
© 2023 Qi Zhu

EXPLORING THE POWER OF TEXT-RICH GRAPH REPRESENTATION
LEARNING

BY

QI ZHU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Professor Jiawei Han, Chair
Associate Professor Hanghang Tong
Professor Hari Sundaram
Doctor Bryan Perozzi, Google Research

ABSTRACT

During my doctoral research, I observed that many applications related to graphs can-

not be captured by existing simple network models. Lots of real networks exhibit massive

text information on various type of objects, also known as text-rich or text-attributed net-

works. Traditional graph representation learning (e.g. network embedding) largely over-

look the complex textual information within nodes and edges. Consequently, many recent

graph mining algorithms employ supervised representation learning using neural networks

on graph-structured data, specifically graph neural networks (GNNs). In this dissertation, I

am motivated to bridge the gap between the frontier machine learning techniques and real-

world problems on graph structured data (e.g. web-scale retrieval and classification). Two

primary obstacles have hindered previous work on text-rich graphs. First, they assume suf-

ficient and well-posed task-specific annotations. Second, an abundant computation budget

is required for graph neural network training and inference, which is unrealistic considering

large language model with billions parameters.

From a practitioner’s perspective, my research follows label efficient and parameter effi-

cient principles to design graph representation learning algorithms for effective and efficient

modeling of text-rich graphs. The first part of my dissertation work focuses on label-efficient

representation learning, which reduces the need for extensive annotation across various tasks

and graphs. Then I will introduce my recent efforts on seamless integration of language

models and graph neural networks without excessive amount of training parameters. In

contrast to existing work that develops powerful architectures for specific applications, my

thesis overcomes the barriers to achieving flexibility and efficiency in general graph neural

networks. Therefore, the proposed models can not only achieve superior performance in

selected applications, but also enhance the capacity of any existing graph mining tasks.

Together with all these efforts, the developed algorithms improve the adaptation of existing

graph neural networks on more sophisticated text-rich networks and seek a more powerful

representation learning paradigm in this area.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my Ph.D. advisor Professor Jiawei

Han. One of his standout teaching styles is the constructive criticism of our research en-

deavors. He always encourages me to tackle real problems and never hesitate to provide

support when we reach a consensus. This approach has been instrumental in my growth

and development as a young researcher. Moreover, he has been a role model for me in con-

ducting research, collaborating with others, and leading a project. I arrived UIUC with no

prior research experience, and now, I return with my own research thesis. I am immensely

grateful for the upcoming career path he has paved for me through your advice.

My research was supported in part by NSF, DARPA, ARL. I would like to thank my thesis

committee members, Professor Hari Sundaram, Professor Hanghang Tong, and Doctor Bryan

Perozzi. This journey wouldn’t have been as fruitful without your valuable comments, which

have been with me since my preliminary exam.

During my doctoral study, I have received numerous support and help from Professor

Han’s data mining group: Carl J. Yang, Chao Zhang, Yu Shi, Chanyoung Park, Xiang Ren,

Haonan Wang, Yu Zhang, Bowen Jin, Yizhu Jiao, Ahmed El-Kishky, Yuning Mao, Fang

Guo, Liyuan Liu, Huan Gui, Jiaming Shen, Meng Qu, Honglei Zhuang, Ming Zhong, Siru

Ouyang, Suyu Ge, Shivam Agarwal, Honglei Zhuang, Shi Zhi, Xiaotao Gu, Xuan Wang, Sha

Li, Di Jin, Jinfeng Xiao, Fang Guo, Xinyang Zhang, Jiaxin Huang, Yu Meng, Yanru Qu,

Ellen Wu and Dongming Lei. The days and nights at the university town probably are the

most unforgettable time in my 20s. I enjoy working with the best talent in the field and

learning from your dedication and I will insist high standard on research throughout my

career.

I am also fortunate to collaborate and get advice from other researchers inside and outside

of UIUC: Bryan Perozzi, Luna Dong, Natalia Ponomareva, Da Zheng, Christos Faloutsos,

Xiusi Chen and Yang Yang. I have learned a lot from their collaboration and internship

mentoring. Besides, I would like to thank Professor Deng Cai and Professor Xiaofei He from

Zhejiang University. They introduce me to top-tier research and are always patient with me

when I have limited knowledge about the field.

Lastly, and above all, I owe my deepest gratitude to my family who have provided me

with unconditional love throughout this journey: Xiaoping Gu, Jixian Zhu, Yuki, and Shuqi

He. You always lift my spirits in every moment of sorrow, and this dissertation is dedicated

to you. Thank you!

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Challenges of Modeling Text-Rich Graphs 2
1.2 Research Overview . 3

CHAPTER 2 LITERATURE REVIEW . 7
2.1 Preliminary: GNNs . 7
2.2 Graph Machine Learning on Text-Rich Graphs 7
2.3 Label-Efficient Graph Learning on Text-Rich Graphs 10
2.4 Graph-Aware Language Model and Foundation Model 12

CHAPTER 3 SHIFT-ROBUST GRAPH NEURAL NETWORKS 14
3.1 Background . 14
3.2 Distributional Shift in GNNs . 15
3.3 Shift-Robust Graph Neural Networks . 16
3.4 Experiments . 20
3.5 Summary . 23

CHAPTER 4 COLLECTIVE GRAPH NEURAL NETWORKS 24
4.1 Background . 24
4.2 Problem Definition . 27
4.3 Method . 28
4.4 Experiments . 35

CHAPTER 5 TRANSFERABLE GRAPH NEURAL NETWORKS 43
5.1 Background . 43
5.2 Transferable Graph Neural Networks . 44
5.3 Real Data Experiments . 52
5.4 Summary . 56

CHAPTER 6 GRAPH-ENHANCED LANGUAGE MODEL FINE-TUNING 57
6.1 Background . 57
6.2 Problem Definition . 59
6.3 Method . 59
6.4 Experiments . 61

v

CHAPTER 7 GRAPH-AWARE PARAMETER EFFICIENT TUNINGOF LARGE
LANGUAGE MODELS . 66
7.1 Background . 66
7.2 Problem Definition . 68
7.3 Method . 71
7.4 Experiment . 75

CHAPTER 8 CONCLUSIONS . 83

REFERENCES . 85

vi

CHAPTER 1: INTRODUCTION

Information networks are backbone of modern data systems: tons of daily social posts are

circulated among users on Facebook and Twitter; a huge number of papers are published and

cited in academic networks; hospitals, clinics, pharmacies, and labs are interconnected to

provide comprehensive patient care, share medical records, and coordinate research. There

exists a wide spectrum of network models such as heterogeneous graph, attributed graph,

multi-view and hypergraph. Representation learning is a method of automatically learning

appropriate features (often referred as embeddings) from raw data for a specific task. Instead

of relying on hand-engineered features, which can be tedious and potentially limited in

expressiveness, representation learning allows a model to learn these features from the data

itself. In the realm of graph-structured data, representation learning is most common and

convenient for majority of problems. For instance, one could train a multi-layer neural

network classifier using node embeddings for fraud detection in financial networks. Similarly,

given a product node, one could employ similarity search for product recommendations

within an e-commerce network. Early graph representation learning mainly focus on the

structural information such as first-order and second-order node proximity. Several years

later, researchers introduced neural networks to integrate node features into representation

learning, which further enabled end-to-end learning with task-specific labels. Now, Graph

Neural Networks (GNNs) has become the most popular representation learning approach on

attributed graph as it benefits from both graph inductive bias and training supervisions.

3

Text-Rich Network

…

……

…

… …

Actionable Knowledge

Figure 1.1: An overview of turning text-rich graphs into knowledge.

1

1.1 CHALLENGES OF MODELING TEXT-RICH GRAPHS

Large amount of real-world networks exhibit massive text information on various type of

objects, also known as text-rich or text-attributed graphs. Existing GNNs can be applied

to text-rich networks but more in-depth analysis are necessary to leverage its power. My

research is motivated to examine the limitation of the current graph representation learning

approaches on text-rich graphs. Furthermore, text data has emerged as the focal point

among various data modalities in the era of Generative AI. Figuring out how to harness the

power of language models, or foundational models, is a crucial step in advancing machine

learning on text-rich graphs. In this dissertation, I summarize several unique challenges of

modeling text-rich graphs into the following bullet points:

Representation learning with non IID training data. A text-rich graph is attributed :

both attributes and context of a node determines the underlying data distribution. One

presumption of most machine learning algorithms is the availability of independent and

identically distributed (IID) data. However, the issue of biased training labels can become

prominent, as uniform annotation accounting for both textual and structural distributions is

seldom assured. Developing graph neural networks that can perform reliably with ill-posed

training data is especially appealing for domains that require high-stakes decision-making

or expensive annotation cost.

Transfer learning between different graphs for the same task with guarantees.

Neural networks require a significant amount of effort, from model training to deployment.

Once the model is trained, developers often employ to different applications of the same task.

For instance, the need for an abuse detection model is evident in various domains of the E-

commerce graph. While most GNN architectures are not very complicated, the training of

GNNs can still be costly regarding both memory and computation resources on real-world

large-scale graphs. Moreover, it is intriguing to transfer learned structural information across

different graphs and even domains in settings like few-shot learning. However, it is unclear in

what situations the models will excel or fail especially when the pre-training and fine-tuning

tasks are different.

Transfer learning for different types of nodes using minimal supervision. A text-

rich graph is usually heterogeneous. The heterogeneity of real-world networks manifests in

the typed nature of nodes and edges. Can we handle the same task for different types of

nodes or edges? For example, we want to use the production recommendation model to

obtain meaningful user representations for similarity search. One great benefit of traditional

graph representation learning (i.e. graph embedding) is its multi-task adaptability with

2

minimal supervision. Current research on Graph Neural Networks focuses on its predictive

power on the training task without paying enough attention on its zero-shot or few-shot

generalization on other types of nodes or edges.

Joint modeling of GNNs and pre-trained language models. In heterogeneous text-

rich networks, the task of representation learning is more challenging due to (1) presence or

absence of text : Some nodes are associated with rich textual information, while others are

not; (2) diversity of types : Nodes and edges of multiple types form a heterogeneous network

structure. As pretrained language models (PLMs) have demonstrated their effectiveness in

obtaining widely generalizable text representations, a substantial amount of effort has been

made to incorporate PLMs into representation learning on text-rich networks. How to fine-

tune a graph-enhanced language model on graph structured data has been a research focus

since the surge in popularity of language models.

Leverage the power of foundation models on text-rich graphs. In my last year of

doctoral research, the striking result of ChatGPT reveals the superior generative and pre-

dictive power of large language models. However, existing research on jointly modeling text

and graph structures either incurs high computational costs or offers limited representa-

tional power. These foundation models (i.e. Large Language Models) typically have 100

times more parameters than previous language models do. Graph Neural Networks are noto-

rious for their overhead arising from aggregating neighborhood information. As a result, the

actual batch size becomes dramatically larger than the original one. It is even impossible to

adopt existing graph-enhanced langauge model fine-tuning algorithms on foundation models

like GPT-2, Llama-2 or Falcon on a powerful A100 GPU. To the light of this, Parameter

Efficient Fine-Tuning (PEFT) is a technique aimed at fine-tuning large language models in

a way that requires fewer parameters and therefore, is more computationally efficient. I am

fascinated by foundational models and believe in the necessity of harnessing their power for

graph-structured data.

1.2 RESEARCH OVERVIEW

In my doctoral research, I investigated the aforementioned research problems and endeav-

ored to address these issues. My dissertation outlines two suites of algorithms that focus on

(1) label-efficient graph learning on text-rich graphs and (2) graph-aware (large) language

model parameter-efficient fine-tuning on text-rich graphs, respectively. These two set of

algorithms cover different parts of the research questions that I intend to answer in my thesis,

and they can be further composed into a systematic pipeline that provides a robust, flexible

3

and efficient solution for most of the applications on text-rich graphs.

1.2.1 Label-Efficient Graph Learning on Text-Rich Graphs.

Robust training of GNNs under distribution shift. Text-rich graphs are one of the

most complicated network model proposed in the research community of graph machine

learning. Thus, robust training and generalizable inference of GNNs on them should be

approached with caution and handled differently than those neural networks on Euclidean or

graph-structured data. Through careful consideration of distribution shift caused by biased

training data, shift-robust GNNs [1, 2] are designed to account for distributional differences

between biased training data and a graph’s true inference distribution from two perspective.

The first is to alleviate the distribution shift caused by message passing. Particularly, it

can be applied to any Graph Neural Networks with parametric message passing mechanism.

Second, a regularization term is introduced for GNNs that operate with a pre-computed

graph inductive bias. In this way, my shift-robust training framework can work for most

existing GNNs when IID training data is infeasible to obtain. We illustrate the effectiveness

of SR-GNN in a variety of experiments with biased training datasets on common GNN

benchmark datasets for semi-supervised learning, where we see that SR-GNN outperforms

other GNN baselines in accuracy, addressing at least ∼40% of the negative effects introduced

by biased training data. On the largest dataset we consider, ogb-arxiv, we observe a 2%

absolute improvement over the baseline and are able to mitigate 30% of the negative effects

from training data bias.

Transfer learning across different types of nodes. While much of the graph learn-

ing is conducted within homogeneous networks, realistic representation learning frame-

works [3] need to handle heterogeneous types of nodes and edges in real world. On text-rich

graphs, I believe it is important for a graph neural network that is trained on node type A can

benefit other node types B,C,D. Consider the example of entity matching, CG-MuAlign [4]

is proposed to jointly align multiple types of entities, collectively leverage the textual and

structural information from neighborhood and hence it can generalize well to new entity

types without supervision. In the movie domain, CG-MuAlign is trained on the type “Per-

son” or “Film” and then applied to the other using a limited amount of training data. Its

performance achieves an F1 score of 80% and 81%, compared to the fully supervised scores

of 82% and 88%, respectively. In this study, I employ a classic collective learning algorithm

drawn from the domain of relational classification. During the training of graph neural net-

works, CG-MuAlign enhances generalization to different node types through metric learning,

even when only one type of training data is used. By enforcing the proximity of training

4

pairs, we indirectly prompt their neighborhoods to adopt similar representations.

Transfer learning across different graphs. Researchers introduce the family of graph

neural networks (GNNs) that are capable of inductive learning and generalizing to unseen

nodes given meaningful node features. Yet, most existing GNNs require task-specific labels

for training in a semi-supervised fashion to achieve satisfactory performance, and their usage

is limited to single graphs where the downstream task is fixed. Much research has centered

on designing pretext tasks for pre-training the GNNs, followed by fine-tuning these mod-

els for specific downstream tasks. However, neither a predefined transfer learning measure

nor a generalization bound is provided. This omission is primarily because analyzing the

data distribution of GNNs presents significant challenges [5]. To answer this question, EGI

[6] (Ego-Graph Information maximization) establishes a theoretically grounded and practi-

cally useful framework for the transfer learning of GNNs. Firstly, it proposes a novel view

towards the essential graph information and advocate the capturing of it as the goal of

transferable GNN training, which motivates the design of EGI to analytically achieve this

goal. Secondly, when node features are structure-relevant, I conduct an analysis of EGI

transferability regarding the difference between the local graph Laplacians of the source and

target graphs. Controlled synthetic experiments are further conducted to directly justify

our theoretical conclusions. Comprehensive experiments on two real-world network datasets

show consistent results in the analyzed setting of direct-transferring, while those on large-

scale knowledge graphs show promising results in the more practical setting of transferring

with fine-tuning.

1.2.2 Parameter Efficient Tuning of Graph-Aware Language Models.

Graph-enhanced languge model for author name disambiguation.At the model level,

the combination of graph neural networks [7] and language models [8], namely, GNN-LMs

has gained massive attention recently. In bibliographic network, Author name disambigua-

tion (AND) serves as a core component of modern academic search systems to curate author

profiles and bibliometrics. I found the representation power of current GNN-LMs are not

fully exploited to improve the accuracy of AND. In this work, we propose a unified model

– graph-enhanced language model (i.e.GAND) that enables (1) efficient fine-tuning with

limited supervision and (2) joint modeling of the text information and relations between

documents. We further develop a multi-task fine-tuning objective, which not only mitigates

potential distribution shift on testing data but also showcases higher efficiency compared

to existing fine-tuning objectives such as triplet loss. Experiments on two real datasets for

5

name disambiguation demonstrate the superior performance of GAND on multiple clustering

metrics.

Graph-aware parameter-efficient tuning of large language models. Previously, lan-

guage models like BERT and GPT already achieved state-of-the-art performance on classical

natural language processing tasks such as text classification, question answering, document

summarization and etc. More recent large language models (LLMs) like T5, GPT-3, and

Llama-2 have showcased astounding capabilities, demonstrating an unparalleled level of gen-

eralization to previously unseen tasks. It’s clear that integrating these advanced language

models into GNN-LMs can further enhance performance across various predictive tasks.

However, harnessing LLMs for text-rich graphs is exceedingly challenging from a practical

perspective. A smaller Llama 7B model has 70 times more parameters than the widely-

used BERT-base language model. Even on normal text data, it is expensive to fine-tune a

pre-trained Llama or GPT-3. Motivated by the literature of parameter-efficient tuning, we

propose GraphAdapter to harness the power of the LLM without fine-tuning its weights on

text-rich Graphs. Given a graph, an adapter GNN is trained to reduce the LLM’s error in

predicting the next word of text sequences on nodes. Once trained, this GNN adapter can be

seamlessly fine-tuned for various downstream tasks. Through extensive node classification

experiments across multiple domains, GraphAdapter demonstrates an average improvement

of ∼5% while being more computationally efficient than baselines. We further validate its

effectiveness with various language models, including RoBERTa, GPT-2, and Llama 2.

Organization. The remaining of this thesis is organized as follows.

• In Chapter 2, I provide a comprehensive literature review on text-rich graph modeling,

particularly focusing on label-efficient and parameter-efficient methods discussed in my

thesis.

• In Chapter 3, I present a shift-robust training framework for GNNs that is less sensitive

to the quality of training data on text-rich graphs.

• In Chapter 4 and 5, I present two specific designs of graph neural networks that

facilitates transfer learning across different node types and graphs, respectively.

• In Chapters 6 and 7, using either a language model or a large language model as a text

encoder, I introduce a parameter-efficient training loss for LM and a parameter-efficient

model architecture for LLM.

• In Chapter 8, I conclude my dissertation by summarizing my current achievements and

notable future directions.

6

CHAPTER 2: LITERATURE REVIEW

Before we dive into specific chapters, we describe some preliminary notation and knowledge

of graph neural networks that are used in all chapters. Then we survey existing studies that

are related to label-efficient and parameter-efficient modeling of text-rich networks.

2.1 PRELIMINARY: GNNS

Given a graph G = {V,E,X}, the nodes V are associated with their features X (X ∈
R|V |×F) and the set of edges E (i.e. adjacency matrix A, A ∈ R|V |×|V |) which form connec-

tions between them. Graph neural networks [7] are neural networks that operate on both

node features and graph structures. The core assumption of GNNs is that the structure

of data (A) can provide a useful inductive bias for many modeling problems. GNNs out-

put node representations Z which are used for unsupervised [9] or semi-supervised [7, 10]

learning. We denote the labels for SSL as {yi}.
The general architecture Φ of a GNN consists of K neural network layers which encode the

nodes and their neighborhood information using some learnable weights θ. More specifically

the output of layer k of a GNN contains a row (hki) which can be used as a representation

for each node i, i.e. zki = hki . Successive layers mix the node representations using graph

information, for example:

Hk = σ(ÃHk−1θk) (2.1)

where Ã is an appropriately normalized adjacency matrix1, σ is the activation function, and

H0 = X. For brevity’s sake, we refer to the final latent representations ZK simply as Z

throughout the work.

2.2 GRAPH MACHINE LEARNING ON TEXT-RICH GRAPHS

2.2.1 Graph neural network architectures

Graph neural networks (GNNs) such as GCN [7], GraphSAGE [10], and GAT [11] have

been widely adopted in representation learning on graphs. Since real-world objects and

interactions are often multi-typed, recent studies have considered extending GNNs to het-

1The exact use of the adjacency matrix varies with specific GNN methods. For instance, the GCN [7]

performs mean-pooling using matrix multiplication: Ã = D− 1
2 (A + I)D− 1

2 where I is the identity matrix,
and D is the degree matrix of (A+ I), Dii =

∑
j(A+ I)ij .

7

erogeneous graphs [12]. The basic idea of heterogeneous graph neural networks (HGNNs)

[13, 14, 15, 16, 17, 18] is to leverage node types, edge types, and meta-path semantics [19] in

projection and aggregation. For example, HAN [14] proposes a hierarchical attention mech-

anism to capture both node and meta-path importance; HGT [18] proposes an architecture

similar to Transformer [20] to carry out attention on edge types. For more HGNN models,

one can refer to recent surveys [21, 22]. Lv et al. [23] further perform a benchmark study of

12 HGNNs and propose a simple HGNN model based on GAT. Despite the success of these

models, when some types of nodes carry text information, they lack the power of handling

textual signals in a contextualized way. On text-rich graphs, [24, 25] are the most recent

work that jointly model text semantics and heterogeneous structure (network) signal in each

Transformer layer.

2.2.2 Application

Link Prediction. Entity Alignment problem can be formulated as predicting “equiv-

alent” links among two graphs. For large-scale graph structured data, network embed-

dings [26, 27, 28] tranform nodes in networks into dense vectors that helps predict missing

links conveniently. Methods [29, 30, 31, 32] capture the first-order information and facilitate

logical inference with explicit relation embeddings. To capture higher order information,

previous work models the heterogenous types of nodes and edges with pre-defined meta-

structures [33, 34, 35, 36, 37]. HEER [3], instead, applies type-specific metrics on different

types of edges. HetG [38] proposes a random walk based sampling strategy and models

each type of neighborhood nodes differently. GATNE [16] studies the attributed multi-

plex heterogenous network embedding under transductive and inductive settings. HAN [39]

aggregates neighbor nodes along meta-path via hierarchical attention mechanism.

Graph Alignment. Previous efforts on graph alignment mainly span on the transductive

setting, where the entity attribute is not available. Traditional network alignment meth-

ods [40, 41] focus on graphs with a small number of relation types and optimize the alignment

objective based on the topology. Taking the advantage of knowledge graph representation

learning [29], embedding based methods [42, 43, 44, 45] embed entities from different space

along with an alignment objective on the training data. Starting with limited alignment

seeds, people propose to use either bootstrapping [45] or iteratively [42] align the entities.

graph neural network methods designed for entity alignment [46, 47, 48] demonstrate great

performance improvement for multi-lingual KG alignment.

Entity Matching. Entity Matching (EM) techniques [49, 50, 51] find all tuple pairs between

8

two relational tables. It is composed by two major components: (1) blocking [52] utilizes

heuristics to remove obviously non-matched pairs between two tables and (2) matching [49]

predicts the match score for the remaining pairs. Megellan [49] is an open-source and scalable

entity matching framework that uses handcraft features and various machine learning algo-

rithms as the matching function such as SVM, random forest, etc.. Later, DeepMatcher [50]

computes the pairwise similarity from the attribute embeddings and adopts deep neural

network as the matching function. DeepER [51] is the first to consider sequence model like

LSTM to model the textual attributes automatically.

Collective Entity Resolution. Researchers have noticed the correlations between labeled

entities and unlabeled neighbor entities in multi-relational database and network structured

data [53, 54]. Collective entity resolution considers that the decisions made on related

entities are affected by each other. An unsupervised method [55] is proposed to reduce the

entity resolution problem into a graph summarization problem by clustering the co-referenced

entities across different knowledge graphs into a super node. People design collective features

upon human-curated entity resolution rules [56]. PARIS is an unsupervised probabilistic

model for ontologies alignment. HolisticEM [57] builds a graph where each node represents

similarity of a pair of entities, and propagates similarity by Personalized Random Walk

to make collective decisions. We carefully consider collective decisions between sub-graphs

sampled around candidate pairs and boost the performance of GNN greatly.

Author Name Disambiguation. There have been lots of efforts in the field to perform

author name disambiguation in bibliographic databases. Early approaches [58, 59] define

various similarity metrics between pairs of articles and apply unsupervised clustering algo-

rithms to correspond each cluster to a real-world author. Ever since feature engineering

became the most critical step towards successful disambiguation. Lots of pairwise features

[60, 61, 62] are proposed to train pairwise classifiers such as co-authors, affiliations, ethnicity

etc. People also collected multiple AND datasets (e.g. AMiner [63], INSPIRE [60]) and

trained pairwise classifier. The notable ones are random forests [64, 65] and deep neural

networks [63, 66]. Similar to GAND, [67, 68, 69] constructed a document graph with rela-

tions between documents and conducted clustering on the graph. In this work, we focus

on learning the document representations for author name disambiguation. To this end,

both AMiner-AND [63] and AND-GAT [69] learn a neural network encoder on word embed-

dings. However, none of these algorithms simultaneously model deep contextualized text

embeddings and relational information.

9

2.3 LABEL-EFFICIENT GRAPH LEARNING ON TEXT-RICH GRAPHS

2.3.1 Distributional shift and domain adaption on graph

One of the first theoretical works on domain adaptation [70] developed a distance function

between a model’s performance on the source and target domains to describe how similar

they are. To obtain a final model, training then happens on a reweighed combination

of source and target data, where weights are a function of the domain’s distance. Much

additional theoretical (e.g. [71]) and practical work expanded this idea and explored models

which are co-trained on both source and target data. These models seek to optimize utility

while minimizing the distance between extracted features distributions on both domains;

this in turn led to the field of Domain Invariant Representation Learning (DIR) [72]. DIR

is commonly achieved via co-training on labeled source and (unlabeled) target data. A

modification to the loss either uses an adversarial head or adds additional regularizations.

More recently, various regularizations using discrepancy measures have been shown to be

more stable to hyperparameters and result in better performance than adversarial heads,

faster loss convergence and easier training. Maximum mean discrepancy (MMD) [73, 74] is

a metric that measures difference between means of distributions in some rich Hilbert kernel

space. Central moment discrepancy (CMD) [75] extends this idea and matches means and

higher order moments in the original space (without the projection into the kernel). CMD

has been shown to produce superior results and is less susceptible to the weight with which

CMD regularization is added to the loss [74]. It is important to point out that MMD and

CMD regularizations are commonly used with non-linear networks on some hidden layer

(e.g. on extracted features). For linear models or non-differentiable models, prior work for

domain adaptation often employed importance-reweighting instead. To find the appropriate

weights, the same MMD distance was often used: in kernel mean matching (KMM) to find

the appropriate weights one essentially minimizes MMD distance w.r.t the instance weights

[76]. Although no existing work studies the distributional shift problem in GNNs, transfer

learning of GNNs [77, 78] has explored different node-level and graph-level pre-training tasks

across different graphs. Alternatively, domain adaption methods have been used to optimize

a domain classifier between source and target graphs [79, 80]. In addition, distribution

discrepancy minimization (MMD) has been adopted to train network embedding across

domains [81]. Other regularizations for the latent state of GNNs have been proposed for

domains like fairness [82]. We are the first to notice the importance of distributional shift

on the same graph in a realistic setting and analyze its influence on different kinds of GNNs.

10

2.3.2 Pre-training on graph structured data

Representation learning on graphs has been studied for decades, with earlier spectral-

based methods [83, 84, 85] theoretically grounded but hardly scaling up to graphs with

over a thousand of nodes. With the emergence of neural networks, unsupervised network

embedding methods based on the Skip-gram objective [86] have replenished the field [26, 27,

28, 87]. Equipped with efficient structural sampling (random walk, neighborhood, etc.) and

negative sampling schemes, these methods are easily parallelizable and scalable to graphs

with thousands to millions of nodes. However, these models are essentially transductive as

they compute fully parameterized embeddings only for nodes seen during training, which

are impossible to be transfered to unseen graphs.

