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Abstract

This work presents new developments for the application of parametric model-order reduction

(pMOR) for engineering thermal-fluid applications. The pMOR technique is built on a

reduced order model (ROM), in which the governing thermal-fluid transport equations

are approximated by a low-dimensional system of ordinary differential equations involving

relatively few (N ≈ 20–200) time-dependent unknowns. Basis functions for the ROMs are

derived from high-fidelity, full-order models (FOMs) typified by large-eddy simulations (LES)

or direct numerical simulations (DNS) of turbulence that involve N ≈ 106–1011 unknowns.

The goal of pMOR is to track quantities of interest as a function of input parameters, such

as Reynolds or Rayleigh number, without rerunning the FOM. This dissertation addresses

several outstanding challenges in the application of pMOR to engineering problems, including:

developing a time-averaged error indicator for thermal-fluids systems; improved stabilization

strategies for ROM-based simulations of turbulence; and an efficient low-rank, symmetry-

preserving, tensor decomposition for the ROM advection operator that alleviates the leading-

order, O(N3), computational complexity in time-advancement of ROMs.
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Chapter 1: Introduction

Fluid-thermal analysis plays a critical role in understanding and predicting of many impor-

tant phenomena for engineering and science applications, including engine design, cooling

mechanisms in nuclear reactors, fundamentals of stellar convection, and cooling of biological

systems. In the early developmental phase of this discipline, rigorous mathematical models,

including the Navier-Stokes equations (NSE), were established and used in conjunction with

the energy transport equation to accurately represent the thermal states of the flow measured

in experimental setups.

A significant challenge with the mathematical formulation is that the governing equations

are nonlinear partial differential equations (PDEs) in three space dimensions and time, which

makes their solution challenging to obtain, even in simple geometries. For problems involving

complex geometry or with variable material properties, it is generally necessary to resort to

numerical solution of the governing system of PDEs on a computer using numerical methods.

At elevated Reynolds numbers, even simple configurations can require a numerical approach if

the flow transitions to turbulence. Numerical discretizations, including finite difference, finite

volume, finite element, and spectral methods, have been demonstrated to provide high-fidelity

solutions for the NSE with geometry, properties, initial conditions, and boundary conditions

relevant to engineering applications. This field, known as computational fluid dynamics

(CFD), has become ubiquitous to the point that it is widely accessible by engineers.

Modern high-performance computing and numerical algorithms have significantly increased

the computational capacity to solve a given CFD problem. Despite continued advances in

these areas, direct numerical (DNS), large-eddy (LES), and even unsteady Reynolds-averaged

Navier-Stokes (uRANS) simulations of turbulent thermal transport remain too costly for

routine analysis and design of many thermal-fluid systems when hundreds of cases must be

considered. With current standard practice, each simulation incurs as much expense as its

predecessor, as there is no information sharing between the two calculations. Parametric

model-order reduction (pMOR) is one of the promising approaches to overcome this issue

and provide a rapid turn-around tool for engineering query. pMOR is designed to leverage

(expensive) high-fidelity simulations, referred to as full-order models or FOMs, by extracting

the principal features of the underlying flow fields and building a reduced order model (ROM)

or suite of ROMs [1, 2, 3, 4, 5, 6, 7, 8]. The ROMs are used to estimate the system behavior

over a range of parametric inputs (e.g., inlet flow rates, thermal loading, or Reynolds number).

While FOMs for turbulent flows can require N = 107−1011 degrees of freedom, ROMs offer

the potential to represent the flow dynamics governing the behavior of quantities of interest
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(QOIs) with only N ≈ 102–103 basis functions. In this work, we focus on the Galerkin ROM

(G-ROM) for the NS and energy transport equations in which the reduced bases functions are

obtained from proper orthogonal decompositions (PODs) [9, 10] of the high-fidelity velocity

and temperature fields.

The overall objective of parametric model-order reduction (pMOR) is to use the ROMs

to inexpensively explore the parametric dependencies of the QOIs. To realize this goal,

pMOR must address two problems: First, the ROMs must be able to solve the reproduction

problem. That is, they must be able to accurately reproduce quantities of interest (QOIs)

generated by the originating FOM. Second, they should be able to solve the parametric

problem, in which the ROMs are used to evaluate QOIs in the (parametric) neighborhood of

the originating problem. To make the overall process efficient, pMOR should be equipped with

error indicators to assess its fidelity at any given parameter, which allows one to optimally

choose the training parameter thus minimizing the number of expensive FOMs required for

effective parametric analysis.

While pMOR is a promising approach for engineering analysis and design [8, 11, 12, 13],

there are three main challenges when applying pMOR for turbulent flows.

(1) It is well known that even the reproduction problem is challenging for the standard

G-ROM at high Reynolds numbers after the flow transitions to turbulence. To capture the

complex dynamics of the turbulent flow, a relatively large number (on the order of hundreds

and even thousands [14, Table II]) of ROM basis functions are needed. Thus, the resulting

G-ROM is relatively high-dimensional, and its computational cost is prohibitive to be used

in realistic applications, such as control of turbulent flows. The reduced advection tensor

reduction requires the storage of N3 entries with a corresponding work of 2N3 operations

per timestep. While N = 100, with a cost of two million operations per step and a million

words in memory, may be tolerable, N = 400 with a cost of 128 million operations and 64

million words quickly make pMOR inefficient.

(2) To mitigate this issue, the standard G-ROM is often constructed with relatively

few basis functions. The resulting G-ROM is appealing because it is low-dimensional and

computationally efficient. It is, however, inaccurate. This inaccuracy can stem from a

lack of stability and approximation qualities in the ROM or from spatio-temporal chaos

intrinsic to the turbulent system. Regarding stability, the low-mode ROM basis functions,

which typically represent the bulk of the solution energy, tend to be smooth, and therefore

incapable of effectively dissipating energy through high-wavenumber-diffusive mechanisms

(i.e., represented by ν∇2u in the NSE). Without including this dissipation mechanism, the

under-resolved G-ROM (i.e., the G-ROM that does not include enough basis functions to

capture the underlying complex dynamics) generally yields spurious numerical oscillations.
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Thus, in the numerical simulation of turbulent flows, these efficient, low-dimensional ROMs

are generally equipped with ROM closures (see the review in [14]) and stabilizations (see,

e.g., [15, 16, 17]).

Another issue that can deteriorate ROM accuracy is the lack of reproducibility in the

FOM. For example, in spatio-temporal chaotic problems, time-averaged statistics are often

not reproducible in the FOM due to the temporal chaos. In this case, one cannot expect

the ROM, even if it is stable, to accurately reproduce the FOM results. In Chapter 3, we

demonstrate that the (potentially high) variance in the full-order model provides a lower

bound on the pMOR error.

(3) An error indicator is required to optimally select the training parameters to minimize

the number of expensive FOM simulations. However, developing an error-indicated pMOR

for an unsteady problem remains an open research issue for several reasons: (i) efficient and

rigorous error estimates are usually not achievable, (ii) there could be multiple well-defined

attractors, and (iii) temporal instability needs to be considered.

The subject of this dissertation is to (i) develop and investigate stabilization methods for

the ROM in the context of turbulent flows, (ii) mitigate the O(N3) computational cost due

to the nonlinear term to enable a larger N values for turbulent flows and (iii) develop an

error indicator specific to pMOR in turbulent-thermal transport applications.

1.1 Literature Survey

In this section, we present a historical overview of the ROM stabilization method, the error-

indicated pMOR, and the hyper-reduction techniques for alleviating the cost of evaluating

the nonlinear term.

1.1.1 Stabilization Methods

Over the years, several strategies have been devised to alleviate numerical instabilities in

Galerkin-based ROMs for high Reynolds flows. These include: (i) employing data-driven

limiters to bound the G-ROM dynamics [17], (ii) employing regularization to stabilize ROMs,

(iii) modifying the approximation space [7, 18, 19], (iv) including dissipation via a closure

model [6, 20], (v) calibration methods [21], (vi) employing a minimum residual formulation

[22, 23] and (vii) generating the reduced space through Dynamic Mode Decomposition [24, 25].

In this work, stabilization strategies (i) and (ii) are the main focus.

The first type of stabilization strategy is the constrained-evolution ROM (C-ROM) proposed

in [17] for the NSE. The idea is to replace the reduced linear systems with the constrained
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minimization problem, with the constraints being the observed limit from the snapshots. It

was shown that the C-ROM can reproduce/predict (long-time) QOIs for 2D chaotic flows [17].

In this work, we extend the method for the energy equation and apply it to heat transfer

problems [26, 27].

The second type of stabilization strategy is regularized ROMs (Reg-ROMs). The idea

behind regularization is to use explicit spatial filtering to stabilize ROMs and enable their

use in advection-dominated flows. The two Reg-ROMs in current use are (i) the Leray

ROM (L-ROM), in which the velocity component of the convective term of the Navier-Stokes

equations is filtered, and (ii) the evolve-filter-relax ROM (EFR-ROM), which filters an

intermediate approximation of the Navier-Stokes equations, and then relaxes it. It has been

shown in the 1D, periodic Kuramoto-Sivashinsky equations, the 2D and the 3D flow past a

circular cylinder that the L-ROM [26, 28, 29, 30] and the EFR-ROM [28, 30] can alleviate

the spurious numerical oscillations and significantly increase the standard ROM accuracy.

Reg-ROM has an attractive feature of ease of implementation despite the optimal choice of

regularization (e.g., number of modes to truncate or filter order, filter radius, and relaxation

parameter) is not known a priori.

In this work, we push forward the development of Reg-ROMs for turbulent heat transfer

problems. We propose a new Reg-ROM, the time-relaxation ROM (TR-ROM), and investigate

the three Reg-ROMs in the 3D Rayleigh-Bénard convection [26], the turbulent channel flow,

and the T-junction. We also investigate the three Reg-ROMs’ predictive power and the

optimal parameters’ robustness. In addition, we conduct sensitivity studies of the three

Reg-ROMs with respect to the parameters.

1.1.2 Error-Indicated pMOR

There has been significant work on the error-indicated pMOR developments. Efficient and

rigorous error estimation for the elliptic and the parabolic equation has been developed in

[1, 2, 31, 32]. In [33], the author has developed an error indicator based on the residual

for the steady Stokes and the NSE. In the context of the NSE coupled with the energy

equation, rigorous error estimation has been developed for the steady Boussinesq equations

[34, 35, 36, 37, 38]. Error-indicated pMOR for the unsteady problem remains an open research

issue for several reasons: (i) efficient and rigorous error estimates are usually not achievable,

(ii) there could be multiple well-defined attractors, and (iii) temporal instability needs to

be considered. To our knowledge, there are few error-indicated pMOR developments for

the unsteady parameterized Boussinesq equations. In [39], the authors develop rigorous a

posteriori error bounds applied to a 2D Rayleigh-Bénard problem parameterized with the
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Grashof number Gr and the domain angle with respect to gravity, θg. However, due to

exponential instability in time, the rigor is not for very high Gr and large final times. In

[40], the authors overcame the high Gr issue by considering a space-time formulation, which

enabled effective long-time certification of a reduced basis approximation of noncoercive

PDEs. However, the approach is limited due to the considerable offline computational effort

because only one snapshot is generated from one FOM solve due to the formulation. For

example, to cover the parameter space, 125 FOMs are solved during the offline in their case.

Fick et al. [17] developed a POD-hGreedy pMOR to study challenging incompressible flow

using a time-averaged error indicator. The authors showed that the error indicator is highly

correlated with the error in mean flow prediction and can be efficiently computed through an

offline/online strategy.

Considering the methodology has a high potential for routine analysis and design of

turbulent flows that are characteristic of thermal-hydraulic systems. In this work, we further

extend the error indicator for the energy equation and Leray regularization and demonstrate

that the resulting error-indicated pMOR can accurately and efficiently predict QOIs in a 2D

unsteady natural convection with the presence of bifurcations.

1.1.3 Cost Reduction for the Nonlinear Term

For nonlinear problems, due to the nonlinear operators or nonaffine parameter dependence,

ROMs are no longer efficient because evaluating the nonlinear term depends on the FOM

degrees of freedom. Existing techniques for addressing the nonlinear evaluation cost in the

ROMs includes the EIM [41], the discrete empirical interpolation method (DEIM) [42, 43, 44],

the missing point estimation [45], and the gappy POD [23]. These ‘hyper-reduction’ techniques

can effectively evaluate nonlinear terms and enable the application of pMOR to nonlinear

problems.

Although the advection operator in the Navier-Stokes equations (NSE) is nonlinear, it

is only of polynomial type. Hence, the evaluation cost of the nonlinear term is already

independent of the FOM degrees of freedom. In fact, a 3rd-order advection tensor can be

precomputed in the offline and in the online, the evaluation of the nonlinear term can be

done by a tensor contraction with 2N3 operations per timestep

However, turbulent flows (e.g., the turbulent channel flow [46, 47]) are notoriously hard

for the standard G-ROM. To capture the complex dynamics of the turbulent flow, standard

ROMs require a relatively large number (on the order of hundreds and even thousands [14,

Table II]) of reduced basis functions to achieve good accuracy. Although the resulting G-ROM

is still relatively low-dimensional compared to the FOM, its computational cost becomes
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prohibitive due to the 3rd-order convection tensor contraction cost O(N3). The 3rd-order

tensor requires the storage of N3 entries with a corresponding work of 2N3 operations per

timestep. While N = 100, with a cost of two million operations per step and a million words

in memory, may be tolerable, N = 400 with a cost of 128 million in operations and 64 million

words quickly makes ROMs inefficient. Hence, using such ROMs in realistic applications,

such as control of turbulent flows, is impossible. Hyper-reduction techniques such as DEIM

have been applied to the nonlinear term in the steady NSE and the NSE to reduce the

computational cost in [48, 49].

In this work, we focus on the scenario where G-ROM requires large N values and investigate

the potential of the tensor decomposition for reducing the tensor contraction cost. Tensor

decomposition has been widely used as a low-rank approximation for reducing the cost at

the FOM level. For example, in [50], a low-rank tensor decomposition algorithm has been

developed for the numerical solution of a distributed optimal control problem constrained

by two-dimensional time-dependent Navier-Stokes equations with a stochastic inflow. Other

decompositions such as hierarchical Tucker decomposition and tensor train have also been

applied to other types of equations, such as Vlasov equation [51, 52], Fokker–Planck equation

[53] and Boltzmann equation [54]. Dynamical low-rank approximation has been used to

compute low-rank approximations to time-dependent large data matrices or solutions of large

matrix differential equations [55, 56].

Regarding the ROM, tensor decomposition has only been used for extracting multiple

space-time basis vectors from each training simulation via tensor decomposition [57]. In

[58], the author considered the windowed space-time least-squares Petrov-Galerkin method

(WST-LSPG) for model reduction of nonlinear parameterized dynamical systems and proposes

constructing space-time bases using tensor decompositions for each window.

In this work, we propose a novel approach that utilizes the CANDECOMC/PARAFAC

decomposition (CPD), a tensor decomposition technique, to accelerate the G-ROM by

approximating the ROM advection tensor by a sum of R rank-1 tensors.

1.2 Organization and Thesis Contribution

This dissertation presents several strategies to advance the state-of-the-art Galerkin-based

ROMs for simulating turbulent flows. These approaches aim to enhance ROMs’ analysis and

design capabilities in industry applications.

The contributions of this dissertation include the following:

1. In Chapter 3, the time-averaged error indicator proposed in [17] is further extended
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for the energy equation and Leray regularization. Furthermore, we demonstrate that

spatio-temporal chaos can lead to a lack of reproducibility in both the full-order and the

reduced-order models and that the full-order model’s variance provides a lower bound

on the pMOR error in these cases. Most of the methods developed in this chapter

appear in a recent publication in Frontiers in Physics [27].

2. In Chapter 4, a new regularized reduced-order model (Reg-ROM) based on time-

relaxation is proposed and is compared with G-ROM and with existing ROM regulariza-

tion strategies, including one based on a Leray model and one using an evolve-filter-relax

update procedure. A detailed study of the Reg-ROMs and their filter parameters is

conducted in the context of turbulent flows.

3. In Chapter 5, a novel approach using the CANDECOMC/PARAFAC decomposition

(CPD) is proposed to mitigate the O(N3) cost for the scenario of large N values.

In addition, two conditions are derived for the CP decomposition to preserve the

skew symmetry. A comparison between the singular value decomposition and the CP

decomposition is also conducted.

Although not described in this document, we also note that the software developed as part

of this dissertation is open source and is being used within the CFD community.

7



Chapter 2: Promise of the Parametric Model Order Reduction

This chapter presents basic steps toward realizing parametric model order reduction (pMOR)

for buoyancy-driven turbulent flows at modest Rayleigh numbers. We introduce the Galerkin

formulation for the full-order model (FOM) in Section 2.1. Subsequently, we introduce

the proper orthogonal decomposition and the standard Galerkin ROM for the Boussinesq

equations in Section 2.2. Section 2.3 presents the MOR workflow and practical considerations.

The success of ROM reconstruction and pMOR is demonstrated through the 2D flow past a

cylinder and the Orr-Sommerfeld problem in Sections 2.4–2.5. Although not described in

this document, we also note that the software developed as part of this dissertation is open

source and is being used within the CFD community.

The focus then turns to addressing challenges encountered in higher Rayleigh numbers.

Here, ROMs suffer from inadequate dissipation due to the absence of high-wavenumber

functions in the POD approximation space. To tackle this issue, we explore two stabilization

strategies in Section 2.6. The first is a Leray-type regularization [28, 59], in which we mollify

the nonlinear advection term by regularizing the advecting field (only). The second is based

on the constrained-evolution approach of [17], in which the snapshot data (introduced below)

is reused to set limits on the basis coefficients to keep the system’s dynamics near the observed

attractor. We demonstrate the relative success of these regularization approaches for the

two-dimensional lid-driven cavity and the three-dimensional Rayleigh-Bénard convection in

box-type geometries at Rayleigh numbers as high as 107 in Section 2.7. Portions of this

chapter appear in the paper “Towards model order reduction for fluid-thermal analysis”

published in Nuclear Engineering and Design [26].

2.1 Galerkin Formulation for the Full-Order Model

Our point of departure is the Boussinesq approximation for buoyancy-driven flow,

∂u

∂t
+ (u · ∇)u+∇p = ν∇2u+ η Tg(θg), ∇ · u = 0, (2.1)

∂T

∂t
+ (u · ∇)T = κ∇2T, (2.2)

subject to appropriate Dirichlet or Neumann boundary conditions for the velocity, u, and

temperature, T . Here p is the pressure, g(θg) is the unit vector represents the direction of

the buoyancy force and it is defined by g(θg) = cos(θg )̂ı+ sin(θg)ȷ̂, with θg the angle of the

domain with respect to the gravity. Here, ν, η, and κ are problem parameters based on the
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nondimensionalization of the problem.

The FOM is constructed through the spectral element method (SEM) and the Pq–Pq−2

velocity-pressure coupling [60], where the velocity is represented as a tensor-product Lagrange

polynomial of degree q in the reference element Ω̂ := [−1, 1]2 while the pressure is of degree

q − 2. The solution in Ω =
⋃

eΩ
e consists of local representations of u, p, and T that are

mapped from Ω̂ to Ωe for each element, e = 1, . . . , E. The FOM simulations are performed

using the spectral element code Nek5000/RS [61, 62].

For any u(x, t), we have a corresponding vector of basis coefficients u = [u1 . . .uN ]T such

that

u(x, t) =
N∑
j=1

uj(t)ϕj(x) ∈ XN
0 ⊂ H1

0, (2.3)

with ϕj(x) the underlying spectral element basis functions spanning the FOM approximation

space, XN
0 . Because the SEM is nodal-based, each uj(t) represents the two velocity compo-

nents at grid point xj in the spectral element mesh at time t. Similarly, the temperature is

given by

T (x, t) =
N̄∑
j=1

Tj(t)ϕj(x) ∈ XN
0 ⊂ H1

0. (2.4)

Here, H1 is the set of square-integrable functions on Ω whose gradient is also square-integrable

and XN ⊂ H1 is the finite dimensional SEM approximation space spanned by {ϕj(x)}. H1
0

is the set of functions in H1 that vanish wherever Dirichlet conditions associated with (3.2)

are applied on the domain boundary ∂Ω and H1
b is the set of functions in H1 that satisfy

the prescribed Dirichlet conditions for temperature. Bold-face indicates that the space is

spanned by vector-valued functions having d components (d = 2 or 3) and, in the case of

XN
0 ⊂ H1

0, that the functions vanish where Dirichlet conditions are applied for (4.18). The

pressure p is in Y N ⊂ L2(Ω), which is the space of piecewise continuous functions on Ω such

that
∫
Ω
p2 dx <∞. For convenience, we denote Z̄N = (XN , Y N , XN ) as the collection of the

relevant finite-dimensional spaces and will add a subscript 0 or b where required to explicitly

indicate the imposed boundary conditions.

Both the FOM and ROM are cast within the same Galerkin framework. To begin,

we introduce several inner products for elements in the FOM space, Z̄N . For any pair

of scalar fields (p, q) ∈ L2(Ω) and d-dimensional vector fields, v(x) = [v1(x) . . . vd(x)],

u(x) = [u1(x) . . . ud(x)] whose components are also in L2, let

(q, p) :=

∫
Ω

q p dx, (v,u) :=

∫
Ω

(v1u1 + · · ·+ vdud) dx. (2.5)
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Further, for S, T ∈ XN and v, u ∈ XN , let

a(S, T ) := (∇S,∇T ) , a(v,u) := (∇v,∇u) , (2.6)

c(S,u, T ) := (S,u · ∇T ) , c(v,u,w) := (v,u · ∇w) . (2.7)

For the FOM, we consider the (semi-discrete) weak form of (4.18)–(3.2) [63], Find (ũ, p, T̃ ) ∈
Z̄N

b such that, for all (v, q, S) ∈ Z̄N
0 ,(

v,
∂ũ

∂t

)
+ ν a(v, ũ)− (∇ · v, p) = −c (v, ũ, ũ) + η

(
v, g(θg)T̃

)
, (2.8)

− (q,∇ · ũ) = 0, (2.9)(
S,
∂T̃

∂t

)
+ κ a(S, T̃ ) = −c

(
S, ũ, T̃

)
. (2.10)

Here, we have introduced ũ = u + u0(x) and T̃ = T + T0(x) as functions that have been

augmented by (potentially trivial) lifting functions, u0 and T0, which are functions of space

only. If these functions satisfy the (time-independent) boundary conditions, then one can

account for inhomogeneous boundary conditions by moving them to the right-hand side. In

the case of the ROM, the lifting functions can also provide an initial approximation to the

solution. In the sequel, our principal unknowns will be u and T .

