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Abstract

What is the nature of the relationship between Knowledge and Language? How does knowledge representation

interact with language use? The critical role of world knowledge (lexical semantic) in language processing has

long been noticed by psycholinguists, but relatively less attention has been paid to incorporating rich linguistic

information in modeling knowledge and semantic representations. Current distributional models do form

semantic representations from linguistic input. Despite their success in representing relatively simple semantic

relations, these models are less effective in extracting rich linguistic structures from corpus, resulting in limited

capability in representing complex lexical dependencies, achieving challenging semantic tasks, and accounting

for relatively involved semantic behaviors. In this dissertation, I develop a novel type of distributional model

– Distributional Graph – that transforms raw linguistic input into graphical forms and connects the graphlets

to build a semantic network. The model encodes distributional patterns of linguistic units by a graphical

topology, so that linguistically expressed concepts can be evaluated by network metrics. In particular, I adopt

a spreading activation algorithm that gives rise to a graded measure of semantic relatedness on the network.

I show, with two groups of studies, that distributional graphs equipped with spreading activation may better

represent complex lexical relationships, compared to existing distributional models. In particular, I show that

(i) The graphical encoding of co-occurrence leads to effective representation of indirect semantic relations

which facilitates generalizing word-word lexical dependencies, and (ii) The explicit encoding of constituent

structures in Distributional Graph leads to effective representation of multi-way lexical dependencies and

success in compositional generalization tasks. The modeling works are conducted on artificially generated

corpora with controlled distributional constraints, leading to a clear mechanistic account for the formal

capabilities of the model. Meanwhile, the modeling results have profound implications on theory of language

cognition and knowledge development in human. Considerable amount of behavioral studies are needed to

validate Distributional Graph as a model for human semantic memory, and the experimental works require

scaling up the Distributional Graph approach with naturalistic linguistic input. For the long-term vision, by

integrating multi-modal inputs and finer grammatical information, the more full-fledged distributional graphs

may give rise to generation of novel concepts that are both grammatical and meaningful. Importantly, as

distributional graphs are based on explainable computational mechanisms, such advance may contribute to

more interpretable AIs, and further the understanding of knowledge development and innovation in humanity.

ii



To the Universe.

iii



Acknowledgments

This project would not have been possible without the support of many people. To start with, I would like

to thank my thesis committee members: Dr. Jon Willits, Dr. Cynthia Fisher, Dr. Kara Federmeier, Dr.

Jessica Montag and Dr, Gary Dell, who provided guidance along completing the dissertation. In particular, I

want to emphasize the contributions of Cynthia Fisher and Jon Willits. Cynthia Fisher is the first faculty

member knowing the Distributional Graph model, and she helped me elucidating the essential research goal

concerning the modeling endeavor through several long and thorough conversations filled with challenging

questions. Jon Willits is my graduate advisor who supported the whole dissertation research. His guidance

helped carving out the research ideas and parsing them into projects. His openness to different possibilities

and perfectionist attitude towards scholarly works led to the high quality publication of the first project in

the dissertation (Chapter 3).

Secondly, I am grateful to all researchers who directly or indirectly influenced me academically, and forged

my research interests. Most directly, a group of outstanding psychologists, linguists and mathematician

at UIUC and UC Berkeley equipped me with a solid foundation in cognitive science. They are Gary Dell,

John Hummel, Cynthia Fisher, Dan Hyde, Jon Willits, Jessica Montag (Psychology, language processing and

acquisition, cognitive science, math cognition, semantic memory, reading); Peter Jenks and Peter Lasersohn

(Linguistics, formal syntax and semantics); Anush Tserunyan (Math, mathematical logic).

More broadly, a number of linguists, psychologists, mathematicians and philosophers largely sculptured

my research goals: Gottlob Frege, Noam Chomsky, Richard Montague, and Jerry Fodor convinced me that

there is structure in Language and Thought; Jeffery Elman, James mcclelland, and Paul Smolensky showed

me how structures in language could be captured in Connectionist representations; John Firth, Susan Duimas,

Thomas Landauer, Curt Burgess and Micheal Jones directed my attention to distributional models; and

Ross Quillian, Allan Collins, Elizabeth Loftus and John Anderson paved my way to modeling knowledge and

meaning with semantic networks.

On the highest level, I would acknowledge two giants in science who had inspired me since when I was

seventeen, and brought me to the fascinating field of psychology, the study of human mind. The first figure is

Sir Isaac Newton, who demonstrated through his life’s endeavor that formal theory can be used to formulate,

explain and predict the phenomena in the physical world. His efforts showed the whole humanity that we may

know the world better through systematic formal reasoning. The second figure is Dr. Wilhelm Maximilian

Wundt, the founder of modern experimental psychology, and the pioneer of extending the objective scientific

investigation in the physical world to the fascinating mental universe. Their existence encouraged me to

pursue formalizing behaviors and cognition, in my doctoral career and my future academic life.

Lastly, this 8-year scholarly journey could have not been completed without the support from people

nearby. I appreciate the accompany of all my lab mates in Learning and Language Lab at UIUC. Especially,

I need to mention Phillip Huebner, who is the major collaborator of all projects in the thesis research. There

iv



have been thoughtful discussions and debates between us, which led to the high quality of the works. I would

thank Jacki Erens, Suyeon Hwang and Belgin Unal, my cohort in the cognitive division. We entered the

department together (as first-year psychology graduate student) and walked through the ‘unusual’ graduate

career spanning the pandemic. At the very end, I must highlight my families who backed me up through the

whole process. The academic expedition could not have been started without their economic and mental

supports. Their encouragement through the eight years have largely contributed to this dissertation, and will

probably motivate potential outcomes in my future research.

v



Table of contents

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Distributional Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 Linear Order Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 Graph and Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 5 Constituent Tree Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 6 Multi-way Lexical Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Chapter 7 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

vi



List of Abbreviations

DG Distributional Graph

LON Linear Order Network

CTN Constituent Tree Network

HAL Hyperspace Analogue to Language

LSA Latent Semantic Analysis

RNN Recurrent Neural Network

LLM Large Language Model

GPT Generative Pre-trained Transformer

SR Semantic Relatedness

vii



List of Symbols

ω Weight of edge in networks.

P Path in networks.

viii



Chapter 1

Introduction

1.1 Overview

How people represent knowledge and understand language have been the central topics in cognitive science.

On one hand, theoretical discussions and empirical works suggest that representation of (world) knowledge can

be crucial to language comprehension (Langacker, 2008; McRae, Hare, Elman, & Ferretti, 2005; McClelland,

John, & Taraban, 1989; Willits, Amato, & MacDonald, 2015). As an example, to understand the English

sentence Mary cut the cake with the knife, one needs to first grasp its semantic structure, i.e. answering to

the ‘Who did what to whom?’ type of questions, e.g. Who cut the cake?, What did Mary cut?, and What

did Mary do to the cake? But more importantly, to fully understand the sentence, one needs to know the

semantic contents of the lexical terms on top of the semantic structure. We need to know about the

manner of the verb cut, the features of the objects cake and knife, and the fact that knife is a canonical tool

to cut food. In this way, we can tell that the sentence describes a plausible event, in contrast to less plausible

sentences like Mary was cutting orange juice. or Mary cut the tree with the carpet/comedy show. In this case,

the (world) knowledge about the lexical items, e.g. cut, cake, knife, is essential for comprehending natural

language.

While it is broadly admitted that (world) knowledge matters a lot to language, it should be noted that

language plays a big role in knowledge representation. First of all, we need language to ‘describe’ knowledge.

Outside in the world, intuitively, a great portion of knowledge is declarative and expressed with language,

from Brownie recipes to philosophy theses. Stepping into the theoretical domains, in almost all theories

and models of knowledge/concept/semantic memory representations, the basic units to represent are mostly

linguistic expressions such as words, phrases and even clauses. Moreover, modern AI practice have also shown

that models exclusively trained on language input like GPT-3 (Brown et al., 2020) incorporate enormous

amount of world knowledge. These points can be easily accepted, as the semantic contents in language are

generically world knowledge. However, what has been less attended to is the other component of language.

As mentioned earlier, language has not only semantic contents, but also structures (semantic and syntactic

structures). In addition to the contents, how do the language structures contribute to the representation of

knowledge? As the dissertation is developed, I will show that the semantic content and language structure

interacts with each other and collectively contributes to better knowledge representations.

The big-picture goal of this dissertation is to bridge the endeavors of knowledge representation and

language comprehension. To be more specific, the goal here is to develop a computational model of
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knowledge/semantic memory representation, such that (1) the model may better support the mental process of

language comprehension, and (2) the formation of the representational structure in the model is psychologically

grounded. As I will review in detail, the classic semantic theories and models (Anderson, 1983; Collins &

Quillian, 1969; Collins & Loftus, 1975; Osgood, 1952; Smith, Shoben, & Rips, 1974) and the more recent

distributional approaches (defined later) (Landauer & Dumais, 1997; Lund & Burgess, 1996; McClelland et

al., 1989; Mikolov, Chen, Corrado, & Dean, 2013) have respective issues towards the general goal. They either

have trouble effectively representing the essential semantic knowledge necessary for language comprehension

or fail to explain how the structure could have been formed from available input, or both. I argue that the

deficiency of the existing models may arise from the less ideal representational form and encoded information.

The deficiencies in existing semantic models lead to my proposal of a novel modeling approach towards

knowledge/semantic representation. As a preview, it encodes distributional linguistic data, in graphical

(i.e. network) structures for knowledge representation, referred to as ‘Distributional Graph’. In this type

of models, certain kinds of linguistic co-occurrence (encoded information) are taken as building blocks to

construct graphical structures (representational form). More abstract semantic relations can be abstracted

through network techniques, e.g. spreading-activation, to generate knowledge/information crucial for language

comprehension. To briefly summarize, the proposed approach constructs a knowledge structure from

linguistic data in a graphical form, such that the ‘language’ (semantic) information encoded in the graphical

representational structure can in turn support the process language understanding.

In the following chapters, I present studies and formal discussions to show how the graphical representational

form and the distributional linguistic information collectively lead to effective knowledge representations

towards comprehension. The rest of chapter 1 motivates the Distributional Graph proposal. In section 1.2, I

claim that lexical relationship is one type of knowledge necessary to language comprehension. I review in

section 1.3 a selective set of classic semantic models, recognizing their achievements while stressing what they

lack for the purpose of language understanding. In Section 1.4 and 1.5, I review more recent distributional

semantic models and spreading-activation based graphical models. I argue that the two approaches have

complementary pros and cons, and integrating them may give rise to a model better supporting language

comprehension. This leads to the proposal of Distributional Graph as an integration of the two lines of works

in Chapter 2, where I develop a formal theory. Section 2.1 defines the spreading-activation based measure of

semantic relatedness in distributional graphs. Section 2.2 and 2.3 introduce two types of distributional graph:

Co-occurrence Network and Constituent Tree Network respectively. Chapter 3 and 4 examine the capability

of Co-occurrence Network in representing graded indirect semantic relatedness. Chapter 3 disentangles the

contribution of representational form (graph vs. vector space) and encoded information. Chapter 4 provides

a theoretical account of the advantages of graphical form in representing indirect semantic relations, by

formally establish the structural and processing equivalence between graph and vector space structures.

Chapter 5 and 6 focus on the role of language (constituent/syntactic) structure in representing multi-way

lexical relationships (defined later). By testing in Chapter 5 both CTN and the co-occurrence network on

formally designed compositional generalization tasks, I show the important role of constituent structure in

representing multi-way relations. In Chapter 6, I further explore the necessary computational mechanisms for

representing multi-way relations by conducting the similar set of compositional generalization tasks on various

semantic model, and by comparing them with CTN. I discuss the theoretical and practical implications of

the Distributional Graph and future directions in Chapter 7 before concluding in Chapter 8.
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1.2 Lexical Relationship: Semantic Knowledge Necessary for Lan-

guage Comprehension

Understanding sentences may require multiple types of knowledge. For example, to understand Mary cut the

cake with the knife, one needs to know linguistic knowledge such as how to parse the sentence, and the

argument structure of the main verb cut (e.g. how many arguments it takes); as well as world knowledge

such that CAKE is something that can be cut, KNIFE is a canonical tool for cutting foods, and the physical

properties of CAKE and KNIFE. In this section, I specify a portion of these knowledge and group them

under the overarching label ‘lexical relationship’ (or lexical relation). I argue that these are the knowledge

necessary and essential for language comprehension, and will be the focus of this dissertation. In the literal

sense, ‘lexical relationship’ should refer to relation between lexical items/terms. I will specify what do I

mean by ‘lexical’, and what type of lexical relationship is of concern here. While traditionally, ‘lexical level’

knowledge is considered as ‘world knowledge’ (Chomsky, 1965), I will show that the overarching ‘lexical

relationship’ specified in this context involves both world knowledge and linguistic knowledge. Moreover, I

claim that integrating world and linguistic knowledge may give rise to semantic representation that facilitates

language comprehension, a point that will be thoroughly examined and discussed in Chapter 5, 6 and 7.

1.2.1 Defining ‘Lexical’

Lexical effects in language comprehension have long been noticed and studied: The lexical choice of one

or more thematic roles (as components of a sentence) affects the lexical choice of other components of the

sentence, e.g., mechanic check engine vs. journalist check spelling (Bicknell, Elman, Hare, McRae, &

Kutas, 2010). In turn, the dependency between lexical choices within a sentence may influence structural

parsing (Garnsey, Pearlmutter, Myers, & Lotocky, 1997; Trueswell, Tanenhaus, & Kello, 1993; Trueswell,

Tanenhaus, & Garnsey, 1994; MacDonald, Pearlmutter, & Seidenberg, 1994) or semantic integration of the

whole sentence (Bicknell et al., 2010; Ferretti, McRae, & Hatherell, 2001; Kamide, Altmann, & Haywood,

2003; Matsuki et al., 2011; Rayner, Warren, Juhasz, & Liversedge, 2004). Notice that in the studies above,

the use of ‘lexical’ emphasizes a sense of ‘lexical choice’ over more abstract categories: the ‘lexical relationship’

concerned is more about the fit between specific ‘lexical entries’. To illustrate, consider the ‘lexical relationship’

between cut and cake, the interest here is on the relation between the two particular lexical concepts CUT

and CAKE, rather than that between a verb and a noun, or between a general type of action and a type of

food. In this sense, I treat cut-cake and cut-tree as two separated relations, or two separated set of relations,

and care about the difference between the relations sensitive to the varying lexical terms (cake vs. tree). On

the other hand, the ‘lexical relationship’ specified here does not restrict to relation between word pairs. It

can be multi-way relations between three or more words, between a phrase and a word, or between phrases.

What matters is that, these relations have to be down to the lexical level, e.g. it has to be between the

lexicalized phrases and words, such as cut cake and knife, rather than abstract categories such as ‘verb phrase’

and ‘noun’ or ‘a cutting verb phrase’ and an ‘instrument’.

1.2.2 The Lexical Relationship of Primary Concern

After clarifying about the entities in relation, I specify what type of relationship is of concern. There are

at least two ways to partition lexical relationships. One partition concerns how the lexical terms co-occur

with each other, i.e. syntagmatic vs. paradigmatic. The other partition concerns how we can evaluate the
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relationships, i.e. quantitative vs. qualitative. In this dissertation, I primarily focus on the quantitatively

evaluated syntagmatic relations. I first introduce the two partitions and then explain why quantitative

evaluation on syntagmatic relation is of interests. That is, how this type of lexical relationship matter to

language comprehension.

Quantitative vs. Qualitative

The quantitative aspect focuses on how closely two concepts are related, or similar to each other, referred

to as ‘semantic relatedness/similarity’. Throughout the dissertation, I may use lexical dependency as an

approximate term for quantitative lexical relationship. On the other hand, qualitative aspect is concerned

with the type of relation, e.g. synonym, antonym etc. Bejar, Chaffin, and Embretson (1990) have summarized

a wide range of types of qualitatively evaluated relations and created a taxonomy for them. Some examples

are: Contrary (e.g. hot:cold), Taxonomic (e.g. flower:tulip), Item:Attribute (e.g. beggar:poor), Action:Object

(e.g. plow:earth) and Cause:Effect (e.g. joke:laughter). Notice that the partition merely reflects different

perspectives on lexical relations and they may simultaneously apply to the same concept pair. For example,

asleep and awake are antonyms from the qualitative perspective, however, the pair can as well be evaluated

quantitatively on their relatedness/similarity.

Syntagmatic vs. Paradigmatic

Historically, there are different ways to refer to the two broad classes of relation: associative or syntagmatic vs.

semantic or paradigmatic, etc. While different terminologies vary by the exact classification standard, they

share the sense that one type of relations refer to concept pairs that may occur together in the same sentence

or context, taking different thematic roles (functions) and collectively contribute to a holistic meaningful

scene (associative, syntagmatic). For example, the relation between cut, cake and knife in the sentence

Mary cut the cake with the knife. is associative or syntagmatic, as they co-occur and collective make up a

meaningful event. The other type of relations (semantic, paradigmatic) apply to pairs that tend to have the

identical thematic role (function) in events, so that one can be substituted with the other across contexts. As

in the cut cake example, the noun cake can be replaced by pie, and the two words usually have the identical

thematic role across scenes, so that the pair has a semantic/paradigmatic relation. From now on, I will use

‘syntagmatic’ and ‘paradigmatic’ to refer to the two classes of relations.

It is useful to take into consideration the ‘syntagmatic/paradigmatic’ partition when viewing lexical

relationship qualitatively or quantitatively. Viewed qualitatively, almost all kinds of semantic relations are

either syntagmatic or paradigmatic. For example, in the relation taxonomy (Bejar et al., 1990), Contrary

(e.g. hot:cold) and Taxonomic (e.g. flower:tulip) are paradigmatic, while Item:Attribute (e.g. beggar:poor),

Action:Object (e.g. plow:earth) and Cause:Effect (e.g. joke:laughter) are syntagmatic. Viewed quantitatively,

the notion of semantic relatedness has been conflated with similarity (Tversky, 1977). To me, the relatedness vs

similarity difference reflect the syntagmatic vs. paradigmatic partition. The intuition follows that relatedness

refers to the general extent of being related, so that it is the quantification of lexical relationships in general.

On the other hand, similarity is a more specific type of relatedness that fits better for ‘replaceable’ concepts,

and therefore the quantification of paradigmatic relationships in particular. Illustrated with an example: the

action cut is related to cake, but the action is by no mean similar to the object. On the other hand, pie is

both related and similar to cake. In this dissertation, ‘relatedness’ will be differentiated from ‘similarity’, and

more relevant investigations can be found in Chapter 3, 4.
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Why Syntagmatic Relationship Evaluated Quantitatively

The interest in syntagmatic relationship is straightforward: The primary focus in this dissertation is the lexical

relationships within a sentence. By definition, these are syntagmatic, but paradigmatic relations. However,

paradigmatic relationship can be relevant when we need to construct indirect syntagmatic relationships for

generalization, and I will get back to this later in the section. Concerning the quantitative vs. qualitative

partition, both perspectives are significant to comprehension. While the quantitative perspective provides a

generic evaluation of holistic plausibility, the role of qualitative relationships such as ‘antonym’, ‘synonym’

can be irreplaceable in certain circumstances. For example, to make sense of the sentence Mary thought

the cake was too small and bought a bigger one, it is essential to know that big-small is a pair of antonyms.

In particular, no quantitative relatedness can replace the role of antonym relation in this scenario. Given

their theoretical significance, qualitatively evaluated lexical relations should worth independent modeling

endeavors, and a thorough examination on the topic is beyond the scope of this dissertation. The studies

presented here will primarily focus on quantitatively evaluated lexical relationships.

1.2.3 Multi-way Relations and Linguistic Structure Knowledge

As emphasized earlier, I investigate lexical relationships between both word pairs (two-way), in Chapter 3,

4 and between multiple words (more than two, multi-way) in Chapter 5, 6. Two-way lexical relationships

are basic. They occur in almost all sentences and have been the dominating subject in knowledge/semantic

representation studies. Nevertheless, a great portion of sentences contain three or more lexical terms with

mutual dependency that do not reduced to two-way relations. An example would be She cut the cake vs. She

cut the cake with the knife. In the former sentence, there are only two lexical terms and therefore there is

only one two-way lexical relationship, i.e. cut-cake. However, the latter sentence involve three lexical terms

cut, cake,and knife that interact with each other. Importantly, as I will discuss with more details in 5, the

relationship between the three words does not reduce to two-way relations in a straightforward sense. This

phenomenon has been noticed by psycholinguists for long, and studies have shown that the multi-way lexical

relationship affect people’s understanding of the sentences (Bicknell et al., 2010; Kamide et al., 2003; Rayner

et al., 2004). Unfortunately, the topic has been less explored in knowledge/semantic representation modeling,

and as a result, most of semantic models are not able to handle multi-way lexical relationship (which I will

show in Chapter 6).

While sharing some similarities, multi-way relationship contrast to two-way relation by the structure

it requires. It is simple for a two-way relation, as there are only two words and one single relation. But as

long as we get to the number ‘3’, it becomes exponentially harder even to explicate the multi-way relation.

What does it mean for a three-way relation between cut, cake,and knife in the sentence Mary cut the cake

with the knife? In a sense, people might phrase this as: the lexical choices of any two roles/slots affect the

lexical choice of the one left (or less intuitively, the other way round). Specifically, this says: the choices

of the two lexical items cut and cake on the verb and the object slots influence the choice of knife on the

instrument slot. As we frame the situation, we have already started to build up some structure. In this case,

the relationship between three words is reformulated as the relationship between a two-word verb phrase and

a noun, that is, some syntactic structure. In other words, it seems that we generically chunk the words into

some structure when formulating and representing the multi-way lexical relationships. These structures can

be semantic or syntactic, which are usually considered as ‘linguistic knowledge’ (Chomsky, 1965; Jackendoff,

2002). The point is, these linguistic knowledge concerning language structure seems to be useful when we try
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to analyze multi-way lexical relationships. This leads to a central argument of this dissertation (in contrast to

many other semantic modeling works): Linguistic knowledge such as syntactic and semantic structures might

be necessary to incorporate into knowledge/semantic representations, as long as these representations target

not only at two-way lexical relations, but also multi-way lexical interactions in more complex sentences. I

examine the role of linguistic structure in semantic representation in Chapter 5 and 6.

1.2.4 Generalization and Paradigmatic Relationship

Although I primarily examine syntagmatic relationships, paradigmatic relationship can be important as well.

This is due to their role in constructing ‘indirect’ syntagmatic relationships and generalization. There are

some syntagmatic relations we are more familiar with, as the lexical terms frequently co-occur in sentences.

However, most of possible syntagmatic relations are rarely observed. For example, we are familiar with cut

cake but not as much to cut cookie and even less to cut juice; We easily accept cut cake with knife compared

to cut cake with saw or cut cake with shoe. Regardless of familiarity, it is intuitive that we can judge on the

plausibility of these lexical combinations, in other words, evaluating these syntagmatic relations. How does

this happen? Why we may find cut cookie better than cut calibration? One possible answer to the question is

that we generalize from what we are familiar with to the unfamiliar ones: We generalize from cake to cookie

and juice. In this case, paradigmatic relationship play a role: it would be better if a model form an effective

scale on the similarities between the lexical terms. For example, cake should be more similar to cookie than

to juice. It turns out that effectively representing both paradigmatic and syntagmatic relationships is a

challenging task. I investigate this topic thoroughly in Chapter 3 and 5.

1.2.5 Summary

This dissertation mainly focuses on modeling syntagmatic lexical relationships that are quantitatively

evaluated. Multi-way syntagmatic relations might require incorporating linguistic (structure) knowledge

into the representation, so that it may account for sentence comprehension involving interaction of three or

more lexical terms. Paradigmatic relationships will be attended to as they may help inferring on unfamiliar

syntagmatic relations. In the next section, I review previous semantic models by focusing on their ability of

representing the interested type of lexical relationships.

At the end of this section, I leave a final note about the lexical relationship specified in this section. The

knowledge about lexical relationships is necessary but sufficient to language comprehension. Aside from the

qualitative aspect of the relations, we need to note that these lexical relationship knowledge is probably the

most superficial part of world knowledge. For example, consider the lexical relationship cut-cake. All we say

here is that cut and cake may bear a strong syntagmatic relationship (by quantitative measure), such that

they are very likely to co-occur in the same sentence to collectively build up a meaningful event. However,

there are more world knowledge about why there is such relation. To know this, one needs to know about the

exact manner of the verb cut, and some feature of CAKE such as it is a concrete object, and it normally

has soft texture. While it is very likely that the evaluation on these detailed world knowledge give rise to

the lexical relation cut-cake, it is still fair to say that the mere knowledge of the lexical relationship itself

may directly contribute to the understanding of the sentence. Therefore, I consider the lexical relationship

specified in this section a lower bound of the set of knowledge that we need for language comprehension.

While ‘deeper’ world knowledge definitely worth scholarly endeavors, I start from the superficial layer, the

interface between world knowledge and linguistic knowledge.
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1.3 Classic Semantic Models

A series of works has carved out the landscape of Semantic Representation research: The multi-dimensional

space in Osgood (1952) have provided the representational prototype for modern distributional semantic

model; Semantic network proposed in Collins and Quillian (1969) is the pioneer for the subsequent graphical

models; and the feature comparison model in Smith et al. (1974) is the first attempt modeling semantic

memory with feature. I review these earlier models with the focus on how they represent and access to

lexical relationships, and how these foundational works have influenced later semantic models. However,

while the classic models have established the framework of semantic/knowledge representation, they are

limited in accounting for more complex language comprehension. Moreover, they are also less explicit about

how the semantic structures could have been formed in a psychologically grounded way. I comment on these

limitations to elicit the discussion on more recent semantic models.

1.3.1 Semantic Differentiation

The semantic differentiation (Osgood, 1952) model is one of the earliest model to represents concepts in

a multi-dimension vector space. Osgood (1952) constructed a multi-dimensional semantic space, in which

the dimensions are scales on selected polar pairs such as good-bad and cold-hot. In the initial attempt, 50

such polar pairs were selected as the scale dimension. Concepts were rated by human participants on the 50

dimensions, such that each concept is represented as a point in the multi-dimensional semantic differentiation

space, with the coordinates indicating its goodness, coldness, etc. These scaling dimensions can be considered

as the ‘features’ used to evaluate the concepts, and in this sense the representation is similar to that in the

Feature Comparison Model (Smith et al., 1974), which will be introduced right after.

A primary ‘use’ of the semantic differentiation model is to evaluate lexical relationship. As an illustration,

Osgood (1952) compared two words: eager and burning. It turned out that eager had higher value for

‘good’ and ‘fresh’, while burning was relatively ‘hot’ and ‘dry’. In other word, the semantic differentiation

model indicates that eager is ‘fresher’ than burning while burning is ‘dryer’ than eager. The comparison

essentially concerns the relation between eager and burning, and in the model, the relation is derived from

the coordinates of the concepts in the relevant scaling feature dimensions.

1.3.2 Feature Comparison

The feature comparison model (Smith et al., 1974) is essentially a semantic processing model/theory motivated

by answering questions like Is robin a bird? or judging whether the proposition A canary can fly is true.

These tasks can be considered as evaluation of the relation between lexical concepts (robin and bird), and

the relation between a concept canary and a feature can fly. In the Model, concepts are associated with

defining and characteristic features, which are compared in separated stages to judge a proposition (stage 1

for characteristic features and stage 2 for defining features). The hypothesis is, if two concepts share a lot of

characteristic features, e.g. robin and bird, judgements can be made within stage 1. People need to go to

stage 2 and compare defining features when the characteristic features do not align well, e.g. penguin and

bird.

Concerning the representation, although Smith et al. did not explain how concepts are represented

relative to the features, it was suggested that the concepts were vectors on the feature dimensions. In this

way, the representation was similar to that in Semantic Differentiation. However, it was different from its

precedent in the way that the concepts were not compared separately on the ‘feature’ dimensions, instead, a
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similarity score was computed and taken as the measure of the distance between the concepts. In turn, these

similarities were used to account for processing time in semantic decisions. For example, as robin shares

many characteristic features with bird, their similarity score would be high. As a result, the judgement Is

robin a bird can be made after the stage 1 process (by only comparing characteristic features).

1.3.3 Semantic Network

Collins and Quillian (1969) aimed at similar semantic judgements as Smith et al. (1974). However, they

represented the concepts in another structure, i.e. a discrete hierarchical tree, making it the first graphical

representation of semantic memory. Collins and Loftus (1975) reformed the hierarchical tree into more general

network structures. These models have represented the semantic information in a graph, where concepts are

encoded as nodes, and semantic relations as links between the concept nodes. To be more specific, Collins

and Quillian (1969) encoded concepts (which are also categories) and their subcategories as parent and child

nodes on the tree, linked by a directed edge representing the IS A relation, (e.g. concept canary is linked to

bird with the edge IS A). Moreover, each concept (category) and the features shared by all instances in the

category (e.g. concept canary is associated with feature can sing). In the later version of semantic network

(Collins & Loftus, 1975), nodes still represent concepts, which are connected by undirected edges bearing

similar ‘qualitative’ relationships.

Similar to Semantic differentiation and Feature Comparison model, there is a way to evaluate the

quantitative relation between concepts in a network. The intuition is that, concepts that are ‘closer’ in the

network should be more related to each other, and they should be more likely to be retrieved and processed

together. For example, in the hierarchical tree structure (Collins & Quillian, 1969), canary is closer to bird

than to animal, and therefore bird features such as can fly and have wings are accessed faster than general

animal features like can breathe.

1.3.4 Representational Structure and Access to Semantic Relations

The early models are different in terms of representational structure: vector space for Semantic Differential

and Feature Comparison Model; graph for semantic network. Almost all subsequent models have adopted

either of the two representations, or can be considered as a mixture of the two (Connectionist models). The

two representational forms have led to two ways of accessing semantic information. In graphical models,

qualitative relational labels can be explicitly marked on the edges (Collins & Loftus, 1975), and quantitative

relations are accessed by network measures (e.g. graphical distance). Specifically, Collins and Loftus (1975)

proposed an algorithm for accessing information and evaluating lexical/semantic relationships: the spreading-

activation process. Activation starts from a source node, and spread to neighboring nodes constantly through

the links. In this way, concepts are accessed in the order by their distance to the source node, and so are the

semantic relations encoded in the links. A pair of concepts are linked by a ‘composite relation’ between them,

which is an assembly of all possible qualitative semantic relations the pair can bear. In vector space models

(from now on referred to as spatial models), quantitative relations such as semantic relatedness or similarity

can be defined by vector metrics.

Regardless of the representational structure, the early modeling endeavors have targeted on the paradig-

matic relationships between concepts/categories. The constructed knowledge structure and the information

access process can account for human behavior data in simple semantic tasks, such as answering ‘Is robin a

bird?’. However, these models may not account for phenomena involving more complex language. Meanwhile,
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they focused primarily on the structure and process per se. without attempts to explain where the structures

are from. Before introducing how these issues are addressed by more recent models, I briefly expand on this

limitation of early models.

1.3.5 Limitations of Classic Semantic Models

The first major limitation of the early models is their restrained account for broader language processing, as

the models have neglected words other than nouns, and more complex linguistic expressions. In Semantic

Differential and semantic network, the represented concepts were primarily nouns, more precisely ‘entities’.

Verbs and adjectives were usually taken as predicative features (e.g. can sing and have wing for canary).

They were used to represent the nouns, while the representation of the predicates was not the focus. 1

However, from a more linguistic view 2, predicates such as verb and adjective should not be considered as

mere features of nouns/entities. They are meaningful on their own, and important constituent of linguistic

expressions. If the goal is to represent knowledge not only concerning entities, but also meaning of natural

language as a whole, at least all open class words should be included in the representational structure.

Moreover, the notion of concept should not be restricted to words, but also complex expressions like phrases,

e.g. cut cake. They should be included in semantic models as they incorporates linguistic structures on top of

the word-level information, and directly contribute to sentential meaning. Without inclusion of open class

words and complex linguistic expression, it is impossible for a semantic representation to account for general

language comprehension.

Another issue in the early models is that they have no attempt to ground the formation of the structure

by any psychological process. The semantic differentiation model formed the representation based on human’s

rating. The associative semantic networks (Collins & Quillian, 1969; Collins & Loftus, 1975) and the

defining/characteristic features of the concepts (Smith et al., 1974) were both hand-crafted. While the

structures aimed at how knowledge are represented in mind, the psychology theory about development of

such structure was placed secondary. Nevertheless, the missed aspect is essential for a primary reason: A

theory of how the structure could have been formed based on input can be informative on the exact form of

the end-state representation. It is possible that some representations may never be formed due to the limited

input or learning mechanism.

These fundamental drawbacks have been addressed, to different extents, by a recent line of works, i.e.

Distributional Semantic Models. These models resemble Semantic differential in the way that concepts

are represented in a vector space. The contrasting difference is that distributional models are trained on

naturalistic linguistic corpus by doing statistical counts and predictions, and the semantic representation

formed along the process reflects the distributional features of the concepts (words). In this way, all

distributional models have a clear story of how semantic structure may have been formed from the raw input.

Furthermore, as distributional models are trained on linguistic corpus, there is no principal constraint on

the concept (word) to represent. Compared to the hand-crafted precedents which are at most conceptual

framework of human knowledge, distributional models have the potential of representing any concept with a

linguistic expression, and accounting for more complex phenomena in language comprehension.

1An exception is the Semantic differential model, in which both entities (e.g lady) and predicates (e.g. polite) are represented
in the multi-dimensional space

2The early models primarily focused on concept, rather than word, as the former usually embodies multi-modal information
and is what knowledge is about, while the latter is often considered as a linguistic expression of the former. On one hand, this
view is well justified: Linguistic expression is only one facet of concept, therefore should not be conflated with concept itself. On
the other hand, the neglect has led to limited range of concepts concerned in the models, i.e. concepts that are expressed by a
single noun or relatively simple linguistic expression.
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1.4 Distributional Semantic Models

Distributional Semantic Models form semantic representation of words or larger linguistic units based on

their distribution pattern of in textual corpus. The distributional pattern may refer to how a word co-occur

with other words, or in which pages the word has occurred within the corpus in the encoding phase. After

certain abstraction processes, words are represented as a point in the abstract distributional vector space, in

which each dimension can be considered as an abstract distributional feature reflecting how words co-occur

with each other in the corpus. In this way, distributional models share the vector space representational form

with Semantic Differential and Feature Comparison Model. What they drastically differ from the earlier

models is their primary focus on language. As the represented entities are not only concepts but also words,

the relations accessed through vector space metrics can be considered as quantitative lexical relationships. I

expand on this point in 1.4.3

Most existing distributional models fall into two classes: representational distributional models and

task-based distributional models. Representational models form representation directly from the text input,

through unsupervised ‘word count’. On the other hand, task-based models usually have a connectionist

architecture which is trained on a corpus to solve certain tasks. Useful semantic representations can be

derived from components (e.g. hidden layer or input layer) of the connectionist architecture after training.

Although differed by how representation is formed, the two classes of distributional models have common

advantages and limitations. I will review the two model classes and discuss their commonalities.

Clarification for the term ‘distributional model’ is needed before moving on. In general, ‘distributional’

refers to the sense that the representation structure is built on how words co-occur in the corpus. It does not

inform on the representational form. Nevertheless, almost all existing distributional models represent concepts

as vectors in a multi-dimensional Euclidean space. Therefore, it is widely assumed that distributional models

are vector space models. However, this dissertation is a proposal of representing distributional semantics in

graphical forms. As a result, in this dissertation the term ‘distributional model’ refer to all semantic models

that encodes distributional data, not restricting to vector space representation. The only exception is this

section. However, as section 1.4 reviews existing distributional models (dominated by spatial representations),

the term ‘distributional model’ hereafter in this section only refers to spatial distributional models.

1.4.1 Representational Distributional Models

Representational Distributional Models directly form vector representations for words, with different ways

of encoding information. In Hyperspace Analogue to Language (HAL) model (Lund & Burgess, 1996), a

co-occurrence matrix is derived in which the rows and columns are both word types in the corpus. The row

vectors are considered as the representations of the words, with the columns the context word dimensions.

Each cell in the matrix is the co-occurrence frequency of the represented word and context word. For example,

the mini-corpus The dog chased the cat have four word types the, dog, chased, cat, resulting in a 4 by 4

co-occurrence matrix, with the four dimensions corresponding to the four words in order. Suppose only

adjacent forward and backward co-occurrences are counted, then dog has one co-occurrence with the and

chased, but no co-occurrence with cat, therefore the word vector for dog is (1, 0, 1, 0) in this corpus.

Alternatively, a word can be represented by the document it occurs in, e.g. in the Latent Semantic

Analysis (LSA) model (Landauer & Dumais, 1997). A ‘document’ refers to a certain part of the corpus,

which can be a section, a page, or a paragraph, etc. All word types in the corpus can be represented by the

vector showing the frequency of the word in each document. Suppose the word cake has only occurred twice

10



on the second page and once on the third page of a 5-page corpus, then it has the representation (0, 2, 1, 0, 0),

with each page as a document. In practice, the dimensionality of the vectors can be huge, given the scale of

the corpus. As a result, the singular value decomposition (SVD) process is usually applied to reduce the

dimensionality of the vectors. The reduced vectors no longer represent the exact occurrences of words in

documents, but still reflect the abstract distributional pattern: words with similar reduced vectors have

similar occurrence in documents and set of surrounding words (Rubin, Kievit-Kylar, Willits, & Jones, 2014).

Representational models either encodes word-word (WW) co-occurrence(Jones & Mewhort, 2007), e.g.

bound of encoding aggregate language environment model (BEAGLE), or word-document (WD) co-occurrence.

Differed by the exact encoding, all models form a vector space and evaluates lexical/semantic relations by

vector space metrics. The relationships represented in distributional models are mostly quantitative, obtained

through taking vector metric measure on the word pairs, e.g. cosine-similarity, Euclidean distance (L2, city

block) or correlation. These quantitative relationship have succeeded in various semantic tasks, such as

judging synonym (Landauer & Dumais, 1997) and forming semantic categories (Lund & Burgess, 1996).

The representational models have some shared encoding parameters which may affect the nature of

representation. As we have seen, given a corpus and the co-occurrence type, the vector representation is a

function of the range of co-occurrence. For WW models, it is the direction and size of the co-occurrence

window: e.g. whether counting forwardly, backwardly or in both directions, and how large the window is.

For WD models, it is the range of document: a page, a paragraph, or a sentence. In addition, to avoid the

effect of word frequency, the co-occurrence counts are usually normalized, and the normalization formula

may as well affect performances in downstream tasks. Different encoding parameters give rise to different

vector representations, which in turn influence the quantitative semantic relations derived from the vectors.

(Bullinaria & Levy, 2007, 2012).

1.4.2 Task-Based Distributional Models

On the other hand, tasked-based models are trained on linguistic corpus to solve certain task. In most of these

models, a connectionist network consisting of multiple fully connected layers is inputted with linguistic data

as sequences of words. Each word is represented as either localist or distributive activation on the input units

(input layer). The activation is transmitted to the output layer through intermediate layered connections,

and the distributive activation on the output layer is taken as the response of the network. Learning happens

when the output response mismatch with the expected response: An error is computed and propagated

‘backwardly’ to the lower layers of the network (backward propagation), and the connection weights are tuned

in the direction to reducing the error. With more and more training, the network architecture gradually

captures the statistical pattern of the input, reflected on the converging connection weights. After training,

semantic representation of lexical items or sentence ‘gestalts’ can be derived from the distributed activation

on various part of the network (e.g. output layer activation, or upward weights from the input layer), given

the targeted word or sentence input.

Earlier neural network models have been implemented to solve various semantic computation tasks. For

example, in the parallel distributed processing (PDP) approach on sentence comprehension (McClelland et

al., 1989), a neural network was trained on an artificial corpus in which sentences (as word sequence) were

paired with their thematic role assignments. The goal was to solve the thematic role assignment task: Given

a sentence, the model needed to specify the thematic role of all its constituents. Modern task-based model

instead are trained to uncover the ‘blocked’ words in a given sequence.

Another type of neural network models are trained to solve a relatively more straightforward task:
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predicting the next symbol in a sequence. This approach at least traces back to simple recurrent network

(SRN) model, which can integrate previous and current information of the input sequence in the hidden

layer of the network (Elman, 1990, 1991, 1993). In this way, SRN can form a holistic representation of the

sequence, and use the representation to predict the next coming word. More recent language models like

Word2Vec (Mikolov et al., 2013) have been trained on similar type of tasks. In Word2Vec, each input word

sequence is marked with a target word, and either the target or the 4 surrounding words are blocked. The

task of the model is to predict the target or the surrounding context, which is considered as an extension of

the widely used ‘predicting next word’ task.

Despite the different problems to solve, the task-based models are able to form representations featuring

semantic structures embedded in the input. In the PDP model (McClelland et al., 1989), weights on the

connections between the input units and the hidden layer units were taken as the lexical representations

of the words. A cluster analysis of the lexical representations has demonstrated a clear semantic structure:

the ‘eating’ verbs were closest to each other, followed by the ‘drinking’ verbs, and then related actions (e.g.

spread and stir, which collocated with bread and coffee). The similar analysis exploring semantic structure

formed in the task based networks have been conducted in prediction based models trained on artificial corpus

(Elman, 1990, 1991) and more recent models which were trained on naturalistic corpus. Huebner and Willits

(2018) have trained multiple connectionists network to predict missed words in the sequences, from a child

directed speech corpus, and have also used input layer upward going weights as lexical representations. The

resultant representations have shown a delicate and complex semantic structure with fine-grained categorical

and taxonomic knowledge. Trained on a larger corpus, the Word2Vec model (Mikolov et al., 2013) is able

to form analogues based on the lexical representations. Difference between word vectors was taken as their

quantitative relation. It turned out some word pairs that formed analogues had comparable vector differences,

such as country-capital pairs, e.g. Germany:Berlin and Russia:Moscow. These evidences show that while the

task-based models are primarily trained to solve problem, they may form effective representations reflecting

semantic structure in the input.

Before talking about the advantages and challenges of modern distributional model, I need to note a

family of tasked-based models: Transformers, which has given rise to the most powerful language AIs to

date. These models are distributional models as they are trained on linguistic co-occurrence. The difference

between the Transformer based models and all other task-based language models is their attention mechanism

(Vaswani et al., 2017), which helps them capture the complex lexical dependencies in natural language.

This computational capability have be amplified with larger and larger model and training size, resulting

in powerful generative language models such as BERT (Devlin, Chang, Lee, & Toutanova, 2019), and the

early GPT series (Radford et al., 2019; Brown et al., 2020). While there are voices that the state-of-the-art

representative of the Transformer family, i.e., GPT-4, have at least partially opened the door of Artificial

General Intelligence (Bubeck et al., 2023), the understanding of model mechanism towards the achievement is

minimal, if there is any. To be more specific, it is less clear what representations in the models have led to the

achievement. Despite an attempt to open the black box in Chapter 6, I will in general exclude Transformer

based large language models (LLM) from the set of semantic models concerned in this dissertation, especially

in the discussion on distributional models’ challenges followed immediately. The challenges applies to almost

all existing non-Transformer distributional models, while it is controversial whether those are still challenges

to modern LLMs, due to the lack of understanding on the large models.
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1.4.3 Advantages and Challenges of Distributional Models

Compared to earlier semantic models, distributional models have provided mechanisms of forming representa-

tions from naturalistic language input. Two relevant benefits follow immediately. First, in distributional

models, all linguistically expressed concepts can be represented, e.g. verbs, adjective, phrases. As a result, a

broader range of lexical relationship can be accessed and evaluated. Second, distributional models generically

depict a learning process on the semantic structure, such that the modeling works may in turn implicate on

theory of language acquisition (Elman, 1993; Huebner & Willits, 2021b, 2021a).

Despite the considerable improvements compared to early works, current distributional models still face

challenges such as: i) representing indirect semantic relations; ii) representing and generalizing complex lexical

dependencies. As I argue in detail, these issues are relevant as they are among the core goals of semantic

representation and matter for language comprehension.

Indirect Relation

First of all, current distributional models have trouble forming indirect semantic relations, while there have

been evidences showing such capability in human (Balota & Lorch, 1986). The capability of forming indirect

relation is relevant in language processing due to human’s productivity in generating meaningful expressions

(Fodor & Pylyshyn, 1988). People not only judge whether an expression is grammatical, but also make sense

of the expression, e.g. cut cake is more plausible than cut cookie, and cut lamp makes least sense. However,

due to combinatorial explosion, the expressions we have seen only take up a small portion of the grammatical

expressions that we can form. (e.g. cut cake have probably been heard, while cut cookie and cut lamp are rare

in language, yet are judged as grammatical). Then, one goal of semantic representation, is to help preferential

judgements on the unobserved yet grammatical expressions, based on the limited input. Most models are

able to learn the cut-cake co-occurrence provided in the corpus. The problem for the semantic model is to

capture the graded preference for the phrases have not occurred in the corpus (provided that all words have

occurred). As I will explain in detail in Chapter 3, such inference is based on the successful representation of

both syntagmatic and paradigmatic relationships. I will show that canonical vector space representations

struggle in representing indirect relations 3, and provide a formal theoretical explanation in 4.

Complex Dependencies

The second challenge faced by current distributional model is representing multi-way lexical relationships.

For example, the model needs to tell that cut cake is different but similar to cut pie, different but related to

bake cake. In addition, it is supposed to relate cut cake to instrument nouns like knife, but not ax or scissor,

which all associate to the verb cut. As I will investigate more in Chapter 6, representational and task based

distributional models have respective difficulties on this topic. Most representational distributional models

primarily focus on word representations, and it is not easy to effectively form representation of more complex

expressions, like phrases, from the word vectors (Mitchell & Lapata, 2010), especially when the resultant

phrase vectors are tested on syntagmatic relations, e.g. between cut cake - knife. Alternatively, task based

model can form holistic representation of sequences as an implicit composition of words (McClelland et al.,

1989; Elman, 1990). While the recurrent networks can successfully learn observed multi-way leixcal relations,

such as cut cake - knife, I will show that they have trouble generalizing the learned relation to novel lexical

combinations (Chapter 6).
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I argue that these challenges on existing distributional models is largely due to the vector space representa-

tional form. As I will show in later chapters, the spatial representation and the canonical vector space metrics

may limit the model in forming indirect relations and addressing multi-way relations. Notice that the issues

are not caused by the distributional encoding of linguistic data. Regarding this, I propose a novel approach

that use distributional linguistic data to build a knowledge structure in graphical form – Distributional Graph

– instead of the canonical vector space. To measure the graded lexical relationship, I adopt spreading-activation

algorithm on the graphical structure, inspired by classic and recent works (Anderson, 1983; Collins & Loftus,

1975; Deyne, Navarro, Perfors, & Storms, 2016; Rotaru, Vigliocco, & Frank, 2018). Before developing a

theory Distributional Graph, I will first review its non-distributional graphical predecessors: focusing on the

advantages of the graphical representational structure, the spreading-activation process, and disadvantage of

these models for being non-distributional.

1.5 Graphical Model and Spreading Activation

Graphical model for semantic representation (i.e. semantic network) can be traced back to Quillians and

Collins (1969), in which concepts (categories) and predicative features are represented by nodes, and semantic

relations by links between the concept nodes. The featured characteristic of graphical representational

structure is the explicit encoding of relation: the relation between concepts has to be defined in order to form

the structure (the link between concepts). The relations defined on the links are mostly qualitative, such as

categorical subordinates (Collins & Quillian, 1969), conceptual semantic similarity (Collins & Loftus, 1975),

proposition-argument (Anderson, 1983), formal lexical relation such as synonym and hypernym (Miller, 1992),

and empirical association norm (Nelson, McEvoy, & Schreiber, 2004). Moreover, network metrics can be used

to quantify relations on graphs. For concepts directly connected by a link, their relation can be encoded

quantitatively as weights on the links, such as associative strength (Deyne et al., 2016), and distributional

similarity (Rotaru et al., 2018). For connected concept pair with no direct link, their quantitative relation can

be measured by graphical distance (Kumar, Balota, & Steyvers, 2019) and other measures defined on network

structure (Deyne et al., 2016; Rotaru et al., 2018). The potential benefits by the graphical representational

structure comes from the indirect relation made and dictated by the discrete topology, accessed through the

spreading-activation process. I will return to the structural benefits after discussing the spreading-activation

process.

