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ABSTRACT 

The diagnosis of disease faces fundamental limitations due to the uncertainty 

surrounding the incremental benefits of tissue sampling and biopsy. In response to this 

critical challenge, a robotic biopsy system with compatibility with label-free digital 

pathology and methods for tissue classification was developed in this dissertation. This 

new system incorporates a steerable needle insertion system and is designed to compatible 

with digital pathology, granting access to tissues' chemical and molecular composition. 

The tissue classification method holds promise in enhancing the precision and depth of 

information obtainable through biopsy procedures. 

In this research we have designed and developed a 5-degree-of-freedom (DOF) robotic 

biopsy system, integrated with a 3-DOF insertion module, which has been tested in various 

conditions. Helical motion functionality with detailed workspace analysis has been 

conducted to optimize the system reach. Safety control algorithms, including a hybrid 

force/position robotic platform control and semi-autonomous needle insertion control, have 

been developed to ensure the precision required for needle insertion procedures. 

Experiments have been carried out on both synthetic and real porcine tissues to validate 

the system performance. 

To address a significant challenge in current biopsy procedures, specifically the 

difficulty surgeons face in accurately placing the needle tip, a novel classification method 

rooted in machine learning has been developed. Data has been collected from five different 

types of porcine tissues, and a transformer-based classification model has been trained after 

thorough data pre-processing. The results have been compared with other state-of-the-art 

methods, revealing that this new transformer-based classification method is more precise 

and effective in tissue type detection. This innovation holds potential as a valuable tool for 

surgeons, by enhancing surgeon awareness and precision. This advancement contributes to 

the overall success of the biopsy process by providing a new in-situ process that does not 

exist today. 

The combination of the robotic biopsy system and the learning-based classification 

methodology holds the potential to improve the field of needle biopsy. By providing 

accurate and precise needle placement, access to tissue composition, and real-time 

environment recognition, the groundwork is laid for the creation of an accurate computer-

aided digital needle biopsy system. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Background and Motivation 

The diagnostic approach for understanding the underlying causes of cancers, along with 

numerous other diseases, encounters formidable limitations. Central to these limitations is 

the uncertainty surrounding the incremental benefits of tissue sampling and biopsy 

procedures. Several factors contribute to this uncertainty. In response to these limitations, 

the medical field has explored advanced techniques to enhance diagnostic accuracy during 

different biopsy procedures [1]. Beyond basic imaging systems of CT, MRI or ultrasound, 

there are electroanatomic mapping, cardiac magnetic resonance imaging (CMR), and 

positron emission tomography to enhance accuracy. These technologies have been utilized 

to guide the biopsy process more effectively, enabling the sampling of precisely affected 

myocardial regions. For instance, electroanatomic mapping provides real-time guidance by 

creating detailed electrical maps of the heart, aiding in pinpointing the areas of interest. 

CMR [1] offers excellent visualization capabilities, allowing for the identification of 

myocardial abnormalities. While these advanced techniques hold promise in improving the 

diagnostic accuracy of different biopsies, it's important to note that they are not yet widely 

accessible or routinely performed. Factors such as equipment availability, expertise 

required for interpretation, and cost constraints may limit their use in clinical practice.  

In actual surgical situations, surgeons still rely on their intuition to measure the variances 

in tissue properties while performing manual needle interventions. They employ this 



2 

 

perception to identify anatomical structures and events, including puncture occurrences 

and the differentiation between soft and hard tissues. This is made possible through the 

haptic feedback derived from the interaction between the needle and the tissue. In breast 

cancer diagnosis research [2], it was asserted that the mean shear stiffness of breast 

carcinoma is approximately 418% higher than the mean value of the surrounding breast 

tissues. Researchers have utilized the significance of interaction force change between the 

needle and the tissue to develop classifiers for distinguishing fundamental tissue properties. 

Statistical models are used for the classification of liver needle insertion based on force 

patterns [3], Young's modulus is identified based on the energy stored in the needle-tissue 

system [4], a recurrent neural network (RNN) based Long-Short Term Memory (LSTM) 

model was trained to estimate the various synthetic tissue classes [5]. This research 

validated the concept that the integration of a force parameter with position data can 

enhance the comprehension of interactions in a wide range of interventional procedures 

and diagnostic processes. 

    Recent developments in robotic biopsy are also making significant impacts on various 

usage in different disease diagnoses. It excels in performing precise and accurate needle 

insertions with the assistance of imaging systems [6]. Robotic biopsy procedures have been 

employed in diverse anatomical sites, such as bone [7], lung [8], breast [9], brain or 

brainstem [10], prostate [11], and liver [12]. Robotic biopsy demonstrates its advantages 

in maintaining a straight-line trajectory, with guidance primarily relying on standard 

radiological images. These types of interventions exemplify how robotics enhances 

precision by seamlessly integrating imaging with precise procedural guidance [6]. 

However, there have been fewer reported cases of robotic assistance in the field of 

endomyocardial biopsy. In 2018, researchers [13] pioneered the application of robotic 

assistance to address the patchy and unpredictable nature of infiltrate locations in 

traditional endomyocardial biopsy. Yet, the potential benefits provided by robotic 
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applications within hospital settings, such as improved accuracy, precision, consistent 

execution of small tasks, enhanced ergonomics, and resistance to fatigue, have not been 

fully realized. There appears to be a gap between advanced robotic technology and the 

practical clinical needs [6]. 

The diagnostic process still requires that the biopsy be taken to pathology, sectioned and 

stained before a pathologist can visually examine histologic images under a microscope 

and diagnose. The execution of this procedure demands substantial resources, specialized 

expertise, and a significant time investment to generate a comprehensive diagnosis report. 

Furthermore, a majority of the biopsy specimens may be normal and not diagnostic of any 

specific process – in these cases, it would be optimal to not obtain a sample as otherwise it 

injures normal tissue [14]. The past two decades have seen the development of many in-

vitro imaging techniques [15] that are based on optical spectroscopy. By utilizing the 

refractive index, absorption, scattering, or native fluorescence signatures of tissue as 

contrast, molecular images can be obtained. One extensively employed technique in 

medical imaging is fluorescence imaging [16]. Raman spectroscopic analysis and infrared 

spectroscopic analysis represent two key domains closely associated with fluorescence 

imaging [17]. in In-vivo stimulated Raman scattering microscopy (SRSM) [17] 

circumvents the above limitations by probing the vibrations of the molecular constituents 

in tissues, similar to infrared spectroscopy. However, SRSM is an expensive technique, 

and suffers from the inherently smaller signal to noise of Raman spectroscopy over 

infrared. In contrast to infrared spectroscopy, Raman spectroscopy is characterized by 

higher costs and inherent signal limitations. The progress marked by the introduction of 

fast Fourier transform (FT), the advancements in FT-IR spectrometers, and the integration 

of cutting-edge technologies in IR spectroscopy has significantly elevated computational 

and data handling capabilities in label-free digital pathology, ensuring heightened accuracy 

and efficiency. 
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In response to the challenges posed by the absence of haptic feedback, limited 

adaptability in robotic systems, and the time-intensive nature of traditional pathology 

procedures, our primary focus is devising solutions to offer a rapid and accurate platform 

for robotic biopsies. Furthermore, we seek to facilitate the integration of fiber-optic tools 

for digital pathology. To realize these objectives, we have designed a robotic system 

equipped with a steerable needle insertion module that is fully compatible with in-situ, 

fiber-optic-based vibrational spectroscopy. We have also established a standardized 

experimental setup using the robotic system to collect data, which is subsequently 

employed to train a transformer-based tissue classification model. The primary aim of this 

model is to empower surgeons with the ability to recognize the tissue environment during 

needle biopsies. Our research aims to develop technology that leverages the potential 

digital pathology, guided by robotics operated by surgeons under the aid in haptic 

environmental recognition, to target specific regions of interest in an accurate and fast way. 

 

1.2 Dissertation Overview 

In the remainder of this thesis, we present the development of the fiber-optic compatible 

robotic biopsy system and the classification of transition in different tissues. The 

organization of the dissertation is as the following: 

• Chapter 2 presents the literature review for biopsy in medical diagnosis, detailed 

needle biopsy procedures and limitations, recent work in robotic biopsy platforms 

and digital pathology, summarized with our research goal. 

• Chapter 3 presents the design and development of the fiber-optic compatible robotic 

biopsy system, shows its compatibility with label-free digital pathology. Then, we 

conduct the mathematical modeling of robot dynamics and demonstrate future work 

in the robotic platform. 
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• Chapter 4 presents the semi-autonomous safety control architecture. Hybrid 

force/position control and semi-autonomous position control are introduced. 

Performance and safety evaluations are then carried out.  

• Chapter 5 presents transformer-based tissue classification for biopsy. Mechanics in 

needle-tissue interaction is modeled first. Then, the transformer model for 

classification and prediction is introduced. Detailed experiment setup and data 

collection are demonstrated. The result and evaluation of classification are carried 

out under certain evaluation metrics after model training. Discussion includes a 

model expansion into force prediction and future AI integration on robotic biopsy. 

• Chapter 6 presents the concluding remarks. Also, chapter 6 suggests the possible 

future directions of research. 

 

1.3 Dissertation Contribution 

An accurate computer-aided needle biopsy system is founded for higher performance in 

the needle biopsy field. Our results can be summarized as follows:  

 

Design and development of the novel digital pathology compatible robotic biopsy system: 

• Design and development of a novel robotic biopsy system with high dexterity, 

modeling the workspace and dynamics to fully discover the capability of the biopsy 

system. 

• Development of the novel fiber-optic compatibility with the robotic biopsy system, 

which leads to the next generation of digital pathology integrated with robotic 

precision. 

• Development of a semi-autonomous safety control for the robotic system, ensuring 

the precision of robotic movement with safety concerns.  
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Development of a novel intelligent system for robotic biopsy assistance system: 

• Modeling of the mechanics of needle-tissue interaction. Formalize a deep-learning 

integrated model to describe the transitions during needle-tissue interactions based 

on needle insertion force. 

• With data collection on experiment setup with the robotic platform, the transformer 

model for classification is trained and evaluated. The proposed methodology 

outperforms the current state-of-art methodology in all evaluation metrics. 

• Expand the classification model into force prediction. Establish a novel transformer 

model for force prediction to aid surgeons during the insertion process. Proposing 

the next generation of artificial intelligence in robotic biopsy assistance. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Biopsy in Medical Diagnosis 

The biopsy is a medical procedure in which a sample of tissue or cells is extracted from 

the body for subsequent laboratory testing. It has evolved into a fundamental component 

of contemporary medicine [18], and a majority of biopsies in modern healthcare are 

conducted percutaneously with the assistance of image-guided techniques. The biopsy can 

be performed on various target tissues in the body to diagnose or evaluate different medical 

conditions. The choice of target tissue depends on the specific clinical scenario and the 

suspected disease. Solid tumor and masses diagnosing would include biopsies for breast, 

prostate, liver, lung and kidney tissues [19]. Lymph node biopsies can determine the 

presence of infections, malignancies, or autoimmune disorders [20]. Bone marrow biopsies 

help diagnose blood disorders, leukemia, and certain bone conditions [21]. Skin biopsies 

are commonly performed to diagnose dermatological conditions, including skin cancer, 

rashes, and infections [22]. Brain biopsies are performed in some cases to diagnose brain 

tumors, infections, or neurological disorders [23]. 

Regarding the differences in tools and procedures of biopsy, biopsy can be categorized 

into needle biopsy, surgical biopsy, endoscopic biopsy, bone marrow biopsy or skin biopsy.  

A needle biopsy encompasses several techniques, including fine-needle aspiration, core 

needle biopsy, and vacuum-assisted biopsy [24]. These methods are employed to collect 

tissue or cell samples for diagnostic purposes. Image-guided biopsy procedures are 
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particularly valuable when dealing with areas that cannot be palpated through the skin, 

such as those in the liver, lung, or prostate. By utilizing real-time imaging, surgeons can 

precisely guide the biopsy needle to the target area, ensuring accurate sample collection. 

 

Figure 2.1: Fine needle aspiration biopsy(left) vs core needle biopsy with 

ultrasound(right) 

Endoscopic biopsy is a procedure in that surgeons would use a thin, flexible tube 

(endoscope) with a light on the end to see structures inside your body. Special tools are 

passed through the tube to take a small sample of tissue to be analyzed. 

 

Figure 2.2: Endomyocardial biopsy 
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A skin biopsy [22] involves the removal of cells or tissue samples from the surface of 

the body which includes shave biopsy, punch biopsy, incisional biopsy, and excisional 

biopsy.  

 

Figure 2.3: Skin punch biopsy 

During a bone marrow biopsy, a surgeon retrieves a sample of bone marrow from the 

back of your hipbone, typically using a long, specialized needle. In specific cases, the 

sample may be collected from other bones in the patient's body. To minimize discomfort 

during the procedure, patients typically receive a local anesthetic or other medications. 