Following [64], we consider a semi-implicit scheme BDFk/EXTk to discretize (2.8)–(2.10) in

time; kth-order backward differencing (BDFk) is used for the time-derivative term, kth-order

extrapolation (EXTk) is used for the advection and buoyancy terms and implicit treatment on

the dissipation terms. As discussed in [64], k = 3 is used to ensure the imaginary eigenvalues

associated with skew-symmetric advection operator are within the stability region of the

BDFk/EXTk time-stepper. Denoting the solution at time tn = ∆t · n as (ũn, pn, T̃ n), the full

discretization of the FOM reads Find (un, pn, T n) ∈ Z̄N
0 such that, for all (v, q, S) ∈ Z̄N

0 ,

β0
∆t

(v,un) + ν a(v,un)− (∇ · v, pn) = (v, fn), (2.11)

− (q,∇ · un) = (q,∇ · u0) , (2.12)

β0
∆t

(S, T n) + κ a(S, T n) = (S,Qn). (2.13)

Equations (2.11)–(2.13) represent a linear unsteady Stokes plus unsteady heat equation to

be solved at each time-step tn. The inhomogeneous terms comprise the BDF, advection,
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buoyancy and lifting terms

(v, fn) := −
k∑

s=1

[
βs
∆t

(v,un−s) + αs

(
c(v, ũn−s, ũn−s)− η(v, g(θg)T̃

n−s)
)]

− νa(v,u0), (2.14)

(S,Qn) := −
k∑

s=1

[
βs
∆t

(S, T n−s) + αsc(S, ũ
n−s, T̃ n−s)

]
− κa(S, T0). (2.15)

Here, the βss and αss are the respective sth-order BDF and extrapolation coefficients for the

BDFs/EXTs time-stepper [64]. Note that the right-hand side of (2.12) will be zero if u0 is

divergence free or at least satisfies the weak divergence-free condition (2.9).

Under the assumption that ∇·u0 = 0, the compact matrix form [60, 65, 66] for (2.11)–(2.15)

is  H −DT

−D 0

  un

pn

 =

 f̂(ũn, T̃ n; θg)

0

 , (2.16)

Hκ T
n = Q̂(ũn, T̃ n). (2.17)

Here, un, pn, and T n are the vectors of spectral element basis coefficients. The corresponding

block matrices are

H =

[
Hν

Hν

]
, D = [D1 D2] , (2.18)

with Hν = β0

∆t
M + νA and Hκ = β0

∆t
M + κA, with matrices M and A defined below. The

velocity data vectors are f̂(ũn, T̃ n; θg) = [f̂
1
f̂
2
]T , with

f̂
m
:= −

k∑
s=1

[
βs
∆t
Mun−s

m + αs

(
C(ũn−s)ũn−s

m − ηgmMT̃
n−s
)]

− νAum,0, m = 1, 2. (2.19)

where g1 = cos(θg) and g2 = sin(θg) represent the parametric forcing. The thermal load in

(2.17) is

Q̂(ũn, T̃ n) := −
k∑

s=1

[
βs
∆t
MT̃

n−s
+ αsC(ũ

n−s)T̃
n−s
]
− κAT 0. (2.20)
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Entries of the respective stiffness, mass, convection, and gradient matrices are

Aij =

∫
Ω

∇ϕi∇ϕj dx, (2.21)

Mij =

∫
Ω

ϕiϕj dx, (2.22)

Cij(w) =

∫
Ω

ϕi · (w · ∇)ϕj dx, (2.23)

Dm,ij =

∫
Ω

ψi
∂ϕj

∂xm
dx, m = 1, 2. (2.24)

Note that {ϕi(x)} forms the spectral element velocity/temperature basis while {ψi(x)}
constitutes the pressure basis.

2.2 Galerkin Reduced Order Model

The Galerkin ROM (G-ROM) for the Boussinesq equations starts with a collection of K

snapshots for velocity, uk(x) := u(x, tk) − ub and for temperature, T k(x) := T (x, tk) −
Tb corresponding to numerical solutions of the full-order model (FOM) at well-separated

timepoints, tk, minus base states, ub(x) and Tb(x). The base states (typically time-averaged

FOM solutions) satisfy any prescribed inhomogeneous boundary conditions, which are

presently assumed to be time-independent.

2.2.1 POD Bases

We follow the standard proper orthogonal decomposition (POD) procedure [67, 68] to

construct the reduced basis. For the velocity, we collect the snapshots into the a matrix

UK = [u1 . . .uK ]. From these, one forms the Gramian, U ∈ lRK×K , with Uk,k′ := (uk,uk′)L2 ,

where (v,u)L2 :=
∫
Ω
v · u dV is the L2 inner product. One could also consider the H1 norm

and H1 semi-norm which have been considered in [69] and [17, 26].

The basis functions {φ
n
} for the ROM derive from the first N eigenmodes of UK ,

UKzk = λkzk, zk ∈ lRK , λ1 ≥ · · · ≥ λK ≥ 0 (2.25)

φ
n

:= UKzn, n = 1, . . . , N < K. (2.26)

The continuous functions in the SEM space corresponding toφ
n
areφn(x) :=

∑N
j=1(φn

)jϕj(x).

We perform a similar procedure for temperature, generating TK := [T 1 . . . TK ] and

associated Gramian, T , having entries T k,k′ := (T k, T k′)L2 . We then solve the K × K
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eigenproblem,

TKτ k = λkτ k, τ k ∈ lRK , λ1 ≥ · · · ≥ λK ≥ 0, (2.27)

and define

θn := TKτn, n = 1, . . . , N < K. (2.28)

The continuous functions in the SEM space corresponding to τn are θn(x) :=
∑N

j=1(θn)jϕj(x).

Remark 2.1. We note that the POD construction provides a set of basis vectors Z :=

[φ
1
. . .φ

N
] that minimizes the average distance between Z and UK in the chosen inner-

product (here, (·, ·)L2) for any rank-N subset of UK . Thus, the motivation for POD is its

approximation property, which uniformly distributes the error across the snapshot set. That

property is not dependent on the subsequent choice of time-evolution of the ROM nor any

particular feature of the Navier-Stokes or Boussinesq equations. One could, however, consider

other norms that might favor the minimization of errors in one or more QOIs, which is a

topic for future consideration.

Remark 2.2. In the procedures that follow, we treat the velocity and temperature as

independent state vectors. One could alternatively work with snapshot sets that combine

the velocity and temperature into a single vector and thus form the Gramian from QK =

[q1 . . . qK ], where qk := [uk T k]. This approach reduces the online evaluation cost of the

ROM by a factor of two because one has one-half the number of variables to track. The

principal drawback of using a coupled system is that one then has no mechanism to ensure

that the temperature is bounded by its extremal boundary values (where such bounds are

meaningful).

2.2.2 Galerkin Formulation

Within the Galerkin framework of the preceding section it is relatively straightforward to

develop Galerkin-based ROM (G-ROM). With the reduced basis sets in hand, φj(x) ∈ XN ⊂
XN , θj(x) ∈ XN ⊂ XN , the Galerkin formulation follows by inserting the reduced-basis
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expansions,

ũr(x, t) = φ0(x) +
N∑
j=1

φj(x)ur,j(t) ∈ XN
b (2.29)

T̃r(x, t) = θ0(x) +
N∑
j=1

θj(x)Tr,j(t) ∈ XN
b , (2.30)

into (2.8)–(2.10) and require equality for all (v, S) in ZN
0 . In order to set the boundary

conditions, we have augmented the trial (approximation) spaces XN and XN with the base

states φ0 := ub and θ0 := Tb. The coefficients for these terms are prescribed: ur,0 ≡ Tr,0 ≡ 1.

The corresponding test spaces, XN
0 := {φj}Nj=1 and XN

0 := {θj}Nj=1, satisfying homogeneous

boundary conditions, as is standard for Galerkin formulation. The reduced space ZN
0 :=

(XN
0 , X

N
0 ) is typically based on a linear combination of full spectral element solutions of

(2.16)–(2.17), such as snapshots at certain time-points, tn, or solutions at various parametric

values. Under these conditions and with a carefully chosen u0, X
N is a set of velocity-space

functions that are (weakly) divergence-free and the pressure terms drop out of (2.8)–(2.9).

We also note that φj and θj are modal, not nodal, basis functions.

In weak form, the problem can be stated as Find ũr ∈ XN
b , T̃r ∈ XN

b , such that, for all

v ∈ XN
0 , S ∈ XN

0 ,∫
Ω

v · dũr

dt
dV + ν

∫
Ω

∇v : ∇ũr dV = −
∫
Ω

v · (ũr · ∇) ũr dV + η

∫
Ω

v · (T̃rg(θg)) dV, (2.31)

∫
Ω

S
dT̃r
dt

dV + κ

∫
Ω

∇S · ∇T̃r dV = −
∫
Ω

S (ũr · ∇) T̃r dV + κ

∫
∂Ωf

S∇T̃r · n̂ dA. (2.32)

We remark that the presence of the surface integral in (2.32) admits the possibility of an

inhomogeneous surface flux qs := κ∇T̃r · n̂ on some part of the domain boundary ∂Ωf ⊂ ∂Ω.

If φ0 and θ0 satisfy the prescribed Dirichlet conditions, then ũr and T̃r will satisfy these

conditions as well. Note that the pressure term vanishes from (2.31) due to integration-by-

parts because the test functions are weakly divergence-free and homogeneous on the boundary.

The continuity equation of the Navier-Stokes equations is also removed because Zb consists

solely of weakly divergence-free basis functions.

For temporal discretization of (2.31)–(2.32), we use a semi-implicit scheme with kth-order

backward differencing (BDFk) for the time derivative, implicit treatment of the negative-

definite dissipation terms, and kth-order extrapolation (EXTk) of the advection and buoyancy

terms. We typically use k = 3 to ensure that the imaginary eigenvalues associated with skew-
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symmetric advection operator are within the stability region of the BDFk/EXTk timestepper,

as discussed in [70].

When fully discretized in space and time, we get the following systems for the ROM basis

coefficients unr and T n
r at timepoint tn,

(
β0
∆t
Bu + ν Au

)
unr =−

k∑
i=1

αi

[
Cu ( ũr ) ũr − η BuT T̃ r

]n−i

−Bu

k∑
i=1

βi
∆t
un−i
r − νau,0, (2.33)

(
β0
∆t
BT + κAT

)
T n

r =−
k∑

i=1

αi

[
CT ( ũr ) T̃ r

]n−i

−BT

k∑
i=1

βi
∆t
T n−i

r − κ aT,0 + q
s
. (2.34)

Here, ũr and T̃ r are the augmented basis vectors that include the base states for ur and T r; αi

and βi are the respective BDFk/EXTk coefficients (e.g., for k=2, α1 = 2, α2 = −1, β0 =
3
2
,

β1 = −4
2
, and β2 =

1
2
). A, B, and C represent the respective stiffness, mass, and advection

operators, with entries

Au,ij =

∫
Ω

∇φi : ∇φj dV (2.35)

Bu,ij =

∫
Ω

φi ·φj dV (2.36)

Cu,ikj =

∫
Ω

φi · (φk · ∇)φj dV (2.37)

AT,ij =

∫
Ω

∇θi · ∇θj dV (2.38)

BT,ij =

∫
Ω

θiθj dV (2.39)

CT,ikj =

∫
Ω

θi · (φk · ∇)θj dV. (2.40)

BuT,ij =

∫
Ω

φi · g(θg)θj dV (2.41)

q
s,i

=

∫
∂Ωf

θi qs dA (2.42)

Remark 2.3. We note that, in the case of fixed geometries, the divergence and pressure

terms drop out of (2.31) because the ROM basis is weakly divergence-free. For ROMs that

include the pressure approximation, see, e.g., [8, 12, 71, 72, 73].

We have applied the G-ROM (2.33)–(2.34) for several cases, including the basic test

problem of two-dimensional flow past a cylinder at Reynolds number ReD = 100, for which

N ≈ 20 provides a sufficient number of modes for accurate reproduction of the flow field and
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the drag history to four significant digits. As stated earlier, however, our objective is not

to reconstruct the flow field. Instead, we aim to predict QOIs at parameter points p not in

the training set Panchor from which we draw our approximating bases. In Section 2.4, we

illustrate the use of the G-ROM for the reproduction of the aforementioned cylinder problem

and demonstrate the pMOR through the cylinder problem and the Orr-Sommerfeld problem

in Section 2.5.

2.3 Model Order Reduction Workflow and Practical Considerations

The pMOR procedure consists of offline and online stages. In the offline stage, the first step

is to collect the data (snapshots) by solving the full-order models, as discussed in Section 2.1,

at parameters of interest using highly optimized CFD code Nek5000/RS. The choice of

computational resources, ranging from a workstation to a supercomputer, depends on the

complexity of the full-order model. The computational memory for this step, depending on

the FOM solver, typically requires an allocation of 400 FOM vector of size N .

The second step is to construct the reduced basis using POD with the collected snapshots,

which generally involves forming the Gramian, solving its eigenvalue problem and multiply-

ing the snapshot matrix with the eigenvectors, as discussed in Section 2.2.1. During the

development of this work, we realized that we underestimate the amount of computational

resources required in this step, especially when dealing with 3D turbulent flow problems.

The bottleneck is the computational memory requirement for forming the Gramian, which

requires loading all the snapshots resulting in an allocation of 1000–4000 FOM vectors of size

N . The choice of computational resources is immediately limited to either a campus cluster

or a supercomputer. In addition, this step could require more computational resources, that

is the number of nodes and wall-clock time than solving the FOM. Moreover, the bottleneck

also limits the amount of snapshots that can be used for industrial applications which usually

have degrees of freedom N > 109. One way to bypass this bottleneck is to consider a

memory-efficient offline generation developed in [16] that could be run on a modest-sized

workstation.

The third step is to use the reduced basis to construct the reduced operators for the

NSE and the energy equations, as discssued in Section 2.2.2. The computational memory

is less intense than the second step, requiring an allocation of N FOM vectors of size N .

However, forming the advection tensor due to the nonlinear term in the NSE could still

require fair amount of wall-clock time on HPC platforms. Moreover, with the time-averaged

error indicator, which will be discussed in Section 2.5, an allocation of 2(N + 1)2 + 6(N + 1)

FOM vectors of size N for linear functionals is required. In addition, it requires solving
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(N+1)2+4(N+1) Stokes and (N+1)2+2(N+1) Poisson problems for the Riesz representers.

The amount of computational memory and resources could be more intense than the second

step with N > 45. An alternative approach is to consider the “direct” approach which will

be discussed in Section 2.5. While use of the direct approach requires access to the FOM

machinery in order to generate an error indicator, we note that such access is readily available

during the pMOR training/construction phase. The advantage of this approach is that the

number of Stokes/Poisson solves scales as the number of points in the training space, which

is typically less than N2.

In the online stage, the requirement for computational memory and resources is low because

it only requires loading the reduced operators and solve the reduced system, which only

depends on the ROM size N instead of FOM size N . In summary, the bottlenecks in the

second and the third step needed to be addressed in order to consider error-indicated pMOR

for industrial applications.

2.4 Reproduction Problem

We first demonstrate the reproduction problem using the G-ROM on the problem of 2D flow

past a cylinder at Re = 100. This is a canonical test case for ROMs due to its robust and

low-dimensional attractor, manifesting as a von Karman vortex street for Re = UD/ν > 34.37

[74]. The computational domain is Ω = [−2.5 : 17]D × [−5 : 5]D, with the unit-diameter

cylinder centered at [0, 0].

The reduced basis {φi}Ni=1 for the G-ROM (5.3) is constructed by applying POD procedure

to K = 100 snapshots collected over 100 convective time units (D/U), after von Karman

vortex street is developed. The zeroth mode φ0 is set to be the mean velocity field of the

snapshot collection time window. Already with N = 20 POD basis, the reduced space

contains more than 99% of the total energy of the snapshots. The initial condition for the

G-ROM and the CPD-ROM is obtained by projecting the lifted snapshot at t = 500 (in

convective time units) onto the reduced space.

The total drag on the cylinder is defined as:

FD =

∮
Γ

(−ν∇u+ p)dA. (2.43)

where Γ is the surface of the cylinder. We consider the total drag in the x-direction as the

QOI. To compute the pressure drag, we consider the method described in [16] which does

not require solving the reduced pressure system. We refer [75] for solving a pressure ROM to

compute the pressure drag.
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Figure 2.1: Reconstruction results with ROM with N = 20 at Re = 100: (Left) Magnitude of
instantaneous velocity of the FOM (top) and the G-ROM (middle) at the same time instance
and point-wise difference between the two (bottom) with maximum difference ≈ 3e − 3.
(Right) Total drag comparison between the FOM and the G-ROM.

Fig. 2.1 shows the reproduction results of the G-ROM. The G-ROM accurately captures

the velocity solution and also the phase and period of the drag in the FOM.

Moreover, the G-ROM only requires N = 20 degress of freedom compared to the FOM

degress of freedom N = 32, 768. Already, to simulate 500 CTUs, it takes 30 minutes for the

FOM and the G-ROM is able to run 10, 000 CTUs in 20 seconds. Although this example is a

trivial cases for MOR, it demonstrate a significant reduction in the degrees of freedom and

computational time.

2.5 Parametric Model Order Reduction

Given that the parameters and QOIs for thermal-fluids applications are highly case specific,

we introduce pMOR in this section. Specifically, we consider using the pMOR to estimate

the critical Reynolds number for the 2D flow past a cylinder and Orr-Sommerfeld problem.
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Figure 2.2: pMOR results with one anchor point in 2D flow past a cylinder at Re = 50:
Variance of the drag coefficient Cd, Var(Cd) for the FOM and the G-ROM. G-ROM is
constructed using one anchor point at Re = 50 with N = 20. Var(Cd) ≤ 10−10 is used as the
criteria to determine the flow is motionless.

2.5.1 Flow Past a Cylinder

We first consider the aforementioned cylinder problem to demonstrate pMOR. Re = 50 is

selected as the single anchor (training) point to construct the G-ROM. The reduced basis is

then constructed using the POD procedure with K = 500 snapshots from the time interval

[501, 1000]. The G-ROM (2.31) is constructed using N = 20 modes.

With this setup, we adjust the parameters in (2.31) to run the ROM for Re ∈ [20, 120].

Our goal is to use the variance of the drag coefficient Cd, Var(Cd) to estimate the critical

Reynolds number Recritical.

Fig. 2.2 shows the variance of the drag coefficient for the FOM and the G-ROM at several

Re. We use the criteria Var(Cd) ≤ 10−10 to determine the flow is motionless. With this

criteria, Recritical = 47 is found with the FOM and Recritical = 40 is found with the pMOR.

With one anchor point at Re = 50, the pMOR does a remarkably job in estimating the

critical Reynolds number. Moreover, it takes 2000 (sec) per FOM run while it only take 10

(sec) per G-ROM run.

2.5.2 Orr-Sommerfeld Problem

We consider the evolution of small amplitude disturbances in channel flow [76, 77]. In this

study the disturbance is taken to be an eigensolution of the Orr-Sommerfeld equation. The
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Table 2.1: Reproduction results in Orr-Sommerfeld problem at Re = 7500: error and errorg
for both FOM and ROM at t = 200.

t E(t)
E(0)

e(2ωit) error errorg
FOM 200 2.44363736 2.44486586 -1.22850700E-03 5.77317855E-04
ROM 200 2.44354848 2.44486586 -1.31738592E-03 4.36671759E-04

advantage of using this problem as a test case is that it has known solutions from linear

theory. The geometry consists of two walls separated by a distance 2h with periodic boundary

conditions in the streamwise direction at x = 0 and x = 2π. The initial condition is

u0(x, y) = 1− (
y

h
)2 + ϵû (2.44)

v0(x, y) = ϵv̂, (2.45)

where (û, v̂) corresponds to the only unstable eigensolution (wave number unity) of the

Orr-Sommerfeld equation. The Reynolds number is Re = Uch/ν = 7500, based upon the

centerline velocity, Uc = 1. A constant body force is applied to sustain the mean flow. The

perturbation velocity is normalized to |û| = 1 and ϵ is set to .00001.

According to the linear theory, the energy of the perturbation:

E(t) =

∫ 2π

0

∫ 1

−1

{(1− y2 − u)2 + v2} dy dx (2.46)

should grow as e2ωit, where ωi = .002234976. Following [77], we take as a measure of error

the quantity: error(t) = e2ωit − E(ti)/E(0), where E(t) is derived from the FOM and ROM

solution at time t = 200. In addition, we compute the error in the growth rate at time

t = 200 according to

errorg =
1

ωi

∣∣∣∣∣ωi −
1

2∆t
ln

(
E(200)

E(200−∆t)

)∣∣∣∣∣ (2.47)

Table 2.1 shows the error and errorg for both FOM and ROM at t = 200. The growth-rate

error for the ROM is about 0.04%, while for the FOM it is about 0.06%.

For pMOR, we can use this case to estimate the critical Reynolds number. To this end,

Re = 7500 is selected as the single anchor (training) point to construct the G-ROM. The

reduced basis is then constructed using the POD procedure with K = 200 snapshots. The

G-ROM (2.31) is constructed using just N = 2 modes. (The 0th-mode in this case is the

base parabolic profile of the Orr-Sommerfeld problem.)
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Figure 2.3: pMOR results with one anchor point at Re = 7500 in Orr-Sommerfeld problem:
unstable eigensolution of the Orr-Sommerfeld equation, Eperturb, for the G-ROM. The anchor
point used to construct the G-ROM is Re = 7500 and denoted as the red star sign. The
Recritical for the linear stability analysis and G-ROM are denoted as red and blue circles.
Eperturb < 1 is used as the criteria to determine the Recritical.

With this setup, we adjust the parameters in (2.31) to run the ROM for Re ∈ [5500, 7500].

We measure the mean energy of the unstable eigensolution of the Orr-Sommerfeld equation,

Eperturb := E(t)/E(0) to estimate the critical Reynolds number Recritical.

Fig. 2.3 shows the Eperturb for the ROM for Re ∈ [5500, 7500]. The anchor point is denoted

as the star sign. We use the criteria Eperturb < 1, which indicates that the perturbation

mode decays, to determine the Recritical. With this criteria, Recritical = 5595 is found with the

G-ROM. Compared to the Recritical = 5772.6 derived from the linear stability analysis. Again

we find the pMOR is able to do a remarkable job in estimating the critical Reynolds number.

2.6 Stabilization

A significant issue with the standard G-ROM at higher Reynolds numbers is that (2.33)–(2.34)

can deviate substantially from the projection of the modes onto the FOM due to the presence

of potentially spurious attractors. This unstable behavior is an artifact of modal truncation

(often manifest as energy pile-up in the high wavenumber modal coefficients) and relates to

the well-known closure problem in LES and other turbulence-modeling scenarios [17, 78]. The

smoothness of the approximating modes {φn} prevents generation of adequate dissipation

(through Re−1(φj,φj)A ) unless the corresponding coefficients have large amplitude. One

can potentially resolve this issue by increasing N to the point where the reduced bases

include modes capable of dissipating the energy. For turbulent flows, however, the number of
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required modes can be quite high, particularly in light of the O(N3) costs associated with

the advection operators Cu and CT . Hence, for engineering applications, some closure model

is typically required to dissipate energy or otherwise stabilize the ROM.

In this chapter, we present two stabilization approaches. The first is a relatively simple

Leray-type regularization introduced in the ROM context by Wells et al. [28]. The second is

the constraint-based ROM of Fick and co-workers [17].