1.5.1 Spreading Activation on Semantic Graph

To date, the idea on spreading activation goes back to a series of works by Allan Collins and Ross Quillian, which

have been summarized and extended in Collins and Loftus (1975). The extended theory has conceptualized a

semantic network in which links between nodes as shared property between the concept nouns. Within the

semantic network, activation starts from a concept node that is being processed (e.g. during reading) and

spreads to the neighboring nodes via the attached links, tagging the neighbors by the source name, and the

neighboring nodes repeat the process on and on. Although it has been assumed that only one concept can be

processed at a time, activation may remain on the nodes while decaying over time. As a result, when language

is being processed, a node can receive and sum up the activation from multiple sources, and concatenating

the paths from different sources to the intersected node would result a path between the sources. Once the

accumulated activation pass certain threshold, the path leading to the intersecting activation will be evaluated.

While it remains less clear how the evaluation is carried out, the work has proposed a basic framework on
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how information on a network could be accessed through the spreading-activation regime. However, this early

attempt lacked details leading to computational implementations.

Anderson (1983) has added on top of the conceptual proposal with a mathematical formulation. The

network consists of propositions as ‘unit’ node and the arguments and predicates of the propositions as

‘element’ node. Each unit node only has links to its elements and so does the element nodes. A cognitive

unit consists of one unit node and element nodes (the predicates and arguments) attached to it. Different

cognitive units may share elements, so that the cognitive units are connected into a network. A cognitive

unit is encoded in the long term memory when a trace of the proposition (event) is established, with its unit

and element nodes assigned with strength 1. After the initial encoding, the strengths of units and elements

accumulate every time the nodes are processed. Therefore, the strengths of unit nodes reflect the frequency

of the proposition or event being processed, and the strengths of element nodes reflect the frequency of

corresponding concepts.

The computational formulation of spreading activation on the semantic network is based on these

frequency contingent node strengths. The activation initiated on the source node is proportional to its

strength (frequency), thus, more frequently processed concepts receive more initial activation. The activation

spreads to neighbors proportional to the relative ‘significance’ of the shooting node to the receiving node. To

be more precise, suppose ai is the current activation on node i, then it spreads to its neighboring node j,

with ai · si∑
k∈Nj

sj
, where si is the strength of node i, and Nj is the set of neighboring node of node j. As

a result, more activation would spread from the shooter to the receiver if the shooter is more relevant to

the receiver. When an event (represented in propositional form, with its elements included in the long term

memory, e.g. the semantic network) is being processed, its elements become the source of activation, which

shoot to the neighboring nodes. As it allows activation reverberates (activation spreads from node 1 to node

2 and flows back to node 1), activation level on the finite network will finally converge to an asymptotic state.

This converging level is taken as the determining factor for processing and retrieval time for the proposition

if it has been encoded in long term memory. In this way, the computational model shows a clear interaction

between processing and the semantic structure.

While in earlier works, spreading-activation is modeled as a cognitive process to access concepts in long

term memory, more recent models have used it metaphorically as a measure to compute quantitative lexical

relationships. In contrast to Anderson (1983), the recent models have reflected the strengths on links. In

Deyne et al. (2016), the link strengths are empirical word association strengths. In the norming study,

participants are asked to report the first words coming to mind given a target word. A link is formed

between two words, if one is frequently responded as the associated word to the other, and the weight on

the link reflect the response frequency. Alternatively, Rotaru et al. (2018) used vector representations of

words in distributional model to form a similarity graph by linking two words if their vector similarity is

above zero (the links bear lexical similarities). Regardless of how the link weight is derived, these models

have primarily focused on the word-word lexical relations, and used spreading activation as a tool to access

them quantitatively. To be more specific, the semantic relatedness from a source word to a target word is

calculated as the activation that initializes on the source and spreads to the target. During the process of

spreading, a node spreads its activation to its neighbors proportional to the weight of the link attaching

to the neighbor, in other words, the shooting nodes send more activation to the neighbor that it prefers,

rather than the neighbor that prefers it. Notice that the source node and the target node can be indirectly

connected, and their relatedness is guaranteed by spreading activation.
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1.5.2 Benefit of Graphical Structure

The access to indirect relatedness on graphical structure through spreading activation is beneficial. For

example, in Rotaru et al. (2018), the strengths on the similarity graph are the semantic similarity between

vector representation of the words, and the adjacency weight matrix is the word-word similarity matrix that

reflects the spatial similarities in distributional models. Equivalently, the similarity matrix can be considered

as 1-step activation spreading on the similarity graph, which measure the similarity between concepts only by

the direct link between them. If two concepts have a link (their similarity is greater than zero), then the

similarity would be the weight on the link, otherwise, it is zero. However, in the similarity graph, two concept

nodes may be connected by other indirect paths of arbitrary lengths. The general spreading activation

process provides access of similarity through those indirect paths. Rotaru et al. (2018) has found that after

adding the similarities accessed through the indirect paths, the model’s lexical similarity better accounts for

human semantic similarity judgements. The finding is shared in related works (De Deyne, Navarro, Perfors,

& Storms, 2016; Kumar et al., 2019).

Although the benefit is realized by the spreading-activation, it arises from the graphical structure. In

spatial representation, the semantic relation between two concepts is always directly accessed by the vector

space metric, while in a network, two nodes may have no direct link, but connected through an indirect path.

The network topology first allows the indirect relations between concepts to be evaluated. Moreover, it

dictates the evaluation to go through the intermediate nodes and links on the path. As a result, it makes

the indirect relation as a collection of other relations. Such a process results from the discrete topology, and

is a feature unique to graph. It can be argued that in a vector space, two concepts can be indirectly evaluated

by going through ‘intermediate’ concepts. However, the approach is problematic, as (i) it is a non-trivial

task to decide which intermediate concepts count, and (ii) the decision of intermediate concepts and relating

the two concepts to them is essentially a process of constructing a graph, and therefore the approach by

itself is already graphical. As I will formulate in Chapter 4, the traverse through indirect paths on graph is

analogical to some higher-order similarity in vector space, which is usually not accessed through canonical

spatial metrics.

1.5.3 Issue for non-Distributional Graphs

Nevertheless, the existing spreading activation and graphical models (except for the recent similarity graph)

may not be ideal since they are not distributional. In more recent studies, graphical structures are constructed

from scaled-up normative data (Deyne, Navarro, Perfors, Brysbaert, & Storms, 2019; Miller, 1992; Nelson et

al., 2004) and they have shown the norm-based models outperforms distributional models in some semantic

tasks (Deyne, Navarro, Collell, & Perfors, 2021; Kumar, Steyvers, & Balota, 2021). However, these endeavors

have provided no mechanism about how these semantic structures arise from naturalistic input. Moreover,

similar to the earlier models, existing graphical approaches have been constrained on the scope of concepts

it can represent and the range of language processing data it may speak to. If the graphs can encode

distributional information from large-scale linguistic corpora, they will have the potential to represent more

complex lexical relationships, and will be more readily to compare with the spatial distributional models.
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Chapter 2

Distributional Graphs

Distributional Graph inherits the basic conception of semantic network (Collins & Loftus, 1975), which

represents concept or word by node, and relationship between concepts by edges linking the nodes. Particularly,

two concept nodes in a distributional graph are linked by an edge if they are related distributionally. The

distributional relation may refer to a wide range of co-occurrence relations: co-occurrence of words in a

corpus, co-occurrence of objects in a physical world, or co-occurrence of a word and its physical-world referent.

A clarification is that the relations encoded in the edges of a distributional graph may not be abstracted.

In other words, they are raw co-occurrence, and the abstraction happens on the graph after the structure

is formed (by network metrics). For an example of encoding abstracted distributional relation, Rotaru et

al. (2018) have encoded similarity between word vectors in the edges between word nodes. In that case, the

information encoded on the edges are abstracted distributional relations between words, and therefore is

considered a graphical model encoding distributional data, but not as a distributional graph proposed in this

dissertation. While noticing ‘co-occurrence’ can be defined broadly, I will focus on co-occurrence of linguistic

expressions in a corpus. To sum up, I refer to distributional graph as a graphical structure encoding raw

co-occurrence between words in linguistic corpus.

(a)

preserve pepper

preserve pepper

preserve onion with vinegar

grow onion with fertilizer

(b)

preserve

grow

pepper

onion with

vinegar

fertilizer

1

1

1

1

2

2

Figure 2.1: Formation of a distributional graph from mini corpus preserve pepper, preserve pepper, preserve
onion with vinegar, grow onion with fertilizer. (a) word chains formed by encoding adjacency co-occurrence,
(b) network formed by joining word chains.

Usually, corpora for Distributional Graph are collections of linguistic expressions (e.g. phrase and sentence),

rather than a sequence of words. For instance, the mini corpus ‘preserve pepper, preserve pepper, preserve
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onion with vinegar, grow onion with fertilizer ’ is treated as a collection of phrases allowing repetition. In

general, the expressions are punctuation free, but there might be variations. Alternatively, the corpus can

be considered as a sequence of symbols, including words and punctuation. The different treatments on the

corpus may lead to different representational structures (See chapter 3). Without further notice, the linguistic

corpus refer to the collection of expressions version.

A distributional graph is formed with two steps: (i): converting linguistic expressions into graphical form;

and (ii) joining the graphical forms. In the first step, a linguistic expression, e.g. word, is transformed to a

node, and nodes are linked following certain encoding method. The simplest way is to form a word chain,

in which two words are linked by an undirected edge only if they are adjacent in the expression (Figure

2.1a). After the first step, all expressions in the corpus are presented in a graphical form. In the second step,

the graphical expressions are joined by the shared nodes and links. For example, in Figure 2.1a the two

four-word phrases have two words in common: onion and with, alongside with the link between the words,

and the two two-word phrases are identical. The repetitive structures are combined, resulted in a unique

word nodes for each word type, and accumulated weights (marked by the numbers above the edges) reflect

the number of repetitive edges in the graphical expression collection (Figure 2.1b). For example there are

two preserve-pepper phrases and only one preserve-onion in the corpus, as a result, the weight for the former

relation is 2, and the latter 1 in the derived distributional graph. Combining the two steps, I refer to the

process of constructing distributional graphs as Connecting Language.

What is the structures formed by connecting language? First, it is a semantic network, a representation of

concepts/knowledge. More importantly, it is a more ‘linguistic’ representation of knowledge: (1) The nodes

are not just concepts, but also linguistic units, e.g. word/phrase; (2) The encoded relations between the

concepts are linguistic co-occurrence, which may even incorporate syntactic/semantic structures relevant to

language processing. These ‘linguistic’ features distinguish Distributional Graph from traditional semantic

networks that represent static concepts. As the model encodes ‘linguistic forms’ of the concepts, it is possible

to access and evaluate concepts dynamically generated in diverse linguistic forms, and the relationships

between the generated concepts. On the other way round, since the model encodes the concepts through

linguistic structure in graph topology, effective operations on the graph may help capture the complex

lexical relationship in language use, and account for phenomena in complex language processing. The above

mentioned access/evaluation is actually a measure of semantic relatedness in the graphical structure, which

will be implemented with a spreading-activation based algorithm.

The chapter is organized as following. First, in Section 2.1, I define and introduce the spreading-activation

based measure of semantic relatedness on networks in general. I develop and discuss two different types of

distributional Graphs: Co-occurrence network and Constituent Tree Network in Section 2.2 and 2.3. In the

last section, I briefly summarize the theoretical motivation and prospective advantages of distributional graph.

This part is left at the end, as it would be easier to explain the ideas after the modeling details have been

presented.

Before moving on, it is necessary to clarify the notations and terms that will occur. Words will be

denoted by lowercase English letters, and composed expressions like phrase and sentence will be denoted by

uppercase letters. All linguistic expressions are lemmatized, and only nouns, verbs, adjectives, adverbs and

prepositions are encoded. The graphs are distributional graphs by default and therefore the edges are always

weighted, no matter whether the weights are explicitly marked. The notation for a linguistic expression

simultaneously denote its corresponding graphical object. For example A will denote both the phrase grow

pepper and its corresponding node in the graph. SR(·, ·) will denote the semantic relatedness between two
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objects (two linguistic expressions/concepts, or the corresponding nodes), and it is sensitive to the argument

order. SR(A,B) denotes the semantic relatedness from node A to node B, and is by definition different from

SR(B,A). The difference and its psychological implications will be explained in next section.

2.1 Spreading-Activation based Semantic Relatedness on Graphs

Spreading-Activation was first proposed as a conceptual process of accessing and retrieving information from

semantic networks (Collins & Loftus, 1975). More recently, the conception has been applied metaphorically

to define and measure relatedness (similarity) on semantic graphs. There are two reasons why spreading-

activation can be adopted for a relatedness measure on network structures. First, the spreading-activation

process may psychologically ground the relatedness measure. Intuitively, two concepts or words are considered

related if one can be accessed/primed given the access to the other. This intuition was reflected in the

spreading-activation process in Collins and Loftus (1975): An attended concept node sends out activation

while its related concepts receive activation and are accessed. A quantitative refinement follows: Relatedness

between two concepts can be measured by the likelihood of accessing to one concept provided access to the

other. It has been conceptualized that the likelihood of access is determined by the amount of activation

received by the concept node (Collins & Loftus, 1975). Therefore, activation received by a node from a

sending source can be generically taken as the relatedness between the two concepts.

The other reason is that spreading activation can capture more information embedded in the network,

compared to simpler measures such as graphical distance. Here, I first list three graphical factors that reflect

(distributional) semantic information in corpus on the graph: the graphical distance, strength on edges, and

number of paths between nodes. I will explain how the three factors affect the semantic relatedness on graphs,

and then show how the spreading-activation measure takes care of the three factors.

2.1.1 Three factors to Relatedness on Graph

The most generic way to measure the relatedness between two nodes on a graph is by their graphical distance,

defined as the length of the shortest path(s) between the nodes. Intuitively, smaller graphical distance imply

greater semantic relatedness: in Figure 2.2 (a), node a is more related to b compared to c. What does smaller

distance in a distributional graph reflect? If two words co-occur in a sentence, it is likely that they are

close in the distributional graph: They are encoded within the same graphlet. If two words do not typically

co-occur, but they both co-occur with some other words, then the two words might be a little far from each

other: They are encoded in different graphlets and joined through the shared words. Further, if two words

do not even share any co-occurrence, it is likely that they are connected with more graphlets, resulting in

larger graphical distance on graph. In this way, the graphical distance roughly capture the ‘directness’ of

word relations. Relation strength (weights on edges) is the second factor when considering relatedness, which

usually represent the co-occurrence frequency in distributional graphs. For example, in Figure 2.2 (b), e has

co-occurred 9 times with d but only once with f . The intuition follows that e and d should have stronger

relatedness. In distributional graph, the relation strength basically reflect the (normalized) co-occurrence

frequency. If two words co-occurs a lot, it is reasonable to grant them a strong relationship, reflected by

a large edge weight in the graph. Finally, in graphical structures, it is possible that multiple paths exists

between nodes (e.g. in Figure 2.2c, g is connected to h through 2 paths, while i and h only by one path

with equal length to the g − h paths. In this case, h should be more related to g if the strengths of the

edges on the paths are identical. In a distributional graph, the number of paths can be considered as ‘shared
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(distributional) features’ or ‘shared contexts’ between the words/concepts. If two words share lots of features,

their relation should be strong reflected by multiple paths between the word nodes. Ideally, a network measure

should simultaneously capture the three factors that reflect distributional information in corpus.

(a)

ba c

(b)

ed f
9 1

(c)

hg i

Figure 2.2: Three factors affect relatedness on graphs: (a) graphical distance, b is closer to a compared to c;
(b) edge weight, d− e is stronger than e− f ; (c) number of paths, h has more paths to g compared to i.

However, in most cases, the three factors: graphical distance, edge weight, and number of paths interact

with each other. For example, consider SR(k, j) and SR(k, l) (Figure 2.3), the three factors have counteractive

effects on the two relations: k has graphical distance 1 to l but 3 to j, which makes it closer to l compared to

j. However, there are two length-3 paths between k and j which strengthens the k − j relation. Moreover,

although the paths are long between k and j, the edges on the paths are much stronger (reflected by the

frequency weight) than the direct edge between k and l, which further complicates the picture. Since this kind

of counteraction is common in distributional graphs derived from naturalistic linguistic corpus, a measure

that integrates the three aspects is necessary for defining the semantic relatedness on graphs.

kj l

5

5

5

5

5

5

1

Figure 2.3: Graphical distance, edge weight and number of paths counteract with each other concerning
pairwise relatedness on graph.

2.1.2 Spreading-Activation Measure

In classic works (Anderson, 1983; Collins & Loftus, 1975), and recent modeling studies (Deyne et al., 2016;

Rotaru et al., 2018), the spreading-activation based relatedness is conceptualized as the activation spread

from a source node to a target node. In the activation process, nodes with non zero activation spreads

all its activation to its neighboring nodes at each discrete time tick. In this way, once a node is activated,

all nodes connected to this activated source will receive some activation after a while, and the amount of

activation received by the target node from the source node is taken as the semantic relatedness from the

source to the target. I adopt the similar conception, and the formal definition will be unfolded with three
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steps: (i) Activating neighbors, (ii) Relatedness through Spreading-Activation on a single path, and (iii)

Formal definition of semantic relatedness on a distributional graph.

At each moment, nodes with activation spreads its activation to the neighboring nodes proportional to the

weight on the linking edges. For example, in Figure 2.4a, node A has edges to C,D,E with weight 3, and edge

to B with weight 1. As a result, A would spread its activation to the neighbors proportional to these weights,

ending up in the normalized weighted outward edges in Figure 2.4b, so that less co-occurred items become less

related. The normalization can be repeated for all nodes in the graph, resulting in the normalized (directed)

graph (Figure 2.4c), where weights on the directed edges denote the proportion of activation flown from a

node to its neighbor linked by the edge. B, D, E, F has outward weight of 1, since each node only has one

neighbor in the graph. A verbal example of normalized graph is provided in Figure 2.4d. The proportional

spreading leads to asymmetric relatedness between node pairs, which echoes empirical data (Tversky, 1977).

In Figure 2.4d: lawnmower is much more related to grass than grass relating to lawnmower.

(a)
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(c)
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0.3

1

0.5
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(d)
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0.1

0.3
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Figure 2.4: Activation spreading to neighboring node: (a) Node A has edges linking to neighboring nodes
with different frequency weights. (b) Normalized outward weights denote proportion of activation for node A.
(c) Normalized outward weights denotes proportion of activation for all nodes in the distributional graph,
featuring asymmetric relatedness. (d) Verbal example of the normalized graph: Lawnmower has weaker
relatedness from grass compared to other words, while grass is less related to its neighbors than its neighbors
relating to itself.

How a node spreads activation to its neighbors provides a way to define the relatedness between adjacent

concept nodes in a distributional graph. Nevertheless, an important feature of graphical structure is the
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access to indirectly connected nodes. On a graphical structure, more than one paths may exist between two

nodes (Figure 2.5). I first define the semantic relatedness from a source node to a target node through a

particular path connected the nodes, based on which the total semantic relatedness of the node pair will be

defined.

A B

P1

P2

P3

0.2

0.4

0.2 0.2

0.4

0.2

0.4

0.4 0.4

Figure 2.5: Semantic relatedness through three paths: Only normalized edges on focused paths from A to B
are included, with the outward weights on the directed edges.

Suppose A and B are two nodes in graph G connected by a path P (from A to B), the semantic relatedness

from A to B by path P , denoted by SRP (A,B) is defined as follow:

SRP (A,B) =
∏
i

ωi (2.1)

where ωi is the normalized weight of the i’th edge on the path L. This definition of path-wise relatedness

takes care of both the graphical distance and the edge weights on the paths. Almost all weights are smaller

than one, in other words, the activation diffuses on every edge as it travel through a path. As a result, the

shorter the path, the more activation will reach the target node through the path, and the higher the edge

weights on the path, the more it prevents the activation from flowing away, and the two factors altogether

leads to greater relatedness from the source to the target. An illustration is provided in Figure 2.5, where

three paths from A to B vary by graphical length and edge weights. The shortest path (P2) with higher

weights has the greatest relatedness (SRP2(A,B) = 0.16), while the longest path (P1) with lower weights is

the weakest (SRP1(A,B) = 0.0016).

Finally, the semantic relatedness from A to B, denoted by SR(A,B) is defined as the sum of semantic

relatedness from A to B by a collection of paths:

SR(A,B) =
∑

P∈PA,B ,L(P )≤d(A,B)+n

SRP (A,B) (2.2)

where PA,B is the collection of paths from A to B on G, L(P ) refers to the length of path P , d(A,B) is

the graphical distance between A,B, and n specifies the upper boundary of path length, which is selected

by modelers due to specific needs. In this way, SR(A,B) include activation flown on all paths from A to

B with length no greater than d(A,B) + n. For simplicity, the relatedness is denoted by SR(A,B) without

marking the length upper bound. The contribution from longer paths are ignored as they carry relatively less

activation, and are psychologically uninformative (Deyne et al., 2016). Defined in this way, the semantic
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relatedness has covered the third factor: number of paths connecting the node pairs. As in Figure 2.6a,

assuming all edge weights are identical, then g and h are more related, since they have more paths. A verbal

example is provided in Figure 2.6b, where grow is more related to plant compared to cut.

(a)

hg i

(b)

growplant

pine

palm

oak

cutgrass

Figure 2.6: Relatedness affected by number of paths: (a) h has more paths to g compared to i, thus stronger
relatedness to g, (b) verb example, grow is closer to plant than to cut.

2.1.3 Asymmetry of the Spreading-Activation Based Measure

It is noticed that such an spreading-activation based relatedness measure is asymmetric, in other word,

SR(A,B) is not the same as SR(B,A). As illustrated in Figure 2.7, SR(A,B) can be a lot greater than

SR(B,A) due to the weights on the normalized directed edges. As a result, the notion of relatedness between

A and B become ambiguous, and the direction has to be clarified. While the modeling characteristic is helpful

in accounting some psychological phenomenon (Tversky, 1977), it may come across troubles when considering

relatedness between A and B, without strong theoretical or empirical motivation for the directedness. In

this case, one needs to address which direction should be chosen, and whether the choice is proper. In each

specific model to introduce, the asymmetry issue will be mentioned and handled respectively.

2.1.4 Spreading-Activation and Random Walk

The activation measure introduced in this article resembles the random-walk approach (Deyne et al., 2016),

in which a cognitive process is implemented by accessing lexical knowledge in graphical structures. The two

approaches (random walk and spreading-activation) vary by the hypothetical activation process but largely

overlap on the mathematical substances of the computational implementations.

In the random walk approach, a random-work process is defined on the network: a node is initially

activated and it activates one of its neighbor (the activation randomly walk to the neighbor) at the next

discrete time tick, with the probability proportional to the locally linked edge weights. In this way, at each

time point, there is only one node being activated, and every node has a probability of being activated.

On the other hand, the spreading-activation measure assumes the activation spread to all its neighbors in

the network, and therefore is more similar to a priming process rather than an activation process. Despite

the difference in the underlying process, the two approaches share commonalities: At each moment, the

23



A B

P1

P2

P3

P4

0.5

0.5 0.5

0.5

0.1

0.1 0.1

0.1

0.5 0.5

0.1 0.1

Figure 2.7: Asymmetric relatedness: relatedness from A to B accounted by P1 and P3 (thicker paths), and
that from B to A by P2 and P4.

probability distribution of a random walk is equivalent to the amount of activation distributed in the network.

To further present the similarity and subtle differences between the models, I give a formal description of the

random walk approach.

In the random walk approach, the adjacency matrix of the network is first row-normalized, resulting in a

transformation probability matrix P. This step exactly mirrors the local normalization of each node in a

distributional graph, such that each row in P corresponding to the outward degrees in the normalized graph

(Figure 2.4) b. Then, the random-walk process is formally described by:

Grw
(r=k) =

∑
0≤i≤k

(αP)i (2.3)

where r denote the path length and k ≥ 0 is the length of the longest path allowed in the random walk, or

equivalently, the discrete time tick in the spreading-activation process. α denote a decay rate of activation

while walking to a neighboring node. The process start at k = 0, and every node is activated with activation

1. Then, at each time point, the activation on each node A randomly ‘walks’ to one of its neighbor with the

transition probability on the corresponding row (for A), and the activation decays with the rate α. In this way,

Grw
r=k denotes the accumulation of the probability for a node being activated up to time k. Alternatively,

in the activation-spreading scenario, Grw
r=k denotes the accumulated activation that each node has received

until time k, with the initial state that every node is activated with activation 1.

Computationally, the random walk approach is different from the spreading activation measure in three

ways. First, it has the decay rate α which penalties longer paths. Second, it admits recurrent activation

(activation once flown away that flow back), and lastly, it has a unified length upper bound k, so that for

all nodes, only paths shorter than k are counted. In contrast, in the spreading-activation approach, the

length upper bound is contingent to the geodesic distance between the node pair. For example, suppose that

d(A,B) = 2 and d(A,C) = 3, then in spreading-activation approach, an upper bound modifier n indicate that

for the node pair (A,B), effective paths can be no more than length 2+n, and no more than 3+n for (A,C).

These differences result from specific modeling purposes, but they reflect similar modeling considerations.

The random walk approach is implemented to access the semantic similarity on network, in which each word

is represented as a vector with the entries semantic relatedness to other words. The relatedness is calculated

by considering paths up to length k, so that a node pair will have relatedness 0 if their graphical distance is
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greater than k. Such a set-up is reasonable given the goal of measuring similarity, and the upper bound k is

the way to filter extensively long paths. On the other hand, spreading activation focuses on each relatedness

between every single word pairs, and the universal upper bound k will lead to trivial result (zero relatedness)

for distant pairs, therefore it adopts a flexible upper bound contingent to the graphical distance between

node pairs, while preventing longer paths just like the random walk approach.

Moreover, in the random walk approach, an infinite length upper bound is set up in the implementation:

Grw =

∞∑
k=1

(αP)k = 1− αP−1 (2.4)

in which it supposes the time for random walk is long enough, so that the probability distribution will reach

the equilibrium Grw. In this case, the decay rate α would be necessary to filter the meaningless longer

paths. However, the current spreading-activation approach presumes a limited time range activation, and

longer paths are avoided by the upper bound modifier n. In future works, the decay rate will be included for

the spreading-activation measure if it turns out that the cognitive process fits better to the case that the

equilibrium is reached. Similarly, in the current set up, SR(A,B) is defined without recurrent activation,

nevertheless, counting recurrent activation might speak better to cognitive theories and empirical data. In

this case, I leave the option open and may add recurrent activation to the semantic relatedness between node

pairs.

Provided the differences between the two approaches (rooted from different initial modeling purposes), I

emphasize that they largely converges on the mathematical substances, and the proposed cognitive processes

communicate to each other.

2.2 Co-occurrence Graph

Distributional graphs encode some kind of co-occurrence relation on the node links, and Co-occurrence Graph

is the most basic type. While other types of distributional graphs may explicitly encode more structured

(syntactic or semantic) relations on the link, co-occurrence graphs encode only ‘raw co-occurrence’. Formation

of a co-occurrence graph from linguistic input has been shown in Figure 2.1: In step 1, expressions are

converted into sub-graphs, which are joined by shared word nodes in step 2. The construction of co-occurrence

graph from sub-graphs, e.g. step 2, is shared by all distributional graphs, and the difference between various

types of distributional graphs lies in the graphical form of the linguistic expressions. In co-occurrence

graphs, expressions are converted such that words within certain distance (in text) are linked by an edge. I

refer to these graphical expressions co-occurrence clusters, and the form of these clusters varies due to the

co-occurrence ‘window size’ (e.g. the upper bound of distance in the expression that allows a co-occurrence

count) and other encoding factors.

In terms of information encoded, Co-occurrence Graph can be thought an analogue of the HAL model

which also encodes the elementary word-word co-occurrence. The difference between HAL and Co-occurrence

Graph is the representational structure: while HAL aligns the co-occurrences in a row to form distributional

feature vectors for words, Co-occurrence Graph encodes the co-occurring words as neighbors in a network,

which can be easily accessed through spreading activation. In this section, I expand on this point and

show that just like spatial distributional models, co-occurrence graph is indeed ‘distributional’: It encodes

distributional pattern of words and represent it in a graphical form, from which semantic relatedness can be

extracted. Furthermore, I show how the graphical representation diverge from spatial models in terms of its
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way of encoding indirect relation from the distributional data. This feature of co-occurrence graph is also

evident in other types distributional graphs. In general, the Co-occurrence Graph model assumes very few

linguistic pre-processing, as the encoding process requires not much more than raw word count. Nevertheless,

there are still encoding parameters that may affect the form of co-occurrence cluster, the joined structure,

and furthermore, the semantic relations represented in the network. I use some examples to show the effect

of these modeling parameters and explain its indication on assumptions of the representational system.

2.2.1 Co-occurrence Graph is Distributional

While distributional pattern of words is encoded as vector dimensions in spatial distributional models, they are

encoded as node neighborhoods in co-occurrence graph. Given the mini corpus preserve pepper, preserve onion,

grow onion, grow pepper, fresh pepper, fresh onion, a co-occurrence graph encoding immediate adjacency is

shown in Figure 2.8.

(a)

onionpepper

preserve

grow

fresh

(b)

growpreserve

pepper

fresh

onion

Figure 2.8: Represent co-occurring words as word features in co-occurrence graphs: (a) Treat co-occurred
verbs and adjectives as features of nouns; (b) Treat co-occurred nouns as features of verbs and adjectives

In the representation, words are characterized by other words co-occurred with it, which can be considered

as features of the represented words. This feature-concept relationship is mutual, as preserve, grow, fresh can

be taken as features of the two nouns pepper and onion (Figure 2.8a), and alternatively, the nouns can be

considered as features of the adjective and the verbs (Figure 2.8b). Notice that Figure 2.8a and 2.8b depict

the same structure from different perspectives. In this sense, the concept-feature representations for all words

are simultaneously presented in the graphical structure, which is similar to the vector encoding in spatial

co-occurrence models, e.g. HAL.

Such a graphical representation can be considered as an extended implementation of the conceptual

framework in Collins and Loftus (1975). In the conceptualized semantic network, nodes are concept nouns

linked by shared features, which is exactly Figure 2.8a. With the co-occurrence graph approach, the ‘feature

encoding’ is operationalized by the co-occurrence count in a graphical form. Since distributional encoding

does not differentiate concepts by grammatical category, a benefit follows that not only nouns, but all open

class words can be homogeneously encoded and evaluated in the same structure. To be more specific, not only

nouns sharing co-occurred verbs and adjectives have stronger relations represented in the network, but also

the verbs taking similar nouns and modified by overlapping adverbs. This distributional benefit resonates

with spatial distributional models, yet has been absent in previous graphical approaches.

2.2.2 Indirect Relations in Co-occurrence Graph

One feature of graphical structure is the capability of encoding indirect relations through paths. On top of the

graphical feature, the distributional encoding of linguistic input in co-occurrence graph leads to representation
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of much richer and language grounded indirect relations, compared to other semantic networks. For example,

in classic associative networks, lion is indirectly connected to stripe by the intermediate concept tiger, while

in co-occurrence graph, nouns, verbs (e.g. cut and chop), adjectives (e.g. happy and lucky), adverbs (e.g. fast

and swiftly) are all indirectly related through their shared collocations, which contributes to the paradigmatic

relations within different types of words.1 This advantage also arises from the encoding of distributional

linguistic data, as in its spatial counterpart (e.g. similar nouns or similar verbs have shared co-occurrence

entries, which lead to higher similarity evaluated through vector space metrics).

(a)

chop onionpepper

preserve

grow

fresh

(b)

chop onionpepper

Figure 2.9: Represent indirect and direct relations in co-occurrence graphs: (a) Chop co-occurs with pepper,
but not with onion and is indirectly connected to onion through three paths; (b) The three paths between
pepper and onion can be ‘abstracted’, and taken as a strong similarity between the noun, and in turn shows
the strength of the indirect relation between chop and onion.

One notable capability of co-occurrence graph is the representation of relations a little more indirect

than the paradigmatic relationships (e.g. onion-pepper). For example, suppose that a verb chop co-occurred

with pepper has been added to the mini corpus. The verb is immediately connected to onion through the

indirect paths, although it has not collocated with the noun. The relation between chop and onion can be

inferred based on the similarity between pepper and onion (the thickened edge in Figure 2.9b). This indirect

relation is encoded in the graphical structure and can be quantitatively accessed by the spreading-activation

measure. Moreover, representation of the longer indirect relation does not counteract with representations of

other direct and indirect relations, such as the paradigmatic relation between pepper and onion, and the

direct co-occurrence between pepper and grow. Instead, all indirect relations, no matter how indirect it is,

are always built on the most primitive direct co-occurrence. As a result, relations with different levels of

indirectness can be simultaneously represented and evaluated in the structure, which is not always guaranteed

in other distributional models. More detailed investigations of this representational characteristics will be

included in Chapter 3, with a controlled comparison between spatial and graphical distributional models.

2.2.3 Effect of Encoding Factors

Since co-occurrence models mostly only take word counts, the encoding process does not require structured

input. As a result, an input can be taken as sequences of words, while the boundaries for sentences and phrases

are not necessary. Viewing the linguistic input as a long sequence rather than a set of expressions give rises to

multiple encoding factors may affect the form of graphical structure and representational properties. These

factors include expression boundary, co-occurrence window size, window weight, window type (direction), to

list a few. In this section, I define these encoding parameters and explain the effects of them on co-occurrence

graph with two examples: expression boundary and co-occurrence window size.

1I need to clarify that in co-occurrence models, paradigmatic relations are indirect by nature, as replaceable words seldom
co-occur with each other, ending up with few co-occurrence encoding.
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Expression Boundary is concerned with whether or not co-occurrence across expressions are counted.

The expression may refer to sentence or phrase, and once the boundary is set up, the co-occurrence across

expressions may not be counted. Suppose John preserve onion with vinegar. Mary grow onion with fertilizer.

are two adjacent sentences in a corpus. If there is no sentence boundary, then the co-occurrence across two

sentences can be counted, e.g. Mary co-occurring with vinegar. Otherwise, such co-occurrence may not be

counted. A co-occurrence window refers to the sliding window for counting co-occurrence, and it leads to

three encoding parameters. First, window size determines the maximal distance between two words whose

co-occurrence may be counted. For size one, only adjacent words are counted. For size two, the adjacent

and ‘one-step farther’ words may be counted, and so on. Second, window type concerns the direction

of the window, which can be forward(only counting words after the represented word), backward(only

counting words before the represented word) or summed (counting both sides of the represented words).

Lastly, window weight is the parameter to differentiate nearby and distant co-occurrences. There are

many types of weights, and the most commonly used are flat (e.g. all co-occurrence receive one count) and

linearly inverse (e.g. the co-occurrence count is a linear inverse of the distance, such that co-occurrences

with distance n in the text receive count 1/n).

The effects of window size and boundary are illustrated with the following example. Four co-occurrence

graphs based on the mini corpus John preserve onion with vinegar. Mary grow onion with fertilizer are

shown in Figure 2.10, varied on the window sizes and choice of boundary. The graphs in the left column have

window size one and the right column graphs have size two; the upper row has sentence boundary and the

lower row has no boundary. All graphs have forward and flat co-occurrence windows.

(a)

John preserve

onion

with

vinegarMary

grow

fertilizer

(b)

John preserve

onion

with

vinegarMary

grow

fertilizer

(c)

John preserve

onion

with

vinegarMary

grow

fertilizer

(d)

John preserve

onion

with

vinegarMary

grow

fertilizer

Figure 2.10: Effect of sentence boundary and window size on the form of co-occurrence graph: (a) window
size 1 with sentence boundary; (b) window size 2 with sentence boundary; (c) window size 1 without sentence
boundary; (d) window size 2 with sentence boundary

.
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When only adjacent co-occurrence is encoded (Figure 2.10a), the graph is relatively simple. Two sentences

are chained together, and only overlapped by the co-occurrence between onion and with. The structure

becomes much more complicated when window size is two, as more distant co-occurrences are encoded by

direct links: Both humans and the instruments are directly connected to the object noun onion, and both

verbs are directly linked with the preposition with. Allowing counts across sentence boundary brings a few

more connections, so that vinegar becomes connected to Mary, and even the verb grow (in Figure 2.10d),

which are from different events.

In general, different choices on window size and expression boundary determine the amount of direct

links in the network. Larger window size and absence of expression boundary create more edges, and make

concepts closer to each other (higher relatedness). However, whether or not the added edges are detrimental

or beneficial to the representation depends on the evaluation. In the mini corpus, vinegar and grow are

brought together with the larger window size and absence of the sentence boundary. However, grow and

vinegar are not related by any means in the corpus, such that they should have a relatively weak relation. In

this case, window size one with sentence boundary seems to be a better way of encoding. However, in other

cases, adjacent sentences could be semantically related, so that connecting words across the boundary would

be beneficial.

The models though should have no judgement on the parameters or adjust the parameters flexibly. They

do the counting once the parameter values are fixed. The discussion only shows that when a certain parameter

is determined, it will lead to a semantic structure that is different from ones derived from other parameter

set-ups. This in turn affects how semantic relations are represented in the structure and how models perform

in semantic tasks. Therefore, modelers should be aware of the effects of encoding parameters, and manipulate

them when building co-occurrence models, to rule out the possibility that model behavior depends on choice

of encoding parameter values.

2.3 Constituent-Tree Network

The distributional graphs introduced in previous sections are built exclusively on words. While the models

are capable of representing word-word lexical relations, they might fall short in handling more complex lexical

relations and representing complex expressions such as phrase and sentence. As that is going to be shown in

Chapter 5, co-occurrence graph may struggle in learning and generalizing on multi-way lexical relationships.

I will argue the failure may be attributed to lacking explicit encoding of linguistic structures in the graphs.

This motivates the development of Constituent Tree Network (CTN), the type of distributional graph that

explicitly encodes linguistic structure.

2.3.1 Constituent Tree

Similar to other distributional graphs, CTNs are built from graphical linguistic expressions. While in other

distributional graphs, expressions are transformed into chains, co-occurrence clusters or dependency trees, in

CTN, they are converted into constituent tree.

The constituent tree of an expression is nearly isomorphic to its syntactic parse tree, yet with the following

differences: (i) Grammatical categories labeling non-terminal nodes are substituted by the corresponding

lexical expressions; (ii) The original lexical terminal nodes are excluded. An illustration of the syntactic tree

and constituent tree of the phrase preserved the pepper with vinegar is in Figure 2.11a,b. Furthermore, the

expressions are usually lemmatized due to the interest in open class words. As in the example, preserved the
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(a)

TP

VPT

-ed

VP

DP PP

V D NP P NP

N N

preserve the pepper with vinegar

(b)

preserved the pepper with vinegar

-ed preserve the pepper with vinegar

preserve the pepper

the pepper with vinegar

preserve the pepper with vinegar

(c)

preserve pepper with vinegar

preserve pepper with vinegar

preserve pepper with vinegar

Figure 2.11: Structures for the expression preserved the pepper with vinegar, or the lemmatized form preserve
pepper with vinegar.(a) Syntactic tree. (b) Constituent Tree. (c) Simplified Constituent Tree.

pepper with vinegar becomes preserve pepper with vinegar, and the corresponding simplified constituent tree

is presented in Figure 2.11c. Without notice, the expressions are lemmatized: All inflections are excluded

and only preposition, noun, verb, adjective and adverb stay in the expression. Constituent trees will be, by

default, in the lemmatized form (Figure 2.11c).

Although constituent tree and syntactic tree are almost isomorphic, they have different representational

focus. Syntactic trees show how expressions are parsed by generative grammar, while constituent trees present

the subordinate relationships between linguistic expressions (and the concepts they correspond to), which

are taken as a form embedding syntactic and semantic structural information. Since the constituent trees
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have lexical expressions for nodes, instead of grammatical categories, joining the trees would give rise to

representation of concepts in a semantic network.

2.3.2 CTN as a Structure for Long-term Semantic Memory

Given the graphical forms of the expressions, a CTN is formed by joining the sub-graphs at the shared lexical

nodes (Figure 2.12 a-b), in a way similar to other distributional graphs (e.g. the co-occurrence graph in

Figure 2.12 c-d). Despite the common computational procedure, there are two major differences between

CTN and Co-occurrence Graph as representations of long-term semantic memory: the form of co-occurrence

in the structure and the assumed linguistic capability of the representational system.

First, just like Co-occurrence Graph, CTN encodes co-occurrences of words in linguistic corpus. The

difference lies in the pattern of the encoding: instead of encoding the words by the linear sequential order,

CTN groups the words by their constituent relations in the expression. To be more clear, in a co-occurrence

graph, two words are directly linked if they are adjacent in the input sequence, while in CTN, two linguistic

units are immediately connected if one contains the other. From this aspect, the co-occurrence captured in a

co-occurrence graph is also represented in the corresponding CTN, but in a more structured format.

One view of CTN is that the structure not only represent lexical items, but also complex expressions

like phrase and sentence. This view has conflated encoding and representation: While there are phrase and

sentence nodes in CTN, these nodes should be taken as constituency ‘bridges’ for words, but not representation

of the complex expressions. CTN represents words. The constituent structure should be considered as the

way CTN represent the complex relationships between multiple words that build up larger expressions (e.g.

phrase). It should not be taken as a model that represents complex expressions in the long-term memory.

For example, neither the node preserve berry, nor the sub-tree of preserve berry in the CTN in Figure 2.12b

is a representation of the concept. The role of the phrase node and its links to the subordinate words is

to provide the structural grouping of preserve and berry, showing that the two words has been grouped in

the input data, and can be bound together to form a holistic concept during online language processing.

Labeling of phrasal nodes by the expressions in CTN is for the purpose of illustration (Figure 2.13b), and

a more precise presentation may not show the linguistic labels of the phrases (Figure 2.13c). The blank

phrasal nodes indicate that the phrasal concepts are not statically represented in the semantic network like

the lexical terms, and they probably do not have a corresponding phonological representation in the lexical

network proposed in Collins and Loftus (1975). The blank phrasal nodes only contribute to the structure, so

that lexical items can be grouped together dynamically to function as a holistic meaningful unit when such

grouping is needed in language comprehension and production. I will show in Chapter 5 that the constituent

structure encoding benefits in representation of multi-way lexical dependency.

From the perspective of memory encoding, the constituent structure encoded in CTN can be considered

a type of memory trace that embeds certain syntactic information. It is similar to other memory traces

as an exemplar instance to record the knowledge in input and form the long-term semantic memory. Its

distinct feature lies in the specific type of information encoded in the trace: the constituent structure of the

expression. The encoding requires syntactic adequacy: the system is assumed to have mastered constituent

parsing to encode constituent structures. This brings it to the second difference between CTN and other

distributional models.

The linguistic prerequisite for CTN and Co-occurrence Graph differ dramatically. While the latter needs

mere word count, the former requires considerable capabilities in constituent parsing. Therefore, the two

models are set up for different psychological phenomena. Co-occurrence Graph, but not CTN can be used
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(a) Constituent parse trees

pepper preserve

preserve pepper

preserve cucumberwith vinegar

preserve cucumber

preserve cucumber with vinegar

preserve berry with dehydrator

preserve berry

preserve berry with dehydrator

(b) CTN

pepper

preserve

preserve pepper

cucumberwith vinegar

preserve cucumber

preserve cucumber with vinegar

berry with dehydrator

preserve berry

preserve berry with dehydrator

network formation

network formation

(c) Word-chains

preserve pepper preserve cucumber with vinegar

preserve berry with dehydrator

(d) LON

preserve

pepper cucumber

berry

with vinegar

with dehydrator

Figure 2.12: Formation of the network structure in the Constituent Tree Network (CTN) and the Linear
Order Network (LON) — a type of co-occurrence graph which only encodes adjacent co-occurrences — given
the mini corpus ‘preserve pepper’, ‘preserve cucumber with vinegar’, ‘preserve berry with dehydrator’. (a) The
input to the CTN consists of constituency-parsed trees for sequences in the mini corpus. (b) The network
structure of the CTN is formed by joining the constituent trees at shared nodes. (c) The input to the LON
consists of word-chains, formed by connecting adjacent words in the mini corpus. (d) The network structure
of the LON is formed by joining word-chains at shared nodes.

to model early semantic structures. Nevertheless, CTN can still be applied to account for the formation of

semantic structure after mastery of syntax. When lacking syntactic capability, the representational system

may only encode linguistic input by sequential word count, and the trace left in long-term memory is in the

form of co-occurrence clusters. With the development on grammar, the system becomes more competent at

syntactic processing and might be more likely to do constituent parsing when processing linguistic input.

Formation of CTN is built on the hypothesis that the constituent parsing occurred during language processing

would leave traces (e.g. the constituent trees) for building up the long-term semantic memory. Need to

mention that CTN is a model for semantic memory representation, and it is not responsible for explaining

how acquisition of syntax and constituent parsing has happened. The representation of structured knowledge

in CTN should be considered as a result of syntactic maturation, but not a cause of it.

In general, both Co-occurrence Graph and CTN can be considered as descendant of the semantic network

in ACT model (Anderson, 1983). In ACT, a cognitive unit is a proposition converted to a sub-graph: a

proposition node connecting to its constituent predicate and arguments. Propositions are joined by the

shared predicates and arguments to form the semantic network (Figure 2.13a). In the ACT network, each

cognitive unit is the accumulation of traces of corresponding events. This idea is followed by Co-occurrence

Graph and CTN that operate on linguistic input. The distributional graphs are more ‘linguistic’ compared to

ACT: They respect more to the linguistic forms rather than the abstract logical form of the event. Within

distributional graphs, Co-occurrence Graph is less structured than ACT: Words are linked by the ordered

co-occurrence in the input sequence. In contrast, CTN is more structured than ACT: the predicates and

arguments are not only connected to the proposition node (as in ACT), but also hierarchically grouped by

constituency. Therefore, while all three structures are able to account for basic word-word lexical relations,

ACT and CTN may further speak to semantic phenomena in sentence processing, and CTN potentially give

32



rise to a more detailed account for multi-way dependencies among words.

(a) ACT network

preserve
cucumber vinegar

preserve cucumber with vinegar

berry dehydrator

preserve berry with dehydrator

(b) Labeled CTN

preserve
cucumber with vinegar

preserve cucumber

preserve cucumber with vinegar

berry with dehydrator

preserve berry

preserve berry with dehydrator

(c) Unlabeled CTN

preserve
cucumber with vinegar

berry with dehydrator

Figure 2.13: ACT network and CTN as joined traces of linguistic structures. (a) An ACT network as
joined propositions by shared ‘element’ nodes. (b) A CTN formed by joining the constituent trees at shared
nodes. (c) The same structure to (b), without labeling the non-word nodes. The complex concepts are not
‘represented’ directly in the network, rather, they are indirectly represented as potential groupings of the
lexical terms, which can be accessed when certain combination of words are presented.

2.3.3 Spreading Activation and Phrasal Semantic Relatedness

It is assumed that the spreading-activation processes on different distributional graphs are identical. On

a network, the semantic relatedness from a source node S to a target node T is considered as the amount

of activation received by T from S over time. In co-occurrence graphs, the semantic relatedness between

concepts can be directly implemented by the semantic relatedness defined between nodes, as the concerned

concepts are words and uniquely map to nodes in the graphs. However, in CTN, the interest is in broader

concepts, e.g. red car, preserve onion with vinegar or any concept with a linguistic expression. Although

there are phrase and sentence nodes in CTNs, semantic relatedness involving complex expressions are not

directly defined by the activation traveled between the corresponding nodes in the network. In this section,

I give the formal definitions of spreading-activation based semantic relatedness on CTN, and explain the

motivation of the definitions as relating to language processing.

Before the formal definition, it is necessary to talk about what kind of relations are of interests. Evaluation

of words is more straightforward, as all words to evaluate are in the vocabulary, and have already occurred

in the corpus. There would be no representation of a word, if it has not occurred in the input. However,

a ‘complex’ concept (expressed in a complex expression) may have not occurred in the corpus, even if its

constituent words have occurred. Due to the productivity of natural language (Fodor & Pylyshyn, 1988) and

combinatorial explosion, the observed linguistic expressions can be a small subset of the meaningful expressions

that people are able to process. In this dissertation, the interested concepts are not only those whose linguistic

forms have occurred in the corpus, but all concepts whose linguistic form can be constructed from the

lexical terms in the input. For example, given fancy car and sad story occurred in the corpus, the evaluation

would cover fancy story and sad car as well as the observed phrases.

