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ABSTRACT

Graph-structured data are prevalent in a wide range of application domains, as many

data inherently demonstrate interconnected patterns. With recent advances in artificial

intelligence, deep graph learning methods have revolutionized the way of modeling, processing,

and learning from graphs. They are typically integrated into a three-stage pipeline: graph

construction, offline model design, and online deployment. Real-world graphs, by their nature,

undergo constant evolution. In an exemplifying social network scenario, the evolution exhibits

in both micro scale where dynamics manifest as evolving node attributes and interaction

patterns, and macro scale where graph dynamics involve the continual emergence of new

nodes and edges. The typical three-stage graph learning pipeline falls short of learning

latent representations of such changing, partially observed, and unreliable social information

environment (referred to as social-info dynamics), and also lacks the capacity to model

broader graph dynamics beyond social networks. Significant challenges need to be addressed

in terms of robustness (handling data issues), efficacy (modeling temporal information), and

efficiency (enabling continual model updates), corresponding to each of the three key stages.

This dissertation works on optimizing robustness, efficacy, and efficiency of current graph

learning techniques, with the aim of better modeling graph dynamics. Specifically, we address

the following research questions in pursuit of establishing robust, efficient, and effective

learning pipelines. First, can we devise an automated graph cleaning (refinement) method to

bolster model robustness against data issues? If so, can we eliminate dependency on external

cues to indicate data correctness, and how should we redefine the graph cleaning objective

in contrast to traditional unsupervised graph learning methods? Second, when it comes

to modeling, representing, and learning a diverse range of dynamic graphs amid growing

data heterogeneity and task complexity, what level of model intricacy should we explore?

To be more specific, when dealing with dynamic bipartite, multi-relational, or low-resource

graphs, what strategies should we employ in designing graph learning techniques to enhance

the extraction of valuable information that can benefit downstream applications? Finally,

is it feasible to formulate an online training policy to enhance label-efficiency for adapting

the model to new nodes with limited labels and resource-efficiency for updating models on

streaming data? Can we build upon a common design philosophy to guide both endeavors?

This dissertation elaborates on these core problems and their emerging temporal graph

learning solutions to build robust, effective, and efficient learning pipelines that facilitate

predictive analytics in changing, partially observed, and unreliable graphs.
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Chapter 1: INTRODUCTION

Graph-structured data are prevalent in a wide range of application domains, as many

data inherently demonstrate interconnected patterns. These examples encompass but are

not limited to, social graphs, E-Commerce graphs, knowledge graphs, and molecular graphs.

In the era of the Internet and big data, the utility of graphs has deepened further as larger

and more heterogeneous graph-structured data continues to emerge. For instance, statistics

reveal that approximately 5 billion users are interconnected in social networks, and over 60

billion Google-indexed webpages are linked via the Internet in 2023. Moreover, in a broader

context, physical objects in the world are also interconnected as vast graphs, encompassing

autonomous vehicles, a myriad of sensor networks, and large-scale computation clusters, to

name a few. Therefore, computation on graphs has garnered significant interest in recent years

due to their wide-ranging applicability in real-world scenarios. Over the past decade, artificial

intelligence has undergone swift advancements, with deep learning techniques standing out

for their significant achievements. These techniques have demonstrated tremendous progress

in modeling various real-world data types, encompassing images, videos, languages, and

speech. Similarly, deep graph learning methods have also revolutionized the way of modeling,

processing, and learning from various types of graph-structured data. Many intelligent

capabilities on graphs, such as recommendation, community detection, user classification,

and disinformation detection, are therefore enabled that extend their impact not only to the

research community and industry but also touch the lives of everyday people.

A typical graph learning pipeline consists of three stages: 1) Graph construction stage:

This initial phase involves the organization of heterogeneous information derived from

complex application scenarios into graph structures. An inherent advantage of utilizing

graphs over other data formats lies in their innate ability to account for interdependencies

among data samples. This enables the integration of diverse information from multiple

sources by capturing their relationships. 2) Offline training stage: In the subsequent stage, a

dedicated graph learning model is designed and trained to effectively model, represent, and

acquire insights from the constructed graphs. A wide array of graph learning techniques

has been developed for various types of constructed graphs, spanning from methods like

heterogeneous information network embedding, knowledge graph embedding, and shallow

graph embedding, to more recent advancements in deep graph learning methods. 3) Online

deployment stage: Given the ongoing influx of new data during model deployment, this stage

necessitates periodic, iterative model updates to refine the model’s performance with the

latest information. Overextended deployment periods, may even mandate a comprehensive
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model retraining, potentially requiring a return to Stage 2 or a complete graph reconstruction

back to Stage 1, as a non-negligible performance degradation can become evident.

The primary objective of this dissertation is to pioneer temporal graph learning techniques

that enhance the aforementioned pipeline to better account for and model the dynamic nature

of graphs. This is motivated by the observation that numerous real-world graphs continuously

evolve, and the existing graph learning processes fall short of capturing such dynamics. Taking

social networks as an example, the status is continuously evolving over time, influenced

by both internal information propagation within the networks and external events in the

physical world. The evolution can be observed and interpreted in two ways. On a micro scale,

dynamics manifest as evolving node behaviors, encompassing changes in node attributes such

as fluctuating opinions of social media users and evolving node interaction patterns like shifting

consumer habits on E-Commerce platforms. Conversely, from a macro perspective, graph

dynamics involve the consistent joining of new nodes and edges, infusing fresh information.

Therefore, it is interesting and practical to explore the learning and extraction of dynamic

latent representations of the changing, partially observed, and unreliable social information

environment, which we refer to as social info-dynamics, that can benefit related downstream

applications. More broadly, the pursuit of advancing the existing graph pipeline and learning

the graph dynamics , becomes an intriguing yet formidable problem.

However, modeling these dynamics within real-world graphs presents non-trivial challenges,

from three main perspectives. First, from a model robustness perspective, the input graph

data derived from real-world scenarios is often characterized by noise and incompleteness.

Data collection challenges give rise to a substantial number of false negative issues, where

correct links are unintentionally omitted, and false positive issues, where non-existent

links are erroneously included in the graphs. Many graph learning methods are built on

implicit assumptions that the collected links are true positives and the uncollected links

are true negatives, rendering them susceptible to these data issues. This challenge is

further exacerbated when modeling evolutionary patterns within dynamic graphs, as the

models struggle to distinguish between random fluctuations caused by data issues at each

time interval and genuine evolutionary trends. Secondly, the endeavor to model temporal

information and graph dynamics introduces distinctive efficacy challenges, during offline

training stage. Addressing these challenges becomes progressively more demanding when

dealing with different types of dynamic graphs tailored to specific application contexts and

desired outcomes. These challenges intensify when dealing with dynamic bipartite graphs

that mainly encompass interaction data, dynamic multi-relational graphs that consider

timestamped heterogeneous connections, and dynamic low-resource graphs, where the scarcity

of available links results in insufficient information for effective model training. Furthermore,
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in light of the constant influx of new data during the online deployment phase, a distinctive

efficiency challenge surfaces, which revolves around the effective adaptation of the model to

accommodate this fresh data. In more specific terms, this challenge necessitates enhancing

label-efficiency to model newly emerging entities with a limited number of links or labels,

as well as optimizing resource-efficiency to enable swift model updates in order to prevent

performance deterioration.

To elaborate on the above challenges, we establish the following statement for this disser-

tation: By designing novel temporal graph learning techniques, we can build robust, effective,

and efficient learning pipelines to facilitate predictive analytics in changing, partially observed,

and unreliable graphs. To set the scope, this dissertation is, in part, motivated by challenges

arising in modeling social-info dynamics from social networks. However, our design endeav-

ors have expanded to encompass various application domains characterized by graphs and

dynamics akin to those in social networks. These domains include recommendation systems,

knowledge graph reasoning, temporal event prediction, and more. To specify the applicable

scenarios of this dissertation, we establish certain assumptions. Our techniques are designed

to be applicable to real-world graphs that align with these assumptions. 1) Graph dynamics

assumption: This dissertation mainly considers and models graph dynamics caused by both

graph topology changes (i.e., addition and deletion of nodes/edges) and graph attribute

changes (i.e., changes of node/edge attributes). Consequently, situations where the graphs

undergo only attribute changes while retaining identical structures throughout the duration

are not addressed within the scope of this dissertation. 2) Graph noise assumption: The main

emphasis of this dissertation is on enhancing model robustness in the face of graph noise

arising from issues in upstream data collection and model outputs. The noise we investigate

stems from imperfect data preparation and processing rather than intentional, malicious

data modification or injection aimed at degrading our model’s performance. Consequently,

our primary focus is not directed towards improving robustness against adversarial attacks,

although our design does demonstrate resilience against some of them. 3) Graph smoothness

assumption: While the primary goal of this dissertation is to address graph dynamics in

various practical scenarios, we operate under the assumption that certain fundamental graph

patterns persist over time. This ensures the continued validity of our technical designs across

different time frames. These enduring graph patterns encompass power-law distribution and

a fixed homophily or heterophily property, meaning that graphs do not transition between

homophily and heterophily at specific time points.

With the dissertation statement and important assumptions established, we address the

following research questions in pursuit of establishing robust, efficient, and effective learning

pipelines. First, can we devise an automated graph cleaning (refinement) method to bolster
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model robustness against graph data noise including false negative and false positive issues?

If so, can we eliminate dependency on external cues to indicate data correctness, and how

should we redefine the graph cleaning objective in contrast to traditional unsupervised graph

learning methods? Second, when it comes to modeling, representing, and learning a diverse

range of dynamic graphs amid growing data heterogeneity and task complexity, what level of

model intricacy should we explore? To be more specific, when dealing with dynamic bipartite,

multi-relational, or low-resource graphs, what strategies should we employ in designing

graph learning techniques to enhance the extraction of valuable information that can benefit

downstream applications? Finally, is it feasible to formulate an online training policy to

enhance label efficiency for adapting the model to new nodes and resource efficiency for

updating the model with streaming data? Can we build upon a common design philosophy

to guide both endeavors?

In the following sections, we give an overview of the solutions we proposed for each of the

above research problems.

1.1 ROBUST GRAPH CLEANING FOR SPECULATIVE REASONING

This paper studies graph cleaning and corresponding speculative reasoning capability

on real-world graphs that contain both false negative issue (i.e., potential true links being

excluded) and false positive issue (i.e., unreliable or outdated links being included). To set

the scope, we mainly focus on improving robustness against real-world data issues instead

of adversarial attacks to the models. We refer to automatic data issue detection joint with

task-specific predictive reasoning ability as speculative reasoning, which lies the foundation

of effective and efficient dynamic graph learning objective. State-of-the-art methods fall short

in such ability, as they assume the correctness of a fact is solely determined by its presence

in graphs, making them vulnerable to false negative/positive issues. The new reasoning

task is formulated as a noisy Positive-Unlabeled learning problem. We propose a variational

framework, namely nPUGraph [1], that jointly estimates the correctness of both collected and

uncollected links (which we call label posterior) and updates model parameters during training.

The label posterior estimation facilitates speculative reasoning from two perspectives. First,

it improves the robustness of a label posterior-aware graph encoder against false positive links.

Second, it identifies missing links to provide high-quality grounds of reasoning. They are

unified in a simple yet effective self-training procedure, without requirement of any external

cues to indicate link correctness. Empirically, extensive experiments on link prediction,

knowledge graph reasoning, and ideology classification tasks with various degrees of false

negative/positive cases demonstrate the effectiveness of nPUGraph. This work is introduced

4



in detail in Chapter 2.

1.2 LEARNING DYNAMIC BIPARTITE GRAPHS

This paper describes a novel graph learning model, DyDiff-VAE [2], aiming at learning

dynamic bipartite graphs for information diffusion prediction task on social media. By

modeling the external driven factors (which we call external stimuli) and internal driven

factors (which we call social influence), DyDiff-VAE aims to extract user dynamic interests

from the bipartite graphs. Inferring user interests from diffusion data lies the foundation of

diffusion prediction, because users often forward the information in which they are interested

or the information from those who share similar interests. Their interests also evolve over time

as the result of the dynamic social influence from neighbors and the time-sensitive information

gained inside/outside the social media. Existing works fail to model users’ intrinsic interests

from the diffusion data and assume user interests remain static along the time. DyDiff-VAE

advances the state of the art in two directions: (i) We propose a dynamic encoder to infer

the evolution of user interests from observed diffusion data. (ii) We propose a dual attentive

decoder to estimate the propagation likelihood by integrating information from both the

initial cascade content and the forwarding user sequence. Extensive experiments on four

real-world datasets from Twitter and Youtube demonstrate the advantages of the proposed

model. This work is introduced in detail in Chapter 3.

1.3 LEARNING DYNAMIC MULTI-RELATIONAL GRAPHS

This paper studies a generalized user behavior prediction task in a dynamic multi-relational

graph. To fulfill this setting, there involves two challenges: (1) the action data for most

users is scarce, while the neighbor aggregation cannot be easily extended in the scenario

to enhance user representations because of data heterogeneity; (2) user preferences are

dynamically evolving and shifting over time. To tackle those issues, we propose a novel

Retrieval-Enhanced Temporal Event (RETE) [3] forecasting framework. Unlike existing

methods that enhance user representations via roughly absorbing information from connected

entities in the whole graph, RETE efficiently and dynamically retrieves relevant entities

centrally on each user as high-quality subgraphs, preventing the noise propagation from the

densely evolutionary graph structures that incorporate abundant information. And meanwhile,

RETE autoregressively accumulates retrieval-enhanced user representations from each time

step, to capture evolutionary patterns over time. Empirically, extensive experiments on both
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the public benchmark and four real-world industrial datasets demonstrate the effectiveness

of the proposed RETE method for modeling the dynamic multi-relational graphs. This work

is introduced in detail in Chapter 4.

1.4 LEARNING DYNAMIC LOW-RESOURCE GRAPHS WITH KNOWLEDGE
TRANSFER

This paper investigates temporal reasoning problem on scarce temporal graphs, which

aims to facilitate reasoning on temporal graphs in low-resource domain by transferring

knowledge from graphs in high-resource ones. The cross-network distillation ability, as a way

to enable the external knowledge transfer capability, becomes increasingly crucial, in light

of the unsatisfying performance of existing reasoning methods on those severely incomplete

temporal graphs, especially in low-resource domain. However, it poses tremendous challenges

in two aspects. First, the cross-network alignments, which serve as bridges for knowledge

transfer, are usually too scarce to transfer sufficient knowledge between two graphs. Second,

temporal knowledge discrepancy of the aligned entities, especially when alignments are

unreliable, can mislead the knowledge distillation process. We correspondingly propose a

mutually-paced knowledge distillation model MP-KD [4], where a teacher network trained on

a source graph can guide the training of a student network on target graph with an alignment

module. Concretely, to deal with the scarcity issue, MP-KD generates pseudo alignments

between temporal graphs based on the temporal information extracted by our representation

module. To maximize the efficacy of knowledge transfer and control the noise caused by the

temporal knowledge discrepancy, we enhance MP-KD with a temporal cross-lingual attention

mechanism to dynamically estimate the alignment strength. The two procedures are mutually

paced along with model training. Extensive experiments on twelve cross-lingual knowledge

transfer tasks in the EventKG benchmark demonstrate the effectiveness of the proposed

MP-KD method. This work is introduced in detail in Chapter 5.

1.5 LEARNING EMERGING NODES FOR LABEL-EFFICIENT MODEL
ADAPTATION

Moving to the label-efficiency objective, this paper investigate a realistic but underexplored

problem, called few-shot temporal reasoning task, that aims to predict future facts for newly

emerging entities based on extremely limited observations in evolving graphs. It offers

practical value in applications that need to derive instant new knowledge about new entities

in temporal graphs with minimal supervision. The challenges mainly come from the few-shot
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and time shift properties of new entities. First, the limited observations associated with

them are insufficient for training a model from scratch. Second, the potentially dynamic

distributions from the initially observable facts to the future facts ask for explicitly modeling

the evolving characteristics of new entities. We correspondingly propose a MetaTKGR

framework [5]. Unlike prior work that relies on rigid neighborhood aggregation schemes to

enhance low-data entity representation, MetaTKGR dynamically adjusts the strategies of

sampling and aggregating neighbors from recent facts for new entities, through temporally

supervised signals on future facts as instant feedback. Besides, such a meta temporal reasoning

procedure goes beyond existing meta-learning paradigms on static graphs that fail to handle

temporal adaptation with large entity variance. We further provide a theoretical analysis

and propose a temporal adaptation regularizer to stabilize the meta temporal reasoning over

time. Empirically, extensive experiments on three real-world temporal graphs demonstrate

the superiority of the proposed method over state-of-the-art baselines by a large margin.

We further extend the framework from Euclidean space to hyperbolic space, which is

advantageous for modeling emerging graph entities for two reasons: First, its geometric

property of exponential expansion aligns with the rapid growth of new entities in real-

world graphs; Second, it excels in capturing power-law patterns and hierarchical structures,

well-suitable for new entities distributed at the peripheries of graph hierarchies and loosely

connected with others through few links. We therefore propose a meta-learning framework,

MetaHKG, to enable few-shot temporal reasoning within a hyperbolic space. Unlike prior

hyperbolic learning works, MetaHKG addresses the challenges of effectively representing new

entities and adapting model parameters by incorporating novel hyperbolic time encodings

and temporal attention networks that achieve translational invariance. We also introduce a

meta hyperbolic optimization algorithm to enhance model adaptation by learning both global

and entity-specific parameters through bi-level optimization. Compared to its Euclidean

counterpart, MetaHKG operates in a lower-dimensional space but yields a more stable and

efficient adaptability towards new entities. These workw are introduced in detail in Chapter 6.

1.6 LEARNING STREAMING GRAPHS FOR RESOURCE-EFFICIENT MODEL
UPDATES

This paper studies online link prediction on streaming temporal graphs, aiming to

improve resource-efficiency to update deployed models on freshly acquired temporal data

to ensure sustained long-term performance. State-of-the-art methods fall short in retaining

and adapting informative knowledge distilled from existing data onto freshly gathered data

for online updates, as they either cater exclusively to offline scenarios where all training
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data is available upfront or lack sufficient modeling of temporal information and temporal

graph structures during online updates. We propose a temporal meta-training framework,

namely OnlineSAFE, that extracts enduringly valuable knowledge across data collection

periods during the offline phase and efficiently fine-tunes the model to encode newly emerging

patterns during the online phase. To this end, we design a bi-level optimization to meta-learn

the model parameters that ensure sustained long-term performance and adaptability to new

data, where outer/inner loops are nested to optimize the global model parameters and the

fine-tuning procedure, respectively. Considering the potentially distinct distribution exhibited

in the new data, we analyze and derive an empirical bound based on the PAC-Bayes theory

to enhance the stability and generalizability of the online updating process. Furthermore, we

investigate a simple but effective sample reduction heuristic that accelerates online updates

by bypassing edge samples that lack additional information. Extensive experiments on four

real-world streaming graphs demonstrate the effectiveness and efficiency of OnlineSAFE,

compared with 17 state-of-the-art baselines. This work is introduced in detail in Chapter 7.

1.7 DISSERTATION ORGANIZATION

The rest of this dissertation is organized as follows: Part I (i.e., Chapter 2) introduces

the graph cleaning work nPUGraph to address the robustness challenge during the graph

construction stage. Part II (i.e., Chapter 3-5) introduces research works to address the

efficacy challenge during the offline training stage, with increasing of model complexity to

deal with various types of dynamic graphs. Part III (i.e., Chapter 6-7) focuses on improving

efficiency during online stage, in which we propose MetaTKGR and MetaHKG to improve

label-efficiency for newly emerging nodes via online model adaptation, and OnlineSAFE to

improve resource-efficiency for fast model update to avoid progressive performance drop. We

conclude this dissertation and discuss future opportunities in Chapter 8.
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Chapter 2: ROBUST GRAPH CLEANING FOR SPECULATIVE REASONING

2.1 OVERVIEW

In this chapter, we introduce a graph cleaning and corresponding speculative reasoning

capability on real-world graphs that contain both false negative issue (i.e., potential true links

being excluded) and false positive issue (i.e., unreliable or outdated links being included). To

set the scope, we mainly focus on improving robustness against real-world data issues instead

of adversarial attacks to our model generated by other attackers. We refer to automatic data

issue detection joint with task-specific predictive reasoning ability as speculative reasoning,

which lies the foundation of effective and efficient dynamic graph learning objective.

We aim to enable the speculative reasoning ability on real-world graphs, including but not

limited to social interaction graphs [6], [7], knowledge graphs [8]–[11], etc. The fulfillment of

the goal needs to address two commonly existing issues, as shown in Figure 2.1: 1) The false

negative issue (i.e., sparse observation): Due to the graph incompleteness, facts excluded

from the KG can be used as implicit grounds of reasoning. This is particularly applicable to

non-obvious facts. For example, personal information such as the birthplace of politicians

may be missing when constructing a political KG, as they are not explicitly stated in the

political corpus [12]. However, it can be critical while reasoning personal facts like nationality.

2) The false positive issue (i.e., noisy observation): Facts included in the KG may be

unreliable and should not be directly grounded without inspection. It can happen when

relations between entities are incorrectly collected or when facts are extracted from outdated

or unreliable sources. For example, Mary Elizabeth is no longer the Prime Minister of the

United Kingdom, which may affect the reasoning accuracy of her current workplace. These

issues generally affect both one-hop reasoning [9] and multi-hop reasoning [13]. The main

focus of this paper is investigating the one-hop speculative reasoning task as it lays the basis

for complicated multi-hop reasoning capability.

Speculative reasoning differs from conventional graph/KG reasoning in that the correctness

of each collected/uncollected fact needs to be dynamically estimated as part of the learning

process, such that the grounds of reasoning can be accordingly calibrated. Unfortunately,

most existing work, if not all, lacks such inspection capability. Knowledge graph embedding

methods [9], [14]–[17] and graph neural network (GNN) methods [18]–[22] can easily overfit

the false negative/positive cases because of their training objective that ranks the collected

facts higher than other uncollected facts in terms of plausibility. Recent attempts on uncertain

graphs [23], [24] measure the uncertainty scores for facts, which can be utilized to detect false

9



False Positive (incorrect) FactFalse Negative (missing) FactTrue Positive Fact

Biden UK Oxford USA

Has 
friend

Is prime 
minister

Is
president

Was born
in

Biden UK

Has 
friend

Was prime 
minister

Head entity

Facts

KG Reasoning

Nationality

Oxford

Was born
in

?

Speculative KG Reasoning

Nationality

?

Figure 2.1: An illustrative example of speculative reasoning. Blue solid lines denote the true
positive fact, blue dashed lines denote the false negative (missing) fact, and red solid lines
denote the false positive (incorrect) fact. We aim to mitigate the false negative/positive
issues to enable speculative reasoning.

negative/positive samples. However, they explicitly require the ground truth uncertainty

scores as supervision for reasoning model training, which are usually unavailable in practice.

Motivated by these observations, we formulate the speculative reasoning task as a noisy

Positive-Unlabeled learning problem. The facts contained in the graphs are seen as noisy

positive samples with a certain level of label noise, and the facts excluded from the graphs

are treated as unlabeled samples, which include both negative ones and possible factual ones.

Instead of determining the correctness of facts before training the reasoning model without

inspection, we learn the two perspectives in an end-to-end training process. To this end, we

propose nPUGraph, a novel variational framework that regards the underlying correctness of

collected/uncollected facts in the graphs as latent variables for the reasoning process. We

jointly update model parameters and estimate the posterior likelihood of the correctness

of each collected/uncollected fact (referred to as label posterior), through maximizing a

theoretical lower bound of the log-likelihood of each fact being collected or uncollected.

The estimated label posterior further facilitates the speculative reasoning from two aspects:

1) It removes false positive facts contained in KG and improves the representation quality.

We accordingly propose a label posterior-aware encoder to incorporate information only from

entity neighbors induced by facts with a high posterior probability, under the assumption that

the true positive facts from the collected facts provide more reliable information for reasoning.

2) It complements the grounds of reasoning by selecting missing but possibly plausible

facts with high label posterior, which are iteratively added to acquire more informative

samples for model training. These two procedures are ultimately unified in a simple yet
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effective self-training strategy that alternates between the data sampling based on latest label

posteriors and the model training based on latest data samples. Empirically, nPUGraph

outperforms eleven state-of-the-art baselines on three benchmark KG data and one Twitter

data we collected by large margins. Additionally, its robustness is demonstrated in speculative

reasoning on data with multiple ratios of false negative/positive cases.

Our contributions are summarized as follows: (1) We open up a practical but underexplored

problem space of speculative reasoning, and formulate it as a noisy Positive-Unlabeled learning

task; (2) We take the first step in tackling this problem by proposing a variational framework

nPUGraph to jointly optimize reasoning model parameters and estimate fact label posteriors;

(3) We propose a simple yet effective self-training strategy for nPUGraph to simultaneously

deal with false negative/positive issues; (4) We perform extensive evaluations to verify the

effectiveness of nPUGraph on both benchmark KG and Twitter interaction data with a wide

range of data perturbations.

2.2 PRELIMINARIES

2.2.1 Speculative Reasoning

A multi-relational graph (e.g., KG) is denoted as G = {(eh, r, et)} ⊆ S, where S = E×R×E
denotes triple space, E denotes the entity set, R denotes the relation set. Each triple

s = (eh, r, et) refers to that a head entity eh ∈ E has a relation r ∈ R with a tail entity

et ∈ E . Typically, a score function ψ(s; Θ), parameterized by Θ, is designed to measure the

plausibility of each potential triple s = (eh, r, et), and to rank the most plausible missing

ones to complete the graph during inference [9], [17]. The goal of speculative reasoning is

to infer the most plausible triple for each incomplete triple (eh, r, e?) or (e?, r, et) given by

sparse and unreliable observations in G. In addition, it requires correctness estimation for

each potential fact collected or uncollected by G.

2.2.2 Noisy Positive-Unlabeled Learning

Positive-Unlabeled (PU) learning is a learning paradigm for training a model when only

positive and unlabeled data is available [25]. We formulate the speculative reasoning task as

a noisy Positive-Unlabeled learning problem, where the positive set contains potentially label

noise from false facts [26].

PU Triple Distribution. For the speculative reasoning task, we aim to learn a binary

classifier that maps a triple space S to a label space Y = {0, 1}. Data are split as labeled

11



(collected)1 triples sl ∈ SL and unlabeled (uncollected) triples su ∈ SU . The labeled triples

are considered noisy positive samples with a certain level of label noise. The distribution of

labeled triples can be represented as follows:

sl ∼ βϕl
1(s

l) + (1− β)ϕl
0(s

l), (2.1)

where ϕl
y denotes the probability of being collected over triple space S for the positive class

(y = 1) and negative class (y = 0), and β ∈ [0, 1) denotes the proportion of true positive

samples in labeled data. Unlabeled triples include both negative samples and possible factual

samples. The distribution of unlabeled samples can be represented as follows:

su ∼ αϕu
1(s

u) + (1− α)ϕu
0(s

u), (2.2)

where ϕu
y = 1−ϕl

y denotes the probability of being uncollected, α ∈ [0, 1) denotes the positive

class prior, i.e., the proportion of positive samples in unlabeled data.

PU Triple Construction. We then discuss the construction of SL and SU based on the

collected graph G. Triples in G naturally serve as labeled samples with a ratio of noise,

i.e., SL = G. For unlabeled set SU , However, directly using S \ G as the unlabeled set SU

would result in too many unlabeled samples for training due to the large number of possible

triples in triple space S. Following [12], we construct SU as follows: For each labeled triple

sli = (eh, r, et), we construct K unlabeled triples suik by replacing the head and tail respectively

with other entities: suik = (eh, r, e
−
k ) or (e

−
k , r, et), where e

−
k is the selected entity that ensures

suik /∈ SL. Initially, the construction can be randomized. During the training process, it is

further improved by selecting unlabeled samples with high label posterior in a self-training

scheme, so as to cover positive samples in the unlabeled set to the greatest extent.

2.3 THE DESIGN OF NPUGRAPH

2.3.1 Overview

Our approach views underlying triple labels (positive/negative) as latent variables, in-

fluencing the collection probability. Unlike the common objective of reasoning training

that ranks the plausibility of the collected triples higher than uncollected ones, we instead

maximize the data likelihood of each potential triple being collected or not. To this end, as

shown in Figure 2.2, we propose nPUGraph framework to jointly optimize parameters and

1In this paper, we interchangeably use the term labeled/unlabeled and collected/uncollected with no
distinction.
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Figure 2.2: nPUGraph overview. It jointly optimizes parameters and estimates label posterior,
to detect false negative/positive cases for the encoder and self-training.

infer the label posterior. During the training process, the latest label posterior estimation can

be utilized by a label posterior-aware encoder, which improves the quality of representation

learning by only integrating information from the entity neighbors induced by true facts.

Finally, a simple yet effective self-training strategy based on label posterior is proposed,

which can dynamically update neighbor sets for the encoder and sample unlabeled triplets to

cover positive samples in the unlabeled set to the greatest extent for model training.

The remaining of this section is structured as follows: Section 2.3.2 first formalizes the

learning objective and the variational framework for likelihood maximization. Section 2.3.3

details the label posterior-aware encoder for representation learning, followed by Section 2.3.4

that introduces the self-training strategy.

2.3.2 Noisy PU Learning on graphs

Due to the false negative/positive issues, the correctness of a fact (y) is not solely

determined by its presence in a knowledge graph. nPUGraph addresses the issue by treating

the underlying label as a latent variable that influences the probability of being collected or

not. We, therefore, set maximizing the data collection likelihood as our objective. In such

a learning paradigm, the assumptions that collected triples are correct p(y = 1|sl) = 1 and

uncollected triples are incorrect p(y = 0|su) = 1 are removed. We aim to train a model on

labeled triples SL and unlabeled ones SU , and infer the label posterior p(y|su) and p(y|sl) at
the same time by data likelihood maximization. The latest label posterior can help to detect

false negative/positive cases during model training.

We first derive our training objective. To be more formal, the log-likelihood of each

potential fact being collected or not is lower bounded by Eq. (2.3), which is given by

Theorem 2.1.
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Theorem 2.1. The log-likelihood of the complete data log p(S) is lower bounded as follows:

log p(S) ≥ E
q(Y)

[log p(S|Y)]−KL(q(Y)∥p(Y))

= E
sl∈SL

[
wl log[ϕl

1(s
l)] + (1− wl) log[ϕl

0(s
l)]
]

+ E
su∈SU

[(wu log[ϕu
1(s

u)] + (1− wu) log[ϕu
0(s

u)]]

−KL(WU∥W̃U)−KL(WL∥W̃L)− ∥W
L∥1

|SL|
− ∥W

U∥1
|SU |

,

(2.3)

where S denotes all labeled/unlabeled triples, Y is the corresponding latent variable indicating

the positive/negative labels for triples, WU = {wu
i } denotes the point-wise probability for

the uncollected triples being positive, WL = {wl
i} denotes the probability for the collected

triples being positive. W̃U and W̃U are the approximation of the collection probability

for uncollected/collected triples respectively, produced by nPUGraph based on the latest

parameters.

Proof. Let log p(S) denote the log-likelihood of all potential triples being collected in the

graph or not, Y denote the corresponding latent variable indicating the positive/negative

labels. We aim to infer the label posterior p(Y|S), which can be approximated by q(Y|S). We

therefore are interested at the difference between the two, measured by the Kullback–Leibler

(KL) divergence as follows:

KL(q(Y|S)∥p(Y|S)) = − E
q(Y|S)

log

(
p(S|Y)p(Y)

q(Y|S)

)
+ log p(S), (2.4)

as KL divergence is positive, we derive the lower bound of the log-likelihood as follows:

log p(S) ≥ E
q(Y|S)

log

(
p(S|Y)p(Y)

q(Y|S)

)
≥ E

q(Y|S)
log p(S|Y)−KL(q(Y|S)∥p(Y))− E

p(S)
q(Y|S),

(2.5)

which consists of three terms: triple collection probability measure, KL term and regularization

of label posterior (positive). We discuss each term in detail.

Recall that the distribution of labeled triples can be represented as follows:

sl ∼ βϕl
1(s

l) + (1− β)ϕl
0(s

l), (2.6)
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where ϕl
y denotes the probability of being collected over triple space S for the positive class

(y = 1) and negative class (y = 0), and β ∈ [0, 1) denotes the proportion of true positive

samples in labeled data. Similarly, considering the existence of unlabeled positive triples, the

distribution of unlabeled samples can be represented as follows:

su ∼ αϕu
1(s

u) + (1− α)ϕu
0(s

u), (2.7)

where ϕu
y = 1− ϕl

y denotes the probability of being uncollected, α ∈ [0, 1) is the class prior

or the proportion of positive samples in unlabeled data. Based on that, the first term can be

detailed as follows:

E
q(Y|S)

log p(S|Y) = E
sl∈SL

E
y∈{0,1}

q(y|sl) log p(sl|y)

+ E
su∈SU

E
y∈{0,1}

q(y|sl) log p(sl|y)

= E
sl∈SL

[
q(y = 1|sl) log[p(sl|y = 1))] + q(y = 0|sl) log[p(sl|y = 0))]

]
+ E

su∈SU
[q(y = 1|su) log[p(su|y = 1))] + q(y = 0|su) log[p(su|y = 0))]]

= E
sl∈SL

[
wl log[ϕl

1(s
l)] + (1− wl) log[ϕl

0(s
l)]
]

+ E
su∈SU

[(wu log[ϕu
1(s

u)] + (1− wu) log[ϕu
0(s

u)]] ,

(2.8)

where WU = {wu} denotes the point-wise probability for the uncollected triples being

positive q(y = 1|su), WL = {wl} denotes the probability for the collected triples being

positive q(y = 1|sl).
We view WU and WL as free parameters and regularize them by W̃U and W̃L, which

are estimated posterior probability as follows:

w̃l
i =

βϕl
1(s

l
i)

βϕl
1(s

l
i) + (1− β)ϕl

0(s
l
i)
, (2.9)

w̃u
ik =

αϕu
1(s

u
ik)

αϕu
1(s

u
ik) + (1− α)ϕu

0(s
u
ik)
. (2.10)

Therefore, the KL term in Eq. (2.5) becomes KL(WU∥W̃U) +KL(WL∥W̃L).

Last but not least, the third term E
p(S)

q(Y|S) = ∥WU∥1/|SU |+ ∥WL∥1/|SL| regulates the

total number of potential triples (including both collected ones and uncollected ones), because

of the sparsity nature of graphs. Finally, we derive the lower bound of the log-likelihood, as
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shown in Eq (2.3). QED.

We treat label Y as a latent variable and derive the lower bound for the log-likelihood,

which is influenced by the prior knowledge of positive class prior α and true positive ratio

β. Thus, maximizing the lower bound can jointly optimize model parameters and infer the

posterior label distribution, WU and WL. Such a learning process enables us to avoid false

negative/positive issues during model training since it considers ϕl
0 (one negative triple is

collected) and ϕu
1 (one positive triple is missing) as non-zero probability, which are determined

by the latest label posterior during model training.

Probability Measure. We then specify the probability measures for positive/negative

triples being collected, i.e., ϕl
1(·) and ϕl

0(·) (ϕu
y(·) = 1 − ϕl

y(·) for y = 1/0). To better

connect to other methods utilizing score functions for graph reasoning, we hereby utilize

the sigmoid function σ(·) to directly transform the score function ψ(s; Θ), parameterized by

model parameters Θ, to probability:

ϕl
1(s) = σ(ψ1(s; Θ)), ϕl

0(s) = σ(ψ0(s; Θ)), (2.11)

we hereby utilize two score functions ψ1(s; Θ) and ψ0(s; Θ) to measure the positive/negative

triples being collected, as the influencing factors based on triple information can be different.

We utilize two neural networks to approximate the probability measure, which will be detailed

in Section 2.3.3.

Since we aim to detect the potential existence of positive triples in an unlabeled set, it is

unnecessary to push the collection probability of all uncollected triple ϕl
y(s

u) to 0 (ϕu
y(s

u)

to 1). A loose constraint is that we force the uncollection probability of a collected triple sl

lower than its corresponding uncollected triples su: ϕu
y(s

l) < ϕu
y(s

u). Therefore, we adopt the

pair-wise ranking measure ϕ⋆
y(s

l, su) to replace ϕu
y(s

u) as follows:

ϕu
y(s

u)→ ϕ⋆
y(s

l, su) = σ(ψy(s
u; Θ)− ψy(s

l; Θ)). (2.12)

Maximum Probability Training. We then derive the training objective based on Eq. (2.3)

The first part of Eq. (2.3) measures the probability of data being collected/uncollected.

Concretely, given each collected triple sli ∈ SL and its corresponding K uncollected triples
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suik ∈ SU , We denote the loss function measuring the probability as Ltriple:

Ltriple = −
1

K|SL|
∑
i

∑
k

(wl
i log[ϕ

l
1(s

l
i)]

+ (1− wl
i) log[ϕ

l
0(s

l
i)] + wu

ik log[ϕ
⋆
1(s

l
i, s

u
ik)]

+ (1− wu
ik) log[ϕ

⋆
0(s

l
i, s

u
ik)]),

(2.13)

where wl
i denotes the point-wise probability for the collected triple sli being positive, wu

ik

denotes the probability for the uncollected triple suik being positive. Based on the definition,

the posterior probability of each collected/uncollected triple being positive can be computed

as:

w̃l
i =

βϕl
1(s

l
i)

βϕl
1(s

l
i) + (1− β)ϕl

0(s
l
i)
, (2.14)

w̃u
ik =

αϕu
1(s

u
ik)

αϕu
1(s

u
ik) + (1− α)ϕu

0(s
u
ik)
. (2.15)

To increase model expression ability, instead of forcing WL = W̃L and WU = W̃U , we set

WL and WU as free parameters and utilize the term LKL = KL(WL∥W̃L) +KL(WU∥W̃U )

to regularize the difference. Finally, based on Eq. (2.3), the training objective is formalized

as follows:

min
Θ
L = min

Θ
Ltriple + LKL + Lreg, (2.16)

where Lreg = ∥WL∥1 + ∥WU∥1 can be viewed as a normalization term. Considering the

sparsity property of real-world graphs, Lreg penalizes the posterior estimation that there are

too many true positive facts on the graph.

2.3.3 Label Posterior-aware Encoder

We then introduce the encoder and the score functions ψ1(s; Θ) and ψ0(s; Θ) to measure

the probability of positive/negative triples being collected, as shown in Figure 2.3. Recent

work [18]–[21] has shown that integrating information from neighbors to represent entities

engenders better reasoning performance. However, the message-passing mechanism is vul-

nerable to the false positive issue, as noise can be integrated via a link induced by a false

positive fact. In light of this, we propose a label posterior-aware encoder to improve the

quality of representations.

We represent each entity e ∈ E and each relation r ∈ R into a d-dimensional latent space:
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Figure 2.3: The label posterior-aware encoder. Red line denotes the detected false positive
facts based on posterior, which are excluded during neighbor sampling.

he,hr ∈ Rd. To encode more information in he, we first construct a neighbor set Ne induced

by the positive facts related to entity e. The latest label posterior for collected facts W̃L

naturally serves this purpose, as it indicates the underlying correctness for each collected

fact.

Therefore, for each entity e, we first sort the related facts by label posterior W̃L and

construct the neighbor set Ne(W̃
L) = {(ei, ri)} from the top facts. Then the encoder

attentively aggregates information from the collected neighbors, where the attention weights

take neighbor features, relation features into account. Specifically:

hl
e = hl−1

e + σ

 ∑
(ei,ri)∈Ne(W̃L)

γle,ei
(
hl−1
ei

M
) , (2.17)

where l denotes the layer number, σ(·) denotes the activation function, γle,ei denotes the

attention weight of entity ei to the represented entity e, and M is the trainable transformation

matrix. The attention weight γle,ei is supposed to be aware of entity feature and topology

feature induced by relations. We design the attention weight γle,ei as follows:

γle,ei =
exp(qle,ei)∑

Ne(W̃L)

exp(qle,ek)
, qle,ek = a

(
hl−1
e ∥hl−1

ek
∥hrk

)
, (2.18)

where qle,ek measures the pairwise importance from neighbor ek by considering the entity

embedding, neighbor embedding, and relation embedding, a ∈ R3d is a shared parameter in

the attention.

To measure the collection probability for positive/negative triples, we utilize two multilayer
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perception (MLP) to approximate score function ψ1(s; Θ) and ψ0(s; Θ). Specifically, for each

triple s = (eh, r, et):

ψ1(s; Θ) = MLP1(hs), ψ0(s; Θ) = MLP0(hs), (2.19)

where the MLP input hs = [hl
eh
∥hr∥hl

et ] concatenates entity embeddings and relation

embedding.

2.3.4 Self-Training Strategy

The latest label posterior W̃L and W̃U is further utilized in a self-training strategy

to enhance speculative reasoning. First, the latest posterior estimation W̃L for collected

links updates neighbor sets to gradually prevent the encoder effects by false positive links.

Moreover, the latest estimation W̃U for uncollected facts enables us to continuously sample

unlabeled triplets with high label posterior to cover positive samples in the unlabeled set to

the greatest extent. For each labeled triple sli = (eh, r, et), we construct K unlabeled triples suik
by replacing the head and tail respectively with other entities: suik = (eh, r, e

−
k ) or (e

−
k , r, et),

where e−k is the selected entity that ensures suik /∈ SL. Such selection is performed by ranking

the corresponding label posterior w̃u
ik. The updates of neighbor sets and unlabeled triples

based on label posterior are nested with parameter optimization during model training

alternatively. The training of nPUGraph is summarized in Algorithm 2.1.

2.4 THE EVALUATION OF NPUGRAPH

2.4.1 Dataset

Dataset Information. We evaluate our proposed model based on three widely used

knowledge graphs and one Twitter ineraction graph:

• FB15K [9] is a subset of Freebase [27], a large database containing general knowledge

facts with a variety of relation types;

• FB15K-237 [28] is a reduced version of FB15K, where inverse relations are removed;

• WN18 [9] is a subset of WorldNet [29], a massive lexical English database that captures

semantic relations between words;

• Twitter is an interaction graph relevant with Russo-Ukrainian War. Data is collected in

the Twitter platform from May 1, 2022, to December 25, 2022, which records user-tweet
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Algorithm 2.1: Summary of nPUGraph.

Input: The collected triple set SL.
Output: The model parameter Θ, predicted triples.