 

Figure 2.4: Bone marrow biopsy 
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2.2 Needle Biopsy Procedures and Limitations 

Needle biopsies offer several advantages over surgical biopsies. They are minimally 

invasive, resulting in smaller incisions or no incisions at all, which leads to reduced pain, 

faster recovery times, and fewer complications. Patients also experience minimal scarring, 

lower risks of infection, and a quicker return to normal activities. Needle biopsies are more 

cost-effective, typically require only localized anesthesia, and provide accurate diagnostic 

results, particularly for conditions like cancer. Their versatility allows for use in various 

body parts, making them a preferred choice in many clinical scenarios [19].  

The process typically involves patient preparation and local anesthesia, followed by 

precise needle insertion to collect tissue samples. Imaging techniques may be employed 

for guidance in some cases. Once the samples are collected, they are sent to the laboratory 

for analysis by pathologists [19]. 

However, needle biopsy encounters formidable limitations. Central to these limitations 

is the uncertainty surrounding the incremental benefits of tissue sampling and biopsy 

procedures. Several factors contribute to this uncertainty. One critical issue is the potential 

for sampling errors, as biopsies may fail to include the specific affected areas. Additionally, 

inherent constraints on the amount of target tissue that can be safely biopsied limit the 

depth of penetration, further complicating the diagnostic process. In response to these 

limitations, the medical field has explored advanced techniques to enhance diagnostic 

accuracy with imaging systems including CT, MRI and ultrasonic [26]. Beyond these 

techniques, researchers also developed disease-specified technique including 

electroanatomic mapping, cardiac magnetic resonance imaging (CMR), and positron 

emission tomography. These technologies have been utilized to guide the biopsy process 

more effectively, enabling the sampling of precisely affected regions. For instance, 

electroanatomic mapping provides real-time guidance by creating detailed electrical maps 

of the heart, aiding in pinpointing the areas of interest. CMR [1] offers excellent 
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visualization capabilities, allowing for the identification of myocardial abnormalities. 

Positron emission tomography provides functional information that can complement 

structural imaging, contributing to a more comprehensive understanding of cardiac health. 

While these advanced techniques hold promise in improving the diagnostic accuracy of 

biopsy, it's important to note that they are not yet widely accessible or routinely performed. 

Factors such as equipment availability, expertise required for interpretation, and cost 

constraints may limit their use in clinical practice. As such, efforts should continue to make 

these advanced diagnostic tools more accessible to clinicians, potentially revolutionizing 

the way cardiomyopathy and other diseases are diagnosed and treated in a more robust and 

accurate way. 

 

2.3 Importance in Tissue Classification for Needle Biopsy 

In addition, in real-world surgical scenarios, surgeons continue to rely heavily on their 

intuition and tactile perception of variances in tissue properties while performing manual 

needle interventions. This intuitive skill allows them to discern anatomical structures and 

events, such as puncture occurrences and the differentiation between soft and hard tissues. 

Haptic feedback, derived from the interaction between the needle and the tissue, plays a 

crucial role in enabling surgeons to make informed decisions during surgical procedures. 

This intuitive haptic perception is an essential aspect of surgical expertise. 

The importance of interaction force in characterizing tissue properties is exemplified in 

breast cancer diagnosis research [2], where it was found that breast carcinoma has a mean 

shear stiffness approximately 418% higher than that of surrounding breast tissues. This 

understanding has led to the development of classifiers that distinguish tissue properties 

based on force patterns. Research in liver needle insertion, for example, utilizes statistical 

models to classify tissues by analyzing the force data [3]. Moreover, Young's modulus, a 

material property indicative of tissue stiffness, can be identified based on the energy stored 
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in the needle-tissue system [4]. Additionally, the application of deep learning, such as a 

recurrent neural network (RNN) based Long-Short Term Memory (LSTM) model, has 

shown promise in estimating various synthetic tissue classes [5]. These studies validate the 

concept that integrating force parameters with position data significantly enhances the 

comprehension of interactions in a wide range of interventional procedures and diagnostic 

processes. The collective findings from these studies underscore the critical role of force 

parameters in surgical interactions. They demonstrate that the integration of force data with 

positional information improves the understanding of tissue properties, facilitating more 

accurate tissue classification and diagnostic processes. This integration not only enhances 

the surgeon's ability to make informed decisions but also holds great potential for 

automating and advancing medical procedures through intelligent systems, such as the 

transformer-based method described in your paper. The combination of surgeons' 

expertise, haptic feedback, and advanced data analysis techniques represents a significant 

step toward safer and more effective surgical interventions. 

 

2.4 Robotic Biopsy Platforms 

Recent developments in the field of robotic biopsy are making significant strides in 

various disease diagnosis procedures. These advancements excel in enabling precise and 

accurate needle insertions, greatly enhancing the quality of procedures, especially with the 

aid of sophisticated imaging systems. 

The increasing adoption of minimally invasive procedures, smaller needles, and robotic 

manipulators is poised to have a transformative impact on patient care. This shift promises 

to minimize scars and reduce trauma for patients undergoing various medical interventions. 

Consequently, a new generation of interventional radiologists and surgeons is 

progressively becoming more adept at utilizing this advanced technology. Regarding the 

development of biopsy robots, it initially involved modifying industrial robots, which were 
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characterized by their large size, complexity, and high cost. However, the current trend is 

moving towards the introduction of smaller, more cost-effective alternatives. These newer 

robotic systems are designed to be compatible with a wide range of imaging modalities, 

allowing for versatility in their application across different medical procedures [6]. 

Robotic biopsy procedures have been deployed across a wide range of anatomical sites, 

showcasing their versatility and adaptability, such as bone [7], lung [8], breast [9], brain or 

brainstem [10], prostate [11], and liver [12]. Robotic biopsy's capacity to maintain a 

straight-line trajectory is particularly valuable, with guidance primarily relying on standard 

radiological images. In such scenarios, robotic systems serve a dual purpose: they fuse 

diagnostic and interventional images, and subsequently, they establish a direct path from 

an external position to the intended target point. These applications demonstrate how 

robotics enhances precision by seamlessly integrating imaging with precise procedural 

guidance. These applications also hold the potential to enhance the accessibility and 

efficiency of robotic-assisted interventions in healthcare.  

Commercially available robotic-assisted systems [6] would include: Intuitive Ion 

system, Perfint Robio, BARD Biopsy Systems, Hansen Sensei Robotic System, etc. 

 

Figure 2.5: Intuitive Ion system 
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Figure 2.6: Perfint Robio 

 

Figure 2.7: Hansen Sensei Robotic System 

Yet, the potential benefits provided by robotic applications within hospital settings, such 

as improved accuracy, precision, consistent execution of small tasks, enhanced 

ergonomics, and resistance to fatigue, have not been fully realized. There appears to be a 

gap between advanced robotic technology and practical clinical needs [6]. 

 

2.5 Digital Pathology 

For various types of biopsies, the final examination would come to pathology. The 

traditional practice of pathology has revolved around the examination of stained, thin tissue 

sections by a trained human using an optical microscope. However, recent technological 
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advancements are catalyzing significant shifts in this traditional paradigm, ushering in the 

era of digital pathology (DP) [27]. In its fundamental definition, digital pathology involves 

the use of computer screens to view scanned histology slides. This approach allows for the 

digitization of glass slide tissue sections, making it convenient to share these digital images 

for second opinions and remote consultation. Presently, one of the most widely discussed 

advancements in the field of digital pathology is the integration of artificial intelligence 

(AI) for the automatic analysis of tissue images. The novel approach utilizes the physical 

properties of molecules to extract spatially resolved specific information about the tissue. 

Label-free vibrational spectroscopic methods, such as infrared (IR) and Raman 

spectroscopy, play a crucial role in the analysis of these thin tissue sections. This innovative 

approach holds the potential to revolutionize digital pathology by reducing the reliance on 

staining and increasing the depth of information obtained from tissue analysis [29].  

Among the various techniques used in label-free vibrational spectroscopic methods, the 

most commonly employed method was Fourier-transform infrared (FTIR) imaging before 

2017 [30]. Numerous research groups worldwide have utilized FTIR imaging to initially 

identify spectral distinctions between different tissue types (both normal and diseased) 

[31].  



16 

 

 

Figure 2.8: Colorectal cancer tissue analysis [31]. (A)H&E staining. (B)Spero QT 

system. (C)FTIR-based imaging 

In recent years, there have been notable advancements in the field of IR imaging 

systems. These cutting-edge systems have departed from traditional FTIR spectrometers 

and instead employ quantum cascade lasers (QCLs) as high-power light sources. Notably, 

research groups led by Bhargava have made groundbreaking discoveries in the realm of 

chemical imaging by developing their QCL-based microscopes. These innovations 

represent a significant shift in the technology used for IR imaging and hold great promise 

for advancing the capabilities of chemical and tissue analysis. This methodology was a 

crucial milestone in the journey toward potentially integrating label-free digital pathology 

into clinical practice. This enhanced speed not only facilitates larger-scale studies but also 

paves the way for label-free digital pathology to align with the established path taken by 

stain-based digital pathology. This alignment is essential for conducting validation studies 

and, ultimately, the successful translation of label-free digital pathology into clinical 
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settings. The ability to scale up and validate this technology is a critical step in its adoption 

within the healthcare field [28]. 

 

2.6 Research Goal 

The current limitations in biopsy include low accuracy due to sampling errors, lack of 

precision and haptic feedback, and the time-consuming nature of staining in traditional 

pathology. 

Our primary focus is on the development of solutions that can provide a rapid and precise 

platform for robotic biopsies, with a particular emphasis on integration with digital 

pathology. 

To achieve these objectives, the research goal is set to develop a robotic system equipped 

with a steerable needle-probe that is fully compatible with the state-of-the-art QCL optical 

fiber technology, enabling specific motion for vibrational spectroscopy. This integration 

allows for the analysis of tissues' chemical and molecular composition in real-time with 

the label-free digital pathology. 

Additionally, it is also necessary to establish a standardized experimental setup using 

this robotic system to collect relevant data. This data will be pivotal in training a 

transformer-based tissue classification model. The primary goal of this model is to enhance 

the capabilities of surgeons by assisting them in recognizing the tissue environment during 

needle biopsies.  

This technology represents a significant step forward in the field of medical robotics, 

aiming to improve the accuracy and efficiency of biopsy procedures while leveraging 

digital pathology for more comprehensive analysis. 
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CHAPTER 3 

FIBER-OPTIC COMPATIBLE ROBOTIC 

BIOPSY SYSTEM 

 

3.1 Design and Development of Robotic Biopsy System 

3.1.1 Workflow and system overview 

The conventional biopsy process has long been a cornerstone of diagnosing various 

medical conditions, especially cancer. This process involves the extraction of tissue 

samples from a patient's body after diagnostic testing locates the region of interest, which 

are then sent to the pathology laboratory. In the lab, these tissue samples are meticulously 

prepared, sectioned, stained, and analyzed under a microscope by skilled pathologists. This 

approach, while effective, can be time-consuming and labor-intensive. The proposed 

method shift in the field of medical robotics represents a significant advancement in 

diagnostic procedures. As depicted in Figure 3.1(a), instead of the traditional biopsy 

process, in-situ diagnosis utilizes cutting-edge technology to minimize the need for tissue 

extraction. After performing initial diagnostic tests to locate the target tissue, the system 

captures digital image data directly from the patient's body. Virtual images resembling 

H&E will be taken out in the digital pathology, leading into a fast and accurate digital 

diagnosing procedures. 
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(a)  

(b)  

Figure 3.1: Workflow and overview of proposed system. (a) Comparison between 

conventional method and proposed novel digital approach. (b) Detailed biopsy procedure 

of our proposed system. 

The detailed operation procedure scheme is shown in the Figure 3.1(b). The existing 

methods like ultrasound can be used to locate areas of interest to biopsy [32-34]. Based on 

the location within the anatomy of the organ, a unit vector will be determined at the desired 

location that signifies the establishment of a directional reference within the anatomy [35-

37]. This vector serves as a guide, indicating the precise direction in which the probing 

needle should be inserted. The unit vector calculation is a critical step in ensuring the 

accuracy and precision of the biopsy procedure.  By manipulating the orientation of the 

probe, it becomes possible to align it precisely with the calculated unit vector. This feature 

enhances the system capability to target and access specific sites within the anatomy with 

a high degree of accuracy. The projected needle, once the end-effector head is 
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perpendicular to target tissue, will simultaneously translate and rotate about its axis. The 

ability to form molecular image patterns is crucial for stainless staining, a technique that 

can enhance the visualization and characterization of biological tissues. 

3.1.2 Mechanical design requirements 

The innovative principle of feed-force sensing in the proposed robotic system primarily 

ensures safety during in-situ needle-probe molecular imaging [38]. Additionally, the 

system provides a generic steerable platform to incorporate wide knowledge of an 

intelligence algorithm for tissue detection and estimation using this feed-force parameter. 

Availing the knowledge of robot navigation and incorporating the mathematical 

compensation model for needle bending will ensure accurate access to the desired location 

for in-situ molecular biopsy. The in-situ molecular imaging performed with a steerable 

end-effector may allow for more optimal image sampling of tissues without removing the 

tissues from the patient’s body. Thus, accurate access to the desired location and molecular 

imaging sample of large region of the tissue addresses the challenge.  

The above considerations lead to the following requirements for the design features: 1). 