Moreover, in CTN, all interested concepts should be constituency-parsed: It is either a word, or an

expression with a certain constituent parse. For example, the phrasal expression in linear form ‘decorate cake

with icing’ at least has two meaningful constituents parses, one in the sense that ‘the cake is decorated by

icing’ and the other ‘the cake being decorated has icing on it’. Every expression under evaluation should be
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unambiguous in terms of its parse and for now the expressions under consideration should not have repetitive

tokens (e.g. ‘dog chase dog’ and ‘old boy treat young boy’ are not of interests). Without notice, all constituent

parses are binary.

The definition is carried out in three steps: First, relatedness between words on CTN is defined, followed

by relatedness from an arbitrary structure to a word, and finally relatedness from an arbitrary structure to

an arbitrary structure. Similar to relatedness defined in general distributional graphs, word-word lexical

relatedness in CTN is also direction sensitive. That is, relatedness from a source S to a target T , denoted

as SR(S, T ) can be different from SR(T, S) in principle. Words would be denoted by lower-case letters and

complex expressions by capital letters. Given a CTN G, the semantic relatedness from w1 to w2 on G is

defined as:

SR(w1, w2) =
∑

P∈Pw1,w2 ,L(P )≤d(w1,w2)+n

SRP (w1, w2) (2.5)

which is exactly the definition 2.2 for relatedness between nodes in a general distributional graph. Then

consider a structure A consisting of word tokens w1, w2, ...wk (in other words, the constituent tree of A has

w1, w2, ...wk (k ≥ 1) as leaves. Then the semantic relatedness from the expression A to a word w is defined

as:

SR(A,w) =
∏

1≤i≤k

(SR(wi, w))
αi (2.6)

where αi is a weight for the depth of wi in the constituent tree of the structure. Suppose in the constituent

tree TA for expression A, word wi has depth di, e.g. the distance between wi and the root of TA is di, then

the weight depth αi for wi in A is defined as:

αi =
2di∑

1≤j≤k 2
dj

(2.7)

In this way, deeper words is in the constituent structure of A matters more in any semantic relatedness from

A. Now consider another arbitrary expression B, with constituent words w′
1, ...w

′
l (l ≥ 1), associated with

depth weight β1, ...βl in B, then the semantic relatedness from A to B is defined as:

SR(A,B) = (
∏

1≤i≤l

SR(A,w′
i))

βi (2.8)

which can be spelt out as:

SR(A,B) = (
∏

1≤i≤k,1≤j≤l

SR(wi, w
′
j))

αiβj (2.9)

Such a definition has covered semantic relatedness from arbitrary structures (without duplicated words) to

arbitrary structures in CTNs, which weighs more on deeper constituent words and phrases in the structures.

In this way, it is able to distinguish different structures with constituent words, e.g. the two parses for

decorate cake with icing and dog chase cat versus cat chase dog.

Two explanations are needed for the definitions. First the relatedness are reduced to activation between

word nodes, but not taken directly on phrase or sentence nodes despite the explicit encoding of these complex

expressions. The reason are two folds. For one reason, the model need to evaluate expressions that have
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not been encoded in the CTN. For example, suppose cut and pie have occurred in the corpus, but not the

phrase cut pie, there would be no phrase node in the CTN for cut pie. Nevertheless, since its constituent

words must have been encoded in the network, a definition reducing to word-word relatedness is always

legitimated. Moreover, for phrases that have been encoded in the network, different definitions would lead

to different representational capability of the model. In short, defining phrasal relatedness directly by the

activation from it to others results in a summation of its lexical relatedness but not the product of the lexical

relatedness as given in 2.6 and 2.9. This brings to the second explanation to make. The question is: Why

phrasal relatedness is defined as the product of lexical relatedness rather than their sum.

The most direct answer is that multiplication always counts the effect from both constituents, while sum-

mation is very likely to reduce the phrasal relatedness to lexical relatedness of one of its constituent.

For example consider SR(cut cake, knife), in the case that SR(cut, knife) = 0.3 is a lot larger than

SR(cake, knife) = 0.03 and SR(grass, knife) = 0.01, a summation definition leads to SR(cut cake, knife) =

0.33 and SR(cut grass, knife) = 0.31. In both cases, the phrasal relatedness is approximately SR(cut, knife),

and thus the phrasal relatedness is reduced to lexical relatedness. Such a situation is not ideal for the situation

that cut cake and cut grass do have significant difference in terms of collocation with knife. Alternatively, the

multiplicative definition would circumvent this issue. Regardless of the scales of the lexical relatedness, the

product of lexical relatedness maintains the magnitude effect of both components in the phrasal relatedness,

e.g. SR(cut cake, knife) = 0.1 and SR(cut grass, knife) = 0.05. The different scales for lexical relatedness

result from the spreading-activation measure: the activation spread through a path is exponential to its

length, which means linear difference in terms of graphical distance usually leads to exponential difference in

terms of semantic relatedness. The phenomenon is common in distributional graphs. As a result, to prevent

the phrasal relatedness from reducing to word-word relatedness, the definition need to be by multiplication

instead of by summation.

2.4 Summary

In general, Distributional Graph is a modeling approach aiming at representation of semantic memory and

language meaning. The structures are formed from memory traces in linguistic forms (word, phrase or

sentence) after trivial (word co-occurrence) or sophisticated (constituent tree) syntactic processing. Encoding

of the co-occurrence gives rise to a distributional representation of word relationships, while concatenation of

the traces leads to indirect relation between not co-occurred words. Furthermore, the spreading-activation

based measure of semantic relatedness defined on Distributional Graph may produce a graded measure of

word-word and phrasal relations. The benefits of distributional representation of indirect lexical relations

will be the focus of chapter 3. In addition, incorporating linguistic structures in the graphs may lead to a

representation that can handle complex multi-way lexical relationships. In chapter 5, I show that explicit

encoding of the constituent structure in CTN leads to its capability in compositional generalization that

requires a representation of complex lexical dependencies.
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Chapter 3

Linear Order Network

3.1 Introduction

Representing and processing semantic information is fundamental to language. The sequence ‘babies sleep’

is more easily processed than ‘cars sleep’, and the sequence ‘ideas sleep’ is even more difficult to process.

Because all three sequences are grammatical and share the same syntactic structure, it is most natural to

explain the difference in ease of processing at the semantic level. While neither cars nor ideas can sleep,

it is easier for most people to metaphorically imagine a car sleeping than an idea sleeping. This example

illustrates that semantic relatedness between words is an important part of people’s ability to process and

understand language.

The large number of words in natural languages, and the number of different ways that words can be

related and paired, presents a daunting challenge for modeling semantic relatedness. Distributional models of

semantic memory have been quite successful at modeling coarse-grained semantic tasks such as categorization

(Landauer, Foltz, & Laham, 1998; Lund & Burgess, 1996; Huebner & Willits, 2018) and semantic priming

(Griffiths, Steyvers, & Tenenbaum, 2007; Kumar et al., 2019; Landauer et al., 1998; Mandera, Keuleers, &

Brysbaert, 2017). And despite the success and wide applicability of both co-occurrence-based vector space

models and more recent neural network models like Word2Vec (Mikolov et al., 2013), BERT (Devlin et al.,

2019) and GPT-3 (Brown et al., 2020), these models still have known shortcomings. For example, these

models often fail at rudimentary language tasks involving structured relations or compositionality (Gershman

& Tenenbaum, 2015; B. M. Lake & Murphy, 2020; Marcus, 2020). And while the semantic coherence of large

language models like GPT-4 is truly impressive, the fact that they require orders of magnitude more data in

order to achieve that performance raises serious questions about their feasibility as models of human semantic

representation. As a consequence, questions remain about the capacity of these kinds of models to represent

the various kinds of semantic relations that humans use to represent and comprehend language.

In this chapter, I address the question of what kind of semantic representations and processes might best

support the human ability to produce graded semantic plausibility judgments of multi-word sequences. I

discuss the advantages and disadvantages of representing word co-occurrence information and word similarity

information in high-dimensional vector spaces, versus other approaches that represent this information in a

connected graph (Anderson & Bower, 1974; Collins & Loftus, 1975; Deyne et al., 2016; Gentner, 1975; Rotaru

et al., 2018). I then present a set of experiments designed to test the capacities of these models at predicting

quantitative differences in semantic plausibility of predicate-argument pairs.
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The chapter is organized as follows: First, I describe the importance of lexical semantic relatedness in

determining the semantic plausibility of a sentence. Second, I review the distributional approach to semantic

modeling, and describe some features or properties that differentiate how lexical semantic relatedness is

acquired by different semantic models. The major properties examined are the representational structure of

the model (graphical vs. spatial), and the type of information that is encoded (co-occurrence vs. similarity).

Third, I discuss the construction of an artificial corpus that is built for the purpose of training and evaluating

our models. Fourth, I report model performances in a selectional preference task that requires learning of

semantic relations instantiated in the training data and making inferences about unobserved relations. Fifth,

I explore the individual contributions of representational structure and information encoding type and their

interaction to performance in this task. Finally, I discuss the results more broadly in the context of models

of semantic development. To note, this chapter has been published as an article in the Psychology Review

journal, titled ‘Spatial versus graphical representation of distributional semantic knowledge’, which can be

found in https://psycnet.apa.org/record/2024-24081-001?doi=1.

3.1.1 Simple Sentences and Syntagmatic Relations

The study of semantic knowledge representation can be approached from multiple perspectives. One important

starting point is establishing what behavioral or empirical phenomenon one is trying to model or explain.

Historically, researchers have examined a diverse array of phenomena, including the learning of word meanings,

semantic priming, categorization and typicality effects, judgements about factuality or plausibility, and

sentence production and comprehension. In this paper, I focus on how representations and processes

underlying lexical semantic relatedness contribute to plausibility judgments of multi-word sequences.

There have been many proposals for how to characterize the nature and kinds of relations that can affect

the semantic plausibility of multi-word sequences. One of the most foundational distinctions is between words

that have a syntagmatic relationship and words that have a paradigmatic relationship (de Saussure, Bally,

Sechehaye, Reidlinger, & Baskin, 1960; Sahlgren, 2006). To recall, words that are syntagmatically related

are words that can “go together” in language, operationally defined as linguistic co-occurrence or thematic

relatedness. Syntagmatic relatedness is most often and most easily used to describe noun-verb relations

(drink-coffee, walk-dog), but can also be used to describe adjective-noun relations (hot-coffee, brown-dog) and

noun-noun relations (cup-coffee, leash-dog) where relatedness is defined as co-occurrence or joint participation

in the same event. Syntagmatic relatedness can be distinguished from paradigmatic relatedness, which links

words that are substitutable with one another in the linguistic structures in which they occur. For example,

tea is paradigmatically related to coffee, because tea and coffee can be substituted with minimal impact on

the meaning of the sentences or their semantic plausibility.

Syntagmatic and paradigmatic relations are related concepts. For instance, under many theories (like those

using some form of distributional learning), syntagmatic relatedness can be inferred based on a combination

of paradigmatic and syntagmatic relatedness. For instance, based on previous knowledge of the paradigmatic

relatedness of dog-puppy, and the syntagmatic relatedness of dog-leash, one can infer that puppy and leash

are also likely to be syntagmatically related.

When judging the semantic plausibility of sentences, syntagmatic relatedness is probably more influential.

The sentences Mary drank the coffee and Mary walked the dog are plausible, and Mary drank the dog and

Mary walked the coffee are not, because they mismatch in their syntagmatic but paradigmatic relations. In

other words, it seems to make more sense to describe the plausibility of sentences in terms of how well the

words drink and coffee go together (compared to drink and dog), and not in terms of their substitutability.
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3.1.2 Selectional Preference

In this chapter, I am interested in how well different distributional semantic models acquire the selectional

constraints on noun-verb pairs from linguistic data. I will use the term ‘selectional preference’ to describe

constraints that determine which word pairs result in semantically plausible combinations (e.g. babies sleep)

and which do not (e.g. ideas sleep). For example, baby is a better argument than idea for the verb sleep.

Selectional preference is a quantitative (i.e. graded) phenomenon, and therefore requires a numerical score

for each predicate-argument pair (Erk, Padó, & Padó, 2010). Thus, it is critical that model judgments are

derived on a continuous as opposed to discrete (“related vs. unrelated”) scale.

We can derive a measurement of selectional preference from most semantic models equipped with

quantitative measures of lexical relatedness. For example, many models represent words as vectors, and their

relatedness as distances in a vector space (Osgood, 1952; Smith et al., 1974; Griffiths et al., 2007; Landauer

& Dumais, 1997; Jones & Mewhort, 2007; Mikolov et al., 2013; Huebner & Willits, 2018). Other models

represent semantic relations in a graphical structure (network or tree-like), with connections that vary in

strength, and/or with a spreading activation mechanism that allows for a quantitative degree of relatedness

between words (Collins & Quillian, 1969; Collins & Loftus, 1975; Elman, 1990; McRae, de Sa, & Seidenberg,

1997; Miller, 1992; Nelson et al., 2004; Steyvers & Tenenbaum, 2005; Rumelhart & Todd, 1993; Rogers &

McClelland, 2004). These models, despite varying considerably in their operational definitions of semantic

relatedness, all provide a way to measure the relatedness between arbitrary word pairs. Therefore, it is

possible to use model-derived relatedness scores as a proxy for selectional preference.

In this chapter, I use model-derived selectional preference judgments to evaluate the representational

capabilities of different distributional semantic models. Importantly, to perform well in the evaluation, a

model must not only assign higher semantic relatedness to word pairs that frequently co-occur, but also to

word pairs that are more semantically plausible despite not having been observed during training (e.g. cars

sleep is more plausible than ideas sleep). By comparing a model’s selectional preferences to the corpus on

which it was trained, we can make inferences about which models or properties of models are most useful

for acquiring syntagmatic knowledge, and deploying that knowledge to make inferences about semantic

plausibility.

Broadly speaking, this chapter presents a systematic comparison of many distributional models of

semantics, with a specific focus on their ability to represent syntagmatic relations and using their learned

representations to infer the semantic plausibility of observed and novel word sequences. There are four

major differences between this approach and that of previous studies. First, the current work systematically

explores differences between graphical models built from language-internal distributional data and more

traditional spatial models built on the same amount and kind of data. While several graphical models

have been proposed in the semantic modeling literature, they have rarely been compared to spatial models

while systematically controlling for differences in their training data, learning algorithm, and other modeling

parameters. Second, I conducted a systematic comparison of model properties and parameters to better

understand their individual contributions and their interactions. The third difference is a focus on the

quantitative rather than qualitative nature of semantic relatedness. Previous work has focused on qualitative

analyses, such as distinguishing “related” versus “unrelated” word pairs (Bullinaria & Levy, 2007, 2012;

Erk et al., 2010; Huebner & Willits, 2018) However, in this chapter I am more interested in the ability of

models to reproduce a gradient of selectional preference that can be used to rank-order multiple word pairs

by semantic plausibility. For example, given the pairs ‘trap rabbit ’ (observed), ‘trap boar ’ (unobserved, more

plausible), ‘trap water ’ (unobserved, less plausible), previous evaluations required that a model only produce
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relatedness scores that differentiate the observed pairs from the unobserved. That is, a model only needed to

correctly judge ‘trap rabbit ’ > ‘trap boar ’ and, separately, ‘trap rabbit ’ > ‘trap water ’. In contrast, to succeed

in our evaluation, a model must produce the correct rank-ordering ‘trap rabbit ’ > ‘trap boar ’ > ‘trap water ’.

3.1.3 Interested Modeling Parameters

When semantic models are used to predict data and their performances are compared, it is not always clear

why a particular model outperformed another. Unlike well-controlled experiments, computational models

are complex, and usually vary in many ways at once. Which of these differences actually lead to differential

performance?

In this chapter, I closely examine the effects of two of these dimensions, the Representational Structure

(space vs. graph), and the Encoding Type in those spaces and graphs: word co-occurrences vs. distributional

similarities based on word co-occurrence. Thus, I create four main classes of models: a co-occurrence space

model, a similarity space model, a co-occurrence graph model, and a similarity graph model. The motivations

for systematically exploring these two dimensions are both practical and theoretical. From a practical

standpoint, graphical models are under-represented in contemporary semantic modeling, especially in research

on automated information extraction from large naturalistic language data. Spatial models predominate in

this area due to the simplicity and efficiency of algorithms used for training on large, unstructured data-sets.

This state of affairs exists primarily due to practical reasons (e.g. availability of efficient algorithms for

training and/or inference), but does not reflect theoretical or empirical advantages of spatial over graphical

models. As such, the paucity of graphical models is potentially concealing as of yet unknown benefits that

would result if they could be made to perform as efficiently as contemporary spatial models. Specifically,

graphical models are rarely trained on or constructed with word co-occurrence data, and even less rarely

using large corpora of natural language. To address this paucity of research, I propose a graphical model

trained on distributional linguistic data (word co-occurrence). In the upcoming sections, I discuss theoretical

considerations for our proposal. In particular, I will argue that graphical models, while under-represented

in the literature, may be useful for addressing limitations on the representational abilities of contemporary

spatial models.

3.1.4 A Limitation of Spatial Models

All spatial models represent words as vectors, whose dimensions may be populated with features specified

directly by the modeler, from norming studies, or from naturalistic data like linguistic corpora. For example,

the dimensions of a feature-based vector for fish might consist of the proportion of raters who judged fish

on some feature dimension (e.g., ‘can-fly’, ‘can-swim’, ‘has-beak’). Most proposed spatial models derive

their semantic information from linguistic data from a naturalistic corpus, such as how often fish co-occurs

with other words, or the number of times fish occurs in each of a set of documents. Most spatial models

normalize these co-occurrence counts in some manner, such as converting co-occurrences to pointwise mutual

information values (Bullinaria & Levy, 2007).

Given the large number of dimensions in models trained with vocabulary sizes that are often in the tens

of thousands, dimensionality reduction is typically performed after vectors are populated with co-occurrence

counts. Typically, this involves using an algorithm like Singular Value Decomposition (Landauer & Dumais,

1997), Latent Dirichlet Allocation (Blei, Ng, & Jordan, 2001), or Random Vector Accumulation (Jones

& Mewhort, 2007). In addition to reducing the size of the vectors, dimensionality reduction also serves
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several other useful purposes. These procedures reduce the sparsity of semantic vectors (which, if unreduced,

typically contain mostly zeros). Another consequence is that dimensionality reduction serves as a method

for generating more abstract representations, since the resulting dimensions serve as latent variables that

aggregate information in multiple rows or columns with similar covariance. For example, in a co-occurrence

matrix where robin, eagle, and crow all co-occur with wing, fly, feathers, and beak, the columns for these

words can end up being combined into one or more abstract latent dimensions on which words related to

birds load highly compared to other words like airplane or penguin which share fewer features with birds.

Despite their widespread use in both NLP applications and cognitive modeling, spatial models suffer

important limitations with respect to accounting for the full range of human semantic abilities. One critical

issue is that spatial models cannot distinguish - in a principled fashion - between different types of semantic

relations (such as syntagmatic vs. paradigmatic) in the same semantic space. Vector distance in a single

semantic space typically represents some combined measure of multiple different types of relations, or

emphasizes one or more relation types more strongly than others. To make this point clear, consider a

semantic model whose similarity scores are used to guess the right answer to a multiple-choice test, where the

cue is fast and the choices are speedy, slow, brown, and pointy. If the question is “What is the synonym?”,

versus “What is the antonym?”, the right answer changes, and the semantic model cannot possibly use the

most similar word to get both answers correct.

For a model to make principled distinctions between different kinds of relations, it would require one

vector space for each relation type - an inelegant solution, especially if the number of relations one wishes to

represent is large. Defenders of spatial theories of semantic cognition could question the necessity of principled

distinctions between different types of lexical relations. However, their psychological reality is supported by

the demonstrations that humans represent syntagmatic and paradigmatic relations and use them to construct

indirect semantic relations - a signature of human cognition (Balota & Lorch, 1986; McNamara & Altarriba,

1988; Chwilla & Kolk, 2002).

The idea that spatial models struggle to distinguish different types of relations and to form indirect

relations based on those distinctions is supported by their poor performance on tasks that require indirect

relations. For example, Peterson, Chen, and Griffiths (2020) examined the performance of spatial models

(using Word2Vec and GloVe) on a relational analogy task, of the form king:man :: queen:woman. This type

of evaluation was first reported by Mikolov et al. (2013), on the basis that a model used to account for

the structure of human semantic memory should be able to represent higher-order similarities, such as the

similarity between king-man and queen-woman. Peterson et al. (2020) measured the similarity between word

pairs (represented as vector differences) and correlated these scores to human judgements. Consistent with

the idea that spatial models cannot explicitly represent indirect relations, the authors found that the models

did not perform consistently across a diverse set of analogy types. While the models successfully predicted

human ratings for the relation type CASE (e.g., soldier-gun, plow-earth), they performed poorly on other

relation types, such as SIMILAR (e.g., car-auto, simmer-boil), CONTRAST (e.g. old-young, buy-sell), and

NON-ATTRIBUTE (e.g. fire-cold, corpse-life). Of note, the spatial models performed well with syntagmatic

relations (soldier-gun, plow-earth), but poorly with paradigmatic relations (simmer-boil, old-young), and

especially poorly with those that indirectly bind the two (e.g., fire-cold can be decomposed into fire-warm

and warm-cold).

It is possible that the failure of spatial models to succeed across all relational analogy types is because

their representational substrate is suboptimal for flexibly combining different types of relatedness among

words, and to use such combinations to infer the strength of indirectly related word pairs. The experiments
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below are designed to test this limitation explicitly. Strong performance on the selectional preference task

requires 1) the ability to represent both paradigmatic and syntagmatic relatedness in the same model, and

2) leveraging both kinds of relatedness simultaneously to predict indirect relatedness. I show that spatial

models tend to represent either syntagmatic or paradigmatic relatedness, and that their failure to represent

both in a principled manner limits their ability to infer indirect relatedness.

3.1.5 A Limitation of Graphical Models

In graphical models, words correspond to nodes in a graph, and relations among words are represented as

edges between nodes. One advantage of the graphical structure over spatial models is their straightforward

encoding of indirect relations. For example, the indirect relation stripe-lion can be represented as a chain of

edges that connects stripe to tiger, and tiger to lion.

While this property of graphs makes them promising for inferring indirect relations, previously proposed

graphical models suffer from a limitation not shared by existing spatial models: In contrast to spatial models,

existing graphical models are typically populated either with hand-specified relations (Collins & Quillian,

1969; Steyvers & Tenenbaum, 2005) or with normative word association data (Deyne et al., 2016; Kenett,

Kenett, Ben-Jacob, & Faust, 2011; Kenett, Beaty, Silvia, Anaki, & Faust, 2016; Kenett, Levi, Anaki, &

Faust, 2017; Kumar et al., 2019; Steyvers & Tenenbaum, 2005). Due to the differences in the materials

used as input to graphical models compared to spatial models, which are often trained on large corpora as

opposed to normative association data, it is impossible to make strong conclusions about whether differences

in capabilities of the two model types are due to representational structure or information source. In addition,

these normatively formed semantic networks are derived from established relations in human semantic memory

and are thus useful only for characterizing the end-state of semantic development, rather than the process

by which the semantic network is formed. Put differently, most graphical models of semantic knowledge

were developed to account for the structure of semantic memory, not its development. In this chapter, I am

concerned with the latter: How can we build semantic networks from language input with both efficiency and

developmental plausibility in mind?

The lack of contact with learning and developmental processes is a substantial issue for graphical models.

The methodological gap between language input and linguistic representations must be filled for graphical

models to be trained on large, naturalistic corpora. There have been few recent investigations of this issue.

That said, while some work on semantic networks by Hills, Maouene, Riordan, and Smith (2010), Deyne et al.

(2016), and Rotaru et al. (2018) has examined the construction of graphs directly from corpus data, these

models were not trained on the scale at which spatial models are often trained. This makes existing graphical

models unsuitable for comparison with many spatial models trained on corpora consisting of many millions

and even billions of words. Given the current state-of-the-art, the best spatial models may outperform the

best graphical models simply because they were trained on much larger corpora. Such a comparison however

would be more valid if graphical models could be trained on data that is equally large as, and in a manner

comparable to, the standard method for training spatial models.

3.1.6 Combining Spatial and Graphical Models

To summarize, while spatial models can be efficiently trained on large corpora of natural language, graphical

models excel at making inferences about indirect semantic relations. A similar point was recently made by

Kumar, Steyvers, and Balota (2022), who wrote that:
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...it seems most likely that modern distributional models (specifically multimodal DSMs) provide

a promising account of learning meaning from natural environments, whereas semantic network

accounts provide useful conceptual tools to probe these representations and the processes that

operate upon these representations. (p.19)

Given the complementary strengths of the two modeling approaches, a system that can take advantage of

both strengths would be an important contribution to the field of semantic modeling. Here, I argue that

such an integration can be accomplished. I show that the Co-occurrence Graph (Linear Order Network,

or LON) model inherits the complementary strengths of graphical and spatial models but does not suffer

the limitations of the latter. Specifically, the data structure of the proposed model is graphical, but the

mechanism for deriving the graphical structure is based on the same co-occurrence counting methods used to

construct many spatial models from corpus data. I then test the feasibility of using co-occurrence frequency,

and word similarity as the basis for connecting word nodes. The latter is the subject of prior work (Rotaru et

al., 2018), and the current comparison builds upon and extends this work.

Figure 3.1: A schematic illustration of the construction of the four model types investigated, with text in
center (dog chase cat/cat chase mouse) the toy corpus for illustration. (a) spatial co-occurrence representation
in matrix form where rows are word vectors whose elements contain the frequencies of co-occurrence with
words that label the columns. (b) spatial similarity representation derived from (a), where each entry is
the similarity between co-occurrence word vectors. (c) graphical co-occurrence representation derived from
co-occurrence matrix (d) graphical similarity representation derived from the similarity matrix in (b).

Before describing the procedure used to train the proposed model, I first illustrate the way in which

spatial distributional models are typically created. Given a toy corpus consisting of two sentences ‘dog chase

cat. cat chase mouse’, a four-by-four matrix of bi-directional word-word co-occurrences with adjacent words
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(i.e., with window size = 1) can be formed, shown in Figure 3.1a. Here, the entry (i, j) in the matrix is

the bi-directional co-occurrence between i’th and j’th word. From this word co-occurrence matrix, a word

similarity matrix (shown in Figure 3.1b) can be constructed using some pairwise comparison between pairs of

row vectors (such as the cosine of the angle between vectors). Thus, within the spatial framework, two kinds

of models can be constructed: The relatedness of words i and j can be obtained either from the co-occurrence

count in cell (i, j) of the co-occurrence matrix, or the similarity score in cell (i, j) of the similarity matrix.

Henceforth, I will refer to these two types of models as Co-occurrence Space and Similarity Space models,

respectively.

The same matrices can be reused to construct corpus-derived graphical models. Because both the columns

and rows refer to words we wish to represent, the co-occurrence matrix and the similarity matrix can each be

considered an adjacency matrix of a graph. When deriving adjacency information from the co-occurrence

matrix, the words become nodes in the graph, and are connected by an undirected weighted edge proportional

to the value of the corresponding entry in the co-occurrence matrix (provided an entry is non-zero). I refer

to the resulting model as a Co-occurrence Graph (illustrated in Figure 3.1c). Similarly, we can construct

a graphical model in which the weights of edges are derived from the similarity score of the words in the

similarity matrix. I refer to the resulting model as a Similarity Graph (illustrated in Figure 3.1d). In total,

we consider four types of models that vary along two dimensions, namely Representational Structure (graph

vs. space) and Encoding Type (co-occurrence vs. similarity) in the other.

3.1.7 Artificial Corpus

Semantic models built from linguistic corpora have several advantages. They have the practical advantage

that obtaining a corpus is cheaper and easier than obtaining an equally sized normative dataset, and much

easier than hand-labeling semantic relations. And perhaps most importantly, corpus-based models have

a theoretical advantage, in that their structure and complexity is critical to distribution-based theories of

knowledge representation. However, semantic models built from large naturalistic corpora have a matching

disadvantage: the size of the corpus, and the complexity of the information contained in it, can make it

difficult to understand precisely what aspects of the input contribute to the success of a model. Popular

neural network models such as GPT-3, Word2Vec, and BERT, are trained on natural language corpora

containing millions or billions of words, represented across millions or even billions of parameters. This can

make understanding what kind of knowledge they have acquired very difficult.

There are two different strategies for researchers aiming to develop better models of human semantic

knowledge. The first (and most common) approach is to focus on their fit to empirical data, such as sentence

reading times, eye-tracking and EEG data obtained during sentence processing, semantic priming data, and

normative judgements (of relatedness, similarity, categorization, and semantic facts). The second approach,

and the one that is pursued in throughout this dissertation, is to design artificial datasets that are created to

highlight specific formal scenarios and can be used to test a model’s formal capabilities.

Using an artificial corpus has many advantages when trying to understand the basic workings of complex

distributional semantic models, such as large language models. The first and most obvious is that it allows

one to precisely control the language, such that the only important sources of variability in the language are

those that match the theoretical question that is being tested. This allows for control of the vocabulary size,

the syntactic structure, and the semantic relationships in the language, allowing for more controlled tests of

the models’ abilities. A second advantage is that limiting the size and complexity of the language allows the

models to be more interpretable. Instead of needing to understand and interpret billions of parameters, we
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can deal with models that have only dozens or hundreds. This makes understanding what the model can

do much easier. There is a growing number of studies that have made use of artificial language corpora to

understand the representations learned by complex models (Asr & Jones, 2017; Elman, 1990, 1991, 1993;

Perruchet & Vinter, 1998; Ravfogel, Goldberg, & Linzen, 2019; Ri & Tsuruoka, 2022; Rubin et al., 2014;

Clair, Monaghan, & Ramscar, 2009; Tabullo et al., 2012; Wang & Eisner, 2016; White & Cotterell, 2021;

Willits et al., 2015).

3.2 Method

3.2.1 An Artificial Corpus to Describe A Simulated World

To generate the linguistic corpus, I first create a miniature world simulation, which consists of agents that

have goals, and events that occur as those agents set out to achieve their goals. I then generate a linguistic

corpus composed of simple sentences that describe the sequences of events that occur in the world. The

events in the simulated world take place in temporal order which is determined by pre-designed intrinsic

event structures. Although both the world and the language generated from it are simplified compared to the

physical world and language in reality, it has the advantage of being completely under control. Unlike many

artificial grammars which generate sentences that are semantically isolated from one another, consecutive

sentences in our corpus relate semantically with one another, due to the predefined event structures.

Unlike previous works (Erk et al., 2010) that used selectional preference to evaluate semantic models

trained on naturalistic corpora, I incorporate selectional preferences into the artificial corpus. To be more

specific, I manipulate which nouns can be agents or patients for each verb, with what frequency or probability.

The detailed procedure followed for generating the events in the world and then for generating the corpus

that describes those events can be found in Appendix A of the journal article. Here, I briefly summarize the

structure of the world, and the corpora generated from it for examining the models.

The Simulated World

The Agents and objects (organized into a taxonomy) take actions in the simulated world. The full set of

agents and objects (and the categories to which they belong, noted in all caps) as well as the full list of actions

(and the arguments for those actions) are shown in Table 3.1. As listed in Table 3.1, there are 5 categories of

agents and 5 categories of objects. A member of AGENT (referred to simply as agent) in the world may

appear as the agent of a verb, while other entities may not. Each category consists of three entities, also

referred to as members. For the category CARNIVORE, one out of three members is randomly selected, and

for other categories two out of the three members are randomly selected so that there are 19 entities (nouns)

across the 10 categories when the world is initialized. And there are 20 possible actions (a fixed set of verbs)

in each simulation.

The set of actions that can be performed by an entity is dictated by its category (e.g., HUMAN). A

selection of these rules are shown in Table 3.2. Table 3.2 can be used to determine which nouns may occur

with which verbs, in either the agent or patient role. These rules manifest as selectional preferences in the

corpus. Need to note, we labeled the nouns in the corpus by both their name, e.g., ‘tiger’, ‘water’, and their

thematic role. For example, in the sentence ‘tiger chase rabbit’, the full labels for the entities are ‘tigera’ and

‘rabbitp’. In contrast, in the sentence ‘rabbit sleep’, the full label for the noun is ‘rabbita’. Consequently,

‘rabbita’ and ‘rabbitp’ are taken as distinctive word types in the corpus and by each semantic model. The
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Table 3.1: Categories of Objects in the Simulated World. Upper-case words denote categories of entities,
while lower-cased words denote entities or actions in the simulated world. Brackets are used to group entities
that belong to the same category. Parentheses are used to group entity categories involved in action, as either
agent (in first position), or patient (in second position).

Animate Agent Inanimate object and Location

AGENT = [HUMAN, NONHUMAN] FOOD = [NUT, FRUIT, PLANT, AGENT]
HUMAN = [Mary, Kim] NUT = [walnut, cashew almond]
NONHUMAN = [CARNIVORE, HERBIVORE] FRUIT = [apple, pear, peach]
CARNIVORE = [wolf, tiger, hyena] PLANT = [grass, leaf, flower]
HERBIVORE = [S HERB, M HERB, L HERB)] LIQUID = [water, juice, milk]
S HERB = [rabbit, squirrel, fox] Location = [river, tent, fire]
M HERB = [boar, ibex, mouflon]
L HERB = [bison, buffalo, auroch]

Intransitive action Transitive action

rest(AGENT) go to(AGENT, LOCATION)
search(AGENT) chase(AGENT, AGENT)
lay down(AGENT) drink(AGENT, LIQUID)
sleep(AGENT) eat(AGENT, FOOD)
wake up(AGENT) reach(HERBIVORE, PLANT)
get up(AGENT) catch(CARNIVORE or HUMAN, HERBIVORE)
yawn(AGENT except S HERB) peel(HUMAN, FRUIT)
stretch(AGENT except S HERB or L HERB) crack(HUMAN, NUT)

throw(spear) at(HUMAN, L HERB)
shoot(HUMAN, M HERB)
trap(HUMAN, S HERB)
stab(HUMAN, S HERB)
butcher(HUMAN, NONHUMAN)
gather(HUMAN, FOOD)
cook(HUMAN, NONHUMAN)

motivation for this was to preserve the semantics of the world, which is based on asymmetries with respect to

which entity can perform which action as either agent or patient. The co-occurrence encoding, however, is

invariant to such distinctions in situations in which word-order does not correlate with thematic role. For

example, ‘rabbit’ and ‘tiger’ in the transitive sentence ‘tiger chase rabbit’ are coded identically when counting

co-occurrences, despite their difference in thematic roles. If the corpus has many sentences like ‘tiger chase

rabbit’, ‘rabbit’ will be distributionally similar to ‘tiger’, despite ‘rabbit’ not being allowed to perform the

chase action, as dictated by the rule book (in Table 3.2).

Implicit in this table are semantic facts which we may use to compute the target preferences for our

selectional preference task. For example, ‘tiger’ is more similar to ‘Mary’ than to ‘rabbit’ when they are in

the agent role. This semantic fact in the world is quantified by comparing the row vectors associated with

each entity in Table 3.2.

The Corpus

Corpus generation proceeded as follows: At each time step, agent entities took turns performing actions

contingent on their drive levels and the event structure in which they were situated. If an agent successfully

carried out an action, a sentence describing the action was generated and added to the corpus using the
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Table 3.2: A Subset of Rules and Hypothetical Frequencies of Events. The rules govern what entities were
allowed to perform which actions in the simulated world. The subscripts a and p denote whether a word was
an agent or patient in each sentence. The co-occurrence rules differed based on agent/patient status, and
therefore so did the co-occurrence frequencies.

Rules Hypothetical Frequencies

Noun crack chase eat drink crack chase eat drink

Marya 1 1 1 1 2 3 5 6
tigera 0 1 1 1 0 2 7 4
rabbita 0 0 1 1 0 0 3 3

Maryp 0 1 0 0 0 6 0 0
tigerp 0 0 0 0 0 0 0 0
rabbitp 0 1 1 0 0 10 7 0

formulas S1 = Agent + IntransVerb and S2 = Agent + TransVerb + Patient. The formula that was chosen

depends on the verb type. Every sentence was followed by an optional utterance boundary marker (a minor

parameter, see Table 3.3). I used the 10 simulations to generate 10 different corpora, with differences that

resulted from which specific members of each category were selected during random initialization of entity

locations and drive values. Despite this variation, the general semantic structure of the world was extremely

consistent across runs. On average, each corpus had 14330 sentences and 50204 word tokens. I experimented

on different corpus sizes and decided that the current size was sufficient to encode the stipulated semantic

constraints. The vocabulary consisted, on average, of 10 agent nouns, 17.9 patient nouns, and 22.9 verbs of

which 14.9 are transitive.

Due to the semantic constraints posed in the simulated world (left, Table 3.2), only a subset of verb-noun

combinations are allowed to occur in the corpus. The frequency of their occurrence in the corpus reflects the

number of times their associated events occur in the simulation. To provide a sense of their frequencies, the

same table (on the right) also shows the frequencies of their occurrence derived from one hypothetical run of

the simulation. Due to the tight coupling between the world and the corpus, the distributional statistics in

the corpus can be said to be grounded in the statistics of the simulated world. As a consequence, this enables

us to use the generated distributional data not only for training of semantic models, but as the criterion for

testing the representational capabilities of the semantic models.

3.2.2 Experimental Design for Testing Semantic Models

As described, this chapter is mainly concerned with comparing the relative performance of spatial versus

graphical models (controlling for the difference between co-occurrence and similarity data) to represent the

semantic structure of the simulated world. However, there are a number of other parameters and factors

that must be fixed when building co-occurrence matrices, and which have been shown to have a large effect

on their performance (Bullinaria & Levy, 2007, 2012; Sahlgren, 2006). Because these parameters are not

of the primary concern here, I built a set of models that varied along these minor parameter dimensions,

and then computed the mean and best performing model for each of the four main conditions, but did not

further investigate the theoretical and empirical effects of the minor parameters. Consequently, I trained

216 different co-occurrence space and graph models, each varying on one of six minor parameters, related to

corpus pre-processing or the calculation of co-occurrences. These manipulations are shown in Table 3.3.
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Table 3.3: Minor Parametric Variations. All combinations led to 216 different models based on how co-
occurrences were counted and normalized.

Parameter Options

Periods included as words in the corpus yes, no
Co-occurrence cross sentence boundary yes, no
Co-occurrence window size 1, 2, 7
Co-occurrence window weight flat, inverse
Co-occurrence window direction forward, backward, summed
Normalization non, row-log, PPMI

These 216 models were also run for the similarity space and graph models. However, two additional

parameters were varied for the similarity models, shown in Table 3.4, namely (i) whether the co-occurrence

matrix was reduced via SVD, or left in its original form, before similarities were computed, and (ii) which

similarity metric was used (the distance between vectors, the cosine of the vectors’ angle, or the correlation

between the vectors). While not being the primary interest of this work, I included these manipulations

to strengthen confidence in the primary conclusions. Further details on how these parameters affected the

creation of the co-occurrence matrices and the calculation of the co-occurrence and similarity scores can be

found in Appendix C in the journal article. For more information about effects of minor parameters on the

performance of spatial models, readers may refer to Sahlgren (2006), Bullinaria and Levy (2007), Bullinaria

and Levy (2012), and Rubin et al. (2014).

Our experimental design is composed of 6 minor parameter dimensions (Table 3.3), each nested in one of

two major parameter dimensions (Table 3.4), resulting in 3024 model variations to examine. I trained all

3024 model variations on the artificially generated corpus, and obtain, for each model, a semantic relatedness

table that contains relatedness scores for every word pair in the vocabulary. Note that the same noun may

occur twice in the vocabulary if it is used both as an agent and as a patient. I evaluate each model using the

selectional preference task in which a model’s semantic relatedness (SR) scores is compared to the target

scores derived from the corpus statistics. How semantic relatedness is computed for different models is

discussed in the upcoming sections.

Table 3.4: Number of models in each of our major parameter conditions. For each data structure, there are 7
encoding types, based on different methods for computing similarity.

Data Structure Encoding Type

Unreduced Similarity (no SVD) Reduced Similarity (SVD)

Co-occurrence Distance Cosine Correlation Distance Cosine Correlation

Spatial n = 216 n = 216 n = 216 n = 216 n = 216 n = 216 n = 216
Graphical n = 216 n = 216 n = 216 n = 216 n = 216 n = 216 n = 216

3.2.3 Computing Semantic Relatedness

For the co-occurrence space models, semantic relatedness was calculated in the following way. Relatedness

between two words in the co-occurrence space at indices i and j was calculated as the simple co-occurrence
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value in the co-occurrence matrix (after normalization, for models that included it). One complication is that

these co-occurrence matrices were not always symmetric. For example, for models that track co-occurrences

in the forward direction only (from the word in row i to the subsequent word in column j), the cell (i, j)

encodes how often j followed i, and the cell (j, i) encodes how often i followed j. As I use these co-occurrence

values to predict relatedness in ordered sentence contexts, I always used the cell that corresponded to the

appropriate order given the sentence. For example, if trying to measure the semantic plausibility of the

sentence ‘Marya trap rabbitp’, I used the cell corresponding to the frequency of ‘rabbit’ occurring after

‘Maryp’. Due to this asymmetricity, from now on I denote SR(w1, w2) as the semantic relatedness from

word w1 to word w2, in that order. In this case, SR(Marya, rabbitp) denotes the semantic relatedness from

‘Marya’ to ‘rabbitp’, evaluated by the cell (Marya, rabbitp) of the co-occurrence matrix. For the similarity

space models, relatedness was computed by taking each word’s co-occurrence row vector, and computing its

similarity to the other word’s vector, using the similarity metric (cosine, distance, or correlation) for that

model. For both Similarity graph and Co-occurrence graph, the semantic relatedness SR(w1, w2) followed the

definition 2.2, with the upper bound modifier n = 0:

SR(w1, w2) =
∑

P∈Pw1,w2
,L(P )≤d(w1,w2)

SRP (w1, w2) (3.1)

In other words, SR(w1, w2) is defined as the amount arrived at w2 initialized from w1, through the shortest

paths between the two words.

3.2.4 Evaluation

To evaluate each model, it needs some way to establish the “right answer” that determines which words

should be syntagmatically related. There are, in principle, three ways this could be done. The first would

be to say relatedness is a binary feature, defined as whether the words were allowed to occur according to

the grammar that was used to generate the simulated world’s events. Under this definition, ‘ Marya’ and

‘eat’ would be related (because Mary can eat), and ‘rabbita’ and ‘shoot’ are not related, because in the

simulated world, rabbits cannot shoot. This particular evaluation was not the choice, as the interests lied

in seeing which models could produce the graded forms of relatedness that humans demonstrate. A second

option would be to use the actual frequencies in the corpus. This would produce graded differences but is

less interesting as the co-occurrence space model would be best at this, because that is literally what that

model is tracking. Such an evaluation would also lack the interesting property of demonstrating any form of

generalization beyond the data that humans do show. In the simulated world, Mary can shoot boars, but

cannot shoot rabbits or water. Nonetheless, we might expect that real humans would find it more plausible

that Mary can shoot rabbits than that she can shoot water. This is because, in the simulated world, rabbits

are more similar to boars than to water, in terms of the other semantic roles they can fill. Using simple

co-occurrence frequencies as the gold standard against which the models are compared would not allow us to

test a model’s ability to make these generalizations (or, more accurately, would punish them for doing so).

To decide the “right answer” (i.e., the semantic plausibility of a noun-verb pair), I opted for a third

option, namely a similarity-based procedure. In this procedure, the target scores were directly derived from

the corpus co-occurrence statistics. Importantly, however, the implementation differed depending on whether

a word pair is directly or indirectly related. In the former case, the target relatedness score is based on the

co-occurrence frequency of a given word pair; in the latter case, the target relatedness score is based on the

distributional similarity between a given noun and the nouns that co-occurred most frequently with a given
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verb. The higher the similarity between a noun that did not previously co-occur with a verb and nouns that

did, the higher the target relatedness score. The method of quantifying semantic relatedness is a simplified

version of prior methods based on similar ideas (Erk et al., 2010).

Computing the Target Relatedness

To illustrate how I computed target relatedness, consider the relatedness between the verb ‘crack’ and all

nouns that have occurred in the corpus in agent position. The relatedness score is computed differently

depending on whether a noun co-occurred with the verb or not. For nouns that co-occurred with ‘crack’ in

agent position, the semantic relatedness is simply the co-occurrence frequency. This is illustrated in Figure

3.2. Because Marya co-occurred with crack three times, the target relatedness for the pairMarya-crack is 2

(Figure 3.2b). The computation is different for nouns that did not co-occur with a given verb in the corpus.

For instance, ‘tigera’ did not co-occur with ‘crack’ (it is not allowed to be the agent of ‘crack’). To quantify

the relatedness of the pair tigera-crack, I obtained the nouns that did co-occur with crack in the corpus in

agent position, and calculated the average of the cosine similarity between ‘tigera’ and each of those nouns.

Note that the vectors used for similarity computation are the row vectors in Figure 3.2a. Given the example

presented in Figure 3.2, I computed the cosine similarity between ‘tigera’ and ‘Marya’ , which resulted in a

value of 0.91 (Figure 3.2b). When there are two nouns that co-occurred with a given verb, I repeated the

procedure, and averaged the resulting cosine similarities. For instance, the relatedness of rabbita-chase is the

average of the cosine similarity of tigera-chase and Marya-chase, which ends up being 0.88.

In this way, the relatedness of a noun and verb that did not co-occur is always smaller than the relatedness

of a noun and verb that did co-occur, since the co-occurrence frequency for a pair that co-occurred in the

corpus is at least 1, while the cosine similarity is upper bounded by 1. In general, relatedness is highest for

pairs where the noun frequently co-occurred with the verb, less high for pairs where the noun co-occurred with

the verb less frequently, and lower still for pairs where the noun did not co-occur with the verb. Importantly,

among the latter group of pairs, semantic relatedness is graded, such that pairs where nouns are more similar

to nouns that co-occurred with the verb score higher than pairs where the noun is less similar to nouns that

co-occurred with the verb.

Comparing Target and Model Relatedness Scores

Figure 3.2 illustrates the process of how corpus-derived and model-derived relatedness scores are compared,

using hypothetical data. I used Spearman correlation to evaluate the semantic relatedness scores produced

by the model (Figure 3c): each column in Figure 3.2c is correlated with the corresponding column in Figure

3.2b. The resulting correlations are averaged to obtain the performance of a single model. As an example,

consider the column representing the verb ‘crack’ to agent nouns in Figure 3.2b and 3.2c, namely [2, .91, .88]

and [.2, .05, .01], respectively . The Spearman correlation of two column vectors is 1. The average across

columns, and across all 10 corpora is the performance reported in the results. By averaging across multiple

corpora, high performance would be a strong evidence that the model is successful at learning, representing,

and inferring the fine-grained semantic relatedness between nouns and verbs.

Verbs differed widely in the proportion of nouns that did and did not co-occur with them in the corpus.

For instance, the verbs ‘eat’ and ‘drink’ co-occurred with many nouns in agent position in the artificial corpus.

This is illustrated in Figure 3.2. The nouns ‘Mary’, ‘tiger’ and ‘rabbit’ all co-occurred with eat and drink

at least once in agent position. Other verbs are more selective; for instance, verbs like ‘chase’ and ‘catch’
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Figure 3.2: An Illustration of the Model Evaluation Procedure. (a) First, a selection of noun-verb co-
occurrences are counted in the corpus. (b) Using this information, distributional similarities between nouns
are computed using pairwise cosine between row-vectors.(c) Next, model-derived semantic relatedness scores
are computed for the same selection of noun-verb pairs. Both the corpus-derived and model-derived relatedness
are flattened to a single column vector, and their correlation is computed. The resulting value is indicative of
a model’s ability to represent fine-grained semantic relatedness.

co-occurred with a smaller set of nouns in agent position. The same is true of pairs where the noun was in

patient position.

