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ABSTRACT 

  

Mobile robots with various locomotion mechanisms have been developed to adapt to different 

environmental conditions and mission requirements. The advancement in mobile robot 

development has raised the requirements for robot perception to ensure the safe and smooth 

execution of robot missions. In the past decade, the emergence of a novel self-balancing mobile 

robot system, known as the ballbot, has opened up new avenues of research in the field of mobile 

robots. While offering enhanced maneuverability, the under-actuated dynamics of the ballbot 

invalidate most existing ground robot perception solutions. Moreover, when the ballbot is designed 

as a riding mobility device, it imposes additional demands and constraints on robot perception and 

human-robot shared motion control. Specifically, the ballbot’s omnidirectional capability requires 

operators to possess significant proficiency and experience in riding and controlling the platform 

effectively. To address these challenges, there is a critical need for advanced and innovative robot 

perception techniques and higher-level control systems that can reduce the operator’s cognitive 

load and ensure system safety by preventing unwanted collisions. This dissertation aims to 

investigate robot perception and safeguarding challenges by leveraging vision-based sensor fusion 

techniques and commonly available commercial sensors. The research specifically focuses on 

developing robot perception and shared-control systems that can be deployed on a physical ballbot 

prototype, adhering to strict Size-Weight-and-Power Constraints (SWaP-C), while also being 

generalizable to mobile robots with simpler or similar dynamic characteristics as ballbots. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background and Motivation 

A.  Mobile Robot Perception 

A “mobile robot” can be defined as a robot that can actively actuate itself in its operating 

environment [1]. Mobile robots can be classified by their means of locomotion. For example, 

iRobot’s Roomba [2] and the Segway [3] can be classified as wheeled robots; Boston Dynamic’s 

Spot [4] can be categorized as a legged robot that traverses the ground using articulated limbs. 

Depending on the complexity of the robot’s locomotion mechanism and the expected operating 

environment, mobile robots are required to have different levels of perception capability 

(collecting and processing 

information about the surroundings 

and the robot itself) such that they can 

interact with the environment 

properly and safely [5]. For instance, 

as a conventional wheeled robot, the 

Roomba is limited to 2D planar 

motions on structured and flat 

surfaces; hence it only needs wheel 

 

Fig. 1.1. Examples of modern ballbot designs a) CMU ballbot [7], 

b) ETH Rezero [9], and c) BallIP [8]. d) The omni-wheel used in 

this research study (OW125, SeCure Inc., China). 

a) b) c)

d)
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encoders, proximity sensors, and a compass system to navigate in its mission [2]. Whereas a legged 

robot such as Spot, which can perform dynamic motions like running and jumping in an 

uncontrolled environment, requires numerous sensors to measure the robot’s surrounding and 

internal states. In other words, the more dynamic and complex movements that a mobile robot is 

capable of making, the higher environmental perception capability required for its locomotion [6].  

B. Ball-based Self-balancing Robots 

A ballbot [7]–[9] is a self-balancing mobile robot that rides on top of a ball instead of two 

coaxial wheels like the two-wheeled self-balancing riding device by Segway. Most ballbot 

drivetrain designs are made possible using three or more omni-wheels and a ball [8] (Fig.1.1a-c). 

The omni-wheel can be driven forward like any normal wheel, but its perpendicular mounted 

rollers (Fig.1.1d) allow it to slide sideways with minimal friction. By carefully arranging the 

contact angles between the omni-wheels and the ball, the drivetrain can move in any direction and 

spin in place. As a result, a ballbot has 5 Degrees of Freedom (DoF), which includes 2 DoF for 

horizontal planar translations and 3 DoF for rotations in each Euclidean axis [10]. This unique 

design gives the ballbot the ability to travel “omnidirectionally”, and its self-balancing 

characteristic allows the ballbot to carry heavy payloads with a high center of mass while keeping 

a small footprint [7]. Leveraging its high maneuverability and minimum footprint, the ballbot can 

gain access to existing infrastructures that are designed for the able-bodied. Therefore, the ballbot 

is an ideal candidate for becoming the next-generation smart assistive/human transportation 

device. 
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C. PURE 

Since the introduction of the modern 

powered wheelchair in the 1970s, it has 

played a crucial role as a personal mobility aid 

for individuals with various injuries and 

disabilities [11]. However, commercial power 

wheelchairs have largely remained rooted in 

the concept of motorizing a manual 

wheelchair. The traditional differential-drive kinematics used in these wheelchairs restricts their 

ability to perform lateral movements. Additionally, in order to maintain static stability and 

minimize tipping risks, most power wheelchairs have large footprints, which makes navigation in 

domestic environments challenging. Furthermore, these wheelchairs typically require a joystick 

interface for control, occupying the operator’s hands during navigation. We are working on a 

ballbot that is designed to assist humans with transportation needs, i.e., PURE (Personalized 

Unique Rolling Experience, Fig.1.2). PURE is modularized such that the top section will be easily 

convertible between human-riding mode (Fig.1.2b-c) and payload-carrying mode (Fig.1.2a). The 

drivetrain and chair frame of PURE are constructed using aluminum and titanium alloy materials. 

Additionally, a titanium protection ring is installed near the bottom of the drivetrain to support the 

system and offer protection in case of a power outage or unexpected events. The ball used in the 

system has a diameter of 23 cm. It is coated with 3D-printed TPU (thermoplastic polyurethane) 

patches and has a polyester core. This combination of materials provides durability and traction. 

PURE allows for two forms of control: direct physical interaction (leaning of the torso while riding 

or pushing/pulling the ballbot), and remote command (via a joystick controller).  PURE is 

 

Fig. 1.2. a) PURE in payload carrying mode, b) PURE 

Gen2 prototype in human riding mode, and c) a concept 

drawing for a future generation PURE in human riding 

mode. 

a) b) c)
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proposed to adapt to the weight and movement of the rider or payload and different riding 

terrains/environments.  

However. the omnidirectional motion capability, minimum form factor, and under-actuated 

dynamics [12] pose unique robot perception challenges that cannot be easily solved with existing 

methods. These difficulties mainly arise from four aspects. First, PURE’s ability to spin in place 

and travel in both longitudinal (anterior-posterior) and lateral (left-right) directions requires the 

system to have a wide Field-Of-View (FOV) to prevent potential collisions. Second, when PURE 

accelerates, it will tilt towards the direction of acceleration due to the under-actuated dynamics 

[13], which invalidate the common assumptions that the ground plane is always at a fixed distance 

and parallel to the robot frame [14]. Third, PURE’s small form factor restricts the battery, 

computation power, and sensor systems that can be carried. Thus, size, weight, and power (a.k.a. 

“SWaP-C” [15]) are important constraints to consider. And fourth, having only one point of 

contact with the floor, PURE is more susceptible to instability while driving over small ground 

objects and rough surfaces compared to conventional statically-balanced robots. This design 

requires the perception system to pay close attention to the surface’s abnormalities and 

traversability. On the other hand, controlling and operating a 5 DoF system can be mentally 

demanding as it may require a certain level of user proficiency, not to mention compensating for 

additional complexity imposed by the environment.  

D. Vision-based Sensor Fusion and Shared-Control 

In the field of assistive robotics [16], previous efforts have helped realize applications such as 

smart wheelchairs [17]–[34], smart walkers [35], [36], intelligent canes [37], and vision-based 

navigation vests for the visually impaired [38].  In these examples, multiple sensor sources were 

used to detect and understand the robots’ surroundings and states for enabling intelligent behaviors 
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and assistive features. Using multiple sensor sources comes with numerous advantages, including 

learning diverse aspects of an environment, improving measurement accuracy or speed, expanding 

the sensing limits of the sensors’ hardware, and gaining a level of robustness against the risk of 

failure [39].  These benefits give rise to the study of sensor (data) fusion. And the key is to find 

efficient ways to combine sensor data and contribute positively to the task of perception. If 

properly designed, a sensor fusion system can achieve reasonably high performance and robustness 

without the need for expensive, heavy, bulky, and power-intensive lab-grade sensors and 

computers that violate the SWaP-C constraints.  

Traditional smart wheelchairs [17]–[34] are statically balanced devices, meaning they do not 

require active balancing maneuvers to remain upright. This is because their supporting structures, 

such as wheels or legs, maintain at least three points of contact with the ground. As a result, the 

relative orientation between the wheelchair’s sensor frame and the ground surface can be assumed 

to be fixed. When operating in structured and flat environments, the transformation between the 

 

Fig. 1.3. A comparison between low-mounted proximity sensor (left) and side-mounted RGB-D camera (right) 

under 1) zero tilting; 2) forward tilting; and 3) backward tilting. 
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sensor frame and the ground plane is known, simplifying obstacle detection. Low-mounted 

proximity sensors with low clearance to the floor can be used to detect small obstacles without the 

risk of misclassifying the floor as an obstacle.  

As mentioned, PURE’s unique omnidirectional maneuverability and dynamic stability pose 

challenges. It is difficult to anticipate the direction or tilt angle at which PURE will encounter 

obstacles. A low-mounted proximity sensor may generate false alarms by mistaking the floor as 

an obstacle or may fail to detect an obstacle if its projector is facing upward, depending on the 

tilting conditions (Fig.1.3 (left)). 

In response to the challenges posed by PURE’s unique omnidirectional maneuverability and 

dynamic stability, a perception system with a wide FOV and the ability to differentiate between 

the ground plane and obstacles is necessary. There are designs as in [19], [28]–[30], [32] which 

add top-mounted cameras or LiDAR to gain a wide or 360-degree view of the surroundings. 

However, these designs are more suited for research and development purposes instead of real-

world product deployment. These designs often include tall mounting poles that are socially 

unacceptable and increase the risk of overhead collisions, limiting user mobility. 

To address these issues, this dissertation focused on the development of a low-profile, side-

mounted sensor array for PURE. Sensor placement locations were carefully chosen to maximize 

the FOV while minimizing interference with the user’s body and chair-transfer motion. Vision-

based sensor fusion systems, renowned for their wide FOV, ability to capture dense visual 

information, and measure 3D structures [40], offer promising solutions for ground robots like 

PURE [7]–[9], [41]–[43].  This dissertation aimed to explore the potential of a vision-based sensor 

fusion system as a versatile robot perception solution and to develop shared-control prototypes 

enabled by this system. In this context, motion control of a semi-autonomous device that is shared 
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between a human operator and the device will be referred to as “shared-control”. Studies [44], [45] 

have highlighted the importance of utilizing the user’s residual abilities for promoting 

independence, suggesting that complete autonomy might not be desirable. Alternatively, shared-

control is a software system that offloads low-level motion control, such as obstacle avoidance 

tasks, to a robot controller. This allows the human operator to focus on high-level navigation 

objectives, reducing cognitive load [11], [46]–[48]. This collaborative approach combines the 

strengths of both the user and the robotic system, enhancing overall performance and promoting 

independence. 

Prior powered wheelchair shared-control approaches can be broadly categorized into 

deliberative and reactive methods. Deliberative shared-control follows a “Sense-Plan-Act” 

formulation, utilizing environment modeling and planning techniques such as Rapidly Exploring 

Random Trees (RRT) [49], Model Predictive Control (MPC) [50], [51], Reinforcement Learning 

(RL) [52], or Bayesian methods [53]. These approaches consider both current and future states of 

the environment to plan efficient and risk-averse paths. In contrast, reactive shared-control directly 

maps the current state of the environment and the robot into the robot’s control signal. Examples 

of reactive shared-control methods include Vector Field Histograms (VFH) [54], Dynamic 

Window Approach (DWA) [55],  and Artificial Potential Fields (APF) [47], [56]–[59]. Reactive 

shared-control is known for its speed, simplicity, and robustness but lacks the ability to reason 

about complex navigation tasks and find optimal paths. While these existing methods have 

demonstrated success in enhancing user abilities to operate or remotely control powered walkers 

and wheelchairs, there is a lack of shared-control research targeting dynamically balanced robots 

like PURE. 
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1.2 Objective and Research Significance 

The main focus of this dissertation research was to enable robot perception and intelligent 

behaviors (e.g., shared-control) on mobile robots, by leveraging vision-based sensor fusion. 

Previous literature addressing Robotic Terrain Classification (RTC) for navigation and surveying 

has tended to focus solely on either exteroceptive sensors (i.e., sensors that perceive the 

environment external to the system) or proprioceptive sensors (i.e., sensors that perceive the status 

and conditions internal to the system) [60]–[66]. However, these approaches lacked 

complementary sensor modalities and redundancy, making them susceptible to influences from 

the environment or vehicle motion [67]–[69]. Moreover, existing neural network models for 

semantic/contextual understanding, while effective and powerful, are often computationally and 

power expensive [70]. This renders them unsuitable for deployment on robots with SWaP-C 

constraints, which categorize most indoor robots as they require compact form factors to work in 

clustered and confined spaces. Traditional shared-control techniques used on smart wheelchairs 

were designed to fuse operator (i.e., joystick signals) and robot commands on statically-balanced 

conventional robot platforms [36], [71]–[73]. However, when it comes to dynamically-balanced 

robots like the ballbot, the operator might be able to overpower the robot agent’s commands by 

leaning in the opposite direction (as the ballbot needs to track the center of gravity to maintain 

balance). This implies that these existing techniques cannot be directly transitioned onto PURE. 

This dissertation presents three key studies designed to answer the following research 

questions:  

1. How to build a vision-based sensor fusion method that enables robust robot terrain 

classification on a miniature ground vehicle?  
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2. How to address the perception challenges of a riding ballbot using a vision-based sensor 

fusion system?  

3. How to transform and transition the developed vision-based sensor fusion system and 

shared-control onto the riding ballbot system and effectively safeguard the riding operator? 

Study 1 - Investigation of a Vision-Proprioception Fusion Method for Robust Robot Terrain 

Classification (RTC) 

The first study used a commercial Unmanned Ground Vehicle (UGV) mobile platform to 

build a Robotic Terrain Classification solution based on common onboard UGV sensors. The goal 

was to reduce operation restrictions on environmental illumination and vehicle maneuverability 

while developing a compact and motion-and-illumination-robust RTC solution capable of accurate 

and reliable classification under various lighting conditions and motion maneuvers. This work* 

has been presented at the 2021 IEEE IROS conference and published in [74]. 

Study 2 - Development of a Neural Network Augmented RGB-Depth Perception System for 

Indoor Robot Navigation 

The goal of the second study was to develop a robot perception solution that addresses the 

defined perception requirements and constraints of a ballbot system. The outcome of this study 

was a perception system that generates a multi-layer grid map representation summarizing the 

information on surrounding obstacles and traversable surfaces. The system had several design 

requirements: 1) it should remain unaffected by PURE’s tilting motion during operations; 2) it 

should be capable of detecting both large and small objects on the floor that may not be easily 

detected by depth sensors alone; 3) it should have low latency to ensure real-time responsiveness; 
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and 4) it should be deployable to a low-power single-board computer, meeting the SWaP-C 

constraints of PURE. The pre-print of this study is available [75]. 

Study 3 - Integration and Validation of a Vision Guided Shared-Control System for a Riding 

Ballbot 

The third study focused on transitioning the perception system onto PURE by integrating the 

high-level perception system with the low-level dynamic control system of PURE, and 

demonstrating the system’s ability to perform vision-based shared-control. This study details the 

full system layout, as well as a human-robot interaction evaluation designed to evaluate the 

efficacy of the shared-control paradigm. The shared-control algorithm detects obstacles and slow 

or stop the device to protect the PURE system and user from unwanted collisions, aiming to reduce 

the users’ cognitive load. The requirements for the shared-control were: 1) it needs to be reactive 

with low latency; 2) it needs to be passive, avoiding control oscillations and allowing for soft 

collisions; 3) it needs to accommodate PURE’s dynamic characteristics. Twenty subjects, 

including ten able-bodied individuals and ten manual wheelchair users, were recruited for the 

human-robot interaction test. Test participants were asked to ride the device at low speed (≤ 1 

m/s) with and without the assistance of the shared-control in test courses designed to simulate 

indoor navigation scenarios (e.g., S-turn and Zigzag) to assess the ability of shared-control to 

minimize collisions (with cardboard walls). This study represents the first attempt at implementing 

a shared-control system for a ridable self-balancing device. 

 

*The majority of the content in this chapter was previously published in [73] as “A CNN-based vision-

proprioception fusion method for robust UGV terrain classification” by Chen, Y., Rastogi, C., and Norris, W.R. 

(2021) in IEEE Robotics and Automation Letters, Volume 6, Issue 4, pp. 7965-7972. Digital Object Identifier 

10.1109/LRA.2021.3101866. Minor edits have been made to integrate it more effectively into this dissertation. 
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CHAPTER 2 

 

INVESTIGATION OF A VISION-PROPRIOCEPTION 

FUSION METHOD FOR ROBUST ROBOT TERRAIN 

CLASSIFICATION 

2.1 ABSTRACT 

The ability for ground vehicles to identify terrain types and characteristics can help provide 

more accurate localization and information-rich mapping solutions. Previous studies have shown 

the possibility of classifying terrain types based on proprioceptive sensors that monitor wheel-

terrain interactions. However, most methods only work well when very strict motion restrictions 

are imposed including driving in a straight path with constant speed, making them difficult to be 

deployed on real-world field robotic missions. To lift this restriction, this study proposes a fast, 

compact, and motion-robust, proprioception-based terrain classification method. This method used 

common on-board UGV sensors and a 1D Convolutional Neural Network (CNN) model. The 

accuracy of this model was further improved by fusing it with a vision-based CNN that made 

classification based on the appearance of terrain. Experimental results indicated the final fusion 

models were highly robust with strong performance, with over 93% accuracy, under various 

lighting conditions and motion maneuvers.  
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2.2 INTRODUCTION 

The development of precision agriculture has been greatly enhanced due to advances in sensors, 

robotics, and artificial intelligence. For instance, automatic inspection robots can make assessments 

of the soil (terrain) quality of farmland and use that information to optimize the scheduling of 

farming tasks including plowing, watering, and fertilization. Similarly, scout and surveillance 

robots can be used to explore sites of interest remotely to identify hazardous terrain that might sink 

and trap or damage heavy machinery. They can provide reference data for excavation in 

construction and mining operations. These robotics applications all rely on the robot’s ability to 

perceive and characterize terrain. Additional benefits of terrain classification include the 

development of terrain-aware traction control and motion planning that minimizes fuel 

consumption for field robots. The knowledge of site-specific terrain characteristics can improve 

localization accuracy by serving as landmarks, and contributing terrain-related information on a 

high-definition map.  

Previous efforts to address robotic terrain classification (RTC) have explored the use of 

exteroceptive sensors such as cameras [60], [61], 2D and 3D laser scanners [62], [63], ultrasonic 

and infrared sensors [64], as well as microphones [65]. In other studies, proprioceptive sensors such 

as Inertial Measurement Units (IMUs) [66] and acceleration or vibration sensors [68], [76] were 

used to characterize terrain properties. In terms of the classifier, prior studies have investigated both 

traditional machine learning techniques (i.e., SVM [77]–[79], kNN [80], and Bayes model [66], etc.) 

and artificial neural networks (i.e., LSTM [65], RNN [76], CNN [81], FCN [68], etc.), which have 

led to immense successes in solving RTC problems.   
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The key to a robust RTC solution is to extract terrain characteristics that are invariant to vehicle 

motions and environmental factors such as noise and unstable illumination. Vision-based methods 

are well-studied and relatively more accurate, but are susceptible to influences from environmental 

illumination [67], and motion blur caused by strong vibrations. Proprioceptive solutions are robust 

to environmental factors and require only common sensors used on most modern robots. However, 

the solutions are less accurate and highly dependent on the vehicle’s motion. Many previous 

studies[78]–[83] tested their methods when the UGVs move on a straight path with constant speed, 

while others did not reveal their testing conditions. These restrictions occurred because the vehicles 

used in these studies were primarily skid-steer drive, which induced additional slippage and 

vibration to the system while turning. Also, the vehicle’s driving speed is proportional to the driving 

effort and the frequency of the vibrational response [68], [84]. These motion-dependent 

interferences cloud the judgment of the proprioception classifiers. To overcome the shortcomings 

in different sensing modalities, previous studies considered leveraging data from multiple sensor 

sources.  For example, [61] used the visual and texture features gathered by a stereo camera, 

vibration sensors, and a belly-mounted camera to improve the classification performance between 

three terrain classes. The study in [78] fused the classification decisions made by an image-based 

SVM and a vibration-based SVM on a 14-class terrain classification problem. And more recently, 

[79] combined color and three different proprioceptive features to assess terrain in an agriculture 

setting. While the aforementioned work demonstrated improved performances using multi-model 

classifiers, they did not fully address the problem of motion-dependent interference of the UGV nor 

quantify the robustness of their models under challenging lighting conditions.  

In this research, a fast, compact, and motion-robust proprioception-based classifier using 

common on-board UGV sensors and a 1D CNN model was developed. Previous work like [66], 
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tackled the motion-dependent interference problem using a hierarchical classifier and performing 

feature selection on hand-crafted features. As opposed to this approach, the CNN model in this 

study learns the most effective features from the input data directly. Using this unified pipeline, 

over 90% accuracy was achieved on data sets recorded under arbitrary and continuous vehicle 

motions with minimum knowledge in the signal processing and proprioception domains. 

Furthermore, this study showed that by adopting and fusing an image-classifying CNN module pre-

trained on a different data set, the classification accuracy was over 98% under appropriate 

illumination. The same approach maintained a robust performance of over 93% accuracy under 

challenging lighting conditions.  

The following chapter is organized as follows: Section 2.2. provides implementation details of 

a novel terrain classification approach, including the data set collection and feature generation 

process, as well as the construction and training of the neural network models. Section 2.3. presents 

the experimental results, and the performance of the neural network models under realistic and 

challenging conditions are demonstrated and discussed. Section 2.4. concludes the study and 

provides insights towards future work. 

2.3 METHODOLOGY 

A.  Overview 

The proposed proprioception model uses similar procedures from [79] to generate 

proprioceptive signal inputs. As opposed to the model in [79], which had no knowledge of the 

vehicle’s motion, wheel encoder readings were fed to the model to serve as motion cues. Also, 

instead of fully relying on the proprioceptive signals of the vehicle body, this study utilized the 

signals from the left and right sides of the vehicle to help the classifier reject motion-dependent 
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interference. The approach used in this study retained the input signals in their raw form. So that 

the neural network model can learn the temporal correspondences between the vehicle’s motion and 

proprioceptive feedback.  

A vision-based classifier was built using a pre-trained module and was later fused with the 

proprioception-based classifier. This study investigated two different fusion mechanics and 

demonstrated that visual and proprioceptive signals were complementary. In combining their 

modalities, the classification performance and robustness can be improved. The model’s ability to 

function across different motion and lighting conditions makes it more suitable for real-world 

mobile robotic missions on arbitrary outdoor fields which oftentimes require obstacle avoidance 

maneuvers.  

All the data used in this study was collected using a mobile robotic platform and processed off-

line. Once trained, the classifiers can be deployed on the robot and report a terrain label every 

second during normal operations (0.2 m/s to 1 m/s). 

B. Data Collection 

The Jackal UGV, from Clearpath Robotics, was used as the data collecting platform. This skid-

steer four-wheel-drive vehicle, shown in Fig.2.1a, comes with an onboard IMU, two DC motors 

a)   b)  

Fig. 2.1: a) The Jackal robot platform used for data collection; b) The data collection pipeline. 
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with encoders that measure wheel angular speeds, and current sensors that measure motor current 

outputs. On each side of the robot, the front wheel and back wheel are jointed with a gearbox and 

so spin together at the same rate and direction. The IMU provides vehicle attitude measurements in 

terms of Euler angles, as well as linear acceleration and angular rate of the vehicle body in three 

Euclidean axes. Camera systems such as the RS D435i and RS T265 were mounted to an aluminum 

frame attached to the top of the robot platform. While the tracking camera T265, faced forward, the 

D435i depth camera was positioned and tilted in a way that the camera had a clear visual of the 

terrain patch. The patch size was about 680 mm × 340 mm with a look ahead distance of 150 mm 

relative to the chassis of the vehicle. The D435i served as a regular RGB camera for this study and 

the depth images reconstructed by the D435i were not included in any of the data sets. The T265 

camera was used as a Visual-Inertia Odometry (VIO) solution that provided ego-motion estimations 

of the vehicle.  

