

screen and offers four distinct modes: “Redact”, “Label”, “Delete”, and “Clear All”. In the

default “Redact” mode, the system’s interface is displayed as a canvas, enabling users to

redact areas of concern by clicking and dragging the mouse to create an opaque rectangle,

symbolizing the redacted segment.

After redacting an area, users have the option to label the redacted region to convey the

type of information concealed. To achieve this, users can switch to the “Label” mode and

click on the redacted region, triggering an input box for them to specify the label they wish

to assign. If a user needs to remove a specific redaction from the editor, they can switch to

“Delete” mode and simply click within the covered area to eliminate the redaction. For a

more expedient option to clear all redactions from a screen, users can select the “Clear All”

button within the editor.

Notably, when a redaction is created, the web client employs a positional comparison to

align the redacted region with the corresponding element in the underlying view hierarchy.

This facilitates the identification of the closest matching element within the structural com-

position of the screen, and this linkage becomes an integral part of the redaction data. As

a result, a single user trace encompasses an extensive dataset, combining UI screenshots,

programmatic representations (view hierarchies), user interactions (gestures), and a com-

prehensive set of privacy-sensitive regions, each endowed with their render-time properties,

for every UI screen encountered within the trace.
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5.3 EXPLORING PRIVACY CONCERNS

We conducted a user study to explore what users might find private in mobile app UIs.

We first ran a preliminary study to determine a set of apps and then asked participants to

record and redact interactions using the privacy probe. We grouped the resulting redactions

into 22 total categories.

5.3.1 Methodology

We first conducted a preliminary survey that aimed to identify app categories containing

apps that are more likely to be dealing with private or sensitive user data. This survey asked

participants to select at least five categories from a pool of 35 available on the Google Play

Store. Garnering a total of 85 responses through Amazon Mechanical Turk, each participant

was compensated with $0.50 for their input.

Next, we selected the top five apps from the leading seven categories, as identified through

the survey. These categories included Finance, Dating, Medical, Business, Social, Communi-

cation, and Health and Fitness. Ensuring that our privacy probe was compatible with these

selections, we put each of the 35 chosen apps to the test. For any app found incompatible

with our probe, the subsequent app in the same category, based on popularity, was chosen.

Subsequently, we conducted an in-person user study with 19 participants, recruiting them

through university mailing lists and networks. In appreciation of their involvement, each

participant received a $20 Amazon gift card. Each study session spanned approximately

60 minutes and was composed of two phases: recording interaction traces and redacting

privacy-sensitive areas within these traces.

Participants were then asked to choose two apps from the pool of 35 that they felt com-

fortable using their personal accounts with. If a participant found none of the provided apps

suitable, we extended the flexibility of suggesting an alternative (Table 5.1). As a result,

participants selected a total of 15 unique apps, with only three apps falling outside the

originally defined categories. Upon selection, they were instructed to perform their typical

daily tasks in these apps, replicating their everyday interactions using our privacy probe. In-

teraction trace recording commenced after participants logged into their accounts, ensuring

the non-disclosure of login credentials. Our study’s design aimed to minimize interference

with the participants during the recording process, with guidance provided only upon their

explicit request.

The redaction process invited a wide range of participant activity. While most partici-

pants chose to redact personal information present in screenshots, some opted for minimal
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Figure 5.3: Distribution of redaction categories by Google Play Store category
(normalized) (a), app (normalized) (b), and by participant (c). Categories are sorted

alphabetically, “Other” consists of the three apps outside of the predetermined categories.
Apps are sorted by category. Participants are in ascending order with respect to number

redactions.

or no redaction, contending that their data was already publicly accessible (Figure 5.4).

This variance in redaction activity highlights the diverse interpretations of what constitutes

“private”.

5.3.2 Results

With 19 participants, our study yielded 38 traces, 1416 screens, and a total of 3133

labeled privacy-sensitive regions across 15 unique apps. Employing open iterative coding,

we established 22 primary categories for privacy-sensitive regions (Table 5.2). Alongside

conventional PII, such as names, email addresses, and physical addresses, our study unveiled

novel categories, including contact names, message content, and date/time (Figure 5.3).

Notably, the contact name label category emerged as the most frequent, signifying users’

tendency to consider their connections as personal information. This bias is due in part

to the default “confidential” label, which some participants utilized when categorizing their

redactions, thus contributing to the high frequency of this classification. We also observed

a bimodal distribution concerning the number of redactions per participant, underlining the

subjectivity surrounding the definition of private information in digital UIs (Figure 5.3c).

Our findings are as follows:
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Application Category # Traces Participants
Venmo [157] Finance 7 P2, P3, P6, P8,

P12, P14, P16
LinkedIn [125] Business 7 P4, P5, P6, P8,

P10, P13, P15
Gmail [61] Communication 6 P1, P2, P13, P17,

P18, P19
Messenger [116] Communication 4 P9, P14, P16, P19
Snapchat [76] Communication 2 P11, P12
Twitter [154] Social 2 P15, P18

Instagram [78] Social 1 P9
WhatsApp [109] Communication 1 P1

ZOOM [115] Business 1 P17
Authenticator [6] Business 1 P11

Flo [151] Health & Fitness 1 P5
My Calendar [152] Medical 1 P7

DoorDash [36] Food & Drink 1 P7
Spotify [123] Music & Audio 1 P4
TikTok [110] Video Players 1 P10

Table 5.1: 15 unique apps selected by the 19 participants. Apps are first sorted by their
Google Play Store categories, then by the number of recorded traces. Apps suggested by
the participants, outside of the predetermined categories, are listed below the double line.

Health & Fitness and Medical categories only has a single trace each while there is a
healthy distribution between other categories.

Mobile Apps Protect Conventional PII Adequately: We anticipated conventional

PII labels to be dominant within our redaction labels. However, labels related to common

PII, such as email addresses, phone numbers, and physical addresses, represented less than

2% of all redactions. This suggests that users do not often encounter typical PII during their

everyday app usage, even though this data is retained by the apps. Furthermore, when such

information is present in the app’s UI, users tend not to regard it as private. Approximately

14% of redactions pertained to profile pictures, which included images of both users and

their connections. Given the extensive study of visual privacy within the field, mobile app

UIs can certainly benefit from the integration of existing privacy solutions in this domain.

Users Find Their Contacts Private: Users exhibit a greater inclination to keep their

connection-related information private. A total of 21.6% of redactions pertained to contact

names, with 8.3% linked to message content. This indicates that individuals tend to be

more guarded about whom they share content with on these apps, in contrast to the content
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Table 5.2: 22 privacy-sensitive region categories determined through open iterative
coding on 3133 redactions. The colors match the category colors in Figure 5.3. Numbers in

parentheses indicate the label frequency in study results.

itself. Notably, the majority of connection-related redactions were identified in Business,

Communication, and Finance apps (Figure 5.3a). About half of the participants placed

redactions on contact names, irrespective of the app category they selected. Interestingly,

Instagram, a prominent Social app, witnessed no redactions pertaining to contact names,

while roughly half of Snapchat’s redactions were in this category. This variance highlights

that users exercise different privacy perspectives concerning communication on Communica-

tion apps, compared to Social apps. Users also redacted profile pictures of both themselves

and their connections, thereby consolidating data from both sources within the profile picture

category.

Health/Medical Data is Highly Subjective: While apps like Flo and My Calendar offer
comparable functionality as period trackers, they are categorized differently on the Google

Play Store. Remarkably, only two traces, one for each app, were observed in our study (P5

— Flo, P7 — My Calendar). Although both apps address health-related data, their users

exhibited contrasting perspectives on privacy. P5 refrained from making any redactions for

Flo, whereas P7 redacted a substantial amount of health data from their My Calendar trace,
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Figure 5.4: Heatmaps generated for UI screens of the top-4 apps with respect to number
of recorded traces. Similar screens are layered on top of each other. Darker regions indicate

more redactions.

including 71 of 73 redactions (Figure 5.3b). These divergent approaches underscore the

diverse user conceptions of health and medical data privacy.