1 Construct the uncollected triple set SU randomly;

2 Initialize the model parameter Θ and the label posterior W̃L and W̃U randomly;
3 for each training epoch do

4 Construct neighbor set Ne(W̃
L) by W̃L;

5 Construct uncollected triple set SU by W̃U ;

6 for each collected triple sli ∈ SL do
7 Collect unlabeled triples {suik}Kk=1;

8 Calculate ϕl
y(s

l
i) by Eq. (2.11);

9 Calculate each ϕ⋆
y(s

l
i, s

u
ik) by Eq. (2.12);

10 end
11 Calculate the total loss L by Eq. (3.17);

12 Optimize model parameter: Θ = Θ− ∂L
∂Θ ;

13 Update label posterior W̃L and W̃U ;

14 end

interactions and user-hashtag interactions. Thus, the graph is formed by two relations

(user-tweet and user-hashtag) and multiple entities, which can be categorized into three

types (user, tweet, and hashtag). When constructing the graph, thresholds will be selected

to remove inactive users, tweets, and hashtags according to their occurrence frequency.

We set the thresholds for the user, tweet, and hashtag as 30, 30, and 10, respectively, i.e.,

if a tweet has fewer than 30 interactions with users, it will be regarded as inactive and

removed from the graph. Besides, the extremely frequent users and tweets are deleted as

they may be generated by bots.

For all datasets, we first merge the training set and validation set as a whole. Then we

simulate noisy and incomplete graphs for the training process by adding various proportions

of false negative/positive cases in the merged set. After that, we partition the simulated

graphs into new train/valid sets with a ratio of 7 : 3 and the test set remains the same.

Table 2.1 provides an overview of the statistics of the simulated datasets corresponding to

various perturbation rates and based graphs.

Dataset Perturbation. Data perturbation aims to simulate noisy and incomplete graphs

from clean benchmark knowledge graphs. It consists of two aspects: First, to simulate the

false negative issue, it randomly removes some existing links in a graph, considering the

removed links as missing but potentially plausible facts. Second, to simulate the false positive

issue, it randomly adds spurious links to the graph as unreliable or outdated facts.

We define perturbation rate, i.e., ptb rate , as a proportion of modified edges in a graph
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Figure 2.4: Summary of graph perturbation to construct noisy and incomplete KGs.

Table 2.1: The statistics of the datasets.

ptb rate Dataset |E| |R| #Train #Valid #Test

0.1

FB15K 14,951 1,345 340,968 146,129 59,071

FB15K-237 14,541 237 184,803 79,201 20,466

WN18 40,943 18 92,428 39,612 5,000

Twitter 17,839 2 282,233 120,956 110,456

0.3

FB15K 14,951 1,345 276,940 118,688 59,071

FB15K-237 14,541 237 149,229 63,954 20,466

WN18 40,943 18 72,462 31,055 5,000

Twitter 17,839 2 232,748 99,749 110,456

0.5

FB15K 14,951 1,345 213,380 91,448 59,071

FB15K-237 14,541 237 113,772 48,759 20,466

WN18 40,943 18 52,707 22,588 5,000

Twitter 17,839 2 183,263 78,540 110,456

0.7

FB15K 14,951 1,345 150,485 64,493 59,071

FB15K-237 14,541 237 78,531 33,656 20,466

WN18 40,943 18 34,984 14,993 5,000

Twitter 17,839 2 133,778 57,333 110,456

to control the amount of removing positive links and adding negative links. For example,

if a graph has 100 links and the perturbation rate is 0.5, then we will randomly convert

the positivity or negativity of 50 links. Among these 50 modified links, 10% of them will

be added and the rest of them will be removed, i.e., we will randomly add 5 negative links

and remove 45 positive links to generate a perturbed graph. The perturbed graph can be

regarded as noisy and incomplete, leading to significant performance degradation. In our

experiments, we set ptb rate in a range of {0.1, 0.3, 0.5, 0.7}. The detailed perturbation

process is summarized in Figure 2.4.
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Table 2.2: Overall performance on noisy and incomplete graphs, with ptb rate = 0.3 . Average
results on 5 independent runs are reported. ∗ indicates the statistically significant results over
baselines, with p-value < 0.01. The best results are in boldface, and the strongest baseline
performance is underlined.

Dataset FB15K FB15K-237 WN18

Metrics MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

Knowledge graph embedding methods

TransE 0.336 0.603 0.425 0.189 0.196 0.394 0.236 0.094 0.229 0.481 0.416 0.030

TransR 0.314 0.579 0.397 0.170 0.184 0.359 0.211 0.098 0.229 0.480 0.408 0.035

DistMult 0.408 0.627 0.463 0.296 0.240 0.407 0.262 0.158 0.397 0.518 0.453 0.320

ComplEx 0.396 0.616 0.451 0.284 0.238 0.411 0.262 0.154 0.448 0.526 0.475 0.403

RotatE 0.431 0.636 0.489 0.323 0.255 0.433 0.280 0.169 0.446 0.524 0.474 0.400

Graph neural network methods on KG

RGCN 0.154 0.307 0.164 0.078 0.141 0.276 0.145 0.075 0.362 0.464 0.412 0.300

CompGCN 0.409 0.631 0.465 0.294 0.253 0.422 0.275 0.171 0.445 0.522 0.471 0.400

Uncertain knowledge graph embedding method

UKGE 0.311 0.556 0.337 0.189 0.172 0.233 0.128 0.081 0.241 0.447 0.309 0.119

Negative sampling methods

NSCaching 0.371 0.576 0.424 0.265 0.190 0.329 0.208 0.121 0.306 0.401 0.334 0.255

SANS 0.372 0.599 0.434 0.252 0.243 0.416 0.267 0.158 0.453 0.528 0.479 0.409

Positive-Unlabeled learning methods on KG

PUDA 0.403 0.623 0.458 0.291 0.234 0.394 0.255 0.156 0.382 0.499 0.444 0.306

nPUGraph 0.486* 0.718* 0.534* 0.342* 0.287* 0.481* 0.315* 0.191* 0.493* 0.582* 0.519* 0.442*

Gains (%) 12.7 12.8 9.2 5.9 12.6 11.2 12.5 11.4 8.9 10.3 8.3 8.0

2.4.2 Experimental Setup

Baselines. We compare to eleven state-of-the-art baselines: 1) KG embedding methods:

TransE [9], TransR [14], DistMult [15], ComplEX [16], and RotatE [17]; 2) GNN

methods on KG: RGCN [18] and CompGCN [21]; 3) Uncertain KG reasoning: UKGE [23];

4) Negative sampling methods: NSCaching [30] and SANS [31]; 5) PU learning on KG:

PUDA [12]. We describe the baseline models utilized in the experiments in detail:

• TransE2 [9] is a translation-based embedding model, where both entities and relations

are represented as vectors in the latent space. The relation is utilized as a translation

operation between the subject and the object entity;

• TransR [14] advances TransE by optimizing modeling of n-n relations, where each entity

embedding can be projected to hyperplanes defined by relations;

• DistMult3 [15] is a general framework with the bilinear objective for multi-relational

learning that unifies most multi-relational embedding models;

• ComplEx [16] introduces complex embeddings, which can effectively capture asymmetric

relations while retaining the efficiency benefits of the dot product;

2The experiments of TransE and TransR are implemented with https://github.com/thunlp/OpenKE.
3The experiments of DistMult, ComplEx, and RotatE are implemented with https://github.com/

DeepGraphLearning/KnowledgeGraphEmbedding.
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Table 2.3: Overall performance on noisy and incomplete graphs, with ptb rate = 0.1 . Average
results on 5 independent runs are reported. ∗ indicates the statistically significant results over
baselines, with p-value < 0.01. The best results are in boldface, and the strongest baseline
performance is underlined.

Dataset FB15K FB15K-237 WN18

Metrics MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

Knowledge graph embedding methods

TransE 0.419 0.666 0.507 0.280 0.245 0.441 0.284 0.144 0.318 0.646 0.579 0.044

TransR 0.398 0.658 0.494 0.250 0.246 0.434 0.280 0.153 0.319 0.646 0.575 0.051

DistMult 0.516 0.719 0.578 0.407 0.271 0.446 0.297 0.185 0.524 0.686 0.610 0.418

ComplEx 0.503 0.711 0.570 0.390 0.276 0.459 0.305 0.186 0.612 0.702 0.643 0.560

RotatE 0.544 0.732 0.608 0.441 0.292 0.480 0.324 0.199 0.613 0.691 0.642 0.567

Graph neural network methods on KG

RGCN 0.196 0.372 0.209 0.110 0.169 0.317 0.177 0.097 0.483 0.625 0.554 0.396

CompGCN 0.460 0.677 0.525 0.343 0.293 0.475 0.324 0.203 0.608 0.686 0.636 0.564

Uncertain knowledge graph embedding method

UKGE 0.338 0.425 0.321 0.233 0.231 0.411 0.204 0.110 0.381 0.541 0.407 0.331

Negative sampling method

NSCaching 0.495 0.689 0.557 0.390 0.153 0.305 0.167 0.080 0.434 0.542 0.470 0.374

SANS 0.422 0.649 0.493 0.298 0.271 0.453 0.301 0.182 0.619 0.702 0.644 0.574

Positive-Unlabeled learning method

PUDA 0.493 0.713 0.559 0.377 0.271 0.443 0.298 0.185 0.520 0.667 0.608 0.419

nPUGraph 0.561* 0.791* 0.621* 0.449* 0.328* 0.535* 0.343* 0.221* 0.630* 0.754* 0.671* 0.599*

Gains (%) 3.0 8.1 2.1 1.9 12.0 11.4 5.9 8.7 1.8 7.4 4.1 4.4

• RotatE [17] extends ComplEx by representing entities as complex vectors and relations

as rotation operations in a complex vector space;

• R-GCN4 [18] uses relation-specific weight matrices that are defined as linear combinations

of a set of basis matrices;

• CompGCN5 [21] is a framework for incorporating multi-relational information in graph

convolutional networks to jointly embeds both nodes and relations in a graph;

• UKGE6 [23] learns embeddings according to the confidence scores of uncertain relation

facts to preserve both structural and uncertainty information of facts in the embedding

space;

• NSCaching7 [30] is an inexpensive negative sampling approach by using cache to keep

track of high-quality negative triplets, which have high scores and rare;

• SANS8 [31] utilizes the rich graph structure by selecting negative samples from a node’s

k-hop neighborhood for negative sampling without additional parameters and difficult

adversarial optimization;

4https://github.com/JinheonBaek/RGCN
5https://github.com/malllabiisc/CompGCN
6https://github.com/stasl0217/UKGE
7https://github.com/AutoML-Research/NSCaching
8https://github.com/kahrabian/SANS
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Table 2.4: Experimental results under ptb rate = 0.5 .

Dataset FB15K FB15K-237 WN18

Metrics MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

Knowledge graph embedding methods

TransE 0.279 0.540 0.363 0.136 0.151 0.342 0.190 0.053 0.158 0.337 0.285 0.018

TransR 0.256 0.500 0.323 0.127 0.141 0.294 0.160 0.064 0.150 0.327 0.267 0.020

DistMult 0.328 0.536 0.372 0.224 0.210 0.366 0.228 0.133 0.279 0.370 0.319 0.224

ComplEx 0.322 0.525 0.365 0.220 0.201 0.358 0.220 0.123 0.314 0.373 0.335 0.280

RotatE 0.350 0.547 0.398 0.249 0.227 0.387 0.246 0.149 0.307 0.377 0.333 0.266

Graph neural network methods on KG

RGCN 0.134 0.271 0.142 0.065 0.116 0.234 0.117 0.058 0.253 0.323 0.287 0.209

CompGCN 0.378 0.600 0.429 0.266 0.223 0.377 0.240 0.149 0.345 0.315 0.336 0.279

Uncertain knowledge graph embedding method

UKGE 0.257 0.299 0.213 0.088 0.143 0.284 0.172 0.053 0.228 0.297 0.210 0.115

Negative sampling method

NSCaching 0.272 0.454 0.310 0.179 0.176 0.297 0.190 0.115 0.123 0.182 0.133 0.093

SANS 0.335 0.545 0.387 0.224 0.225 0.382 0.244 0.147 0.313 0.379 0.337 0.275

Positive-Unlabeled learning method

PUDA 0.329 0.525 0.369 0.229 0.202 0.347 0.217 0.131 0.231 0.329 0.264 0.178

nPUGraph 0.417* 0.663* 0.470* 0.291* 0.258* 0.433* 0.285* 0.171* 0.373* 0.443* 0.379* 0.327*

Gains (%) 10.4 10.5 9.6 9.6 13.9 12.0 16.1 14.8 8.2 16.9 12.6 16.9

Table 2.5: Experimental results under ptb rate = 0.7 .

Dataset FB15K FB15K-237 WN18

Metrics MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

Knowledge graph embedding methods

TransE 0.219 0.457 0.294 0.087 0.104 0.273 0.128 0.020 0.114 0.229 0.199 0.020

TransR 0.195 0.396 0.248 0.087 0.096 0.217 0.108 0.036 0.096 0.207 0.167 0.016

DistMult 0.250 0.425 0.282 0.163 0.173 0.308 0.186 0.105 0.181 0.240 0.211 0.143

ComplEx 0.241 0.408 0.271 0.157 0.158 0.290 0.170 0.092 0.202 0.243 0.219 0.178

RotatE 0.271 0.439 0.309 0.185 0.198 0.337 0.212 0.129 0.192 0.250 0.212 0.159

Graph neural network methods on KG

RGCN 0.129 0.229 0.134 0.075 0.086 0.178 0.086 0.040 0.166 0.215 0.191 0.135

CompGCN 0.354 0.578 0.402 0.243 0.193 0.325 0.204 0.129 0.212 0.262 0.229 0.183

Uncertain knowledge graph embedding method

UKGE 0.186 0.358 0.199 0.076 0.133 0.201 0.115 0.075 0.099 0.176 0.153 0.116

Negative sampling method

NSCaching 0.174 0.309 0.194 0.105 0.157 0.276 0.169 0.099 0.057 0.085 0.062 0.041

SANS 0.292 0.478 0.332 0.196 0.201 0.342 0.216 0.131 0.202 0.254 0.222 0.171

Positive-Unlabeled learning method

PUDA 0.254 0.421 0.283 0.170 0.165 0.291 0.176 0.104 0.109 0.171 0.127 0.077

nPUGraph 0.365* 0.600* 0.427* 0.277* 0.243* 0.390* 0.266* 0.155* 0.247* 0.303* 0.257* 0.209*

Gains (%) 3.0 3.8 6.3 13.9 20.9 14.1 23.0 18.5 16.8 15.5 12.3 14.4

• PUDA9 [12] is a KGC method to circumvent the impact of the false negative issue by

tailoring positive unlabeled risk estimator and address the data sparsity issue by unifying

adversarial training and PU learning under the positive-unlabeled minimax game.

Evaluation and Metrics. For each (eh, r, e?) or (e?, r, et), we rank all entities at the missing

position in triples, and adopt filtered mean reciprocal rank (MRR) and filtered Hits at

{1, 3, 10} as evaluation metrics [9].

9https://github.com/lilv98/PUDA
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2.4.3 Reproducibility

Baseline Setup. All baseline models and nPUGraph are trained on the perturbed training

set and validated on the perturbed valid set. We utilize MRR on the valid set to determine

the best models and evaluate them on the clean test set. For uncertain knowledge graph

embedding methods UKGE [23], since the required uncertainty scores are unavailable, we set

the scores for triples in training set as 1 and 0 otherwise. The predicted uncertainty scores

produced by UKGE are utilized to rank the potential triples for ranking evaluation. We

train all baseline models and nPUGraph on the same GPUs (GeForce RTX 3090) and CPUs

(AMD Ryzen Threadripper 3970X 32-Core Processor).

nPUGraph Setup. For model training, we utilize Adam optimizer and set the maximum

number of epochs as 200. Within the first 50 epochs, we disable self-training and focus on

learning suboptimal model parameters on noisy and incomplete data. After that, we start

the self-training strategy, where the latest label posterior estimation is utilized to sample

neighbors for the encoder and select informative unlabeled samples for model training. We

set batch size as 256, the dimensions of all embeddings as 128, and the dropout rate as 0.5.

For the sake of efficiency, we employ 1 neighborhood aggregation layer in the encoder.

For the setting of hyperparameter, we mainly tune positive class prior α in the range of

{1e−1, 5e−2, 1e−2, 5e−3, 1e−3, 5e−4, 1e−4, 5e−5}; true positive ratio β in the range of

{0.3, 0.2, 0.1, 0.005, 0.001}; learning rate in the range of {0.02, 0.01, 0.005, 0.001, 0.0005}; the
number of sampled unlabeled triples for each labeled one in the range of {50, 40, 30, 20, 10}.
We will publicly release our code and data upon acceptance.

2.4.4 Main Results

We first discuss the model performance on noisy and incomplete graphs, with ptb rate

= 0.3 , as shown in Table 2.2. nPUGraph achieves consistently better results than all

baseline models, with 10.3% relative improvement on average. Specifically, conventional

KGE and GNN-based methods produce unsatisfying performance, as they ignore the false

negative/positive issues during model training. In some cases, GNN-based ways are worse,

as the message-passing mechanism is more vulnerable to false positive links. As expected,

the performance of uncertain knowledge graph embedding model [23] is much worse when

there are no available uncertainty scores for model training. SANS and PUDA generate

competitive results in some cases, as their negative sampling strategy and PU learning

objective can respectively mitigate the false negative/positive issues to some extent. Table 2.2

demonstrates the superiority of nPUGraph which addresses the false negative/positive issues
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Table 2.6: Overall performance on noisy and incomplete Twitter data, with ptb rate = 0.3 .
Average results on 5 independent runs are reported. ∗ indicates the statistically significant
results over baselines, with p-value < 0.01. The best results are in boldface, and the strongest
baseline performance is underlined.

Dataset Twitter

Metrics MRR HIT@100 HIT@50 HIT@30

Random 0.001 0.006 0.003 0.002

Knowledge graph embedding methods

TransE 0.010 0.091 0.058 0.041
TransR 0.009 0.078 0.048 0.033
DistMult 0.021 0.091 0.065 0.052
ComplEx 0.022 0.089 0.064 0.051
RotatE 0.022 0.1115 0.077 0.059

Graph neural network methods on KG

RGCN 0.005 0.054 0.029 0.019
CompGCN 0.014 0.089 0.059 0.044

Uncertain knowledge graph embedding method

UKGE 0.011 0.072 0.053 0.033

Negative sampling methods

NSCaching 0.012 0.095 0.060 0.043
SANS 0.019 0.104 0.070 0.054

Positive-Unlabeled learning method

PUDA 0.013 0.082 0.057 0.044

nPUGraph 0.030* 0.127* 0.096* 0.074*

Gains (%) 38.2 13.9 25.3 26.5

simultaneously.

Experimental Results on Twitter Data. We discuss the model performance on noisy

and incomplete Twitter data with ptb rate = 0.3 in this section, which is shown in Table 2.6.

According to the result of Random, we can infer that all relations on Twitter are n − n,
where relations can be 1− n, n− 1, and n− n for benchmark KG. Therefore, link prediction

is more challenging for Twitter data and we adopt Hits at 30, 50, 100 as evaluation metrics,

instead.

For Twitter data, nPUGraph achieves impressive performance compared with the baseline

models, with 25.98% relative improvement on average. The results of Twitter data support

the robustness of nPUGraph, which can mitigate false negative/positive issues not only in

benchmark KG but also in the real-world social graph.

Experimental Results under Different Perturbation Rates. The experimental results

under perturbation rates 0.1, 0.5, and 0.7 are shown in Table 2.3, Table 2.4, and Table

2.5, respectively. nPUGraph outperforms all baseline models for various perturbation rates,

demonstrating that nPUGraph can mitigate false negative/positive issues on knowledge

graphs with different degrees of noise and incompleteness. Notably, comparing these three

tables, the relative improvements are more significant under higher ptb rate in most cases,

showing stronger robustness for nPUGraph on graphs with more false negative/positive facts.
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Figure 2.5: Performance with respect to various ptb rate , i.e., different degrees of noise
and incompleteness, on FB15K-237. nPUGraph exhibits impressive robustness against false
negative/positive issues.

Table 2.7: Ablation Studies.

Dataset FB15K FB15K-237 Gains

Ablations MRR H@10 MRR H@10 %

nPUGraph w/o nPU 0.401 0.619 0.230 0.407 -20.0

nPUGraph w/o LP-Encoder 0.457 0.681 0.261 0.459 -6.6

nPUGraph w/o Self-Training 0.471 0.704 0.276 0.461 -3.4

nPUGraph 0.486 0.718 0.287 0.481 -

2.4.5 Experiments under Various Degrees of Noise and Incompleteness

We investigate the performance of baseline models and nPUGraph under different degrees

of noise and incompleteness. Figure 2.5 reports the performance under various ptb rate , from

0.1 to 0.7, where higher ptb rate means more links are perturbed as false positive/negative

cases. The performance degrades as the ptb rate increases for all in most cases, demonstrating

that the false negative/positive issues significantly affect the reasoning performance. However,

nPUGraph manages to achieve the best performance in all cases. Notably, the relative

improvements are more significant under higher ptb rate .

2.4.6 Model Analysis

Ablation Study. We evaluate performance improvements brought by the nPUGraph

framework by following ablations: 1) nPUGraph w/o nPU is trained without the noisy

Positive-Unlabeled framework, which instead utilizes the margin loss for model training; 2)

nPUGraph w/o LP-Encoder eliminates the label posterior-aware encoder (LP-Encoder),

which aggregates information from all neighbors instead of the sampled neighbors; 3) nPU-

Graph w/o Self-Training is trained without the proposed self-training algorithm.
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Figure 2.6: Model analysis w.r.t. the number of unlabeled samples and positive class prior α.

We report MRR and Hit@10 over FB15K and FB15K-237 data, as shown in Table 2.7.

As we can see, training the encoder without the proposed noisy Positive-Unlabeled framework

will cause the performance drop, as this variant ignores the false negative/positive issues.

Removing the label posterior-based neighbor sampling in the encoder will also cause perfor-

mance degradation, as the information aggregation no longer distinguishes between true and

false links. Such a variant can be easily influenced by the existence of false positive facts.

Moreover, the last ablation result shows if the training process is further equipped with the

self-training strategy, the performance will be enhanced, which verifies its effectiveness to

select informative unlabeled samples for model training.

The Effect of PU Triple Construction. We then investigate the effect of PU Triple

Construction on model performance, by varying different sizes of unlabeled samples from 10

to 50. Figure 2.6 shows that the performance improves as the number of unlabeled samples

increases. Because more unlabeled samples can cover more false negative cases for model

training. The training time grows linearly.

The Effect of Positive Class Prior α. The positive class prior α and true positive ratio

β are two important hyperparameters. While β has a clear definition from real-world data,

the specific value of α is unknown in advance. Figure 2.6 shows the model performance w.r.t.

different values of α by grid search. Reasoning performance fluctuates a bit with different

values of α since incorrect prior knowledge of α can bias the label posterior estimation and

thus hurt the performance.
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2.5 RELATED WORK

2.5.1 Knowledge Graph Reasoning

. Knowledge graph reasoning (KGR) aims to predict missing facts to automatically

complete KG, including one-hop reasoning [9] and multi-hop reasoning [13]. It has facilitated

a wide spectrum of knowledge-intensive applications [13], [32].To set the scope, we primarily

focus on one-hop reasoning and are particularly interested in predicting missing entities

in a partial fact. Knowledge graph embeddings achieve state-of-the-art performance [9],

[14]–[17], [33]. Recently, graph neural networks (GNN) have been incorporated to enhance

representation learning by aggregating neighborhood information [18]–[22], [34]. However,

most approaches significantly degrade when KG are largely incomplete and contain certain

errors [35], as they ignore the false negative/positive issues. Recent attempts on uncertain

KG [23], [24], [36] measure the uncertainty score for facts, which can detect false negative/pos-

itive samples. However, they explicitly require the ground truth uncertainty scores for model

training, which are usually unavailable in practice. Various negative sampling strategies have

been explored to sample informative negative triples to facilitate model training [30], [31],

[37]. However, they cannot detect false negative/positive facts. We aim to mitigate the false

negative/positive issues and enable the automatic detection of false negative/positive facts

during model training.

2.5.2 Positive-Unlabeled Learning

. Positive-Unlabeled (PU) learning is a learning paradigm for training a model that only

has access to positive and unlabeled data, where unlabeled data includes both positive and

negative samples [25], [38]. PU learning roughly includes (1) two-step solutions [26], [39];

(2) methods that consider the unlabeled samples as negative samples with label noise [40];

(3) unbiased risk estimation methods [12], [25]. Recent work further studies the setting that

there exists label noise in the observed positive samples [26]. We formulate the KGR task

on noisy and incomplete KG as a noisy Positive-Unlabeled learning problem and propose a

variational framework for it, which relates to two-step solutions and unbiased risk estimation

methods.
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2.6 SUMMARY

We studied speculative reasoning based on sparse and unreliable observations, which

contains both false negative issue and false positive issue. We formulated the task as a noisy

Positive-Unlabeled learning problem and proposed a variational framework nPUGraph to

jointly update model parameters and estimate the posterior likelihood of collected/uncollected

facts being true or false, where the underlying correctness is viewed as latent variables. During

the training process, a label posterior-aware encoder and a self-training strategy were proposed

to further address the false positive/negative issues. We found label posterior estimation plays

an important role in moving toward speculative KG reasoning in reality, and the estimation

can be fulfilled by optimizing an alternative objective without additional cost. Extensive

experiments verified the effectiveness of nPUGraph on both benchmark KGs and Twitter

interaction data with various degrees of data perturbations.

There are certain limitations that can be concerned for further improvements. First, the

posterior inference relies on the prior estimation of positive class prior α and true positive

ratio β. Our experiments show that a data-driven estimation based on end-to-end model

training produces worse results than a hyperparameter grid search. An automatic prior

estimation is desirable for real-world applications. Moreover, in nPUGraph, we approximate

the probability of negative/positive facts being collected/uncollected via neural networks,

which lacks a degree of interpretability. In the future, we plan to utilize a more explainable

random process depending on entity/relation features to model the collection probability

distribution.
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Chapter 3: LEARNING DYNAMIC BIPARTITE GRAPHS

3.1 OVERVIEW

In this chapter, we introduce Dydiff-VAE framework for information diffusion prediction.

Dydiff-VAE advances the state of the arts of information diffusion prediction, a topic that

receives much recent attention in several contexts, including social recommendations [41]–[43],

misinformation detection [44], polarization analysis [6], [7], [45]–[47], user personalization [48],

[49], among others. On social media, information is propagated rapidly through users’

posting and forwarding behaviors, leading to information cascades consisting of the users

who have forwarded the content (we call them original forwarding users) as well as the actual

information content. Given an information cascade, the diffusion model aims to estimate the

propagation likelihood for other potential users and predict the user rankings, as shown in

Figure 3.1a.

On social media, users usually forward a piece of information out of their interests: On one

hand, because of the widespread deployments of recommendation systems and search engines

on social platforms, users are more likely to be exposed to and thereby propagate the contents

matching their interests. On the other hand, users would also tendentiously pay attention to

and get infected by the information from social neighbors, as a result of their shared interests

and frequent interactions [50]. Therefore, how to infer user interests lies the foundation

for diffusion prediction problems. However, it is non-trivial because user interests cannot

be observed directly from their profiles due to various user privacy protection mechanisms,

and they are highly dynamic over time. Existing neural diffusion models [51]–[54], despite

demonstrating significant improvements over traditional methods built upon pre-defined

propagation hypotheses [55]–[58], have two main drawbacks that oversimplify the inference of

user interests. Firstly, they model user interests implicitly: they initialize user representations

as random variables and optimize them by minimizing the distance between representations

of cascades and forwarding users, with the objective that the learned user representations

would be good approximations of user interests. However, user interests can be inferred

explicitly via the diffusion data, e.g., cascade contents that users has previously forwarded.

In other words, instead of building a discriminative model that learns user interests from

scratch, we propose to build a generative model where user interests is modeled explicitly

and serves as the latent variable that drives the diffusion process forward.

Moreover, existing works assume user representations remain static despite that user

interests evolve over time in real world. Such dynamics are mainly driven by two factors:
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Figure 3.1: (a): An illustration of diffusion prediction task, which estimates the propagation
likelihood for potential users and ranks them accordingly. (b): An illustration of dynamic
user interests, which evolve over time driven by both social influence and recent stimuli.

(i) social influence received from their neighbors on the social networks (e.g., followees on

Twitter), as individuals are likely to be influenced by their friends [59]. For instance, as

shown in Figure 3.1b, a Twitter user is inferred to be interested in basketball-related topics

at time step t because, in part, that one of the followees likes it at time step t− 1 . (ii) recent

stimuli which refer to information that users gained inside/outside the social media recently.

Users can gain new information by reading news, forwarding posts online and etc, which also

shapes the evolution of user interests. In Figure 3.1b, another reason why the Twitter user is

inferred to be interested in NBA is that (s)he reads some related tweets recently. Modeling

the evolution of user interests is critical for predicting propagation behaviors, as the relevance

between information cascades and potential users varies as evolution of user interests.

In this paper, we propose a dynamic generative model following the framework of

variational autoencoder (VAE): DyDiff-VAE, which advances the existing diffusion models in

two directions. First, we design a dynamic encoder to infer latent user interests over time by

considering both social influence and recent stimuli as driven factors. We embed the graph

convolutional layer [60] aggregating social influence from neighbors into the gated recurrent

unit (GRU) [61], which takes recent stimuli as inputs, to learn the recurrent function of

interest evolution. Second, we propose a dual attentive decoder to estimate the propagation

likelihood and corresponding rankings based on the inferred latent interests. The proposed

dual attention mechanism, as a replacement of the recurrent neural networks (RNNs) used

in other state-of-the-arts [52], [53], [62], [63], integrates the heterogeneous information from

both the user sequence and the cascade content, and overcomes back-propagation through

time through efficient parallelizable attentions. Thus, it learns better representations of the

information cascades and achieve higher efficiency. We conduct extensive experiments on four

real-world datasets collected from the Twitter and Youtube to evaluate the performance of the
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proposed DyDiff-VAE. The evaluation results demonstrate that DyDiff-VAE outperforms other

compared methods including diffusion models [52]–[54], [62], recommendation models [41]

and graph learning methods (dynamic/static) [64]–[66]. It achieves 43.3% relative gains on

average over the best baseline on four datasets. And it demonstrates the best efficiency

compared to the RNN-based diffusion models.

3.2 PRELIMINARIES

In this section, we introduce the definitions and the problem formulation in this paper.

We split time span into discrete time steps, across which user interests are evolving driven

by recent stimuli and social influence. According to [67], over 99% information cascade

usually lasts shorter than one day, while the user interests evolve much more slowly. Thus,

We assume the information cascade happens fully within one time step. We define recent

stimuli, social influence, and information cascades as follows:

Definition 3.1 (Recent Stimuli). Recent stimuli refer to the cascade contents propagated

by users at the last time step. Through the propagation behaviors, users gain stimuli inside

the social media to change their interests, which in turn affects their behaviors in the following

time steps.

Definition 3.2 (Social Influence). Social influence refers to factors describing how users’

social neighbors influence their interests through social relations, (e.g., follower-followee

relations on Twitter), which are reflected by social networks. We represent the static social

network as G = (U , E), where U is the set of users, and E is the set of asymmetrical social

relations among users.

Definition 3.3 (Information Cascades). Let I
(t)
j denotes the j-th information cascade

happening at time step t. It is defined as a tuple of information content cj and a diffusion

sequence of original forwarding users in ascending order of participation time. Thus, I
(t)
j =

(cj, {uk}Kk=1), where K denotes the length of the user sequence. We denote the set of

information cascade starting at time step t as I(t).

Based on the definitions above, we formulate the diffusion prediction problem as follows:

Definition 3.4 (Diffusion Prediction). Given an information cascade I
(t)
j = (cj, {uk}Kk=1)

at time step t, the diffusion prediction aims to estimate the diffusion likelihood p(ui|I(t)j ) for

potential user ui ∈ U \{uk}Kk=1 by utilizing the information gained from all observed cascades⋃n<t
n=1 I(n) before t and the social network G. The outcome is the propagation likelihood for

the potential forwarding users as well as the corresponding rankings.

33



Text 

Embedding

Text 

Embedding

Text 

Embedding

Recent

Stimuli

Recent

Stimuli

Recent

Stimuli

Encoder

Encoder

!7"#$

;7"~:(12(ℎ7"), 32(ℎ7"))

Inferred user interest

Encoder

……….

Text 

Embedding

Propagation likelihood

Information content Original forwarding users

Decoder

4%5 4$5 465 478

478, 475~;7", ;7"~:(12(ℎ7"), 32(ℎ7"))Sender and receiver states:

Potential users

Self-attention

Heterogeneous

Attention

Encoder with details

!7"#%

!7"
ℎ7"

ℎ7"#%

ℎ7"#$

ℎ7"

;7"<%

;7"#%

Figure 3.2: Overview of the DyDiff-VAE framework. The dynamic encoder updates the user
interests a t new time step t based on the recent stimuli and social influence. The dual
attention decoder represents the information cascade based on content and user sequence,
and estimates the propagation likelihood.

3.3 THE DESIGN OF DYDIFF-VAE

In this section, we describe the framework of DyDiff-VAE in detail.

3.3.1 Framework Overview

At time step t, DyDiff-VAE estimates the propagation likelihood p(ui|I(t)j ) for the potential

users given an information cascade I
(t)
j = (cj, {uk}Kk=1) that consists of the cascade content cj

and original forwarding user sequence {uk}Kk=1. The propagation likelihood is determined

by the relevance between the information cascade and the potential users. We propose a

variational framework for diffusion prediction, with the advance to infer evolving latent user

interests z(t) along the time. The framework consists of two components:

1. the dynamic encoder (in Section 3.3.2) infers the posterior distribution of latent user

interests qϕ(z
(t)|∪n<t

n=1 I(n)) at each time step by modeling recent stimuli and social influence

from the historic information cascades;

2. the dual attention decoder (in Section 3.3.3) estimates the propagation likelihood based

on the inferred latent user interest pθ(ui|I(t)j , z
(t)
i ) by integrating both cascade content cj

and original forwarding user sequence {uk}Kk=1.

For each information cascade I
(t)
j , the framework optimizes the Evidence Lower BOund
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(ELBO) [68] Lj on the log likelihood of all users in the form of
∑

i log p(ui|I
(t)
j ):∑

i

log p(ui|I(t)j )

≥ Lj =
∑
i

E
qϕ(z

(t)
i )
pθ(ui|I(t)j , z

(t)
i )−KL(qϕ(z(t))∥p(z(t))),

(3.1)

where p(z
(t)
i ) denotes the prior distribution of z

(t)
i approximated by unit normal distribution.

For simplicity, we denote qϕ(z
(t)
i ) as the posterior distribution of user interests from our

dynamic encoder in the remaining of our paper. Next, we will present the detailed designs of

the encoder and decoder respectively.

3.3.2 The Dynamic Encoder

The dynamic encoder models the user interests evolution and infers the updated interests

at new time steps for diffusion prediction. Two factors will influence the interests at new

time steps: (1) recent stimuli which refer to the content users propagated recently, because

users gain new information through such propagation behaviors; (2) social influence which

describes the influence from the social neighbors (e.g., followees on Twitter) because the

user interests can be influenced via the interactions with the social neighbors. The interests

do not remain deterministic due to relatively nature of unpredictable and stochastic user

behaviors. Considering that, at each time step, the dynamic encoder recursively models the

user interests via a latent normal distribution based on the two factors from the last time

step. For users at t-th time steps, let x(t−1) ∈ RN×d encodes the information (s)he propagated

at the last time step, h(t) ∈ RN×d denotes the recurrent state, and z(t) ∈ RN×d denotes the

latent interest representation sampled from the normal distribution based on h(t). As shown

in Figure 3.2, the process to infer latent interests can be summarized as:

h(t) = f(g(h(t−1)), x(t−1)), (3.2)

z
(t)
i ∼ N (µϕ(h

(t)
i ), σϕ(h

(t)
i )), (3.3)

where f(·) is the recurrent function to update h(t) at each time step, g(·) integrates information

from the social neighbors for each users, µϕ and σϕ are the functions to characterize the

normal distribution where z
(t)
i is sampled. Next, we introduce the design of each part.

Recent stimuli x(t−1). At each time step, users would propagate some contents, and the

propagated contents can influence the user interests at the next time step. To model the

influence, we utilize x(t−1) ∈ RN×d to encode the information from the propagated contents at
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the last time step, and it can be learned from any unsupervised/supervised text embedding

algorithms [69]–[71] which map raw text to the representation vectors. The choice and

comparison of the text embedding module are beyond the scope of this paper. We introduce

the choice of this module in experiment part, and refer interested readers to explore various

text embedding methods here.

Recurrent function f(·). As shown in Figure 3.2, the encoder combines the social

influence of h(t−1) and recent stimuli x(t−1), and updates h(t) for the new time step via

Eq. (3.2). Intuitively, this combination should be automatically adjusted because these two

factors influence the user interests differently and dynamically. Thus, we embed the graph

convolutional layer into the gated recurrent unit (GRU) as the recurrent function f(·), where
the graph convolutional layer naturally integrates information from the social neighbors via

Graph Laplacian operator D̂− 1
2 ÂD̂− 1

2h(t−1), and GRU updates h(t) recursively. Specifically,

at each time step:

Gu = σ
(
D̂− 1

2 ÂD̂− 1
2h(t−1)Whu +Wxux

(t−1)
)
, (3.4)

Gr = σ
(
D̂− 1

2 ÂD̂− 1
2h(t−1)Whr +Wxrx

(t−1)
)
, (3.5)

h̃t = tanh
(
D̂− 1

2 ÂD̂− 1
2 (Gr ⊙ h(t−1))Whm +Wxmx

(t−1)
)
, (3.6)

h(t) = Gu ⊙ h̃t + (1−Gu)⊙ h(t−1), (3.7)

where σ is sigmoid function, and ⊙ denotes the Hadamard (element-wise) product, D̂− 1
2 ÂD̂− 1

2

is the normalized Graph Laplacian operator, Gr is the reset gate, Gu is the update gate, W

are trainable parameters. The reset gate Gr determines how to form the combination h̃t from

social influence and recent stimuli. And the update gate Gu controls how these two factors

influence the user original interests. One can also stack multiple graph convolutional layers

in the GRU in order to consider the higher-order social influence in the social networks.

Sampling from N (µϕ(h
(t)
i ), σϕ(h

(t)
i )). To model the uncertainty of user’s behaviors at each

time step, we sample the current interest representations z
(t)
i from the normal distributions

N (µϕ(h
(t)
i ), σϕ(h

(t)
i )), where µϕ(h

(t)
i ) and σϕ(h

(t)
i ) are two linear layers learning mean and

variance from h
(t)
i respectively. With reparametrization tricks [68], we first sample ϵ from

N (0, I) and infer z
(t)
i by:

z
(t)
i = µϕ(h

(t)
i ) + ϵ⊙ σϕ(h(t)i ) (3.8)

In the new step, we infer the latent interests z
(t)
i for each user. Next, we introduce how

to model the relevance between the information cascades and potential users based on z
(t)
i .
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3.3.3 The Dual Attention Decoder

For a specific information cascade I
(t)
j within time step t, the dual attention decoder

estimates the propagation likelihood for each potential user p(ui|I(t)j ). Based on inferred

user interests from the encoder, the decoder first represents the information cascade, then

estimates the likelihood for each potential user. The key difference of our proposed dual

attention decoder from other diffusion models [51], [53], [54], [62], [63] is the consideration

of both the cascade content cj and the user sequence {uk}Kk=1. Because in reality, cascade

content also determines propagation behaviors of users, especially at the early stages the

user sequences are short and reflect limited information. Next, we introduce how the dual

attention decoder represents the information cascade and estimate the propagation likelihood

in detail.

Propagation likelihood estimation. For a single information cascade occurring at time

step t: I
(t)
j = (cj, {uk}Kk=1), the propagation likelihood can be modeled as:

pθ(ui|I(t)j , z
(t)
i ) = σ(< oj, v

R
i >), (3.9)

where σ(·) is the sigmoid function, < ·, · > is the inner product, oj represents the observed

information cascade I
(t)
j , vRi represents the receiver state for potential user ui. The same

user appearing in observed information cascades and potential user set should have different

states. Since in the former case the user would play as a sender who influence others, while

in the latter one the user would play as a receiver who are influenced by the information

cascade. This process is asymmetrical because senders are hardly influenced by receivers.

For discussion convenience, we utilize the superscript S to denote the vectors in the sender

state and R in the receiver state. Eq. (3.10) shows how we represent the sender state vSi and

receive state vRi for ui based on z
(t)
i .

vSi = W Sz
(t)
i , vRi = WRz

(t)
i (3.10)

We omit superscript t for vSi , v
R
i , because they both describe the states based on the

same z
(t)
i within t-th time step. Before introducing the techniques in the decoder, we want to

highlight two challenges where we gain insights.

1. Some original forwarding users have noisy representations due to their sparse activities,

and they may account for a large ratio due to the long tail distribution [72]. Therefore, it

is critical to denoise and enhance their representations in order to characterize them more

accurately.
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2. The information from the information content and the original forwarding users are

heterogeneous, which reflects the information from a different perspective.

Accordingly, we propose a dual attention decoder to address these challenges, where the

first self-attention mechanism is designed to enhance and denoise the representations for

original forwarding users, and the second heterogeneous attention mechanism is designed to

aggregate information from both information content and user sequences.

Self-attention mechanism. We utilize the weighted sum of predecessors (together with

the modeled user itself) as the denoised representation for each user, because users are more

likely to be influenced by the predecessors within the original user sequence who they have

interactions with. Thus we have:

vk =
k∑

i=1

wkiv
S
i , (3.11)

where vk denotes the denoised representation for uk. To estimate these weights, we consider

two factors. First, as social influence brings interaction, the relevance between sender ui and

receiver uj, modeled by their inner product, may reflect influence. Second, the time elapsed

between sender and receiver grows with decreasing influence. This is because the majority

of social media users adopt more recent information, while often ignoring old and obsolete

content [58]. Therefore, we learn the weight wki based on both users’ inner product and

temporal information, as follows:

wki =
exp

(
< (vS

i + PE(i)), (vR
k + PE(k)) >

)∑k
j=1 exp

(
< (vS

j + PE(j)), (vR
k + PE(k)) >

) , (3.12)

PE(k)2d = sin

(
k

100002d/D

)
, PE(k)2d+1 = cos

(
k

100002d/D

)
, (3.13)

where < ·, · > denotes the inner product of two vectors, 1 ≤ d ≤ D/2 denotes the dimension

of representations. We encode the relative position k through positional-encodings PE(k) [73]

as shown in Eq. (3.13).