More recently, researchers introduce the family of graph neural networks (GNNs) that

are capable of inductive learning and generalizing to unseen nodes given meaningful node

features [7, 10, 88]. Yet, most existing GNNs require task-specific labels for training in a

semi-supervised fashion to achieve satisfactory performance [7, 10, 11, 22], and their usage is

limited to single graphs where the downstream task is fixed. To this end, several unsupervised

GNNs are presented, such as the auto-encoder-based ones like VGAE [89] and GNFs [90],

as well as the deep-infomax-based ones like DGI [91] and InfoGraph [92]. Their potential

in the transfer learning of GNN remains unclear when the node features and link structures

vary across different graphs.

Although the architectures of popular GNNs such as GCN [7] may not be very complicated

compared with heavy vision and language models, training a dedicated GNN for each graph

can still be cumbersome [93, 94]. Moreover, as pre-training neural networks are proven to

be successful in other domains [8, 95], the idea is intriguing to transfer well-trained GNNs

from relevant source graphs to improve the modeling of target graphs or enable few-shot

learning [80, 96, 97] when labeled data are scarce. In light of this, pioneering works have

studied both generative [98] and discriminative [77, 99] GNN pre-training schemes. Though

Graph Contrastive Coding [100] shares the most similar view towards graph structures as us,

it utilizes contrastive learning across all graphs instead of focusing on the transfer learning

between any specific pairs. On the other hand, unsupervised domain adaptive GCNs [80]

study the domain adaption problem only when the source and target tasks are homogeneous.

Most previous pre-training and self-supervised GNNs lack a rigorous analysis towards their

transferability and thus have unpredictable effectiveness. The only existing theoretical work

on GNN transferability studies the performance of GNNs across different permutations of a

single original graph [101, 102] and the tradeoff between discriminability and transferability

of GNNs [103]. EGI in this thesis is the first to rigorously study the more practical setting

11

of transferring GNNs across pairs of different source and target graphs.

2.4 GRAPH-AWARE LANGUAGE MODEL AND FOUNDATION MODEL

2.4.1 Pretrained language models

Pretrained language models (PLMs) aim to learn general language representations from

large-scale corpora, which can be generalized to various downstream tasks. Early studies on

PLMs mainly focus on context-free text embeddings such as word2vec [86] and GloVe [104].

Recently, motivated by the fact that the same word can have different meanings conditioned

on different contexts, deep language models such as ELMo [105], BERT [8], RoBERTa [106],

XLNet [107], ELECTRA [108], and GPT [109, 110] are proposed to capture the contex-

tualized token representations. These models employ the Transformer architecture [20] to

capture long-range and high-order semantic dependency and achieve significant improvement

on many downstream NLP tasks [111, 112].

2.4.2 Joint modeling of LMs and GNNs

Early work on leveraging pretrained language models on graph [113, 114] directly supervise

language model fine-tuning through graph-related tasks, to help language models better

understand the textual information in text-attributed graphs. The language model is then

combined with GNNs by freezing the language model. Their results demonstrate the benefits

of fine-tuning language models on text-rich graphs. However, it has clear disadvantages that

LM and GNN are optimized separately. Using language models to model graph neighbors

requires huge memory and time costs. To address this, some work [112] proposed freezing

the language model to reduce the computation needed for cascading. Other studies [24, 25,

115, 116] have proposed the use of cascading LM-GNNs and also encoding neighboring nodes

with language models. To decrease computational costs, recent efforts have explored the joint

training of LMs and GNNs through methods like knowledge distillation [114] or Expectation

Maximization algorithms [117]. With the breakthrough progress made by LLMs on textual

tasks [118, 119], recently many works have emerged exploring how to directly utilize LLMs

to understand text-attributed graphs [120]. For example, by converting the graph to text

[121, 122], or by converting it to a graph representation as part of a prompt [123]. Some

works also explored using large models to enhance the textual features of text-attributed

graphs [124, 125].

12

2.4.3 Parameter-Efficient fine-tuning large language models

The ongoing quest for improving the efficiency of large-scale language models has led to

several innovative techniques that maximize performance while minimizing the number of

parameters updated during fine-tuning. Here we only include the most relevant ones to

this thesis, that is, BitFit [126], Adapter [127], Prefix Tuning [128] and LoRA [129]. BitFit

invents a simple yet powerful concept: when fine-tuning pre-trained models, only a single

bit of the gradient is used. Adapters are small neural network modules added to pre-trained

models that allow for task-specific fine-tuning without adjusting the original model weights.

Houlsby et al. [127] introduced the adapter approach, showcasing that with minimal addi-

tional parameters, adapters could achieve performance comparable to full-model fine-tuning.

Similarly, Prefix Tuning [128] prepends trainable embeddings to the original model enables

the model to adapt to new tasks with a fraction of additional parameters. LoRA [129] is

the abbrevation of “Low Rank Adaptation”. The key innovation of LoRA lies in decompos-

ing the weight change matrix into two low-rank matrices, A and B. Rather than directly

fine-tuning the primary parameters, LoRA emphasizes updating the parameters within the

A and B matrices. These parameter-effiecient fine-tuning (PEFT) techniques significantly

ease the challenges of customize state-of-the-art foundational models such as GPT-3 [110],

Llama-2 [118], and Falcon [130]. I draw inspiration from these pioneering works and deeply

appreciate previous efforts aimed at lowering the barriers to LLMs for individual researchers.

13

CHAPTER 3: SHIFT-ROBUST GRAPH NEURAL NETWORKS

3.1 BACKGROUND

The goal of graph-based semi-supervised learning (SSL) is to use relationships between

data (its graph inductive bias), along with a small set of labeled items, to predict the labels

for the rest of a dataset. Unsurprisingly, varying exactly which nodes are labeled can have a

profound effect on the generalization capability of a SSL classifier. Any bias in the sampling

process to select nodes for training can create distributional differences between the training

set and the rest of the graph. During inference any portion of the graph can be used, so

any uneven labeling for training data can cause training and test data to have different

distributions. An SSL classifier may then overfit to training data irregularities, thus hurting

the performance at inference time.

Recently, GNNs have emerged as a way to combine graph structure with deep neural

networks. Surprisingly, most work on semi-supervised learning using GNNs for node classi-

fication [7, 10, 131] have ignored this critical problem, and even the most recently proposed

GNN benchmarks [132] assume that an independent and identically distributed (IID) sample

is possible for training labels.

This problem of biased training labels can be quite pronounced when GNNs are applied

for semi-supervised learning in practice. It commonly happens when the size of the dataset

is so large that only a subset of it can afford to be labeled – the exact situation where

graph-based SSL is supposed to have a value proposition! While the specific source of bias

can vary, we have encountered it in many different settings. For example, sometimes fixed

heuristics are used to select a subset of data (which shares some characteristics) for labeling.

Other times, human analysts individually choose data items for labeling, using complex

domain knowledge. However, even this can be rooted in shared characteristics of data. In

yet another scenario, a label source may have some latency, causing a temporal mismatch

between the distribution of data at time of labeling and at the time of inference. In all of

these cases, the core problem is that the GNN overfits to spurious regularities as the subset

of labeled data could not be created in an IID manner.

One particular area where this can apply is in the spam and abuse domain, a common area

of application for GNNs [133, 134, 135]. However, the labels in these problems usually come

from explicit human annotations, which are both sparse (as human labeling is expensive),

and also frequently biased. Since spam and abuse problems typically have very imbalanced

label distributions (e.g. in many problems there are relatively few abusers – typically less

14

than 1:100), labeling nodes IID results in discovering very few abusive labels. In this case

choosing the points to request labels for in an IID manner is simply not a feasible option if

one wants to have a reasonable number of data items from the rare class.

3.2 DISTRIBUTIONAL SHIFT IN GNNS

To learn an SSL classifier, a cross-entropy loss function l is commonly used,

L =
1

M

M∑
i=1

l(yi, zi), (3.1)

where zi is the node representation for the node i learned from a graph neural network,

and M is the number of training examples. When the training and testing data come from

the same domain (i.e. Prtrain(X, Y) = Prtest(X, Y)), optimizing the cross entropy loss over

the training data ensures that a classifier is well-calibrated for performing inference on the

testing data.

3.2.1 Data shift as representation shift

However, a mismatch between the training and testing distributions (i.e. Prtrain(X, Y) ̸=
Prtest(X, Y)) is a common challenge for machine learning [136, 137].

In this paper, we care about the distributional shift between training and test datasets

present in Z, the output of the last activated hidden layer. Given that the foundation of

standard learning theory assumes Prtrain(Y |Z) = Prtest(Y |Z), the main cause of distribution

shift is the representation shift, i.e. Prtrain(Z, Y) ̸= Prtest(Z, Y) → Prtrain(Z) ̸= Prtest(Z).

To measure such a shift, discrepancy metrics such as MMD [138] or CMD [139] can be used.

CMD measures the direct distance between distributions p and q as the following [139]:

CMD =
1

|b− a|
∥E (p)− E (q)∥2 +

∞∑
k=2

1

|b− a|k
∥ck (p)− ck (q)∥2, (3.2)

where ck is k-th order moment and a, b denotes the joint distribution support of the distri-

butions. In practice, only a limited number of moments is usually included (e.g. k=5). In

this work we focus on the use of CMD [139] as a distance metric to measure distributions

discrepancy for efficiency.

We note that GNNs (Eq (2.1)) are different from traditional neural networks, where the

output for a layer K is defined as Hk = σ(Hk−1θk). Instead, the multiplication of the

15

(a) Cora (b) Citeseer (c) Pubmed

Figure 3.1: Distribution shift lowers performance on GNN datasets. For each dataset, we show
the performance (F1:y-axis) vs their distribution shift (CMD:x-axis) for 100 biased training set
samples .

normalized adjacency matrix (Hk = σ(ÃHk−1θk)) essentially changes the output distribution

of the hidden representation via the graph’s inductive bias. Hence, in a semi-supervised

GNN, a biased training sample can lead to large representation shift due to both the graph’s

inductive bias in addition to ‘normal’ shift between non-IID sampled feature vectors.

Formally, we start the analysis of distributional shift as follows.

Definition 3.1 (Distribution shift in GNNs). Assume node representations Z = {z1, . . . , zn}
are given as an output of the last hidden layer of a graph neural network on graph G

with n nodes. Given labeled data {(xi, yi)} of size M, the labeled node representation

Zl = (z1, . . . , zm) is a subset of the nodes that are labeled, Zl ⊂ Z. Assume Z and Zl are

drawn from two probability distributions p and q. The distribution shift in GNNs is then

measured via a distance metric d(Z,Zl).

Interestingly, it can be empirically shown that the effects of distribution shift due to sample

bias directly lower the performance of models. To illustrate this, we plot the distribution

shift distance values (x-axis) and corresponding model accuracy (y-axis) for three common

GNN benchmarks using the classic GCN model [7] in Figure 3.1. The results demonstrate

that the performance of GNNs for node classification on these datasets is inversely related to

the magnitude of distributional shift and motivates our investigation into distribution shift.

3.3 SHIFT-ROBUST GRAPH NEURAL NETWORKS

In this section, we will address the distributional shift problem (Prtrain(Z) ̸= Prtest(Z))

in GNNs by proposing ways to mitigate the shift for two different GNN models (Section

3.3.1 and 3.3.2, respectively). Subsequently, we introduce SR-GNN (Fig.5.2) as a general

16

X

F!(Θ, %, &) A

F"(Θ, ("#!, &) A

$!

$"

head

A

F!(&)

F%(F!, Θ, %) X
$"

head

(e.g., F1 = PPR)

Traditional GNN Linearized GNN

X

F!(Θ, %, &) A

F"(Θ, ("#!, &) A

$!

$"

head

SR-GNN (Deep)

) *(+, (")*(+, (")*(+, (")

+ . ⋅ 0# 1(*$, *%%&)

A

F!(&)

F%(F!, Θ, %) X
$"

head

SR-GNN (Linearized)

) *(+, (")

(e.g., F1 = PPR)

Feedforward

Backpropagation

Figure 3.2: A comparison between a traditional GNN, a linearized GNN and our framework
(SR-GNN).

framework that reduces distributional shifts for both differentiable and non-differentiable

(e.g. graph inductive bias) sources simultaneously in Section 3.3.3.

3.3.1 Scenario 1: Traditional GNN models

We begin by considering a traditional GNN model Φ, a learnable function F with param-

eters Θ, over some adjacency matrix A:

Φ = F(Θ, Z, A). (3.3)

In the original GCN [7], the graph inductive bias is multiplicative at each layer and gradients

are back propagated through all of the layers. In the last activated hidden layers, we denote

a bounded node representation2 as Z ≡ Zk = Φ(Θ, Zk−1, A), Zk ∈ [a, b]n, Z0 = X.

Let us denote the training samples as {xi}Mi=1, the node representations are Ztrain = {zi}Mi=1.

For the test samples, we sample an unbiased IID sample from unlabeled data XIID = {x′i}Mi=1

and denote the output representations as ZIID = {z′i}Mi=1.

In order to mitigate the distributional shift between training and testing, we propose a

regularizer d : [a, b]n × [a, b]n → R+ that is added to the cross entropy loss. Since Φ is

fully differentiable, we can use a distributional shift metric as a regularization to directly

minimize the discrepancy between a biased and unbiased IID sample like so:

L =
1

M

∑
i

l(yi, zi) + λ · d(Ztrain, ZIID). (3.4)

2We use a bounded activation function here, e.g. tanh or sigmoid.

17

Here we consider the central moment discrepancy regularizer, dCMD:

dCMD(Ztrain, ZIID) =
1

b− a
∥E(Ztrain)−E(ZIID)∥+

∞∑
k=2

1

|b− a|k
∥ck(Ztrain)− ck(ZIID)∥, (3.5)

where E(Z) = 1
M

∑
zi and ck(Z) = E(Z − E(Z))k is the k-th order moment. In practice,

we use moments up to the 5th order.

3.3.2 Scenario 2: Linearized GNN Models

Another family of recently proposed models for GNNs uses two distinct different functions

– one for non-linear feature transformation, and another for a linear graph spreading stage,

Φ = F2(F1(A)︸ ︷︷ ︸
linear function

,Θ, X). (3.6)

In such a linearized GNN model, the graph inductive bias is combined with node features

by a linear function F1, which is decoupled from multi-layer neural network feature encoder

F2. SimpleGCN [140] is an example of linearized model when F1(A) = AkX. Another

branch of linearized models [141, 142, 143] employs personalized pagerank to pre-compute

the information diffusion in a graph (i.e. F1(A) = α(I − (1 − α)Ã)−1) and apply it on

encoded node features F (Θ, X).

In both models, the graph inductive bias is provided as an input feature to a linear F1.

Unfortunately, as there are no learnable layers at this stage in these models, one can not

simply apply the distributional regularizer proposed in the previous section. In this case, we

can view training and testing samples as row-wise samples hi from F1(A). The problem of

distribution shift Prtrain(Z) ̸= Prtest(Z) can then be transformed into matching the training

and testing graph inductive bias feature space hi ∈ Rn (where n is the number of the nodes

in the graph). Then to generalize from training data to testing, we can adopt an instance

reweighting scheme to correct the bias, such that biased training sample {hi}Mi=1 will be

similar to an IID sample {h′i}Mi=1. The resulting cross entropy loss is then

L =
1

M
βil(yi,Φ(hi)), (3.7)

where βi be the weight for each training instance, and l is the cross-entropy loss. We can

then compute the optimal β via kernel mean matching (KMM) [144] by solving a quadratic

18

problem,

min
βi

∥ 1

M

M∑
i=1

βiψ(hi)−
1

M ′

M ′∑
i=1

ψ(h′i)∥2, s.t. Bl ≤ β < Bu (3.8)

It tries to match the mean elements in a kernel space k(·, ·) on the domain Rn × Rn.

Specifically, ψ : Rn → H denotes the feature map to the reproducing kernel Hilbert

space(RKHS) introduced by kernel k. In our experiment, we use a mixture of gaussian

kernel k(x, y) =
∑

αi
exp(αi∥x − y∥2), αi = 1, 0.1, 0.01. The lower Bl and upper bound Bu

constraints are there to make sure that most of the instances get some reasonable weight,

as opposed to only a few instances getting non zero weight. In practice, we have multiple

classes in the label space. To prevent label imbalance introduced by β, we further require

that the sum of β for a specific class c remains the same before and after the correction,∑M
i βi · I(li = c) =

∑M
i I(li = c),∀c.

3.3.3 Shift-Robust GNN Framework

Now we propose Shift-Robust GNN (SR-GNN) - our general training objective for address-

ing distributional shift in GNNs:

LSR−GNN =
1

M
βil(yi,Φ(xi, A)) + λ · d(Ztrain, ZIID). (3.9)

The framework consists of both a regularization for addressing distributional shift in learn-

able layers (Section 4.1) and an instance reweighting component which is capable of handling

situations where a graph inductive bias is added after feature encoding (Section 4.2).

We will now discuss a concrete instance of our framework, by applying it to the APPNP

[141] model. The APPNP model is defined as:

ΦAPPNP =

(
(1− α)kÃk + α

k−1∑
i=0

(1− α)iÃi

)
︸ ︷︷ ︸

approximated personalized page rank

F(Θ, X).︸ ︷︷ ︸
feature encoder

(3.10)

It first applies a feature encoder F on node features X and approximated personalized pager-

ank matrix linearly. Thereby, we have hi = πppr
i , where πppr

i is the personalized pagerank

vector. For this, we mitigate distributional shifts from graph inductive bias via instance

weighting. Moreover, let Z = F(Θ, X) and we can further reduce the distributional shifts

from non-linear networks by the proposed discrepancy regularizer d. In our experiments,

we show the application of SR-GNN on two other representative GNN models: GCN [7] and

19

DGI [91].

3.4 EXPERIMENTS

In this section we first describe how we create training set with a controllable amount of

bias, then discuss our experiment design, demonstrate the efficacy our proposed framework

for handling bias as well as its advantages over domain adaptation baselines, and finally,

present a study on sensitivity to the hyperparameters.

3.4.1 Biased Training Set Creation

In order to study distribution shift in GNNs, we require a repeatable process which can

generate graph-biased training sets. The core aspect of creating a biased sample for graph

learning tasks requires an efficient method for finding ‘nearby’ nodes in the graph for a

particular seed node. In this work, we use the Personalized PageRank (PPR) vectors to

find such nearby nodes, Πppr = (I − (1 − α)Ã)−1. PPR vectors are well suited for this

case for a number of reasons. First, several previous studies [141, 143] have shown strong

correlations between the information diffusion in GNNs and PPR vectors. Second, a PPR

vector can be computed for an individual node in time sublinear to the size of the graph

[145] – so biased training samples can be easily generated, even for large datasets. This local

algorithm provides a sparse approximation Πppr(ϵ) with guaranteed truncation error ϵ, such

that we can efficiently compute the top-γ entries of a ppr vector with controllable residuals.

Therefore, using PPR we can generate stable localized training data that can effectively

challenge GNN models.

We obtain a biased sample from our scalable personalized pagerank sampler (PPR-S) as

follows. For a certain label ratio τ , we compute the number of training nodes needed per

label in advance. Then we repeatedly randomly select nodes that have enough neighbors in

their sparse personalized pagerank vector πppr
i (ϵ). We add both the seed nodes and their

neighbors with the same label into the training data until we have enough number of nodes

for each label.

3.4.2 Experimental settings

Datasets. In our experiments, we perform semi-supervised node classification tasks on

five popular benchmark datasets: Cora, Citeseer, Pubmed [146], ogb-arxiv [147] and

20

Reddit [10]. We use the same validation and test splits as in the original GCN paper [7]

and OGB benchmark. We use the remaining nodes for training. For the unbiased baseline’s

performance numbers, we use a random sample from this training data. Similarly, for a

biased training sample, we apply our biased sampler PPR-S on the training nodes to obtain

a biased training sample and report its performance.

Baselines. Following the two scenarios outlined in Section 5.2, we consider the following

methods to investigate their performance under distributional shifts: (1) Traditional GNN

Models: GCN [7], GAT [11], (2) Linearized GNNs: SGC [140] and APPNP [141]. We also

include methods based on unsupervised node representation learning (DeepWalk [26] and

DGI [91]) as a third category (3). For these methods, we use a linear classifier learned on

top of pretrained node embeddings.

Scalable biased sampler. Our scalable biased sampler uses Personalized PageRank to

efficiently create biased training samples in large graphs.

Our Method. If not otherwise specified, we consider the APPNP [141] instance of Shift-

Robust as our base model, and also provide two ablations of it. These ablations indepen-

dently use the shift-robust techniques introduced in Section 3.3.1 and 3.3.2 to validate the

effectiveness of SR-GNN.

Hyperparameters. The main hyper parameters in our sampler PPR-S are α = 0.1,γ =

100. When the graph is large, we set ϵ = 0.001 in the local algorithm for sparse PPR

approximation. In SR-GNN, λ = 1.0 is the penalty parameter for the discrepancy regularizer

d, the lower bound for the instance weight Bl is 0.2. For all of the GNN methods except

DGI, we set the hidden dimension as 32 for Cora, Citeseer, Pubmed and 256 for ogb-arxiv,

with a dropout of 0.5. In order to learn effective representations, DGI [91] usually needs a

higher dimensional hidden space and so, following the DGI paper we set it as 512 across all

of our experiments. We use Adam [148] as an optimizer, and set the learning rate to 0.01

and L2 regularization to 5e-4.

Scalability. In this paper, we introduce two shift-robust techniques for GNN training:

discrepancy regularization and instance reweighting. Let O(Φ) be the time some GNN Φ

takes to compute a single node embedding, and M be the number of training examples.

The IID sample in Eq (3.4) introduces M extra forward passes and 2M extra backward

propagation in total. Overall, the extra cost is therefore linear to and does not increase the

existing asymptotic complexity. The Gaussian kernel computation in Eq (3.8) (for instance

reweighting) takes O(M2n) time before training, where hi ∈ Rn. The total complexity of

SR-GNN is therefore O(MΦ +M2n). Our experiments were run on a single machine with

21

Table 3.1: Semi-supervised classification on three different citation networks using biased training
samples. Our proposed framework (SR-GNN) outperforms all baselines on biased training input.

Method
Cora Citeseer PubMed

Micro-F1↑ Macro-F1↑ ∆F1 ↓ Micro-F1↑ Macro-F1↑ ∆F1 ↓ Micro-F1↑ Macro-F1↑ ∆F1 ↓

GCN (IID) 80.8 ± 1.6 80.1 ± 1.3 0 70.3 ± 1.9 66.8 ± 1.3 0 79.8 ± 1.4 78.8 ± 1.4 0

Feat.+MLP 49.7 ± 2.5 48.3 ± 2.2 31.1 55.1 ± 1.3 52.7 ± 1.3 25.2 51.3 ± 2.8 41.8 ± 6.2 28.5
Emb.+MLP 57.6 ± 3.0 56.2 ± 3.0 23.2 38.5 ± 1.2 38.6 ± 1.1 31.8 60.4 ± 2.1 56.6 ± 2.0 19.4
DGI 71.7 ± 4.2 69.2 ± 3.7 9.1 62.6 ± 1.6 60.0 ± 1.6 7.6 58.0 ± 5.3 52.4 ± 8.3 21.8
GCN 67.6 ± 3.5 66.4 ± 3.0 13.2 62.7 ± 1.8 60.4 ± 1.6 7.6 60.6 ± 3.8 56.0 ± 6.0 19.2
GAT 58.4 ± 5.7 58.5 ± 5.0 22.4 58.0 ± 3.5 55.0 ± 2.7 12.3 55.2 ± 3.7 46.0 ± 6.4 14.6
SGC 70.2 ± 3.0 68.0 ± 3.8 10.6 65.4 ± 0.8 62.5 ± 0.8 4.9 61.8 ± 4.5 57.4 ± 7.2 18.0
APPNP 71.3 ± 4.1 69.2 ± 3.4 9.5 63.4 ± 1.8 61.2 ± 1.6 6.9 63.4 ± 4.2 58.7 ± 7.0 16.4

SR-GNN w.o. IR 72.1 ± 4.4 69.8 ± 3.7 8.7 63.9 ± 0.7 61.8 ± 0.6 6.4 69.4± 3.4 67.6 ± 4.0 10.4
SR-GNN w.o. Reg. 72.0 ± 3.2 69.5 ± 3.7 8.8 66.1 ± 0.9 63.4 ± 0.9 4.2 66.4 ± 4.0 64.0 ± 5.5 13.4
SR-GNN (Ours) 73.5 ± 3.3 71.4± 3.5 7.3 67.1 ± 0.9 64.0 ± 0.9 3.2 71.3 ± 2.2 70.2 ± 2.4 8.5

8 CPU and 1 Nvidia T4 GPU.

3.4.3 Experiment results

We first show the performance comparison of SR-GNN (ours) and other baselines on three

well-known citation GNN benchmarks in Table 3.1. We report the Micro-F1, and Macro-F1

for each method. We compare each method trained on a biased sample to a GCN trained on

an unbiased sample, and report its performance drop in Micro-F1 (∆F1). We begin by noting

that when the training sample is biased, every method suffers a substantial performance drop

(as indicated by the column ∆F1). However, SR-GNN consistently reduces the influence of

distributional shift and decreases the performance drop (∆F1) relative to a GCN model

trained on biased input by at least 40%. We note that on these three datasets, the largest

decrease in performance occurs on PubMed, where all of the existing methods experience

more than a 10% absolute drop in their performance due to the biased samples. However

we note that in this challenging case, the improvements of SR-GNN against APPNP (base

model) also grow when the shift is larger. Finally, we see from the ablation models that the

combination of both the regularization and instance reweighting appears to work better than

either bias correction on its own. Our results demonstrate that our shift-robust framework

is effective at minimizing the effects of distributional shift in GNN training data.

On two large benchmarks in Table 3.2 we see that the performance loss from biased sample

is smaller but still significant. Even in a dense network like reddit, the localized training data

still affect the GNN model performance. Compared with baselines, SR-GNN can effectively

mitigate the 30% of the negative effect (∆) relative to an unbiased GCN. When more training

data is provided (5%) we can further minimize this performance gap.

22

Table 3.2: Semi-supervised classification on ogb-arxiv and reddit varying label ratio.

ogb-arxiv reddit
label(%) 1 % 5 % 1 % 5 %
Method Accuracy ∆ ↓ Accuracy ∆ ↓ Accuracy ∆ ↓ Accuracy ∆ ↓

GCN (IID) 66.0± 0.6 0 69.1± 0.6 0 93.8 ± 0.3 0 94.0 ± 0.1 0

Feat.+MLP 45.5± 0.6 21.5 43.7± 0.3 25.4 46.6±0.6 47.2 57.2±0.2 36.8
Emb.+MLP 51.1± 1.3 14.9 56.9± 0.8 13.2 89.6 ± 0.8 4.2 90.9 ± 0.3 3.1
DGI 44.8± 3.0 21.2 49.7± 3.3 19.4 83.7±1.2 10.1 85.4±0.6 8.6
GCN 59.3± 1.2 6.7 65.3 ± 0.6 3.8 89.7±1.0 4.1 90.9±0.3 3.1
GAT 58.6± 1.0 7.4 63.4 ± 1.0 5.7 80.5±5.4 13.3 82.0±3.6 12.0
SGC 59.0± 0.7 7.0 64.2 ± 1.3 4.9 88.6±1.0 5.2 90.6±0.2 3.4
APPNP 59.8± 1.1 6.2 65.1 ± 2.6 4.0 88.4±1.0 5.4 88.9±0.8 5.1

SR-GNN w.o. IR 60.6± 0.2 5.4 65.1±1.8 4.0 90.4± 0.6 3.4 91.2± 0.2 2.8
SR-GNN w.o. Reg. 61.0± 0.3 5.0 65.8±2.0 3.3 89.4± 0.8 4.4 91.9± 0.1 2.1
SR-GNN (Ours) 61.6±0.6 4.4 66.5±0.6 2.6 91.5± 0.5 2.3 92.1± 0.3 1.9

3.5 SUMMARY

In this work we were the first to demonstrate that unbiased training data is very important

for performance of GNNs. We argued that biased training data is extremely common in real

world scenarios and can arise due to a variety of reasons including: difficulties of labelling

large amount of data, the various heuristics or inconsistent techniques that are used to

choose nodes for labelling, delayed label assignment, and other constraints from real world

problems. We presented a general framework (SR-GNN) that is able to reduce influence of

biased training data and can be applied to various types of GNNs, including both deeper

GNNs and more recent linearized (shallow) versions of these models. With a number of

experiments, we demonstrated both GNNs susceptibility to biased data and the success

of our method in mitigating performance drops due to this bias: our method outperforms

other GNN baselines on biased data and eliminates between (30 − 50%) of the negative

effects introduced by training a GCN on biased training data.