2.6.1 Leray Regularization

The idea behind Leray regularization is filter the advecting field in the Navier-Stokes equations

and energy equation through a low-pass filter function F :

∂ũ

∂t
+ (u · ∇)ũ+∇p = ν∇2ũ+ η T̃ ĝ, ∇ · ũ = 0, (2.48)

∂T̃

∂t
+ (u · ∇)T̃ = κ∇2T̃ , (2.49)

where u = F (ũ) is the result of some sort of smoothing or regularization of the current velocity

field. As noted by Guermond et al. [79, 80], even just a small amount of regularization

suffices to make gains in proving existence and uniqueness of the solution in the continuous

case, a task that remains insurmountable for the full Navier-Stokes equations. Thus, Leray

regularization is of interest both from a numerical (and physical) stabilization viewpoint and

from a theoretical perspective.

The formulation of the G-ROM with Leray regularization would be to replace ũr by ur in

the momentum equation (2.31) and similarly in the energy equation (2.32) to yield∫
Ω

v · dũr

dt
dV + ν

∫
Ω

∇v : ∇ũr dV = −
∫
Ω

v · (ur · ∇) ũr dV + η

∫
Ω

v · (T̃rĝ) dV, (2.50)

∫
Ω

S
dT̃r
dt

dV + κ

∫
Ω

∇S · ∇T̃r dV = −
∫
Ω

S (ur · ∇) T̃r dV + κ

∫
∂Ωf

S∇T̃r · n̂ dA. (2.51)

Throughout the dissertation, we interchangeably use the terms Leray ROM or L-ROM to

refer (2.50–2.51).

Wells et al. [28] consider several possible filters to map ũr to ur. The simplest one,

suggested by one of the authors , is to treat the POD modes as one would do with Fourier

bases (personal communication, 2019). That is, one can simply damp out the amplitudes

of the higher modes when constructing ur in (2.50–2.51). One improvement is to consider

a PDE- or (differential-) based filter (2.52), which is characterized by a filter width, δ [81]
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and readily implemented in the POD bases by using (2.35) and (2.36). Following [28, 29],

such filters are developed in a POD context as follows: Given ũr =
∑N

j=1 ur,jφj(x), find

ur(x) =
∑N

j=1 ur,jφj(x) such that(
ur − δ2∆ur,φi

)
=

(
ũr,φi

)
∀ i = 1, . . . N, (2.52)

where δ is the filter radius. This approach was shown in [28] to be superior to simple modal

damping for three-dimensional flow past a cylinder at Re = 1000.

In the following Leray ROM examples, we consider a sharp cut-off filter in which we set a

few of the highest-numbered basis coefficients to zero when constructing the advector, ur.

Notice that this approach, while blunt, also has the advantage of reducing the leading-order

O(N3) cost of evaluating the advection terms. As seen in the examples at the end of this

section, simple Leray regularization is remarkably effective and merits further development.

In Chapter 3, we investigate Leray ROM with the differential filter (2.52) in a 2D unsteady

parametric convection problem. In Chapter 4, we further investigate the differential and the

higher-order algebraic filters with three regularized ROMs (Reg-ROMs) in turbulent channel

flow and T-junction, including the Leray ROM introduced here.

2.6.2 Constrained Optimization

As an alternative to explicitly adding dissipation or other closure terms, Fick et al. [17]

suggest a novel strategy of replacing the equality (2.33–2.34) with constrained minimization

problems at each timestep that would keep the dynamical system near the attractors observed

in the snapshot set.

The standard G-ROM (2.33–2.34) requires the following systems to be solved for the

velocity and the temperature at each timestep,

Huu
n
r = gn, HTT

n
r = Qn, (2.53)

where the Helmholtz matrices are defined as,

Hu :=
β0
∆t
Bu + ν Au, HT :=

β0
∆t
BT + κAT , (2.54)

with Bu, BT , Au and AT defined in (2.35–2.36) and (2.38–2.39). We note that Hu and HT

23



are symmetric positive definite matrices. The right-hand sides are defined as

gn = −
k∑

i=1

[
βi
∆t
Buu

n−i + αi

(
Cu ( ũr ) ũr − η BuT T̃ r

)n−i
]
− νa0. (2.55)

Qn = −
k∑

i=1

BT

k∑
i=1

βi
∆t
T n−i

r + αi

(
CT ( ũr ) T̃ r

)n−i

− κ aT,0 + q
s
. (2.56)

The idea behind the constrained formulation is to use information from the snapshot set

to establish a priori bounds on the basis coefficients unr and T n
r by replacing (2.53) with the

constrained optimization problems,

unr = arg min
ur∈RN

1

2
∥Huur − gn∥22, s.t. mu,j ≤ unr,j ≤Mu,j, (2.57)

T n
r = arg min

T r∈RN

1

2
∥HTT r −Qn∥22, s.t. mT,j ≤ T n

r,j ≤MT,j. (2.58)

where the constraints on the basis coefficients unr,j and T
n
r,j, j = 1, · · · , N are derived from

the observation snapshot set, UK and TK , defined in Section 2.2.1. The constraint bounds

are mu,j = minuk∈UK
(φi,uk) and Mu,j = maxuk∈UK

(φi,uk). The constraint bounds for the

temperature are defined similarly withmT,j = minTk∈TK
(θi, Tk) andMT,j = maxTk∈TK

(θi, Tk).

These bounds amount to the ranges observed in the snapshot space. Hence it is making

further use of the snapshot information. In this dissertation, we interchangeably use the

terms constrained ROM or C-ROM to refer to (2.57–2.58).

2.7 Results for Stabilized Methods

In the following, we compare stabilized ROM (i.e., Leray-ROM and constrained ROM) with

unstabilized ROM (i.e., Galerkin ROM) in three examples. We reiterate that our Leray ROM

examples do not represent an exhaustive study of this approach, but are included merely

to show the potential of this remarkably simple strategy, as put forth in [28]. A thorough

investigation of the regularized ROMs in Chapter 4.

2.7.1 2D Lid-Driven Cavity

Following [17], we consider the following unsteady lid-driven cavity problem using parameter

ν = 1
Re

and η = 0 subject to steady boundary conditions.
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(a) FOM (b) Galerkin-ROM

(c) Leray-ROM (d) Constrained-ROM

Figure 2.4: 2D lid-driven cavity at Re = 30, 000: Velocity magnitude comparison at t = 1740
between the FOM, Galerkin, Leray, and constrained ROMs with N = 20.


u = ub on Γtop ×R+,

u = 0 on ∂Ω\Γtop ×R+,

u = 0 on Ω× {0},
(2.59)

where u : Ω×R+ → R2 is a two-dimensional vector field, Ω = [−1, 1]2, Γtop = {x ∈ Ω̄ : x2 =

1}, the Dirichlet datum is given by

ub(x) =

[
(1− x21)

2

0

]
. (2.60)

The FOM results were produced using Nek5000 [61] with 256 spectral elements of order

N = 7 at Re = 30, 000. In order to generate the ROM solution, we collect 500 snapshots at

the sampling times {tks = 500 + ∆tsk}Kk=1 with ∆ts = 1 and K = 500, where the data are

taken from the statistically steady state solution. For the lid-driven cavity problem, we also

apply the Leray regularization for the ROM. The velocity magnitude at time t = 1740 is

shown in Fig. 2.4 for the FOM, Galerkin ROM, Leray ROM, and constrained ROM, each

using N = 20.
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Figure 2.5: 2D lid-driven cavity at Re = 30, 000: Behavior of the sample mean and variance
of the coefficients {unr,i}i for the FOM, Galerkin, Leray and constrained ROMs with N = 40.

In Fig. 2.5, the sample mean and variance for the FOM, Galerkin, Leray, and constrained

ROMs are compared. We found the results of the Leray and the constrained ROMs are

superior to those of the Galerkin ROM.

In Fig. 2.6b, the estimated turbulent kinetic energy (TKE) of the FOM, Galerkin, Leray,

and constrained ROMs with N = 40 are compared in which the TKE is defined as

TKE(t) =
1

2

∫
Ω

∥u(x, t)− ⟨u⟩(x)∥22, (2.61)

where ∥ · ∥2 is the Euclidean norm 1.

For the Leray ROM, the last 50% of the modes are set to zero. Note that the percentage

of modes to be filtered is not known beforehand. For this problem, we have tried filtering out

10%, 20%, 30%, 40% and 50%, and found that 50% produced the most accurate results. The

question of optimal filter choice depends on the number of POD modes and on the problem

and will be a topic of future study.

To further demonstrate the effects of stabilization, we plot the coefficient behavior versus

time. Figure 2.6a clearly shows that, without regularization, the coefficient for the first POD

basis function ventures out of the range observed in the data. Other spurious phenomena

include effects such as false stable steady flows.

As thermal transport is one of our principal motivators, we consider an energy transport

problem using parameter κ = 1
Re

with the solution to the lid-driven cavity problem as the

1Technically, because these flows are not turbulent the TKE should be referred to as velocity variance.
Because the is more widely used and the mathematical formulation is the same in either case, we prefer to
use the more widely recognized appellation, TKE
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Figure 2.6: 2D lid-driven cavity at Re = 30, 000: (a) TKE behavior comparison for the FOM,
Galerkin, Leray and constrained ROMs with N = 40; (b) Comparison of the first mode
behavior for various stabilization techniques with N = 40.

advecting field. The thermal boundary conditions are:
T (x,−1, t) = 0,

T (x, 1, t) = 1,

T (x,−1, t) = T (x, 1, t) = 1.

(2.62)

The QOI is the Nusselt number, which is the mean temperature gradient

Nu =

∫
Γtop

∇T · n̂dS∫
Γtop

dS
. (2.63)

In Fig. 2.7, the Nu history for the FOM and the G-ROM is presented for different values of

N . We observe that, even with the standard Galerkin approach, the accuracy of the QOI

can be recovered as the number of modes increases from N = 10 to 80. Figure 2.8, however,

illustrates that both the L-ROM and the C-ROM can achieve accurate Nu with much lower

N (as low as 10) than the G-ROM.

2.7.2 3D Rayleigh-Bénard Convection

Three-dimensional thermal transients are of great importance to many thermal-hydraulic

design questions and are thus of primary interest in our own ROM development efforts.

Here, we test the ROM strategies on a 3D Rayleigh-Bénard problem in a box with aspect

ratios W : W : H, where W = 1 and H = 4. The parameters are Pr = 0.71 and
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Figure 2.7: 2D heated lid-driven cavity: Nusselt number history for the Galerkin ROM with
various N values.
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Figure 2.8: 2D heated lid-driven cavity: Nusselt number vs. time for the (a) Leray ROM
and (b) the constrained ROM for various N values.

Ra = 1.1e5, 1.1e6 and 1.1e7, which are implemented in (2.1)–(3.2) in convective time units

by setting ν = (Pr/Ra)
1
2 , κ = (Pr Ra)−

1
2 , and η = 1. The boundary conditions for velocity

are no-slip on all walls. For temperature, the side-walls are insulated (∇T · n̂ = 0) and

constant temperature on top and bottom, T (x, y, z = ∓2) = ±1. Our FOM is based on the

formulation in Nek5000 using an 8× 8× 32 array (x× y × z) of 9th-order spectral elements.

The FOM is based on 3rd-order semi-implicit timestepping with variable ∆t set such that

the Courant number is approximately 0.5 throughout the simulation, including the thermal

transient.

Because this flow is three-dimensional and run at relatively high Rayleigh numbers the

number of degrees of freedom is much greater than in the previous examples and these cases

thus present a greater challenge for reduced-order modeling. Figure 2.9 gives some indication
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Figure 2.9: (Left) Cross section at x = 0, y = 0 and z = 0 for FOM temperature at time
t = 1292 with Ra = 1.1e5, 1.1e6 and 1.1e7. (Right) Cumulative energy contribution of
velocity POD modes for various Rayleigh numbers. The dotted line represents EN/E = 0.9
where EN =

∑N
j=1 λ

2
j and E =

∑K
j=1 λ

2
j where K is the number of snapshots and λi are the

i-th eigenvalue of the Gramian.

of the number of active modes in the system in the fully-developed (statistically steady-state)

regime as a function of Ra. On the left, we plot instantaneous temperature distributions from

the FOM, and on the right we plot the fraction of energy, EN/E captured by the POD bases

from 1000 snapshots taken in the fully-developed flow regime. Here, EN =
∑N

j=1(φj,φj),

and E := E1000.

From Fig. 2.9, right, we see that about 150 modes are required to capture 90% of the

energy at Ra = 1.1e7. We have computed the critical Rayleigh number for this case (the

point at which ∥u∥ > 0) and find Rac ≈ 1559, which makes the corresponding ratios for

our three cases to be r = Ra/Rac ≈ 70, 700, and 7000. Sirovich and Deane [82] find that

N ≈ 200 modes are required for EN/E = 90% when r = 30, which is a significantly more

pessimistic outcome than our findings. Their case, however, corresponded to a unit-cube

domain with periodic boundary conditions, which would support more degrees of freedom

than our relatively narrow domain with walls. More recently, Puragliesi and Leriche [83]

examined the spectrum for Ra = 109 in a unit cube with homogeneous Dirichlet conditions on

all walls for the case where the side walls were differentially heated (T (x = ±1
2
, y, z) = ±1

2
.).

In this case, they found that N = 30 sufficed to capture 90% of the energy. More importantly,

Puragliesi and Leriche noted that the basis vectors that account for the majority of the heat

flux are not the most energetic POD eigenfunctions, which implies that there is potential for
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a more judicious choice of basis functions when pMOR is employed for thermal transport

problems.

In the present case, we are particularly interested in using the ROM (and, ultimately,

pMOR) to capture thermal transients as rise time is of great interest in many thermal-

hydraulics applications. To this end, we take as our QOI the mean temperature

⟨T ⟩(t)xyz :=

∫
Ω
T (x, t) dV∫

Ω
dV

. (2.64)

The FOM starts with random fluctuations across all (N ≈ 1.5M) gridpoints, uniformly

distributed on [−1, 0]. This “cold” flow is then subject to boundary conditions ±1 at time

t = 0+, such that the mean should rise to ⟨T ⟩(t)xyz ≈ 0. For the ROM, we take as the base

state the first of the snapshots, which occurs at time t ≈ 1.
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Figure 2.10: 3D Rayleigh-Bénard convection: Average temperature vs. time with Ra =
1.1e5, 1.1e6 and 1.1e7 for the Galerkin, constrained, and Leray ROMs with various N values.
70% of modes are filtered out in Leray ROM. 1000 snapshots are taken between the two
vertical dotted lines which includes the transient and statistically steady state region.

Fig. 2.10 shows the transient behavior of ⟨T ⟩(t)xyz for the Galerkin, constrained, and Leray

ROMs at each of the three Rayleigh numbers. For Leray, we have tried filtering 10%, 30%,

50% and 70% of the modes report the results for the 70% case. Note that for different Ra,
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the optimal percentage to be filtered is different. For Ra = 1.1e5, all three formulations do a

reasonable job of tracking the rise times for N ≥ 100 modes. For N = 20, the Galerkin and

constrained ROM do not do well while, surprisingly, the Leray ROM is able to produce a

mean temperature that is comparable to constrained ROM. Furthermore, with 50% filtering

(not shown), the Leray ROM with N = 20 is able to produce a even better mean temperature

and is comparable to N ≥ 100 modes. For Ra = 1.1e6, only the constrained and Leray ROM

are able to track the QOI for N = 100 and 150. Moreover, the Leray ROM with 50% and

70% of modes filtered are able to track the QOI for N = 20. For Ra = 1.1e7, the Leray ROM

is not stable for N = 20 with 70% of modes filtered (nor with 10%, 30% or 50%). While not

terribly accurate in predicting the rise time, the constrained ROM is the only case that is

stable for N = 20. Both the constrained and Leray approaches are accurate for N ≥ 100.

In Fig. 2.11, left, we compare ⟨T ⟩ for Ra = 1.1e7 with 1000 snapshots taken in the

statistically steady-state region, using the average of the snapshots as the base mode. As the

figure shows, without constraints, the mean temperature has more oscillations due to the lack

of dissipation. For N = 20, the constrained and Leray ROMs produce a better QOI than

the Galerkin ROM with N = 100. We also plot in the column on the right of Fig. 2.11 the

turbulent kinetic energy (TKE) without zeroth mode, which we denote as EJ := 1
2

∑N
j=1 u

2
j .

We can see clearly that, even with N = 100, the Galerkin ROM drastically over-predicts the

TKE. Note that we also observe over-prediction of TKE in the Leray ROM. In this case,

even the constrained case shows an over-prediction of the TKE by about a factor of 2–3,

which indicates that more modes are likely needed to capture this particular QOI. The fact

that the thermal QOIs of Fig. 2.10 are in good agreement with the FOM is supportive of

the suggestions of Puragliesi and Leriche [83] that TKE is not necessarily directly correlated

with the modes governing thermal transport.

2.8 Conclusions

In this chapter, we have presented key components towards the development of a reduced-

order modeling (ROM) capability, aiming to harness the output of high-fidelity simulations

on leadership computing facilities for thermal-hydraulic design studies.

For the parametric problem, we have demonstrated the effectiveness of the p-greedy model-

order reduction procedure in the 2D flow past a cylinder and the Tollmien-Schlichting waves

and its capability of predicting quantities of interests such as drag coefficient and its variance

and the critical Reynolds numbers.

At higher Rayleigh (or Reynolds) numbers, stabilization is required for the Galerkin ROM.

We have demonstrated that Leray and constraint-based regularization generate more stable
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Figure 2.11: 3D Rayleigh-Bénard convection: Left: Average temperature vs. time with
Ra = 1.1e7 for the Galerkin, constrained, and Leray ROMs with various N values. Right:
Turbulent kinetic energy (TKE) without the zeroth mode vs. time with Ra = 1.1e7 for the
Galerkin, constrained and Leray ROMs with various N values. 70% of modes are filtered out
in Leray ROM.

and accurate solutions than the standard Galerkin ROM formulation. Examples demonstrated

that the constraint-based approach, which incorporates prior information about the long-time

attractor in the ROM, can produce accurate transient solutions in 3D Rayleigh-Bénard

convection at Ra = 1.1e7.

Despite the success of the methods shown here, several developments remain to make pMOR

viable for analysis and engineering design in turbulent-thermal transport applications: (1)

Development of error indicators specific to pMOR in turbulent-thermal transport applications.
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(2) Stabilization methods for turbulent flows. (3) Mitigation of the O(N3) computational

cost to enable the use of larger N values for turbulent flows. We address the three tasks in

the following Chapters.
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Chapter 3: Error-Indicated Parametric Model Order Reduction for
Unsteady Convection

In this chapter, we develop a time-averaged error indicator with POD-hGreedy to drive the

parametric model order reduction (pMOR) for a challenging 2D natural convection problem

in a high-aspect ratio slot parameterized with the Prandtl number, Rayleigh number, and

slot angle with respect to the gravity. The time-averaged error indicator is investigated with

several reduced-order models (ROMs) and is extended to accommodate the energy equation

and Leray regularization. Our numerical results demonstrated that Leray-regularized Galerkin

ROMs provide a robust solution approach for this class of flows, and the error-indicated

pMOR can efficiently predict several QOIs, even in the presence of a bifurcation. Finally, we

show that spatio-temporal chaos can lead to a lack of reproducibility in both the full-order

and the reduced-order models and that the full-order model’s variance provides a lower bound

on the pMOR error in these cases.

The chapter is organized as follows. In section 3.1, we introduce the model problem and

governing equations. In section 3.2, we consider the solution reproduction problem and

assess the performance of the ROMs. The parametric problem is discussed starting in section

3.3. We first introduce POD-hGreedy algorithms in section 3.3.1 with some remarks on

applying POD-pGreedy to this model problem at the end of the section. We then introduce

the time-averaged error indicator with thermal extension in section 3.3.2. A straightforward

integration with Leray regularization is also shown in the same section. In sections 3.3.3

and 3.3.4, we present the pMOR results with θg variation and Ra variation. In section

3.4, we discuss the spatio-temporal chaos and multiple states issues found in this model

problem. Finally, we conclude the chapter in section 3.5. Most of the contents in this chapter

appear in the paper “Parametric model-order-reduction development for unsteady convection”

published in Frontiers in Physics [27].

3.1 A Parametrized Natural Convection Problem

We start with the Boussinesq equations for buoyancy-driven flow [84],

∂u

∂t
+ (u · ∇)u+∇p = ν∇2u+ Tg(θg), ∇ · u = 0, (3.1)

∂T

∂t
+ (u · ∇)T = κ∇2T, (3.2)

34



where u is the velocity, p is the pressure, T is the temperature and g(θg) is the unit vector

represents the direction of the buoyancy force and it is defined by g(θg) = cos(θg )̂ı+ sin(θg)ȷ̂,

with θg the angle of the slot with respect to the gravity. The velocity boundary conditions

are no-slip (u = 0). The temperature boundary conditions are no-flux (insulated) on the top

and bottom, heated (T = 1) on the left wall, and cooled (T = −1) on the right wall. The

initial conditions are u = 0 and T = 0.

In our non-dimensional setting, we set ν = (Pr/Ra)1/2 and κ = (PrRa)−1/2. The Rayleigh

number, Ra = ρβgH3∆T/(νκ), represents the ratio of buoyancy force to thermal and

momentum diffusive force The Prandtl number Pr = ν/κ, reflects the relative importance

of momentum diffusivity compared to thermal diffusivity. With this nondimensionalization

the characteristic velocity is Uc =
√
βgH∆T , the characteristic length is the slot width H,

and the reference time is tr = H/Uc. The temperature is made dimensionless by subtracting

the temperature on the right wall and scaling with ∆T = 2. We note that Uc is sometimes

referred to as the “free-fall” velocity, indicating that one might expect ∥u∥ ≈ 1, with only a

weak dependence on Ra. While that expectation is realized for θg = 0, we in fact see much

larger velocities (∥u∥ ≈ 40) for θg = 90◦ because the domain height L = 40H in that case.

The problem is characterized by four parameters, the Rayleigh number, Ra, the Prandtl

number, Pr, the slot angle with respect to gravity, θg, and the aspect-ratio, Γ. However, for

small aspect ratios, Γ ≤ 8, we find the flow is rather simple. Hence in this work, we focus on

the more challenging case of Γ = 40 with (Pr, Ra, θg) as the parameter space.

Figure 3.1 A illustrates the problem configuration. The aspect ratio is defined as Γ = L/H,

where H is the width of the slot and L is the height of the slot. We take H = 1 and

L = 40 throughout the study. With θg = 0◦ the flow corresponds to standard Rayleigh-

Bénard convection, 90◦ corresponds to vertical slot convection, and θg = 180◦ leads to a pure

conduction solution with the cold side on the bottom of the horizontal slot. Figure 3.1 B

illustrates representative mean (or steady) temperature fields for 19 uniformly-spaced θg ∈
[0◦, 180◦] at Ra = 104 and Pr = 7.2. Figure 3.1 C shows the mean temperature field for

6 uniformly-spaced Ra ∈ [2 × 105, 7 × 105] at θg = 90◦ and Pr = 7.2. The configuration

has many interesting applications. For example, it represents energy-efficient double-glazed

windows, in which the sealed air gap between the two panes acts as an added layer of

insulation. Finding the optimum angle θg that enhances the heat transfer is an important

question. Convection in a tilted fluid layer is also of meteorological and oceanographic interest.

More information on the impact of θg and Γ on heat transport and flow organization for this

configuration can be found in [85].