Social Features Drive Privacy Concerns: Apps with prominent social features elicited

increased redaction activity. This trend was particularly prominent in Business apps, where

we noticed a variety of redaction patterns. For instance, LinkedIn and ZOOM, both offer-

ing interaction capabilities, showed unique redaction trends. LinkedIn experienced a higher

prevalence of redactions in categories profile picture, job info, and my name. Conversely,

ZOOM featured redactions for contact name and date/time, reflecting the dominance of

these categories. In contrast, Microsoft Authenticator, an app primarily focused on individual

users, had redactions mainly associated with email and passcodes (Figure 5.3b). Intrigu-

ingly, Venmo, categorized as a Finance app, displayed the greatest diversity in redaction cat-
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egories, including transaction data, profile picture, my name, date/time, and contact names

(Figure 5.3a). This diversity may be attributed to apps like Venmo, which combine financial

transactions with social and communication features.

Users Treat Their Own Data More Privately within Social Apps: Roughly half of

the participants redacted their own names (Figure 5.3c). Specifically, within Social apps, the

my name label accounted for 59.3% of all redactions, compared to 23.7% for Communication

apps and 16.7% for Business apps. Instagram, a leading Social app, featured the majority of

redactions labeled my name and photo, with no redactions for usernames, a category present

in Finance and Communication apps (Figure 5.3b). This discrepancy may be attributed to

the prevalence of social media usernames online, leading many participants to redact their

own names and photos on Instagram, even though this information is publicly accessible.

This suggests that individuals still value control over who can access their data, even when

it is openly available.

5.4 DISCUSSION

In this chapter, we have explored the nuanced realm of privacy within digital user in-

terfaces, particularly focusing on content that extends beyond the boundaries of PII. We

have accomplished this through a comprehensive user study, facilitated by a privacy probe

tailored for mobile apps. While this study has yielded valuable insights, there are inherent

limitations that warrant acknowledgment, and avenues for future research that promise to

further enrich our understanding of privacy considerations.

The participation pool in our study consisted of 19 individuals, a number that might ap-

pear modest at first glance. Nonetheless, this participant cohort has proven to be sufficient

for the collection of substantial data, enabling in-depth analysis and the extraction of action-

able insights pertaining to privacy in mobile apps. Despite this, one promising trajectory for

future research is the expansion of participant numbers. A larger and more diverse group

of participants would enhance the generalizability of findings and uncover deeper layers of

insight into how users perceive privacy-sensitive content.

Although the study’s focus was on Android, future work should endeavor to adapt similar

systems for other platforms, notably iOS. The intricacies of the iOS platform, coupled with

its unique mechanisms and APIs that are not publicly accessible, pose distinct challenges.

Consequently, creating an iOS-specific tool would be a distinctive undertaking. This plat-

form inclusivity is vital for gaining a holistic understanding of user privacy concerns across

different digital environments.
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Future research can pivot toward developing automated systems that detect and process

interaction traces while concurrently safeguarding user privacy. These automated solutions

would serve as invaluable additions to the ever-evolving landscape of digital privacy. Conven-

tional PII can already be automatically detected; perhaps solutions based on Large-Language

Models (LLMs) are the answer for automating the detection of Beyond PII highlighted in

this chapter.
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CHAPTER 6: BRIDGING ANALYTICS AND UX TEST DATA

In the realm of digital design and user experience optimization, two distinct but invaluable

sources of data often converge to offer a comprehensive understanding of user interactions.

These sources are behavioral analytics, which provide quantitative metrics, and UX tests,

which gather qualitative feedback. While both capture behavioral data, they differ sig-

nificantly in terms of techniques and tools, creating a gap that can be bridged for more

profound insights. This chapter seeks to establish a meaningful connection between them

through interaction mining.

Behavioral analytics tools, such as Google Analytics [62] and Adobe Experience Cloud [2],

excel at aggregating usage data across sessions, providing quantitative insights and facili-

tating the computation of conversion metrics. On the other hand, UX tests, as facilitated

by platforms like UserTesting [77], focus on gathering qualitative feedback through scripted

scenarios, offering a more nuanced understanding of user interactions.

These data sources both originate from user interactions, encapsulating user journeys

within digital products. Leveraging interaction mining principles, our goal is to unify these

sources, recognizing their shared foundation. The convergence of behavioral analytics and

UX tests enhances digital design workflows by providing a comprehensive understanding

that blends quantitative and qualitative perspectives. By creating bidirectional mappings

between these two data sources, we aim to explain behavioral patterns in analytics and

validate insights from smaller-scale UX tests (Figure 6.1). To facilitate this confluence, we

consider the application state information captured during UX test sessions.

We introduce a bidirectional mapping framework that defines four types of mappings to

accommodate different use cases. Additionally, we present two design optimization workflows

supported by interactive visualizations, namely UX Maps and UX Path Flows. UX Maps

project UX test data onto the usage graph of an application, revealing opportunities for

untested paths and highly-visited UI states. Meanwhile, UX Path Flows summarize user

journeys through UX tests and align them with analytics funnels, offering a means to assess

the importance of identified issues.

To validate the utility of these visualizations, we provide a case study involving a Software

as a Service (SaaS) company’s marketing website. Through this case study, we illustrate the

practical application of our approach and its potential for enhancing UX analysis.
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Figure 6.1: Bridging behavioral analytics and UX test data through the interface of page
transitions enables stakeholders to evaluate behavioral data by combining both qualitative

and quantitative insights.

6.1 BACKGROUND & MOTIVATION

To reify a UX analysis workflow that bridges behavioral analytics and UX testing, we

present a concrete scenario. Tina works at a large e-commerce company as a UX researcher.

The company has just released a new product line with a marketing campaign that includes

external ads, promotional emails, changes to their homepage, and blog posts. Tina’s UX

team has been tasked with identifying UX improvements to the website that could increase

product sales.

Tina starts by taking a look at the UX Map for her company’s website (Figure 6.2). The

UX Map visualizes analytics data as a network diagram, where the nodes represent clusters

of similar pages (e.g., product pages, blog pages), and the edges capture the traffic flow

between the clusters. Each node’s size is scaled based on the sum of all incoming traffic

to the pages in its cluster; Tina observes that the biggest nodes are the homepage and the

product page cluster.

Additionally, the UX Map projects data from prior UX tests onto the analytics network,

and highlights clusters and traffic flows that have been previously tested in blue. Tina notices

that her company has previously tested flows from the homepage to product gallery pages
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Figure 6.2: A UX Map visualizes analytics data as a network diagram, where the nodes
represent clusters of similar pages, and the edges capture the traffic flow between the
clusters. Tina notices that the flows from the homepage to product gallery pages to

individual product pages have already been tested (blue). Tina clicks on the highlighted
(orange) blog cluster signifying untested high traffic to examine the detail view.

to individual product pages.

Tina also observes that the cluster containing blog pages is highlighted in orange, which

signifies a highly trafficked cluster that has not previously been tested. Tina clicks on the

blog cluster to examine the detail view, and sees that there is very little traffic flowing from

the blog cluster to the product page cluster.

Based on this data, Tina decides to launch a UX test to better understand how users

navigate from blog posts to their corresponding product pages. She creates a test plan that

asks participants to read through a blog post about the new product line, and then asks

them to navigate to a new product’s page where it can be purchased.

She launches this test to 20 participants, and leverages a UX Path Flow to analyze the

results (Figure 6.3). A UX Path Flow aggregates behavioral data from a UX test’s multiple

sessions into a Sankey diagram. The nodes of the Sankey diagram represent pages visited by

the test participants, and the edges between the nodes delineate their transitions between

pages. The size of a node is proportional to the number of participants that visit that page,

and the thickness of an edge is proportional to the number of participants that navigate

between the edge’s starting and ending pages. In aggregate, a UX Path Flow reveals common

and anomalous paths taken by participants while performing a task.