While we have considered the general shift-robust training framework, its effectiveness on

sub-graph and graph-level applications are not explored. On the sub-graph level, annotations

for group anomaly detection can also be influenced by biased annotations. In the biomedical

domain, the scaffold split is known to be non-IID distributed. We are interested in exploring

whether the proposed approach can enhance performance in this context.

23

CHAPTER 4: COLLECTIVE GRAPH NEURAL NETWORKS

Knowledge graph (e.g. Freebase, YAGO) is a multi-relational graph representing rich fac-

tual information among entities of various types. Entity alignment is the key step towards

knowledge graph integration from multiple sources. It aims to identify entities across dif-

ferent knowledge graphs that refer to the same real world entity. However, current entity

alignment systems overlook the sparsity of different knowledge graphs and can not align

multi-type entities by one single model. In this chapter, we present a Collective Graph neu-

ral network for Multi-type entity Alignment, called CG-MuAlign. Different from previous

work, CG-MuAlign jointly aligns multiple types of entities, collectively leverages the neighbor-

hood information and generalizes to unlabeled entity types. Specifically, we propose novel

collective aggregation function tailored for this task, that (1) relieves the incompleteness

of knowledge graphs via both cross-graph and self attentions, (2) scales up efficiently with

mini-batch training paradigm and effective neighborhood sampling strategy. We conduct

experiments on real world knowledge graphs with millions of entities and observe the supe-

rior performance beyond existing methods. In addition, the running time of our approach is

much less than the current state-of-the-art deep learning methods3.

4.1 BACKGROUND

Knowledge Graphs (KGs) contain large volumn of relation tuples in the form of ⟨subject,
relation, object⟩, such as ⟨Aditya Raj, write, Don’t stop Dreaming⟩ in Figure 4.1. These re-

lation tuples have a variety of downstream applications including Question Answering [149],

Search, and Recommendation [150]. With the booming of structured and semi-structured

online data, numerous knowledge graphs are extracted on the same domain [151]. Different

KGs, though subject to the incompleteness in varying degrees, usually contain complemen-

tary information. Entity alignment (EA) aims to identify entities across different knowledge

graphs that refer to the same real world entity. This problem also known as entity match-

ing/resolution [50, 51, 53, 152] that matches records in the multi-relational databases.

In a knowledge graph, there are different entity types (e.g., movie, actor, characters) and

relation types (e.g., direct by, act by, release date, etc.). Given the nature of entity types, the

alignment strategy for different entity types could be different. For example, we observe much

more characters than films, that share the same name in the IMDB-Freebase dataset. One

obvious solution is to develop different models for different entity types; however, the solution

3A reference implementation can be found at https://github.com/GentleZhu/CG-MuAlign

24

Aditya Raj Aditya Raj
Kapoor

Don’t stop
Dreaming

write

Gawaahi
edit

Shamaal:
The

Sandstorm

wr
ite

IMDB Freebase

Sambar
Salsa

comedy
genregenre

drama

gen
re

write

Anant
Balani

w
rit
e

Vasanti
Balani

Ashish
Redij

pro
du
ce edit

Don’t stop
Dreaming

w
rite

produce

Sambar
Salsa

wr
ite

pro
du
ce

Vasanti
Balani

edit

Ashish
Redij

pro
duc
e

Komedi-
drama

genr
e

Figure 4.1: An example of Entity Alignment on person called “Aditya Raj” across IMDB and
Freebase. Different edge types indicates different relations(e.g. “direct” and “write”). We use
different color and shape indicates node types and different arrow types indicates different relations.

falls short for two reasons. First, collecting annotations and training hundreds or even more

models for different entity types can be very complex and expensive. Second, an entity may

belong to multiple overlapping types (e.g. a person can be both a movie director and a novel

writer), making it hard to decide which model to apply for each entity. Thus, a multi-type

entity alignment algorithm becomes critical for effective knowledge integration [153].

However, previous entity alignment methods [42, 43, 44, 45, 46, 47, 48] suffer from the

following challenges presented in the multi-type entity alignment problem.

Transductive → Inductive. Previous methods [42, 43, 44, 45] adopt knowledge graph

embeddings to jointly perform the KG completion and entity alignment tasks, thus may not

be tuned perfectly for alignment purpose. In particular, they focus only on related entities,

i.e. transductive setting, ignoring the potentially rich attribute information such as the

name and the released date. In addition, when new entities are added into the graphs, these

methods require complete retraining to predict alignment for new entities.

Labeled Type → Unlabeled Type. Traditional methods[50, 154] can often perform well

for entity types with rich training data, but often fail for the types where training data are

sparse or even lacking. Intuitively, the rich connections between different types of entities

shall help boost performance for the types with small training data, but the connections are

not yet effectively leveraged on a large scale.

Inspired by the recent success of Graph Neural Networks (GNN) on various tasks such

as node classification [7], link prediction [16, 38] and graph classification [155], we propose

to apply GNN to generate structure-aware representations for each entity, and align entities

by comparing their representations. The GNN mechanism allows us to incorporate neigh-

borhood information recursively and make inductive predictions on unseen entities, thus

25

addressing both of the afore-mentioned challenges. Unfortunately, as we show in our exper-

iments (Section. 4.4.4), a vanilla application of GNN failed terribly, obtaining only 0.33 F1

score (27% precision and 43% recall) for alignment. The key reason is that the GNN models

will generate similar embeddings for the same entity from two different KGs only if both

KGs contain fairly complete information about the entity. In reality, most KGs are sparse

in different ways, making the embeddings often very different. For example, for the same

movie, IMDB may contain editor, director and actor information, while Freebase contains

only director and producer information.

This paper presents a novel GNN model that makes collective decisions [54, 156] (i.e.

related entities alignment are determined jointly) on entity alignment for multple different

types. The key of our solution is a carefully designed attention mechanism that effectively

leverages shared neighborhoods as positive evidence without ignoring strong negative ev-

idence. First, to be robust on incomplete knowledge graphs, we design the cross-graph

attention that allows focusing more on the similar neighborhoods across two graphs. To

illustrate the intuition, consider our motivating example in Figure 4.1. “Aditya Raj” partic-

ipates in four movies in IMDB, whereas “Aditya Raj Kapoor” writes/produces two movies

in Freebase; a vanilla version of GNN will generate different representations for them. Our

cross-graph attention gives higher weight to shared neighbors such as “Sambar Salsa”, and

thus generate similar representations for the two nodes. Second, to be sensitive towards

strong negative evidence, we employ relation-aware self-attention on edges that prevents

blindly aligning nodes with similar neighborhoods. For example, two movies in the same

series are likely to share directors, writers, and some actors; our edge-level attention allows

us to pick up key differences in release year and length to distinguish them. Indeed, our

experiments show that the two attention mechanisms collectively improve linkage quality by

10% F1 score in average. Although we focus on entity alignment between two graphs, entity

alignment across multiple (> 2) knowledge graphs in same domain is also a very interesting

and practical problem. With overlapped information, it may also provide the opportunity

to potentially resolve the noise from each individual graph. We leave the exploration of the

collective mechanism among multiple graphs for future work.

We note that although collectively linking entities is not a new idea [53, 54, 56, 157],

our method is the first scalable solution that does not require any manually defined rules

(like [56]) or logic (like [157]) for evidence propagation. Similarly, although GNN has been

widely adopted for iteratively capturing the neighborhood information, our model, to the

best of our knowledge, is the first that allows collective decisions in a GNN. Besides, we de-

velop a scalable GNN framework to support large-scale entity alignment in the experiments.

In Table. 4.1, we compare our method with most recent entity alignment algorithm from

26

Table 4.1: Comparison of methods for entity alignment. Inductive: Making use of node features
and generalize to new nodes. Predicate: Modeling semantics of different relations. Collective:
Collecting evidence from neighborhood. Multi-type: Handling multiple entity types in one model.
Scalable: Scaling up to millions of nodes.

CG-MuAlign MuGNN [46] GCN-Align [48] DeepMatcher [50]

Inductive ✔ ✔ ✔

Predicate ✔ ✔ ✔

Collective ✔

Multi-type ✔ ✔ ✔

Scalable ✔ ✔

five different perspectives. In particular, we made the following contributions.

• We propose a GNN-based knowledge graph entity alignment framework called CG-

MuAlign, that collectively align entities of different types. We carefully design the

attention mechanisms that can both effectively accumulate positive evidence from the

neighborhood, and remain sensitive to strong negative evidence to distinguish similar

but different entities.

• We scale up our model to large-scale knowledge graphs by avoiding expensive compu-

tation in each layer of the deep neural network and by relation-aware neighborhood

sampling.

• Through extensive experiments on two different datasets, we show that our methods

obtain high quality linkage (80.5% F1 and 60% recall when precision is 95%) on knowl-

edge graphs with size of two and half millions of nodes. In particular, with the help of

labeled film data, we show that CG-MuAlign trained on 2,000 person pairs can reach

comparable performance with model trained on ∼24,000 person pairs.

4.2 PROBLEM DEFINITION

A knowledge graph G is defined as a graph with multi-typed nodes and edges. We denote

nodes V as entities and edges E as relations. Formally we have G = (V , E , T ,R) with a

node type mapping ϕ : V → T and edge type mapping ψ : E → R.

Given two different knowledge graphs G and G′ on same domain, the node type and edge

type are {T , T ′} and {R,R′} , respectively. Assuming node and edge types are aligned in

advance: T ∗{(t, t′) ∈ T ×T ′|t⇔ t′}, R∗{(r, r′) ∈ R×R′|r ⇔ r′}, certain amount of ground

truth node pairs S{(vt∗i , vt
∗

i′)|t∗ ∈ T ∗} are available. Normally, there are only a few aligned

seed pairs for some of the aligned node type T ∗, i.e. |S| ≪ |V|.
Formally, we define the problem of entity alignment as follows.

27

Film:
Sambar Salsa

Film:
Don’t stop
dreaming

Person:
Aditya Raj

Kapoor

CollectiveAgg

hj1
1 hj2

1 hi
1

zj0 zj2 zi

Wproduce Wproduce Wself-loop

hi
2

Film:
Don’t stop
dreaming

CollectiveAgg

hj0
1 hj2

1 hi
1

zj0 zj2 zi

Wwrite Wself-loop

hi
2

Person:
Aditya Raj

Wwrite

zj3zj1

Wwrite

zj1 zj3

hj1
1

Film:
Sambar

Salsa

hj3
1

Film:
Shamaal:

The Sandstorm

Wwrite Wwrite Wedit

Film:
Gawaahi

Layer k

Layer k+1

cross attention α

(a) Cross-graph Attention

Film:
Don’t stop
dreaming

CollectiveAgg

hj0
1 hj2

1
hi

1

zj0 zj2

zi

hi
2

Person:
Aditya Raj

zj1 zj3

hj1
1

Film:
Sambar

Salsa

hj3
1

Film:
Shamaal:

The Sandstorm

Film:
Gawaahi

Layer k

Layer k+1

self attention β

(b) Relation-aware Self-Attention

Figure 4.2: Illustration of node-level and edge-level attention in CG-MuAlign

Definition 4.1 (KG Entity Alignment). Given two knowledge graphs G = (V , E , T ,R) and

G′ = (V ′, E ′, T ,R), entity alignment aims to find a set of entity pairs {(vi, vi′) ∈ V × V ′}
with high precision and recall, such that each pair refers to the same real world entity.

4.3 METHOD

CG-MuAlign features a collective GNN framework to address the KG Entity Alignment

problem. Our model not only bridges the gap between single-type and multi-type alignment

model, but also generalize to unlabeled types. In Section 4.3.1, we describe the overall

picture of our alignment model. Then we discuss two proposed attention mechanisms and

explain how they contribute to the collective setting in Sections 4.3.3 and 4.3.4, respectively.

At last, we present our model specifications and reason about scalability concerns.

4.3.1 Solution Overview

We model the entity alignment problem as a classification problem, where we predict

whether two nodes v ∈ V and v′ ∈ V ′ represent the same real-world entity.

The model includes two GNN encoders and an entity alignment loss layer. The GNN

encoder takes an K-hop sub-graph derived from target node v, aggregates the neighborhood

information and outputs representation hkv for node v. In its k-th layer, for node i, the GNN

encoder aggregates neighbor information from k-1 layer,

zki = Aggregate ◦Transform(k)
(
{hk−1

j , j ∈ Ni}
)

(4.1)

where hk−1 is the hidden representation of the previous layers and Ni is the neighborhood

28

of node i in the knowledge graph. The output representation hki is the combination of hk−1
i

and zki ,

hki = Combine(k)
(
{hk−1

i , zki }
)

(4.2)

For two KGs, we have two K-layer models GNN1 and GNN2 with identical structure

and shared parameters. For each pair of entities (i, i′) in the training data, we sample N

negative entities from KG1 and KG2. Then we obtain the final representations from two

GNN encoders as (hKi , h
K
i′) and apply a marginal hinge loss on distance between output

vector of two nodes,

L =
∑
(i,i′)

∑
(i−,i′−)

max
(
0, d(hKi , h

K
i′)− d(hKi−, h

K
i−′) + γ

)
(4.3)

In the experiments, we use d(x, y) = ||x− y||2 as the distance function.

4.3.2 Collective Graph Neural Networks

In CG-MuAlign, we first group the neighbor nodes by edge type r as Ni,r and apply dif-

ferent Transform, i.e. Wr. In Figure 4.1, for example, the target node “Aditya Raj” in

the left IMDB sub-graph have Ni,write = {Don’t stop Dreaming, Shamaal: The Sandstorm,

Sambar Salsa} and Ni,edit = {Gawaahi}. At each layer, we transform the neighborhood

(j ∈ Ni,r) information regarding the relation between node i and j as follows,

zki,j = W k
r h

k−1
j , j ∈ Ni,r (4.4)

As one entity can belong to multiple overlapping types, the above transformation explicitly

differentiate the same person’s representations as editor and writer in the aggregation.

We calculate node-level attention α (details in Section 4.3.3), edge-level attention β (details

in Section 4.3.4) and Aggregate neighborhood as,

zki =
∑
∪Ni,r

αijβijz
k
i,j,Σjαijβij = 1 (4.5)

Then we proposes the following Combine function:

hki = σ
(
[W k

selfh
k−1
i ||zki]

)
(4.6)

Intuitively, we concatenate the self information and neighborhood information to make the

alignment decision on self information and neighborhood information independently. And

29

we name this layer as CollectiveAgg.

In CG-MuAlign, we stack multiple layers in each GNN encoder, where the inputs at layer k

is the output representation of layer k-1. The layer-0 representation is the input node features

and we allow entities of different types to have different length of features. Let the hidden

dimension of the model be m, we have the first layer of relation matricesW 1
r ∈ Rdr×m

2 , where

dr is the feature length of entity in neighbor group Nr. After concatenation as depicted in

Equation 4.6, the hidden representation is then m
2
+ m

2
= m. For the layer k = 2, 3, ..., K,

we have W k
r ∈ Rm×m

2 Then we describe how we compute the two attentions α and β.

4.3.3 Node-level Cross-graph Attention

Existing GNN-based entity alignment methods reconcile structural difference across two

knowledge graphs by implicit means, such as graph matching objective [47] and rule ground-

ing [46]. As we discussed in the introduction, the structural differences are mainly raised by

the nature of incompleteness in a knowledge graph. In CG-MuAlign, we address this problem

by collective aggregation of confident neighborhood information. Namely, we explicitly as-

sign higher weights for those neighbors that are likely to have the corresponding ones in the

other graph. We achieve this by employing a cross-graph attention mechanism that attends

over the neighbor’s feature vectors.

Given the candidate node pair (i, i′), we have Ni and Ni′ as neighborhood of node i

and node i′, respectively. We make soft decisions by calculating similarity of pairs (p, q) ∈
Ni ×Ni′ ,

αp =

∑
q∈Ni′

exp−||zp−zq ||2∑
p∈Ni

∑
q∈Ni′

exp−||zp−zq ||2
, αq =

∑
p∈Ni

exp−||zq−zp||2∑
q∈Ni′

∑
p∈Ni

exp−||zq−zp||2
(4.7)

The hidden representation zp and zq are calculated in Equation 4.4. For p1, p2 ∈ Ni, αp1 > αp2

if the accumulated similarity between p1 and neighbors Ni′ in Graph G′ is larger than p2. In

computation, weight αp and αq are the row-wise and column-wise normalized vector for the

cross-graph attention matrix Ai,i′ ∈ R|Ni|×|Ni′ |. In Figure 4.2a, we turn the 1-hop neighbor in

Figure 4.1 into actual computation graph in our CollectiveAgg layer. The neighborhood

for “Aditya Raj” two knowledge graphs are {Gawaahi:edit, Don’s stop Dreaming:write , The

Sandstorm:write, Sambar Salsa:write } and {Don’s stop Dreaming:write, Don’s stop Dream-

ing:produce, Sambar Salsa:write, Sambar Salsa:produce }. The cross-graph attention will

give high weights to neighbor nodes {Sambar Salsa:write, Don’s stop Dreaming Salsa:write}
as their hidden representation is similar. Thus, the proposed cross-graph attention leverages

the positive evidence to the collective decisions.

30

Table 4.2: Alignment Example for song Radioactive. Neighbor nodes are grouped by relations as
described in Section 4.3.2. Bold font indicates the neighbor node with large cross-attention weights.

Amazon Music Wikipedia

Attributes

Title Radioactive Radioactive
Duration 2M19S 2M19S

Neighbors

Song writer

Wayne Sermon Wayne Sermon
A. Grant Alexander Grant

Dan Reynolds Dan Reynolds
Josh Mosser Josh Mosser

Song producer Alex Da Kid

Album Night Visions (Deluxe) Night Visions

Main performer
Imagine Dragons

Imagine Dragons
Kendrick Lamar

4.3.4 Edge-level Relation-aware Self-attention

Yet, cross-graph attention neglects the negative evidence across the graphs. If the neigh-

borhood aggregation only relies on the cross-attention, it fails to predict “negative” when

only unimportant nodes are softly aligned. In our music data set at Figure 4.2, when aligning

song “Radioactive” by American rock band Imagine Dragons between Amazon Music and

Wikipedia, cross-graph attention produce positive evidence on most of the neighbors such

as song writer, producer and one performer. However, it is an unmatched pair since the one

in Amazon is a deluxe version collaborated with “Kendrick Lamar”.

In other words, different relations shall play different roles in alignment prediction. For

example, performed by is more informative than written by.

In fact, the computation of cross-graph attention focuses on the neighbor nodes similarity

and considers each relation equally important. In light of this issue, similar with Graph

Attention Networks [11], we adjust the cross-graph attention with an edge-level self-attention

that considers the edge(tuple) information, i.e. ⟨Radioactive, perform by, Kendrick Lamar⟩
we calculate an edge-level self-attention by a weight vector a⃗r to estimate the importance of

an edge composed of subject, object and relation.

βij =
exp(σ(⃗aTr [zi||zj]))∑

k∈Ni

exp(σ(⃗aTr [zi||zk]))
(4.8)

We use σ(·) as LeakyReLU suggested in [11]. As depicted in Figure 4.2b, self-attention

31

measures the importance of a relation tuple with the relation aware linear layer ar. In

the previous example, the attention score of ⟨Radioactive, perform by, Kendrick Lamar⟩
is similar with ⟨Radioactive, perform by, Imagine Dragons⟩ and much larger than grouped

neighbors such as writer and producer.

4.3.5 Scaling up

Despite the effectiveness of the proposed GNN model, training and applying it is very

expensive. We scale it up in three ways: by carefully removing unnecessary computation,

by strategically sampling the neighborhood, and by selectively considering the matching

candidates.

Simplifying Computation: We now analyze the effectiveness of CollectiveAgg under

the Open World Assumption4, that is, no knowledge graph has complete knowledge. We

assume graph G and G′ observes p portion and q portion from the underlying complete

knowledge Gu. In our example in Figure 4.1, both IMDB and Freebase contains only partial

information of “Aditya”. Given a ground truth pair (i, i′), that both refers to the real world

entity e, the number of neighborhood of e in the real world is Ne. We now quantify the

Collective Power by counting numer of shared (same) nodes regarding order of the neighbors.

Theorem 4.1. If G and G′ have the same number of nodes, i.e. |V1| = |V2| and there exists

a injective function F : V1 → V2. Let K denote the order of the neighborhood, |E| is the

total number of edges in the underlying graph Gu, the expected Collective Power decays

geometrically as K increases.

E(v,F(v))∼G1CP(K) ≤ |E| · p
K
2 q

K
2 (4.9)

Proof. According to the definition of p and q. Let pi and qi be the actual observed ratio for

node vi and F(vi) in graph G and G′, we have,

p =

|V1|∑
i=1

|Ni| · pi

|E|
, q =

|V2|∑
i=1

|Ni| · qi

|E|
(4.10)

For a specific node i, the expected number of same neighborhood from a uniform distribution

4the assumption that the truth value of a statement may be true irrespective of whether or not it is
known to be true, from wikipedia:https://en.wikipedia.org/wiki/Open-world_assumption

32

in two graphs is |Ne|piqi. Thus, when K = 1,

E(v,F(v))∼G1CP (1) =
∑
i

|Ne|piqi (4.11)

≤
√∑

i

(
√

Nepi)
2∑

i

(
√

Neqi)
2

(4.12)

≤
√∑

i

Nepi
∑
i

Neqi = |E| · √pq (4.13)

Recursively, we repeat the same calculation on shared neighbor nodes in previous step, that

is, E[CP (K + 1)] = E[CP (K)] · √pq QED.

The above theorem can be explained as jaccard similarity of neighborhood follows a long-

tail distribution as K grows, because only same first-order neighbor nodes may contain the

same second-order neighbor nodes in principle. According to this, we employ the Collec-

tiveAgg as the Aggregate only at the last layer to reduce the computation cost as the

collective power decrease. That is,

hki =

CollectiveAgg
(
{hk−1

j , j ∈ Ni ∪ {i}}
)
, k = K − 1

AverageAgg
(
{hk−1

j , j ∈ Ni ∪ {i}}
)

k < K − 1
(4.14)

where the AverageAgg replaces the αijβij in Equation 4.5 as 1
|Ni| .

Mini-batch Training and Neighborhood Sampling. Traditional graph neural nets are

trained globally, which is infeasible when the graph is large. Instead, we sample a batch

of positive pairs from training data and construct a K-hop sub-graph from G and G′. To

further speed up the training, we adopt neighborhood sampling to control the size of the

computation graph.

Lemma 4.1. Let the maximum neighborhood size as N and batch size as B, the space

complexity of CG-MuAlign is O(BNK). Without batch training or sampling, the space com-

plexity is O(|V| ·K). For training data of size S, the expected running time is O(S ·NK).

Additionally, we adopt a relation-aware neighborhood sampling to leverage the maximal

collective power, which samples those “one-to-one” relation first. The probability of sampling

possibly matched neighbor node is greater than those “one-to-many” relations. For example,

one movie usually has only one director but many actors, knowing whether the director is

same is more informative than knowing one actor is same. For each type of entity vt, we

33

calculate the average number avg N t
r of neighbors connected by relation r. During the

neighborhood sampling process for node i of type t, we sample from the neighborhood group

Ni,r with probability

Pr(n) ∝
(

avg N t
r∑

r avg N
t
r

)−1

(4.15)

Therefore, director neighbors are more likely to be sampled compared with characters and

actors due to their large population. It helps make the collective decisions when we sample

a small number of neighborhoods.

Candidate Generation. Though the training cost is controlled by number of GNN layers

and number of sampled neighbors, the inference cost remains as a problem. Naive one-versus-

all comparison leads to time complexity up to O(|V|!). To scale up to millions of entities,

we employ candidate generation during the inference stage, also known as blocking. For

each test node, we use several strong keys(e.g. name and date of birth for person) to collect

possible match entities and use CG-MuAlign to predict alignment score within candidate

pairs.

4.3.6 Relations with other GNN variants

Now we summarize the key differences of proposed CollectiveAgg with previous pop-

ular GNN framework.

Similar with RGCN [13], we adopt multi-relational matrices to model the semantics of

different relations when aggregating the neighbors. Our self-attention modules shares sim-

ilar motivation with GAT [11]. Both GraphSage and CollectiveAgg characterize with

concatenating self representation and neighborhood representations. The GraphSage GNN

layer includes concatenation and aggregate function, like average

hki = σ
(
W1

[
hk−1
i ||σ

(
W2 ·MEAN{hk−1

j , j ∈ Ni,r}
)])

, (4.16)

There are two differences between CollectiveAgg and GraphSage. First, we have multi-

relational projection matrix Wr in the hidden layer. Second, we use weighted average (at-

tention) Λ instead of averaging or max pooling.

hki = σ
(
W1

[
hk−1
i ||Λ(Wr · {hk−1

j , j ∈ Ni})
])

(4.17)

In the toy example below, all kinds of previous aggregation function, e.g. MEAN/MAX/-

SUM, fail to fit the label if node id is the only input feature. A learnable mask Λ on

34

Table 4.3: Overall Dataset Statistics

Dataset # Nodes # Edges # Node Types # Edge Types

Movie 2,684,233 6,851,166 8 8/8
Music 1,768,983 10,723,141 6 4/5

Table 4.4: Movie Dataset

Dataset # Films # People # Characters # Genres # Train/Test

Freebase 273,526 314,869 859,289 599
53,405/53,405

IMDB 423,118 600,909 211,895 28

neighborhood, instead, can fit the label by masking out node c and d. To some extent,

CollectiveAgg has a greater representation power for the task of entity alignment when

data is sparse. For node a ∈ G and a′ ∈ G′, we have first-order neighbors {b, c, d} in graph

G and {b} in graph G′, the training label is 1.

4.4 EXPERIMENTS

We compare CG-MuAlign with other knowledge graph alignment algorithms to examine

our three major claims one by one in Section 4.4.4.

• CG-MuAlign outperforms existing methods on real-world large-scale dataset.

• Collective alignment is not sensitive to the amount of training data.

• CG-MuAlign generalizes to unlabeled type effectively with limited labels.

4.4.1 Datasets

In our experiments, we use two different knowledge graph alignment data sets and evaluate

the performance under inductive settings. Both (i.e. Movie and Music domain) contain

abundant node attributes and feature with millions of nodes and tens of millions edges of

different types. We report basic graph statistics in Table 6.1 and then introduce them in

more details. The number of nodes and number of edges are summed over two knowledge

graphs.