For unsteady problems, the QOIs are the mean flow, mean Nu, standard deviation in

Nu, mean TKE and mean temperature fluctuation. The symbol ⟨·⟩ is used to indicate a
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Figure 3.1: (A): Problem configuration. (B): FOM mean (or steady) temperature for 19
uniformly-spaced θg ∈ [0◦, 180◦] at Ra = 104 and Pr = 7.2. (C): FOM mean temperature
for 6 uniformly-spaced Ra ∈ [2× 105, 7× 105] at θg = 90◦ and Pr = 7.2.

time-averaged quantity. The mean velocity and temperature field are defined as:

⟨u⟩ = 1

J − J0

J∑
j=J0+1

u(tj), ⟨T ⟩ = 1

J − J0

J∑
j=J0+1

T (tj), (3.3)

with tj = j∆t and ∆t being the time step. The selection of J0 is based on when the solution

reaches it statistically steady state. The mean quantities are then averaged over 500 CTUs,

with the time scale defined above. The instantaneous Nusselt number is defined as

Nu(t) =
q′′w

k(∆T )/H
, (3.4)

with q′′w = −
∫
∂Ωh

k∇T · n̂ dS being the integrated heat flux on the heated wall, ∂Ωh. The

mean Nu and the its standard deviation are then defined as

⟨Nu⟩ := 1

J − J0

J∑
j=J0+1

Nu(tj), Std(Nu) :=

√√√√ 1

J − J0

J∑
j=J0+1

(
Nu(tj)− ⟨Nu⟩

)
. (3.5)
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The mean TKE and mean temperature fluctuation are defined as

⟨TKE⟩ = 1

2(J − J0)

J∑
j=J0+1

∥u(tj)− ⟨u⟩∥2L2 , ⟨Tfluc⟩ =
1

J − J0

J∑
j=J0+1

∥T (tj)− ⟨T ⟩∥2L2 . (3.6)

For steady problems, the QOIs are simply the steady solutions to (4.18)–(3.2) and the

corresponding Nu using (3.4).

In the current FOMs for the slot problem we use E = 516 elements (an array of 6× 86

in the H × L directions), of order q = 9, for a total of N ≈ 42000 grid points. The FOM

simulations are performed using the open-source code Nek5000 [61].

3.2 The Solution Reproduction Problem

As the first step towards the development of a ROM for the parametric problem, we start

with the solution reproduction problem. In this section, we consider the solution reproduction

problems for Ra = 2 × 105, 7 × 105 at Pr = 7.2 and θg = 90◦, where the solutions are

chaotic. We assess the performance of the G-ROM (2.31–2.32), the C-ROM (2.57–2.58) and

the LDF-ROM (2.50–2.51) with differential filter introduced in Sections 2.1 and 2.6 through

the accuracy of the mean field and the QOIs. The mean field is computed by averaging the

POD coefficients and reconstructing with the POD basis. The QOIs are the mean Nu and

Std(Nu), which are estimated through (3.5), and the mean TKE and mean temperature

fluctuation, estimated through (3.6). The quantities are averaged over 500 CTUs.

Although of limited practical interest, the solution reproduction problem is an important

step towards the development of a MOR procedure for the parametric problem. The repro-

duction results for spatio-temporal chaotic flow are presented and discussed in section 3.4.1.

3.2.1 Numerical Results

Results for Ra = 2× 105 are shown in Figs. 3.2 A–D. The performances of the G-ROM, the

C-ROM and the LDF-ROM are indicated by blue, orange, green solid line. In the LDF-ROM,

the radius of the differential filter is δ = 0.015625. Figure 3.2 A shows the behavior of the

relative H1 error in the mean flow prediction versus N . We observe less than 1% error in

the C-ROM with small N . The error in the G-ROM and the LDF-ROM decreases as N

increases and eventually reaches 1% with N = 100. Similar trends for the mean Nu, the

Std(Nu) and the mean temperature fluctuation are observed in Figures 3.2 B–D. The FOM

data is denoted as black solid line. For the mean Nu prediction, we observe around 0.1%
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Figure 3.2: The solution reproduction problem at θg = 90◦ and Pr = 7.2: Performance
comparison between G-ROM, C-ROM and LDF-ROM. (A–D): behavior of the relative
H1 error in mean flow prediction, predicted mean Nu, Std(Nu), and mean temperature
fluctuation as a function of number of modes, N at Ra = 2 × 105 (δ = 0.015625 in the
LDF-ROM). (E–H): performance for the same quantities at Ra = 7× 105 (δ = 0.03125 in
the LDF-ROM).

error in the C-ROM for almost all N . The error in G-ROM and LDF-ROM decreases as N

increases and the LDF-ROM has error around 0.01% with N = 100. For the Std(Nu) and

the mean temperature fluctuation prediction, we observe convergence in both QOIs with the

G-ROM and the LDF-ROM. For the C-ROM, the predictions are in good agreement with

the FOM data for all values of N . Behaviors of the same quantities for Ra = 7 × 105 are

shown in Figs. 3.2 E–H. In the LDF-ROM, the radius of the differential filter is δ = 0.03125.

We still observe convergence in the mean flow and QOIs but it is much slower because the

flow is more chaotic. The error in the mean flow is around 10% in the G-ROM and the

prediction in QOIs are over-estimated and less accurate than for the other methods. With

the LDF-ROM, the predictions are slightly better. The C-ROM is still the most effective

and has 5% error in mean flow prediction. Although the prediction in mean Nu is only as

good as the LDF-ROM, the Std(Nu) and mean temperature fluctuation are bounded from

above for all values of N and converge to the correct value as N increases.

Note that the differential filter radius δ selected for the two Ra yields the best accuracy in

mean flow among the five differential filter radius δ = 0.25, 0.125, 0.0625, 0.03125, 0.015625.

Besides, we find δ = 0.015625 yield the best results at smaller Ra and as Ra increases, results

of δ = 0.03125 becomes better and are comparable with δ = 0.015625 at Ra = 7× 105. The
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tendency is reasonable because the flow is more chaotic as Ra increases, therefore one should

expect a larger δ to stabilize the flow.

From the results, we observe the mean flow and QOIs converge with N for all ROMs.

With higher Ra, convergence in those quantities is much slower and a larger N is required

to reach to the same accuracy as in the lower Ra case. Note that, because of the O(N3)

online costs, requiring a large value of N for convergence might require off-line resources for

timely simulation, which would greatly diminish the intrinsic advantage of the ROM/pMOR

framework. This potentiality highlights the importance of stabilization methods. Indeed, we

find that the C-ROM is able to predict the mean flow and QOIs with a better accuracy with

smaller N . On the other hand, although the LDF-ROM is not as effective as the C-ROM,

and only slightly better than the G-ROM, it will play a key role in the pMOR presented in

section 3.3, especially in the parametric problem with θg variation.

3.3 The Parametric Problem

The pMOR development is broken into two sets of parametric problems: (i) problem

parameterized with θg at higher Ra. (ii) problem parameterized with Ra. In the first set, a

bifurcation is observed and the solution space is a blend of steady and unsteady solutions. In

the second set, no bifurcation is observed and the solutions are all unsteady.

By proceeding in this manner, we are able to isolate several difficulties and eventually

come up with an important observation for the pMOR: Accurate prediction (< 10%) with

pMOR is achievable if the solution in the parametric space is either only chaotic or the

spatio-temporal chaos is not significant, regardless a bifurcation exists or not. Once the

spatio-temporal chaos becomes significant, the performance of the pMOR deteriorates and

the maximum errors of the mean flow and QOIs are dominated by the flow chaos.

We turn now to study the performance of pMOR for the slot problem with the G-ROM,

the C-ROM, and the LDF-ROM. Two sets of parameterization are considered. With Pr = 7.2

fixed, we seek to estimate the solution and QOIs of (2.8) and (2.10) for: (i) θg ∈ P = [0◦, 180◦]

at multiple Ra, and (ii) Ra ∈ P = [2× 105, 7× 105] with θg = 90◦. Throughout, we take the

lifting functions to be the zero velocity field and the heat conduction solution.

For efficient selection of the pMOR anchor points we consider the POD-hGreedy algorithm

proposed in [17] which combines POD in time with Greedy in parameter. The term Greedy

refers to the optimization strategy of basing anchor point selection on the training point

that exhibits the largest value in the error estimate. Error-indicated selection of the anchor

points reduces the number of FOM solves and is thus critical for the feasibility of pMOR.

Here, the error indicator corresponds to the dual norm of the residual associated with the
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time-averaged momentum and energy equations.

The section is organized as follows. In section 3.3.1 we present the POD-hGreedy algorithm.

In section 3.3.2, we extend the time-averaged error indicator introduced in [17] to accommodate

the energy equation and Leray regularization. Finally, in sections 3.3.3 and 3.3.4, we present

the numerical results.

3.3.1 POD-hGreedy Algorithm

In this section, we present the POD-hGreedy algorithm for the construction of the reduced

spaces {XN
0,ℓ, X

N
0,ℓ}Lℓ=1, and the partition {Iℓ}Lℓ=1 of P, based on the results of L full-order

simulations associated with the parameters p∗1, . . . , p
∗
L. The algorithm is similar to the one in

[17] but with extensions for thermal fields.

To begin, we introduce the discretized parameter space Ptrain = {pi}ntrain
i=1 , p1 ≤ . . . ≤ pntrain

,

the integers L which fix the maximum number of offline solves, the integer ncand < L, which

is the number of ROM evaluations performed online for a given value of the parameters, and

an error indicator ∆. The error indicator takes as input sequences {un
r }Jn=0 and {T n

r }Jn=0 and

the value of the parameter, p∗, and returns an estimate of the error in the prediction of the

mean flow. We formally present the indicator in section 3.3.2.

Algorithm 3.1 presents the computational procedure for both offline and online stage.

The offline procedure starts with an anchor point that could either be selected randomly

from the training space Ptrain or be user specified. At each iteration ℓ, a FOM simulation

at the anchor point p∗ℓ is conducted and returns a set of snapshots. The snapshot set is

then processed through POD and returns the first N orthonormalized POD modes. The

value of N is determined by reproduction problem at the anchor point. The ROM and the

error indicator, ∆ℓ, are then built with the reduced spaces XN
0,ℓ and X

N
0,ℓ. The coefficients

and the error estimates are then computed for each p ∈ Ptrain and the next anchor point is

identified as the parameter that has the maximum value in the current (including previous)

error estimate. The procedure starts again with the new selected anchor point. If the error

indicator is sufficiently small over all points in Ptrain or the procedure reaches the maximum

number of FOM solves L, the offline stage terminates.

Given the ROM/anchor point data (XN
0,ℓ, X

N
0,ℓ, p

∗
ℓ) for ℓ = 1, . . . , L, and error indicator, ∆,

the hGreedy online stage starts with finding the ncand candidate anchor points nearest to

the test parameter p. The ROMs associated to the candidate anchor points are then used to

compute the coefficients and error estimate at p. The coefficients are then returned based

on the ROM that has smallest error estimate. The POD-hGreedy approach is analogous to

h-refinement in the finite element method in that the POD bases are not shared between
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anchor points. Convergence is therefore expected to be linear in the distance from the nearest

anchor point.

Algorithm 3.1: POD-hGreedy algorithm for the construction of {XN
0,ℓ, X

N
0,ℓ, Iℓ}l.

Offline stage: [{XN
0,ℓ, X

N
0,ℓ}Lℓ=1] = Offline (Ptrain, L, ∆).

Inputs: Ptrain = {pi}ntrain
i=1 = discretized parameter space, L = maximum number of

offline solves, ∆ = error indicator defined in (3.11).

Output: {(XN
0,ℓ, X

N
0,ℓ, p

∗
ℓ)}Lℓ=1 = reduced space/anchor point pairs.

p∗1 = smallest p in Ptrain.

for ℓ = 1, . . . , L do

[{(uk(p∗ℓ), T
k(p∗ℓ))}Kk=1] = DNS-solver (p∗ℓ).

[{(φn,ℓ, θn,ℓ)}Nn=1] = POD ({(uk(p∗ℓ), T
k(p∗ℓ))}Kk=1, N).

Define XN
0,ℓ = span{φn,ℓ}Nn=1, X

N
0,ℓ = span{θn,ℓ}Nn=1, build the ROM operators and

error indicator ∆ℓ.

for i = 1, . . . , ntrain do

[{(uj
r(pi), T

j
r (pi))}Jj=0] = ROM-solver (pi,X

N
0,ℓ, X

N
0,ℓ).

Compute the weak dual norm ∆ℓ at pi.

end

p∗ℓ+1 = argmaxp∈Ptrain
min{∆ℓ′(p)}ℓℓ′=1.

end

Online stage: [{uj
r , T

j
r }j] = Online ({(XN

0,ℓ, X
N
0,ℓ, p

∗
ℓ)}Lℓ=1,∆, ncand, p).

Inputs: {(XN
0,ℓ, X

N
0,ℓ, p

∗
ℓ)}Lℓ=1 = reduced space/anchor point pairs, ncand = online ROM

evaluations, p = input parameter.

Output: {uj
r , T

j
r }j = solution estimate.

for i = 1 to ncand do
Find the ncand candidate anchors nearest to p : p∗1, . . . , p

∗
ncand

.

[{ujr,(i), T
j
r,(i)}Jj=0] = ROM-solver (p∗i ,X

N
0,(i), X

N
0,(i)).

Compute the error estimate ∆(i)(p).

end

Return {(ujr , T j
r ) = (ujr,(i∗), T

j
r,(i∗))}j, where i∗ is the minimizer of {∆(i)(p)}i.

Another strategy is the POD-pGreedy algorithm, following the definitions of [86], as first

proposed in [87] and analyzed in [88]. The algorithm combines data from different parameters

to generate a single reduced basis set that covers the entire parameter space P . The procedure

is similar to Algorithm 3.1 but with few differences:

� The reduced bases are shared between anchor points. POD is still used to construct the

new basis but the collected snapshot set is projected onto the orthogonal complement

of the existing basis.
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� In the online/training stage, only one ROM is used instead of a set of ROMs and there

is no need to check for the nearest anchor points.

� The anchor point is selected based on the single error estimate ∆ in current iteration,

rather than the individual estimates for each ROM.

Although it has a better convergence rate than POD-hGreedy, POD-pGreedy can easily

fail for unsteady problems. Combining modes at different anchor points, especially ones

whose solution exhibits different physics, can easily lead to instability and deteriorate the

performance, as noted in [17]. Moreover, stabilizations that work for POD-hGreedy can fail

in the POD-pGreedy approach. For example, in the C-ROM, it is not clear how to construct

the constraints for the combined basis. A naive approach is to apply POD to all the snapshots

at anchor points. However, this approach is inefficient and can be limited by the computer

storage requirements during the offline phase. Leray regularization with the projection filter

(i.e., trivially truncated basis set for the advector) is also limited because the combined basis

is no longer ordered in a Fourier-like, energy-decaying, sequence. To address this, one could

apply POD to all the snapshots that have been collected but this approach is again limited

by the storage and therefore not practical. An alternative is to consider the differential filter,

denoted as the LDF-ROM here. Once the radius δ is specified, it will filter right amount of

energy in each basis.

3.3.2 A Time-Averaged Error Indicator

In this section, we extend the time-averaged error indicator proposed in [17] to accommodate

the energy equation and Leray regularization. The error indicator is based on the dual norm

of the discrete time-averaged residual. Given the ROM solution sequence {ũn
r }Jn=J0+1 and

{T̃ n
r }Jn=J0+1 and the parameters of interest p = (ν, θg, κ), the discrete time-averaged residual

for velocity and temperature are defined as: 2

⟨Ru⟩({ũn
r }Jn=J0

,v; ν, θg) :=
1

J − J0

J∑
n=J0+1

ru(ũ
n
r ,v; ν, θg), ∀ v ∈ Vdiv, (3.7)

⟨RT ⟩({T̃ n
r }Jn=J0

, S;κ) :=
1

J − J0

J∑
n=J0+1

rT (T̃
n
r , S;κ), ∀ S ∈ XN

0 , (3.8)

2In [39], the velocity and temperature residuals are coupled because the velocity-temperature solutions
are obtained through a coupled Newton’s method. Here, we do not couple the residuals because we solve
(2.16)–(2.17) separately.
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where ru(ũ
n
r ,v; ν, θg) ∈ V′

div (dual space of Vdiv) and rT (T̃
n
r , S;κ) ∈ XN

0
′
(dual space of XN

0 )

are the residual associated with (2.53) at time tn and defined as

ru(ũ
n
r ,v; ν, θg) =

3∑
s=1

αs

[
(v, g(θg)T̃

n−s
r )− c

(
v, ũn−s

r , ũn−s
r

)]
−

3∑
s=0

βs
∆t

(v, ũn−s
r )− νa(v, ũn

r ), (3.9)

rT (T̃
n
r , S;κ) = −

3∑
s=1

αsc(S, ũ
n−s
r , T̃ n−s

r )−
3∑

s=0

βs
∆t

(S, T̃ n−s
r )− κ(S, T̃ n

r ). (3.10)

Note for simplicity, we assume only BDF3/EXT3 is used for time discretization in (3.9)–(3.10).

Besides, the residual is defined over Vdiv := {v|v ∈ XN
0 ,∇ · v = 0} and XN

0 , rather than

XN
0 ⊂ H1

0 and XN
0 , because we measure our reduced-basis error relative to the FOM.

We define the time-averaged error indicator, ∆ : ⊗J
n=J0

XN ×XN × P → R+, as follows:

∆({ũn
r , T̃

n
r }Jn=J0

; p) :=

√
∥⟨Ru⟩({ũn

r }Jn=J0
, ·; ν, θg)∥2V′

div
+ ∥⟨RT ⟩({T̃ n

r }Jn=J0
, ·;κ)∥2

XN
0

′ . (3.11)

The residuals (3.9)–(3.10) can be further expressed in the matrix-vector form because the

spaces Vdiv and XN
0 are finite dimensional,

ru(ũ
n
r ,v; ν, θg) = vT rnu = vT f̂(ũn

r , T̃
n
r ; θg)− vTHBũnr , ∀ v ∈ R2N , (3.12)

rT (T̃
n
r , S;κ) = ST rnT = ST Q̂(ũn

r , T̃
n
r )− STHκBT̃

n

r , ∀ S ∈ RN . (3.13)

where the matrices B and B are defined as

Bij = φj(xi), Bij = θj(xi), (3.14)

where the xis are the spectral element nodal points. H and Hκ are the FOM velocity and

thermal Helmholtz matrices defined in (2.18) and f̂ and Q̂ are the velocity data and thermal

loading vectors defined in (2.19–2.20). The matrix-vector version of the discrete time-averaged
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residual (3.7)–(3.8) is then expressed as

⟨Ru⟩({ũn
r }Jn=J0

,v; ν, θg) = vTRu = vT

 1

J − J0

J∑
n=J0+1

f̂(ũn
r , T̃

n
r ; θg)−HBũnr

 , (3.15)

⟨RT ⟩({T̃ n
r }Jn=J0

, S;κ) = STRT = ST

 1

J − J0

J∑
n=J0+1

Q̂(ũn
r , T̃

n
r )−HκBT̃

n

r

 , (3.16)

∀ v ∈ R2N and ∀ S ∈ RN . The norm of the residual is closely related to the error and it is

tempting to use ∥Ru∥2 and ∥RT∥2 to estimate the error. However, this is not correct because

⟨Ru⟩({ũn
r }Jn=J0

, ·; ν, θg) : Vdiv → R and ⟨RT ⟩({T̃ n
r }Jn=J0

, ·;κ) : XN
0 → R are bounded linear

functionals whose size is appropriately measured through the dual norm:

∥⟨Ru⟩({ũn
r }Jn=J0

, ·; ν, θg)∥V′
div

= sup
v∈Vdiv

⟨Ru⟩({ũn
r }Jn=J0

,v; ν, θg)

∥v∥Vdiv

, (3.17)

∥⟨RT ⟩({T̃ n
r }Jn=J0

, ·;κ)∥XN
0
= sup

S∈XN
0

′

⟨RT ⟩({T̃ n
r }Jn=J0

, S;κ)

∥S∥XN
0

. (3.18)

Thanks to the Riesz representation theorem, there exist a unique ⟨R̂u⟩ ∈ Vdiv and ⟨R̂T ⟩ ∈ XN
0

such that

(⟨R̂u⟩,v)Vdiv
= ⟨Ru⟩({ũn

r }Jn=J0
,v; ν, θg), ∀ v ∈ Vdiv, (3.19)

(⟨R̂T ⟩, S)XN
0
= ⟨RT ⟩({T̃ n

r }Jn=J0
, S;κ), ∀ S ∈ XN

0 . (3.20)

It thus follows that

∥⟨Ru⟩({ũn
r }Jn=J0

, ·; ν, θg)∥V′
div

= ∥⟨R̂u⟩∥Vdiv
, (3.21)

∥⟨RT ⟩({T̃ n
r }Jn=J0

, ·;κ)∥XN
0

′ = ∥⟨R̂T ⟩∥XN
0
. (3.22)

(3.19)–(3.20) allows one to compute the Riesz representers ⟨R̂u⟩ and ⟨R̂T ⟩ and (3.21)–(3.22)

allows one to evaluate the dual norm of the residual through Riesz representation without

computing the supremum.

In practice, determination of the Riesz representers, ⟨R̂u⟩ and ⟨R̂T ⟩, is relatively straight-

forward because the coarse (i.e., ROM) and truth (FOM) representations live in finite-

dimensional spaces, meaning that there is a direct linear-algebra problem to be solved for

the Riesz representers. Expanding (3.19)–(3.20), we have the corresponding linear algebra
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statement,  A −DT

−D 0

  ⟨R̂u⟩

p

 =

 Ru

0

 , (3.23)

A ⟨R̂T ⟩ = RT . (3.24)

Here, A corresponds to H introduced in (2.18) with β0 = 0 and ν = 1. We remark that

the essential difference between the velocity and temperature representers is that the former

satisfies the divergence-free constraint by virtue of the 2×2 block system in (3.23). Evaluation

of the error indicator ∆ entails solving (3.23)–(3.24), computing the corresponding H1 norms

of the outputs, and ultimately using these results in (3.11).

While use of the direct approach requires access to the FOM machinery in order to generate

an error indicator, we note that such access is readily available during the pMOR train-

ing/construction phase. The advantage of this approach is that the number of Stokes/Poisson

solves scales as the number of points in the training space, which is typically less than

N2. The other is through the offline/online computational decomposition which takes the

advantage of the affine decomposition and expands the residual. By expanding the residuals

⟨Ru⟩ and ⟨RT ⟩, 2(N + 1)2 + 6(N + 1) linear functionals are derived, where 2(N + 1)2 is

due to the convection term in the Navier-Stokes and energy equations. Applying the Riesz

representation theorem to each linear functional, we end up solving 2(N + 1)2 + 6(N + 1)

Riesz representers, where (N + 1)2 + 4(N + 1) of them are solved through Stokes problems

and (N + 1)2 + 2(N + 1) of them are solved through Poisson problems. Note that the Riesz

representers must be stored in order to accomplish the decomposition and each is a vector of

size N because it lives in the FOM space. For example, if N = 60, one would have to store at

least 7200 vectors of size N which can be prohibitive, even for large multicore workstations.