Based on the UX Path Flow, Tina determines that 18 out of the 20 participants were able

to complete the task: the two unsuccessful participants navigated to product pages that
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Figure 6.3: A UX Path Flow aggregates behavioral data from a UX test’s multiple
sessions into a Sankey diagram. Tina sees that 18 out of the 20 participants were able to
complete the task: the two unsuccessful participants navigated to product pages that were
not part of the blog post. She selects these page nodes in the Sankey diagram to display

their corresponding analytics data to confirm that the blog posts on her company’s website
should have more discoverable links.

were not part of the blog post. To navigate successfully to the new product pages, eight of

them clicked on the product images which were links to the product pages, seven selected

the “New” category from the drop-down menu in the top navigation bar, and three searched

for the new products by name.

Tina is surprised that 35% of the participants used the top navigation bar to find the

product pages, and only 40% discovered that the product images were links to the product

pages. She wants to see if this behavior is also borne out in the analytics data, so she selects

the page node in the Sankey diagram corresponding to the blog post to see its corresponding

analytics data.

The analytics data for the blog post shows that 523 people had visited the page in the

last 30 days. The outgoing traffic visualization reveals that 68% of those page visitors go

back to the homepage, 14% of the visitors visit one of the new product pages, and 8% of

the visitors go to the product “New” category page. Although she cannot infer exact intent

behind users navigating to the “New” category page from the blog post, she hypothesizes

that most of them were looking for the new product pages. Therefore, the analytics data

gives Tina more confidence in her analysis of the UX test: the blog posts on her company’s

website should have more discoverable links to the product pages, so that customers can

more efficiently navigate to them.
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Tina shares her findings and recommendations about the blog pages with the design team,

so they can improve the user experience and increase the likelihood of sales conversions. The

data from the UX test that Tina ran will be automatically reflected in the UX map, so that

she and others in the organization will know that they tested this part of the site in the

future.

6.2 THE BEHAVIORAL DATA BRIDGE

The two main methods for capturing how users interact with web applications are ex-

amining larger-scale behavioral analytics data, and evaluating smaller-scale UX test

data. Analytics data provides aggregated quantitative metrics for in-the-wild usage data

while UX test data reveals targeted, qualitative feedback on how users perform specific tasks.

Although these two data sources have different scopes, they both capture behavioral data.

Many companies guide their business decisions based on behavioral analytics data as it

contains at-scale information gathered through the organic use of their product. The raw

analytics data often comes in the form of a list of page URLs detailing, for each page, how

many times it was viewed (page views), which page the users came from (page paths), and

what users did on the page (events). Analytics vendors offer customizable dashboards that

aggregate this raw data into tables and diagrams. Using these dashboards, stakeholders can

create funnels to filter out specific flows and gather at scale information on organic use.

As for UX tests, they play a crucial role in identifying UX issues and improving the user

experience of a product. Users perform specific tasks during UX tests, and they interact

with the application through its UI, generating interaction traces. These traces are often

observed and recorded by researchers facilitating the test. There are also platforms such as

UserTesting [77] which enable gathering behavioral and affective data from scripted tests.

Although the outputs of UX tests might vary, generally they include a set of observations

based on the specified task, a recording of the testing process, and user feedback directed

towards any questions that might have been asked by the facilitator during the test.

Our aim is to enable all stakeholders to evaluate these two distinct data sources together

by creating a bidirectional mapping between analytics and UX test data. Both methods

are focused on obtaining insights through analyzing user interactions; but the tools and

the workflows for evaluating the insights from these two behavioral data sources are very

different. Using these together presents a myriad of possibilities for stakeholders. Since both

are populated when users interact with an application, we can link together the qualitative

outcomes from UX tests with the aggregated quantitative data from behavioral analytics

by using these user interaction traces as an interface. We identify four types of mappings
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Figure 6.4: The qualitative outcomes from UX tests can be mapped to aggregate
quantitative data from behavioral analytics via page transition data. There are four types
of mappings: (pink) a one-to-one mapping between scripted test sessions in a UX testing
platform and those same sessions captured by an analytics platform; (teal) a mapping from

an observed behavior in a UX test to similar behavior found in behavioral analytics;
(green) a mapping from an observed behavior in an analytics funnel to UX test sessions

comprising similar behavior; and finally, (orange) a mapping from an observed behavior in
an analytics funnel to a new UX test that is launched to better understand that behavior.

between behavioral analytics and UX test data (Figure 6.4). The first type is a direct,

one-to-one mapping between scripted test sessions in a UX testing platform and those same

sessions captured by an analytics platform. These mappings could allow a user in an analytics

dashboard to identify sessions with additional metadata such as user think-alouds. The

second type of mapping links an observed behavior in a UX test to a set of analytics sessions

capturing similar behavior, validating if a pattern observed at a small-scale is borne out in

the wild. The third type is a mapping from an observed behavior in an analytics funnel

to UX test sessions exhibiting similar behavior. These relevant test sessions do not have

to all belong to the same test. Similar to the first type of mapping, these relevant sessions

allow users to drill into behaviors observed in the wild and better understand the human

context for actions. Finally, the fourth type of mapping links an observed behavior in an

analytics funnel to a new UX test that can be launched to better understand that specific

action. Instead of mapping to pre-existing UX test results, it might be better to launch a
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new test to understand if any recent changes to design have changed user perceptions and

their modes for interacting with the digital asset.

The canonical representation of an interaction trace is a sequence of page transitions

that occur during use. In the realm of web applications, a page transition occurs when users

navigate from one page to another, which is indicated by a change in the URL. Clickstream

analytics data already contains an aggregated count of how many times a page transition

has occurred. However, not all UX testing procedures innately record these transitions.

Augmenting existing UX testing procedures to systematically keep track of page transitions

triggered by test participants will enable mapping them with behavioral analytics data.

To bridge these two data sources together, we first identify the active UI space of a given

web application and then project both behavioral analytics and UX test data recorded for

the application onto its UI space. We finally sketch two interactive visualizations — UX

Maps and UX Path Flows — that demonstrate how this bidirectional mapping supports

richer UX analysis workflows.

6.2.1 Crawling the UI Space

We define the UI space of an application as the collection of states that are reachable from

a given entry point. For web applications, the entry point is usually the home page. As both

data sources (behavioral analytics and UX tests) naturally contain transitions between the

pages of web applications, they can be layered on top of their UI spaces.

In order to find the UI spaces of web applications, we built a web crawler that starts from

an entry point (i.e. the home page), and discovers all available pages by recursively following

the links available on every page. When the crawler visits a page, it records the raw HTML

and the screenshot of that page. Using the raw HTML, we can identify the available links

the page contains by looking at all the anchor (<a>) elements. The HTML anchor element

creates a hyperlink to other web pages through its href attribute, which contains the URL

that the hyperlink points to. This URL does not strictly have to be pointing to other pages;

it can also point to files, email addresses, telephone numbers, etc. The crawler only keeps

track of URLs that point to other pages within the same web application in order to populate

the UI space. As a result, the crawler outputs a collection of available pages within the UI

space of the web application, along with their screenshots and raw HTML. The crawler is

implemented in Node.js, using the Puppeteer [46] and cheerio [20] libraries.

Automatic exploration of web applications has been a point of interest in the Data Mining

and Extraction field. Crescenzi et al. introduced the concept of “crawling” web pages

to extract data [31] and explored clustering them based on their structure [32]. Castillo
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talked about policies that define the behavior of a web crawler, detailing selection, re-visit,

politeness, and parallelization policies which became integral aspects of modern crawlers of

today [18]. More recently, Kumar et al. introduced techniques for mining designs of web

pages to automate curation of designs available in-the-wild [85].

We implemented our crawler guided by previous research. Given an entry point, our

crawler finds reachable pages in a web application and allows exploration of UI spaces of

web applications by recursively following links that appear on each page. We also record

design data in the form of page screenshots and DOMs.