Movie Dataset contains a subset of IMDB (an online database of information related to

films) and Freebase (a large knowledge base on general domains). The latter originally has

35

movie person

genre character

1
2
3
4

1 isDirectedby

2 isEditedby

3 isProducedby

4 isWrittedby

6

5
inFilmGenre67
isPerformedby5 7

isActedby

8
8

isCharacterIn

Figure 4.3: The schema of the Movie Graph

Table 4.5: Music Dataset

Dataset # Songs # Albums # Artists # Train/Test

Wikipedia 104,179 188,602 71,409
57,062/23,485

Amazon-Music 999,900 200,911 201,550

a large number of edge types compared with IMDB. We sample a subset of Freebase that

is related to the movie domain. It has ground truth links to the IMDB ID for some of the

films and people. We split the ground truth pairs into training and testing data. It has four

different entity types and eight different relations, the schema can be found in Figure 4.3.

In Table 4.4, we report the distribution of entity types and the size of the training/testing

data.

Music Dataset contains two music knowledge graph from Amazon Music and wikipedia.

There are three major types in this dataset: song, album and artist. The five relations among

them can be found in Figure 4.4. The positive pairs on songs and albums are generated with

noise and we ask annotators to label testing pairs among a candidate pool for two types.

Detailed number of entities can be found in Table 4.5.

4.4.2 Baselines

We consider methods from three families: (1) link prediction (2) entity alignment between

graphs (3) entity matching in multi-relational database.

Link prediction. Between two knowledge graphs G and G′, we can add equivalent edges

song person

album

1
2 1 isComposedby

2 isWrittenby

3 isProducedby

4 isPerformedby

5 hasTrackon

5

4
3

3 4

Figure 4.4: The schema of the Music Graph

36

between ground truth node pairs {(vti , vt′j)}. We then run advanced graph embedding algo-

rithm with node features to embed nodes from different graphs in the same unified space.

Later, we train a two-layer perceptron on the labeled equivalent edges. Specifically, we

consider the following method that consider the node attributes:

• GraphSage [10] is the first large-scale inductive representation learning algorithm.

We denote this method as GraphSage+NN along with another baseline named Fea-

ture+NN to verify the feature effectiveness and inspect how different methods gain im-

provement over its performance.

Knowledge Graph Alignment. Most of the previous work focus on the transductive

setting. Some recent work [46, 47, 48] based on Graph Neural Networks, start to extend

graph alignment problem under inductive setting. We group these methods into transduc-

tive only: MuGNN [46] and BootEA [45] that both models knowledge graph embedding

and entity alignment simultaneously and inductive: MultiKE [158] and AttrE [154] further

incorporate attribute information into embedding-based entity alignment. GCN-Align [48]

models both structure and attribute features with same relation matrices for different re-

lations. As we found embedding-based methods fail to scale up to graphs with millions of

entities, we carefully verify the effectiveness of proposed GNN model with following recent

GNN variants.

• GCN-Align [48] models both structure and attribute features with the original graph

convolutional network [7].

• GraphSage [10] concatenates the self feature vector and neighborhood aggregation

vector.

• GAT [11] aggregates neighborhood information with multi-head attention.

• RGCN [13] differs GCN with multi-relational linear transformation matrices.

• R-GraphSage is a variant of GraphSage with multi-relational linear transformation

matrices.

To address the scalability issue, we re-implement all of them in PyTorch [159] under DGL

framework [160]. CG-MuAlign and above GNN variants adopt same mini-batch paradigm

training described in Section. 4.3.5 with the batch size of 32. We sample 10 negative en-

tities from each graph and have total 20 negative samples for every positive pair. We use

Adam [148] as our optimizer with learning rate as 0.003. We set the max neighborhood size

37

as 10 in the neighbor sampler function. The number of layers for all GNN methods are set as

two. And we set hidden dimension as 100 for link prediction and graph alignment baselines.

Entity Matching. We refer methods that finds all tuple pairs (a, b) across different multi-

relational databases into this category. We explore the performance of two representative

methods:

• Magellan [49] is end-to-end entity matching framework that supports different match-

ing functions like linear regression, SVM, random forest, etc. We choose random forest

as the matching function.

• DeepMatcher [50] is a recent deep learning entity matching algorithm, we use its “hy-

brid” mode in our experiments.

• PARIS [156] is an unsupervised RDF ontologies alignment model, which makes collec-

tive decisions based on iterative probability estimates.

Table 4.6: Alignment Result on labeled types for inductive setting. For simplicity, transductive
only methods are not included in this table. We report the standard deviation by 5-runs of each
method except DeepMatcher, which takes long time for one run.

Method
Movie Dataset Music Dataset

Rec@Prec=.95 PRAUC F1 hit@1 Rec@Prec=.95 PRAUC F1

Feature+NN 0 0.3672 ± 0.053 0.6380 ± 0.000 0.7197 ± 0.001 0.0025 ± 0.002 0.7251 ± 0.027 0.6795 ± 0.009
GraphSage+NN 0.0155 ± 0.001 0.3229 ± 0.003 0.3557 ± 0.001 0.4503 ± 0.003 0.0002 ± 0.000 0.2468 ± 0.018 0.3134 ± 0.012
Magellan 0.4387 ± 0.000 0.7067 ± 0.000 0.6945 ± 0.000 0.7974 ± 0.000 0.1071 ± 0.000 0.7461 ± 0.000 0.6760 ± 0.000
DeepMatcher 0 0.5829 ± 0.000 0.7549 ± 0.000 0.8468 ± 0.000 0 0.1748 ± 0.000 0.3559 ± 0.000
PARIS 0.5840 ± 0.000 0.7759 ± 0.000 0.7661 ± 0.000 0.7725 ± 0.000 0.2333 0.4175 ± 0.000 0.4640 ± 0.000

G
N
N

va
ri
an

ts GCN 0.0098 ± 0.001 0.2831 ± 0.006 0.3313 ± 0.004 0.4896 ± 0.003 0.0020 ± 0.002 0.3829 ± 0.009 0.4190 ± 0.003
GraphSage 0.1900 ± 0.007 0.5589 ± 0.004 0.5251 ± 0.003 0.6605 ± 0.009 0.2868 ± 0.029 0.8252 ± 0.003 0.7637 ± 0.001
GAT 0.0147 ± 0.002 0.3448 ± 0.006 0.3793 ± 0.004 0.5483 ± 0.003 0.0004 ± 0.001 0.4485 ± 0.014 0.4819 ± 0.007
RGCN 0.0106 ± 0.002 0.4247 ± 0.003 0.4435 ± 0.001 0.5450 ± 0.002 0.0025 ± 0.004 0.4419 ± 0.024 0.4625 ± 0.020
R-GraphSage 0.2829 ± 0.009 0.6573 ± 0.003 0.6110 ± 0.004 0.7125 ± 0.003 0.4081 ± 0.029 0.8335 ± 0.004 0.7646 ± 0.003

CG-MuAlign 0.6010 ± 0.004 0.8548 ± 0.004 0.8050 ± 0.006 0.8869 ± 0.002 0.4437 ± 0.023 0.8400 ± 0.008 0.7762 ± 0.004

4.4.3 Experimental Settings

Now we describe how we conduct the experiments and evaluate the performance.

Data Processing. For all of the GNN-based methods, we pre-compute the feature vector

of different entities. There are two major types of features: string and numerical. We use

fastText [161] to encode string features. For numerical features, we preserve the original value

except time values. For time values, like duration, date of birth, we use periodical function

sin(·) to encode each periodical segment, e.g. seconds, minutes. Finally, we concatenate all

of the features into a unified vector as the node feature.

38

For entity matching baselines, we convert one-hop neighbor node in the knowledge graph

into the format relation@attribute, e.g. for a movie record, we have the field isDirect-

edby@Name indicating movie director’s name. Thus, we can turn the first order informa-

tion in the knowledge graph into a multi-relational table in a lossless way. In Magellan [49],

the features used in the random forest are automatically generated by the model. Differ-

ent string similarities are computed as features, such as jaccard similarity, levenshtein edit

distance between attributes of entity pairs.

Evaluation Metrics. We evaluate different methods on both labeled and unlabeled settings

and report their Recall@Precision=0.95, F1, PRAUC (precision-recall area under curve) and

hit@1 on three data sets. Typically, previous research mainly use hit@1 since the evaluation

data set is small. It is infeasible to conduct one-versus-all comparison when there are millions

of candidate nodes. Thus, we use candidate generation introduced in Section. 4.3.5 in the

testing stage and report hit@1 based on the candidate set. We report the precision and recall

curve while tuning the alignment threshold. PRAUC and best F1 provide more insights

how different methods perform without knowing all positive pairs. We will later show in

Table 4.6, methods have similar hit@1 result could produce rather different PRAUC and

F1. Besides, we propose metric Recall@Precision=0.95 to evaluate model performance when

high precision is required.

Evaluation Settings. The ground truth links between person and movie serve as positive

data in training and testing. During training, we adopt the same random sampling to

construct negative samples for different methods as we assume no prior knowledge of the

target domain. We construct the testing data by joining output of candidate generation and

the test split of ground truth links. Specifically, we use blocking function in Magellan [49]

to generate candidates. For example, we use person’s name and date of birth(allow missing)

as the blocking key. Note that on the music domain, the ground truth links are also noisy.

We annotate a subset of the candidates, thus, hit@1 metric is not included for music data.

For unlabeled type evaluation, we use the same way to generate the evaluation data.

4.4.4 Experiments and Performance Study

Alignment Result on labeled types. We train a unified model for multiple entity types

and report all of baselines including GNN variants. From Table 4.6, we can conclude CG-

MuAlign outperforms all other method. On the movie dataset, it yields a large margin over

the second best method - DeepMatcher. It is mainly because IMDB and Freebase have rather

different relation distributions and they suffer from data incompleteness differently. Deep-

39

Matcher considers the difference between attribute sets from two graphs, thus, it performs

better than the remaining ones. It is quite surprising that Feature+NN outperforms most

of the GNN variants, which indicates the neighborhood information affects the performance

negatively in those methods. Although other GNN algorithms suffer from the sparsity of

knowledge graphs while our collective aggregation layer avoid performance drop by aggregat-

ing mostly aligned neighborhood via cross-graph attention. Specifically, among three GNN

variants that do not consider multi-relational structure (GCN, GrageSage, GAT) perform

worse than those includes multi-relational transformation as expected. We find the con-

catenation mechanism first introduced in GraphSage benefit the task. The reason could be

self-information is critical to the alignment task and mixing it with neighborhoods confuses

the model predictions. On the music data set, CG-MuAlign gain a smaller margin over other

baselines as we observe the music graphs are much denser. The performance difference is sim-

ilar with the movie dataset, vanilla GNN perform badly while GraphSage and R-GraphSage

obtain reasonable results compared with Feature+NN. We notice the link prediction base-

line - GraphSage+NN achieves worse results than Feature+NN. GraphSage embedding

models every edges of different types in the objective and the “equivalent” edges contributes

than 1% in total. The “equivalent” relation may be biased by other links, therefore, predicts

unsatisfactory results. Three entity matching baselines reports competitive performance on

movie dataset but DeepMatcher performs much worse on the music dataset. Moreover, it

achieves almost zero on the metric Rec@Prec.95. It may be caused by overfitting the noisy

training data with huge amount of parameters(20 million). PARIS, though unsupervised,

yield second-best F1 on the movie dataset, which proves the collective design works very nice

on incomplete knowledge graphs. However, it can not tell the subtle difference between songs

with slightly different names and duration due to lack of supervisions. Overall, Magellan

and CG-MuAlign are the most robust methods under different datasets and metrics. As we

know, the feature importance of random forest depends on the training data. So Magellan

produces more false positives than ours, while CG-MuAlign reports above 50% recall when

precision is at 95% across two datasets.

Sensitivity to the amount of training data. Then we investigate how much supervision

needed in CG-MuAlign, since label scarcity is quite normal in the real applications. Also, we

are interested in how collective alignment benefits from different types in this case. Therefore,

we range ratio of supervision from 0 to 1.0 on type A and test it on type A on two conditions:

(1) 100% training type of type B (2) 0% training type of type B. The result is plotted in

Figure. 4.5. When we do not have any labeled data for person type, the model can achieve

0.53 F1 already and adding 10% of training data make the performance quickly converge

40

0.0 0.2 0.4 0.6 0.8 1.0
percentage of supervision

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F1

 s
co

re

No film supervision
Full film supervision

(a) Test on Person

0.0 0.2 0.4 0.6 0.8 1.0
percentage of supervision

0.5

0.6

0.7

0.8

F1
 s

co
re

No person supervision
Full person supervision

(b) Test on Film

Figure 4.5: Sensitivity to the amount of training data. The orange curve indicates the collective
setting, i.e. supervision of other types are provided. The blue curve indicates the non-collective
setting.

to the final model in Figure 4.5a. Note that 10% of training data in our setting is about

2K samples only. When we have about 40% of training data, both settings are on a par

with full supervision model. On the film type, the trends are similar but result is not that

satisfactory when supervision is limited. We explain it as film alignment is more tricky since

different films could have partially overlapped titles and same movies across different graphs

could have multi-lingual names. Both figure shows that CG-MuAlign does not rely on large

amount of training data.

Few-shot alignment on unlabeled types. In order to investigate the generalization

capability of different methods, we design few-shot alignment experiments, that first train

a model on type A and fine-tune the model with only a few (i.e. 2,000) training pairs of

type B. The model is evaluated on the test data of new type. We train and test on person

and film alternatively. Magellan and DeepMatcher are trained on one type is not compatible

with the new type, so we do not report their performance in Table 4.7. In addition, we

add cosine similarity of node features as an unsupervised benchmark in the table. When

tested on person, we observe the cosine similarity of feature vector is a very competitive

method, since people who have the same names are likely to be the same person. Another

unsupervised baseline PARIS reports promising results thanks to the collective probabilistic

alignment. Most of the GNN variants report poor performance except CG-MuAlign and R-

GraphSage that consider the self information (person name) separately. On type of film,

few-shot CG-MuAlign achieves 81.4% F1 when feature similarity only obtains 47.8%. All

other methods perform worse or slightly better than node feature similarity. The result

clearly demonstrates the effectiveness of collective design, especially when the training data

is limited. We want to note that alignment result reported in Table 4.6 are for multi-type

41

Table 4.7: Alignment Result on unlabeled types for few-shot setting. We mark the best and
second-best result. Column person stands for unlabeled type in the evaluation.

Method
Person Film

PRAUC F1 PRAUC F1

Node features 0.8285 0.8563 0.4231 0.4780
PARIS 0.7303 0.7489 0.8392 0.7961

G
N
N

va
ri
an

ts GCN 0.3492 0.4659 0.2589 0.3223
GraphSage 0.5495 0.6069 0.4269 0.4158
GAT 0.3518 0.3791 0.4926 0.4818
RGCN 0.3130 0.3518 0.4288 0.4369
R-GraphSage 0.8065 0.7582 0.5008 0.4705

Few-shot 0.8403 0.8033 0.8505 0.8136
Fully-supervised 0.8543 0.8214 0.9101 0.8794

alignment, but here the result is evaluated for each type separately. Overall, our few-shot

results are quite close to the fully-supervised version.

42

CHAPTER 5: TRANSFERABLE GRAPH NEURAL NETWORKS

5.1 BACKGROUND

Graph neural networks (GNNs) have been intensively studied recently [7, 162, 163, 164],

due to their established performance towards various real-world tasks [10, 11, 165], as well as

close connections to spectral graph theory [88, 166, 167]. While most GNN architectures are

not very complicated, the training of GNNs can still be costly regarding both memory and

computation resources on real-world large-scale graphs [93, 94]. Moreover, it is intriguing to

transfer learned structural information across different graphs and even domains in settings

like few-shot learning [168, 169, 170]. Therefore, several very recent studies have been

conducted on the transferability of GNNs [1, 77, 96, 97, 98, 99, 103].

However, it is unclear in what situations the models will excel or fail especially when the

pre-training and fine-tuning tasks are different. To provide rigorous analysis and guarantee

on the transferability of GNNs, we focus on the setting of direct-transfering between the

source and target graphs, under an analogous setting of “domain adaptation” [1, 80, 171].

In this work, we establish a theoretically grounded framework for the transfer learning of

GNNs, and leverage it to design a practically transferable GNN model. Figure 5.1 gives an

overview of our framework. It is based on a novel view of a graph as samples from the joint

distribution of its k-hop ego-graph structures and node features, which allows us to define

graph information and similarity, so as to analyze GNN transferability (§5.2). This view

motivates us to design EGI, a novel GNN training objective based on ego-graph information

maximization, which is effective in capturing the graph information as we define (§5.2.1).
Then we further specify the requirement on transferable node features and analyze the

transferability of EGI that is dependent on the local graph Laplacians of source and target

graphs (§5.2.2).
All of our theoretical conclusions have been directly validated through controlled syn-

thetic experiments (Table 5.1), where we use structural-equivalent role identification in an

direct-transfering setting to analyze the impacts of different model designs, node features

and source-target structure similarities on GNN transferability. In §5.3, we conduct real-

world experiments on multiple publicly available network datasets. On the Airport and

Gene graphs (§5.3.1), we closely follow the settings of our synthetic experiments and ob-

serve consistent but more detailed results supporting the design of EGI and the utility of

our theoretical analysis. On the YAGO graphs (§5.3.2), we further evaluate EGI on the

more generalized and practical setting of transfer learning with task-specific fine-tuning. We

43

Figure 5.1: Overview of our GNN transfer learning framework: (1) we represent the toy graph as a
combination of its 1-hop ego-graph and node feature distributions; (2) we design a transferable GNN
regarding the capturing of such essential graph information; (3) we establish a rigorous guarantee
of GNN transferability based on the node feature requirement and graph structure difference.

find our theoretical insights still indicative in such scenarios, where EGI consistently outper-

forms state-of-the-art GNN representation and transfer learning frameworks with significant

margins.

5.2 TRANSFERABLE GRAPH NEURAL NETWORKS

In this paper, we design a more transferable training objective for GNN (EGI) based on

our novel view of essential graph information (§5.2.1). We then analyze its transferability

as the gap between its abilities to model the source and target graphs, based on their local

graph Laplacians (§5.2.2).
Based on the connection between GNN and spectral graph theory [7], we describe the

output of a GNN as a combination of its input node features X, fixed graph Laplacian L

and learnable graph filters Ψ. The goal of training a GNN is then to improve its utility

by learning the graph filters that are compatible with the other two components towards

specific tasks.

In the graph transfer learning setting where downstream tasks are often unknown during

pre-training, we argue that the general utility of a GNN should be optimized and quantified

w.r.t. its ability of capturing the essential graph information in terms of the joint distribution

of its topology structures and node features, which motivates us to design a novel ego-graph

information maximization model (EGI) (§5.2.1). The general transferability of a GNN is then

44

quantified by the gap between its abilities to model the source and target graphs. Under

reasonable requirements such as using structure-respecting node features as the GNN input,

we analyze this gap for EGI based on the structural difference between two graphs w.r.t. their

local graph Laplacians (§5.2.2).

5.2.1 Transferable GNN via Ego-graph Information Maximization

In this work, we focus on the direct-transfering setting where a GNN is pre-trained on

a source graph Ga in an unsupervised fashion and applied on a target graph Gb without

fine-tuning.5 Consider a graph G = {V,E}, where the set of nodes V are associated with

certain features X and the set of edges E form graph structures. Intuitively, the transfer

learning will be successful only if both the features and structures of Ga and Gb are similar

in some ways, so that the graph filters of a GNN learned on Ga are compatible with the

features and structures of Gb.

Graph kernels [172, 173, 174, 175] are well-known for their capability of measuring sim-

ilarity between pair of graphs. Motivated by k-hop subgraph kernels [176], we introduce a

novel view of a graph as samples from the joint distribution of its k-hop ego-graph structures

and node features. Since GNN essentially encodes such k-hop ego graph samples, this view

allows us to give concrete definitions towards structural information of graphs in the trans-

fer learning setting, which facilitates the measuring of similarity (difference) among graphs.

Yet, none of the existing GNN training objectives are capable of recovering such distribu-

tional signals of ego graphs. To this end, we design Ego-Graph Information maximization

(EGI), which alternatively reconstructs the k-hop ego-graph of each center node via mutual

information maximization [177].

Definition 5.1 (K-hop ego-graph). We call a graph gi = {V (gi), E(gi)} a k-hop ego-graph

centered at node vi if it has a k-layer centroid expansion [176] such that the greatest distance

between vi and any other nodes in the ego-graph is k, i.e. ∀vj ∈ V (gi), |d(vi, vj)| ≤ k, where

d(vi, vj) is the graph distance between vi and vj.

In this paper, we use directed k-hop ego-graph and its direction is decided by whether it

is composed of incoming or outgoing edges to the center node, i.e., gi and g̃i. The results

apply trivially to undirected graphs with gi = g̃i.

Definition 5.2 (Structural information). Let G be a topological space of sub-graphs, we

view a graph G as samples of k-hop ego-graphs {gi}ni=1 drawn i.i.d. from G with probability

5In the experiments, we show our model to be generalizable to the more practical settings with task-
specific pre-training and fine-tuning, while the study of rigorous bound in such scenarios is left as future
work.

45

µ, i.e., gi
i.i.d.∼ µ ∀i = 1, · · · , n. The structural information of G is then defined to be the set

of k-hop ego-graphs of {gi}ni=1 and their empirical distribution.

As shown in Figure 5.1, three graphs G0, G1 and G2 are characterized by a set of 1-

hop ego-graphs and their empirical distributions, which allows us to quantify the structural

similarity among graphs as shown in §5.2.2 (i.e., G0 is more similar to G1 than G2 under such

characterization). In practice, the nodes in a graph G are characterized not only by their

k-hop ego-graph structures but also their associated node features. Therefore, G should be

regarded as samples {(gi, xi)} drawn from the joint distribution P on the product space of

G and a node feature space X .

Ego-graph (𝒈𝒈𝒊𝒊,𝒙𝒙𝒊𝒊)

Ego-graph (𝒈𝒈𝒊𝒊′,𝒙𝒙𝒊𝒊′)

Encoder𝜳𝜳

𝒛𝒛𝒊𝒊

𝒛𝒛𝒊𝒊’

Discriminator Dcenter node
embedding

edge message
passing

hop 2

edge message
passing

hop 1

✔

×

Edge-wise
decision

✔

×

Figure 5.2: The overall EGI training framework.

Ego-Graph Information Maximization. Given a set of ego-graphs {(gi, xi)}i drawn from

an empirical joint distribution (gi, xi) ∼ P. We aim to train an GNN encoder Ψ to maximize

the mutual informaion (MI (gi,Ψ(gi, xi))) between the defined structural information gi
6

(i.e. k-hop ego-graph) and node embedding zi = Ψ(gi, xi). To maximize the MI, another

discriminator D(gi, zi) : E(gi) × zi → R+ is introduced to compute the probability of an

edge e belongs to the given ego-graph gi. We use the Jensen-Shannon MI estimator [177] in

the EGI objective,

LEGI = −MI(JSD) (G,Ψ) = 1
N

N∑
i=1

[sp (D(gi, z
′
i)) + sp (−D(gi, zi))] , (5.1)

where sp(x) = log(1 + ex) is the softplus function and (gi, z
′
i) is randomly drawn from the

6Later in section 5.2.2, we will discuss the equivalence between MI(gi, zi) and MI((gi, xi), zi) when node
feature is structure-respecting.

46

product of marginal distributions, i.e. z′i = Ψ(gi′ , xi′), (gi′ , xi′) ∼ P, i′ ̸= i. In general, we

can also randomly draw negative g′i in the topological space, while enumerating all possible

graphs gi′ leads to high computation cost.

In Eq. 5.1, the computation of D on E(gi) depends on the node orders. Following the

common practice in graph generation [178], we characterize the decision process of D with

a fixed graph ordering, i.e., the BFS-ordering π over edges E(gi). D = f ◦Φ is composed by

another GNN encoder Φ and scoring function f over an edge sequence Eπ : {e1, e2, ..., en},
which makes predictions on the BFS-ordered edges.

Recall our previous definition on the direction of k-hop ego-graph, the center node encoder

Ψ receives pairs of (gi, xi) while the neighbor node encoder Φ in discriminator D receives

(g̃i, xi). Both encoders are parameterized as GNNs,

Ψ(gi, xi) = GNNΨ(Ai, Xi),Φ(g̃i, xi) = GNNΦ(A
′
i, Xi), (5.2)

where Ai, A
′
i is the adjacency matrix with self-loops of gi and g̃i, respectively. The self-

loops are added following the common design of GNNs, which allows the convolutional node

embeddings to always incorporate the influence of the center node. Ai = A′
i
⊺. The output of

Ψ, i.e., zi ∈ Rn, is the center node embedding, while Φ outputs representation H ∈ R|gi|×n

for neighbor nodes in the ego-graph.

Once node representation H is computed, we now describe the scoring function f . For

each of the node pair (p, q) ∈ Eπ, hp is the source node representation from Φ, xq is the

destination node features. The scoring function is,

f(hp, xq, zi) = σ
(
UT · τ

(
W T [hp||xq||zi]

))
, (5.3)

where σ and τ are Sigmoid and ReLU activation functions. Thus, the discriminator D is

asked to distinguish a positive ((p, q), zi) and negative pair ((p, q), z′i)) for each edge in gi.

D(gi, zi) =
∑

(p,q)∈Eπ

log f(hp, xq, zi), D(gi, z
′
i) =

Eπ∑
(p,q)

log f(hp, xq, z
′
i). (5.4)

There are two types of edges (p, q) in our consideration of node orders, type-a - the edges

across different hops (from the center node), and type-b - the edges within the same hop (from

the center node). The aforementioned BFS-based node ordering guarantees that Eq. 5.4 is

sensitive to the ordering of type-a edges, and invariant to the ordering of type-b edges, which

is consistent with the requirement of our theoretical analysis on ∆D. Due to the fact that

the output of a k-layer GNN only depends on a k-hop ego-graph for both encoders Ψ and Φ,

47

EGI can be trained in parallel by sampling batches of gi’s. Besides, the training objective of

EGI is transferable as long as (gi, xi) across source graph Ga and Gb satisfies the conditions

given in §5.2.2.

Connection with existing work. To provide more insights into the EGI objective, we also

present it as a dual problem of ego-graph reconstruction. Recall our definition of ego-graph

mutual information MI(gi,Ψ(gi, xi)). It can be related to an ego-graph reconstruction loss

R(gi|Ψ(gi, xi)) as

maxMI(gi,Ψ(gi, xi)) = H(gi)−H(gi|Ψ(gi, xi)) ≤ H(gi)−R(gi|Ψ(gi, xi)). (5.5)

When EGI is maximizing the mutual information, it simultaneously minimizes the upper

error bound of reconstructing an ego-graph gi. In this view, the key difference between EGI

and VGAE [89] is they assume each edge in a graph to be observed independently during

the reconstruction. While in EGI, edges in an ego-graph are observed jointly during the

GNN decoding. Moreover, existing mutual information based GNNs such as DGI [91] and

GMI [179] explicitly measure the mutual information between node features x and GNN

output Ψ. In this way, they tend to capture node features instead of graph structures, which

we deem more essential in graph transfer learning as discussed in §5.2.2.

Use cases of EGI framework. In this paper, we focus on the classical domain adaption

(direct-transferring) setting [171], where no target domain labels are available and transfer-

ability is measured by the performance discrepancy without fine-tuning. In this setting, the

transferability of EGI is theoretically guaranteed by Theorem 5.1. In §5.3.1, we validated

this with the airport datasets. Beyond direct-transferring, EGI is also useful in the more

generalized and practical setting of transfer learning with fine-tuning, which we introduced

in §5.3.2 and validated with the YAGO datasets. In this setting, the transferability of EGI

is not rigorously studied yet, but is empirically shown promising.

Supportive observations. In the first three columns of our synthetic experimental results

(Table 5.1), in both cases of transfering GNNs between similar graphs (F-F) and dissim-

ilar graphs (B-F), EGI significantly outperforms all competitors when using node degree

one-hot encoding as transferable node features. In particular, the performance gains over

the untrained GIN show the effectiveness of training and transfering, and our gains are al-

ways larger than the two state-of-the-art unsupervised GNNs. Such results clearly indicate

advantageous structure preserving capability and transferability of EGI.