Heterogeneous-attention mechanism. To integrate heterogeneous information from

information cascade I
(t)
j , we first represent the information content cj via the same text

embedding module mentioned in Section 3.3.2, and then project it into the same space where

the users are represented through one linear layer. Let vc denote the learned vector. Then we

propose an attention mechanism to integrate (vc, {vk}Kk=1) into the cascade representation oj :

oj = αcvc +
K∑
k=1

αkvk, (3.14)
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Algorithm 3.1: DyDiff-VAE training procedure.

Input: Social Network G, Training cascades
⋃n<t

n=1 It.
Output: Model parameters ϕ and θ.

1 while model not converged do
2 for Each time step t during training do
3 (For the dynamic encoder :)

4 Learn user recent stimuli x(t−1) by text embedding on the content propagated
at time step t− 1;

5 Update new interests z(t) according to Eq. (3.4) - Eq. (3.8);
6 (For the dual attention decoder :)
7 for Each information cascade at t time step do
8 Based on z(t), estimate propagation likelihood according to Eq (3.14) and

Eq (3.9);
9 Calculate ranking loss according to Eq. (3.16);

10 end

11 end
12 Update the parameters ϕ and θ by optimizing variational ranking loss in

Eq. (3.17);
13 end

where αc and αk are attention weights to combine information content and user sequence:

αc =
exp(< vc, vc >)

exp(< vc, vc >) +
∑K

k=1 exp(< vc, vk >)
,

αk =
exp(< vk, vc >)

exp(< vc, vc >) +
∑K

k=1 exp(< vc, vk >)

(3.15)

3.3.4 Optimization

DyDiff-VAE optimizes the variational lower bound on the log likelihood of all observed

information cascades. For one single cascade, the objective is shown in Eq (3.1), where

the first term is the reconstruction loss to estimate the users’ propagation behaviors. For

implementation, instead of estimating the likelihood expectation (via Monte Carlo sampling)

, we use the ranking loss to reconstruct the observed cascades. For one thing, it is hard to

correctly observe all forwarding users in datasets, so the estimated expectation would be

biased due to noise. Also, in real world applications, (e.g., information recommendation), the

ranking results are more practical than the specific likelihood. Thus, we directly optimize the

weighted approximate-rank pairwise loss (WARP) [74] and expect observed forwarding users
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(positive samples) to be ranked higher than the other users (negative samples). Specifically,

for information cascade I
(t)
j , the ranking loss is defined as:

LDIFF
j =

∑
ui+

∑
ui−

L(rank(ui+)) · Lpair
j (ui+ , ui−)

rank(ui+)
,

Lpair
j (ui+ , ui−) = max(0, λm − pθ(u+i |I

(t)
j , z

(t)
i ) + pθ(u

−
i |I

(t)
j , z

(t)
i )),

(3.16)

where ui+ denotes the positive samples, ui− denotes the negative samples, L(K) =
∑K

k=1 1/k.

For each observed positive sample ui+ , we expect the likelihood pθ(u
+
i |I

(t)
j , z

(t)
i ) should be larger

than that of any negative samples by the margin λm., i.e., Lpair
j (ui+ , ui−) = 0. Otherwise, we

penalize each pair of (u+i , u
−
i ) because of the wrong ranking, and L(rank(ui+)) is the penalty

weight.

Thus, our overall objective is to optimize the variational ranking loss in Eq (3.17).

L =
∑
j

LDIFF
j︸ ︷︷ ︸

ranking loss

+ β ·
∑
t

(
KL(qϕ(z

(t))∥p(z(t)))
)

︸ ︷︷ ︸
KL divergence for all time steps

+ λ1 · ∥ϕ∥2 + λ2 · ∥θ∥2︸ ︷︷ ︸
regularization

,

(3.17)

where β is the weight of KL divergence, λ1 and λ2 are the regularization weights for encoder

and decoder parameters. Algorithm 3.1 summarizes the training procedure of DyDiff-VAE.

3.3.5 Diffusion Prediction and Ranking

We optimize the model parameters on information cascades at previous time steps, i.e.,⋃n<t
n=1 In. After convergence, DyDiff-VAE can be applied to predict the propagation likelihood

and the corresponding user rankings for cascades at the new time step t. Given the observed

I
(t)
j = (cj, {uk}Kk=1) at the new time step, DyDiff-VAE first infers the user new interests

according to Eq. (3.8), then estimates likelihoods for all potential users according to Eq. (3.9),

which induces the user rankings.

3.4 THE EVALUATION OF DYDIFF-VAE

In this section, we present and discuss our experimental results as well as ablation studies

and parameter analysis on real-world datasets.
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Table 3.1: Statistics of datasets used in our experiments.

Platform Twitter Youtube

Topic Election Venezuela While Helmet Venezuela

# Users 5,948 5,069 2,373 6,393
# Links 30,762 34,622 15,706 4,738

# Cascades 1,514 2,980 623 321
Avg. len 40.6 38.2 117.2 60.9
Start Date 2018-12 2018-12 2018-7 2018-12
End Date 2019-02 2019-03 2019-04 2019-03

3.4.1 Datasets

Since existing datasets lack the content information, we collect the following four datasets

from Twitter and Youtube to evaluate our proposed model. We collect data related to

Election 10, Venezuela 11, White Helmets 12 to form three Twitter datasets and one YouTube

data set. On Twitter, each retweet sequence of a content item constitutes a diffusion cascade,

while the explicit social network consists of follower-followee links. Following [53], [54], [62],

we removed tweets with non-English content and preserved users with more than 10 records

and cascades longer than 10. On YouTube, user interactions constitute the social networks,

and a cascade corresponds to the comment sequence of a video. We collected data related

to Venezuela. Based on the raw data, We extract the video descriptions as the propagated

cascade contents, and then preserve users with more than 5 records and cascades longer than

10.

Dataset statistics are provided in Table 3.1. All referred IDs have been anonymized. For

each dataset, we uniformly separate the time span into 6 discrete time steps and utilize

cascades in the first five time steps as Training set. Val/Test are split randomly on the

information cascades on 6-th time step, with ratio 1 : 3. Following [52]–[54], we remove users

who do not exist in Training set from Val/Test set, for we have no information of these

users. We also try different time segmentation strategies, where our method consistently

outperforms others. We leave a systematic study for optimal segmentation as our future

work.

3.4.2 Experimental Setup

Baselines. We compare our model against state-of-the-art methods from related areas in-

cluding graph representation learning (dynamic/static), social recommendation, and diffusion

10https://en.wikipedia.org/wiki/2018 Venezuelan presidential election
11https://en.wikipedia.org/wiki/Venezuela
12https://en.wikipedia.org/wiki/White Helmets (Syrian Civil War)
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Table 3.2: MAP@K for diffusion prediction on 4 datasets.

Platform Twitter Youtube

Dataset Election Venezuela White Helmet Venezuela

MAP @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

Random 0.0011 0.0010 0.0009 0.0010 0.0009 0.0010 0.0034 0.0048 0.0028 0.0019 0.0008 0.0010

Node2vec 0.0102 0.0110 0.0122 0.0105 0.0147 0.0168 0.0095 0.0136 0.0155 0.0067 0.0053 0.0041
GAE 0.0258 0.0252 0.0304 0.0229 0.0250 0.0292 0.0326 0.0267 0.0315 0.0092 0.0063 0.0058

VGRNN 0.0137 0.0108 0.0186 0.012 0.0109 0.0173 0.0158 0.0181 0.0177 0.0083 0.0073 0.0063

GraphRec 0.0224 0.0241 0.0255 0.0298 0.0280 0.0300 0.0233 0.0171 0.0177 0.0023 0.0024 0.0021

DeepDiffuse 0.0276 0.0264 0.0315 0.0171 0.0208 0.0232 0.0351 0.0252 0.0291 0.0120 0.0106 0.0119
SNIDSA 0.0299 0.0296 0.0353 0.0419 0.0376 0.0406 0.3045 0.0274 0.0277 0.0131 0.0111 0.0124

Topo-LSTM 0.0307 0.0347 0.0397 0.0325 0.0361 0.0393 0.0293 0.0262 0.0291 0.0081 0.0067 0.0071
Inf-VAE 0.0423 0.0406 0.0454 0.0393 0.0401 0.0435 0.0330 0.0257 0.0289 0.0116 0.0102 0.0094

Inf-VAE+Content 0.0428 0.0378 0.0432 0.0425 0.0416 0.0451 0.0426 0.0275 0.0298 0.0099 0.0076 0.0063

DyDiff-VAE 0.0724* 0.0698* 0.0764* 0.0602* 0.0601* 0.0626* 0.0570* 0.0577* 0.0502* 0.0169* 0.0134* 0.0141*

Imprv. +69.2% +71.9% +68.3% +41.6% +44.5% +38.8% +33.8% +109.8% +59.4% +29.0% +20.7% +13.7%

Table 3.3: Recall@K for diffusion prediction on 4 datasets.

Platform Twitter Youtube

Dataset Election Venezuela White Helmet Venezuela

Recall @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

Random 0.0011 0.0100 0.0193 0.0010 0.0085 0.0150 0.0034 0.0185 0.0323 0.0019 0.0008 0.0010

Node2vec 0.0152 0.0723 0.1123 0.0252 0.0913 0.1420 0.0189 0.0713 0.1208 0.0066 0.0243 0.0346
GAE 0.0304 0.1200 0.2260 0.0389 0.1417 0.2418 0.0376 0.1298 0.2345 0.0061 0.0173 0.0471

VGRNN 0.0176 0.0548 0.1185 0.0199 0.1019 0.1474 0.0253 0.0874 0.1327 0.0089 0.0218 0.0386

GraphRec 0.0147 0.0837 0.1429 0.0334 0.1261 0.1915 0.0303 0.1201 0.1977 0.0027 0.0044 0.0115

DeepDiffuse 0.0382 0.1318 0.2172 0.0329 0.1337 0.1966 0.0499 0.1363 0.2076 0.0145 0.0296 0.0421
SNIDSA 0.0452 0.1232 0.2253 0.0463 0.1464 0.2199 0.0457 0.1374 0.2138 0.0132 0.0261 0.0410

Topo-LSTM 0.0506 0.1727 0.2568 0.0447 0.1419 0.2114 0.0304 0.1046 0.1965 0.0081 0.0217 0.0328
Inf-VAE 0.0462 0.1642 0.2304 0.0610 0.1586 0.2390 0.0414 0.1377 0.2041 0.0125 0.0259 0.0409

Inf-VAE+Content 0.0529 0.1599 0.2510 0.0623 0.1750 0.2541 0.0441 0.1295 0.2183 0.0106 0.0266 0.0327

DyDiff-VAE 0.0862* 0.2377* 0.3376* 0.0944* 0.2204* 0.2892* 0.0809* 0.1850* 0.2695* 0.0188* 0.0371* 0.0561*

Imprv. +62.9% +37.6% +31.5% +47.4% +25.9% +13.8% +62.1% +48.7% +34.4% +29.7% +25.3% +19.1%

prediction.

• Node2vec [64]: a framework that learns low-dimensional representations for nodes in a

network by optimizing a neighborhood preserving objective.

• GAE [65]: a graph autoencoder framework consists of graph convolutional layers to

represent the network and node attributes, and an inner product decoder to predict the

link existence.

• VGRNN [66]: a variational autoencoder framework for dynamic graph learning, which

represents the dynamic adjcency matrix and node attributes, and predicts the link existence.

• GraphRec [41]: a novel graph neural network framework for social recommendations,

which coherently models interactions and opinions in the user-item graph.

• DeepDiffuse [53]: an attention-based RNN that operates on the subsequence of previously

influenced users to predict diffusion, where the subsequence is extracted by another modified

LSTM.
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• SNIDSA [62]: a novel sequential neural network with structure attention to model both

sequential nature of an information diffusion process and structural characteristics of user

connection graph for diffusion prediction.

• Topo-LSTM [52]: a recurrent model that exploits the local propagation structure during

the diffusion process through a dynamic tree-based LSTM.

• Inf-VAE [54]: a variational framework that combines a variation graph autoencoder and a

co-attention network to jointly model social relations and sequence information.

Setup. Following [53], [54], [62], [63], we evaluate our diffusion model in a retrieval setting.

We rank potential users based on their propagation likelihood and utilize MAP@K and

Recall@K as the metrics to evaluate the predicted rankings. During the evaluation, unless

specifically mentioned, we keep the first half of forwarding users observed in a ground truth

cascade and predict the other half of forwarding users. This ratio is defined as seed set

percentage, and we will also report the performance comparison under various seed set

percentages.

To train our model, we fix the dimension of our representation vectors as 128, regularization

weight of model parameters λ1 and λ2 as 0.5, the KL divergence weight β as 10. Then,

we tune learning rate and λm, by evaluating MAP@10 on the Val set. We choose the

unsupervised Doc2Vec [69] as the text embedding module for simplicity. For Node2vec, GAE,

and VGRNN, the outcomes are the user representations, we use the average aggregation

function to represent the cascades, which has the best performance compared with Sum and

Earliest (root representations) functions. For GraphRec, since it is designed to predict the

rating scores among each user-item pair in a standard recommendation setting, we set the

rating score as 1 if a user forwards the cascade, otherwise 0. We use the ranking induced by

rating score for diffusion prediction. For other diffusion baselines, as stated in [54], we use

the ranking induced by propagation likelihood for diffusion prediction.

3.4.3 Experimental Results

Overall Results. Table 3.2 and Table 3.3 show the performance comparisons, where the last

row presents the relative improvement over the best baseline 13. Node2vec considers the social

structure information, GAE and VGRNN consider both structure information as well as user

interests learnt from contents, VGRNN models the evolution of user interests, GraphRec

13All results are averaged over 5 independent runs with different random seeds. ∗ indicates the statistically
significant improvements over the best baseline, with p-value smaller than 10−6.
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Figure 3.3: Recall@100 under various seed set percentage.

jointly models the user-cascade interactions and cascade contents in the recommendation

framework, and the other diffusion baselines study the sequential information of the cascade

of original forwarding users.

DyDiff-VAE significantly outperforms all the baselines on both MAP and Recall metrics,

meaning that more forwarding users are found and they rank higher in the predicted list.

The diffusion prediction is indeed a hard task, which is indicated by the extremely low scores

from Random results, where the Random result could be 0.50 in some classification tasks.

However, our model is able to achieve superior result. For example on Twitter/Election, we

aims to retrieve ∼ 20 users out of ∼ 5k users based on initial ∼ 20 users. A Recall@100 of

0.34 is quite impressive, considering the absence of explicit propagation tree topology and

the noise in the real-world diffusion processes.

Also, we find existing diffusion methods are not effective at modeling cascade content

and user interests. We modified Inf-VAE to consider such information as its GCN-based

encoder can be easily generalized to model user attributes. We call the modified baseline as

Inf-VAE+Content. Results do not show a consistent improvement over the original Inf-VAE.

It is worth noting that the dataset characteristics influence prediction performance. It is

easier to predict on Twitter/Election dataset consisting of the polarized posts because users

having different stances behave quite differently. For the Youtube dataset, more flexible

social interactions and more diverse cascade content make it less predictable.

Results under various seed set percentages. A desirable property of diffusion model

is that the it has robust performance when observing different ratio of original forwarding

users. We vary the seed set percentage from initial (meaning that we only observe the initial

posts) to 0.5. We use dataset Twitter/Election and Twitter/Venezuela for this study, for

we require a sizable number of test examples to obtain unbiased estimates. The results are

shown in Figure 3.3. Recall increases with seed set percentage as expected. We compare our

results with two strong baselines. It is interesting to find that under initial situation, their
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Table 3.4: Ablation study on framework design.

Dataset Twitter/Election Twitter/Venezuela

Metrics (@100) MAP Recall MAP Recall

(1) Static encoder 0.0530 0.2660 0.0516 0.2579
(2) Remove Conv. 0.0650 0.3007 0.0485 0.2650

(3) Remove 1st attn 0.0466 0.2572 0.0327 0.2360
(4) Remove 2nd attn 0.0738 0.3337 0.0561 0.2734
(5) WS = WR 0.0693 0.3199 0.0591 0.2710

(6) DyDiff-AE 0.0746 0.3124 0.0603 0.2630

DyDiff-VAE 0.0764 0.3376 0.0626 0.2892

performance drop significantly, while DyDiff-VAE still achieves competitive performance. To

dig into the reason, we show the result after removing content information (by removing

the heterogeneous attention layer). We observe a performance drop in the initial situation,

because in the beginning, the user sequences are too short to provide sufficient information.

As the ratio increases, the performances tend to be close, because information content does

not provide more information after observing the first half of the user sequence.

3.4.4 Ablation Study and Analysis

Ablation Study. We conduct an ablation study to analyze our design choices. We first

examine the effectiveness of the dynamic encoder:

1. Static encoder. The user interests are assumed static, and the dynamic encoder becomes

one-layer GCN.

2. Remove Conv.. We eliminate the social influence, so the user interests will be independent

of other users.

Replacing the dynamic encoder as a static one will result in a significant performance

drop. It proves the importance of modeling user dynamic interests on diffusion prediction.

Further, while modeling such evolution, the worse performance after removing the graph

convolutional layer illustrates the necessity to consider the social influence from other users.

Next, we analyze the effectiveness of the dual attentive decoder by the following ablations:

3. Remove 1st attn. The cascade representations are directly learned on the user interests

from encoder, without any denoising and enhancement.

4. Remove 2nd attn. Only consider the user sequence without modeling the information

content. The cascade representation is the average on the denoised user representations.

5. W S = WR. Ignore the difference between the sender state and receiver state.
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In our dual attentive decoder, we utilize a self-attention layer to learn the local influence and

denoise the user interest representations, especially for inactive users. Removing such method

(3) results in a significant performance drop. Notably, replacing the heterogenous attention

layer with a mean aggregation on user sequence leads to a close performance. Because, as

stated in Section 3.4.3 the information content does not provide more information after

observing the first half of the user sequence. Moreover, overlooking asymmetric social influence

(5) slightly deteriorates results, which indicates the existence of asymmetric influence among

users. Finally, we analyze the effectiveness of the variational framework by the following

ablations:

6. DyDiff-AE. We replace the variational framework with a autoencoder framework, and

the user interests are deterministics.

As is expected, DyDiff-AE results in a worse performance, since it overlooks the uncertainty

of the user interests.

Impact of graph convolution. Social influence has been proved necessary to model the

user dynamic interests. We further study whether stacking more graph convolutional layers,

in order to integrate higher-order social influence, can help for diffusion prediction. As shown

in Figure 3.4, adding one more layer increase the Recall@100 on Twitter/Election dataset

but have a negative impact on Twitter/Venezuela dataset. This is because, in part, that

the social network of Twitter/Venezuela is far denser, and multiple convolutional layers may

cause the over-smoothing issue [75], [76].

Impact of λm. We study the impact λm, as shown in Figure 3.4. λm is the marginal value

to penalize negative users ranking higher. Large λm can hurt the performance, for it ignores

some relevance, though is not captured in the dataset, between the cascades and negative

users.

Efficiency Analysis. As mentioned earlier, efficiency is the bottleneck of sequence modeling

for large-scale applications. We run diffusion baselines and DyDiff-VAE on the same work-

station equipped with an Intel i9-9960X processor, 64GB memory, and one NVIDIA RTX

2080 Ti GPU, and compare execution time per epoch (average on 20) on two large datasets.

Each model is trained with one GPU on the device. Figure 3.5 shows the comparison results.

DyDiff-VAE is faster than the other RNN-based baselines. And it achieves the competitive

efficiency as Inf-VAE with consistently superior performance.
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Figure 3.4: Parameter analysis evaluated by Recall@100.
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Figure 3.5: Running time comparison, unit: second (s). DyDiff-VAE is faster than recurrent
models (DeepDiffuse, SNIDSA, Topo-LSTM), and close to attention model (Inf-VAE).

3.5 RELATED WORK

3.5.1 Diffusion Prediction

Early work for diffusion prediction usually holds certain assumptions about the diffusion

process. For example, Independent Cascade (IC) models [55], [56] popularized the study of

information diffusion with a pairwise independence assumption. By introducing stronger

assumptions about time-delay information, extensions of these models [77]–[82] considered

temporal evolution in the diffusion process. However, pairwise independence oversimplifies the

complex nature of the diffusion process, resulting in poor performance on real-world datasets.

With advances in representation learning and deep learning, recent works [52]–[54], [62], [63],

[83], [84] design end-to-end frameworks to automatically learn diffusion patterns from data.

They project cascades into the user-characterized space and predict the diffusion likelihood
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based on the distance between cascade and user representations. Most of these models [52],

[53], [62], [63], [83] employs extensions of Recurrent Neural Networks (RNNs) to extract

meaningful features from user sequences, e.g., local topology among users and temporal

patterns within the diffusion cascades. Recent work [54] enhances user representations, instead

of initializing randomly, via a variational graph autoencoder. However, all of the above

neural methods focus entirely on learning the cascade representations from user sequence,

ignoring information content which has been shown meaningful in information diffusion [85].

Moreover, existing works ignore modeling dynamic user interests from diffusion data. To the

best of our knowledge, DyDiff-VAE is the first framework that jointly infers the dynamic

user interests and models information content for diffusion prediction.

3.5.2 Variational Autoencoder

Variational autoencoder (VAE) [68] models the generative process of data x from the latent

variable z. The encoder approximates the distribution of latent variable z by the variational

posterior, and the decoder generates the data x given z. VAE has superior performance

in representation learning for both static data [65], [86], [87] and dynamic data [66], [88].

The key difference between DyDiff-VAE and existing VAE on modeling dynamic data is the

design of the decoder. The conventional decoder aims to reconstruct the data samples or the

pair-wise relevance among data samples, while our dual attentive decoder aims to reconstruct

the propagation likelihood between the information cascade and potential users. It explicitly

models the sequential and heterogeneous information via the dual attentive decoder from

both the user sequence and the information content.

3.5.3 Sequence Modeling

Representing the information cascade requires an efficient sequence modeling of long

user sequence. Recurrent Neural Networks (RNNs) are one of the most popular sequence

models, which model the cross-dependency within a sequence by a special design of various

gate mechanisms. Several RNN variants are proposed for handling different sequence types,

(e.g., GRU and LSTM [61], [89] for long sequence modeling where the gradient vanishing

and exploding problems are addressed, tree-LSTM [90] for natural language with a latent

grammar structure, etc). However, RNNs scale poorly with the increasing in sequence length

due to the sequential nature of back-propagation through time, which becomes the bottleneck

for large-scale applications. To improve computational efficiency, alternative transformation

methods that include a parallel convolutional operator [91] and self-attention [73], [92] have
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been proposed. Existing diffusion models usually utilize RNNs, resulting in prohibitive

costs for long cascade sequences. To achieve better efficiency, we propose an efficient and

parallelizable dual attentive decoder to learn cascade representations.

3.6 SUMMARY

In this chapter, we introduced a novel dynamic variational framework that jointly considers

dynamic user interests and information content for diffusion prediction. We proposed a

dynamic encoder to infer the dynamic user interests from historical behaviors, and a dual

attentive decoder to capture the information from both the information cascade and the

sequence of original users to estimate the propagation likelihood. Our experimental results on

four real-world datasets demonstrated that the proposed model outperforms other compared

methods.

The work has several shortcomings that offer avenues for future extensions. First, the

algorithms are described at a fixed point in time when some data have been collected and

the future is to be predicted. In reality, incremental algorithms are needed where new data

arrive over time. Second, we do not take into account the fact that data sets are invariably

incomplete. Thus, it is likely that future cascade participants will include users never before

seen in the collected data. In the future, we plan to extend DyDiff-VAE to generate realistic

user profiles (in terms of social relations and interests) from the learned latent distribution

for unseen users.
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Chapter 4: LEARNING DYNAMIC MULTI-RELATIONAL GRAPHS

In this chapter, we extend our model design from bipartite graphs to a more complex

multi-relational graphs to model the dynamics. We first introduce the preliminary analysis

of multi-relational graph learning, then detail the model design of the proposed RETE

framework, followed by a comprehensive evaluation of RETE framework on various real-world

applications, including recommendation, temporal event forcasting.

4.1 PRELIMINARIES AND ANALYSIS

On the evolutionary multi-relational graph, user intents can be captured by integrating

abundant information from connected entities [93]. Existing KG-based frameworks [94]–[96]

map entities into a low-dimensional space, such that the relevance between user, query

or product can be modeled via corresponding representations, i.e., hu,hp,hq ∈ Rd. They

propose various propagation mechanisms [60], [97] on whole KG to integrate abundant

information for each user, which can be generally described as follows:

h(l)
u =

∑
e′∈Nu

π(u, r, e′)h
(l−1)
e′ , (4.1)

where Nu denotes neighbor set of user u, l denotes the number of propagation layers, triple

(u, r, e′) describes interaction between u and e′, and π(u, r, e′) denotes aggregation weights.

Directly generalizing this family of propagation mechanisms to the event forecasting task,

especially on evolutionary multi-relational graph, faces two issues: (i) As l grows to integrate

higher-order information, the neighborhood size increases exponentially. A large ratio of

unrelated entities (noises) are integrated, making user representations less distinguishable from

each other, or even leading to over-smoothing [75], [76], [98]; (ii) evolutionary multi-relational

graph shows different distribution over time as users have evolving intents and behavior

patterns. Ignoring such temporal factors not only fails to capture the most recent data

characteristics but also worsens the first issue due to integrating a large ratio of out-of-fashion

records for learning the representations.

4.2 THE DESIGN OF RETE

In this section, we present the proposed RETE framework. We firstly start with the

overview of RETE and then detail three major components. Finally, we describe the model
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Figure 4.1: The framework of the proposed RETE model. We optimize the RETE model
using the auto-regressive ranking loss and the multi-relational graph completion loss (TransR)
alternatively.

optimization.

4.2.1 Overview

To address two issues mentioned in Section 4.1 simultaneously, the proposed RETE strives

to satisfy the following requirements:

• Requirement 1 : It should learn informative and discriminative user representations by

considering higher-order information and filtering out large ratio of noise from the graph.

• Requirement 2 : It should capture user intent evolution from data at different time steps,

so as to produce up-to-date forecasting.

The framework of RETE is shown in Figure 4.1. Based on the collected evolutionary

multi-relational graph, the key idea of RETE is to learn informative user representations at

each time step from the sampled subgraphs instead of the whole graph, and combine them

together via learnable temporal weights to capture user intent evolution. RETE first utilizes

subgraph samplers to retrieve related entities centrally around each user u. And then it

integrates rich information from the subgraphs via a structural attention module. A sequence

of learned representations from all time steps are integrated via a temporal attention module.

It can automatically learn the combination weights in the temporal domain so that more

related (e.g., more recent) time steps are assigned larger weights, and unrelated (e.g., far

away) time steps are assigned smaller weights (but not necessary to 0, as they may also
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reflect long-term intents). To fulfill Requirement 1, the sampled subgraphs constrain the

attentive information propagation within local highly-related structure instead of the whole

graph, so as to consider higher-order information and filter out noise. The design of the

temporal module enables us to auto-regressively learn users’ up-to-date representations to

meet Requirement 2.

4.2.2 Theoretical analysis

We then analysis how RETE satisfies the two requirements theoretically.

For Requirement 2, it is straightforward to show that our temporal attention module can

auto-regressively consider new data and update the most up-to-date intents. To analysis

Requirement 1, we propose the following proposition:

Proposition 4.1. For temporal event forecasting task, models able to learn informative and

discriminative user representations should satisfy the following necessary conditions: let m[u]

denote information gained by user u via n-layer of neighbor aggregation, gained information

of different users should always be distinguishable: m[u] ̸= m[v], (u ̸= v), even under n→∞.

The correctness of proposition 4.1 is obvious, as models may utilize a large number of

layers of neighbor aggregation to integrate higher-order and related information, especially

for users with sparse records. So it should be satisfied under n up to ∞. To analyze why

RETE satisfies the this condition, let m[u] = {m1
[u],m

2
[u], ...,m

t
[u]} denote gained information

by user u from different time steps. By applying theorem in [99], gained information at

time step t after ∞-layer of GCN-like neighbor aggregation (used in our structural attention

module) can be represented as:

mt
[u] →

√√√√ δ[u](u)∑
v∈Gt

[u]
δ[u](v)

· eT
[u]X [u] (4.2)

where δ[u](v) denotes degree of node v in sampled subgraph Gt[u], X [u] denotes initial entity

embeddings in sampled subgraph Gt[u], and e[u] denotes eigenvector of Gt[u] corresponding to

largest eigenvalue. By using ensemble subgraph sampler, we can ensure Gt[u] ≠ Gt[v] even after

∞-layer of neighbor aggregation, so that mt
[u] ̸= mt

[v] in each time step, and m[u] ̸= m[v].

Without such subgraph constrains, after large number of neighbor aggregations, the integrated

entities easily span the whole graph, i.e., Gt[u] = Gt[v] = Gt, making learned user representations

much less distinguishable.
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Next, we will introduce the subgraph samplers, the structural attention module, and the

temporal attention module respectively.

4.2.3 Ensemble Subgraph Sampler

The proposed sampler aims to retrieve diverse and related entities via higher-order

connections and excludes unrelated noises as order increases. To design strong indicators

for such desirable subgraphs, we adopt structure-dependent Personalized PageRank (PPR)

value [100] which has been recently shown effective to retrieve related nodes from homogeneous

graph [99], [101], [102]. And we further ensemble it with a simple randomized k-hop sampler

to retrieve entities more comprehensively. Advantages of this design, instead of utilizing

trainable policy, are that it does not require reliable input features (unlike [98], it is fully

feature-independent) and it achieves much higher sample efficiency (almost real-time with

careful implementation. We summarize the designed sampler as follows:

• PPR sampler. We use the feature-independent Personalized PageRank (PPR) value.

Given a target user u, our PPR sampler first computes the approximate PPR value for all

other entities, then selects up to b neighborhood above threshold θ and preserves relations

among selected entity set.

• k-hop sampler. Starting from a target user u, the k-hop sampler traverses up to k-hop

connections and randomly selected up to b neighbors.

• Ensemble sampler. To capture a full picture of user intents, we ensemble multiple

samplers under different types or with different parameters to parallelly sample several

subgraphs.

4.2.4 Structural Attention Module

Without loss of generality, let s denote the number of subgraphs from the ensemble sampler.

At time step t, given the sampled subgraphs {G1t[u], · · · ,Gst[u]} for each user u, the structural

attention module aims to integrate all useful information to learn user representations. As

shown in Figure 4.2, it first extracts information from each subgraph via multi-layer graph

attentions [97]. Then to combine information from different perspectives, it fuses outputs

from different subgraphs together to capture the global picture of user intent.
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Specifically, we first utilize L graph attention layers to propagate and integrate information

within each subgraph Gst[u]. Each layer can be summarized in Eq. (4.3):

h(l)
u = σ

(∑
v∈Nu

α(l)
uvW

(l)
V h(l−1)

v

)
, (1 ≤ l ≤ L) (4.3)

where h(l)
u denotes user representations from layer l, Nu denotes neighbor set around user u

on subgraph Gst[u], and α
(l)
uv is aggregation attention weight shown in following equation:

α(l)
uv =

exp
(
σ
(
aT
[
W

(l)
Q h(l)

u ∥W
(l)
K h(l)

v

]))
∑

v′∈Nu
exp

(
σ
(
aT
[
W

(l)
Q h(l)

u ∥W
(l)
K h

(l)
v′

])) , (4.4)

where W
(l)
V , W

(l)
K , W

(l)
Q are shared weighted transformation applied to each entity in the

subgraph, a is a weight vector parameterizing the attention function implemented as feed-

forward layer, ∥ is the concatenation operation and σ(·) is non-linear activation function.

Since information propagation is constrained within the sampled subgraphs, more attention

layers can be stacked to better learn latent representations without introducing other unrelated

entities and noises. We then use residual connection across L layers and graph-level pooling

to better integrate information to capture user’s intent at time step t:

hst
u =

1

|Est[u]| × L
∑
e∈Est

[u]

∑
l

h(l)
u , (4.5)

where Est[u] denotes entity set in s-th subgraph Gst[u]. By doing so, we are able to integrate

all useful information from the subgraphs to better represent users. To further capture a

global view of user intent, ensemble samplers sample several subgraphs. From the learned

representations of those subgraphs, we utilize one-layer MLP to integrate global information:

ht
u = σ

(
W
[
h1t

u ∥h2t
u ∥ · · · ∥hst

u

])
. (4.6)

4.2.5 Temporal Attention Module

Given the learned user representations H = {h1
u,h

2
u, · · · ,hT

u} from all time steps, we

infer users’ intents in a near future, i.e., h̃
T+1

u , for temporal event forecasting. We propose a

temporal attention module to automatically capture both long-term and short-term intents

by assigning different weights among htu. The updating function for most recent user
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Figure 4.2: Structural attention module on subgraphs.

representation hT+1
u can be expressed as follows:

h̃
T+1

u =
T∑
t=1

βtTh
t
uW

V , (4.7)

βij = softmax

(
HWQ(HWK)T√

d
+M

)
ij

, (4.8)

where WQ, W L, W V are trainable temporal parameters, βij is learned temporal weight, d

denotes dimension of user representations, and M is added to ensure auto-regressive setting,

i.e., preventing future information affecting current state. We define M ij = 0 if i ≤ j,

otherwise −∞.

By applying Eq. (4.7), we are able to not only emphasize those information related

to users’ short-term intents represented in hT
u , but also capture long-term intents as we

integrate information from all time steps. The proposed temporal module provides better

interpretability, where the temporal attention weights reflect user intent evolution and shifting.

Notably, it can be auto-regressively applied to newly collected data from T + 2, T + 3, · · · , as
it automatically computes temporal combination weights in the future time steps without

model modification or retraining.

4.2.6 Optimization

The proposed framework is expected to capture the evolution of user preference from the

evolutionary multi-relational graph. To better represent product and query information from

static product graph into the same low-dimensional space, we utilize a multi-relational graph
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embedding module TransR [14] to optimize multi-relational graph completion loss LKGC .

After learning user/product/query representations at time step t, i.e., h̃
t

u, hp, hq, we use

inner product γtup =< h̃
t

u,hp > and γtuq =< h̃
t

u,hq > to model relevance.

We use negative sampling to accelerate and stabilize the training process. At time t,

for each user-product pair (u, p+), we randomly sample several negative samples (u, p−),

where we expect γtup− is smaller than γtup+ by a margin. Thus, we adopt the weighted

approximate-rank pairwise (WARP) loss [74] for product prediction as follows:

Lp =
T∑
t=1

E(u,p+)∈Gt

∑
p−

L(rank(p+)) · |λm − γtup+ + γtup−|+
rank(p+)

, (4.9)

where λm denotes margin value, | · |+ means max(0, ·). For each observed interaction (u, p+),

we expect the relevance score γtup+ to be larger than that of any negative samples by λm,

i.e., |λm − γtup+ + γtup−|+ = 0. Otherwise, we penalize each pair of (p+, p−) because of the

incorrect ranking. L(K) =
∑K

k=1 1/k, rank(p
+) denotes relative ranking of positive sample

p+ among negative samples p−, and L(rank(p+)) is the penalty weight. Similarly we can

define WARP loss for query prediction as Lq. Thus, the overall objective is:

L = Lp + Lq + LKGC + ∥Θ∥2, (4.10)

where Θ denotes model parameters, LKGC denotes TransR loss to represent static facts in

the product graph. Rich meta-data of products forms a heterogeneous product graph GP ,
describing important attributes of each product p ∈ P. Specifically, GP = {(e, r, e′)|e ∈
P , e′ ∈ I

⋃
Q, r ∈ RP}, where I denotes attribute set for products, including but not limited

to brand, product type and category. RP denotes the relation set among them. Each triple

(e, r, e′) ∈ GP represents a fact indicating that product entity e associate with tail entity e′

through relation r. GP also describe mapping relations between products and queries.

To better represent product and query information from static product graph, we utilize

a knowledge graph embedding module TransR [14] to project them into the same low-

dimensional space. The objective is shown below:

LKGC =
∑

(e,r,e′)∈GP

∑
(e,r,e−)∈G−

P

max
(
0, fr(e, e

′) + λKGC − fr
(
e, e−

))
(4.11)

where GP denotes product graph, G−P denotes negative samples, λKGC is the margin value.

Following TransR, we define fr(h, t) = ∥hWr + r− tWr∥22, where Wr is trainable relation

matrix.
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Algorithm 4.1: The optimization process for RETE.

Input: Evolutionary multi-relational graph {G1, · · · ,GT } and product graph GP .
Output: User intents h̃

T+1
and model parameters Θ.

1 Ensemble samplers sample subgraphs for users;
2 while model not converged do
3 Optimize on product graph:
4 Minimize LKGC and update entity representation in GP ;
5 Optimize on evolutionary graph:
6 for Each time step t < T during training do
7 (Auto-regressive training:)

8 Learn user intent {h1, · · · ,ht−1} according to Eq. (4.6);

9 Update new intents h̃
t
according to Eq. (4.7);

10 Calculate ranking loss Ltp and Ltq at time step t;

11 end
12 Optimizing ranking loss Lp and Lq in Eq. (4.9);

13 end

14 Update user intents h̃
T+1

according to Eq. (4.7);

We optimize LKGC and Lp + Lq + ∥Θ∥2 alternatively, where mini-batch Adam is adopted.

4.3 THE EVALUATION OF RETE

4.3.1 Datasets

We collected one public Yelp dataset and four industrial E-commerce datasets for experi-

ments:

Yelp. The dataset is adopted in Yelp Challenge 2019 14, which contains the interaction

records between users and businesses like restaurants and bars. We utilize review history

between users and businesses as user-product interactions. And we extract discriminative

keyphrases from reviews as queries, so as to collect pseudo user-query interactions. We

are able to show that jointly consider both pseudo queries and products can improve both

performances. We propose the following procedure to collect experimental data.

1. We collect data from April 2014 to Jan 2021 and preserve those with ratings higher than

3.0, as high ratings indicate true user intents.

2. To extract keyphrases as pseudo query, we utilize both AutoPhrase [103], 2-gram, and

3-gram methods to extract keyphrases. Then we calculate TF-IDF scores for each and

14https://www.yelp.com/dataset/
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preserve top 15000 as pseudo query pools.

3. We adopt 20-core setting to collect entities, i.e., we remove users/products/queries with

fewer interactions than 20.

4. We divide the time span into 28 time steps according to interaction timestamps. We split

them into background/training/val/test (10/10/2/6).

5. To construct product graph, we first preserve critical attributes like category, location,

etc to construct product-to-attribute edge, we collect frequent pairs of businesses from

background data as product-to-product edge, we collect query-to-product edge also from

background data per each review action.

E-commerce. We gain access to the search log data including 140 days and product attribute

data. We first collect data under four specific categories: Electronics, Book, Music and

Beauty. For each category, We propose the following procedure to collect experimental data.

1. We collect data from Feb 2021 to June 2021 and preserve those with specific types of

actions: click, add cart, follow-on click, and purchase, with ratios of all data 11.8%, 5.1%,

4.6% and 2.0% respectively. They are preserved as they reveal strong signals of user

intents. For each action, we record user, query/product, timestamp, and action type.

2. We adopt 10-core setting to collect entities, i.e., we remove users/products/queries with

fewer interactions than 10.

3. We divide the time span into 28 time steps according to interaction timestamps. We split

them into background/training/val/test (10/10/2/6).

4. To construct product graph, we first preserve critical attributes like brand, model, etc

to construct product-to-attribute edge, we collect frequent pairs of products within the

same sessions as product-to-product edge, we collect query-to-product edge also from

background data if users have interaction to one product via one search query.

We purposefully choose the two platforms because of the various time period. The

e-commerce dataset emphasizes more on user short-term interest since the shopping intent

is more time-sensitive. By contrast, the Yelp dataset emphasizes more on user long-term

interest, since it lasts longer and a user’s choice on businesses is less time-sensitive.To

evaluate our framework, we divide the time span into 28 time steps according to interaction

timestamps. We split them into background/training/val/test (10/10/2/6) to train initial

entities embeddings (model input), train, validate and test our model respectively. Table 4.1

summarizes the statistics of the experimental datasets.
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Table 4.1: Statistics of experimental datasets.

Public Industrial (E-commerce)
Dataset Yelp Electronics Music Book Beauty
#User 22,307 5,928 7,453 37,562 47,261

#Product 16,153 10,129 12,105 61,215 51,686
#Query 9,314 8,045 6,506 25,340 25,807
Product

interactions
820,219 138,607 582,651 2,976,112 1,385,366

Query
interactions

800,727 58,037 213,281 718,035 200,219

#Entity 49,269 29,212 28,643 134,370 140,314
#Triplet 1,791,788 496,701 1,832,501 7,739,316 3,092,010
Time span 80 months 140 days 140 days 140 days 140 days
#Time step 28 28 28 28 28

Table 4.2: Overall performance for product prediction. Average results on 5 independent runs
are reported. ∗ indicates the statistically significant improvements over the best baseline,
with p-value smaller than 0.001.

Dataset
Public Industrial E-commerce
Yelp Electronics Music Book Beauty

K = 20 NDCG@K Recall@K NDCG@K Recall@K NDCG@K Recall@K NDCG@K Recall@K NDCG@K Recall@K

FM-based Recommendation

FM 0.0221 0.0277 0.0512 0.0713 0.0641 0.0981 0.0682 0.0964 0.1155 0.1459
NFM 0.0214 0.0281 0.0715 0.1164 0.0761 0.1005 0.0793 0.1064 0.1246 0.1591

Sequential Recommendation

BERT4Rec 0.0422 0.0501 0.0619 0.0832 0.0537 0.0618 0.0447 0.0651 0.0827 0.1015
GRU4Rec 0.0419 0.0511 0.0742 0.0859 0.0621 0.0711 0.0412 0.0658 0.0842 0.1003

Dynamic Graph Learning

JODIE 0.0459 0.0527 0.1399 0.1515 0.1123 0.1405 0.1401 0.1881 0.1458 0.1807

KG-based recommendation

KGAT 0.0342 0.0403 0.1503 0.1914 0.1156 0.1301 0.1254 0.1479 0.1503 0.1893
ECFKG 0.0388 0.0495 0.1413 0.1859 0.1036 0.1246 0.1327 0.1674 0.1401 0.1799

RETE (Ours) 0.0499* 0.0589* 0.1703* 0.2120* 0.1304* 0.1521* 0.1455* 0.1976* 0.1621* 0.1985*

Gain 8.71% 11.76% 13.31% 10.76% 12.80% 8.27% 3.85% 5.05% 7.85% 4.86%

4.3.2 Experimental Setup

Metrics. We evaluate temporal event forecasting task in a retrieval setting, i.e., we compare

the predicted top-K ranking list of products/queries with the groundtruth in the testing

time steps. We adopt two widely-used evaluation protocols: Recall@K and NDCG@K. By

default, we set K = 20.