High dexterity with more than six degrees of freedom (DOF) to provide the steerable 

platform with maneuverability; 2). Strong needle insertion to collect samples from the 

desired location, which requires at least 20N on the needle [39]; 3). Large and free 

workspace without a singular point, estimated as a volume of 800 mm (length) * 800 mm 

(width) * 400 mm (depth) [40], which would further be mapped with haptic control space 

of the surgeon’s operation. 

The functionalities of the biopsy system encompass the following: 1). Precisely navigate 

to the target point with high dexterity; 2). Penetrate the targeted tissue using a 16-gauge 

biopsy needle and collect a sample from the designated point; 3). Retract the needle and 

extend the IR scope to the target point; 4). Employ a helical motion to manipulate the 

infrared scope, obtaining average cytological information from the superficial area 
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surrounding the target point; 5). retract the IR scope and histologically characterize the 

extracted tissue with IR imaging for rapid, real-time diagnosis. 

 

3.1.3 Mechanical Design Details 

To achieve the goals stated above, we have the following mechanical designs as shown 

in the Figure 3.2.  The mechanical design outlined in Figure 3.2(a) incorporates several key 

elements that work in tandem to enhance the precision and effectiveness of tissue sampling. 

The utilization of a five Degrees of Freedom (DOF) Kuka Youbot arm provides a robust 

and versatile platform for the steerable biopsy system. This robotic arm is capable of 

precise and coordinated movements in six different directions, offering the necessary 

dexterity and flexibility to manipulate the biopsy tool effectively. It serves as the primary 

support structure for the entire system, ensuring accurate motion control and positioning to 

reach the target tissue. The core of the biopsy system comprises a needle insertion system 

with three Degrees of Freedom (DOF). This subsystem consists of two essential 

components: the Standalone Needle Insertion Module and the Pitch Control Unit. This 

standalone needle insertion module is responsible for the actual insertion of the biopsy 

needle into the patient's tissue. Its ability to carry out helical motion allows for precise 

control over the depth and orientation of the needle during the biopsy procedure. This 

feature is instrumental in ensuring accurate tissue sampling. The pitch control unit plays a 

critical role in adjusting the insertion angle of the biopsy needle. This adjustability is 

essential for targeting specific tissue areas within the body. By controlling the pitch, the 

system can accurately position the needle for biopsy, minimizing the risk of damage to 

surrounding structures. Figure 3.2(b) illustrates the real-world assembled robotic biopsy 

system. 
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(a)  

(b)   

Figure 3.2: Design details of the biopsy system. (a) Mechanical design outlines (b) real-

world assembled robotic biopsy system. 

To create a cohesive and functional system, the needle insertion system is seamlessly 

attached to the Kuka robot arm. This integration allows for precise coordination between 

the two systems. The Kuka robot arm provides the necessary motion control to guide the 

needle insertion module to the designated target point/tissue, ensuring that the biopsy 

procedure is carried out with the highest level of accuracy. 
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Former researchers have designed a standalone module for inserting needles during 

endovascular procedures [39]. The standalone needle insertion module (shown in Figure 

3.3 (a)) is engineered to achieve precise translation and needle rotation at programmable 

speeds. This capability is essential for controlled and accurate needle insertion during 

biopsy procedures. It allows for fine adjustments based on user input commands, ensuring 

that the needle follows the desired trajectory. The central box unit, denoted as BS2, is a 

critical component of the module. Inside BS2, there are rollers (as depicted in Figure 3.3 

(b)) that play a pivotal role in enabling translation along the central insertion axis. These 

rollers utilize friction wheels to facilitate smooth and controlled movement of the needle. 

The module employs two actuation mechanisms, m1 and m2, to control translation and 

rotation, respectively. Actuator m1, attached to BS2, drives the translation motion of the 

needle along the central axis. Meanwhile, actuator m2 is responsible for rotating BS2 

around its axis, thus controlling the rotational motion of the needle. This dual-actuation 

system ensures precise and coordinated movement during procedures. This module also 

incorporates a spring-loaded quick release mechanism, which is associated with the passive 

roller. This mechanism serves multiple purposes. First, it allows surgeons to manually pull 

the needle in emergency situations, providing a fail-safe option in critical moments. 

Second, it enables user-defined clamping behavior, accommodating various tool sizes, and 

allowing customization for different procedural needs. To ensure seamless operation and 

control of the standalone needle insertion module, the system employs a slip ring for 

transmitting control signals to and receiving encoder data from actuator m1. This slip ring 

is akin to the sensor module and plays a pivotal role in facilitating communication between 

the module and the controller. The description references an exploded view of the 

standalone needle insertion module, as depicted in Figure 3.3 (c). This view provides a 

detailed visualization of the module's internal components and their arrangement, offering 

a clear understanding of how the various parts interact to achieve precise needle insertion. 
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Figure 3.3: Standalone needle insertion module. (a) Design overview. (b) Needle 

clamping with friction wheels. (c) Standalone needle insertion module exploded view 

While the standalone needle insertion module is capable of translation and rotation, 

needle insertion pitch angle is needed for fine-tuning the insertion axis to avoid unbalanced 

gyro spinning behavior. Pitch control unit enables the fine axis adjustment while the robotic 

platform reaches the target position. This also ensures safety concern that undesired needle 

insertion won’t be carried out until the fine-tuning of the insertion axis.  

To notice, this standalone insertion module is not only capable of delivering needle, but 

also optic fiber with various thickness. The spring-loaded mechanism ensures the 

flexibility in tool dimensions. 

Biopsy insertion system has already been developed and tested. Steerable digital biopsy 

system has been tested on plastic phantom to validate the effectiveness. Validation is 

discussed in chapter 4. 
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3.2 Compatibility with Label-free Digital Pathology 

In the current landscape of label-free digital pathology, label-free vibrational 

spectroscopic methods, including both infrared (IR) and Raman spectroscopy, are utilized. 

Of these two methods, IR spectroscopy is more commonly applied in practical use cases. 

FT-IR spectroscopic imaging is a well-established, high-fidelity technology for 

histopathologic studies, although it can be slow. The advent of Quantum Cascade Lasers 

(QCLs) has allowed for DFIR imaging, significantly reducing the time required for 

histologic imaging. However, it's important to note that cutting-edge QCL applications 

have primarily been conducted in in-vitro environments. In such setups, a comprehensive 

arrangement with a movable stage supporting slides, QCL with lenses, microscopes, and 

other essential equipment are used. These setups enable collected tissues being moved on 

a slide using the support stage, molecular and chemical images can be recorded using IR 

vibrational spectroscopy. However, in in-situ situations, it becomes crucial to develop an 

alternative method for collecting molecular information with a fiber-optic tool inserted 

directly into the region of interest, as the conventional movement from supporting movable 

stage is not realistic to collect information across the tissue. 

The Figure 3.4(a) demonstrates the acquisition of IR spectral information at one pixel 

using fiber-optic tools. IR light travels into fiber from QCL, A set of points (marked as 

green circles in Figure 3.4(a)) at the prism-tissue interface reflect the IR light. Reflected 

light then travels back to the IR detector thru fiber with information. After IR spectrum 

analysis, 1 pixel with multi-spectra information is recorded, which includes the combined 

molecular information from all reflect points. Each pixel is approximately 5μm wide, 

signifying an exceptionally fine level of detail. However, this pixel only captures 

information in one certain depth in tissue on the prism-tissue interface. Generally, 1 pixel 

of information is not sufficient to carry out a comprehensive analysis of histopathological 

data, so we need a richer source of information for diagnostic and research purposes. 
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In our biopsy insertion system, we've highlighted the importance of a spring-loaded 

mechanism that offers flexibility in tool dimensions, making it compatible with fiber-optic 

tools with different size. As depicted in Figure 3.4(b), the fiber-optic tool is clutched by 

the two rollers from insertion module. There are 2 driving motors in the insertion module. 

Fiber optic tool rotates along the insertion axis with motor 1 and feeds straightly under 

actuation roller driven by motor 2. Multiple pixels are recorded at a certain depth level with 

rotation, IR change across spectrum domain during rotation, spectroscopic information is 

recorded. Meanwhile, as the tool feeds straightly into tissue, a sequence of pixels are 

recorded for different depth. Helical motion has the following benefits in information 

acquisition:  

Firstly, it would gather more information at a certain depth level, allow IR changing 

across spectrum domain, recording information for multi-spectral IR analysis. Secondly, it 

has the capability to collect spectroscopic information at different depth, recording enough 

pixels for a spectroscopic analysis within depth. This helical motion not only minimizes 

the sampling error by increasing with rich information during the rotation, but also 

generates a depth analysis so that surgeons can determine the boundary of focal area for 

further surgical procedures including cutting, removing and other treatments. 
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(a)  (b)   

(c)  

Figure 3.4: Fiber-optic compatibility. (a) IR spectral information at one pixel. (b) Helical 

motion acquisition. (c) Molecular image reconstruction from reflectance points (unit: mm) 

 

Figure 3.4(c) illustrates the molecular image reconstruction from pixel level during the 

helical motion. We developed this image reconstruction example for a better understanding 

of imaging process. To notice, the terms of pixel and image is just a concept here comparing 

with normal RGB images for better understanding the information combination. 
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Reflectance points on the prism-tissue interface are marked as yellow and blue pixels in 

helix, represent molecular information recorded in a time sequence. Without losing 

generality of the concept, we assume 2 points at the prism-tissue interface are reflecting 

the IR light in this example. The radius of rotation is 2 mm, which is determined by 

insertion tool and prism size; the feeding depth is set as 2 mm/r, which represents the depth 

feeds with one complete rotation. The individual spectroscopic reconstructed images for 

yellow and blue points are demonstrated on the left and right denoted by yellow and blue 

bars. They are constructed by stacking the pixels from bottom to top, which is indicated by 

the lightness change in the color bar. However, in a real scenario, it is not feasible to 

observe their distinct spectroscopic information, as it would be a combined signal as the 

light travels through the fiber with multiple reflections and we cannot separate the 

information from 1 reflectance point to the other. Therefore, we would have combined 

reconstructed images marked as green bar on the bottom, which is the real detected 

molecular image reconstructed from pixels. Each real collected pixel consists of 

information from multiple reflections. For instance, the first combined pixel contains 

information from the bottom yellow and bottom blue reflectance points. The stacking of 

the combined pixels forms the real molecular image. 

 

3.3 Mathematical Modeling of Robot Kinematics and Workspace 

A workspace of 800mm(length) * 800mm(width) * 400mm(depth) general chest biopsy 

procedures, regarding all kinds of situations and patients’ conditions has been reported in 

the literature [40]. The end-effector shown in Figure 3.5 is designed to have a perpendicular 

incision angle no matter what posture the patient has. When the robotic arm approaches 

the target position, the rotational motor inside the end-effector will adjust the needle angle 

to be perpendicular to the desired position, and the linear actuator will carry out the poking. 

Figure 3.5 shows the frame of the biopsy system. Corresponding distances between joints 
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are displayed. The last linear joint from the linear actuator is not shown in the Figure 3.5 

since there is always the same safety distance for poking between the joint 5 and desired 

poking position. Thus, the DH (Denavit-Hartenberg) parameters [41] of the robotic system 

is shown in the Table 3.1 below: 

 
Joint a(mm) α(rad) d(mm) θ(rad) 

1 0 π/2 L1=33 q1 

2 L2=155 0 0 q2 

3 L3=135 0 0 q3 

4 0 π/2 0 q4 

5 0 π/2 L4=170.76 q5 

6 L5=120 0 0 q6 

Table 3.1: DH parameters for the biopsy system 

Since the biopsy system is target-position driven, the inverse kinematics is needed for 

positioning and workspace analysis.  

q6 itself is the pitch joint from the end-effector needle insertion system which makes 

itself perpendicular to the target position with a safety distance ds, we can transform the 

target position (x, y, z, φ, θ, ψ) to be (xt, yt, zt, 0, 0, 0) together with the robot base frame. 

Without loss of generality, we assume the target position to be parallel to the robot base 

frame, which is (x, y, z, 0, 0, 0).  

Since the safety distance ds is a constant, we can get the position of end-effector of the 

robot as (x, y, z + ds). q1 is the main joint for determining the rotation about its base. Thus, 

q1 is simply derived as: 

𝑞1 = arctan (
𝑦

𝑥
) 
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Figure 3.5: Robot representation in (x’, z) plane for solving q2, q3 and q4 

The remaining q2, q3 and q4 can be derived from the plane (x’, z) as shown in Figure 

3.5. 

𝑧 + 𝑑𝑠 = 𝐿1 + 𝐿2 cos 𝑞2 + 𝐿3 sinα1 + 𝐿4 sinα2 

With the redundances in planar joints and in order to maximize the working space, we 

would need to consider with the joints’ limit and try to figure out a solution inside the 

limitation space. 

{

𝑞2 ∈ (−1.13, 1.57)

𝑞3 ∈ (−2.64, 2.55)

𝑞4 ∈ (−1.78, 1.78)
 

As the limit space of q3 is almost twice as large as q2, and the similar length in arm2 

and arm3, we can simply assume the following equation for a large enough workspace. 