For this study, six different sensor signals were used: 1) current feedback, 2) wheel encoder 

readings from each side of the vehicle, 3) 6 DoF VIO measurements from the T265, 4) three-axis 

linear acceleration, 5) attitude measurement from the IMU, and 6) RGB images taken by the D435i. 

In addition to the RGB images, all other sensor signals were used as proprioceptive features.  

  
Fig. 2.2: Sample images of the different terrain classes. 
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Seven terrain classes were investigated, including asphalt, brick road, grass, gravel, pavement, 

sand, and coated floors. Fig.2.2 shows sample images of the different terrain classes in the data sets. 

Training and development data were collected by driving the Jackal robot on each terrain class 

across different days to account for variance in lighting conditions. Data collection occurred during 

sunny days from Nov. 2020 to Feb. 2021 in Champaign, Illinois. The average temperatures ranged 

from 6 to 27 ℃. An experienced human operator (one of the authors) was designated for remote 

control of the Jackal robot during data collection. For each terrain class, multiple independent trials 

were taken for at least 6 minutes for the Straight Driving sessions and at least 10 minutes for the 

Remote Control sessions. The protocols of these sessions were defined as follows: 

• Straight Driving: the robot was programmed to follow a straight path at the speed of 0.5 m/s 

and 1 m/s with no reverse driving, stopping, or turning. This session was added to help the neural 

network understand the proprioceptive baseline for each terrain surface without the interferences 

induced by aggressive vehicle movements. 

• Remote Control: the robot arbitrarily drove around the test site to simulate normal robot 

operations, controlled by a human operator remotely. The operator was instructed to take each path 

as randomly as possible to reduce the motion bias in the data set. The session conditions included 

no reverse driving, stopping only if necessary, with a top speed limited to 1 m/s out of safety 

concerns. 

Finally, 600 sec of data from the Straight Driving sessions and 1800 sec of data from the 

Remote Control sessions were randomly chosen to form the data set for each terrain class. In total, 

a data set that contained 7 terrain classes × (600 s + 1800 s) = 16,800 s (4.67 hours) of image-signal 

data was gathered for training the neural network models. This data set was divided into a training 

set and a development set with a ratio of [4:1]. The split between the training and development set 
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was a uniform random selection from the shuffled data set. And for both data sets, the number of 

samples in each class was kept equal to prevent uneven training. 

C. Data Processing 

1) Proprioceptive signals: Raw sensor signals were sorted and stored in the form of 1-second 

data segments as conducted in many previous studies [61], [66], [68], [76]–[78], [80], [83].  

Resampling Zero-Order-Hold (ZOH) interpolation and subsampling were used to make sure 

signals from different sources shared the same sampling frequency (100Hz). After the resampling, 

one sample of the proprioceptive signal was a 100 ×n vector, where n was the number of signal 

channels. The use of ZOH ensures easy transfer when deploys on-line. 

Data Cleaning All the data segments that contained stopping motions, where vehicle linear 

velocity < 0.2 m/s were removed, as the proprioception-based method was not effective under this 

condition. 

Feature Generation The following proprioceptive features were selected/derived from raw 

signals: wheel angular speed, motion resistance coefficient, and percentage slip for each side of 

the vehicle. Also, the linear acceleration of the vehicle body in three Euclidean axes. A total 

of 2×(1+1+1)+3=9 proprioceptive features were used as input to the Proprioception Net. The 

details of the feature derivation are provided in section 2.2.D.  

2) RGB images: RGB images were recorded at 25 Hz by the D435i. There were 25 images for 

each second of proprioceptive signals.  

Data Association The approximation was made such that only the first image of a second was 

used to represent the appearance of the terrain patch that the robot was about to traverse, as shown 
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in Fig.2.1b. Since the robot primarily operated with a speed between 0.5 m/s to 1.0 m/s, and each 

data collection site contained only one terrain class, the assumption was that the fixed frame 

approximation was sufficient. The correspondence between image and proprioceptive signals did 

not need to be exact for this application. Ideally, techniques like Simultaneous Localization and 

Mapping (SLAM) would be applied to provide more accurate image-signal data association to 

account for misalignments due to differences in speed and steering.  

Inverse Perspective Mapping (IPM) IPM was applied to the selected RGB images to transform 

them into clear and homogeneous bird’s-eye view terrain patch visualizations (500 × 250 pixels). 

The transformed images were resized to 224 × 224 pixels to fit the input size of the Vision Net. 

3) HDF5 File: The processed image-signal pairs were stored in the HDF5 format for fast 

retrieval. The data pairs were organized by their unique timestamps. The HDF5 data files used in 

this study are open-source and available at IEEE DataPort:  

https://ieee-dataport.org/open-access/jackal-robot-7-class-terrain-dataset-vision-and-

proprioception-sensors  

D. Proprioception Net 

1) Feature Derivation: Among the proprioceptive 

features used in this study, the wheel angular speed (rad/s) and 

the three-axis vehicle linear accelerations (m/s^2) were taken 

in their raw forms.  The derivation and definition of the motion 

resistance coefficient was adopted from [79]: The motion 

resistance caused by the deformation of the wheel-terrain 

interface shifts Fz, the vertical load experienced by the wheel 
 

Fig. 2.3: Motion resistance that arises 

from wheel-terrain interaction. 

 

https://ieee-dataport.org/open-access/jackal-robot-7-class-terrain-dataset-vision-and-proprioception-sensors
https://ieee-dataport.org/open-access/jackal-robot-7-class-terrain-dataset-vision-and-proprioception-sensors
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forward with respect to the wheel’s geometric center, as shown in Fig.2.3. Assuming all of the 

torque generated by the motor is used to overcome the resistance moment, the required driving 

torque is τ = f
r
 r Fz , where f

r
 is the motion resistance coefficient on a local terrain patch, and r is 

the radius of the wheel.  

From the motor’s perspective, the output torque can be roughly estimated by the amount of 

current, I, drawn by the DC motor: τ = ε kt I. ε is the gear ratio and kt is the torque constant of the 

DC motor. Therefore, the motion resistance coefficient can be estimated using current feedback and 

wheel vertical load: 

                                        f
r
 = 

εkt

r

I

Fz
         (2.1) 

The wheel vertical load is not a variable that can be directly measured or easily calculated. 

However, the variable can be approximated using a quasi-static dynamic model, proposed by [79], 

to neglect complex inertial effects caused by vehicle motion. This approximation is valid as the 

Jackal robot only operates at a relatively low speed with a maximum of 1 m/s. Applying Newtonian 

mechanics, the vertical forces in the vehicle coordinate frame can be expressed. As this study was 

only concerned with the motion resistance coefficient on each side of the vehicle, as shown in 

Fig.2.4, the vertical forces for the left and right sets of the wheels are:  

                                  Fz,l = 
W

2
cos(ϕ) cos(θ)  - W cos(θ) sin(ϕ)

h

D
             (2.2) 

                                  Fz,r = 
W

2
cos(ϕ) cos(θ)  + W cos(θ) sin(ϕ)

h

D
         (2.3) 

ϕ and θ are the vehicle’s roll and pitch angles measured by the onboard IMU. h is the height of 

the vehicle’s center of gravity, and D is the track width. Additional details on the derivation of (2.2) 

and (2.3) can be found in [79].  
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The above method is a rough approximation of the motion resistance that the vehicle 

experiences over a local terrain patch, as the noise in current feedback, the friction loss in the 

gearboxes, and inertial effects are not accounted for. However, the results showed this estimation 

was sufficient for use as an indicator of the terrain hardness level.  

The percentage slip of the left and right sides of the vehicle are defined as follows: 

                                      %slip
l
 = 1-

ωvio,l

ωenc,l
              (2.4) 

                                      %slip
r
 = 1-

ωvio,r

ωenc,r
            (2.5) 

While ωenc,l and ωenc,r are the left and right wheels’ angular speeds measured by the encoders, 

ωvio,l and ωvio,r are the left and right wheels’ angular speeds calculated from the VIO estimations 

and skid-steer vehicle kinematics: 

                                     ωvio,l = (v
vio,x

 - 
D

2
wvio,z)/r           (2.6) 

                                ωvio,r = (vvio,x+
D

2
wvio,z)/r            (2.7) 

vvio,x and wvio,z are the vehicle linear speed on the x-axis and vehicle angular rate on the z-axis, 

both estimated by the T265. As opposed to [79], which took the average of the motion resistance 

 

Fig. 2.4: Free-body diagram of the vehicle system (top-view) 
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coefficient and percentage slip of the whole vehicle to form their proprioceptive features, this study 

retained the values across the data segment window. To form the desired motion-robustness, the 

model needed to learn how to distinguish and eliminate motion-dependent interference from noisy 

proprioceptive features. As a result, the model was given the temporal correspondences between 

the robot’s motions and proprioceptive feedback. This is the reason why this study did not use Fast 

Fourier Transform (FFT) when handling acceleration data like many previous studies [68], [77], 

[78], [80], [83], [84]. Doing so would essentially destroy the underlying temporal information 

within the data segment. 

Finally, at each time step k, a vector p
k
 (1×9) that contained nine proprioceptive features {ωenc,l, 

ωenc,r , accelx , accely , accelz , %slip
l
 , %slip

r
 , f

r,l
 , f

r,r
   was drawn, where accelx , accely,  and accelz 

were the three-axis vehicle linear accelerations. And f
r,l

, f
r,r
 were the motion resistance coefficients 

for the left and right sides of the vehicle. These proprioceptive features informed the model about 

the vehicle motion, as well as the evenness, slipperiness, and motion resistance of the terrain. Finally, 

the input to the Proprioceptive Net was a 2D vector p (100×9), where there were 100 time steps in 

a one-second data segment and with 9 feature channels.  

2) Model building: This study explored using 1D CNN, Multi-branch CNN, CNN with skip-

connections, Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), CNN-LSTM [85], 

TABLE 2.1 

THE PROPRIOCEPTION NET MODEL STRUCTURE 

 

Layer type Kernel Size / Stride Output shape

Conv1D 9*9 / 1 (100, 64)
Max Pooling 2*2 / 2 (50, 64)
Dropout (0.2) - (50, 64)

Conv1D 5*5 / 1 (50, 64)
Max Pooling 3*3 / 3 (16, 64)
Dropout (0.4) - (16, 64)

Flatten - 1024
Softmax - 7



23 

 

and ConvLSTM2D [86] as building blocks of the Proprioceptive Net. For a similar number of 

parameters with the same order of magnitude, the 1D CNN provided the best results. The best model 

was a simple two-layer 1D CNN (with 32,967 parameters). The detail of the network structure is 

provided in Table 2.1. 

This 1D CNN model performed convolution along the temporal axis, and a Rectified Linear 

Unit (ReLU) was used at each convolution layer as the activation function. Many previous Natural 

Language Processing (NLP) studies applied similar practices and achieved great success. Recurrent 

neural networks like LSTM and GRU were also heavily used in NLP [87]. For this task, while 

keeping the number of parameters within the same order of magnitude as the 1D CNN model, 

increasing the number of recurrent units per layer, and the depth of the network did not result in an 

obvious improvement in accuracy. A similar result was observed in [88], when using LSTM to 

process haptic signals.  

For other hybrid models, the difficulties of structural arrangement and hyper-parameter tuning 

increased proportionally with their model complexities. Since a simple 1D CNN model achieved a 

high level of accuracy, the implication is that the features used in this study were very effective for 

extracting motion-independent terrain characteristics. As a result, there are marginal benefits in 

using a “deeper” model. 

E. Vision Net 

To further improve the accuracy of the classification, a Vision Net model for capturing the 

visual characteristics of terrains was constructed. Generally, the training of an image-classifying 

CNN requires a large amount of data to ensure generalizability and prevent overfitting. To get high 

performance with a limited amount of data, the MobileNet v2 module [89] that was pre-trained on 
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ImageNet was adopted. MobileNet v2, a compact and efficient CNN architecture developed by 

Google, was designed for image classification on a device with limited computational power like 

single-board computers or mobile phones.  ImageNet is a large image database that contains multi-

millions of image samples.  

The weights of this pre-trained CNN module were frozen to reduce the number of trainable 

parameters (41,223) and save training time. Numerous data augmentation techniques were applied, 

such as horizontal and vertical flipping as well as random rotation, and random brightness on the 

training data. Using the model shown in Table 2.2, the Vision Net achieved over 98% accuracy on 

both training and development sets.  

F. Fusion Net 

The hypothesis was made that by fusing the proprioception- and vision-based model, higher 

levels of performance would be achieved due to their complementarity. To better understand the 

fusion mechanics, two different fusion schemes were explored, namely the feature map-level and 

decision-level fusion. 

1) Fusion at the feature map-level: First, the Softmax (the last) layer of the trained 

Proprioception Net was removed. As a result, the output of this module was a 1×1024 feature vector. 

This module was denoted as a Proprioception CNN. The pre-trained MobileNet v2 module was used 

and denoted as a Vision CNN. The weights of these two modules were frozen, and they were used 

as feature extractors to process the image-signal hybrid input. The activations (ReLu) from these 

TABLE 2.2 

THE VISION NET MODEL STRUCTURE 

 

Layer type Kernel Size / Stride Output shape

MobileNet v2 - 1280
Dropout (0.25) - 1280

Dense - 32

Softmax - 7
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two CNN modules were concatenated. The complete pipeline of feature map level fusion can be 

found in Fig.2.5.  

To simulate the possible illumination conditions (i.e., darker lighting, etc.) in test time, 

additional and aggressive data augmentation techniques were applied on images during training, 

including random channel shift, motion blur, and blackout.  

2) Fusion at the decision-level: In this model, the learned weights of the Vision Net and the 

Proprioception Net were directly transferred. These two networks ran in parallel and made 

 

Fig.2.6: Decision-level fusion model pipeline 

 

 

Fig. 2.5: Feature map-level fusion model pipeline 
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independent predictions (decisions) at their Softmax layers. The prediction outcomes were received 

by a fusion operator, denoted as a DST, which outputs the final classification, as shown in Fig.2.6. 

DST is the acronym for the Dempster–Shafer Theory [90]. It was used in this model to solve the 

problem of combining multiple belief functions. DST was used in a previous fusion model [91] for 

classifying sound signals with great results.  

In this study, two distinct sets of evidence, appearance and proprioceptive feedback, were used 

to estimate the belief about an event. The belief was the likelihood that a certain terrain type was 

detected. For this application, Dempster’s rule of combination was an appropriate fusion operator. 

Specifically, the operator was defined as follows: 

                                                  m1,2(A)=(m1⊕m2)(A)  

                                                              =
1

1-K
∑ m1(B)m2(C)B∩C=A≠∅          (2.8) 

m1(B) and m2(C) were the mass functions of the Vision Net and the Proprioception Net, the 

outputs of Softmax layers. And m1,2(A)  was the jointed mass function that encoded the belief 

distribution of the class labels and it satisfied the constraint m1,2(∅)=0. K = ∑ m1(B)m2(C)B∩C=∅  

indicated the level of conflict between the two mass functions, and it was used for normalizing the 

mass functions. Since all the transferred weights were frozen and the DST layer did not contain 

any parameters, this fusion model did not require training.  

2.4 VALIDATION RESULTS 

1) Data Set: To validate the performance and robustness of the method, two independent sets 

of testing data were gathered. First, a test set was collected using the same protocol described in 

section 2.2.B. For all testing data, only the Remote Control sessions were included. This data set, 
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denoted as the Test Set, had 4,020 samples (1.1 hours) from seven terrain classes collected under 

lighting conditions similar to the training set. The other data set, denoted as the Dark Set, had 3,912 

samples (1.09 hours) and was also collected using the same protocol, only in this case the data were 

recorded under natural twilight conditions.  

Fig.2.7 provides a visualization of the vehicle linear and angular speeds collected for each data 

set. The probability distributions were similar across all data sets, except that the training and 

development sets contained more samples at 0.5 m/s and 1 m/s due to the addition of the Straight 

Driving sessions. This meant the data collected in the Remote Control sessions were sufficiently 

random (uniform). It can be observed that the human operator tended to have a preferred range of 

driving and turning speeds when requested to drive the robot with arbitrary motions.  

Moreover, to test how well the models generalized to illumination conditions that were not 

accounted for during training, the images in the Test Set were augmented under different 

conditions, and two simulated data sets were created: the Sun Set and the Fog Set. A library called 

 

Fig. 2.7: Probability density histograms of vehicle linear and angular speed for Training / 

Development Set; Test Set; and Dark Set 
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albumentations was used to generate realistic overexposed and foggy images. Samples of these 

test sets can be found in Fig.2.8.  

 2) Experiment Analysis: Table 2.3 demonstrates the confusion matrices of four models tested 

under the two testing sets. It was expected that the Proprioception Net struggled to tell the 

differences between asphalt (ASP), pavement (PMT), and coated floor (CFL) since they are 

relatively flat and solid [68]. Most of the confusion between these three classes occurred when the 

robot was moving straight, where the terrain characteristics of these classes were difficult to 

distinguish. Additionally, if the robot turned (skidded) on asphalt or pavement, the robot induced 

strong vibrations due to high friction. The difference between asphalt and pavement was more 

subtle in the eyes of the Proprioception Net. The darker lighting condition in the Dark Set did not 

hinder the accuracy of the Proprioception Net since it did not rely on visual information. However, 

the Vision Net failed with the Dark Set and tended to guess all input samples to be either pavement 

or a coated floor. This follows from the general knowledge that image CNNs are sensitive to 

lighting conditions. The two Fusion Net models had the highest overall accuracy (up to 99.38%) on 

the Test Set and the Dark Set as shown in Table 2.3. Leveraging two complementary modalities, 

the feature map-level fusion model demonstrated strong performance on the two testing sets. The 

decision-level fusion model was able to strategically shift its belief between the two CNN models 

and achieved a similar level of performance. Some samples which were indistinguishable by the 

 

            a)                                          b)                                         c)                                         d) 

Fig. 2.8: Sample images of gravel in a) Test Set, b) Dark Set, c) Sun Set, and d) Fog Set 
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Proprioception Net and the Vision Net were correctly classified with both fusion models. For the 

Dark Set, even when almost no visual information was available for classification, both fusion 

models maintained a higher level of performance compared to the Proprioception Net and the 

TABLE 2.3 

THE CONFUSION MATRIX 

 

 

Orange: the Proprioception Net; Blue: the Vision Net; Green: the Fusion Net at feature map-level; 

and Yellow: the Fusion Net at decision-level, tested under the Test Set and the Dark Set. 

ASP GRS GRL PMT SND BRK CFL

Asphlat Grass Gravel Pavement Sand Brick Coated Floor
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Vision Net. These results confirmed the earlier hypothesis that by fusing the proprioception- and 

vision-based models, higher levels of performance can be achieved due to their complementarity.  

Table 2.4 provides an accuracy comparison between the models developed in this study as well 

as the models from [78] and [79]. The methods in [78] and [79] were recreated with the best effort 

and trained using the same training set. The test results of [78] and [79] are presented as baselines. 

As the Sun Set and the Fog Set were synthesized using the Test Set, the test accuracies for all the 

proprioceptive-based models were the same as the Test Set. 

Table 2.4 demonstrates that the fusion models developed in this study have consistently high 

performance (over 93%) even in illumination conditions that were not accounted for during training, 

namely the Sun Set and the Fog Set. It can also be observed that even though [78] and [79] did 

improve the classification accuracy in the Test Set by fusing the SVM models, this trend did not 

TABLE 2.4 

THE CLASSIFICATION ACCURACY COMPARISON TABLE 

  Test Set Dark Set Sun Set Fog Set  Avg. 

Proprioception Net 90.18% 92.78% 90.18% 90.18% 90.83% 

Vision Net 99.76% 33.33% 88.70% 72.73% 73.63% 

Feature map Fusion 99.38% 93.81% 95.55% 96.33% 96.27% 

Decision Fusion 98.95% 93.68% 96.73% 96.22% 96.40% 

C. Weiss et al. PSVM 74.39% 70.51% 74.39% 74.39% 73.42% 

C. Weiss et al. VSVM 62.13% 22.66% 24.23% 37.17% 36.55% 

C. Weiss et al. FSVM 79.80% 52.11% 52.59% 64.72% 62.31% 

G. Reina et al. PSVM 58.52% 55.52% 58.52% 58.52% 57.77% 

G. Reina et al. VSVM 84.52% 17.40% 41.46% 60.81% 51.05% 

G. Reina et al. FSVM 90.25% 26.52% 48.18% 72.22% 59.29% 

Blue: models from this study; Orange: C. Weiss et al.; Green: G. Reina et al.; “PSVM”, “VSVM”, 

and “FSVM” stand for proprioception SVM, vision SVM, and fusion SVM respectively. The term 

accuracy refers to weighted overall accuracy, and the bold numbers are the highest accuracy in each 

column. 
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generalize well to other test sets. In some cases, the accuracy of the proprioception SVM was higher 

than the fusion SVM, which implies the fusion mechanics used in [78] and [79] could not 

strategically shift their beliefs between the proprioception and the vision models according to the 

illumination conditions.  

Table 2.5 provides information on the inference time and storage size of the models in this 

study. The Proprioception Net was very fast and compact, while the other models required over 6 

ms to process a one-second data pair. As the collection of proprioceptive feedback required a whole 

second, comparatively, an inference time of millisecond-level can satisfy real-time operation 

requirements. Moreover, storage sizes for all of the models can easily fit in the memory of a single-

board computer like a Raspberry Pi or a NVidia TX2.  

2.5 ABLATION STUDY 

An ablation study was conducted to help understand the efficacy of the use of the derived 

features mentioned in Section 2.2.D: Instead of using the features adopted from [79], a 

Proprioceptive CNN model, denoted as a Raw Proprioception Net, that takes the raw 

proprioceptive sensor signals as inputs was built and compared to the Proprioception Net. To 

ensure a fair comparison, both networks were trained under the same conditions. Two pairs of 

training and development sets were generated using the same random seed such that they had the 

same data frames as their counterparts. One pair of the training and development sets used in the 

TABLE 2.5 

THE TIME PROFILING AND STORAGE COMPARISON TABLE 

  
Tests were performed using an AMD Ryzen7 4800H Processor (2.9 GHz), no GPU 

was used. 

 

Inference Time Storage Size

Proprioception Net ~1 ms 0.8 Mb
Vision Net 6.83 ms 12.1 Mb

Feature map Fusion 6.84 ms 12.8 Mb
Decision Fusion 6.95 ms 12.4 Mb
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ablation study was formed following the same procedures described in Section 2.2.C, while the 

other excluded the feature derivation procedure and packed the proprioceptive signals untreated 

(i.e., ωenc,l , ωenc,r , accelx , accely , accelz , vvio,x , wvio,z , Il , Ir , ϕ , θ   where Il  and Ir  were the current 

feedback from the left and right DC motors). Note that in (2.1, 2.2, 2.3), current feedback Il and 

Ir, and vehicle attitude ϕ and θ were used to compute the motion resistance coefficients f
r,l
 and f

r,r
. 

Therefore, by omitting these computations, the input space of the Proprioceptive CNN increased 

from 100 × 9 to 100 × 11. The network structure of the Raw Proprioception Net was the same as 

the Proprioception Net except for a larger input layer to accommodate for the change in input 

space. As a result, the total number of trainable parameters was marginally larger (35,527 

parameters in total). 

Table 2.6 shows the accuracy comparison between the Raw Proprioception Net and the 

Proprioception Net. As mentioned earlier, the training and development sets used in the ablation 

study were newly generated. The data composition was slightly different from before due to the 

random selection procedure described in Section 2.2.B, which caused accuracy fluctuations for the 

Proprioception Net (less than ±0.64% compared to Table 2.4) in both the Test Set and the Dark 

Set.  