Even if there is no storage limitation, the offline cost is quite high when N is large as it

scales quadratically. Once it is done, the online cost is O(N2J +N4), where O(N2J) is to

solve (2.53) and O(N4) is required to compute the error estimate. Further details of the

decomposition are provided in [17].

Time-Averaged Error Indicator with Leray Regularization The integration of the

time-averaged error indicator ∆ with Leray regularization is rather straightforward. Recall

the difference between the G-ROM (2.31–2.32) and the LDF-ROM (2.50–2.51) is simply the

advecting field being filtered. Hence, the residuals ru(ũ
n
r ,v; ν, θg) and rT (T̃

n
r , S;κ) for all
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n = J0 + 1, . . . , J are simply modified with the filtered advecting field,

ru(ũ
n
r ,v; ν, θg) =

3∑
s=1

αs

[
(v, g(θg)T̃

n−s
r )− c

(
v,un−s

r , ũn−s
r

)]
−

3∑
s=0

βs
∆t

(v,un−s
r )− νa(v, ũn

r ), (3.25)

rT (T̃
n
r , S;κ) = −

3∑
s=1

αsc
(
S,un−s

r , T̃ n−s
r

)
−

3∑
s=0

βs
∆t

(S, T n−s
r )− κa(S, T̃ n

r ), (3.26)

for all v ∈ Vdiv and S ∈ XN
0 . The corresponding time-averaged error indicator ∆ is then

defined based on the modified residuals (3.25)–(3.26).

3.3.3 pMOR Results: θg Variation

In this section, we consider the parametric problem parameterized with θg at Pr = 7.2. The

problem has three characteristics: bifurcation, spatio-temporal chaos over a certain range of

θg, and a solution manifold that is a blend of steady and unsteady solutions. To identify the

major pMOR challenges for this case, three values of Ra are considered:

1. Ra = 1× 104 where the FOM is steady except at θg = 30◦.

2. Ra = 8 × 104 where the FOM is unsteady for θg ∈ [0◦, 70◦] and steady for θg ∈
[80◦, 180◦].

3. Ra = 3 × 105 where the FOM is unsteady for θg ∈ [0◦, 120◦] and steady for θg ∈
[130◦, 180◦].

In each case, the ROM is constructed through Algorithm 3.1. In order to assess performance,

we generate FOM data for θg = 0◦, 10◦, . . . , 180◦ (ntrain = 19 data points). The FOM solution

is obtained by solving (4.18)–(3.2). For parameters where the problem is steady, the solution

and the Nu are collected after the solution difference between ten time steps is less than 10−6.

For unsteady problems, the mean flow, mean Nu, Std(Nu), mean TKE and mean temperature

fluctuation are averaged over 500 CTUs after the solution has reached a statistically steady

state.

Ra = 1× 104 To examine the feasibility of the pMOR (Algorithm 3.1) in the unsteady

case, we begin with Ra = 1 × 104, in which only one unsteady solution is introduced at

θg = 30◦.
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Figure 3.3: The parametric problem parameterized with θg at Ra = 1× 104 and Pr = 7.2:
POD-hGreedy performance comparison between the G-ROM, the C-ROM and the LDF
ROM. (A): behavior of the error indicator ∆ defined in (3.11) for eight iterations with
G-ROM. (B–D): behavior of the relative H1 error in predicted solution, mean Nu and mean
TKE with θg based on eight anchor points. (N = 1 for all θg ∈ Panchor except N = 70 at
θ∗g,3 = 30◦.) (E): mean (or steady) velocity magnitude for 19 uniformly-spaced θg ∈ [0◦, 180◦].
(The corresponding temperature solutions are in Fig. 3.1 B.)

Figure 3.3 E shows the steady (or mean) velocity magnitude for 19 uniformly-space training

points θg = 0◦, 10◦, . . . , 180◦. The corresponding temperature distributions are in Fig. 3.1 B.

At θg = 180◦, we observe no flow and the temperature is simply the conduction solution. As

θg decreases, we observe slot convection and then about θg = 40◦ there is a bifurcation to the

wavy flow and rolls in the velocity. Moreover, we observe spatial-temporal chaos at θg = 30◦.

Figures 3.3 A–D show the results of the application of Algorithms 3.1 for the construction

of the G-ROM, C-ROM and LDF-ROM for the pMOR. The algorithm starts with θ∗g,1 = 0◦

and is performed with L = 8 iterations.

Figure 3.3 A demonstrates the selection process of anchor points (denoted by red circles)

for the G-ROM case. We briefly walk through the process: At the first iteration, the error

estimate ∆1(θg) for θg ∈ Ptrain is computed (blue dashed line). With the largest error estimate,

θg = 90◦ is then identified as the second anchor point. The third anchor point is then selected

from θg ∈ Ptrain which maximizes the error estimate ∆1,2(θg) := min{∆1(θg),∆2(θg)} over

Ptrain. (We reiterate that minimizing over the individual error estimates is a property of the h-

Greedy process—there is not a single unifying error estimate as is the case for p-Greedy.) The
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process continues until the error estimate reaches the desired tolerance or the number of offline

solves reaches its maximum. The black solid line denotes the minimum of all error estimates

computed up to current iteration. In this case, it represents min{∆1(θg), . . . ,∆8(θg)}. Note
that the error estimate at θg = 180◦ in each model ∆ℓ(θg = 180◦) is small due to the choice

of lift function.

From Fig. 3.3 A, we observe the error estimate is small at anchor points where the problem

is steady. On the other hand, although the error estimate ∆3(θg) (greed line) is small at

θ∗g,3 = 30◦ compared to other points in Ptrain, it is not as small as the estimate at other anchor

points. Because of the unsteadiness, it can’t reach the same magnitude as in the steady cases.

Following this procedure for the other cases, we present models results for the G-ROM, C-

ROM and LDF-ROM cases, denoted respectively blue, orange, green solid lines in Figs. 3.3 B–

D. The behavior of the relative H1 error in the predicted solution is shown in Fig. 3.3 B.

The corresponding Galerkin projection is denoted as the black dashed line. We found that

the G-ROM and the LDF-ROM have a similar performance: the error in the solution is

nearly identical to the Galerkin projection for cases where the problem is steady, including

those that are not in the Panchor. The maximum error is at θg = 30◦ where the problem is

unsteady. Both methods have around 15% error in the mean flow. Note that at θg = 30◦, the

number of modes N is carefully selected because the ROM diverges after certain N due to the

spatio-temporal chaos (15% error with N = 70, 17% error with N = 80 and 23% error with

N = 90). On the other hand, the mean solution prediction made by the C-ROM has 73% in

maximum error and in order for the C-ROM to reach same accuracy as in the G-ROM and

the LDF-ROM, two more iterations are required. Already, with this modest Ra = 1× 104,

we find C-ROM is less efficient than G-ROM and LDF-ROM. The pMOR behavior for mean

Nu and mean TKE are shown along with the FOM results in Figs. 3.3 C–D. Again, the

G-ROM and the LDF-ROM are able to make accurate predictions while the C-ROM has

maximum 22% error in mean Nu and in particular is unable to capture the peak in mean

TKE at θg = 30◦.

Before closing this section, we highlight some observations with respect to the solution

manifolds.

� The solutions at θg ∈ [0◦, 30◦] are Rayleigh-Bénard with differing numbers of rolls,

analogous to orthogonal sine and cosine functions at different wave numbers. Therefore,

there is little hope in reproducing the solution except at selected anchor points. QOIs

such as mean Nu, however, are less sensitive to precise mean flow fields and are therefore

more tractable.

� At θg = 170◦ and θg = 180◦ the thermal metrics are not too different despite the O(1)
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difference in velocity solutions.

The first issue is resolved by the error indicator picking θg ∈ [0◦, 30◦] as anchor points. The

second issue can be a source of error as Ra increases. With θg = 160◦ as an anchor point and

the solution at θg = 180◦ as the lift function, the error at θg = 170◦ is 9% for Ra = 1× 104,

16% for Ra = 8× 104, and 19% for Ra = 3× 105.

Ra = 8× 104 Figure 3.4 shows pMOR results analogous to Fig. 3.3 for the case Ra = 8×104.

Here, we consider only the G-ROM and the LDF-ROM. The algorithm starts with θ∗g,1 = 0◦

and terminates at L = 6 iterations. Figures 3.4 E–F show the FOM mean (or steady)

temperature and velocity solution at the training points. (In an actual pMOR, these FOMs

would of course not be computed a priori.) With this Ra, the bifurcation occurs at θg = 40◦.

Moreover, we observe spatio-temporal chaos for θg ∈ [0◦,30◦] with the lower values being

more chaotic.

The anchor-point selection process with the LDF-ROM is demonstrated in Fig. 3.4 A.

Starting with θ∗g,1 = 0◦ the peak error in first iteration is at 110◦, which is chosen to be θ∗g,2,

and so on. Again, we find the error indicator is small at anchor points where the problem

is steady and that it is larger where it is unsteady (θg ∈ [0◦, 60◦]). Nonetheless, the error

indicator is still able to identify where solution changes rapidly and select most of the anchor

points in the region [0◦, 40◦].

The behaviors of the relative H1 error in the predicted solution with θg using the G-ROM

and the LDF-ROM are shown in Fig. 3.4 B. For θg ∈ [80◦, 180◦], where the solution is steady,

we find the estimation is almost identical to the Galerkin projection in both models. On the

other hand, for θg ∈ [0◦, 70◦], where the solution is unsteady, we find the error at anchor

points θg = 0◦, θg = 10◦ is large due to the spatio-temporal chaos. The maximum error

is around 19% at θg = 10◦ with the LDF-ROM while 69% at θg = 40◦ with the G-ROM.

Although the maximum error in the G-ROM can be reduced by further iterations of the

algorithm, the error will eventually be dominated by the high reproduction error arising from

spatio-temporal chaos at θg = 0◦ and 10◦.

The behavior for mean Nu and mean TKE are shown in Fig.3.4 C–D for the G-ROM

and the LDF-ROM. Despite large errors in the mean flow prediction at θg = 0◦, 10◦, the

LDF-ROM is able to predict mean Nu with a maximum error around 5% whereas the G-ROM

has maximum error around 28%. In addition, the LDF-ROM is able to predict a more

accurate mean TKE than the G-ROM.

Ra = 3× 105 For (Pr,Ra) = (7.2, 3 × 105) the flow is quite chaotic (similar to what is

found for Pr = .71 at lower Ra). Figures 3.5 E–F show the mean (or steady) temperature
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Figure 3.4: The parametric problem parameterized with θg at Ra = 8× 104 and Pr = 7.2:
POD-hGreedy performance comparison between the G-ROM and the LDF ROM. (A):
behavior of the error indicator ∆ defined in (3.11) for six iterations with LDF-ROM. (B–D):
behavior of the relative H1 error in predicted solution, mean Nu, and mean TKE with θg
based on six anchor points. (N = 100 at θg = 0◦, 20◦, N = 80 at θg = 10◦, 30◦, 40◦, N = 1
at θg = 110◦, 140◦, 160◦.) (E–F): mean (or steady) temperature and velocity solution for
19 uniformly spaced θg ∈ [0◦, 180◦].

and velocity solution at θg = 0◦, 10◦, . . . , 180◦ (19 data points). This time, the bifurcation

occurs at θg = 60◦. We use this elevated Rayleigh-number case to explore the behavior of the

h-Greedy pMOR convergence by considering application of the algorithm to two different

training sets, P1 = [60◦, 70◦, . . . , 180◦] and P2 = [0◦, 10◦, . . . , 180◦]. The set P1 excludes

the spatio-temporal chaotic regime while P2 spans the full range of flow phenomena.

The anchor point selection process for P1 with LDF-ROM is demonstrated in Fig. 3.5 A,

starting with θ∗g,1 = 60◦ and proceeding for L = 5 iterations. Again, we observe that

the error estimate at the anchor points, θ∗g,1 = 60◦, θ∗g,3 = 80◦ and θ∗g,5 = 120◦ are larger

than other anchor points because of unsteadiness. The behavior of the relative H1 error

in predicted solution is shown in Fig. 3.5 B. For θg ∈ [130◦, 180◦], where the solution

is steady, the ROM estimates at the anchor points are almost identical to the Galerkin
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Figure 3.5: The parametric problem parameterized with θg ∈ [60◦, 180◦] at Ra = 3× 105 and
Pr = 7.2: POD-hGreedy performance comparison between the G-ROM and the LDF-ROM.
(A): behavior of the error indicator ∆ defined in (3.11) for five iterations with LDF-ROM.
(B–D): behavior of the relative H1 error in predicted solution, mean Nu and mean TKE
with θg based on five anchor points. (N = 80 at θg = 60◦, 80◦, 110◦, N = 50 at θg = 120◦

and N = 1 at θg = 130◦, 140◦, 160◦.) (E–F): mean (or steady) temperature and velocity
solution for 19 uniformly spaced θg ∈ [0◦, 180◦].

projection. For θg ∈ [60◦, 120◦], where the solution is unsteady, the errors at the anchor

points (θg = 60◦, 80◦, 110◦, 120◦) are less than 10%. However, because of the irregular

solution manifold, there is a 20% maximum error at θg = 170◦, despite the ROM being based

on the nearby θg = 160◦ anchor point.

The behavior of the mean Nu and mean TKE are shown in Figs. 3.5 C–D. The maximum

error in the predicted mean Nu is around 5% with LDF-ROM and 8% with G-ROM. The

mean TKE estimation is also reasonable but is underestimated at θg = 70◦.

Next we examine the same problem configuration but with the full parameter space P2.

The problem now includes spatio-temporal chaos for θg ∈ [0◦, 40◦] with the lower values

being more chaotic. Fig. 3.6 show the results of the application of Algorithm 3.1 for the

construction of the LDF-ROM for the parametric problem with P2. The algorithm starts
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Figure 3.6: The parametric problem parameterized with θg ∈ [60◦, 180◦] at Ra = 3× 105 and
Pr = 7.2: POD-hGreedy performance comparison between the G-ROM and the LDF-ROM.
(A): behavior of the error indicator ∆ defined in (3.11) for five iterations with LDF-ROM.
(B–D): behavior of the relative H1 error in predicted solution, mean Nu and mean TKE
with θg based on five anchor points. (N = 80 at θg = 10◦, 20◦, 40◦, 60◦, 90◦, 100◦, N = 70
at θg = 0◦, N = 50 at θg = 120◦ and N = 1 at θg = 160◦.)

Figure 3.7: Behavior of the predicted Std(Nu) with θg. (A): The G-ROM, the C-ROM and
the LDF-ROM estimation at Ra = 1× 104 with eight anchor points. (B): The G-ROM and
the LDF-ROM estimation at Ra = 8× 104 with six anchor points. (C): The G-ROM and
the LDF-ROM estimation at Ra = 3× 105 with six anchor points.

with θ∗g,1 = 0◦ and is performed with L = 6 iterations. The anchor point selection process

is demonstrated in Fig. 3.6 A. We observe the same issue as in the previous cases, where

unsteadiness leads to larger error estimates than with the steady regimes.

The relative H1 error in predicted solution is shown in Fig. 3.6 B. Again we find the

estimation is almost identical to the Galerkin projection for θg ∈ [130◦, 180◦] where the

solution is steady. For θg ∈ [0◦, 120◦] where the solution is unsteady, the errors at anchor

points θg = 20◦, 40◦, 90◦, 120◦ are less than 10% but 35% at θg = 0◦, which corresponds to

“simple” Rayleigh-Bénard convection. Note that 35% is the error after carefully chosen N

and spatial radius δ in Leray filtering. The corresponding mean Nu and mean TKE behavior

are shown in Figs. 3.6 C–D. The maximum error in the predicted mean Nu is around 12%.

For mean TKE, the estimation for θg ∈ [60◦, 180◦] is acceptable, while it is overestimated for

θg ∈ [0◦, 50◦].

We are also aware that in some applications, the Std(Nu) could be considered as QOI.
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Figure 3.8: The parametric problem parameterized with Ra at θg = 90◦ and Pr = 7.2:
POD-hGreedy performance comparison between the G-ROM, the C-ROM and the LDF
ROM. (A–D): behavior of the relative H1 error in predicted mean flow, predicted mean
Nu, Std(Nu) and mean temperature fluctuation based on five anchor points. (N = 80,
Ra∗1 = 2 × 105, Ra∗2 = 7 × 105, Ra∗3 = 2.5 × 105, Ra∗4 = 3.5 × 105, Ra∗5 = 5 × 105 for the
C-ROM and the LDF-ROM and Ra∗5 = 4.5× 105 for the G-ROM.)

However, comparing to the mean Nu and mean TKE, we find Std(Nu) is in general a more

challenging QOI. Figure 3.7 shows the predicted Std(Nu) in the three Ra cases. We observe

accurate prediction in Ra = 1× 104 case. However, unlike the mean TKE, the Std(Nu) soon

becomes intractable with Ra = 8× 104 even with Leray regularization and is even worse in

Ra = 3× 105.

3.3.4 pMOR Results: Ra Variation

In this section, we consider the slot problem at θg = 90◦ and Pr = 7.2 with the parametric

space defined by Ra ∈ P = [2 × 105, 7 × 105]. Unlike the problem with θg variation, all

solutions are unsteady and there is no parametric bifurcation. In order to assess performance,

we generate FOM data, including mean flow, mean Nu, Std(Nu), mean TKE and mean

temperature fluctuation, for Ra = 2× 105, 2.5× 105, . . . , 7× 105 (ntrain = 11 data points).

The quantities are averaged over 500 CTUs once the solution reaches the statistically steady

state.

Figure 3.8 shows the results of the application of Algorithm 3.1 for the pMOR using

the G-ROM, the C-ROM and the LDF-ROM. The solid line denotes the performance of

the reduced model which minimizes the error indicator, and thus is selected by the Greedy

procedure (cf. Algorithm 3.1, ncand = 2). Anchor points are denoted as red circle while FOM

data is denoted as black solid line. The algorithm starts with Ra∗1 = 2× 105 and is performed

with L = 5 iterations. The number of POD basis N with anchor points are listed in the

figure caption.

Figure 3.8 A shows the behavior of the relative H1 error in mean flow prediction with Ra.
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First, we observe the errors at the anchor points are less than 10% with the C-ROM and

the LDF-ROM while the G-ROM has 10% error at Ra∗2 = 7× 105. The maximum error is

roughly 11% in the G-ROM, 10% in the LDF-ROM and 8% in the C-ROM. Comparing with

the Galerkin projection error (denoted by the black dashed line), the pMOR accuracy is seen

to be quite satisfactory throughout P .

Figure 3.8 B shows the behavior of the predicted mean Nu with Ra. At the anchor points,

we observe good agreement between ROMs and FOM and that stabilization does improve its

accuracy. The maximum relative error is roughly 8% in the G-ROM, 6.5% in the C-ROM

and 5% in the LDF-ROM. Figures 3.8 C–D show the behavior of the predicted Std(Nu) and

mean temperature fluctuation. In both QOIs, we find the C-ROM outperforms the other two

models. At Ra = 7× 105, the LDF-ROM is only slightly better than the G-ROM.

This parametric space is in general more tractable than those involving variation in θg. This

outcome might be anticipated by observing the mean temperature fields shown in Fig. 3.1 C,

which suggests that the solution manifold with respect to Ra is quite smooth. This is also

reflected in the QOIs, for example, the mean Nu, Std(Nu) and mean temperature fluctuation

behave almost linearly as Ra increases.

3.4 Discussion

In this section, we investigate some of the flow behaviors exhibited by the FOM to better

understand how they influence the relative performance of the ROMs. We note that we

cannot, in general, expect a ROM to be able to predict FOM behavior if the flow itself is

not predictable. Thus, variability in the FOM provides an anticipated lower bound on ROM

performance for the reproduction problem.

3.4.1 Spatio-Temporal Chaos

Even though our 2D model problem generates only laminar flows, pMOR is quite challenging

in this application for several reasons: (i) there is bifurcation in θg parameter space; (ii)

the solution can be multivalued, even at steady state; and (iii) the solution exhibits spatio-

temporal chaos at several points in the parameter space. As our initial efforts happened

to be focused in one of the spatio-temporal chaos regimes, we decided to map out a larger

space to identify where pMOR could succeed, where it would have difficulty, and where it a

priori could not succeed. Table 3.1 reflects a broad range of flow regimes identified inside the

high-aspect ratio slot from hundreds of FOM simulations conducted at multiple Ra, θg with

Pr = 0.07, 0.71, 7.2. We categorize the flow into six types: (i) motionless, (ii) steady, (iii)
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Table 3.1: Distribution of six flow types with Ra and θg at Pr = 0.07, 0.71, 7.2.

flow \Pr Pr = 0.07 Pr = 0.71 Pr = 7.2
motionless Ra < 1.1× 103, θg = 0◦ Ra < 8.75× 102, θg = 0◦ Ra < 9× 102, θg = 0◦

steady
Ra = 103, θg = 90◦

Ra = 104, θg ∈ [0◦, 40◦] ∪ [170◦, 180◦]

Ra = 103, θg ∈ [0◦, 180◦]
Ra = 104, θg ∈ [0◦, 30◦] ∪ [70◦, 80◦] ∪ [120◦, 180◦]

Ra = 1.5× 104, θg = 90◦

Ra = 103, θg ∈ [0◦, 180◦]
Ra = 104, θg ∈ [0◦, 180◦]\{30◦}
Ra ∈ [2× 104, 105], θg = 90◦

Ra = 8× 104, θg ∈ [80◦, 180◦]
Ra = 3× 105, θg ∈ [130◦, 180◦]

periodic Ra ∈ [5× 103, 7× 103], θg = 90◦ Ra = 104, 1.75× 104, θg = 90◦ N\A
quasi-periodic

Ra = 104, θg ∈ [50◦, 110◦]
Ra = 8× 103, 9× 103, 2× 104, θg = 90◦

Ra ∈ [1.8× 104, 2× 104], θg = 90◦ N\A

chaotic
Ra = 104, θg ∈ [120◦, 160◦]

Ra ∈ [6× 104, 1.5× 105], θg = 90◦
N\A

Ra = 8× 104, θg ∈ [40◦, 70◦]
Ra = 3× 105, θg ∈ [50◦, 120◦]

Ra ∈ [2× 105, 8× 105], θg = 90◦

spatio-temporal chaotic Ra ∈ [3× 104, 5× 104], θg = 90◦
Ra = 104, θg ∈ [40◦, 60◦] ∪ [100◦, 110◦]

Ra = 1.25× 104, θg = 90◦

Ra ∈ [2.05× 104, 3× 105], θg = 90◦

Ra = 104, θg = 30◦

Ra = 8× 104, θg ∈ [0◦, 30◦]
Ra = 3× 105, θg ∈ [0◦, 40◦]

Ra ∈ [2× 105, 8× 105], θg = 0◦, 10◦

periodic, (iv) quasi-periodic, (v) chaotic and (vi) spatio-temporal chaotic. We identify the

flow regimes by examining the (mean) solution field and the energy and Nu histories. Such

analysis can readily distinguish the motionless, steady and periodic flow cases. Even though

the energy and Nu analysis seem to be a reliable way to distinguish the quasi-periodic and

chaotic flow, it is only a heuristic—a more rigorous analysis is through computing the power

spectrum of Nu or energy [89]. Tools such as Lyapunov exponent and fractal dimension

are probably the most widely used diagnostic for chaotic systems [90, 91]. The first five

types of low have consistent mean flow in differing time windows, each averaged over 500

convective time units (CTUs). We define a flow to be spatio-temporal chaotic [92] if its

mean solution is not consistent in at least three different time windows. This type of flow

has strong irregularities in both space and time and has been observed in Rayleigh Bénard

convection and in other complex dynamical systems [93]. To characterize spatio-temporal

chaos, one could also consider Lyapunov exponents at each grid point. A detail analysis of

spatio-temporal chaos is beyond the scope. A comprehensive review on this topic can be

found in [94].