Baselines. We compare baselines from following areas:

• FM-based recommendation, which considers the second-order feature interactions.

– FM [104]. This is a basic factorization model which considers the second-order

connections. We construct input features as multi-hot vectors.

– NFM [105]. This is a state-of-the-art factorization model, which subsumes FM under

neural networks. Specially, we employed one hidden layer to extract features from
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Table 4.3: Overall performance for product prediction.

Dataset
Public Industrial E-commerce
Yelp Electronics Music Book Beauty

K = 20 NDCG@K Recall@K NDCG@K Recall@K NDCG@K Recall@K NDCG@K Recall@K NDCG@K Recall@K
FM-based Recommendation

FM 0.0257 0.0319 0.0481 0.0765 0.0324 0.0681 0.0862 0.1015 0.0614 0.0854
NFM 0.0244 0.0331 0.0533 0.0709 0.0583 0.1188 0.0851 0.1103 0.0673 0.0903

Sequential Recommendation
BERT4Rec 0.0407 0.0498 0.0602 0.0877 0.0207 0.0457 0.0413 0.0882 0.0417 0.0566
GRU4Rec 0.0381 0.0477 0.0590 0.0731 0.0436 0.0599 0.0401 0.0907 0.0513 0.0602

Dynamic Graph Learning
JODIE 0.0461 0.0617 0.0779 0.0957 0.0988 0.1364 0.1301 0.1475 0.1327 0.1495

KG-based recommendation
KGAT 0.0431 0.0527 0.0913 0.1153 0.0823 0.1324 0.1293 0.1497 0.1299 0.1502
ECFKG 0.0397 0.0481 0.0899 0.1099 0.0897 0.1259 0.1283 0.1503 0.1214 0.1518

RETE (Ours) 0.0507* 0.0653* 0.1015* 0.1393* 0.1033* 0.1408* 0.1391* 0.1557* 0.1487* 0.1643*
Gain 9.98% 5.83% 11.17% 20.82% 4.55% 3.22% 6.92% 4.01% 12.06% 9.31%

inputs.

• Sequential recommendation, which considers user evolving intents overtime.

– GRU4Rec [106]. This is a sequential recommendation method that utilizes gated

recurrent units (GRU) to learn temporal information of user action sequences.

– BERT4Rec [107]. This is a sequential recommendation method that utilizes BERT

to learn temporal information of user action sequences.

• KG-based recommendation, which models heterogeneous entities and high-order connec-

tions for recommendation.

– ECFKG [96]. This is an advanced collaborative filtering framework that incor-

porates knowledge graph for recommendation and utilizes KG embedding to learn

representations.

– KGAT [94]. This is an end-to-end knowledge graph attention network that explic-

itly models the high-order connections and heterogeneous entities and employs an

attention mechanism to discriminate the importance of the neighbors.

• Dynamic graph learning: which models evolutionary interaction graph.

– JODIE [108]. This is a dynamic graph method that considers co-evolution of both

users and products. We encode rich side information for it via initial embedding.

Setup and Implementation. It is worth noting that all baselines are designed for recom-

mending products. To generalize them to be able to predict queries, we train them using

product and query loss separately. Those (KGAT, ECFKG) that consider knowledge graph

can explicitly fuse information from both product and query. For all methods that need
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initialization, we utilize a classic and lightweight knowledge embedding method, TransR,

to represent multi-relational information in background data, not just IDs. For dynamic

methods (BERT4Rec, GRU4Rec, JODIE) that aim to only predict the next interacted

product/query, we modify the evaluation protocol to predict all possible products/queries in

the following time steps.

For fair comparison, we do not utilize rich semantic information from query entities

and product descriptions, as all compared baselines only consider interaction records and

structural side information. We fix the dimension of latent vectors of all methods as 128,

and we report the average performance of the best model on the validation set. For RETE,

we tune learning rate within {0.0001, 0.0005, 0.001, 0.005, 0.01} and regularization weight

{0.005,
0.05, 0.5} according to Recall@20 of product prediction on validation set. We ensemble one

PPR sampler and one randomized 3-hop sampler to retrieve subgraphs, and we stack 3 layers

of graph attentions to better integrate information.

We implement RETE with Python 3.8.5. We use PyTorch 1.9.1 on CUDA 11.1 to train

RETE on GPU. To implement fast subgraph sampling, we adopt methods in [99], [109] to

calculate the approximate PPR value by only traversing the local region around each user.

For better efficiency, we implement the sampling part with C++ and the interface between

C++ and Python is via PyBind11.

4.3.3 Model Performance

Overall performance. We first compare overall performance of product prediction and

query prediction with selected baselines, as shown in Table 4.2 and Table 4.3. In most cases,

FM-based (FM, NFM) and sequential recommendation (BERT4Rec, GRU4Rec) methods

produce poor results, as they do not explicitly consider higher-order interactions. RETE

beats KG-based methods (KGAT, ECFKG) and dynamic graph learning method (JODIE)

on all metrics, as we propose a better way to integrate multi-relational data in a temporal

manner. Notably, on E-commerce platform, query prediction has worse performance than

predicting products, while Yelp platform exhibits different pattern. We hypothesis that it is

because the real queries from users on E-commerce platform are more diverse than pseudo

queries extracted from Yelp review data. Also, it is harder to produce accurate prediction on

Yelp platform, as Yelp data are collected from much longer period, where user intent shifting

and evolution across time step are much harder to capture.

Detailed performance. Further, to investigate how does RETE perform over time, we

compare the detailed performances in each testing time step (6 time step), as shown in
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Figure 4.3: Recall@20 of each test period on Electronics, significant improvements come from
the last several time steps.

Figure 4.3. The performances in different time steps vary largely, indicating user intents are

evolving and shifting. RETE can beat others in almost all time steps, and more significant

improvements come from the last several time steps, which shows our proposed temporal

module can capture the evolution of user preference and thus achieve better long-term

performance.

Auto-regressive evaluation. As users keep interacting with E-commerce platforms, new

interaction events are collected continuously. In real scenario, it is required that the deployed

models can take newly collected data to update user representations without time-consuming

retraining or fine-tuning. We refer it to auto-regressive evaluation and verify the robustness

of RETE under it. As it is hard to update static models on new data without retraining,

we mainly focus on comparing with dynamic models (BERT4Rec, GRU4Rec and JODIE).

Given new testing data, we continuously fed them into the temporal module and evaluate the

performance in the next time step. Table 4.4 reports the average performance on testing time

steps. All compared models achieve improved results after considering newly collected data,

as which contain more up-to-date clues to capture users’ intents. RETE can achieve the best

performance, showing better generalization ability and robustness for continual learning.

4.3.4 Ablation Study

To investigate how each component affects the model performance, we conduct the

following ablation studies, as shown in Table 4.5: The Effects of Various Types of Infor-

mation. Our solution constructs a temporal KG to organize multi-relational data for joint

product and query prediction. As expected, removing rich attributes causes a performance
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Table 4.4: Performance under the auto-regressive evaluation. Average results on six testing
time steps are reported.

Task Product prediction

Dataset Electronics Music

k = 20 NDCG@K Recall@K NDCG@K Recall@K

BERT4Rec 0.0830 0.1232 0.0566 0.0701
GRU4Rec 0.1099 0.1201 0.0519 0.0803
JODIE 0.1801 0.1962 0.1371 0.1507
Ours 0.1961 0.2414 0.1561 0.1733

Task Query prediction

Dataset Electronics Music

k = 20 NDCG@K Recall@K NDCG@K Recall@K

BERT4Rec 0.0861 0.1019 0.0455 0.0634
GRU4Rec 0.0661 0.0913 0.0501 0.0633
JODIE 0.1259 0.1526 0.1203 0.1499
Ours 0.1425 0.1793 0.1352 0.1631

Table 4.5: Ablation study evaluated by Recall@20.

Datasets Electronics Music

Ablations Product Query Product Query

Variants on how to construct input graph:
w/o attr. 0.1686 0.1037 0.1154 0.1132
w/o query 0.1749 - 0.1335 -

w/o product - 0.0973 - 0.0943

Variants on subgraph sampler:
Only k-hop sampler 0.1991 0.1203 0.1363 0.1367
Only PPR sampler 0.2123 0.1381 0.1501 0.1399

Static v.s. dynamic:
Ours (static) 0.1931 0.1183 0.1299 0.1327

Ours 0.2120 0.1393 0.1521 0.1408

hit, because they provide reliable relations among products and queries. Furthermore, we can

demonstrate the mutual benefit derived from the joint query and product prediction task via

the performance degradation after removing product entities and query entities, respectively.

Interestingly, removing products can significantly affect query prediction performance. This is

because queries are mainly connected by product nodes, and a large ratio of query connections

is ignored in this ablation.

The effects of ensemble subgraph samplers. We propose an ensemble subgraph sampler

to retrieve relevant entities and filter unrelated noise from the whole graph. Different samplers

can capture data characteristics from different perspectives. Only using the k-hop sampler

or PPR sampler can hurt the performance compared with ensembling them together. The

PPR sampler behaves better than the k-hop sampler, as PPR value can better reflect the

relevance among entities when raw neighbor information.

The effects of temporal module. To evaluate the impact of the temporal attention

module, we compare the performance of our static variant. Our dynamic model can have
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Figure 4.4: Retrieval analysis. RETE manages to improve performance by stacking more
layers, and it can retrieve much more balanced information via a reasonable number of
retrieved entities.

∼ 10% relative improvements over the static variant.

Analysis of ensemble sampler.

We analyze how our ensemble subgraph sampler can improve retrieval results by collecting

related higher-order entities and filtering out a large ratio of noises. As shown in Figure 4.4,

unlike KGAT, RETE manages to improve performance by stacking more layers (by default, we

choose 3. To investigate the quality of the retrieved entities, Figure 4.4 shows the distributions

among entities types as well as average amount of the retrieved entities. RETE can integrate

diverse and balanced information via retrieving a reasonable amount of entities. In contrast,

KGAT with 3 layers integrates noisy information from over 9000 entities for each user, where

over 96.4% integrated entities are products.

4.3.5 Temporal Analysis and Case Study

To investigate the evolution of user preference and how RETE can capture it, we select

one user from the Electronics dataset with 76 event records. As shown in Figure 4.5, from

the most frequent event in each time step, we can observe an obvious interest shift from

mobile tablet-related items to Nintendo Switch-related items. Weights before star are used

for auto-regressive forecasting. The temporal module can emphasize more on related events

and less on unrelated events at new time steps.

4.4 RELATED WORK

We discuss and compare existing works from three related areas, as summarized in

Table 4.6.
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Figure 4.5: Case study of temporal attention. To forecast the new event at t = 10, it
emphasizes more on related events, and less on unrelated events. At each time step, we
report and summarize the most frequent event.

4.4.1 Product recommendation

Recommendation systems (RS) have achieved huge success on E-commerce platforms.

Numerous efforts are devoted to improve RS from different perspectives: factorization

machine (FM-based) models [104], [105], [116] efficiently consider abundant input features,

sequential/session-based recommendation models [106], [107], [110]–[112], [117] capture

user-side dynamics from long/short time periods respectively, and knowledge graph (KG-

based) [94]–[96] models consider higher-order connections in multi-relational graph and

produce explainable prediction. However, existing works merely focus on product-side

interactions (e.g, user-to-product [104], [105], [108], [115], product-to-product [106], [107],

[118], or product-to-attribute [93]–[96]) but neglect equally important search queries. We

study a more generic temporal event forecasting task to jointly optimize product and query

prediction on evolutionary knowledge. A few interactive recommendation works on knowledge

graph optimize sequential policy for recommending products within short sessions [119]. In

contrast, we focus our attention on studying how to better integrate time-aware information

from evolutionary knowledge graph and exclude unrelated noises in order to improve long-term

performance for both product prediction and query prediction.

4.4.2 Query suggestion

Query suggestion task aims to assistant users to better express their intents on various

search engine systems. General query suggestion task includes three different objectives:

query rewriting (QR) [120], [121], query auto-completion (QAC) [122], [123] and query
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Table 4.6: Comparison with existing settings. Action history refers to various past users’
behaviors towards products such as “Add”, “Click” and “Purchase”, etc. Search history
denotes historical user search queries. Meta data refers to product side information like
attributes.

Properties
Action
history

Search
history

Meta
data

Temporal
Info.

Multi
objective

Recommendation

FM-based
[104], [105] ✓ X ✓ X Product

Sequential /
Session-based

[106], [107], [110]–[112]
✓ X X ✓ Product

KG-based
[93]–[96] ✓ X ✓ X Product

Query suggestion
[113], [114] X ✓ X X Query

Dynamic Graph Learning
[108], [115] ✓ X X ✓ Product

Temporal Event Forecasting
(Ours) ✓ ✓ ✓ ✓ Product & Query

prediction [113], [114]. While QR and QAC focus on reformulating the queries that help

the users to find better search results of current search intents, we specifically study query

prediction that ”recommend” queries that potentially match user intents. Existing works on

recommending/predicting queries utilize search log data [114], query dependency graph [124]

or interaction history with users [113]. Instead, to the best of our knowledge, we are the first

to propose and study joint product and query prediction task on E-commerce. Inspired by

the recent success of combining both queries and documents for jointly information retrieval

in search engine systems [125], we mainly focus on exploring mutual benefits from both

queries and products. One major difference is that we only consider structured graph data,

instead of content, as query contents are much more private and sensitive on E-commerce.

4.4.3 Dynamic graph learning

Graph learning methods [60], [126]–[130] has been widely explored for recommendation [94],

[131], user modeling [6], [44], [49], [132]–[134], etc. Recently, dynamic algorithms are proposed

to better capture the temporal patterns of evolutionary graph [2], [92], [108], [127], [135].

As the constructed query product evolutionary graphs are more diverse and complicated, it

brings new challenges to deal with over-smoothing issues and to capture temporal behavior

patterns at the same time. Hence we aim to design a dynamic model with subgraph samplers

to better learn informative and time-aware user representations. Although existing works

have explored combinational power of subgraph samplers with graph neural networks on static

and homogeneous/bipartite graph [98], [99], we further facilitate dynamic graph learning

with subgraph samplers on the evolutionary knowledge graph.
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4.5 SUMMARY

In this chapter, we explore temporal event forecasting, a new problem considering the

temporal influence from both query and product to user behaviors. To enhance the sparse

action information of most users and meanwhile capture the evolution of user intents, we

propose a novel RETE framework to efficiently retrieve similar entities as subgraphs to

enrich the user profile representation and then auto-regressively adapt it to be time-aware.

We evaluate the proposed RETE method on both product-centric and query-centric event

prediction tasks. Extensive experiments on both public and industrial datasets quantitatively

and qualitatively demonstrate the effectiveness of the proposed method.
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Chapter 5: LEARNING DYNAMIC LOW-RESOURCE GRAPHS WITH
KNOWLEDGE TRANSFER

5.1 OVERVIEW

In this chapter, we investigate temporal reasoning problem on scarce temporal graphs,

which aims to facilitate reasoning on temporal graphs in low-resource domain by transferring

knowledge from graphs in high-resource ones. The cross-network distillation ability, as a way

to enable the external knowledge transfer capability, becomes increasingly crucial, in light

of the unsatisfying performance of existing reasoning methods on those severely incomplete

temporal graphs, especially in low-resource domain.

Inspired by the incompleteness issue facing low-resource languages in constructing temporal

graphs, we introduce a novel task named Cross-Lingual Temporal Knowledge Graph Reasoning

(as shown in Figure 5.1). This task aims to alleviate the reliance on supervision for temporal

graphs in low-resource languages (referred to as the target language) by transferring temporal

knowledge from high-resource languages (referred to as the source language). In contrast, all

the existing efforts are either limited to reasoning in monolingual temporal graphs (usually

high-resource languages, e.g., English) [22], [33], [136], [137], or multilingual static KGs [138]–

[140]. To the best of our knowledge, cross-lingual temporal graph reasoning that transfers

temporal knowledge between temporal graphs has not been investigated.

The fulfillment of this task poses tremendous challenges in two aspects: 1) Scarcity

of cross-lingual alignment: as the informative bridge of two separate temporal graphs,

cross-lingual alignment is imperative for cross-lingual knowledge transfer [138]–[140]. However,

obtaining alignments between languages is a time-consuming and resource-intensive process

that heavily relies on human annotations. The transfer of knowledge through a limited

number of alignments is often insufficient to fully enhance the temporal graph in the target

language. 2) Temporal knowledge discrepancy: the information associated with two

aligned entities is not necessarily identical, especially with regards to temporal patterns.

Utilizing a rough approach to equate the aligned entities at all times can result in the transfer

of misleading knowledge and negatively impact performance. This becomes more pronounced

when the alignments are noisy and unreliable. For example, at the time step t2, a new event

about operating system “Ventura” from Apple company occurs in the source English temporal

graph, and meanwhile there is a noisy aligned entity “Ventura city” in the target Japanese

temporal graph. Directly pulling those two entities at this point, can inevitably introduce

noise and fail to predict a set of related events in the target temporal graph. Therefore, it

is crucial to dynamically regulate the alignment strength of each local graph structure over
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Figure 5.1: An illustrative example of cross-lingual reasoning on temporal graphs. 1) We
aim to transfer knowledge from English temporal graph to Japanese temporal graph, where
the English version provides more complete information; 2) Cross-lingual alignments only
cover a small ratio of entities, e.g., Apple Inc; 3) Cross-lingual alignments can be noisy and
misleading, e.g., A city called Ventura is linked to new macOS Ventura at t2, introducing
noise for reasoning in Japanese.

time in order to maximize the effectiveness of cross-lingual knowledge distillation.

In this chapter, we propose a novel Mutually-paced Knowledge Distillation (MP-KD)

framework, where a teacher network learns more enriched temporal knowledge and reasoning

skills from the source temporal graph to facilitate the learning of a student network in the

low-data target one. The knowledge transfer is enabled via an alignment module, which

estimates entity correspondence across languages based on temporal patterns. Firstly, to

alleviate the limited language alignments (Challenge #1), such a knowledge distillation

process is mutually paced over time. This means, on one hand, we encourage the mutually

interactive learning between the teacher and student. Concretely, the alignment module

between the teacher and the student learns to generate pseudo alignment between temporal

graphs to maximally expand the upper bound of knowledge transfer. And subsequently, it

empowers the student to encode more informative knowledge in target temporal graph, which

can in turn boost the alignment module to explore more reasonable alignments as the bridge

across temporal graphs. One the other hand, inspired by self-paced learning [141], [142],

we make the generations as a progressively easy-to-hard process over time. We start from

generating reliable pseudo data with high confidence. As time goes by, we then gradually

increase the generation amount by relieving the restriction over time. Secondly, to inhibit

the temporal knowledge mismatch (Challenge #2), the attention module can estimate the

graph alignment strength distribution over time. This is achieved by a temporal cross-lingual

attention in terms of the local graph structure and temporal-evolving patterns of aligned
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Table 5.1: Symbols and Notations.

Symbol Definition

(e, r, e′, t) A quadruple in graph.

Gs, Gt Source graph and Target graph.

es, et Entities in the source and target graphs.

Γs↔t Alignments between the source and target graphs.

G̃t, Γ̃s↔t Incomplete target graph and alignments.

G̃ST
t , Γ̃ST

s↔t Pseudo target graph and pseudo alignment.

f(·; Θs) Teacher network on the source graph.

f(·; Θt) Student network on the target graph.

g(es, et, t; Φ) Alignment module measuring correspondence of (es, et) at t.

LG̃t
, LG̃ST

t
Reasoning loss on groundtruth/pseudo target graph.

LΓ̃s↔t
, LΓ̃ST

s↔t
Alignment loss on groundtruth/pseudo alignment pairs.

Ls→t Cross-lingual reasoning loss from source graph to target graph.

LST
s→t Cross-lingual reasoning loss on both groundtruth and pseudo data.

entities. As such, it can dynamically control the negative effect and suppress noise propagation

from the source temporal graph. Moreover, we provide a theoretical convergence guarantee

for the training objective on both initial ground-truth data and pseudo data. To evaluate

MP-KD, we conduct extensive experiments of 12 cross-lingual temporal graph transfer tasks

in multilingual EventKG graph dataset [143]. Our empirical results show that the MP-KD

method outperforms state-of-the-art baselines in both with and without alignment noise

settings, where only 20% of temporal events in the target KG and 10% of cross-lingual

alignments are preserved.

5.2 PRELIMINARIES AND NOTATIONS

In this section, we formally define the cross-lingual temporal knowledge graph reasoning

task, and summarize the notations in Table 5.1. A temporal knowledge graph can be defined

as follows:

Definition 5.1 (Temporal Graphs). A temporal graph is denoted as G = {(e, r, e′, t)|t ≤
T} ⊆ E ×R×E ×T , where E denotes the entities set, R denotes the relation set, T denotes

the timestamp set, and T denotes the latest update time. Each quadruple (e, r, e′, t) refers

to an event that a subject entity e ∈ E has a relation r ∈ R with an object entity e′ ∈ E at

timestamp t ∈ T .

Definition 5.2 (Multilingual graphs and Alignments). To denote multilingual graphs,

we further utilize subscript to represent specific languages, i.e., Gs denotes graph in the source

language and Gt denotes graph in the target language. The corresponding entities can be
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Figure 5.2: An overview of MP-KD. (a) The source graph is more complete than the target
graph, and the cross-lingual alignments are also scarce; (b) A teacher/student representation
module to represent source/target graph, and an alignment module for knowledge transfer;
(c) Mutually-paced knowledge distillation between knowledge transfer and pseudo alignment
generation.

denoted as es and et respectively. Given two different languages s,t, we have the cross-lingual

alignment set Γs↔t. To be more practical, we further assume the graph in target language Gt
and alignment set Γs↔t are incomplete: G̃t, Γ̃s↔t.

Based on the definition above, we formalize our cross-lingual reasoning task on graphs as

follows:

Definition 5.3 (Cross-lingual reasoning on graphs). Given the graph Gs in the source

language and the incomplete graph G̃t in the target language before the latest update time T ,

and the incomplete cross-lingual alignment Γ̃s↔t, we aim to predict future events in the target

graph after time T . Concretely, we aim to predict missing entity in each future quadruple:

{(et, r, ?, t) or (?, r, e′t, t)|t > T} in the target graph.

5.3 THE DESIGN OF MP-KD

In this section, we present the proposed MP-KD framework for the cross-lingual temporal

knowledge graph reasoning task.

5.3.1 Overview

Figure 3.2 shows an overview of MP-KD. Given the graphs in source language and

target language, the teacher network and the student network first represent the source and
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target graphs in a temporally evolving uni-space respectively. To facilitate training of the

student, the knowledge distillation is enabled by a cross-lingual alignment module and an

explicit temporal event transfer process. To deal with the scarcity issue of cross-lingual

alignments, we propose a pseudo alignment generation technique to facilitate the knowledge

distillation process, which is mutually-paced along with model training. To address the

temporal knowledge discrepancy issue, the alignment module pulls the aligned entities close

to each other based on the alignment strength which is dynamically adjusted.

Section 5.3.2 and Section 5.3.3 introduce our teacher/student network and the knowledge

distillation respectively, followed by Section 5.3.4 which details how we generate pseudo

alignments. Finally, Section 5.3.5 specifies our learning objective on both groundtruth data

and pseudo data, and summarizes the training of MP-KD.

5.3.2 The Teacher/Student Network

We train two identical temporal representation modules on source and target graphs with

different parameters. The representation module f(·; Θ) parameterized by Θ is designed

to measure the plausibility of each quadruple, which represents each entity e into a low-

dimensional latent space at each time: he(t) ∈ Rd. On a graph G, entities e ∈ E are evolving,

as they interact with different entities over time. Such temporally interacted entities are

defined as temporal neighbors. Therefore, we aim to model the temporal pattern of each

entity e by encoding the changes of temporal neighbors.

Towards this goal, f(·; Θ) first samples temporal neighbors Ne(t) from the graph for each

entity e ∈ E . Ne(t) consists of a set of the most recently interacted entities at time t. Then

f(·; Θ) attentively aggregates information from the temporal neighbors. Specifically, given

the temporal neighbor Ne(t), we represent the entity e as he(t) at time t:

hl
e(t) = σ

 ∑
(ei,ri,ti)∈Ne(t)

αl
e,ei

(
hl−1
ei

(ti)W
) , (5.1)

where l denotes the layer number, σ(·) denotes the activation function ReLU, αl
e,ei

denotes the

attention weight of entity ei to the represented entity e, and W is the trainable transformation

matrix. To aggregate from history, αl
e,ei

is supposed to be aware of entity feature, time delay

and topology feature induced by relations. Thus, we design the attention weight αl
e,ei

as

72



follows:

αl
e,ei

=
exp(qle,ei)∑

(ek,rk,tk)∈Ne(t)

exp(qle,ek)
, qle,ek = a

(
hl−1
e ∥hl−1

ek
∥hrk∥κ(t− tk)

)
, (5.2)

where qle,ek measures the pairwise importance by considering the entity embedding, relation

embedding and time embedding, a ∈ R4d is the shared parameter in the attention mechanism.

Following [144] we adopt random Fourier features as time encoding κ(∆t) to reflect the time

difference.

To measure plausibility of each possible quadruple, we utilize TransE [9] as the score

function f(e, r, e′, t; Θ) = −∥hl
e(t) + hr − hl

e′(t)∥2, where true quadruples should have higher

scores. To optimize the parameter Θ on a graph G, we set the objective to rank the scores of

true quadruples higher than all other false quadruples produced by negative sampling:

LG = E
(e,r,e′,t)∈G

[
max(0, λ1 − f(e, r, e′, t; Θ) + f(e, r, e−, t; Θ))

]
, (5.3)

where (e, r, e−, t) is negative samples with object e′ replaced by e−, λ1 is the margin to

distinguish positive and negative quadruples.

5.3.3 Knowledge Distillation

The incomplete target graph, G̃t, can be used to train the corresponding parameter Θt

through minimization of LG̃t. However, the low-resource nature of the target language often

results in an incomplete target graph, leading to suboptimal Θt. In light of this, we propose a

knowledge distillation approach to transfer temporal knowledge from the source graph to the

target graph. The proposed approach consists of two components: an alignment module that

enhances Θt using the more informative Θs learned from the source graph, and an explicit

temporal event transfer based on the improved parameters. This integrated approach aims

to improve the completeness and quality of the target graph by leveraging the knowledge

contained in the source graph.

The Alignment Module. In general, the source parameters Θs provide a more informative

representation of each entity e ∈ E compared to the target parameters Θt. To take advantage

of this, we utilize Θs to guide the optimization of Θt through the alignment module g(·; Φ),
which measures the correspondence between each pair of entities and is parameterized by Φ.

Directly pulling embeddings of aligned entities at all time steps can transfer misleading

knowledge due to the temporal knowledge discrepancy. Therefore, the alignment module first
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utilizes a temporal attention layer to integrate information of each entity from history in both

source and target graphs, i.e., Hs
e(t),H

t
e(t) ∈ Rd, then it pulls such integration Hs

e(t) close to

Ht
e(t) instead of the initial hs

e(t) and ht
e(t). Moreover, the temporal integration Hs

e(t) and

Ht
e(t) also encode the temporal evolution information for each entity, which can be utilized to

estimate the adaptive alignment strength at different time to improve the alignment module.

Concretely, the temporal integration is learned by:

Hs
e(t) = Temporal-Attn(hs

e(1),h
s
e(2), · · · ,hs

e(t)),

Ht
e(t) = Temporal-Attn(ht

e(1),h
t
e(2), · · · ,ht

e(t)),
(5.4)

g(es, et, t; Φ) =
Hs

e(t) ·Ht
e(t)

∥Hs
e(t)∥2 · ∥Ht

e(t)∥2
, (5.5)

where Temporal-Attn is the temporal attention network designed to integrate information on

the temporal domain. The correspondence between each pair of entities (es, et) across source

and target languages at time t is measured by g(es, et, t; Φ). As the temporal knowledge for

aligned entities is not identical, the alignment strength between them should vary across

time t. The alignment strength is strong when the two entities share similar information,

and weak when the information is dissimilar or the alignment is unreliable. This variability

is achieved through the design of a trainable weight βe,t to adjust the alignment strength for

different entities at different times, which is generated by a cross-lingual attention layer:

βe,t = Cross-Attn(key = Ht
e(1 : T ), query = Hs

e(1 : T ))tt. (5.6)

We first introduce the general attention mechanism we utilized, then specify the temporal

attention layer and cross-lingual attention layer for entity alignments.

Given two representation sequence from temporal domain: key sequence consisting of

input representation sequence HK = {h1
K ,h

2
K , · · · ,hT

K} and corresponding query sequence

HQ = {h1
Q,h

2
Q, · · · ,hT

Q} from all time steps, we propose the following attention to calculate

the pairwise importance:

β = Attn(key = HK , query = HQ) = softmax

(
HQW

Q(HKW
K)T√

d
+M

)
, (5.7)

where WQ, W L are trainable temporal parameters, β is learned temporal weight indicating

pairwise importance, d denotes dimension of input representations, and M is added to ensure

auto-regressive setting, i.e., preventing future information affecting current state. We define

M ij = 0 if i ≤ j, otherwise −∞.
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For temporal attention layer, we use he = {he(1),he(2), · · · ,he(T )} for both query and

key sequence to obtain the temporal attention weights β:

β = Attn(key = he, query = he), (5.8)

then the desired He(t) is leaned as the combination of input sequence, where W V is a

trainable matrix.:
He(t) = Temporal-Attn(he(1), · · · ,he(t))

=
t∑

i=1

βithe(i)W
V

(5.9)

For cross-lingual attention layer, we use Hs
e = {Hs

e(1), · · · ,Hs
e(T )} in source language

as query sequence and H t
e = {H t

e(1), · · · ,H t
e(T )} in target language as key sequence to

obtain the attention weights β:

βe,t = Attn(key = H t
e, query = Hs

e)tt, (5.10)

where βe,t is trainable weight to adjust the alignment strength of different entities at different

time.

To optimize the parameter Φ on the incomplete alignments Γ̃s↔t, we set the objective in

order to rank the correspondence of true alignments higher than false alignments:

LΓ̃s↔t
= E

Γ̃s↔t

[
E
t∈T

[
βe,t ·max(0, λ2 − g(es, et, t; Φ) + g(es, e

−
t , t; Φ))

]]
, (5.11)

where the entity pair (es, et) ∈ Γ̃s↔t is the aligned entities across languages, (es, e
−
t ) is the

negative samples, λ2 is the margin value.

Temporal Event Transfer. Cross-lingual alignments offer the potential to directly transfer

temporal events towards the progressive completion of the target graph. This is based on the

premise that entities that are reliably aligned are likely to experience similar temporal events

across languages, with the same relations.

Given an aligned pair (es, et), the temporal event (et, r, e
?
t , t) or (e

?
t , r, et, t) is added to the

target graph if the corresponding event (es, r, e
?
s, t) or (e

?
s, r, es, t) exists in the source graph Gs.

To determine the missing entity e?t , we first verify if (e?s, e
?
t ) is present in the alignment set. If

so, the temporal event is directly added to the target graph. Otherwise, the updated student

network f(·; Θt) is utilized to predict the missing entity and the top-1 entity is utilized to

complete the temporal event. We define the set of transferred temporal events in the target

graph as G̃STt for ease of discussion.
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5.3.4 Generating Pseudo Alignments

The limited amount of cross-lingual alignments negatively constrain the effect of the

knowledge distillation process. In this section, we introduce how to generate pseudo alignments

Γ̃ST
s↔t with high confidence to boost cross-lingual transfer effectiveness.

To expand the range of alignments used in the knowledge transfer process, we generate

pseudo-alignments with high confidence scores and incorporate them into the training

data. The confidence score for each pair of entities (es, et) is calculated as the average

cosine similarity: sim(es, et) = E
t
[g(es, et, t; Φ)]. While pair-wise similarity comparison is

computationally intensive, we improve efficiency by first adding alignments for entities that

are neighbors of already aligned entities Ẽt = {et|(es, et) ∈ Γ̃s↔t} in the target graph, as they

are likely to be represented well to produce reliable alignment. Following [145], we formulate

the generation process as solving the following optimization problem:

max
∑

et∈N (Ẽt)

∑
es∈Es

sim(es, et) · ϕ(es, et),

s.t.
∑
es∈Es

ϕ(es, et) = 1,
∑

et∈N (Ẽt)

ϕ(es, et) = 1,
(5.12)

where ϕ(es, et) is a binary indicator of whether to add (es, et) as pseudo alignment, ϕ(es, et) = 1

if we choose to add this pair, otherwise ϕ(es, et) = 0. The two constrains can guarantee each

entity et ∈ N (Ẽt) is aligned to at most one entity in source language es ∈ Es. Finally, all

pairs that satisfying ϕ(es, et) = 1 can be viewed as candidates to be added into alignment

data. We further select the top ones in terms of sim(es, et) to control the total size of pseudo

alignments. Notably, in each generation, the target entities to be aligned can already have

the alignment, i.e., N (Ẽt)
⋃
Ẽt ̸= ∅. In this case, we can update the existing alignments with

the pseudo ones to eliminate the possible alignment noise.

5.3.5 Mutually-paced Optimization

Learning Objective. Given a source graph Gs, the incomplete target graph G̃t, and the

incomplete cross-lingual alignment Γ̃s↔t, the objective of cross-lingual temporal knowledge

graph reasoning Ls→t can be summarized as follows:

Ls→t = LG̃t
+ LΓ̃s↔t

, (5.13)

where LG̃t
denotes knowledge graph reasoning loss which measures the correctness of each

quadruple, LΓ̃s↔t
denotes the alignment loss which measures the distance of aligned entities in
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Algorithm 5.1: The optimization process for MP-KD.

Input: Source TKG Gs, incomplete target TKG G̃t, incomplete alignment Γ̃s↔t.
Output: Student Model Parameter Θt for target TKG.

1 Optimize Θs by minimizing LGs on source TKG;
2 Initialize Θt ← Θs for target TKG;
3 while model not converged do
4 Optimize alignment module g(·; Φ):
5 Minimize LSTs→t in Eq. (5.14) w.r.t. alignment parameter Φ;

6 Transfer temporal events G̃STt based on updated Θt;
7 Optimize student representation module ft(·; Θt):
8 for Each time step Ti during training do

9 Prepare training data {(et, r, e′t, t)|(et, r, e′t, t) ∈ G̃t
⋃
G̃STt and Ti < t < Ti+1}

10 Update Θt by minimizing LSTs→t in Eq. (5.14);

11 end

12 Generate pseudo alignments Γ̃ST
s↔t based on updated Φ;

13 end

the uni-space. To enlarge the knowledge distillation effect, we progressively transfer temporal

events G̃t and generate high-quality pseudo alignment Γ̃ST
s↔t. Therefore, the training objective

on both ground-truth data and pseudo data LST
s→t becomes:

LST
s→t =

|G̃t|
|G̃t|+ |G̃STt |

· LG̃t
+

|G̃STt |
|G̃t|+ |G̃STt |

· LG̃ST
t

+
|Γ̃s↔t|

|Γ̃s↔t|+ |Γ̃ST
s↔t|
· LΓ̃s↔t

+
|Γ̃ST

s↔t|
|Γ̃s↔t|+ |Γ̃ST

s↔t|
· LΓ̃ST

s↔t
,

(5.14)

where | · | denotes the set size. Eq. (5.14) formulates the learning objective on both scarce data

and pseudo data for cross-lingual temporal knowledge graph reasoning in target languages.

We give the convergence analysis in the following theorem:

Theorem 5.1. Let N denote the number of negative samples for optimization, ϵ denotes

the portion of correct pseudo data, β denotes the proportion of pseudo data to the initial

ground-truth data. As the number of negative samples N →∞, the LST
s→t converges to its

limit with an absolute deviation decaying in O( 1+ϵ
1+β
·N−2/3).

Proof. In representation learning, the margin loss has been widely adopted as the similarity

metric. Without loss of generality, they can be expressed in the form of Noise Contrastive

Estimation (NCE) [146]. Therefore, we express LG and LΓs↔t in the form of Noise Contrastive
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Estimation (NCE) by introducing the negative sampling:

LG ≜ E
[
− log

ef(·;Θ)/τ

ef(·;Θ)/τ +
∑

− e
(f−(·;Θ))/τ

]
, (5.15)

LΓs↔t ≜ E
[
− log

eg(·;Φ))/τ

eg(·;Φ)/τ +
∑

− e
g−(·;Φ)/τ

]
, (5.16)

for simplicity, f−(·; Θ) denotes the score for negative quadruple, and g−(·; Φ) denotes score
for negative alignment pair.

For our training objective LST
s→t, we show the convergence analysis of four terms one by

one, then prove the overall convergence results. First of all, following [147], [148], let N

denote the number of negative samples per each quadruple, and we have:

lim
N→∞

[
LG̃t
− logM

]
= −1

τ
E

(et,r,e′t,t)∈G̃t

[f(·; Θ)]

+ lim
N→∞

E
(et,r,e′t,t)∈G̃t

e−t ∈Et

[
log

(
λ

N
ef(·;Θ)/τ +

1

N

∑
−

ef
−(·;Θ)/τ

)]

= −1

τ
E

(et,r,e′t,t)∈G̃t

[f(·; Θ)] + E
(et,r,e′t,t)∈G̃t

[
log E

e−t ∈Et

[
ef

−(·;Θ)
]]
,

(5.17)

where λ denotes the duplicate quadruples co-existing in both incomplete G̃t and negative

samples. The convergence speed is derived as follows:

For one side:

LG̃t
− logN − lim

N→∞

[
LG̃t
− logN

]
≤ λ

N
e

2
τ . (5.18)

For another side:

lim
N→∞

[
LG̃t
− logN

]
−
[
LG̃t
− logN

]
≤ λ

N
e2/τ +

5

4
N− 2

3 e
1
τ (e

1
τ − e−

1
τ ). (5.19)

We then generalize the above results to the loss term on pseudo data. Suppose ϵ of the
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pseudo data are correct. Then we can have the following two inequality. For one side:

LG̃ST
t
− logN − lim

N→∞

[
LG̃ST

t
− logN

]
≤ ϵ E

e∈Et

log E
e−∈Et

[
λ
N
e1/τ + ef

−(·;Θt)/τ
]

E
e−∈Et

ef−(·;Θt)/τ

 ≤ ϵ
λ

N
e

2
τ

(5.20)

Therefore, for LST
s→t in this side, we have:

LST
s→t − logN − lim

N→∞

[
LST

s→t − logN
]
≤ 1 + ϵ

1 + β

λ

N
e

2
τ , (5.21)

where β is the ratio of pseudo data amount to groundtruth data amount during training.

Similarly, for another side, we have:

lim
N→∞

[
LST

s→t − logN
]
−
[
LST

s→t − logN
]
≤ 1 + ϵ

1 + β

λ

N
e2/τ

+
1 + ϵ

1 + β

5

4
N− 2

3 e
1
τ (e

1
τ − e−

1
τ ).

(5.22)

Therefore, we conclude that the LST
s→t converges to its limit with an absolute deviation

decaying in O( 1+ϵ
1+β
·N−2/3). QED.

Mutually-paced Optimization and Generation. The MP-KD framework can be op-

timized by minimizing Eq. (5.14) w.r.t. Θ and Φ alternatively. The generated pseudo

alignments can help the training of the representation modules by the knowledge distillation,

and in turn transferring temporal events in the target graph can improves alignment module

by providing high-quality representations. In light of this, we propose a mutually-paced

optimization and generation procedure. Generally speaking, we iteratively generate pseudo

alignments and update the representation module and alignment module respectively. To

be concrete, as shown in Algorithm 3.1, we first update the alignment module g(·; Φ) and
transfer temporal events to transfer knowledge from source to target. Then we divide the

time span into several time steps to update the student representation module from recent

time step to far away ones. Finally, we generate the pseudo alignments, as the optimization

Θt on all temporal events can improve the entity feature quality, which is beneficial for

alignment prediction. Algorithm 3.1 summarizes the training procedure.
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Table 5.2: Statistics of the datasets.

Languages Entity Relation Quadruple Train/Val/Test Time

English (EN) 34,416 105 602K 602K/0K/0K 28

French (FR) 32,546 105 580K 580K/0K/0K 28

Spanish (ES) 31,808 105 316K 114K/136K/66K 40

German (DE) 27,657 105 268K 97K/114K/56K 40

Italian (IT) 23,734 94 236K 84K/100K/51K 40

Danish (DA) 15,710 94 125K 48K/50K/26K 40

Slovene (SL) 13,250 94 55K 24K/21K/10K 40

Bulgarian (BG) 3,508 105 23K 8K/9K/6K 40

5.4 THE EVALUATION OF MP-KD

We evaluate MP-KD on EventKG data [143] including 2 source languages and 6 target

languages, and we aim to answer the following research questions:

• RQ1: How does MP-KD perform compared with state-of-the-art models on the low-

resource target languages?

• RQ2: How do reliability of alignment information (with various noise ratio) affect model

performances?

• RQ3: How do each component and important parameters affect MP-KD performance?

5.4.1 Datasets

Dataset Information. The commonly utilized benchmark TKGs are divided into two

categories: temporal event graphs [149] and knowledge graphs where temporally associated

facts have valid periods [10], [11], [150]. In this paper, we mainly evaluate MP-KD on the

EventKG [143], which is a multilingual resource incorporating event-centric information

extracted from several large-scale knowledge graphs such as Wikidata [11], DBpedia [150]

and YAGO [10]. Each temporal event is organized as (e, r, e′, ts, te), where each piece of data

is attached with a valid time period from start time ts to end time te. Following [137], we

preprocess the format such that each fact is converted to a sequence {(e, r, e′, ts), (e, r, e′, ts +
1), · · · , (e, r, e′, te)} from ts to te, with the minimum time unit as one step.

Splitting Scheme. We collect events during 1980 to 2022, and noisy events of early years are

removed. To construct multilingual TKGs, we first preserve important entities and relations

by excluding infrequent ones that have less than 20 events in each language. Then we collect

the events and cross-lingual alignments.To guarantee the relation match, we only preserve
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Table 5.3: Overall Performance without alignment noise. Average results on 5 independent
runs are reported. ∗ indicates the statistically significant improvements over the best baseline,
with p-value smaller than 0.01.