𝑞3 = 2𝑞2 

put all q2 items to the left of the equations (2) above, square both sides of the equations, 

add equations together, then we can get, 

𝑧′2 + 𝑥′2 + 𝐿22 + 𝐿33 − 2(𝐿2 𝑧′ 𝑐𝑜𝑠𝑞2 + 𝐿3 𝑧′ 𝑐𝑜𝑠3𝑞2 + 𝐿2 𝑥′ 𝑠𝑖𝑛𝑞2 + 𝐿2 𝑥′ 𝑠𝑖𝑛3𝑞2) + 2𝐿2𝐿3𝑐𝑜𝑠2𝑞2 = 𝐿42 

using the equation above and the numerical method, we can get q2 value, and from z’ 

we can get α2 value, which gives q4 value. 

In the context of the system being discussed, the consideration of joint limits plays a 

pivotal role in defining the maximized workspace. The establishment of a workspace with 
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dimensions of 800 mm x 800 mm x 400 mm holds profound practical implications for the 

field of medical robotics. As shown in Figure 3.6, the semi-sphere shape workspace can 

enhance the system versatility, making it applicable to a broader range of medical 

procedures and interventions. The inner cylinder-shaped space is inaccessible due to the 

arm length and end-effector length. Joint 1 mechanically limits sweeping angle which 

causes the left missing part of the semi-sphere. Furthermore, it may allow for the 

accommodation of various tool sizes and configurations, providing healthcare 

professionals with a valuable tool for diverse clinical scenarios. Overall, the optimization 

of the workspace, while considering joint limitations, represents a pivotal step in advancing 

the capabilities and utility of medical robotic systems, ultimately benefiting both patients 

and medical practitioners. 

 

Figure 3.6: Workspace of the biopsy system. (Unit: mm) 
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3.4 Future Work 

We have detailed the design and development of the robotic biopsy system, emphasizing 

its compatibility with digital pathology, its ability to execute helical motion, and its 

proficiency in a large workspace. These design aspects have been successfully validated 

within the robotic biopsy system. 

However, it's important to note that the full integration of the current state-of-the-art 

Quantum Cascade Laser (QCL) technology for developing fiber-based solutions to derive 

histologic images from molecular data through infrared spectroscopy is yet to be realized. 

Future research will focus on developing a specific surgical tool that incorporates a tunable 

QCL spectrometer into a custom infrared (IR) fiber-optic spectrometer. This innovation 

will mark a significant leap forward in the capabilities of the robotic platform, enabling the 

generation of histologic images from molecular data. 

The current robotic platform continues to concentrate on needle biopsy procedures, 

prioritizing speed and accuracy in specimen extraction. 
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CHAPTER 4 

SEMI-AUTONOMOUS CONTROL FOR 

ROBOTIC SYSTEM 

 

4.1 Control Architecture Overview 

The proposed semi-autonomous control for needle incision is illustrated in the block 

scheme of Figure 4.1. A typical robot-aided needle incision procedure involving the 

adoption of the proposed control will consist of the following steps: 

(1) Robotic platform automatic positioning: With pre-recorded CT/MRI information, the 

central control processor will generate a planned trajectory to the target location and send 

real-time control signals to the robotic platform. According to the position/force control 

algorithm shown in Figure 4.1, the robotic platform will automatically move to the desired 

location and pose its end-effector aligned with the insertion axis. 

(2) Semi-automatic position adjusting: Admittance control is also implemented for the 

robotic platform. After the automatic positioning, surgeons can activate the semi-automatic 

adjusting mode. In this mode, robotic platform will react to externally applied force, 

resorting into a motion control loop. This would benefit surgeons by making larger 

workspace for multiple tasks besides needle biopsy. This would also fine-tune the target 

location when the end-effector is not aligned with the desired insertion axis if the patient 

is not perfectly positioned on an operating table. 

(3) Semi-automatic tool insertion: The semi-autonomous control for the tool insertion 

system is shown in the blue box in Figure 4.1. After the end-effector is aligned with the 

desired insertion axis, the tool insertion can be performed via teleoperation using haptic 



34 

 

devices. According to the velocity control algorithm shown in Figure 4.1, needle biopsy 

tool insertion will automatically follow the haptic input, while force feedback will also aid 

surgeons with information on tissue texture, tool friction, etc. 

 

Figure 4.1: Control block diagram of the semi-autonomous control for needle insertion 
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4.2 Hybrid Force/Position Control 

4.2.1 Control Design of the robotic platform 

The robotic platform’s dynamics and control law are stated as following: 

𝜏𝑐 = 𝑀(𝑞)�̈�c + 𝐶(𝑞, �̇�) + 𝐺(𝑞) 

�̈�c = 𝐽(𝑞)† [𝑇𝐸𝐵
−1(𝑇𝐸𝐵�̈�𝑑 + 𝐾𝑃 𝑇𝐸𝐵�̃� + 𝐾𝐷𝑇𝐸𝐵 �̇̃�)] 

where 𝑀(𝑞) represents the inertia matrix of the robot, 𝐶(𝑞, �̇�) denotes the estimation of 

centrifugal and Coriolis effects, 𝐺(𝑞)  is the gravity term, 𝜏𝑐  is the computed robotic 

command torque vector for each joint, 𝑞, �̇�, �̈� represent the robot's joint position, angular 

velocity and angular acceleration, 𝐽(𝑞)†   is the pseudo-inverse of the robot's geometric 

Jacobian, �̃� =  �̃�, �̃�  stands for the position error for the end-effector in base reference 

frame and �̇�𝑚  is the robot Cartesian velocity expressed as �̇� = 𝐽(𝑞)�̇�  which both are 

represented in the base reference frame.  𝑞�̈� is the command joint acceleration which is 

used to compute the joint computed torque. The positioning trajectory from robotic 

platform initial condition to target position is generated by central processor within pre-

recorded MRI/CT image. From this mentioned trajectory, we can get the time-varying 𝑥𝑑 

and we can calculate �̃�  with the subtraction of measured task space position 𝑥𝑚  using 

forward kinematics and the calculated position 𝑥𝑑. �̈�𝑑 is the corresponding acceleration in 

the generated motion.  

 

Figure 4.2: Block diagram for robotic platform 
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Matrix 𝑇𝐸𝐵 in the transformation matrix which transform the position error �̃� and the 

velocity error �̇�𝑚 from the base frame  𝑋𝐵 , 𝑌𝐵, 𝑍𝐵  to the end-effector frame  𝑋𝐸 , 𝑌𝐸 , 𝑍𝐸 .  

𝐾𝑝  and 𝐾𝐷  are the proportional and derivative control gains that are defined as 6×6 

diagonal matrices. 

𝐾𝑃 = 𝑑𝑖𝑎𝑔{𝑘𝑝1, 𝑘𝑝2, 𝑘𝑝3, 𝑘𝑝4, 𝑘𝑝5, 𝑘𝑝6} 

𝐾𝐷 = 𝑑𝑖𝑎𝑔{𝑘𝑑1, 𝑘𝑑2, 𝑘𝑑3, 𝑘𝑑4, 𝑘𝑑5, 𝑘𝑑6} 

Using dynamics equation, we get the desired joint command acceleration, and we can 

then use inverse dynamics used to calculate the commanded joint torques 𝜏𝑐. 

𝐾𝑝 and 𝐾𝐷 are tuned for automatic positioning to the desired calculated target position. 

Under ideal circumstance, the target position where the end-effector will be aligned with 

the insertion axis would be fixed if the patient does not move. But in real surgical 

environments, certain moves of the patients’ poses or the operation bed heading angle can 

lead to unalignment of the end-effector to the target insertion axis. Thus, manual operation 

of fine positioning is needed. 

 

4.2.2 Admittance control for robotic platform 

While the ideal scenario envisions the end-effector being perfectly aligned with the 

insertion axis, the unpredictability of patient movements or changes in the operation bed's 

heading angle can disrupt this alignment. In response, manual fine positioning becomes a 

crucial requirement to ensure that the robot maintains its accuracy and precision during 

surgical procedures. These real-world challenges highlight the need for both admittance 

control algorithms and hybrid force/position control to handle the dynamic problems and 

ever-changing conditions encountered in medical settings. 

The goal of admittance control is to implement the task-space behavior: 

𝐹𝑒𝑥𝑡 = 𝑀�̈� + 𝐵�̇� + 𝐾𝑥 
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where �̈� ∈ 𝑅𝑛  is the task-space configuration in a minimum set of coordinates, 𝑀,𝐵, 𝐾 

are the positive-definite virtual mass, damping, and stiffness matrices to be simulated by 

the system, and 𝐹𝑒𝑥𝑡 is an external force applied to the robot by the operator. The values of 

𝑀,𝐵, 𝐾 may change, depending on the location in the virtual environment. 

In the admittance-control algorithm shown in Figure 4.3, the force 𝐹𝑒𝑥𝑡 is applied by the 

operator and can be applied on any links/joints.  

For instance, the second link of the robot may contact the operation bed frame, thus the 

operator needs to pull up that link to avoid collision. With no direct force sensor and 

variation in force application, it would be very hard to estimate the external force, so we 

first compensate the friction force in joints, which is represented by 𝐾𝑓𝐹𝑓 term in equation.  

And in this case, since no trajectory is strictly followed, we change the equation of 

dynamics into 

𝜏𝑐 = 𝑀(𝑞)�̈�c + 𝐶(𝑞, �̇�) + 𝐺(𝑞) + 𝐾𝑓𝐹𝑓 

�̈�c = 𝐽(𝑞)†  𝑇𝐸𝐵
−1(𝐾𝐷𝑇𝐸𝐵�̇�𝑚)   

where now  �̈�𝑚, �̇�𝑚 are measured robot Cartesian acceleration and velocity. We then tune 

the 𝐾𝐷  for gentle motion on the admittance control. And inverse dynamics is used to 

calculate the commanded joint torques 𝜏𝑐  
. 

 

Figure 4.3: Block diagram for robotic platform control with position updates 
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When the manual adjusting is in process, external force applied on the end-effector will 

change the desired acceleration, which determine the joint drive torque from joint torque 

control. When the manual adjusting is finished, the desired location can be updated and 

desired acceleration calculation can switch back to Hybrid Force/Position Control 

The friction force 𝐹𝑓 can be modeled as the following: 

𝐹𝑓 = 𝐹𝑐𝑠𝑔𝑛(�̇�) + 𝛽�̇� 

where 𝐹𝑓  is the overall friction force relative to each joint, �̇�  is the relative angular 

velocity for each joint, 𝛽 is the viscous friction coefficient, and 𝐹𝑐 is the Coulomb friction 

and its direction is determined by the relative angular velocity for each joint. System 

identification is used to parameterize the viscous friction coefficients in the joints. 

In the robotic dynamics, 𝐾𝑓  will be tuned to have a better performance on friction 

compensation as a feedforward gain. These adaptations enable the robot to operate in an 

admittance control mode, where the system responds gently to external forces while 

maintaining its stability. 

 

4.3 Semi-Autonomous Position Control 

End-effector is also semi-autonomous controlled by a surgeon using haptic devices with 

force feedback. Depending on different physical conditions while tool insertion on patients, 

the measured resistance force would be different. End-effector should carry out insertion 

under surgeons’ teleoperation with feedback to achieve high precision criteria. 

In the semi-autonomous mode, the following control algorithm is introduced in the 

Figure 4.1 as: 

𝑢 = 𝑘𝑝�̃�𝑡 + 𝑘𝑑 �̇̃�𝑡+𝑘𝑜𝐹𝑡  
 

where 𝑢  is the calculated control output, �̃�𝑡  is the position error, calculated by the 

subtraction of the scaled position 𝑥ℎ  from haptic device input and the measured tool 
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position. �̇̃�𝑡 is the velocity error calculated from position error, providing a reference point 

for precise control. 𝐹𝑡  is the measured force along the insertion axis, reflecting the 

resistance force encountered during insertion. 𝑘𝑝, 𝑘𝑑 , 𝑘𝑜 are the tunable control gain factor 

for position, velocity, and force.  

𝑘𝑝, 𝑘𝑑 represent the tunable control gain factors for position and velocity, respectively, 

ensuring that the end-effector effectively tracks the surgeon's haptic input. Meanwhile, 𝑘𝑜 

plays a vital role in feedforward control efforts. It compensates for resistance forces 

encountered during insertion, maintaining precise position tracking despite varying 

physical conditions. This feedforward control strategy, combining haptic feedback and 

tunable gains, not only enhances the end-effector's performance but also empowers 

surgeons with a high degree of control and confidence in achieving exceptional precision 

during medical procedures. 

 

4.4 Parameters Identification 

The detailed mechanical properties of Kuka Youbot can be found in Kuka official 

website. The mass, max torque and joint limits for arm joints and end-effector unit is 

measured in Table 4.1. 

 

Table 4.1: Kuka Youbot Parameters 

The remaining system parameters that can not be obtained are Coulomb and Viscous 

frictions on each joint. As the motors are all fixed on the joints, it takes no harm to combine 

the motor friction with the joint friction as one single term. A good estimation of the 

  joint 1 joint 2 joint 3 joint 4 joint 5 
end-

effector 

mass (kg) 1.39 1.32 0.82 0.77 0.69 1.53 

max torque 
(Nm) 9.50 9.50 6.00 2.00 1.00 / 

joint limits (°) 
-

169°~169° -65°~90° 
-

151°~146° 
-

102°~102° 
-

165°~165° / 
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Coulomb and Viscous friction will aid the admittance control performance with higher 

admittance behavior. 