Given that these two situations require different kinds of inference by the model, the model evaluation was

split into two experiments. In Experiment 1, I evaluated the performance on verbs that directly co-occurred

with every noun. In Experiment 2, I evaluated performance on pairs in which the verbs co-occurred (directly)

with some but not all nouns. I call the word pairs in these two experiments ‘directly related stimuli’ and

‘indirectly related stimuli’, respectively. As an illustrative example in Figure 3.2a, the left half, i.e. word

pairs that include ‘crack’ and ‘chase’ are indirect stimuli, as they do not directly co-occur with all agents. On

the other hand, the right half of Figure 3a, i.e. the word pairs that include ‘eat’ and ‘drink’ are direct stimuli.

To evaluate a model, I compared each verb column in the model relatedness table to the corresponding

column in the corpus-derived target relatedness table using the Spearman correlation. I averaged Spearman

correlation across all direct stimuli and indirect stimuli separately, as the measures of a model’s performance

in Experiment 1 and 2, respectively.

What the average Spearman correlation tells us is how close a model’s relatedness judgments are to the

target relatedness. There are many alternative methods I could have chosen, and there is no straightforward

single “correct” method, especially considering we cannot yet precisely formulate the computational procedure

that underlies semantic inference in human. That said, I tried multiple alternatives to forming the target

50



relatedness (the verb-noun matrix normalized with PPMI/row-log, or no normalization; and similarity

calculated with either cosine or 2-distance). The results did not differ qualitatively from those presented here.

To perform well on this task requires inferences based on two sources of information. First, a model

should rank highest those noun-verb combinations which occur most frequently in the corpus. For example,

‘Marya’ is the only agent of the verb ‘crack’ in the corpus, and thus a model should prefer ‘Marya’ over other

nouns for the agent role in the event ‘crack’. Second, good performance also requires handling unobserved

noun-verb combinations, such as unobserved agents of ‘crack’. Although neither ‘tigera’ nor ‘watera’ can be

the agent of the action ‘crack’, they should not necessarily be judged as equally bad agents. One way to

make these finer-grained judgements is to leverage indirect evidence, such as the similarity between ‘tigera’

and ‘Marya’, and ‘watera’ and ‘Marya’. For example, the entity ‘tigera’ is more similar to ‘Marya’ because

many of the actions it performs are also performed by ‘Marya’. Based on corpus statistics - which reflects

such world statistics - a model should infer that ‘tigera’, compared to ‘watera’, is more likely to carry out an

action performed by ‘Marya’. Notice that such an inference cannot rely on direct observation, but rather

requires the integration of multiple observations, which I refer to as indirect evidence. In this example, a

good model is expected to rank unobserved agents of ‘crack’ based on their similarity to ‘Marya’ (an observed

agent of ‘crack’). For example, a good model should assign a higher score to the relationship between ‘tigera’

and crack compared to ‘walnuta’ and crack. In sum, good performance on the selectional preference task

requires more than just tracking observed co-occurrences; instead, a model must leverage indirect evidence,

namely the distributional similarity between two entities, and combine this information with the verb-noun

co-occurrence, to infer plausible, but unobserved verb-noun pairs.

3.2.5 Summary of the Experimental Procedure

To summarize, I performed the following steps. First, I generated an artificial corpus. Next, I computed 216

co-occurrence matrices, one for each model trained in a minor condition (Table 3.4). For each co-occurrence

matrix, I generated six similarity matrices, and used these seven matrices as the seven spatial models. To

obtain the corresponding graphical models, I used the co-occurrence or similarity matrices to create undirected

graphs with edges between all nodes whose matrix values were non-zero. In cases where a matrix was not

symmetric, I calculated the edge weights from the sum of the matrix with its transpose, to ensure that the

resultant graph is undirected. For each model, I computed the semantic relatedness score for all verb-noun

pairs. This resulted in a total of 216× 14 = 3024 verb-noun semantic relatedness tables, one for each model.

Next, the target relatedness scores were derived from the verb-noun co-occurrence table (Figure 3.2a,b).

Then, for each model, I correlated its semantic relatedness scores for a given column in the model table with

the corresponding column in the target table (Figure 3.2b,c) using the Spearman correlation. This resulted

in a performance score for each verb in each model (separated by thematic role). These correlations were

separated to distinguish direct and indirect word-pair stimuli. Finally, I averaged model scores across word

pairs within each experiment (direct word pairs for Experiment 1, vs. indirect word pairs for Experiment 2).

The final result was two performance scores for each model (direct and indirect respectively).

I repeated the above procedure 10 times, one for each corpus, and reported the average score for each

model variation. All code for this paper including generation of the world and the models is available at

https://github.com/UIUCLearningLanguageLab/Humans.
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3.3 Hypothesis

The primary question here is which of the four model classes (spatial vs. graphical, crossed with co-occurrence

vs. similarity) would be most successful at judging the semantic relatedness of previously observed (direct)

and unobserved (indirect) syntagmatic relations. I hypothesized that graphical models should be more

successful at inferring the relatedness of indirect pairs, while performing equally well at judging related pairs

relative to their spatial counterparts. The reasoning is presented below in detail.

First, the co-occurrence space models should perform extremely well at predicting the semantic

relatedness of observed pairs, such as Marya-crack, because that is precisely what this class of models

represents. More precisely, because the target semantic relatedness scores are directly derived from co-

occurrence frequency, they are extremely similar to the relatedness scores produced by the co-occurrence

space model. In contrast, co-occurrence space should be less successful at inferring the relatedness of indirect

word pairs. The latter is true of any distributional model that has no abstraction or inference mechanism

enabling integration across multiple observations.

Second, I predicted that co-occurrence graph models should be equally good at predicting the semantic

relatedness of direct word pairs, and, importantly, are likely to be better at predicting the semantic relatedness

of indirect word pairs relative to all other models. Co-occurrence graphs directly represent syntagmatic

relatedness between direct word pairs (Marya-crack) with a direct edge between the two nodes. And while

indirect word pairs (like tigera and crack) are not directly connected in the graph, they are nonetheless linked

by two intermediate nodes (tigera-chase-Marya-crack). Combined with a spreading-activation procedure for

computing semantic relatedness, this means that co-occurrence graphical models should be able to produce a

non-zero relatedness score that is sensitive to the edge strength between each intermediate word and the

surrounding network topology. That said, whether a particular co-occurrence graphical model will succeed in

inferring the relatedness of indirect pairs is dependent on the particular combination of minor parameters

(e.g. window size, normalization type). Therefore, I do not expect that all instances of the co-occurrence

graph will achieve high performance. It is likely that most of the co-occurrence graphs with large window

sizes or without normalization will not result in a topology useful for inference based on activation-spreading.

Furthermore, I suspect that a co-occurrence graphical model with a window size of 1 should be able to

capture both the direct and indirect relations better than any other model. The reason is that nouns and

verbs always occur in adjacent positions in the training corpus (i.e., there are no intervening items in the

word strings presented to our model). This does not mean this is the optimal window size for all tasks and

learners, including humans; I return to this point in the discussion.

In sum, I predicted that there would be (1) a large amount of variation in performance due to the

vast modeling space, (2) that both the spatial and graphical co-occurrence models perform equally well in

predicting the relatedness of direct word pairs, and, importantly, (3) that the highest performance overall

(Experiment 1 and 2) should be achieved by a restricted set of co-occurrence graph models.

Because the task requires inferences about syntagmatic relatedness, and because similarity models capture

word substitutability (i.e., paradigmatic relations like rabbita-tigera), similarity models should perform

overall less well than models that track co-occurrence directly. The reason is slightly different depending on

whether the model is a graph or a space. As mentioned before, spatial models tend to specialize in one type of

similarity, such that encoding one usually is at the cost of others. While similarity spaces might perform well

at inferring the relatedness of Marya-tigera, this same ability will likely interfere with the model’s success

in predicting the relatedness of Marya-crack. On the other hand, while similarity graphical models are in

principle able to infer different kinds of similarity, they should not be able to recover direct syntagmatic
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relatedness given that their computational primitive is one order of similarity above syntagmatic relatedness.

Therefore, I predicted that similarity (both spatial and graphical) models will have lower performance

compared to co-occurrence models when judging the relatedness of both direct and indirect word pairs.

It should be emphasized that the primary interest is not merely to identify the model that scores highest

on the tasks, but rather to use performance scores as a tool for understanding the representational abilities

of different types of semantic models. In particular, I was interested in which theoretical properties, and

combinations thereof, enable a model to perform well. As a result, I use performance in two ways: (1) as a

filter for identifying those models that warrant follow-up analyses and comparisons, and (2) to verify that the

hypotheses hold up against a large amount of variation in other model parameters.

3.4 Result

3.4.1 Experiment 1

In Experiment 1, I examined the ability of models to judge the semantic plausibility of direct pairs (i.e.,

noun-verb pairs that occurred in the training corpus). The results are shown in Figure 3.3. As described

in the Methods, there were two conditions varying data structure (spatial vs. graphical, shown in blue and

orange in Figure 3.3), and seven conditions varying encoding type (shown as different violin plots in Figure

3.3). For each of these 14 combinations I ran 2160 model instances (10 randomly generated versions of

the corpus for each of 216 different combinations of the minor parameters). The performance of a model

averaged across all 10 corpora is shown as a line in a violin plot. The thickness of a violin at a given x

coordinate indicates the number of models with a performance close to that indicated by the x coordinate.

The truncation at the left and right edges of a violin indicates the minimum and maximum performance of

models from that group, respectively.

The figure reveals an enormous amount of variation in performance on this task. Most models resulted

in a relatively poor performance, between -0.5 and +0.5. Models that surpassed +0.5 still varied along a

number of parameters, such as data structure and encoding type. Notably, many similarity models in that

group used distance as a similarity metric. That said, the top-performing models were those that encoded

co-occurrence, and many of them achieved perfect performance (see bottom right of Figure 3.3). As predicted,

both spatial and graphical models are equally represented in this group of top performing models. The

perfect and near-perfect performance of the co-occurrence models is not surprising. After all, the target

semantic relatedness scores of direct word pairs are identical to co-occurrence frequency. The co-occurrence

models therefore directly represent the information needed to perform well on this task, and do not require

sophisticated inference.

Finally, ai noted that dimensionality reduction via SVD generally reduced model performance (e.g.,

comparing the violin plots labeled ‘distance’ and ‘reduced-distance’). There are several reasons for this: First,

the raw co-occurrence count is the target semantic relatedness, so any departure (e.g., via dimensionality

reduction, etc.) from co-occurrence necessarily results in worse performance unless there is a singular value

encoding that co-occurrence, and only that singular value is used to calculate similarity. But because the

training corpus is built from a simulated world in which all actions are diagnostic of the semantic relatedness

structure among entities, the dimensionality reduction by SVD likely removed more signal than noise. To

illustrate why models that encode similarity performed worse than those that encode co-occurrence, consider

Table 3.5. In the left part of this table, I compared the best performing co-occurrence and the best performing
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Figure 3.3: Average Model Performance on Selectional Preference Task for Directly Co-occurring Words.

similarity model on judging which nouns are better agents of the verb ‘drink’ in one of the 10 corpora. In

that particular corpus, the performance of the top similarity model was 0.733, while the performance of

the top co-occurrence model was 1.0. This means the top similarity model did not reproduce the correct

rank-ordering of observed agents of drink according to co-occurrence frequency. The reason is that the

top similarity model does not directly use co-occurrence, but, rather, must rely on word-word similarity (a

transformation of co-occurrence). This transformation, as the results suggest, does not perfectly preserve

co-occurrence information. It should be noted that the pattern of results presented in Table 3.5 is not specific

to the verb ‘drink’, but is representative of other verbs. See Appendix E in the journal article for a list of the

performance of the top models on each word pair.

3.4.2 Experiment 2

In Experiment 1, I showed that many co-occurrence models capture the semantic relatedness of word pairs

that are directly observable in the training data. Next, I compared the ability of distributional models to infer

the semantic plausibility of word pairs that were not directly observable in the training data. In Experiment

2, I investigated the problem by evaluating models on indirect word pairs. I was particularly interested in the

spatial and graphical co-occurrence models that achieved perfect performance in Experiment 1. While each

was able to represent the co-occurrence pattern of observed word pairs equally well, would they differ in their

ability to infer the syntagmatic relatedness between nouns and verbs that did not directly co-occur? As stated

above, I predicted that the proposed co-occurrence graph models would surpass their spatial counterparts. In

Experiment 2, models were evaluated on the same 10 randomly generated corpora used in Experiment 1.

First, to get a better understanding of the overall performance across all model types, I plotted the

distribution of model performance using a violin plot. The results are shown in Figure 3.4. As in Experiment

1, there is enormous variation in performance both within and between model types. In general, similarity
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Table 3.5: Two case studies comparing the best similarity and best co-occurrence model in Experiment
1 (left), and between the best graphical and best spatial model in Experiment 2 (right). Left panel: the
semantic relatedness between agent nouns and drink, in target, the best similarity and the best co-occurrence
models (the rank of the noun’s relatedness score in parenthesis) in Experiment 1. Right panel: semantic
relatedness between agent nouns and trap, and the ranks of nouns, in Experiment 2.

agent noun + ‘drink’ agent noun + ‘trap’

noun target similarity co-occurrence noun target graph space

tigera 293(1) .7605(3) .0915(1) Kima 62(1) .255(1) .255(1)
wolfa 289(2) .7597(4) .0912(2) Marya 53(2) .245(2) .245(2)
Kima 81(3) .7655(2) .071(3) wolfa .83(3) .0553(3) 0(3)
Marya 74(4) .7657(1) .069(4) tigera .82(4) .0551(4) 0(3)
squirrela 70(5) .7586(7) .068(5) ibexa .769(5) .300(6) 0(3)
boara 64(6) .7597(4) .0672(6) boara .768(6) .304(5) 0(3)
rabbita 63(7) .7575(9) .0669(7) bisona .765(7) .0233(10) 0(3)
ibexa 61(8) .7589(6) .0664(8) buffaloa .764(8) .026(7) 0(3)
buffaloa 58(9) .7574(10) .064(9) rabbita .756(9) .0238(9) 0(3)
bisona 57(10) .7583(8) .059(10) squirrela .755(10) .0244(8) 0(3)

space models perform relatively well on this task, while similarity graph models perform relatively poorly

(many achieve an average performance below +0.5). Some co-occurrence space and graph models surpassed

+0.5, performing better than a large proportion of other similarity models. Within that group, I found

that space models clustered at approximately +0.4 and +0.75, and most graph models were more evenly

distributed between +0.5 and +0.75. Furthermore, I found that there is a small minority of co-occurrence

graph models that performed much better than all other models, achieving near perfect performance (the

small orange hump at bottom right corner of Figure 3.4).

There are a number of other interesting patterns of performance in the results, including (1) the much

higher degree of variability in the performance of graphical models in response to changes in the minor

parameters relative to spatial models, (2) the extremely low variability and generally good performance for

similarity space models without SVD and distance or cosine as the similarity metric, and (3) the generally

(though not universally) worse performance of models using SVD compared to those that did not. But for the

remainder of the chapter, I will focus on questions related to the theoretical framework and the predictions

I derived from it for those models clearly standing out from the rest in terms of combined performance in

Experiment 1 and 2.

Top performers

To determine whether, as predicted, the co-occurrence graph was in the top-performing models, I obtained

the modeling parameters of the top 20 performers in Experiment 2. The average performance on indirect

word pairs for the top 20 models is shown in Figure 3.5, and the parameters of the top 6 models are shown

in Table 3.6. As predicted, I found that the top 5 models were co-occurrence graphs with a window size

of 1. Because the same models also performed at ceiling in Experiment 1, these observations demonstrate

that the proposed approach based on combining a graphical structure with co-occurrence data captured in

small windows is most helpful for learning, representing, and inferring the syntagmatic relatedness of direct

and indirect word pairs. These findings strengthen the claim that the proposed graphical co-occurrence
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Figure 3.4: Average Model Performance in the Selectional Preference Task for Indirectly Related Words in
Experiment 2.

model excels at (i) encoding multiple types of similarities simultaneously (e.g. syntagmatic and paradigmatic

relatedness), and (ii) is able to infer the semantic relatedness of words that never co-occurred, by leveraging

syntagmatic and paradigmatic relatedness in the same topology.

Figure 3.5: Average Performance on the Selectional Preference Task in Experiment 2 for the 20 Best
Performing Models.

Lastly, these analyses revealed that, despite variation in training data (10 different runs of the simulated

world, each producing a distinct corpus), and variation in minor parameters, the top performers are extremely

consistent in terms of model type and performance. Not only are the standard deviations of the Spearman

rank correlation miniscule for each of the best performing models, but they also differ little in their parameter

setting and overall performance.
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Table 3.6: Average performance and parameter values for the top six models.

score mean period bound window window window normal- encoding data
rank score -ary size weight type ization type structure

1 0.901 no yes 1 flat/linear summed log co-occur graph
2 0.896 yes no 1 flat/linear backward log co-occur graph
3 0.866 yes no 1 flat/linear backward ppmi co-occur graph
4 0.853 yes yes 1 flat/linear summed log co-occur graph
5 0.851 yes no 1 flat/linear summed log/non co-occur graph
6 0.758 yes/no yes 1/2/7 flat/linear summed log/non co-occur space

Targeted Follow-up model comparisons

What enabled the top models to perform well on the selectional preference task for indirect items? To answer

this question, I compared the top co-occurrence graph model to the top co-occurrence space model. There are

two reasons why such a comparison is useful. First, these two models are the best graph and space models

overall. See Appendix F in the journal article for the best performers within each level of similarity. Second,

these two models achieved perfect performance in Experiment 1.

To compare them, I analyzed their ability to infer the plausibility of agents for the verb ‘trap’. In terms of

overall performance classifying plausible agents of ‘trap’, the top graphical model achieved a Spearman rank

correlation of 0.901 between its predicted semantic relatedness scores and the target semantic relatedness

scores. In contrast, the top spatial model scored 0.758. This example is representative of differences in the

performance of verbs other than trap.

Looking specifically at which nouns were judged to be plausible agents (shown in Table 3.5, right), both

models predicted that the best agents of the verb trap were nouns in the category HUMAN, which co-occurred

with the verb in agent position in the corpus. However, the graphical model correctly judged nouns in the

categories CARNIVORE, M HERB, S HERB, and L HERB to be decreasingly less plausible as an agent for

‘trap’. The spatial model, in contrast, did not differentiate between agent nouns in these categories. Instead,

the spatial model assigned all agents that are not in the category HUMAN a relatedness of zero.

This maladaptive behavior of the co-occurrence space model can be explained in terms of how it derives

semantic relatedness scores from co-occurrence data: If relatedness is derived directly from co-occurrence

frequency, and co-occurrence frequency is zero, then the resulting semantic relatedness must also be zero.

This cannot be remedied by tuning minor parameters, such as pre-processing or normalization. The presence

of these zeros makes it impossible for co-occurrence space models to directly make fine-grained distinctions

between unobserved word pairs (e.g., is bison or wolf a better agent of trap?).

The reason for the relative success of the graphical model is that, given enough time steps, the spreading-

activation algorithm produces graded relatedness scores no matter how distantly connected two nodes are.

Although the node that corresponds to ‘trap’ is not directly connected to nodes representing entities that are

not of type HUMAN (i.e potential agents of trap), the spreading activation procedure links trap and potential

agents via one or more indirect connections. For example, ‘trap’ and ‘wolfa’ are connected indirectly via the

nodes ‘catch’ and ‘chase’, (Figure 3.6a). By leveraging these indirect connections, the spreading activation

procedure activates ‘wolfa’ after three time steps, and the result is a non-zero semantic relatedness between

‘trap’ and ‘wolfa’ (Figure 3.6b). This can be verified by inspecting the middle column of Table 3.5. The

graphical model correctly ranks members of CARNIVORE above HERBIVORE as agents of ‘trap’. The
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reason is that members of HUMAN are the most frequent (and only observed) agents of ‘trap’, and the

graphical model considers entities of type CARNIVORE to be more semantically similar to entities of type

HUMAN than HERBIVORE and HUMAN. This can be further explained in terms of the event semantics of

the simulated world: Members of CARNIVORE (e.g. wolfa) perform many of the same actions performed by

members of HUMAN, and more so than HERBIVORE.

Correspondingly, members of CARNIVORE co-occur with more verbs (e.g., ‘catch’ and ‘chase’) in the

corpus that are shared by members of HUMAN relative to HERBIVORE. In turn, the nodes corresponding

to members of CARNIVORE have a larger number of shorter — and therefore stronger — paths to nodes

referring to members of HUMAN in the network. The same line of reasoning can be used to explain why the

graphical model treats members of L HERB and S HERB as the least plausible agent of ‘trap’; the paths

between nodes corresponding to members of L HERB and S HERB and nodes corresponding to members of

HUMAN are fewer in number and weaker in strength.

To summarize, I have shown that graphical models tend to differentiate the plausibility of unobserved

arguments of verbs, while (co-occurrence) spatial models do not. To produce graded semantic preferences,

graphical models can compensate for the lack of information about unobserved co-occurrences by leveraging

indirect connections via spreading activation to distantly connected nodes.

(a)

Marya

catch searchchase

tigera rabbita

trap

co-occur

co-occur

co-occur

(b)

Marya

tigera rabbita

trap
co-occur

strong indirect weak indirect

Figure 3.6: An illustration of a Graphical Model Inferring on Unseen Agent-Verb Pair. The graphical model
can infer that ‘tigera’ is a likely agent of ‘trap’ despite having never observed the word ‘tigera’ as the agent
of ‘trap’ in the corpus it was trained on. (a) The nodes ‘tigera’ and ‘Marya’ are connected indirectly via
three multi-edge paths that involve the nodes ‘chase’, ‘catch’ and ‘search’. While ‘rabbita’ and ‘Marya’ are
connected only by one path. (b) The multiple paths lead to a strong indirect paradigmatic relationship
between ‘tigera’ and ‘trap’, while the single path leads to a weak indirect relation to the same verb.

3.5 Discussion

The primary aim of this chapter is to compare the ability of different distributional semantic models to infer

the semantic plausibility of observed and unobserved verb-noun pairs. Models were first trained on artificial

corpora grounded in a simulated world with hierarchical event structures and realistic agent-environment

contingencies, and then tested on a selectional preference task in two experiments. To succeed in both

experiments, a model needed to encode and use fine-grained distinctions in semantic plausibility based on

observed co-occurrence (i.e. direct word pairs in Experiment 1) and shared co-occurrence (i.e. indirect

word pairs in Experiment 2). During evaluation, I derived semantic relatedness scores for specific verb-noun
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pairs from each model, and compared them against relatedness scores derived from the corpus a model was

trained on. I focused on comparing models that use distances in a vector space as a measure of relatedness,

and models that use spreading activation in a graph built from the same co-occurrence data. I was also

interested in the relative performance of these models as a function of whether semantic relatedness was

defined in terms of word co-occurrence or word similarity. I sampled models systematically from a large space

of minor parameters to better understand the contribution of individual modeling choices on downstream

model performance.

The findings can be briefly summarized as follows. First, while both graphical and spatial models

performed, on average, equally well in both experiments, the best graphical models performed better than the

best spatial models on indirect word pairs (Experiment 2, Table 3.5). Second, I observed that models that

used co-occurrence frequency to define its dimensions (for spatial models) or edges (for graphical models)

generally produced higher and more consistent scores than those that used similarity scores derived from that

co-occurrence data.

To better understand the results, I conducted targeted follow-up comparisons of the best performing

models. I found that the semantic plausibility judgements produced by the best spatial model were on par

with those produced by graphical models in Experiment 1 (for directly related pairs) but not in Experiment

2 (for pairs that did not directly co-occur in sentences in the corpus). Further, I found that encoding

co-occurrence rather than similarity was advantageous for generalizing to indirect word pairs. The reason that

the performance of spatial models lagged behind was that they assigned a semantic relatedness score of zero

to word pairs that did not occur in the corpus they were trained on. In contrast, the best graphical model

was able to compensate for the lack of observed co-occurrence by deriving the plausibility of an unobserved

verb-noun pair via activation spreading along multiple indirect paths that link the nodes corresponding to

the noun and verb in the network. The spreading activation procedure for obtaining semantic relatedness

scores proved crucial, as it enabled graphical models to assign non-zero, graded semantic relatedness scores to

unobserved word pairs. This means that indirect paths connecting two non-adjacent nodes appear to enable

strong inferences about their semantic relatedness. As a summary, I argue that its success critically depends

on three components: 1) the graphical data structure, 2) the spreading-activation measure for computing

semantic relatedness on the graph, and 3) the encoding of adjacent co-occurrence. It was the combination of

these three factors that enabled the co-occurrence graphical model to succeed in the experiments.

To better understand the representational capabilities of the graphical and spatial model, and how the two

representational forms are related to each other, I contextualize our findings within a principled framework

that formulates the formal similarities and differences between spatial and graphical models. It is suggested

that semantic inference in the proposed graphical model, the co-occurrence graph, approximates a traversal of

a series of increasingly higher-order similarity spaces. This account is an attempt to pinpoint the fundamental

difference between a graphical and a canonical spatial representation of distributional linguistic data. In

Chapter 4, I first set up a semi-formal formulation to show the relation between graphical and spatial models,

and use it for a more in-depth explanation of he success of the co-occurrence graph relative to its alternatives.

Then, I provide a fully formal description on the structural and processing equivalence between spatial and

graphical models, and show the potential implications of this equivalence in modeling knowledge. Before

delving into the topic, I first mention a critical limitation of the co-occurrence graphical model presented in

this chapter. While the co-occurrence graph can handle pairwise semantic relations presented in the corpus,

it may struggle in learning multi-way (higher order) lexical dependencies. I briefly discuss the limitation here,

and present thorough investigations on the topic in Chapter 5 and Chapter 6.
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3.5.1 Higher-Order Dependencies

The semantic content and structure of our artificial language is very simple compared to real world events and

languages. Real world languages can have multiple thematic roles (theme, experiencer, instrument, location,

time, cause, purpose, etc.) that have higher-order dependencies than the simple pairwise relations in our

language (Elman, 2009; Hare, McRae, & Elman, 2003; McRae et al., 2005). As an example, in the following

sentences:

1a. Mary carved the stone with the chisel.

1b. Mary carved the turkey with the knife.

1c. Mary roasted the turkey with the oven.

A comparison between sentences 1a and 1b demonstrates that the choice of the instrument is not dependent

solely on the verb. The patient matters: What is being carved is important. On the other hand, the patient

noun itself is not deciding either: the instrument varies according to the verb. Therefore, the choice on ‘knife’

as the instrument in sentence 1b depends on the verb and the patient noun collectively. In other words, the

dependency is on the phrase ‘carve turkey’, a complex expression. To study this type of problem, we need

to first enrich the sentence structure by including more thematic role types and higher-level dependencies

between multiple semantic components. For example, a future direction could incorporate location, such

that tigers chase rabbits in the forest, while wolves chase rabbits on the prairie. Additionally, the artificial

language may need to include prepositions to support additional nouns in different thematic roles (e.g. ‘with’

in ‘with the chisel’).

To account for the tendency of the phrase ‘carve turkey’ to select the word knife but not chisel and

oven, it is likely that some representation of the compositional structure must be available. However, this

is not implemented in most semantic models — including the Co-occurrence Graph model. It is important

to note that making quantitative inferences about unobserved combinations of words (cities-sleep) likely

requires additional innovation beyond that of the co-occurrence graphs. Many researchers in psycholinguistics

have proposed that compositionality, the ability to systematically combine small meaning components to

form novel meanings, is crucial for understanding human language acquisition and use (Baroni, Bernardi, &

Zamparelli, 2014; Fodor & Pylyshyn, 1988; Gershman & Tenenbaum, 2015; Mitchell & Lapata, 2010). For

example, inferring the plausibility of ‘cars sleep’, can be explained in terms of compositional structures and

processes that govern how words are combined. However, the co-occurrence graph at most provides a way

to construct and measure the semantic relatedness between composable word pairs, but does not have an

explicit mechanism for representing composed units, or knowledge about how composed units relate to their

parts. These issues lend themselves to the graphical formulation of semantic knowledge representation, and

will be discussed in Chapter 5.

While the co-occurrence graph performs well on the artificial sentences, more complex sentences, such as

‘Mary drinks juice slowly’, are likely to cause difficulty for a network trained with a window size of 1. The

adverb ‘slowly’ modifies ‘drinks’, which is not adjacent to slowly. The graphical co-occurrence model with

window size of 1 cannot represent this long-distance dependency directly, and instead has to represent it

using two edges, one that links the adverb to the patient, and another that links the patient to the verb. This

example is a symptom of a more general problem, namely that a sequential chain of co-occurrences cannot

capture the hierarchical syntactic and semantic dependencies that exist in natural language. For convenience,

I will also refer to the Co-occurrence Graph models as Linear Order Network (LON), to emphasize the
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model’s representation of linguistic expressions by a linear chain of the words.

To upgrade the co-occurrence graph model in order to address higher order relations and representation

of compositional structure, sentences might need to be translated into more syntactically structured forms,

before they are joined into network. The motivation gives rise to the Constituent Tree Network (CTN), in

which the graphical structure is built from parsed trees. As a result, compositional structures are explicitly

encoded, and therefore it is possible to capture the plausibility of sentences with higher order dependencies

(e.g., ‘Mary carves a turkey with a chisel’). In Chapter 5, we will see how CTN, alongside with the generalized

spreading activation measure that computes phrasal semantic relatedness, manage to represent and generalize

higher order (phrasal) selectional preferences.
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Chapter 4

Graph and Space

In chapter 3, I empirically tested the capability of graphical and spatial models on learning and generalizing

lexical relations observed in an linguistic corpus. The result suggests encoding co-occurrence information

work the best and I provide a descriptive explanation for the result. In this chapter, I attempt to formalize

the relationship between graphical and vector-space representations. I show that a mathematical equivalence

exists between certain evaluation processes on the two types of data structures. In terms of structure, graphs

and vector spaces can be linked by the matrices used to define the graph. In a typical semantic network, an

edge is formed between node i and j, if the corresponding entry aij in the adjacency matrix A is non-zero

(with its value encoded as edge weight). In this way, the weights of edges attaching to a node in the network

is equivalent to the row of the node in the adjacency matrix, and therefore can be considered as the vector

representation of the concept node (See Figure 4.1). Based on this structural relationship, I will show that,

given a certain computational operationalization, the ‘intersecting’ spreading-activation on the graph (similar

to that proposed by Collins and Loftus (1975)) between two concept nodes is mathematically equivalent to

the cosine similarity of the two concepts’ original or ‘higher-order’ vector representations. I show that the

inclusion of the ‘higher order’ information leads to better representation of semantic structure, and propose

that this isomorphism between graphical and vector models has implications for theories and models of the

nature of semantic representation.

The equivalence we demonstrate between graphical and vector space models is theoretically significant

in two ways. First, it shows that - contrary to long-standing belief - graphical spreading activation models

and vector space models are not qualitatively incomparable models, and that it may be possible to relate

them in a number of ways. Second, the equivalence between graph and vector space representations may

inspire us to transfer processes and analysis techniques that are typically used on one data structure to the

other, resulting in more powerful modeling capabilities. These results may have profound implications on the

nature of meaning representation and machine learning practice, as we will discuss.
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A 0 0 1 1 2 0
B 0 0 1 1 0 2
C 1 1 0 0 3 0
D 1 1 0 0 0 0
E 2 0 3 0 0 2
F 0 2 0 0 2 0

Figure 4.1: A network and the equivalent adjacency matrix: An edge from i to j is formed (with edge weight
aij) if the corresponding entry aij in the adjacency matrix is non-zero. (a) Weighted graph (b) Adjacency
matrix of the network in (a). Each row (or column) in the adjacency matrix can be considered as a vector
representation of the concept.

4.1 A semi-formal explanation on the success of co-occurrence

graph

4.1.1 Many Higher-Order Embedding Spaces

In order to appreciate how graphical and spatial models differ as representational substrates for semantic

relatedness computations, some definitions are needed. Given a row-normalized (illustrated in 2.4 b) word-

by-word co-occurrence matrix C, each row corresponds to a vector representation of a target word defined

as a set of co-occurrence probabilities. These word vectors reside in a multi-dimensional space, where each

dimension is the (normalized) co-occurrence with a word that has appeared in the target word’s context. As

discussed previously, the pairwise comparison of all word vectors can be used to construct a word-to-word

similarity matrix (see Figure 3.1). More formally, the similarity matrix is approximately the product of the

co-occurrence matrix C and its transpose CT . This is the process used to generate the similarity space models

in Chapter 3. I refer to the semantic vector space spanned by the co-occurrence vectors as a space with order

(1, 0) (will clarify the meaning of the two indices in a bit, and more extensively in the next section), and the

vector space spanned by the row vectors of the similarity matrix CCT as a space with order (1, 1). Vector

entries in the latter space are the similarities between the vectors in the order (1, 0) space. In Chapter 3, the

co-occurrence and similarity space models are different variants of these two vector spaces.

Note that these two semantic vector spaces represent qualitatively different contents. Whereas entries

in order (1, 0) spaces correspond to (normalized) co-occurrence frequencies, entries in order (1, 1) space

correspond to similarities between two vectors in the order (1, 0) space. That is, in a similarity space (i.e.

an order (1, 1) space), two words are similar in terms of their pattern of co-occurrence with words in their

context. While an order (1, 0) space may capture direct syntagmatic relationships like Marya-trap, an order

(1, 1) space captures the paradigmatic relationship between ‘Marya’ and ‘tigera’, which share many verbs.

However, as shown in the results, both types of spatial models struggle when making inferences about

syntagmatically related word pairs such as tigera-trap that do not directly occur in the training corpus.

While the verb ‘trap’ does not directly co-occur with ‘tigera’, it does co-occur with ‘Marya’, a word that is

distributionally similar to ‘tigera’. This relationship cannot be captured by relatedness found in either an

order (1, 0) or order (1, 1) space alone. Instead, as mentioned previously, a stepwise procedure to compute

this indirect relatedness is needed: One that considers both the paradigmatic relationship tigera-Marya, and
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the syntagmatic relationship Marya-trap. One way to do this is to input vector representations from both

the order (1, 0) and order (1, 1) spaces to the computation of relatedness. First, we can leverage the fact

that the order (1, 1) vector that corresponds to ‘tigera’ encodes the similarities between it and other words

in that same space, e.g., in order to link ‘tigera’ and ‘Marya’. Second, we can quantify the strength of the

relationship between ‘Marya’ and ‘trap’ by inspecting the order (1, 0) vector representation of ‘Marya’. If the

relationship in both steps is found to be strong, this indicates that ‘Marya’ and ‘trap’ are indirectly related.

More formally, if we have not observed word X co-occurring with word A, but we have observed Y and Z

co-occurring with A, then it can be inferred that X should co-occur with A to the extent that it is similar to

Y and Z. The relatedness of X and A can be estimated as the dot product of the order (1, 1) vector that

represents X (the row vector for X in the similarity matrix) and the order (1, 0) vector that represents A

(the row vector for A in the co-occurrence matrix). This brings us to the concept of a ‘higher order’ vector

space. This process of creating a higher-order space from a lower order space can be continued to produce

increasingly higher order spaces. Returning to the example of inferring the relatedness between X and A, we

can take the order 0 vector that represents A in the co-occurrence matrix C and compute its dot product

with the vector that represents X in the similarity matrix CCT . The result can be considered a measure of

the indirect relatedness between X and A.

Generalizing from vectors to vector spaces, if we take the dot product of all rows in the order (1, 0) matrix

C and the order (1, 1) matrix CCT , the result is the higher order similarity matrix C(CCT )T , or simply

C2CT . In plain English, this operation involves transposing the order (1, 1) matrix and then left multiplying

it by the order (1, 0) matrix C. In the resulting matrix, the entry at (i, j) corresponds to the dot product

between the order (1, 1) vector for word i and the order (1, 0) vector for word j. Importantly, this process can

be repeated to generate increasingly higher order vector spaces. It involves taking an existing matrix of some

arbitrary order, and multiplying it by the order (1, 0) space from which it was derived. Starting with a matrix

of order (1, 0), namely, CCT , the process of deriving higher order spaces can be denoted by the sequence

CCT , C2CT , C2(CT )2, C3(CT )2, . . . , (with order (1, 1), (2, 1), (2, 2), (3, 2)... in which the two exponents are

incremented in an alternating fashion. Replacing the first and second exponent with the variables m and n,

respectively, we can denote a space of any order (m,n) using the form Cm(CT )n. An entry at (i, j) in this

generalized vector space can be considered the semantic similarity between word i and j at some abstraction

level determined by m and n: It represents some kind of similarity between the order (m, 0) vector of word i

and the order (n, 0) vector of word j.

4.1.2 Spreading-Activation as Traversal of Increasingly Abstract Embedding

Spaces

We are left with the question of how to interpret the entries in a generalized higher order vector space of the

form Cm(CT )n. To interpret these higher order embedding spaces, the formalism of spreading activation in

networks can be helpful. Indeed, it can be showed that there is a formal equivalence between the step-wise

derivation of higher order spaces, and the process of spreading-activation unfolding across time steps in a

graph. As an analogy to the random walk (De Deyne et al., 2016), the matrix Cm describes the activation

state of the graph after m steps of activation-spreading, and the entry (i, j) of Cm is the activation arriving at

node j from node i via all paths of length m. Correspondingly, the entry (i, j) in the generalized embedding

matrix Cm(CT )n is the amount of activation that ‘intersects’ at some intermediate locations in the graph after

spreading from node i for m time steps and from node j for n time steps (See Figure 4.2 for an illustration). It

is analogous to the probability of two random walks initiated from i and j ‘meeting’ (intersecting) with each
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Figure 4.2: Intersecting activation on a network: Activation originated in two source nodes A and B ‘meets’
on intermediate nodes (in colors). Cosine similarity can be equaled to the intersecting activation on nodes
with distance of one to both sources (red). Generalized similarity (cosine similarity between ‘higher order’
vector representations) can be equaled to intersecting activation traversing longer paths (in blue).

other on the nodes, which is exactly the entry (i, j) in the matrix Cm(CT )n. In this sense, the order (m,n)

can be considered as the steps taken from node i, j. This amount of intersecting activation (random walk

meeting probability) is equivalent to the similarities between the higher-order vector spaces discussed above.

While this computation has been discussed in previous work (De Deyne et al., 2016) from a methodological

perspective, here, I explicitly note that this computation describes an equivalence between representing

relatedness in a graph and in higher order vector spaces. A more detailed formulation of this equivalence is

provided in section 4.2.

In light of this formal equivalence, I argue that there is a close correspondence between computing

relatedness via spreading-activation in a graph and computing relatedness/similarity in vector spaces. In

particular, I claim that spreading-activation in the proposed co-occurrence graph can be considered as a

step-wise traversal across vector spaces of different levels of abstraction (i.e. order (1, 0), order (1, 1), etc.) in

a single topology. The benefit of the co-occurrence graph model, and DG in general, is that the same topology

can be used for computing multiple orders of semantic relatedness without needing to determine when to

switch to a space at a different level of abstraction. In sum, the spreading-activation procedure for computing

semantic relatedness in a graph can be considered as a traversal over successively higher-order vector spaces.

It should be noted that in Chapter 3, I measured activation originating at a single source node and arriving

at a single target node only. That is, I set n = 0 in all our experiments. In this special case, relatedness is

measured as the amount of activation arriving at the target node, instead of at intermediate nodes other

than the target node. This method proved sufficient for the co-occurrence graph to perform well in the

experiments. This makes sense considering that the two nodes that represent an indirect word pair tested in

Experiment 2 were typically no more than 3 edges (i.e. time steps) away from each other in the graph. The

traversal of activation across the first two edges corresponds to the computation of an order (1, 1) vector

representation of the source word, and the traversal of the third edge corresponds to the computation of the

similarity between the order (1, 1) vector representation of the source word and the order (1, 0) representation

of the target word.

The equivalence between the co-occurrence graph with a series of increasingly higher order vector spaces

has implications for the observed differences in the behaviors of the models examined in Chapter 3. As

mentioned earlier, spatial models of the form C and CCT only encode co-occurrence or similarity but not

both. Further, the lexical relatedness derived from these models are restricted to orders (1, 0) and (1, 1),

which do not encode information about the indirect syntagmatic relationship between ‘tigera’ and ‘trap’ that

needs an order (2, 1) similarity. However, a graphical model equipped with spreading activation can flexibly

access lexical relatedness at multiple different levels of abstraction. For instance, the relatedness of the pair

Marya-trap can be quantified by the activation that reaches ‘trap’ directly from Marya, and the relatedness
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of the indirect pair tigera-trap can be inferred by the amount of activation that reaches ‘trap’ after multiple

time steps. Each time step of spreading-activation, therefore, corresponds to a traversal to a higher order

vector space. In contrast to spatial models, the computation of these different kinds of similarities in the

graph do not require moving back and forth between different kinds of representational structures, as is the

case for spatial models. The ability to flexibly move between levels of abstraction should be especially useful

when tasked with inferring the relatedness of words that are related as a result of multiple different kinds of

distributional semantic patterns. For instance, I showed that a higher-order space is needed to capture the

indirect relationship between tigera and ‘trap’ in the artificial corpus, and that the co-occurrence graph was

able to infer the relatedness of such word pairs. The theoretical analysis suggests that the model was able to

do so based on its ability to consult multiple orders of similarity as part of the same inference procedure (i.e.

spreading-activation).

By turning the attention to the study of the relatedness between distant nodes in a graph, the work here

is effectively studying the contribution of higher-order similarity on semantic inference. This is an important

step, given that, historically, the use of strongly related words has dominated the study of the organization of

semantic memory. An unintended consequence of this focus on lower-order relations has likely contributed to

the success and proliferation of vector space models in accounting for psycholinguistic data. However, Chapter

3 demonstrates that a graphical approach can be equally successful, and, further, may have advantages of

inference on pairs of words or concepts that are less directly related. This formal analysis is in concordance

with previous empirical work which has demonstrated the psychological reality of longer paths in terms of

their ability to account for additional variance in human semantic judgments beyond relatedness computed

on shorter paths (De Deyne et al., 2016; Rotaru et al., 2018).

4.2 Formal Equivalence Between Spreading-activation and Cosine

Similarity

In this section, I sketchily show that with a particular formulation of the spreading-activation, the process is

equivalent to the cosine similarity of the vector representation of the concept nodes.

4.2.1 Immediate Activation and Cosine Similarity

I define spreading activation in a way that slightly differs from the canonical random-walk type of definition.

The adjustment is made to correspond to cosine similarity of vectors. When a node is activated, it spreads

activation to each of its neighbors, with the amount of activation spread determined by the locally normalized

weight on the edge linking to the neighbor (the local weight divided by the ‘sum’ of all outgoing weights).

A numeric example is illustrated in Figure 4.3. Here we consider the adjacency matrix W , and define the

normalized weight ω̃ij :

ω̃ij =
ωij

∥ri∥2
(4.1)

where ωij is the (i, j) entry in W as well as the edge weight from i to its neighbor j, and

ri = (ωi1, ωi2, ...ωin) (4.2)

is the i-th row of the n-dimensional adjacency matrix, which is also the vector embedding of i (illustrated
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Figure 4.3: Local normalization of edge weights: (a) Original edge weights in the network. (b) Edge weights
after normalization based on L2 norm. See equation (4.3) for the computation. (c) Node activated by locally
normalized neighboring nodes.

in Figure 4.1). We should note here that the normalization in Equation 4.1 is by L2 norm, instead of the

common L1 norm (sum of the weights). Given the current activation level ai on node i, the activation spread

from i to the neighbor j is defined as:

aij = aiω̃ij (4.3)

In this way, if two arbitrary nodes i, j are activated with a unit activation 1, the activation may intersect

immediately on nodes to which both are directly connected (such as nodes C and D in Figure 4.2). I multiply

the activation produced by the two sources at each node k where activation intersects, and sum the resulting

product. I denote this ‘intersecting activation’ as sim1,1(i, j):

sim1,1(i, j) =
∑
k

aikajk (4.4)

The superscript ‘1, 1’ denotes that the activation intersects on nodes with distance 1 from both activation

sources. If activation intersects, the activation is included in the ”intersecting activation” sum, otherwise,

aikajk = 0. Plugging in equations (4.1) and (4.3) into (4.4), we have an equation for similarity spanning

nodes that have intersecting activation at time step 1:

sim1,1(i, j) =
∑
k

ωikωjk

∥ri∥2∥rj∥2
(4.5)

with the source activation ai = aj = 1. In this case,the right hand side of equation (4.5) is exactly the

definition of cos(ri, rj), and therefore we have sim1,1(i, j) = cos(ri, rj). In other words, the cosine similarity

between the vector of two concepts is the sum of intersecting activation on the intermediate nodes defined by

equation (4.3) and (4.4).

4.2.2 General Activation and Higher Order Similarity

Cosine similarity is one of the most applied measures for evaluating the relationship between vector represen-

tations of meaning (Landauer & Dumais, 1997). As I showed, this is equivalent to the ‘after 1 time step’

intersecting activation in the corresponding network. Now we show this can be generalized to activation

spreading over any number of time steps, with the intersecting activation on longer paths being mathematically

equivalent to cosine similarities calculated on ‘higher-order’ vectors derived from the original vector space.
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Building of the definition of spreading activation in equation (4.3), I define the activation to a target node

j from its neighbors as the following:

aj =

√∑
k

a2kj (4.6)

An illustration can be found in Figure 4.3 c. In Figure 4.3 b, node B spread 2/5 of its activation to node

D after local normalization on B. Switching to node D, it gets activation from all its neighbors (B,F,G,H)

proportional to the respective normalized weights. According to the normal random-walk type definition,

the activation received by D should just be the sum of the individual activation. Assume the activation on

all neighboring nodes are 1, then the activation at D should be .9. However, we use (4.6), that is, we use

L2-norm of the activation vector (a1j , a2j , ..., anj) instead of simple summation to make the computation

compatible with the cosine similarity measure. As in the example, we have .5 for the activation received by

D, according to (4.6).

Combining (4.3) and (4.6), I define the general activation-spreading process on a network as following: A

set of nodes are activated at the initial moment, and the activation propagates to the neighboring nodes at

discrete time steps. In each step, an activated node sends out all its activation to its neighbors following

(4.3), and every node receives activation from its neighbors following (4.6). If node i is activated with unit

activation 1 at t0, the activation spread from i to an arbitrary node j after 1 step is ω̃ij , and more generally

after m steps (m > 1) is denoted as a(m)(i, j), which can be computed by:

a(m)(i, j) =

√∑
k

(a(m−1)(i, k)ω̃kj)2 (4.7)

In other words, the activation received at j from i at step m is the L2-norm summation of the portion of

activation diffused to other nodes in the network (from node i) at step m− 1, that reaches j one step later.

This leads to

ri
(m) = (a(m)(i, 1), a(m)(i, 2), ...a(m)(i, n)) (4.8)

as the vector representing activation spread from i to all nodes in the network after m steps. When m = 1,

it is easy to verify that ri
(1) is the normalized vector representation of node i. For larger m, ri

(m) can be

considered as a higher-order vector which takes m-step activation traversed in the network as its vector

entries. With Equation (4.7), it is easy to show that:

cos(ri
(m1), rj

(m2)) =
∑
k

a(m1)(i, k)a(m2)(j, k) (4.9)

in which the left hand side is the cosine similarity between the higher order vector representations of concept i

and concept j, and the right hand side is the generalized intersecting activation as of Equation (4.4). Instead

of meeting after one step as in (4.4), the intersecting activation has traversed m1 and m2 steps from i and j

respectively. Therefore, Equation (4.9) shows that the generalized intersecting activation from two concept

nodes in the network is mathematically equivalent to the cosine similarity between the ‘higher-order’ vector

that encode information on longer paths. Finally, I denote the general cosine similarity as simm1,m2(i, j):

simm1,m2(i, j) = cos(ri
(m1), rj

(m2)) (4.10)

We need to emphasize that the rigorous equivalence between the cosine similarity and intersecting
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activation can only be guaranteed with the L2 normalization in sending (4.3) and receiving (4.6) activation.