As shown in Table 2.6, the performance margin of using the proposed derived features was 

small -- about 1.72% in the development set. The accuracy of the Raw Proprioception Net in the 

Test Set and Dark Set also suggested the 1D CNN structure given in Table 2.1 can be trained to 

process raw proprioceptive signals directly and achieve a similar level of accuracy as the one using 

TABLE 2.6 

THE CLASSIFICATION ACCURACY COMPARISON TABLE 

 

Develop Set Test Set Dark Set

Proprioception Net 93.21% 89.54% 92.90%
Raw Proprioception Net 91.49% 88.86% 92.54%
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the proposed derived proprioceptive features. This ablation study implied that the proposed data 

processing pipeline can be further simplified in a follow-up study. 

2.6 CONCLUSION AND FUTURE WORK 

This study successfully developed a fast, lightweight, and motion-robust proprioception-based 

terrain classification method using a CNN model and signals from common on-board UGV sensors. 

The strong performance (over 89.54%) and the robustness of this method were demonstrated by 

testing it under data sets that contained arbitrary vehicle motions. Furthermore, it was shown that 

the proprioception and vision-based models were complementary. By fusing the two models, a 

higher level of accuracy (up to 99.38%) was observed in both the feature map-level and decision-

level fusion models. Four distinct lighting conditions were used to validate the generalizability of 

the fusion models. The validation results (over 93.68% accuracy) showed the fusion models in this 

study can strategically cope with different environmental illumination without human interference 

and achieve significantly higher accuracy than the baseline methods. The decision-level fusion 

model achieved the highest average accuracy (96.40%) over the four test sets. Compared to the 

feature map-level fusion, the decision-level fusion was more stable under different test conditions 

and did not require further training. It is worth noting that the Proprioception Net and Vision Net 

were independently trained before their integration into the decision-level fusion model as frozen 

layers. This suggested the association between the proprioceptive signals and the image was not 

critical to the success of the decision-level fusion in this study. Additionally, the time profiling 

indicated the online deployment of the models in this study was possible. Lastly, an ablation study 

showed the proposed data processing pipeline can be further simplified by removing the use of all 

manually derived features. Doing so permitted the proposed method to be less model-dependent, as 
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the knowledge of the vehicle specifications, dynamic, and kinematic models were no longer 

required.  

In the future, more human operators should be recruited to enrich the variety of driving motion 

in the data sets, or a program can be developed to automate the data collection process. Data 

augmentation on proprioceptive signals should be performed to further improve accuracy. A larger 

range of vehicle motions and data collection sites should be included in the test sets to further 

validate the generalizability of the models. Feature importance analysis would need to be conducted 

to reduce the number of required signals and the size of the model. More accurate data association 

techniques like SLAM should be applied for online deployment. And other fusion mechanics should 

be investigated so that the correlations between proprioceptive signals and images can be effectively 

utilized. Moreover, as this method is vehicle-specific, the portability and scalability of the method 

should be addressed in future studies.  
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CHAPTER 3 

 

DEVELOPMENT OF A NEURAL NETWORK 

AUGMENTED RGB-DEPTH PERCEPTION SYSTEM 

FOR INDOOR ROBOT NAVIGATION 

3.1 ABSTRACT 

Determining the drivable area, or free space segmentation, is critical for mobile robots to 

navigate indoor environments safely. However, the lack of coherent markings and structures (e.g., 

lanes, curbs, etc.) in indoor spaces places the burden of traversability estimation heavily on the 

mobile robot. This study explored the use of a self-supervised one-shot texture segmentation 

framework and an RGB-D camera to achieve robust drivable area segmentation. With a fast 

inference speed and compact size, the developed model, MOSTS (Miniature One-Shot Texture 

Segmentation), is ideal for real-time robot navigation and various embedded applications. A 

benchmark study was conducted to compare MOSTS’s performance with existing one-shot texture 

segmentation models. Additionally, a validation dataset was built to assess MOSTS’s ability to 

perform texture segmentation in the wild, where it effectively identified small low-lying objects 

that were previously undetectable by depth measurements. Further, the study also compared 

MOSTS’s performance with two State-Of-The-Art (SOTA) indoor semantic segmentation models, 

both quantitatively and qualitatively. The results demonstrated that MOSTS offered comparable 
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accuracy (85.7% mIoU) with up to eight times faster inference speed (93.13 FPS) in indoor 

drivable area segmentation. 

3.2 INTRODUCTION 

Robot perception is one of the essential prerequisites for mobile robot navigation. Depending 

on the complexity of the robot’s locomotion mechanism and the expected operating environment, 

mobile robots are designed to have specialized perception capabilities to navigate and interact with 

the environment appropriately and safely. Specifically, indoor mobile robots often need to operate 

in cluttered and confined spaces initially designed for human access, which raises some unique 

challenges for their perception systems. These robots (e.g., smart wheelchairs, service robots, etc.) 

usually have relatively small form factors such that they can access narrow doorways or under-

counter spaces. This characteristic restricts the battery, computation power, and sensor systems 

that can be carried on the robot. Thus, size, weight, power, and cost (a.k.a. “SWaP-C”) are 

important constraints to consider. Likewise, indoor mobile robots generally have low ground 

clearance and small actuation wheels; they are more susceptible to jamming and tipping caused by 

small obstacles, which are usually ignored and driven over by larger outdoor robots. Hence, the 

perception systems for indoor robots need to detect and identify small obstacles. Complex floor 

 

Fig. 3.1. The assistive rideable ballbot system, PURE 
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plan layouts and scattered interior objects can create a large number of occlusions, reflections, and 

confusing situations that hinder the performance of robot sensors and limit their FOVs (Field of 

View). As a result, the robot’s perception system must be fast and responsive enough to react to 

sudden obstacles and facilitate avoidance maneuvers. 

Our research group is developing a personal mobility device named PURE (Personalized 

Unique Rolling Experience, Fig.3.1). PURE is an assistive rideable ballbot system, characterized 

by low ground clearance and driven by a ball. Besides facing the challenges common to traditional 

ground robots, PURE also contends with under-actuated dynamics, which induces tilting motions 

during acceleration [92]. The commonly held assumption that the transformation between the 

ground plane and the robot’s sensor coordinates is (entirely or partly) constant and known [74], 

[93] does not apply to dynamically balanced devices like PURE, as these robots are not constrained 

to strict planar motion due to the ability to tilt when accelerating or decelerating.     

Inspired by the need to safeguard PURE, this study proposed an efficient indoor Drivable Area 

Segmentation (DAS) framework that is robust to tilting motion and capable of detecting small 

unknown obstacles in real-time on a low-power Single Board Computer (SBC). The proposed 

method approached the problem of DAS in two key steps. First, a real-time and motion-robust 

ground plane segmentation node segmented the point cloud collected by an RGB-D camera and 

made an initial estimation of the drivable area. Second, a one-shot segmentation model refined the 

drivable area by filtering out small obstacles and anomalies in the RGB image. The outputs of the 

proposed method were a simplistic 2D obstacle map that encoded all the large obstacles (e.g., 

walls, furniture, pedestrians, etc.) and a traversability map that indicated the surrounding regions 

that were free of small obstacles or anomalies. With a reference texture of the traversable surface, 

this approach sought to identify all potential obstacles threatening the robot system, including 
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small, unknown objects that may not be detectable using point clouds or depth images.  

Recently, there has been a growing trend of training large Vision Transformer (ViT) models, 

such as the Segment Anything Model (SAM) [94], on unprecedentedly large datasets to achieve 

unparalleled accuracy and generalizability. However, these models often require extensive 

computational and data resources, making them impractical for real-time deployment on low-

power and embedded systems. Additionally, the resource requirements for training these models 

are often beyond the reach of many researchers and individuals. In contrast to this approach, this 

study focused on developing a lightweight and versatile model that can be trained and deployed 

with significantly fewer resources. The training of the proposed method did not rely on any dense 

(pixel-wise annotations) manually labeled dataset as it followed a self-supervised methodology. 

 

Fig. 3.2. One-shot texture segmentation in the wild using MOSTS. Query and reference images were collected 

from the internet. 

Query Reference Prediction
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The short inference time enabled the proposed method’s deployment on an SBC (93.13 FPS for 

the neural network model alone and about 30 FPS for the entire framework due to the limited 

sampling rate of the camera). By using a one-shot segmentation formulation, this approach allows 

the user to specify traversable regions since not all floor areas are suitable for indoor robots. 

Furthermore, the proposed framework can be re-configured to adapt to a different working 

environment or robot mission by changing the reference image during runtime (Fig.3.2). 

The key contributions of this study included the following: 

1. A novel Miniature One-Shot Texture Segmentation (MOSTS) model optimized for an 

embedded, real-time application.  

2. A novel Perlin-Noise-based [95] collage generation technique for training robust texture 

segmentation models. 

3. An Indoor Small Objects Dataset (ISOD) that contained diverse and densely labeled 

images for validating the performance of the proposed method in the wild. 

The code and dataset used in this study are publicly available at:  

https://github.com/mszuyx/MOSTS  

The rest of this chapter is organized as follows: Section 3.2. is a brief literature review of 

related studies. Section 3.3. offers an overview of the proposed framework. Section 3.4. and 

Section 3.5. provide the implementation details of the ground plane segmentation algorithm and 

the one-shot DAS model. Section 3.6. explains the experimental setup. Section 3.7. presents and 

discusses the validation results, followed by conclusions and suggestions for future work in 

Section 3.8.  

https://github.com/mszuyx/MOSTS
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3.3 RELATED WORK 

A. Indoor Vision-based Drivable Area Segmentation 

Earlier attempts [95], [96] used vision-based methods that segmented the obstacle-free floor 

from monocular images based on the assumption that the floor has a uniform texture (e.g., [96], 

[97]). More recent work [98]–[100]  approached this problem using supervised Deep Neural 

Networks (DNNs) and achieved promising results. The training of these DNNs required a large 

amount of densely labeled data. While outdoor datasets can be effectively collected by driving a 

sensor-mounted vehicle on open roads, the collection of indoor datasets is expensive and difficult 

due to manual labor cost, lack of building access, and privacy concerns.  

Furthermore, Kumar et al. [101] pointed out that the difficulty of indoor drivable area 

segmentation went beyond the lack of coherent vision marks. They found that existing 

homography-based floor segmentation methods often fail to capture low-lying small obstacles 

(typically ≤ 3 𝑐𝑚 height) in RGB images. The authors further stated that it would also be difficult 

for depth sensors such as laser range finders and stereo cameras to detect low-lying obstacles based 

on noisy depth values. To combat this issue, they developed a homography-based method that 

involved the use of superpixelling [102], Markov Random Field (MRF) [103], and Graph Cut 

[104]. Following that study, the authors of [105]–[109] also acknowledged the importance of 

detecting small and unexpected obstacles (or anomalies) in drivable areas. These studies tackled 

the problem by creating or using datasets that contained small obstacles for the training of their 

DNNs.  
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B. Point Cloud Ground Plane Segmentation 

A point cloud is a standard data format representing the robot’s surroundings in 3D space. 

However, raw 3D point clouds with no appearance information of the detected subjects can be 

challenging to interpret. It treats the surrounding objects and the traversable surfaces equally while 

they hold different values for navigation purposes. Therefore, in ground vehicle applications, 

ground plane segmentation of 3D point clouds is a common and essential step to filter the points 

with less interest [110]–[116]. Himmelsbach et al. [110] mapped all the 3D points into cylindrical 

sub-segments and simplified the ground plane segmentation task to a 2D line fitting problem. A 

gaussian-process-based iterative scheme, GP-INSAC, was introduced to separate points into 

ground and non-ground groups [111]. The work in [112] showed that 3D points can be effectively 

segmented and classified in normal space. Similarly, Wang et al. [113] estimated the plane 

segments by calculating the normal vector of each voxel grid. Byun et al. [117] followed a 

probabilistic approach and utilized MRF. More recent studies like [114], [115], [118] used 

RANdom SAmple Consensus (RANSAC) based methods and achieved tremendous success. Study 

like [24] also approached this problem using a DNN. Most studies showed they could achieve real-

time performance and high accuracy on datasets containing large roadway objects (e.g., vehicles, 

walls, pedestrians, etc.). However, as most of the point cloud data used in these studies were 

collected with statically stable platforms (vehicles), it is unclear whether these methods would 

work effectively under the influence of rapid and large tilting motions.  

In the context of this study, ground plane segmentation was used as a pre-processing step to 

obtain a preliminary estimation of the drivable areas.  
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C. Efficient RGB-D Semantic Segmentation 

RGB-D semantic segmentation models like [119]–[125] are extremely powerful and versatile 

computer vision tools. As compelling as they might be, most were not designed to be used on 

robots or embedded systems. This drawback led to the development of efficient RGB-D semantic 

segmentation models like the RedNet [126] and ESANet [127], which aim to achieve adequate 

accuracy with optimized computation requirements. Although state-of-the-art models like [126], 

[127] have shown the promising potential of solving the problem of drivable area segmentation 

with their high accuracies and real-time performance, these models can be unpredictable (i.e., 

neglecting or misclassifying) while coping with unknown objects. The proposed method handled 

the task of drivable area segmentation based on comparing texture differences. It did not rely on 

semantic or contextual information from the scenes, and therefore, was predicted to be more 

generalizable to novel and unknown environments and objects.  

To rigorously validate the efficacy of the proposed method, this study collected and labeled 

Indoor Small Objects Dataset (ISOD), an indoor RGB-D dataset with numerous small low-lying 

objects. The dataset also contained scenes with tilted views and motion blur to simulate the motion 

effects of dynamically balanced robots. This study trained and converted [126] and [127] into 

drivable area segmentation models using the commonly used indoor RGB-D datasets SUNRGB-

D [128]. The converted models were evaluated with ISOD, and their validation results will be 

presented in this study as performance baselines and compared with the proposed method. 

D. One-Shot Texture Segmentation 

Textures are effective visual cues humans use to perform daily low-level visual inference and 

scene understanding [129], [130]. The use of texture representations is also very common in 
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applications like terrain recognition [131] and surface defect (or anomaly) detection [132]. While 

the studies on texture classification and segmentation are extensive, one-shot texture segmentation 

(or retrieval) is a relatively recent field of research. Recent studies in [129], [130] leveraged a 

Voronoi-based collage generation technique to automatically generate pixel-wise annotations to 

train their one-shot texture segmentation models. The trained models identified the region 

containing the targeted texture when given a reference image. 

The OSTR model in [130] was intended for texture retrieval in fashion and e-commerce, this 

study explored using one-shot texture segmentation for indoor real-time robot navigation. This 

study conducted a benchmark test and demonstrated that the developed model, MOSTS, 

outperformed the SOTA models in accuracy and speed. Additionally, this study proposes a novel 

Perlin-Noise-based collage generation method that significantly improved the robustness of 

MOSTS. 

3.4 FRAMEWORK OVERVIEW 

Fig.3.3 provides the overall framework of the proposed method and visualization for each data 

stream. The RGB-D camera (Intel RealSense D455) offers four types of data: RGB image, depth 

image and point cloud that represent the 3D structures of the captured scene, and Inertial 

Measurement Unit (IMU) measurements that represent the orientation of the camera. The proposed 

framework fed the point cloud and IMU data to a ground plane segmentation node that separated 

the raw point cloud into a ground plane group and a non-ground group. The segmented point clouds 

were used to construct a 3D Octomap (i.e., a grid map made by 3D voxels) [133] that described 

the 3D scene. Then, the 3D voxels were projected to the ground to generate a more simplistic 2D 

occupancy grid for subsequent high-level control tasks like path planning and navigation. The 
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ground plane model and the depth image were used to mask the raw RGB image, such that most 

of the obstacle pixels were masked out (painted black). This pre-processing step prepared the query 

image for MOSTS, which further segmented the ground regions into drivable areas and anomalies 

based on a target terrain surface given by a reference image. The outcome of MOSTS can be re-

projected to the robot workspace coordinate to form a traversability map.  

3.5 REAL-TIME MOTION-ROBUST OBSTACLE GRID MAP 

A. Problem Formulation 

The ground plane segmentation of 3D point clouds is a common and essential step to filter the 

points with less interest [114], [115]. In the context of this study, ground plane segmentation was 

used as a pre-processing step to obtain a preliminary estimation of the drivable areas. As the 

proposed framework is expected to operate primarily indoors, this study made the approximation 

that the geometry of an indoor ground plane can be roughly modeled using a point-normal 

equation: 

 

Fig. 3.3. The overall framework of the proposed method. 
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                                                       ax + by + cz + d = 0                               (3.1) 

where [𝑎, 𝑏, 𝑐]𝑇 are constant values that form the normal vector �⃗⃗�  of the ground plane, and d 

can be seen as the orthogonal offset distance between the ground plane and the point cloud’s frame. 

The position vector of the 𝑖𝑡ℎ point that belongs to the ground plane can be written as 𝐏𝑔𝑟𝑜𝑢𝑛𝑑,𝑖 = 

[𝑥, 𝑦, 𝑧]𝑇. (3.1) can be rewritten into matrix form: 

                                                         �⃗⃗� T𝐏𝑔𝑟𝑜𝑢𝑛𝑑,𝑖 = −𝑑                                                      (3.2) 

The objective of the ground plane segmentation node is to estimate the values of the normal 

vector �⃗⃗�   and offset distance d  such that they can be used to determine whether a given point 

belongs to the ground plane 𝐏𝑔𝑟𝑜𝑢𝑛𝑑 or not.  

B. Filtering 

The proposed ground plane segmentation algorithm was primarily inspired by a real-time 

RANSAC-based ground plane segmentation method [115]. For RANSAC-based methods, the 

most crucial part is to select a reasonably good initial guess (candidate points) for the targeted 

plane. This can reduce the need for more RANSAC iterations, and the algorithm is more likely to 

converge to the true plane. To reliably obtain these candidate points, the proposed method applied 

a series of filters and operations to the input point cloud (Fig.3.4c-e).  

1) Orientation Alignment 

First, the synchronized IMU data from the camera were utilized to align the point cloud 

orientation with the gravity vector to cancel the robot’s tilting motion. The raw IMU data consisted 

of angular rates 𝛀 = [�̇�𝑥 , �̇�𝑦, �̇�𝑧] measured by the gyroscope, and the linear accelerations 𝚨 =

[α𝑥, α𝑦, α𝑧]  measured by the accelerometer in three Euclidean axes. The Euler angles  
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(𝑦𝑎𝑤: 휃𝑦, 𝑝𝑖𝑡𝑐ℎ: 휃𝑥, 𝑟𝑜𝑙𝑙: 휃𝑧 ) that described the camera orientation were calculated using an 

advanced complementary filter [134] that fused 𝛀 and 𝚨. The pitch 휃𝑥and roll 휃𝑧 angles were used 

to construct a rotation matrix 𝐑∈ ℝ3×3. The yaw angle 휃𝑦 was set to zero as this operation has no 

interest in changing the yaw rotation. 𝐑 follows a Y-X-Z convention such that gimbal lock only 

happens if the camera points straight up or down (which rarely happens for a forward-facing 

camera). Assuming that 𝐏𝑖𝑛𝑝𝑢𝑡 ∈ ℝ3×𝑛denotes the 3D positions of all the raw input points, this 

operation was simply: 

                                           𝐏𝑎𝑙𝑖𝑔𝑛𝑒𝑑 = 𝐑 𝐏𝑖𝑛𝑝𝑢𝑡                                                      (3.3) 

After the alignment, the resulting ground plane in 𝐏𝑎𝑙𝑖𝑔𝑛𝑒𝑑 appeared mostly upright in the 

camera frame (Fig.3.4d). There are two main benefits of doing an orientation alignment. 1) The 

alignment can simplify the problem to mimic the case where the robot always stays upright. And 

 

Fig. 3.4. a) The point cloud frame definition; b) the RGB image of the scene; c) the raw input point cloud; d) the point 

cloud after IMU alignment and the voxel grid filter; e) the point cloud after the radius outlier removal filter; f) the final 

output, green indicates ground points, and red indicates obstacle/non-ground points. The corner of the shown scene and 

some objects are highlighted in b) and c) for easier visual understanding. The coordinate frame in c)-f) indicates the 

camera position and orientation. 

Y - axis

b) d) f)

a) c) e)
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as the ground (floor) is orthogonal to the gravity vector in most indoor spaces, RANSAC only 

needs to determine one parameter, the offset distance d  in this simplified problem. 2) The 

alignment allows the downstream mapping algorithms like Simultaneous Localization and 

Mapping (SLAM) to consistently map the environment in a unified planar frame.  

2) Box Crop 

Second, a box crop operation was applied to retain the points within a 7 m planar range to the 

camera frame, where the measurements were most reliable. The points 1 m above the camera were 

also removed to discard ceiling points, which served little value in ground robot navigation. The 

resulting point is denoted as 𝐏𝑐𝑟𝑜𝑝𝑝𝑒𝑑. 

3) Voxel Grid Filter 

Third, a voxel grid filter downsampled the raw point cloud data by taking a spatial 

approximation of the points in each voxel (i.e., a 3D cube with a defined size). This filter generated 

voxel indexes 𝑽 over the cropped point cloud 𝐏𝑐𝑟𝑜𝑝𝑝𝑒𝑑: 

                                          𝑽𝒊 =

[
 
 
 
 
 𝑅𝑜𝑢𝑛𝑑 (

p𝑖,𝑥−𝑥𝑚𝑖𝑛

𝜎𝑥
)

𝑅𝑜𝑢𝑛𝑑 (
p𝑖,𝑦−𝑦𝑚𝑖𝑛

𝜎𝑦
)

𝑅𝑜𝑢𝑛𝑑 (
p𝑖,𝑧−𝑧𝑚𝑖𝑛

𝜎𝑧
)]
 
 
 
 
 

, 𝐩𝑖 ∈ 𝐏𝑐𝑟𝑜𝑝𝑝𝑒𝑑                                         (3.4) 

where 𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 , and 𝑧𝑚𝑖𝑛  are the minimum point position values of 𝐏𝑐𝑟𝑜𝑝𝑝𝑒𝑑 . In the 

proposed algorithm, the size of the voxel 𝜎  was empirically defined to be 

0.03m × 0.3m × 0.03m (X-Y-Z convention) such that the output point cloud had a lower resolution 

on the vertical axis (i.e., y-axis, the coordinate frame is defined in Fig.3.4a). Points were then 

sorted based on their voxel index. The set of points within the same voxel shared the same voxel 
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index and were replaced by their centroid. This filter can significantly reduce the number of points 

for subsequent processing without losing vital features (Fig.3.4c).  

4) Pass Through Filter 

For the purpose of selecting ground plane candidate points, any point above the camera height 

should be automatically disqualified. Therefore, a pass-through filter was applied to remove points 

having negative y axis readings (according to the camera frame definition, Fig.3.4a). 

5) Radius Outlier Removal Filter 

Last, a radius outlier removal filter was used. This filter used a Kd-Tree radius search to 

determine the number of neighbors 𝑘 that lied within a radius 𝑟 of a query point. If 𝑘 was less than 

a threshold 𝑘𝑚𝑖𝑛, then this query point was removed from the point cloud. As the filtered point 

cloud had a lower resolution on the vertical axis (y-axis), points in vertical structures (e.g., walls, 

large furniture) were sparse and had fewer neighboring points. Hence, they were more likely to be 

filtered out. Most remaining points were likely to belong to the largest plane orthogonal to the 

gravity vector (Fig.3.4e) and made good RANSAC candidates.  

C. Ground Plane Segmentation 

Once the candidate points were determined, they were sorted based on their heights, and the 

lowest 50% of points were sampled to form the initial seed for the RANSAC algorithm. (Appendix 

A: Alg.3.1). Note that due to the frame definition of the point cloud (Fig.3.4a), having large y-

values meant they were low-lying points. The RANSAC algorithm then iteratively estimated the 

ground plane model using the candidate points. At the final iteration, the algorithm used the 

estimated �⃗⃗�  and d to infer 𝐏𝑐𝑟𝑜𝑝𝑝𝑒𝑑 and segmented it into two groups: the obstacle group (red) and 

the ground plane group (green) (Fig.3.4f). Due to the imperfect in the point cloud measurement, 
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the ground points might not form a clear-cut surface. Therefore, a set of threshold values 𝑇𝑢𝑝 and 

𝑇𝑙𝑜𝑤 were needed to determine the ground plane’s upper and lower padding thickness (tolerance). 