A comprehensive depiction of friction torque in a robot-manipulator joint can be 

outlined by the Inverse Dynamic Identification Model (IDM) of the robot for actual 

parameters. The IDM of a rigid robot calculates the motor torques 𝜏𝑖𝑑𝑚 as a function the 

motor positions, velocities and accelerations. It is given by the following relation: 

𝜏𝑖𝑑𝑚 = 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) + 𝜏𝑓 

𝜏𝑓 = 𝐹𝑣�̇� + 𝐹𝑐  𝑠𝑖𝑔𝑛(�̇�) + 𝐹𝑇 

where 𝑞, �̇�, �̈�  represent the robot's joint positions, angular velocities and angular 

accelerations, 𝑠𝑖𝑔𝑛(�̇�) represents the sign of joint velocities, 𝑀(𝑞) represents the inertia 

matrix of the robot, 𝐶(𝑞, �̇�) denotes the estimation of centrifugal and Coriolis effects, 𝐺(𝑞)  

is the gravity term. 𝐹𝑣 and 𝐹𝑐 stand for the diagonal matrix of the viscous and Coulomb 

friction parameters. 𝐹𝑇 is the offset parameter involving temperature and payload terms. 

Given that the robotic platform operates at a consistent room temperature with minimal 

fluctuations and the variable component of the load primarily consists of the tissue reaction 

force (ranging from 0 to 10 N), which is relatively small when compared to the constant 

elements such as the end-effector mass and robotic mass, it is reasonable to assume that 

the term 𝐹𝑇  remains constant throughout the operations. Therefore, the focus shifts to 

identifying and quantifying the components 𝐹𝑣 and 𝐹𝑐 to complete the friction model. 

The most prevalent approach for estimating friction torque in robot-manipulator joints 

involves isolating it by utilizing measurable control torque. This separation process takes 

into account the contributions from the other components in the equation above, while 

considering the mass-inertial characteristics of the robot's links, and subsequently 

eliminates those contributions. This approach involves paired counter-directed motions 

performed by one robot axis at a constant velocity (�̇� const) with no external load. The 

constant speed ensures that there is no influence of inertia forces, with centrifugal and 
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Coriolis forces directed radially from the considered joint, creating torque that only affects 

subsequent joints and links. Consequently, based on the dynamic equation, the components 

of inertia forces 𝑀(𝑞)�̈� and those of centrifugal and Coriolis forces 𝐶(𝑞, �̇�) are both 0, 

while the axial control torque u opposes only the friction forces τ. It's important to note that 

the gravitational component of the load torque lg(θ) is independent of the motion direction 

𝑠𝑖𝑔𝑛(�̇�), while the friction torque component τ changes sign when the direction is reversed. 

Thus we can denote the positive direction motion torque and negative direction motion 

torque as 𝜏𝑖𝑑𝑚  
+and 𝜏𝑖𝑑𝑚  

−, and the friction torque can be derived as: 

𝜏𝑓 =
𝜏𝑖𝑑𝑚 

+ − 𝜏𝑖𝑑𝑚 
−

2
 

The parametrization of a model is considered optimal when it minimizes the Mean 

Squared Error (MSE) between the vector of measurements. Linear regression using 

gradient descent is used to optimize the result. The following Table 4.2 shows the result 

for friction identification. 

  joint 1 joint 2 joint 3 joint 4 joint 5 

Fc(Nm) 0.504 0.217 0.134 0.113 0.288 

Fv(Nms/rad) 0.112 0.076 0.058 0.043 0.085 
 

Table 4.2: Kuka Youbot Friction Identification 

 

 

4.5 Performance and Safety Evaluation 

4.5.1 Evaluation on hybrid force/position control experiment and results for robotic 

platform 

Evaluating the performance of a robotic platform is a critical aspect of ensuring its 

reliability and effectiveness in medical procedures. To comprehensively assess the 
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capabilities of the hybrid force/position control system, a series of pre-calculated 

trajectories are employed for evaluation purposes.  

The first set of trajectories involves sine waves executed separately along the 

 𝑋𝐸 , 𝑌𝐸 , 𝑍𝐸  axes. Each axis within the target space follows a distinct sine wave pattern, 

featuring an amplitude of 0.05 meters, while the remaining axes and end-effector pointing 

direction remain constant. This approach enables a detailed examination of how the robotic 

platform responds to sinusoidal motion in each specific direction. 

The desired trajectories and actual trajectories are shown in the following Figure 4.4(a): 

(a)  

(b)  

Figure 4.4: Hybrid force/position control evaluation (a) trajectory tracking in three axes. 

(b) trajectory tracking errors. 
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The quantitative evaluation of tracking performance reveals even more about the system 

capabilities. As shown in Figure 4.4(b), with mean errors in  𝑋𝐸 , 𝑌𝐸 , 𝑍𝐸   tracking 

measuring less than 1 millimeter, and a standard error of tracking below 6% (around 3 

millimeters), these results provide concrete evidence of the system consistent and reliable 

performance. These tight error margins indicate that the hybrid force/position control loop 

excels in maintaining trajectory fidelity, even when executing separate trajectory waves 

along distinct axes. Errors measuring in millimeters or less underscore the potential for 

safer and more accurate surgical procedures. This level of control and reliability has the 

potential to redefine the possibilities in minimally invasive surgeries, patient safety, and 

overall surgical efficiency. The success in achieving a well-controlled separate trajectory 

following in  𝑋𝐸 , 𝑌𝐸 , 𝑍𝐸  reinforces the immense promise and potential of the hybrid 

force/position control system in advancing the field of medical robotics to new heights of 

precision and effectiveness. 

 

4.5.2 Admittance control experiment and evaluation with safety 

A comprehensive evaluation of the hybrid force/position control system for the robotic 

platform is a pivotal step in assessing its overall performance and versatility. To this end, 

a series of different pre-calculated trajectories have been meticulously designed for 

systematic evaluations. These evaluations are instrumental in gauging the system ability to 

adapt to various scenarios and challenges encountered in real-world medical procedures. 

The results derived from these assessments provide valuable insights into the system 

precision and robustness, ultimately contributing to its refinement and optimization. 

For trajectory evaluations, the performance of the admittance control component within 

the robotic platform is subjected to rigorous assessment. This assessment involves manual 

fine positioning after the platform has reached its desired position. This human-in-the-loop 

approach enables an in-depth evaluation of the system responsiveness and precision when 
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fine adjustments are necessary. By simulating real-world scenarios where surgeons may 

need to make adjustments during a procedure, the platform’s reliability and effectiveness 

can be thoroughly examined. 

Figure 4.5(a) provides a visual representation of the results obtained from the 

assessments of the end-effector’s response when subjected to external forces. This 

visualization is essential for gaining insights into how the admittance control system 

interacts with the hand adjustment while adhering to the preset trajectory. It illustrates the 

platform’s ability to adapt and align its end-effector with the desired trajectory while 

accommodating external forces, highlighting the system precision and adaptability. 

Complementing the end-effector’s motion, Figure 4.5(b) offers a detailed view of the 

corresponding robotic joint torque responses when confronted with resistance forces. This 

analysis reveals how the robotic platform reacts to external forces by generating 

appropriate joint torques. This response mechanism ensures that the platform maintains its 

intended trajectory and achieves precise positioning even when faced with varying external 

forces. The joint torque analysis provides quantitative evidence of the system robustness 

and its ability to handle real-world challenges effectively. Following the manual operation 

and fine positioning, the robotic platform’s ability to record the final destination and 

maintain a stable position is a significant accomplishment. This feature ensures that once 

the manual adjustments are completed, the platform holds its position securely. This 

capability is crucial in surgical contexts where stability and accuracy are paramount. By 

achieving a stable final position, the robotic platform contributes to the overall success and 

safety of medical procedures, aligning with the high precision standards required in the 

field of medical robotics. 
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(a)  

(b)  

Figure 4.5: Admittance control evaluation. (a) trajectory tracking with manual positioning 

for admittance control. (b) torque response for admittance control 
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4.5.3 Position control and force measurement for tool insertion 

To comprehensively assess the performance of the position control system for tool 

insertion, a thorough evaluation has been conducted. This evaluation involves both position 

tracking and the measurement of tissue reaction forces under different load conditions, 

providing a comprehensive understanding of the system functionality and robustness. The 

experimental setup, as illustrated in Figure 4.6, serves as the foundation for this evaluation. 

It simulates the real-world needle insertion process, where both the robotic positioning 

platform and the tool insertion system work in concert. The objective is to measure the 

position-tracking accuracy along predefined trajectories and simultaneously capture the 

corresponding tissue reaction forces. This setup facilitates a controlled and systematic 

assessment of the system performance. 

(a) (b)  

Figure 4.6: Tool control evaluation setups. (a) synthetic tissue sample setups (b) 

experimental setup for position control and force measurement for needle insertion 

For precisely measuring position tracking with certain trajectory and the corresponding 

tissue reaction force, the biopsy system with 3 DOF (shown in Figure 4.6 (b)) consists a 

potentiometric position sensor (IR robot: IR-10kΩ linearity potentiometer), a force 

measurement sensor (ATI model: Nano 43 Transducer), a biopsy cut needle (Bard 

instrument: 16-gauge/1.7mm). These components work in tandem to replicate the 

conditions encountered during actual medical procedures, enabling a comprehensive 

assessment of the system performance in a controlled laboratory environment. 
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In the evaluation process, a set of synthetic tissue samples with varying types and 

thicknesses is introduced, as depicted in Figure 4.6(a). These synthetic tissue samples serve 

as critical test subjects, simulating the diversity of tissue conditions encountered in real 

medical scenarios. The inclusion of different tissue types and thicknesses enhances the 

realism of the evaluation and ensures that the system performance is rigorously tested 

across various tissue profiles. To facilitate the evaluation, the robotic platform and 

corresponding supporting frames are employed, as illustrated in Figure 4.6(b). These 

frames are designed to securely hold the synthetic tissue samples in precise positions during 

testing. Their role is instrumental in replicating the stable positioning required for medical 

procedures and ensuring that the evaluation accurately simulates real-world conditions. 

The evaluation encompasses a range of synthetic tissue sample setups, each designed to 

emulate distinct medical scenarios.: 

1. 2mm skin-superficial tissue + 15mm duct embedded tissue. 

2. 2mm skin-superficial tissue + 10mm fibrous tissue. 

3. 4mm skin-superficial tissue + 15mm duct embedded tissue. 

4. 4mm skin-superficial tissue + 10mm fibrous tissue. 

To conduct the evaluation, a continuous input signal of 2mm/s is commanded for needle 

positioning. This controlled input rate ensures consistency in testing conditions which also 

mimics the real scenarios in surgical procedures. Relative force feedback and position 

responses are recorded throughout the evaluation process.  
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(a)  

(b) (c)  

Figure 4.7: Tool insertion evaluation. (a) trajectory tracking for different tissue sets. (b) 

trajectory tracking errors for different tissue sets. (c) tissue reaction forces for different 

tissue sets with respect to needle feeding depth 

Figure 4.7(a) presents an insightful overview of the position tracking performance in 

response to the reference signal. The tracking behavior is systematically displayed for four 

distinct scenarios involving different synthetic tissue setups, each represented by a unique 

color code. This visualization allows for a direct comparison of the platform’s response 
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across various tissue conditions, providing a clear assessment of its precision and 

adaptability during needle tool insertion. Figure 4.7(b) offers a comprehensive analysis of 

relative tracking errors associated with the different synthetic tissue setups. These tracking 

errors are a critical metric for evaluating the system accuracy and reliability. Notably, the 

mean and standard error of tracking errors measuring less than 1mm underscore the system 

exceptional precision and robust tracking behavior. This level of accuracy is paramount in 

medical applications where precise positioning is essential for patient safety and successful 

procedures. Figure 4.7(c) delves into the corresponding tissue reaction forces observed in 

various synthetic tissue setups. These forces are indicative of how the system interacts with 

different tissue compositions and thicknesses during the insertion process. The evaluation 

of different tissue setups reveals distinct penetration points during the needle insertion 

process. For both set1 and set2 scenarios, penetration occurs at approximately 4mm of 

travel. Similarly, for set3 and set4 scenarios, penetration is observed around the 4mm mark. 

These penetration points provide critical insights into how the system interacts with 

different tissue compositions and thicknesses during insertion. The evaluation further 

highlights variations in resistance forces based on the specific tissue setups. In scenarios 

like set1 and set3, characterized by stronger elasticity in fibrous tissue, the resistance forces 

encountered during insertion are notably stronger compared to the resistance observed in 

duct tissue for set2 and set4. This divergence in resistance forces underscores the system 

ability to adapt to tissue-specific properties, emphasizing the importance of understanding 

tissue behavior in medical robotics. This multifaceted evaluation offers a comprehensive 

understanding of the system performance in response to varying tissue conditions, 

reinforcing its potential for medical applications. 
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4.6 Conclusion 

In chapters 3 and 4, a steerable needle-probe biopsy system is presented. The proposed 

design achieves high dexterity to provide the steerable platform with accurate access to the 

desired location, carries out strong and rapid poking to collect samples from the desired 

location, and provides with large and free workspace without a singular point. 