Models Target ES DE IT DA BG SL Avg.

Source MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

RE-GCN w/o source NA 14.31 31.85 16.32 34.19 14.59 31.64 14.19 31.24 10.27 23.44 9.33 21.63 13.17 29.00

Static KG embedding methods

TransE [9]

EN 11.67 26.73 15.19 31.37 9.15 21.44 12.71 23.31 10.17 23.72 9.73 21.83 11.44 24.73

FR 12.37 27.79 14.01 28.30 11.38 23.19 10.05 22.10 11.88 23.01 10.63 22.44 11.72 24.47

T.R. 0.84 0.86 0.89 0.87 0.70 0.71 0.80 0.73 1.07 1.00 1.09 1.02 0.88 0.85

TransR [14]

EN 11.88 28.66 16.01 32.01 8.14 22.07 13.34 24.73 10.33 23.51 8.89 22.12 11.43 25.52

FR 12.01 28.32 14.58 29.51 9.93 24.66 11.90 22.64 11.98 23.44 9.27 23.88 11.61 25.41

T.R. 0.83 0.89 0.94 0.90 0.62 0.74 0.89 0.76 1.09 1.00 0.97 1.06 0.87 0.88

DistMult [15]

EN 13.66 29.77 17.46 33.19 11.63 26.63 14.63 25.91 9.97 22.92 9.08 20.44 12.74 26.48

FR 12.58 28.73 16.03 31.81 12.12 27.76 11.64 22.97 9.01 23.77 10.13 21.07 11.92 26.02

T.R. 0.92 0.92 1.03 0.95 0.81 0.86 0.93 0.78 0.92 1.00 1.03 0.96 0.94 0.91

RotatE [17]

EN 12.99 28.89 19.87 35.46 15.62 30.14 13.44 25.79 11.10 22.98 11.37 23.99 14.07 27.88

FR 13.01 29.33 17.63 34.81 14.99 31.04 11.62 23.17 10.73 23.14 11.10 24.66 13.18 27.69

T.R. 0.91 0.91 1.15 1.03 1.05 0.97 0.88 0.78 1.06 0.98 1.20 1.12 1.03 0.96

Temporal KG embedding methods

TA-DistMult [33]

EN 15.83 34.77 18.99 37.46 14.98 29.99 14.97 30.01 9.02 21.10 8.74 17.76 13.75 28.51

FR 16.61 35.83 17.81 37.96 15.58 31.21 13.21 28.58 9.63 22.91 9.03 18.83 13.65 29.22

T.R. 1.13 1.11 1.13 1.10 1.05 0.97 0.99 0.94 0.91 0.94 0.95 0.85 1.04 1.00

RE-Net [137]

EN 17.58 37.97 19.03 39.46 15.88 33.69 15.03 34.77 12.01 25.72 11.07 25.64 15.10 32.88

FR 17.01 36.79 18.32 38.07 15.47 34.83 15.63 33.86 12.31 25.03 11.79 24.97 15.09 32.26

T.R. 1.21 1.17 1.14 1.13 1.07 1.08 1.08 1.10 1.18 1.08 1.23 1.17 1.15 1.12

RE-GCN [22]

EN 16.88 36.54 19.84 40.17 16.17 34.84 15.99 35.62 12.22 26.02 10.63 23.38 15.29 32.76

FR 17.14 37.01 19.63 41.01 16.44 35.61 15.03 33.19 11.91 25.13 11.09 22.77 15.21 32.45

T.R. 1.19 1.15 1.21 1.19 1.12 1.11 1.09 1.10 1.17 1.09 1.16 1.07 1.16 1.12

Multilingual KG embedding methods

KEnS [138]

EN 15.98 33.91 17.33 37.62 14.41 31.44 14.47 29.61 12.88 26.77 11.03 24.99 14.35 30.72

FR 17.02 34.07 16.61 37.99 15.57 33.82 13.62 30.24 12.03 24.32 10.51 23.86 14.23 30.72

T.R. 1.15 1.07 1.04 1.11 1.03 1.03 0.99 0.96 1.21 1.09 1.15 1.13 1.09 1.06

AlignKGC [139]

EN 13.59 33.19 16.44 33.14 13.71 34.07 12.13 31.07 11.33 26.63 8.32 20.77 12.59 29.81

FR 13.90 34.71 17.14 34.81 14.97 33.65 12.07 30.44 10.92 25.31 9.64 21.28 13.11 30.03

T.R. 0.96 1.07 1.03 0.99 0.98 1.07 0.85 0.98 1.08 1.11 0.96 0.97 0.98 1.03

SS-AGA [140]

EN 15.11 32.19 16.49 36.14 14.83 33.31 12.27 30.68 12.99 27.03 11.55 25.07 13.87 30.74

FR 16.54 33.99 18.32 37.19 15.02 32.99 11.73 29.98 11.13 25.62 11.01 23.64 13.96 30.57

T.R. 1.11 1.04 1.07 1.07 1.02 1.05 0.85 0.97 1.17 1.12 1.21 1.13 1.06 1.06

MP-KD *

EN 19.51 41.55 22.84 49.30 17.18 37.62 18.79 40.01 14.33 30.13 13.87 30.30 17.75 38.15

FR 19.05 42.86 21.67 46.57 17.92 39.18 17.95 37.95 13.85 29.27 12.54 27.36 17.16 37.20

T.R. 1.35 1.33 1.36 1.40 1.20 1.21 1.29 1.25 1.37 1.27 1.42 1.33 1.33 1.3

Gains 11% 13% 15% 20% 9% 10% 18% 12% 10% 11% 18% 18% 16% 16%

relations appearing in English TKG. We split the time span into 40 equal time steps for

training, validation and testing (28/4/8), where each time step roughly lasts for one year. To

focus on the prediction on existing entities during training period, and eliminate the negative

effects possibly caused by the randomly appearning new entities in val/test period, we only

preserve entities having events during training period, following [22]. Table 5.2 shows the

dataset statistics, including 2 source languages and 6 target languages. We purposefully

choose 6 different target languages with diverse characteristics in term of the TKG size, which

can evaluate MP-KD from different data granularity. It is worth noting that to simulate the

scarcity issue in target TKGs, the training quadruples presented in Table 5.2 are randomly

selected from original TKGs, with random ratio 20%.
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5.4.2 Experimental Setup

Baselines. We describe the baselines utilized in the experiments in detail:

• TransE [9] is a translation-based embedding model, where both entities and relations

are represented as vectors in the latent space. The relation is utilized as a translation

operation between the subject and the object entity;

• TransR [14] advances TransE by optimizing modeling of n-n relations, where each entity

embedding can be projected to hyperplanes defined by relations;

• DistMult [15] is a general framework with bilinear objective for multi-relational learning

that unifies most multi-relational embedding models;

• RotatE [17] represents entities as complex vectors and relations as rotation operations in

a complex vector space;

• TA-DistMult [33] is a temporal knowledge graph reansoing method aiming at predicting

missing events in history. We utilize it for predicting future events;

• RE-NET [137] is a generative model to predict future facts on temporal knowledge graphs,

which employs a recurrent neural network to model the entity evolution, and utilizes a

neighborhood aggregator to consider the connection of facts at the same time intervals;

• RE-GCN [22] learns the temporal representations of both entities and relations by

modeling the KG sequence recurrently;

• KEnS [138] starts to directly improve KGR performance on static KGs given a set of

seed alignment, and proposes an ensemble-based approach for the task;

• AlignKGC [139] jointly optimizes entity alignment loss and knowledge graph reasoning

loss to improve the performance;

• SS-AGA [140] views alignments as new edge type and employ a relation-aware GNN

with learnable attention weight to model the influence of the aligned entities.

Evaluation Protocol and Metrics. For each prediction (e, r, ?, t) or (?, r, e, t), we rank

missing entities to evaluate the performance. Following [22], we adopt raw mean reciprocal

rank (MRR) and raw Hits at 10 (H@10) as evaluation metrics. To quantitatively compare

how well the transferred knowledge from the source languages can improve predictions on the
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low-resource languages, we adopt Transfer Ratio (T.R.) to evaluate the average improvement

of each method over the best baseline without knowledge transferring, i.e.:

T.R.(ti) =
1

|S|
∑
si∈S

Model(si → ti)

BestBaseline(ti)
(5.23)

where ti denotes each target language, si ∈ S denotes each source language, and BestBaseline(ti)

denotes the best baseline performance on the target language ti without any knowledge

transferring, i.e., RE-GCN w/o source.

Implementation. For static knowledge graph reasoning methods, i.e., TransE, TransR,

DistMult, and RotatE, we ignore all time information in quadruples, and view temporal

knowledge graphs as static, cumulative ones. For static/temporal KG embedding methods, we

merge source graph and target graph by adding one new type of relation (alignment), as they

do not explicitly model cross-lingual entity alignment. For multilingual baselines, we train

them on 1-to-1 knowledge transferring (instead of the original setting) for fair comparison.

For static baselines, we utilize the static embeddings for predictions in all time steps. For fair

comparisons, we keep the dimension of all embeddings as 128, we feed pre-trained TransE

embeddings on the merge graph including both source and target TKGs to those that require

initial entity/relation embeddings. We tune learning rate of baselines based on MRR on

validation set, and we train all baseline models and MP-KD on same GPUs (Nvidia A100)

and CPUs (Intel(R) Xeon(R) Platinum 8275CL).

We first utilize the source TKG to train the teacher representation module. Then we

initialize the student module with the parameters of the teacher. During the training

procedure, we first optimize the objective without generating pseudo data in the first 10

epoch. After that, we start to generate high-quality pseudo data. For the generation in each

epoch, we gradually increase the amount of pseudo alignments from 10% to 40%, and transfer

all temporal events that meet the requirement. During evaluation, we tune hyperparameters

based on MRR on validation set, and report the performance on the test set. Next, we report

the choices of hyperparameters. For model training, we utilize Adam optimizer, and set

maximum number of epochs as 50. We set batch size as 256, the dimension of all embeddings

as 128, and dropout rate as 0.5. For the sake of efficiency, we set number of temporal

neighbors b as 8, and employ 1 neighborhood aggregation layer in temporal encoder. For

TKG reasoning, we set negative sampling factor as 10. For entity alignment, we set negative

sampling factor as 50. For temporal generation process, We divide time span into 4 time

intervals. For model training, we mainly tune margin value λ1, λ2 in score functions in range

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, learning rate in range {0.02, 0.01, 0.005, 0.001, 0.0005}.
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Figure 5.3: Experimental results under various alignment noise ratios. Average H@10 on
6 target languages are reported. MP-KD achieves relatively robust results, with only 3.7%
relative drop, others have over 10% drop.

5.4.3 Experiments on Cross-lingual Reasoning (RQ1)

We first evaluate the model performance with incomplete cross-lingual alignments, where

we randomly preserve 10% alignments of the target entities for distilling knowledge. Table 5.3

reports the overall results for the cross-lingual experiments. By utilizing only 10% cross-

lingual alignments, MP-KD achieves 33% (MRR) and 30% (H@10) relative improvement

over best baseline without the knowledge transferring (RE-GCN w/o source) on average,

demonstrating the effectiveness of MP-KD in modeling alignments for knowledge transferring.

Compared with ten baselines using alignments, MP-KD still achieves relative 14% relative

improvements over the second best results. Specifically, we have the following observations:

• Static baseline (TransE, TransR, DistMult, RotatE) fail to beat RE-GCN w/o source,

although using alignments, due the insufficient modeling of temporal information. Similarly,

multilingual methods (KEnS, AlignKGC, SS-AGA) also produce unsatisfying results;

• All temporal baselines (TA-DistMult, RE-Net, RE-GCN) manage to beat RE-GCN w/o

source, as the modeling of both temporal evolution and cross-lingual alignment can facilitate

the representation learning of target entities. But the improvements are marginal compared

with our model, as the effect of knowledge distillation is constrained by the limited amount

of cross-lingual alignments;

• Our model consistently achieves the best performance. Through 10% alignments, MP-KD

can progressively transfer temporal knowledge and generate pseudo alignments with high
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Table 5.4: Ablation Studies.

Ablations Target ES SL Avg.

Source MRR H@10 MRR H@10 MRR H@10

MP-KD w/o

Align. Strength

Control

EN 17.61 38.59 13.07 28.51 16.24 37.04

FR 17.07 39.46 13.03 28.14 16.33 36.61

T.R. 1.21 1.23 1.27 1.21 1.21 1.22

MP-KD w

Pure Training

EN 17.09 37.03 11.89 26.25 14.81 31.90

FR 16.99 37.10 11.78 25.91 14.97 32.15

T.R. 1.19 1.16 1.15 1.11 1.13 1.09

MP-KD w/o

Pseudo Align.

EN 17.97 38.04 12.31 27.83 15.98 34.83

FR 17.55 38.45 12.19 26.32 15.79 35.27

T.R. 1.24 1.20 1.19 1.16 1.22 1.19

MP-KD w/o

Event Transfer

EN 18.79 39.03 13.07 28.07 16.03 36.74

FR 18.83 39.88 12.95 28.79 15.99 36.95

T.R. 1.31 1.24 1.27 1.21 1.27 1.24

MP-KD

EN 19.51 41.55 14.33 30.13 17.75 38.15

FR 19.05 42.86 13.85 29.27 17.16 37.20

T.R. 1.35 1.33 1.37 1.27 1.33 1.3

confidence to boost the effect and range of the knowledge distillation;

• We also notice the uneven improvements across languages, (e.g., 40% improvements for

German, 20% for Italian). We hypothesize it is because of various language dependencies

with source languages.

5.4.4 Experiments under Alignment Noises (RQ2)

In reality, cross-lingual alignments can be obtained by human labeling or rule-based

inference modules, which may introduce indispensable noises. We evaluate how the reliability

of alignment information affects baseline models and MP-KD. In this experiment, we still

utilize 10% alignments. To simulate unreliable alignments, we select a subset of alignments

(measured by Noise Ratio) and randomly change the aligned target entity to another entity

without alignment information.

We vary the noise ratio from 0.0 to 0.2 to evaluate the models performance, as shown in

Figure 5.3. We report the average H@10 on 6 target languages by utilizing English TKG and

French TKG respectively. As expected, with the increase of noise ratio, the performances of

all compared models degrade, as the wrong alignment links mislead the knowledge transfer

process. Most baselines fail to beat RE-GCN w/o Source even with 10% noise, and all lose

with 20%noise, which indicates that the quality of alignments significantly influences the

model effectiveness in the cross-lingual TKG reasoning task. Notably, MP-KD achieves

relatively robust results, with only 3.7% performance drop, while other strong baselines

have over 10% drop. This is because during the generation of pseudo alignments, MP-KD

can automatically replace those unreliable ones based on the confidence score. Also, in the

alignment module, MP-KD can assign small alignment strength to unreliable alignments.
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5.4.5 Model Analysis (RQ3)

Ablation Study. We evaluate performance improvements brought by the MP-KD framework

by following ablations:

• MP-KD w/o Align. Strength Control uniformly set the alignment strength for all

entities across all time steps;

• MP-KD w Pure Training optimizes the teacher-student framework without pseudo

alignment generation and temporal event transfer;

• MP-KD w/o Pseudo Align eliminates the pseudo alignments generation process;

• MP-KD w/o Event Transfer eliminates the explicit transfer of temporal events.

Table 5.4 reports the results measured by H@10. Each component leads to performance boost.

MP-KD with uniform alignment strength largely degrades performance, due to temporal

knowledge discrepancy. MP-KD without pseudo data generation achieves similar performance

with temporal baselines RE-Net, RE-GCN, because of the limited amount of cross-lingual

alignments. Bother generating pseudo alignments and explicitly transferring temporal events

increase the performance, and combining them together in a mutually-paced procedure (in

MP-KD) can achieve the best results.

The Effect of Pseudo Alignments Ratio. To investigate the effects of the pseudo

alignments on the reasoning performance, we vary the amount of pseudo alignments during

training period and compare the corresponding performance measured by H@10, as shown in

Figure 5.4. The blue line and red line show the performances of single model on complete

target TKG and single model on 20% target TKG (our setting) respectively. From 0.1, MP-

KD starts to generate and expand the initially available alignments. We observe a significant

performance improvement, demonstrating the positive effects of the pseudo alignments. As

expected, we find a performance decrease at 50%, as the added pseudo data with relatively

low confidence start to introduce noise that hurt the performance.

5.4.6 Efficiency Comparison

To demonstrate the efficiency of MP-KD framework, we train MP-KD and baseline models

from scratch on both target language and source language, and compare the training time.

We train all baseline models and MP-KD on same GPUs (Nvidia A100) and CPUs (Intel(R)

Xeon(R) Platinum 8275CL). Figure 5.4 shows that MP-KD significantly outperforms baseline

models with reasonable training time. Notably, we include the pseudo data generation time.
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Figure 5.4: Efficiency analysis and pseudo alignment analysis.

Compared with slow temporal models RE-NET, RE-GCN for knowledge graph reasoning,

MP-KD is more efficient because our temporal encoder can learn temporal entity embeddings

via sampled temporal neighbors at each time without using RNNs.

5.5 RELATED WORK

5.5.1 Knowledge Graph Reasoning

. Knowledge graph reasoning aims to predict missing facts to automatically complete

KGs [8], [10], [11], [150]. It is mostly formulated as measuring the correctness of factual

samples and negative samples by specially designed score functions [9], [17], [151]. Recently,

reasoning on temporal KGs attracts a lot of interests from the community [22], [33], [136],

[137]. Compared with static KG reasoning task, the main challenge lies in how to incorporate

time information. Several embedding-based methods have been proposed. They encode

time-dependent information of entities and relations by decoupling embeddings into static

component and time-varying component [5], [152], [153], utilizing recurrent neural networks

(RNNs) to adaptively learn the dynamic evolution from historical fact sequence [22], [137], or

learning a sequence of evolving representations from discrete knowledge graph snapshots [22],

[137], [154], [155]. However, all of the existing temporal KG reasoning models aim to

extrapolate future facts based on relatively complete TKGs in high-resource languages, and

how to boost reasoning performance for TKGs in low-resource languages through cross-lingual

alignments is largely under-explored.
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5.5.2 Multilingual KG Reasoning

. Entity alignment methods on KGs [129], [148], [156], [157] can automatically enlarge the

alignments by predicting the correspondence between the two KGs. But most of them, if not

all, require the relatively even completeness of two KGs to capture the structural similarities,

which can not be satisfied in our case, as target TKGs are far from complete. Inspired by

recent transfer learning advances [158], some recent works start to study the multilingual KG

reasoning on static graphs [138]–[140], which aim to extract knowledge from several source

KGs to boost the reasoning performance in the target KG, while they still require a sufficient

amount of seed alignments and totally ignore the temporal information in our task. We

extend this line of works on TKGs, where transferring temporal knowledge is more complex.

5.6 SUMMARY

In this chapter, we studied a realistic but underexplored cross-lingual temporal knowledge

graph reasoning problem, which aims at facilitating TKG reasoning in low-resource languages

by distilling knowledge from a corresponding TKG in high-resource language through a small

set of entity alignments as bridges. To this end, we proposed a novel mutually-paced teacher

student framework, namely MP-KD. During training, MP-KD iteratively generates pseudo

alignments to expand the cross-lingual connection, as well as transfers temporal facts to

facilitate student model training in low-resource languages. Our alignment module is learned

to adjust the alignment strength for different entities at different time, thereby maximizing the

benefits of knowledge transferring. We empirically validated the effectiveness of MP-KD on 12

language pairs of EventKG data, on which the proposed framework significantly outperforms

an extensive set of state-of-the-art baselines.
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Chapter 6: LEARNING EMERGING NODES FOR LABEL-EFFICIENT
MODEL ADAPTATION

6.1 OVERVIEW

In this chapter, we investigate a realistic but underexplored problem, called few-shot

temporal graph reasoning, that aims to predict future facts for newly emerging entities based

on extremely limited observations in evolving graphs. It offers practical value in applications

that need to derive instant new knowledge about new entities in temporal graphs with

minimal supervision. Most prior efforts are limited to reasoning about existing entities but

neglecting the commonly observed low-data regime where many new entities emerge with

extremely few observations as new events or topics evolve over time [159]. This restricts their

applicability.

Figure 6.1 shows the amount of new entities appearing over time. New entities continuously

join the temporal graphs on three public temporal graphs, e.g., 41.7, 61.3%, 9.8% of entities

on YAGO, WIKI, and ICEWS18 are new entities that firstly appear in the last 25%

time steps. We further investigate the amount of facts associated with those new entities.

Figure 6.2 shows the corresponding distributions. Most new entities are associated with

a limited amount of facts. Figure 6.1 and Figure 6.2 validate the practical value of our

proposed setting, which aims to predict the future facts of newly emerging entities based on

initial few-shot observations.
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Figure 6.1: Number of entities over time. New entities continuously emerge on three public
temporal graphs.

Instead, inspired by the human ability to recognize new concepts from exposure to only

very few instances, we propose and solve a practical and challenging few-shot temporal

graph reasoning problem that specifically aims to predict future facts for newly emerging

entities with a few observed links on temporal graphs. Existing efforts [160]–[163] in similar

settings simplify the task by ignoring the emergence of new entities over time and randomly

simulating unseen entities on static graphs. This formulation, originating from few-shot
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Figure 6.2: Distribution for new entity occurrences. The figures in first row show the complete
distribution, and the figures in second row show the detailed distribution between [0,200].
Most of new entities are associated with limited amount of facts.

learning in the vision domain [164], [165], fails at capturing the real-world divergence between

the distributions of seen and unseen entities. To the best of our knowledge, the generalized

few-shot temporal reasoning task, that aims to imitate the fast learning ability of humans,

has still not been formally investigated.

6.1.1 Overview of MetaTKGR

The challenges in solving this problem are two-fold: 1) few-shot: the extremely few facts

associated with new entities cannot provide sufficient information for representation learning

from scratch. 2) time shift: new entities usually exhibit different characteristics in the future,

due to the time-evolving nature of temporal graphs. It leads models to generalize poorly in

the future. Unfortunately, prior work fails to overcome these two challenges simultaneously.

On one hand, to enhance low-data entity characterization, a diverse range of neighborhood

aggregation schemes that retrieve related information from other entities are explored, such as

hard subgraph sampling methods (e.g., vanilla hop-based sampling [18], random sampling [166],

personalized Pagerank sampling [3], [167], importance sampling [168], etc) and soft sampling

via trainable attention mechanisms [136], [137], [169]. However, those rigid methods cannot

well adapt to the new entities with the time-varying distributions due to the lack of instant

supervision. On the other hand, recent attempts [162], [170]–[172] leverage meta-learning

to improve unseen entity adaptation. While the setup for unseen entities is simulated by
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randomly splitting entity sets from static graphs, they fail to handle the more realistic

temporal adaptation with large entity variances.

To overcome both the aforementioned challenges, we propose a novel Meta Temporal

graph Reasoning (MetaTKGR) framework, where learning the strategies for sampling and

aggregating neighbors from recent facts (to enhance the new entities’ predictions) can be

dynamically adapted from signals of temporal supervision on their future facts as instant

feedback. Intuitively, the global knowledge of sampling and aggregating can be extracted as

learning to learn ability through such a meta-optimization, which takes the time-evolving

nature of knowledge into consideration, avoiding progressive performance drift over time.

Concretely, we formulate this learning strategy to be parameterized by a temporal encoder.

On the simulated new entities during training phase, starting from the initial few-shot

links, the temporal encoder can softly sample and attentively integrate relative and time-

aware information from the temporal neighbors, making the strategy learning (neighbor

sampling + aggregation) differentiable. The quantitative measurement of how well the

current strategy performs can be reflected in the performance on predicting future facts

allowing one to automatically adjust the strategy in turn. During the nested loop for

meta-optimization, we firstly learn the temporal encoder on recent facts (inner loop), then

gradually increase the difficulties by autoregressively adapting it to farther away future facts

(outer loop). Furthermore, to better estimate the supervision signal given by future facts in

different and unseen distributions, we adopt the PAC-Bayes method [173] to theoretically

analyze the temporal adaptation bound on the future facts. This can serve as an adaptation

regularizer to provide stability and improve the generalization ability of current strategy over

time. Empirically, extensive experiments on three real-world temporal graphs validate the

effectiveness of MetaTKGR, which significantly outperforms all baselines from static/temporal

KG reasoning and few-shot (knowledge) graph learning areas, by up to 11.4% relative gain

on average with competitive efficiency.

6.1.2 Overview of MetaHKG

New entities within real-world temporal graphs follow intriguing distributions that call

for special model design. Firstly, as illustrated in Figure 6.3, the degree distribution of new

entities adheres to a power-law pattern, with the majority being linked to only a few events,

particularly during their initial phase. Furthermore, new entities, denoted by the blue points

in Figure 6.3, display distinct hierarchical structures in contrast to existing entities denoted

by the red points. They are typically distributed on the periphery of these hierarchies.

Hence, effectively few-shot temporal reasoning entails not only the exponential growth of new
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Figure 6.3: (a) New entity degree distribution, most of which are linked to only a few events.
(b) New entities (blue) lie on the periphery of hierarchies. (c) The exponential growth in
hyperbolic space and polynomial growth in Euclidean space on areas of circles.

entities but also their power-law patterns and hierarchical structures. Most existing few-shot

studies [160]–[163] mainly focus on improving reasoning ability to long-tail entities randomly

selected from static graphs instead of emerging entities, ignoring the aforementioned difference

between existing and new entities over time. One recent study, MetaTKGR [5], investigates a

similar setting to ours. However, it is built upon Euclidean spaces more suited for capturing

uniform grid structures. There remains an unexplored space for few-shot temporal reasoning

that simultaneously considers the rapid growth, power-law distribution, and hierarchical

structures of new entities.

Hyperbolic geometry provides a promising alternative to generalize reasoning models to

newly emerging entities. Characterized by constant negative curvature, hyperbolic spaces

naturally accommodate the power-law patterns and hierarchical structures commonly ob-

served in new entities. This property obviates the need for fundamental adjustments of the

embedding space when new entities emerge at the periphery of hierarchies, leading to better

generalizability. Moreover, hyperbolic spaces exhibit an exponential expansion property, as

illustrated in Figure 6.3, wherein the area of circles grows exponentially with respect to

the radius. This aligns with new entity representations that often experience exponential

emergence over time. In contrast, Euclidean space demonstrates only polynomial growth

concerning the radius, leading to higher embedding distortions and correspondingly more

complex model updates when generalizing to new entities. Some researchers study the

embedding in spherical space with positive curvature and show that a spherical embedding

can better capture a cyclic structure [174], such as directional data. [175], [176] develop the

Spherical Variational Autoencoders and apply them in language and document modeling.

[177] proposes a spherical generative model and learns word and paragraph embeddings
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jointly. However, they are not good at capturing power-law distribution and hierarchical

structures of new nodes emerging over time.

Despite the success of hyperbolic representation learning in vision [178]–[181], natural

language [182]–[184] and graph data [185]–[189], enabling the few-shot temporal reasoning

capability in hyperbolic space still faces challenges.

• Challenge #1: how to design operations in hyperbolic space to represent

temporal graphs? Representation learning of new entities requires hyperbolic aggregation

to integrate sufficient information from few-shot neighbors and time encoding that can be

generalized into the future. Existing efforts [186], [187] are unsuitable for few-shot new

entities, including attention mechanism and time encoding, which call for a new model

design.

• Challenge #2: how to effectively generalize the model to new entities with

adaptation on few-shot events? New entities typically have very limited event associa-

tions, making it impractical to learn hyperbolic representations from scratch. It calls for a

novel formulation of model adaptation strategies in hyperbolic space.

To further improve MetaTKGR, we propose a meta-hyperbolic learning framework

MetaHKG to enable the few-shot temporal reasoning capability in a hyperbolic space.

MetaHKG represents new entities by sampling and integrating information from temporal

neighbors, where the inductive aggregation attentively considers entity, relation, and tem-

poral features. The model parameters are categorized into two groups: global parameters

shared across all entities and entity-specific parameters unique to each new entity. We

introduce a meta hyperbolic learning strategy, which involves meta-training the parameters

and subsequently fine-tuning the entity-specific parameters using a few-shot set of initial

events.

To tackle the first challenge, we introduce a hyperbolic time encoding with proven

translation invariance property that maps the time domain to hyperbolic space and a

hyperbolic attention network that calculates attention weights in hyperbolic space. We

harmonize the widely utilized score function [190] and margin loss function [9], [14] with the

proposed hyperbolic operations for model training. To address the second challenge, our

proposed meta-learning strategy is adept at independently learning global parameters and

entity-specific parameters through a nested bi-level optimization procedure. This innovative

approach enhances the model’s ability to generalize to new entities within the hyperbolic

space, reducing the need for extensive spatial adjustments.

Extensive empirical results on three real-world temporal graphs show that the MetaHKG

method outperforms state-of-the-art baselines. Furthermore, MetaHKG excels in predicting
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events taking place among new entities. Importantly, it requires lower-dimensional latent

space and yields a more stable model adaptation than Euclidean counterparts in representing

new entities.

6.2 PRELIMINARIES

In this section, we first formalize the definition of the few-shot temporal reasoning task

on temporal graphs and then introduce the background of hyperbolic geometry. We list and

explain symbols and notations in Table 6.1.

Table 6.1: Symbols and Notations.

Symbol Definition

GT A temporal graph.

E(0,T ) Entity set between (0, T ).

ẽ ∈ E(T,T ′) New entities between (T, T ′).
(es, r, eo, t) An event in TKG.

K Amount of observable events of new entities.
d Dimension of latent spaces.
c Curvature of Poincaré ball space.
Bd,c Poincaré ball space.
TxBd,c Tangent space associated with x.
T0Bd,c Tangent space associated with origin 0.
dB(x,y) Distance in Poincaré ball space.
expcx(v) Exponential map from Euclidean to hyperbolic.
logcx(y) Logarithmic map from hyperbolic to Euclidean.
x⊕c y Möbius addition for two points.
W ⊗c x Hyperbolic linear transformation.
hB
e (t) Hyperbolic entity representation at time t.

ϕB(t) Hyperbolic time encoding of time t.
ωi Trainable parameters in time encoding.
Nẽ(t) Temporal neighbors of new entity at time t.
Θ Model parameters.

Θg, Θe Global and entity-specific parameters.
Sẽ Support set of new entity ẽ.
Qẽ Query set of new entity ẽ.
L(Θ, ·) Predictive loss by using Θ on data ·.

.
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6.2.1 Problem Definition

A temporal graph is denoted as GT = {(es, r, eo, t)|t ≤ T} ⊆ E (0,T ) × R × E (0,T ) × T ,
where E (0,T ) denotes a set of entities that appear in time interval (0, T ), R denotes a set of

relations, and T denotes the timestamp set. Each temporal link (es, r, eo, t) refers to an event

that a subject entity es ∈ E (0,T ) has a relation r ∈ R with an object entity eo ∈ E (0,T ) at

timestamp t ∈ T .
As a temporal graph changes, it continually introduces new entities, causing an expansion

of the entity set over time. Given a time interval (T, T ′), entities that join the graph during

(T, T ′), i.e., ẽ ∈ E (T,T ′) = E (0,T ′) \ E (0,T ) are defined as new entities on time interval (T, T ′),

where \ denotes set minus. Technically, the set of relations R also experiences changes, and

new relations may emerge as time progresses. Nevertheless, it is worth noting that most, if

not all, of the relations are typically present during the training phase, implying that only a

limited number of new relations emerge in the graphs [5]. Consequently, to set the scope,

we focus solely on the newly emerging entities and assume that the set of relations remains

static throughout this paper.

Temporal graph reasoning refers to the problem of predicting future events in the partially

observed TKG. While existing few-shot models simulate unseen entities by randomly selecting

from the existing entities, we focus specifically on predictions for newly emerging entities in

the future. It is formalized as few-shot temporal reasoning task:

Definition 6.1 (Few-shot Temporal Reasoning). Given a partially observed temporal

graph GT (collected no later than T ), we define entities that emerge during the following

period (T, T ′) as new entities. For each new entity ẽ ∈ E (T,T ′) = E (0,T ′) \ E (0,T ), we assume

the first K associated events are available: {(ẽ, ri, ei, ti) or (ei, ri, ẽ, ti)}Ki=1. The task aims to

predict the missing entities in the future events (ẽ, r, ?, t) or (?, r, ẽ, t) given the relation r ∈ R
and specific time T < t ≤ T ′. We further assume K is a small number, i.e., K = {1, 2, 3}, as
a realistic setting.

6.2.2 Hyperbolic Geometry

A Riemannian manifold (M,g) is a branch of differential geometry, where M is a

smooth manifold and g is a Riemannian metric. For each point x on the manifold M,

there is a tangent space TxM as the first-order approximation of M around x. The

Riemannian metric g = (gx)x∈M is a family of inner products defined on tangent spaces, i.e.,

gx : TxM×TxM→ R.
We build our meta hyperbolic framework on the Poincaré ball model. The hyperbolic
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space in d dimensions is the unique, complete, simply connected d-dimensional Riemannian

manifold with constant sectional negative curvature [185]. The Poincaré ball model with

negative curvature −c (c > 0) corresponds to the Riemannian manifold (Bd,c, gBx ), where

Bd,c = {x ∈ Rd : c∥x∥ < 1} is an open ball. To define the inner product, its metric tensor is

gBx = λ2xg
E , where λx = 2/(1−

√
c∥x∥2) is the conformal factor and gE = diag([1, 1, · · · , 1])

is the Euclidean metric tensor. When c = 1, the distance between two points x,y ∈ Bd,c is

given as:

dB(x,y) = arccosh

(
1 +

2∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
. (6.1)

Several other equivalent hyperbolic models exist, such as the hyperboloid and Beltrami-Klein

models, and our framework can be extended to work with any hyperbolic model. However, the

Poincaré ball model is picked as it provides visualizable, interpretable hyperbolic embeddings

and has been extensively exploited in the past.

The map between Euclidean and hyperbolic spaces is achieved through exponential and

logarithmic maps. This is a crucial ability because many input features and operations within

the neural network are primarily defined within the Euclidean space. For any point x ∈ B,
the exponential map expc

x : TxBd,c → Bd,c and the logarithmic map logcx : Bd,c → TxBd,c are

defined for the tangent vector v ̸= 0 and the point y ̸= 0, respectively, as:

expc
x(v) = x⊕c

(
tanh

(√
cλx∥v∥
2

)
v√
c∥v∥

)
, (6.2)

logcx(y) =
2√
cλx

arctanh
(√

c∥ − x⊕c y∥
) −x⊕c y

∥ − x⊕c y∥
, (6.3)

where c is the curvature of the Poincaré ball space, ⊕c is the Möbius addition for two points

x,y ∈ Bd,c:

x⊕c y =
(1 + 2c ⟨x,y⟩+ c|x∥2)x+ (1− c∥x∥2)y

1 + 2c ⟨x,y⟩+ c2∥x∥2∥y∥2
. (6.4)

6.3 THE DESIGN OF METATKGR

In this section, we present a novel framework MetaTKGR to solve the few-shot temporal

graph reasoning problem. We first introduce the basic setup of our learning objective and the

overall framework, and then detail the temporal encoder module to represent new entities,

followed by introduction of meta temporal reasoning for model training.
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Figure 6.4: An overview of MetaTKGR framework. (a) Task illustration; (b) Temporal encoder
parameterized by ϕ samples and aggregates information from temporal neighbors; (c) Meta
temporal reasoning adopts a bi-level optimization to learn ϕ. In the inner optimization:
MetaTKGR initializes entity-specific parameters from global parameters via step (1), and
fine-tunes them on support set via step (2) to optimize entity-specific parameters; In the
outer optimization, MetaTKGR optimizes global parameters on query set via step (3) to
learn good and robust global parameters.

6.3.1 Learning Objective

Suppose we are given a temporal graph GT = {(es, r, eo, t)} ⊆ ET ×R×ET ×T collected

no later than time T . For each new entity ẽ appearing within a later interval (T, T ′), we aim

to predict future links (ẽ, r, e, t) or (e, r, ẽ, t) happening at timestamp t ∈ (T, T ′). Towards

this goal, we measure correctness of each possible quadruple by a score function s(·;ϕ)
parameterized by ϕ, and maximize the scores of true quadruples containing any new entities

in order to rank them higher than all other false quadruples:

max
ϕ

Eẽ∼p(Ẽ)[s(ẽ, r, e, t;ϕ) or s(e, r, ẽ, t;ϕ)], where Ẽ = ET ′ \ ET , t ∈ (T, T ′), (6.5)

where p(Ẽ) denotes distribution of all new entities, ϕ denotes parameters of model to represent

entity/relation into d-dimensional space hẽ,he,hr ∈ Rd. To represent ẽ into hẽ via ϕ , as

aforementioned, the challenges lie in how to enable ϕ to encode generalized knowledge (how

to sample and aggregate temporal neighbors) that can be easily adapted to new ẽ and achieve

robust performance over time, even for a long time interval (T, T ′). We thereby formulate

few-shot temporal graph reasoning as a meta-learning problem to extract such knowledge.

6.3.2 MetaTKGR Framework

Figure 6.4 shows the MetaTKGR framework. To be more formal, each task corre-

sponds to each new entity ẽ over distribution p(Ẽ), and the links can be represented as a
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chronological sequence {(ẽ, ri, ei, ti) or (ei, ri, ẽ, ti)|ti ∈ (T, T ′), ti ≤ tj if i < j}Nẽ
i=1, where

Nẽ denotes total number of links associated to ẽ. Then we divide them into support set

Sẽ = {(ẽ, ri, ei, ti) or (ei, ri, ẽ, ti)}Ki=1, and query set Qẽ = {(ẽ, ri, ei, ti) or (ei, ri, ẽ, ti)}Nẽ
i=K+1,

where K denotes the amount of initially observable facts of ẽ.

During the meta-training phase, we simulate a set of new entities from existing entity

set by assuming there are only few-shot links of these entities (support set Sẽ). The model

first fine-tunes parameters ϕ on Sẽ (inner loop), and then minimizes the predictive loss on

corresponding query set Qẽ using the updated parameters ϕẽ (outer loop). It optimizes the

global sampling and aggregation strategy as generalized knowledge (i.e., learning to learn

ability) by this bi-level optimization, as this procedure mimics the normal machine learning

and inference process. For simplicity, to represent new entity ẽ along time, we denote fϕẽ

as the temporal encoder parameterized by ϕẽ, L(fϕẽ
,Sẽ) as model predictive loss on Sẽ.

Model-agnostic meta-learning (MAML) [164] can be utilized to fulfill this goal as follows:

ϕ∗ ←− argmin
ϕ

Eẽ∼p(Ẽ) [L(fϕẽ
,Qẽ)] , where ϕẽ = ϕ− η∂L(fϕ,Sẽ)

∂ϕ
, (6.6)

where η denotes inner-loop learning rate. However, this training strategy cannot guarantee

good generalization ability over time (challenge 2 ), as they assume identical distributions

between Sẽ and Qẽ, contradicting the facts that new entities are highly evolving over time

on TKGs. To coherently resolve the two challenges, we advance the existing few-shot KG

reasoning works by proposing:

• Temporal encoder, which learns the time-aware representation of each new entity ẽ by

sampling and aggregating information from TKG neighbors on continuous domain.

• Meta temporal reasoning, which learns an optimal sampling and aggregating parameters

via bi-level optimization (inner optimization and outer optimization). The learned

parameters can be easily adapted to new entities and maintain temporal robustness.
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Algorithm 6.1: Temporal Neighbor Sampler.

Input: New entity ẽ, temporal graph Gt, current timestamp t, neighbor budget b, time

bound ∆t.

Output: Temporal Neighbor Nẽ(t).

1 Initialize Queue ← ẽ, Nẽ(t) ← {};
2 while |Nẽ(t)| < b and Queue is not empty do

3 e← Queue.dequeue();

4 for each (es, r, eo, t) in Gt do
5 if es == e and t > tmax −∆t then

6 Add (es, r, t) to Nẽ(t), Add es to Queue;

7 end

8 if eo == e and t > tmax −∆t then

9 Add (eo, r, t) to Nẽ(t), Add eo to Queue;

10 end

11 end

12 end

6.3.3 Temporal Encoder

On temporal graphs, entities are evolving over time. The temporal encoder fϕ is to embed

each entity ẽ into low-dimensional latent space at each time: hẽ(t) ∈ Rd, where it can model

the temporal pattern of ẽ along time. By doing so, it resolves the scarcity issues caused by

few-shot links to some extent. Towards this goal, fϕ first samples temporal neighbors from

TKGs, then attentively aggregates information from the temporal neighbors of each entity,

which takes neighbor feature, relation feature and time feature into account.

To better represent few-shot entities, a wider range of neighbors should be considered, as

the close neighbors around the new entities are usually insufficient. Conventionally, stacking

several graph neural networks (GNNs)-based layers can integrate information from multi-hop

neighbors [18], [166]. In few-shot cases, such layer-by-layer procedure faces difficulties. For one

thing, the limited one-hop neighbors can dominate the aggregation process, as the information

of multi-hop neighbors is all propagated from them to the target entity. Also, the size of

neighbors grows exponentially with the increase of GNN layers, as they collect all neighbors

in each hop without strategic selection, causing severe efficiency issues. Instead, our temporal

encoder first samples multi-hop neighbors via a time-bounded breadth-first-search algorithm,

then aggregates information directly from the sampled neighbors in an attentive manner. As

summarized in Algorithm 6.1, at each time, it selectively samples up to b multi-hop temporal
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neighbors Nẽ(t) which have interactions within a recent time range ∆t. Given the temporal

neighbor Nẽ(t) for each new entity, temporal encoder fϕ represents a new entity as hẽ(t) at

time t:

hl
ẽ(t) = σ

 ∑
(ei,ri,ti)∈Nẽ(t)

αẽ,ei

(
hl−1
ei

(ti)W
) , (6.7)

where l denotes the layer number, σ(·) denotes the activation function ReLU, αẽ,ei denotes

the attention weight of entity i to new entity ẽ, and W is the trainable transformation matrix.

To aggregate from history, αẽ,ei is supposed to be aware of entity feature, time delay and

topology feature induced by relations. Thus, we design αẽ,i as follows:

αẽ,ei =
exp(qẽ,ei)∑

(ek,rk,tk)∈Nẽ(t)
exp(qẽ,ek)

, qẽ,ei = a
(
hl−1
ẽ ∥hl−1

ei
∥hri∥Φ(t− ti)

)
, (6.8)

where qẽ,ei measures the pairwise importance by considering the entity embedding, relation

embedding and time embedding, a ∈ R4d is the shared parameter in the attention mechanism.