Researchers have also explored utilizing existing user interactions for automatic navigation

through applications. Examples from GUI testing showcase promising results. Brooks and

Memon suggested using interaction data from end-users to automatically explore application

states for the purposes of GUI testing automation [12] while Chen et al. proposed augmenting

crowd GUI testing methods with interactive event-flow graphs which track and aggregate

every tester’s interactions [24].

Although, leveraging UX test data to automatically navigate through some portion of

the UI state is theoretically possible, we currently do not use any data from prior user

interactions during our exploration. This data will only cover the fraction of the UI space

that can already be explored with our current methods and leave out paths that are not yet

covered by UX tests.

6.2.2 Translating Analytics Data

The page transition data contains the source and the target paths along with the number

of users following that path. In the case of behavioral analytics data, these counts shows

how many times a page transition has occurred during organic use and allows filtering out

important quantitative metrics like conversion and drop-off rates. The page transitions from

behavioral analytics will form the initial connections between the available states within the

UI space. To demonstrate how the data from conventional clickstream analytics tools can

be translated into a consumable format, we use Google Analytics as an example.

Google Analytics provides an API that can be queried in order to access raw usage data.

Each query is required to have the start-date, end-date, and metrics fields. The first

two fields indicate the time scope of the returned data while the metrics field denotes which

of the many available quantitative metrics should be filtered for the response. We use the

ga:pageviews metric to filter the user traffic information for each page. Google Analytics

also provides additional ways to filter out metrics through the optional dimensions field.

Dimensions allow users to categorize the returned metrics values with respect to a specified
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property. As we want to understand how many times a page transition has occurred, we use

the ga:pagePath and ga:previousPagePath dimensions. The result of this query is a list

of page transitions along with a tally of how many times they have occurred.

6.2.3 Augmenting the UX Test Data

In order to augment the collected UX test data with page transitions, we use a proprietary

web extension that records user actions and keeps track of the visited URLs as users interact

with a web page. When a user event (mouse click, scroll, etc.) occurs, the extension takes

a snapshot of the current page state. This snapshot includes the page URL, the visible

Document Object Model (DOM), and the event type. By aggregating this event data, we

derive all the page transitions that have occurred during UX assessment.

Having these page transitions from UX tests enables visualizing the current UX test cov-

erage over the UI space of an application. In addition, when combined with behavioral

analytics data, it is possible to identify if existing UX tests cover high-traffic pages and

flows. All in all, this combination will inspire UX tests based on both behavioral analytics

and UX assessment insights.

6.2.4 UX Maps: From Behavioral Analytics to UX Tests

Now that we have a list of available UI states within a web application and the page

transitions that have occurred both during organic use and UX tests, we can combine these

into a visualization that produces insights which can lead to new UX tests. Network diagrams

are widely used to convey information about the transitions between a set of states. The

nodes of a network diagram denote the available states while the edges show the flow between

these states. A UX Map is a network diagram which has available UI states as nodes and

page transitions from both behavioral analytics and UX tests as edges. In other words, UX

Maps project transitions from both behavioral analytics and UX tests onto the UI space of

a web application in the form of a network diagram.

Before we can use the list of UI states as nodes in UX Maps, we cluster similar pages into

groups and use these groups as nodes. The motivation behind this decision is to decrease

the visual load, since using each page as its own node would lead to a packed network graph.

We first group all pages with respect to their URL paths using a prefix tree (Trie). We split

each URL path using the slashes (/) as delimiters (i.e. the prefix) and form the page groups

by “cutting” the prefix tree so that URLs that have the same start up to their second slash

(depth = 2) would go into the same group (Figure 6.5a). Within each resulting group, we
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(a) (b)

Figure 6.5: We first cluster pages using a prefix tree by splitting their URL paths from
“/” characters. We populate the prefix tree using the split URL paths and encode the path
strings into the tree structure. The filled nodes on the prefix tree correspond to the listed
keys (6.5a). We form the clusters by “cutting” the tree at depth = 2; this means pages
having the same starting URL paths up to their second “/” will be put into the same
cluster. We then calculate in-group UI similarity using the number of different kinds of
DOM elements as a metric. We use this metric to further split these initial groups using

agglomerative nesting (6.5b).

calculate in-group UI similarity for each page using the counts of different kinds of DOM

elements as a metric. We use the Agglomerative Nesting algorithm (AGNES) [81] to identify

page groups that do not belong to their initial page path groups (Figure 6.5b). After splitting

these page groups into their separate groups, we use these final list of page clusters as nodes

in the UX Map. By default, the UX Map nodes are colored gray.

Translating the page transitions into cluster transitions is straightforward. As each page

transition contains information about both the source and the target of the transition, we

map them directly to transitions between page clusters. We match the source and the target

URLs for each transition with the page cluster containing these URLs and form the edges.

We start by projecting the transition data from behavioral analytics onto the page cluster

nodes. These transitions form the initial edges between the nodes and are colored with the

same gray. The width of an edge indicates the amount of traffic flowing between the nodes

it links together. We then compute the aggregated incoming view counts for each node and

adjust their sizes accordingly; larger nodes have higher total incoming traffic. Additionally,

we pick the top 10 nodes that have the highest incoming traffic and find the top 10 high

flow edges connected to these nodes. While ranking the edge flows, we normalize the flow

values using the total incoming traffic of their source node. The resulting nodes and edges

are pages and transitions of interest and are highlighted with the color orange. We then
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Figure 6.6: UX Maps after projecting page transitions from behavioral analytics and UX
test data. Node sizes and edge widths indicate user traffic. Pages and transitions of
interest and are shown in orange. UX test coverage is shown in light blue. Selecting a

node, shown in dark blue, reveals details about the page cluster it represents (Figure 6.7).

layer the transition data from UX tests on top of everything. The edges that correspond

to transitions occurring in UX tests are highlighted with blue. The result is a UX Map

showing the UI space of the application along with behavioral analytics and UX testing data

(Figure 6.6).

Clicking on a node reveals several details about the page cluster it represents (Figure 6.7).

First, the analytics data listing the top incoming and outgoing traffic from and to other

nodes is displayed. Next, the UX tests, if any, that cover the selected node are shown along

with links that point to their associated resources. Lastly, the screenshot and the URL of

each page in the represented cluster is presented.

By inspecting the UX Maps visualization, stakeholders can discover opportunities for new

UX tests. The uncovered and highly trafficked UI states and paths indicated by the pages and

transitions of interest are prime candidates for new UX tests. Prioritizing the identification

and the resolution of UX issues that potentially exist within these flows would benefit the

overall user experience of a web application more. The data from these newly run tests will

then be automatically reflected on the UX Maps, increasing coverage and ensuring easier
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Figure 6.7: Selecting a node reveals the top incoming and outgoing traffic from and to
other nodes, the UX tests along with links pointing to relevant resources, and screenshots

and URLs for each page in the cluster.

collaboration within research teams. UX Maps enhances existing UX analysis workflows by

grounding UX assessment decisions with proofs from the analytics world.

6.2.5 UX Path Flows: From UX Tests to Behavioral Analytics

We also want to evaluate and prioritize UX testing insights by utilizing behavioral analytics

data. This is possible through the opposite direction of the mapping between the two

data sources. UX tests are performed with multiple participants to identify different paths,

interactions, and thought processes to achieve a specific task. Although UX tests are crucial

in identifying the mental models of users, they cannot provide at-scale confirmation of these

mental models. This leaves stakeholders with a set of UX findings that they potentially need

to take action on. Combining these findings with behavioral analytics data will empower

stakeholders to make recommendations with a firmer understanding of which issues impact

most users.

We augment UX test outcomes with analytics data through UX Path Flows. A UX Path

Flow displays aggregated behavioral data from the participants of a UX test in the form of a

Sankey diagram. The nodes of this diagram represent the pages each participant has visited

while the edges represent their transitions between these pages. Taller nodes and thicker

edges indicate a larger number of participants visiting the page or performing the transition.