Any point within this tolerance range was considered a ground point; others were obstacle points.  

There were two settings for the function 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐏𝐥𝐚𝐧𝐞(∗) (see APPENDIX A). Users 

could either choose to estimate the value of d  alone or estimate the value of �⃗⃗�   as well. As 

mentioned earlier, the orientation alignment could keep the ground plane mostly upright, so the 

normal vector estimation was unnecessary. However, intense accelerations and vibrations might 

compromise the IMU’s ability to estimate orientation accurately and cause the aligned ground 

plane to be slightly tilted. In this case, a Principal Component Analysis (PCA) was used to estimate 

the normal vector of the aligned ground plane and refined the result. First, a covariance matrix 𝐂∈ 

ℝ3×3 needed to be computed from the candidate points 𝐏𝑐∈ ℝ3×𝑚: 

                                                    𝐂 = (𝐏𝑐 − 𝐏𝑐
̅̅ ̅)(𝐏𝑐 − 𝐏𝑐

̅̅ ̅)T                          

                                                   𝐏𝑐
̅̅ ̅ = [

�̅�𝑥

�̅�𝑦

�̅�𝑧

] [1 ⋯ 1]𝑚                                                       (3.5) 

where 𝐏𝑐
̅̅ ̅∈ ℝ3×𝑚 consists of the mean position of the candidate point cloud along the row 

direction. As explained in [115], the covariance matrix 𝐂∈ ℝ3×3 represents the dispersion of the 

candidate points, and the direction that accounts for the least variance is likely to be orthogonal to 

the ground plane (a flat surface) and parallel to the normal vector. Singular Value Decomposition 

(SVD) was used to identify this direction by finding the singular vector corresponding to the 

smallest singular value. In general, the segmentation algorithm required 7 to 13ms computation 

time on the single board computer (depending on the size of the point cloud, the results might 

vary). If users choose to skip the SVD calculation to preserve computation power, 
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𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐏𝐥𝐚𝐧𝐞(∗) will return [0,1,0] as the default value of �⃗⃗� . Note that, in both cases, �⃗⃗�  only 

reflects the normal vector of the ground plane after orientation alignment. Therefore, an inverse 

operation (Appendix A: Alg.3.1 step 35) was needed to obtain the actual normal vector �⃗⃗� 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 

for subsequent algorithms. 

D. Ground Plane Masking 

The �⃗⃗� 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 and 𝑑 were sent to the ground plane masking node, where the depth image was 

used to mask the RGB image. First, a homography transformation was applied to wrap the depth 

image to align with the RGB image. This step was necessary as the depth sensor and the RGB 

sensor had different FOVs and coordinate frames. Second, the �⃗⃗� 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  and d were used to 

screen the pixel values in the depth image to build a mask that blocked all the pixels belonging to 

the obstacle group. Finally, this mask was applied to the RGB image and formed the masked 

ground image, which served as one of the inputs of MOSTS. There are two benefits of using the 

masked image instead of the raw RGB image: 1) Vision-based DNNs are often influenced by 

contextual correlations [135]. Therefore, blocking out non-task-related background pixels can 

mitigate their effect and guide the model’s attention to the subject of interest (the ground areas). 

2) MOSTS was designed to segment the regions in the query image that share a similar texture to 

the reference image and does so without any scene understanding. When the surrounding walls or 

furniture have a similar texture as the ground/floor, MOSTS might mistake those regions as 

drivable areas. However, using the masked ground image can prevent these edge cases. 
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3.6 TEXTURE ORIENTED, SELF-SUPERVISED ONE-SHOT 

DRIVABLE AREA SEGMENTATION 

A. Problem Formulation 

Similar to other one-shot segmentation models, this model takes two inputs, i.e., the query 

image Q, which contains regions of different textures, and the reference image R, which embodies 

the target texture class. The output of MOSTS is a probability map that indicates regions of the 

query image that correspond to the target texture class. To train such a model, a triple T𝑖 of training 

samples was required: 

                                                             T𝑖 = (Q, R𝑖, G𝑖)                                                      (3.6) 

where Q is the query image that contains at less one texture class, G𝑖is the pixel-wise ground 

truth label corresponding to the 𝑖𝑡ℎ class texture in Q, and R𝑖 is the reference image of the 𝑖𝑡ℎ class. 

The neural network model 𝑓(∗) can be presented in the following form: 

                                                          P𝑖 = 𝑓(Q, R𝑖, θ)                                                            (3.7) 

where P𝑖  is the predicted segmentation result and θ is the set of learnable parameters in 

function 𝑓(∗). The goal of the training process is to learn the optimized θ∗ given the training triple 

T𝑖 such that the loss function is minimized: 

                                                 θ∗ = argmin
θ

𝐿𝑜𝑠𝑠(P𝑖, G𝑖)                                                  (3.8) 

For the loss function, this study experimented with Focal Loss [136], Focal Tversky Loss 

[137], Balanced-Binary Cross Entropy Loss (B-BCE) [138], Dice Loss [139], Batch-Dice Loss 

[140], and Combo Loss [141]. The Combo Loss provided the best training performance, and this 
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finding agreed with the conclusion in [130]. The Combo Loss is essentially a weighted sum of the 

B-BCE Loss and the Dice Loss: 

                                                𝐿𝑐𝑜𝑚𝑏𝑜 = 𝜆𝐿𝐵−𝐵𝐶𝐸 + 𝐿𝐷𝑖𝑐𝑒                                                  (3.9) 

where 𝜆 is the weighting factor in favor of B-BCE Loss, in this study, the value of 𝜆 was set 

to 10. The B-BCE Loss can be written as follows: 

                         𝐿𝐵−𝐵𝐶𝐸(Ŷ, Y) = −𝛽Ylog(Ŷ) − (1 − 𝛽)(1 − Y) log(1 − Ŷ)                         (3.10) 

where Ŷ denotes the prediction made by the neural network, Y is the ground truth label, and 

𝛽 = 1 −
∑ 𝑦+

𝑦+∈Y

|Y|
 is the weighting factor that balances the contribution of the positive and negative 

pixel labels. 𝑦+ denotes the pixel that contains a positive label. Similarly, Dice Loss can be written 

as: 

                                             𝐿𝐷𝑖𝑐𝑒(Ŷ, Y) = 1 −
2|YŶ|+𝜖

|Y|+|Ŷ|+𝜖
                                                   (3.11) 

where 𝜖 is the smoothing factor that prevents the denominator from ever becoming zero when 

|Y| = |Ŷ| = 0. While the Dice Loss is non-convex in nature, the combination of these two loss 

functions is smooth and able to handle class imbalance [142].  

B. Perlin-Noise-based collage generation and Model Training 

The studies in [129] and [130] used a benchmark texture database called the Describable 

Textures Dataset (DTD) [143] to train their models. DTD is a dataset that contains 5640 images 

organized into 47 texture categories inspired by human perception. A random Voronoi-based 

collage generation technique was used in both [129] and [130] to form synthetic query images 

(Fig.3.5a). However, query images generated in this manner generally have three biases: 1) there 

is no discontinuous region of the same textures; 2) there are only straight edges separating different 

textures; 3) there is no small region in the collage, and regional areas are relatively balanced. As a 
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result, the model trained using these synthetic query images likely lacks the ability to deal with 

arbitrary class boundaries in the real world. Therefore, this study designed a novel Perlin-Noise-

based collage generator to synthesize pseudo-random query images (Fig.3.5b). 

Perlin noise is a type of procedural generation technique widely used in the game development 

and visual effect industries to generate pseudo-random textures or terrain maps [95]. The 

smoothness and the amount of detail in the generated shapes can be manipulated by the grid size 

and the number of Octaves used in the Perlin noise function. This allows the user to have some 

degree of control over the random generation process. For each texture candidate in the query 

image, the generator created a 32 × 32 Perlin noise map (pixel values range from 0 to 1) with an 

Octave count of 𝑛 (𝑛 = 2 by default, 𝑛 = 3 if the number of texture candidates > 3). A cutoff 

threshold that ranged from 0.1 to 0.2 was randomly chosen to convert the 2D Perlin noise map to 

a binary mask. The binary map was then resized to match the size of the candidate texture image. 

A Gaussian blur filter was used to smooth the resized map before it was used to mask the candidate 

texture image. Finally, all the masked candidates were concatenated to form the synthetic query 

image. A visualization of this process is shown in Fig.3.6. 

 

                               a) Voronoi-based collage                         b) Perlin-Noise-based collage 

Fig. 3.5. A comparison between the generation techniques. 



54 

 

During training, all images were resized to 256 × 256, and up to five texture candidates were 

randomly sampled to form the query image. A reference image R𝑖 that corresponded to the 𝑖𝑡ℎ 

class (the target class) in Q was randomly chosen. The pseudo-random mask of the 𝑖𝑡ℎ class was 

used as G𝑖. Together, Q, R𝑖, and G𝑖form the triple T𝑖 in (3.6). All triples were randomly generated 

at each training or evaluation step. All random processes were tightly controlled by random seeds 

and random generators to ensure reproducibility. Similar to [130], among the 47 texture classes in 

DTD, 42 of them were used to form the training set, and the remaining five classes were used as 

an evaluation set.  

C. Model Building and Ablation Study 

Encoder: MOSTS employs a typical dual-branch encoder structure (Siamese encoder) found 

in many one-shot learning models (Fig.3.7). Since the encoder’s throughput significantly 

 

Fig. 3.6. The Perlin-Noise-based collage generation process. The yellow regions have pixel values 

of 1, whereas the purple regions are 0. 

Query Reference Ground Truth

blotchy fibrous crystalline dotted cracked
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contributes to the model inference time, the selection of an efficient backbone model for the 

encoder is vital for achieving real-time performance. This study conducted a benchmark test to 

identify the most suitable backbone model using seven popular models commonly utilized for  

building efficient segmentation models. The selected models included ResNet-based models[144] 

(i.e., ResNet-18, 34, and 50), EfficientNet [145], EfficientNet-v2 [146], MobileNet-v2 [147], and 

MobileNet-v3 [148]. All models were pre-trained on the ImageNet [149] dataset and converted to 

Float16 Intermediate Representation using the model optimizer from Intel OpenVINO (ver 

2022.1). As the SBC used in this study was powered mostly by Intel hardware (Intel i7-8665UE 

CPU and Intel UHD Graphics 610 GPU), OpenVINO IR provided optimal performance. Fig.3.8 

presents a bubble plot of the benchmark results for these models, with the bubble sizes indicating 

the relative sizes of each model. As observed from Fig.3.8, the chosen model, MobileNet-v3, 

demonstrated an inference speed more than twice as fast as the most accurate model (EfficientNet-

 

Fig. 3.7. The architecture of MOSTS. 
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v2), while showing only a 3% reduction in accuracy.  

Texture Embedding: Given that the backbone encoder model was pre-trained on ImageNet 

for classification, its feature embedding might not provide optimal performance for texture 

segmentation tasks. Meanwhile, fine-tuning the backbone model could potentially jeopardize 

model robustness and generalizability, considering that the training dataset, DTD, is considerably 

less diverse than ImageNet. To overcome these limitations, a texture embedding block was 

introduced to refine the initial features into more appropriate texture feature embeddings. As 

illustrated in Fig.3.7, this block incorporated a 3 × 3 convolution layer flanked by two 1 × 1 

convolution layers. Each convolution operation was succeeded by Batch Normalization and a 

ReLU activation function. This convolution block adopted a bottleneck structure, effectively 

compressing the channel dimension from its original size of 960 to 256. This design encouraged 

the model to learn to extract vital information from preliminary features efficiently. 

Texture Similarity: Inspired by [150], the texture similarity block used cosine similarity as an 

attention mechanism (Fig.3.7) to emphasize the features of the query texture embedding if they 

showed strong similarities with the reference texture embedding in the spatial dimensions. First, 

 

Fig. 3.8. The benchmark result of the backbone models on ImageNet with input size 

224×224. 
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an average pooling operation compressed the spatial dimensions of the reference texture 

embedding into a 1024 × 1 × 1 tensor. Given that a visual texture essentially consists of a set of 

repeated primitive texels (i.e., texture pixel, the fundamental unit of a texture pattern) arranged on 

the image plane, its fundamental pattern is inherently spatially invariant. If the reference image 

effectively captures the essence of the target texture, the compressed tensor can be viewed as an 

encoded texel. This tensor was then used to compute the cosine similarity 𝑠𝑥,𝑦  with the query 

texture embedding at each spatial position, enabling the identification and emphasis of similar 

texture features: 

                                         𝑠𝑥,𝑦 = 
𝑟 ∙ 𝐹𝑥,𝑦

𝑞

‖𝑟‖2 ∙ ‖𝐹𝑥,𝑦
𝑞

‖
2

                                                       (3.12) 

The compressed reference tensor is denoted as 𝑟 ∈ 𝑅𝐶×1×1 and the feature embedding of the 

query image is 𝐹𝑞 ∈ 𝑅𝐶×𝑤′×ℎ′. The computed similarity map 𝑠 ∈ 𝑅1×𝑤′×ℎ′ encoded the similarity 

values [−1,1] at each spatial position (𝑥, 𝑦). The model masked the query texture embedding 

using the similarity map via element-wise multiplication.  

Local Grouping: The local grouping block was initially used in [130] to aggregate features 

learned by different convolution branches. This study used it to aggregate the masked query 

features with the unmasked features to preserve information prior to the texture similarity block. 

It also allowed gradients to bypass the similarity block to refine the texture embedding directly. 

By organizing feature embeddings into smaller local groups, the model can keep related feature 

channels close and significantly decrease the number of convolution filters required. In this 

module, both masked and unmasked query texture embeddings were divided into four groups. 

Within each group, the embedding pair are concatenated and passed through a depth-wise (DW) 

and point-wise (PW) convolution block for aggregation (Fig.3.7). This specific structure was 
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chosen for its efficiency. To further optimize feature selection, a learnable channel-wise attention 

module [151] was incorporated. This module let the model focus on useful features while 

suppressing the less relevant ones. Finally, the output features from the four local groups were 

combined using an element-wise summation. 

Decoder: The decoder up-sampled the feature embedding via bilinear interpolation. The up-

sampled feature was then concatenated with the residual feature provided by the skip connection. 

A 1 × 1 convolution layer subsequently aggregated these concatenated features. This procedure 

recurred in the three decoding blocks, followed by a final bilinear interpolation layer. This ensured 

that the model’s output shares the same spatial dimensions as its input (Fig.3.7). 

This study presents an ablation study to dissect the contribution of each model component. 

For ease of comparison, this study used the same four-fold validation groups for the DTD dataset 

defined in [130] (Table 3.1).  

All the models in the ablation study were trained using the DTD dataset for 80 epochs with a 

batch size of 16. The training optimizer was SGD with a momentum of 0.9 and a weight decay of 

0.0001. The initial learning rate was 0.001, and a step scheduler was used. The training was 

performed on a pre-built PC with 16G of RAM, an Intel i7-11700 CPU, and an NVIDIA GeForce 

RTX 3060 GPU (12Gb).  

    Table 3.2 presents the results of the ablation study, justifying the design choices made for 

TABLE 3.1 

VALIDATION GROUP DEFINITION FOR DTD 

Groups Validation Classes 

i=0 ‘banded’,’blotchy’,’braided’,’bubbly’,’bumpy’ 

i=1 
‘chequered’,’cobwebbed’,’cracked’,’crosshatched’,’crystalli

ne’ 

i=2 ‘dotted’,’fibrous’,’flecked’,’freckled’,’frilly’ 

i=3 ‘gauzy’,’grid’,’grooved’,’honeycombed’,’interlaced’ 
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each module. A baseline accuracy (measured in mIoU) was established using a naive model, which 

concatenated the outputs of the Siamese encoder before directing the result to the depth-wise and 

point-wise convolution block and the decoder. The ablation study revealed that the addition of the 

Texture Embedding (Tex Emb) module did not independently improve accuracy. However, when 

combined with the Texture Similarity (Tex Sim) module, there was a noticeable increase in the 

four-fold average mIoU by 4.2, representing approximately a 9% improvement over the baseline 

model. The most significant improvement (about 14%) was achieved when the Local Grouping 

module was incorporated alongside the Tex Emb and Tex Sim modules. 

D. Comparison with SOTA one-shot segmentation models 

To assess the performance discrepancy between MOSTS and existing models, this study 

replicated the benchmark test conducted in [130], comparing MOSTS with OSTS [129] and OSTR 

[130] using identical four-fold validation groups as defined in Table 3.1. All models underwent 

TABLE 3.3 

COMPARISON WITH SOTA ONE-SHOT TEXTURE SEGMENTATION MODELS  

Model i=0 i=1 i=2 i=3 mean 

OSTS 27.7 36.0 29.1 29.7 30.6 

OSTR 52.6 47.3 53.8 49.6 50.8 

MOSTS 55.6 49.4 59.3 50.8 53.8 

 

TABLE 3.2 

ABLATION STUDY 

Model i=0 i=1 i=2  i=3 mean 

Baseline 49.1 42.8 52.7  44.2 47.2 

+Tex Emb 48.9 42.8 48.3  43.8 46.0 

+Tex Sim 48.4 47.3 53.4  44.1 48.3 

+ Tex Emb & Tex Sim 53.2 46.9 55.1  50.3 51.4 

+ Tex Emb & Tex Sim & 

Local Grouping 
55.6 49.4 59.3 

 
50.8 53.8 
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training and testing under conditions that were identical to Section V.C. The results in Table 3.3 

demonstrate that MOSTS, despite its smaller and simpler structure, outperforms OSTS and OSTR 

across all validation groups, achieving an average mIoU of 53.8. This represents an improvement 

in average mIoU by approximately 6% and 76% over models OSTR and OSTS, respectively.  

3.7  EXPERIMENTAL SETUP 

A. Validation Dataset 

    This study aimed to explore the performance of MOSTS beyond synthetic data, specifically 

focusing on potential applications during real-time robot navigation. To quantify the proposed 

method’s performance in real-world scenarios, this study collected and labeled a custom Indoor 

Small Objects Dataset (ISOD). ISOD contained 2,000 manually labeled images from 20 diverse 

sites, each featuring over 30 types of small objects randomly placed amidst the items already 

 

Fig. 3.9. Example RGB images from ISOD. 
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present in the scenes. These objects, typically ≤3cm in height, included LEGO blocks, rags, 

slippers, gloves, shoes, cables, crayons, chalk, glasses, smartphones (and their cases), fake banana 

peels, fake pet waste, and piles of toilet paper, among others. These items were chosen because 

they either threaten the safe operation of indoor mobile robots or create messes if run over. 

Example images from ISOD can be found in Fig.3.9. In addition to RGB images, ISOD also 

included corresponding depth images and IMU readings. To optimize storage space, the outputs 

of the ground plane masking node (the “masked image” in Fig.3.3) were logged as the query 

images for MOSTS instead of storing raw point clouds. A reference image of each floor type was 

also recorded using a smartphone. Data collection for ISOD was performed using a handheld 

device (Fig.3.10), with the operator videotaping the entire scene while moving around at walking 

speeds (≤1m/s). During collection, the device was held at varying heights (ranging from 0.2m to 

1m) to introduce height variance. The operator was encouraged to simulate the operations of 

dynamically balanced robots by incorporating tilting motions. Each data collection session lasted 

three minutes per scene. One hundred samples were randomly selected and added to the ISOD 

from the raw data recordings. Subsequently, the data labeling team was instructed to annotate the 

drivable regions in the RGB images with positive labels (pixel value =1), marking the remaining 

areas with negative labels (pixel value =0).  

 

Fig. 3.10. The handheld device used for data collection. 
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B. Preparation for the Benchmark Models  

    It should be noted that this study used ISOD solely as a validation dataset, while MOSTS 

was trained utilizing the DTD dataset [143] via the method introduced in Section V.B. Training 

was conducted for 500 epochs with a batch size of 16, using the ADAM optimizer. Since indoor 

DAS using one-shot textural segmentation is a relatively recent research area, directly comparing 

the performance of the proposed method with existing methods proves challenging. Nevertheless, 

efficient RGB-D semantic segmentation models such as those detailed in RedNet [126] and 

ESANet [127] served as valuable performance indicators to understand and quantify the 

framework’s efficacy.  

As indoor semantic segmentation arguably poses a more complex task than DAS, unmodified 

versions of models RedNet and ESANet may pay unnecessary attention to objects unrelated to the 

DAS task. To ensure a fair comparison, this study retrained models RedNet and ESANet as DAS 

models using modified data from SUNRGB-D [128], a popular indoor semantic segmentation 

benchmark dataset. It contains 10,335 RGB-D images collected across 37 scene categories. A label 

reduction process was conducted to convert this semantic dataset into a drivable area dataset. First, 

this study filtered out samples from [128] whose areas contain less than 1% of “floor” or “carpet” 

labels. Second, the labels of the remaining 7,946 samples were converted into binary maps (“floor” 

& “floor_mat” =1, all others =0). These samples were then randomly divided into a training set 

and an evaluation set at a ratio of 4:1. The retrained models RedNet and ESANet achieved training 

accuracies (mIoU) of 82.4% and 88.0%, respectively.  

For further comparison, vanilla versions of OSTR [130], RedNet, and ESANet were also pre-

trained and included in the benchmark as baselines. While models RedNet and ESANet utilized 
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RGB and depth images as inputs during the tests, model in OSTR and MOSTS used the RGB 

(masked) and texture reference images as inputs. All image data were resized to 256 × 256. 

Lastly, all tested neural network models were converted into Float16 IR and deployed to the same 

SBC to estimate the inference speed. 

3.8 RESULTS AND DISCUSSION 

The performance metrics used in the validation test included accuracy (measured in mean 

Intersection over Union, mIoU) and inference speed (measured in Frame Per Second, FPS). As 

Table 3.4 demonstrates, OSTR attained an accuracy of 73% on ISOD. Training OSTR with the 

Perlin-Noise-based collage generator (as opposed to the Voronoi-based) resulted in an accuracy 

boost of +10.5%, while MOSTS trained with the Voronoi-based collage generator exhibited a 

decrease in accuracy (-6.6%). This indicates that synthetic training examples generated via the 

TABLE 3.4 

QUANTITATIVE RESULTS FROM THE VALIDATION STUDY 

Method Backbone MIoU FPS 

Ground Plane Seg - 82.7 100* 

MOSTS MobNetv3 85.7 93.13 (48.22) 

MOSTS (Voronoi) MobNetv3 79.1 93.13 (48.22) 

MOSTS-Res34 Res34 86.2 22.77 (18.54) 

MOSTS-Res50 Res50 86.3 17.60 (14.97) 

OSTR Res50 73.0 13.44 (11.85) 

OSTR (Perlin) Res50 83.5 13.44 (11.85) 

RedNet Res50 71.0 11.44 

ESANet Res34 80.7 21.71 

RedNet (DAS) Res50 85.1 11.44 

ESANet (DAS) Res34 83.0 21.71 

The result of the proposed method is bolded. *: FPS was estimated using typical 

algorithm throughput. (): FPS adjusted for the latency of ground plane 

segmentation algorithm. 
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Perlin-Noise-based method better prepare models for real-world scenarios.  

The pre-trained vanilla semantic models in RedNet and ESANet achieved accuracies of 71.0% 

and 80.7%, respectively. Fine-tuned DAS versions of these models showed improved accuracies, 

with RedNet reaching 85.1% and ESANet hitting 83.0%. This suggests RedNet possesses greater 

generalizability, whereas ESANet seemed to overfit the training data as it had higher training 

accuracy. By design, ESANet is more speed optimized. The inference speed results suggest that 

ESANet was about two times faster than RedNet. With an inference speed of 21.71 FPS, ESANet 

will suffice for most indoor robot perception needs. However, MOSTS outperformed ESANet in 

terms of speed by over two-fold while having competitive accuracy, thereby freeing up even more 

computational resources for subsequent robot control algorithms. The latency of the ground plane 

segmentation algorithm can be minimized through parallel processing. In that case, MOSTS could 

attain up to four times faster inference speed (93.13 FPS) than ESANet, positioning it as a superior 

choice for indoor DAS.  