Following [144] we adopt random Fourier features as time encoding Φ(∆t) to reflect the time

difference.

6.3.4 Meta Temporal Reasoning

Let hL
ẽ (t) denote the representations of new entity ẽ produced by fϕ with L layers. For

each quadruple (ẽ, r, e, t), we employ a translation-based score function [9] to measure the

correctness: s(ẽ, r, e, t;ϕ) = −∥hL
ẽ (t) + hr − hL

e (t)∥2. We first fine-tune fϕ on support set

Sẽ for entity-specific parameters fϕẽ
, and then optimize training loss on query set Qẽ to

learn the global parameters shared by all entities. To calculate the predictive loss, since

each set only contains positive quadruples, we perform negative sampling [9] to update

MetaTKGR by training it to rank positive quadruples higher than negative ones. Specifically,

taking the support set Sẽ of entity ẽ as an example, we construct a negative set S−
ẽ =

{(ẽ, r, e−, t) or (e−, r, ẽ, t)} by replace the ground truth entity e with a corrupted entity e−.

We then use empirical hinge loss on the given set as follows:

L̂(fϕẽ
,Sẽ) =

∑
(es,r,eo,t)∈Sẽ

∑
(es,r,eo,t)−∈S−

ẽ

max
(
γ − s(es, r, eo, t) + s(es, r, eo, t)

−, 0
)
, (6.9)

where γ > 0 is a margin value to distinguish positive and negative quadruples.
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Algorithm 6.2: MetaTKGR: Meta-training.

Input: Temporal graph GT ⊆ ET ×R× ET × T , randomly initialized ϕ.

Output: Learned global parameter ϕ.

1 Simulate new entity set Ẽ from ET ;
2 Train model parameter ϕ from many-shot entities ET \ Ẽ ;
3 Construct Sẽ and Qẽ for each new entity ẽ, where Qẽ = {Q(1)

ẽ ,Q(2)
ẽ , · · · ,Q(M)

ẽ };
4 while ϕ not converge do

5 for each time interval m do

6 # Outer optimization:

7 for each new entity ẽ do

8 # Inner optimization:

9 Calculate L̂(fϕ,Sẽ) on Sẽ by Eq. (6.9);

10 Perform adaptation by Eq. (6.10) to update ϕẽ;

11 Calculate L̂(fϕẽ
,Q(m)

ẽ ) by Eq. (6.9);

12 end

13 Calculate temporal adaptation regularizer by Eq. (6.30);

14 Update ϕ(m) by Eq. (6.31);

15 ϕ← ϕ(m)

16 end

17 end

Inner optimization: For each task corresponding to new entity ẽ ∼ p(Ẽ), we first adapt the
global parameter ϕ for each new entity ẽ by minimizing the predictive loss on the support

set Sẽ:

ϕẽ = ϕ− η∂L̂(fϕ,Sẽ)
∂ϕ

, (6.10)

where η is the inner loop learning rate. By Eq. (6.10), we simulate the adaption for

new entities. Updating from an optimal global parameter ϕ, the model is fine-tuned into

entity-specific for new entities. Thus, it is crucial to design a meta-learning strategy to learn

an optimal global parameter ϕ with a robust generalization ability over time.

Outer optimization: Since new entities evolve over time, it is not only Qẽ but also each

part of Qẽ that follows different distributions. Thus, instead of optimizing the meta-learner

on the whole query set Qẽ at once by Eq. (6.6), we first adapt entity-specific parameters

ϕẽ to recent facts, then gradually increase the difficulties by autoregressively adapting it to

farther away future facts. Through this process, we are able to guide and stablize the training

of global parameters via a temporal signal. Specifically, we split the time span of query sets
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into M time intervals, where each new entity has a sequence of query set corresponding to

different time intervals Qẽ = {Q(1)
ẽ ,Q(2)

ẽ , · · · ,Q(M)
ẽ }. We first adapt and optimize ϕẽ for each

new entity on Q(1)
ẽ for ϕ(1) encoding global knowledge for predictions in the 1-st time interval.

Then we gradually adapt each ϕẽ fine-tuned from last time interval on farther away intervals

until ϕ(M) is learned, which maintain temporal robustness from time interval 1 to M .

We then discuss how to measure the feedback (predictive loss) from each adaptation. To

simulate real scenarios, we assume query sets to follow different and unseen distributions.

Taking adaptation from m-th time interval to m+ 1-th time interval as example, we view

p(ϕ(m)) as prior parameter distribution and aim to learn the posterior parameter distribution

q(ϕ(m+1)) conditioning on query set in m+1-th interval. The unseen query set distribution in

m+ 1-th interval prevent us to estimate q(ϕ(m+1)) by either using unbiased empirical loss or

Bayes rules. To resolve this, we instead adopt the PAC-Bayes method [173], which allows one

to learn a parameter posterior that fits the observations without knowing the observations

distribution. We propose the following theorem to relate real predictive loss in new time

interval with its empirical verson:

Theorem 6.1 (PAC-Bayes Generalization Bound on Temporal Adaptation). Let

D(m+1) =
⋃

ẽ∈Ẽ Q
(m+1)
ẽ denote all query sets in m+ 1-th time interval of all new entities from

Ẽ . For any δ ∈ (0, 1) and learned parameter distribution p(ϕ(m)) in last time interval, with

probability at least 1− δ on D(m+1):

L(fϕ(m) ,D(m+1)) ≤ L̂(fϕ(m) ,D(m+1)) +

√
KL(q(ϕ(m+1))∥p(ϕ(m))) + log |D(m+1)|

δ

2|D(m+1)| − 1
, (6.11)

where L(fϕ(m) ,D(m+1)) = Eẽ∼p(Ẽ)

[
L(f

ϕ
(m)
ẽ
,Q(m+1)

ẽ )
]
denotes real predictive loss on new time

interval with new and unknown data distribution, L̂(fϕ(m) ,D(m+1)) denote the empirical

version of the loss, and KL(·∥·) is the Kullback-Leibler divergence.

Proof. As a realistic scenario, D(m+1) in the new time interval follow different distribution

from those in the last time interval, i.e., m-th time interval, and such new distribution is

unknown at advance. To improve the generalization ability over time, we gradually adapt

model parameters learned from last time interval ϕ(m) to next time interval, resulting in

updated parameters ϕ(m+1). Formally, we view p(ϕ(m)) as prior parameter distribution and

aim to learn the posterior parameter distribution q(ϕ(m+1)) conditioning on D(m+1). The

unseen distribution of D(m+1) prevents us from estimating q(ϕ(m+1)) by either using unbiased

empirical loss or Bayes rules. Therefore, for convinience of discussion, we first define the
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difference of real predictive loss and its empirical extimation as follows:

∆L = L(fϕ(m) ,D(m+1))− L̂(fϕ(m) ,D(m+1)). (6.12)

We are interested at the relation of ∆L and the distribution discrenpency between p(ϕ(m))

and p(ϕ(m+1)). Towards this goal, following [173], [191], we construct the following function:

f(D(m+1)) = 2(|D(m+1)| − 1)Eϕ∼q(ϕ(m+1))

[
(∆L)2

]
−KL(q(ϕ(m+1))∥p(ϕ(m))). (6.13)

Next, using Markov’s inequality, we have:

p(f(D(m+1)) > ϵ) = p(ef(D
(m+1)) > eϵ) ≤

Eẽ

[
ef(D

(m+1))
]

eϵ
, (6.14)

where Eẽ

[
ef(D

(m+1))
]
denotes the expectation of ef(D

(m+1)) w.r.t. new entity distribution. To

upper bound the expectation, we have the following inequality:

f(D(m+1)) = 2(|D(m+1)| − 1)Eϕ∼q(ϕ(m+1))

[
(∆L)2

]
−KL(q(ϕ(m+1))∥p(ϕ(m))) (6.15)

= Eϕ∼q(ϕ(m+1))

[
log

(
e2(|D

(m+1)|−1)(∆L)2 q(ϕ
(m+1))

p(ϕ(m))

)]
(6.16)

≤ log

(
Eϕ∼q(ϕ(m+1))

[
e2(|D

(m+1)|−1)(∆L)2 q(ϕ
(m+1))

p(ϕ(m))

])
(6.17)

= log
(
Eϕ∼p(ϕ(m))

[
e2(|D

(m+1)|−1)(∆L)2
])
, (6.18)

where Jensen’s inequality is utilzied to derive the inequality. Therefore, we have

Eẽ

[
ef(D

(m+1))
]
≤ EẽEϕ∼p(ϕ(m))

[
e2(|D

(m+1)|−1)(∆L)2
]

(6.19)

= Eϕ∼p(ϕ(m))Eẽ

[
e2(|D

(m+1)|−1)(∆L)2
]
, (6.20)

we switch the order of expectations because p(ϕ(m)) is independent to D(m+1). Next, based

on Hoeffding’s inequality, we have:

p(∆L > ϵ) ≤ e−2|D(m+1)|ϵ2 , (6.21)

and we can further derive the following inequality:

Eẽ

[
ef(D

(m+1))
]
≤ Eϕ∼p(ϕ(m))Eẽ

[
e2(|D

(m+1)|−1)(∆L)2
]
≤ |D(m+1)|. (6.22)
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Combining Eq. (6.22) and Eq. (6.14), we get:

p(f(D(m+1)) > ϵ) ≤ |D
(m+1)|
eϵ

= δ, (6.23)

where δ = |D(m+1)|/eϵ. Therefore, with probability of at least 1 − δ, we have that for all

ϕ(m+1):

f(D(m+1)) = 2(|D(m+1)| − 1)Eϕ∼q(ϕ(m+1))

[
(∆L)2

]
−KL(q(ϕ(m+1))∥p(ϕ(m))) (6.24)

≤ log |D(m+1)|
δ

. (6.25)

Further, by utilizing Jensen’s inequality again, we have:

(
Eϕ∼q(ϕ(m+1)) [(∆L)]

)2 ≤ Eϕ∼q(ϕ(m+1))

[
(∆L)2

]
(6.26)

≤
KL(q(ϕ(m+1))∥p(ϕ(m))) + log |D(m+1)|

δ

2(|D(m+1)| − 1
. (6.27)

Subsituting definition of ∆L in Eq. 6.27, we proof the PAC-Bayes Generalization Bound

on Temporal Adaptation:

L(fϕ(m) ,D(m+1)) ≤ L̂(fϕ(m) ,D(m+1)) +

√
KL(q(ϕ(m+1))∥p(ϕ(m))) + log |D(m+1)|

δ

2|D(m+1)| − 1
(6.28)

Based on Eq. 6.28, we define the following temporal adaptation regularizer:

R(fϕ(m) ;D(m+1)) ≜ L̂(fϕ(m) ,D(m+1)) +

√
KL(q(ϕ(m+1))∥p(ϕ(m))) + log |D(m+1)|

δ

2|D(m+1)| − 1
. (6.29)

QED.

Thus, using Theorem 6.1, we can adapt ϕ(m) to m + 1 time interval and estimate

the feedback (predictive loss) for our meta-learning framework via the following temporal

adaptation regularizer:

R(fϕ(m) ;D(m+1)) ≜ L̂(fϕ(m) ,D(m+1)) +

√
KL(q(ϕ(m+1))∥p(ϕ(m))) + log |D(m+1)|

δ

2|D(m+1)| − 1
. (6.30)

Remark. To interpret the temporal adaptation regularizer R(fϕ(m) ;D(m+1)), it can be viewed

as a combination of empirical risk on the query set in the new time interval as well as a
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regularizer of parameter distribution across time intervals in form of KL-divergence. The

regularizer along time domain can guarantee that global knowledge ϕ is trained by predictive

losses from all time intervals without overfitting in specific time interval. Thus, we can

improve the generalization ability of our meta-learner over time by the following update step

by step, from m = 1 to m =M :

ϕ(m+1) = ϕ(m) − β
∂R(fϕ(m) ;D(m+1))

∂ϕ
, (6.31)

where ϕ(0) can be obtained by training on existing entities. The meta-training phase of

MetaTKGR is summarized in Algorithm 6.2. During meta-test phase, given a new entity

ẽ, we can first fine-tune ϕ on few-shot links, and then utilize fϕẽ
to represent ẽ for future

predictions.

6.4 THE EVALUATION OF METATKGR

6.4.1 Datasets

We validate the proposed MetaTKGR framework on three public temporal knowledge

graphs: 1) YAGO [10]: YAGO is a collection from the Wikipedias in multiple lan-

guages. 2)WIKI [11]: WIKI is a newly collected temporal knowledge graph of Wikipedias.

3)ICEWS18 [149]: Integrated Crisis Early Warning System (ICEWS18) is the collection

of coded interactions between socio-political actors which are extracted from news articles.

ICEWS18 is collected from 1/1/2018 to 10/31/2018, and the minimum time unit is one day;

YAGO and WIKI span much longer periods (184 years and 232 years respectively), with one

year as minimum time units. They can validate our temporal framework within different time

ranges. Notably, ICEWS18 represents temporal facts as quadruples (es, r, eo, t), and WIKI,

YAGO datasets consist of facts in format (es, r, eo, [ts, te]), where each fact is associated with

a valid time range from start time ts to end time te. We follow [137] to preprocess WIKI and

YAGO. Specifically, we preprocess the format such that each fact is converted to a sequence

{(es, r, eo, ts), (es, r, eo, ts + 1), · · · , (es, r, eo, te)} from ts to te, with the minimum time unit

as one step. Noisy events of early years are removed (before 1786 for WIKI and 1830 for

YAGO). Table 6.2 shows the detailed statistics.

Given the temporal knowledge graph, we first split the time duration into four parts with a

ratio of 0.4:0.25:0.1:0.25 chronologically, then we collect the entities that firstly appear in each

period as well as the associated facts as training/meta-training/meta-validation/meta-test set.
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Table 6.2: Dataset statistics.

Datasets # Entities # Relations # Quadruples Time Unit

YAGO 10,623 10 201,090 1 year

WIKI 12,554 24 669,935 1 year

ICEWS18 23,033 256 281,205 1 day

For the nodes in the meta-validation and meta-test set, we assume that their first K = 1, 2, 3

facts are known and can be used to adapt parameters for meta-learning based methods or

train/compute new entity representations for non-meta ones. The remaining facts are utilized

to evaluate performance of baseline models and MetaTKGR.

6.4.2 Experimental Setup

Setup. For static knowledge graph reasoning methods, i.e., TransE, TransR, and RotatE,

we ignore all time information in quadruples, and view temporal knowledge graphs as static,

cumulative ones. Then we train the models with training set, meta-training set as well as first

K triples of each new entity in meta-validation and meta-test sets. For temporal knowledge

graph reasoning methods RE-NET and RE-GCN, we train the models with training set,

meta-training set as well as first K quadruples of each new entity in meta-validation and

meta-test sets. For baselines that optimize few-shot entities on static knowledge graphs, we

ignore all time information in quadruples. We train them via training set and meta-training

set, and adapt parameters via the first K quadruples of each new entity in meta-validation

and meta-test sets. As for MetaDyGNN, since it is designed for homogeneous graphs, we

adopt score function of TransE in the framework to support it on temporal knowledge graphs.

Similarly, training and meta-training sets are utilized to train initial model parameters, then

the few-shot facts of new entities are used to adapt entity-specific model parameters. For fair

comparisons, we keep the dimension of all embeddings as 128, we feed pre-trained 1-shot

TransE embeddings to those that require initial entity/relation embeddings, and we train

all baseline models and MetaTKGR on same GPUs (GeForce RTX 3090) and CPUs (AMD

Ryzen Threadripper 3970X 32-Core Processor).

We use training set to train MetaTKGR for parameter initialization, then we simulate

few-shot tasks by utilizing meta-training set to adapt model parameters and further improve

the temporal generalization ability. For new entities, we use initial K = 1, 2, 3 facts to

fine-tune entity-specific models. During evaluation, we tune hyperparameters based on MRR

on meta-validation set, and report the performance on the remaining facts on meta-test

set. Next, we report the choices of hyperparameters. For model training, we utilize Adam

optimizer, and set maximum number of epochs as 50. We set batch size as 20, the dimension of

106



all embeddings as 128, and dropout rate as 0.5. For the sake of efficiency, we set the neighbor

budget b of temporal neighbor sampler as 16, and employ 1 neighborhood aggregation layer

in temporal encoder. We divide query sets into 3 time intervals to simulate the real scenario.

We perform a single step of gradient descent for inner loop optimization. We mainly tune

margin value γ in score functions in range {0.3, 0.4, 0.5, 0.6, 0.7}, inner/outer loop learning

rate η and β in range {0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001}. For YAGO and

ICEWS18, we set γ = 0.5, η = β = 0.0001. For WIKI, we set γ = 0.4, η = 0.00005, and

β = 0.0001.

Baselines. We compare nine state-of-the-art baselines from four related areas: 1) TransE [9],

2) TransR [14], 3) RotatE [17]: Translation distance based embedding methods for static

knowledge graphs; 4) RE-NET [137], 5) RE-GCN [22]: Temporal knowledge graph

embedding methods; 6) LAN [161]; 7) I-GEN [162]; 8) T-GEN [162]: Few-shot methods

on static knowledge graph; 9)MetaDyGNN [192]: A meta-learning framework for few-shot

link prediction on homogeneous graphs. We describe the baseline models utilized in the

experiments in detail:

• TransE [9] is a translation-based embedding model, where both entities and relations

are represented as vectors in the latent space. The relation is utilized as a translation

operation between the subject and the object entity;

• TransR [14] advances TransE by optimizing modeling of n-n relations, where each

entity embedding can be projected to hyperplanes defined by relations;

• RotatE [17] represents entities as complex vectors and relations as rotation operations

in a complex vector space;

• RE-NET [137] is a generative model to predict future facts on temporal knowledge

graphs, which employs a recurrent neural network to model the entity evolution, and

utilizes a neighborhood aggregator to consider the connection of facts at the same time

intervals;

• RE-GCN [22] learns the temporal representations of both entities and relations by

modeling the KG sequence recurrently;

• LAN [161] computes the embedding of entities by GNN-based neighboring aggregation

scheme, and attention mechanisms are utilized to consider relations with neighboring

information for new entities;

• I-GEN [162] utilizes meta-learning technique to learn the representations of new

entities, which is achieved by aggregating information from neighbors attentively;
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Table 6.3: The results of 3-shot temporal knowledge graph reasoning. Average results on 5
independent runs are reported. ∗ indicates the statistically significant improvements over the
best baseline, with p-value smaller than 0.001.

Models
YAGO WIKI ICEWS18

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.223 0.158 0.242 0.360 0.161 0.111 0.171 0.236 0.058 0.052 0.062 0.098

TransR 0.234 0.165 0.259 0.382 0.183 0.138 0.188 0.245 0.061 0.062 0.073 0.109

RotatE 0.241 0.182 0.278 0.409 0.232 0.171 0.223 0.284 0.078 0.074 0.082 0.128

RE-NET 0.261 0.210 0.298 0.410 0.261 0.210 0.251 0.331 0.232 0.139 0.241 0.369

RE-GCN 0.283 0.226 0.307 0.421 0.277 0.223 0.262 0.344 0.233 0.142 0.238 0.350

LAN 0.230 0.154 0.247 0.352 0.185 0.133 0.201 0.287 0.207 0.119 0.234 0.321

I-GEN 0.303 0.238 0.323 0.420 0.221 0.179 0.229 0.264 0.212 0.120 0.251 0.346

T-GEN 0.292 0.218 0.310 0.394 0.234 0.185 0.222 0.271 0.169 0.122 0.184 0.265

MetaDyGNN 0.350 0.270 0.379 0.511 0.309 0.238 0.309 0.459 0.307 0.216 0.309 0.469

MetaTKGR 0.370* 0.303* 0.416* 0.558* 0.329* 0.253* 0.335* 0.489* 0.335* 0.249* 0.340* 0.527*

Gains (%) 5.68 12.21 9.80 9.19 6.26 6.38 8.47 6.35 9.11 14.85 9.89 12.4

Table 6.4: The results of 1-shot and 2-shot experiment.

YAGO WIKI ICEWS18

1-shot 2-shot 1-shot 2-shot 1-shot 2-shotModels

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

TransE 0.183 0.268 0.193 0.304 0.144 0.186 0.146 0.213 0.049 0.077 0.058 0.086

TransR 0.189 0.270 0.198 0.312 0.160 0.183 0.160 0.225 0.050 0.080 0.060 0.090

RotatE 0.215 0.280 0.210 0.359 0.175 0.190 0.201 0.268 0.068 0.098 0.070 0.091

RE-NET 0.221 0.304 0.233 0.390 0.212 0.259 0.239 0.294 0.185 0.250 0.200 0.341

RE-GCN 0.233 0.320 0.241 0.407 0.223 0.250 0.247 0.310 0.193 0.247 0.205 0.347

LAN 0.196 0.269 0.200 0.310 0.174 0.275 0.162 0.273 0.170 0.301 0.188 0.317

I-GEN 0.238 0.321 0.237 0.402 0.181 0.241 0.223 0.287 0.199 0.320 0.177 0.337

T-GEN 0.247 0.331 0.260 0.379 0.202 0.245 0.240 0.319 0.131 0.262 0.161 0.259

MetaDyGNN 0.269 0.396 0.316 0.496 0.241 0.371 0.271 0.390 0.249 0.420 0.269 0.441

MetaTKGR 0.294* 0.428* 0.356* 0.526* 0.277* 0.419* 0.309* 0.441* 0.295* 0.496* 0.301* 0.500*

Gains (%) 9.43 8.04 12.69 6.14 14.64 12.93 14.04 13.20 18.45 17.87 11.47 13.39

• T-GEN [162] further extends I-GEN by optimizing predictions for unseen-unseen links

among unseen users. A stochastic inference is proposed to model the randomness of

such links;

• MetaDyGNN [192] is a recent work modeling the links predictions for new nodes on

homogeneous graphs. A hierarchical meta-learner is proposed to better extract global

knowledge which is beneficial for link prediction task.

Evaluation Protocol and Metrics. For each prediction (ẽ, r, ?, t) or (?, r, ẽ, t), we use

ranking scheme to evaluate the performance. Specifically, we rank all entities at the miss-

ing position in quadruples, and adopt mean reciprocal rank (MRR) and Hits at {1,3,10}
(H@{1,3,10}) as evaluation metrics. It is worth noting that we measure the ranks in a filtered

setting, where we filter other true quadruples existing in datasets, following [14], [17].
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(a) Cross-shot results on YAGO.
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(b) Cross-shot results on ICEWS18.

Figure 6.5: Performance of YAGO (left) and ICEWS18 (right) over time.

6.4.3 Main Results

Table 6.3 and Table 6.4 report overall result for K = 3 and K = 1, 2 few-shot experiments

respectively. On average, MetaTKGR achieves 11.4% relative improvement over best baseline

model, demonstrating the superiority of MetaTKGR in modeling new entity evolution in

low-data regime. Baselines (TransE, TransR, RotatE, RE-NET) that do not optimize for new

entities perform poorly on all datasets, although they are trained on both existing entities

and new entities with few-shot links. LAN, I-GEN, T-GEN also produce unsatisfying results,

despite the fact that they propose special designs to represent new entities. Note that they

have worse performance in some cases than RE-NET that does not optimize for new entities,

as they ignore the temporal information and perform poorly in future predictions. Compared

with MetaDyGNN, MetaTKGR shows consistently better performance, because our temporal

encoder can handle multi-relational graphs in low-data regimes better, and our temporal

meta-learning framework can produce more robust predictions.

Performance of Prediction over Time. Next, we study the performance of MetaTKGR

over time. Figure 6.5 shows the performance comparisons of 3-shot predictions over different

timestamps on the YAGO and ICEWS18 datasets, measured by filtered H@10 metrics.

MetaTKGR consistently beats all strong baselines. Although the compared baselines can

optimize newly emerging entities, they perform poorly in wide time intervals because they

largely ignore the temporal information and the distribution discrepancy caused by evolution.

We notice that the relative gains of our model get more significant with increasing time steps.

It illustrates that our temporal meta-learning framework can improve the generalization

ability over time. Performance on ICEWS18 fluctuates more severely. This is expected since
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Table 6.5: Cross-shot results on YAGO.

1-Shot (Training) 3-Shot (Training)
Test MRR H@1 H@10 MRR H@1 H@10
1-S 0.294 0.240 0.428 0.281 0.242 0.403
3-S 0.354 0.297 0.540 0.370 0.303 0.558
5-S 0.377 0.360 0.569 0.389 0.369 0.591
R-S 0.358 0.304 0.542 0.377 0.316 0.570

the evolution of ICEWS18 is not stable due to the much shorter time unit (day).
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Static Meta-Learning
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MetaTKGR

Figure 6.6: Ablation Studies, evaluated by filtered Hit@10.

6.4.4 Ablation Study

We evaluate performance improvements brought by the temporal meta-learning framework

by following ablations: 1) Fine-Tuning is trained on existing entities without using any meta-

learning strategy, and then fine-tuned on new entities; 2) Static Meta-Learning utilizes

conventional MAML to train models; 3) MetaTKGR w/o Regularizer meta-trains model

parameters on each time interval step by step, without explicitly optimizing the temporal

adaptation regularizer. Figure 6.6 reports the results measured by filtered H@10. We can

conclude that modeling the distribution discrepancy caused by the temporal evolution and

optimizing the temporal adaptation regularizer can improve the performance in the future

prediction. Also, simply fine-tuning the model parameters on new entities leads to poor

results, as during background phase, the model does not extract generalized knowledge that

can be easily adapted to new entities.

6.4.5 Cross-shot Learning

In reality, new entities are usually associated with various numbers of facts initially. Thus,

the robustness of models on different numbers of shots during testing phase is critical. To

110



0 50 100 150 200 250 300
Training Time (min)

0.225

0.250

0.275

0.300

0.325

0.350

0.375

M
RR

TransE

RE-NET

LAN

I-GEN
T-GEN

MetaDyGNN
MetaTKGR

Figure 6.7: MRR over training time.

simulate such scenario, we evaluate MetaTKGR by varying the number of shots including 1-,

3-, 5-, and random-shot (R-S: between 1 and 5) during meta-training and meta-test phases.

Table 6.5 reports the cross-shot learning results. As expected, with the increase of observable

shots during testing phase, the performance becomes better. The differences in the number of

shots used for training do not significantly affect the results, demonstrating that MetaTKGR

trained with a fixed number of shots performs robustly under the various number of shots

during testing.

6.4.6 Efficiency Analysis

We train MetaTKGR and baseline models from scratch on both existing entities and new

entities and compare the training time, for the 3-shot experiment on YAGO. Figure 6.7 shows

that MetaTKGR significantly outperforms baseline models with reasonable training time.

Compared with slow temporal models RE-NET, MetaDyGNN for knowledge graph reasoning,

MetaTKGR is more efficient because 1) our temporal encoder can learn temporal entity

embeddings via sampled temporal neighbors at each continuous timestamp without using

RNNs; 2) our temporal neighborhood sampler can prevent the size of multi-hop neighbors

from increasing exponentially.

6.5 THE DESIGN OF METAHKG

In this section, we present the proposed MetaHKG framework for the few-shot temporal

reasoning task.
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Figure 6.8: An illustrative example of a few-shot temporal reasoning task in a hyperbolic
(Poincaré ball) space.

6.5.1 Overview

The challenges associated with enabling few-shot temporal reasoning capabilities in the

hyperbolic space encompass two key aspects: (1) how to learn temporal entity representations

in TKGs within the hyperbolic space, and (2) how to effectively adapt existing model parameters

to accommodate new entities using limited observations.

To tackle the first challenge, we consider neighbor, time, and relation features in the

hyperbolic space, and introduce two techniques: a hyperbolic time encoding method that

maps the time domain to hyperbolic space (Section 6.5.2) and a hyperbolic attention network

that integrates information from the few-shot neighbors to enhance the representation of new

entities (Section 6.5.3). We incorporate the commonly used score function [190] and margin

loss function [9], [14] compatible with the novel hyperbolic operations for model training

(Section 6.5.4), as illustrated in Figure 6.9.

To address the second challenge, we propose a meta-learning strategy capable of separately

learning global and entity-specific parameters (Section 6.5.5). This approach enhances the

model’s generalization ability to new entities without requiring many observational events

initially, as illustrated in Figure 6.10.

6.5.2 Hyperbolic Time Encoding

To represent each new entity ẽ into hyperbolic latent space at each time: hB
ẽ (t) ∈ Bd,c,

we integrate information from temporal neighbors that are evolving over time to capture

the entity evolution on hyperbolic space. To achieve the goal, we first learn a map (time

encoding) ϕB : T → Bd,c from a time t ∈ T to a hyperbolic vector in Bd,c. When modeling
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the interactions between a new entity and its temporal neighbors, we primarily focus on the

relative timespan rather than the absolute time value. This is because the difference between

the current time and the interaction time conveys more crucial information for effectively

representing the new entity at the current time. Without loss of generality, we assume ti and

tj are two time points to be studied. Therefore, we are interested in the patterns between ti

and tj and the corresponding inner product between time encoding ϕB(ti) and ϕB(tj).

Inspired by [5], [144], [193] that utilize the temporal kernel method and Fourier features,

we define the temporal kernel KB(ti, tj) = ⟨ϕB(ti), ϕB(tj)⟩B, where ⟨·, ·⟩B denotes inner product

in the hyperbolic space. To construct ϕB(t), we first utilize its Euclidean counterpart ϕE(t)

according to [144]:

ϕE(t) =

√
1

d

(
cos(ω1t), sin(ω1t), · · · , cos(ωd/2t), sin(ωd/2t)

)
, (6.32)

where d denotes dimension of the time encoding, (·, ·) denotes concatenation, ωi and θi are

trainable parameters inside the time encoding. Next we use the exponential map in Eq. (6.2)

to transform ϕE(t) into ϕB(t):

ϕB(t) = expc
0(ϕE(t))

=
tanh(

√
cd/2)√

c/2d

(
cos(ω1t), sin(ω1t), · · · , cos(ωd/2t), sin(ωd/2t)

)
.

(6.33)

Theorem 6.2 (Translation Invariance). Let the temporal kernel beKB(ti, tj) = ⟨ϕB(ti), ϕB(tj)⟩B,
where ϕB(t) is defined in Eq. (6.33). Then the temporal kernel is translation-invariant, i.e.,

KB(ti +∆t, tj +∆t) = ⟨ϕB(ti +∆t), ϕB(tj +∆t)⟩B = KB(ti, tj), for any constant ∆t.
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Proof. By Eq. (6.33), the following equation holds:

⟨ϕB(ti), ϕB(tj)⟩B =
tanh2(

√
cd/2)

cd2/2
⟨ϕE(ti), ϕE(tj)⟩ , (6.34)

In the Euclidean space, according to the Bochner’s theorem and [144], we have K(ti, tj) =
⟨ϕE(ti), ϕE(tj)⟩ = ψ(ti − tj), where there exists a function ψ that is translation invariant.

Therefore, we have the following for KB(ti, tj):

KB(ti, tj) = ⟨ϕB(ti), ϕB(tj)⟩B = ψB(ti − tj), (6.35)

where ψB = f ◦ ψ and f(x) =
tanh2(

√
cd/2)

cd2/2
x.

QED.

Different from the existing hyperbolic time encoding for TKGs [194], [195], our time

encoding can be easily generalized to new entities and to future time. Compared with the

methods that utilize trainable curvatures to encode time, our method is easily generalized to

new entities because the number of trainable parameters scales with the number of dimensions

representing time. Our method also preserves the translation invariant property and becomes

irrelevant to the absolute time. In contrast, [194], [195] utilize absolute time encoding, which

cannot be easily generalized to future time beyond the training time range.

6.5.3 Hyperbolic Attention Network

The new entities are associated with a small amount of events initially. Therefore,

representation learning requires neighborhood aggregation in an inductive setting to integrate

sufficient information. We introduce a hyperbolic attention network with the help of hyperbolic

time encoding. Let hB
ẽ (t) denote the representation of a new entity ẽ at time t, Nẽ(t) =

{(ei, ri, ti)} denote the temporal neighbors at time t. For each temporal neighbor, we first

compute the relation-aware message delivered by the entity ei in an event (ei, ri, ti) as follows:

hB,l
ei,ri,ti(t) = Wl

ri
⊗c hB,l−1

ei
(ti)⊕c ϕB(t− ti), (6.36)

where l denotes the l-th layer, Wl
ri
is a relation-aware transformation matrix, ⊗c and ⊕c are

interpreted as linear transformation and add operations on the hyperbolic space Bd,c, and

ϕB(t − ti) is the hyperbolic time encoding capturing the temporal pattern between (t, ti).

Thus, the effect of time delay and relation are considered in the message above. We then
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integrate the messages from all temporal neighbors in an attentive manner, i.e.,:

hB,l
ẽ (t) = expc

0

σ
 ∑

(ei,ri,ti)∈Nẽ(t)

αẽ,ei log
c
0

(
hB,l
ei,ri,ti(t)

) , (6.37)

where σ(·) denotes the activation function ReLU, αẽ,ei denotes the attention weight of entity

i to new entity ẽ, expc
0 and logc0 denote the transformation mapping between the hyperbolic

space Bd,c and the tangent space of the origin T0Bd,c. To aggregate from history, αẽ,ei should

be aware of entity feature, time delay, and topology feature induced by relations. Thus, we

design αẽ,i as a scaled dot product attention mechanism to characterize the importance:

αẽ,ei =
exp(qẽ,ei)∑

(ek,rk,tk)∈Nẽ(t)
exp(qẽ,ek)

,

qẽ,ei =
1√
d

(
Wl

k ⊗c hB,l
ei,ri,ti(t)

)T
·
(
Wl

q ⊗c hB,l−1
ẽ (t)

)
,

(6.38)

where qẽ,ei measures the pairwise importance by considering the message embedding and

time embedding in the hyperbolic space. Finally, we stack L layers to aggregate information

from multi-hop neighbors and obtain the hyperbolic embedding for each new entity. For the

sake of simplicity, we omit the layer number and use hB
ẽ (t) to denote the final output of our

attention network. Next, we introduce how to measure the plausibility of each event and

design training loss based on the embedding.
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6.5.4 Score Function and Training Loss

We adapt commonly-used translation-based score function [9], [14] and margin loss

to hyperbolic embedding for plausibility measurement and model training for each event

(es, r, eo, t). Let Θ denote model parameters, the plausibility measurement s(es, r, eo, t; Θ) is

formalized as follows:

s(es, r, eo, t; Θ) = −dB
(
hB
es(t),h

B
eo(t)⊕

c hr

)2
, (6.39)

where hB
es(t) and hB

eo(t) are hyperbolic embeddings at time t of the subject and object entities,

hr represents the relation embedding in hyperbolic space. Eq. (6.39) is interpreted as a

translation score function in hyperbolic space.

To calculate the predictive loss, since each set only contains positive events, we perform

negative sampling [9] to update MetaHKG by training it to rank positive events higher

than negative ones. Specifically, taking the event (es, r, eo, t) as an example, we construct

a negative set (es, r, e
−, t) by replacing the ground truth object entity eo with a corrupted

entity e−. The same corruption is performed on the subject entity es. We then use empirical

hinge loss on the given set as follows:

L(Θ,GT ) = 1

N |GT |
∑
GT

N∑
i=1

[
s(es, r, e

−
i , t; Θ)− s(es, r, eo, t; Θ) + γ

]
+
, (6.40)

where L(Θ,GT ) denotes the loss on graph GT based on the model parameter Θ, γ > 0 is

a margin value to distinguish positive and negative events, N is the number of negative

samples per each positive event.

6.5.5 Meta Hyperbolic Learning

The proposed hyperbolic attention network naturally applies to new entities during

the inference phase (in an inductive setting) so that we can represent new entities in

hyperbolic space based on few-shot events. The remaining question is how to adjust model

parameters on few-shot events for better reasoning performance. We adopt Model-agnostic

meta-learning (MAML) [164] to improve generalization ability on new entities. More formally,

each task corresponds to temporal reasoning for each new entity ẽ over distribution p(Ẽ).
The events are represented as a chronological sequence {(ẽ, ri, ei, ti) or (ei, ri, ẽ, ti)|ti ∈
(T, T ′), ti ≤ tj if i < j}Nẽ

i=1, where Nẽ denotes total number of links associated to ẽ. Then

we divide them into support set Sẽ = {(ẽ, ri, ei, ti) or (ei, ri, ẽ, ti)}Ki=1, and query set Qẽ =
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Algorithm 6.3: MetaHKG: Training and testing process.

Input: Temporal knowledge graph GT ⊆ ET ×R× ET × T , randomly initialized
parameters (Θg,Θe), K-shot

Output: Learned optimal parameter (Θg,Θe)
∗.

1 Simulate new entity set Ẽ from E(0,T ) on meta-training set;
2 Construct Sẽ and Qẽ for each new entity ẽ, where |Sẽ| = K;
3 # Training start:

4 Optimize model parameter (Θg,Θe) from all events of existing entities E(0,T ) \ Ẽ on training
set;

5 while ϕ not converge do
6 # Outer optimization:
7 for each new entity ẽ do
8 # Inner optimization:
9 Calculate L ((Θg,Θe),Sẽ) on Sẽ. by Eq. (6.39) and Eq. (6.40);

10 Perform adaptation by inner loop of Eq. (6.41) to update ϕẽ;
11 Calculate L ((Θg,Θẽ),Qẽ) by Eq. (6.39) and Eq. (6.40);

12 end
13 Update (Θg,Θe) by outer loop of Eq. (6.41);

14 end
15 # Testing start:
16 for each new entity ẽ do
17 Fix Θ∗

g, fine-tune entity-specific Θe on initial Sẽ into Θẽ;

18 Evaluate model with (Θ∗
g,Θẽ) on future events Qẽ;

19 end

{(ẽ, ri, ei, ti) or (ei, ri, ẽ, ti)}Nẽ
i=K+1, where K denotes the amount of initially observable facts

of ẽ.

As illustrated in Figure 6.10, we use a bi-level optimization to learn good values for

both global and entity-specific model parameters from existing entities and further adapt

entity-specific model parameters for few-shot events initially associated with new entities.

Let Θ = (Θg,Θe) denote model parameters. Intuitively, some of the parameters are global

(denoted as Θg) shared by all entities (both existing and new). In contrast, another set of

parameters is entity-specific (denoted as Θe), whose optimal value varies from entity to entity.

To achieve the goal, during the meta-training phase, we simulate a set of new entities from

the existing entity set by assuming there are only few-shot links of these entities (support

set Sẽ). The model first fine-tunes entity-specific parameters Θe to be Θẽ on Sẽ (inner

loop), and then minimizes the predictive loss on corresponding query set Qẽ w.r.t. (Θg,Θe)

using the updated parameters Θẽ (outer loop). This bi-level optimization that mimics the

normal machine learning and inference process optimizes the global parameters as generalized

knowledge and entity-specific parameters as good initialization for fine-tuning new entities.
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The optimization is formalized as follows:

(Θ∗
g,Θ

∗
e)←− argmin

(Θg ,Θe)

Eẽ∼p(ẽ) [L ((Θg,Θẽ),Qẽ)] (outer loop),

s.t. Θẽ = Θe − η
∂L ((Θg,Θe),Sẽ)

∂Θe

(inner loop),

(6.41)

where η denotes the inner-loop learning rate. We include relation embedding, time encoding,

and space curvature c for global parameters, as they are largely shared by all entities and

critical to shaping the uni-space. The entity-specific parameters include entity embedding

and trainable weights in the hyperbolic attention network. During the meta-test phase,

given a new entity ẽ, we fix the global parameters Θ∗
g, fine-tune Θe on few-shot links, and

then use the model with parameters (Θ∗
g,Θẽ) to represent ẽ for future predictions. The

meta-training/testing phase of MetaHKG is summarized in Algorithm 6.3.

6.6 THE EVALUATION OF METAHKG

We evaluate MetaHKG on three real-world TKG benchmarks, and study the following

research questions:

• RQ1: How does MetaHKG perform compared with state-of-the-art models on the few-shot

temporal reasoning task?

• RQ2: How does each design choice and optimization strategy affect performance and

model parameters?

• RQ3: How does MetaHKG behave differently in hyperbolic space and Euclidean space

respectively?

6.6.1 Datasets

We assess the effectiveness of the MetaHKG framework using three publicly available TKGs.

Specifically, YAGO [10] and WIKI [11] contain time-varying facts, and ICEWS18 [149]

is an event-centric TKG. These datasets cover different time ranges and employ varying

time units, enabling us to evaluate our framework in diverse contexts of evolution. For each

graph, we first split the time duration into 0.4:0.25:0.1:0.25 chronologically, then we collect

the entities that first appear in each period as well as the associated facts as training/meta-

training/validation/test set. For the entities in the validation and test set, we assume that
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Table 6.6: The results of 3-shot temporal reasoning on three datasets. Average results on 5
independent runs are reported. † indicates the results are taken from [5], the same is applied
to Table 6.7.