UX Path Flows provide identification of common and anomalous paths. By projecting these

62



paths into the analytics space, it is possible to validate UX insights.

After running a UX test, UX Path Flows allow easy identification of success and failure

paths for the specified task. Moreover, when a node is selected, UX Path Flows reveal the

pertinent analytics data for the represented page; showing all transitions starting from the

selected page to other pages in the application. We utilize page transitions to identify the

source and the target pages that correspond to the transitions displayed in the diagram.

Figure 6.8: UX Path Flow of a UX test where ten participants were asked navigate a
website in order to find the educational requirements for a specific open position starting
from the home page. Highlighted nodes indicate a UX issue where participants went to a
different page then the intended. Highlighting these nodes reveals the relevant analytics

data which conveys this transition rarely occurs in-the-wild (0.2%).

For example, for a UX test where 10 participants were asked navigate a website in order to

find the educational requirements for a specific open position starting from the home page,

the UX Path Flow shows a summary of the participant paths through the website (Fig-

ure 6.8). The visualization displays similar interactions, alternative paths, and the unique

end states. Inspecting the UX Path Flow representation reveals 4 out 10 participants tak-

ing an inefficient path (through /get-paid-to-test instead of directly /about-us/jobs).

Highlighting these nodes reveals the relevant analytics data which tells a different story: this

transition occurs very rarely in-the-wild.

Since UX Path Flows visualize all user journeys from a UX test, it is common to see

multiple paths that indicate UX issues. Having access to analytics data makes it easier to

gauge the severity of each identified issue. Identifying the impact of potential fixes to these

issues helps define a prioritization which will empower stakeholders with actionable insights

leading to a better allocation of efforts to improve user experience.
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6.3 EVALUATION

We ran a qualitative, moderated study with five potential users of UX Maps in order

to better understand and validate potential use cases. The study was focused on gather-

ing initial impressions, allowing for organic exploration and feedback, and asking targeted

questions around UX patterns and potential areas of improvement.

6.3.1 Methodology

Participants were recruited via direct contact in the authors professional network. All

participants work within the customer success (three participants) or marketing (two par-

ticipants) organizations at a technology company with over 500 employees. The company

builds UX testing software, and Customer Success Managers (CSMs) are responsible for

helping customers engage with/better adopt the product, often making recommendations

for what their customers can or should be testing. The marketers are building, promoting,

and maintaining the website of this company. All participants brought a breadth of expe-

rience with managing different types of customers (enterprise and mid-market) and funnels

(current customer and new lead focused).

The 30-minute moderated sessions were conducted remotely via Zoom. While recording

their screens and voices, a UX researcher and an engineer on the team gave participants an

initial overview of UX Maps. Subsequently, we asked them a series of questions to gauge

impressions, understand their needs and the potential value of the tool, and ask for feedback

on specific elements of the experience. Sessions concluded with a Likert scale question to

measure participants’ level of agreement with the value proposition for UX Maps.

The interactive UX Maps visualization that participants were introduced to and asked to

review was based on Google Analytics data from the past 30 days for the company where

all participants are currently employed. This data was combined with UX assessment data

collected for the company’s marketing website, provided by the company.

6.3.2 Results

Overall, responses were largely positive, especially from the participants on the marketing

team (P2 and P5) who had more context and familiarity with the information architecture

and website elements included in the visualization.

This is awesome. I’ve been dying to see a better holistic view of our website, and

where traffic is flowing. It’s really hard to do that with Google Analytics because
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the most we get are tables and charts, and this visual representation provides a

lot of information in one page. (P5)

When asked to provide their early impressions, a couple participants (P1 and P4) had

some initial confusion about how the diagram was organized/prioritized, but were able to

clarify and move on with ease.

Upon further organic exploration, all participants found value in the ability to see which

areas of the site had been a part of qualitative UX testing. For participants who are Customer

Success Managers (P1, P3, and P4), the combination of these two types of data would enable

them to understand their customers’ testing behaviors and identify gaps where they could

recommend further research to increase engagement and adoption of UX testing tools. The

two participants who are marketers felt that having access to this combined view would help

mitigate the burden of having multiple data streams from different tools. It would allow

them to better understand at a high level where they could dig deeper into their analytics

data, make improvements to their website, monitor traffic, and conduct further UX testing.

They especially appreciated the contrast in how these areas were highlighted visually (with

the color blue) in comparison to areas that were heavily trafficked (with the color orange),

as it empowered them to ask why certain areas of high traffic hadn’t been explored further

from a research standpoint.

While probing for feedback around design decisions and system behavior, we explained

to participants that the clusters were currently categorized based on URL paths as well as

similarities in visual design elements on each page. We asked them whether they would prefer

having clusters based solely on URL paths, or leave the categorization as-is. All participants

indicated that they preferred the current set-up, because they found value in being able to

see whether a particular visual design pattern was increasing or decreasing traffic to a page,

even if the pages in question were in a relatively similar area of the site.

When asked where there was room for improvement, participants indicated that they

would like to see more readily available context within the tool around how things were

labeled and clustered.

I like the intuitiveness there [of the orange clusters], I like how you’re showing

me where I should test and dedicate my time to look into. . .My next question is,

why is that recommended? Any type of analytics or like engagement metrics in

conjunction with the recommendations from a visual perspective would be helpful

context. (P1)

They also expressed a need for the ability to set up ideal flows or path funnels within the

map, so that they could immediately hone in on areas that were most relevant to them, and
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be able to specify parameters in addition to/other than the traffic metric. Finally, three

participants (P2, P3, and P5) mentioned that they wanted a way to adjust the time limit on

the tool. They explained that they would use this for multiple purposes, including looking

back further than 30 days to see where previous testing had been done, and benchmarking

traffic/metrics/testing for time periods where there was an event of significance (e.g. a

marketing campaign to drive traffic, a conference that would require people to visit the

website to purchase tickets, etc.).

When asked, all participants also expressed that being able to combine behavioral analytics

data from UX Maps with UX testing path flow data in the form of Sankey diagrams (UX

Path Flows) would be valuable.

For me to see gaps [in what my customers have tested], especially if there are gaps

in what we’ve recommended, that would be really helpful. And [having access to

analytics and Sankey data together] would be extremely helpful to our customers,

especially since a lot of our customers have been talking about journey mapping

lately, given how much the customer journey has changed lately with consumer

behavior changing and everyone being home. . . It would help for me in my role

[as a Customer Success Manager] if there’s something that’s happening organi-

cally that they haven’t dove into, understanding why they haven’t conducted this

research and what the priorities are for them. (P4)

To conclude the sessions, we asked participants to rate their level of disagreement (1) or

agreement (5) with the following statement:

“UX Maps demonstrate how bridging behavioral analytics and UX testing can

support richer UX analysis workflows. UX Maps project UX test data onto the

usage graph of an application, revealing opportunities for new tests: highly traf-

ficked UI states and paths that have not been tested before.”

All participants gave a rating of 4 or 5, and indicated that with some improvements as

mentioned above, they would find UX Maps highly valuable in their workflows on a monthly

if not weekly basis.

6.4 DISCUSSION

The results from the formative study suggest that people on both sides — those primarily

using behavioral analysis platforms and those working with UX testing tools — find it useful
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to map between organic traffic data and scripted tests. Future work should explore these

bidirectional workflows more deeply.

UX Maps allow users to visualize historical UX test data in the context of usage traffic

data, which can reveal opportunities for launching new UX tests. In the future, users could

also define analytics-based triggers that could automatically generate and launch new UX

tests. For example, a sudden increase in the drop-off rate along a conversion funnel could

automatically trigger the launch of a UX test which could be used to diagnose the problem,

especially after a design update. Users could define these triggers on either an analytics or

UX testing platform, specifying them over conversion flows and other important funnels.