As discussed above, we classify a flow to be spatio-temporal chaotic by examining its

consistency in mean flow over various time windows. (We use this simple metric here for

convenience—we have also examined the flow fields and the time traces of multiple QOIs.)

We further explore how lack of consistency influences four QOIs, mean Nu, Std(Nu), mean

temperature fluctuation, and mean TKE, at three successive time windows, W1, W2 and W3.

These quantities are used to indicate the variability in the FOM. As with the preceding cases,

we consider averaging times of 500 CTUs for each of the three windows. The starting time

for W1 differs with given parameters as some cases take a longer time to reach a statistically

steady state. For example, for Pr = 0.71 at Ra = 1.8× 104 and θg = 90◦, the flow is chaotic

until 6000 CTUs and then becomes periodic. Figures 3.9 A–D show the behavior of the
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Figure 3.9: Parametric variability in the FOM: green–Pr = 0.07, orange–Pr = 0.71, and
blue–Pr = 7.2. Each plot reveals absence/presence of chaotic effects by presenting statistics
taken over three time windows, W1, W2, and W3. (A–D): Ra-dependence of mean Nu,
Std(Nu), mean temperature fluctuation, and mean TKE computed over time windows W1,
W2 and W3. (E–H): θg-dependence at fixed Ra.

four QOIs with Ra at three Pr for θg = 90◦. Pr = 0.07 is denoted as green line, Pr = 0.71 is

denoted as orange line, while Pr = 7.2 is denoted as blue line. Window W1 is denoted by a

solid line, W2 by a dashed line, and W3 by a dotted line.

From Figs. 3.9 A–D we can see the following:

� For Pr = 0.07 the QOIs are fairly consistent except for Ra ∈ [3× 104, 5× 104].

� For Pr = 0.71, we find large variability in Std(Nu), mean temperature fluctuation and

mean TKE for Ra > 2× 104.

� Pr = 7.2 exhibits the least variability.

For Ra where we find that the QOI variability is high, we have also examined the mean flow

at multiple time windows and found that those are also inconsistent. In all cases, the mean

Nu is quite repeatable.

Figures 3.9 E–H show the behavior of the same QOIs as a function of θg. For Pr = 7.2,

we consider three different values of Ra. We find for most of the θg, the variability is small

except for small θg where we also report spatio-temporal chaotic flow. For Pr = 0.07, we find

the QOIs has small variability with Ra = 1 × 104. However, for Pr = 0.71, we find large

variability, especially in the mean TKE. Not only it has spatio-temporal chaotic flow (for

56



example θg = 100◦), but also the solution manifold is not smooth. By varying θg = 80◦ to

θg = 100◦, the solution changes from steady to periodic then spatio-temporal chaotic.

From Figs. 3.9 E–H we observe the following:

� For Pr = 0.07, Std(Nu) exhibits up to 50% variability (e.g., at θg = 70◦) while ⟨Tfluc⟩
and ⟨TKE⟩ have orders-of-magnitude relative variability at θg = 0◦.

� For Pr = 0.71, ⟨Tfluc⟩ and ⟨TKE⟩ exhibit significant variability for θg ∈ [60◦, 110◦].

� For Pr = 7.2, the most notable variation is at θg = 30◦ for Std(Nu), ⟨Tfluc⟩, and ⟨TKE⟩
at Ra = 104. Remarkably, the higher Rayleigh number cases do not exhibit as much

variance.

As in A–D, the mean Nu is seen to be a repeatable QOI. It is worth noting the real challenge

and sensitivity of this class of problems is illustrated in Fig. 3.9 H. Here, we observe for the

(Pr,Ra) = (0.71, 104) case that the flow alternates from steady to unsteady at multiple points

along the one-dimensional θg parameter space as indicated by several distinct zeros in the

TKE.

In Fig. 3.10, we further explore the influence of spatio-temporal chaos by examining the

mean-flow distributions and ROM performance for (Pr,Ra) = (7.2, 3.5× 104) at θg = 0◦ and

θg = 20◦. Figures 3.10 A–C show the behavior of the H1 error and mean Nu predictions

as a function of N , along with the mean-velocity magnitude distributions over seven time

windows for θg = 0◦. Figure 3.10 D–F show the same quantities but with θg = 20◦ and only

three time windows. In Fig. 3.10 C, we observe that for θg = 0◦ the number of rolls in the

mean velocity field changes across different time windows. Similar changes are observed, to a

lesser extent, at θg = 20◦. Hence, both solutions are categorized as spatio-temporal chaotic

flow, but the θg = 0◦ case is more significant. Comparing the mean flow error and mean Nu,

we observe that the ROM convergence for the reproduction problem is slower (or nonexistent)

at θg = 0◦, while the convergence behavior is more favorable at θg = 20◦.

We have also computed the relative error between FOM mean flows across seven time

windows for the two values of θg. The maximum relative H1 error is 34% for θg = 0◦ and

10% for θg = 20◦. These FOM discrepancies can be considered as a bound on the predictive

capabilities of the ROM. Indeed, the values of 34% and 10% are consistent with the lower

bounds realized in Figs. 3.10 A and D.

In Figure 3.11, we examine the influence of Prandtl number by comparing results for

Pr = 0.71 and 7.2 at (Ra, θg)= (3 × 105, 90◦). Figures 3.11 A–D show the convergence

behavior for the H1 error and mean Nu as well as mean temperature and x-velocity fields

at three time windows for Pr = 0.71, while E–H show the same quantities for Pr = 7.2.
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Figure 3.10: ROM performance comparison between problem having significant (θg = 0◦)
and less significant (θg = 20◦) spatio-temporal chaotic flow at Pr = 7.2 and Ra = 3× 105.
(A–C): Behavior of the relative H1 error and mean Nu as a functions of N and magnitude
of the mean velocity at multiple time windows W1, . . . ,W7 at θg = 0◦. (D–F): performance
for the same quantities at θg = 20◦.

From the mean fields, we observe that the number of rolls and its position changes with time

window at Pr = 0.71, while minimal variance is observed at Pr = 7.2. Hence the solution

at Pr = 0.71 is considered to be spatio-temporal chaotic while only chaotic at Pr = 7.2.

Comparing the behavior of the relative H1 error in the mean flow and mean Nu, we observe

convergence issues in the ROM at Pr = 0.71, while the same metrics converge at Pr = 7.2.

We further compute the relative variance between two FOM mean flows across seven time

windows for the two considered θg. The maximum relative H1 error is 14% for Pr = 0.71

and only 1% for Pr = 7.2. This again explains why the approximation errors are different

between the two cases. Considering these variance levels as a lower bound for the ROM, we

can view 20% error in the C-ROM as acceptable. On the other hand, the approximation

error for Pr = 7.2 is able to reach below 10%.

In summary, the results of this section show that convergence issues and variations in the

QOIs in the ROM can have high a correlation with the flow being spatio-temporal chaotic.

From Table 3.1 and Fig. 3.9, we see that Pr = 0.71 has a more complicated solution manifold

found with the other two Prandtl numbers and also exhibits spatio-temporal chaos at a
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Figure 3.11: ROM performance comparison between Pr = 0.71 and Pr = 7.2 at Ra = 3× 105

and θg = 90◦. (A–D): Behavior of the relative H1 error and mean Nu as a functions of N ,
temperature and mean x-velocity at three time windows, W1, W2 and W3 at Pr = 0.71.
(E–H): performance for the same quantities at Pr = 7.2.

relatively small Rayleigh number, Ra = 104.

3.4.2 Multiple Steady-State Solutions

In this section, we report the existence of multiple steady-state solutions observed for the case

(θg,Ra)=(0◦, 104). The variations are characterized by different numbers of recirculation rolls,

which are induced by using different initial conditions. Figure 3.12 shows steady temperature

solutions generated by starting with steady solutions, χn from other values of θg = n◦, save

for the χ90 case, which corresponds to a single snapshot of the unsteady flow/temperature

field at θg = 90◦. Multiple steady states are also observed for this Prandtl number at θg = 10◦

and 20◦ and have been reported by other authors as well [37, 85, 95].

For solution reproduction, the multiplicity of the solutions is not an issue as long as the

ROM uses the same initial condition as the FOM. However, for parametric problem, these

multiple states could easily lead to an incorrect (or at least, unexpected or unverifiable)

conclusion. For example, if the ROM anchor at θg = 10◦ is used to approximate the solution

at θg = 0◦. With the initial condition at θg = 10◦, the approximate solution will be the third
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Figure 3.12: Different steady temperature solutions at θg = 0◦, Ra = 1× 104 and Pr = 0.71.
The solutions were computed from different initial conditions, χn, corresponding to FOM
solutions at θg = n◦. For n = 2, 10, 20, and 180 the solution is steady, whereas χ90 is simply
a snapshot from the θg = 90◦ case.

temperature solution shown in Fig. 3.12. However, if one collects the FOM data at θg with

zero initial condition, one will consider the first temperature solution as the truth solution.

As we could consider those roll solutions as sine and cosine functions, the first and third

solution are nearly orthogonal; their difference is O(1) and one would thus conclude that the

pMOR had failed when it in fact had generated a valid solution.

3.4.3 Discussion Summary

We have noted in Table 3.1 the broad range of flow regimes encountered for the tilted slot

problem and illuminated a correlation between the flow states and predictive power of the

MOR/pMOR framework. The cases with spatio-temporal chaos are generally the most

challenging for model-order reduction and the pMOR errors are found to be (approximately)

bounded from below by the variance observed in successive FOM simulations performed at

the same parametric point. The development of the pMOR thus needs to be performed with

care.

Two parameterizations were considered: (i) θg-variation, where a bifurcation exists and

solution space is a blend of unsteady and steady solutions, and (ii) Ra-variation, where no

bifurcation exists and one finds only unsteady solutions. In the θg-variation problem, accurate

prediction in mean flow and other QOIs by the pMOR was demonstrated in the Ra = 1× 104

and Ra = 8× 104 cases. In high Ra cases, acceptable prediction of Nu is achieved with the

LDF-ROM but a small mean-flow error is not realizable because of spatio-temporal chaos.

The results also indicate that the LDF-ROM is a better candidate for for parametric

problems with bifurcation than the C-ROM. This observation is new, yet consistent with the

results of [17], where the authors show that the C-ROM is effective for parametric problems

that do not have a bifurcation. For the parametric problem parameterized with Ra, without
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spatio-temporal chaos, we find that pMOR with any of the three methods, the G-ROM, the

C-ROM, or the LDF-ROM, is able to predict the mean flow quite well. In this case, the

C-ROM is the most accurate in mean flow prediction and other targeted QOIs. This result

is not surprising given that the solution manifold does not have a bifurcation. Lastly, we

remark that Std(Nu) is generally the most challenging QOI of those explored here.

From the results, we are able to make an important observation. For parametric problems

where pMOR is successful (e.g., errors < 10%), the solution is either only chaotic (e.g., Ra

variation with θg = 90◦) or the solution does not have significant spatio-temporal chaos (e.g.,

θg variation with Ra = 1× 104, 8× 104). Once the spatio-temporal chaos becomes significant,

the predictive power of pMOR deteriorates and the maximum errors are dominated by

variance in the truth solution.

Although not shown here, we have also applied POD-pGreedy to this problem. In the

parametric problem parameterized with θg, it works only in the steady case Ra = 1×103. Once

the unsteady solution emerges, for example at Ra = 1×104, combining modes associated with

different values of θg leads to an unstable ROM even with the Leray regularization. Although

no rigorous proof is given, we hypothesize that the issue is due to the bifurcation in solution

behavior. This point was also suggested in [17], which empirically showed that combining

modes associated with qualitatively different behaviors might lead to poor prediction. By

contrast, when the current problem is parameterized with Ra we find that POD-pGreedy is

more efficient than the h-refinement approach.

3.5 Conclusions

In this chapter, an error-indicated pMOR is applied to a 2D unsteady natural convection

in a tilted high-aspect ratio slot. We first considered the solution reproduction problem

(non-predictive case) to demonstrate the convergence of the ROMs and the effectiveness of the

stabilization methods. We next addressed the parametric problem (predictive case) to validate

the error indicator and, more broadly, the stabilized POD-hGreedy procedures. Principal

contributions include, (i) extension of the error indicator proposed in [17] to buoyancy-driven

flows; (ii) demonstration that Leray-regularized Galerkin ROMs provide a robust solution

approach for this class of flows; (iii) identification of spatio-temporal chaos as a source of

irreproducibility in both the FOM and the ROM and that the variance in the FOM provides

a lower bound on the pMOR error in these cases; (iv) observation that accurate prediction

(< 10%) with pMOR is achievable if the solution in the parametric space is either only

chaotic or the spatio-temporal chaos is not significant, regardless of whether a bifurcation

exists or not. Once the spatio-temporal chaos becomes significant, the performance of the
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pMOR deteriorates and the maximum errors of the mean flow and QOIs are dominated by

the flow chaos.

We also highlight a number of challenges that are particularly relevant for buoyancy-driven

flows and which should be taken into consideration in the design of pMOR strategies for

3D buoyancy driven turbulent flow. First, one needs to be aware of potential convergence

issues for the mean flow and other QOI predictions when the FOM exhibits large-scale

spatio-temporal chaos. Second, it is difficult to combine modes associated with different flow

regimes, especially for the pGreedy case. Third, even relatively simple (e.g., steady) flows can

exhibit multiple states at a given parameter. And fourth, there are large offline costs both in

terms of computational time and required storage for error indicator and O(N4) costs for

online-only error indicators.3

We outline potential next steps in pMOR development for this class of problems.

� Extension to higher dimensional parameter space. In this work, we considered only

one-dimensional parameter space because the pMOR behavior needed to be carefully

diagnosed; however higher dimensional parameter spaces are more interesting for

engineering applications.

� hp-Greedy with a bifurcation detection technique. Although we find the LDF-ROM is

more efficient than the C-ROM for parametric problems that have a bifurcation, the

h-refinement strategy considered here might require an infeasible number of offline

simulations as the dimension of the parameter space increases. To tackle complex

parametrizations, more advanced sampling strategies that combine h- and p-refinement

[86], potentially with bifurcation detection, could be beneficial [96].

3The O(N4) costs, which arise from the rank-3 advection tensor, might be mitigated by an O(N2)
approximation to the advection operator, such as suggested in [41].
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Chapter 4: Regularized Reduced Order Models

In this chapter, we investigate the performance of regularized reduced order models (Reg-

ROMs) in contrast to that of classic the POD Galerkin ROM (G-ROM). The regularized

models include (i) the Leray ROM (L-ROM), in which the convecting field is filtered; (ii)

the evolve-filter-relax ROM (EFR-ROM), which evolves the solution by a standard G-ROM

update followed by a relaxation (or filtering) step; and (iii) a time-relaxation ROM (TR-

ROM), which adds an energy dissipation term to the right-hand side of the reduced model of

the evolution (i.e., Navier-Stokes and energy) equations. Models (i) and (ii) have been the

subject of prior investigations, including [26, 28, 29, 30] for the L-ROM and [28, 30] for the

EFR-ROM. Model (iii), the main focus of this chapter, is new in the ROM context, but has

it roots in LES methods [97, 98, 99, 100, 101, 102]

The main test case for this comparative investigation is turbulent channel flow. We consider

friction Reynolds numbers Reτ = 180 and 395 in both the reproduction and predictive regimes.

To ensure a thorough assessment of the new TR-ROM, we compare it with the two other

Reg-ROMs in current use. For each Reg-ROM, we investigate two different filters: (i) the

differential filter (DF); and (ii) a new higher-order algebraic filter. We expect the three Reg-

ROMs to alleviate the G-ROM spurious numerical oscillations and yield more accurate results

with a negligible modest computational overhead. We also compare the three Reg-ROMs

with the classical G-ROM, (i.e., the ROM that does not use any stabilization or closure),

and with the projection error, which is the error with respect to the projection of the FOM

solution onto the space spanned by the ROM basis functions.

It is well known that, in numerical simulation of turbulent flows, the parameters used in

the computational setting can have a significant effect on the ROM results. Thus, to ensure

a fair assessment of the Reg-ROMs, we perform a sensitivity study of the numerical results

with respect to the following parameters: (i) the number of ROM basis functions, N , used

to construct the ROM; (ii) the filter order, m; (iii) the filter radius, δ; (iv) the relaxation

parameter, χ; and (v) the time interval.

At the end of the chapter, we investigate the performance of the G-ROM and the three

Reg-ROMs for a nuclear engineering application, namely, thermal striping in a T-junction

[103]. For each ROM, we explore the time history of temperature at multiple stations along

the axis downstream of the T-junction where two confluent flows of differing temperatures

meet.

The numerical investigation reveals that all three Reg-ROMs significantly improve accuracy

compared to the classical G-ROM and the projection error without substantial computational
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cost increase. In addition, the new TR-ROM outperforms L-ROM and EFR-ROM with

optimal parameters in each of the reproduction and predictive regimes, at each Reτ . Moreover,

the higher-order algebraic filter with filter order m = 1 generally produces the best results

across most N values, while with m > 1 is more effective for small N and lower Reynolds

numbers (Reτ = 180). Sensitivity studies also show the predictive capability of the three

Reg-ROMs. However, all three Reg-ROMs are sensitive to the relaxation parameter (χ) and

filter radius (δ). Finally, the investigation of the higher-order algebraic filter shows that it is

indeed a spatial filter and its behavior is consistent with spatial filtering in the SEM settings,

where larger m values dampen higher-index modes while having less impact on lower-index

modes.

The rest of the chapter is organized as follows: In Sections 4.1–4.3, we introduce three

regularized ROMs, i.e., the Leray-ROM (L-ROM), evolve-filter-relax ROM (EFR-ROM),

and the new time relaxation ROM (TR-ROM). In Section 4.4, we describe the two ROM

spatial filters that we use to construct the Reg-ROMs: the classical differential filter and

the higher-order algebraic filter. In Section 4.5, we present a numerical investigation of the

higher-order algebraic filter. In Section 4.6, we perform a numerical investigation of the three

Reg-ROMs in the numerical simulation of the turbulent channel flow at friction Reynolds

numbers Reτ = 180 and 395. As a benchmark for our numerical investigation, we use DNS

results. For comparison purposes, we also use the standard G-ROM. In our investigation, we

assess the accuracy of the three Reg-ROMs and their sensitivity with respect to parameters

in both the reproduction and the predictive regimes. In Section 4.7, we consider application

of the ROMs to the T-junction problem. In Section 4.6, we present the conclusions of our

numerical investigation and we outline directions for future developments of Reg-ROMs in

the context of turbulent flows.

4.1 Leray ROM

The Leray ROM (L-ROM) [26, 28] modifies the standard G-ROM weak formulation (2.31)

as follows: Find ũr of the form (2.29) such that, ∀ i = 1, . . . N,(
∂ũr

∂t
,φi

)
+Re−1 (∇ũr,∇φi) +

(
(ur · ∇)ũr,φi

)
= 0 (4.1)

where ur is a regularized advecting field that derives from filtering the ROM velocity with

one of the ROM spatial filters that will be introduced in Section 4.4, that is, DF (4.13) or

HOAF (4.14).

L-ROM (4.1) is a Reg-ROM, because it leverages spatial filtering of the convective term of
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the G-ROM (i.e., it replaces (ũr · ∇)ũr with (ur · ∇)ũr) in order to smooth out the G-ROM’s

spurious numerical oscillations in the convection-dominated, under-resolved regime.

In a more general setting, the Leray model was first introduced by Jean Leray in 1934 as a

theoretical tool to prove existence of weak solutions of the NSE [104]. As a computational

tool, Leray regularization was first used in [105] as a stabilization strategy for under-resolved

simulations of turbulent flows with classical numerical discretizations [97]. As noted by

Guermond and co-authors [79, 80], when a differential filter is used, the Leray model is

similar to the NS-α model of Foias, Holm, and Titi [106]. Leray regularization was first

used in the context of reduced order models in [29] for the Kuramoto-Sivashinsky equations.

For fluid flows, L-ROM was first used in [28] for the 3D flow past a circular cylinder at

Re = 1000. Since then, L-ROM has been successfully used as a stabilization technique for

various under-resolved flows: the NSE [107, 108], the stochastic NSE [109, 110], and the

quasigeostrophic equations [111, 112]. To our knowledge, L-ROM has never been used for

reduced-order models of turbulent channel flow.

4.2 Evolve-Filter-Relax ROM

The evolve-filter-relax ROM (EFR-ROM), introduced in [28, 109], consists of three steps.

Given the EFR-ROM approximation at the current time step, ũn
r , find the EFR-ROM

approximation at the next time step, ũn+1
r , as follows.

(I) Evolve: Find w̃r of the form (2.29) such that, ∀ i = 1, . . . N,(
w̃n+1

r − ũn
r

∆t
,φi

)
+Re−1 (∇ũn

r ,∇φi) +

(
(ũn

r · ∇)ũn
r ,φi

)
= 0 (4.2)

(II) Filter : w̃n+1
r 7−→ wr

n+1 (4.3)

(III) Relax : ũn+1
r = (1− χ) w̃n+1

r + χwn+1
r . (4.4)

In Step (I) of the EFR-ROM, called the evolve step, one step of the standard G-ROM

time discretization is used to advance the current EFR-ROM approximation, ũn
r , to an

intermediate EFR-ROM approximation, w̃n+1
r . In Step (II), called the filter step, one of the

two ROM spatial filters will be presented in Section 4.4 is used to filter the intermediate

EFR-ROM approximation obtained in Step (I) and obtain a smoother approximation, without

spurious numerical oscillations. Finally, in Step (III), called the relax step, the EFR-ROM
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approximation at the next time step is defined as a convex combination of the unfiltered

intermediate EFR-ROM approximation obtained in Step (I), w̃n+1
r , and its filtered counterpart,

wn+1
r . The goal of the relax step is to adjust the amount of dissipation introduced in the filter

step by using a relaxation parameter, 0 ≤ χ ≤ 1. By varying χ, one can produce a range of

filter strengths, from no filtering at all (χ = 0) to maximum filtering (χ = 1). We note that

the numerical investigation in [30] has shown that EFR-ROM is sensitive with respect to χ.

The EFR strategy is well developed for classical numerical discretizations, for example, in

the context of finite element method [97], and the spectral and spectral element methods [113,

114]. In reduced order modeling, the evolve-filter ROM was introduced in [28] and EFR-ROM

in [109]. Since then, EFR-ROM has been developed in several directions, for example, the

FOM-ROM consistency [30] and feedback control [115].