The innovative mechanical design of the steerable needle probe end-effector is discussed 

in chapter 3. A 5 DOF Kuka Youbot arm is used to support the 3 DOF needle insertion 

system and provide motion to target point/tissue. A needle insertion system with 3 DOF is 

consist of a standalone needle insertion module and a pitch control unit. The needle 

insertion module can carry out helical motion while the insertion angle can be adjusted by 

the pitch control unit.  

To achieve the required high dexterity, we introduce semi-autonomous control for 

needle insertion in chapter 4. A position/force control algorithm automatically maneuvers 

the robotic platform to the desired location while aligning the end-effector with the 

insertion axis. Admittance control is also integrated into the system, allowing the robotic 

platform to make fine adjustments to the target location when the end-effector isn’t 

perfectly aligned with the desired insertion axis, particularly when the patient’s positioning 

is not ideal on the operating table. The semi-autonomous control loop is also discussed for 

tool insertion system. After the end-effector is aligned with the desired insertion axis, the 

tool insertion can be performed via teleoperation under user haptic device inputs or preset 

insertion behavior. 

Chapter 4 also includes an evaluation of the control system. Implemented trajectories 

are executed using the position/force control algorithm, and the relatively low positioning 

errors validate the precision of the robotic platform control. Functionality for admittance 

control is also validated, a user-customized trajectory is achieved with the robotic 

resistance force rejection. Finally, the overall functioning of position control for tool 
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insertion is tested. Synthetic tissue samples with different types and thickness are 

penetrated. Meanwhile, position tracking error is relatively small and reaction force is well 

recorded and can be transferred to haptic devices for haptic feedback to aid surgeon with 

information of tissue texture, tool friction, etc. 

Safety is also a significant consideration in this context. The admittance control allows 

for precise manual positioning and adjustments, especially when the needle insertion axis 

is not perfectly aligned with the desired axis. The precision in position tracking ensures the 

safety of the robotic platform when performing various tasks. In the application of digital 

pathology with fiber insertion, maintaining the feeding speed of the end-effector is crucial.  

In addition to the content illustrated in this paper, needle insertion is conducted with the 

assumption of being fully aware of the target position. In real surgical situations, even with 

pre-recorded CT/MRI scans and ultrasonic guidance, accurately locating the target position 

of interest can be challenging. In our ongoing research, we are exploring methods to 

improve the accuracy of needle insertion. This includes investigating techniques such as 

deep learning based on tissue feedback forces to determine target tissue properties. The 

potential advantages of integrating machine learning or reinforcement learning with tissue 

feedback force analysis hold great promise, and we expect these developments to 

significantly enhance the accuracy and efficiency of our steerable needle-probe system. All 

these lead to the research presented in chapter 5 of integrating the recognition of tissue 

properties with the depth of insertion and interaction force. This innovative approach aims 

to guide the steerable needle more effectively to the target point within tissues or muscles, 

all while minimizing excessive insertion to mitigate potential side effects. 
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CHAPTER 5 

TISSUE CLASSIFICATION FOR BIOPSY 

USING TRANSFORMER MODEL 

 

 

The current limitations in biopsy encompass low accuracy attributed to sampling errors 

and a deficiency in precision and haptic feedback. Therefore, the implementation of haptic-

based feedback is imperative to facilitate surgeons or operators in better understanding of 

the environment, especially when dealing with low-fidelity systems. An established 

standardized experimental setup, as introduced with the robotic system above, has been put 

in place to gather pertinent data. This data will play a pivotal role in training a transformer-

based tissue classification model. The primary objective of this model is to augment the 

capabilities of surgeons by assisting them in recognizing the tissue environment during 

needle biopsies. 

 

5.1 Modeling of Mechanics in Needle-Tissue Interaction 

As our research aims to detect transitions between different types of tissues, we need to 

formalize a mechanical model to describe the transitions happening during needle-tissue 

interactions based on needle insertion force. The interactions between needles and soft 

tissues have been thoroughly examined and modeled by numerous researchers in the 

context of various medical procedures [44]. A survey conducted in 2022 [45] highlights 

that researchers have made advancements in various aspects of needle-related analysis. 
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These advancements encompass the modeling of cutting forces during insertion, the study 

of tissue material deformation, the analysis of needle deflection throughout the needle 

insertion process, and the development of robot-controlled insertion procedures. An 

influential paper [46] provided insight into the modeling of needle insertion forces when 

applied to bovine liver tissue. This study effectively characterized the insertion process into 

three distinct phases, with the puncture of the tissue capsule marking a key transition point. 

The insertion force is a summation of stiffness, friction and cutting force: 

𝑓𝑛𝑒𝑒𝑑𝑙𝑒(𝑥) = 𝑓𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠(𝑥) + 𝑓𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑥) + 𝑓𝑐𝑢𝑡𝑡𝑖𝑛𝑔(𝑥) 

where x stands for the insertion distance. The stiffness force occurs before the puncture of 

the surface, and the friction and cutting forces occur after this main puncture. Stiffness is 

best fit by a second-order polynomial of the form, friction force is modelled by modified 

Karnopp model, and cutting force is considered as constant for a given tissue. This research 

marks the key transition point at the puncture event and divides the insertion process into 

three distinct phases: pre-puncture, puncturing, and post-puncture. 

For our model of needle-tissue interaction, we consider using Okamura, A.M.’s method 

for separating the insertion process into three distinct phases. Figure 5.1(a) illustrates the 

collected data samples within this insertion phase model. In the pre-puncture phase, needle 

interaction force is dominated by stiffness force and increases within depth. In the puncture 

phase, as the needle pierces the surface, stiffness suddenly drops and cutting force is taken 

into account after a short period. In the post-puncture phase, friction force becomes evident, 

and when combined with the stationary cutting force, it results in an overall increase in the 

needle interaction force as the needle travels deeper. 
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(a)  

(b)

 

Figure 5.1: Needle insertion phase model (a) Needle insertion phase on a sample data 

frame (b) Conceptual drawing of phase change 

Figure 5.1(b) offers a conceptual illustration that visually illustrates the phase transitions 

occurring before, during, and after the puncture takes place. Each drawing in the sequence 

features the insertion needle represented by the thin object on the left, and the target tissue 
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represented by the solid block object on the right. During the pre-puncture phase, there is 

no penetration, and tissue deformation occurs primarily due to stiffness. In the puncture 

phase, the needle pierces the surface, resulting in a partial cut into the tissue. Finally, in the 

post-puncture phase, the needle is fully inserted into the tissue, with both friction force and 

cutting force being applied to the needle. 

The introduced mechanical model would be a baseline for labeling the collected tissue 

data frame. 

 

5.2 Transformer Model for Classification and Prediction 

While the analytical model for needle insertion force depending on phases is convincing, 

the complexities arising from variations in human anatomy, biomechanical properties, 

physiology, and geometry make the modeling process intricate and challenging to quantify. 

To enhance model accuracy, the Finite Element Method (FEM) is employed to simulate 

tissue deformation during needle insertion and analyze the interaction force [46]. FEM is 

precise when modeling small, linear elastic deformations. However, FEM calculations can 

be time-consuming, and the accuracy of FEM is highly reliant on the quality of its inputs. 

In the context of these intricate modeling challenges, as an alternative to deterministic 

modeling, researchers have explored the application of stochastic machine learning 

techniques to assess the feasibility of comprehending needle-tissue interactions. A 

dichotomizer Bayesian classifier [3] was used to detect hepatic tissue and vein. A recurrent 

neural network (RNN) based Long-Short Term Memory (LSTM) model was trained to 

estimate the various synthetic tissue classes [5]. 

In recent years, the transformer model has garnered significant attention owing to its 

robust temporal modeling capabilities. It has found successful applications in diverse 

domains such as speech recognition [47] and computer vision [48]. The key innovation of 

the transformer model lies in its self-attention mechanism, which facilitates interactions 
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among data points in the input sequence by computing similarity scores (attention weights) 

among them [49].  Furthermore, in comparison to recurrent neural networks (RNNs) like 

LSTM, which possess similar global context aggregation capabilities, transformers offer 

the advantage of parallel computation [50]. Transformers provide more efficient processing 

and improved performance in many time-series processing. 

In order to classify our subjective of event detection of tissue transitions, we developed 

the following transformer-based model: 

 

Figure 5.2: Model architecture for classification and prediction 

The model architecture is depicted in Figure 5.2. It begins with the collection of position-

force signals from various needle-tissue insertion experiments. These raw signals 

subsequently undergo a low-pass filter to eliminate high-frequency noise [51]. Data 

augmentation techniques are then applied to enrich the dataset. The processed position-

force signals pass through linear projection and position encoding [52] steps to generate 

the necessary inputs for the transformer. Encoder layer [53] is then employed to extract 

relevant features. A pooling layer [54] is introduced to reduce the spatial dimensions of the 

output volume. Following this, a feed-forward layer, also known as a Multilayer Perceptron 
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[55], is applied to either classify or regress complex data. After the transformer 

architecture, either classification or prediction tasks are carried out. In the classification 

module, a softmax classification layer [56] is implemented to determine the insertion phase 

and tissue types with corresponding labels. Prediction module will be illustrated in the 

following section. 

The encoder layers are shown in detail in Figure 5.3. The encoder block, denoted within 

the blue box, employs the self-attention mechanism to enhance each token (embedding 

vector) by incorporating contextual information from the entire time series. Given the 

context provided by surrounding tokens, each token can have multiple semantic and 

functional associations. To address this, the self-attention mechanism [57] employs 

multiple heads, allowing for eight parallel attention calculations. This enables the model to 

access different embedding subspaces. The position-wise feed-forward network (FFN) 

within the encoder block consists of a linear layer, ReLU activation, and another linear 

layer [58]. It processes each embedding vector independently using identical weights. 

Thus, each embedding vector (with contextual information from the multi-head attention) 

goes through the position-wise feed-forward layer for further transformation. Residual 

connections ensure that previous embeddings are carried forward to subsequent layers [59]. 

This mechanism allows the encoder blocks to enrich the embedding vectors with additional 

information acquired from multi-head self-attention calculations and position-wise feed-

forward networks. Multiple stacked encoder blocks are used within the encoder layers. The 

outputs from the last encoder block serve as input features for the pooling layer. 
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Figure 5.3: Encoder layer details 

 

5.3 Experiment Setup and Data Collection 

5.3.1 Experiment Setup 

For precisely measuring position with certain trajectories and the corresponding tissue 

reaction force, biopsy system (shown in Figure 5.4) with 6 degree of freedom (DOF) 

consists a potentiometric position sensor (IR robot: IR-10kΩ linearity potentiometer), a 

force measurement sensor (ATI model: Nano 43 Transducer), a biopsy cut needle (Bard 

instrument: 16-gauge/1.7mm). Robotic needle biopsy system is well developed under 

force/position control loop and can achieve 0.04mm precision. These components work in 

tandem to replicate the conditions encountered during actual medical procedures, enabling 

a comprehensive assessment of the system performance in a controlled laboratory 

environment. 
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Figure 5.4: Biopsy system setup for kidney tissue interaction data collection 

 

5.3.2 Data Collection 

The experimental setup for the robotic needle biopsy system involved the use of five 

distinct types of porcine tissues, including the liver, kidney, heart, belly, and hock tissues. 

These tissues were carefully harvested to provide a diverse range of samples for testing 

and analysis. To ensure stability and precision during the experiments, a prototype of the 

robotic needle biopsy system was securely positioned on an experiment table. Additionally, 

a specially designed holder was employed to firmly secure the porcine tissue samples, 

ensuring consistent positioning and minimizing variability in the experimental conditions. 

To standardize the experimental process, the porcine tissue samples were sectioned to 

approximately 30mm in thickness, ensuring uniformity across all samples. The robotic 

needle biopsy system then conducted a series of 50 distinct needle insertion procedures for 
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each tissue section. These procedures were carried out with a constant feeding speed of 

2mm/s, maintaining consistency in the needle insertion process. During each of these 

procedures, the system recorded each data frame for each procedure, including the 

corresponding reaction force exerted on the needle, the displacement of the needle within 

the tissue, and the data points of 20 Hz. Needle puncture timestamp is also recorded for 

labeling. 

The data gathered from these experiments offer valuable insights into the mechanical 

properties and different phases of various porcine tissues during needle biopsy procedures. 

A typical recorded displacement-force sample data profile, depicted in Figure 5.1(a), 

visually portrays the correlation between the displacement of the needle and the 

corresponding reaction force. This representation is crucial for understanding the 

mechanics of the tissue and the forces involved during the biopsy process. 