If a user defined triggers on an analytics platform, it could leverage a test launching API

defined by a UX testing tool to automatically generate tests when trigger conditions were

met. To generate the tests, the test launching API could use existing test templates and

autofill tokens based on trigger context provided by the analytics platform. Triggers could

also be defined within a UX testing tool: it could monitor traffic of a digital asset through

an analytic platform’s API and similarly launch tests based on trigger context.

In the other direction, UX Path Flows map selected path transitions from UX test data

to organic traffic data, allowing users to generate insights contextualized by analytics. In

the future, testing platforms themselves could automatically generate these insights. For

example, if a test creator determined a “success” state for a task, the system could generate

insights that explain whether the distribution of paths for a test were similar or significantly

different from those in the wild. This could help a test creator understand if the smaller

test sample was representative of behaviors in the wild or if more participants needed to be

added to the test.

We believe that these improvements will not only make UX workflows more powerful

for user research practitioners, but also will give other stakeholders better access to user

experience testing outcomes. The novel workflows we describe ground high-level overviews

of qualitative data from UX tests with quantitative framing from analytics metrics, while

also providing new tools to more efficiently engage with the research.

These new workflows have the potential to blur the lines of marketing, product, design,

and UX research in industry. A marketer who traditionally looks at primarily analytics data

might suggest concrete design changes if she is given more human context for why people

are behaving the way that they do. Similarly, a designer equipped with analytics data

might reprioritize their work to address UX problems that are more closely tied to business

outcomes. They also create a way for team leaders to gain a high level understanding of

team productivity and how user experience may have had an impact in leading to broader

company-level outcomes by linking all research directly with quantitative outcomes.
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CHAPTER 7: CONCLUSION

This dissertation introduced the odim framework, the first fully-functional interaction

mining framework that enables capturing data from any Android app, without any special-

ized hardware or operating system modifications. odim democtratizes interaction mining

for practitioners and end-users by enabling everyone to capture in-the-wild interactions.

In addition, we showcased the potential of interaction mining applications made possible

through easier access to interaction data. Similar to existing work, these applications play

a complementary role for existing systems that depend on user interactions.

odim enables future datasets that can match the pace of app updates, making it possible

to have healthier data for any system that leverages interaction data. Even though most of

the machine learning models that have been trained with existing interaction mining datasets

still perform well, the availability of up-to-date data through odim will potentially benefit

both existing and future systems that leverage structural data on user interfaces. Such

systems include end-user services like savant (Chapter 4) and the privacy probe (Chapter 5),

in which the correctness of programmatic UI representations are vital for identifying and

labelling specific UI components.

The rising popularity of foundation models, specifically Large Language Models (LLMs)

which leverage large amounts of textual data, also present exciting opportunities for odim.

With its simplicity and scalability, odim is the perfect tool to provide these models with the

at-scale interaction data they need. odim captures interaction traces that comprise sequences

of UI screens with user gestures that result in transitions between these screens along with

programmatic representations and screenshots for each UI screen. We also enable users to

collect textual descriptions for interaction traces and the redactions performed on each UI

screen. Combined, this data is highly suitable for use with LLMs and other foundation

models with different modalities. Exciting potential applications include task automation

systems powered by LLMs, automatic detection of privacy-sensitive UI regions, and the

generation of UX insights through these models.

In the remaining sections, we navigate the intricacies of deploying odim in real-world

scenarios, addressing critical factors that underpin its effectiveness. Our aim is to offer

a comprehensive exploration of odim’s application and its fundamental principles, offering

insights on its potential to augment interaction data collection and integrate into the broader

landscape of user-centric research and development. We then present a vision for a future

interaction mining ecosystem enabled by odim, in which all stakeholders contribute to and

benefit from public, and up-to-date interaction mining datasets.
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7.1 CONSIDERATIONS FOR REAL-WORLD DEPLOYMENT

We outline five vital aspects to address for the practical application of odim: crowdsourc-

ing traces, optimizing performance, dealing with accessibility ethics, preserving user privacy,

and expanding to other platforms.

7.1.1 Crowdsourcing Traces

One pivotal facet of deploying odim revolves around crowdsourcing interaction traces.

The odim framework integrates with crowdsourcing platforms, offering practitioners a con-

venient way to include new participants in data collection. Yet, the challenge of recruiting

participants remains. Crowdsourcing platforms, while valuable, have inherent limitations

that affect user recruitment. For a vibrant interaction mining ecosystem, it is crucial to en-

sure a continuous influx of traces. The question of how to incentivize individuals to willingly

share their data remains a paramount concern. Perhaps, the answer lies in the hands of fu-

ture interactive machine learning systems that can interface with odim, offering innovative

solutions to this challenge.

7.1.2 Optimizing Performance

The performance of odim in real-world scenarios is another important consideration. odim

employs an on-device approach to record user actions in the background through an accessi-

bility service. A pertinent issue arises from the reported performance problems in Android

apps that leverage accessibility features. The root cause of these problems is the extensive

monitoring of various accessibility events, ranging from regular content change notifications

to general announcements [136]. odim, however, only monitors a select subset of accessibility

events that are directly relevant to capturing user actions, ensuring it does not introduce any

accessibility-related performance lags. Nevertheless, the capture of UI screenshots during

user touch events through a background thread did present challenges during development. It

became evident that continuous screenshot capture and real-time matching with user events

led to performance degradation. This issue was mitigated by refining the implementation to

capture screens only when required, effectively eliminating prior performance overheads.
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7.1.3 Accessibility Ethics

The ethical dimension of accessibility is a complex consideration for odim. odim lever-

ages the capabilities of Android’s accessibility service, a fact that raises questions regarding

accessibility ethics. Android’s official stance is clear: accessibility services should exclu-

sively serve users with disabilities in utilizing Android devices and apps [39]. Despite this,

odim utilizes Android functionality advised for enhancing app accessibility to collect inter-

action data. This data has already proven its worth in addressing and resolving accessibil-

ity issues, serving as a valuable resource to fuel future accessibility services and improve-

ments [23, 132, 141, 142, 166, 175, 176]. This underscores the compatibility of interaction

mining data with the mission of creating more accessible systems and training models to

automate accessibility solutions.

7.1.4 Preserving User Privacy

The preservation of user privacy has been a central tenet throughout the development of

odim. The framework incorporates two critical features to protect sensitive user data: the

accessibility button and the redaction interface. The accessibility button empowers users by

allowing them to enable and disable interactions capture at their discretion. The redaction

interface provides a means for users to selectively remove UI elements containing privacy-

sensitive information. However, both of these privacy safeguards largely depend on user

diligence. It is conceivable that users might inadvertently miss some privacy-sensitive infor-

mation when reviewing their recorded interaction traces. An ideal solution to this challenge

would involve the automatic detection and removal of personally identifiable information

(PII). Achieving this goal necessitates the development of user-centered privacy models,

which, in turn, require the collection of at-scale interaction mining data. In this endeavor,

odim stands as a valuable enabler.

7.1.5 Other Platforms

While odim’s on-device interaction mining approach is inherently platform-agnostic, it

currently has an exclusive implementation for the Android platform. Although iOS provides

accessibility services for developers, the closed-source nature of iOS code raises uncertainties

about the feasibility of recording user interactions. Despite this, odim’s potential extends

beyond smartphones. It holds the capacity to generalize to other devices, provided that they

operate on Android or similar principles.
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7.2 A VISION FOR A SUSTAINABLE INTERACTION MINING ECOSYSTEM

odim lays the foundation for a vision of the future: a sustainable interaction mining

ecosystem where all participants play an active role in contributing to and benefiting from

the wealth of interaction traces. In this ecosystem, UX researchers extract valuable UI

insights through interaction mining, a critical element in need-finding for machine learning

practitioners who seek to create user-centric solutions. The reciprocity of this interaction,

where researchers contribute to the refinement of ML models, is amplified by end users

who, in turn, improve these systems by providing their own interaction traces to a public

interaction trace repository (Figure 7.1).