4.3 Time Relaxation ROM

In this work, we propose a new type of Reg-ROM: the time-relaxation ROM (TR-ROM):

Find ũr of the form (2.29) such that, ∀ i = 1, . . . N,(
∂ũr

∂t
,φi

)
+

1

Re
(∇ũr,∇φi) +

(
(ũr · ∇)ũr,φi

)
+

(
χ(ũr − ur),φi

)
= 0, (4.5)

where χ is the time-relaxation parameter, and ur is the ROM velocity filtered with one of

the ROM spatial filters will be introduced in Section 4.4, that is, DF (4.13) or HOAF (4.14).

Time-relaxation has been used as a regularization/stabilization strategy at a FOM level [97,

Chapter 5] (see also [98, 99, 100, 101, 102]). To our knowledge, this is the first use of

time-relaxation stabilization in the ROM context.

To understand the role of the time relaxation term, we consider ũr as test function in

TR-ROM (4.5), which is the usual approach in energy-stability analysis. With this choice,

the last term on the left-hand side of (4.5) can be written as follows:

(χ(ũr − ur), ũr) = χ(ũ′
r, ũr), (4.6)

where ũ′
r represents the fluctuations of ũr around ur:

ũ′
r := ũr − ur. (4.7)
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Using the decomposition (4.7), the inner product in the time relaxation term (4.6) becomes:

(ũ′
r, ũr) = (ũ′

r, ũ
′
r) + (ũ′

r,ur). (4.8)

The first term on the right-hand side of (4.8) has a clear physical interpretation: It is a

dissipative term acting only on the fluctuations. To understand the role played by the second

term on the right-hand side of (4.8), we distinguish two cases:

Case 1: DF. When DF is used to construct TR-ROM, we can use (4.12) and (4.7) to

formally write the following:

ũ′
r = ũr − ur = −δ2∆ur. (4.9)

Using (4.9) in the last term in (4.8), we obtain the following:

(ũ′
r, ũr) = (ũ′

r, ũ
′
r) + (ũ′

r,ur)

= (ũ′
r, ũ

′
r)− δ2(∆ur,ur)

ur=0 on ∂Ω
= (ũ′

r, ũ
′
r) + δ2(∇ur,∇ur)

(4.9)
= δ4(∆ur,∆ur) + δ2(∇ur,∇ur). (4.10)

Equality (4.10) shows that the TR-ROM term in (4.6) is a dissipative term that has two

components: The first component can be interpreted either as a dissipation term acting on

the fluctuations or as a hyper-viscosity term acting on the averages. The second component

is a diffusion term acting on the averages.

Case 2: HOAF. The HOAF is a high-order algebraic filter (4.14) that does not have a

direct interpretation as a differential operator (primarily because of ambiguity related to

boundary conditions). When HOAF (4.14) is used to construct TR-ROM, we cannot use the

above approach to interpret the TR-ROM term because HOAF cannot be easily written in

terms of the spatial derivative operators. However, we can (optimistically) expect behavior

of the following form for a 2mth-order filter,

(ũ′
r, ũr) = (ũ′

r, ũ
′
r) + δ2m(∇mur,∇mur)

= δ4m(∆mur,∆
mur) + δ2m(∇mur,∇mur), (4.11)

which has the same physical interpretation as that in the DF case and which is in fact exact

if the domain is periodic in all directions.

A numerical comparison of the DF and the HOAF will be presented in Section 4.5, and an

67



investigation of their effect on the TR-ROM results will be presented in Section 4.6.

4.4 ROM Filters

In this section, we present the two ROM spatial filters that are used to construct the Reg-

ROMs in Sections 4.1–4.3: the classical algebraic filter (Section 4.4.1) and the higher-order

algebraic filter (Section 4.4.2).

4.4.1 ROM Differential Filter (DF)

The first ROM spatial filter we investigate is the ROM differential filter (DF): Given

ur =
∑N

j=1 ur,jφj(x), find ur(x) =
∑N

j=1 ur,jφj(x) such that(
ur − δ2∆ur,φi

)
=

(
ur,φi

)
∀ i = 1, . . . N, (4.12)

where δ is the filter radius. The DF weak form (4.12) yields the following linear system:

(
I+ δ2A

)
ur = ur, (4.13)

where utr and ur are the vector of ROM coefficients of ur and ur, and I and A are the

identity and ROM stiffness matrices, respectively. We note that, in general, the inverse of the

ROM mass matrix, B−1, is accompanied with A, but because the POD basis considered here

is orthonormal in the L2 norm, B is simply identity matrix and therefore ignored. We note

that the expansions for ur and ur do not include the zeroth mode, φ0. This is in contrast

with the expansion (2.29), which does include φ0. The reason for not including φ0 in our

expansions is that, because this strategy was shown in [28] to yield more accurate results.

We emphasize that (4.13) is a low-dimensional, N ×N linear system, whose computational

overhead is negligible. Thus, the DF stabilizes the G-ROM without significantly increasing

the computational cost.

The DF was used in large eddy simulation of turbulent flows with classical numerical

discretizations [97, 116]. In reduced order modeling, the DF was used to develop Reg-ROMs

for the Kuramoto-Sivashinsky equation [29], the NSE [28, 30], and the quasi-geostrophich

equations [111].
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4.4.2 ROM Higher-Order Differential Filter (HOAF)

The second filter we investigate is the higher-order algebraic filter (HOAF): Given ur =∑N
j=1 ur,jφj(x), find ur(x) =

∑N
j=1 ur,jφj(x) such that

Hmur :=
(
I+ δ2mAm

)
ur = ur, (4.14)

where ur and ur are the vectors of ROM basis coefficients of ur and ur, respectively, and m

is a positive integer. Again the expansions for ur and ur do not include the zeroth mode,

φ0 as explained in Section 4.4.1. As explained in [113] in the Fourier setting, the role of the

exponent m is to control the percentage of filtering at different wavenumbers: As m increases,

the amount of filtering increases for the high wavenumber components and decreases for the

low wavenumber components.

We note that the HOAF (4.14) is a low-dimensional, N × N linear system, just as the

DF (4.13). Thus, Reg-ROMs with the HOAF are efficient.

Remark 4.1 (Notation Convention). We also note that, for m = 1, the linear systems (4.14)

and (4.13) are identical. Thus, DF can be considered a particular case of the HOAF with

m = 1. In what follows, for notational convenience, we will use the linear system (4.14) for

both the HOAF and the DF, and we will only specify the m value to differentiate between

the two: m = 1 for the DF and m ≥ 2 for the HOAF.

Remark 4.2. The HOAF (4.14) was proposed in [109] and was based on the HOAF introduced

by Fischer and Mullen [113] in a spectral element method (SEM) setting. We also note that

the HOAF used in [109] has a δ scaling that is dimensionally inconsistent. This is rectified

in (4.14).

Remark 4.3 (Nomenclature). In [109], the HOAF (4.14) was called the higher-order differen-

tial filter, to be consistent with the SEM nomenclature. The HOAF is related to, but slightly

different from, the spatial discretization of a higher-order differential operator. (They are the

same in the periodic case.) Thus, for clarity, in this dissertation we call the operator in (4.14)

the high-order algebraic filter: The term Am yields the high-order algebraic character of the

operator (4.14), and the numerical investigation in Section 4.5 shows that the operator (4.14)

acts like a spatial filter.

4.5 HOAF Numerical Investigation

In this section, we investigate the HOAF (4.14) in one- and two-dimensional spectral element

(SEM) setting and a POD setting. In particular, we like to know whether the HOAF is a
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spatial filter by examing if the output u is smoother compared to the input, u. We also

study the role of the exponent m in the HOAF.

Note that we consider only integers m ≥ 2 because, as explained in Remark 4.1, the

standard (low-order) DF (4.13) can be considered as a particular case of the HOAF with

m = 1. Thus, to distinguish between the DF and the HOAF, in this section we exclusively

consider m ≥ 2 in the HOAF.

In addition, we note that a similar numerical investigation was carried out in the SEM

setting in [113], where it was shown that the HOAF (4.14) is a spatial filter that attenuates

the high wavenumber components of the input field. Furthermore, it was also shown that the

exponent m in HOAF (4.14) controls the percentage of filtering at different wavenumbers:

As m increases, the amount of filtering increases for the high wavenumber components of the

input field, and decreases for the low wavenumber components [113, Figure 1].

One-Dimensional SEM Setting. We consider the spatial domain Ω = [0, 1] and construct

the HOAF (4.14) using a SEM discretization that consists of a 64 array of 7th-order spectral

elements. Note that, in the SEM setting, instead of Am we use (B−1A)m in (4.14), and u and

u are the SEM basis coefficients for the input (unfiltered) and output (filtered) functions,

respectively.

We construct an input function u that has both low and high wavenumber components:

u(x) = 0.5 sin(2πx) + 0.5 sin(10πx) + 2 sin(20πx), (4.15)

and set the filter radius δ to be 0.025. We then consider four m values and compare the

corresponding HOAF output u with the input function u in Fig. 4.1. The m = 1 results

show that, although HOAF has attenuated the high wavenumber (k = 20) component of

the input function, that component is still visible. However, as we increase the HOAF

order (i.e., use m = 2, 3, 4), the high wavenumber component of the input function starts

to significantly decrease. In fact, for m = 4, the high wavenumber component is practically

eliminated. We also note that the medium wavenumber (k = 10) component of the input

function is affected differently by the different m values: For m = 1, the medium wavenumber

component is slightly attenuated. In contrast, for m = 4, the medium wavenumber component

remains unchanged. Finally, the low wavenumber (k = 2) component of the input function

is practically unaffected by the HOAF order. Thus, the results in Fig. 4.1 suggest that, as

expected, using the classical DF (i.e., HOAF with m = 1) attenuates the medium and high

wavenumber components of the input function. The higher-order HOAF (i.e., HOAF with

m = 2, 3, 4) attenuates more the high wavenumber component, and almost not at all the
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Figure 4.1: Comparison of the input function u(x) = 0.5 sin(2πx)+0.5 sin(10πx) +2 sin(20πx)
and four HOAF outputs u that correspond to m = 1, 2, 3, 4, and δ = 0.025.

medium wavenumber component.

Two-Dimensional SEM Setting. We consider the spatial domain Ω = [0, 1]2 and

construct the HOAF (4.14) using a SEM discretization that consists of a 12 × 12 array

of 7th-order spectral elements. We construct an input function u that has low and high

wavenumber components:

u(x, y) = 0.5 sin(2πx) sin(2πy) + sin(4πx) sin(4πy) + 2 sin(6πx) sin(6πy), (4.16)

and set filter radius δ to be 0.06. We then consider three m values and compare the

corresponding HOAF output u with the input function u in Fig. 4.2. The m = 1 results

show that, although HOAF has attenuated the high wavenumber ((k1, k2) = (6, 6) component

of the input function, that component is still visible. However, as we increase the HOAF

order (i.e., use m = 2, 3), the high wavenumber component of the input function starts

to significantly decrease. We also note that the medium wavenumber ((k1, k2) = (4, 4))

component of the input function is affected differently by the different m values: For

m = 1, the medium wavenumber component is slightly attenuated. In contrast, for m = 3,

the medium wavenumber component remains unchanged. Finally, the low wavenumber
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(a) Input function u (b) u with m = 1

(c) u with m = 2 (d) u with m = 3

Figure 4.2: Comparison of the input function u(x, y) = 0.5 sin(2πx) sin(2πy) +
sin(4πx) sin(4πy) + 2 sin(6πx) sin(6πy) and three HOAF outputs u corresponding to m =
1, 2, 3 with δ = 0.06.

((k1, k2) = (2, 2)) component of the input function is unaffected by the HOAF order. Thus,

the results in Fig. 4.2 again suggest that the classical DF (i.e., HOAF with m = 1) attenuates

the medium and high wavenumber components of the input function. The higher-order

HOAF (i.e., HOAF with m = 2, 3) attenuates more the high wavenumber component, and

almost not at all the medium wavenumber component.

POD Setting. Here, we investigate the HOAF (4.14) in a POD setting. Specifically,

we consider the POD basis set for the turbulent channel flow at Reτ = 180 as detailed in

Section 4.6.

The HOAF is constructed with N = 100 using an L2-based POD basis. To understand the

impact of the HOAF (4.14) on each POD basis, we specifically construct the input coefficient

vector u as a unit vector (i.e., u = [1, . . . , 1]T ). The resulting output vector u thus indicates

how much each POD basis is damped by the HOAF.
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In our first case, the N = 100 mode POD basis is derived from 2000 snapshots taken

over 25 convective time units (25×H/Ū , where H is the channel half-height and Ū is the

bulk velocity). Fig. 4.3 displays the coefficient magnitude of the input u (black) and u

associated with the four m values (multi-colored) and δ = 0.0475. Here, we see the expected

behavior that increasing m yields a sharper drop in the transfer function (ūi/ui) for high

mode numbers, i, with less suppression of the low mode numbers, which is consistent with

an interpretation of the POD modes as “Fourier” modes. Note that all of the curves cross at

ūi/ui ≈ 1/2 near i = 60, which implies that modes with i < 60 have characteristic length

scales λi > δ = 0.0775, given that we expect

ūi
ui

∼ 1

1 + (δ/λi)2m
. (4.17)

Thus, we see that, in this case, the HOAF provides a convenient means to associate a length

scale with each mode.

Unfortunately, not all snapshot/POD basis sets lend themselves to the easy interpretation

of the preceding example. Fig. 4.4 displays the coefficient magnitude of the input u and

four u with m = 1, 2, 3, 4 and δ = 0.08125 for the case of N = 100 derived from 2000

snapshots sampled uniformly over 500 convective time units. In general, for i ≥ 36, larger m

(higher-order filter) leads to larger damping in ui while for i ≤ 34, larger m leads to smaller

damping in ui, but the ranking is no longer as obvious as in the case of Fig. 4.3.

We suspect that the root cause of the irregularity is that the snapshots are highly decor-

related in this case. The snapshots are effectively random, despite being solutions of the

NSE. We have made some preliminary investigations into this phenomenon through a linear-

algebraic model where we attempt to reconstruct low-rank eigenmodes of a discrete Laplace

operator from a random 400× 399 matrix. Such an approach leads to relatively poor approx-

imations even for wavenumbers as low as k = 3. With a modest amount of regularization,

however, the basis set yields better approximation properties. We intend to pursue this

analogy further in future work.

Fig. 4.5 illustrates the physical-space effect of the HOAF for m = 1, 2, 3, 4 and δ = 0.0475.

Here we plot the physical space output—the sum of all the basis functions—weighted by the

coefficients given in Fig. 4.3. It is clear that the filtered field u is smoother as m increases.

Fig. 4.6 illustrates the physical-space effect of the HOAF form = 1, 2, 3, 4 and δ = 0.08125.

Here we plot the physical space output—the sum of all the basis functions—weighted by the

coefficients given in Fig. 4.4. It is clear that the filtered field u is smoother as m increases.

Overall, these results show that the HOAF in the POD setting has a similar behavior as in

the SEM setting, that is, larger m values tend to damp the higher modes more and have
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Figure 4.3: Comparison of the ROM coefficient magnitude of the input u and output u
associated with m = 1, 2, 3, 4. The HOAF (4.14) is formed using N = 100 L2 POD basis
constructed using 2000 snapshots over the first 25 CTUs and the filter radius δ = 0.0475.
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Figure 4.4: Comparison of the coefficient magnitude of the input u and output u associated
with m = 1, 2, 3, 4. The HOAF (4.14) is formed using N = 100 POD basis constructed
using snapshots in 500 CTUs time interval and δ = 0.08125.

less impact on the lower modes compared to smaller m values. However, unlike in the SEM

setting where the low-wave number modes are usually undamped regardless of the m value,
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(a) u with m = 1 (b) u with m = 2

(c) u with m = 3 (d) u with m = 4

Figure 4.5: Comparison of streamwise component of the filtered function u with m =
1, 2, 3, 4, and δ = 0.0475. The display range is fixed to be [−1.5, 1.7] and the maximum
and minimum magnitudes are reported in the legend.

all POD modes are damped in the POD setting.

In this numerical investigation we exclusively used an L2 POD basis, which is the most

popular choice in reduced order modeling. We note, however, that the H1
0 POD basis could

provide a clearer illustration of the HOAF spatial filtering capabilities. Indeed, as highlighted

in [17], the H1
0 POD basis is better in capturing the small-scale structures and distinguishing

them from the large-scale structures in the solution compared to the L2 POD basis. Hence,

we anticipate more distinct results in the filtered coefficients when the HOAF is constructed

by using the H1
0 POD basis.
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(a) u with m = 1 (b) u with m = 2

(c) u with m = 3 (d) u with m = 4

Figure 4.6: Comparison of streamwise component of the filtered function u with m =
1, 2, 3, 4, and δ = 0.08125. The display range is fixed to be [−2.7, 2.2] and the maximum
and minimum magnitudes are reported in the legend.

4.6 Application - Turbulent Channel Flow

In this section, we present numerical results of the three Reg-ROMs presented in Sections 4.1–

4.3 in the simulation of the turbulent channel flow. Specifically, we compare L-ROM (4.1),

EFR-ROM (4.4), and the novel TR-ROM (4.5). For comparison purposes, we also investigate

the standard G-ROM (2.31). As a benchmark for our comparison, we use the FOM results,

which correspond to a DNS of the turbulent channel flow. We compare the three Reg-ROMs,

the G-ROM and the ROM projection in terms of their accuracy with respect to the FOM

benchmark. We expect the three Reg-ROMs to yield significantly more accurate results than

the standard G-ROM. We also note that, as mentioned in Section 4.4, the computational

cost of the three Reg-ROMs is similar, and is on the same order of magnitude as the G-ROM

cost.

The rest of this section is organized as follows: In Section 4.6.1, we present the FOM
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computational setting, which is leveraged in Section 4.6.2 to construct the ROMs. In

Section 4.6.3, we define the criteria used to evaluate the ROM performance. In Section 4.6.4

we outline the efficient offline-online decomposition of the Reynolds stresses that are used in

our numerical investigation. We also outline the ROM projection for the Reynolds stresses,

which is used as a benchmark in our numerical investigation. Next, we present numerical

results of the Reg-ROM comparison for two regimes: In Section 4.6.5, we present results for

the reproduction regime (i.e., when the ROMs are tested on the training time interval). In

Section 4.6.6, we present results for the predictive regime (i.e., when the ROMs are tested

on a time interval that is different from the training interval). Finally, in Section 4.6.7, we

perform a numerical investigation of the Reg-ROMs’ sensitivity with respect to the following

parameters: (i) time interval; (ii) the relaxation parameter, χ; and (iii) the filter radius, δ.

The objective of this sensitivity study is to determine which of the three Reg-ROMs is more

robust with respect to parameter changes.

4.6.1 FOM Computational Setting

In this section, we present the computational setting for the FOM, which has two main goals:

(i) to generate the snapshots used in Section 4.6.2 to construct the ROMs; and (ii) to serve

as a benchmark in the ROM numerical investigation.

The governing equations for the turbulent channel flow are the incompressible Navier-Stokes

equations (NSE) with forcing:

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u+ f(u), ∇ · u = 0, (4.18)

where u is the velocity and p is the pressure. Here, f(u) is a uniform forcing vector

field function in the streamwise direction, x, that enforces a time-constant flow-rate on

the solution. The initial condition consisted of random noise, which eventually triggered

transition to turbulence, and the boundary conditions are periodic in the streamwise and

spanwise directions of the channel, and homogeneous Dirichlet in the wall-normal direction.

The FOM is constructed using the Galerkin projection of (4.18) onto the spectral element

space with the Pq − Pq velocity-pressure coupling. Following [64], a semi-implicit scheme

BDFk/EXTk is used for time discretization. Specifically, the kth-order backward differencing

(BDFk) is used for the time-derivative term, kth-order extrapolation (EXTk) for the advection

and forcing terms, and implicit treatment on the dissipation terms. As discussed in [64],

k = 3 is used to ensure the imaginary eigenvalues associated with skew-symmetric advection

operator are within the stability region of the BDFk/EXTk time-stepper.
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Figure 4.7: Turbulent channel flow: Velocity magnitude snapshot of the full-order model
(FOM) at Reτ = 180 (left) and 395 (right).

The full discretization leads to solving a linear unsteady Stokes system at each time step,

as discussed in Section 2.1. The forcing term effectively adds an impulse-response streamwise

velocity field. This impulse response is scaled appropriately at each time step to ensure that

the mean velocity at each timestep yields the prescribed flow-rate [117, 118]. The detailed

treatment of the constant-flow rate can be found in [16].

Our FOM is a direct numerical simulation (DNS) for the turbulent channel flow at Reτ = 180

and Reτ = 395 using the spectral element code Nek5000/RS [61, 62]. The friction Reynolds

number Reτ is based on the friction velocity uτ at the wall, channel half-height h, and the

fluid kinematic viscosity ν, with uτ =
√
τw/ρ determined using the wall shear stress τw and

the fluid density ρ. FOM velocity magnitude snapshots for both Reτ are shown in Fig. 4.7.

For Reτ = 180, we follow the setup in [46], in which the streamwise (i.e, the x-direction) and

spanwise (i.e, the z-direction) lengths of the channel are set to 4πh and 4πh/3, respectively,

and the channel half-height is set to h = 1. We consider twice as many grid points as in [46],

with E = 5, 832 elements (an array of 18× 18× 18 elements in the x× y × z directions), of

order q = 9, for a total of N ≈ 4.3 million grid points. FOM statistics are collected over 1000

convection time units (CTUs) and compared against the following two databases: (i) data in

[119], which is collected over 3140 CTUs and has 14.2 million grid points; and (ii) data in

[46], which has 2.1 million grid points 4.

For Reτ = 395, we follow the setup in [47], in which the streamwise and spanwise lengths

of the channel are set to 2π and π, respectively, and the channel half-height is set to h = 1.

We consider twice as many grid points as in [47], with E = 26, 244 elements (an array of

36 × 27 × 27 elements in the x × y × z directions), of order q = 9, for a total of N ≈ 20

million grid points. FOM statistics are collected over 1500 CTUs and compared against the

data in [47], which has 9.5 million grid points.

For both Reynolds numbers, the FOM is run until the solution reaches a statistically

steady state prior to gathering statistics. To validate our FOM, in Fig. 4.8, for both Reτ , we

compare the FOM with the reference data with respect to the 2nd order turbulent statistics

4We couldn’t find out how long the statistics are collected for in [46].
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u+rms, v
+
rms, and w

+
rms (in wall-units). For both Reτ , we observe that the FOM’s 2nd order

statistics are in good agreement with the published results.
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Figure 4.8: FOM 2nd order statistics u+rms, v
+
rms, and w+

rms validation: (Left) Reτ = 180,
comparison with [46, 119]. (Right) Reτ = 395, comparison with [47].

4.6.2 ROM Computational Setting

The POD basis is constructed using K = 2000 uniformly distributed snapshots in the

statistically steady state region, which spans 500 CTUs for Reτ = 180, and 1000 CTUs for

Reτ = 395.

For each Reτ , we compare the ROM performance for different ROM parameters in both

the reproduction and the predictive regimes. The ROM offline phase, which includes the

construction of the POD basis and reduced operators, is performed using NekROM on the

NCSA supercomputer Delta. The ROM online phase, which includes loading the reduced

operators and solving the ROM systems, is performed using Matlab on a workstation.