Dataset YAGO WIKI ICEWS18

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE † 22.3 ± 0.6 15.8 ± 0.4 24.2 ± 0.7 36.0 ± 1.1 16.1 ± 0.7 11.1 ± 0.8 17.1 ± 1.0 23.6 ± 1.1 5.8 ± 0.4 5.2 ± 0.2 6.2 ± 0.7 9.8 ± 1.1

TransR † 23.4 ± 0.9 16.5 ± 0.7 25.9 ± 1.0 38.2 ± 1.3 18.3 ± 0.4 13.8 ± 0.3 18.8 ± 0.6 24.5 ± 0.8 6.1 ± 0.7 6.2 ± 0.3 7.3 ± 0.5 10.9 ± 0.8

DistMult 25.3 ± 0.4 19.3 ± 0.9 27.1 ± 1.3 41.3 ± 0.7 22.3 ± 0.9 18.1 ± 0.9 24.4 ± 1.3 29.3 ± 0.7 9.1 ± 0.4 8.5 ± 0.3 9.9 ± 0.4 14.0 ± 0.5

HolE 23.8 ± 0.5 17.9 ± 0.6 27.1 ± 1.4 39.7 ± 1.3 24.6 ± 0.8 17.0 ± 1.1 23.1 ± 1.4 28.0 ± 1.1 8.1 ± 0.5 9.4 ± 0.8 10.7 ± 1.1 11.8 ± 1.3

ComplEX 26.7 ± 0.9 19.7 ± 0.3 29.1 ± 1.3 42.1 ± 1.1 25.1 ± 0.6 19.1 ± 1.0 23.9 ± 1.4 28.4 ± 1.0 9.3 ± 0.7 9.5 ± 0.5 10.2 ± 1.0 14.1 ± 1.0

RotatE † 24.1 ± 1.2 18.2 ± 0.7 27.8 ± 1.3 40.9 ± 1.1 23.2 ± 0.7 17.1 ± 1.0 22.3 ± 1.3 28.4 ± 1.0 7.8 ± 0.6 7.4 ± 0.7 8.2 ± 0.9 12.8 ± 1.1

AttH 26.9 ± 1.0 21.5 ± 0.8 29.5 ± 1.2 41.2 ± 0.4 24.1 ± 0.9 19.1 ± 0.3 24.6 ± 1.9 30.4 ± 1.1 25.8 ± 0.8 14.1 ± 0.6 22.9 ± 0.2 38.1 ± 0.7

TA-DistMult 24.5 ± 1.9 19.1 ± 0.8 28.7 ± 0.7 40.5 ± 1.1 25.2 ± 0.4 18.9 ± 0.7 24.5 ± 1.0 29.1 ± 0.7 17.8 ± 2.3 11.4 ± 1.1 20.1 ± 1.3 31.2 ± 1.7

RE-NET † 26.1 ± 1.0 21.0 ± 0.9 29.8 ± 0.9 41.0 ± 1.2 26.1 ± 0.6 21.0 ± 0.9 25.1 ± 1.1 33.1 ± 1.0 23.2 ± 1.2 13.9 ± 0.9 24.1 ± 1.2 36.9 ± 1.8

RE-GCN 29.3 ± 2.1 23.1 ± 1.8 31.5 ± 0.8 43.3 ± 1.7 29.4 ± 1.5 23.2 ± 0.8 25.1 ± 1.2 35.4 ± 1.1 23.3 ± 1.1 14.3 ± 1.2 25.2 ± 1.4 35.9 ± 1.1

HERCULES 26.1 ± 0.9 20.1 ± 0.6 28.1 ± 1.1 42.0 ± 1.3 26.8 ± 0.3 22.1 ± 1.1 24.9 ± 1.3 34.8 ± 1.3 24.3 ± 1.3 13.9 ± 0.8 23.8 ± 1.5 36.1 ± 1.3

LAN † 23.0 ± 1.0 15.4 ± 0.7 24.7 ± 0.9 35.2 ± 1.2 18.5 ± 1.5 13.3 ± 1.4 20.1 ± 1.1 28.7 ± 0.7 20.7 ± 0.9 11.9 ± 1.4 23.4 ± 1.5 26.5 ± 1.3

I-GEN† 30.3 ± 1.3 23.8 ± 1.1 32.3 ± 1.1 42.0 ± 1.5 22.1 ± 1.7 17.9 ± 1.3 22.9 ± 1.6 26.4 ± 2.0 21.2 ± 1.4 12.0 ± 1.2 25.1 ± 1.9 34.6 ± 2.0

T-GEN† 29.2 ± 2.7 21.8 ± 2.4 31.0 ± 2.8 39.4 ± 4.1 23.4 ± 2.8 18.5 ± 2.1 22.2 ± 3.0 27.1 ± 3.3 16.9 ± 1.6 12.2 ± 1.3 31.0 ± 2.8 26.5 ± 2.2

MetaDyGNN† 35.0 ± 1.3 27.0 ± 0.9 37.9 ± 1.1 51.1 ± 1.4 30.9 ± 0.8 23.8 ± 0.6 30.9 ± 1.1 45.9 ± 1.3 30.7 ± 0.6 21.6 ± 0.4 30.9 ± 1.1 46.9 ± 1.1

MetaTKGR† 37.0 ± 1.6 30.3 ± 1.2 41.6 ± 1.5 55.8 ± 0.8 32.9 ± 1.2 25.3 ± 1.4 33.5 ± 1.2 48.9 ± 1.4 33.5 ± 1.5 24.9 ± 1.5 34.0 ± 1.4 52.7 ± 1.0

MetaHKG 38.9 ± 1.1 32.8 ± 0.9 43.9 ± 1.2 58.1 ± 0.5 34.1 ± 0.8 27.4 ± 1.0 36.1 ± 0.8 51.3 ± 1.1 34.6 ± 1.1 26.3 ± 1.2 35.8 ± 1.6 55.8 ± 0.7

Table 6.7: The results of 1/2-shot temporal reasoning on three datasets. Average results on
5 independent runs are reported.

Dataset YAGO WIKI ICEWS18

Model
1-shot 2-shot 1-shot 2-shot 1-shot 2-shot

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

TransE † 18.3 ± 0.8 26.8 ± 0.7 19.3 ± 0.7 30.4 ± 1.3 14.4 ± 0.5 18.6 ± 1.1 14.6 ± 0.6 21.3 ± 0.9 4.9 ± 0.4 7.7 ± 0.7 5.8 ± 0.5 8.6 ± 0.5

TransR † 18.9 ± 0.7 27.0 ± 0.9 19.8 ± 0.7 31.2 ± 0.9 16.0 ± 0.8 18.3 ± 1.1 16.0 ± 0.5 22.5 ± 0.9 5.0 ± 0.5 8.0 ± 0.9 6.0 ± 0.3 9.0 ± 0.7

DistMult 21.0 ± 0.6 29.1 ± 0.7 20.9 ± 1.1 34.8 ± 0.8 16.3 ± 0.4 18.5 ± 0.3 21.4 ± 1.1 25.9 ± 0.6 7.1 ± 0.3 10.4 ± 0.5 8.1 ± 0.7 10.3 ± 0.5

HolE 22.6 ± 0.4 30.1 ± 0.6 21.8 ± 1.5 35.1 ± 0.9 18.6 ± 0.4 18.9 ± 1.2 22.8 ± 1.5 24.9 ± 1.0 6.9 ± 0.3 11.4 ± 0.8 9.1 ± 1.2 11.0 ± 0.6

ComplEX 24.9 ± 1.0 31.7 ± 0.4 23.0 ± 1.4 37.6 ± 1.2 19.1 ± 0.7 20.5 ± 0.7 24.1 ± 0.8 25.4 ± 0.6 7.9 ± 0.4 12.5 ± 0.4 10.7 ± 0.9 12.0 ± 0.9

RotatE † 21.5 ± 0.5 28.0 ± 1.1 21.0 ± 1.0 35.9 ± 0.9 17.5 ± 0.9 19.0 ± 1.1 20.1 ± 0.9 26.8 ± 0.8 6.8 ± 0.6 9.8 ± 1.0 7.0 ± 0.8 9.1 ± 0.8

AttH 21.9 ± 0.4 30.6 ± 0.7 29.5 ± 0.9 40.9 ± 0.5 21.4 ± 0.5 23.2 ± 0.1 21.5 ± 1.0 28.4 ± 0.9 10.1 ± 0.6 13.4 ± 0.5 19.7 ± 0.6 29.1 ± 0.5

TA-DistMult 21.7 ± 1.2 29.4 ± 0.3 22.4 ± 1.1 32.8 ± 1.7 18.2 ± 0.6 21.3 ± 0.4 21.9± 1.2 27.6 ± 0.8 11.7 ± 0.1 15.1 ± 1.2 17.6 ± 0.9 32.1 ± 1.1

RE-NET † 22.1 ± 0.6 30.4 ± 0.7 23.3 ± 0.8 39.0 ± 1.0 21.2 ± 1.0 25.9 ± 1.0 23.9 ± 0.5 29.4 ± 1.3 18.5 ± 1.3 25.0 ± 1.3 20.0 ± 1.0 34.1 ± 1.9

RE-GCN 23.1 ± 1.0 33.1 ± 1.9 24.5 ± 0.9 41.8 ± 1.6 22.1 ± 1.0 25.9 ± 0.9 24.9 ± 1.3 32.3 ± 0.9 19.1 ± 0.5 24.8 ± 1.0 21.9 ± 1.1 35.9 ± 1.0

HERCULES 20.7 ± 0.9 31.1 ± 0.5 21.1 ± 0.9 40.1 ± 1.1 21.3 ± 0.4 22.7 ± 1.2 22.4 ± 1.1 28.8 ± 1.0 12.1 ± 0.9 16.1 ± 0.7 18.8 ± 0.6 33.0 ± 0.3

LAN † 19.6 ± 1.5 26.9 ± 2.0 20.0 ± 0.7 31.0 ± 1.0 17.4 ± 1.6 27.5 ± 2.0 16.2 ± 1.0 27.3 ± 1.1 17.0 ± 2.1 30.1 ± 2.0 18.8 ± 0.8 31.7 ± 1.3

I-GEN† 23.8 ± 0.7 32.1 ± 1.1 23.7 ± 1.1 40.2 ± 1.7 18.1 ± 0.8 24.1 ± 1.3 22.3 ± 0.9 28.7 ± 1.3 19.9 ± 0.8 32.0 ± 1.3 17.7 ± 1.7 33.7 ± 2.0

T-GEN† 24.7 ± 2.3 33.1 ± 3.1 26.0 ± 2.9 37.9 ± 3.2 20.2 ± 1.9 24.5 ± 2.4 24.0 ± 2.3 31.9 ± 2.8 13.1 ± 3.1 26.2 ± 3.2 16.1 ± 3.2 25.9 ± 3.1

MetaDyGNN† 26.9 ± 1.0 39.6 ± 1.5 31.6 ± 0.9 49.6 ± 1.1 24.1 ± 1.3 37.1 ± 1.6 27.1 ± 1.0 39.0 ± 1.8 24.9 ± 1.2 42.0 ± 1.8 26.9 ± 1.1 44.1 ± 1.5

MetaTKGR† 29.4 ± 1.2 42.8 ± 0.9 35.6 ± 1.3 52.6 ± 1.0 27.7 ± 1.5 41.9 ± 1.0 30.9 ± 1.4 44.1 ± 1.3 29.5 ± 0.7 49.6 ± 1.2 30.0 ± 1.1 50.0 ± 1.4

MetaHKG 31.7 ± 1.1 45.1 ± 1.2 36.9 ± 1.3 54.1 ± 0.9 29.5 ± 1.2 44.1 ± 0.7 31.8 ± 1.3 47.1 ± 1.0 31.0 ± 0.8 51.9 ± 1.0 32.1 ± 1.7 53.1 ± 0.8

their first K = 1, 2, 3 facts are known for model adaptation. Detailed information is provided

in Section 6.4.1.

6.6.2 Experimental Setup

Baselines. We compare 16 state-of-the-art baselines from three related areas:

• Static KG reasoning: TransE [9], TransR [14], DistMult [15], HolE [196], ComplEX [16],

RotatE [17], AttH [197];

• Temporal KG reasoning: TA-DistMult [33], RE-NET [137], RE-GCN [22], HER-

CULES [194];

• Few-shot KG/graph reasoning: LAN [161], I-GEN [162], T-GEN [162],MetaDyGNN [192],

MetaTKGR [5].
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We describe the baseline models utilized in the experiments in detail:

• TransE [9] adopts a translation-based embedding approach, representing entities and

relations as vectors in a latent space. The relations act as operators, facilitating the

transition between subject and object entities;

• TransR [14] enhances entity-relation modeling from TransE by projecting entity embed-

dings onto relation-defined hyperplanes for improved representation;

• DistMult [15] is a neural-embedding approach designed for multi-relational representation

learning. It employs a bilinear model for link prediction and leverages learned relation

embeddings to extract logical rules;

• HolE [196] employs circular correlation to construct compositional representations within

holographic embeddings for knowledge graph vector space learning;

• ComplEX [16] ComplEX utilizes complex-valued embeddings to enhance the capture of

both symmetric and antisymmetric relations through dot products;

• RotatE [17] embodies entities using intricate vector representations and expresses relations

through rotational operations within a complex vector space;

• AttH [197] is a hyperbolic knowledge graph model integrating hyperbolic reflections,

rotations, and attention to capture hierarchical, logical, and complex relational patterns;

• TA-DistMult [33] learns time-aware representations by utilizing recurrent neural networks

on time-related token sequences, combining the last hidden state with standard KG

completion scoring functions;

• RE-NET [137] introduces a generative approach for forecasting future facts in temporal

knowledge graphs using a recurrent neural network for entity evolution modeling and a

neighborhood aggregator to capture interrelations at the same time intervals;

• RE-GCN [22] captures temporal representations of entities and relations through recurrent

modeling of the knowledge graph sequence;

• HERCULES [194] extends the AttH model to incorporate time awareness, with the

unique feature of defining the Riemannian manifold’s curvature as a combination of both

relation and time factors;
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• LAN [161] generates entity embeddings through a GNN-based neighbor aggregation

approach and incorporates attention mechanisms to account for relations and neighboring

information for new entities;

• I-GEN [162] employs a meta-learning technique for acquiring representations of new

entities through the attentive aggregation of information from their neighbors;

• T-GEN [162] is an extension of I-GEN, focusing on enhancing predictions for unseen-

unseen links between unseen users through the introduction of stochastic inference to

capture the randomness associated with these connections;

• MetaDyGNN [192] advances the modeling of link predictions for new nodes in homoge-

neous graphs. It introduces a hierarchical meta-learner, which enhances the extraction of

global knowledge, thus benefiting the link prediction task and other aspects;

• MetaTKGR [5] employs dynamic neighbor sampling and aggregation strategies guided

by temporally supervised signals and a temporal adaptation regularizer to ensure stable

meta-temporal reasoning for new entities.

Evaluation Protocol and Metrics. In evaluating each prediction of (ẽ, r, ?, t) or (?, r, ẽ, t),

we use ranking scheme. Concretely, we rank all entities at the missing position in each event

and adopt mean reciprocal rank (MRR) and Hits at {1,3,10} (H@{1,3,10}) as evaluation
metrics. MRR on the validation set is utilized to select optimal hyperparameters.

Implementation. For static knowledge graph reasoning, i.e., TransE, TransR, DistMult,

HolE, ComplEX, RotatE, and AttH, we treat temporal knowledge graphs as static, cumulative

datasets, and train models using the training set, meta-training set, and the first K triples of

new entities in meta-validation and meta-test sets. For temporal knowledge graph reasoning

methods TA-DistMult, RE-NET, RE-GCN, and HERCULES, the models are trained with

the training set, meta-training set, and the first K events associated with each new entity

present in the meta-validation and meta-test sets. Baseline methods optimizing few-shot

entities on static knowledge graphs, i.e., LAN, I-GEN, and T-GEN, and dynamic knowledge

graphs, i.e., MetaTKGR, follow a similar procedure, omitting temporal event information. In

the case of MetaDyGNN, originally designed for homogeneous graphs, we adopt it to temporal

knowledge graphs by incorporating TransE’s score function. Initial model parameters are

trained using training and meta-training sets, with entity-specific model parameters adapted

based on few-shot facts of new entities. To ensure fair comparisons, we maintain a consistent

embedding of 128, employ pre-trained 1-shot TransE embeddings for models requiring initial

entity/relation embeddings, and conduct all training and testing on the same hardware,

including GeForce RTX 3090 GPUs and AMD Ryzen Threadripper 3970X 32-Core Processors.
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Figure 6.11: Performance breakdown for new-to-existing and new-to-new prediction.

We initialize our model with the training dataset and simulate few-shot tasks using the

meta-training set to adapt model parameters and enhance temporal generalization. For

new entities, we fine-tune entity-specific models using K = 1, 2, 3 initial facts. During the

evaluation, we optimize hyperparameters based on MRR on the meta-validation set and

report performance on the remaining facts in the meta-test set. Our model training employs

that Adam optimizer with a maximum of 50 epochs, a batch size of 20, 128-dimensional

embeddings, and a dropout rate of 0.5. To enhance efficiency, we set the neighbor budget b

of the temporal neighbor sample to 16 and incorporate 2 neighborhood aggregation layer

within the temporal encoder. In the inner loop optimization process, we conduct a single

step of gradient descent. The primary hyperparameters we primarily tune include the margin

value γ in the score functions, varying within the range of 0.3, 0.4, 0.5, 0.6, 0.7. Additionally,

we adjust the learning rates for both the inner and outer loops, η and β within the range of

0.1, 0.05, 0.01, 0.005, 0.001, 0.0005. For YAGO and ICEWS18, we set γ = 0.5, η = β = 0.0001.

For WIKI, we use γ = 0.6, η = 0.0001, and β = 0.00005.

6.6.3 Main results (RQ1)

Tables 6.6 and 6.7 present the comprehensive results for few-shot experiments with K = 3

and K = 1, 2, respectively. In each of these tasks, MetaHKG shows a remarkable 5.2%

relative improvement over the best baseline model, thus underscoring the superior capacity

of MetaHKG in effectively modeling the evolution of new entities under data-constrained

conditions. Notably, the baselines belonging to the first two categories, which do not optimize

specifically for new entities, yield suboptimal performance across all datasets. This is despite

their training on both existing and new entities with a few-shot link setup. We also observe

the unsatisfying performance for hyperbolic baselines AttH and HERCULES. This subpar
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(b) Cross-shot results on ICEWS18.

Figure 6.12: Performance of YAGO (left) and ICEWS18 (right) over time.

performance is primarily due to their neglect of special optimization for new entities in future

predictions. In contrast, MetaHKG consistently outperforms MetaDyGNN and MetaTKGR.

This success can be attributed to our method’s effective utilization of hyperbolic geometry,

which proves more suitable for the few-shot temporal reasoning task. Additionally, our

framework enhances sample efficiency in the few-shot scenario via the meta hyperbolic

framework.

Performance over Time. Subsequently, we assess the performance of MetaHKG across

various timeframes. Figure 6.12 illustrates performance comparisons for 3-shot predictions

at different timestamps on the YAGO and ICEWS18, with the evaluation conducted using

filtered H@10 metrics. In these comparisons, MetaHKG consistently outperforms all strong

baselines. It’s worth noting that while the compared baselines can optimize their models

for newly emerging entities, their performance diminishes significantly over wider time

intervals. This performance drop can be attributed to their insufficient modeling of temporal

information. Notably, although MetaHKG does not consider the distribution shift directly

as MetaTKGR, we can still perform better in longer future predictions. And MetaHKG

produces more stable prediction results over time on ICEWS18. Our hypothesis suggests

that the superiority is primarily derived from the hyperbolic time encoding, which can be

readily extended to accommodate future time instances.

Performance Breakdown for Event Types. The events for new entities fall into two

distinct categories: new-to-existing events, which occur between new entities and existing

ones, and new-to-new events, which transpire exclusively among new entities, as depicted in

Figure 6.3. To provide a more detailed insight into the performance enhancement attributed

to MetaHKG, Figure 6.11 offers a performance breakdown for each event type. In general,

predictions for “new-to-new” events tend to yield relatively poorer results due to the greater

difficulty in simultaneously optimizing representations for all few-shot entities. Nevertheless,
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Table 6.8: Ablation Studies.

Dataset YAGO WIKI ICEWS18

Ablation MRR H@10 MRR H@10 MRR H@10

MetaHKG w/o meta-learning 30.7 49.8 30.8 44.6 28.4 46.7

MetaHKG w/o fine-tuning 32.9 52.1 32.0 48.1 30.4 50.1

MetaHKG w global meta-learning 38.2 56.7 33.1 49.7 33.4 54.0

MetaHKG w/o time encoding 37.9 56.8 32.8 50.1 32.3 53.7

MetaHKG in Euclidean space 37.1 55.6 31.2 48.1 32.9 51.9

MetaHKG 38.9 58.1 34.1 51.3 34.6 55.8

MetaHKG surpasses all strong baselines for both event types. It is noteworthy that we

observed more substantial relative improvements in the context of “new-to-new” event

predictions. This is largely attributed to MetaHKG’s ability to position the clusters of new

entities more effectively within the hyperbolic latent space, leading to improved predictions.

6.6.4 Effect of optimization strategy (RQ2)

We evaluate performance improvements brought by the training strategy of MetaHKG

framework by following variants:

• MetaHKG w/o meta-learning trains model parameters on all events of existing entities

and few-shot events of new entities without the proposed meta-learning approach;

• MetaHKG w/o fine-tuning first trains model parameters on all events of existing

entities, and then fine-tunes parameters on few-shot events of new entities without the

proposed meta-learning approach;

• MetaHKG w global meta-learning meta-trains model parameters without distinguish-

ing global parameters and entity-specific parameters;

Table 6.8 reports the results measured by H@10. Training model parameters on all events,

including the few-shot cases, or attempting fine-tuning exclusively on new entities results in

inferior outcomes. This is because they fail to extract generalized knowledge that can be

effectively applied to new entities. Furthermore, the decline in performance observed when

applying global meta-learning, which combines both global parameter Θg and entity-specific

parameter Θe without distinction, highlights the advances of our meta-learning strategy in

capturing global and entity-specific knowledge.
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Figure 6.13: Performance comparison w.r.t. dimension.

6.6.5 Effect of Hyperbolic Space (RQ3)

Performance gains via hyperbolic embedding. We first examine the effect of hyperbolic

embedding by following variants:

• MetaHKG w/o time encoding eliminates the utilization of time encoding where time

only impacts the temporal neighbors;

• MetaHKG in Euclidean space (MetaHKG-E) represent entity, relation, and time

into corresponding Euclidean space, where the number of dimensions is the same (128);

Table 3.4 reports the results measured by H@10. Removing hyperbolic time encoding

hurts the performance, as we ignore temporal patterns existing in the entity interactions

while representing new entities. Training MetaHKG in Euclidean space (MetaHKG-E) also

leads to a performance drop. Because of power-law distribution and hierarchical structures

of new entities, a higher order of distortion might be required in Euclidean space to produce

competitive performance with a lower dimensional hyperbolic space.

Performance w.r.t. Dimension. We further investigate the performance comparison

between MetaHKG-E (in Euclidean space) and MetaHKG-H (in hyperbolic space) by

varying the dimension of latent space. Figure 6.13 reports the results. It is observed that

MetaHKG-H requires a lower dimensional latent space to achieve satisfying performance,

while the corresponding MetaHKG-E produces much worse results. This comparison further

indicates that MetaHKG requires fewer spatial adjustments and yields a more coherent

embedding space for representing new entities.

Convergence Analysis. We conducted an analysis of how the hyperbolic space contributes

to the meta-learning process. Figure 6.14 depicts the loss curves concerning batch iterations

during the meta-training process of both MetaHKG-E and MetaHKG-H. These loss

curves represent the predictive loss on the query set during the outer loop optimization,

corresponding to the global knowledge learning process. To ensure a fair comparison, we
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Figure 6.14: Convergence of MetaHKG-E and MetaHKG-H.

maintained the same parameter settings for both models. First and foremost, it’s evident

that MetaHKG-H converges more rapidly than MetaHKG-E. This suggests that learning

the few-shot reasoning task in the hyperbolic space is inherently more manageable due to

the alignment between its geometric properties and the distribution and structures found in

Temporal Knowledge Graphs (TKGs). Additionally, we observed periodic variations in the

predictive loss. When processing a batch of new entities, the predictive loss on the new query

set (future events) based on fine-tuned model parameters initially increases. This is because

the global parameters have never been adapted to the batch of new entities beforehand.

However, the loss gradually decreases after the initial spike as the model begins to encode

information about the new entities. Importantly, MetaHKG-H produces a smoother loss

curve, indicating that adapting the model to new entities in the hyperbolic space is a more

straightforward process.

6.7 RELATED WORK

6.7.1 Few-shot Learning on Graphs

Few-shot learning [158], [198], [199] focuses on acquiring generalized knowledge from

existing tasks to derive transferable priors for new tasks, particularly when faced with

limited labeled data. This includes approaches based on metric learning [200], [201] and

meta-learning [164], [165], [202]. For graph reasoning, prior works study representation

learning of scarce entities [160]–[162], [203] and scarce relations [170], [204]–[206]. In this

paper, we are primarily interested in works to represent entities with few-shot events. The

neighborhood aggregator used in inductive graph neural networks (GNNs) [18], [60], [166] can

be naturally extended to represent a new entity [160]. [161], [203], [206] further extend this
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line of work by utilizing attention mechanisms. However, those models are usually trained

on both many-shot and few-shot entities, ending up being suboptimal for few-shot entities.

Recent work [162] explores how to effectively mate-train the neighborhood aggregator to

adapt global knowledge for few-shot reasoning. But they are limited to unseen entities

out of simulation, not based on temporal appearance. Recent studies of temporal graph

models mainly focus on improving reasoning performance for existing entities and ignore

newly emerging ones [22], [137], [152]–[154], [207]. For few-shot temporal reasoning tasks,

MetaTKGR [5] is a recent framework combining MAML. However, it did not consider the

rapid growth of new entities and their power-law distribution and hierarchical structures.

We aim to tackle the few-shot temporal reasoning task in a hyperbolic space and utilize its

geometric properties.

6.7.2 Temporal graph Reasoning

Temporal graphs (TKGs) store time-varying facts in the real-world. Temporal graph

reasoning aims to predict missing facts at a certain time in the future. It is mostly formulated

as measuring the correctness of factual samples and negative samples by specially designed

score functions [8], [9], [14], [16], [17], [33], [132]. Compared with static KG reasoning

tasks [140], the main challenge lies in how to incorporate time information into the repre-

sentation process. Several embedding-based methods have been proposed. They encode

time-dependent information of entities and relations by decoupling embeddings into static

component and time-varying component [152], [153], utilizing recurrent neural networks

(RNNs) to adaptively learn the dynamic evolution from historical fact sequence [137], [207],

or learning a sequence of evolving representations from discrete graph snapshots [137], [154],

[208]. However, all of the existing temporal KG reasoning models aim to extrapolate future

facts among existing entities, and how to predict future facts specifically for new emerging

entities is largely under-explored.

6.7.3 Hyperbolic Learning

Hyperbolic geometry has found broad utility in natural language processing [182]–[184],

computer vision [178]–[181], and graph learning [185]–[189], [194], [197]. In recent graph em-

bedding developments, methods like AttH [197] and HERCULES [194] extend KG embedding

into hyperbolic space, addressing both static and temporal graph reasoning by incorporating

reflections, rotations, and attention mechanisms to capture hierarchical, logical, and complex

relational patterns. Hyperbolic geometry’s exceptional performance and adaptability in
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managing hierarchical structures motivate its exploration in few-shot temporal reasoning.

To the best of our knowledge, we are the first to explore the few-shot temporal reasoning

capabilities within the hyperbolic space.

6.8 SUMMARY

In this chapter, We study a realistic but underexplored few-shot temporal graph reasoning

problem, which aims at predicting future facts for newly emerging entities with a few facts.

To this end, we propose a novel Meta Temporal graph Reasoning framework MetaTKGR. It

meta-learns the global knowledge of sampling and aggregating temporal neighbors, which can

be adapted quickly to new entities for future prediction. Such procedure is gradually guided

by the performance on predicting future facts, from near time intervals to far away ones.

We further theoretically analyze and propose a temporal adaptation regularizer to stabilize

and generalize the learned knowledge on future tasks. To improve MetaTKGR, we proposed

a meta hyperbolic learning framework (MetaHKG) within a hyperbolic space. We found

its geometric property matches the rapid growth of new entities, effectively capturing their

power-law distribution and hierarchical structures. We proposed a time encoding and an

attention network to represent new entities in a hyperbolic space. They are optimized by a

novel meta-learning approach to facilitate effective model adaptation. Extensive experiments

verified the effectiveness of MetaTKGR and MetaHKG on three real-world temporal graphs.
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Chapter 7: LEARNING STREAMING GRAPHS FOR
RESOURCE-EFFICIENT MODEL UPDATES

7.1 OVERVIEW

In this chapter, we study online link prediction on streaming temporal graphs, aiming to

efficiently update deployed models on freshly acquired temporal data to ensure sustained

long-term performance. Temporal graphs refer to a specialized type of graph structure that

captures time-varying links among nodes [144], [209], which are instrumental in modeling and

understanding the evolution of diverse real-world systems that change over time, e.g., dynamic

social networks [210], user-product interaction systems in E-commerce [3], dynamical systems

in physics [211]. Learning representations of temporal graphs for future link prediction has

been attracting increasing attention, owing to the multitude of downstream applications it

supports [66], [92], [108], [144], [212].

Temporal graphs exhibit a distinct property that distinguishes them from their static

counterparts. This distinction arises from the continuous appearance of new information in the

form of streaming links or nodes over time, driven by the underlying system evolution [209]. For

instance, fresh follower-followee relationships frequently emerge on social graphs, constituting

streaming links ; while E-commerce graphs commonly see additions of new users and products,

exemplifying streaming nodes. This dynamic nature necessitates implementing a proficient

and streamlined approach for online graph model updates, accurately and efficiently reflecting

the information evolvement in a streaming fashion. Unfortunately, despite the significant

efforts invested into (offline) temporal graph learning [66], [92], [108], [112], [144], [212],

significant performance degradation happens during streaming information updates, because

the offline training paradigm lacks adequate support for elastic online model adaptation.

Instead, this paper aims to develop a temporal graph learning technique that facilitates

effective and efficient online updates, boosting link prediction performance in streaming

scenarios, as shown in Figure 7.1.

Conventional methods, such as retraining the model on the complete dataset or fine-tuning

exclusively on new data, are straightforward but exhibit unsatisfying performance. The former

approach demands significant computational resources and might overlook newly introduced

information [213], while the latter method is prone to overfitting on new data and could

face catastrophic forgetting issues [214]. Consequently, the central hurdle in tackling online

learning tasks for temporal graphs centers on devising a strategy to effectively and efficiently

represent information from both pre-existing and new data. Inspired by the recent success in

knowledge distillation [215] and data condensation [216], [217], our study centers around a
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Figure 7.1: An example of streaming temporal graph, where new nodes and edges continuously
emerge. We study online link prediction problem on it, which seeks to aiming to efficiently
update deployed models on freshly acquired temporal data to ensure sustained long-term
performance. Shown: Online update time of OnlineSAFE, which is faster than vanila
fine-tuning with better performance.

key philosophy: update the deployed model by retaining and adapting informative knowledge

distilled from existing data onto freshly gathered data, as opposed to directly perpetuating

and reutilizing the original data. Hence, it calls for a novel training strategy that distills

enduringly valuable knowledge from existing data and seamlessly adapts it to newly gathered

information, ensuring efficient adaptation and robust performance over time.

The fulfillment of the novel training strategy poses challenges in two aspects: First,

considering the model complexity of representing temporal graphs, how to distill enduringly

valuable knowledge via the sophisticated models, especially for newly emerging nodes/edges, is

non-trivial. Recent efforts have explored both light-weight model refreshing [213], [218], [219]

and continual graph learning based on streaming graph neural networks (GNNs) [220]–[225].

However, these methods primarily focus on updating shallow and static models, and their

capability of modeling temporal graphs remains limited, especially for online link prediction

task. Second, periodical data collection necessitates fast adaptation of the distilled knowledge

onto new data to update the deployed model.

To overcome both the aforementioned challenges, we propose a novel temporal meta-

training framework, namely OnlineSAFE, where the strategy of aggregating information

from temporal neighbors to update models on new data, parameterized by a temporal

encoder, is viewed as the enduringly valuable knowledge across data collection periods. To

extract such knowledge, we formulate a meta-task as adapting global knowledge on recently

collected new data to update the model for future link prediction, where the quality of global

knowledge can be further improved by measuring how well the updated models perform on
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the future data as instant training signals. Such a nested meta-optimization process includes

an inner-loop adaptation of global knowledge on newly collected data and an outer-loop

training to meta-learn the global knowledge. After that, the extracted knowledge can be

efficiently adapted to new data for model updates via several steps of lightweight fine-tuning

during the online phase. Furthermore, to better estimate the supervision signal given by new

data in potentially different and unseen distributions, we adopt the PAC-Bayes method [173]

to analyze the temporal adaptation bound on the new data theoretically. This can serve

as an adaptation regularizer to provide stability and improve the generalization ability of

the current strategy over time. Finally, to improve the adaptation efficiency, we propose

a simple yet effective strategy to reduce the number of training samples but sustain the

adaptation performance. Empirically, extensive experiments on four real-world streaming

temporal graphs validate the effectiveness of OnlineSAFE, which significantly outperforms 17

baselines, including both static/temporal graph learning methods and online graph learning

methods, by up to 8.8% relative gains on average in terms of Recall and NDCG, with better

efficiency than the vanilla fine-tuning strategy.

7.2 PRELIMINARIES

7.2.1 Problem Definition

Definition 7.1 (Streaming Temporal Graphs). A streaming temporal graph consists

of a set of temporal edges {(u, v, t)}, where u, v ∈ V denotes the source and target nodes, t

denotes the specific timestamp attached to the temporal edge. In reality, the temporal edges

emerge continuously over time, and they are collected periodically during each collection

period. Therefore, we denote DT as the set of temporal edges collected at the T -th collection

period, i.e., DT = {(u, v, t)|T − 1 ≤ t < T}. Formally, a streaming temporal graph is

denoted as a sequence of edge collections D = {D0,D1, · · · ,DT}, where we denote GTi as the

corresponding graph snapshot induced by the newly collected temporal edges in DTi .

Definition 7.2 (Online Learning on Streaming Temporal Graphs). At the current

collection period T , let ΘT−1 denote the model parameters trained on the existing data

and already deployed online, DT and GT denote the newly collected temporal edges and

the corresponding graph snapshot respectively, the online learning on streaming temporal

graphs aims to update the new model parameters ΘT based on both existing and newly

emerging data Dt≤T and Gt≤T to maximize the future predictive performance, i.e., ΘT ←
f(Dt≤T ,Gt≤T ,ΘT−1), where f(·) denotes the updating strategy that we study.

131



#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Ne

w 
No

de
 P

er
ca

nt
ag

e 
(%

)

Reddit
Yelp
Twitter
Wiki

(a) New Node Emergence.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
0.0

20.0

40.0

60.0

80.0

100.0

Ne
w 

Ed
ge

 P
er

ca
nt

ag
e 

(%
)

Reddit
Yelp
Twitter
Wiki

(b) New Edge Emergence.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

0.50

0.55

0.60

0.65

Re
ca

ll@
20

LightGCN
TGAT
IGC
OnlineSAFE

(c) Performance on Twitter Data.

Figure 7.2: An motivating example of online model refreshing on temporal graphs. New
nodes and edges continuously emerge, leading to significant performance decay. We aim to
design a temporal graph learning method that enables effective and efficient online refreshing
to facilitate future link prediction performance in a streaming manner.

7.2.2 Motivating example

We investigate the temporal evolution of four real-world datasets. In Figure 7.2, we

illustrate the percentage of newly appearing nodes, defined as nodes that have not been

present in the temporal graph before, during the online phase spanning the 1st to the 10th

data collection periods, which include online validation and online testing. Notably, all

the datasets exhibit a substantial influx of new nodes into their graphs over time, with

particularly significant proportions for Yelp (∼ 12%), Twitter (∼ 18%), and Wiki (∼ 17%).

As expected, we also observe a substantial proportion of newly formed edges, defined as

connections between two nodes that had not interacted previously, as time progresses across

all four datasets. This trend is visually represented in Figure 7.2, where, notably, the Yelp

dataset even reaches a point of nearly 100% new edges during the online phase.

These observations naturally lead to the question of how well the deployed model, initially

trained on offline data without any fine-tuning during the online phase, performs on such

dynamically evolving graphs. To address this, we selected three representative baselines from

each category: LightGCN from the static graph learning field, TGAT from dynamic/temporal

graph learning, and IGC from online graph learning. We evaluated their performance during

the online periods without any adjustment. The results, shown in Figure 7.2, reveal a

significant performance decline for LightGCN and TAGT as time progresses, despite their

promising initial performance upon deployment. IGC also exhibits progressively deteriorating

performance, even though it can update the deployed model to some extent. These outcomes

suggest that existing methods struggle to effectively capture and adapt to the new information

presented in evolving temporal graphs. In light of these findings, our objective is to develop

a temporal graph learning method that enables efficient and effective online updates, thereby
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enhancing future link prediction performance in a streaming fashion.

7.2.3 Meta-Learning Formulation

Given a set of tasks, meta-learning aims to learn general knowledge that is shared across

all tasks and can be efficiently adapted to new tasks [226]. We follow model-agnostic meta-

learning (MAML) [164] and formulate a task as adapting global knowledge on recently

collected new data to update the model for future link prediction. Concretely, in each task at

the data collection time T , the global knowledge can be adapted on a support set to update

the deployed model, while a query set in the future is utilized further to improve the quality

of global knowledge across time periods. The support set ST consists of data from the new

and several recent time periods: ST =
⋃

T−Ts<t≤T

Dt, and the query set QT consists of data

from several future time periods: QT =
⋃

T<t≤T+Tq

Dt, where Ts and Tq are hyperparameters to

control the length of time periods.

7.3 THE DESIGN OF ONLINESAFE

In this section, we present a novel framework OnlineSAFE to solve the online link

prediction task on streaming temporal graphs, as shown in Figure 7.3. We first introduce

the basic setup of the meta-learning objective in Section 7.3.1, and then detail the attentive

temporal model to represent data in Section 7.3.2, followed by the introduction of temporal

meta training in Section 7.3.3 and the edge reduction for acceleration during online phase in

Section 7.3.4.

7.3.1 Meta-learning Setup and Learning Objective

Our innovation mainly lies in how to distill enduringly valuable knowledge from the

existing data and seamlessly adapt it to newly gathered information for efficient adaptation

and robust performance over time. To this end, we formulate the online link prediction task

as a meta-learning problem. Each distinct task, denoted as (St, Qt), is designed to facilitate

model updates using the support set St, with the ultimate aim of optimizing performance on

the future query set Qt. During the meta-training phase, we simulate a set of tasks by slicing

time windows within the observed time range (0, T ) and construct the corresponding pairs of

support and query sets, with the assumption that the support set is the freshly collected

data, and the query set is the future data that awaits model deployment and evaluation.
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Figure 7.3: Framework overview.

Thus, we can mimic the real online updates by adapting the global knowledge, parameterized

by Θ, on the support set via several fine-tuning steps (inner loop). And the global knowledge

can be further improved by tuning the model on each query set (outer loop), as the quality

of global knowledge can be quantitively measured by how well the model performs on future

data. Such a bi-level optimization can be detailed as follows:

Θ⋆ ←− argmin
Θ

Et

[
L(fΘt ,Qt)

]
(Outer Loop),

where Θt = Θ− η∂L(fΘ,S
t)

∂Θ
(Inner Loop),

(7.1)

where L(fΘ, ·) denotes the predictive loss of model fΘ on the respective support and query

sets, Θ denotes the global knowledge across tasks, Θ⋆ denotes the optimal global knowledge

after the outer-loop optimization, and Θt denotes the updated model parameters at the t-th

collection period. Towards the learning objective above, we introduce the detailed model fΘ

and the specific meta-training strategy in the next.

7.3.2 The Attentive Temporal Model

The attentive temporal model fΘ parameterized by Θ is designed to measure the plau-

sibility of each temporal edge, which represents each node u into a low-dimensional latent
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space at each time t: hu(t) ∈ Rd. On a streaming temporal graph, nodes u ∈ E evolve as they

interact with different neighbors over time. Such temporally interacted nodes are defined as

temporal neighbors. Therefore, we aim to model the temporal pattern of each node u by

encoding the changes of temporal neighbors.

Towards this goal, fΘ first samples temporal neighborsNu(t) = {(vi, ti)|(u, vi, ti) or (vi, u, ti) ∈
DT≤t} from the temporal graph for each node u ∈ E . Nu(t) consists of a set of the most

recently interacted nodes at time t. Then fΘ attentively aggregates information from the

temporal neighbors. Specifically, given the temporal neighbor Nu(t), we represent the entity

u as hu(t) at time t:

hl
u(t) = ReLU

 ∑
(vi,ti)∈Nu(t)

αl
u,vi

(
hl−1
vi

(ti)W
) , (7.2)

αl
u,vi

=
exp(qlu,vi)∑

(vk,tk)∈Nu(t)

exp(qlu,vk)
,

qlu,vk = a
(
hl−1
u ∥hl−1

vk
∥κ(t− tk)

)
,

(7.3)

where qlu,vk measures the pairwise importance by considering the node features of u and

each vk, and time feature, a ∈ R3d is the shared parameter in the attention mechanism.

Following [144], we adopt random Fourier features as time encoding κ(∆t) to reflect the

time difference. Similarly, the edge feature, if available, can be concatenated together in the

pairwise importance measurement qlu,vk .

To measure the probability of each possible temporal edge, we utilize inner product [227]

as the score function p = σ((ht
u,h

t
v)), where σ(·) denotes the activation function Sigmoid. To

optimize the parameter Θ for a task on either the support or query set, we minimize the loss

for each temporal edge to train the model fΘ. Taking the support set St as an example:

L(fΘ,St) = E [−yi log(pi)− (1− yi) log(1− pi)] , (7.4)

where yi = 1 if the edge (ui, vi, ti) ∈ St, and yi = 0 otherwise.

7.3.3 Temporal Meta Training

The bi-level optimization procedure outlined in Eq. (7.1) emulates the iterative refinement

process of the deployed model in the online setting. The inner loop optimization mirrors the

strategy for swiftly adapting the model to recently acquired data by leveraging the extracted
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knowledge Θ, which can be shared among tasks in different time periods. Meanwhile, the

outer loop optimization is geared towards tuning the shared knowledge Θ across various tasks

to the optimal one Θ⋆, enhancing its capacity to encapsulate information and effectively

acquire skills from the existing data. During the offline training phase, both the global

knowledge Θ and the fine-tuning procedure can be learned via the nested meta-optimization

procedure, which is iterated over time. During the online updating phase, the optimal

knowledge Θ⋆ can be further fine-tuned on the newly collected data by optimizing the inner

loop.

Inner Loop Optimization. The online update of the deployed model is essentially

estimating the posterior parameter distribution p(Θt|St) given the newly collected data based

on the prior estimation of the global knowledge p(Θ). As pointed out by [213], [214], a unique

challenge arises to avoid the overfitting and catastrophic forgetting issues on the new data.