Further analysis of the performance differences resulting from various backbone selections 

was conducted, benchmarking MOSTS with ResNet-34 and ResNet-50 as backbones. The surge 

in inference speed was largely due to the faster backbone. Meanwhile, the accuracies of these 

ResNet-based MOSTS models were comparable to the proposed one, with MOST-Res50 

exhibiting the highest accuracy in this test and an FPS similar to RedNet. 

The validation study also included the accuracy of the ground plane segmentation algorithm. 

This accuracy was computed by comparing the ground truth with the masked image, where 

blackened pixels were mapped to 0 and all others to 1. Despite the algorithm’s inability to identify 

small objects (≤ 5𝑐𝑚 in height), it achieved a mIoU of 82.7% as the pixel areas of these small 
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objects account for only a small fraction of the entire scene. Thus, the complete omission of these 

objects did not necessarily result in a significant mIoU reduction. This logic is also applicable to 

the results of the neural network models.  

This study included some qualitative results from the validation test to gain better insights and 

further demonstrate the performance differences between the tested methods. Fig.3.11 illustrates 

that ISOD poses significant challenges for indoor semantic models. Both RedNet and ESANet 

struggled to identify floors with small objects. The DAS versions demonstrated noticeable 

 

Fig.3.11. Qualitative results from the validation test. Drivable areas are highlighted in blue, whereas obstacles are highlighted in 

red. Reference images and depth images are shown in smaller size. 
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improvements, as they had a more general open set for categorizing non-floor objects. While both 

models managed to capture floor regions even with scene tilting, they largely overlooked smaller 

objects in the scenes due to the lack of such examples in their training data from SUNRGB-D. In 

contrast, the proposed model MOSTS can identify small, low-lying objects irrespective of shape, 

color, and size. Trained entirely using synthetic images, it does not require manually labeled small 

object training examples like the semantic models. Moreover, as the proposed method first 

estimates the ground plane using an analytic algorithm, it rarely produces false positive labels on 

walls and furniture. This safety feature can help reduce the uncertainty inherent in data-driven 

methods like neural networks.  

3.9 CONCLUSION AND FUTURE WORK 

This study presented a fast, motion-robust RGB-D Drivable Area Segmentation (DAS) 

framework for indoor robot navigation. This framework used a ground plane segmentation 

algorithm to estimate the drivable area, which was further refined using a Miniature One-Shot 

Texture Segmentation (MOSTS), a rapid texture-oriented one-shot segmentation neural network. 

The MOSTS model was trained using a novel Perlin-noise-based collage synthesis technique. An 

Indoor Small Objects Dataset (ISOD) was created to evaluate the proposed framework’s 

efficiency. The validation test demonstrated that MOSTS offered competitive accuracy and 

considerably higher inference speed when compared to two state-of-the-art efficient RGB-D 

semantic segmentation models. Moreover, the proposed framework was deployable on a low-

power Single Board Computer (SBC), capable of delivering real-time performance.  

Despite the promising results, future studies are needed to handle the limitations of the 

proposed method. The DAS framework performs best when a single general floor texture type 
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(e.g., tiled, wooden, carpeted) is present in the scene but suffers from floors featuring mixed texture 

types.  

The potential applications of MOSTS extend beyond refining DAS. For example, Fig.3.2 

shows that MOSTS can effectively detect trash and litter on outdoor terrains like sand and snow. 

When given an image of well-maintained asphalt, MOSTS can identify cracks on a runway image. 

It demonstrates that MOSTS can facilitate applications like autonomous cleaning robots and robot 

runway patrol. Importantly, the same MOSTS model used in the validation test was directly 

transferred (without any retraining or fine-tuning) to generate the predictions in Fig.3.2. This 

illustrates the flexibility of MOSTS, as it can be easily repurposed and adapted to new 

environments or tasks. 
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CHAPTER 4 

 

A VISION-GUIDED SHARED-CONTROL FOR 

NAVIGATING A RIDING BALLBOT SYSTEM 

4.1 ABSTRACT 

This study introduces a shared-control approach for collision avoidance of mobility devices, 

particularly one based on a self-balancing riding ballbot (a.k.a. PURE). Due to its ballbot drivetrain 

and torso-dynamics estimation system, PURE has unique features such as its dynamic stability, 

omnidirectional motion, and hands-free control interface. The proposed shared-control approach 

uses a RGB-D vision system, as well as secondary sensors like LiDAR and Time-of-Flight sensors, 

to enable safe and intuitive navigation through deceleration assistance and haptic/audio feedback. 

The haptic feedback is introduced by a novel Passive Artificial Potential Field method that 

provides motion resistance when the operator drives PURE towards an obstacle. We first 

conducted a robotic system evaluation to quantify the deceleration performance of PURE and its 

shared-control system. Then, a human-robot interaction (HRI) evaluation was done to explore the 

performance and effort of navigating PURE with and without shared-control by manual wheelchair 

users (mWCUs) compared to able-bodied users (ABUs). Twenty test subjects (10 mWCUs + 10 

ABUs) operated PURE through two obstacle courses (S-Turn and Zigzag shapes) with wide and 

narrow widths. Repeated Measures MANOVA tests assessed objective (collision index and 

completion time) and subjective metrics (NASA TLX scores and a post study questionnaire) to 
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evaluate the performance of the proposed shared-control scheme. Results from the HRI evaluation 

suggested that: 1) shared-control reduced collisions without compromising travel speed; 2) shared-

control reduced mental demand, physical demand, effort, and frustration, while improving 

perceived performance; and 3) there were virtually no differences between ABUs and mWCUs in 

terms of completion time and collision likelihood. The post-study questionnaire found the shared-

control to be intuitive, natural, and safe. Therefore, this study concluded the proposed shared-

control approach successfully provided effective collision avoidance assistance for this unique 

self-balancing riding device. 

4.2 INTRODUCTION 

Navigating through crowded environments with a mobility device can be mentally taxing, 

requiring significant cognitive effort from the rider. However, employing a shared-control 

approach that combines the capabilities of a semi-autonomous device with the input of the human 

rider has the potential to enhance operational performance. By distributing the control effort 

 

Fig. 4.1. PURE control schematics: The rider can control PURE’s motion in a) forward-backward and b) left-

right directions by leaning their upper body (COP: center of pressure, GRF: ground reaction force vector). c) 

Turning control is achieved by twisting the upper body. 
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between the device and the rider, the shared-control approach aims to alleviate the cognitive 

burden on the rider and improve the overall efficiency and effectiveness of the mobility device.  

Our research group has developed a novel mobility device called PURE (Personalized Unique 

Rolling Experience). PURE is a self-balancing riding ballbot system that affords the rider a hands-

free control interface, omnidirectional motion, and a compact form factor [152], [153]. Leveraging 

the self-balancing nature of the ballbot system, riders simply lean in the direction they want to go, 

and the device will naturally comply. To accommodate for riders with reduced torso range of 

motion, the Torso-dynamics Estimation System (TES), consisting of an instrumented seat (Force 

Sensing Seat, FSS) and a wearable sensor (inertial measurement unit, IMU), are used to control 

direction and speed [154] (Fig.4.1). However, driving a mobility device with this level of 

maneuverability presents unique challenges. First, the omnidirectional ability to spin in place or 

travel in both longitudinal and lateral directions requires riders to be constantly cautious for 

possible collisions or falling risks from all directions. Second, PURE’s under-actuated dynamics 

[155] requires it to accelerate forward to bring the center of gravity backward (proportional to the 

current driving speed) prior to applying deceleration on the ball. Estimating the braking/stopping 

distance and timing of this highly maneuverable device is a challenging task, particularly for 

novice riders navigating in congested areas. 

To alleviate the demands on rider proficiency and effort, this study proposed a shared-control 

approach using a novel Passive Artificial Potential Field (PAPF) method. This proposed shared-

control method followed an Artificial Potential Field (APF) [156] formulation with additional 

adjustments to accommodate for the dynamic characteristics of PURE. The goal of PAPF shared-

control was to minimize the rider’s collision avoidance efforts by providing deceleration assistance 

and intuitive haptic feedback. 
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This study consisted of two evaluation experiments. First, a robotic system evaluation that 

focused on assessing the deceleration performance of PURE and its shared-control system. 

Second, a human-robot interaction evaluation was conducted to assess the efficacy of the proposed 

approach with 20 participants (10 manual wheelchair users (mWCUs) and 10 able-bodied users 

(ABUs)). The evaluation involved having the participants navigate PURE through obstacle courses 

with complex shapes and challenging widths. This evaluation aimed to answer the following 

research questions:  

1. Does the performance improve when using the shared-controller?  

2. Does the operational effort decrease when using the shared-controller?  

3. Are there performance and preference differences between ABUs and mWCUs in relation 

to the use of the shared-controller? 

The key contributions of this study are: 1) integration of a vision-guided perception system 

and a high-level controller with PURE for the purpose of achieving real-time shared-control; 2) 

introduction of a novel PAPF shared-control paradigm specifically designed to ensure the safety 

of a self-balancing riding device like PURE; and 3) conducting a HRI evaluation to evaluate the 

effectiveness of the proposed shared-control paradigm and gather valuable feedback for further 

improvement. 

4.3 RELATED WORK 

A. Powered Wheelchair Shared-Control 

The development of “smart” powered wheelchairs [17], [18], [21], [34], [157], [158] has been 

driven by the intention to accommodate individuals who are unable to safely operate powered 
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wheelchairs due to physical limitations or cognitive challenges. Initially, the focus of development 

was on creating autonomous wheelchairs [157], but achieving fully automated wheelchairs capable 

of navigating complex and unfamiliar environments remains highly challenging. Additionally, 

some studies [44], [45] have emphasized the importance of leveraging residual motor and 

cognitive capacities to promote independence, making fully autonomous wheelchairs potentially 

counterproductive. 

In response to these challenges, shared-control has emerged as an alternative solution, where 

the human rider makes high-level decisions while the robot agent is responsible for low-level 

motion control and collision avoidance. The philosophy behind shared-control is to reduce the 

cognitive and physical effort required to operate a powered mobility device by offloading certain 

tasks to the robot agent. This allows users to concentrate more on reaching their destination or 

performing social activities rather than the act of navigating itself [11], [46]–[48].  

Traditionally, wheelchair shared-control can be categorized into two main types: deliberative 

and reactive. Deliberative shared-control follows a “Sense-Plan-Act” formulation [159], using the 

robot and environment models to plan ahead (using techniques such as Rapidly Exploring Random 

Trees (RRT) [49], Model Predictive Control (MPC) [50], [51], Reinforcement Learning (RL) or 

Bayesian methods [53]). These shared-control approaches are often complex, considering the 

current and future states of the robot and the environment to plan efficient and risk-averse paths. 

On the other hand, reactive shared-control directly maps the current state of the robot and the 

environment into the robot’s control signal (including Vector Field Histograms (VFH) [54], 

Dynamic Window Approach (DWA) [55],  and Artificial Potential Fields (APF) [47], [56]–[59]). 

Reactive shared-control is fast, simple, and robust but cannot reason about complex navigation 

tasks and find optimal paths. While both methods have their strengths and weaknesses, a reactive 
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shared-control paradigm aligns more closely with this study’s research goal: making the best use 

of the human’s abstract reasoning and the robot’s high control bandwidth. 

B. Artificial Potential Field Based Shared-Control 

Artificial Potential Field (APF) based shared-control approaches have been widely used in 

wheelchair shared-control and related domains. Petry et al. [56] generated an attractive force from 

the user command and repulsive forces from the obstacles detected with ultrasonic sensors. The 

resultant wheelchair’s behavior was simply the sum of the attractive force and all the repulsive 

forces at a given position. Urdiales et al. [47] treated human and robot commands as different goals 

in an APF. These goals were weighed by the agent’s respective local efficiencies at each time 

instant to encourage emergent cooperation between humans and robots. The study by Li et al. [57] 

proposed a wheelchair brain-machine interface that utilized an APF for safeguarding the system 

from collisions in case of noisy and faulty control signals. Multiple studies [54], [58], [59] used 

similar “force field” approaches to establish haptic bilateral communication between the 

wheelchair and the user. 

Besides wheelchair shared-control, APF has been applied in other areas. APF was used to 

calculate braking force for a passive intelligent walker [160]. Similar to the proposed method, the 

APF approach in [160] only applied deceleration effort to the system. The driving effort of the 

system was provided by the human rider. The work by Gottardi et al. [161] proposed a shared-

control teleoperation framework for a robotic arm using an APF approach improved by the 

dynamic generation of escape points around the obstacles. The study by Baek et al. [41] proposed 

an APF approach using a time-derivative sigmoid function to enable shared-control for whole-

body tele-locomotion of a wheeled humanoid. 



74 

 

While APF-based shared-control approaches have been studied and shown promising results, 

their specific adaptation for self-balancing riding devices remains unexplored. Unlike existing 

studies [41], [161], where APF can provide motion correction and haptic feedback separately, this 

study finds that the motion correction and haptic feedback for a self-balancing riding device are 

interconnected due to its dynamic nature. The haptic feedback achieved through tilting the self-

balancing riding device directly affects its motion, and vice versa, resulting in a combined effect. 

Moreover, traditional APF approaches proactively push the device away from obstacles even when 

the device is stationary [162]. However, soft collisions, dockings, and close proximity social 

interactions are common scenarios where proactive pushing is not suitable. Moreover, the 

conventional shared-control approach is known to exhibit control oscillation issues in narrow 

passages [47], [163]. This poses a significant challenge for tight indoor use and pronounced control 

oscillations could lead to unstable states. Furthermore, surrounding objects can affect the motion 

of the device even when it is moving parallel to them, leading to unnecessary speed reduction 

[162]. Thus, a revised approach to the traditional APF approach is needed for these situations. 

C. Ballbot Systems 

A ballbot is a type of self-balancing mobile robot that rides on top of a ball. The ballbot was 

first introduced by [7] and was later studied by [8], [9], [42], [43] and many others as mobile robot 

platforms, and assistive or interactive robots. Most ballbot drivetrain designs utilize three or more 

omniwheels to drive the ball. By carefully configuring the contact angles between the omniwheels 

and the ball, the drivetrain enables the ballbot to move omnidirectionally in any direction and rotate 

in place. A traditional ballbot system achieves self-balancing behavior by tracking the system’s 

center of mass (COM). When the ballbot detects that the projection of the COM moves outside of 

the base of support, it will accelerate to align with the COM. Its self-balancing characteristic allows 
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it to carry heavy payloads with a high center of mass while maintaining a small footprint. However, 

since the base of support of a ballbot is a small contact area between the ball and ground, the 

ballbot is constantly moving, or dithering, even when trying to self-balance in a set location. 

Leveraging its high maneuverability and minimal footprint, the ballbot can access existing 

infrastructures designed for able-bodied individuals.  

Developing a shared-control paradigm to safeguard a ballbot system like PURE is a non-trivial 

task. Conventional braking systems cannot be used on a dynamically-stable system like a ballbot 

because holding the ball stationary would disrupt the device’s ability to maintain balance through 

dithering. The acceleration and deceleration of a ballbot are closely coupled with its tilting motion, 

i.e., safe deceleration must be achieved by tilting the device in the opposite direction. Moreover, 

unlike traditional joystick-controlled wheelchairs, where the rider’s command signal can be 

completely overwritten, the passive compliance nature of a riding ballbot allows the rider to move 

the device by significantly shifting their COM. These unique challenges invalidate most existing 

shared-control paradigms, emphasizing the need for a novel shared-control design that caters to 

the safety requirements of self-balancing systems like PURE. By studying and developing such a 

paradigm, this study aims to share and generalize its findings to mobile robots with similar or 

simpler dynamic characteristics as ballbots. 

4.4 METHODOLOGY 

A. System Specifications 

The hardware design of the PURE Gen2 prototype focuses on optimizing compactness and 

safety [152], [153]. The overall footprint and size of PURE are approximately that of a seated 

person, and the system weighs approximately 37 kg. The current prototype has an estimated 
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runtime between 2.5 to 4 hours, and it can achieve a top speed of 2.3 m/s. PURE is comprised of 

three electronic modules (Fig. 4.2): 1) A low-level dynamic controller, which provides state 

feedback of the drivetrain, ensures system balance, and performs velocity tracking using an LQR-

PI controller [153]. 2) The Torso-dynamics Estimation System (TES) [154], which measures the 

rider’s upper-body movements and maps them to velocity control signals. 3) A high-level 

controller, responsible for environmental awareness and collision prevention. The three brushless 

DC motors (BLDCs) (T-motor U10+, T-motor Inc., China) are powered by a pack of three LiPo 

batteries (HRB 4S-6000mAh LiPo, HRB Inc., USA), while the remaining electronics are powered 

by a laptop power bank (Volessence 50000mAh Laptop Power Bank). The communication and 

control loop rates for the LQR-PI, TES, and shared-control are set to 400 Hz, determined by the 

current computation capacity. The motor driver’s torque/current control loop operates at a 

frequency of 8,000 Hz, ensuring precise and smooth trajectory tracking.  

The high-level controller is hosted by a low-power Single Board Computer (SBC), 

specifically the UP Xtreme i7 (UP Bridge the Gap, USA), running Ubuntu 20.04 and ROS Noetic. 

The SBC was connected to a speaker (AVL Mini Speaker System, China), providing audio 

 

Fig. 4.2. PURE hardware setup and communication schematics. The low-level dynamic controller is highlighted in 

orange. The TES is highlighted in green. The high-level controller is highlighted in blue. 
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feedback and issuing alarms when the chair approached obstacles. The perception system of PURE 

consisted of two RGB-D cameras (RealSense-D455, Intel Co., USA) as the main sensors, as well 

as two Time-of-Flight (ToF) distance sensors (TeraRanger Evo Mini, TERABEE, France) and two 

single-beam LiDAR sensors (YDLIDAR X2, Shenzhen EAI Technology Co., China) as secondary 

sensors. By combining the Field of Views (FOV) of all sensors, the perception system could detect 

obstacles from a full 360° perspective (Fig. 4.3). The effective FOV of each RGB-D camera is 87° 

wide × 58° height with a measurement range of 0.32 m to 7 m. The ToF sensors were added to 

compensate for the RGB-D camera’s deficiency in close range. Each ToF’s FOV is 27° × 27° with 

a measurement range of 0.03 m to 3.3 m. The LiDAR sensors were added to safeguard the sides 

and the rear of PURE. Each single-beam LiDAR has FOV of 360° and a measurement range of 

0.1 m to 10 m. The update rate of the RGB-D camera was 30 Hz, while the update rates for the 

LiDAR and ToF sensor were 10 Hz and 40 Hz, respectively. 

B. Control Architecture 

The TES utilized a Force Sensing Seat (FSS) equipped with six specially oriented uniaxial load 

            

Fig. 4.3. PURE perception system sensor placement and FOV schematics. RGB-D camera, ToF sensor, and 

LiDAR. 
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cells to collect force measurements, which are then used to infer the reaction forces and moments 

generated by the rider’s upper body on the seat in three Euclidean axes [154]. To obtain the upper 

body twist in Euler angles, a wearable IMU (VN-100, VectorNav, USA) was mounted on the rider’s 

chest. To mitigate the impact of vibration and magnetic disturbances originating from the drivetrain, 

a first-order low-pass (Butterworth) filter with a cut-off frequency of 1 Hz was employed to filter 

the FSS moment readings. The interface controller (Fig.4.4) used the following mapping function to 

map motion signals to velocity command signals (revised from [153]): 

                                𝜈𝑥
𝑢𝑠𝑟 , 𝜈𝑦

𝑢𝑠𝑟 , 𝜔𝑧
𝑢𝑠𝑟 ← 𝑓𝑇𝐸𝑆(휃𝑥

𝑢𝑠𝑟 , 휃𝑦
𝑢𝑠𝑟 , 휃𝑧

𝑢𝑠𝑟 , 𝑀𝑥
𝑢𝑠𝑟 , 𝑀𝑦

𝑢𝑠𝑟)                             (4.1) 

Where 휃𝑥
𝑢𝑠𝑟 , 휃𝑦

𝑢𝑠𝑟 and 휃𝑧
𝑢𝑠𝑟 represent the user’s torso Euler angles measured by the wearable 

IMU and 𝑀𝑥
𝑢𝑠𝑟  and 𝑀𝑦

𝑢𝑠𝑟  are the user’s torso moments measured by the FSS in the frontal and 

sagittal planes, respectively. The user command turning rate 𝜔𝑧
𝑢𝑠𝑟 is directly proportional to 휃𝑧

𝑢𝑠𝑟, 

which represents the yaw angle of the upper body relative to the drivetrain. Meanwhile, the user 

command velocities 𝜈𝑥
𝑢𝑠𝑟  and 𝜈𝑦

𝑢𝑠𝑟 which correspond to the forward-backward (frontal) and left-

right (sagittal) directions, are determined by a combination of upper body lean angles  휃𝑥
𝑢𝑠𝑟 

and 휃𝑦
𝑢𝑠𝑟  and moments  𝑀𝑥

𝑢𝑠𝑟 and 𝑀𝑦
𝑢𝑠𝑟 . (Lean angles 휃𝑥

𝑢𝑠𝑟 , 휃𝑦
𝑢𝑠𝑟  were added beyond [153] to 

compensate for the riders who might have lower upper body weight and the noise in moment 

 

Fig. 4.4. PURE control architecture. 
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measurements. See APPENDIX B) Although PURE’s passive compliance makes it naturally 

drivable even without the help of the TES, augmentations of the rider’s control signal (e.g., leaning 

motion captured by the FSS and IMU) are necessary for riders who have limited range of motions 

due to severe injury or deficit level. Additionally, the spinning control is only attainable using the 

sensor signal captured by the wearable IMU. To accommodate for different riders’ range of 

motions and upper body weights, a set of weighting factors were used to adjust the contributions 

and sensitivities of the lean angle and moment measurements.  

The perception system sensor measurements, in the form of point clouds, captured by all the 

sensors were combined and sent to a ground plane segmentation node [164]. Utilizing an algorithm 

from Chapter 3 (APPENDIX A), this node robustly separated obstacle points from the ground 

plane. This separation was achieved even under the tilting motion and vibration of PURE, preventing 

any misinterpretation of the floor as obstacles. The algorithm operated at an output rate of 30 Hz 

with a typical processing latency of 7 to 13 ms, which adequately met the real-time requirements of 

PURE. Taking into account the sensory information and the current velocity of the system, the 

shared-control system modified the user’s velocity command to minimize the occurrence of 

undesired collisions. The implementation details of shared-control are described in section 4.3.C. 

The shared-control speed command vector derived from the aforementioned controllers 

(Fig.4.4) was transmitted to the low-level controller, enabling the desired translational and 

spinning motions while ensuring dynamic stability of the robot–rider system. To achieve control 

over these motions, an LQR-PI cascaded control scheme [153] was employed. The ballbot 

drivetrain of PURE was divided into three 2D planar models, corresponding to the sagittal, frontal, 

and transverse planes. A wheeled-inverted pendulum (WIP) model was used to model the 

dynamics in the frontal and sagittal planes. Their system dynamics were obtained in the form of: 
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                                                              �̇�𝒋 = 𝑓𝑗(𝒔𝒋, 𝜏𝑗)                                                             (4.2) 

where 𝒔𝒋 = [휃𝑗 , 휃̇𝑗 , �̇�𝑗] is the state vector, 휃𝑗  is the chassis tilt angle,  휃̇𝑗  is the chassis tilt 

angular rate, �̇�𝑗  is the ball speed, 𝑗 = 𝑥 for the frontal plane, and 𝑗 = 𝑦 for the sagittal plane. 