Figure 7.1: odim is at the center of a future sustainable interaction mining ecosystem
driven by collective contributions and mutual benefit.

The outlook for this future is one of optimism, characterized by the following key outcomes:

Public Accessibility of Interactions: Interaction data is openly accessible, and it is a

shared resource available to all stakeholders, fostering collaboration, research, and innova-

tion.

Privacy without Compromise: Users can interact with digital interfaces without the

constant worry of their privacy being compromised. The systems that collect interaction
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data respect and safeguard user privacy at every stage.

Intuitive User Interfaces: User interfaces have evolved to a state where they consistently

make sense, offering smooth and intuitive interactions that cater to individual needs and

preferences.

Diverse Systems Enhancing Digital UX: A plethora of systems has emerged to en-

rich and simplify everyday life. These systems are founded on robust interaction mining,

responding to the specific needs and expectations of users.

This vision is made tangible through the democratization of interaction mining, where

odim stands as a catalyst. The framework propels the establishment of an open, sustainable

interaction mining ecosystem driven by collective contributions and mutual benefit. odim

empowers the UX community to exchange knowledge, unify around data-driven best prac-

tices, identify and rectify detrimental design patterns, and propel the development of the

next generation of ML-backed user interfaces. In a world where digital user experiences

are an integral part of daily life, every enhancement in accessibility, personalization, and

efficiency carry the potential to generate substantial collective value.
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angry birds, facebook and kindle: a large scale study on mobile application usage,” in
Proc. MobileHCI. ACM, 2011, pp. 47–56.

[11] R. Bond, M. Mulvenna, J. Wallace, D. Finlay, K. Boyd, and M. Patterson, “Ux-
handle: a cloud-based system to streamline usability testing analytics,” in Proc. HCI.
Association for Computing Machinery, 2017.

[12] P. A. Brooks and A. M. Memon, “Automated gui testing guided by usage profiles,” in
Proc. ASE, 2007, pp. 333–342.

[13] S. Bunian, K. Li, C. Jemmali, C. Harteveld, Y. Fu, and M. S. Seif El-Nasr,
“Vins: Visual search for mobile user interface design,” in Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, ser. CHI ’21. New

73

https://business.adobe.com/
https://amplitude.com/
https://play.google.com/store/apps/details?id=com.azure.authenticator
https://play.google.com/store/apps/details?id=com.azure.authenticator


York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi-org.proxy2.library.illinois.edu/10.1145/3411764.3445762

[14] P. Buono, D. Caivano, M. F. Costabile, G. Desolda, and R. Lanzilotti, “Towards
the detection of ux smells: The support of visualizations,” IEEE Access, vol. 8, pp.
6901–6914, 2019.

[15] A. Burns, D. Arsan, S. Agrawal, R. Kumar, K. Saenko, and B. A. Plummer, “A
dataset for interactive vision-language navigation with unknown command feasibility,”
in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part VIII. Springer, 2022, pp. 312–328.

[16] M. Caraway, D. A. Epstein, and S. A. Munson, “Friends don’t need receipts: The
curious case of social awareness streams in the mobile payment app venmo,” Proc.
ACM Hum.-Comput. Interact., vol. 1, no. CSCW, Dec. 2017. [Online]. Available:
https://doi.org/10.1145/3134663

[17] J. P. Carrascal and K. Church, “An in-situ study of mobile app & mobile search
interactions,” in Proc. CHI. ACM, 2015, pp. 2739–2748.

[18] C. Castillo, “Effective web crawling,” in ACM SIGIR Forum, vol. 39, no. 1. Acm
New York, NY, USA, 2005, pp. 55–56.

[19] A. Cavoukian, “Privacy by design,” 2009.

[20] cheeriojs, “cheerio — fast, flexible, and lean implementation of core jquery designed
specifically for the server,” 2021. [Online]. Available: https://cheerio.js.org/

[21] F. Chen, K. Xia, K. Dhabalia, and J. I. Hong, “Messageontap: A suggestive interface
to facilitate messaging-related tasks,” in Proc. CHI. ACM, 2019, p. 575.

[22] J. Chen, C. Chen, Z. Xing, X. Xia, L. Zhu, J. Grundy, and J. Wang, “Wireframe-
based ui design search through image autoencoder,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 29, no. 3, pp. 1–31, 2020.

[23] J. Chen, A. Swearngin, J. Wu, T. Barik, J. Nichols, and X. Zhang, “Towards complete
icon labeling in mobile applications,” in Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems, 2022, pp. 1–14.

[24] Y. Chen, M. Pandey, J. Y. Song, W. S. Lasecki, and S. Oney, “Improving crowd-
supported gui testing with structural guidance,” in Proc. CHI, 2020, pp. 1–13.

[25] Y. Chen, M. Zha, N. Zhang, D. Xu, Q. Zhao, X. Feng, K. Yuan, F. Suya, Y. Tian,
K. Chen et al., “Demystifying hidden privacy settings in mobile apps,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019, pp. 570–586.

[26] E. H.-h. Chi, “Improving web usability through visualization,” IEEE Internet Com-
puting, vol. 6, no. 2, pp. 64–71, 2002.

74

https://doi-org.proxy2.library.illinois.edu/10.1145/3411764.3445762
https://doi.org/10.1145/3134663
https://cheerio.js.org/


[27] K. Church, D. Ferreira, N. Banovic, and K. Lyons, “Understanding the challenges of
mobile phone usage data,” in Proc. MobileHCI. ACM, 2015, pp. 504–514.

[28] G. Cloud, “Dialogflow,” 2021. [Online]. Available: https://cloud.google.com/
dialogflow

[29] Contentsquare, “Contentsquare — digital experience analytics - dxp analytics,” 2021.
[Online]. Available: https://contentsquare.com/

[30] B. R. Cowan, N. Pantidi, D. Coyle, K. Morrissey, P. Clarke, S. Al-Shehri, D. Earley, and
N. Bandeira, “What can i help you with?: infrequent users’ experiences of intelligent
personal assistants,” in Proc. MobileHCI. ACM, 2017, p. 43.

[31] V. Crescenzi, G. Mecca, P. Merialdo et al., “Roadrunner: Towards automatic data
extraction from large web sites,” in Proc. VLDB, vol. 1, 2001, pp. 109–118.

[32] V. Crescenzi, P. Merialdo, and P. Missier, “Clustering web pages based on their struc-
ture,” Data & Knowledge Engineering, vol. 54, no. 3, pp. 279–299, 2005.

[33] B. Deka, Z. Huang, and R. Kumar, “Erica: Interaction mining mobile apps,” in Proc.
UIST. ACM, 2016, pp. 767–776.

[34] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols, and
R. Kumar, “Rico: A mobile app dataset for building data-driven design applications,”
in Proc. UIST. ACM, 2017, pp. 845–854.

[35] B. Deka, Z. Huang, C. Franzen, J. Nichols, Y. Li, and R. Kumar, “Zipt: Zero-
integration performance testing of mobile app designs,” in Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology, 2017, pp. 727–
736.

[36] D. F. Delivery, 2022, https://play.google.com/store/apps/details?id=com.dd.
doordash.