The adjustment guarantees that ∥ri(m)∥2 = 1, for all i,m. This leads to:

∑
k

a(m1)(i, k)a(m2)(j, k) =

∑
k a

(m1)(i, k)a(m2)(j, k)

∥ri(m1)∥2∥rj(m2)∥2
= cos(ri

(m1), rj
(m2)) (4.11)

However, without the adjustment, the canonical random-walk type spreading activation normalize the local

weight with L1 (probability) norm, such that ∥ri(m)∥1 = 1, but not necessarily ∥ri(m)∥2 = 1. As a result,

with the canonical random-walk spreading activation, we have:

∑
k

a(m1)(i, k)a(m2)(j, k) =

∑
k a

(m1)(i, k)a(m2)(j, k)

∥ri(m1)∥1∥rj(m2)∥1
=

∥ri(m1)∥2∥rj(m2)∥2
∥ri(m1)∥1∥rj(m2)∥1

cos(ri
(m1), rj

(m2)) (4.12)

That is, the sum of activation differs from the cosine similarity of the higher order representations by

a multiplier, which is the ratio between L1 and L2 norms of the higher order representations. As this

multiplier is a function of the higher order representations, in general, we do not have a concise equivalence

or correspondence between the graphical spreading activation and the spatial cosine similarity. Empirically,

when the order (m1,m2) is small, as the case in Chapter 3 and related studies (De Deyne et al., 2016; Rotaru

et al., 2018), the multiplier can be bounded by constants, such that the equivalence can be approached

approximately. In these cases, the spreading activation on the graph, defined in the canonical random-walk

way, still considerably reflects the higher order cosine similarity. However, the rigorous equivalence has to be

established at the cost of the canonical definition of spreading activation.

To summarize, I have defined general cosine similarity simm1,m2(i, j) to capture the equivalence between

vector similarity and intersecting activation on network. I have shown the traditionally-defined cosine

similarity, i.e. sim1,1(i, j) - which only utilizes the ‘after 1 time step’ intersecting activation on the network - is

a special case of the general similarity. The general similarity exploits ‘higher-order’ information embedded in

the longer paths in the network. While the rigorous equivalence is established with adjustment to the spreading

activation, an approximate equivalence can be guaranteed for the canonical spreading activation when the

orders is not too high. In the next section, I relate this finding to existing behavioral and computational works

which exploited higher order information. These models have created more structured semantic landscapes,

and more accurately captures judgements on weaker semantic relatedness in human studies (De Deyne et al.,

2016).

4.3 Spreading-Activation on Distributed Vector Representations

Provided with the formal equivalence between similarity in graphs and vector spaces, I deduce the structural

and processing equivalence to a special case. In distributed representations, words or concepts are represented

as vectors in a finite dimensional semantic space (Elman, 1990; Landauer & Dumais, 1997). Regardless of the

number of dimensions or the content defining the representations in a vector space, this representation is

mathematically equivalent to encoding the items in a two-layer network (Figure 4.4):One layer encodes each

dimension as a node, and the other encodes each concept as a node. In the graphical representation of the

space, each concept node is linked to each dimension node with an edge whose weight is the value of the

concept vector on that dimension, and with no edge if the concept’s value on that dimension is zero (see

Figure 4.4 for further illustration).
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Figure 4.4: Two-layer network representation of vector. (a) Dimensions activated by c1 with no iteration,
mirroring the original vector representation of c1. (b) Original vector representation of all four concept. (c)
Dimensions activated by c1 after one iteration. (d) Vector representation of all concepts after one iteration.

When formalized as a network, the distributed vector representation of concept can be represented as the

pattern of activation in the entire network. At the first time step after concept ci is activated, activation is

spread to all directly-connected dimension nodes. For example, in Figure 4.4b, the concept c1 has a non-zero

value on dimensions d1 and d2, so c1 spreads activation to these dimensions, resulting in d1 and d2 being

activated proportional to the weight on that edge (which is also the concept’s value on that dimension in the

vector space). In this case, the translation of a distributed vector into activation on the two-layer graph has

only used the direct connections between the concept and dimension nodes (colored red in Figure 4.4a).

More generally, as activation flows back and forth between the layers, the pattern of activation among the

nodes can be ‘enriched’ by these iterations. The spreading activation activates more dimensions, especially

dimensions that are more weakly associated with the concept in the original vector embedding, but which share

many indirect connections through other nodes. For example, after only spreading along direct connections,

the original concept c1 only activates d1 and d2 (Figure 4.4a). After another iteration, c1 also activates d3

(Figure 4.4c), reflected by the activation having flowed to node d3, a dimension not directly connected to

c1. In other words, with more iterations, the representation adds information from longer, indirect paths

in the two-layer network (the red path between c1 and d3 in Figure 4.4). In this sense, the original vector

representation itself encodes only partial information in the concept: the direct connections to other nodes.

But any algorithm that allows the representation to take advantage of indirect connections, traversing longer

paths between layers, may exploit ‘higher-order’ information embedded in the indirectly related concepts and

dimensions (c2, d3 in Figure 4.4d). The result is a ‘higher-order’ concept representation that encapsulates not

only the information in its original vector, but also how the concept relates to other concepts

As I have showed, the most common cosine similarity between two vectors is equivalent to the intersecting

activation after one step of spreading from the sources. When generalized to an arbitrary number of time steps,

the intersection of activation traverse through ‘longer paths’. Specifically for the distributed vector graph, it

means more iterations (Figure 4.4c) is equivalent to computing the cosine similarity on ‘higher order’ vectors

of the concepts (Figure 4.4d). In the next section, I will use simulations to show that the representations

formed using this process of spreading activation leads to more fine-grained semantic representations.
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4.4 Modeling of Semantic Relatedness Using Higher Order Seman-

tic Spaces

Spreading activation models have long been used to explain many semantic effects that do not fall out of

direct associations or relationships between words. One such example is the explanation of co-activation of

words that belong to the same category, even if not directly associated (such as elephant and zebra), because

they share many features or associations (McRae et al., 1997). Another example is mediated priming -

priming between items like lion from stripes through intermediaries like tiger (Balota & Lorch, 1986; Chwilla

& Kolk, 2002). A third example is research by De Deyne et al. (2016), who showed spreading activation

models that made use of indirect connections better predicted human judgments about word similarities than

traditional cosine similarities.

The finding in De Deyne et al. (2016) indicates that including richer information embedded in the longer

paths (higher order vector representations) potentially leads to a better account for semantic structure that

better predicts human behavior. Thus far, I have shown that the spreading-activation process defined on

the network can be ‘rephrased’ in the language of vector space. Similarly, due to the equivalence, the vector

language can be translated into a ‘network’ narrative. I show that information embedded in the ‘higher order’

vectors can be extracted through activation spreading. The endeavor in turn could lead to more powerful

semantic representations. Below, I provide two demonstrations of this improved semantic processing.

4.4.1 Simulation 1: Simple Artificial Dataset Demonstration

Figure 4.5: Average between-category similarities without and after iterated activation. (a) Similarities
obtained without iteration. (b) Similarities after 1 iteration. (c) Similarities after 2 iterations.

To demonstrate the effect of iterating activation on a two-layer ‘vector graph’ (Figure 4.4), I ran a

simulation using a simple dataset in which concepts have indirect and graded relations to each other (like

that shown in Figure 4.4). To be more specific, in Figure 4.4b, c1 does not overlap with c3, c4, but c1 and c3

can be bridged by c2, while c4 is more distant. To be more specific, I generated concepts as vectors with 18

dimensions d1, d2, ...d15. The concepts’ values on those dimensions were assigned such that they belonged

to one of five categories (A, B, C, D, E). Concepts in the same category had high values on the shared

dimensions (uniformly selected in the interval (0.8, 1)) and low values on the other dimensions (selected

uniformly from (0, 0.2)). The dimensions that define a category, i.e. dimension with high values, partially
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Figure 4.6: Digit classification task: The 10 digits (‘7’ in the illustration) were displayed in a 5× 5 grid and
were classified by a three layer neural network.

overlap with the dimensions that define another category. For example, category A took high values in

d1, ...d6, B on d4, ..d9, C on d7, ..d12, D on d10, ..d15 and E on d13, ..d18. In this way, categories with adjacent

letter labels shared three dimensions and therefore should be more similar to each other compared to other

categories. Furthermore, non-adjacent categories do not directly share features, but they still have graded

similarity according to how many features they jointly share with other categories. For example, although A

and C did not share any feature, they are both similar to B, so A should be more similar to C than to D

and E. Such a design simulated the organization of semantic knowledge in humans studied in previous works

(Balota & Lorch, 1986; Chwilla & Kolk, 2002; De Deyne et al., 2016).

I generated 100 vectors in each category to create the first-order vector representations for each concept

(i.e. vectors equivalent to a graph where only direct connections were activated). Then, I computed vector

representations equivalent to letting activation spread for one and two iterations, as described in the previous

section. For each of the three time steps (0,1,2), I computed the cosine similarity between all concept vectors,

and took the average of the within-category concept similarity and between-category concept similarities

to obtain the within and between-category similarities, for each of the five categories. I predicted that

the similarity structure should be more differentiated with more activation iterations. Consistent with the

prediction, the weakly related categories were not distinguishable with the original vectors (Figure 4.5, k = 0).

However, with more iterations, the higher-order representations were able to discriminate between distant

categories. (Figure 4.5, k = 1, 2).

4.4.2 Simulation 2: Between-Layer Iteration While Training Neural Networks

The algorithm described above also has implications for training neural networks. In typical neural networks

with at least one hidden layer, the input and output layers are localist representations, and the hidden

layers are distributed representations that mediate between input and output layers (Rumelhart, Hinton,

& Williams, 1986). Normally, the output layer activation is obtained by multiplying the activation of the

hidden layer by the weight matrix connecting the hidden layer to the output layer, and using that product as

input into a nonlinear function like sigmoid or hyper tangent.

In the terms I have been discussing, this traditional process is equivalent to only using the first-order

information in the graph, without exploitation of higher-order information. Activation in the network can

be altered to take advantage of this higher-order information, by recalculating the weight matrix after k

iterations, denoted as W
(k)
ho :
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W
(k)
ho = (

k∑
i=0

Ai)ωho (4.13)

where A = ωho(ωho)
t is the activation after one round of iteration between the layers. Note: the computation

only concerns whether the activation propagated to the output layer is direct or after more rounds or iterations

between the layers. It is not involved in the back-propagation, i.e. the formula for computing the derivative

stayed the same. Inspired by results in previous sections, I conjecture that more iterations between the

hidden and output layer would amplify the effect of training by integrating indirect information not directly

connected between specific output and hidden units. As a consequence, the output layer activation calculated

after more iterations will converge more quickly on the correct classifications.

To test the conjecture, I trained a three layer neural network (one hidden layer) on a digit classification

task like that shown in Figure 4.7. In each training epoch, the network saw ten training trials (one for

each digit) in a randomized order, made its predictions, and had its weights adjusted using a standard

back-propagation algorithm (with a learning rate of 0.10). I manipulated two variables. The first was the

number of hidden units in the network: 8 vs. 4 (4 is the minimum number of hidden units with which

the network can solve the task). The second was whether the model was trained in the traditional way:

o = f(ωhoh) + b, versus whether output activation was calculated according to Equation (4.13) using the

weight matrix W
(2)
ho calculated with two iterations (only used for feedforward activation, the back-propagation

was not affected). In each of these four conditions, I trained 10 randomly initialized networks for 1000 epochs.

The results of Simulation 2 supported the conjecture: the training was much faster in the iterated condition

compared to the original condition, especially in the challenging case with only 4 hidden units. It was not

a small difference: In the 8-hidden unit case, neural networks that computed higher-order correlations at

the output layer tended to reach perfect performance after about 200 epochs compared to 500 in traditional

models. In the 4-hidden unit models, perfect accuracy was obtained only slightly slower (around 400 epochs)

for the higher-order model; whereas the traditional models took many thousands of epochs to reach perfect

accuracy. Interestingly, the divergence started after about 100 epochs, consistent with the conjecture that the

iterations would help the neural net to converge more rapidly, after the ‘right’ direction had been found.

4.5 Discussion

In this chapter, I demonstrated an equivalence in both structure and process between graphical spreading-

activation models and vector space models of knowledge representation. Specifically, I showed that the

intersection of activation traversed through paths with varied length on a graphical model is mathematically

equivalent to the cosine similarity of higher order vector representations. This finding bridges the network

and vector space representational approaches: (i) It helps to explain the modeling power of network structure

De Deyne et al. (2016) from the vector space perspective; (ii) It leads to better understanding of two-layer

network representations using distributed vectors, showing how spreading-activation on the two-layer network

exploits higher-order semantic information embedded in the vector space; iii) I show that iterating activation

between vectors in a neural network results in a graded representation of the semantic information (Figure

4.5); and iv) I show that it significantly accelerates training in neural networks (Figure 4.7). These findings

lead to two directions for future work.

First, it raises a series of modeling and theoretical questions concerning the nature of semantic repre-

sentation and processing. On the modeling side, there are various ways to define spreading-activation on
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Figure 4.7: Learning in the digit classification task was faster when the neural net had two rounds of iterations
between the hidden layer and output layer before feed-forward propagation (lighter lines vs. darker lines), in
terms of both accuracy (green lines) and error rates (blue line). The difference was more dramatic in the
challenging condition (left).

a network and multiple metrics to evaluate the relationship between vectors (Kumar et al., 2022; Lund &

Burgess, 1996). Do processes and measures defined on one data structure have equivalent form in the other

data structure (like cosine similarity in the vector space being equivalent to activation intersection on graphs),

and could these bridges benefit in semantic models with real-world data? Regarding theories of semantic

cognition: what leads to, and under what circumstances are, longer paths along the network (or higher-order

vector spaces) beneficial? How does the spreading-activation process on unstructured or layered networks

potentially speak to human cognitive processes in semantic tasks? Scrutiny of these questions may deepen

our understanding of the nature of semantic representations.

Second, the findings increase our understanding and the capabilities of neural network models. Currently,

the simple feedforward models like those used in the simulation are not capable of taking advantages of

information not captured by the direct connections between units. The capability is present in models making

use of other architectures and algorithms, such as recurrent attractor models (Cree, McRae, & McNorgan,

1999) and Hebbian learning models like Boltzman machines. However, these models are not as popular as

simple feedforward architectures, mainly due to the amount of data they need and the amount of time they

need to train. The approach presented in this Chapter has the potential to add to neural networks the ability

to take advantage of the higher-order information, and at the same time decrease the amount of data and

training that is needed. Future studies can help us better understand this potential, and test the approach on

scaled-up models to examine whether the technique is applicable in more real-world settings and datasets.
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Chapter 5

Constituent Tree Network

One of the hallmarks of human language ability is the capacity to judge differences in the truth and

meaningfulness (plausibility) of linguistic expressions. The latter topic is investigated in Chapter 3, where I

evaluated the direct and indirect lexical relations between word pairs (Marya- trap, wolfa - trap), to judge on

the plausibility of sentences like Mary trapped the rabbit or The wolf trapped the squirrel.

Notice that the above-mentioned dependencies are between two lexical items. Nevertheless, some of

the lexical dependencies may involve three or more lexical items and may not be reduced to lexical-pair

dependencies. While both spelling and brake can be checked, the ease of processing depends on the agent noun

(the third variable). It is easier to process congruent sentences like The journalist checked the spelling and The

mechanic checked the brake compared to the incongruent agent-event pairs (Bicknell et al., 2010). Moreover,

Bicknell et al. (2010) showed that the effect in their experiments was not due to the agent-patient thematic

fit (mechanic - brake vs. journalist - brake). Their result indicates that some of the lexical dependencies may

not be reduced to (two-way) relations between word pairs. They are three-way (multi-way) interactions, i.e.

there is the effect from the third word.

In comparison to learning the dependency between multiple words provided in the language input, a more

challenging task is to infer on the dependencies involving ‘novel’ lexical combinations. For example, suppose

one has seen The journalist checked the spelling and The mechanic checked the brake, what would be the

thing that a poet checks, the spelling or the brake? (Supposed that one has never seen the poet checked...) It

has been argued that the natural language is generative and thus productive (Fodor & Pylyshyn, 1988), so

that the infinite grammatical lexical combinations may never be exhausted in any finite language experience.

How could people understand and effectively judge the plausibility of the novel sentences based on their finite

input? I argue that a critical capability required for natural language understanding is to first learn the

multi-way lexical dependencies from experience and then generalize the learned relations to novel lexical

combinations. In other words, a crucial step for a system to be competent in processing meaning is to capture

the diverse lexical dependencies (two or multi-way) in the generative natural language.

The question I attempt to address in this chapter is, what representations and computational mechanisms

are needed to learn and generalize multi-way lexical dependencies in the language input (to make plausibility

judgments on more complex sentences). The remainder of the chapter is structured as follows: In Section

5.1, I formulate the theoretical problem in a series of formal computational task, i.e. the two-way and

three-way learning and generalization tasks. I argue that in order to solve the most challenging three-way

(multi-way) generalization task, the model needs to form representations of phrases or phrasal relations (lexical

75



relations that involve phrases) in a compositional way. I refer to such generalization based on compositional

representations ‘compositional generalization’ and discuss key factors leading to successful compositional

generalization. In Section 5.2, I present a type of distributional graph, i.e. the Constituent Tree Network

(CTN), which provides an intuitive blueprint towards solving the task. In Section 5.3, I describe a carefully

constructed artificial language that embeds the critical design for the compositional generalization. I test

both the LON (Co-occurrence Graph) and the CTN with a series of experiments in section 5.4 and show that

the specific representation, i.e. the constituent structure, is the key to the success of CTN. I end the chapter

by discussing the significance of the multi-way dependency/compositional generalization problem, and the

implication of the CTN model’s success on it.

5.1 Introduction

5.1.1 The Tasks

The Learning Task

I formulate the problem of learning and generalizing three-way lexical dependency with an example (the full

design will be presented in the method section). Consider a linguistic corpus consisting of the following four

sentences Mary preserves cucumber with vinegar, Mary preserves berry with dehydrator, Mary grows cucumber

with fertilizer, Mary sprays strawberry with insecticide. In these sentences, I focus on the three components

that interact with other other: the verb (preserve/grow), the patient noun (cucumber/strawberry) and the

instrument noun (vinegar/dehydrator). The lexical choice of the instrument in the ‘preserving’ event is

affected by both the verb and the patient noun, while it may not be determined solely by any of the two

items1. It is the phrase ‘preserve cucumber’ that selects on the instrument ‘vinegar’. The verb ‘preserve’ by

itself allows both ‘vinegar’ and ‘dehydrator’, and the patient noun ‘cucumber’ associates with both ‘vinegar’

and ‘fertilizer’. In this scenario, the dependency between the verb, the patient and the instrument in ‘Mary

preserves cucumber with vinegar’ is three-way. That is, the exact lexical choice of each one of the three

variables (verb, patient, instrument) is conditioned jointly on the choices of the rest two.

In addition, I include two more sentences involving the two verbs ‘grow’ and ‘spray’: Mary grows

potato/lettuce with fertilizer. and Mary spray orange/apple with fertilizer. Unlike the case in ‘preserve’

sentences, the instrument in the ‘grow’ and ‘spray’ sentences are independent of the patient noun: It is always

fertilizer for ‘grow’ and insecticide for ‘spray’, regardless of which noun is in the patient position. In this way,

the dependencies between the three components in the ‘grow’ and ‘spray’ sentences are no longer three-way:

they reduce to the two-way dependencies within the verb-instrument pairs.

Both the three-way and the reduced two-way interactions exist widely in natural language. A competent

semantic system should be able to learn these types of dependencies provided in the language input. In this

and the next chapter, I refer to mastering lexical relationships in the input as the ‘learning task’. For any

three-way interactions, models need to specify which instrument is the best fit for a given verb-patient (‘VP’

is used to denote verb-patient pair in this dissertation) combination. For the two-way interactions, models

are expected to select the correct instrument given a verb.

1Here I talk about the verb-patient selecting the instrument, while formally the dependency is mutual and symmetric. I could
equivalently present the problem in the way that the verb-instrument pair decides on the patient, or the patient-instrument pair
selects the verb. I choose selection on the instrument merely due to the ease of description and understanding.
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The Generalization Task

Human and powerful semantic models not only learn the patterns in the language input, but also generalize

from what they learn to infer on novel lexical combinations. Suppose sentences like Mary grows pepper,

Mary preserves pepper are also provided in the corpus. This ‘novel’ patient pepper is associated to the verbs

in the sentences while the instruments are purposefully left out. This type of patients are referred to as

‘instrument-vacant patient’ in contrast to the ‘instrument-associated patient’ like potato and cucumber, which

always co-occur with an instrument. I am interested in how the models judge on the plausible instruments for

the novel verb-patient pairs (grow/preserve pepper). For a sentence in which the instrument solely depends

on the verb, generalization is not contingent on the patient (in the corpus). So fertilizer should be the only

choice, no matter what one grows. However, for sentences in which the instrument does not solely depend on

the verb, more information on the novel patient noun is needed. To direct the generalization, I make these

patients ‘more similar’ to some of the original patients but not others. For example, I make pepper more

similar to cucumber/potato/lettuce, and less similar to the fruits. In this way, it is expected that models find

preserve pepper more similar to preserve cucumber than to preserve berry and therefore should select vinegar

but dehydrator as a more plausible instrument for the event.

Critically, I make the VPs similar to each other in a combinatorial way, but not in a ‘holistic’ way. To be

more specific, I make cucumber and pepper distributionally similar, i.e. the two words have a lot of contexts

in common. On the other hand, I make the phrases preserve pepper and preserve cucumber as a whole

distributionally dissimilar to each other. That is, the two-word chunks preserve pepper and preserve cucumber

do not share a lot of contexts. I am interested in the capability of the models to build up the similarity of

the whole by combining the similarities between their corresponding parts. This set-up resonates with the

pattern observed in linguistic cognition: We can tell that John grows cucumber with fertilizer is more similar

to Mary plants squash with manure than to Mary preserves berry with dehydrator, without hearing these

sentences before. Building up multi-word relations from parts is crucial to language comprehension, and I

will come back to the point in the general discussion of this chapter.

To summarize, the ‘novel’ patients are associated with certain verbs, but no three-way dependencies

involving them are provided in the input. The models need to infer on the plausible instrument for the verb-

patient pair based on the type of the verb and also the (combinatorial/compositional) similarity between the

instrument-vacant patient and the instrument-associated patients. I refer to these tasks as the generalization

tasks in which models generalize on the two-way and three-way dependencies.

Bringing the tasks together, I am primarily interested in how distributional models learn the multi-way

lexical dependencies (the two-way and three-way dependencies) provided in a linguistic corpus, and then

generalize from the learned dependencies to novel multi-way lexical relations. In particular, I am interested

in how the model generalize combinatorially (compositionally) to novel lexical combinations (novel VPs),

whose distributional features as a whole has not been identified in the corpus, but whose constituent parts

are well characterized by in terms of distributional pattern.

Compositional Generalization

Among the four types of tasks (two-way learning, three-way learning, two-way generalization, three-way

generalization), the three-way generalization task is most challenging. As illustrated above, to infer the proper

instrument for preserve pepper, i.e. vinegar, the only cues presented to the model are the word-word lexical

dependencies, i.e. preserve - vinegar and pepper - vinegar. To obtain the three-way dependency preserve
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pepper - vinegar, a model needs to compose the two-way dependencies involving the constituents of the VP,

i.e. preserve - vinegar and pepper - vinegar. Overall, this type of generalization to novel situations based on

knowledge of smaller components, is referred to as compositional generalization.

The compositional generalization entails a series computational abilities. First, the model needs to properly

evaluate the two-way (word-word) lexical dependencies that has been presented in the input. These include

syntagmatic relations like preserve - vinegar and cucumber - vinegar, as well as paradigmatic relations such as

cucumber - pepper. Then, it requires the model to combine the syntagmatic and paradigmatic relationships

to form more indirect syntagmatic relations like pepper - vinegar (by combining cucumber - pepper and

cucumber - vinegar). These are exactly the capabilities investigated in Chapter 3 and 4. According to the two

chapters, LON has no trouble forming these indirect relations. The dilemma is in the next step, i.e. deriving

the three-way dependency between the novel VP and the instrument, i.e. preserve pepper - vinegar from the

two-way dependencies. I will clarify why this is difficult in Section 5.3, and show that LON falls prey to this

step in Section 5.4.

Alternatively, a model may learn the phrasal syntagmatic relationships, i.e. preserve cucumber - vinegar

from the input, and form ‘phrasal similarity’, i.e. the paradigmatic relationship between the VPs (preserve

pepper - preserve cucumber) by composing the two-way dependencies. Then it combines the phrasal

syntagmatic and paradigmatic relations to derive the more indirect phrasal relation preserve cucumber

- vinegar. This approach is different from the former procedure, but both of them require a similar set

of computational capabilities. Regardless of the exactly approach, it should be clear that compositional

generalization is not a single computational step, but rather a collection of separate abilities that must be

aligned to achieve a common goal. It follows that, if a model is found to reliably perform compositional

generalization, it in general should be more likely to achieve success on each of the sub-tasks listed above.

5.1.2 A Novel Approach

In summary, compositional generalization can be a promising approach for making inferences about novel

linguistic expressions. However, many existing distributional semantic models in the psycholinguistic literature

are not ideally suited to perform compositional generalization. As I will show with more details in Chapter

6, few of existing distributional models possesses all the required capabilities. Most of the models come

with their own distinct set of advantages and only possess part of the capabilities. As a result, they tend to

perform well in the easier learning and generalization tasks, but not the three-way generalization tasks that

requires compositional generalization.

In light of these concerns, I propose the Constituent Tree Network (CTN), which offers a solution to these

issues. The CTN is a semantic network created by connecting language input that has been converted into

a graphical format. The CTN explicitly encodes ‘higher-order’ relationships between phrases and lexical

items, and stores this information alongside information about distributional structure, while also avoiding

entanglement. The studies presented in this chapter will demonstrate that the CTN can be used to infer

both the similarity among words and phrases, and the thematic fit between a phrase and a word regardless

of whether they are novel or familiar. As such, the CTN has the potential to be an invaluable tool for

advancing our understanding of how humans make semantic inferences about novel complex expressions,

and the productivity of the human language system more generally (will come back to this point in the

discussion). In the following section, I provide a detailed discussion of the CTN’s architecture, how it can be

trained, and how inference is performed.
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5.2 Model

5.2.1 Training: Constructing the Semantic Network Structure

How the CTN model is built have been introduced in section 2.3. Here I briefly summarize the process

with specific emphasis. Unlike previous studies, in which words have either been connected manually by

the researchers (Collins & Quillian, 1969; Collins & Loftus, 1975) or using free-association norming data

(De Deyne et al., 2016; Kenett et al., 2011), words and phrases in the CTN are connected according to both

their constituent phrase structure and their co-occurrence frequency in a corpus of natural language. This

makes the CTN more straightforward to construct: it only requires a corpus that has been syntactically parsed,

and it is therefore less influenced by the intuitions of the researcher or of participants in free-association

studies. Training in CTN is analogous to Hebbian learning: Linguistic expressions that co-occur in the

language input become connected, and strengthened in proportion to the number of observed co-occurrences.

The first step of training is to transform all sentences in a corpus into graphical form with constituent

parsing, as shown in Figure 5.1a. Next, the parse trees are joined at shared nodes to form a network (Figure

5.1b). The frequency of co-occurrence of two connected expressions in the resulting network is used to weight

the connection between their nodes. Recall that this process is referred to as ‘connecting language’. At the

end of training, the result of ‘connecting language’ is that raw co-occurrence between words and phrases

is encoded in a graphical topology. To be more specific, words or phrases occurring close to each other in

the corpus (e.g. in the same sentence) are only separated by a few edges in the network (e.g. cake and

knife), whereas other expressions that do not occur close to each other in the corpus are separated by a larger

number of edges (e.g. pie and knife).

(a) Constituent parse trees (b) CTN

(c) Word-chains (d) LON

cake cut with knife

cut cake

cut cake with knife

cake bake with oven

bake cake

bake cake with oven

cake

cut with knife

cut cake

cut cake with knife

bake with oven

bake cake

bake cake with oven

network formation

network formation

cut cake with knife

bake cake with oven

cut

cake

bake

with knife

with oven

Figure 5.1: Formation of the network structure in the Constituent Tree Network (CTN) and the Linear Order
Network (LON) given the mini corpus ‘cut cake with knife, bake cake with oven’. (a) The input to the CTN
consists of constituency-parsed trees for sequences in the mini corpus. (b) The CTN formed is able to reflect
dependency between verb phrases and instruments in the input corpus. (c) The input to the LON consists of
word chains, formed by connecting adjacent words in the mini corpus. (d) The LON formed does not specify
which instrument is coupled with which verb phrase.

79



Benefits of connecting language

To better understand the value of ‘connecting language’ in the current context, consider the complex expression

cut pie in Figure 5.2b. After the connection of individual parse trees during training, cut pie becomes indirectly

connected to all observed instruments of cut (e.g. knife and ax ) in the resulting network. Although cut pie

did not co-occur with an instrument in the training corpus (unlike cut cake and cut tree that are assigned

with specific instruments, i.e. knife and ax in the corpus), the CTN is able to make inferences by following

the indirect paths between cut pie and instruments observed during training. This makes it possible to

evaluate the semantic relatedness of any two nodes in the model’s network, especially, those have never

occurred together in the training corpus.

While the indirect paths make it possible for the model to consider instruments that never co-occurred

with novel phrase cut pie, the model still needs to know how similar cut pie is to the familiar phrases cut

cake and cut tree, in order to infer on the instrument (Figure 5.2b. Like other distributional graphs, this

information is in the number of indirect paths between two nodes. As shown in Figure 5.2b, pie and cake are

connected by an indirect path that traverses cut and cut cake. Implicit in this path is the information that

both patients share the same verbcut, more clearly illustrated in Figure 5.2a, where dashed lines represent all

paths of length 2 that traverse one intermediate phrasal node. The dashed lines are a simplified representation

of the true semantic network structure shown in Figure 5.2b. This diagram illustrates that pie and cake are

highly connected with many short paths leading from one to the other. If pie and cake share more of these

short indirect paths compared to pie and tree, the network can judge the former pair to be more similar. It is

not difficult to imagine that in a large corpus of English, cake and pie can be found in highly substitutable

contexts like sweet X, eat X, and bake X. The number of shared contexts in the corpus determines the

number of shared paths in the semantic network. Note that I do not claim that cake and pie do in fact share

more contexts than cake and tree. Regardless of the actual contextual overlap, I only argue that if such

distributional differences exist in English, they will be reflected in the structure of the network.

(a) Distributional Similarity

pie

cut

bake

eat

sweet

cake

tree

pie cut

cut pie

(b) Semantic Network Structure

pie

cut

cut pie

cake with knife

cut cake

cut cake with knife

tree with ax

cut tree

cut tree with ax

Figure 5.2: The CTN achieves compositional generalization by relying on two key information sources:
distributional similarity between lexical items, and constituent structure. The former connects pie to cake,
and the latter indirectly connects cake to knife. Note that knife need not co-occur with pie for generalization
to be successful. (a) The distributional similarity between pie and cake. Each dashed line represents
co-occurrence in the training corpus. (b) The relationship between patients of cut and the instruments they
co-occurred with. Plausible patient-instrument combinations are shown in the same color.
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Benefits of the Constituency Structure

However, ‘connecting language’ itself does not guarantee compositional generalization. With the connections,

the model may know either cut cake or cut tree is closer to cut pie, while it still needs to pair up the

familiar phrases with their observed instruments (Figure 5.2 b). It turns out that the structure of the

connected language matters. Both CTN and LON are trained by ‘connecting language’, but LON includes

less information about linguistic structure. In this chapter, I mostly focus on the CTN, and use the LON as

a baseline to test the importance of the constituent structure for compositional generalization.

Constituent structure is encoded in the CTN using special purpose nodes referred to as higher-order

or ‘phrasal’ nodes. An example of such nodes are those labeled cut cake and cut cake with knife in Figure

5.1a and b. Not only do phrasal nodes help identify which expressions should be grouped together in the

same sentence, they are also the building blocks on which compositional generalization relies. An important

advantage of phrasal nodes is that their presence in the network enables the use of ‘graphical distance’ for

better quantifying the relatedness between a word and a phrase (and the constituents of the phrase). To

illustrate, consider the paths between the nodes labeled cut, bake, and knife in the network shown in Figure

5.1b. Since cut and knife are components of the same phrase cut cake, they are both connected to the same

phrasal node cut cake. The presence of this node in the network results in a shorter distance between cut

and knife relative to the connection between bake and knife. In contrast to the LON, where cut and bake

are equally distant to knife and oven (Figure 5.1d), cut is closer to knife, and bake is closer to oven in the

CTN. In this way, unlike LON, the CTN is able to capture the fact that knife is a thematically better fit

to cut cake, and that oven is a thematically better fit to bake cake. In other words, the CTN captures the

dependencies between complex expressions (e.g. VPs) and individual lexical items (e.g. instruments). These

phrasal dependencies, as I show, are crucial to the success of compositional generalization.

To summarize: the CTN ingests constituent parse trees by connecting them at shared nodes. As

a contrast to the linear chains in LON, the parse tree provides the grammatical structures needed to

perform generalization and the connection enables generalization to novel combinations of familiar items

in familiar grammatical structures. While these ‘structural’ readiness are the foundation of CTN’s success

in the compositional generalization task, it still needs an effective measures to translate the structure into

quantified semantic relatedness, which I explain in the next section.

5.2.2 Inference

With the structure of the CTN in place, two questions remain regarding its ability to perform compositional

generalization: First, how is the semantic relatedness between two lexical items (e.g. pie and cake) measured?

Second, how can the CTN infer the relatedness between a lexical item and a phrase (e.g. cut pie and knife?

As a particular type of Distributional Graph, CTN accesses relatedness through the spreading-activation

algorithm defined in section 2.1. Readers who have thoroughly read Section 2.1 may skip the following section

5.2.2, as it is largely repetitive to Section 2.1. Nevertheless, the definitions in this section are presented

alongside with explanations of the problem in this Chapter, i.e. compositional generalization. Therefore, I

also recommend interested readers to go through the defining process with the context problem in mind,

which may lead to better understanding of the spreading-activation algorithm.
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Quantifying Semantic Relatedness on Graphs

In this section, I lay out the formalism for computing semantic relatedness in the CTN and LON. I begin by

defining the relatedness between two neighboring nodes in the network, and work our way up to the semantic

relatedness between nodes that are separated by an arbitrary distance.

The relatedness between two neighboring nodes A and B is computed as the normalized weight of the

edge connecting the two nodes, denoted as ω′
AB :

ω′
AB =

ωAB∑
X∈N (A) ωAX

(5.1)

where ωAB is the weight of the edge linking nodes A and B, and N (A) is the set of nodes that are neighbors

of A in the network. In the CTN and LON, all edge weights are proportional to the co-occurrence frequency

of the lexical items denoted by the two nodes in a training corpus. Therefore, the amount of activation

that A spreads to a neighbor X is proportional to the co-occurrence frequency between A and X. As a

consequence, lexical items that co-occur more frequently with the item denoted by A, receive more activation

from A. Normalization reduces the amount of activation arriving at a target node B if source node A has

many neighbors relevant to A. This captures the intuition that if a lexical item co-occurs frequently with

many other items, the semantic relatedness between any pair should be small.

Next, I define the relatedness between any two nodes separated by a path P . Let P be a path of length k

in the network connecting node A and C. The semantic relatedness between them is defined as:

SRP (A,C) =
∏

1≤i≤k

ω′
i (5.2)

where ω′
i is the normalized weight of an edge along path P . This definition features how much activation

spreads from A to C via path P . Note that the formula is sensitive to graphical distance: Because the weight

of each edge along path P is less than 1, the activation must disperse as it flows from A to C. As a result,

the larger the graphical distance, the more activation diffuses away along the path. Therefore, the greater the

distance between A and C, the smaller the semantic relatedness between the two lexical items they represent.

As illustrated in Figure 5.2b, the activation of cake resulted in more activation arriving at knife than at ax

(illustrated with color difference). This is in agreement with the strong thematic relationship between cake

and knife relative to cake and ax.

Finally, I define the general semantic relatedness between a source node A and any node D in the same

semantic network as

SR(A,D) =
∑

P∈PA,D,L(P )≤d(A,D)+n

SRP (A,D) (5.3)

where PA,D is the set of paths between A and D, L(P ) is the length of P , d(A,D) is the graphical distance

between A and D, and n is the upper bound on the length of P . In other words, the general semantic

relatedness of node A and D is the sum of all activations arriving at D from A through paths that are no

longer than n. By excluding paths longer than n, the set of paths that are considered, P ∈ P, only contains

relatively short paths. I filter the longer paths as they contribute less activation at D compared to shorter

paths, and are less informative (De Deyne et al., 2016; Rotaru et al., 2018).

Given that this measure of spreading-activation considers only a bounded set of paths, if two nodes share

a larger number of paths in that bounded set, then they will activate each other more strongly. For example,
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under the assumption that there are more paths between nodes labeled pie and cake compared to pie and

tree, cake would be more strongly activated than tree. In turn, knife would receive more activation from cake

relative to ax (Figure 5.2b).

Operationalizing Phrasal Relatedness

I explained how spreading-activation can be used to compute lexical relatedness, such as between pie and

cake. However, how can this approach be scaled to the relatedness between a phrase and a lexical item?

With the availability of phrasal nodes in the CTN, it is possible to use the general lexical relatedness as

the building block of a larger formula for computing the relatedness between complex expressions. (Note

that this cannot be done with the LON, which lacks phrasal nodes). The relatedness between arbitrary

phrase (phrases with arbitrarily complex structure) has been defined by Equation 2.6 in Section 2.3.3, and

the phrasal relatedness investigated here is the simplest special case: The phrases only have two words.

Applying Equation 2.6, the phrasal relatedness between a two-word phrase and a word is defined as the

product of two word-word relatedness scores. For instance, the relatedness between the verb phrase cut pie

and an instrument can be written as:

SR(cut pie, Instrument) = SR(cut, Instrument) · SR(pie, Instrument) (5.4)

As mentioned in Section 2.3.3, another way to compute phrasal relatedness would be to compute the

activation originating and/or arriving at phrasal nodes in the CTN; however, such an approach would only

work for those phrases that the CTN has encountered during training. This is insufficient, given that the set of

expressions that are grammatical under a language is virtually infinite (see the discussion of the productivity

of language in Section 5.5). For such reason, I did not follow this approach.2

Note that the phrasal relatedness is broken apart into two distinct components, one for each word in the

verb phrase. With this formulation, SR(cut pie, knife) should be scored higher than SR(cut pie, ax) provided

that pie and cake are distributionally more similar than pie and tree. This difference is due to the second term

in the equation, SR(pie, Instrument), which denotes the relatedness between pie and a given instrument.

If pie and cake are distributionally very similar, the strong activation of cake in the semantic network will

spread to knife more efficiently than to another instrument.

Compared to other distributional models (e.g. (Mitchell & Lapata, 2010; Baroni, Bernardi, & Zamparelli,

2014)), the compositional function used by the CTN is relatively simple. Consequently, any performance

gained by the CTN relative to previous models should not be attributed to the compositional function alone.

Instead, I argue that any performance gained by the CTN should be attributed to (1) the graphical data

structure that explicitly encodes constituency, and (2) the spreading-activation algorithm which takes care of

path length, number of shared paths, and edge weights to provide a graded relatedness measure.

Using a more general formulation, I define the relatedness between a 2-word phrase (w1, w2) and a word

w3 as

SR((w1, w2), w3) = SR∗(w1, w3) · SR∗(w2, w3) (5.5)

where SR∗ denotes what I will refer to as the ‘adapted’ lexical relatedness. The adapted lexical relatedness is

similar to the general lexical relatedness, but accounts for a special situation that can arise in the CTN that

would hamper its accuracy during compositional generalization.

2Although I do not allow phrasal nodes to act as source or target nodes, phrasal nodes are allowed to transmit activation like
any other node.
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The Adapted Lexical Relatedness

In this chapter, the adapted word-word relatedness score for LON is equal to equation 5.3 with n set to 2. To

be precise, the adapted lexical relatedness in the LON is equal to the the sum of the activation arriving at

the target node via the first and second shortest paths from the source node.

In the CTN, the adapted lexical relatedness also follows Equation 5.3. However, in addition to considering

only the n shortest paths, I also disallowed activation from spreading along the path that traverses the

sub-tree that represents the phrase (w1, w2). Without this adaptation, the phrasal relatedness can, in some

cases, be reduced to a function of the lexical relatedness between the verb and instrument only. This is not

ideal, considering that the information provided by the patient would be effectively discarded. When this

information is discarded, compositional generalization suffers.

How does the exclusion of that path force the CTN to consider the patient during generalization? Recall

that the phrasal relatedness between, say, the verb-patient combination cut pie and the instrument knife is the

result of multiplying two terms, namely SR(cut, knife) and SR(pie, knife). During computation of the second

term, SR(pie, knife), activation will spread from pie to the phrasal node cut pie, and then to cut. At this

point, the shortest path to the knife is along the same path that activation must travel when computing the

first term, SR(cut, knife). When the path from the patient pie to the instrument knife via the phrasal node

cut pie is the shortest path in the network (as is the case with networks constructed from the artificial corpus

here), the information provided by following this path would be redundant with the information provided by

following the path from the verb to the same instrument. If so, the phrasal relatedness could be reduced

to a function of only the first term, SR(cut, knife). More precisely, the phrasal relatedness SR(cut pie, knife)

could be reduced to c× SR2(cut, knife) where c is a constant that denotes SR(pie, cut).

5.2.3 Summary

In Section 5.2.1, I showed that the constituent trees explicitly encoded in CTN may provide the topological

structure benefiting compositional generalization, as a contrast to the LON that lacks such structure.

Furthermore, the structural ‘advantage’ demands an effective relatedness measure on the graph, which I

presented in 5.2.2. Notice that both the constituent structure and the effective measure are needed towards

the compositional generalization task. As I will show and explain in Section 5.4 and 5.5, lacking the critical

structure, LON equipped with the same spreading activation algorithm still fails the task.

5.3 Corpus

I designed a series of experiments to examine the ability of different models to perform compositional

generalization. The models learned linguistic structure from a carefully constructed artificial language corpus

that was designed to have a specific semantic role structure. Once trained on this corpus, the task of the

models was to judge the semantic plausibility of sentences they had seen during training, as well as to judge

the the plausibility of sentences they had not seen, but which were consistent with the semantic rules used to

generate the corpus.

5.3.1 Corpus Structure and Experimental Design

The corpus was a collection of sentences of the form ”agent-verb-patient-instrument.” (e.g., ”Mary

preserved cucumber with vinegar”). In the corpus, whether the instrument occurred in the sentence or was
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omitted depended on the verb and patient noun, and the manner is described below. The specific words in

each sentence were chosen using rules instantiating a set of 8 isomorphic verb-patient-instrument semantic

structures. These semantic structures described which of the six verbs (4 types) in that semantic structure

could co-occur with which of the six patient nouns; whether an instrument noun would occur in that sentence;

and if an instrument would occur, which of the four instruments it would be. An example of one of the

8 semantic structures is shown in Table 5.1. Each of the 8 semantic structures replicated the same exact

structure, but used different sets of words.

Table 5.1: Example sentences from the artificial corpus, for 2 patient categories only. Each category is
associated with 4 verb types. Type-3 and 4 verbs always occur with instruments except when patient is Test
(indicated by bold-face).

Category type-1 type-2 type-3 type-4

vegetable J dice cucumber J ferment cucumber J grow cucumber with fertilizer J preserve cucumber with vinegar
J dice potato J ferment potato J grow potato with fertilizer J preserve potato with vinegar
J dice pepper J ferment pepper J grow pepper J preserve pepper

fruit J dice berry J pick berry J spray berry with insecticide J preserve berry w. dehydrator
J dice apple J pick apple J spray apple with insecticide J preserve apple w. dehydrator
J dice orange J pick orange J spray orange J preserve orange

Patient Nouns

Each structure was organized such that the six patient nouns that specifically associated with it were divided

into two semantic categories (e.g., FRUITS and VEGETABLES in this example in Table 5.1) containing

three words each. Of the three nouns in each category, two were Control nouns that were allowed to co-occur

with instruments, and one was a Test noun that never co-occurred with an instrument noun in the same

sentence in the corpus.

Verbs

Each of the four types of verbs in each structure differed systematically with regard to its pattern of co-

occurrence with patient and instrument nouns. Type 1 verbs were shared category verbs that could co-occur

with patients from both semantic categories. In addition, Type 1 verbs never co-occurred with instruments.

Type 2 verbs were category specific verbs that only co-occurred with patient nouns from one semantic category,

and like Type 1 verbs, never co-occurred with instruments. Type 3 verbs were category specific verbs like

Type 2 verbs, but did sometimes co-occur with instrument nouns (again, depending on the patient noun).

Type 4 verbs were shared category verbs that sometimes co-occured with instrument nouns (depending on

the patient noun in the sentence).

Instrument Nouns

Two facts are important to note about the instrument nouns. First, as already described, whether an

instrument occurred at all in the sentence depended on the verb and the patient noun. Type 1 and Type 2

verbs never co-occurred with instruments, whereas Type 3 and Type 4 verbs did, when they also co-occurred

Control patient nouns.

The second notable fact about the instrument nouns was that the specific instrument that occurred in each

sentence was dependent on the specific verb and the semantic category of the patient noun. Neither the verb
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alone nor patient semantic category alone determined the specific instrument noun, only both in combination.

For example, “with fertilizer” occurred only with a vegetable and the verb grow ; “with insecticide” occurred

only with a fruit and with the verb spray ; “with vinegar” occurred only with a vegetable and the verb

preserved ; ”with dehydrator” occurred only with a fruit and with the verb preserved. Of critical importance,

while each instrument occurred with one and only one verb-patient combination, the verbs and the patient

nouns co-occurred with multiple different instruments. As a result, correctly learning which instrument went

in each sentence required learning the joint distribution of verbs, patient nouns, and instrument nouns.

5.3.2 Experimental Design

The 24 sentence types (semantic structures) that can be created from the rules described above define the 2x2

experimental design. The first factor was Verb Specificity : was the verb category specific (co-occurring with

only one patient category) or was it shared category (co-occurring with two patient categories)? This factor

is used to show that it should be easier to learn the instrument relationships for category specific verbs (Type

3 verbs) than for shared category verbs (Type 4 verbs). In other words, knowing the verb was ”grow” (a

category-specific verb) is enough to know that the instrument, if there is one, must be ”fertilizer”. In contrast,

for ”preserve” (a shared category verb), you need to also know if the patient was a FRUIT or VEGETABLE

to know if the instrument should be ”vinegar” or ”dehydrator”. The second factor was Patient-Instrument

Co-occurrence: did the patient noun co-occur with instruments during training? Control nouns did, and Test

nouns did not, co-occur with an instrument during training. Thus, Test nouns co-occurring with Type 3 and

Type 4 verbs have specific required instrument relations that can be learned, with perhaps this being easier

to learn for Type 3 (category specific) verbs than Type 4 (shared category) verbs.

The critical test with regard to the ability of the models is how they perform on Test patient nouns.

These are nouns that never occurred with an instrument in the corpus, with any of the verbs. Thus there is

no direct evidence that any instrument is licensed. However, any model capable of learning the compositional

structure of the language - the specific verb-patient-instrument pairings, might then be capable of showing

generalization to these unseen items. For example, consider if the model learned that “vinegar” was the

correct instrument for “preserve” paired with a VEGETABLE (based on seeing ”preserve cucumber with

fertilizer” and “preserve potato with fertilizer”. Such a model might then generalize that, if “preserve pepper”

was going to co-occur with an instrument, then the best instrument would be ”vinegar”. This would be true,

despite that fact that ”preserve pepper” always occurred without any instrument in the corpus.

5.3.3 Corpus Generation

I generated 30 pseudo-random corpora using the semantic structures described above. Each of these 30

corpora had 400 blocks. Each of the 30 corpora were generated by first generating one example of each of

the 576 possible legal sentences (all combinations of each agent-patient-instrument with each verb). Next,

another 388 blocks of 48 sentences (one sentence for each verb) were generated, where the arguments in each

sentence (agent, patient, and instrument) were selected randomly from among the legal options (by the verb).