 

5.3.3 Data Labeling 

The primary objective of the transformer classification model is to accurately detect 

transitions during needle-puncture events and classify the various tissue types involved. To 

train the transformer classification model, data collection was conducted during the 

experimental setup. Timestamps were carefully recorded to capture when critical events as 

the tissue punctures occurred. During the data collection process, we carefully measured 

timestamps when these critical events occurred within the experimental setup. By applying 

the time-displacement profile, we can locate the critical puncture event precisely with 

respect to the needle travel displacement. 
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Figure 5.5: Data labeling example of events and types for liver and heart tissues 

An example of mixture labeling of events and tissue types is shown in Figure 5.5. During 

the initial phase of needle feeding, as indicated by the blue curves in Figure 5.5, the tissue 

surface has not yet been penetrated. In this pre-puncture phase, it is inherently challenging 

to pinpoint the specific tissue type accurately. This is due to the lack of direct contact and 

interaction between the needle and the tissue surface. As the needle continues to feed into 

the tissue, a significant and identifiable event occurs—puncture. This is characterized by a 

notable drop in the interaction force, as illustrated by the green curves in Figure 5.5. This 

phase is marked by the actual penetration of the needle into the tissue. Following the 

puncture phase, the needle interacts differently with the tissue. Friction and cutting forces 

become dominant, leading to distinct force dynamics. During this post-puncture phase, the 

data becomes more suitable for tissue type classification, as indicated by the red and purple 

curves in Figure 5.5. These labels correspond to specific tissue types encountered during 

the post-puncture phase, facilitating accurate classification based on the unique force 

profiles exhibited by each tissue type. 
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Thus, we create the following label types to meet the main aim of detecting the transition 

in needle-puncture events and classify the different tissue types: 

①. all tissues have a free-load/stop phase. 

②. all tissues have a pre-puncture phase. 

③. all tissues have a puncture phase. 

④. different labels (Ⓛ for liver, Ⓚ for kidney, Ⓗ for heart, Ⓑ for belly, and Ⓒ for 

hock tissues) will be assigned for each post-puncture phase. 

For example, a typical heart tissue would have a sequence of labels with respect to time 

as ①→①→①→②→②→③→③→Ⓗ→Ⓗ→Ⓗ→Ⓗ→① during its needle 

insertion process. To notice, this label sequence does not strictly match the period. The 

example sequence is just a demonstration of label-changing behavior in a heart needle 

insertion process. 

 

5.3.4 Low Pass Filtering and Data Augmentation  

Following the collection and labeling of data from the force and position channels, a 

crucial step in the data processing pipeline involves applying a 6th-order Butterworth low 

pass filter. This filtering operation is essential for refining and conditioning the data, 

enhancing its quality and usability for subsequent analysis. In this specific implementation, 

the sampling rate for the force and position signals is set at 20Hz. The cutoff frequency for 

the Butterworth low pass filter is determined to be 10Hz. The cutoff frequency marks the 

point at which the filter begins to reduce the amplitude of high-frequency noises while the 

low-frequency interaction information is maintained. 

For each kind of tissue, eight harvested sections are tested. There are overall 

8(sections)*50(procedures)*5(types) = 2000 raw data frames. The amount of training data 

required for effective training can vary depending on the complexity of the task, the 

specific architecture used, and the characteristics of the dataset. However, as a general 
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observation, Transformers often require more training data compared to other deep 

learning architectures. We develop the following data augmentation algorithm to enrich 

the dataset. 

In our raw datasets, each data frame comprises 120 timestamps, 120 position records, 

120 force records, and 120 corresponding labels. Each timestamp is synchronized with its 

respective position, force, and label records. You can see the raw data frame structure in 

Figure 5.6(a). To enhance our dataset, we applied a zero-padding enrichment technique, 

illustrated in Figure 5.6(b). Here, we added 60 timestamps and data points to the beginning 

of the raw data frame, with sequential timestamps, while setting both position and force to 

zero. The labels for these 60 timestamps were uniformly assigned as □1  (free-load/stop 

phase). Following this enrichment, we randomly selected 40 samples from the dataset, 

ensuring that their starting points were within the zero-padded region. However, the length 

of each sample remained at 120 timestamps. The label for each of these samples was 

designated as the last label in the new windowed data frame, as demonstrated in Figure 

5.6(c). 
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(a)   

(b)  

 

             (c)  

Figure 5.6: Data augmentation. (a) Raw data frame. (b) Extended data frame. (c) Random 

windowing selection from extended data frame. 

As our aim is to build a state classifier for time series data, we care about the label 

corresponding to the last timestamp the most. Therefore, we reduce the label from 120*1 

into 1*1. By this data augmentation algorithm, we enrich the overall dataset from 2000 raw 

data frames into 80,000 data frames. This enriched dataset provides adequate examples for 

the transformer classification method to learn from, allowing the model to capture various 

patterns and states within the time series data effectively. The increased dataset size 

contributes to the model's accuracy and generalizability, enhancing its ability to classify 

different states or conditions accurately. Moreover, the decision to employ a single 

conclusive label for the last timestamp greatly enhances the efficiency of the transformer 
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model's training and classification processes. With a simplified label format, the model can 

straightly process and learn from the data, leading to enhanced classification effectiveness. 

 

5.4 Model Training and Evaluation Metrics 

For a comprehensive classifier for the overall objectives, we need to have a transformer 

model trained based on various tissue datasets. Our input data is represented as 𝑋 ∈

𝑅𝐵×𝑇×𝐹  and corresponding label 𝑌 ∈ 𝑅𝐵  in a batch, where  𝐵  stands for batch size, 𝑇 

stands for timestamps in one data frame, and 𝐹 stands for features input to the model, which 

in our case F is 2 channels containing force and needle displacement. A linear projection 

and embedding layer are implemented to explicitly to retain the information regarding the 

order of signals in the time sequence. The output from the embedding layer would be 𝐸 ∈

𝑅𝐵×2𝑇. Next, we construct an encoder layer, and the output 𝐸 is fed into the multi-head 

attention module within one of the 𝑁 encoder blocks to extract valuable information. The 

multi-head attention module consists of 𝑀  heads, and each head processes the input 

independently. 

For the 𝑀-th head, we construct query 𝑄𝑚, key 𝐾𝑚 and value 𝑉𝑚 from input 𝐸,  attention 

[60] can be calculated as the following: 

𝐴𝑡𝑡𝑒𝑡𝑖𝑜𝑛 =  𝐻𝑚(𝑄𝑚, 𝐾𝑚, 𝑉𝑚) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑚𝐾𝑚

𝑇

√𝑑𝑘

)𝑉𝑚 

where 𝐾𝑚
𝑇  is the transpose of 𝐾𝑚, 

1

√𝑑𝑘
  is the scaling factor and 𝑑𝑘 is the dimension of 

𝑄𝑚, 𝐾𝑚, 𝑉𝑚 . By concatenating the output of 𝑀  heads together, we can obtain the 

aggregated temporal feature 𝐻 for each data frame. To preserve the original features and 

prevent excessive smoothing during the classification process, we combine 𝐸 and 𝐻 then 

pass them through a layer-normalization layer, resulting in 𝐿. 𝐿 is then processed by a feed 

forward layer and then by a layer-normalization layer to obtain the output 𝑂 of one of the 
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𝑁 encoder blocks. In our model, we set number of heads as 8 and head size as 256. Four 

encoder blocks are contained in the encoder layer.  

The transformer classification model is implemented with Keras on Tensorflow [61]. 

80% of the dataset is set for training and testing, 20% of the dataset is set for evaluation. 

The evaluation of the tissue recognition algorithm typically relies on the accuracy metric. 

However, it is generally not possible to identify the tissue type before the puncture takes 

place [62]. In practical applications, our primary focus is on the different stages of needle 

insertion process. Thus, we introduce 3 measures: accuracy for classifying pre-puncture 

phase as 𝐴𝑝𝑟𝑒, accuracy for classifying puncture phase as 𝐴𝑝𝑢𝑛𝑐, accuracy for classifying 

tissue types in post-puncture phase as 𝐴𝑡𝑖𝑠𝑠𝑢𝑒. The objective of the three metrics is to assess 

the classifier's performance on the different stages of the needle insertion. Under 𝐴𝑡𝑖𝑠𝑠𝑢𝑒, 

distinct tissue classification precision is also recorded as 𝐴𝐿 , 𝐴𝑘 , 𝐴𝐻 , 𝐴𝐵 , 𝐴𝐶  for liver, 

kidney, heart, belly, and hock. The general computation formula for accuracy is stated as 

following: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=  

𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

Total predictions are the number of data frames in the evaluation dataset. 𝑇𝑃 is the 

number of true positive predictions, for examples, are puncture classes that are classified 

as puncture. 𝑇𝑁 is the number of true negative predictions, for examples, when we are 

computing 𝐴𝑝𝑢𝑛𝑐, are all other classes which are not classified as puncture [63]. 

In order to rigorously evaluate the proposed method's effectiveness and its potential 

advantages, a series of comparative experiments are conducted. The aim of these 

experiments was to contrast the proposed approach with two well-established temporal 

classification modeling techniques, namely the RNN-LSTM model and the CNN model. 

This head-to-head comparison serves to elucidate the strengths and capabilities of the new 

method in the context of tissue classification tasks. RNN-LSTM is renowned for its ability 
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to capture sequential dependencies in data. Researchers have developed recurrent networks 

to aid the haptic feedback [64] or to classify tissue [5]. While CNN excels in extracting 

spatial-temporal features, former researchers also conducted experiments to investigate 

influence of dimensionality reduction on force estimation in robotic-assisted surgery [65]. 

For RNN-LSTM, we here applied 2 LSTM layer with a normalization of 256 nodes, and 

finalized with a softmax classification layer. For CNN, 3 CNN layers with 64, 128 and 256 

filters connect to dense layer with 2048, 1024 and 512 with RELU activation, and finalized 

with a softmax classification layer. 

All training, testing and offline validation is conducted on 8 RTX 2080TI GPU and 

Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz. 

 

5.5 Result and Evaluation on Classification 

In the following section, we provided qualitative and quantitative results from our 

experiments with offline classification accuracy evaluation and online classification result. 

5.5.1 Offline classification accuracy evaluation 

The accuracy of the proposed classification algorithm is measured on an independent 

validation set, and the results for different models using metrics 𝐴𝑝𝑟𝑒, 𝐴𝑝𝑢𝑛𝑐, and 𝐴𝑡𝑖𝑠𝑠𝑢𝑒 

are gathered in Table 5.1. 

 

Table 5.1: Accuracy comparison measured on validation set. 
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Based on the data presented in Table 5.1, it is evident that the Transformer model 

consistently outperforms the other models across all metrics. During the pre-puncture 

phase, the Transformer model achieves an impressive accuracy of 95.3%, and for puncture 

phase and post-puncture phase, transformer achieved 94.2% and 91.7%, respectively. 

RNN-LSTM is the runner-up, it delivers reliable results with an accuracy of 92.27% during 

the pre-puncture phase. However, its performance in the puncture and post-puncture phases 

is not as impressive, achieving accuracies of 90.11% and 85.84%, respectively. CNN 

model performs the least effectively among the three models, yielding accuracy scores of 

87.77% in the pre-puncture phase, 88.34% in the puncture phase, and 81.56% in the post-

puncture phase. 

The detailed accuracy confusion matrix for transformer can be referred to the confusion 

matrix in Figure 5.7. From the confusion matrix, it is worth noting that in some instances, 

the heart tissue is classified as hock. This observation can be attributed to the similarity in 

muscle composition and resulting mechanical properties between the heart and hock 

tissues. Such occasional classification overlap is generally acceptable due to these 

similarities, and it underscores the importance of refining the classification model to 

achieve even more precise differentiation in such scenarios.  

 
Figure 5.7: Confusion matrix for Transformer classification model. 
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5.5.2 Online classification 

In our study, we developed an online classification system in which a needle was 

employed for biopsy procedures on liver tissue and heart tissue. The tissue types are 

intentionally kept unknown during the experiment. The needle is used to probe the tissue, 

and real-time data, including time, force, and needle displacement, are collected to form 

our input dataset. To facilitate real-time predictions, we integrate the most effective model, 

which is a transformer model, based on our training results, into the experimental setup. 

To supply data to the model, a data frame consisting of 120 data points from the sensors is 

created and provided as input. In cases where the data frame contains fewer than 120 data 

points, we apply the same zero-padding technique introduced in Section 2.3.3 to ensure 

that the data frame reaches the desired length. We gathered data and ran all processing on 

CPU (Intel i9-13900H @ 2.600GHz) and GPU (NVIDIA GeForce GTX 4060) for the 

online tissue classification. In the case of the transformer model, the resulting inference 

time is below the targeted threshold of 10 ms, while the sampling rate of data collection is 

20Hz (50ms).  