Otherwise, informative knowledge presented in p(Θ) might be dominated and biased by the

new observations. One might then attempt to use the Bayes rule to compute the posterior

given the prior p(Θ) and the observations St. However, it requires us to have already access

to the likelihood of St, which needs to be estimated first. To resolve this, we instead adopt

the PAC-Bayes method [173], [191], which allows one to learn a parameter posterior that

fits the observations without knowing the distribution of the observations. We propose the

following theorem to relate real predictive loss in new time intervals with its empirical version:

Theorem 7.1 (PAC-Bayes Bound on New Data). Let p(Θ) denote the prior distribution

gained by the global knowledge across tasks, q(Θt) denote the empirical estimation of the

posterior parameter distribution on new observation p(Θt|St), | · | denote the set size. For

any δ ∈ (0, 1) and learned prior p(Θ), with probability at least 1− δ over new data St, the

upper bound of the inner-loop predictive loss to be optimized on the new data is given by:

L(fΘ,St) ≤ L̂(fΘ,St) +

√
KL(q(Θt)∥p(Θ)) + log |St|

δ

2|St| − 1
, (7.5)

Proof. After the online deployment, the newly collected data St in the new time interval may

follow different distribution and exhibit different patterns from those in the last time interval,

i.e., t − 1-th time interval, and such new distribution is unknown at advance. The online

update of the deployed model is essentially estimating the posterior parameter distribution

p(Θt|St) given the newly collected data based on the prior estimation of the global knowledge

p(Θ). One might then attempt to use the Bayes rule to compute the posterior given the

prior p(Θ) and the observations St. However, it requires us to have already access to the

likelihood of St, which needs to be estimated first. To resolve this, we instead adopt the
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PAC-Bayes method [173], [191]. Formally, we view p(Θ) as prior parameter distribution and

aim to learn the posterior parameter distribution q(Θt), in order to approxiamate p(Θt|St)

conditioning on St. The unseen distribution of St prevents us from estimating q(Θt) by either

using unbiased empirical loss or Bayes rules. Therefore, for convenience of discussion, we

first define the difference between real predictive loss and its empirical estimation as follows:

∆L = L(fΘ,St)− L̂(fΘ,St). (7.6)

We are interested at the relation of ∆L and the distribution discrenpency between p(Θ)

and q(Θt). Towards this goal, following [173], [191], we construct the following function:

f(St) = 2(|St| − 1)EΘt∼q(Θt)

[
(∆L)2

]
−KL(q(Θt)∥p(Θ)). (7.7)

Next, using Markov’s inequality, we have:

p(f(St) > ϵ) = p(ef(S
t) > eϵ) ≤

Et

[
ef(S

t)
]

eϵ
, (7.8)

where Et

[
ef(S

t)
]
denotes the expectation of ef(S

t) w.r.t. new data collection period. To upper

bound the expectation, we have the following inequality:

f(St) = 2(|St| − 1)EΘt∼q(Θt)

[
(∆L)2

]
−KL(q(Θt)∥p(Θ))

= EΘt∼q(Θt)

[
log

(
e2(|S

t|−1)(∆L)2 p(Θ)

q(Θt)

)]

≤ log

(
EΘt∼q(Θt)

[
e2(|S

t|−1)(∆L)2 p(Θ)

q(Θt)

])

= log
(
EΘt∼p(Θ)

[
e2(|S

t|−1)(∆L)2
])
,

(7.9)

where Jensen’s inequality is utilized to derive the inequality. Therefore, we have

Et

[
ef(S

t)
]
≤ EtEΘt∼p(Θ)

[
e2(|S

t|−1)(∆L)2
]

= EΘt∼p(Θ)Et

[
e2(|S

t|−1)(∆L)2
]
,

(7.10)

the order of expectations is swapped as p(Θ) is independent to St. Next, based on Hoeffding’s

137



inequality, we have:

p(∆L > ϵ) ≤ e−2|St|ϵ2 , (7.11)

, and we can further derive the following inequality:

Et

[
ef(S

t)
]
≤ EΘt∼p(Θ)Et

[
e2(|S

t|−1)(∆L)2
]
≤ |St|. (7.12)

Combining Eq. (7.12) and Eq. (7.8), we get:

p(f(St) > ϵ) ≤ |S
t|
eϵ

= δ, (7.13)

where δ = |St|/eϵ. Therefore, with probability of at least 1− δ, we have that for all Θt:

f(St) = 2(|St| − 1)EΘt∼q(Θt)

[
(∆L)2

]
−KL(q(Θt)∥p(Θ))

≤ log |St|
δ

.
(7.14)

Further, by utilizing Jensen’s inequality again, we have:(
EΘt∼q(Θt) [(∆L)]

)2 ≤ EΘt∼q(Θt)

[
(∆L)2

]
≤

KL(q(Θt)∥p(Θ)) + log |St|
δ

2(|St| − 1
.

(7.15)

Subsituting definition of ∆L in Eq. 7.15, we proof the PAC-Bayes Bound on the newly

collected data with unknow distribution:

L(fΘ,St) ≤ L̂(fΘ,St) +

√
KL(q(Θt)∥p(Θ)) + log |St|

δ

2|St| − 1
. (7.16)

QED.

Remark. The Eq. (7.5) can be interpreted as a combination of empirical loss on the new

data in the new time interval and a regularizer of parameter distribution with the global

parameter distribution in the form of KL-divergence. The regularizer along the time domain

can guarantee that the inner-loop fine-tuning is trained only on new data but without

overfitting in specific time intervals. Thus, we can improve the generalization ability of our

online fine-tuning procedure.

Outer Loop Optimization. The quality of the extracted knowledge, i.e., Θ, is quantitively

measured by how well the updated model (optimized on the support set) performs on the

future data (the corresponding query set). Concretely, during the offline training phase,
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Table 7.1: The dataset statistics.

Dataset #Interaction #User #Item Density

Wiki 157,474 8,227 1,000 0.019141

Reddit 672,447 10,000 984 0.068338

Twitter 134,291 8,780 1,333 0.011474

Yelp 1,266,728 63,228 59,375 0.000337

we optimize the predictive loss L(fΘt ,Qt) w.r.t. Θ by applying the updated model (with

parameter Θt) on the query set Qt, as shown in Eq. (7.1).

7.3.4 Edge Reduction for Online Update

We analyze the time complexity of the inner loop optimization, which is used for online

model updating. Let b denote the number of temporal neighbors for each node, l denote

the number of attention layers, N denote the negative sampling factor, and the overall

complexity is O (lb2N |St|), which grows linearly with |St|. To further expedite the online

update process, we explore methods to diminish the size of |St| using the edge reduction

technique, all while maintaining its efficacy. Given that the PAC-Bayes bound within the

online objective governs the alignment of the updated model parameters with the global ones

based on historical data, the updated model parameters already incorporate the information

present in the historical data. This leads us to speculate that removing edges recurrently

present in historical time steps might not result in the loss of pertinent information. We

propose a straightforward approach that involves bypassing edges where the two nodes are

already 1- or 2-hop neighbors in recent time steps. This strategy is based on the premise that

such edges might not introduce any supplementary information, as the existing historical

data and PAC-Bayes bound have already covered their contribution. Let S̃t denote the new

support set after the edge reduction, the overall complexity becomes O
(
lb2N |S̃t|

)
.

7.4 THE EVALUATION OF ONLINESAFE

In this section, we introduce the evaluation results of OnlineSAFE on four public datasets.

7.4.1 Datasets

We evaluate the proposed OnlineSAFE on four real-world datasets collected from Wiki,

Reddit, Twitter, and Yelp, where Table 7.1 reports the important statistics of the four graphs.
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• Wiki [228]: The dataset is a public collection of edits made by users who contributed

at least 5 edits to the 1,000 most edited Wikipedia pages within a one-month period.

The nodes represent human editors and wiki pages and the links represent timestamped

historical edits.

• Reddit [228]: The public Reddit post dataset comprises one month of user posts from

the 1,000 most active subreddits and the 10,000 most active users. Its nodes include users

and posts, and the temporal edges are the timestamped posting requests.

• Twitter: The dataset collected from Twitter constitutes user-hashtag interactions, whose

nodes include users and hashtags, and whose links represent who-post-what interaction

records. To maintain data quality, we excluded the top 10 users and top 20 hashtags with

abnormal activation levels and users/hashtags with fewer than 15 occurrences, considered

invalid for analysis.

• Yelp 15: The dataset is collected from the Yelp Challenge 2018 and consists of user-

business interactions with ratings of 4 and 5 points after 2010, where nodes includes

users and business and edges describe reviewing actions. Inactive users with fewer than 8

interactions have been excluded.

For each dataset, we sort all interactions in chronological order and split them into 40

timesteps, each containing an equal number of interactions. We further split 40 periods into

30/2/8 for offline training/online validating/online testing phases. To be concrete:

• Offline training phase is utilized to training both baselines as well as OnlineSAFE

before deployment. The data in this phase are assumed to be given at once;

• Online validating phase is the phase where we utilize the online data to first validate

the deployed models and then to update the models. The average validation performance

is selected as indicator to choose important hyperparameters which are utilized for online

testing phase, e.g., learning rate, batch size, number of layers, etc.

• Online testing phase is the phase where we utilize the online data to first test the

deployed models and then to update the models. The average testing performance on 8

periods are reported.

15https://www.yelp.com/dataset/
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7.4.2 Experimental Setup

Baselines We describe the 17 state-of-the-art baselines from three related areas in detail:

• Static graph learning methods:

– MF [229] has two strategies to collaboratively learning online. Full-retrain updates

the model with all previous data, while fine-tuning uses only the newest period;

– GAE [227] uses GCN to learn the latent representations for undirected graphs based

on the auto-encoder;

– VGAE [227] utilize the same framework as GAE and adds the probabilistic variants;

– GAT [97] utilizes masked self-attentional layers to aggregate neighbors, improving

inductive learning performance;

– GraphSAGE [166] ingenuiously generates neighborhood embeddings to perform

inductive tasks;

– GIN [230] proposed a simple neural framework to learn simple graphs, powerfully

represents their structures;

– LightGCN [131] consists only of the neighbor aggregation part of GCN to improve

the performance;

– GPS [231] restricts positional structural encoding computing, reducing the computa-

tional complexity to linear;

• Dynamic graph learning methods:

– GRU4Rec [106] applies RNN, which models the set of interactions for each period

and recommends similar items;

– EGCN-H [232] uses GNN to sense nodes’ relationship for each snapshot and employs

RNN for link prediction;

– EGCN-O [232] also utilizes EGCN-H’s framework but updates the model through

an LSTM without input node embeddings;

– VGRNN [66] incorporates a VGAE to model each snapshot in graph recurrent

neural network for dynamic link prediction;

– Euler [233] proposes a framework consisting of stacked model-agnostic GNN and

RNN to detect the emerging links;

– DySAT [92] joins a stacked temporal and spatial self-attention network, showing

that the framework is robust and efficient;
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– TGAT [144] proposed a temporal graph attention layer to induce the topological

features and interactions;

• Online graph learning methods:

– SPMF [218] skillfully sampled for retraining to represent long-term preference and

rank the items by an optimization framework;

– SML [213] introduces a meta-learning approach that captures the long and short-term

embeddings, saving time and memory;

– IGC [219] re-activates the previous nodes, and updates only the new-neighbor-related

parameters to speed up the retrain speed;

Evaluation Protocol and Metrics. We evaluate online link prediction tasks in a retrieval

setting. For each link collected during the online phase, given the observed user nodes, we

compare the predicted top-K ranking list of missing items with the ground-truth item in each

testing time step. We adopt two widely-used evaluation protocols: Recall@K and NDCG@K,

where K = {5, 10, 20} by default.

Implementation We utilize the package provided by SML 16 and IGC 17 to implement

MF, SPMF, SML, and IGC. We use the first ten snapshots to generate the pre-trained

model and the following twenty data periods to train offline. We compare retraining all

the previous data and fine-tuning the new snapshot for MF method when testing online

in the last ten periods, and preserve the strategy with better performance. As for SPMF,

SML, and IGC, we perform online update on the last 10 snapshots. For GRU4Rec 18, we

follow the similar procedure. To implement full retraining strategy, we concatenate all

action sequences from all time periods together for model training. And we only consider

the sequence happened within the last time period to train model, as the fine-tuning

implementation. We tuned the training epochs in {10, 20, 50, 100, 200}, learning rate in

{1, 0.5, 0.1, 0.05, 0.01, 5e − 3, 1e − 3, ..., 1e − 8}. Particularly for SML, we tuned transfer

learning rate in {1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5, 1e− 6}.
For other baselines, we use the first 30 periods for offline training. When evaluating each

online period, all baselines are trained using both fine-tuning strategy on the last snapshot

and full-retrain strategy on all the previous ones. Specifically for static baselines, we merge all

historical snapshots as one graph via or operation to implement the full retraining strategy.

Notably, several baselines easily encounter out-of-memory (OOM) issue on large graphs,

16https://github.com/zyang1580/SML
17https://github.com/Dingseewhole/CI LightGCN master/
18https://github.com/hungpthanh/GRU4REC-pytorch
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e.g., DySAT, EGCN, Euler, etc. We use the following ways to try to deal with the OOM

issue: 1. we adopt edge sampling technique instead of full graph training to reduce the

training samples and graph size; 2. we split the snapshots into groups and only consider

the temporal dependency within each group to save GPU memory. Each group contains

K = {3, 10} consecutive snapshots. We tuned the hyper-parameters as follows: training

epochs in {10, 20, 50, 100, 200}, learning rate in {10, 1, 1e− 1, 1e− 2, 1e− 3, 1e− 4}.
To construct the task set for meta-learning formulation, we set temporal edges in Ks = 3

consecutive historical periods as support set, and ones in Kq = 3 consecutive future periods

as query set. Such a choice enable us to i) consider sufficient historical information to update

model online; ii) utilize relatively long-term performance as instant feedback for learning

the global knowledge in the outer-loop optimization; iii) maintain acceptable efficiency.

During evaluation, we tune hyperparameters based on Recall@20 on online validating phase,

and report the average performance on the remaining periods on the online testing phase.

Next, we report the choices of hyperparameters. For model training, we utilize Adam

optimizer, and set maximum number of epochs as 200 for offline training. We set batch

size as 32, the dimension of all embeddings as 128, and dropout rate as 0.5. For the sake

of efficiency, we set the neighbor budget b of temporal neighbor sampler as 16, and employ

2 neighborhood aggregation layers in temporal encoder. We perform 20 steps of gradient

descent for inner loop optimization. We mainly tune inner/outer loop learning rate η and β

in range {0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001}. For Wiki, Reddit and Twitter,

we set η = β = 0.0001. For Yelp, we set η = 0.0005, and β = 0.0001. We also compare

the margin loss with the cross-entropy loss utilzied in Eq (7.4), with tuning value in range

{0.3, 0.4, 0.5, 0.6, 0.7}. Finally we found training with the cross-entropy loss still achieves

better performance, although training with the margin loss is faster.

7.4.3 Main Results

In this section, we report the complete experimental results of the online link prediction

task in Table 7.2 and Figure 7.4, measured by Recall@{5, 10, 20} and NDCG@{5, 10, 20}.
Average results on 5 independent runs with different random seeds are reported. ∗ indicates
the statistically significant improvements over the best baseline, with p-value smaller than

0.001. For baselines tailored for offline training scenarios, we utilize both retraining and

fine-tuning techniques, and retaining the approach with better performance. Detailed options

utilized for each baseline are reported. We also report the detailed standard deviation for all

models. OnlineSAFE can beat all state-of-the-art baselines on all datasets, and we observe

that OnlineSAFE and most baselines are stable with small standard deviations.
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Table 7.2: The overall performance of baseline models and OnlineSAFE. Average results
of 5 independent runs are reported. For baselines tailored for offline training scenarios, we
utilize both retraining and fine-tuning techniques, and retaining the approach with better
performance.

Dataset Wiki Reddit Twitter Yelp

Performance Recall@20 NDCG@20 NDCG@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

MF 0.662 ± 0.013 0.319 ± 0.005 0.750 ± 0.017 0.522 ± 0.004 0.172 ± 0.007 0.099 ± 0.002 0.183 ± 0.002 0.125 ± 0.002

GAE 0.481± 0.018 0.221 ± 0.012 0.708 ± 0.013 0.481 ± 0.017 0.600 ± 0.000 0.307 ± 0.001 0.213 ± 0.001 0.091 ± 0.000

VGAE 0.544 ± 0.010 0.275 ± 0.008 0.717 ± 0.008 0.466 ± 0.008 0.609± 0.001 0.312 ± 0.001 0.212 ± 0.001 0.090 ± 0.001

GAT 0.540 ± 0.007 0.328 ± 0.012 0.706 ± 0.007 0.490 ± 0.007 0.340 ± 0.009 0.154 ± 0.023 0.091 ± 0.002 0.038 ± 0.001

GraphSAGE 0.660 ± 0.014 0.423 ± 0.011 0.745 ± 0.002 0.513 ± 0.007 0.437 ± 0.046 0.208 ± 0.022 0.108 ± 0.001 0.047 ± 0.001

GIN 0.409 ± 0.016 0.193 ± 0.006 0.568 ± 0.055 0.345 ± 0.050 0.519 ± 0.009 0.287 ± 0.008 0.220 ± 0.001 0.093 ± 0.001

LightGCN 0.698± 0.003 0.503 ± 0.003 0.741 ± 0.001 0.561 ± 0.003 0.568 ± 0.001 0.291 ± 0.001 0.224 ± 0.003 0.092 ± 0.001

GPS 0.601 ± 0.027 0.358 ± 0.019 0.737 ± 0.016 0.526 ± 0.019 0.491 ± 0.056 0.260 ± 0.030 OOM OOM

GRU4Rec 0.080 ± 0.001 0.046 ± 0.001 0.048 ± 0.001 0.037 ± 0.000 0.056 ± 0.000 0.030 ± 0.000 0.026 ± 0.000 0.010 ± 0.000

EGCN-H/O 0.089 ± 0.002 0.039 ± 0.001 0.471 ± 0.007 0.285 ± 0.004 0.250 ± 0.010 0.124 ± 0.007 OOM OOM

VGRNN 0.048 ± 0.030 0.025 ± 0.016 0.389 ± 0.073 0.193± 0.036 0.389 ± 0.073 0.193 ± 0.036 0.165 ± 0.014 0.071 ± 0.006

Euler 0.040 ± 0.010 0.018 ± 0.005 0.484 ± 0.032 0.242 ± 0.017 0.600 ± 0.003 0.334 ± 0.002 0.070 ± 0.021 0.028 ± 0.010

DySAT 0.442 ± 0.010 0.224 ± 0.002 0.668 ± 0.002 0.426 ± 0.007 0.410 ± 0.011 0.176 ± 0.011 0.020 ± 0.000 0.007 ± 0.000

TGAT 0.664 ± 0.010 0.529 ± 0.008 0.744 ± 0.011 0.618± 0.017 0.604 ± 0.010 0.440± 0.003 0.242 ± 0.002 0.136± 0.002

SPMF 0.585 ± 0.007 0.358 ± 0.006 0.741 ± 0.001 0.507 ± 0.002 0.022 ± 0.003 0.007 ± 0.001 0.166 ± 0.001 0.100 ± 0.001

SML 0.374 ± 0.023 0.190 ± 0.017 0.704 ± 0.013 0.455 ± 0.016 0.500 ± 0.071 0.250 ± 0.049 0.177 ± 0.010 0.111 ± 0.003

IGC 0.685 ± 0.014 0.526± 0.011 0.754± 0.011 0.589 ± 0.010 0.577 ± 0.002 0.335 ± 0.005 0.248± 0.008 0.132 ± 0.006

OnlineSAFE 0.716 ± 0.017 0.575 ± 0.005 0.807 ± 0.006 0.645 ± 0.010 0.644 ± 0.002 0.475 ± 0.002 0.272 ± 0.005 0.157 ± 0.002

Gains (%) 2.6 8.7 7.0 4.4 5.9 8.0 9.8 15.4

Insterestingly, we found most of the better stategy of baselines on Wiki and Reddit

are full-retraining, while those on Twitter and Yelp are fine-tuning. This might indicates

that Twitter and Yelp exhibit more obvious temporal evolution patterns than Wiki and

Reddit, which is consistent with our observation in Figure 7.2. Therefore, fine-tuning

stategy might be better than full-retraining at capturing new patterns in the newly collected

data, while full-retraining donot suffer from overfitting issues on new data, thus achieves

better performance than fine-tuning on Wiki and Reddit. OnlineSAFE with temporal meta

training strategy consistently outperforms all baseline models, exhibiting an average relative

improvement of 8.8%. Comparing detailed performance in Figure 7.2 and average performance

in Table 7.2, LightGCN and TAGE with respective fine-tuning and full-retraining produce

better performance than the counterparts without any model tuning on new data, showing

the necessity of the online model update.

Intriguingly, certain prominent dynamic models, like GRU4Rec, EGCN, VGRNN, and

Euler, demonstrate unexpectedly suboptimal results, even underperforming the static baseline

models. We hypothesize that it is caused by too long a graph sequence, where these dynamic

models struggle to effectively extract valuable knowledge from the historical data that are

still useful on new data patterns. While TGAT and IGC (an online algorithm based on

LightGCN) generally outperform other baselines, their results still fall short of our approach.

This deficiency could be attributed to the absence of a tailored online updating strategy

specifically for the temporal module. The superior performance of OnlineSAFE demonstrates

the efficacy of the proposed temporal meta-training strategy for online link prediction.
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Figure 7.4: Detailed Recall@K and NDCG@K when K = {5, 10}. The average results of
5 independent runs are reported. OnlineSAFE achieves the best performance, with 8.8%
relative gains over the second-best results on average.

7.4.4 Performance of Diverse Node Groups

The key indicator to evaluate the online algorithm is how well the model performs on

newly emerging nodes with a few edges, as new nodes continuously join the graph in the

real world. We divide nodes into quartiles by their degree levels, which is the number of

participating edges per node. Figure 7.5 shows the performance distribution for each node

group, from Q1 (lowest degree level) to Q4 (highest degree level), compared with three strong

baselines. The major improvement of OnlineSAFE comes from the nodes with few links (Q1,

Q2), as it can borrow useful information from the high-resource nodes to the low-resource

nodes via the extraction of global knowledge.
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Figure 7.5: Performance across node quartiles on degree level. (Q1: lowest, Q4: highest).
OnlineSAFE has higher gains for nodes with sparse connections (quartiles Q1-Q3).

Table 7.3: Ablation studies measured by Recall@20 and NDCG@20. Online update time is
also reported.

Dataset Wiki Reddit

Metrics Recall NDCG Time (s) Recall NDCG Time (s)

Retraining 0.669 0.540 321.9 0.744 0.628 1395.8

Fine-tuning 0.657 0.531 12.7 0.730 0.611 40.5

OnlineSAFE 0.716 0.575 11.1 0.807 0.645 36.5

w/o PAC-Bayes 0.701 0.569 9.4 0.793 0.623 33.4

w/o Edge Reduction 0.722 0.589 22.3 0.820 0.660 70.3

w/ Random Reduction 0.690 0.557 9.9 0.770 0.629 32.9

7.4.5 Ablation Study

We conduct the following ablation studies to evaluate performance improvements brought

by the temporal meta-training strategy 1)Retraining directly retrains our attentive temporal

model on all data; 2) Fine-tuning fine-tunes our attentive temporal model only on new data;

3) OnlineSAFE w/o PAC-Bayes Bound removes the PAC-Bayes bound in the inner loop

optimization; 4) OnlineSAFE w/o Edge Reduction update the global model on all edges

in the new data without skipping any sample; 5) OnlineSAFE w/ Random Reduction

reduce the same amount of training samples during the online phase by random selection.

Table 7.3 shows the evaluation results. Both retraining and fine-tuning approaches for

the attentive temporal model fail to outperform OnlineSAFE. The retraining strategy might

be dominated by the existing data, leading to an excessive focus on historical patterns and

potentially overlooking new patterns. Conversely, the fine-tuning strategy can easily result

in overfitting on the new data. Upon excluding the PAC-Bayes bound from the inner loop

objective, we observe a decline in performance, underscoring the bound’s role in fortifying the

stability and generalizability of the online updating procedure. We also delve into the impact
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of the simple edge reduction heuristic. While OnlineSAFE without this heuristic yields a

marginal performance boost, it prolongs online training time by up to 2× times. Substituting

the heuristic with a random strategy significantly compromises performance. These outcomes

underscore the value of our straightforward yet effective edge reduction algorithm, which

accelerates the online update process without inflicting significant performance degradation.

7.4.6 Efficiency Analysis

In Table 3.4, we also provide the online updating times for each variant, quantifying

the time taken per online epoch in seconds. As anticipated, the direct retraining strategy

necessitates significantly more time. Notably, OnlineSAFE also accomplishes swifter online

updates compared to simple fine-tuning. This is due to the edge reduction algorithm employed

by OnlineSAFE, which effectively reduces the volume of training samples during the online

phase in contrast to the standard fine-tuning approach. The efficacy of the edge reduction

heuristic is further highlighted when contrasted with the variant that omits it. This heuristic

effectively halves the online running time without introducing a notable drop in performance.

This is because the omitted edges fail to contribute substantially new information for model

training, and their contribution is already covered in the global knowledge regulated by the

PAC-Bayes bound.

7.5 RELATED WORK

7.5.1 Learning on Streaming Temporal Graphs

Learning on temporal graphs and predicting future links have been attracting numerous

research interests in the community [92], [106], [108], [144], [212], [232], because of its profound

impacts on a wide range of applications. The initial attempts explore Hawkes process [234],

temporal random walks [235], [236], recurrent neural networks (RNN) [108], [169], among

others, to encode the temporal information in the node representations. Recently, deep

learning models based on graph neural networks (GNNs) [60], [227] have achieved the state-of-

the-art performance, which is divided into two categories: discrete methods that organize the

temporal graphs as snapshot sequences and utilize sequential modeling including RNNs (e.g.,

EGCN [232], Euler [233], VGRNN [66]) and transformers (e.g., DySAT [92]) to learn the

evolution of node representations, continuous methods that learn temporal representations

for nodes based on temporal neighbor sampling and temporal encoding (e.g., TGAT [144],
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TGN [212]). However, despite the numerous existing efforts, how to effectively and efficiently

update temporal graph models on the streaming setting still remains relatively unexplored.

Continual Graph Learning (CGL) field mainly studies how to learn new patterns incre-

mentally on evolving graphs [214], where typical techniques can be divided into regularization-

based methods [237], [238], replay-based methods [224], [239], and architecture-based meth-

ods [220], [225]. While most of the efforts focus primarily on node classification tasks, some

works have already studied link prediction tasks in the streaming setting. SPMF [218]

skillfully sampled for retraining to represent long-term preference and rank the items by

an optimization framework. SML [213] introduces a meta-learning approach that captures

the long and short-term embeddings, saving time and memory. IGC [219] re-activates the

previous nodes and updates only the new-neighbor-related parameters to speed up the retrain

speed. However, these methods primarily focus on updating shallow and static models, and

their applicability to addressing the challenges of modeling temporal graphs remains limited.

In this paper, we aim to design a temporal graph learning method that enables effective

and efficient online updating to facilitate future link prediction performance in a streaming

manner.

7.5.2 Meta-learning

Given a set of tasks, meta-learning aims to learn general knowledge that is shared across

all tasks and can be efficiently adapted to new tasks [226]. In this paper, we formulate the

online learning task as a meta-learning problem and utilize model-agnostic meta-learning

(MAML) [164] to address the challenges. MAML learns the general knowledge as the model

initialization during the meta-training phase via the alternative bi-level optimization with an

inner loop on support set and an outer loop on query set . During the meta-testing phase,

MAML fine-tunes the parameters with a small number of training instances and thus adapt

to a new learning task efficiently. Recently, meta-learning was integrated with graph neural

network models for few-shot predictions on graphs, e.g., Meta-Graph [172], G-Meta [171],

and MetaDyGNN [192]. However, most works are designed for few-shot learning on static

graphs. How to aggregate neighbors considering time factors and optimize for long-term

performance in the online setting are unsolved.

7.6 SUMMARY

In this chapter, we studied a realistic online link prediction problem on streaming temporal

graphs, which aims to effectively and efficiently update the deployed model on the newly

148



collected graph data. To this end, we proposed a novel temporal meta-training framework

OnlineSAFE. It meta-learns the global knowledge of sampling and aggregating temporal

neighbors, which can be adapted quickly to new data for future prediction via fine-tuning

steps. Such bi-level optimization is nested and alternated during the offline training to mimic

the online scenario. We further theoretically analyzed and utilized a PAC-Bayes bound

to stabilize and generalize the online updating procedure. We empirically validated the

effectiveness of OnlineSAFE on four real-world temporal knowledge graphs, on which the

proposed framework significantly outperforms an extensive set of SOTA baselines.
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Chapter 8: CONCLUSIONS AND FUTURE WORK

In this dissertation, we have explored how to design novel temporal graph learning

techniques to build robust, effective, and efficient learning pipelines to facilitate predictive

analytics in changing, partially observed, and unreliable graphs.

• From the robustness perspective, our approach was guided by the insight that false

negative and false positive issues could be mitigated through a self-adaptive mechanism.

To address this, we introduced a variational framework that treats the underlying

correctness of facts as latent variables. This framework enables the simultaneous

updating of model parameters and the estimation of posterior likelihood for determining

the veracity of collected and uncollected facts. Throughout the training process, we put

forth a label posterior-aware encoder and implemented a self-training strategy to further

mitigate false positive and false negative issues. Our investigation revealed the critical

role that label posterior estimation plays in advancing knowledge graph reasoning in

real-world scenarios. Notably, we established that this estimation can be achieved by

optimizing an alternative objective without incurring additional computational costs.

• From the efficacy perspective, as we grapple with the increasing diversity of data

and escalating task complexity, our research delved into various mechanisms aimed

at improving the modeling, representation, and learning of a wide spectrum of graph

types. This spectrum encompasses dynamic bipartite graphs, dynamic multi-relational

graphs, and dynamic low-resource graphs. In our investigations, we examined the role of

external stimuli and the influence of online social interactions in shaping graph dynamics.

We introduced a range of temporal models to capture crucial temporal information,

and we explored the impact and utilization of external knowledge sources to enrich

the modeling of data-scarce graphs. Our methods have exhibited effectiveness across a

broad array of applications, including information diffusion prediction, recommendation

systems, and temporal knowledge graph reasoning.

• From the efficiency perspective, we have effectively illustrated the viability of a

unified design philosophy. This philosophy involves representing global knowledge as

model parameters, which can be readily adapted to new data distributions through

efficient fine-tuning. This adaptability has the potential to enhance both label-efficiency,

facilitating model adaptation for emerging entities, and resource-efficiency, enabling

swift model updates with newly collected data to maintain performance levels. To

implement this concept, we introduced MetaTKGR in Euclidean space and MetaHKG
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in hyperbolic space, enhancing the model’s capacity for few-shot temporal reasoning.

We also proposed OnlineSAFE to facilitate rapid model updates in streaming settings.

Looking forward to the future, we will continue to study the following directions in

achieving build robust, effective, and efficient learning pipelines.

During the graph construction stage, addressing the robustness challenge opens up intrigu-

ing avenues for future research opportunities. One promising direction is the development of

explainable data cleaning techniques that employ a differentiable approach to learn inference

rules. This can be achieved through end-to-end optimization, allowing the model to not

only identify and correct false negative and false positive issues but also provide transparent

and interpretable explanations for its cleaning decisions. Such an approach would enhance

the model’s trustworthiness and its capacity to interact with domain experts, ultimately

contributing to a more robust graph learning pipeline. Furthermore, the exploration of tech-

niques for automatically generating and refining these inference rules presents an interesting

research opportunity. Leveraging external clues or knowledge to guide the rule generation

process could lead to more accurate and context-aware data cleaning methods. By extending

this line of research, we can pave the way for enhanced graph learning in noisy and dynamic

environments, which is of paramount importance in various real-world applications, from

social networks to recommendation systems and beyond.

During the offline training stage, first, addressing the issue of distributed training for

large graphs, especially in scenarios where temporal edges cannot be readily transferred

due to privacy or throughput constraints, is an ongoing challenge. Future research could

explore novel techniques for training graph models across distributed systems while respecting

privacy constraints, developing efficient edge transfer mechanisms, or employing advanced

federated learning approaches to ensure the seamless and secure adaptation of models in

privacy-sensitive environments. Moreover, the dynamic nature of graphs is not limited to the

conventional temporal structures. New types of graphs, such as heterophily graphs, emerge in

diverse application scenarios. Investigating how to effectively model and learn these unique

graph types presents a promising avenue for research. Understanding the dynamics and

inherent characteristics of heterophily graphs and devising tailored graph learning techniques

can yield valuable insights and solutions for various domains, including social networks and

recommendation systems. Additionally, the realm of graph learning is continually expanding

to encompass a wide range of applications and tasks. Future research opportunities involve

exploring how to leverage temporal information for graph generation, enabling the creation

of realistic and dynamic graphs that mirror the underlying dynamics of various domains.

This research area could lead to advancements in generating graphs for simulations, creating
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dynamic knowledge graphs, or constructing predictive models for evolving network structures.

During the online deployment stage, first, in terms of label-efficiency, there is room for

substantial growth in research directed at enhancing model adaptation to new relations,

new classes, and new domains. Developing innovative strategies for enabling models to

learn from a limited amount of labeled data while maintaining high predictive accuracy is a

pivotal research direction. This includes exploring techniques for transfer learning, domain

adaptation, few-shot learning, and zero-shot learning within the graph learning context.

Moreover, exploring unique property and combinationary benefits of various geometry for

representing newly emerging entities is promising. These advancements can pave the way for

more versatile and agile graph models that adapt to the ever-evolving nature of real-world

data. Resource-efficiency is another critical facet of graph learning research. As graphs

grow in size and complexity, it becomes imperative to minimize the computational demands

of graph learning models. This encompasses several dimensions, including reducing the

required time, memory, and energy for training and inference. Future research in this

area can involve the design of more efficient layers, such as attention mechanisms that can

operate effectively on large neighbor sets, leading to faster and more scalable graph models.

Additionally, techniques like improved deduplication methods, model distillation, and more

efficient memory access mechanisms can contribute to more resource-efficient graph learning.

These innovations not only make graph learning more accessible but also align with the

broader goals of sustainability and eco-friendliness in computing.
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[16] T. Trouillon, C. R. Dance, É. Gaussier, J. Welbl, S. Riedel, and G. Bouchard, “Knowl-

edge graph completion via complex tensor factorization,” J. Mach. Learn. Res., 2017.

[17] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “Rotate: Knowledge graph embedding

by relational rotation in complex space,” in International Conference on Learning

Representations, 2019.

[18] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling,

“Modeling relational data with graph convolutional networks.,” in ESWC, 2017,

pp. 593–607.

[19] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional 2d knowledge

graph embeddings,” in Proceedings of the Thirty-Second AAAI Conference on Artificial

Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference

and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,

ser. AAAI’18/IAAI’18/EAAI’18, 2018.

[20] D. Q. Nguyen, T. D. Nguyen, D. Q. Nguyen, and D. Phung, “A novel embedding model

for knowledge base completion based on convolutional neural network,” in Proceedings

of the 16th Annual Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies (NAACL-HLT), 2018,

pp. 327–333.

154



[21] S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar, “Composition-based multi-relational

graph convolutional networks,” in International Conference on Learning Representa-

tions, 2020.

[22] Z. Li, X. Jin, W. Li, et al., “Temporal knowledge graph reasoning based on evolutional

representation learning,” in SIGIR, 2021.

[23] X. Chen, M. Chen, W. Shi, Y. Sun, and C. Zaniolo, “Embedding uncertain knowl-

edge graphs,” in Proceedings of the Thirty-Third AAAI Conference on Artificial

Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Confer-

ence and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,

ser. AAAI’19/IAAI’19/EAAI’19, 2019.

[24] N. Kertkeidkachorn, X. Liu, and R. Ichise, “Gtranse: Generalizing translation-based

model on uncertain knowledge graph embedding,” in Advances in Artificial Intelli-

gence - Selected Papers from the Annual Conference of Japanese Society of Artificial

Intelligence (JSAI 2019), Niigata, Japan, 4-7 June 2019, ser. Advances in Intelligent

Systems and Computing, vol. 1128, 2019, pp. 170–178.

[25] M. D. Plessis, G. Niu, and M. Sugiyama, “Convex formulation for learning from

positive and unlabeled data,” in Proceedings of the 32nd International Conference on

Machine Learning, F. Bach and D. Blei, Eds., ser. Proceedings of Machine Learning

Research, vol. 37, Lille, France, Jul. 2015, pp. 1386–1394.

[26] S. Jain, M. White, and P. Radivojac, “Estimating the class prior and posterior

from noisy positives and unlabeled data,” in Proceedings of the 30th International

Conference on Neural Information Processing Systems, ser. NIPS’16, Barcelona, Spain:

Curran Associates Inc., 2016, pp. 2693–2701, isbn: 9781510838819.

[27] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: A collabora-

tively created graph database for structuring human knowledge,” in SIGMOD ’08:

Proceedings of the 2008 ACM SIGMOD international conference on Management of

data, 2008, pp. 1247–1250.

[28] K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choudhury, and M. Gamon, “Rep-

resenting text for joint embedding of text and knowledge bases,” in Proceedings of

the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon,

Portugal: Association for Computational Linguistics, Sep. 2015, pp. 1499–1509.

[29] C. Fellbaum, WordNet: An Electronic Lexical Database. Bradford Books, 1998.

155



[30] Y. Zhang, Q. Yao, Y. Shao, and L. Chen, “Nscaching: Simple and efficient nega-

tive sampling for knowledge graph embedding,” in 2019 IEEE 35th International

Conference on Data Engineering (ICDE), IEEE, 2019, pp. 614–625.

[31] K. Ahrabian, A. Feizi, Y. Salehi, W. L. Hamilton, and A. J. Bose, “Structure aware

negative sampling in knowledge graphs,” in Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP), Online: Association for

Computational Linguistics, Nov. 2020, pp. 6093–6101.

[32] J. Qian, X.-Y. Li, C. Zhang, L. Chen, T. Jung, and J. Han, “Social network de-

anonymization and privacy inference with knowledge graph model,” IEEE Transactions

on Dependable and Secure Computing, pp. 679–692, 2019.

[33] A. Garcia-Duran, S. Dumancic, and M. Niepert, “Learning sequence encoders for

temporal knowledge graph completion,” in Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, Brussels, Belgium: Association

for Computational Linguistics, 2018, pp. 4816–4821.

[34] C. Yang, R. Wang, S. Yao, and T. Abdelzaher, “Semi-supervised hypergraph node

classification on hypergraph line expansion,” in Proceedings of the 31st ACM In-

ternational Conference on Information & Knowledge Management, ser. CIKM ’22,

Atlanta, GA, USA: Association for Computing Machinery, 2022, pp. 2352–2361, isbn:

9781450392365.

[35] J. Pujara, E. Augustine, and L. Getoor, “Sparsity and noise: Where knowledge graph

embeddings fall short,” in Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing, Copenhagen, Denmark: Association for Computational

Linguistics, Sep. 2017, pp. 1751–1756.

[36] X. Chen, M. Boratko, M. Chen, S. S. Dasgupta, X. L. Li, and A. McCallum, “Proba-

bilistic box embeddings for uncertain knowledge graph reasoning,” in Proceedings of the

2021 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Jun. 2021.

[37] L. Cai and W. Y. Wang, “KBGAN: Adversarial learning for knowledge graph embed-

dings,” in Proceedings of the 2018 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long Papers), New Orleans, Louisiana: Association for Computational Linguistics,

Jun. 2018, pp. 1470–1480.

[38] J. Bekker and J. Davis, “Learning from positive and unlabeled data: A survey,” CoRR,

vol. abs/1811.04820, 2018.

156



[39] F. He, T. Liu, G. I. Webb, and D. Tao, “Instance-dependent PU learning by bayesian

optimal relabeling,” CoRR, vol. abs/1808.02180, 2018.

[40] H. Shi, S. Pan, J. Yang, and C. Gong, “Positive and unlabeled learning via loss

decomposition and centroid estimation,” in Proceedings of the 27th International Joint

Conference on Artificial Intelligence, ser. IJCAI’18, Stockholm, Sweden: AAAI Press,

2018, pp. 2689–2695, isbn: 9780999241127.

[41] W. Fan, Y. Ma, Q. Li, et al., “Graph neural networks for social recommendation,” in

The World Wide Web Conference, ACM, 2019.

[42] A. Javari, Z. He, Z. Huang, R. Jeetu, and K. Chen-Chuan Chang, “Weakly supervised

attention for hashtag recommendation using graph data,” in Proceedings of The Web

Conference 2020, ser. WWW ’20, 2020.

[43] S. Liu, S. Yao, D. Liu, et al., “A latent hawkes process model for event clustering and

temporal dynamics learning with applications in github,” in ICDCS’19, 2019.

[44] H. Shao, S. Yao, A. Jing, et al., “Misinformation detection and adversarial attack cost

analysis in directional social networks,” in ICCCN’20, 2020.

[45] C. Xu, J. Li, D. Sun, et al., “On polarization dynamics in the age of information

overload,” in Special Edition on Information Operations on Social Media, Workshop

Proc. of the 15th International AAAI Conference on Web and Social Media, AAAI

Press, 2021.

[46] D. Sun, C. Yang, J. Li, et al., “Computational modeling of hierarchically polarized

groups by structured matrix factorization,” Frontiers in Big Data, vol. 4, 2021.

[47] X. Liu, J. Li, D. Sun, et al., Unsupervised image classification by ideological affiliation

from user-content interaction patterns, 2023.

[48] A. M. Elkahky, Y. Song, and X. He, “A multi-view deep learning approach for cross

domain user modeling in recommendation systems,” in WWW ’15, 2015.

[49] H. Wang, R. Wang, C. Wen, et al., “Author name disambiguation on heterogeneous

information network with adversarial representation learning,” in AAAI ’20, 2020.

[50] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather: Homophily in

social networks,” Annual Review of Sociology, 2001.

[51] C. Yang, M. Sun, H. Liu, S. Han, Z. Liu, and H. Luan, “Neural diffusion model for

microscopic cascade study,” IEEE Transactions on Knowledge and Data Engineering,

2019.

157



[52] J. Wang, V. W. Zheng, Z. Liu, and K. C. Chang, “Topological recurrent neural network

for diffusion prediction,” CoRR, vol. abs/1711.10162, 2017.

[53] M. R. Islam, S. Muthiah, B. Adhikari, B. A. Prakash, and N. Ramakrishnan, “Deep-

diffuse: Predicting the “who” and “when” in cascades,” 2018 IEEE International

Conference on Data Mining (ICDM), 2018.

[54] A. Sankar, X. Zhang, A. Krishnan, and J. Han, “Inf-vae: A variational autoencoder

framework to integrate homophily and influence in diffusion prediction,” in Proceedings

of the 13th International Conference on Web Search and Data Mining, ser. WSDM

’20, 2020.
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