This was done to introduce some variability into each corpus variant, in order to test the robustness of models

learning from the corpora. Each resulting corpus had 19200 sentences, with each verb occurring an equal

number of times throughout the corpus.
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Distributional Structure

The distributional structure needed to predict the correct instrument is best understood from the point of

view of individual verbs and their possible arguments. For an illustration of the distributional structure of

the instrument preserve, see Figure 5.3. In this example, there are four possible instruments for pepper, and

the choice depends on a number of factors in addition to the choice of verb. For example, when the patient

is a member of the fruit category, the instrument must be dehydrator. In contrast, when the patient is a

member of the vegetable category, the instrument must be vinegar. Further, the instrument cannot be

decided based on knowledge of the patient alone. Each patient can occur with exactly 2 instruments; while

members of fruit can occur with insecticide and dehydrator, members of vegetable can occur with vinegar

and fertilizer. This symmetry was intentional: The fact that there are more than one plausible choices when

considering the verb or patient alone makes the task difficult for models relying exclusively on one lexical cue.

FRUIT VEGETABLEspray grow

preserveinsecticide dehydrator fertilizervinegar

Figure 5.3: A schematic demonstration of the co-occurrence relationships between all instruments that can
occur in sentences with the type-4 verb preserve. For reference, fruit consists of raspberry, strawberry, and
orange, and vegetable consists of cucumber, potato, andpepper. Notice the symmetry between the two
patient categories: The verb preserve is related to both categories in identical fashion.

How to solve the Task

The most difficult version of the task, which requires compositional generalization to solve, is when the patient

is an Test patient. Recall that an Test patient never occurs with an instrument in the same sentence in the

training corpus. An example input is the verb-patient combination preserve pepper. Because pepper is a Test

patient, there is neither a holistic dependency between the verb-patient combination and any instrument, nor

a word-word dependency between the patient and any instrument. As a result, a model cannot infer the

most plausible instrument (i.e. vinegar) directly from the training data. Instead, it has to identify a proxy

phrase from which to generalize. This proxy phrase must be similar to the Test verb-patient combination,

preserve pepper, and must have been observed alongside an instrument. The best candidate proxy phrases

given the semantic structure of the corpus are preserve cucumber and preserve potato. The reason is that

both phrases share the same verb as the Test verb-patient combination, and their patients are members of

the same category, namely vegetable. Once the proxy phrase has been identified, the model may generalize

by inferring that the most semantically plausible instrument is the one that was most frequently observed

with the proxy phrase in the training corpus.

How might a model identify a proxy phrase? The answer is that a model must have some mechanism

for computing the similarity between two phrases. I argue that phrasal similarity must be computed

compositionally, when no compound cues (i.e. cues at the level of phrases) are available. In the current

example, that is the case. The reason is that preserve pepper only occurs with agents in the training corpus,

and all agents occur equally likely with all verbs and patients. Thus, there are no distributional cues to allow
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a model to infer which other phrases the verb-patient combination is related to.3 Therefore, to obtain the

phrasal similarity, a model must break down the verb-patient combination into smaller components, namely

a verb and patient. Given that there are a number of VPs that share the same verb, the model can infer

phrasal similarity based entirely on the patient. To do so, the model needs only to encode the distributional

semantic similarity among words, which is provided in the structure of the artificial corpus.

Once the proxy phrase has been identified, there are still a number of steps for the model to complete

in order to arrive at the correct answer: As mentioned in Section 5.1, the model must also have encoded

the phrasal dependency between the proxy phrase (e.g. between (preserve cucumber and vinegar) during

training, and, finally, transfer this learned dependency to the Test verb-patient combination (i.e. inferring

that vinegar is the most semantically plausible instrument for preserve pepper).

5.4 Experiments

All of the experiments reported in this work follow the same basic sequence of steps: (1) I trained 30 instances

of each kind of model, one on each of the 30 randomly-generated instances of the artificial corpus, (2) I

used each of these models to generate a set of prediction scores for each instrument in the corpus, given the

sentence context, and (3) I used those prediction scores to evaluate each model’s average performance across

all 30 corpora. Success on this task tested the ability of each model to learn and represent distributional

information, and use that information to judge of semantic plausibility of test sentences.

For each trained model, I computed the activation of all 32 instruments for each given sentence context.

To compute this score in the CTN and LON, the lexical relatedness scores between the verb and instrument

noun and between the patient noun and instrument noun were computed separately, and then combined via

multiplication, in accordance with formula 5.4. In this way, both constituents of the verb-patient combination

contribute independently to the composite relatedness — in accordance with compositional generalization.

A model’s performance on each of the verb-patient combinations was based on whether the highest scoring

instrument was the instrument that was structurally most licensed to occur with the given verb-patient

combination. For example, given the input preserve pepper, the model would only be judged as correct if the

model scored the relatedness of the combination preserve pepper -vinegar higher than any other verb-patient-

instrument combination. The overall performance of a model in a given experiment was the average percent

correct over all verb-patient combinations included in that experiment.

5.4.1 Experiment 1: Learning and Generalizing Word-Word Dependencies

In Experiment 1, I evaluated the ability of each model to predict the most structurally-licensed instrument,

given contexts in which the instrument can be perfectly determined from a two-way lexical dependency. The

cases where this was true was for sentences containing verbs that were ”Category Specific”, or Type 3 verbs,

such as grow -vegetable and spray-fruit (see Figure 5.3. In these cases, inferring the structurally licensed

instrument only required identification of the verb, and recalling which instrument occurred with that verb in

the training corpus.

3In natural language, it is possible to use extra-sentential cues to support phrasal similarity. However, in this artificial corpus,
there are no dependencies across sentences that could be used to support phrasal similarity.
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Experiment 1a

In Experiment 1a, I tested the models’ ability to make correct predictions given the verb and a Control

patient noun, i.e., a patient nouns that co-occurred with an instruments in the corpus. In Experiment 1b, I

examined the extent to which the models were able to generalize learned two-way lexical dependencies to novel

expressions, by assessing their ability to predict the most licensed instrument for sentences involving Test

patient nouns. In the training corpus, Test patient nouns were nouns that never, under any circumstances,

co-occurred with an instrument. Thus, Experiment 1b tests the ability of the models to generalize.

The purpose of this first experiment was to test whether learning of the observed verb-patient-instrument

combinations has taken place. To accomplish this, I computed a score for each instrument that was the

semantic relatedness between the verb and that instrument, multiplied by the semantic relatedness of the

patient noun with that instrument. The model’s prediction was scored as correct if the structurally licensed

instrument was scored the highest, and report the average hit rate (i.e. accuracy) across all corpus seeds.

Perfect performance is therefore obtained only if a model is able to consistently pick out the correct instrument

from all other instruments, for each of the 32 tested verb-patient combinations, and all 30 corpus seeds.

Lastly, I computed the accuracy of a baseline model that generated relatedness scores via random guessing.

Experiment 1b

In Experiment 1b, I adopted the same procedures as Experiment 1a, except for using as input verb-patient

combinations with type-4 verbs and Test patients. Because I only allowed phrases with Test patients, there

were half as many inputs as compared to Experiment 1a, namely 16. The question I aimed to answer in

this portion of Experiment 1 is the following: Given that a model accurately captured a two-way lexical

dependency (e.g. grow cucumber should be followed by fertilizer due to the verb grow), can it generalize this

knowledge to a verb-patient combination that it has not observed during training? For instance, can the

model also infer that grow pepper should be followed by fertilizer, despite never having seen that verb-patient-

instrument combination before? This generalization is based entirely on a two-way lexical dependency, and

therefore does not require compositional generalization. Because grow is always followed by the instrument

fertilizer in the corpus regardless of the patient, this task does not require identifying substitutable expressions

via similarity-based inference. As before, I recorded a hit only if a model scored the correct pair to be

semantically most related (e.g. if the pair grow pepper -fertilizer is scored highest among all other tested

verb-patient-instrument combinations). The overall hit rate was averaged across corpus seeds, and compared

against a random baseline.

Results

The results of Experiment 1a and 1b are shown in the first two columns of Table 5.2. All models performed

well above the random baseline (guessing resulted in an accuracy of 0.03). Notably, the CTN achieved perfect

performance in both conditions. This means that the CTN was able to learn the lexical dependency between

the verb and the instrument, and to successfully generalize the learned dependency to Test verb-patient

combinations.

In contrast, the LON performed poorly in both conditions. Follow-up analyses of the output of the LON

revealed that the model consistently confuses between the two instruments that co-occurred with patients

in the same semantic category. For instance, given the type-3 verb grow, the LON predicted that vinegar

and fertilizer are equally plausible, despite that only the former (vinegar) but not the latter (fertilizer)
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directly co-occured with grow. That said, fertilizer is not a bad inference, given that this instrument regularly

co-occurs with the same set of patients that also co-occur with grow, namely potato, cucumber, and pepper.

All three patients belong to the category vegetables. This explains why the accuracy of the LON was well

above chance, but nonetheless capped around 0.5. The failure to keep track not only of the co-occurrence

between patients and instruments (e.g. cucumber -fertilizer) but also the patients that co-occur with them

(e.g. grow -cucumber -fertilizer), is precisely the kind of mistake expected from a model that does not explicitly

represent phrasal dependency (i.e. the dependency between larger chunks of language and a lexical item).

This limitation can be overcome by leveraging constituent structure, which likely played a crucial role in the

success of the CTN in this experiment.

Table 5.2: Accuracy of inferring the structurally-licensed instrument for verb-patient combinations with
Control (e.g. cucumber) and Test (e.g. pepper) patients. Accuracies are averages across 30 corpus seeds.

Experiment 1 Experiment 2

(a) control patient (b) exp. patient (a) control patient (b) exp. patient

CTN 1.00 1.00 1.00 1.00
LON 0.51 0.51 0.49 0.47
Random Guessing 0.03 0.03 0.03 6.72× 10−5

5.4.2 Experiment 2: Learning and Generalizing Phrasal Dependencies

In Experiment 1, the dependency between a type-3 verb-patient combination and the correct instrument can

be reduced to a two-way lexical dependency. In Experiment 2, however, I used verb-patient-combinations

with type-4 verbs instead. An example of a type-4 verb is preserve, because it co-occurs with patients from

two semantic categories instead of one (Figure 5.3). By evaluating inputs with type-4 verbs only, I effectively

evaluated the ability of models to learn and generalize the fact that the correct instrument depends not only

on the verb, but also on the patient.

Experiment 2a

In Experiment 2a, I focused only on verb-patient combinations with type-4 verbs and Control patients. For

these types of verb-patient combinations, the correct instrument can be inferred by recalling which instrument

most frequently co-occurred with the tested verb-patient combination in the training corpus. I used the same

procedure for evaluation as mentioned above; an inference was considered correct if the relatedness between a

tested verb-patient combination and the structurally licensed instrument was greater than for all remaining

instruments. For instance, given the verb-patient combination preserve cucumber, the model must assign the

highest semantic relatedness score to the pair preserve cucumber -vinegar.

Experiment 2b

In Experiment 2b, I investigated to what extent a model is able to transfer its knowledge of observed phrasal

dependencies to Text phrases, which do not co-occur with any instrument in the training corpus. For example,

if a model learned that preserve cucumber should be followed by the instrument vinegar, can it generalize

this knowledge to the Test verb-patient combination preserve pepper? In this situation, pepper is a sibling of
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cucumber, because both are considered members of the vegetable category and share contexts. Despite

never having observed preserve pepper and vinegar in the same sentence, can the CTN use this knowledge to

infer the correct answer, namely vinegar?

The best-fitting (i.e. structurally licensed) instrument is the one that satisfies two structural constraints:

(i) The instrument must co-occur with the tested verb in the training corpus (due to a probabilistic lexical

dependency between, say, preserve and the best-fitting instrument vinegar), and (ii) the instrument must

co-occur with patients that belong to the same semantic category as the Test patient (e.g. pepper is the

sibling of cucumber, and cucumber co-occurs with the best-fitting instrument vinegar).

Results

The results of Experiment 2a and 2b are reported in the last two columns of Table 5.2. Notably, the CTN

achieved ceiling-level accuracy in both conditions. This means that the CTN learned all phrasal dependencies

present in the corpus, and correctly generalized these dependencies to the VPs with Test patients. It should

be noted that achieving perfect score in this task is not a simple feat (see Chapter 6). Similar to Experiment

1, the LON performed substantially worse than the CTN. This is further evidence for the important role

that constituency structure plays in compositional generalization to novel phrases. The performance of the

LON in Experiment 2 is very similar to that in the previous experiment. The reason is the same as explained

in the previous section. The LON is making precisely the same mistake. In fact, the LON did not achieve

accuracy significantly higher than 0.5 in any of the experiments. For that reason, I will focus on the CTN in

the next two experiments, discussed below.

5.4.3 Experiment 3

Due to the excellent performance of the CTN in Experiment 2b, I asked whether the CTN can be pushed

even further. In particular, I asked: Can the CTN use its ability to perform compositional generalization to

infer the graded semantic relatedness between instruments and verb phrases? Put differently, can the CTN

also infer which instrument is the next best fit after having determined which instrument is the overall best

fit? A graded similarity should arise due to the hierarchical semantic structure of patients (see 5.3). To do so,

I proceeded as in Experiment 2b, but modified the evaluation to also consider which instrument a model

scores in second position (i.e. rank 2).

The determination of the second-best fitting patient is a bit more involved than the best-fitting instrument.

Given the distributional structure of the training corpus, it is decided that there are two instruments that are

equally plausible in the second position. As long as a model infers that both instruments are less plausible

than the best-fitting instrument, and more plausible than all remaining instruments, a hit is recorded. Each

of the two instruments highlights a separate, but equally important, aspect of semantic relatedness. Whereas

one aspect emphasizes the distributional structure of the verb, the other choice highlights the distributional

structure of the patient. For instance, consider the verb-patient combination preserve pepper, which was used

in Experiment 2b. When considering the verb preserve, the second-best fitting instrument is dehydrator,

given that it frequently co-occurs with preserve. On the other hand, when considering the patient pepper, the

most related instrument is the one that most frequently co-occurs with siblings of pepper. The siblings are

cucumber and potato, and each frequently co-occur with the instrument fertilizer (due to the verb grow). As

a result, it did not matter whether a model scored dehydrator or fertilizer higher than the other; a hit was

considered if the two instrument were scored in second and the third place.
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Results

The results of Experiment 3 are shown Table 5.3. I separately report the accuracy at inferring the best fitting,

and second-best fitting instrument. Accuracy at ‘rank 1’ and ‘rank 2’ refers to the accuracy of inferring

the best-fitting, and second-best fitting instrument, respectively. Again, the CTN achieved ceiling-level

performance under each type of evaluation method, while the LON lagged behind substantially. While the

LON is considerably more accurate than a random-guessing baseline, the LON consistently confuses two

instruments, as can be inferred by the fact that accuracy is at 0.5.

Table 5.3: Accuracy of inferring the structurally-licensed instrument, separated by rank. Rank 1 accuracy is
the accuracy at inferring the best fitting instrument; rank 2 accuracy is the accuracy at inferring second-best
fitting instrument. Accuracies are averages across 30 corpus seeds. Note: I report the best accuracy across
all parameters for each model separately. In particular, the LON achieved its best performance when the
preposition with was omitted from sentences that include instruments. The CTN achieved ceiling-level
performance regardless of whether the preposition with was included.

Experiment 3 Experiment 4

rank 1 rank 2 rank 1 rank 2

CTN 1.00 1.00 1.00 1.00
LON 0.50 0.51 0.53 0.53
Random Guessing 0.03 0.03 6.72× 10−5 6.72× 10−5

5.4.4 Experiment 4

In Experiment 2b, the tested verb-patient-instrument combinations (e.g. preserve pepper vinegar) do not

occur in the training corpus. As a result, the combination was considered to be novel. However, it is possible

that the mere fact that an Test verb-patient combination occurs during training — despite only being followed

by the relatively uninformative period symbol — provides some information the model can rely on to achieve

a high score. To ensure that this is not the case, and to align our evaluation task to other commonly used

task for evaluating compositional generalization (e.g. the SCAN task introduced by B. Lake and Baroni

(2018)), I modified the corpus by removing all sentences that contained a verb-patient combination with a

type-4 verb and an Test patient. For example, John preserve pepper was excluded, because preserve is a

type-4 verb, and pepper is an Test patient. If the CTN relies on the occurrence of such phrases to perform

compositional generalization, their exclusion should reduce its performance in this experiment.

Results

The results are shown in Table 5.3. The perfect accuracy achieved by the CTN suggests that the model does

not need to observe a verb-patient pair in the training corpus in order to infer the most plausible instrument

for that pair. This finding is important because it presents the model with more naturalistic — and also

more challenging — input, and raises our confidence that the model is indeed computing relatedness in a

compositional manner as opposed to relying on pre-existing cues in the training data. These results also

suggest that the CTN is relatively robust against variations in the training data, and especially the absence

of direct cues about which verb is most likely to co-occur with which patient. Other types of models, such as

those based on neural networks are often found to be less robust against such variation. In contrast, the LON
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achieved an accuracy very similar to that in all previous experiments. Again, this finding further strengthens

the idea that encoding constituent structure can be relevant to compositional generalization.

5.5 Discussion

In this chapter, I explored CTN’s capability of learning and generalizing multi-way lexical dependenceis. The

goal was to enable structured inference at both word and phrasal levels without compromising performance

in either. To evaluate the approach, I developed an artificial corpus and a task for measuring the capacity to

infer the semantic plausibility of novel combinations of familiar items from the corpus. To do well on that

task, a model must be able to generalize from known lexical items to new complex expressions — a skill that

is often termed compositional generalization.

The results provide strong evidence that a distributional model can learn to solve a difficult semantic

inference task that requires compositional generalization. In particular, it is observed that a system that

represents both distributional statistics and constituent structure in a graphical data structure, can (i) learn

to represent the semantic structure of the corpus it was trained on, and more importantly, (ii) make inferences

about novel combinations of familiar lexical items.

The task used to evaluate the ability of CTN requires inferring which of a set of lexical items is a

semantically more plausible instrument for a verb phrase that has never previously been observed alongside

any instrument in the training corpus. While this task appears simple on the surface, it is actually a complex

combination of multiple semantic sub-tasks. To achieve strong performance, a model must (i) learn the

sequential dependency between a phrase and a lexical item (e.g. vinegar often comes after the verb phrase

preserve cucumber), (ii) learn the semantic similarity between individual lexical items (e.g. cucumber shares

distributional features with pepper), (iii) infer phrasal similarity from multiple word similarities (e.g. preserve

cucumber is similar to preserve pepper, and (iv) generalize a learned phrasal dependency to a distributionally

similar phrase (e.g. vinegar is likely to come after preserve pepper). Success in this task is a strong indicator

that a model can judge the semantic plausibility of novel combinations of familiar items. The development of

a system that is able to productively re-combine lexical items and phrases based on limited experience with a

finite vocabulary is a critical step towards accounting for the productivity of the human language system.

In the remainder of this section, I (i) review the reasons potentially underlie the success of the CTN in

the experiments, (ii) discuss the implications of the results to theories of semantic representation and human

cognition, and (iii) briefly motivate comparison between CTN and other distributional models.

5.5.1 Ingredients for Compositional Generalization

The CTN achieved ceiling performance in all the experiments, including those that examined compositional

generalization. I argue that the model’s success should be attributed to the following three ingredients: First,

‘connecting language’ made it possible to transform linguistic data into a semantic network. Second, the

spreading-activation algorithm provides strong estimates of semantic relatedness by integrating multiple

distributional factors encoded in the CTN’s graphical data structure. Third, the preservation of the

constituency structure in the network proved critical for generalization. I discuss each of these three

ingredients in more detail below.
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Connecting Language

The merits of the ‘connecting language’ approach are multi-fold. First, it allows words and phrases from

different expressions to be connected together in one graph. These connections may be direct or indirect,

and the proximity between two expressions in the resulting graph is an important cue to their semantic

relatedness. Another benefit of this approach is that all expressions participate during inference in the

same way, no matter how distantly connected they are in the graph. The fact that two expressions that

did not co-occur in the training corpus become indirectly linked in the semantic network makes it possible

for spreading-activation to reach a node representing one expression from the node representing the other.

For example, although pepper and vinegar do not co-occur in our corpus, the CTN is able to establish a

connection between these two items on account of their shared co-occurrence with preserve.

It should be noted that the CTN connects expressions in natural language instead of concepts or more

abstract representations of natural language, such as association norms. The preservation of the raw language

input allows the modeler to develop custom procedures for extracting abstract relations on their own terms,

and to consider the task and context in doing so. As a result, the CTN can be extended to consider the task

and context during inference by adaptively modifying its core procedure for inferring semantic relatedness.

For example, we might differentially weight different distributional factors that contribute to the overall

semantic relatedness score depending on the task and context. Had the network been built from more abstract

representations of language, this would be more difficult to achieve.

Spreading Activation

While ‘connecting language’ prepares the graphical structure for inference, the spreading-activation algorithm

is the computational powerhouse for quantifying semantic relatedness. Quantification of semantic relatedness

is sensitive to three distributional factors, namely (i) shared co-occurrence, (ii) co-occurrence distance, and

(iii) co-occurrence frequency. Each of these factors is encoded in the graph, and by traversing the graph,

spreading-activation is implicitly influenced by them. By integrating across these factors, spreading-activation

can provide a graded measure of semantic relatedness.

A key factor in the success of spreading-activation for measuring semantic relatedness is the algorithm’s

sensitivity to the number of shortest paths between two nodes. For example, in the artificial corpus, pepper

is distributionally more similar to cucumber than to berry. This difference in distributional similarity is

captured in the graph in terms of the number of paths between the nodes that represent those items (see

Figure 5.4). The reason that there are more paths between pepper and cucumber is because they frequently

co-occur with the same three verbs. In contrast, berry only co-occurs with one of those three verbs. As a

consequence activation can spread more effectively from pepper to cucumber than from pepper to berry. In

turn, this explains why pepper more strongly activates vinegar compared to dehydrator in Experiment 2b —

only nouns in the vegetable category co-occur with vinegar, and only nouns in the fruit category co-occur

with dehydrator.

As noted before, ‘connecting language’ and spreading-activation together are insufficient to perform

compositional generalization in the setting. The LON, a degenerated version of the CTN that lacks constituent

structure, consistently failed to distinguish between the two most plausible instruments in Experiment 2b. I

discuss the importance of constituent structure in the section below.
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Figure 5.4: Connectivity between pepper and cucumber, and between pepper and berry in the CTN trained
on the artificial corpus. Each dashed line represents an indirect path with phrasal nodes as intermediaries.
The items pepper and cucumber are both members of the semantic category vegetable, and this shared
category membership manifests in the corpus in terms of shared co-occurrence with three verbs related to
actions commonly performed on vegetables. In contrast, berry, which is a member of fruit only co-occurs
with one of those verbs.

Constituent Structure

What the failure of the LON in the setting has demonstrated is that merely being equipped with a composition

function is not sufficient to actually perform compositional generalization. The topology of the graph on

which relatedness is computed must also be considered. Although both the LON and CTN define phrasal

relatedness as the product of lexical relatedness scores (Equation 5.5), only the CTN was able to correctly

infer the thematically best-fitting instrument for a given verb phrase in all the experiments. The reason is

that, in the LON, nodes corresponding to sequentially occurring lexical items are connected linearly, and once

those linear chains are joined, the ability to recover phrasal dependency is lost (Figure 5.5a). For instance,

the nodes that represent the instruments fertilizer and vinegar become equidistant to grow and preserve in

the graph. Even after composition by multiplication (i.e. application of Equation 5.5), the phrase preserve

cucumber is no more related to vinegar than it is to fertilizer.

In contrast, phrasal dependency in the CTN is supported and preserved by the presence of phrasal nodes

in the graph. These phrasal nodes are a result of the constituency parsing applied to all sentences input to

the CTN. A phrasal node performs the critical function of linking two or more constituents that belong to the

same phrase. After parse trees in a corpus have been joined, verb-instrument pairs are structurally preserved

by virtue of being connected to the same phrasal node. The result is a graph where activation from preserve

cucumber can more easily spread to vinegar than to the less plausible instrument fertilizer. These results

highlight the importance of constituent structure in capturing the semantic plausibility of novel and complex

expressions, and provide evidence that the CTN is performing semantic operations in a compositional fashion.

Constituent structure can be encoded in a variety of ways within a model. The key aspect for the CTN

lies in its encoding method that promotes compositional generalization. By explicitly representing constituent

structure in a graphical form, the CTN captures complex relationships between linguistic elements and

effectively leverages these relationships for compositional generalization. Although other distributional models

might also encode constituent structure (Padó & Lapata, 2007), they may not do so in a manner that directly

supports compositional generalization. The CTN’s encoding strategy allows the model to integrate syntactic

information explicitly for the purpose of structured inference, facilitating the generalization of learned patterns

to novel combinations of lexical items. Consequently, the CTN’s ability to encode constituent structure in a

manner that fosters compositional generalization is a crucial factor in its success as a distributional model.
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Figure 5.5: Comparison between LON and CTN . (a) The network structure of the LON formed by joining
word-chains. (b) The network structure of the CTN formed by joining the constituent trees.

5.5.2 The Relationship between Compositional Generalization and Productivity

The CTN follows in the footsteps of many prior works that have modeled how humans might represent

semantic knowledge (Anderson, 1983; Landauer & Dumais, 1997; Lund & Burgess, 1996; Jones & Mewhort,

2007; Kenett et al., 2011; De Deyne et al., 2016; Rotaru et al., 2018; McRae et al., 1997; Baroni, Bernardi, &

Zamparelli, 2014; Collins & Quillian, 1969; Collins & Loftus, 1975; Osgood, 1952; Nelson et al., 2004; Miller,

1992). However, few works have attempted to explain how their models might also account for the productivity

of the human language system, i.e. the ability to form useful representations of novel combinations of familiar

lexical items.

I argue that in order to account for the full range of human semantic behavior, a model must be developed

with the productive nature of human language in mind. A language system is considered to be productive

when it is able to combine linguistic units from a finite set to form novel meaningful expressions with virtually

infinite variety (Fodor & Pylyshyn, 1988). For instance, such a system would be able to generate the phrases

cut cake with knife and cut tree with ax, and to distinguish them from other grammatical phrases such as

cut cake with ax and cut ax with cake that are semantically less plausible. Thus, productivity not only

refers to the ability to generate novel grammatical expressions, but also to the ability to infer which of those

expressions are semantically more plausible than others (Kutas & Federmeier, 2011; McRae et al., 2005;

Resnik, 1996), despite never having previously encountered them.

The CTN model was motivated not only to model aspects of human semantic memory, but also to account

for the productive nature of human language. One way in which productivity is harnessed is judging the

semantic plausibility of novel expressions. Given any finite corpus, there is an infinite number of expressions

that are both grammatical and novel (i.e. do not occur in the corpus). This means that the distributional

semantic properties of those novel expressions cannot be retrieved from memory. To address this, semantic

properties must be computed on-the-fly, by accessing and integrating representations of smaller components

of the novel expression. I consider that modeling semantic plausibility judgment is a promising new avenue

for the field of distributional semantic modeling, precisely because it makes contact with the productive

nature of the human language system. The CTN is one step in this direction. The CTN makes it possible to

judge which novel expressions that are legal under some grammar are actually semantically plausible (relative
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to other expressions). It is difficult to imagine human cognition without this ability: Should a pie be cut with

a knife or an ax? It would be inconvenient to delay a decision until we have heard knife and pie co-occur in

the same sentence.

Interestingly, recently developed large language models (LLMs) appear to be quite proficient at combining

parts of language to produce coherent and semantically plausible output. While recent breakthroughs such as

GPT-4 (Bubeck et al., 2023) are able to converse on almost any topic without errors in semantic plausibility,

it remains to be seen how such models perform on tasks explicitly designed to quantify compositional

generalization as how it is done in this chapter. On first glance, we expect the performance to be strong. This

raises the following question: What benefit, if any, do more structured graphical models like the CTN offer

relative to LLMs? One suggestion is that if both LLMs and models like the CTN are found to similar outputs

in standardized tasks, models in the latter class would be useful for researchers studying the inner workings

of LLMs. More structured graphical models, therefore, present a valuable tool for opening the black box that

powers recent advancements in language technology. I expand on this topic in the next part of the discussion.

5.5.3 Limitations and Future Directions

Due to the novelty of the CTN model, much more work is needed to contextualize them with the broader

psycholinguistics literature. This is not only the case for CTN, but also for LON and Distributional Graph in

general. Therefore, I leave this whole discussion to Chapter 7. Relatively more important for the CTN model

in particular, is to validate the findings (in this chapter) by comparing the model to other distributional

models. This will be the topic of the next chapter, immediately following the discussion below.

Comparison to Other Distributional Models

One of the primary motivation for developing and evaluating the CTN is due to shortcoming of existing ‘word-

encoding’ and ‘sequence-encoding’ models (will be defined in the next chapter) in the distributional semantic

modeling framework. Both types of models struggle on difficult semantic tasks that require compositional

generalization. While I have shown that the CTN can overcome many of those shortcomings, I am aware that

the current work is incomplete due to a lack of comparisons between the CTN and existing models. The gist of

the model comparison work aligns with many prior works on this topic, namely that sequence-encoding models

such as the RNN and Transformer based models can, in some cases, achieve compositional generalization,

but their performance is inconsistent, and might be far from perfect. Further, I found that the Transformer

achieved much better results in the compositional generalization portion of our task than the RNN and

word-encoding models. In fact, a miniature version of a Transformer based on GPT-2 (Radford et al., 2019)

was the only model other than the CTN that achieved strong performance in the current setting.

A thorough analysis of these results are left for future works. Among the many unanswered questions

are the contribution of constituent structure to successful compositional generalization. For instance, most

distributional models do not encode constituent structure. That said, sequence-encoding models, such as an

RNN or Transformer, are often able to infer constituent structure from raw language input (i.e. tokenized

but not parsed text). If the rapid progress in the field of language modeling continues to the point where

such models are able to succeed on difficult semantic tasks that require compositional generalization, what

does this say about the need for explicit representation of constituent structure, such as in the CTN?

Altogether, both the CTN and Transformer4 have demonstrated success in complex semantic tasks

4It should be noted that in our experiments, the Transformer required extensive hyperparameter tuning, and, while well
above chance, performance sometimes fell far short of ceiling-level.
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requiring compositional generalization. This has significant implications for cognitive theory and machine

learning. Compositional generalization tasks evaluate a model’s ability to encode phrasal dependencies by

constructing compositional representations that facilitate generalization to novel phrases. The Transformer’s

success in this task suggests that it possesses these computational capabilities, which might explain its strong

performance in various large-scale language tasks. However, the underlying mechanisms in LLMs are less

transparent due to their complex architecture. In contrast, the CTN model has a more explicit structure and

mechanism. Given their similar performance in compositional generalization tasks, the CTN could serve as an

interpretive model for LLMs’ semantic representations. I hypothesize that similar representations are formed

in the Transformer despite differences in architecture and training schemes. Future research should explore

the semantic representations within LLMs and compare them to those in the CTN. This line of inquiry could

deepen our understanding of the inner workings of LLMs and, more broadly, the representations necessary

for natural language understanding in humans. As a start, in the next chapter I examine a few existing

distributional models against CTN, with the learning and generalization tasks used in this chapter.
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Chapter 6

Multi-way Lexical Dependency

In this chapter, I investigate what mechanism and computational prerequisite can be the cornerstone toward

the semantic achievement of learning and generalizing multi-way lexical dependencies. In Chapter 5, I

approached the theoretical problem by concentrating on CTN and LON, the two types of distributional graphs

focused in this dissertation. In this chapter, I expand the exploration to a broader range of distributional

semantic models, by testing them on the learning and generalization tasks in Chapter 5 (with adaptions).

The chapter is structured as follows: First, I emphasize why the Constituent Tree Network (CTN) can

perfectly learn and generalize multi-way lexical dependencies: It is based on established syntactic parsing,

i.e., The CTN model works on the semantics after the syntax is fully processed. Relating to this advantage of

CTN, I review existing distributional models that directly process on raw linguistic input, focusing on the

challenges they may have to achieve in the hard semantic tasks. Then, I concisely describe the corpus and

tasks to examine the models. They are almost identical to the method in Chapter 5, with minor adjustments

for the purpose of model comparison. Next, I compare different sets of models in a series of experiments, to

reveal the critical computational mechanism for the compositional generalization (generalizing multi-way

dependency) task. By comparing the first two DSMs, I elucidate what contributes to the failure and success

in learning multi-way lexical dependencies provided in the input. I then compare two types of neural net

DSMs to explore the critical mechanisms toward compositional generalization on the multi-way relationships.

Lastly, I compare the models that achieve in the critical generalization tasks and elaborate on the significance

of learning and generalizing multi-way lexical dependencies, emphasizing on how the capability may lead to

more semantic accomplishments.

6.1 Model Comparison

6.1.1 The Advantage of CTN

In the CTN model, the constituent structure is crucial to the success in representing multi-way lexical

dependencies. The topology in the constituent trees specifies the inter-dependency between the verb, the

patient and the instrument, which in turn can be accessed by the spreading-activation process once the trees

are connected into one network. Alternatively, if the network is not built from trees, but from linear ordered

chain of words (Figure 6.1c,d), the structure will fail to capture the multi-way dependencies (as showed in

Chapter 5). In other words, the CTN model primarily benefits from the syntactic pre-processing on the raw

text.
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(a) Constituent parse trees
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preserve cucumber with vinegar

preserve berry with dehydrator

preserve berry

preserve berry with dehydrator

(b) CTN
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preserve pepper
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(c) Word-chains
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Figure 6.1: Formation of the network structure in the Constituent Tree Network (CTN) and the Linear Order
Network (LON) given the mini corpus ‘preserve pepper’, ’preserve cucumber with vinegar’, ’preserve berry
with dehydrator’. (a) The input to the CTN consists of constituency-parsed trees for sequences in the mini
corpus. (b) The network structure of the CTN is formed by joining the constituent trees at shared nodes. (c)
The input to the LON consists of word-chains, formed by connecting adjacent words in the mini corpus. (d)
The network structure of the LON is formed by joining word-chains at shared nodes.

However, the syntactic prerequisite can be a major limitation of the CTN model, as constituent parse is

not free: Transforming the sequential text input into clean parsed tree can be a sophisticated computational

endeavor. From the implementational perspective, since the model does not directly process on raw inputs,

it would be difficult to implement the model directly for real world language tasks. Moreover, from the

psychological theory perspective, the reliance on constituent parse also constrain the model in terms of its

account for semantic development. As a type of Distributional Graph, the CTN model can be considered as

a model of long-term semantic memory in a more general sense. However, since the CTN does not operate on

raw linguistic input, it may not speak to the semantic development in learners before mastery of syntactic

knowledge. These critical issues of the CTN model lead to the exploration on a series of distributional

semantic models that directly process raw texts.

When it comes to hard tasks such as generalizing on multi-way lexical dependency, distributional models

working on raw texts face a ‘formidable’ challenge: They need to figure out the semantics and the syntax

as the same time. Inspired by CTN’s success, it is likely that achievement in this hard semantic problem

requires a model to form some quasi semantic-syntactic structures. In the remainder of this section, I briefly

review how different existing models of distributional semantics might struggle against the challenge. How

the potential lack of one or more computational mechanisms may negatively impact a model’s performance

in compositional generalization. In particular, I discuss two major classes of distributional semantic models,

namely word-encoding models, and sequence-encoding models. While each class of models comes with its

own distinct set of advantages, I argue that neither class of models fully possesses sufficient computational

capabilities for generalizing multi-way lexical dependencies (compositional generalization).
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6.1.2 Word-Encoding Models Struggle to Perform Semantic Composition

Early distributional models primarily focused on representing individual words, in which their meanings are

represented as vectors in a high-dimensional space and relatedness is computed using vector-space metrics

such as cosine-similarity (Landauer & Dumais, 1997; Lund & Burgess, 1996; Mikolov et al., 2013). These

models have been successful in many lexical tasks, and are referred to as word-encoding models in this

chapter. However, it is not clear how such representations can be combined to represent meaning of larger

expressions, such as phrases, clauses, and sentences (Mitchell & Lapata, 2010). Various functions have been

used to combine lexical representations learned by word-encoding models, such as addition, multiplication,

and averaging (Mikolov et al., 2013; Mitchell & Lapata, 2010), and more sophisticated functions such as

circular convolution (Jones & Mewhort, 2007; Mitchell & Lapata, 2010) and linear map (Baroni, Bernardi,

& Zamparelli, 2014). While these functions have enabled some success in modeling tasks which require

combining individual representations, there is yet to be a unified agreement on which functions are best and

under what circumstances. Additionally, many studies are guided by empirical results, and there is a lack of

works attempting to provide a theoretically motivated argument as to why certain functions provide better

results than others.

The representation of complex structure presents a challenge for using word-encoding models to generalize

compositionally. Specifically, while these models are able to capture word-word similarity (e.g. cake and

pie occur in similar linguistic contexts), they lack clear-cut procedures for constructing representations of

complex expressions, such as phrases and clauses. This makes it difficult to compute the similarity between

phrases (e.g. the relationship between cut cake and cut pie) as well as the thematic fit between a phrase

and a word (e.g. cut cake and knife). As a result, researchers aiming to apply the concept of semantic

relatedness to complex expressions using word-encoding models are often left without a generalizable solution,

and must instead create custom solutions that may work well in certain contexts, but fail to generalize to

others (Baroni, Bernardi, & Zamparelli, 2014; Mitchell & Lapata, 2010).

6.1.3 Sequence-Encoding Models May Entangle Co-occurrence Statistics at the

Word and Phrasal Level

One way to overcome the limitation of word-encoding models is to train models to learn how to combine

consecutively occurring lexical items without intervention from the researcher (Elman, 1990; Liu, Vulić,

Korhonen, & Collier, 2021; Vulić, Ponti, Korhonen, & Glavaš, 2021). These models are usually neural network

models trained to predict next-words given a sequence of words. We call such models ‘sequence-encoding’

models, to distinguish them from the more traditional ‘word-encoding’ models pioneered by Landauer and

Dumais (1997) and Lund and Burgess (1996). By being trained to predict which words are likely to come next,

such models learn implicit composition functions for how to combine words in their input.1 These functions

are encoded in the network’s weights, and are gradually tuned to the statistics of the training corpus. An

advantage of sequence-encoding models over word-encoding models is that they excel at learning which words

tend to go together in a sequence. For instance, cut cake and knife become related on account of the latter

often occurring after the former in large corpora. Like word-encoding models, sequence-encoding models

have been extremely useful in accounting for a broad range of behavioral phenomena in the psycholinguistic

literature.

1It should be noted that not all sequence-encoding models predict which word is likely to come next. An alternative training
strategy involves predicting words that have been masked by the researcher. Such models often make use of bi-directional context
information to make predictions.
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Despite their many strengths, many researchers have raised doubts about the ability of sequence-encoding

models to generalize to novel, complex expressions. The primary reason for this is their difficulty in

differentiating between a representation of a word and that of complex expressions such as phrases. Because

the representation of a sequence can include an arbitrary number of words, and since there is no explicit

mechanism for keeping track of individual words as the sequence is processed, simple and complex expressions

are not clearly differentiated during processing. This hampers the ability of many sequence-encoding models

to analyze each word independently from the others in the same sequence. This is especially problematic

for recurrent neural networks, and less for the more recent Transformer-based language models. 2 As a

result, sequence-encoding models might not be well equipped to identify small, reusable chunks of language.

Without an explicit mechanism to do so, most sequence-encoding models cannot reliably perform lexical

substitution. Recall that lexical substitution is a critical step for performing compositional generalization. In

particular, substitution enables the identification of ‘proxy’ phrases, such as preserve pepper given preserve

cucumber — by replacing cucumber in preserve cucumber with pepper to form preserve pepper.

In a few following sections, I examine word-encoding models (HAL, LON) and sequence-encoding models

(RNNs, Transformer) to show what are the exact challenges for the models to achieve in compositinoal

generalization. To start, I describe the evaluation and experiments that will be used to test the models.

6.2 Method

All models will be trained on the artificial corpus used in Experiment 1 and 2 of Chapter 5. Variations

of the basic corpus will be used in particular experiments and will be described in corresponding sections.

For each trained model, pairwise semantic relatedness scores between all verb-patient (VP) pairs and all

instruments are computed. Across experiment conditions, the evaluation of a model is always based on how

well it captures the ‘expected’ best VP-instrument fit, i.e. scoring the best fitting instrument for each VP. In

other words, all experiments in this chapter will only consider the rank 1 instrument, as in Experiment 1 and

2 of chapter 5. Next, I describe the evaluation and the organization with more details. How each model is

trained and how the VP-instrument semantic relatedness is computed in each model will be explained in

respective model sections.

6.2.1 Evaluation and Experiments

Once a model is trained, semantic relatedness between the interested VP-instrument pairs are computed.

There are 12 VPs and 4 instruments in each cluster (Table 6.1), making it 96 VPs and 32 instruments in the

corpus. For each VP, I compute the semantic relatedness between the VP and all 32 instruments, and ranked

the instruments by the relatedness scores. The model is considered as ‘correct’ on the rank concerning certain

VP if it select the structurally licensed instrument for the VP (specified below).

For the VPs with instrument-associated patient, e.g. grow cucumber and preserve cucumber, the struc-

turally licensed instrument is the one that has co-occurred with the VP in the corpus. Among the 96 VPs, 64

of them have instrument-associated patients. They are evaluated in the ‘learning’ experiment, in which I test

whether the model can capture the VP-instrument association provided in the corpus. Half of these VPs

2In contrast to RNNs which forcibly compress lexical representations into one or more hidden layers across all time steps, the
non-recurrent architecture of Transformers, combined with self-attention, allows for more flexibility concerning how and when
lexical representations are combined.
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involve in two-way dependencies, e.g. grow cucumber, and the other half involve in three-way dependencies,

e.g. preserve cucumber.

The rest 32 VPs are instrument-vacant, e.g. grow pepper, preserve pepper. They are evaluated in the

‘generalization’ experiment. These VPs are not associated with any instrument in the corpus, and the task

for the models is to infer the most plausible instrument for the VPs. In this case, the ‘closest’ instrument-

associated VPs to the investigated VP would be the ones with identical verb and same-category patient, e.g.

grow cucumber/potato for grow pepper and preserve cucumber/potato for preserve pepper. The structurally

licensed instrument for the investigated VP would be the instrument associated with the ‘closest’ VPs, i.e.

fertilizer for grow pepper and thus for grow cucumber/potato; vinegar for preserve cucumber/potato and thus

for preserve pepper. As in the case of the learning condition, the generalization tasks can be further split into

generalizing two-way dependency (grow pepper - fertilizer) and generalizing three-way dependency (preserve

pepper - vinegar).

Table 6.1: Example sentences from the artificial corpus, for 2 patient categories only. Each category is
associated with 4 types of verbs/sentences. Two types of verbs/sentences are used in 2-way and 3-way
experiments, while the other two types are used to form semantic taxonomy on the patient categories.

Task 2-way 3-way forming category

learn J grow cucumber w. fertilizer J preserve cucumber w. vinegar J dice cucumber/ J ferment cucumber
learn J grow potato w. fertilizer J preserve potato w. vinegar J dice potato/ J ferment potato
generalize J grow pepper J preserve pepper J dice pepper/ J ferment pepper

learn J spray berry w. insecticide J preserve berry w. dehydrator J dice berry/ J pick berry
learn J spray apple w. insecticide J preserve apple w. dehydrator J dice apple/ J pick apple
generalize J spray orange J preserve orange J dice orange/ J pick orange

In total, there are four experiment conditions: two-way learning (L2), three-way leaning (L3), two-way

generalization (G2) and three-way generalization (G3). In each condition, a specific group of VPs are

evaluated (32 two-way and three-way instrument-associated VPs in L2 and L3; 16 two-way and three-way

instrument-vacant VPs in G2 and G3). A model get a ‘hit’, if it selects the correct ‘expected’ instrument for

the particular VP. The performance of a model in a particular experiment condition is taken as the hit rate

over all (16 or 32) VPs in the condition.

Intuitively, to perform well in the generalization task, the model need to first capture the two-way/three-

way dependencies provided in the input, namely, succeeding in the learning conditions. Although I tested

all models of interests on the four experiment conditions, I will focus on different conditions for different

models. First, I examine two word-count models - Hyperspace Analog to Language, i.e., HAL (Lund &

Burgess, 1996), Linear-Ordered Network, i.e. LON (Mao & Willits, 2020), with the focus on the learning

task. By comparing the two count models, I explore the necessities for learning multi-way lexical dependency

observed in the language input. Then I examine two neural net prediction-based models: LSTM (Hochreiter

& Schmidhuber, 1997) and a miniature version of GPT-2 (Radford et al., 2019), primarily focusing on the

generalization conditions. By comparing the two prediction models, I try to elucidate the mechanism for

successful generalization. I also compare some of the models to CTN, to see how the models approximate

the conceptual ideal without the syntactic prerequisite. With the scaffolding examinations of the models, I

approach to the computational crux for learning and generalizing multi-way lexical dependencies.

103



6.3 HAL

The simplest type of distributional semantic models are trained to represent only words. They are typically

based on counting raw co-occurrences and matrix-factorization, e.g. LSA (Landauer & Dumais, 1997),

HAL (Lund & Burgess, 1996) and BEAGLE (Jones & Mewhort, 2007), and in these models, individual

words are represented as continuous vectors in a high-dimensional “word embedding” space. The count

based vector representation enables quantitative analyses of similarities and differences between how words

pattern in language (Landauer & Dumais, 1997). Some of these models have been studied by the cognitive

science community, especially for predicting human behavior in a variety of linguistic tasks (Baroni, Dinu,

& Kruszewski, 2014; De Deyne et al., 2016; Evert & Lapesa, 2021), and have been suggested as plausible

mechanisms for how human learners acquire the meaning of words (Mandera et al., 2017; Lupyan & Lewis,

2019). Hereafter, I refer to this type of models as count-vector models and specifically investigate the HAL

model (in which words are represented by a vector of co-occurrence, in contrast to LON) as a representative

of the type.

While HAL and count-vector models are useful in modeling word-word lexical dependencies, they may

struggle to learn more complex three-way dependencies. Consider the inter-dependency between preserve

cucumber and vinegar in the example. How could the model correctly select vinegar instead of dehydrator

for this sentence? One way is to compose the vector representations of the verb and the patient noun, to

form a vector representation of the VP, and then evaluate the semantic relatedness between the VP and

the instrument. I refer to the approach as ‘representation-composing’. Extensive work in identifying useful

composition functions for word vectors has not yielded promising results so far (Mitchell & Lapata, 2010;

Baroni, Bernardi, & Zamparelli, 2014). The test below adds support to this line of work. Alternatively,

word-word semantic relatedness (verb-instrument, patient-instrument) can be computed first and the VP-

instrument relatedness is then obtained from ‘composing’ the pairwise relatedness (relation-composing).

However, as we will show, this ‘relation-composing’ approach does not work for this type of model either.

6.3.1 Model Training

In forming the word vector in HAL, multiple minor parameters may affect on the final representation and the

performance in the downstream tasks (Bullinaria & Levy, 2007, 2012). I identified the best performing HAL

model by tuning the parameters for ‘window weight’ (flat, linear), ‘window type’ (forward, backward, sum,

concatenate), and ‘number of singular dimensions’ (16,22,24,... 30,32,...,36,64). Bold-face indicates chosen

parameters. The window size for tracking co-occurrences was constrained such that all words in a sentence

are available for distributional analysis - other window sizes were not considered.

The VP-instrument semantic relatedness was computed in two ways. In the ‘representation composing’

approach, vector representations of VPs were formed, and the semantic relatedness between VP and instrument

were computed as the cosine similarity between the VP and instrument vectors. The VP representations

were derived by applying composition functions on the verb and theme noun vectors. In this chapter, I

examined addition and point-wise multiplication. In the ‘relation-composing’ approach, the verb-instrument

and patient-instrument relatedness were first calculated using cosine similarity. Then the VP-instrument

relatedness were obtained by multiplying the two word-word relatedness. Using a more general formulation, I

define the relatedness between the VP (verb,patient) and the instrument as

SR((verb, patient), instrument) = SR(verb, instrument) · SR(patient, instrument) (6.1)
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in which SR(A,B) denotes the semantic relatedness between linguistic expression A and B. I tuned the

parameters separately for the two approaches, and tested the three HAL models (one relation-composing

model, HAL-relation, and two representation-composing models, HAL-multiplication for multiplication

composition and HAL-addition for addition composition) on the two learning conditions.