48

5.2.2 Transferability analysis based on local graph Laplacians

We now study the transferability of a GNN (in particular, with the training objective of

LEGI) between the source graph Ga and target graph Gb based on their graph similarity.

We firstly establish the requirement towards node features, under which we then focus on

analyzing the transferability of EGI w.r.t. the structural information of Ga and Gb.

Recall our view of the GNN output as a combination of its input node features, fixed

graph Laplacian and learnable graph filters. The utility of a GNN is determined by the

compatibility among the three. In order to fulfill such compatibility, we require the node

features to be structure-respecting :

Definition 5.3 (Structure-respecting node features). Let gi be an ordered ego-graph cen-

tered on node vi with a set of node features {xip,q}
k,|Vp(gi)|
p=0,q=1 , where Vp(gi) is the set of nodes

in p-th hop of gi. Then we say the node features on gi are structure-respecting if xip,q =

[f(gi)]p,q ∈ Rd for any node vq ∈ Vp(gi), where f : G → Rd×|V (gi)| is a function. In the strict

case, f should be injective.

In its essence, Def 5.3 requires the node features to be a function of the graph structures,

which is sensitive to changes in the graph structures, and in an ideal case, injective to the

graph structures (i.e., mapping different graphs to different features). In this way, when the

learned graph filters of a transfered GNN is compatible to the structure of G, they are also

compatible to the node features of G. As we will explain in Remark 5.2 of Theorem 5.1,

this requirement is also essential for the analysis of EGI transferability which eventually only

depends on the structural difference between two graphs.

In practice, commonly used node features like node degrees, PageRank scores [180], spec-

tral embeddings [181], and many pre-computed unsupervised network embeddings [26, 27, 28]

are all structure-respecting in nature. However, other commonly used node features like

random vectors [164] or uniform vectors [182] are not and thus non-transferable. When raw

node attributes are available, they are transferable as long as the concept of homophily [183]

applies, which also implies Def 5.3, but we do not have a rigorous analysis on it yet.

Supportive observations. In the fifth and sixth columns in Table 5.1, where we use same

fixed vectors as non-transferable node features to contrast with the first three columns, there

is almost no transferability (see δ(acc.)) for all compared methods when non-transferable

features are used, as the performance of trained GNNs are similar to or worse than their

untrained baselines.

With our view of graphs and requirement on node features both established, now we

derive the following theorem by characterizing the performance difference of EGI on two

49

graphs based on Eq. 5.1.

Theorem 5.1 (GNN transferability). Let Ga = {(gi, xi)}ni=1 and Gb = {(gi′ , xi′)}mi′=1 be two

graphs, and assume node features are structure-relevant. Consider GCN Ψθ with k layers

and a 1-hop polynomial filter ϕ.

With reasonable assumptions on the local spectrum of Ga and Gb, the empirical perfor-

mance difference of Ψθ evaluated on LEGI satisfies

|LEGI(Ga)− LEGI(Gb)| ≤ O (∆D(Ga, Gb) + C) . (5.6)

On the RHS, C is only dependent on the graph encoders and node features, while ∆D(Ga, Gb)

measures the structural difference between the source and target graphs as follows,

∆D(Ga, Gb) = C̃
1

nm

n∑
i=1

m∑
i′=1

λmax(L̃gi − L̃gi′
) (5.7)

where λmax(A) := λmax(A
TA)1/2, and L̃gi denotes the normalised graph Laplacian of g̃i by

its in-degree. C̃ is a constant dependant on λmax(L̃gi) and D.

Proof. The full proof is detailed in Appendix of the paper. QED.

The analysis in Theorem 5.1 naturally instantiates our insight about the correspondence

between structural similarity and GNN transferability. It allows us to tell how well an EGI

trained on Ga can work on Gb by only checking the local graph Laplacians of Ga and Gb

without actually training any model. In particular, we define the EGI gap as ∆D in Eq. 5.7,

as other term C is the same for different methods using same GNN encoder. It can be

computed to bound the transferability of EGI regarding its loss difference on the source and

target graphs.

Remark 5.1. Our view of a graph G as samples of k-hop ego-graphs is important, as it

allows us to obtain node-wise characterization of GNN similarly as in [184]. It also allows us

to set the depth of ego-graphs in the analysis to be the same as the number of GNN layers

(k), since the GNN embedding of each node mostly depends on its k-hop ego-graph instead

of the whole graph.

Remark 5.2. For Eq. 5.1, Def 5.3 ensures the sampling of GNN embedding at a node always

corresponds to sampling an ego-graph from G, which reduces to uniformly sampling from

G = {gi}ni=1 under the setting of Theorem 5.1. Therefore, the requirement of Def 5.3 in

the context of Theorem 5.1 guarantees the analysis to be only depending on the structural

information of the graph.

50

Supportive observations. In Table 5.1, in the d̄ columns, we compute the average struc-

tural difference between two Forest-fire graphs (∆D(F,F)) and between Barabasi and Forest-

fire graphs (∆D(B,F)), based on the RHS of Eq. 5.6. The results validate the topological

difference between graphs generated by different random-graph models, while also verify-

ing our view of graph as k-hop ego-graph samples and the way we propose based on it to

characterize structural information of graphs. We further highlight in the δ(acc) columns

the accuracy difference between the GNNs transfered from Forest-fire graphs and Barabasi

graphs to Forest-fire graphs. Since Forest-fire graphs are more similar to Forest-fire graphs

than Barabasi graphs (as verified in the ∆D columns), we expect δ(acc.) to be positive and

large, indicating more positive transfer between the more similar graphs. Indeed, the behav-

iors of EGI align well with the expectation, which indicates its well-understood transferability

and the utility of our theoretical analysis.

Use cases of Theorem 5.1. Our Theorem 5.1 naturally allows for two practical use cases

among many others: point-wise pre-judge and pair-wise pre-selection for EGI pre-training.

Suppose we have a target graph Gb which does not have sufficient training labels. In the first

setting, we have a single source graph Ga which might be useful for pre-training a GNN to

be used on Gb. The EGI gap ∆D(Ga, Gb) in Eq. 5.7 can then be computed between Ga and

Gb to pre-judge whether such transfer learning would be successful before any actual GNN

training (i.e., yes if ∆D(Ga, Gb) is empirically much smaller than 1.0; no otherwise). In the

second setting, we have two or more source graphs {G1
a, G

2
a, . . .} which might be useful for

pre-training the GNN. The EGI gap can then be computed between every pair of Gi
a and Gb

to pre-select the best source graph (i.e., select the one with the least EGI gap).

In practice, the computation of eigenvalues on the small ego-graphs can be rather efficient

[185], and we do not need to enumerate all pairs of ego-graphs on two compared graphs

especially if the graphs are really large (e.g., with more than a thousand nodes). Instead, we

can randomly sample pairs of ego-graphs from the two graphs, update the average difference

on-the-fly, and stop when it converges. Suppose we need to sample M pairs of k-hop ego-

graphs to compare two large graphs, and the average size of ego-graphs are L, then the

overall complexity of computing Eq. 5.6 is O(ML2), where M is often less than 1K and

L less than 50. In Appendix, we report the approximated ∆D’s w.r.t. different sampling

frequencies, and they are indeed pretty close to the actual value even with smaller sample

frequencies, showing the feasible efficiency of computing ∆D through sampling.

Limitations. EGI is designed to account for the structural difference captured by GNNs

(i.e., k-hop ego-graphs). The effectiveness of EGI could be limited if the tasks on target

graphs depend on different structural signals. For example, as Eq. 5.7 is computing the

51

average pairwise distances between the graph Laplacians of local ego-graphs, ∆D is possibly

less effective in explicitly capturing global graph properties such as numbers of connected

components (CCs). In some specific tasks (such as counting CCs or community detection)

where such properties become the key factors, ∆D may fail to predict the transferability

of GNNs. In addition, we assume similar degree of homophily between two graphs when

applying EGI.

Table 5.1: Synthetic experiments of identifying structural equivalent nodes. We randomly gen-
erate 40 graphs with the Forest-fire model (F) [186] and 40 graphs with the Barabasi model (B)
[187], The GNN model is GIN [182] with random parameters (baseline with only the neighborhood
aggregation function), VGAE[89], DGI [91], and EGI with GIN encoder. We train VGAE, DGI
and EGI on one graph from either set (F and B), and test them on the rest of Forest-fire graphs
(F). Transferable feature is node degree one-hot encoding and non-transferable feature is uniform
vectors.

.

Method
transferable features non-transferable feature structural difference
F-F B-F δ(acc.) F-F B-F δ(acc.) ∆D(F,F) ∆D(B,F)

GIN (untrained) 0.572 0.572 / 0.358 0.358 /

0.752 0.883
VGAE (GIN) 0.498 0.432 +0.066 0.240 0.239 0.001
DGI (GIN) 0.578 0.591 -0.013 0.394 0.213 +0.181
EGI (GIN) 0.710 0.616 +0.094 0.376 0.346 +0.03

5.3 REAL DATA EXPERIMENTS

Baselines. We compare the proposed model against existing self-supervised GNNs and pre-

training GNN algorithms. To exclude the impact of different GNN encoders Ψ on transfer-

ability, we always use the same encoder architecture for all compared methods (i.e., GIN [182]

for direct-transfering experiments, GCN [7] for transfering with fine-tuning).

The self-supervised GNN baselines are GVAE [89], DGI [91] and two latest mutual infor-

mation estimation methods GMI [179] and MVC [188]. As for pre-training GNN algorithms,

MaskGNN and ContextPredGNN are two node-level pre-training models proposed in [77]

Besides, Structural Pre-train [99] also conducts unsupervised node-level pre-training with

structural features like node degrees and clustering coefficients.

Experimental Settings. The main hyperparameter k is set 2 in EGI as a common practice.

We use Adam [148] as optimizer and learning rate is 0.01. All baselines are set with the

default parameters. Our experiments were run on an AWS g4dn.2xlarge machine with

1 Nvidia T4 GPU. By default, we use node degree one-hot encoding as the transferable

feature across all different graphs. As stated before, other transferable features like spectral

52

and other pre-computed node embeddings are also applicable. We focus on the setting

where the downstream tasks on target graphs are unspecified but assumed to be structure-

relevant, and thus pre-train the GNNs on source graphs in an unsupervised fashion.7 In

terms of evaluation, we design two realistic experimental settings: (1) Direct-transfering on

the more structure-relevant task of role identification without given node features to directly

evaluate the utility and transferability of EGI. (2) Few-shot learning on relation prediction

with task-specific node features to evaluate the generalization ability of EGI.

5.3.1 Direct-transfering on role identification

First, we use the role identification without node features in a direct-transfering setting

as a reliable proxy to evaluate transfer learning performance regarding different pre-training

objectives. Role in a network is defined as nodes with similar structural behaviors, such

as clique members, hub and bridge [189]. Across graphs in the same domain, we assume

the definition of role to be consistent, and the task of role identification is highly structure-

relevant, which can directly reflect the transferability of different methods and allows us

to conduct the analysis according to Theorem 5.1. Upon convergence of pre-training each

model on the source graphs, we directly apply them to the target graphs and further train a

multi-layer perceptron (MLP) upon their outputs. The GNN parameters are frozen during

the MLP training. We refer to this strategy as direct-transfering since there is no fine-tuning

of the models after transfering to the target graphs.

We use two real-world network datasets with role-based node labels: (1) Airport [87]

contains three networks from different regions– Brazil, USA and Europe. Each node is

an airport and each link is the flight between airports. The airports are assigned with

external labels based on their level of popularity. (2) Gene [164] contains the gene interactions

regarding 50 different cancers. Each gene has a binary label indicating whether it is a

transcription factor.

The experimental setup on the Airport dataset closely resembles that of our synthetic

experiments in Table 5.1, but with real data and more detailed comparisons. We train all

models (except for the untrained ones) on the Europe network, and test them on all three

networks. The results are presented in Table 5.2. We notice that the node degree features

themselves (with MLP) show reasonable performance in all three networks, which is not

surprising since the popularity-based airport role labels are highly relevant to node degrees.

The untrained GIN encoder yields a significant margin over just node features, as GNN

7The downstream tasks are unspecified because we aim to study the general transferability of GNNs that
is not bounded to specific tasks. Nevertheless, we assume the tasks to be relevant to graph structures.

53

encoder incorporates structural information to node representations. While training of the

DGI can further improve the performance on the source graph, EGI shows the best per-

formance there with the structure-relevant node degree features, corroborating the claimed

effectiveness of EGI in capturing the essential graph information (i.e. recover the k-hop

ego-graph distributions) as we stress in §5.2.
When transfering the models to USA and Brazil networks, EGI further achieves the best

performance compared with all baselines when structure relevant features are used (64.55 and

73.15), which reflects the most significant positive transfer. Interestingly, direct application

of GVAE, DGI and MVC that do not capture the input k-hop graph jointly, leads to rather

limited and even negative transferrability (through comparison against the untrained GIN

encoders). The recently proposed transfer learning frameworks for GNN like MaskGNN

and Structural Pre-train are able to mitigate negative transfer to some extent, but their

performances are still inferior to EGI. We believe this is because their models are prone to

learn the graph-specific information that is less transferable across different graphs. GMI

is also known to capture the graph structure and node features, so it achieves second best

result comparing with EGI.

Similarly as in Table 5.1, we also compute the structural differences among three networks

w.r.t. the EGI gap in Eq. 5.7. The structural difference is 0.869 between the Europe and

USA networks, and 0.851 between the Europe and Brazil datasets, which are pretty close.

Consequently, the transferability of EGI regarding its performance gain over the untrained

GIN baseline is 4.8% on the USA network and 4.4% on the Brazil network, which are

also close. Such observations again align well with our conclusion in Theorem 5.1 that the

transferability of EGI is closely related to the structural differences between source and target

graphs.

On the Gene dataset, with more graphs available, we focus on EGI to further validate the

utility of Eq. 5.6 in Theorem 5.1, regarding the connection between the EGI gap (Eq. 5.7)

and the performance gap (micro-F1) of EGI on them. Due to severe label imbalance that

removes the performance gaps, we only use the seven brain cancer networks that have a more

consistent balance of labels. As shown in Figure 5.3, we train EGI on one graph and test it

on the other graphs. The x-axis shows the EGI gap, and y-axis shows the improvement on

micro-F1 compared with an untrained GIN. The negative correlation between two quantities

is obvious. Specifically, when the structural difference is smaller than 1, positive transfer is

observed (upper left area) as the performance of transferred EGI is better than untrained

GIN, and when the structural difference becomes large (> 1), negative transfer is observed.

We also notice a similar graph pattern, i.e. single dense cluster, between source graph and

positive transferred target graph G2.

54

Table 5.2: Results of role identification with direct-transfering on the Airport dataset. We report
mean and standard deviation over 100 runs. The scores marked with ∗∗ passed t-test with p < 0.01
over the second runners.

Method
Airport [87]

Europe USA Brazil

features 0.528±0.052 0.557±0.028 0.671±0.089
GIN (random-init) 0.558±0.050 0.616±0.030 0.700±0.082
GVAE (GIN) [89] 0.539±0.053 0.555±0.029 0.663±0.089
DGI (GIN) [91] 0.578±0.050 0.549±0.028 0.673±0.084
Mask-GIN [77] 0.564±0.053 0.608±0.027 0.667±0.073
ContextPred-GIN [77] 0.527±0.048 0.504±0.030 0.621±0.078
Structural Pre-train [99] 0.560±0.050 0.622±0.030 0.688±0.082
MVC [188] 0.532±0.050 0.597±0.030 0.661±0.093
GMI [179] 0.581±0.054 0.593±0.031 0.731±0.107
EGI (GIN) 0.592±0.046∗∗ 0.646±0.029 ∗∗ 0.732±0.078

source graph G4, d = 1.084 G2, d = 0.957

G1

G2

G6

G3
G4

G5

Figure 5.3: Transfer learning performance of role identification on the Gene dataset. We visualize
the source graph G0 and two example target graphs that are relatively more different (G4) or similar
(G2) with G0.

5.3.2 Few-shot learning on relation prediction

Here we evaluate EGI in the more generalized and practical setting of few-shot learning on

the less structure-relevant task of relation prediction, with task-specific node features and

fine-tuning. The source graph contains a cleaned full dump of 579K entities from YAGO

[190], and we investigate 20-shot relation prediction on a target graph with 24 relation types,

which is a sub-graph of 115K entities sampled from the same dump. In post-fine-tuning, the

models are pre-trained with an unsupervised loss on the source graph and fine-tuned with

the task-specific loss on the target graph. In joint-fine-tuning, the same pre-trained models

are jointly optimized w.r.t. the unsupervised pre-training loss and task-specific fine-tuning

loss on the target graph. In Table 5.3, we observe most of the existing models fail to

transfer across pre-training and fine-tuning tasks, especially in the joint-fine-tuning setting.

In particular, both Mask-GIN and ContextPred-GIN rely a lot on task-specific fine-tuning,

while EGI focuses on the capturing of similar ego-graph structures that are transferable

55

across graphs. The mutual information based method GMI also demonstrates considerable

transferability and we believe the ability to capture the graph structure is the key to the

transferability. As a consequence, EGI significantly outperforms all compared methods in

both settings.

Table 5.3: Performance of few-shot relation prediction on YAGO. The scores marked with ∗∗

passed t-test with p < 0.01 over the second best results.

Method
post-fine-tuning joint-fine-tuning

AUROC MRR AUROC MRR

No pre-train 0.687±0.002 0.596±0.003 N.A. N.A.
GVAE 0.701±0.003 0.601±0.007 0.679±0.004 0.568±0.008
DGI 0.689±0.011 0.586±0.025 0.688±0.012 0.537±0.023
MaskGNN 0.713±0.009 0.631±0.015 0.712±0.005 0.560±0.010
ContextPredGNN 0.692±0.030 0.662±0.030 0.705±0.011 0.575±0.021
GMI 0.728±0.005 0.625±0.009 0.721±0.007 0.643±0.011
Structural Pre-train OOM OOM OOM OOM
MVC OOM OOM OOM OOM
EGI 0.739± 0.009∗∗ 0.670±0.014 0.787 ± 0.011∗∗ 0.729 ± 0.016∗∗

5.4 SUMMARY

To the best of our knowledge, this is the first research effort towards establishing a the-

oretically grounded framework to analyze GNN transferability, which we also demonstrate

to be practically useful for guiding the design and conduct of transfer learning with GNNs.

For future work, it is intriguing to further apply EGI to real-world applications. We believe

a foundation model on molecular graphs can benefit from our approach regarding the defini-

tion of data distribution on k-hop ego-graph because lots of the target graphs share similar

node features (i.e. atoms) and similar structural patterns (i.e. small ∆D). Besides, it is also

important to protect the privacy of pre-training data to avoid potential negative societal

impacts.

56

CHAPTER 6: GRAPH-ENHANCED LANGUAGE MODEL FINE-TUNING

6.1 BACKGROUND

The rise of the academic search engines [191, 192, 193] greatly facilitate modern research

activities, which let researchers efficiently retrieve relevant work and researchers in related

problems. Platforms like Google Scholar, Semantic Scholar [191], PubMed [192] curate

massive amount of research publications and profiles. Meanwhile, there are thousands of

researchers share same or very similar first and last names. According to Google Scholar8,

there are at least 35 “James White” and 14 “Michael Jordan” create their profiles. When

new research paper authored by a common name, how to accurately perform name disam-

biguation remains an open problem.

1

Automatic atom type and bond type perception
in molecular mechanical calculations
2006 Journal of Molecular Graphics and Modelling
J Wang, W Wang, PA Kollman, DA Case
Keywords: Atom type perception; Bond type
perception; Antechamber; Residue topology

Efficient similarity joins for near-duplicate
detection
2011 ACM Transactions on Database Systems (TODS)
C Xiao, W Wang, X Lin, J Yu, G Wang
Keywords: similarity join, near duplicate detection

Cite
Co-author

Similar year Co-author
Similar topic

Text-Rich Bibliographical
Network

Wei Wang, UC Riverside
Citations: 154987

Keywords: energy storage energy conversion …

1. Integrative analysis of 111 reference human …
2. Automatic atom type and bond type perception
in molecular mechanical calculations

Wei Wang, UCLA
Citations: 64130

Keywords: data mining, machine learning, big data
1. Efficient similarity joins for near-duplicate ...
2. STING: A statistical information grid approach to
spatial data mining

...

Researcher Profiles

Figure 6.1: Illustration of Author Name Disambiguation

In our toy example (Figure 6.1), name disambiguation [68] aims to group publications of

same real-world entity into separate profiles given a surface name “Wei Wang”. Accurate

AND is the key component of bibliographic database, which support research profiling,

biobliometric calculation and etc.

To determine the real person of each mention in publications with the same name, the

common practice is to group document into different blocks based on same name string first;

Then people transform different features such as co-author and references of the document

into a dense vector; Finally they perform a hierarchical linkage-based clustering considering

8https://scholar.google.com/

57

pairwise similarity between documents in the same block. In these steps, representation

learning of documents is deemed to be crucial towards accurate AND. Given a document

pair, there are two main types of information that are important to the AND-specific repre-

sentation learning: (1) textual information: the similarity of the content and (2) relational

information: the relevance of the meta information such as co-authors, references, venues

and etc. Despite this problem has been studied for decades in literature [63, 65] there are

two disadvantages based on our observation.

Lack of Unified Modeling. Most of existing approaches only models textual similarity

or relations between documents. For example, GHOST [67] utilizes only coauthorship re-

lation and AMiner-AND [63] encode the text through contrastive learning. [65] started to

incorporates both factors into decisions through careful feature engineering. Yet, the possi-

ble correlation between textual and relational features between documents are not explored.

For example, considering textual similarity of two paper with multiple same references may

improve the accuracy.

Limited Out-of-domain Generalization. Recently, fine-tuning a pre-trained language

model is the de facto method for various text related applications. However, the task of

author name disambiguation requires accurate prediction on out-of-domain names. In our

experiment, we found traditional contrastive fine-tuning can not improve the pairwise accu-

racy when the supervision is limited. Our observation confirms those from a recent study

by [194].

As a response, we propose a novel framework GAND for author name disambiguation to

cope with the aforementioned challenges. In our framework, meta information and texts are

transformed into a text-rich bibliographical network as shown in the right side of Figure 6.1.

Furthermore, there are two major differences of GAND and existing AND algorithms: (1) A

unified representation learning module is consisted of a graph attention layer [11] and a pre-

trained language model [8], which learns graph attention model for neighbors regarding text

similarity derived from bottom PLM. In this way, noisy or less effective meta information

would not bias the model predictions. For example, paper from different authors still likely

cite popular or fundamental paper such as “BERT” and “Adam”. These meta-information

will hurt the accuracy of AND algorithms. Meanwhile, we still fine-tune the PLM to learn

domain-specific knowledge from training data. (2) A multi-task training objective is devised

to overcome the over-fitting issue of traditional supervised contrastive learning. Instead, we

learn a classification head for each name during training and this head can be interpreted as

cluster anchor embeddings. Consequently, it will not push embeddings of positive document

pairs very closely as long as they are classified to the same author. In our experiments,

58

we compare GAND with other AND algorithm and state-of-the-art fine-tuning language

model methods on two name disambiguation datasets. Our framework outperforms baselines

on four different clustering metrics by a clear margin. In addition, we observe consistent

improvements on other graph neural network and language model baselines by employing

the multi-task loss (see also Figure).

Our contribution could be summarized as: (1) we propose the an end-to-end framework

unifying textual and relational information; (2) a multi-task objective is invented for im-

proving the out-of-domain generalization; (3) Extensive experiments on two different AND

datasets demonstrates the effectiveness of GAND.

6.2 PROBLEM DEFINITION

Given a collection of academia publications D, we denoteA as the set of ambiguous author

names. In the following, a reference refers to a specific string name a, a block Da ⊂ D is the

set of publications under reference a. Each paper di ∈ Da is represented by a feature list

xi including title, abstract, co-author names, venue names, etc. We use I(di) to represent

the identity of paper i. Therefore I(di) = I(dj) if two paper di, dj are authored by the same

identity (i.e. real-world person). Assuming there are k different identities in blockDa, author

name disambiguation aims to partition Da into k disjoint clusters D1
a ∪ D2

a... ∪ Dk
a = Da.

In practice, an AND algorithm needs to be able to recognize different identities for names

that are absent in training data. Hereby, we formulate a multi-task learning AND problem,

which shares the same setting with most of the related work [63, 65].

6.3 METHOD

6.3.1 Framework Overview

The purpose of representation learning for author name disambiguation is to embed doc-

uments from same author closely such that off-the-shelf clustering can distinguish different

identities easily. However, most of the existing studies conduct pairwise or constructive learn-

ing on either textual semantics or structural attributes. [65] concatenate both attributes into

a feature vector ignoring the fact that structural attributes can be noisy.

As shown in Figure 6.2, given the token sequence {w1, ..., wt} of target document di, we

adopt mean pooling of last layer of token embeddings from a pre-trained PLM as intermediate

59

Input: Documents with
Neighbors

cite

same topic

cite

co-
aut

hor

co-author

Paper-855255571

Text-Rich Graph
ConstructionPaper-855255571

Reference: p-194249466, p-1591801644, ...

Author: reference a, a-2088648175, a-2461590334

Title: Fine-Tuning Graph-Enhanced LM

Abstract: Author name disambiguation (AND) serves

as a core component of modern academia search

system (e.g., google scholar, Microsoft) ...

...Transformer

[w1]

...

[w2][w3] [wn]

...

Transformer

[w1]

...

[w2][w3] [wn]

...

Transformer

[w1]

...

[w2][w3] [wn]

...

Target Document Neighbor Document

Graph Attention Layer

reference name a

Multi-Task Fine-Tuning
Classification Heads

(reference a,)

task a
task b
task c
task d
...

Transformer

GAT Layer

reference name b

...

Test Reference Block

Joint GNN-PLM Encoding

Multi-Task Fine-Tuning Inference on new
reference name

Profile 1
Profile 2

Profile 3 Profile n-1

Profile n

Figure 6.2: Framework Overview

document embedding hi = MEAN{h(l)1 , ..., h
(l)
t },

{h(l)1 , ..., h
(l)
t } = PLM{w1, ..., wt}, (6.1)

Our main intuition is that only relevant neighbors can help embed target documents

and textual similarity can filter out those irrelevant and noisy neighbors. In our previous

example, if neighbor document dj ∈ Ni (e.g. BERT) is less similar with di compared with

other neighbors, the weight of dj should be lower than others.

Therefore, we employ attention weights α following graph attention networks [11],

αi,j =
exp

(
σ
(
a⊤[Θhi ∥Θhj]

))∑
k∈N (i)∪{i} exp (σ (a

⊤[Θhi ∥Θhk]))
, (6.2)

where the activation function is LeakyReLU. The final representation of document di is,

zi = αi,iΘhi +
∑

j∈N (i)

αi,jΘhj. (6.3)

6.3.2 Multi-task GNN-PLM Fine-Tuning

The proposed GAND model turn textual and structural attributes into a unified rep-

resentation zi, while how to learn a generalizable attention parameters {Θ, a} as well as

fine-tuning PLM remains challenging.

In PLM fine-tuning, the distribution shifts between training and testing corpus can lead

60

to large performance gap [194]. In author name disambiguation, testing documents from

unseen names can vary a lot from training documents from topics to domains.

To alleviate the out-of-distribution challenge, we formulate the problem as a multi-task

learning problem, where each task UM is consisted of documents under same surface name

AM . Given a small amount of training task {U1, ...,UM}, each task disambiguates can-

didate documents {D1, ...,DM} of a specific author name {A1, ...,AM}. For each training

task, document and true author pairs (di, ai), ai ∈ AM are provided. In each testing task

{UM+1, ...,UN}, we will evaluate on the correctness of intra-cluster pairs (di, dj) by per-

forming a standardized agglomerative clustering.