Optimal control gains 𝒌𝒍𝒒𝒓 were obtained for using the linearized system dynamics, such that the 

reference ball torque for WIP models were obtained using: 

                                                     𝜏𝑗,𝑟𝑒𝑓 = 𝒌𝒍𝒒𝒓(𝒔𝒋,𝒓𝒆𝒇 − 𝒔𝒋)                                                       (4.3) 

The output torque was further utilized to obtain the reference wheel speed: 

                                                     �̇�𝑗,𝑟𝑒𝑓 = 𝑓𝑗3(𝒔𝒋, 𝜏𝑗,𝑟𝑒𝑓)                                                          (4.4) 

where 𝑓𝑗3 outputs the reference wheel speed of state vector. A similar method was utilized to 

obtain the reference wheel torque 𝜏𝑧,𝑟𝑒𝑓 and reference wheel speed �̇�𝑧,𝑟𝑒𝑓.  

These reference torques 𝜏𝑗,𝑟𝑒𝑓  and reference speed values of the ball �̇�𝑗,𝑟𝑒𝑓  were then 

transformed into the corresponding torque 𝑢𝑛,𝑟𝑒𝑓 and reference speed �̇�𝑛,𝑟𝑒𝑓 of each individual 

motor (𝑛 = [1,3]). Additionally, a Proportional-Integral (PI) controller was cascaded within each 

motor to compensate for unmodeled friction while feeding forward the reference motor torque: 

                         𝑢𝑛 = 𝑘𝑃𝑛(�̇�𝑛,𝑟𝑒𝑓 − �̇�𝑛) + 𝑘𝐼𝑛(∫ �̇�𝑛,𝑟𝑒𝑓 − �̇�𝑛) + 𝑢𝑛,𝑟𝑒𝑓                                  (4.5) 

where 𝑘𝑃𝑛 and 𝑘𝐼𝑛 are tuned proportional and integral control gains, and 𝑢𝑛 is the final torque 

command that is received by the motor drivers.  

C. Passive Artificial Potential Field Shared-Control 

In the conventional APF setup, the robot’s motion is determined by the sum of the attractive 

force from the goal and the repulsive force from the obstacles [156]. However, in the context of 

shared-control, where the long-term motion goal is determined by the rider, only the repulsive 
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force is considered. This repulsive force can be calculated using the FIRAS (Force Inducing an 

Artificial Repulsion from the Surface) function [156], which is defined as: 

                                      𝑓𝐴𝑃𝐹 = {
휂 (

1

𝛿
−

1

𝛿𝑡ℎ𝑟𝑒
)
2

                    if 𝛿 ≤ 𝛿𝑡ℎ𝑟𝑒

           0                               if 𝛿 > 𝛿𝑡ℎ𝑟𝑒

                                        (4.6) 

where 𝛿𝑡ℎ𝑟𝑒  is a distance 

threshold representing the obstacle’s 

radius of influence (m), 𝛿  is the 

minimum distance between the robot 

and the obstacle (m), and 휂 is a scaling 

factor that can be adjusted for each 

axis. The quadratic behavior of the 

function ensured that the device exerts 

maximum effort to avoid collision 

when in close proximity to obstacles 

(Fig. 4.5). Since it is challenging to accurately estimate the shape and size of obstacles and compute 

δ, a simple adaptation was to treat all distance measurements as tiny obstacles. In this approach, 

the overall repulsive force was estimated by taking the average of all the forces. The repulsive 

force was calculated for each obstacle point (N points in total, measured by the sensors) using the 

relative distance 𝛿𝑛 and the relative angle 𝛼𝑛 of the obstacle point with respect to the positive x-

axis of the robot: 

                             𝑓𝐴𝑃𝐹 = {
1

𝑁
∑ g(𝛼𝑛) 휂 (

1

𝛿𝑛
−

1

𝛿𝑡ℎ𝑟𝑒
)
2

𝑁
𝑛=1         if 𝛿 ≤ 𝛿𝑡ℎ𝑟𝑒

                    0                                      if 𝛿 > 𝛿𝑡ℎ𝑟𝑒

 

 

Fig. 4.5. The APF force profile with distance 𝛿 ranging from 0 to 

3m. 휂 is set to 5 and 𝛿𝑡ℎ𝑟𝑒 is set to 2 for this visualization. 
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                           g(𝛼𝑛) = {
cos(𝛼𝑛)                                            for 𝑓𝑥

𝐴𝑃𝐹

sin(𝛼𝑛)                                            for 𝑓𝑦
𝐴𝑃𝐹                                          (4.7) 

PAPF calculated the repulsive forces 𝑓𝑥
𝐴𝑃𝐹  and 𝑓𝑦

𝐴𝑃𝐹  independently, considering the relative 

position of the obstacle. For instance, if an obstacle point was positioned in the front-right region of 

the robot but did not directly overlap with the robot’s frontal area, it generated a repulsive force only 

in the left-right* direction. (*If the repulsive force does not directly overlap with the robot's frontal 

area, this algorithm will only generate lateral repulsive force to prevent unwanted slow down.) This 

adjustment minimized unwanted resistance and allowed for smoother navigation in confined spaces. 

Furthermore, PAPF only considered obstacle points within the path of motion, defined by the 

semicircle of the command velocity vector. It resisted the rider’s motion when approaching obstacles 

but did not introduce acceleration or proactively push the device away. This approach eliminated 

control oscillations and avoided unnecessary movement when the ballbot was stationary or moving 

parallel to objects. 

There were many ways to incorporate 𝑓𝐴𝑃𝐹 into the robot’s motion control loop. In this study, 

𝑓𝐴𝑃𝐹 was first saturated between [−1, 1] and then scaled by the norm of user commanded velocity 

signal, 𝜈𝑢𝑠𝑟 ∈ [−1,1], to ensure it was only effective when the rider is driving. It was then added to 

the user commanded velocity to form the updated velocity command 𝜈𝑖𝑑𝑒𝑎𝑙. This approach of using 

𝑓𝐴𝑃𝐹 as a commanded velocity correction term was easier to implement and more robust against 

latency compared to injecting it into the torque control loop. Similar practices can be found in [41], 

[161]. 

                                            𝜈𝑖𝑑𝑒𝑎𝑙 = 𝜈𝑢𝑠𝑟 + (𝑓𝐴𝑃𝐹|𝜈𝑢𝑠𝑟|)                                                  (4.8) 

As mentioned earlier, the rider on PURE can continue to lean and drive towards an obstacle 

despite the shared-control’s effort to slow down (Fig.4.6b). To address this issue, the shared-
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control system incorporated a cascaded speed tracking loop.  It compensated for undesired velocity 

by applying a counter lean and deceleration proportional to the unwanted velocity:  

                                            𝜈𝑐𝑜𝑚𝑝 = 𝜈𝑖𝑑𝑒𝑎𝑙 + 휁(𝜈𝑖𝑑𝑒𝑎𝑙 − 𝜈𝑓𝑏)                                           (4.9) 

where 휁 is a scaling factor that controlled the aggressiveness of the velocity tracking. It was set 

to zero if the feedback velocity was higher than the targeted velocity to ensure that the shared-control 

did not accelerate the system. The counter lean resulted from this tracking loop offset the COM 

shift caused by the rider and re-established a dynamically stable position. It also provided distinct 

haptic feedback to the rider and helped convey the shared-control’s intention to the rider. 

Finally, to mitigate the effects of noisy sensor measurements and rapid changes in the direction 

of motion, a low-pass filter was integrated into the system. This low-pass filter smoothed out 

jitteriness by penalizing the difference between 𝜈𝑐𝑜𝑚𝑝 and the commanded velocity from the last 

time step 𝜈𝑜𝑙𝑑, resulting in a more fluid and reliable movement. 

                                             𝜈𝑐𝑚𝑑 = 𝜈𝑐𝑜𝑚𝑝 + 𝜖(𝜈𝑜𝑙𝑑 − 𝜈𝑐𝑜𝑚𝑝)                                         (4.10) 

 

Fig. 4.6. PURE’s behaviors under same operator leaning motion and different control paradigms. a) No Shared-

Control, the commanded velocity is equal to user velocity command and collision is possible; b) Shared-Control 

without cascaded speed tracking, the operator can still force PURE to drive towards an obstacle despite the commanded 

velocity has set to zero by the shared-control; c) Shared-Control with cascaded speed tracking, an opposing 

commanded velocity is given to offset the operator’s leaning motion and establish a new dynamic stable position. 

c)b)a)
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Note that, as PAPF calculated the repulsive forces for 𝑥  and 𝑦  axes separately, the above 

equations were repeated for each axis. The detailed implementation of PAPF can be found in 

APPENDIX C. 

In situations where PURE detected an imminent collision risk despite its efforts to slow down 

the rider, an audio alarm was also activated to explicitly alert the rider to the danger. The volume 

of the alarm increased as the obstacle got closer, providing a clear indication of the proximity of 

the collision. During the human-robot interaction evaluation, the maximum volume of the alarm 

was adjusted based on the subject’s preference to minimize frustration.  

4.5 ROBOTIC SYSTEM EVALUATION 

A. Experiment Setup 

The robotic system evaluation involved two experiments to assess the deceleration performance 

of the ballbot and its shared-control system.  

In the first evaluation, a deceleration test with a static obstacle was performed. The ballbot was 

loaded with different payload weights (ranging from 13.6 to 54.4 kg) and was commanded to 

accelerate to various steady-state initial velocities (ranging from 0.5 to 1.4 m/s) towards a cardboard 

box obstacle. The shared-control system automatically issued deceleration commands to ensure the 

system’s safety and prevent collision. The distance and time taken for PURE to come to a complete 

stop after the shared-control initiated the deceleration signal were recorded for each combination of 

payload weight and initial velocity. Three measurements were taken for each case, and the average 

values were reported.  

The second evaluation assessed the performance of PURE and its shared-control system in 
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scenarios where obstacles suddenly appeared within the shared-control’s FOV. These scenarios 

mimicked real-life situations such as a car unexpectedly reversing from a driveway or a person 

abruptly opening a door in a narrow hallway. Even for human riders, these “sudden obstacle” 

situations are challenging to foresee. To evaluate the shared-control’s response to sudden obstacles, 

the shared-control sensor readings were altered to trick the shared-control into perceiving that no 

obstacle was present. The test conditions from the first evaluation were repeated with this altered 

perception, and this alternation was removed once the ballbot reached a certain “offset” distance 

(e.g., 2.0 m, 1.5 m, 1.0 m, and 0.5 m) mimicking a sudden “appearance” of the obstacle at the given 

offset distance. The objective was to determine the performance boundary of PURE and shared-

control in the presence of a sudden obstacle. Consequently, only worst-case scenarios (with 54.5 kg 

payload) were considered, involving maximum payload and high velocities.  

B. Results 

The results of the first experiment (Fig.4.7) suggested that the deceleration effort of the PAPF 

shared-control is proportional to the rider commanded velocity (as defined by Eq .4.8). 

Consequently, lower initial velocities resulted in lower deceleration efforts, leading to longer 

deceleration distances and times. Conversely, when PURE was traveling at higher velocities (e.g., 

      

Fig. 4.7. Averaged deceleration distance (left) and time (right) for PURE to stop under different payloads and initial 

velocities. 
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1.4 m/s, similar to human jogging speed), the shared-control exerted significant deceleration effort 

to bring the ballbot to a stop before a potential collision.  

The results of the second experiment (Table 4.1) suggested that when traveling at 1.0 m/s, PURE 

was able to effectively stop itself and prevent a collision if an obstacle suddenly appeared 0.5 m 

away. However, at a higher velocity (1.4 m/s), PURE could only avoid a collision if the obstacle was 

detected at least 2 m away.  

C. Discussion 

PAPF shared-control approach was designed such that the deceleration effort was proportional 

to the rider commanded velocity (Eq.4.8). This behavior provided riders with more freedom when 

traveling slowly and cautiously, while stepping in strongly to ensure system safety during critical 

collision risks. The results in Fig.4.7 highlighted the adaptability of the shared-control system in 

adjusting the deceleration effort based on the velocity of the platform, contributing to a safer and 

more forgiving user experience. Fig.4.7 also suggested that heavier payloads might lead to a shorter 

deceleration distance and time especially when traveling at lower velocities. This effect diminished 

as the velocity increased to 1.4 m/s. 

The results of the sudden obstacle appearance evaluation (Table 4.1) suggested that it was 

challenging to safeguard PURE from sudden obstacles when the device was traveling with high 

TABLE 4.1 

SHARED-CONTROL SUDDEN OBSTACLE TEST WITH 54.5 KG PAYLOAD 

                             Offset Dist (m) 

Initial vel (m/s) 
2 1.5 1.0 0.5 

1.0 success success success 0.08 

1.2 success 0.18 0.25 failed  

1.4 0.10 failed  failed  failed  

 Numbers in green indicate the distances to the obstacle (m) when PURE stopped. 
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initial velocity (1.4 m/s). It is important to note that PURE’s deceleration required the device to lean 

in the opposite direction of travel, and the deceleration effort was proportional to this lean angle. 

However, the presence of a physical protection ring on PURE imposed a constraint on the maximum 

degree to which the device could lean (approximately 13°). To completely stop PURE traveling at 

1.4 m/s within 1.5 m would require a deceleration effort (lean angle) exceeding this limit. Therefore, 

the true deceleration performance of PURE’s drivetrain cannot be solely inferred from this test alone. 

In the context of dynamic obstacles, the reactive shared-control approach proposed in this study 

assumed that the fast sampling rate and control loop rate (30 Hz for primary sensors and 400 Hz for 

the control loop) enabled the perception of most indoor moving objects as “static” from the shared-

control’s perspective. This assumption relied on the shared-control’s ability to efficiently capture 

and respond to the dynamics of the environment. However, for more sophisticated behaviors that 

involve predicting the movements of objects and taking proactive actions, it is advisable to 

implement a deliberative shared-control approach. 

4.6 HUMAN-ROBOT INTERACTION EXPERIMENT SETUP 

A. Subject Demographics 

Twenty participants were tested in the study, including 10 manual wheelchair users (mWCUs) 

and 10 able-bodied individuals (ABUs) (Table 4. 2). The inclusion criteria were: 18 to 35 years old, 

body weight less than 70 kg (due to limitations of the current prototype) and no visual impairment. For 

mWCUs, an additional inclusion criterion required minimal trunk control with sensation, specifically 

the ability to perceive pressure at least up to the level of the Xyphoid process. The study was approved 

by the University of Illinois Institutional Review Board (IRB #23664) and informed consents were 

obtained from all participants.  
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Torso range of motion (ROM) in the frontal 휃𝑥
𝑅𝑂𝑀, sagittal 휃𝑦

𝑅𝑂𝑀, and transverse 휃𝑧
𝑅𝑂𝑀 planes 

were recorded using the wearable IMU attached to the participant’s upper chest while seated on PURE. 

Participants were asked to perform a series of motions while PURE was parked stationary. These 

motions included leaning in the forward-backward, left-right, and diagonal directions to their 

comfortable extent. These ROM measurements capture the maximum leaning and twisting capabilities 

of the participants’ torsos, providing valuable insights into the range of torso movements that PURE 

can accommodate. The maximum torso moments as measured by the FSS during these ROM 

movements in the frontal 𝑀𝑥
𝑢𝑠𝑟 and sagittal 𝑀𝑦

𝑢𝑠𝑟 planes were also recorded. Background information 

TABLE 4.2 

SUBJECT DEMOGRAPHICS AND ANTHROPOMETRIC AVERAGE (STANDARD ERROR) DATA 

 ABU mWCU 

Number [Male: Female] 10 [5:5] 10 [4:6] 

Age (years) 23.6 (1.1) 27.4 (1.6) 

Height (m)  1.68 (0.02) 1.62 (0.03) 

Weight (kg)  58.1 (2.3) 51.6 (2.6) 

Years of using mWC (yrs) NA 19.4 (2.55) 

Torso Range of Motion (˚)  

frontal  63.1 (4.2) 46.6 (4.5) 

sagittal  58.6 (3.3) 41.1 (3.5) 

transverse  91.3 (4.2) 64.5 (9.5) 

Maximum Torso/FSS 

Moment Range (Nm)  

frontal  107.1 (8.1) 82.1 (12.3) 

sagittal  113.1 (7.7) 85.6 (11.3) 

                            

TABLE 4.3 

BACKGROUND SUMMARY OF TESTED MANUAL WHEELCHAIR USERS 

  Number 

Injury 

Amputation 

Arthrogryposis 

Cerebral Palsy 

Congenital 

Polio 

Spina Bifida 

Spinal Cord Injury 

1 

1 

1 

1 

1 

1 

4 

Spinal Condition 

Spinal Fusion 

Scoliosis 

Kyphosis  

3 

6 

3 

mWC Athlete Rating 

T34 

T53 

T54 

N/A 

1 

2 

5 

2 
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on the mWCU participants’ injury types, spinal conditions, and mWC athlete rating scores [165] were 

recorded in Table 4.3. Four mWCUs presented with multiple spinal conditions, i.e., [Scoliosis and 

Kyphosis], [Spinal Fusion and Scoliosis], [Spinal Fusion and Kyphosis], and [Spinal Fusion, Scoliosis, 

and Kyphosis]. The successful completion of the HRI test by all mWCUs suggested that PURE and its 

associated shared-control could accommodate a wide range of mWCUs with diverse backgrounds and 

conditions.  

B. Test Courses 

To evaluate and quantify the efficacy of the proposed shared-control paradigm, a HRI study was 

conducted. The study comprised of one training course (Fig.4.8a) and two test courses (Fig.4.8b and 

Fig.4.8c). The training course was designed to introduce and familiarize participants with PURE and 

the shared-control operation. This allowed participants to become acquainted with the controls and 

prepare for the subsequent test courses, where the performance of the shared-control system was 

evaluated. To ensure fairness and prevent participants from memorizing specific sections, the training 

course was intentionally designed differently from the test courses.  

The testing phase consisted of two distinct test courses, namely the S-Turn (ST, Fig.4.8b and 

Fig.4.9b) and Zigzag (ZZ, Fig.4.8c and Fig.4.9c). These courses were designed to simulate various 

challenging indoor navigation scenarios, including narrow hallways, tight turns, and static obstacles. 

To accommodate participants with different navigation skills, each test course had two width settings. 

For the S-Turn course, the track widths were set to 70 cm and 80 cm. In the case of the Zigzag course, 

the track width remained fixed at 90 cm, while the narrowing sections had widths of 65 cm and 70 cm. 

The width of PURE was approximately 60 cm, while the minimum width for wheelchair passage was 

81.5 cm (32 in) at a point and 91.5 cm (36 in) continuously according to the Uniform Federal 
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Accessibility Standards [166]. Therefore, these test courses can be considered highly challenging due 

to the narrow passages and constrained spaces that they present. The selection of these width settings 

was determined through a pilot test involving three ABUs and two mWCUs (who were excluded from 

the HRI evaluation). The aim of the width selection was to strike a balance between difficulty and 

 

 

            a) Training course                  b) S-Turn test course (ST)                         c) Zigzag test course (ZZ)  

Fig. 4.8. The bird’s eye view schematics for training course and test courses setup. The dimensions of PURE are 

included for comparison. 

 

Fig. 4.9. Pictures of the physical a) training course, b) S-Turn test course, c) and Zigzag test course. 



91 

 

minimizing frustration for the participants. It should be emphasized that, to the best of the authors’ 

knowledge, these width settings represent the most challenging configurations compared to similar 

existing studies. Typically, the width range in such studies spans from 0.81 m to 3 m [11], [34], [54], 

[55], [57], [58], [158], making the chosen settings notably more demanding.  

The walls of both the training and testing courses were constructed using cardboard boxes (0.51 

× 0.51 × 0.15 m3). The cardboard walls provided a lightweight and discrete structure, allowing for 

intuitive collision assessment during the evaluation process. During testing, collision incidents were 

categorized based on the impact made on the cardboard walls. If a participant lightly collided with a 

box but did not dislocate it, it was classified as a “touch” collision. On the other hand, if the collision 

resulted in the box being pushed out of its original position, it was recorded as a “move” collision. In 

cases where a participant caused significant disruption to the test course, rendering it unable to 

continue, the trial was marked as a “failure”. Only “primary” collisions were counted and recorded, 

i.e., each collision between the robot and a specific obstacle was considered only once, specifically 

the first instance of collision. Adopting this protocol ensured a consistent and standardized 

approach for collision calculation. The subjects were instructed to treat the collided box as if it were 

no longer present after a collision occurred. 

C. Training and Testing 

During the training phase, participants engaged in movement within an open space and the 

designated training course to practice navigation using PURE. They were given the opportunity to 

adjust TES drive sensitivities according to their preferences for different directions of movement. Once 

participants felt comfortable riding PURE, the shared-control mode was introduced. Before 

proceeding, participants received a briefing on the operational principles of the shared-control system. 
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They were then instructed to repeat the training process with the shared-control mode enabled. The 

adjustable parameters of the shared-control, such as the resistive force and alarm volume, were tuned 

based on each participant’s preference. The training phase was considered completed once participants 

expressed confidence in maneuvering PURE in all directions, both with and without the shared-control 

system. 

During the testing phase, participants were instructed to ride PURE from the starting line to the 

finish line, marked by tape on the floor (Fig. 4.9). Each participant completed three trials for each test 

course, with and without the shared-control, and for two different widths of the test course. In total, 

each participant completed 24 trials (2 test courses × 2 control schemes × 2 widths × 3 trials per 

condition). To mitigate bias introduced by learning effect and fatigue, the testing order of the test 

courses and control schemes was randomized among all participants. For each test course, participants 

always completed the trials for the wider width first, followed by the narrower width. This sequencing 

was designed to minimize any anxiety participants may have experienced when starting with a narrow 

test course. They were instructed to navigate the course at their comfortable speeds while avoiding 

collisions. During each trial, the number of collisions, completion time, and video footage were 

recorded. All data streams within the robot were collected using ROS.  

D. Metrics and Data Analysis 

Inspired by previous studies [167], [168], a Collision Index (𝐶𝐼) was developed by assigning 

weights to different types of collisions, namely “touch,” “move,” and “failure.” These weights reflect 

the severity of the collision and the potential risk of structural damage. The 𝐶𝐼 is calculated using the 

following equation: 

        𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = 1 × # 𝑜𝑓 𝑇𝑜𝑢𝑐ℎ𝑒𝑠 + 3 × # 𝑜𝑓 𝑀𝑜𝑣𝑒𝑠 + 9 × # 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠         (4.11) 
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Note that in the previous studies [167], [168], the performance index included the completion time 

as a factor. However, in this study, the completion time is evaluated separately from the 𝐶𝐼 because 

the numerical values of the completion time were significantly larger than the collision scores. This 

difference in scale would have caused the completion time to dominate the overall index score, making 

it less applicable to this specific study.  

The study incorporated three sets of metrics to evaluate various aspects of the system’s 

performance: 

1) Objective performance metrics: These included the averaged Collision Index (𝐶𝐼), averaged 

completion time (𝑇𝑐), averaged number of touch collisions, averaged number of move collisions, and 

averaged number of failures from three trials per test condition. The objective metrics provided 

quantitative measures of performance during the tests.  

2) NASA Task Load Index (TLX): The NASA TLX survey [169], a widely adopted tool in 

wheelchair shared-control studies [34], [41], [48], [170], was utilized to assess the perceived 

workload and relative operation effort with and without shared-control. The survey included six score 

categories: mental demand, physical demand, temporal demand, effort, performance, and frustration. 

These scores were collected by having the subjects subjectively rate each shared-control mode. The 

TLX scores ranged from 0 to 100 points in 5-point increments [169]. A lower score indicated lower 

operational effort, except for the performance category. After completing each test course, participants 

were given a NASA TLX survey to evaluate the performance of PURE with and without the shared-

control. The final TLX scores for each subject were computed by taking the average of the two TLX 

surveys, similar to the practice in [34].   

3) Post-study questionnaire: A post-study questionnaire was designed to collect feedback and 
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preferences regarding various aspects of the shared-control design. The questionnaire utilized a 4-

point Likert scale (i.e., “Very Little”, “Little”, “Much”, “Very Much”) to gather responses and insights. 

Participants were also asked to indicate their preferred shared-control paradigm for each of the testing 

courses, offering valuable insights into the scenarios in which the shared-control system would be 

most beneficial. A copy of this questionnaire can be found in APPENDIX D. Participants were asked 

to complete this post-study questionnaire once all their trials were finished.  