6.3.2 Results

Table 6.2: Accuracy of HAL models inferring the structurally-licensed instrument in learning two-way (L2)
and three-way (L3) dependencies. Accuracy are averages across 10 seeds.

Learning

L2 L3

HAL-addition 0.27 (0.07) 0.25 (0.10)
HAL-multiplication 0.29 (0.07) 0.23 (0.10)
HAL-relation 0.86 (0.04) 1.00 (0.00)
Random 0.03 0.03

As shown in Table 6.2, all models performed above the random baseline. For the representation-composing

approach, the performance were relatively low for both composition functions in either two-way dependency

(addition: m=0.27, sd=0.07; multiplication: m=0.29, sd=0.07) or three-way dependency (addition: m=0.25,

sd=0.10; multiplication: m=0.23, sd=0.10). In contrast, the relation composing approach performed a lot

better in both two-way (m=0.86, sd=0.04), and three-way (m=1.00, sd=0.00) dependency.

It has been shown that SVD dimensionality may significantly affect the performances in HAL like models.

Therefore, I further tested HAL-relation models on a broader range of SVD dimensionalities. I selected all

even dimensionalities from 22 to 36, which were around 32, the dimensionality performed best in the tuning

(only 16, 32 and 64 were involved in the initial tuning). I tested these HAL-relation models on both the

two-way and three-way learning tasks. In short, the best model had dimensionality 30 and 32. 32-dimension

outperformed 30-dimension in the two-way task, (32-dimension: m=0.95, sd=0.04; 30-dimension: m=0.86,

sd=0.04), while 30-dimension outperformed 32-dimension in the three-way task (30-dimension: m=1.00,

sd=0.00; 32-dimension: m=0.64, sd=0.10). Models with other dimensionalities performed a lot worse in

either the two-way task or the three-way task, or both, compared to the best two models. I also tested

the representation-composing HAL models on other SVD dimensionalities, and there were no signicant

enhancement.

6.3.3 Discussion

I tested the HAL models on learning multi-way dependencies by computing the dependencies in representation-

composing and relation-composing approaches. The representation-composing models failed to learn the

two-way and three-way relations. For the relation-composing approach, the best performing model (with

30 SVD dimensions) successfully learned the two-way and three-way dependencies, while models with other

dimensionalities failed in at least one type of the learning tasks.

The key to the representation-composing approach is forming a reliable holistic representation of the

VP, so that the VP representation relates appropriately to the instrument. The results show that it is in

general hard to find a effective compositional function that composes the verb and the patient noun. What I
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found in general align with earlier findings that deriving effective static embedding of complex expression as

a composition of static word embedding remains a considerable challenge (Erk & Padó, 2008; Mitchell &

Lapata, 2010). The difficulty lies in guaranteeing the effective word embedding as well as finding the ‘right’

compositional function that works on the word embedding.

On the other hand, the crux of the relation-composing approach is more fundamental: it is only about

the word embedding. The result has shown that, with fine tuning, it is possible to find an HAL encoding

(with the proper SVD dimensionality) that produces effective word embeddings: Two-way relations directly

derived from the embedding and three-way relations directly composed from the two-way relations may

capture the two-way and three-way lexical dependencies manipulated in the corpus. Nevertheless, while one

model succeeded in the learning tasks, most SVD dimensionalities still failed. Furthermore, I found that

the successful model variation (30-dimension) still failed in the two-way generalization task. In general, I

found that the performance of each HAL model (varied by SVD dimensionality) is sensitive to the task. Such

sensitivity can be a potential constraint for models like HAL which use static embedding.

In comparison to the HAL model, I will show that other models may tackle the learning tasks through

the two approaches respectively. To be more specific, the representation-composing approach is adopted

in the recurrent neural networks (RNNs), and the relation-composing approach is applied more effectively

in particular LONs. I leave RNNs for a bit later, and investigate the LON models in the next section. I

will mention a critical computational characteristic lacked in HAL but present in the particular LON. This

computational advantage helps LON to better catch the pairwise lexical dependencies for the first place.

With the comparison between HAL and LON, I explain why HAL failed more in the learning tasks.

6.4 LON

Linear Order Network (LON) can be considered as the graphical version of HAL. Similar to HAL, it encodes

word co-occurrence in the raw language input. But instead of taking the co-occurrence frequencies as vector

dimensions, LON uses them to form links between adjacent words in a graph (Figure 6.2a,b). While the

vectors in HAL can be composed to form phrasal representations, a similar operation does not exist for LON.

That is to say, the representation composing approach is not legitimated in LON. Therefore, the three-way

dependency can only be computed by composing the word-word relatedness in LON. In this way, the LON

faces the same challenge as HAL, that is, to appropriately measure the word-word relatedness. To be more

specific, the model has to represent appropriately the verb-instrument and patient-instrument contingencies

stipulated in the corpus. As showed in the HAL section, the HAL model had trouble in both verb-instrument

and patient-instrument dependency. I am interested in if LON (the graphical correspondence of HAL) can

capture the two types of pair-wise dependencies and perform well in the learning task.

I test two LON models: LON-W1, the generic LON model with window size 1 (so that it only links the

adjacent words in the corpus, Figure 6.2a); and LON-W2 that links word within a size-2 window (Figure 6.2b).

I will show that while the graphical data-structure helps both LON models tackle the patient-instrument

dependency, the verb-instrument dependency remains to be a challenge only for LON-W1 but not for LON-W2.

This suggests that a larger window size helps in encoding useful information. However, with the a larger

window size, the vector HAL model still failed to capture the verb-instrument dependency. I first explain

how the two LON models may succeed or fail in learning the pair-wise dependencies and delve deeper into

the critical mechanisms towards the computational capability at the end of the section.

First of all, the LONs generically captures the patient-instrument dependency by linking the words within
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(a) LON-W1

preserve

grow

cucumber

with vinegar

with fertilizer

berry

with dehydrator

(b) LON-W2

preserve

grow

cucumber

with vinegar

with fertilizer

berry

with dehydrator

(c) CTN

grow

cucumber
with fertilizer

grow cucumber

grow cucumber with fertilizer

with vinegarpreserve

preserve cucumber

preserve cucumber with vinegar

Figure 6.2: Comparison between LON with different window sizes and CTN. (a) LON with window size
1 (LON-W1) is formed by linking (with an edge) immediate adjacent words. (b) LON with window size 2
(LON-W2) is formed linking words within a size-2 word window. (c) The network structure of the CTN is
formed by joining the constituent trees at shared nodes.

the same sentence, e.g. in both LON-W1 and LON-W2, cucumber is closer to vinegar (the instrument

associated to cucumber in the corpus) compared to dehydrator (the instrument not associated to cucumber

in the corpus). However, the LON-W1 does not capture the verb-instrument dependency as it only links

adjacent words, e.g. preserve does not distinguish between fertilizer and vinegar (Figure 6.2a). This is due to

the linear encoding such that the verbs are connected to the instruments through the patient (as the patient

is placed between them). In this way, the linear graphical structure necessarily results in the ambiguity. In

contrast, in LON-W2 directly links the verb and the instrument due to the larger window size, so that the

verbs may select on the instrument that is associated to it in the input (grow-fertilizer and preserve-vinegar

in Figure 6.2b). With the observation, we can predict that LON-W2 may successfully learn the two-way and

three-way dependencies, while LON-W1 confuses between the two instruments associated with the patient,

resulting in an around 0.5 performance in the tasks.

6.4.1 Model Training

Training in the LON models involves converting sentences into graphical form and joining the resulting

sub-graphs at shared nodes (Figure 6.1c-d). Once the network is formed, the pair-wise lexical relatedness

in LON is computed following Equation 5.3. Once the pair-wise lexical relatedness are computed, the

VP-instrument relatedness is computed using Equation 5.5.

6.4.2 Results

As predicted, the LON-W2 performed perfectly in both the two-way and the three-way dependencies, while the

LON-W1 confused between two competitors (two-way dependency: m=0.51, sd=0.09; three way dependency:

m=0.49, sd=0.09). Follow-up analysis shows that the failure was due to the verb’s confusion on the two

instruments associated to the patient noun, e.g. fertilizer and vinegar for cucumber. LON-W1 was not able

to tell which instrument of the two is closer to grow or to preserve, while LON-W2 had no confusion.
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Table 6.3: Accuracy of LON models in inferring the structurally-licensed instrument in learning two-way (L2)
and three-way (L3) dependencies. Accuracies are averages across 30 seeds.

Learning

L2 L3

HAL-relation 0.86 (0.04) 1.00 (0.00)
LON-W1 0.51 (0.09) 0.49 (0.09)
LON-W2 1.00 (0.00) 1.00 (0.00)

6.4.3 Discussion

In this section, I tested two LON models on the learning tasks. With a larger window size, the LON-W2

model directly encodes the verb-instrument contingencies which is missed in the LON-W1 model. The result

seems to support for larger window when it comes to encoding co-occurrence, as more useful information, e.g.

the verb-instrument relation in the current case, can be encoded with a larger window. Nevertheless, larger

windows may bring in more noises as well, resulting in more spurious relations encoded in the model, see

(Bullinaria & Levy, 2012) for more discussions.

Moreover, the information brought in by the larger window has to be organized and accessed in a proper

way. Recall that the HAL-relation model also has a larger window size, but it performed even worse than

the LON-W1 network. In LON-W2, the co-occurrence between the verb and the instrument is encoded as

a direct link in the network, so that the word node pair has large relatedness in the graph. In contrast, in

HAL, the verb-instrument co-occurrences are placed in the word vector entries, which may not be directly

accessed through the cosine similarity measure. To be more specific, the HAL model is better at capture

the similarity between words with similar context, e.g. cucumber and potato, but not the relation between

words that directly co-occur, e.g. cucumber and vinegar. It has been shown that the count-vector models in

general have trouble in simultaneously capturing both the contextual similarity and the direct co-occurrence

(Sahlgren, 2006). This is reflected in the Chapter 3, as well as the current study by the worse performance of

the HAL-relation model compared to LON, its graphical correspondence.

Need to note that the non-adjacent verb-instrument dependency can be captured in other ways. For

example, the CTN model does not directly link the verb and the instrument. In CTN, they are connected

through the phrasal nodes (Figure 6.2c), so that the connection does not traverse the intermediate patient. As

a result, the verb-instrument contingencies are naturally encoded, not interfered by the patient. In contrast,

the LON is a degenerate version of the CTN in which word chains (words adjacent in the training data)

instead of constituency-parse trees are joined. The absence of phrasal nodes in LON makes it difficult to

represent the dependency between a VP and associated instruments (Figure 6.2a), and a larger co-occurrence

window is needed to directly encode the relation (Figure 6.2b). While the LON-W2 model works for the

current corpus, such that the lexical dependencies are uniformly encoded in the language, it probably needs to

flexibly adjust the co-occurrence window size when processing on naturalistic data. The comparison between

the CTN and LON models shows how syntactic pre-processing might benefit on semantic encoding quality.

The LON cannot form representation of complex expression, and must compose the word-word relation to

obtain multi-way dependency. As a result, it relies on accurately capturing the word-word lexical dependencies.

On the other hand, the prediction based Recurrent Neural Networks (RNN) form a holistic representation of

multi-word sequence and easily build the relation between the sequence and the incoming word. In other
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words, it captures the multi-way dependency in the representation-composing way. I examine the RNN

models in the next section and show that while the RNNs may solve the learning tasks easily, they struggle

to generalize from the learned multi-way lexical dependencies to the novel lexical combinations.

6.5 RNN

Earlier on, I showed HAL like models struggled to form effective representation of complex expressions/sequence

from the word representations. A way to overcome the limitation is to train models to learn to combine

consecutively occurring lexical items without intervention from the researcher (Elman, 1990; Hochreiter &

Schmidhuber, 1997; Vaswani et al., 2017; Radford et al., 2019). These models are usually neural network

models trained to predict next-words given a sequence of words. By being trained to predict which words

are likely to come next, such models learn implicit composition functions for how to combine words in their

input. These functions are encoded in the network’s weights, and are gradually tuned to the statistics of the

training corpus. An advantage of these prediction based models over count-vector models is that they excel at

learning which words tend to go together in a sequence. Similar to HAL like models, these prediction-based

neural-net models have been extremely useful in accounting for a broad range of behavioral phenomena in

the psycholinguistic literature.

To start with, I focus on the recurrent neural network (RNN), one of the most well known prediction

based neural-net DSM. At its heart, the RNN uses a distributed pattern of activations at its“hidden layer”

to represent information about a sequence of items it has been exposed to in the input. It is able to

combine information across time steps via recurrent connections from the hidden state at the previous time

step to the next. Usually, it is fed a sequences of words from contiguous text and is tasked to predict

the probability distribution over next-words. Learning takes place by updating the networks connections

(weights, parameters), so that prediction error on the training data is minimized. In this way, the multi-way

dependencies in the corpus is gradually built-up. Having seen John grow cucumber with fertilizer, the

connectionist network form a representation of the sequence John grow cucumber with that tends to select

fertilizer over all other instruments as the next word in the sequence. As a result, identifying the observed

VP-instrument dependency becomes a trivial task for the RNNs, it is what the model trained to do.

While success is expected for the learning tasks, it is less clear if the RNNs will generalize to sequence

pairs not encountered during training. In the artificial corpus, VPs like preserve pepper has not been followed

by any instrument in the training data. How can the RNNs infer on the plausible instrument for preserve

pepper, based on the learned VP-instrument relations? As mentioned earlier, one option is to generalize from

the similar VP, e.g. preserve cucumber. If the model form similar representations for preserve cucumber and

preserve pepper, namely, similar representations at the hidden layer, it may successfully predict vinegar for

preserve pepper. However, in RNN, the similarity between phrases (a chunk of multiple words) usually turns

out not combinatorial. Unable to build up the similarity combinatorially remains a weakness of the RNN

models, and I illustrate the issue in detail.

First, the RNNs learn ‘holistic’ representations of complex expressions at their hidden layer. For example,

if the two-word sequences preserve pepper and preserve cucumber share a lot of contexts in common, e.g., they

are always followed by a same set of words, then the RNNs can easily form similar ‘holistic’ representation in

the hidden states for the two phrases. Nevertheless, this is not the case in the artificial corpus here (nor the

natural language in general). In the corpus, preserve pepper is always followed by the end-of-sequence mark,

or a period, while preserve cucumber is always followed by the instrument vinegar. Therefore, the two phrases

109



as a whole are dramatically dissimilar in terms of their context. Instead, the two phrases are very similar in a

combinatorial manner: The two VPs have the identical verb, and their patients are from the same category,

thus always follow the same set of verbs. The corpus design mandates the RNN to build up the distributional

similarity by combining the pair-wise lexical similarities (preserve-preserve and cucumber-pepper), i.e. in the

dependency-composing way.

However, RNNs were not developed to explicitly keep track of the identity of the individual lexical items

that have occurred in the input over the course of processing. Instead, its holistic representation integrates

lexical semantic information without explicitly enforcing the preservation of information about which word in

the input is responsible for what portion of the activation pattern at the hidden layer. At each time step,

rather than updating a portion of the hidden layer state and keeping track of which item is responsible for

each portion of the state, the entire hidden layer state is updated all at once, or as a whole. As a result

it would be difficult for RNNs to capture the similarity between cucumber and pepper, and use the lexical

similarity to build up the phrasal similarity. I predict that while RNNs can perfectly learn the two-way (grow

cucumber - fertilizer) and three-way dependencies (preserve cucumber - vinegar) from the corpus, they will

fail to generalize to the instrument-vacant VPs (grow/preserve pepper).

6.5.1 Model Training

I examined two RNN models: The SRN (Elman, 1991) and LSTM (Hochreiter & Schmidhuber, 1997). I

identified one highest-performing hyper-parameter configuration for each model after extensive tuning on the

3-way generalization task. Hyper-parameter search was restricted to 1-layer and 2-layer architectures. For

1-layer architecture, 64 hidden units and 32 hidden units performed best for the SRN and LSTM respectively,

and 64 hidden units worked best for 2-layer architectures. I examined models on both 1-layer and 2-layer

architectures, but will only focus on 2-layer architectures in the result sections. I will come back to the 1-layer

architect in discussion. In keeping with the format of the training task, I operationalized VP-Instrument

semantic relatedness in terms of prediction error: Given as input ‘John preserve pepper with ’, I computed

the prediction error at the last time step, substituting ‘ ’ with an instrument. The instrument with the least

error is selected to be the model prediction. This is in accordance with previous proposals where constraints

on predictive processing are considered to reflect knowledge of typical events (McRae et al., 2005).

6.5.2 Results

I examined the SRN and LSTM models on both learning and generalization tasks. As predicted, they both

performed well in the learning tasks, in contrast to most HAL models and LON-W1 model. However, in

generalization tasks, the two RNNs performed no better than the LON-W1 model, with LSTM’s performance

better than the SRN (Table 6.4). Especially, generalization on the three-way dependencies ended up as a

challenge, (SRN:m=0.28, sd = 0.15; LSTM: m=0.26, sd=0.15). Following-up analysis shows that a great

portion of the errors (in average, 30 percent) were from unrelated instrument, i.e. instruments that were

assigned neither to the targeting category nor to the sibling category. For now, I do not have a clear

interpretation for this specific error in the RNNs. Further diagnoses are needed to better explain the model

behaviors.
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Table 6.4: Accuracy of RNN models inferring the structurally-licensed instrument in learning two-way (L2)
and three-way (L3) dependencies, and generalization on two-way (G2) and three-way (G3) dependencies.
Accuracies are averages across 30 seeds.

Learning Generalization

L2 L3 G2 G3

HAL-relation 0.86 (0.04) 1.00 (0.00) 0.47 (0.05) 1.00 (0.00)
LON-W1 0.51 (0.09) 0.49 (0.09) 0.51 (0.10) 0.47 (0.17)
SRN 0.93 (0.16) 0.91 (0.16) 0.42 (0.19) 0.28 (0.15)
LSTM 0.83 (0.29) 0.84 (0.28) 0.46 (0.22) 0.26 (0.15)
Random 0.03 0.03 0.03 0.03

6.5.3 Reverse Sequence

Since the RNNs perfectly captured the multi-way dependencies in the input, the lower performance on

the generalization task of the RNN models could not be attributed to the failure in learning the observed

VP-Instrument relation. Therefore, it should concern the semantic similarity between the VPs (preserve

pepper - preserve cucumber). One critical issue could be that the semantic information provided in the

corpus was not sufficient for the RNN models. The RNN models investigated in this study were trained to

predict the next word in a sequence. These models tend to form semantic representation of words based the

right context of the words. The instrument-vacant patients were always followed by the period mark on the

right, so that the RNNs were less possible to form the similarity hierarchy for the instrument-vacant patients

based on the right context. On the other hand, the critical information for forming the patient category

were provided in the verbs, which were the left context of the patients. It could be more difficult for the

RNNs in these experiments to learn the semantic structure from the left context, that had led to the lower

performance in the generalization task.

To test if the less ideal performance of the RNNs in the generalization tasks was due to the directionality

of semantic information encoding, I adjusted the artificial corpus so that the critical categorizing information,

i.e. the verbs, appeared on both sides of the patients. I updated the corpus by adding in the reversed copy

of the original corpus. To be more precise, for each generated sentence, I added a copy of the sentence but

in the reverse word order. For example, for John preserve pepper., I added its reversed version: . pepper

preserve John. In this way, the critical semantic information, i.e the verbs also appeared on the right side

of the patient noun, so that the RNNs may learn the similarity structures through predicting the verbs. I

replicated the generalization experiments on the RNNs with the enlarged corpus.

Table 6.5: Accuracy of RNN models on the generalization tasks, trained on the original corpus and the corpus
with reversed sentences added.

Generalization

G2 G3

SRN 0.42 (0.19) 0.28 (0.15)
SRN, add reversed 0.55 (0.31) 0.47 (0.27)
LSTM 0.46 (0.21) 0.26 (0.15)
LSTM, add reversed 0.67 (0.31) 0.57 (0.29)
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If the lower performance in the generalization was indeed due to the lack of left context for deriving the

similarity structure of the patients, then including the reversed sentence should eliminate the effect from

encoding directionality, and the performance of the RNNs in the G3 condition should approach ceiling. On the

other hand, in the G2 condition, the generalization solely depends on the verb (e.g.grow-fertilizer). Therefore,

adding the reversed sequences should not improve the performances in G2. The results are reported in Table

6.5. The RNNs improved in both G2 (SRN: from m=0.42 to m=0.55; LSTM: from m=0.46 to m=0.67) and

G3 (SRN: from m=0.28 to m=0.47; LSTM: from m=0.26 to m=0.57) conditions after the reversed sentences

were added. Need to note that while the SRN and LSTM improved, there were still enormous gaps between

their performances and the ceiling (CTN). This suggests that while the lower performance on G3 in RNNs

was partially attributed to the encoding directionality and the lack of critical semantic information on the

appropriate position, other mechanistic problem in RNNs led to their failure in generalization.

6.5.4 Discussion

In this section, I examined one type of neural network models: RNN, that forms a holistic representation of

the inputted sequence in the hidden layer, and uses it to predict the incoming words. I showed that while the

models easily learned the multi-way lexical dependencies in the training input, they struggled in generalizing

from what they learned to novel phrases. This indicates that the failure was due to the difficulty in capturing

the similarity between the instrument-associated and instrument-vacant VPs. By adding reversed-order

sequences, I confirmed that the less ideal performance was at least partially due to the intrinsic mechanism of

the neural model – the inability to build up the VP similarity from the word-word similarity. Such weakness

limited the RNNs in making reliable predictions on novel combination of familiar words.

In the next section, I examine a more recent type of prediction-based neural-net models: the Transformer

(Vaswani et al., 2017). These models can effectively learn the multi-way lexical dependencies in the input,

with a mechanism largely different from that in the RNNs. I show that with the new mechanism, the

Transformer type of models successfully generalize from the learned dependencies to novel word combinations.

By comparing between the Transformer based models with RNN, and also the CTN, I explore the essential

computational mechanism towards compositional generalization.

6.6 GPT

In this section, I investigate the Transformer model (Vaswani et al., 2017). To be more specific, I adopted a

miniature version of the GPT-2 Transformer architecture (Radford et al., 2019). While trained using the same

next-word prediction task, unlike RNNs, mini GPT-2 does not forcibly compress lexical representations into

one holistic representation of across all time steps. Instead, it integrates words with its parallel architecture,

using the self-attention mechanism (Vaswani et al., 2017), which is itself governed by weights learned over

the course of training. One major advantage of self-attention, and in particular, multi-head self-attention

(Vaswani et al., 2017), is that integration of information is not restricted to a single function, as is the case

in the RNN (which has only a single recurrent weight matrix), but is unique to a given pair of words and

is sensitive to the context in which those words have occurred. In this way, GPT-2 can keep track of the

individual identities of all the words in the model’s input, and allows for more flexibility concerning how and

when lexical representations are combined. To better illustrate the potential advantages of GPT-2, I walk

through the mechanism of the Transformer with more details, in the scenario of our generalization tasks. I
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explain from the modeling theoretic perspective, that how the GPT-2 model may overcome the limitations of

the RNNs and has a greater chance at success in the generalization tasks.

6.6.1 Transformer Architecture and Mechanism

The Transformer architecture consists of stacked Transformer blocks, in each of which an attention layer is

located. The input sequence is propagated up through the blocks before the final output layer vocabulary

selection. To start with, each token in the input sequence is the vector embedding of its type and all tokens

in the sequence are simultaneously propagated into the Transformer blocks (Figure 6.3a). Within the i’th

block, three matrices, i.e. the query matrix W
(i)
Q , the key matrix W

(i)
K and the value matrix W

(i)
V respectively

operate on all token vectors simultaneously, ending up with a query vector, a key vector and a value vector

for each of the input token. Namely, for the j’th token in the input, we have

q
(i)
j = W

(i)
Q x

(i)
j , k

(i)
j = W

(i)
K x

(i)
j , v

(i)
j = W

(i)
V x

(i)
(j) (6.2)

in which q
(i)
j ,k

(i)
j ,v

(i)
j are the query, key and value vector for the j’th token in the i’th Tansformer block.

The value vector can be considered as a ‘lexical’ representation of the token within the attention layer, the

query vector of a token represents ‘how’ the token is going to ‘attend’ on other tokens, and the key vector

represents ‘how’ the token may be attended by other tokens within the layer. To put it formally, for the j’th

token in the input, the model computes its attention score to the l’th token, denoted as ajl:

ajl =
qj · kl√

dk
(6.3)

in which dk is the dimensionality of the key vectors. Once the attention scores are computed, the value vector

of token j is updated by its ‘self-attention’ u
(i)
j :

u
(i)
j =

∑
l

ajlv
(i)
l (6.4)

which is a recombination of all token vector inputs, weighted by its attention (ajl) to these tokens. The

updated values u
(i)
j s go through a fully-connected feedforward layer with residuals and normalization, before

they are propagated, as the inputs, into the next Transformer block. Once the input goes through all the

blocks, each word token predicts its next word (Figure 6.3a) simultaneously. The feedback is back-propagated,

and learning happens on all connections, including the query, key and value matrices of the attention layers

in each Transformer blocks. Gradually, these attention layers learn how to attend to the tokens in the block

through its value matrix, and how it should attend to, and obtain attention from other tokens through its

query and key matrices.

Several important aspects concerning the mechanism of Transformer are vital to the success of the

generalization task. First of all, it keeps a separate representation (the value vector) of each positioned token

in the sequence throughout the forward propagation, and the tokens are processed simultaneously in parallel.

In addition to the separate representations, the attention mechanism makes it possible to flexibly combine

(compose) the token representations. Figure 6.3 illustrates the difference between the Transformer model and

the RNN models when processing a sequence. In an RNN model, the input tokens in Mary preserve pepper

with are entered one by one. When the four words have been seen by the model, a holistic representation of

the whole sequence is formed in the network, and it is difficult to tell how each word token have contributed

to this holistic representation. However, in the Transformer architecture, in each Transformer block, the
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(a) Transformer (b) RNN

John preserve cucumber with

preserve cucumber with vinegar

John preserve

t=1

John preserve cucumber

t=2

John preserve cucumber with

t=3

John preserve cucumber with vinegar

t=4

Figure 6.3: Architecture and processing mechanism in Transformer. (a) Transformer process and predict the
next word for each word in the sequence in parallel. (b) RNN forms holistic representation at each moment
for predicting the next word.

representations of the positioned tokens are processed in parallel. In other words, they do not necessarily

mingle. These representations can be context-free, if the token has never paid any attention to other tokens

in the previous blocks. Alternatively, they can become contextualized, if the prediction task requires it to

pay attention to other tokens. Recall that ‘paying attention’ to other tokens means updating the token

representation by recombining with representations of other tokens (see equation 6.4). How each token in

each block attends to other tokens, i.e. the actual attention attribution, is decided by the query and key

matrices, which are the results of learning. Taking these together, what the model ends-up learning, is a

flexible combination (composition) of the token representations towards successful prediction, which may

potentially capture lexical dependencies in the input in an effective way.

I walk through different approaches that the Transformer model may adopt for the generalization tasks.

The critical task is to predict the upcoming instrument (word) given the incomplete sequence such as Mary

preserve pepper with. In the Transformer model, it is the token with (the value vector of with) that leads to the

prediction at the final output layer (Figure 6.3). However, the representation of with in the last Transformer

block is very likely to be a combination of with and other tokens in the input. There are multiple ways that

such combination can be made. The first option is that with does not attend to any other words in the first

several blocks, while pepper attends to preserve and a representation of preserve pepper is formed (placed in

the position of pepper). Then with can attend to pepper, to be more specific, a combined representation of

preserve pepper. In this way, with ends up forming a combined representation in the last few blocks which

leads to the prediction. This approach resembles the process in the RNN models, in which the holistic

representation of VP is formed as each token is inputted sequentially, with the goal to predict the instrument.

As discussed before, the approach leads to effective learning of the VP-instrument dependency observed in

the input, but it may fail in the generalization case: preserve pepper with. Since preserve pepper is always

followed by the end-of-sentence mark in the input, its representation in the Transformer might be different

from the representation of preserve cucumber. Therefore, while with attending to preserve cucumber may

lead to the prediction of vinegar, attending to preserve pepper may totally distract the model onto another

114



direction. If the mini GPT-2 succeeds in the task, it will be unlikely that the model adopts such an approach.

Alternatively, with can attend to pepper and preserve individually. Ideally, it can first attend to pepper,

to form a representation that narrows down the scope of the instruments to vinegar and fertilizer, i.e. the

two instruments that other vegetables like potato and cucumber co-occur with. Need to note, the model can

recognize pepper as cucumber since the words occur in very similar contexts, so that their value vectors and

the effects of these vectors on with are likely to be similar. This first selection can be done during the first

several Transformer blocks. In the later blocks, with may attend to the ‘clean’ representation of preserve

(the token has not attended to and combined with other tokens before). In this way, it may further exclude

fertilizer from the plausible instrument list, as neither preserve, nor the current representation of with attend

to fertilizer. If the model succeeds in the task, then it is likely that the model adopts this second approach.

Need to emphasize, this second approach is only possible with the parallel architecture and the attention

mechanism in Transformer, and it is not available for the vanilla RNNs. If the results show the success of the

Transformer, it will indicate that it is the flexible representation combination founded by the Transformer

architecture and attention mechanism that leads to the success in generalization.

6.6.2 Model Training

The training of mini GPT-2 was similar to that of the RNNs. I tuned both 1-layer and 2-layer Transformer

architectures, and only report the results of 2-layer models, leaving the 1-layer models for discussion. I

identified one highest-performing hyper-parameter configuration for each model after extensive tuning on

the three-way generalization task. I found that 32 hidden units performed best for the Transformer. In

particular, the Transformer required a significant amount of hyper-parameter tuning to reduce variance over

different seeds. While I observed strong performance of the Transformer during tuning (near 100% accuracy

in all conditions), there was a noticeable drop in performance in the three-way generalization condition

(see Results) after re-training on 30 novel random seeds. The VP-Instrument semantic relatedness was

operationalized in the same way as the RNN training. Since the mini GPT-2’s training also followed the

predicting-the-next-word regime, it might as well suffer from the directionality issue. Therefore, I trained the

model on both the original corpus and the corpus with reversed sentences added. The model should perform

better when the corpus is bi-directional.

6.6.3 Results

The mini GPT-2 model, whether trained on the original corpus or the augmented corpus performed well in all

tasks. First, similar to the RNNs, the model trained on both corpora had ceiling performance on the learning

tasks. In addition, mini GPT-2 almost perfectly generalized in the G2 condition (grow pepper - fertilizer),

which the LSTM had failed. Most importantly, the mini GPT-2 model had a relatively high performance

in the three-way generalization task (m=0.87, sd=0.15), even without adding the reversed sentences. The

results suggest that mini GPT-2 had not only learned the multi-way dependencies provided in the input, but

also successfully generalized to novel VPs that had not been associated with any instruments in the corpus.

In addition, the result suggests that in mini GPT-2, the representation of with probably combined with the

representation of pepper and preserve in a step-wise way. When it attended to pepper, it narrowed down

the selection on vinegar and fertilizer, and it pinpointed on vinegar after it had attended and combined its

representation with that of preserve. Need to note that these detailed mechanisms are still speculative, and

systematic investigation on the resultant network activation is needed to test the hypothesis in future studies.
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Table 6.6: Accuracy of mini GPT-2 inferring the structurally-licensed instrument in learning two-way (L2)
and three-way (L3) dependencies, and generalization on two-way (G2) and three-way (G3) dependencies.
Accuracies are averages across 30 seeds.

Learning Generalization

L2 L3 G2 G3

LSTM 0.83 (0.29) 1.00 (0.00) 0.46 (0.22) 0.26 (0.15)
mini GPT-2 1.00 (0.00) 1.00 (0.00) 0.98 (0.04) 0.87 (0.15)
mini GPT-2, add reversed 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.91 (0.20)

6.6.4 Complete Novel Combination

In all generalization tasks above, the instrument-vacant VPs were ‘novel’ not in the sense that they were

not observed by the model, but in the sense that they did not collocate with any instrument in the training

corpus, so that there was minimal distributional information for relating the VPs to other VPs a whole.

Nevertheless, the occurrence of the phrase may still be informative to some of the models, which had made

the current task different from other compositional generalization tasks, such as the SCAN tasks (B. Lake &

Baroni, 2018) in which the tested stimuli never occur in the input. I am curious about how the model would

react to a totally novel verb-patient combination. How would the models infer on the plausible instrument

for preserve pepper, if this phrase has never been given to the model? To make the instrument-vacant VPs

totally novel to the model in the test, I eliminated the sentences with those VPs in the corpus. For example,

John preserve pepper. was excluded, so was the corresponding reversed sentence. If a model relies on the

occurrence of the phrase, excluding them might result in lower performance in the three-way generalization

task. Notice that the update was based on the corpus with reversed sentences.

Table 6.7: Accuracy of mini GPT-2 and CTN on the generalization tasks, trained on (1) the corpus with
reversed sentences added, or trained on the corpus with reversed sentences but without either (2) the three-way
instrument-vacant VP (e.g. preserve pepper), or (3) the two-way instrument-vacant VP (e.g. grow pepper) or
(4) both two-way and three-way instrument-vacant VPs.

Generalization

G2 G3

GPT-2, add reversed 1.00 (0.00) 0.91 (0.20)
GPT-2, add reversed, preserve pepper removed 1.00 (0.00) 0.70 (0.40)
GPT-2, add reversed, grow pepper removed 1.00 (0.00) 0.97 (0.07)
GPT-2, add reversed, both phrases removed 1.00 (0.00) 1.00 (0.00)
CTN, all conditions 1.00 (0.00) 1.00 (0.00)

I trained all models on the upated corpus and retested the models on the generalization tasks. After

excluding the instrument-vacant VPs, the GPT-2 model’s performances in the three-way generalization

dropped considerably (G3: m=0.70, sd=0.40, see row 1 and 2 in Table 6.7), This indicates that the model

mistakenly confused some instrument with the top candidate. Interestingly, the performance on the two-way

generalization remained at the ceiling for mini GPT-2. In comparison, the CTN stayed at the ceiling even

with the phrases removed from the training corpus.

The decreased performance of Transformer in the generalization task was intriguing, as it might provide
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more insight about how the model had achieved. With further inspections, I found that the model selected

fertilizer instead of vinegar for the most of the times. I speculate that this was due to the absence of preserve

pepper in the training set. As a result, the model took preserve pepper as grow pepper, and ended with

representation resembling those for grow pepper or grow cucumber. Consequently, it predicted fertilizer, the

designated instrument for growing things. To test this speculation, I further manipulated the corpus. I

deleted the ‘interfering’ two-way instrument-vacant VPs, e.g. grow pepper, while kept or deleted the three-way

instrument-vacant VP, e.g. preserve pepper. I trained the mini GPT-2 and CTN on these two new corpora

and tested them on G2 and G3 tasks. If the mini GPT-2 was indeed distracted by the two-way competitor,

then deleting them would eliminate the effect, leading to better performances. This turned out to be the

case. The Transformer model performed at ceiling when both phrases were removed, and performed almost

at ceiling when only the competitor (grow pepper) was removed (see row 3 and 4 in Table 6.7). Interestingly,

when the competitor was removed, the model performed significantly higher when the competitor stayed.

This suggests that the mini GPT-2’s three-way generalization was somehow sensitive to the input. Need to

note, the CTN model had perfect performances across these different corpora.

Here I provide a speculative interpretation of Transformer’s behavior, which might further hints on

how the model function in the language task. I hypothesize that mini GPT-2 succeeded by attending to

different tokens in the VP separately alongside the propagation upwards the Transformer blocks. However,

while the embedding fed to the first block were ‘clean’ (in the sense that they had not been combined with

the representation of other tokens), the value vectors in the upper blocks were very likely to have been

contextualized. That is, when with attended to pepper on the second block, it was possible that the value

vector for pepper on the layers had been a combination of pepper and preserve. In this case, the model

might not pay attention to the representation of the tokens separately, and it might be confused on preserve

pepper in the test phase, if the phrase had not been given in the training set. When only preserve pepper was

removed, in the test phase, GPT-2 may form a representation of preserve pepper which is similar to that of

grow pepper, on the position of pepper in the upper attention blocks. When the model processes the novel

phrase preserve pepper with, with could be confused by the competing clues from the value vector of grow

pepper on the pepper position and the value vector for preserve on the preserve position. While the first

representation would direct with towards predicting fertilizer, the second would bias it towards vinegar. In

this way, it may lead to indecisiveness between the two instruments, ending up with the presented result.

However, when preserve pepper was included in the training corpus, it would prevent the model from

recognizing preserve pepper as grow pepper. Since the model had seen the phrase, it should be able to form a

distinctive representation of preserve pepper (as to that of grow pepper), and the representation of pepper

should not be confused with that of grow pepper. As a result, in the test phase, with would only attend to

less confusing representation of preserve and pepper, and narrow down the selection to vinegar. Lastly, when

the interfering grow pepper was removed, the model would not conflate pepper with grow pepper from the

beginning, so that it should be able to make the right prediction.

6.6.5 Discussion

In this section, I investigated the Transformer based mini GPT-2 model. The model succeeded in all tasks,

especially the challenging three-way generalization tasks, even in the corpus without reversed sentences.

Basing on the result, I speculate that the model’s achievement was due to its flexible combination of the

instrument (predicted by the word with) with the patient and the verb in a step-wise way. Such a behavior is

allowed by the parallel network architecture and the attention mechanism in Transformer. However, with
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following-up tests, I showed that the success of mini GPT-2 model was sensitive to the input: It did not ace

the three-way generalization task when the critical phrase (preserve pepper) was absent and the competitor

(grow pepper) was present. While this might be an issue with the specific corpus here, it remains an open

question how the contextualized representation would affect the model when it is trained on the more complex

naturalistic language input. I get back to this topic in the general discussion.

6.7 Discussion on Multi-way Lexical Dependency

In this chapter, I examined a series of distributional semantic models on their capability of learning and

generalizing multi-way lexical dependencies. I found that the HAL model failed in the learning tasks due to its

less effective lexical representations, and this was remedied by the LON model with appropriate window size.

The connectionist RNN models addressed the learning problem in another way: It directly formed a holistic

representation of the VP (sequence) and captured the relation between the chunk and the instrument through

the prediction-based training. However, the holistic representation made it difficult for the RNNs to generalize

to novel VPs. Finally, I showed that the Transformer-based mini GPT-2 model tackled the compositional

generalization problem with the attention mechanism operating on a parallel processing architecture. These

computational characteristics functionally approximate the CTN model, which performed perfectly in the

learning and generalization tasks.

In this section, I elaborate on the models’ success and failures in order, and propose two computational

capabilities towards success in learning and generalizing on multi-way lexical relations. I argue that these

learning and generalization tasks are essential components of semantic cognition, and the capabilities on

the task reflects a system’s competence in a critical aspect of semantic processing. Then, by aligning the

gold-standard CTN model and the Transformer model, I propose that some form of ‘syntactic’ processing

might be essential in the process of ‘becoming semantic’, and the syntax-semantics interaction may play

an important role in language development. I talk about two lines of work inspired of the current work:

(1) modeling endeavor concerning semantic representation in Transformer-based language models; and (2)

behavioral experiments on the development of complex semantic dependencies in human.

6.7.1 The Hard Semantic Problem

In Chapter 5 and 6, I stress and focus on the hard semantic problem: representing and processing the

multi-way lexical dependency in a generative language. The starting point is to effectively represent two-way

or word-word lexical relations, which have been studied for more than half a century (Collins & Quillian,

1969; Collins & Loftus, 1975; Deese, 1962; Smith et al., 1974; Resnik, 1996). The more recent distributional

models (Jones & Mewhort, 2007; Landauer & Dumais, 1997; Lund & Burgess, 1996; Mikolov et al., 2013)

seem to have found effective ways to represent the two-way lexical relations, e.g. the LSA model reached

a decent score in the TOFEL test by merely calculating the word-vector similarity. Nevertheless, there

are evidences showing that the lexical representations in these models are not effective enough to address

harder semantic problems, namely, scaling up to the dependency between three or more lexical items (Chen,

Peterson, & Griffiths, 2017; Mitchell & Lapata, 2010). I followed on this line of works and designed the

VP-instrument (multi-way lexical) dependency learning task. If the lexical representations in the HAL type

model are effective enough, they should to some extent learn the multi-way lexical dependency. The model

failed. Neither the pair-wise relations formed from the lexical representation could be composed into effective

VP-instrument relations, nor the VP vector representation composed from the word representations could
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select the right instrument with the canonical vector space measure. The failure was not specific to the HAL

model. I examined more recent models like Word2Vec (Mikolov et al., 2013) which also form static lexical

representations, and the performance was similar.

Multiple factors potentially attributes to the failure. First, it has long been argued that, due to

an unavoidable encoding deficit, these models struggle to entertain different types of semantic relations

simultaneously. They either well capture co-occurrence relations such as bread-knife, or similarities such

as bread-toast, but never both of them (Sahlgren, 2006; Mao & Willits, 2020). Here, the HAL-relation

model failed to capture the verb-instrument co-occurrence. Another problem is that it is difficult to find an

explicit analytical function to compose the lexical vectors to form effective phrasal representations (Mitchell

& Lapata, 2010), and this was also reflected in the two HAL-composition models (see Table 6.2). Based on

these evidences, I argue that the static lexical representations formed in these ‘word-encoding’ models are not

sufficiently effective for more involved semantic tasks.

I presented two alternatives to address these issues of HAL models in the learning tasks. One of them is

the RNN, which forms a holistic representation of the VP (the sequence) to predict the instrument. While

the RNNs have no trouble in capturing the observed VP-instrument dependencies, they failed to generalize

on novel verb-patient pairs. The critical deficit of the recurrent model is that, they aggregate the parts for

the representation of the whole, at the cost of the identity of the individual parts. As a result, they would

take preserve pepper to be more similar to spray berry in contrast to preserve cucumber as the first two

VPs as a whole have the identical distribution (followed by the period), which is different from that of the

third (followed by with and an instrument). In other words, the model may not represent the VPs in a

combinatorial way. As a result, it is a challenge for the RNNs to generalize in a combinatorial pattern. It

would generalize to store pepper and infer the plausible instrument vinegar only if when the phrase as a

whole had similar distribution to preserve cucumber, but not in the case that store and pepper are similar to

preserve and cucumber respectively, while the phrases as a whole does not share any similarity.

What can be learned from the failure of the RNN models is: It is useful to keep the stand-alone

representations of the lexical building blocks. Moreover, there has to be a way to flexibly and effectively

combine these building blocks to form multi-way lexical dependencies. This gives rise to the graphical models

like LON and CTN, and also the Transformer-based neural network models. Although differing in many

aspects, these models share the two above-mentioned computational capabilities. The LON model can be

considered as a graphical equivalent of HAL models. In contrast to HAL models which represent words as

vectors in a space, these graphical models directly encode the lexical relations through the graphical structure,

and they can assess different types of lexical relations (a fatal challenge to the HAL models) through the

spreading activation measure. However, I have shown that the LON needs the proper window size to capture

the necessary lexical relations for the first place (see Figure 6.2). While the LON with window size 2 can

capture the lexical dependencies in the current artificial corpus, it requires a window with more flexible

sizes when operating on naturalistic input (in which the dependencies may vary by distances). This is a

non-trivial computational capability on itself. In contrast, the CTN model capture the lexical relations in a

more effective way. With the constituent parsing, it directly transforms the syntactic structure into lexical

dependency reflected in the conceptual structure of the sentence. Once the word-word lexical relations are

effectively represented in the graphs, the multi-way dependencies can be computed from the word-word

relations from a simple composition function (see Equation 5.5). On the other hand, the Transformer-based

mini GPT-2 model tackles the task in a totally different way. It sticks to the vector lexical representations

just like RNNs and HAL. However, unlike the recurrent nets, it represents lexical tokens separately and
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process them in a parallel way. Meanwhile, unlike the HAL type model which stores all lexical information in

a static vector, the Transformer encode the lexical dependencies through the attention mechanism, so that

multi-way dependencies can be formed by propagating through the attention layers.

To summarize, while realized differently, the Transformer-based model and the CTN model can (1)

effectively form lexical representations and (2) combine them flexibly. With these two computational

capabilities, the knowledge of the models are not restricted to the particular lexical combinations that are

given in the language input: they can effectively form representations with novel lexical combination, basing

on the combinatorial patterns they have learned. This leads to the success in the challenging generalization

tasks involving multi-way lexical dependencies.

6.7.2 Becoming Semantic

Lexical semantics and sentence meaning are the two cornerstones of natural language semantics. My

concentration on multi-way lexical dependencies connects the two facets of meaning: I investigated the

lexical relationships in a sentential frame. To be more specific, while the word-word lexical relations such

as preserve-vinegar and cucumber-pepper consists a great portion of semantic knowledge, the scaled-up

multi-way lexical dependencies matter to the grammaticality and meaningfulness of sentences, (e.g. Is Mary

preserve cucumber with pepper. an anomalous sentence?). Regarding this, the multi-way dependency task is

qualitatively different from the two-way dependency tasks. In order to learn and generalize on the multi-way

dependencies, it requires the models to capture some structure of the linguistic expressions, i.e. chunking the

words or roughly parsing the sentence. This is reflected in the difference between the behaviors in HAL type

model (that specifically focus on word representation), and the more capable Transformer and CTN models.

With a closer look at the CTN and Transformer, it is observed that some structural representation might

be formed on their way towards the more full-fledged semantic capabilities. In CTN, the syntactic parse

gives rise to the constituent structure, which further dictates the lexical dependencies. In this way, the

lexical semantic representation benefits from the top-down ‘guidance’ from an established syntax module. In

contrast, the Transformer model works in a bottom-up manner. The initial drive is to predict the next word.

When there is complex lexical dependency in the input, the model has to capture such dependency to achieve

in the prediction task. On the way, lexical representations are combined and some constituent-like structures

might emerge (Figure 6.4). Regardless of the process being top-down (CTN) or bottom-up (Transformer),

the formation of structural representation potentially separates mini GPT-2 and CTN from HAL-like static

models and vanilla RNNs. These structural representations not only facilitate the models to capture the

observed multi-way relations, but also help generalization in a regular way (preserve pepper-vinegar suggested

by preserve cucumber-vinegar). As a result, these capabilities contribute to processing sentence meaning.

Unlike the explicit encoding in CTN, the emerging structure in mini GPT-2 was speculated from the

result. However, there are further evidences suggesting the emergence in mini GPT-2. As mentioned earlier,

I tuned RNNs and mini GPT-2 with both 1-layer and 2-layer architectures. When comparing 1-layer RNNs

and mini GPT-2, I did not find a significant difference between their performances on the critical three-way

generalization task. More importantly, 1-layer mini GPT-2’s performance was around .75, which was a bit far

from the ceiling. However, when the models were trained on 2-layer architectures, there was a significant

enhancement in mini GPT-2’s performance, while the RNNs performed even worse. Note that while all

mini GPT-2 models had attention, no hierarchical representation could have been formed with the 1-layer

architecture. This suggests that the second layer augmented the representational capability of mini GPT-2,

with the speculative attention hierarchical structure formed in the 2-layer architecture.
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(a) Transformer (b) CTN

John preserve cucumber with

preserve cucumber with vinegar

preserve cucumber with vinegar

preserve cucumber

preserve cucumber with vinegar

Figure 6.4: Structural representations in Transformer and CTN. (a) Speculative learning happened in the
Transformer architecture: the word token with gradually learned to attend tokens across layers which end up
forming a hierarchical structure through forward propagation. (b) The corresponding constituent tree used
to build CTN.