During the training process, the model is encouraged to learn the commonalities between

different names instead of memorizing the patterns of training data. Given each training

sample as a triple of (document, author, task) as {di, ai,Ui}, we propose the following

multi-task learning loss,

L =
N∑
i=1

(
exp(WUi

ai
zi)∑|Ai|

j=1 exp(W
Ui
aj zi)

)
(6.4)

whereWUi ∈ R|Ai|×d is the task-specific parameter and zi is the normalized output of GAND.

We interpreting this objective as a prototype version of traditional contrastive learning

proposed for this task. Instead of contrasting with documents of other authors, the negative

samples in denominator are other candidate authors.

6.4 EXPERIMENTS

6.4.1 Evaluation Setup

Datasets. We evaluate the performance of author name disambiguation on two public

datasets: (1) AMiner [63] collects 600 ambiguous name references, about 203K documents

are published by these authors. For each publication, there are author names, venues and

keywords as meta information. (2) MAG-CS is a subset of Microsoft Academic Graph

(MAG) [193] in computer science domain.9 Each paper in MAG-CS contains its author,

venue, reference information. In order to create a challenging AND task, we choose ambigu-

ous references with at least three different real identities and each of them has at least five

publications between 2000 and 2020.

9MAG is a large-scale collection of scientific papers in multiple academic disciplines and we select papers
from top 105 venues in computer science.

61

Table 6.1: Overall Dataset Statistics

AMiner MAG-CS

Documents 203078 6895
Authors 6228 454

Edges 4.99M 63.6K
Co-author Edges 4.99M 62.2K

Cite Edges N/A 1463

Total References 600 125

Compared Methods. We compare GAND with existing AND algorithms, fine-tuning lan-

guage models and graph neural networks. These methods are: (1) AMiner-AND [63] learns

global document embedding through contrastive learning and local graph embedding in

document graph under each reference. (2) S2AND [65] construct pairwise linkage features

then train a gradient boosted trees (GBT) classifier to estimate the similarity between a

document pair. For pre-trained language models, we continue fine-tuning its checkpoints

using a triplet margin loss as of [195]. (3) SPECTER [195] is a citation-informed lan-

guage model pretraining method utilizing the citations between scientific documents. (4)

OAG-BERT [196] jointly encode scientific text and venue/author information with a entity-

augmented academic language model (5) SBERT [197] is state-of-the-art Sentence-BERT

algorithm that unified masked and permuted pre-training for language understanding tasks.

We also include two representative graph neural networks using Sentence-BERT encoded

representation as node features. (6) SBERT+SGC [140] simplifies the consecutive nolinear-

ities and weight matrices of traditional graph convolution networks [7] with best scalability.

(7) SBERT+GAT [11] employs attention between target and neighbor nodes in graph and

we also use this architecture in GAND. Similar with experiments in SPECTER [195], We

freeze the language model embeddings in these two methods because the OOM issue of fine-

tuning PLM when neighborhood size grows exponentially in GNNs. (8) GAND w.o. GNN is

a variant of our approach, in which we remove all neighbors in constructed text-rich graph.

(9) GAND w.o. multi-task replaces the multi-task loss in Equation 6.4 with a triplet margin

loss.

Evaluation Metrics. We evaluate the clustering results of different methods on publica-

tions from test references. Suppose test document di ∈ D, we denote the prediction ŷi as a

pair of reference identifier and cluster membership (ri, ci), and similarly the ground truth yi

as pair of reference identifier and real author id (ri, ai).

(1) Pairwise Micro-F1 is the harmonic mean of precision and recall between all predicted

62

pairs.

Prec =

∑
(i,j)∈S I(ri = rj ∧ ci = cj ∧ ai = aj)∑

(i,j)∈S I(ri = rj ∧ ci = cj)

Rec =

∑
(i,j)∈S I(ri = rj ∧ ci = cj ∧ ai = aj)∑

(i,j)∈S I(ri = rj ∧ ai = aj)
(6.5)

where S is the Cartesian product of all test documents S = D × D. Pairwise Micro-F1

measures the accuracy of all intra-cluster pairs in generated clusters (i.e. researcher profiles).

(2) Pairwise Macro-F1 [63] computes the average F1-score of each reference ri according

to Equation 6.5.

(3) B3 F1 [65] is another way to compute the F1 score across all of the predictions. If we

have total m clusters in test references, it computes precision and recall based intersection

between ground truth clusters A and predicted clustering C.
(4) Normalized Mutual Information (NMI) is a symmetric metric to measure the quality

of clustering results. We average the NMI score for each reference. Specifically, for reference

r ∈ R, the NMI score is,

NMI(r) =
2× I(Yr; Ŷr)

[H(Yr) +H(Ŷr)]
(6.6)

where Yr = {yi|ri = r} is the set of ground truth pairs under reference r, I is the mutual

information and H is the entropy.

Experiment Settings. The input of the compared algorithms are the same documents

and text-rich networks. On training references, we process the data follows refenrece im-

plementation of each method. On test references, we will evaluate the quality of document

embeddings by performing a same hierarchical clustering algorithm10. On AMiner dataset,

we run all methods under the default training (500 references) and test (100 references) for

five times. In addition, we separate 100 references from training set as validation. On MAG-

CS, we perform 5-fold cross validation under five different random seeds. In each round,

20%/20% of data is used for training and validation set. Following existing studies [63], we

use Macro-F1 on validation to select the best checkpoint for evaluation.

63

Table 6.2: Result of Author Name Disambiguation on two datasets. The scores marked with ∗∗

passed t-test with p < 0.01, ∗ passed t-test with p < 0.05 over the second runners.

Method
MAG-CS AMiner

Micro-F1 Macro-F1 B3 F1 NMI Micro-F1 Macro-F1 B3 F1 NMI

AMiner-AND 0.6198 0.6514 0.6720 0.5263 0.7191 0.6726 0.7126 0.6513

SPECTER 0.7058 0.6912 0.7268 0.5355 0.6907 0.6240 0.6601 0.5558
SBERT 0.6692 0.6749 0.7088 0.5223 0.6959 0.6286 0.6643 0.5586

SBERT+SGC 0.7260 0.7399 0.7631 0.6418 0.7383 0.6772 0.7295 0.6379
SBERT+GAT 0.7325 0.7392 0.7652 0.6368 0.7499 0.6971 0.7450 0.6405

GAND w.o. GNN 0.7035 0.6997 0.7283 0.5780 0.7510 0.6898 0.7228 0.6414
GAND 0.7502∗ 0.7594∗∗ 0.7798∗∗ 0.6723∗∗ 0.7580∗∗ 0.7053∗∗ 0.7481∗ 0.6375

6.4.2 Results

In Table 6.2, we show the performance of all compared algorithms. We report the sig-

nificance level of best result under each metric agains the second runner through two-tailed

student-t test.

First, we observe that document representations from pre-trained language models does

not outperform feature-based method (S2AND) and word embeddings (AMiner-AND) con-

sistently. Specifically, on the smaller dataset MAG-CS, all three language model based ap-

proaches are better than these two methods. On the contrary, their performances are worse

on AMiner because the overfitting issue is likely more severe when models are fine-tuned for

more steps.

Effect of the multi-task training objective. In section 6.3.2, we discussed the out-of-

domain challenge of fine-tuning PLMs for author name disambiguation and proposed a multi-

task training objective. Besides the performance improvements we observed in Table 6.2,

we apply the same objective on one PLM (i.e. SBERT) and GNN baselines. We have

two observations from Figure 6.3. (1) Multi-Task Fine-Tuning (Multi-FT) can improve the

performance of various baselines in most cases, but still worse than GAND. (2) On SBERT,

Multi-FT significantly boost the performance of SBERT on all measures, which confirms our

out-of-distribution observation in Section 6.3.2. Moreover, Multi-FT seems to a promising

objetive for the task of author name disambiguation with PLMs.

10https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

AgglomerativeClustering.html

64

(a) Micro-F1 (b) Macro-F1 (c) B3 F1 (d) NMI

Figure 6.3: Effect of Multi-Task Fine-Tuning Objective on Baselines.

(a) Effect of K on Micro-F1 (b) Effect of K on Macro-F1

Figure 6.4: Parameter study on the effect of attention and number of neighbors.

6.4.3 Parameter Study

Compared with PLMs, the additional complexity of GAND comes from the graph attention

layer as shown in Equation 6.2 and Figure 6.2. So we study the effect of neighborhood size

N and attention layer. Figure 6.4 shows the result of GAND by varying number of neighbors

and replacing attention with mean pooling. We find GAND is consistently better than

our variant without attention, which indicates the estimating the importance of different

neighbors benefits the task. In addition, GAND with more neighbors usually perform better

but not that significant. According to this result, we believe setting K = 5 in our main

experiment is reasonable.

65

CHAPTER 7: GRAPH-AWARE PARAMETER EFFICIENT TUNING OF
LARGE LANGUAGE MODELS

7.1 BACKGROUND

Graphs are ubiquitous in the real world [198]. In the past, graph structures have been

extensively explored and utilized in many machine learning applications [199, 200]. In many

practical cases, the nodes in graphs have textual features, known as Textual-Attributed

Graphs (TAGs) [116]. For example, in social media [201], nodes represent users and node

features are user profiles. Nodes in TAGs have both textual and structural data, which both

reflect their intrinsic properties. Combining textual and structural data to modeling TAGs is

an exciting new exploration for both graph machine learning and language modeling, which

can benefit the application of graphs.

In TAGs, a complex correlation exists between the structural and textual data of nodes.

Understanding this correlation can benefit the modeling of TAGs [202]. In Figure 7.1, user

“Bob” frequently browses daily news on social media, as evidenced by the descriptions in his

user profile. Users similar to Bob, who have many followers and often browse news nodes,

are also likely interested in news. In other words, a graph can supplement textual attributes

on a node through structural proximity. Graph Neural Networks (GNNs) are the de facto

machine learning models for leveraging textual information alongside graph structures in

TAGs. However, there’s a lack of a unified GNN architecture compatible with different

language models, especially the powerful foundation models.

Account: Bob
Profile:
I am a student who loves rugby
and reading news…
I am very popular on social
media.

Textual data Structural data

Textual semantic:
1. He like to read news.
2. He is popular.

Structural semantic:
1. Edge means two node
may share same interests.
2. High in-degree means a
node may be popular

Figure 7.1: Correlation between structural and textual data of nodes in social networks.

66

Recently, there has been a surge in studies investigating effective ways to model both

textual and structural data in TAGs. Some of these studies emphasize optimizing a cascading

architecture that combines GNNs and LMs (cascading GNN-LMs) [116, 117]. One major

challenge with these models is the extreme amount of additional computational cost brought

by the message-passing mechanism. To this end, several studies have successfully reduced

the memory and computational overheads of such cascaded models by freezing partial or

full parameters of the backbone language models [112, 115]. Large language models exhibit

superior multi-task and few-shot learning capabilities across a wide spectrum of real-world

applications [110]. However, when considering cascading GNN-LMs, existing techniques

cannot be scaled up to billion-scale models like Llama 2 [118] and GPT-3 [110]. Another

pioneering research has ventured to fine-tune language models using unsupervised graph

information (self-supervised GNN-LMs) [113, 114]. For instance, GIANT [113] fine-

tunes language models through a neighbor prediction task, subsequently using the refined

language model to extract node representations for downstream tasks. These studies have

conclusively shown that graphs can indeed aid language models in comprehending textual

information. However, they separate the training of GNNs and LMs, potentially leading to

sub-optimal graph-aware tuning results.

Instead of using graph information as supervision, we believe graph structure can enrich

textual features through language modeling. In our previous example, structural proximity

can be used to infer the user’s preference even if he or she does not mention it in the profile.

While cascading GNNs and LLMs prove infeasible for training, we draw inspiration from

works on parameter-efficient tuning of LLMs to harness the power of large language models

on TAGs [128, 129, 203] Therefore, we propose the use of GNNs as adapters for LLMs (i.e.,

GraphAdapter) offering several advantages:

• Lightweight: An GNN adapter introduces fewer than 1% of the trainable parameters

compared to the popular Llama 2-7B model.

• Convenience: Given a pre-trained LLM and unlabeled graph, one can seamlessly

integrate a graph-specific adapter for multiple graph applications.

• Graph-aware tuning: This enhances the predictive accuracy of the fine-tuned model

by leveraging graph structures.

Now we present the details of GraphAdapter with respect to pre-training and fine-tuning

of the adapter GNNs. To capture the data distribution of the graph, we employ parameter-

efficient tuning of LLMs on node texts. This approach is similar to the continual training

67

of language models [204] except GNN is the tuning parameter, which helps reduce the dis-

tribution discrepancy between the pre-training corpus and target data. To further improve

the efficiency, we employ the GNN adapter only at the transformer’s last layer and imple-

ment residual learning for autoregressive next token prediction. Different from a traditional

adapter, we perform mean-pooling on the hidden representations from a GNN adapter and

LLMs, then optimize the adapter to improve the next-word prediction of the LLMs. Once

the adapter is trained, one can use GraphAdapter together with the backbone LLMs on var-

ious downstream tasks. For instance, we use a classification head atop the embeddings of

the last token to fine-tune for node classification.

To verify the effectiveness of GraphAdapter, we conduct extensive experiments on multiple

real-world TAGs including social and citation networks.

GraphAdapter achieves an improvement of 4.7% over state-of-the-art cascaded GNN-LM

methods and 5.4% over self-supervised GNN-LMs on average, with 30X fewer training pa-

rameters and storage.

Moreover, once GraphAdapter is pre-trained, it can be conveniently fine-tuned for various

tasks. Our ablation analysis shows that the pre-training step consistently improves the

model performance across different graphs. We summarize our contributions as follows,

• GraphAdapter is a novel approach that harnesses the large language models on graph

structure data with parameter-efficient tuning.

• We propose a residual learning procedure to pre-train the GNN adapter with the LLMs.

The pre-training step significantly improves the fine-tuning performance of GraphAdapter.

• We conduct extensive experiments on large-scale TAGs using state-of-the-art open-sourced

large language models (GPT-2 1.5B [205] and Llama 2 13B [118]). The results demonstrate

that Graph-Adapter can also reap the benefits of a larger model.

7.2 PROBLEM DEFINITION

Before introducing the proposed method, it’s important to understand some basic con-

cepts and the background of pre-trained language models, graph neural networks, and text-

attributed graphs.

7.2.1 Pretrained Language Model

Textual data. Textual data can be formulated as D = {d1, d2...dK}. It can be tokenized

into a sequence of tokens S = {s1, s2, ..., sL}, where si represents a specific token-id. In

68

most cases, the first token in the sentence (i.e., s0) is [CLS], indicating the beginning of this

sentence.

Framework of PLMs. A PLM consists of a multi-layer transformer encoder that takes a

sentence Si as input and outputs the hidden states of each token:

Transformer({si,0, ..., si,L}) = {hi,0, ..., hi,L}, (7.1)

where hi,k is the dense hidden state of si,k.

Pre-training of PLMs. This paper uses the auto-regression task as an instance of pre-

training, which is commonly applied to auto-regressive PLMs [109]. Given a sequence S =

{s0, ..., sL}, the goal is to model the joint probability of the sequence P (S).

P (S) =
L∏

k=1

p(si|s0, ...sk−1) (7.2)

The transformer block is used to model these conditional probabilities. More specifically, at

time step k (0 < k ≤ L), the transformer receives {s0...sk−1} and outputs their hidden states

{hi,0, ..., hi,k}. The hi,k are used to predict the probability distribution of the next token.

p(si|s0, ...sk−1) = ŝk = σ(Head(hi,k)) (7.3)

The model parameters are trained to maximize the likelihood of p(S), which is equivalent to

minimizing the negative log-likelihood. Therefore, the loss function is:

LLM =
L∑

k=1

CrossEntropy(sk, ŝk) (7.4)

Sentence representation. Given a sentence S with length L, its sentence representation

W can be obtained by three methods [206, 207]: (1) first token representation, which uses

the hidden state of the [CLS] token (hi,0) as sentence representation. (2) mean-pooling

representation, which is obtained by mean-pooling of all hidden states (i.e., Pool({h0...hL})).
(3) last token representation, which uses the hidden state of the last token.

PLMs with prompts. Due to the gap between pretraining tasks and downstream tasks,

sentence representation may be hard to contain all the sentence information, thereby re-

quiring fine-tuning for specific tasks. To address this issue, some studies utilize prompts

to extract task-specific sentence features [208]. For example, suppose a Si is a paper titled

“Llama 2: Open Foundation and Fine-Tuned Chat Models”, and the task is to classify the

69

subject of it belongs. We can add some prompts to the sentence:

{[Title], this, paper, belong, to, which, subject?} (7.5)

We denote this new sentence with the prompt inserted as Si|P, where P represents the newly

inserted tokens. We use the hidden state of the last token as the sentence representation,

denoted as Wi|P. Since the last token is used to predict the next token distribution in the

pre-training stage, it can naturally combine the inserted prompt information into the original

sentence and extract the prompt-related semantics. Extensive studies [203, 209] show that

using prompts can reduce the gap between PLMs and downstream tasks and maximize the

utilization of knowledge learned by PLMs during pre-training.

7.2.2 Graph Neural Network

Graph Neural Networks (GNNs) have achieved remarkable success in modeling graphs

[11, 210]. The message-passing framework is a commonly used architecture of GNN.

Graph. Let G = {V,A} denote a graph, where V is the node set and A is the adjacency

matrix, with Aij = 1 meaning there is an edge between node i and node j. Usually, each

node i is associated with a node feature x0i .

Framework of GNN. The message-passing framework takes a set of node features X =

{x0i |i ∈ V }, and an adjacency matrix A as input and iteratively captures neighbors’ informa-

tion via pooling. More specifically, for a given node i ∈ V in the l-th layer of message-passing,

it can be formulated as:

xli = f2(Pool{f1(xl−1
j |θl1)|j ∈ Ni}, xi|θl2) (7.6)

where Pool{·} is an aggregation function that combines the features of neighboring nodes,

such as mean-pooling. And Ni denotes the set of neighbors of node i. Besides, f1(·|θl1)
and f2(·|θl2) denote two trainable transformations with parameters θl1 and θl2 respectively.

Further, we denote an lmax layer message-passing framework as GNN, formally:

zi = GNN(x0i ,X 0, A|Θg) (7.7)

where zi = xlmax
i , and Θg represents all the trainable parameters in the GNN. We use zi as

the structural representation for node i.

70

7.2.3 Text-Attributed Graph

Let G = {V ,A} denote a text-attributed graph, where V is the node set and A is the

adjacency matrix. Each node i ∈ V is associated with a tokenized textual data, represented

by Si = {si,0, ..., si,Li
}, which represents the textual data of the node.

Problem Definition: Give a text-attributed graph G, the problem this paper focuses

on is how to efficiently utilize the unlabeled textual data {Si|i ∈ V} in G to enhance the

modeling of G by parameter efficient tuning of PLMs. Differing from in-context learning on

graphs, the motivation behind this research is to leverage LLMs for representation learning.

In other words, potential users will have ownership of the model.

7.3 METHOD

This section introduces the proposed framework, referred to as GraphAdapter, which uses

GNNs as adapters for LLMs to better model TAGs.

7.3.1 Overview

The core idea of GraphAdapter is: (1) combining GNNs as adapters to LMs. (2) pre-

training GNN to align with LMs and enhance LMs through unlabeled textual data.

Motivation: In the textual data of TAGs, many structure-related semantics are hard to

infer from context alone. As illustrated in the example in Figure 1, we can easily infer that

this user is “popular” based on his degree in the social network, but it is difficult to infer

from their description of habits alone. Combining structural information can enhance lan-

guage models’ ability to model these structure-related semantics in TAGs. Meanwhile, the

process of enhancement is learning how to model structure. Therefore, the proposed method

GraphAdapter, which first uses GNN as adapters for frozen PLMs, to combine structural

information with PLMs, and then pre-trains them through the semantic understanding task

on TAGs.

Language-structure pre-training: In the field of natural language processing, pre-training

is a common strategy used to self-supervised enhance language models’ ability for seman-

tic understanding, with techniques such as auto-regressive pre-training (e.g., GPT-2/3 [109,

110], Llama 2 [118], etc.) and auto-encoding pre-training (e.g., BERT[211], RoBERTa[106],

71

etc.). Following our motivation, GraphAdapter uses the same pre-training task as these

PLMs. To facilitate comprehension, this section only discusses GraphAdapter based on

auto-regressive pre-training, and further details on how GraphAdapter is combined with

other pre-training tasks can be found in the appendix. Since the pre-training process uses

the context semantic to supervise structure learning, we refer to this pre-training as language-

structure pre-training.

[I love sports and reading]

GNN
Sentence

representation

Graph Struture

PLM-Transformer

Fuse PLM-
Head

[I love sports and] [reading]
Generative task

[I love sports and reading]

GNN
Sentence

representation

Graph Struture

PLM-Transformer

Fuse

[based on this profile, this user is ?]

Add prompts
[“I love sports and reading”,

based on this profile, this user is ?]

Which account is a
student account

(a) pre-training stage

(b) fine-tuning stage

New-
Head

GNNTrainable block Fuse Frozen block PLM-Transformer/head

Super-
vise

This is a news
account

I love sports
and reading.

Downstream
task

Text-attributed Graph

Task-specific prompts
Ground-truth
in this task

0.4
0.2
0.4

Structural
representation

Context
Hidden states

Node
Emedding sport�

reading�
News�

0.1
0.3
0.2

ŏ …

New-Head

For the same node in fine-tuning stage

Structural
representation

Context
Hidden states

PLM-
Head

Node
Emedding

Residual

Super-
vise

Figure 7.2: Framework of GraphAdapter. In the pre-training stage, Step 1. GNN models the node
structure information, Step 2. integrates the structural information with the corresponding text
fragment encoded by LM, and Step 3. predicts the masked token.

Framework: The framework of GraphAdapter is shown in Figure 7.2 (a). We also show how

to fine-tune GraphAdapter on the downstream tasks in Figure 7.2 (b), we detail this part

in Section 4.3. Given the textual data and graph structural data of a node, during the pre-

training process, Step 1. GNN models the node structure information; Step 2. integrates the

structural information with the corresponding context hidden-states modeled by PLM; and

Step 3. predicts the next token. During this pre-training process, GraphAdapter can learn

rich information. Align GNN with the language model. During the learning process,

the node representation obtained by GNN is constantly combined with different representa-

tions modeled by the language model for reasoning, and the entire process naturally aligns

these two. Enhance GNN in modeling graph structure. During the entire pre-training

stage, the semantic information in the textual data supervises the GNN to model the graph

structural information. Better understanding the semantics in TAG. GraphAapter

can learn how to combine LLM and GNN to model the semantic information on TAG.

72

7.3.2 Pre-training on TAGs

In the training stage, GraphAdapter uses the textual data of each node in TAG to train

GNN.

Pipeline of pre-training: Given a text-attributed graph G, node i and its textual data

Si = {si,0, ..., si,Li
}, GraphAdapter uses all the tokens in Si as supervision. For the k-th

token, GraphAdapter first extracts its previous tokens Si,k = {si,0, ..., si,k−1}. Then, GNN

models node i’s structure information zi. The structure information is then combined with

the previous tokens to predict the probability distribution of the next token, where the

ground truth is token si,k.

Structural representation: GraphAdapter obtains its structural features zi through GNN.

Here we use a general GNN based on the message-passing framework, which continuously

aggregates neighbor features to obtain the new node’s structural information. For whole

process is formalized as:

zi = GNN(x0i ,X ,A|Θg) (7.8)

where x0i and A represent the initial node feature input and adjacency matrix in GNN,

respectively. This paper used the sentence representation of the corresponding node as x0i .

See more details about GNN in Section 3.2.

Context hidden-states. GraphAdapter use the pre-trained transformer in PLM to en-

code Si,k, it is formalized as:

hi,k = Transformer({si,0, si,1, ..., si,k−1}) (7.9)

Where the Transformer’s parameters are trained in frozen, and hi,k is the context hidden-

states Si,k. Note that in the pretraining stage of PLM, hi,k is directly used to predict the next

token, so hi,k contains both the context information and a certain of PLMs’ prediction result.

Fusion block: GraphAdapter next fuse structural representation into context hidden-states,

which is formalized as:

ri,k = Fusion(hi,k, zi|Θfuse), (7.10)

The Fusion(∗) function is trainable with parameters Θfuse. In this paper, MLPs are used

as the structure of fusion. The process involves concatenating hi,k and zi, and then feeding

the resulting vector into MLPs.

73

Residual connection: the fused ri,k contains both structure information and context infor-

mation. However, not every token’s prediction requires the graph structure. For example, in

the sentence ”This paper focuses on graphs,” the word ”on” is simply a fixed collocation and

easily inferred by context. Intuitively, words related to graph structure should be difficult

for the language model to predict based on context. Therefore, the results of pre-trained

language models are reused. We separately calculated the prediction probabilities of the

language model alone and the probabilities that mixed the graph structure and the previous

predictions. The two probabilities are then averaged to obtain the final prediction result.

Formally:

ŝLMi,k = σ(Head(hi,k)), ŝ
GNN
i,k = σ(Head(ri,k)) (7.11)

ŝALL
i,k = (ŝLMi,k + ŝGNN

i,k)/2 (7.12)

Where σ denotes the softmax function. Adding the original language model prediction re-

sults allows GNN to focus more on words that the language model cannot understand well.

Optimization: Our goal is to minimize the cross-entropy loss between the predicted prob-

ability distribution and the ground-truth distribution. Formally,

Li,k = CrossEntropy(ŝALL
i,k , si,k) (7.13)

min
Θg ,Θfuse

∑
i∈V

∑
k∈Si

Li,k (7.14)

Note, only GNN(∗|ΘG) and Fusion(∗|Θfuse) of GraphAdapter are trainable in whole pre-

training.

GNN as Adapter: In the whole pre-training stage, the GNN combines with the frozen

LM’s hidden states outputted from the transformer block. The combined hidden states are

then input into the PLM’s prediction head. Thus, the GNN acts as an adapter, altering

the language model’s predictions. Since the hidden states outputted by the transformer

block can be pre-processed and stored in advance. Therefore, the entire training process

only requires training the GNN. Therefore, GraphAdpater can efficiently pre-train based on

different scales of PLMs.

74

Table 7.1: Statistics of experiment datasets.

Dataset # Nodes # Edges # Tokens Split ratio (%) #Class Metric
Arxiv 169,343 1,166,243 35,920,710 54/18/28 40 Accuracy

Instagram 11,339 144,010 579,263 10/10/80 2 ROC-AUC
Reddit 33,434 198,448 6,748,436 10/10/80 2 Accuracy

7.3.3 Fine-tuning with prompts

The pipeline is shown in Figure 7.2 (b). GraphAdapter is pre-trained by token-level

semantic understanding tasks. To better utilize the learned knowledge of GraphAdapter and

the PLMs in downstream tasks, we further proposed prompt-aware fine-tuning. It inserts

prompts in textual data to get task-specific sentence embedding of each node. Prompts can

transform various downstream tasks on TAGs into next token prediction. E.g., the task

“Which account is a student account” can be transformed by a next-token prediction task,

“[context], based on this profile, this user is ”. In the pre-training stage, GraphAdapter

has learned how to utilize the structural information captured by GNN to enhance the

accuracy of next-token prediction, therefore, under the transformed downstream task can

better utilize the learned knowledge from pre-training. Formally, given textual data Si of

node i, we can combine a sequence of tokens with task-specific prompts behind textual data,

namely, Si|P = [Si,P], then we can get its sentence hidden states hi|P through the transformer

of PLM. The resulting hidden state is then fused with the node’s structural representation

as node representation in a specific downstream task.

ri|P = Fusion(hi|P, zi) (7.15)

This node representation can be used in various tasks. For example, in the node classification,

we can append a new linear transformation to output the result, i.e., ŷi|P = f(ri|P|θnew). In
fine-tuning stage, the whole parameters {Θg,Θfuse, θnew} in GraphAdapter are trainable.