[37] A. Developers, “Accessibility event,” 2023. [Online]. Available: https://developer.
android.com/reference/android/view/accessibility/AccessibilityEvent

[38] ——, “Accessibility node info,” 2023. [Online]. Available: https://developer.android.
com/reference/android/view/accessibility/AccessibilityNodeInfo

[39] ——, “Accessibility service,” 2023. [Online]. Available: https://developer.android.
com/reference/android/accessibilityservice/AccessibilityService

[40] ——, “Introduction to activities,” 2021. [Online]. Available: https://developer.
android.com/guide/components/activities/intro-activities

[41] ——, “App actions,” 2021. [Online]. Available: https://developers.google.com/
actions/appactions

75

https://cloud.google.com/dialogflow
https://cloud.google.com/dialogflow
https://contentsquare.com/
https://play.google.com/store/apps/details?id=com.dd.doordash
https://play.google.com/store/apps/details?id=com.dd.doordash
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://developers.google.com/actions/appactions
https://developers.google.com/actions/appactions


[42] ——, “Handling android app links,” 2021. [Online]. Available: https://developer.
android.com/training/app-links

[43] ——, “Built-in intents,” 2021. [Online]. Available: https://developers.google.com/
actions/reference/built-in-intents/

[44] ——, “Intents and intent filters,” 2021. [Online]. Available: https://developer.
android.com/guide/components/intents-filters

[45] G. Developers, “Play protect,” 2021. [Online]. Available: https://developers.google.
com/android/play-protect

[46] ——, “Puppeteer — tools for web developers,” 2021. [Online]. Available:
https://developers.google.com/web/tools/puppeteer

[47] S. Dittrich, F. Hof, and A. Wiethoff, “Interacdiff: Visualizing and interacting with
ux-data,” in Proc. MuC, 2019, pp. 583–587.

[48] T. M. T. Do, J. Blom, and D. Gatica-Perez, “Smartphone usage in the wild: a large-
scale analysis of applications and context,” in Proc. ICMI. ACM, 2011, pp. 353–360.

[49] A. D. Documentation, “Donating shortcuts,” 2021. [Online]. Available: https:
//developer.apple.com/documentation/sirikit/donating shortcuts

[50] ——, “Siri shortcuts,” 2021. [Online]. Available: https://developer.apple.com/design/
human-interface-guidelines/sirikit/overview/siri-shortcuts/

[51] ——, “Suggesting shortcuts to users,” 2021. [Online]. Avail-
able: https://developer.apple.com/documentation/sirikit/shortcut management/
suggesting shortcuts to users

[52] J. Dong, Y. Zhao, and T. Peng, “A review of design pattern mining techniques,”
International Journal of Software Engineering and Knowledge Engineering, vol. 19,
no. 06, pp. 823–855, 2009.

[53] B. Doosti, T. Dong, B. Deka, and J. Nichols, “A computational method for evaluating
ui patterns,” arXiv preprint arXiv:1807.04191, 2018.

[54] J. A. Fails and D. R. Olsen Jr, “Interactive machine learning,” in Proceedings of the
8th international conference on Intelligent user interfaces, 2003, pp. 39–45.

[55] E. Fast, B. Chen, J. Mendelsohn, J. Bassen, and M. S. Bernstein, “Iris: A conversa-
tional agent for complex tasks,” in Proc. CHI. ACM, 2018, p. 473.

[56] X. Ferre, E. Villalba, H. Julio, and H. Zhu, “Extending mobile app analytics for
usability test logging,” in Proc. INTERACT. Springer, 2017, pp. 114–131.

[57] R. Fiebrink, “Machine learning as meta-instrument: Human-machine partnerships
shaping expressive instrumental creation,” Musical Instruments in the 21st Century:
Identities, Configurations, Practices, pp. 137–151, 2017.

76

https://developer.android.com/training/app-links
https://developer.android.com/training/app-links
https://developers.google.com/actions/reference/built-in-intents/
https://developers.google.com/actions/reference/built-in-intents/
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developers.google.com/android/play-protect
https://developers.google.com/android/play-protect
https://developers.google.com/web/tools/puppeteer
https://developer.apple.com/documentation/sirikit/donating_shortcuts
https://developer.apple.com/documentation/sirikit/donating_shortcuts
https://developer.apple.com/design/human-interface-guidelines/sirikit/overview/siri-shortcuts/
https://developer.apple.com/design/human-interface-guidelines/sirikit/overview/siri-shortcuts/
https://developer.apple.com/documentation/sirikit/shortcut_management/suggesting_shortcuts_to_users
https://developer.apple.com/documentation/sirikit/shortcut_management/suggesting_shortcuts_to_users


[58] Flurry, “Flurry — mobile app analytics platform for android & ios,” 2023. [Online].
Available: https://www.flurry.com/

[59] A. Fourney, R. Mann, and M. Terry, “Query-feature graphs: bridging user vocabulary
and system functionality,” in Proc. UIST. ACM, 2011, pp. 207–216.

[60] FullStory, “Build a more perfect digital experience — fullstory,” 2021. [Online].
Available: https://www.fullstory.com/

[61] Gmail, 2022, https://play.google.com/store/apps/details?id=com.google.android.gm.

[62] Google, “Analytics tools & solutions for your business - google analytics,” 2023.
[Online]. Available: https://marketingplatform.google.com/about/analytics/

[63] ——, “Gson,” 2023. [Online]. Available: https://github.com/google/gson

[64] D. Gurari, Q. Li, C. Lin, Y. Zhao, A. Guo, A. Stangl, and J. P. Bigham, “Vizwiz-priv:
A dataset for recognizing the presence and purpose of private visual information in
images taken by blind people,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 939–948.

[65] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma: programmable ui-
automation for large-scale dynamic analysis of mobile apps,” in Proc. MobiSys. ACM,
2014, pp. 204–217.

[66] W. U. Hassan, S. Hussain, and A. Bates, “Analysis of privacy protections in
fitness tracking social networks -or- you can run, but can you hide?” in
27th USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 497–512. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/hassan

[67] Heap, “Heap - illuminate the full user journey,” 2023. [Online]. Available:
https://heap.io/

[68] G. A. Help, “Find info about what’s on your screen,” 2019. [Online]. Available:
https://support.google.com/assistant/answer/7393909

[69] E. Herder and H. Weinreich, “Interactive web usage mining with the navigation visu-
alizer,” in CHI Extended Abstracts, 2005, pp. 1451–1454.

[70] J. I. Hong, J. Heer, S. Waterson, and J. A. Landay, “Webquilt: A proxy-based approach
to remote web usability testing,” ACM Transactions on Information Systems, vol. 19,
no. 3, pp. 263–285, 2001.

[71] J. I. Hong, Y. Agarwal, M. Fredrikson, M. Czapik, S. Hanna, S. Sahoo, J. Chun,
W.-W. Chung, A. Iyer, A. Liu et al., “The design of the user interfaces for privacy
enhancements for android,” arXiv preprint arXiv:2104.12032, 2021.

77

https://www.flurry.com/
https://www.fullstory.com/
https://play.google.com/store/apps/details?id=com.google.android.gm
https://marketingplatform.google.com/about/analytics/
https://github.com/google/gson
https://www.usenix.org/conference/usenixsecurity18/presentation/hassan
https://www.usenix.org/conference/usenixsecurity18/presentation/hassan
https://heap.io/
https://support.google.com/assistant/answer/7393909


[72] Hotjar, “Hotjar: Website heatmaps & behavior analytics tools,” 2023. [Online].
Available: https://www.hotjar.com/

[73] Z. Hu, Y. Ma, Q. Mei, and J. Tang, “Roaming across the castle tunnels: An em-
pirical study of inter-app navigation behaviors of android users,” arXiv preprint
arXiv:1706.08274, 2017.

[74] F. Huang, J. F. Canny, and J. Nichols, “Swire: Sketch-based user interface retrieval,”
in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems,
2019, pp. 1–10.

[75] IFTTT, “Every thing works better together - ifttt,” 2021. [Online]. Available:
https://ifttt.com/

[76] S. Inc, “Snapchat,” 2023. [Online]. Available: https://play.google.com/store/apps/
details?id=com.snapchat.android

[77] U. Inc., “Usertesting: The human insight platform,” 2023. [Online]. Available:
https://www.usertesting.com/

[78] Instagram, “Instagram,” 2023. [Online]. Available: https://play.google.com/store/
apps/details?id=com.instagram.android

[79] J. Jeong, N. Kim, and H. P. In, “Gui information-based interaction logging and vi-
sualization for asynchronous usability testing,” Expert Systems with Applications, p.
113289, 2020.

[80] A. Karatzoglou, L. Baltrunas, K. Church, and M. Böhmer, “Climbing the app wall: en-
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