Now I come to a temporary conclusion mark on what makes a full-fledged semantic system: The system

should be able to learn idiosyncratic multi-way lexical dependencies and generalize the relations sensibly to

novel lexical combinations. Such an ability may help in (1) establishing a full-fledged lexical representation of

individual word meaning, (2) evaluating sentences with lexical combinations that have never been met. To

make that happen, a learner or a model is likely to need separate representations of the lexical items, and

flexibly combine the lexical representations and relations to handle more complex dependencies.

Meanwhile, some structural representations is likely to be formed alongside the system becoming seman-

tically competent. While such a process might be lexically driven, the structural representations emerged

through the process might give rise to some primitive syntactic structures. Taking the CTN and Transformer

models together, I hypothesize an intriguing interaction between syntax and semantics: (a part of) syntactic

capabilities might be driven by capturing the complex lexical dependencies in the language input (Trans-

former), while an established syntactic system may in turn have great impacts on forming sophisticated

semantic representation (CTN). The interaction might play a critical role in language development in general,

and I propose two lines of future endeavors relating to it.

6.7.3 Future Directions

First, the current study motivates diagnostic research on Transformer-based models, to investigate what

representation is formed for the model to learn the multi-way lexical dependencies and generalize combina-

torially. Researchers may train the Transformer models on a similar corpus that encodes multi-way lexical

dependencies and extract the activation states in the attention layer during and after the training. To be

more specific, these diagnoses may respond to the speculation on how the Transformer based model capture

the lexical dependencies. Does the model really pay attention to word tokens in a ‘hierarchical manner’

while propagating up the input through Transformer blocks? Does the hierarchical attention just specify the

idiosyncratic lexical dependencies, or it leads to some syntactic structure-alike representation and primitive
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grammatical categories (Noun vs. Verb, NP vs. VP). If some form of syntactic representation can be found in

the Transformer architecture, how does it contrasts to the syntax/constituent parse trees proposed in classic

syntactic theory? As we see in this chapter, the contextualized representation might restrict the models in

generalizing for totally novel lexical combinations, when the models were trained on the highly constraining

artificial corpus. It is an open question what might happen if the corpus is more like the naturalistic language

input, in which the semantic constraints are more irregular and diverse.

To summarize and elaborate, the diagnostic studies may help ‘open the black box’, elucidating what kind of

process is happening and what structure and representation might be emerging in the neural-net architecture,

in response to the lexical dependency-rich inputs. Since most of the state-of-the-art scaled-up language models

are based on the Transformer architecture, the current study and the line of follow-up diagnostic research

may further our understanding in the representational mechanisms leading to the phenomenal linguistic

capabilities in the language models.

The second line of works are behavioral experiments concerning the interactive dynamics between syntax

and semantics and its role in language development. Basing on the current results, I hypothesize that tracking

lexical dependencies in the language input might trigger emergence of early syntactic ability (Transformer),

while explicit syntactic representation may in turn benefit in development of semantic structure. To start

with, a range of learning and generalization tasks concerning simple (pair-wise) and complex (multi-way)

lexical dependencies can be designed and tested on children in different age groups. These studies should

be simplification of the lexical-dependency experiments that have been run in adults and children (McRae,

Spivey-Knowlton, & Tanenhaus, 1998; Rayner et al., 2004; Bicknell et al., 2010), or adoption of the similar

experiments on children (Abu-Zhaya, Arnon, & Borovsky, 2022; Borovsky, 2022; Kueser, Peters, & Borovsky,

2022). The experiments may help carve out the age of children capturing multi-way lexical dependency

in natural language, and correlational studies can align the semantic achievement against their syntactic

development. While in its early stage, the behavioral attempts taken together with the modeling works may

contribute to future exploration on the interactive dynamics between the syntax and semantics towards a

full-fledged representation of meaning.
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Chapter 7

General Discussion

In Chapter 3-6, I presented two groups of studies investigating the capabilities of the two distributional graphs

(and other distributional model) in learning, representing and generalizing lexical relationships. These modeling

endeavors are motivated by both evidences of lexical (knowledge) effect in language comprehension (Bicknell

et al., 2010; Ferretti et al., 2001; McRae et al., 2005; Rayner et al., 2004; Trueswell et al., 1994) and theoretical

interests in modeling semantic memory with language. In Section 7.1, I step back and relate the presented

studies with a broader range of researches on knowledge representation and psycholinguistics. I show how the

works of Distributional Graph modeling potentially bridge the field of knowledge representation/semantic

memory with the field of language comprehension, towards a better understandings in the theory of meaning.

Similar to other distributional models, the Distributional Graph approach does not only form a knowledge

representation, but also tracks how the representation have come into being, by encoding what type of

inputs. In this sense, comparisons between distributional graphs with other distributional models may have

profound and intriguing implications on theory of language acquisition and theory of semantic (knowledge)

development. While the implications have been briefly discussed at the end of Chapter 6, I dig deeper into

this topic in Section 7.2.

I will end this chapter by summarizing and listing a few future directions suggested by the dissertation

studies. This dissertation focuses on two themes: (i) Representation of lexical relationship as the critical

computational problem, and (ii) the Distributional Graph approach as the representational/algorithmic

modeling ‘solution’. The works in this dissertation encourage computational and behavioral investigations on

lexical dependency, as well as empirical and theoretical research on developing Distributional Graph models.

These prospective directions will be proposed in order in Section 7.3.

7.1 Bridging Knowledge and Language by Distributional Graph

7.1.1 Semantic Dependency as Knowledge in the World

Human categorizes. We categorize things and form concepts based on perceptual and more abstract cues

(Abernethy, Campbell, & Faigman, 2005). We not only categorize things, but also form categories of actions

in a flexible manner (Malt, Gennari, & Imai, 2010). Categorization helps us as well as other species parse

the world, and master its regularity. Such regularity concerns the relationship between instances, e.g. two

individual tigers (entities), two attempts of leap (action). Once categories are built and concepts are formed,

it is possible to reveal the associations between the concepts (entities, feature and actions). Birds fly,
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mammals walk, and fishes swim. While exceptions happen from time to time, as birds do walk (in a clumsy

manner), mammals can swim, and some fishes fly (e.g., flying fish), the world shows regularity in terms of

how concepts are associated with other concepts, features, etc. A possible landscape (regularity) of such

associations is illustrated in Figure 7.1a. Each row and column represents a lexicalized concept, and the color

in the cell represents the graded association between the two concepts. As illustrated in the figure, some

concepts may form categories based on the shared associations to other concepts. Such association between

lexicalized concepts is what I refer to as ‘lexical relationship’ or ‘lexical dependency’ (the quantitative aspect

of relationship) in this dissertation. As implemented in the world simulation in Chapter 3, as well as in

reality, the lexical relationships reflect the association of concepts that interact with each other in the world.

Figure 7.1: How concepts in the world may be associated. (a) Two-way lexical dependency/association:
each row and column is a single lexicalized concept, and colored cell reflect the association between the
corresponding concepts. (b) Three-way lexical dependency: each cell represent the association between three
concepts

By attending to and representing these associations, we can organize categories/concepts in a knowledge

structure (Collins & Quillian, 1969; Deese, 1962; Osgood, 1952; McRae et al., 1997; Smith et al., 1974).

Such a knowledge structure may benefit us in two ways that potentially leads to new knowledge. First, by

associating the two concepts bearing the lexical relation, it may associate a group of concepts and features

that leads to new findings. For example, considering associating BIRD and FLY, it simultaneously brings in

the semantics of BIRD and FLY, including the features of the animal and the manner of the action. These

details in the features and manners may inform on the question such as what features may lead to the

capability of flying, e.g. having a beak or having feathers. Answers to such questions may elicit a second

type of novel knowledge, e.g. generalization to new plausible lexical relations. For example, suppose the

green cross in Figure 7.1 refers to the unknown relationship between a certain type of bird and the action

FLY, while the blue cross refers to the unknown relationship between a the same type of bird and the action

SWIM. If a system may attend to other features of this type of bird, as well as the features of other types of

birds, then it is likely to infer that this bird might fly but not swim. As readers might have noticed, this
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landscape is the type of semantic constraint that I have used to test models in Chapter 3, 5 and 6.

To summarize, the world seems to embed regularity. We handle the regularity among instances by

categorization and forming concepts. Once concepts are formed, it is essential to notice the systematic

associations among the concepts. An effective representation of such association may not only help us interpret

what we have observed, but also generate novel knowledge to predict plausible, but unseen events. Throughout

this section, what I emphasize is the structure and regularity of the world and the potential benefits of

forming knowledge reflecting such regularity. But how can we master these complex world knowledge? There

is a powerful tool: Language.

7.1.2 Lexical Dependency as Knowledge in Language

Language helps categorization. The linguistic labels play an essential role in the early phase of word leaning

(Perszyk & Waxman, 2018), and they help grown-up form categorizes (Lupyan, Rakison, & McClelland, 2007).

This is probably the most straightforward Language’s contribution to constructing knowledge. What I would

like to emphasize though, are the crucial roles of Language on top of labeling categories: (i) Phrases and

sentences serve as pointer to the lexical associations, (ii) Linguistic structures help us to capture complex

lexical relations and generate novel concepts. In this sense, language and knowledge deeply intertwine

with each other leading to co-evolution of the two systems. Historically, more attention (in the field of

psycholinguistics) has been paid to the direction that world (lexical) knowledge matters to language processing.

Here, I emphasize the other direction: The structure and content of language gives rise to more complex

and established knowledge representation, and as a result, the linguistically informed knowledge representation

may reciprocate language processing.

Crucial Roles of Language in Forming Knowledge

As argued above, rich world knowledge may reside in the ‘lexicalized’ associations between concepts. With

language, we do not just produce a single concept label or think of one concept. We can think of, and talk

about events, which bind multiple concepts, including entities, actions and features. Language may help us

attend to and effectively represent and use those associations. This is reflected in early semantic development

(Arias-Trejo & Plunkett, 2009, 2013) and early language development benefiting from distributional linguistic

cues (Lany & Saffran, 2011; Willits, Seidenberg, & Saffran, 2014; Scott & Fisher, 2009). In other words,

by producing, hearing, and thinking of multiple words (concepts) organized in an event structure, we

may accumulate lexical association (co-occurrence) statistics, and this process potentially leads to mental

representations illustrated in Figure 7.1.

Aside from the association brought by the mere (linguistic) co-occurrence, Language provides the structure

that explicates how multiple (more than two) lexical concepts are associated within complex linguistic

expressions (phrase and sentence). For example, in the sentence A mechanic checks engines, while a journalist

checks spelling, the grammatical structure helps us specify relationships such as mechanic - check engine

and journalist - check spelling. In other words, the structures in these complex expressions specifies how

lexical concepts could be chunked and then organized to reflect their (multi-way) relationships. As I have

shown in Chapter 5 and 6, the chunking (forming some structure) plays a huge role in effective representation

of complex lexical dependencies and success in the challenging compositional generalization task. I will

discuss with more details on the nature of the structure formed in this process in the following sections. The

point here is that such structural information is embedded in language, and may contribute to knowledge
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representation if they can be effectively encoded (as in the CTN and Transformer model, and also the

unknown computational algorithm of human language processing).

Finally, the linguistic structure and the generative nature of Language may give rise to novel concepts.

An employer is a person or an institute that hires labors working for the sake of profits. Marathon is a

sport in which athletes run 42195 meters in memory of a Greek messenger. These concepts are described and

defined with language, and I argue that Language is the most efficient, and probably the only effective way

to generate such semantically involved concepts. From another perspective, it is based on the generative

nature of Language that we can create novel lexical concepts as a linguistic formulation of known concepts.

Knowledge and Language Need to be Brought Together

Given the significance of Language in forming knowledge, the field of cognitive psychology though has focused

more on the other side. Psycholinguists have long been noticed that lexical knowledge (world knowledge) is

crucial to language processing (McClelland et al., 1989; Trueswell et al., 1993, 1994; Garnsey et al., 1997;

Kamide et al., 2003; Bicknell et al., 2010; Willits et al., 2015). Nevertheless, the role of Language, especially

the linguistic structure of language has been overlooked by earlier semantic memory/knowledge representation

researchers. The distributional semantic model approach, started from early 1990s, have shown the value

of language in representing semantic memory (Landauer & Dumais, 1997; Lund & Burgess, 1996; Jones &

Mewhort, 2007; Griffiths et al., 2007; Mikolov et al., 2013; Pennington, Socher, & Manning, 2014). However,

as I have argued and showed with studies in previous chapters, these modeling attempts have troubles

effectively preserving the structural (grammatical) information in language, and as a result they struggled in

challenging language tasks, such as learning and generalizing multi-way lexical dependencies.

In contrast, while LLMs trained exclusively on linguistic input have shown extraordinary capabilities

in various language and semantic tasks, the end-to-end architecture have challenged investigation of their

internal representation leading to the success. In the next section, based on the findings in the previous

chapters, I argue why Distributional Graph can be considered as a promising approach of linking Knowledge

and Language towards better semantic representations.

7.1.3 Distributional Graph as a Proposal for Bridging Knowledge and Language

All distributional models process on linguistic input. A crucial capability in distributional models is to

effectively extract and represent the structural information embedded in language that reflects (simple and

complex) lexical relationships. Two types of relationships are relatively challenging: the indirect relations

(leading to generalization), and the multi-way relations (leading to compositional generalization). In contrast

to other distributional models, distributional graphs structure concepts in a network topology, and access

relatedness with network metrics. As I have shown in the previous chapters, the graphical topology provides

a structural prerequisite for representing lexical dependency, and the spreading-activation algorithm proves to

be an effective functional process to capture multiple distributional features that affect semantic relatedness.

These structural and processing characteristics makes Distributional Graph a relatively successful model for

representing indirect and multi-way lexical dependencies, as well as semantic relationships in general.

Indirect relations

Despite modeling details, every distributional model primarily encodes co-occurrence of words. A critical

demand on distributional model is to capture the indirect relations, i.e. the relation between words/expressions
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that do not occur together. The most common indirect relation is paradigmatic relationship (similarity),

which earlier distributional models, e.g. LSA and HAL, can easily model (Landauer & Dumais, 1997).

However, in these vector space models, encoding and evaluation on paradigmatic relations usually come as a

cost of the representation of the primitive syntagmatic relations. As a result, it is not easy for these models

to evaluate more indirect syntagmatic relations which binds the primitive syntagmatic relations and the

paradigmatic relations.

As shown in Chapter 3, what distinguishes Distributional Graph and the spatial models is the graphical

topology that preserves all orders of relations in the same structure. With the spreading-activation algorithm,

the LON model can simultaneously evaluate direct and indirect relations of various orders. Importantly, the

evaluations on the indirect relations are not at the cost of those on more direct relations. Furthermore, I

showed in Chapter 4 that there is a quasi equivalence between the spreading-activation process on a graph

and different ‘orders’ of cosine similarities in the corresponding vector space representation. Such equivalence

implies that the graphical topology may provide a representation that potentially better preserves lexical

association embedded in language input. The representation of indirect relation may in turn provides support

for generalization on word-word relations.

Multi-way Dependency

While ‘connecting language’ provides the infrastructure for evaluating indirect relations, the graphical topology

also benefits in representation of multi-way lexical dependency. As shown in Chapter 5, the constituent

structure effectively helps chunking the relevant lexical items (preserve, cucumber, vinegar). By explicit

connecting different constituent structures into one graph, lexical dependencies are reflected in graphical

metrics such as graphical distances, etc., which can be effectively evaluated by the spreading-activation

algorithm.

Through further investigations in Chapter 6, I find that the constituent structure is not the only form

leading to effective representation of complex dependencies. As long as the critical relations are encoded

with edge links, LON (with window size 2) can capture the multi-way lexical dependency. Furthermore, such

representation are not constrained to explicit graphical representations. I showed that Transformer models

can achieve in the critical compositional generalization task. Following-up analysis suggests that some quasi

semantic-syntactic structure might have been formed in the Transformer model, based on its self-attention

mechanism. From there, I argue that the exact form of the representation might be less important. What

essential in a model or any computational system is a mechanism that ensures chunking words and forming

some structure that helps specifying lexical dependencies. No matter it is by self-attention in a Transformer

block, or an explicit syntactic parse tree, preserve and cucumber needed to be bound as a whole to associate

with vinegar. Furthermore, such binding needs to be flexible so that the system can form representation

compositionally (combinatorially), and generalize from learned knowledge to novel experience (preserve pepper

with vinegar).

In this sense, what is the value of Distributional Graph? While both the mini GPT-2 model and the CTN

model achieved in the compositional generalization tasks, the result showed that mini GPT-2’s performance

was more sensitive to the input. More importantly, the representation in Distributional Graph is much more

transparent compared to that in the Transformer architecture. Therefore, despite the similar performance,

Distributioanl Graph models may provide a clearer ‘prototype’ that better illustrates the ‘computational

problem’ (Marr, 1982). What is the nature of the hard semantic problem concerning representing complex

lexical relationships? What kind of representational data structure may lead to the success of the challenging
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compositional generalization task? The Distributional Graph approach is promising in the way that it provides

an explicit high level semantic representation and an effective process on the structure, that potentially

underlines the solutions to the hard semantic tasks.

As a summary, the Distributional Graph approach encodes lexical relations from linguistic input in a

network topology with fewer losses of the structural information embedded in the language. Consequently,

language tasks that demand more on linguistically structured knowledge (e.g., compositional generalization)

can be informed by the DG representation that preserves more linguistic structures. In this way, Distributional

Graph can be considered as a potentially valuable attempt to bridge knowledge representation and language

comprehension.

7.2 Capturing Lexical Dependencies Towards Semantic and Lan-

guage Development

In Chapter 5, I showed that the constituent structure contributed to the success in the compositional

(multi-way) generalization task. In Chapter 6, I demonstrated the critical factor for such generalization is not

necessarily the constituent structure per se, but any structure that effectively captures the lexical dependency

pattern in the language input. Based on the results in Chapter 6, I speculate such effective structure may

emerge in the Transformer-based mini GPT-2 model, leading to its success in the critical tasks. Since the mini

GPT-2 model directly processes on raw linguistic data, its success (as a contrast to the success in CTN) has

an intriguing implication on language learning. In this section, I first delve into possible emerging structures

in the process of learning lexical dependencies, and then discuss how the emerging structure might inform on

language development.

7.2.1 Emerging Structure

(a) Dependency Chunking (b) Categorization by Dependency

preserve cucumber

vinegar

preserve cucumber

vinegar

chunking 1

preserve vinegar

cucumber

chunking 2

vinegar cucumber

preserve

chunking 3

preserve cucumber

potato

pepper

vinegar

preserve VEGE vinegar

keep FOOD LIQUID

Verb Noun Instrument

Figure 7.2: Structures emerge by lexical dependencies. (a) Possible chunks formed to reflect dependencies
among three words. (b) Categorization with common lexical dependency as a source.
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In the artificial corpus used in Chapter 5 and 6, there is a three-way dependency in the trio preserve,

cucumber, vinegar. To succeed in the critical compositional generalization task, a model needs to chunk the

three words in some way, e.g., it needs to bind preserve and cucumber to decide on vinegar. Such chunking is

illustrated in chunking 1 of Figure 7.2a, top right. Notice that there are potentially multiple ways to chunk

the three words. For the corpus used in the dissertation, chunking 1 and 3 might be more effective compared

to chunking 2, as the pairs in chunking 1 and 3 can perfectly predict the third item in the trio, while the

prediction by chunking 2 is less certain. More formally, the conditional probability of vinegar or preserve

given preserve cucumber or vinegar, cucumber is 1, while the probability of cucumber given preserve, vinegar

is 0.5. In general, how a distributional model chunks the items may depend on the lexical dependencies in

the input, and the training task. While there are different chunking options, powerful models should be able

to chunk words in a way that better reflects the lexical dependency pattern in the input language.

What exactly are these structures formed by chunking? From the first sight, it is straightforward that the

structures in 7.2a are semantic structures reflecting multi-way lexical dependency. However, if we zoom out

and consider all structures formed in a given corpus, these ‘local’ dependencies might be further clustered

into a hierarchy of structural dependencies featuring different level of abstraction. This is illustrated in 7.2b.

On the top, we see that preserve is bound to cucumber, potato, and also indirectly to pepper. Collectively, the

larger chunk has dependency with vinegar. This cluster of dependencies can be abstracted as the dependency

between preserve VEGETABLE and vinegar. Furthermore, imagine in a larger corpus, the dependency can

be further abstracted, so that preserve is extended to the ‘light’ verb keep with a general sense of preserving,

VEGETABLE and vinegar extended to their super-ordinate category FOOD and LIQUID. At the end, the

dependency is abstracted to the level of grammatical categories like Verb, Noun and Instrument.

Different levels of abstraction, once formed may benefit the representational system realizing different

goals. The lexical level representation specify the exactly dependencies between lexical items. The dependency

between verb and semantic category may facilitate generalization on the respective abstracted level. For

example, with the representation of preserve - VEGETABLE, a model is able to generalize from preserving

observed vegetables (cucumber) to preserving unobserved vegetables (pepper). Finally, the grammatical

category level abstraction may benefit syntactic judgement of the sentences.

From a more traditional perspective, the different levels of abstraction might have completely different

origins. A critical point in this dissertation, though, is that multiple levels of dependency structures can be

formed based on the process of distributional learning. Huebner and Willits (2018) showed that distributional

models can capture linguistic structures, from the higher level syntactic category, e.g. Noun vs. Verb, down to

the semantic taxonomies. Furthermore, in Chapter 5, I showed that the high-level syntactic structure (syntax

tree), once lexically specified (constituent tree), becomes an effective representation for challenging semantic

tasks. This indicates that there are overlaps between the syntactic structure, and semantic structures tailored

for lexical dependencies. The structure speculated in mini GPT-2 in Chapter 6 is between the lexical level

the syntactic level. These modeling works imply that, there are rich dependency patterns in the linguistic

data, spanning the abstraction spectrum from lexical semantics to syntactic categories. These dependencies,

once picked up by effective models, may enable achievements in hard semantic tasks. Taking a step further, if

similar computational mechanism exists in human mind, it is possible that the lexical dependency patterns,

especially those between multiple words, can be an essential source for human to learn semantics and syntax.
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7.2.2 Co-evolving Semantics and Syntax out of Lexical Dependencies

The Transformer investigated in Chapter 6 and the CTN model proposed in this dissertation suggest two

stages of semantic development in human learner. For a Transformer model in its early stage of training, it

is not endowed with syntactic parsing capability and it processes on raw context. In this case, it mirrors

human learners not sufficiently proficient in syntax. It is possible that similar to Transformer, young

learners form quasi semantic-syntactic representations of their language input. These quasi representations

might not faithfully reflect the meanings of the input, so that the learners may find it difficult to interpret

sentences with complex semantic dependencies. In terms of development of semantic memory and knowledge

representation, the concepts learned in this stage should have simpler lexical/semantic dependencies. In

this stage, development of syntax and semantics may reciprocate each other. Over time, the Transformer

gradually learns the lexical dependencies in the language input, so that they can better grasp the structures

in novel input (e.g. preserve pepper with vinegar). In this stage, the behavior of the Transformer model might

become similar to that of the CTN, despite that they are implemented differently.

The CTN model is trained on parsed sentences, taking advantage of the structured input. In this sense,

the model reflects human learners who have achieved (near) adult-level syntactic competence. In this second

stage, they can form correct structures of their language input, and effectively judge on sentences with

complex semantic dependencies. As a result, in this stage, learners should be able to integrate more complex

lexical/semantic dependencies into their knowledge/semantic structure. Since their syntax proficiency is

almost at ceiling, the development becomes one-sided. Learners should benefit from their syntax maturity

and they are prepared to gain knowledge through reading. To be more specific, they are able to take

in knowledge that involve sophisticated semantic relationships, written in long and hard sentences. The

suggested correspondences between the two models and two development stages encourages a few threads of

future directions, which I propose with details in the next section. Here, I would like to emphasize more on

the first stage development.

From a developmental perspective, the CTN by itself may not account for the emergence of early language

skills, especially syntax acquisition in young children. While the focus on CTN concerns semantic capability

after rudimentary parsing abilities are in place, it is important to ask where syntax comes from. To firmly

place the CTN within the field of developmental psychology will take time, and cross-domain collaboration

between cognitive modelers and language acquisition researchers working at the interface between early syntax

and semantics. While there is a large literature that has examined the emergence of syntax in young learners,

much more work is needed to relate such findings to semantic representation. That is, how the less mature

semantics and syntax systems co-evolve based on the various inputs (linguistic and non-linguistic). To be

more specific, how might the incremental emergence of syntax, e.g. the ability to parse linguistic expressions

into constituents, influence how semantic knowledge is represented in a child and in distributional models?

One approach is to study the emergence of syntax from a connectionist perspective, which starts with

relatively little to no linguistic knowledge, and is aided by gradual emergence of the ability to parse language

input over the course of language experience. As suggested by the performance of mini GPT-2 in Chapter 6

and previous studies (Huebner & Willits, 2018, 2021b), the process might involve categorization on linguistic

inputs in a scaffolding manner, illustrated in Figure 7.3. In the early stage, learners or models may learn

from more globally effective lexical dependencies, e.g. those between articles and nouns, and form coarse

grammatical categories on the dependency landscape (Figure 7.3a). After the basic grammatical categories

are acquired, learners may further specify more local idiosyncratic dependencies and form finer (semantic)

categories (Figure 7.3b). Alternatively, the most local lexical-level dependency might be captured before
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global pattern (Goldberg, 1995), or the two processes happen at the same time. While how the learning

unfolds await more behavioral and computational endeavors, I emphasize that the interactive semantic and

syntactic development can be informed by the process of learning lexical dependency in language input.

Figure 7.3: Categorization based on lexical dependency in a scaffolding manner. (a) Grammatical categories,
e.g. Noun, Verb, Adjective, Adverb, are formed based on more straightforward global distributional patterns.
(b) Finer local categories, e.g., N1, N2 are formed.

7.3 Future Directions

In this dissertation, I developed a type of distributional semantic models: Distributional Graph, which

forms knowledge structures by encoding linguistic distribution pattern in a network data structure. While

this dissertation has focused on formal investigations in the computational mechanisms and capabilities of

Distributional Graphs and related models, the results encourage a wide range of theoretical and empirical

works. First, more behavioral works testing the effect of indirect semantic relations, as well as compositional

generalization in language processing are needed to ground the modeling results in Chapter 3 and 5.

Furthermore, as mentioned in the last section, the success of the CTN and Transformer model suggests a

two-stage semantic development modulated by syntactic proficiency, which leads to behavioral experiments

for testing the hypothesis. In turn, the behavioral findings need to be compared with model simulations.

While existing distributional models are readily implemented for simulating human behaviors, substantial

works are needed for Distributional Graph. This leads to multiple lines of theoretical and empirical modeling

studies on the graphical model. Finally, I propose an idea of generalizing the modeling gist in Distributional

Graph for a more comprehensive representation of knowledge and semantic structure.
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7.3.1 Behavioral Works

Language Processing in Adults

The results in Chapter 3 showed that Distributional Graphs is better at differentiated relatedness varied by

abstraction orders. If Distributional Graph is a plausible representation of human semantic memory, then

people should be able to differentiate direct and indirect lexical pairs predicted by Distributional Graph

relatedness measure. Previous works have shown that people are sensitive to indirect semantic relations

in priming (Balota & Lorch, 1986), and that network distance (on semantic network built from normative

association) between word pairs predicts human semantic (similarity) judgement (De Deyne et al., 2016;

Kenett et al., 2017; Kumar et al., 2019; Rotaru et al., 2018). With the proposal of Distributional Graph,

more behavioral works can be added to the literature. Distributional graphs do not conflate syntagmatic

and paradigmatic relationships. Therefore, it is possible to create syntagmatic and paradigmatic stimuli

sets (consisting of pairs that are all syntagmatically related, or paradigmatically related) based on how the

word pairs are connected in the distributional graph. Then, the syntagmatic and paradigmatic pairs can

be used to correlate human’s semantic judgement and model (by Distributional graph and other semantic

models) predictions. Parallel to the results in Chapter 3, if human’s relatedness judgements on syntagmatic

(paradigmatic) pairs can be predicted by the corresponding relatedness in a distributional graph, then the

proposed DG structure could be a plausible representation of human semantic memory.

In terms of multi-way lexical dependency and compositional generalization, the modeling works was

motivated by a series precedent behavioral experiments (Bicknell et al., 2010; Ferretti et al., 2001; Kamide

et al., 2003; McRae et al., 2005; Rayner et al., 2004). These works have shown that people do represent

multi-way lexical dependencies and use them when comprehending language. The modeling work in this

dissertation suggests that distributional cues can be useful for generalizing multi-way dependencies. If the

mechanism the CTN employs to succeed in the evaluation of compositional generalization is informative

about the processes that takes place in the human language system, it should be possible to confirm the

connection with behavioral experiments. A procedure for doing so might involve eye-tracking or EEG methods

to quantify the semantic facilitation of a verb phrase on an expected instrument at the end of the sentence.

For the expected instrument knife, a comparison between the facilitation effect of cut cake (canonical), cut

cookie (similar), cut blicket (pseudo) would be informative about whether participants can encode a phrasal

dependency (e.g. betweencut cookie and knife) and use it to interpret a novel phrase (e.g. cut cookie with

knife). In this proposed experiment, the familiarity of a verb phrase, e.g. the extent to which people are

familiar with cut cake and cut cookie can be quantified with corpus data.

Two-stage Semantic Development

Results in Chapter 5 and 6 suggest that semantic development might be modulated by syntactic proficiency.

Before the full-fledged syntax, the semantic structure should be dominated with simpler relations (between

two words, or two concepts), and the proportion of multi-way lexical dependencies should be relatively low.

One way to approach to the structural complexity of developing semantic representations is to examine

the relationship between words from different grammatical classes in young children. For example, Kueser,

Horvath, and Borovsky (2023) constructed semantic network of nouns and verbs exposed to 16-30 months old

to study the effect of interactions between the two classes of words in early word learning. Similar approach

can be extended to more word classes, e.g. adjectives and adverbs, and a broader range of ages. Network

analysis can be used to reveal how lexical dependency within and between different word classes develops
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over time. The two-stage hypothesis predicts that relationships between different word classes should develop

relatively later in comparison to within classes relations. Emergence of between classes relationships should

correlates with the process of syntactic maturation.

Another prediction by the two-stage hypothesis is that the sensitivity to the multi-way lexical dependencies

presented in the language input alongside with their syntactic proficiency. Existing works have shown that

young children (5 to 10 years old) can learn multi-way dependencies, and generalize the learned dependencies

to novel lexical combinations (Abu-Zhaya et al., 2022; Borovsky, 2022). Future works can replicate these

studies, while correlating the performance in learning and generalizing multi-way lexical dependencies to

syntactic readiness and complexity of semantic structure.

7.3.2 Modeling Works Concerning Distributional Graph

Some of the behavioral works proposed in the last section require comparing human data with model predicted

relatedness. In this case, it requires constructing distributional graphs from naturalistic linguistic data. To

proceed for that goal, it is necessary to first thoroughly investigate the capability of distributional graphs

on more semantic tasks. Then, a series of theoretical and empirical research are needed as preparation for

constructing distributional graphs from naturalistic input.

Computational Capability and Mechanism in Various Distributional Models

In Chapter 3, 5 and 6, the critical findings were limited to a single type of semantic relation (i.e. indirect

syntagmatic relations). A more complete understanding of the distributional graphs, as well as other

distributional models (for comparison) requires considerable amount of works on additional tasks. For

instance, while I examined the ability of the CTN to infer the relatedness between a phrase and a word, I did

not systematically examine its ability to infer the relatedness between individual lexical items. Nor did I

investigate how performance might differ depending on the type of relation, namely syntagmatic relation or

paradigmatic relation. Especially, while I claim that successful representation of the indirect syntagmatic

relationships requires successful representation of paradigmatic relations, no task in this dissertation directly

evaluated paradigmatic relationships, e.g. similarity between structurally isomorphic phrases. The performance

of distributional graphs and other models can differ substantially by the type of relation being examined. In

future studies, more distributional models should be tested against distributional graphs on both syntagmatic

and paradigmatic relationships. Having separate experiments on different types of relations may explicate

the advantage and disadvantage of different distributional models in semantic representation.

Scale up Distributional Graph with Naturalistic Language Input

Throughout this dissertation, all models are trained on toy artificial corpora. While the artificial corpora are

necessary concerning the goal of formal investigation in the current studies, the proposed distributional graphs

need to be trained on naturalistic corpus to account for data in behavioral experiments, and to compare with

established distributional models. Therefore, an important future direction is to train CTN on the real-world

language data, and examine whether the model maintain its capability in various semantic tasks.

Nevertheless, there are considerable challenges for scaling up the ‘connecting language’ approach. First,

unlike artificial corpus, naturalistic data involves enormous noises. To apply the model with real-world input,

it is necessary to (i) develop effective pre-processing algorithms to clean up the data and (ii) understand the

possible effects of the noises on the topology of the graphical structure. These noises includes punctuation,
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inflection, and function words, to name a few. While it would be straightforward to swipe out these unwanted

components in the naturalistic input, more caution is needed as it has been shown that functional components

such as tense and aspect may affect behaviors in semantic tasks (Willits et al., 2015). Additionally, the CTN

model implemented in the current studies works on parsed binary constituent trees, which are manually

generated as the artificial corpora are simple. However, naturalistic corpora are often noisy and complex,

so that a primary concern is to first find an effective automatic parser to parse the sentences. Nevertheless,

even the state-of-the-art parsing algorithms are not perfectly accurate. Therefore it is important to know the

effect of parse error on the resultant semantic network. In addition, accessing to semantic relatedness in the

network structure is computationally complex, and the complexity scales up alongside with the size of the

corpus. As a result, another preparation before applying naturalistic input is to design a computationally

plausible algorithm to implement the spreading-activation measure on large-scale networks. In summary,

while scaling up the Distributional Graph models to naturalistic corpus is necessary, more theoretical and

empirical works are needed to show that the movement is plausible and practical.

7.3.3 Generalize Distributional Graph for Broader Knowledge Representation

Lastly, I present some very high-level and long-term visions that expands on the Distributional Graph

approach. Rather than being inspired by the studies in this dissertation, these high-level goals are the

initiatives of the Distributional Graph endeavor. While the current distributional graphs encode mere word

co-occurrence, a broader range of semantic relations can be encoded in the edges of the network structures.

These relations may explicitly encode useful syntactic and semantic knowledge and can be accessed through

the spreading-activation algorithm. The enriched encoding may lead to a mechanism which potentially

produces ‘generative concept’. In turn, the ‘generative concept’ mechanism may inform on the developing

knowledge structure in both human individuals and humanity as a whole. I will present the visions primarily

from a modeling perspective and then stress on the significance of the modeling endeavors to scientific research

in cognitive psychology.

Beyond Word Co-occurrence

Although the initial modeling efforts in Distributional Graph have focused on lexical relationship, the nature

of the relations encoded in the semantic networks is essentially co-occurrence frequency in linguistic corpus.

As non-linguistic information can be essential building blocks of semantic memory, the current distributional

graphs are profoundly limited by its ignorance of non-linguistic modalities. Recent studies have shown

that, similar to linguistic corpus, there are robust co-occurrence structure among real world visual objects

(Greene, 2013; Sadeghi, McClelland, & Hoffman, 2015), and human form association between frequently

co-occurring visual objects and scenes (Bonner & Epstein, 2020; Zettersten, Wojcik, Benitez, & Saffran,

2018). Furthermore, computational modeling of adult semantic structure suggests significant contribution

from multi-modal information (Deyne et al., 2021), and developmental works also indicate that in addition to

conceptual or linguistic features, perceptual cues play an independent and presumably more important role

in early word learning and semantic development (Hills, Maouene, Maouene, Sheya, & Smith, 2009; Peters,

Kueser, & Borovsky, 2021; Seidl, Indarjit, & Borovsky, 2023). These computational and behavioral works

motivate incorporating non-linguistic distributional input alongside with linguistic corpus. It has long been

noticed that there is a systematic difference between what people know and what they produce in language.

By integrating multi-modal inputs, the generalized distributional graphs may better account for behavioral
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data in adult semantic processing, and brings more insight to the theory of language development, e.g. verb

learning.

More importantly, unlike the classic semantic networks (Collins & Quillian, 1969; Collins & Loftus, 1975),

edges in the presented distributional graphs do not encode any content information. They are only structural

constructs to layout the topological relations between concept nodes. One may argue that the constituent

trees in the CTN model bear syntactic information and significantly contribute to the representational

capability of the model. However, that structural information is in the topological form of the trees, and

there is no specific information on each individual edge that links the node pair. In this way, while the

spreading-activation algorithm can be used to evaluate quantitative relatedness between any two nodes in the

network, no qualitative or formal relations can be accessed in the current distributional graphs.

Similar to the classic semantic networks, information can be directly encoded in the edges of the

distributional graphs. For example, after integrating non-linguistic input, it might be necessary to create

multi-edges between each single node pairs, with each edge labeling the type of relation, e.g. visual co-

occurrence, linguistic co-occurrence, etc. In this way, it is possible to access and integrate multiple types of

relations through the activation process.

There is one type of linguistic information that can be directly labeled in the CTN, which may lead to

more powerful semantic representation. For each complex expression, the sub-tree containing the expression

and its constituents specifies a lexical composition. For example, the sub-tree containing preserve cucumber,

preserve and cucumber in a constituent tree network specifies that the lexical item cucumber can be combined

(composed) with the lexical item preserve to form the phrase preserve cucumber. Such constituting relations

can be encoded by a type algebra used in formal semantics (Montague, 1970). To be more specific, types are

assigned to the constituting nodes that specifies who is the function (predicate) and who is the argument. In

the case of preserve cucumber, it can be specified that preserve is the function (predicate) and cucumber

is the argument. Then, the spreading-activation accessing to the sub-tree can elicit the semantic memory

for the lexical argumentation of preserve cucumber. Notice that the argumentation here is different from

the three-way relationship aimed at in the previous chapters. In those chapters, the evaluated relation

only concerns how closely the targeting word pairs/triplets are related. After encoding the argumentation

information on the edges, the spreading activation can not only evaluate how far preserve is from cucumber,

but also whether they can be composed to form a grammatically valid chunk (a phrase). Recall a feature of

distributional graph is that it may evaluate the relatedness between observed lexical combinations as well as

novel lexical combinations. In this sense, the encoding of argumentation information results in the evaluation

of novel expressions such as preserve pepper and soundly sleeping colorless green idea in terms of both their

plausibility and grammaticality. This leads to the potential of generating novel concepts in the CTN model.

I explain it with more details below.

Generative Concept

In Chapter 5 and 6, the models were tested on relatedness between novel lexical combination, e.g. preserve

pepper - vinegar. The relation was ‘novel’ as preserve pepper and vinegar were not associated in the input.

From another perspective, the evaluation was also about the plausibility of the novel expression, i.e. preserve

pepper with vinegar, a phrase that had never occurred in the input. Indeed, all studies in this dissertation

essentially target at the plausibility of novel expressions, i.e. novel combinations of represented words.

However, a complex expression is not merely a set of words: preserve pepper with vinegar is roughly ok, but

vinegar pepper preserve with is not. To make sense of an expression, we have to confirm its ‘grammaticality’
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in the first place, before judging its ‘plausibility’. With the encoding of the argumentation information on the

edges of CTN, it might be possible to judge on both the grammaticality and semanticality of a given expression.

These judgements can be considered as parts of the comprehension process. For the other direction, the

CTN model might help construct grammatical and plausible expressions/concepts from scratch. For example,

given an arbitrary set of words, the spreading activation process may access their grammatical information to

form candidate structures. Then the model may judge the semantic plausibility of the structures based on

the activation based relatedness, to select relatively meaningful constructs out of the list.

While a substantial amount of theoretical and technical problems are needed to work out, the CTN model

(and potentially other distributional graphs that effectively encodes grammatical information) provides a

possibility to generate meaningful novel concepts. For example, given baby sleep, it might generate a sentence

like A cute baby sleeps soundly or Soundly sleeping baby. The approach distinguishes itself from generative

grammar (Chomsky, 1965) that generates grammatical yet meaningless expressions (Colorless green ideas

sleep furiously.) It also contrasts with state-of-the-art LLMs in the way that the generative process in

Distributioanl Graph can be maximally transparent and interpretable. The grammatical information are

explicitly encoded in the network and the lexical relatedness are evaluated by the spreading-activation.

However, concept generation in distributional graphs are more likely to be unconstrained. In other

words, it would be a great challenge for distributional graphs to function like the state-of-the-art language

models, performing tasks in response to prompts. Essentially, Distributional Graph is a model for semantic

memory representation. The model provides knowledge that may facilitate understanding, but it does not

comprehend language and perform tasks by itself. Regardless of these limitations, the unconstrained concept

and expression generation in distributional graph would still be valuable. The meaningful concepts generated

from the unconstrained process can be added to the distributional graph itself. In this way, the distributional

graph may not be a static knowledge representation. It is possible to become a developing and updating

knowledge structure. This feature of distributional graph may shed light on knowledge development in human.

Towards a Developing Knowledge Structure in Human

For both human individuals and the human society as a whole, we do not just learn a fix amount of

facts. We make new findings, generate new ideas, and create new concepts all the time. While the new

knowledge may come from multiple sources, a great portion of them are linguistic constructs, e.g., Marathon,

Structuralism, the second Newton’s law, and they need to be formulated in language. From time

to time, we create new words to lexicalize concepts expressed by complex phrases, and we use complex

expressions to describe and explain the new ideas and concepts. Despite the exact content of new knowledge

or concepts, they are likely to be described or defined with novel combination of familiar words or phrases.

An interesting question arises based on the observation above: what knowledge structure may facilitate the

generation of new concepts and knowledge? To be more specific, what features in semantic structures may

lead to creation of new thoughts and ideas? There have been works showing that lexical semantic structure

in people correlates with their creativity (Kenett, Anaki, & Faust, 2014; Kenett et al., 2016). With more

established information and linguistic structures encoded in distributional graphs, and the concept generation

mechanism of the model, it is possible to delve into more detailed mechanisms that potentially gives rise to

creativity. To be more specific, we may manipulate the the structure or content of the input, and then test

the resultant distributional graphs on the concepts/expressions they generate. The generated concepts can

be evaluated internally by the models themselves, as well as by humans with meaningfulness and creativity

norming. Importantly, since the distributional graphs are mechanistically transparent, it is possible to know
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what features of the network model or that in the input might have led to the different performances. In this

way, such simulation studies might inform on creativity and knowledge development in human.

As a final remark for the generalizing Distributional Graph proposal, while I have described most of

the works from the computational modeling perspective, the research can be fundamentally related to

cognitive psychology. First of all, the elements and procedure in model construction are grounded by

psychological realities: multi-modal inputs and grammatical information are both essential for constructing

semantic/knowledge structure. Second, the goal of the modeling effort is also psychologically oriented. By

enriching the model encoding with input critical to human knowledge development, the proposal aims at

a semantic structure that can productively generate novel meaningful and grammatical expressions. Most

importantly, the model is supposed to specify how do each part of the model architecture, the processing

mechanism, and the input statistics give rise to the performances. In other words, the model provides a

representational account for the (prospective) behaviors. The emphasis on the representational account for

behaviors resonates with the general merit of cognitive psychology.

The proposal here humbly relates to the innovation of digital computer seven decades ago. Initially, the

‘modeling’ practices were totally practical: it targeted at automatizing sophisticated scientific computations.

However, the creation of the computer in turn affected attitude of related scholars toward psychology. After

the ‘mental representation’ that systematically maps to behaviors in the digital machine had been explicitly

realized, curiosity on mental processes in human mind started to grow. Similarly, it will be a considerable

computational challenge to build a transparent representation that productively generates novel grammatical

and meaningful concepts. However, a model achieving the goal may elicit more psychological interests on

the mental processes and representations in human mind that gives rise to the cognitive feat. In turn, these

understanding in knowledge and meaning representation may help us create more semantically competent

machines, as well as develop a more knowledgeable human scoiety.
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Chapter 8

Conclusion

Explaining human’s sophisticated semantic behaviors has been one of the most challenging, and at the

meantime most intriguing topic in cognitive psychology. To be more specific, the behaviors include capturing

indirect semantic relations, as well as learning multi-way lexical dependencies and generalize the dependencies

to novel lexical combinations. These semantic capacities potentially give arise to the productively generated

novel expressions and concepts in human. While the field has long recognized the role of world (lexical)

knowledge in sophisticated language processing, less attention had been paid to incorporating linguistic

input for constructing knowledge representation. In this dissertation, I brought Language and Knowledge

together by developing a linguistically informed semantic/knowledge representation, i.e., Distributional

Graph, that may better address sophisticated semantic/language tasks.

The distributional graph models transform linguistic input into graphical forms, and then join the linguistic

graphlets into a semantic network. In this way, the model encodes distributional (semantic) relationship

between the lexical units (words and phrases) in a graphical topology, which can be accessed through network

metrics. Inspired by previous works (Collins & Loftus, 1975; Anderson, 1983; De Deyne et al., 2016), I

developed a spreading-activation algorithm to evaluate the relatedness between nodes in the graph. The

measure in theory integrates multiple distributional features and is able to evaluate semantic relatedness

between linguistic concepts in a graded manner. It is shown that the spreading-activation approach indeed

effectively captures the semantic constraints embedded in linguistic distributional patterns.

In two groups of studies, I showed the formal computational capabilities of two specific types of distribu-

tional graphs, the LON and the CTN models. In the first group of studies, I showed that graphical encoding

of linear co-occurrence (LON) may successfully bind direct syntagmatic relationships with paradigmatic

relationships to form a representation of indirect syntagmatic relationships. Such representational capability

enables the model to generalize on word-word lexical relationships. By systematically manipulating two

relevant modeling parameters, i.e. the encoded information and the representational data structure, I

showed that the graphical structure and the co-occurrence encoding collectively contributed to the high

performance. With further formal investigations, I formulated a mathematical equivalence between the

general spreading-activation processes on LON and multi-order cosine similarity in the corresponding vector

space representation. The equivalence suggests that the graphical approach is advantageous in terms of a

simultaneous access to similarity evaluations on vector spaces with various abstraction orders. In this way,

integration of different orders of semantic relations, e.g. syntagmatic and paradigmatic relations, is allowed

in the graphical LON, leading to the effective representation of indirect relations.
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In the second group of studies, I showed that while the canonical LON is able to generalize on word-word

lexical dependencies, it struggles to learn and generalize lexical dependencies involving three words. As a

contrast, by explicitly encoding the constituent structure in the semantic network, the CTN model may

successfully learn the multi-way lexical dependencies embedded in the linguistic input, as well as generalize, in

a compositional manner, the learned dependencies to novel lexical combinations. With a series of comparison

experiments to other distributional models, I showed that LON models encoding more distant co-occurrence

and a Transformer-based model may succeed in the critical compositional generalization task, alongside with

the CTN model. Basing on following-up analyses and further experiments on the models, I argue that a

quasi semantic-syntactic structure might be necessary to guarantee effective representation of multi-way

lexical dependencies. While the structure is granted in the CTN model, it might have emerged in the

Transformer-based model due to its self-attention mechanism.

While the studies in this dissertation have primarily focused on testing formal computational capabilities

of the distributional graphs with toy artificial corpora, the results of the modeling work may have profound

implications in theory of knowledge representation and semantic development. First, it has demonstrated

the unique value of encoding linguistic input in graphical topological structure and the effectiveness of the

spreading activation in relatedness evaluation. In this way, the work has shown the potential of Distributional

Graph as an approach to form effective semantic representation based on linguistic input. Second, as a

distributional modeling approach, the performance of CTN against Transformer-based models suggests a

possible two-stage semantic development in human. A great amount of behavioral experiments are needed to

test the hypothesis and validate distributional graph as a model for human semantic memory, and these studies

require prerequisite works to scale up Distributional Graph with naturalistic linguistic input. Finally, by

integrating multi-modal distributional data and detailed grammatical information on the edges, it is possible

to construct distributional graphs that allow generation of grammatical and meaningful novel concepts and

expressions. Along the way of this challenging modeling march, it is likely that the modeling outcomes

constantly inspire cognitive psychology studies that explore corresponding behaviors in human, as well as the

underlying cognitive mechanism. The representational account in the generalized Distributional Graph may

deepen our understanding of the developing nature of human knowledge, and in the long run contribute to

creating more interpretable artificial intelligence and nurturing more knowledgeable humans.
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