7.4 EXPERIMENT

To comprehensively validate that GraphAdapter can mine the intrinsic correlation between

the textual and structure data in TAGs, we conduct extensive experiments on three real-

world datasets from diverse domains.

Our experiments aim to answer the following five questions:

• Q1 : How well is GraphAdapter in modeling TAGs?

75

• Q2 : Whether GraphAdapter can adapt to other PLMs?

• Q3 : Are all components comprising GraphAdapter valid?

• Q4 : What exactly does GraphAdapter’s pre-training learn?

• Q5 : How efficient is GraphAdapter?

7.4.1 Experiment setup

Dataset. We select three public and real-world datasets used for evaluation: Ogbn-

arxiv[132]: Ogbn-Arxiv (shorted as Arxiv), is a citation network where edges represent

citation relationships, nodes represent papers and the text attribute is the abstracts of pa-

pers. The task on this graph is to predict paper subjects. Instagram[201]: Instagram is

a social network where edges represent following relationships, nodes represent users, and

the prediction task is to classify commercial and normal users in this network. The text

attribute is the user’s profile. Reddit11: Reddit is also a social network where each node

denotes a user, the node features are the content of users’ historically published subreddits,

and edges denote whether two users have replied to each other. The prediction task is to

classify whether a user is in the top 50% popular (average score of all subreddits). Table 7.1

shows detailed statistics of these datasets.

Baselines. We compare the proposed GraphAdapter with several state-of-the-art TAG

modeling methods.

• GNN-based methods: This method directly combines different frozen PLM with GNNs

to model TAGs. Since the specific GNN framework is not the key point this paper focuses

on, this paper uses GraphSAGE [10] as an instance of GNN.

• LM-based methods: we select GIANT [113, 117], and GLEM as baseline. GIANT use

self-supervised task to finetune PLM. Then incorporates the fine-tuned PLM and GNN to

model TAG. GLEM jointly trains PLM and GNN. Note, GIANT is based on BERT, and

GLEM uses DeBERTa. Considering PLMs have a high influence on performance, we also

compare GraphAdapter with them under the same PLM.

• LLM-based methods: There are a few LLM-based methods that are suitable in our

setting. Therefore, we select TAPE [124] as the LLM-based baseline. This method, due

11https://convokit.cornell.edu/documentation/subreddit.html

76

to its need to obtain the interpretation of the text graph through GPT-3.5 and only the

interpretation data on Arxiv is published. Therefore, we only report the results of this

method on Arxiv.

Since many baseline methods involve GNN components, which are mostly optional, and con-

sidering that different GNNs have different performances. To make a fair comparison and

without loss of generality, all GNNs used in all baselines are fixed to GraphSAGE, which is

a classic and general GNN model.

Prompts. Since GraphAdapter involves prompts, to make a fair comparison, we also en-

hance the baselines with prompts. We provide detailed records of the prompts used in

different experiments and how prompts are added to the baselines in the appendix. Mean-

while, we also validate the stability of our method with different prompts, and the experiment

results can be found in the appendix. However, since prompts are not the main contribu-

tion of our method, this paper does not explore prompt methods such as soft-prompt and

chain-of-thought in detail.

Table 7.2: The performance of different methods across three datasets. Each row corresponds

to a specific method, and each column presents the performance of the models on a particular

dataset. The evaluation metric used is accuracy for the Arxiv and Reddit datasets, and ROC-AUC

for Instagram. The LM employed in each method is indicated in parentheses.

Arxiv Instagram Reddit

LM

GNN (Ogb-feature) 0.6980 (0.0013) - -
GNN (RoBERTa) 0.7129 (0.0013) 0.6123 (0.0063) 0.6191 (0.0043)

GNN (RoBERTa+Prop) 0.7067 (0.0011) 0.6138 (0.0117) 0.6198 (0.0036)

GIANT (BERT) 0.7262 (0.0011) 0.5986 (0.0022) 0.6379 (0.0045)

GIANT (BERT+Prop) 0.7252 (0.0012) 0.6029 (0.0123) 0.6348 (0.0039)

GLEM1 (DeBERTa) 0.7550 (0.0024) - -
GLEM (DeBERTa) 0.7355 (0.0034) 0.6166 (0.0056) 0.6228 (0.0060)

GLEM (DeBERTa+Prop) 0.7315 (0.0033) 0.6105 (0.0038) 0.6221 (0.0052)

LLM
GNN (Llama 2) 0.7305 (0.0020) 0.6221 (0.0112) 0.6320 (0.0041)

GNN (Llama 2+Prop) 0.7336 (0.0018) 0.6312 (0.0051) 0.6324 (0.0033)

TAPE (GPT-3.5) 0.7672 (0.0007) - -

Ours
GraphAdapter (w/o Pre) 0.7648 (0.0020) 0.6351 (0.0077) 0.6284 (0.0025)

GraphAdapter 0.7707 (0.0015) 0.6513 (0.0075) 0.6461 (0.0019)

12performance reported in [117]

77

7.4.2 Performance

Q1 : How well is GraphAdapter in modeling TAGs?

A1 : GraphAdapter can effectively model TAGs and surpass current state-

of-the-art baselines on node classification tasks. We compare GraphAdapter with 6

state-of-the-art baselines on 3 different real-world datasets to evaluate its effectiveness. As

Table 7.2 shows, the experiment results suggest:

(1) Frozen LLMs are effective on TAGs. In general, frozen LLMs have an improved perfor-

mance compared to the previous frozen LM. Experiment results show Llama 2 has improved

performance on 3 datasets by 1.34% compared to RoBERTa-based methods. LLM can bet-

ter combine the information in prompts to extract task-relevant sentence representations of

nodes. As the results show, prompts can bring a 0.42% improvement on average for LLM,

but they could not improve the performance of LM. Frozen LLMs with prompt can sur-

pass many GNN-LM methods that require tuning LM. Results also show that LLMs with

prompts can surpass GLEM and GIANT by 0.43% and 0.79% on average, respectively.

(2) Directly fusing GNN and LLM results in unstable improvements. Compared to ordi-

nary GNN, GraphAdapter (w/o Pre) only adds one fusion component to fuse the semantic

representation from the LM and structural representation from the GNN. Experiment re-

sults show that directly fusing language model representations only brings improvements

on Arxiv, but not obviously on other datasets. Note that the Arxiv training samples are

much larger than the other datasets. This result suggests that training samples may have

an impact on GNNs to understand and effectively incorporate the representations inferred

by LLMs with prompts.

(3) GraphAdapter can effectively combine GNN and LLM, surpassing existing state-of-the-

art baselines in terms of performance. The pre-training effect of GraphAdapter is significant,

bringing an average performance improvement of 1.98% and thus surpassing existing state-

of-the-art baselines. Specifically, GraphAdapter achieves an improvement of 4.72% over

state-of-the-art cascaded GNN-LM methods and 5.40% over self-supervised GNN-LMs on

average. At the same time, GraphAdapter also surpasses TAPE, another LLM-based method

on Arxiv by 0.4% accuracy improvement.

Table 7.3: The performance of the GraphAdapter based on different LM across three datasets.

Arxiv Instagram Reddit
RoBERTa GPT2 Llama 2 RoBERTa GPT-2 Llama 2 RoBERTa GPT-2 Llama 2

GNN (PLM) 0.7129 (0.0013) 0.7174 (0.0019) 0.7305 (0.0022) 0.6123 (0.0063) 0.6019 (0.0124) 0.6221 (0.0112) 0.6191(0.0043) 0.6282 (0.0036) 0.6320 (0.0041)

GNN (PLM+Prop) 0.7067 (0.0011) 0.6915 (0.0021) 0.7336 (0.0027) 0.6138 (0.0117) 0.6128 (0.0014) 0.6312 (0.0051) 0.6198 (0.0036) 0.6206 (0.0011) 0.6324 (0.0033)

GraphAdapter (w/o Pre) 0.7069 (0.0026) 0.7146 (0.0025) 0.7648 (0.0020) 0.6165 (0.0038) 0.6162 (0.0066) 0.6351 (0.0077) 0.6210 (0.0036) 0.6284 (0.0027) 0.6369 (0.0025)

GraphAdapter 0.7273 (0.0021) 0.7325 (0.0022) 0.7707 (0.0015) 0.6292 (0.0033) 0.6276 (0.0034) 0.6508 (0.0033) 0.6379 (0.0061) 0.6441 (0.0022) 0.6461 (0.0019)

Q2 : Whether GraphAdapter can adapt to other PLMs?

78

Table 7.4: The performance of different methods using the same LMs across three datasets.

Arxiv Instagram Reddit

GNN (BERT) 0.7039 (0.0013) 0.5973 (0.0063) 0.6061 (0.0043)

GIANT (BERT) 0.7269 (0.0021) 0.5986 (0.0022) 0.6379 (0.0045)

GraphAdapter (BERT) 0.7264 (0.0012) 0.6156 (0.0032) 0.6366 (0.0034)

GNN (RoBERTa) 0.7129 (0.0013) 0.6123 (0.0063) 0.6191 (0.0043)

GLEM (RoBERTa) 0.7308 (0.0029) 0.6114 (0.0075) 0.6228 (0.0018)

GraphAdapter (RoBERTa) 0.7273 (0.0021) 0.6276 (0.0034) 0.6379 (0.0061)

A2 : GraphAdapter can be effectively pre-trained based on RoB-ERTa, GPT-

2, and Llama 2, resulting in performance improvements. We run GraphAapter

based on 3 different LM. The experiment results are shown in Table 7.3. GraphAdapter

improved average performance over directly combining GNNs with frozen PLM by 1.67%

on RoBERTa, 1.89% on GPT-2, and 2.77% on Llama 2. Meanwhile, GraphAdapter pre-

training brings 1.67%, 1.50%, and 1.02% improvements on RoBERTa, GPT-2, and Llama

2 respectively. This result fully demonstrates that GraphAdapter is a general and

scalable method. It is worth noting that the pre-training method of RoBERTa is different

from others. GraphAdapter uses a pre-training task similar to RoBERTa, so there are some

slight differences from the formula in Section 4. The main differences come from the loss

function and language model inputs. We describe the details of applying GraphAdapter on

Roberta in the appendix.

Under the same PLM, the performance of GraphAdapter is comparable to

the SOTA baselines based on fine-tuning the PLM. We evaluate the performance

difference between GraphAdapter and SOTA baselines under the same LM. Since the GLEM

adopted DeBERTa, however, the pre-training code of DeBERTa is not open-sourced at

present. To keep consistent, GraphAdapter and GLEM both adopt the same RoBERTa-

base. As shown in Table 7.4, the experiment results suggest that methods based on pre-

training like GIANT and GraphAdapter perform better on small datasets like Instagram and

Reddit. Similarly, Roberta-based GraphAdapter outperforms GLEM by 1.57% and BERT-

based GIANT outperforms GLEM by 1.15% on small datasets. Compared to baselines

based on pre-training, although GIANT fine-tunes the LM, its performance is 0.51% lower

than GraphAdapter on average. Therefore, overall, even without fine-tuning the LM, the

performance of GraphAdapter is comparable to current state-of-the-art baselines based on

fine-tuning the LM.

79

Table 7.5: The performance of GraphAdapter when various components are removed. The eval-

uation metrics used for these tests align with those described above. The term ’w/o’ indicates the

removal of a specific component from the GraphAdapter.

Arxiv Instagram Reddit

w/o Pretraining 0.7648 (0.0020) 0.6392 (0.0086) 0.6369 (0.0025)

w/o Graph structure 0.7604 (0.0024) 0.6346 (0.0074) 0.6147 (0.0012)

w/o Res label 0.7605 (0.0013) 0.6408 (0.0130) 0.6363 (0.0036)

w/o task-specific prompt 0.7594 (0.0030) 0.6364 (0.0073) 0.6430 (0.0021)

GraphAdapter 0.7707 (0.0015) 0.6513 (0.0075) 0.6461 (0.0019)

7.4.3 In-depth Analysis.

Q3 : Are all components comprising GraphAdapter valid?

A3 : As Table 7.5 shows, removing any component of GraphAdapter results in

performance drops. Removing pre-training leads to an 0.91% drop, demonstrating that

GraphAdapter’s improvements indeed come from pre-training. Next, the most significant

performance drop is when we simultaneously remove pre-training and graph structure in the

fine-tuning stage (keeping only self-loops), which causes a 1.95% drop. This shows having

the graph is crucial for GraphAdapter to work. Removing the task-related prompt leads

to a 0.98% drop, validating our design of aligning pre-training tasks via prompts. Notably,

removing the residual learning (“w/o Res Label” that is stated in section 7.3.2) leads to

a 1.02% drop (more than removing pre-training), suggesting that training GNNs directly

on all text may introduce excessive noise and hurt performance. Our Equation 7, which

utilizes language model predictions to select words more semantically related to the graph,

is reasonable.

However, although the ablation study validates the rationality of GraphAdapter’s design

and the efficacy of its components, these results hardly answer what exactly GraphAdapter

pre-training is doing. Therefore, we further construct validation experiments about pre-

training.

Q4 : What exactly does GraphAdapter’s pre-training learn?

We conduct three comparative experiments to demonstrate what GraphAdapter pre-

training is doing.

(1) GNN can obtain stronger expressive power through pre-training. We first

observe the performance change of GNNs before and after pre-training, where we directly use

the structural representations from the pre-trained GNN to fine-tune for downstream tasks.

As Table 7.6 shows, the pre-trained GNN performs better on downstream tasks, improving

80

Table 7.6: The performance changes of the GNN block in GraphAdapter before and after pre-

training. Here, “w/o Pretraining” signifies no pre-training, while “w Pretraining” indicates the

opposite.

Arxiv Instagram Reddit

GNN w/o Pretraining 0.7305 (0.0020) 0.6181 (0.0112) 0.6320 (0.0041)

GNN w Pretraining 0.7335 (0.0024) 0.6294 (0.0038) 0.6410 (0.0027)

by 0.78% on average. This demonstrates that GNNs are training their ability to model the

graph structure during pre-training.

(2) Fusion block is learning how to fuse the knowledge from the language

model and GNN during pre-training. We further explore whether the fusion layer

learned useful knowledge during training. We randomly initialize the parameters in a specific

GraphAdapter’s blocks after pre-trained. As Table 7.7 shows, initializing the parameters of

the fusion layer leads to significant performance drops, decreasing by 1.03% on average across

3 datasets. Even on the Arxiv dataset, the performance is lower than full initialization. This

result shows that the enhanced knowledge from GNN may need to be outputted through

the matching fusion layer. To further verify this conjecture, we further reinitialized the

parameters of GNN, and some performance decline can also be observed, decreasing by

0.82% on average. This is similar to the impact of reinitializing the fusion layer. The fusion

layer alone does not contain much knowledge. Therefore, these results demonstrate that the

fusion layer can learn how to fuse the knowledge from GNN and language models.

(3) Graph structure is the basis of pre-training. We further observe the changes

in different base models before and after pre-training. In this comparative experiment, we

keep all the structures of GraphAdapter, only replacing the GNN block with MLPs of equal

parameter size. As Figure 7.3 shows, the MLP-based GraphAdapter shows no significant

change before and after pre-training (average improvement of 0.19%), and even decreases in

performance on Instagram and Reddit (drops of 0.05% and 0.62% respectively). While the

GNN improves notably before and after pre-training (average improvement of 0.91%). This

result suggests that GNN is a prerequisite for effective pre-training.

These three results demonstrate that GraphAdapter is indeed learning graph structures

via pre-training. This validates that language-structure pre-training of GraphAdapter is

reasonable and effective, and further supports the motivation of this paper.

81

Table 7.7: The performance of GraphAdapter after randomly initializing some blocks. Here,

”Re-init” represents re-initialization.

Arxiv Instagram Reddit

Re-init All 0.7648 (0.0020) 0.6392 (0.0086) 0.6369 (0.0025)

Re-init GNN 0.7680 (0.0022) 0.6390 (0.0050) 0.6364 (0.0026)

Re-init Fusion 0.7562 (0.0011) 0.6431 (0.0024) 0.6378 (0.0022)

GraphAdapter 0.7707 (0.0015) 0.6513 (0.0075) 0.6461 (0.0019)

UP

UP

UP

DROP DROP

(a) Arxiv (c) Reddit(b) Instagram

UP

Figure 7.3: The performance of GraphAdapter before and after pre-training, using MLP and

GNN as the backbone architectures. The red represents performance without pre-training, while

the blue represent performance after pre-training.

7.4.4 Efficient

Q5 : How efficient is GraphAdapter?

As shown in Table 7.8, we demonstrate the efficiency of GraphAdapter. As can be seen

in the Table, even when combined with a large model with 13B parameters, GraphAdapter

has a speed comparable to PLM-based text-attributed graph modeling methods.

Table 7.8: Running time of different methods on Arxiv using one Nvidia A100 80GB. Since

different methods use different PLM, we also report the number of parameters for the PLM (decoded

as “# para”) and the number of trainable parameters (“# trainable”).

GIANT GLEM GraphAdapter

PLM BERT DeBERTa-Large Llama 2-13B
para of PLM 110M 139M 13B

trainable in Pre 110M - 3M
trainable in Fine 0.7M 139M 2M

Pre-process - - 192 min
Pre-training 341 min - 312 min
Fine-tuning 1 min 612 min 1 min

Total time costs 342 min 612 min 505 min

82

CHAPTER 8: CONCLUSIONS

In this dissertation, I study label-efficient and parameter-efficient representation learn-

ing on different applications for text-rich graphs. Prior research neglects these challenges

on complex text-rich graphs and exhibit limited performance on real-world networks when

training data or computation budget is limited. The proposed principles and techniques

help researchers to deploy their advanced machine learning methods on text-rich graphs.

The future work of this thesis will delve deeper into the prospects of latent representation-

based graph machine learning, emphasizing its enduring relevance across various industry

applications, including retrieval and ranking.

While working on this dissertation, I recognize several notable future directions of my

research and I have started to work on some of these topics.

Leverage text-rich graph learning to industrial applications. Text-rich graphs are

ubiquitous in industrial applications. However, most of the deployed production model do

not utilize text-rich graphs as the data model. For example, people tend to use tradi-

tional one tower or two tower neural network architecture for tasks like product or post

recommendation. The current public graph benchmark datasets are typically simplistic and

are different from industry datasets. This prevents academic researchers from conducting

research and developing effective techniques for complex industry use cases and makes it

difficult to use public graph benchmarks to evaluate these techniques. Currently, the most

well-known public benchmark is Open Graph Benchmark [132]. Most of the datasets in the

benchmark are homogeneous graphs with simple features (word2vec embeddings) or no fea-

tures at all and each graph. As such, progress from the text-rich graph learning community

cannot benefit the real-world applications. Consequently, engineers in the industry model

these tasks in the traditional format. One promising direction is to set up large-scale graph

learning benchmarks on text-rich graphs and categorize popular tasks into representative

research problems.

Multi-task Generalization on Text-Rich Graphs. Large language models demon-

strates mind-blowing unseen task generalization capabilities and paves the road to the first

generation of artificial general intelligence (AGI). In contrast to text domain, it is very diffi-

cult to perform transfer learning across different tasks on graph structured data, especially

those structural relevant ones. Can we utilize the generalization power of LLMs on text-rich

graphs ? The label-efficient studies of this dissertation is the first attempt on this topic. In

the future, it is important for research on text-rich graphs to yield similar level of unseen

task generalization through techniques like instruction fine-tuning or Reinforcement learning

83

from human feedback (RLHF). Additionally, the development of graph-aware large language

models (LLMs) and the integration of graph tasks with text represent an interesting and

impactful direction for future research.

84

REFERENCES

[1] Q. Zhu, N. Ponomareva, J. Han, and B. Perozzi, “Shift-robust gnns: Overcoming
the limitations of localized graph training data,” in Advances in Neural Information
Processing Systems, vol. 34, 2021, pp. 27 965–27 977.

[2] Q. Zhu, C. Zhang, C. Park, C. Yang, and J. Han, “Shift-robust node classification via
graph adversarial clustering,” arXiv preprint arXiv:2203.15802, 2022.

[3] Y. Shi, Q. Zhu, F. Guo, C. Zhang, and J. Han, “Easing embedding learning by com-
prehensive transcription of heterogeneous information networks,” in Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2018, pp. 2190–2199.

[4] Q. Zhu, H. Wei, B. Sisman, D. Zheng, C. Faloutsos, X. L. Dong, and J. Han, “Collective
multi-type entity alignment between knowledge graphs,” in Proceedings of The Web
Conference 2020, 2020, pp. 2241–2252.

[5] Q. Zhu, Y. Jiao, N. Ponomareva, J. Han, and B. Perozzi, “Explaining and adapting
graph conditional shift,” arXiv preprint arXiv:2306.03256, 2023.

[6] Q. Zhu, C. Yang, Y. Xu, H. Wang, C. Zhang, and J. Han, “Transfer learning of
graph neural networks with ego-graph information maximization,” Advances in Neural
Information Processing Systems, vol. 34, pp. 1766–1779, 2021.

[7] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in International Conference on Learning Representations, 2017.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[9] A. Tsitsulin, J. Palowitch, B. Perozzi, and E. Müller, “Graph clustering with graph
neural networks,” arXiv preprint arXiv:2006.16904, 2020.

[10] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Advances in Neural Information Processing Systems, 2017, pp. 1024–1034.

[11] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[12] Y. Sun and J. Han, “Mining heterogeneous information networks: principles and
methodologies,” Synthesis Lectures on Data Mining and Knowledge Discovery, vol. 3,
no. 2, pp. 1–159, 2012.

85

[13] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling,
“Modeling relational data with graph convolutional networks,” in European Semantic
Web Conference. Springer, 2018, pp. 593–607.

[14] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Heterogeneous graph
attention network,” in The World Wide Web Conference, WWW 2019, San Francisco,
CA, USA, May 13-17, 2019, 2019, pp. 2022–2032.

[15] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Heterogeneous graph
neural network,” in Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2019, pp. 793–803.

[16] Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, and J. Tang, “Representation learning for
attributed multiplex heterogeneous network,” arXiv preprint arXiv:1905.01669, 2019.

[17] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer networks,”
Advances in neural information processing systems, vol. 32, 2019.

[18] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph transformer,” in Pro-
ceedings of the web conference 2020, 2020, pp. 2704–2710.

[19] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks,” Proceedings of the VLDB
Endowment, vol. 4, no. 11, pp. 992–1003, 2011.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[21] Y. Dong, Z. Hu, K. Wang, Y. Sun, and J. Tang, “Heterogeneous network representation
learning.” in IJCAI, vol. 20, 2020, pp. 4861–4867.

[22] C. Yang, Y. Xiao, Y. Zhang, Y. Sun, and J. Han, “Heterogeneous network representa-
tion learning: A unified framework with survey and benchmark,” IEEE Transactions
on Knowledge and Data Engineering, vol. 34, no. 10, pp. 4854–4873, 2020.

[23] Q. Lv, M. Ding, Q. Liu, Y. Chen, W. Feng, S. He, C. Zhou, J. Jiang, Y. Dong, and
J. Tang, “Are we really making much progress? revisiting, benchmarking and refin-
ing heterogeneous graph neural networks,” in Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining, 2021, pp. 1150–1160.

[24] B. Jin, Y. Zhang, Q. Zhu, and J. Han, “Heterformer: A transformer architecture
for node representation learning on heterogeneous text-rich networks,” arXiv preprint
arXiv:2205.10282, 2022.

[25] B. Jin, W. Zhang, Y. Zhang, Y. Meng, X. Zhang, Q. Zhu, and J. Han, “Patton:
Language model pretraining on text-rich networks,” arXiv preprint arXiv:2305.12268,
2023.

86

[26] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-
sentations,” in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2014, pp. 701–710.

[27] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale informa-
tion network embedding,” in Proceedings of the 24th international conference on world
wide web, 2015, pp. 1067–1077.

[28] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2016, pp. 855–864.

[29] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating
embeddings for modeling multi-relational data,” in Advances in neural information
processing systems, 2013, pp. 2787–2795.

[30] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embeddings
for knowledge graph completion,” in Twenty-ninth AAAI conference on artificial in-
telligence, 2015.

[31] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with neural tensor net-
works for knowledge base completion,” in Advances in neural information processing
systems, 2013, pp. 926–934.

[32] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and relations
for learning and inference in knowledge bases,” arXiv preprint arXiv:1412.6575, 2014.

[33] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S. Huang, “Hetero-
geneous network embedding via deep architectures,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
2015, pp. 119–128.

[34] T. Chen and Y. Sun, “Task-guided and path-augmented heterogeneous network em-
bedding for author identification,” in Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining. ACM, 2017, pp. 295–304.

[35] J. Shang, M. Qu, J. Liu, L. M. Kaplan, J. Han, and J. Peng, “Meta-path guided
embedding for similarity search in large-scale heterogeneous information networks,”
arXiv preprint arXiv:1610.09769, 2016.

[36] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable representation learn-
ing for heterogeneous networks,” in Proceedings of the 23rd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining. ACM, 2017, pp. 135–144.

[37] T.-y. Fu, W.-C. Lee, and Z. Lei, “Hin2vec: Explore meta-paths in heterogeneous
information networks for representation learning,” in Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management. ACM, 2017, pp. 1797–1806.

87

[38] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Heterogeneous Graph
Neural Network,” in Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining - KDD ’19. ACM Press, 2019. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3292500.3330961 pp. 793–803.

[39] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17, 2019, 2019. [Online]. Available:
https://doi.org/10.1145/3308558.3313562 pp. 2022–2032.

[40] H. T. Trung, N. T. Toan, T. Van Vinh, H. T. Dat, D. C. Thang, N. Q. V. Hung, and
A. Sattar, “A comparative study on network alignment techniques,” Expert Systems
with Applications, vol. 140, p. 112883, 2020.

[41] S. Zhang and H. Tong, “Attributed network alignment: Problem definitions and fast
solutions,” IEEE Transactions on Knowledge and Data Engineering, 2018.

[42] H. Zhu, R. Xie, Z. Liu, and M. Sun, “Iterative entity alignment via joint knowledge
embeddings.” in IJCAI, 2017, pp. 4258–4264.

[43] M. Chen, Y. Tian, K.-W. Chang, S. Skiena, and C. Zaniolo, “Co-training embeddings
of knowledge graphs and entity descriptions for cross-lingual entity alignment,” arXiv
preprint arXiv:1806.06478, 2018.

[44] M. Chen, Y. Tian, M. Yang, and C. Zaniolo, “Multilingual knowledge graph embed-
dings for cross-lingual knowledge alignment,” in Proceedings of the 26th International
Joint Conference on Artificial Intelligence. AAAI Press, 2017, pp. 1511–1517.

[45] Z. Sun, W. Hu, Q. Zhang, and Y. Qu, “Bootstrapping entity alignment with knowledge
graph embedding.” in IJCAI, 2018, pp. 4396–4402.

[46] Y. Cao, Z. Liu, C. Li, J. Li, and T.-S. Chua, “Multi-channel graph neural network for
entity alignment,” arXiv preprint arXiv:1908.09898, 2019.

[47] K. Xu, L. Wang, M. Yu, Y. Feng, Y. Song, Z. Wang, and D. Yu, “Cross-lingual
knowledge graph alignment via graph matching neural network,” arXiv preprint
arXiv:1905.11605, 2019.

[48] Z. Wang, Q. Lv, X. Lan, and Y. Zhang, “Cross-lingual knowledge graph alignment via
graph convolutional networks,” in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, 2018, pp. 349–357.