In Figure 5.8, you can observe that for each tissue type, the force/displacement profile 

is depicted in blue, alongside the label generated from online classification with respect to 

displacement is marked by red lines, the actual label is marked by green lines. The needle 

started from air for all tissue types, reaching the tissue surface with a constant speed of 

2mm/s. Needle then fed in the region of interest, punctured into the surface with the same 

speed. From Figure 5.8, it is seen that for every tissue type, the pre-puncture and puncture 

phases were well detected. Very few error labels are generated during these periods. As the 

needle enters the post-puncture phase, distinct tissue labels are generated, and the overall 

classification accuracy is found to be satisfactory.  
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(a) 

 

(b) 

 

Figure 5.8: Online classification result with needle force/displacement profile. (a) 

classification result with heart. (b) classification result with liver. 
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5.6 Model Expansion on Force Prediction 

Moreover, we would like to expand our application into force prediction for surgeons’ 

reference while the insertion process is carried out. This would lead into a different stage 

where surgeons could be guided and informed by the reference force/displacement profile 

for environment understanding. As surgery type is ensured and region of interest is pre-

recorded under MRI or ultrasonic imaging, puncture event can be predicted from the 

needle-surface distance using a pre-trained model. Once the needle is inserted into the 

tissue, the system can generate real-time force/displacement profiles. This process 

combines pre-trained data with observed force data, enabling the system to provide 

immediate feedback on the forces experienced by the needle. As the needle progresses in 

tissue towards the target focal area with potentially abnormal tissue properties, the force 

prediction aims to generate profiles that resemble the short-term force dynamics that the 

needle will encounter in the near future. This ensures that the surgeon remains informed 

and prepared for the evolving conditions within the tissue. One of the critical functionalities 

of force prediction is to detect any notable changes in the force/displacement profiles. If 

the profile deviates significantly from the expected pattern, the system can promptly inform 

the surgeon of this change. This serves as a valuable alert mechanism, enabling the surgeon 

to recognize when the needle is approaching a focal area with unique tissue properties. 

Such timely information empowers the surgeon to adjust their approach, enhancing the 

precision and safety of the surgical procedure.  

As referred to the Figure 5.1, the processing model of the transformer remains the same, 

while for the output modules as the prediction module, another pooling layer and feed-

forward layer within the prediction layer [66] are utilized to forecast force parameters over 

sequential short periods, with the assumption that needle feeding speed would remain the 

same. Both RNN-LSTM and CNN model mentioned in section 5.2 are also trained and 

tested on the force prediction module.  
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In force prediction, a different evaluation metric should be applied to measure the 

performance of our model. It is typical to use the metric of root mean square error (𝑅𝑀𝑆𝐸) 

for quantitively analysis the predicted result with recorded real reaction force with certain 

periods [67]. The is defined as following: 

𝑅𝑀𝑆𝐸 =  √
∑ [𝐹(𝑡) − �̂�(𝑡)]

𝑁𝑠
𝑡=1

2

𝑁𝑠
 

where �̂�(𝑡)  is the predicted force on timestamp t, 𝐹(𝑡)  is the measured force on 

timestamp t, 𝑁𝑠 is the sample points number that regulate the output format. The sampling 

rate keeps the same as 20Hz as mentioned in section 5.3. 

Here is the Table 5.2 for 𝑅𝑀𝑆𝐸 evaluation with different 𝑁𝑠 sets on different tissues 

with different models. 

 

Table 5.2: RMSE comparison measured on different tissues with three models. 

Method 
Tissue 
type 

RMSE(Ns=20) RMSE(Ns=40) RMSE(Ns=60) 

Transformer 

liver 0.59 0.80 1.16 

heart 0.58 0.85 1.22 

kidney 0.66 0.85 1.18 

belly 0.52 0.76 1.16 

hock 0.65 0.67 1.12 

RNN-LSTM 

liver 0.76 1.05 1.49 

heart 0.81 1.02 1.56 

kidney 0.75 0.91 1.47 

belly 0.73 0.88 1.46 

hock 0.83 1.00 1.50 

CNN 

liver 1.02 1.42 2.02 

heart 1.09 1.71 2.27 

kidney 0.95 1.49 2.41 

belly 0.91 1.32 2.11 

hock 1.03 1.57 2.19 
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Analyzing the results presented in Table 5.2, it is evident that the Transformer model 

consistently outperforms other models. For a prediction time of 20 𝑁𝑠  (equivalent to 1 

second), the Transformer model achieves an average 𝑅𝑀𝑆𝐸 of 0.60. In contrast, the RNN-

LSTM model and CNN yield 𝑅𝑀𝑆𝐸 values of 0.78 and 1.00, respectively, for the same 20 

𝑁𝑠  experiments. As the prediction time increases (indicated by larger 𝑁𝑠  values), the 

prediction results tend to deviate more from the observed data points. Even in these 

scenarios, the Transformer model maintains its superiority. Specifically, for prediction 

times of 40 𝑁𝑠 and 60 𝑁𝑠, the Transformer model produces 𝑅𝑀𝑆𝐸 values averaging 0.79 

and 1.17, respectively. In comparison, the RNN-LSTM model achieves higher 𝑅𝑀𝑆𝐸 

values of 0.97 and 1.50 on average for the 40 𝑁𝑠 and 60 𝑁𝑠 tests, while the CNN model 

predicts even worse, with 𝑅𝑀𝑆𝐸 values averaging 1.50 and 2.20 for the 40 𝑁𝑠 and 60 𝑁𝑠 

experiments. Moreover, it's noteworthy that the belly group consistently demonstrates the 

best performance among all the tissues. This is likely attributed to the higher fat 

composition in the belly tissue, making it relatively easier for the models to predict 

accurately. 

 

5.7 Conclusion and Future AI Integration on Robotic Biopsy 

This chapter introduces a groundbreaking approach that leverages the Transformer 

architecture to extract contextual information from time sequences of needle displacement 

and reaction forces, enhancing tissue classification. The key innovations and contributions 

are outlined as follows: (1) We present an advanced deep learning method based on the 

Transformer architecture, which proves highly effective in achieving tissue recognition. 

(2) Our approach involves detailed tissue modeling and categorizing the needle insertion 

process into three distinct phases. This scientific approach ensures the accuracy and 

rationality of tissue classification. (3) We perform real-time tissue classification on actual 

tissue samples, showcasing the practical applicability of our algorithm in real surgical 
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scenarios. (4) We expand our model into regression for tissue reaction force prediction, 

allowing us to identify when the needle approaches a focal area with unique tissue 

properties. In direct comparison with conventional temporal modeling-based frameworks, 

our proposed Transformer method consistently outperforms in tissue classification. This 

study offers a promising approach for robust and precise tissue classification, with broad 

applications in haptic biopsy sensing, ultimately enhancing the safety and effectiveness of 

medical procedures. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion and Discussion 

In this dissertation, an accurate computer-aided digital needle biopsy system has been 

presented. To facilitate the incorporation of intelligence and advanced diagnostic approach 

into medical robotic systems, a comprehensive system architecture is imperative, capable 

of accommodating artificial intelligence, safety control, trajectory planning, and swift 

diagnosis. The primary goal of such intelligent architectures is to seamlessly merge system 

control with trajectory planning and artificial intelligence, harnessing data from various 

sources. The generalized subsystem encompasses a trajectory planner, a semi-autonomous 

safety controller, a robotic platform with a robotic manipulator and insertion module, a 

tissue classification unit, and a digital pathology unit. This intelligent system architecture, 

complete with these subsystems, is illustrated in Figure 6.1. 

 

Figure 6.1: Intelligent System for Biopsy Robotic System 
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• Design and Development of Fiber-optic Compatible Robotic Biopsy System 

This innovative robotic biopsy system is characterized by its high dexterity, 

comprehensive workspace modeling, and an in-depth understanding of system dynamics. 

To achieve precise access to the target location, it is crucial to identify the needle 

penetration trajectory that brings the needle closest to the focal area while avoiding 

vasculatures or organs in its path. An automatically optimized trajectory planner can be 

customized based on pre-recorded CT/MRI images and any region-specific constraints. 

Changes in the surgical environment or the procedure are continuously monitored by 

tracking sensor devices, and recommendations for trajectory adjustments can be made 

through surgeon intervention. These features collectively unlock the full potential of the 

biopsy system, offering increased precision and versatility.  

Moreover, I have showcased compatibility with label-free digital pathology. To expedite 

the diagnostic process, we have ensured fiber-optic tool compatibility through a spring-

loaded roller mechanism. A specialized helical motion can be employed with the insertion 

module to guarantee the acquisition of sufficient molecular information in an in-situ 

environment. The molecular image reconstruction scheme is also delineated, accompanied 

by an example of image reconstruction based on stacked reflectance points. This analysis 

has thoroughly unveiled the potential of employing label-free digital pathology for in-situ 

molecular analysis and disease diagnostics. 

• Development of a Semi-Autonomous Safety Control  

In addition, the creation of a semi-autonomous safety control system for the robotic 

platform ensures that robotic movements are both precise and safe, addressing critical 

safety concerns associated with these advanced medical technologies. This development 

contributes to the overall effectiveness and reliability of the robotic biopsy system. The 

control algorithms are tested and validated, ensuring the precision of robotic movement 

with safety concerns. 
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• Development of a Novel Intelligent System for Robotic Biopsy 

To ensure the precise location of the focal area, tissue classification and prediction play 

a pivotal role. Data from needle interaction forces and displacements collected through 

sensor inputs are fed into the classification and prediction model. The transformer model's 

inference generates tissue information and a sequential prediction of force profiles. This 

haptic force feedback, along with tissue type information and sequential force predictions, 

is provided to the surgeon to enhance environmental sensing. In cases where tissue 

properties undergo significant changes, the system alerts the surgeon to facilitate the 

detection of focal areas. The transformer-based classification algorithm embodies a 

remarkable advancement in robotic biopsy assistance, featuring the development of an 

intelligent system that integrates detailed mechanics modeling of needle-tissue interactions 

with a deep-learning model based on needle insertion forces. This model not only enhances 

our understanding of these interactions but also excels in tissue classification, 

outperforming current methodologies. Moreover, it extends its capabilities into force 

prediction, augmenting surgeon precision during needle insertions. This multifaceted 

approach represents the vanguard of artificial intelligence in robotic biopsy assistance, 

promising to revolutionize biopsy procedures and significantly contribute to the next 

generation of medical technology. 

 

The convergence of the robotic biopsy system, label-free digital pathology compatibility 

and the machine learning-based classification methodology presents the potential to 

transform the needle biopsy field. This synergy offers precise and accurate needle 

placement, access to detailed tissue composition, and real-time environment recognition. 

This foundational work sets the stage for the development of a highly accurate computer-

aided digital needle biopsy system, promising to significantly enhance the efficacy and 

precision of biopsy procedures. 
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6.2 Future Directions of Research 

6.2.1 Haptic Guidance in Needle Insertion 

The primary classification method introduced in this context reveals the nature of the 

underlying tissue interacting with the biopsy tool. While this classification already provides 

a wealth of information surpassing what is available through visual feedback on 

commercially available surgical robotic platforms, there is an exciting opportunity to take 

this a step further by predicting haptic force feedback and generating haptic guidance prior 

to the actual insertion. 

Haptic guidance can manifest in two key directions. Firstly, by utilizing pre-recorded 

MRI, CT, or ultrasound images, a 3D reconstruction of a specific region of interest and its 

surroundings can be created, resembling electroanatomic reconstruction [68-69]. The 

force/displacement profile image can be generated using the transformer method before a 

particular insertion direction is indicated. This offers a faster analysis of tissue deformation 

and resistance during needle insertion since it doesn’t require the needle-displacement data 

to be fed into the model for an adaption. 

On the other hand, haptic guidance can be employed to detect abnormal tissue and assist 

in localizing the region of interest [70]. For instance, a stable, predictable needle insertion 

can be indicated by the force/displacement profile, but when encountering abnormal or 

focal tissue, the change in mechanical properties can be detected by the force prediction 

transformer model [71]. This alerts the surgeons to be prepared for either digital pathology 

operations or tissue retraction, with the potential to significantly enhance the efficacy and 

precision of biopsy procedures. This innovative approach holds great promise for 

improving patient outcomes and the overall biopsy process. 
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6.2.2 Utilizing Digital Pathology for In-situ Biopsy Surgery 

This dissertation has presented the compatibility of integrating label-free digital 

pathology and the potential advantages of reducing operation time while increasing 

efficiency. By applying automated molecular information classification algorithms, 

Quantum Cascade Laser (QCL) based detection can achieve a sensitivity of 96% and a 

specificity of 100%, comparable to the slower Fourier-transform infrared (FTIR) imaging 

[72]. 

However, to take the next step in real QCL-based applications, several adaptations are 

required.   Firstly, the development of specialized fiber-optic tools is essential. Traditional 

optic-fiber connections would involve a capsule-based connection hinge between the optic-

fiber and the laser output component. Given the need for helical motion at the end-tip of 

the tool, the optic-fiber would rotate with the motor drive, while the QCL and lens base 

remain stationary. This rotation could lead to fiber twisting, potentially damaging the fiber 

itself. Thus, a unique capsule mounting for the fiber, QCL, and lens base is necessary [73]. 

An emerging trend is the development of Fiber-Optic Needles capable of directly 

transmitting spectroscopic information, as demonstrated by researchers developing 

Interstitial Fiber-Optic Needles for Cancer Sensing and Therapy [74]. 

Secondly, inverse display and computation for helical raw data must be implemented, as 

well as the development of a molecular information retraction algorithm. With the tool 

performing a helical motion, a set of pixels are recorded (illustrated as in Chapter 3.3). 

Thus, inverse display and computation are necessary for data processing. Additionally, 

given that molecular information is recorded in this specific pattern, an information 

retraction algorithm should be developed to meet this need, facilitating the interpretation 

and utilization of the data. These adaptations are crucial for advancing the capabilities of 

QCL-based applications and ensuring the accurate retrieval of molecular information. 
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