To examine the impact of using shared-control, two repeated-measures multivariate analysis of 

variance (RM-MANOVA) tests and one one-way MANOVA test were conducted using IBM SPSS 

(SPSS Statistics Version 28.0.1, IBM Corp, USA). These tests were performed to address the research 

questions regarding the potential effects of shared-control on performance, operational effort, and user 

feedback, respectively. In the first test, the performance was assessed using the objective metrics, 

average 𝐶𝐼, average 𝑇𝑐, average touch collisions, and average move collisions. The averaged number 

of failures was not included in the RM-MANOVA because there were only two occurrences during 

the study (for two ABU, both in the S-Turn Narrow test course without using shared-control) and these 

were considered as outliers. The operational effort was evaluated using the NASA TLX scores, while 

the user feedback was collected with the custom questionnaire. The first RM-MANOVA test included 

three independent variables: Shared-Control mode (No Shared-Control vs. Shared-Control), test 

courses (S-Turn Wide (STW), S-Turn Narrow (STN), Zigzag Wide (ZZW), and Zigzag Narrow 

(ZZN)), and user group (ABU, mWCU). The second RM-MANOVA test evaluated independent 

variables of shared-control mode and user group. The one-way MANOVA test tried to explore the 

potential preference differences between subject groups in post-study questionnaire results. Follow-up 

univariate ANOVA tests were conducted if RM-MANOVA tests reached statistical significance. A 

significance level of α = 0.05 was used for all analyses, except for interaction effects which were 
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modified for interactions of S-C mode and course (α = 0.05 / 8 = 0.006) [171]. 

E. Results and Discussion 

1. Objective Performance Metrics 

The results of the two RM-MANOVA tests found statistically significant differences in 

performance and operational effort metrics due to the use of shared-control and test course (Fig. 

4.10-4.11, 4.13-4.14, Tables 4.IV). The performance RM-MANOVA test results revealed 

statistically significant differences in the performance metrics (excluding average number of 

failures due to its rarity) based on the test course settings (p < 0.001), use of shared-control (p < 

0.001), and interaction between shared-control and test course setting (p = 0.005) (Table 4.4). 

There were no differences in metrics between user groups (p > 0.05). Follow-up univariate ANOVA 

tests found that test course settings had a significant impact on average Completion Time (𝑇𝑐), the 

 

Fig. 4.10. Performance metrics by subject group and shared-control mode for each test course. a) Average Completion 

Time. b) Average Collision Index. c) Average Touch Collision. d) Average Move Collision. The error bars represent 

Standard Errors. 
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average touch collisions, the average move collisions, and average Collision Index (𝐶𝐼) (all p 

values < 0.001). These align with observations that changes in the test course width affected the 

difficulty and subsequently impacted the performance metrics (Fig.4.10 and 4.11). For example, 

the S-Turn Narrow course consistently took the longest (34.3 s) and had the most average touch 

collisions (1.1), while the Zigzag Wide course was completed the fastest (19.6 s). These results 

suggest that the width settings had a significant impact on completion time and collision-related 

performance. The use of shared-control affected the average touch collisions (p = 0.002), the 

average move collisions (p < 0.001), and 𝐶𝐼 (p < 0.001). According to Table 4.4 and Fig. 4.11b, 

on average, the addition of shared-control helped to reduce the 𝐶𝐼 by over 50% across all test 

courses. However, it did not have a significant impact on 𝑇𝑐 (p = 0.99), suggesting that shared-

control did not affect travel speed significantly (Table 4.4). This can be confirmed by Fig.4.11a 

where the presence of shared-control did not change the average 𝑇𝑐 to a noticeable level. Lastly, 

 

Fig. 4.11. Performance metrics by shared-control mode for each test course. a) Average Completion. b) Average 

Collision Index. c) Average Touch Collision. d) Average Move Collision. The error bars represent Standard Errors. 
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there were interaction effects between the test course and shared-control mode on 𝑇𝑐 (p = 0.027), 

𝐶𝐼  (p = 0.008), and the move collision (p = 0.034), suggesting that shared-control may be 

particularly beneficial in certain cluttered environment settings (Fig.4.11).  

The results of the performance RM-MANOVA (Table 4.4 and Fig.4.11) strongly suggest that 

the proposed shared-control system effectively mitigated collision risks without causing 

unnecessary slowdowns. These findings suggest that the proposed shared-control strikes a 

favorable trade-off between maintaining a reasonable travel speed for the user and effectively 

managing collision risk. It is worth noting that this trade-off was not always achieved by other 

shared-control systems, as highlighted by previous research [172]. Specifically, shared-control 

systems may exhibit a significant reduction in speed when the wheelchair approaches an obstacle.  

To gain a deeper understanding of how the proposed shared-control system assisted the rider 

during the experiment, Fig. 4.12 provides a qualitative example from one of the trials of subject 

14. In these particular trials, subject 14 completed the ST test course without shared-control in 

33.8 s and with the shared-control in 24 s. For the ZZ test course, the completion time were 19.8 s 

without the shared-control and 19.3 s with the shared-control. The 𝐶𝐼 for the ST test course without 

and with the shared-control were 8 and 1 respectively. For the ZZ test course, the 𝐶𝐼 were 16 and 

0 without and with the shared-control. Fig. 4.12 illustrates the trajectories taken by a mWCU for 

TABLE 4.4 

HUMAN-ROBOT INTERACTION TEST OBJECTIVE METRICS 

 Shared-Control Mode  Test Course 

 No S-C (a) S-C (b)  STW (c) STN (d) ZZW (e) ZZN (f) 
Avg Completion 

Time (s) 
25.9 (2.5) 25.9 (2.6)  26.3 (1.5)de 34.3 (3.7)cef 19.6 (2.7)cdf 23.3 (2.8)de 

Avg Touch 
Collision 

0.7 (0.1)b 0.3 (0.1)a  0.2 (0.1)df 1.1 (0.1)cef 0.2 (0.1)df 0.6 (0.1)cde 

Avg Move 
Collision 

0.6 (0.1)b 0.2 (0.1)a  0.1 (0.0)df 0.6 (0.1)ce 0.2 (0.1)df 0.6 (0.2)ce 

Collision Index 2.5 (0.4)b 0.9 (0.2)a  0.6 (0.2)df 3 (0.4)ce 0.8 (0.2)df 2.5 (0.5)ce 

S-C: Shared Control; Values represent mean (standard error).  

Note: A superscript letter denotes significant difference from indicated condition (p < 0.05). 
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both the ST and ZZ test courses. The mWCU of interest had a complex spinal injury condition, 

including Spinal Fusion, Scoliosis, and Kyphosis, making these data particularly insightful in 

assessing the collaboration between the rider and the shared-control system. The trajectories are 

color-coded based on the velocity of the ballbot in the forward direction. The trajectories 

demonstrate that with the assistance of the shared-control system, the rider was able to navigate 

the ST and ZZ test courses with much smoother paths. Prior to using the shared-control system, 

the rider exhibited a significant amount of jittering and back-and-forth motion while traveling 

through the ST course. The overall velocity during this period was below 0.1 m/s. However, when 

riding with the shared-control system, the rider’s trajectories became smoother, with minimal 

jittering observed. Moreover, the overall velocity in the ST course increased, reaching above 0.2 

m/s. The observed improvement in trajectory smoothness and increased velocity with the use of 

the shared-control system suggests that shared-control effectively reduces the amount of motion 

corrections required by the ballbot during tight turns by providing deceleration assistance. The 

rider no longer needs to rely on leaning back and forth to fine-tune the traveling speed, but rather, 

 

Fig. 4.12. Example trajectories (ST: top, ZZ: bottom) taken by subject 14. Color indicates velocity (m/s) 

in the forward direction. The “broken” segment indicates PURE drove backward in those instances. The 

green circles represent starting positions, and the red crosses are where the data collection ended.  

a) No Shared-Control                  b) Shared-Control
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they can simply lean forward and allow the shared-control system to slow down the platform when 

necessary. This aspect of the shared-control system is particularly beneficial for individuals who 

have limited torso control, as it alleviates the need for precise upper body motion adjustments. 

Instead, the rider can focus on maintaining a stable and comfortable posture while relying on the 

shared-control system to handle the deceleration and speed control aspects.  

2. NASA TLX Score 

According to the operational load RM-MANOVA, shared-control had significant decrease in 

mental demand (p = 0.002), physical demand (p = 0.022), effort (p < 0.001), and frustration (p = 

0.008), and increase in performance scores (p < 0.001), but there were no differences in metrics 

between user groups (p > 0.05). (Fig. 4.13 and Fig. 4.14). There was no significant effect on 

temporal demand (p = 0.06). These results suggest the decrease in operational effort and the 

increase in performance were clearly perceived by subjects while using the shared-controller. 

Although the RM-MANOVA found no statistically significant difference due to user group (p > 

   

Fig. 4.13. NASA TLX survey results by subject group and shared-control mode. The error bars 

represent Standard Errors. 
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0.05), it was observed that mWCUs, on average, had a tendency to select lower scores particularly 

for mental demand, physical demand, effort, and frustration (Fig. 4.13).  

As this study focused on comparing the difference between No Shared-Control and Shared-

Control, the TLX scores in the No Shared-Control mode for a particular individual can serve as a 

baseline for that individual and help “normalize” the TLX scores across different subjects. To 

provide a more intuitive understanding of the impact of shared-control on TLX scores, it may be 

useful to examine the TLX percent difference for each individual subject on each category using 

the formula:  

                                      𝑇𝐿𝑋%𝑑𝑖𝑓𝑓 =  100% ∗ 
𝑇𝐿𝑋𝑆𝐶−𝑇𝐿𝑋𝑁𝑜 𝑆𝐶

𝑇𝐿𝑋𝑁𝑜 𝑆𝐶                                        (4.12)  

Fig. 4.15 reports the average TLX percent differences for ABU and mWCU groups. An 

additional MANOVA test was performed on these TLX percent differences, and no significant 

difference was found due to subject group (p = 0.68). Thus, similar results were found for either 

group. The addition of shared-control reduced the mental demand (-22.05% averaged across 

   

Fig. 4.14. NASA TLX survey results by shared-control mode. The error bars represent Standard Errors. 
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subject groups), physical demand (-13.26%), temporal demand (-13.0%), effort (-26.05%), and 

frustration (-19.3%). Moreover, the inclusion of shared-control also resulted in a substantial 

increase in perceived performance, with a 31.55% improvement reported by all. These results 

suggest that the shared-control system enhanced the riders’ confidence and satisfaction in 

controlling the PURE platform , contributing to an overall improvement in their perceived 

performance. The results from the operational load RM-MANOVA also support these 

observations, indicating a statistically significant effect of the shared-control on mental demand, 

effort, and performance scores (Fig. 4.14). The results highlight the positive impact of shared-

control on reducing the cognitive workload of the riders and enhancing their perceived 

performance. 

3. Post-study Questionnaire 

The third research question aimed to explore participants’ preferences regarding various 

aspects of the shared-control design. The post-study questionnaire was specifically designed to 

 

Fig. 4.15. NASA TLX % difference with and without shared-control. The error 

bars represent Standard Errors. Although the MANOVA test found no significant 

difference due to subject group, data are presented by subject group for full 

presentation of results. 
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collect this information. Participants were asked to rate shared-control on ten categories using a 4- 

point scale (Fig.4.16). The one-way MANOVA test found that there were no significance 

differences in these questionnaire scores between subject groups (p = 0.304). Fig.4.16 suggests 

that all participants found the shared-control to be intuitive (average across all participants: 3.55), 

natural (3.15), and safe (3.5) to use. Although the MANOVA test did not reveal any significant 

 

Fig. 4.16. Post-Study Questionnaire Scores. The error bars represent Standard Errors. The dashed line represents a 

neutral level, a score higher than this line indicates agreement. Although the MANOVA test found no significant 

difference due to subject group, data are presented by subject group for full presentation of results. 
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differences between subject groups, it is worth noting a perceptible trend in the responses of WCUs 

and ABUs. Neither group regarded the current shared-control design as aggressive (1.5 on the 

scale), with a noticeable inclination among mWCU participants to perceive it as even less 

aggressive than their ABU counterparts. ABU participants tended to attribute the haptic feedback's 

contribution more to the Forward-Backward direction than mWCU participants did. However, 

both groups generally reached a consensus regarding the contribution of haptic feedback in the 

Left-Right direction. Regarding the perceived helpfulness of the audio alarm in both the test setting 

and daily use, both subject groups showed a preference for haptic feedback over the audio alarm. 

Specifically, mWCU participants rated the helpfulness of the audio alarm as between "Little" and 

"Very Little" in the test setting, and even lower for daily usage. 

The post-study questionnaire results shed light on the participants’ perceptions and 

preferences regarding the shared-control system (Fig. 4.16). On average, all participants expressed 

positive feedback, considering the shared-control to be intuitive, natural, and safe to use. This 

suggests that the shared-control system was well-received and effectively facilitated the control of 

the PURE platform by both user groups. Notably, most participants found the haptic feedback to 

be particularly helpful in both the experimental setting and potential daily usage scenarios in 

general. Most participants showed a preference for implicit communication methods, such as 

haptic feedback, over explicit communication methods like the audio alarm. Meanwhile, mWCU 

participants had a stronger preference for receiving feedback through tactile sensations rather than 

auditory cues, especially during daily usage. Understanding these preferences is crucial for 

designing shared-control systems that can cater to the specific needs and preferences of the targeted 

user group, ensuring a more personalized and user-centric approach. 

In the second part of the post-study questionnaire, participants were asked to subjectively vote 
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for their most preferred shared-control paradigm for each test course (2 test courses × 20 subjects 

= 40 votes in total). The results differ by subject groups and for different test courses (Fig .4.17). 

Over 50% of ABUs preferred “Full Shared-Control (haptic + alarm)” for either test course, 

whereas 50% of mWCUs opted for “No Shared-Control” on the less taxing ZZ course and 50% 

favored “Haptic Feedback Only” during the more challenging ST course. According to the 

participants who preferred the “No Shared-Control” option, their main reason for this preference 

was that they desired a higher level of responsiveness or sensitivity from the device, specifically 

in the ZZ test course. This suggests that these participants felt that the shared-control system, while 

providing assistance and safety measures, may have introduced a certain level of control or 

response delay that affected their desired level of maneuverability in the ZZ test course. The 

preference of ABUs for the “Full Shared-Control” option suggests that they valued the additional 

safety feedback provided by the haptic force and audio alarm. As none of them had prior 

wheelchair driving experience, these features likely contribute to a sense of assurance and 

increased situational awareness for the ABUs, allowing them to navigate the test courses with 

 

Fig. 4.17. Most preferred shared-control paradigm for each test course and subject group. 
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confidence. The participants’ preference for haptic feedback over audio alarm is consistent with 

the Post-Study Questionnaire findings (Fig .4.16), further highlighting their preferences toward 

implicit communication methods. Specifically, mWCUs expressed a strong preference against 

having any audio alarm. This aversion to audio alarms among mWCUs might be attributed to their 

tendency to avoid drawing attention to themselves.  

Overall, these results highlight the diverse preferences of participants when it comes to shared-

control paradigms, with varying preferences for the presence of shared-control, type of feedback 

(haptic vs. audio), and the direction of haptic feedback. It is difficult to conclude which shared-

control paradigm is the clear winner. This observation aligns with similar findings reported in 

[173]. It is evident that individuals have diverse preferences when it comes to shared-control 

designs, making it difficult to identify a one-size-fits-all solution. The studies in [170], [173] have 

emphasized the importance of offering multiple control options to the users to accommodate their 

individual needs in different scenarios.  

4.7 LIMITATIONS AND FUTURE WORK 

Despite the positive outcomes observed in terms of improved performance and reduced 

operational effort in the HRI study, this research is not without limitations and calls for further 

improvements. First, in terms of the hardware design, the single-beam LiDAR used by the current 

prototype cannot capture obstacle height information in the posterior direction. Therefore, it is 

preferable to upgrade these sensors to multi-beam LiDAR sensors or RGB-D cameras in the future. 

Similarly, the current prototype used a single-channel speaker. Therefore, the direction from which 

the alarm is heard does not indicate the direction of the imminent collision. Future study could 

look into a multi-channel alarm system and compare its efficacy in a similar study. Second, the 
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static nature of the proposed test courses restricted their representation of dynamic and high-speed 

navigation challenges. Future research should encompass more comprehensive experiments to 

evaluate the performance of the proposed shared-control scheme in dynamic settings. Third, there 

is a need to explore a more analytically sound passive shared-control architecture and conduct a 

thorough analysis of its passivity property similar to the work in [174]. Lastly, the implementation 

of alternative reactive shared-control paradigms, such as DWA (Dynamic Window Approach) [55] 

and deliberative shared-control approaches[49]–[51], [53], on the PURE platform would provide 

benchmarking opportunities and deeper insights into the field of assistive mobility.  

4.8 CONCLUSION 

A shared-control approach utilizing the Passive Artificial Potential Field (PAPF) was 

introduced as a means to enable safe and intuitive navigation of the riding self-balancing device, 

PURE.  This study included two evaluation experiments. 1) A robotic system evaluation that 

focused on assessing the deceleration performance of PURE and its shared-control system. 2) A 

human-robot interaction evaluation, which involved ABUs and mWCUs ridig PURE in two test 

courses that simulated challenging daily navigation scenarios, where the goal was to evaluate the 

performance improvement and operational effort reduction achieved using the shared-control. The 

HRI evaluation results suggested that the addition of shared-control led to an increase in 

performance metrics, as indicated by the reduction in the number of collisions. Second, the 

operational effort, as measured by the NASA TLX scores, demonstrated a significant decrease in 

effort with the use of shared-control. Third, the study revealed no statistically significant 

differences between ABUs and mWCUs in terms of completion time and collision-related 

performance. However, ABUs and mWCUs had distinct preferences towards specific shared-
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control designs. The insights gained from the study provide valuable guidance for the design and 

enhancement of shared-control systems, helping to improve safety, performance, and user 

experience in the field of assistive mobility devices. 
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CHAPTER 5 

 

CONCLUSIONS 

 

5.1. Contributions  

This dissertation delved into the challenges of robot perception and safeguarding in the 

context of mobile robots, with a particular focus on the self-balancing mobile robot system known 

as the ballbot. The complexity and under-actuated dynamics of the ballbot, and its intended use as 

a riding mobility device, necessitated the development of advanced perception techniques and 

control systems. The dissertation centered on the creation of perception and shared-control systems 

applicable to a physical ballbot prototype, while adhering to size-weight-and-power constraints 

(SWaP-C), and generalizable to other mobile robots with similar characteristics. 

Chapter 1 set the stage for the dissertation. It underscored the need for refined perception 

techniques and more effective control systems in the ballbot and ridable self-balancing devices. It 

described robot perception requirements and the design of the ballbot. Furthermore, the chapter 

also introduced the novel mobility device PURE and shed light on the existing efforts in assistive 

mobility devices utilizing vision-based sensor fusion and shared-control. 

Chapter 2 centered on the successful development of a proprioception-based terrain 

classification method. This method harnessed a convolutional neural network (CNN) model and 

signals from standard on-board unmanned ground vehicle (UGV) sensors. Unlike existing 
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methods, which perform optimally under strict motion conditions, such as driving straight at a 

constant speed, the proposed method managed to overcome these restrictions, achieving an 

accuracy of over 89% under various motion maneuvers. The fusion of the proprioception-based 

model with a vision-based CNN further enhanced the accuracy, showing strong performance (over 

93%) across varying lighting conditions and motion maneuvers. 

Chapter 3 focused on the development of a rapid, motion-robust RGB-D Drivable Area 

Segmentation (DAS) framework for indoor robot navigation. This framework integrated a ground 

plane segmentation algorithm with a self-supervised one-shot texture segmentation model known 

as MOSTS (Miniature One-Shot Texture Segmentation). The MOSTS model was trained using an 

innovative collage synthesis technique and did not require dense manually labeled training data. 

Furthermore, a validation dataset ISOD (Indoor Small Object Dataset) was built to evaluate 

MOSTS’s capability for texture segmentation in various real-world scenarios, where it effectively 

identified small low-lying objects previously undetectable by depth measurements. MOSTS’s 

performance was also compared with two state-of-the-art (SOTA) indoor semantic segmentation 

models, both quantitatively and qualitatively. MOSTS proved to have comparable accuracy while 

offering up to eight times faster inference speed in indoor drivable area segmentation. The 

proposed framework was deployable on low-power single-board computers and demonstrated 

adaptability for applications beyond drivable area segmentation. 

Chapter 4 introduced the use of a Passive Artificial Potential Field (PAPF) shared-control 

approach for enabling safe and intuitive navigation of a rideable self-balancing device (a.k.a. 

PURE). A human-robot interaction test was conducted with Able-Body Users (ABUs) and manual 

Wheelchair Users (mWCUs) to evaluate the improvement in performance and reduction in 

operational effort achieved with shared-control. Experimental results and statistical analysis 



110 

 

suggested that shared-control effectively reduced collisions without compromising travel speed. 

shared-control also reduced mental demand, physical demand, effort, and frustration, while 

improving perceived performance. No significant differences were found in preferred driving 

speeds and collision likelihood between ABUs and mWCUs. Post-study questionnaires revealed 

that both ABUs and mWCUs found the shared-control to be intuitive, natural, and safe, with 

minimal perceived aggressiveness. Haptic feedback, particularly in the left-right direction, was 

deemed important and favored over an audio alarm. The study underlined the preferences and 

perceptions of ABUs and mWCUs regarding the shared-control design, emphasizing the necessity 

of providing multiple control options to cater to individual needs in various scenarios. 

In summary, this dissertation contributed to the field of mobile robots, tackling the challenges 

of perception and shared-control in the ballbot and offering innovative solutions. Each chapter 

focused on a distinct aspect, from developing a robust terrain classification method and a rapid 

drivable area segmentation framework to integrating the PURE mobility platform with shared-

control and evaluating its performance through human-robot interaction tests. These findings 

enriched the current body of knowledge in mobile robotics and provided tangible implications for 

assistive mobility devices. This dissertation hopes to pave the groundwork for emerging research 

and technological advancements in the realm of robotics. 

5.2. Limitations and Future Work 

This dissertation sets the stage for various future research avenues, drawing on the areas of 

exploration identified in each chapter. 

The terrain classification method developed in Chapter 2 opens several areas for future 

research. Although the current fusion method combines proprioceptive signals and vision 
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information to make comprehensive terrain predictions, it is unclear if the model truly 

comprehends the underlying associations between these signals and the corresponding terrain 

images. More precise data association techniques, such as SLAM, could be considered for future 

data collection and development. Rather than simply associating the first image frame with a set 

of prior proprioceptive signals, SLAM can overlay past proprioceptive experiences (robot paths) 

onto a 3D map of the environment. This could facilitate the resampling of the most accurate terrain 

image associated with a particular set of proprioceptive signals from this 3D map. 

In its current form, the method in Chapter 2 achieves image-level terrain classification, 

predicting an overall terrain class label for an entire image. However, with more precise data 

association, it may be possible to achieve pixel-level terrain segmentation. Resampling and 

rewinding proprioceptive signals could offer a simple yet effective approach to augmenting 

existing datasets and synthesizing new training data. Moreover, a feature importance analysis 

could be used to further reduce the required signals and model size.  

Given its vehicle-specific nature, the current method also presents portability and scalability 

challenges. It does not support direct model transfer between vehicle configurations without 

retraining the proprioception network. Although one can use the vision network to generate pseudo 

labels for the proprioception network under ideal lighting conditions, the training process still 

consumes computational resources. Future studies might consider a model-based learning 

approach, where the deep neural network attempts to learn specific model parameters (system 

identification) and uses this model to infer frequency responses under different vehicle motions 

and road profiles. Such an approach could make the method more explainable and require minimal 

fine-tuning when adapted to a different vehicle model. Contact-based robot simulation is a good 

starting point for developing such a model. 



112 

 

Lastly, the current model can only predict a fixed number of possible terrain classes. A more 

practical setup might follow the approach of [131], which generates pseudo labels for novel terrain 

classes that show significant differences (distances) in the model’s latent space. This direction 

could further expand the versatility and adaptability of the terrain classification method. 