[49] P. Konda, S. Das, P. Suganthan GC, A. Doan, A. Ardalan, J. R. Ballard, H. Li,
F. Panahi, H. Zhang, J. Naughton et al., “Magellan: Toward building entity matching
management systems,” Proceedings of the VLDB Endowment, vol. 9, no. 12, pp. 1197–
1208, 2016.

88

[50] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute,
and V. Raghavendra, “Deep learning for entity matching: A design space exploration,”
in Proceedings of the 2018 International Conference on Management of Data. ACM,
2018, pp. 19–34.

[51] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang, “Deeper–
deep entity resolution,” arXiv preprint arXiv:1710.00597, 2017.

[52] X. Chu, I. F. Ilyas, and P. Koutris, “Distributed data deduplication,” Proceedings of
the VLDB Endowment, vol. 9, no. 11, pp. 864–875, 2016.

[53] X. Dong, A. Halevy, and J. Madhavan, “Reference reconciliation in complex informa-
tion spaces,” in Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. ACM, 2005, pp. 85–96.

[54] I. Bhattacharya and L. Getoor, “Collective entity resolution in relational data,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1, p. 5, 2007.

[55] L. Zhu, M. Ghasemi-Gol, P. Szekely, A. Galstyan, and C. A. Knoblock, “Unsupervised
entity resolution on multi-type graphs,” in International semantic web conference.
Springer, 2016, pp. 649–667.

[56] J. Pujara and L. Getoor, “Generic statistical relational entity resolution in knowledge
graphs,” arXiv preprint arXiv:1607.00992, 2016.

[57] M. Pershina, M. Yakout, and K. Chakrabarti, “Holistic entity matching across knowl-
edge graphs,” in 2015 IEEE International Conference on Big Data (Big Data). IEEE,
2015, pp. 1585–1590.

[58] H. Han, L. Giles, H. Zha, C. Li, and K. Tsioutsiouliklis, “Two supervised learning
approaches for name disambiguation in author citations,” in Proceedings of the 2004
Joint ACM/IEEE Conference on Digital Libraries, 2004. IEEE, 2004, pp. 296–305.

[59] H. Han, H. Zha, and C. L. Giles, “Name disambiguation in author citations using
a k-way spectral clustering method,” in Proceedings of the 5th ACM/IEEE-CS joint
conference on Digital libraries, 2005, pp. 334–343.

[60] G. Louppe, H. T. Al-Natsheh, M. Susik, and E. J. Maguire, “Ethnicity sensitive au-
thor disambiguation using semi-supervised learning,” in international conference on
knowledge engineering and the semantic web. Springer, 2016, pp. 272–287.

[61] M. Song, E. H.-J. Kim, and H. J. Kim, “Exploring author name disambiguation on
pubmed-scale,” Journal of informetrics, vol. 9, no. 4, pp. 924–941, 2015.

[62] P. Treeratpituk and C. L. Giles, “Disambiguating authors in academic publications
using random forests,” in Proceedings of the 9th ACM/IEEE-CS joint conference on
Digital libraries, 2009, pp. 39–48.

89

[63] Y. Zhang, F. Zhang, P. Yao, and J. Tang, “Name disambiguation in aminer: Cluster-
ing, maintenance, and human in the loop.” in Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, 2018, pp. 1002–1011.

[64] K. Jhawar, D. K. Sanyal, S. Chattopadhyay, P. K. Bhowmick, and P. P. Das, “Author
name disambiguation in pubmed using ensemble-based classification algorithms,” in
Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, 2020,
pp. 469–470.

[65] S. Subramanian, D. King, D. Downey, and S. Feldman, “S2and: A benchmark and
evaluation system for author name disambiguation,” in 2021 ACM/IEEE Joint Con-
ference on Digital Libraries (JCDL). IEEE, 2021, pp. 170–179.

[66] K. Kim, S. Rohatgi, and C. L. Giles, “Hybrid deep pairwise classification for author
name disambiguation,” in Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, 2019, pp. 2369–2372.

[67] X. Fan, J. Wang, X. Pu, L. Zhou, and B. Lv, “On graph-based name disambiguation,”
Journal of Data and Information Quality (JDIQ), vol. 2, no. 2, pp. 1–23, 2011.

[68] J. Tang, A. C. Fong, B. Wang, and J. Zhang, “A unified probabilistic framework for
name disambiguation in digital library,” IEEE Transactions on Knowledge and Data
Engineering, vol. 24, no. 6, pp. 975–987, 2011.

[69] Z. Zhang, C. Wu, Z. Li, J. Peng, H. Wu, H. Song, S. Deng, and B. Wang, “Author
name disambiguation using multiple graph attention networks,” in 2021 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2021, pp. 1–8.

[70] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan,
“A theory of learning from different domains,” Mach. Learn., vol. 79, no. 1–2, p.
151–175, May 2010. [Online]. Available: https://doi.org/10.1007/s10994-009-5152-4

[71] Y. Mansour, M. Mohri, and A. Rostamizadeh, “Domain adaptation: Learning
bounds and algorithms,” CoRR, vol. abs/0902.3430, 2009. [Online]. Available:
http://arxiv.org/abs/0902.3430

[72] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marc-
hand, and V. Lempitsky, “Domain-adversarial training of neural networks,” The jour-
nal of machine learning research, vol. 17, no. 1, pp. 2096–2030, 2016.

[73] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable features with
deep adaptation networks,” in Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, ser. ICML’15. JMLR.org,
2015, p. 97–105.

[74] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer learning with joint
adaptation networks,” in Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ser. ICML’17. JMLR.org, 2017, p. 2208–2217.

90

[75] W. Zellinger, B. A. Moser, T. Grubinger, E. Lughofer, T. Natschläger, and
S. Saminger-Platz, “Robust unsupervised domain adaptation for neural networks via
moment alignment,” Information Sciences, vol. 483, pp. 174–191, May 2019. [Online].
Available: https://doi.org/10.1016/j.ins.2019.01.025

[76] W. M. Kouw, “An introduction to domain adaptation and transfer learning,” CoRR,
vol. abs/1812.11806, 2018. [Online]. Available: http://arxiv.org/abs/1812.11806

[77] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec, “Strate-
gies for pre-training graph neural networks,” in International Conference on Learning
Representations, 2019.

[78] Q. Zhu, C. Yang, Y. Xu, H. Wang, C. Zhang, and J. Han, “Transfer learning of
graph neural networks with ego-graph information maximization,” Advances in Neural
Information Processing Systems, vol. 34, pp. 1766–1779, 2021.

[79] X. Ma, T. Zhang, and C. Xu, “Gcan: Graph convolutional adversarial network for
unsupervised domain adaptation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 8266–8276.

[80] M. Wu, S. Pan, C. Zhou, X. Chang, and X. Zhu, “Unsupervised domain adaptive
graph convolutional networks,” in Proceedings of The Web Conference 2020, 2020.

[81] X. Shen, Q. Dai, S. Mao, F.-l. Chung, and K.-S. Choi, “Network together: Node clas-
sification via cross-network deep network embedding,” IEEE Transactions on Neural
Networks and Learning Systems, 2020.

[82] J. Palowitch and B. Perozzi, “Debiasing graph representations via metadata-
orthogonal training,” in 2020 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM). IEEE, 2020, pp. 435–442.

[83] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding
and clustering,” Advances in neural information processing systems, vol. 14, 2001.

[84] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[85] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for
nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[86] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed rep-
resentations of words and phrases and their compositionality,” Advances in neural
information processing systems, vol. 26, 2013.

[87] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec: Learning node repre-
sentations from structural identity,” in Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 2017, pp. 385–394.

91

[88] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” in Advances in neural information
processing systems, 2016, pp. 3844–3852.

[89] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint
arXiv:1611.07308, 2016.

[90] J. Liu, A. Kumar, J. Ba, J. Kiros, and K. Swersky, “Graph normalizing flows,” in
Advances in Neural Information Processing Systems, 2019, pp. 13 556–13 566.

[91] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep
graph infomax,” in International Conference on Learning Representations, 2019.

[92] F.-Y. Sun, J. Hoffman, V. Verma, and J. Tang, “Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization,”
in International Conference on Learning Representations, 2019.

[93] J. Chen, T. Ma, and C. Xiao, “Fastgcn: Fast learning with graph convolutional net-
works via importance sampling,” in International Conference on Learning Represen-
tations, 2018.

[94] C. Yang, A. Pal, A. Zhai, N. Pancha, J. Han, C. Rosenberg, and J. Leskovec, “Multi-
sage: Empowering gcn with contextualized multi-embeddings on web-scale multipar-
tite networks,” in Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, 2020, pp. 2434–2443.

[95] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[96] L. Lan, P. Wang, X. Du, K. Song, J. Tao, and X. Guan, “Node classification on graphs
with few-shot novel labels via meta transformed network embedding,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

[97] J. Baek, D. B. Lee, and S. J. Hwang, “Learning to extrapolate knowledge: Transductive
few-shot out-of-graph link prediction,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[98] Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “Gpt-gnn: Generative pre-
training of graph neural networks,” in Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, 2020, pp. 1857–1867.

[99] Z. Hu, C. Fan, T. Chen, K.-W. Chang, and Y. Sun, “Pre-training graph neural
networks for generic structural feature extraction,” arXiv preprint arXiv:1905.13728,
2019.

92

[100] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang, and J. Tang, “Gcc:
Graph contrastive coding for graph neural network pre-training,” in Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery & data mining,
2020, pp. 1150–1160.

[101] R. Levie, W. Huang, L. Bucci, M. M. Bronstein, and G. Kutyniok, “Transferability of
spectral graph convolutional neural networks,” arXiv preprint arXiv:1907.12972, 2019.

[102] R. Levie, E. Isufi, and G. Kutyniok, “On the transferability of spectral graph filters,” in
2019 13th International conference on Sampling Theory and Applications (SampTA).
IEEE, 2019, pp. 1–5.

[103] L. Ruiz, L. Chamon, and A. Ribeiro, “Graphon neural networks and the transferabil-
ity of graph neural networks,” Advances in Neural Information Processing Systems,
vol. 33, 2020.

[104] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word rep-
resentation,” in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), 2014, pp. 1532–1543.

[105] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer, “Deep contextualized word representations,” in Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), June 2018, pp. 2227–2237.

[106] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv
preprint arXiv:1907.11692, 2019.

[107] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “Xl-
net: Generalized autoregressive pretraining for language understanding,” Advances in
neural information processing systems, vol. 32, 2019.

[108] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-training text
encoders as discriminators rather than generators,” arXiv preprint arXiv:2003.10555,
2020.

[109] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language
models are unsupervised multitask learners,” OpenAI blog, 2019.

[110] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,”
Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[111] G. Xun, K. Jha, J. Sun, and A. Zhang, “Correlation networks for extreme multi-label
text classification,” in Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2020, pp. 1074–1082.

93

[112] Z. Liu, C. Xiong, M. Sun, and Z. Liu, “Fine-grained fact verification with kernel graph
attention network,” arXiv preprint arXiv:1910.09796, 2019.

[113] E. Chien, W.-C. Chang, C.-J. Hsieh, H.-F. Yu, J. Zhang, O. Milenkovic, and I. S.
Dhillon, “Node feature extraction by self-supervised multi-scale neighborhood predic-
tion,” arXiv preprint arXiv:2111.00064, 2021.

[114] C. Mavromatis, V. N. Ioannidis, S. Wang, D. Zheng, S. Adeshina, J. Ma, H. Zhao,
C. Faloutsos, and G. Karypis, “Train your own gnn teacher: Graph-aware distillation
on textual graphs,” arXiv preprint arXiv:2304.10668, 2023.

[115] C. Li, B. Pang, Y. Liu, H. Sun, Z. Liu, X. Xie, T. Yang, Y. Cui, L. Zhang, and
Q. Zhang, “Adsgnn: Behavior-graph augmented relevance modeling in sponsored
search,” in Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2021, pp. 223–232.

[116] J. Yang, Z. Liu, S. Xiao, C. Li, D. Lian, S. Agrawal, A. Singh, G. Sun, and
X. Xie, “Graphformers: Gnn-nested transformers for representation learning on textual
graph,” Advances in Neural Information Processing Systems, vol. 34, pp. 28 798–28 810,
2021.

[117] J. Zhao, M. Qu, C. Li, H. Yan, Q. Liu, R. Li, X. Xie, and J. Tang, “Learn-
ing on large-scale text-attributed graphs via variational inference,” arXiv preprint
arXiv:2210.14709, 2022.

[118] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov,
S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open foundation and fine-tuned
chat models,” arXiv preprint arXiv:2307.09288, 2023.

[119] A. Zeng, X. Liu, Z. Du, Z. Wang, H. Lai, M. Ding, Z. Yang, Y. Xu, W. Zheng,
X. Xia et al., “Glm-130b: An open bilingual pre-trained model,” arXiv preprint
arXiv:2210.02414, 2022.

[120] Z. Chen, H. Mao, H. Li, W. Jin, H. Wen, X. Wei, S. Wang, D. Yin, W. Fan, H. Liu
et al., “Exploring the potential of large language models (llms) in learning on graphs,”
arXiv preprint arXiv:2307.03393, 2023.

[121] J. Guo, L. Du, and H. Liu, “Gpt4graph: Can large language models understand
graph structured data? an empirical evaluation and benchmarking,” arXiv preprint
arXiv:2305.15066, 2023.

[122] S. Yuan and M. Färber, “Evaluating generative models for graph-to-text generation,”
arXiv preprint arXiv:2307.14712, 2023.

[123] Y. Tian, H. Song, Z. Wang, H. Wang, Z. Hu, F. Wang, N. V. Chawla, and
P. Xu, “Graph neural prompting with large language models,” arXiv preprint
arXiv:2309.15427, 2023.

94

[124] X. He, X. Bresson, T. Laurent, and B. Hooi, “Explanations as features: Llm-based
features for text-attributed graphs,” arXiv preprint arXiv:2305.19523, 2023.

[125] K. Duan, Q. Liu, T.-S. Chua, S. Yan, W. T. Ooi, Q. Xie, and J. He, “Simteg:
A frustratingly simple approach improves textual graph learning,” arXiv preprint
arXiv:2308.02565, 2023.

[126] E. B. Zaken, S. Ravfogel, and Y. Goldberg, “Bitfit: Simple parameter-
efficient fine-tuning for transformer-based masked language-models,” arXiv preprint
arXiv:2106.10199, 2021.

[127] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo,
M. Attariyan, and S. Gelly, “Parameter-efficient transfer learning for nlp,” in Interna-
tional Conference on Machine Learning. PMLR, 2019, pp. 2790–2799.

[128] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for generation,”
arXiv preprint arXiv:2101.00190, 2021.

[129] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and
W. Chen, “Lora: Low-rank adaptation of large language models,” arXiv preprint
arXiv:2106.09685, 2021.

[130] G. Penedo, Q. Malartic, D. Hesslow, R. Cojocaru, A. Cappelli, H. Alobeidli, B. Pan-
nier, E. Almazrouei, and J. Launay, “The refinedweb dataset for falcon llm: out-
performing curated corpora with web data, and web data only,” arXiv preprint
arXiv:2306.01116, 2023.

[131] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyunyan,
G. V. Steeg, and A. Galstyan, “MixHop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing,” in Proceedings of the 36th
International Conference on Machine Learning. PMLR, 2019. [Online]. Available:
http://proceedings.mlr.press/v97/abu-el-haija19a.html pp. 21–29.

[132] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec,
“Open graph benchmark: Datasets for machine learning on graphs,” arXiv preprint
arXiv:2005.00687, 2020.

[133] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song, “Heterogeneous graph neural
networks for malicious account detection,” in Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge Management, 2018, pp. 2077–2085.

[134] J. Halcrow, A. Mosoi, S. Ruth, and B. Perozzi, “Grale: Designing networks for graph
learning,” in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 2523–2532.

[135] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou, S. Yang, and
Y. Qi, “A semi-supervised graph attentive network for financial fraud detection,” in
2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019, pp.
598–607.

95

[136] J. Quiñonero-Candela, M. Sugiyama, N. D. Lawrence, and A. Schwaighofer, Dataset
shift in machine learning. Mit Press, 2009.

[137] H. Shimodaira, “Improving predictive inference under covariate shift by weighting the
log-likelihood function,” Journal of statistical planning and inference, vol. 90, no. 2,
pp. 227–244, 2000.

[138] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel two-
sample test,” The Journal of Machine Learning Research, vol. 13, no. 1, pp. 723–773,
2012.

[139] W. Zellinger, T. Grubinger, E. Lughofer, T. Natschläger, and S. Saminger-Platz, “Cen-
tral moment discrepancy (cmd) for domain-invariant representation learning,” arXiv
preprint arXiv:1702.08811, 2017.

[140] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph
convolutional networks,” in International conference on machine learning. PMLR,
2019, pp. 6861–6871.

[141] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural
networks meet personalized pagerank,” arXiv preprint arXiv:1810.05997, 2018.

[142] A. Bojchevski, J. Klicpera, B. Perozzi, A. Kapoor, M. Blais, B. Rózemberczki,
M. Lukasik, and S. Günnemann, “Scaling graph neural networks with approximate
pagerank,” in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 2464–2473.

[143] L.-P. Xhonneux, M. Qu, and J. Tang, “Continuous graph neural networks,” in Inter-
national Conference on Machine Learning. PMLR, 2020, pp. 10 432–10 441.

[144] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf,
“Covariate shift by kernel mean matching,” Dataset shift in machine learning, vol. 3,
no. 4, p. 5, 2009.

[145] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using pagerank vec-
tors,” in 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06). IEEE, 2006, pp. 475–486.

[146] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective
classification in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[147] M. Z. Y. D. H. Ren, B. L. M. C. J. Leskovec, W. Hu, and M. Fey, “Open graph bench-
mark: Datasets for machine learning on graphs,” arXiv preprint arXiv:2005.00687,
2020.

[148] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

96

[149] D. Khashabi, T. Khot, A. Sabharwal, P. Clark, O. Etzioni, and D. Roth, “Question
answering via integer programming over semi-structured knowledge,” arXiv preprint
arXiv:1604.06076, 2016.

[150] H. Wang, F. Zhang, X. Xie, and M. Guo, “Dkn: Deep knowledge-aware network
for news recommendation,” in Proceedings of the 2018 World Wide Web Conference.
International World Wide Web Conferences Steering Committee, 2018, pp. 1835–1844.

[151] C. Lockard, P. Shiralkar, and X. L. Dong, “Openceres: When open information ex-
traction meets the semi-structured web,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), 2019, pp. 3047–3056.

[152] L. Getoor and A. Machanavajjhala, “Entity resolution: theory, practice & open chal-
lenges,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 2018–2019, 2012.

[153] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang, “Knowledge vault: A web-scale approach to probabilistic
knowledge fusion,” in Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2014, pp. 601–610.

[154] B. D. Trisedya, J. Qi, and R. Zhang, “Entity alignment between knowledge graphs
using attribute embeddings,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 297–304.

[155] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching networks for
learning the similarity of graph structured objects,” in Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, 2019, pp. 3835–3845.

[156] F. M. Suchanek, S. Abiteboul, and P. Senellart, “Paris: Probabilistic alignment of
relations, instances, and schema,” arXiv preprint arXiv:1111.7164, 2011.

[157] P. Singla and P. Domingos, “Entity resolution with markov logic,” in Sixth Interna-
tional Conference on Data Mining (ICDM’06). IEEE, 2006, pp. 572–582.

[158] Q. Zhang, Z. Sun, W. Hu, M. Chen, L. Guo, and Y. Qu, “Multi-view knowledge graph
embedding for entity alignment,” arXiv preprint arXiv:1906.02390, 2019.

[159] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” in NIPS Autodiff
Workshop, 2017.

[160] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C. Ma,
Z. Huang, Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li, A. J. Smola, and Z. Zhang,
“Deep graph library: Towards efficient and scalable deep learning on graphs,” ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019. [Online].
Available: https://arxiv.org/abs/1909.01315

97

[161] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin, “Advances in pre-
training distributed word representations,” in Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC 2018), 2018.

[162] N. Keriven and G. Peyré, “Universal invariant and equivariant graph neural networks,”
in Advances in Neural Information Processing Systems, 2019, pp. 7090–7099.

[163] K. Oono and T. Suzuki, “Graph neural networks exponentially lose expressive power for
node classification,” in International Conference on Learning Representations, 2020.

[164] C. Yang, P. Zhuang, W. Shi, A. Luu, and P. Li, “Conditional structure generation
through graph variational generative adversarial nets,” in Advances in Neural Infor-
mation Processing Systems, 2019, pp. 1338–1349.

[165] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hierarchical graph
representation learning with differentiable pooling,” Advances in neural information
processing systems, vol. 31, 2018.

[166] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[167] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spec-
tral graph theory,” ACHA, vol. 30, no. 2, pp. 129–150, 2011.

[168] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching networks for one
shot learning,” Advances in neural information processing systems, vol. 29, 2016.

[169] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” in Inter-
national conference on learning representations, 2016.

[170] X. Kan, H. Cui, and C. Yang, “Zero-shot scene graph relation prediction through com-
monsense knowledge integration,” in Machine Learning and Knowledge Discovery in
Databases. Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain,
September 13–17, 2021, Proceedings, Part II 21. Springer, 2021, pp. 466–482.

[171] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, “Analysis of representations
for domain adaptation,” Advances in neural information processing systems, vol. 19,
2006.

[172] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt, “Graph
kernels,” Journal of Machine Learning Research, vol. 11, pp. 1201–1242, 2010.

[173] K. Borgwardt, E. Ghisu, F. Llinares-López, L. O’Bray, and B. Rieck, “Graph kernels:
State-of-the-art and future challenges,” arXiv preprint arXiv:2011.03854, 2020.

[174] N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on graph kernels,” Applied
Network Science, vol. 5, no. 1, pp. 1–42, 2020.

98

[175] G. Nikolentzos, G. Siglidis, and M. Vazirgiannis, “Graph kernels: A survey,” arXiv
preprint arXiv:1904.12218, 2019.

[176] L. Bai and E. R. Hancock, “Fast depth-based subgraph kernels for unattributed
graphs,” Pattern Recognition, vol. 50, pp. 233–245, 2016.

[177] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler,
and Y. Bengio, “Learning deep representations by mutual information estimation and
maximization,” in International Conference on Learning Representations, 2019.

[178] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, “GraphRNN: Generating real-
istic graphs with deep auto-regressive models,” in Proceedings of the 35th International
Conference on Machine Learning. PMLR, 2018, pp. 5708–5717.

[179] Z. Peng, W. Huang, M. Luo, Q. Zheng, Y. Rong, T. Xu, and J. Huang, “Graph repre-
sentation learning via graphical mutual information maximization,” in Proceedings of
The Web Conference 2020, 2020, pp. 259–270.

[180] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[181] F. R. Chung and F. C. Graham, Spectral graph theory. American Mathematical Soc.,
1997, no. 92.

[182] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?”
arXiv preprint arXiv:1810.00826, 2018.

[183] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather: Homophily in
social networks,” Annual review of sociology, vol. 27, no. 1, pp. 415–444, 2001.

[184] S. Verma and Z.-L. Zhang, “Stability and generalization of graph convolutional neural
networks,” in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery Data Mining, ser. KDD ’19, 2019.

[185] S. Arora, E. Hazan, and S. Kale, “Fast algorithms for approximate semidefinite pro-
gramming using the multiplicative weights update method,” in 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’05). IEEE, 2005, pp. 339–
348.

[186] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densification laws,
shrinking diameters and possible explanations,” in Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining, 2005, pp.
177–187.

[187] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews
of modern physics, vol. 74, no. 1, p. 47, 2002.

99

[188] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view representation learning
on graphs,” in International Conference on Machine Learning. PMLR, 2020, pp.
4116–4126.

[189] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. Koutra,
C. Faloutsos, and L. Li, “Rolx: structural role extraction & mining in large graphs,”
in Proceedings of the 18th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 2012, pp. 1231–1239.

[190] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowledge,”
in Proceedings of the 16th international conference on World Wide Web, 2007, pp.
697–706.

[191] W. Ammar, D. Groeneveld, C. Bhagavatula, I. Beltagy, M. Crawford, D. Downey,
J. Dunkelberger, A. Elgohary, S. Feldman, V. Ha et al., “Construction of the literature
graph in semantic scholar,” arXiv preprint arXiv:1805.02262, 2018.

[192] Z. Lu, “Pubmed and beyond: a survey of web tools for searching biomedical literature,”
Database, vol. 2011, 2011.

[193] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. Hsu, and K. Wang, “An overview
of microsoft academic service (mas) and applications,” in Proceedings of the 24th in-
ternational conference on world wide web, 2015, pp. 243–246.

[194] A. Kumar, A. Raghunathan, R. Jones, T. Ma, and P. Liang, “Fine-tuning can
distort pretrained features and underperform out-of-distribution,” arXiv preprint
arXiv:2202.10054, 2022.

[195] A. Cohan, S. Feldman, I. Beltagy, D. Downey, and D. S. Weld, “Specter: Document-
level representation learning using citation-informed transformers,” arXiv preprint
arXiv:2004.07180, 2020.

[196] X. Liu, D. Yin, X. Zhang, K. Su, K. Wu, H. Yang, and J. Tang, “Oag-bert: Pre-
train heterogeneous entity-augmented academic language models,” arXiv preprint
arXiv:2103.02410, 2021.

[197] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mpnet: Masked and permuted
pre-training for language understanding,” Advances in Neural Information Processing
Systems, vol. 33, pp. 16 857–16 867, 2020.

[198] C. Berge, The theory of graphs. Courier Corporation, 2001.

[199] M. E. Newman, D. J. Watts, and S. H. Strogatz, “Random graph models of social
networks,” Proceedings of the national academy of sciences, vol. 99, no. suppl 1, pp.
2566–2572, 2002.

100

[200] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph
convolutional neural networks for web-scale recommender systems,” in Proceedings
of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining, 2018, pp. 974–983.

[201] S. Kim, J.-Y. Jiang, M. Nakada, J. Han, and W. Wang, “Multimodal post attentive
profiling for influencer marketing,” in Proceedings of The Web Conference 2020, 2020,
pp. 2878–2884.

[202] C. D. Corley, D. J. Cook, A. R. Mikler, and K. P. Singh, “Text and structural data
mining of influenza mentions in web and social media,” International journal of envi-
ronmental research and public health, vol. 7, no. 2, pp. 596–615, 2010.

[203] X. Liu, K. Ji, Y. Fu, W. L. Tam, Z. Du, Z. Yang, and J. Tang, “P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally across scales and tasks,” arXiv
preprint arXiv:2110.07602, 2021.

[204] Y. Sun, S. Wang, Y. Li, S. Feng, H. Tian, H. Wu, and H. Wang, “Ernie 2.0: A
continual pre-training framework for language understanding,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 34, no. 05, 2020, pp. 8968–8975.

[205] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language
understanding by generative pre-training,” 2018.

[206] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-
networks,” arXiv preprint arXiv:1908.10084, 2019.

[207] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning of sentence em-
beddings,” arXiv preprint arXiv:2104.08821, 2021.

[208] T. Jiang, J. Jiao, S. Huang, Z. Zhang, D. Wang, F. Zhuang, F. Wei, H. Huang,
D. Deng, and Q. Zhang, “Promptbert: Improving bert sentence embeddings with
prompts,” arXiv preprint arXiv:2201.04337, 2022.

[209] B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for parameter-efficient
prompt tuning,” arXiv preprint arXiv:2104.08691, 2021.

[210] J. Gasteiger, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph
neural networks meet personalized pagerank,” arXiv preprint arXiv:1810.05997, 2018.

[211] Y. Yang and X. Cui, “Bert-enhanced text graph neural network for classification,”
Entropy, vol. 23, no. 11, p. 1536, 2021.

101