Building on the achievements of Chapter 3, future studies should seek to overcome several 

identified limitations and explore new applications of the proposed framework. Currently, the 

framework performs optimally when a single general floor texture type is present in the scene. 

However, it struggles with mixed texture types. One simple solution could involve pre-encoding a 

set of potential reference images into texture tokens and storing them in the robot’s memory. The 

robot could then iterate through this token bank to determine the most effective reference token. 

This pre-encoding approach would simplify the model’s Siamese encoder structure and further 

conserve computational resources during model deployment. Future research could also explore 

replacing the reference image with text tokens using the CLIP model [175]. 

The potential applications of the MOSTS model extend beyond refining DAS. As Chapter 3 

demonstrated, MOSTS can effectively detect trash on outdoor terrains and identify cracks on well-

maintained asphalt. These findings suggest that the model could prove valuable for applications 

such as autonomous cleaning robots and robot runway patrols. Additionally, exploring medical 

image one-shot segmentation using MOSTS or a similar method could be a significant 

contribution. Given a reference image of a cancer cell cluster, an ideal one-shot model might be 

able to highlight cancer tissues in medical images based on texture contrast. 

Looking forward, researchers could consider few-shot and zero-shot implementations of the 

proposed work. Instead of relying on a single image, the model could be trained to extract effective 
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visual cues from a group of reference images, achieving a more comprehensive understanding of 

the targeted texture class. Alternatively, by coupling the MOSTS model with superpixel models 

like [176], a zero-shot texture segmentation model could be developed. This model could be 

trained using contrastive learning techniques like [177], eliminating the need for any reference 

image and further expanding the adaptability and applicability of the framework. 

While Chapter 4 presented positive outcomes, several areas for future investigation and 

enhancement remain. First, a design iteration on the current prototype (e.g., upgrading single-beam 

LiDARs to RGB-D camera systems or multi-beam LiDARs, upgrading the single channel speaker 

to multi-channel, etc.) is highly recommended. Second, the static nature of the proposed test 

courses restricts their capacity to reflect the challenges of dynamic and high-speed navigation. To 

fully assess the performance of the proposed shared-control system, future researchers should 

design more comprehensive tests that incorporate dynamic obstacles and high-speed maneuvers. 

If conducting such tests in physical environments proves challenging, researchers could consider 

virtual reality simulations, similar to those in [41], as an alternative. 

Additionally, the exploration of a more robust passive shared-control architecture warrants 

further study. A thorough analysis of its passivity property, akin to the work in [45], is desired. 

Currently, the implementation of the PAPF shared-control is algorithmic. A more rigorous, model-

based velocity field implementation could improve the robustness of the shared-control design and 

achieve true passivity - ensuring that the controller cannot generate more energy than it receives 

from external sources. 

Moreover, implementing alternative reactive shared-control paradigms, such as the Dynamic 

Window Approach (DWA) [55] and deliberative shared-control approaches [49]–[51], [53], on the 
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PURE platform could provide valuable benchmarking opportunities and deeper insights into the 

field of assistive mobility. For deliberative shared control, methods like the Koopman operator 

theory and GPU parallel processing could be utilized to facilitate real-time performance [178]. 

Such studies could expand the boundaries of shared control design and guide the development of 

more adaptive, responsive, and effective assistive mobility solutions. 

Lastly, exploring the addition of fully autonomous features such as self-homing and self-

docking could yield practical benefits. Future users would certainly appreciate situations where 

the PURE system autonomously navigates to its charging station after bedtime and then returns to 

pick up the user by the bed in the morning. These task-based autonomous features could 

significantly enhance the user experience and the overall utility of the system. 
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APPENDIX A: Pseudocode of the ground plane segmentation node 

https://github.com/mszuyx/pc_groundPlaneSegmentation/tree/main  

Algorithm 3.1 

Inputs:   𝐏𝑖𝑛𝑝𝑢𝑡: the raw input points  

휃𝑥, 휃𝑦 , 휃𝑧: the Euler angles estimated by [134] 

𝜎: the size of the voxel grid  

𝛿: the size of the box crop 

𝑘𝑚𝑖𝑛: the threshold for radius outlier removal 

𝑟: the radius for the radius search 

𝑁: the RANSAC iteration budget, default = 3 

𝑇𝑢𝑝: the upper bound of ground plane thickness 

𝑇𝑙𝑜𝑤: the lower bound of ground plane thickness 

Outputs: 𝐏𝑔𝑟𝑜𝑢𝑛𝑑: the ground points 

𝐏𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒: the obstacle/non-ground points 

�⃗⃗� 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 : the normal vector of the ground plane 

𝑑: the orthogonal distance to the ground plane 

1. // Pre-processing input point cloud 

2. 𝐑 =  𝐫𝐨𝐭𝐚𝐭𝐢𝐨𝐧𝐅𝐫𝐨𝐦𝐄𝐮𝐥𝐞𝐫𝐀𝐧𝐠𝐥𝐞𝐬(휃𝑦 , 휃𝑥 , 휃𝑧) 

3. 𝐏𝑎𝑙𝑖𝑔𝑛𝑒𝑑 = 𝐨𝐫𝐢𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧𝐀𝐥𝐢𝐠𝐧𝐦𝐞𝐧𝐭(𝐏𝑖𝑛𝑝𝑢𝑡 , 𝐑) 

4. 𝐏𝑐𝑟𝑜𝑝𝑝𝑒𝑑 = 𝐛𝐨𝐱𝐂𝐫𝐨𝐩(𝐏𝑎𝑙𝑖𝑔𝑛𝑒𝑑 , 𝛿) 

5. 𝐏𝑣𝑜𝑥𝑒𝑙 = 𝐯𝐨𝐱𝐞𝐥𝐆𝐫𝐢𝐝𝐅𝐢𝐥𝐭𝐞𝐫(𝐏𝑐𝑟𝑜𝑝𝑝𝑒𝑑 , 𝜎) 

6. 𝐏𝑝𝑎𝑠𝑠 = 𝐩𝐚𝐬𝐬𝐓𝐡𝐫𝐨𝐮𝐠𝐡𝐅𝐢𝐥𝐭𝐞𝐫(𝐏𝑣𝑜𝑥𝑒𝑙 , 𝜎) 

7. 𝐏𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = 𝐫𝐚𝐝𝐢𝐮𝐬𝐎𝐮𝐭𝐥𝐢𝐞𝐫𝐑𝐞𝐦𝐨𝐯𝐚𝐥(𝐏𝑝𝑎𝑠𝑠) 

8. // Obtain initial point candidates (seed) for RANSAC 

9. 𝐏𝑠𝑜𝑟𝑡𝑒𝑑 = 𝐬𝐨𝐫𝐭(𝐏𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 , 𝑦𝑎𝑥𝑖𝑠 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟) 

10. 𝑑 = 𝐟𝐢𝐧𝐝𝐌𝐞𝐚𝐧(𝑓𝑖𝑟𝑠𝑡 50% 𝑜𝑓 𝐏𝑠𝑜𝑟𝑡𝑒𝑑) 

11. 𝐅𝐨𝐫 each point 𝐩𝑖  in 𝐏𝑠𝑜𝑟𝑡𝑒𝑑  do: 

12.        I𝐟 𝐩𝑖,𝑦 > 𝑑: 

13.               𝐩𝑖 → 𝐏𝑠𝑒𝑒𝑑 

14.        𝐄𝐧𝐝 𝐢𝐟 

15. 𝐄𝐧𝐝 𝐟𝐨𝐫 

16.  // Run RANSAC iteratively to refine ground plane detection 

17. 𝐏𝑔𝑟𝑜𝑢𝑛𝑑 = 𝐏𝑠𝑒𝑒𝑑  

18. 𝐅𝐨𝐫 𝑗 = 0;  𝑗 < 𝑁; 𝑗++: 

19.        // Estimate plane parameters based on the current candidate points 

20.        �⃗⃗� , 𝑑 = 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐏𝐥𝐚𝐧𝐞(𝐏𝑔𝑟𝑜𝑢𝑛𝑑) 

21.        // Update candidate points (inliers) based on the plane parameters 

22.        𝐏𝑔𝑟𝑜𝑢𝑛𝑑 → 𝑐𝑙𝑒𝑎𝑟() 

23.        𝐈𝐟 𝑗 < 𝑁 − 1: 

24.               𝐅𝐨𝐫 𝑒𝑎𝑐ℎ 𝑝𝑜𝑖𝑛𝑡 𝐩𝑗  𝑖𝑛 𝐏𝑠𝑜𝑟𝑡𝑒𝑑  𝑑𝑜: 

25.                      𝑑𝑖𝑠𝑡 = �⃗⃗�  𝐩𝑗   

26.                      I𝐟 𝑑𝑖𝑠𝑡 > 𝑑 − 𝑇𝑢𝑝: 

27.                             𝐩𝑗 → 𝐏𝑔𝑟𝑜𝑢𝑛𝑑 

28.        // At the last iteration, push all the non-ground plane points to “obstacle points” 

29.        𝐄𝐥𝐬𝐞: 

30.               𝐏𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 → 𝑐𝑙𝑒𝑎𝑟() 

31.               𝐅𝐨𝐫 𝑒𝑎𝑐ℎ 𝑝𝑜𝑖𝑛𝑡 𝐩𝑘  𝑖𝑛 𝐏𝑐𝑟𝑜𝑝𝑝𝑒𝑑  𝑑𝑜: 

32.                      𝑑𝑖𝑠𝑡 = �⃗⃗�  𝐩𝑘   

https://github.com/mszuyx/pc_groundPlaneSegmentation/tree/main
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33.                      I𝐟 𝑑𝑖𝑠𝑡 > 𝑑 − 𝑇𝑢𝑝 && 𝑑𝑖𝑠𝑡 < 𝑑 + 𝑇𝑙𝑜𝑤: 

34.                             𝐩𝑘 → 𝐏𝑔𝑟𝑜𝑢𝑛𝑑  

35.                      𝐄𝐥𝐬𝐞: 

36.                             𝐩𝑘 → 𝐏𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒  

37.                       𝐄𝐧𝐝 𝐢𝐟 

38.               𝐄𝐧𝐝 𝐟𝐨𝐫 

39.        𝐄𝐧𝐝 𝐢𝐟 

40. 𝐄𝐧𝐝 𝐟𝐨𝐫 

41.  // Recover the original orientation of the plane’s normal vector 

42. �⃗⃗� 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐑T �⃗⃗�  
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APPENDIX B: Pseudocode of the user command velocity mapping 

 

  

Algorithm 4.1 

Inputs:     휃𝑥
𝑢𝑠𝑟 , 휃𝑦

𝑢𝑠𝑟 , 휃𝑧
𝑢𝑠𝑟: the raw wearable imu readings (roll, pitch, yaw) 

                𝑀𝑥
𝑢𝑠𝑟 , 𝑀𝑦

𝑢𝑠𝑟: the raw moment readings from FSS 

Params:   𝛼:  the command fusion factor [0,1] 

 𝑅𝑎𝑛𝑔𝑒𝑝𝑖𝑡𝑐ℎ_𝑟𝑜𝑙𝑙:  the maximum allowed angle range for pitch and roll (user leaning) 

 𝑅𝑎𝑛𝑔𝑒𝑦𝑎𝑤:  the maximum allowed angle range for yaw (user twisting) 

 𝑅𝑎𝑛𝑔𝑒𝑚𝑜𝑚𝑒𝑛𝑡:  the maximum allowed moment range for FSS 

Outputs:  𝜈𝑥
𝑢𝑠𝑟 , 𝜈𝑦

𝑢𝑠𝑟 , 𝜔𝑧
𝑢𝑠𝑟: the user velocity commands 

1. 𝜈𝑥
𝑢𝑠𝑟= (1 - 𝛼) * (휃𝑦

𝑢𝑠𝑟/ 𝑅𝑎𝑛𝑔𝑒𝑝𝑖𝑡𝑐ℎ_𝑟𝑜𝑙𝑙) +  𝛼 * (𝑀𝑦
𝑢𝑠𝑟/ 𝑅𝑎𝑛𝑔𝑒𝑚𝑜𝑚𝑒𝑛𝑡) 

2. 𝜈𝑦
𝑢𝑠𝑟= -1 * ((1 - 𝛼)* (휃𝑥

𝑢𝑠𝑟/ 𝑅𝑎𝑛𝑔𝑒𝑝𝑖𝑡𝑐ℎ_𝑟𝑜𝑙𝑙) +  𝛼 * (𝑀𝑥
𝑢𝑠𝑟/ 𝑅𝑎𝑛𝑔𝑒𝑚𝑜𝑚𝑒𝑛𝑡) 

3. 𝜔𝑧
𝑢𝑠𝑟= 휃𝑧

𝑢𝑠𝑟/ 𝑅𝑎𝑛𝑔𝑒𝑦𝑎𝑤 
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APPENDIX C: Pseudocode of the passive artificial potential field 

algorithm 

https://github.com/mszuyx/PURE_SMC  

Algorithm 4.2 

Inputs:     P𝑐𝑜𝑚𝑏: the raw input points from all sensors 

                𝜈𝑥
𝑢𝑠𝑟 , 𝜈𝑦

𝑢𝑠𝑟 , 𝜔𝑧
𝑢𝑠𝑟: the raw user velocity commands 

                𝜈𝑥
𝑓𝑏

, 𝜈𝑦
𝑓𝑏

, 𝜔𝑧
𝑓𝑏

: the robot odometry feedbacks 

Params:   𝛿𝑝𝑎𝑑:  the padding offset for the front and back points 

 𝛿𝑡ℎ𝑟𝑒:  the distance threshold for APF 

 𝑤𝐹𝐵: the weight for forward-backward APF force 

 𝑤𝐿𝑅:  the weight for left-right APF force 

 휂: the APF function coefficient 

 휁: the speed tracking coefficient 

 휀: the trajectory smoothing coefficient 

Outputs:  𝜈𝑥
𝑐𝑚𝑑 , 𝜈𝑦

𝑐𝑚𝑑 , 𝜔𝑧
𝑐𝑚𝑑 : the final velocity commands 

 

1. // Collect artificial potential force from point cloud measurements 

2. If P𝑐𝑜𝑚𝑏 .size() > 0 do: 

3.        For each point 𝑃𝑖   in P𝑐𝑜𝑚𝑏   do: 

4.               // Compute the angle and range for the current measurement 

5.               𝛼𝑐𝑢𝑟𝑟 = 𝛼𝑚𝑖𝑛 + (𝛼𝑖𝑛𝑐𝑟 ∗ 𝑖)  

6.               𝛿𝑐𝑢𝑟𝑟 = 𝑃𝑖 .range 

7.               // Add some padding offset for points in the front and the back of robot 

8.               If 𝑎𝑏𝑠(sin (𝛼𝑐𝑢𝑟𝑟) ∗ 𝛿𝑐𝑢𝑟𝑟) ≤ 0.2 do: 

9.                      𝛿𝑐𝑢𝑟𝑟−= 𝛿𝑝𝑎𝑑 

10.               End If 

11.               // Start calculating potential force if the range is below a threshold 

12.               If 𝛿𝑐𝑢𝑟𝑟 ≤ 𝛿𝑡ℎ𝑟𝑒 do: 

13.                      // Collecting potential forces in the forward-backward direction if driving towards this point 

14.                      If 𝑎𝑏𝑠(sin (𝛼𝑐𝑢𝑟𝑟) ∗ 𝛿𝑐𝑢𝑟𝑟) ≤ 0.2 &&  

15.                      cos (𝛼𝑐𝑢𝑟𝑟) ∗ 𝜈𝑥
𝑢𝑠𝑟 > 0 do: 

16.                             𝑚𝑎𝑔𝑥 = −𝑤𝐹𝐵 ∗ 휂 ∗ (
1.0

𝛿𝑐𝑢𝑟𝑟
−

1.0

𝛿𝑡ℎ𝑟𝑒
)

2

 

17.                             𝑓𝑥+= cos (𝛼𝑐𝑢𝑟𝑟) ∗ 𝑚𝑎𝑔𝑥  

18.                             𝑐𝑛𝑡𝑥+= 1 

19.                      End If 

20.                      // Collecting potential forces in the left-right direction if driving toward this point 

21.                      If 𝑎𝑏𝑠(cos (𝛼𝑐𝑢𝑟𝑟) ∗ 𝛿𝑐𝑢𝑟𝑟) ≤ 0.5 &&  

22.                      sin (𝛼𝑐𝑢𝑟𝑟) ∗ 𝜈𝑦
𝑢𝑠𝑟 > 0 do: 

23.                             𝑚𝑎𝑔𝑦 = −𝑤𝐿𝑅 ∗ 휂 ∗ (
1.0

𝛿𝑐𝑢𝑟𝑟
−

1.0

𝛿𝑡ℎ𝑟𝑒
)

2

 

24.                             𝑓𝑦+= sin (𝛼𝑐𝑢𝑟𝑟) ∗ 𝑚𝑎𝑔𝑦  

25.                             𝑐𝑛𝑡𝑦+= 1 

26.                      End If 

27.               End If 

28.        End For 

29. End If 

https://github.com/mszuyx/PURE_SMC
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30. // Saturate the overall (averaged) potential forces 

31. 𝑓𝑥 = min(max(
𝑓𝑥

𝑐𝑛𝑡𝑥+1.0
, −1.0), 1.0); 

32. 𝑓𝑦 = min(max(
𝑓𝑦

𝑐𝑛𝑡𝑦+1.0
, −1.0), 1.0); 

33. // Scaled and merge with the user command velocity to form ideal velocity commands 

34. 𝜈𝑥
𝑖𝑑𝑒𝑎𝑙 = 𝜈𝑥

𝑢𝑠𝑟 + (𝑓𝑥 ∗ 𝑎𝑏𝑠(𝜈𝑥
𝑢𝑠𝑟)) 

35. 𝜈𝑦
𝑖𝑑𝑒𝑎𝑙 = 𝜈𝑦

𝑢𝑠𝑟 + (𝑓𝑦 ∗ 𝑎𝑏𝑠(𝜈𝑦
𝑢𝑠𝑟)) 

36. // Compute gains for velocity compensation 

37. 휁𝑥 = 𝑤𝐹𝐵 ∗ 휁;  휁𝑦 = 𝑤𝐿𝑅 ∗ 휁 

38. // Set these gains to zero if the robot is already running slower than the ideal velocity 

39. If 𝜈𝑥
𝑓𝑏

∗ 𝜈𝑥
𝑖𝑑𝑒𝑎𝑙 > 0 && abs(𝜈𝑥

𝑓𝑏
) − abs(𝜈𝑥

𝑖𝑑𝑒𝑎𝑙) < 0  do: 

40.        휁𝑥 = 0.0 

41. End If 

42. If 𝜈𝑦
𝑓𝑏

∗ 𝜈𝑦
𝑖𝑑𝑒𝑎𝑙 > 0 && abs(𝜈𝑦

𝑓𝑏
) − abs(𝜈𝑦

𝑖𝑑𝑒𝑎𝑙) < 0  do: 

43.        휁𝑦 = 0.0 

44. End If 

45. // Compute compensated velocity commands 

46. 𝜈𝑥
𝑐𝑜𝑚𝑝

= 𝜈𝑥
𝑖𝑑𝑒𝑎𝑙 + 휁𝑥 ∗ (𝜈𝑥

𝑖𝑑𝑒𝑎𝑙 − 𝜈𝑥
𝑓𝑏

) 

47. 𝜈𝑦
𝑐𝑜𝑚𝑝

= 𝜈𝑦
𝑖𝑑𝑒𝑎𝑙 + 휁𝑦 ∗ (𝜈𝑦

𝑖𝑑𝑒𝑎𝑙 − 𝜈𝑦
𝑓𝑏

) 

48. // Smooth (filter) the velocity commands 

49. 𝜈𝑥
𝑐𝑚𝑑 = 𝜈𝑥

𝑐𝑜𝑚𝑝
+ 휀 ∗ (𝜈𝑥

𝑜𝑙𝑑 − 𝜈𝑥
𝑐𝑜𝑚𝑝

) 

50. 𝜈𝑦
𝑐𝑚𝑑 = 𝜈𝑦

𝑐𝑜𝑚𝑝
+ 휀 ∗ (𝜈𝑦

𝑜𝑙𝑑 − 𝜈𝑦
𝑐𝑜𝑚𝑝

) 

51. 𝜔𝑧
𝑐𝑚𝑑 = 𝜔𝑧

𝑢𝑠𝑟  

52. // Update the variables for the filter 

53. 𝜈𝑥
𝑜𝑙𝑑 = 𝜈𝑥

𝑐𝑚𝑑 ;  𝜈𝑦
𝑜𝑙𝑑 = 𝜈𝑦

𝑐𝑚𝑑  

54. Return [𝜈𝑥
𝑐𝑚𝑑 , 𝜈𝑦

𝑐𝑚𝑑 , 𝜔𝑧
𝑐𝑚𝑑] 
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APPENDIX D: Post-study Questionnaire for PURE Shared-Control 

Study 

 

Shared-Control mode  

 

  Very little Little  Much Very much 

 

How intuitive was the shared 

control method? (i.e., how quickly 

were you able to learn and use 

shared control to ride the PURE 

without consciously thinking about 

the controls?)  
 

    

Comments (Optional):  

 

 

  Very little Little  Much Very much 

 

How much did the shared control 

method positively contribute to 

keeping you from having collisions 

while moving 

forwards/backwards? (i.e., Did the 

shared control make the test course 

feel easier?) 
 

    

• What did you like? (Optional) 

 

• What did you dislike? (Optional) 

 

 
  Very little       Little       Much Very much 

How much did the shared control 

method positively contribute to 

keeping you from collisions while 

moving left/right? (i.e., Did the 

shared control make the test course 

feel easier?) 
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• What did you like? (Optional) 

 

• What did you dislike? (Optional) 

 

 

  Very little Little  Much Very much 

 

How natural was the ride for you 

when using the shared control? 

(i.e., Did you feel disturbed or 

confused by the shared control?) 
 

    

• What did you like? (Optional) 

 

 
• What did you dislike? (Optional) 

 

 

  Very little Little  Much Very much 

 

How would you evaluate this 

shared control’s aggressiveness? 

(i.e., Did shared control’s 

acceleration/deceleration feel too 

abrupt?) 

 

    

• What did you like? (Optional) 

 

 
• What did you dislike? (Optional) 

 

 

  Very little Little  Much Very much 

 

How much do you think the haptic 

resistance helped you to adjust 

your motions to minimize 

collisions?  

 

    

• What did you like? (Optional) 

 

 

• What did you dislike? (Optional) 
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  Very little Little  Much Very much 

 

Do you think the haptic resistance 

will be equally helpful during daily 

usage? 

 

    

Comments (Optional):  

 

 

 

 

  Very little Little  Much Very much 

 

How much do you think the audio 

alarm helps to adjust your motion 

and minimize collisions in the test 

courses?  

 

    

• What did you like? (Optional) 

 

 

• What did you dislike? (Optional) 

 

 

  Very little Little  Much Very much 

 

Do you think the audio alarm will 

be equally helpful during daily 

usage? 

 

    

Comments (Optional):  

 

 

 

 

  Very little Little  Much Very much 

 

How safe did you feel when riding 

on the robot using the shared-

control? 

 

 

 

 

 

 

 

 

 

• What did you like? (Optional) 

 

 
• What did you dislike? (Optional) 
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Shared-Control vs. Test Course 

 

For each of the following test courses, please specify which Shared-Control method 

do you prefer to use (select the best method for each row). 

 

 

 

 

 

 

 

For the future development purpose, what aspects of the shared-control method (in 

general) would you like to improve for better control of the PURE device?  

 

 

 

 

 

 

 

 

 

 

  

No 

Shared-

Control 

 

Shared-

Control 

(Haptic + 

Alarm) 

Shared-

Control 

(Forward-

Backward 

haptic only) 

Shared-

Control 

(Left-Right 

haptic only) 

Shared-

Control 

(Haptic only) 

Shared-

Control 

(Alarm only) 

 

S-Turn 
 

      

 

Zigzag 
 

      