The implementation of the three Reg-ROMs (4.1–4.5) is similar: For a given filter order,

m, and filter radius, δ, all three Reg-ROMs involve computing the Cholesky factorization of

the HOAF (4.14), that is (I + δ2m(B−1A)m) = RTR, and storing the inverse of the upper

triangular matrix R−1. In each time step, a matrix multiplication R−1R−Tu is performed

to obtain the filtered ROM coefficients, u. The only difference in the particular Reg-ROM

implementation is how u is used in the Reg-ROM equation. We also emphasize that, because

the most expensive part is to filter the ROM coefficients, the computational overhead is

similar for all three Reg-ROMs.

Remark 4.4. Because the zeroth mode has the prescribed flow-rate, the remaining POD

basis functions have zero flow-rate, meaning that the test space XN
0 = span{φ}Ni=1 contains
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only members with zero flow-rate. Hence no additional forcing term is required for the ROM

formulation because the forcing term drops out of (2.31):∫
Ω

v · f dV = fx

(∫
Ω

vxdV

)
= 0, ∀ v ∈ XN

0 , (4.19)

where fx and vx are the streamwise components of f and v, respectively.

4.6.3 Criteria

To evaluate the ROM performance, we use the FOM data as a benchmark and the Reynolds

normal stress ⟨u′u′⟩ and the Reynolds shear stress ⟨u′v′⟩, which are the two dominant terms

in the Reynolds stress tensor, as criteria for accuracy evaluation. Specifically, we use the

following formula:

εu′u′ :=
∥⟨u′u′⟩r − ⟨u′u′⟩∥2

∥⟨u′u′⟩∥2
, εu′v′ :=

∥⟨u′v′⟩r − ⟨u′v′⟩∥2
∥⟨u′v′⟩∥2

, (4.20)

where ⟨u′u′⟩ and ⟨u′v′⟩ are the FOM Reynolds stresses and ⟨u′u′⟩r, ⟨u′v′⟩r are the ROM

Reynolds stresses. The FOM Reynolds stresses are defined as follows:

⟨u′u′⟩ :=
〈(
u− ⟨u⟩

)2〉
=
〈
u2 − 2u⟨u⟩+ ⟨u⟩2

〉
=
〈
⟨u2⟩ − ⟨u⟩2

〉
, (4.21)

⟨u′v′⟩ :=
〈(
u− ⟨u⟩

) (
v − ⟨v⟩

)〉
=
〈
uv − u⟨v⟩ − v⟨u⟩+ ⟨u⟩⟨v⟩

〉
=
〈
⟨uv⟩ − ⟨u⟩⟨v⟩

〉
. (4.22)

The ROM Reynolds stresses are computed using (4.21)-(4.22), but with the ROM approxi-

mated solution (2.29):

⟨u′u′⟩r :=
〈
⟨u2r ⟩ − ⟨ur⟩2

〉
, ⟨u′v′⟩r :=

〈
⟨urvr⟩ − ⟨ur⟩⟨vr⟩

〉
. (4.23)

Here we ignore the tilde for both the FOM u and ROM ur for notational simplicity. In this

work, an angle bracket
〈
·
〉
indicates an average over x, z, and t, and is defined as:

⟨u⟩(y) = 1

TLxLx

∑
x,z,t

u(x, y, z, t), (4.24)

where T is the length of the time interval, Lx is the dimension of the computational domain

in the x-direction, Lz is the dimension of the computational domain in the z-direction, u is a
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scalar field, and a prime indicates perturbation from this average.

We note that using (4.23) to compute ROM Reynolds stresses requires accessing the POD

basis and reconstructing the ROM quantities ⟨u2r ⟩, ⟨urvr⟩, ⟨ur⟩2, and ⟨ur⟩⟨vr⟩, which scale

with the FOM dimension, N . Thus, using (4.23) to compute ⟨u′u′⟩r and ⟨u′v′⟩r is inefficient.

4.6.4 Efficient Offline-Online Reynolds-Stress Evaluation

To efficiently compute the ROM Reynolds stresses, we use an alternative approach, based on

an offline-online splitting. First, we rewrite (4.23) with the POD expansion:

⟨u′u′⟩r =
〈〈

(
N∑
j=0

ur,j(t)φj)(
N∑
k=0

ur,k(t)φk)
〉
−
〈 N∑
j=0

ur,j(t)φj

〉2〉

= ⟨
N∑
j=0

N∑
k=0

⟨ur,j(t)ur,k(t)φjφk⟩ −

 N∑
j=0

⟨ur,j(t)φj⟩

 N∑
k=0

⟨ur,k(t)φk⟩

⟩

=
N∑
j=0

N∑
k=0

⟨ur,jur,k⟩t⟨φjφk⟩xz −
N∑
j=0

N∑
k=0

⟨ur,j⟩t⟨ur,k⟩t⟨φj⟩xz⟨φk⟩xz, (4.25)

where φj and φk are the POD basis functions in the streamwise direction, and ⟨·⟩t and
⟨·⟩xz are the average operators in t and the x-z plane. Then, in the offline stage, for each

y coordinate, we compute and store ⟨φjφk⟩xz and ⟨φj⟩xz for all j, k = 0, . . . , N . Finally, in

the online stage, we compute ⟨ur,jur,k⟩t and ⟨ur,j⟩t for all j, k = 0, . . . , N . Thus, to evaluate

⟨u′u′⟩r at a given point y∗, we use (4.25), which is independent of N and, thus, does not

significantly increase the computational cost. The offline-online splitting for ⟨u′v′⟩ can be

derived similarly.

We also assess the ROM performance with the ROM projection Reynolds stresses ⟨u′u′⟩Proj
and ⟨u′v′⟩Proj:

⟨u′u′⟩Proj :=
〈
⟨u2Proj⟩ − ⟨uProj⟩2

〉
, (4.26)

⟨u′v′⟩Proj :=
〈
⟨uProjvProj⟩ − ⟨uProj⟩⟨vProj⟩

〉
, (4.27)

where the ROM-projected solution is defined as:

uProj = φ0 +
N∑
j=0

ũProj,jφj(x), and ũProj,j = (φj,u−φ0). (4.28)

The ROM-projected Reynolds stress can be computed using (4.25) but with ⟨ũProj,jũProj,j⟩t
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and ⟨ũProj,j⟩t quantities and is used to compute the error εu′v′ (4.20). The ROM projection

represents the best theoretical approximation of the training data in the given ROM space

and we use it as a benchmark to assess the three Reg-ROMs.

4.6.5 Reproduction Regime

In this section, we perform a numerical investigation of the three Reg-ROMs: L-ROM (Sec-

tion 4.1), EFR-ROM (Section 4.2), and the new TR-ROM (Section 4.3) for the reproduction

regime, the time interval in which the snapshots were collected, at Reτ = 180 and Reτ = 395.

For comparison purposes, we include results for the G-ROM (Section 2.2) and the ROM

projection, which represents the best theoretical approximation of the FOM solution in the

given ROM space. The Reg-ROM accuracy is expected to be significantly higher than the

G-ROM accuracy. To quantify the ROM accuracy, we use εu′u′ and εu′v′ , which are the

relative ℓ2 error of u′u′ and u′v′ defined in (4.20).

In our numerical investigation, we also consider the following parameters: For all the

ROMs, we utilize 10 values for the ROM dimension, N ∈ {10, 20, . . . , 90, 100}. For each

Reg-ROM, we use four HOAF orders: m = 1 (which corresponds to the classical DF (4.13))

and m = 2, 3, 4 (which correspond to the HOAF (4.14)). For each N and m value, the

values of the filter radius, δ, are chosen as follows: For the EFR-ROM and the TR-ROM,

10, 25, and 10 δ values are uniformly sampled from the intervals [0.001, 0.01], [0.01, 0.1],

and [0.1, 1], respectively. This yields a total of 43 values for δ from the interval [0.001, 1].

In addition, we choose 4 uniformly sampled values for the relaxation parameter, χ, in the

interval [∆t = 0.005, 1]. We chose this χ range because χ = O(∆t) is commonly used in

EFR-ROM simulations [30, 120]. For the L-ROM, we uniformly sample 15 additional δ values

from the interval [0.1, 0.2], which yields a total of 56 values for δ from the interval [0.001, 1]

for Reτ = 180. For Reτ = 395, 30 additional δ values are uniformly sampled from the interval

[0.1, 0.3], which yields a total of 69 values for δ.

We emphasize that, in our Reg-ROM numerical investigation, we use four parameters: the

ROM dimension, N , the filter order, m, the filter radius, δ, and (for the EFR-ROM and

the TR-ROM) the relaxation parameter, χ. Thus, to ensure a clear comparison of the three

Reg-ROMs, we fix the δ and χ parameters to their optimal values (i.e., the values that yield

the most accurate u′v′ for each Reg-ROM), and plot εu′v′ for all the parameter values for

N and m. We show εu′v′ results here and εu′u′ results in Appendix A. In the end of this

section we present a summary of the Reg-ROM comparison in the reproduction regime. For

completeness, we included Reg-ROM results for all the δ and χ values in the sensitivity study

in Section 4.6.7.
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Reτ = 180. In Figure 4.9, we plot the relative ℓ2 error εu′v′ (4.20) for different ROM

dimensions, N , and filter orders, m, for the G-ROM, the ROM projection, and the three

Reg-ROMs at Reτ = 180. Two sets of ROM-projection results are shown: The solid and

the dotted lines represent the errors of ⟨u′v′⟩Proj (4.27) for the snapshot data and the FOM

data, respectively. It is expected that the error εu′v′ for the snapshot data is smaller than

the error for the FOM data, because the POD basis set is constructed using only K = 2000

snapshots instead of using all the FOM solutions. For each Reg-ROM, the error is plotted

for the optimal δ values and, for EFR-ROM and TR-ROM, for the optimal χ values.

Figure 4.9a displays the G-ROM results. This plot shows that, for all N values, the G-ROM

results are very inaccurate. Even with N = 100, G-ROM fails to reconstruct u′v′ with an

error of O(105).
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Figure 4.9: The relative error εu′v′ (4.20) of G-ROM, ROM projection, L-ROM, EFR-ROM
and TR-ROM in the reproduction regime at Reτ = 180 for different N and m values with
optimal δ and χ values.

Figure 4.9b displays the L-ROM results for each N and m with the optimal δ, along

with the results of the ROM projection for comparison purposes. For N ≥ 30, m = 1
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yields the most accurate results, achieving an error of 15% with N = 40. Conversely, for

N ≤ 20, a higher-order filter yields better results. Specifically, m = 4 achieves an error of

31% for N = 10 and m = 2 achieves an error of 23% for N = 20. With the exception of

(N,m) = (50, 4), L-ROM is more accurate than the ROM projection.

Figure 4.9c displays the EFR-ROM results for each N and m with the optimal χ and δ

values, along with the results of the ROM projection for comparison purposes. For N ≥ 40,

m = 1 yields the most accurate results, achieving an error of 27% for N = 90. Conversely,

for N ≤ 30, a higher-order filter yields better results. Specifically, m = 2 achieves an error of

28% and 40% for N = 10 and N = 30, respectively. Additionally, m = 3 achieves an error

of 45% for N = 20. EFR-ROM is more accurate than the ROM projection for all N with

m = 1, 2, 3. With m = 4, it is only more accurate than the ROM projection for N ≤ 20.

Figure 4.9d displays the TR-ROM results for each N andm with the optimal χ and δ values,

along with the results of the ROM projection for comparison purposes. For 20 ≤ N ≤ 90,

m = 1 yields the most accurate results, achieving an error of 22% for N = 70. For N = 10

and N = 100, m = 3 yields the most accurate results, achieving an error of 29% and 28%,

respectively. In addition, TR-ROM is more accurate than the ROM projection for all N and

m values.

Reτ = 395. In Figure 4.10, we plot the relative ℓ2 error εu′v′ (4.20) for different N and m

values for the G-ROM, the ROM projection, and the three Reg-ROMs at Reτ = 395. Two

sets of ROM-projection results for the snapshot data and the FOM data are shown. Note that

the error εu′v′ for the snapshot data at Reτ = 395 is larger (approximately 70%) compared to

the corresponding results at Reτ = 180 (approximately 52%). This difference is expected

because the Reτ = 395 solution exhibits more turbulence and, as a result, requires a greater

number of modes to achieve a satisfactory approximation. For each Reg-ROM, the error is

plotted for the optimal δ values and, for EFR-ROM and TR-ROM, for the optimal χ values.

Figure 4.10a displays the G-ROM results. Just as in the Reτ = 180, for all N values, the

G-ROM results are very inaccurate. Even with N = 100, εu′v′ is still about O(105).

Figure 4.10b displays the L-ROM results for each N and m with the optimal δ values,

along with the results of the ROM projection for comparison purposes. For all N and m

values, the error is found to be much higher compared to the results for Reτ = 180. For

N ≥ 20, the most accurate results are achieved with m = 1, with an error of 37% for N = 40.

For N = 10, m = 3 achieves an error of 43%. Compared to the ROM projection, the L-ROM

is more accurate for all values of N and m.

Figure 4.10c displays the EFR-ROM results for each N and m with the optimal χ and δ

values, along with the results of the ROM projection for comparison purposes. These results
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Figure 4.10: The relative error εu′v′ (4.20) of G-ROM, ROM projection, L-ROM, EFR-ROM
and TR-ROM in the reproduction regime at Reτ = 395 for different N and m values with
optimal δ and χ values.

are qualitatively different from the EFR-ROM results for Reτ = 180. For N ≤ 60, m = 1

yields the most accurate results and achieves an error of 50% for N = 40. For N ≥ 70,

higher-order filter yields better results. Specifically, m = 4 achieves an error of 53% for

N = 100. Moreover, the EFR-ROM is found to be more accurate than the ROM projection

for all N with m = 1 and for N ≥ 60 with m = 3, 4. With m = 2, the EFR-ROM only has

a similar level of accuracy as the ROM projection.

Figure 4.10d displays the TR-ROM results for each N and m with the optimal χ and δ

values, along with the results of the ROM projection for comparison purposes. For almost

all N values, m = 1 yields the most accurate results, achieving an error of around 28% for

N = 100. These results also show that m = 2 and m = 3 yield similar results, while m = 4 is

found to be the least accurate. Moreover, the TR-ROM is found to be more accurate than

the ROM projection for all N and m values.
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Summary. Overall, our numerical investigation in the reproduction regime yields the

following general conclusions:

All three Reg-ROMs are significantly more accurate than the standard G-ROM. In fact,

with respect to several second-order turbulence statistics the three Reg-ROMs’ errors are

much lower than that of projection through carefully tuned spatial filtering.

Finally, our numerical investigation demonstrates that, for Reτ = 180, all three Reg-ROMs

with m = 1 (i.e., low-order filtering) consistently produce the most accurate results for large

N values, while a higher-order filter is more effective for low N values. For Reτ = 395,

L-ROM and TR-ROM with m = 1 yield the most accurate results for all N values, while

EFR-ROM yields the most accurate results for low N values with m = 1, and for high N

values with m = 3, 4.

To facilitate the comparison of the three Reg-ROMs, in Table 4.1, we rank them based on

the error εu′v′ and εu′u′ achieved for the N and m values investigated. Specifically, for both

Reynolds numbers, we list the Reg-ROMs’ rank, the lowest εu′v′ , the corresponding εu′u′ , the

ROM dimension N and the filter order m for which the lowest εu′v′ is achieved. The results

in Table 4.1 yield the following conclusions:

For Reτ = 180, TR-ROM is the most accurate model with εu′v′ ≈ 22% and εu′u′ ≈ 16%,

followed by EFR-ROM and L-ROM. For Reτ = 395, TR-ROM is still the most accurate

model with εu′v′ ≈ 28% and εu′u′ ≈ 26%, followed by L-ROM and EFR-ROM. In addition, we

find εu′u′ is smaller compared to εu′v′ except for L-ROM for Reτ = 180 and εu′u′ has similar

level of accuracy as εu′v′ for Reτ = 395. Moreover, the results in Table 4.1 also show that

m = 1 (i.e., low-order filtering) yields the most accurate results. Finally, these results show

that TR-ROM requires large N values to achieve its best accuracy, whereas L-ROM yields

best accuracy with small N . For EFR-ROM, large N is required for Reτ = 180 and small N

is required for Reτ = 395.

In Fig. 4.11, we compare the total, viscous, and Reynolds shear stresses of the optimal

Reg-ROMs (listed in Table 4.1) along with the results of the FOM and the ROM projection

in the reproduction regime for Reτ = 180 and Reτ = 395. The total shear stress τ(y) is the

sum of the viscous shear stress ρ ν d⟨u⟩/dy and the Reynolds shear stress −ρ ⟨u′v′⟩, and its

distribution is linear [121]. In each model, the three shear stresses are normalized with the

model’s wall shear stress τw ≡ ρ ν
(
d⟨u⟩/dy

)
y=−1

.

In terms of the viscous shear stress, the results of the three Reg-ROMs are in good

agreement with those of the FOM and the ROM projection for both Reτ . In terms of the

Reynolds shear stress, for Reτ = 180, we observe that the result of the L-ROM is smaller

compared to the FOM. On the other hand, the results of the EFR-ROM and the TR-ROM

are similar, both have higher values in the boundary layer and lower values outside the
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Table 4.1: Reg-ROM accuracy ranking in the reproduction regime for Reτ = 180 (top rows)
and 395 (bottom rows). The following parameters are listed: Reg-ROMs’ rank, the lowest
εu′v′ , the corresponding εu′u′ , the ROM dimension N and the filter order m for which the
lowest εu′v′ is achieved.

Reτ = 180 L-ROM EFR-ROM TR-ROM
Rank 3 2 1
εu′v′ ≈ 19% ≈ 27% ≈ 22%
εu′u′ ≈ 37.5% ≈ 13% ≈ 16%
N 40 90 70
m 1 1 1

Reτ = 395 L-ROM EFR-ROM TR-ROM
Rank 2 3 1
εu′v′ ≈ 37% ≈ 50% ≈ 28%
εu′u′ ≈ 40% ≈ 40% ≈ 26%
N 20 40 100
m 1 1 1

boundary layer compared to the FOM. Notice that both the EFR-ROM and the TR-ROM

are able to capture the slope of the Reynolds shear stress. For Reτ = 395, we find the results

of the TR-ROM are the best, followed by L-ROM and EFR-ROM. Moreover, although the

results of the Reg-ROMs are not perfect, we find the results are much better than the ROM

projection. This also indicates that N = 100 POD bases are not able to reconstruct the

Reynolds stress. Finally, as a results of the discrepancy in the Reynolds shear stress, the

total shear stress is not linear in all three Reg-ROMs for both Reτ .

4.6.6 Predictive Regime

In this section, we perform a numerical investigation of the three Reg-ROMs: L-ROM

(Section 4.1), EFR-ROM (Section 4.2), and the new TR-ROM (Section 4.3) for the predictive

regime, a time interval that is 500 CTUs larger than the snapshot collected time interval, at

Reτ = 180 and Reτ = 395. Hence, 1000 CTU and 1500 CTU time windows are considered

for Reτ = 180 and 395, respectively. For comparison purposes, we include results for the

G-ROM (Section 2.2) and the ROM projection. To quantify the ROM accuracy, we use εu′u′

and εu′v′ , which are the relative ℓ2 error of u′u′ and u′v′ defined in (4.20). The results of u′u′

are shown in Section A.

In our numerical investigation, we use the same parameter values for N and m as the

values used in Section 4.6.5. For each N and m values, we plot εu′v′ with (δ, χ)reprod, that is

the δ and χ parameter values that were found to be optimal in the reproduction regime in
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Figure 4.11: Comparison of the total, viscous, and Reynolds shear stresses of the FOM
(black), the ROM projection (red) and the optimal Reg-ROMs, listed in Table 4.1 (blue) in
the reproduction regime for Reτ = 180 (left) and Reτ = 395 (right). The total shear stress is
the sum of the viscous and the Reynolds shear stress.

Section 4.6.5.

We emphasize that our strategy is different from that used in Section 4.6.5: Instead of

optimizing the δ and χ values on the entire predictive time interval, we use the values that

were optimized over the shorter time interval of the reconstructive regime. Thus, in this
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section, we are investigating the predictive power of both the Reg-ROMs and their associated

parameters.

Finally, in the end of the section, we present a summary of the Reg-ROM comparison in

the predictive regime.
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Figure 4.12: The relative error εu′v′ (4.20) of G-ROM, ROM projection, L-ROM, EFR-ROM
and TR-ROM in the predictive regime at Reτ = 180 for different N and m values with
optimal δ and χ values optimized in the reproduction regime.

Reτ = 180. In Figure 4.12, we plot the relative ℓ2 error εu′v′ (4.20) for different N and m

values for the G-ROM, the ROM projection, and the three Reg-ROMs at Reτ = 180. We

emphasize that, to test the predictive capabilities of the Reg-ROM parameters, we plot the

error for (δ, χ)reprod that were optimized in the reproduction regime (Section 4.6.5).

Figure 4.12a displays the G-ROM results. As in the reproduction regime, for all N values,

the G-ROM results are very inaccurate.

Figure 4.12b displays the L-ROM results for each N and m with δreprod along with the

ROM projection results for comparison purposes. For N = 10 and N ≥ 80, m = 1 yields
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the most accurate results, achieving an error of 22% for N = 10. For 20 ≤ N ≤ 70, m = 4

yields the most accurate results, achieving an error of 22% for N = 20. For the majority

of N and m values, except for specific pairs such as (m,N) with values of (1, 30), (1, 70),

(2, 40), (3, 30), (3, 40), and (3, 70), L-ROM is more accurate than the ROM projection.

However, εu′v′ exhibits a higher sensitivity to changes in N across all m values compared

to the results observed in the reproduction regime (as discussed in Section 4.6.5).

Figure 4.12c displays the EFR-ROM results for each N and m with (δ, χ)reprod along with

the ROM projection results for comparison purposes. For N ≤ 30, higher-order filter yields

better results. Specifically, for N = 10 and N = 20, EFR-ROM achieves an error of 39% and

45%, respectively, with m = 2. Additionally, for N = 30, EFR-ROM achieves an error of

40% with m = 3. For N ≥ 40, m = 1 yields the most accurate results, achieving an error of

25% for N = 80. Compared to the ROM projection, EFR-ROM is more accurate for m ≤ 3,

except for N = 10 and N = 20 with m = 3. For m = 4, EFR-ROM is not accurate and has a

similar level of accuracy as the ROM projection.

Figure 4.12d displays the TR-ROM results for each N and m with (δ, χ)reprod along with

the ROM projection results for comparison purposes. For N = 10, m = 2 yields the lowest

error of 30%. For N ≥ 20, m = 1 yields the best results, achieving an error of 23% for

N = 70. TR-ROM is more accurate than the ROM projection for all N and m values.

Reτ = 395. In Figure 4.13, we plot the relative ℓ2 error εu′v′ for different N and m values

for the G-ROM, the ROM projection, and the three Reg-ROMs at Reτ = 395. We emphasize

that, to test the predictive capabilities of the Reg-ROM parameters, we plot the error for

(δ, χ)reprod that were optimized in the reproduction regime (Section 4.6.5).

Figure 4.13a displays the G-ROM results. Just as in Section 4.6.6, for all N values, the

G-ROM results are very inaccurate with an error of O(105) for N = 100.

Figure 4.13b displays the L-ROM results for each N and m with δreprod, along with the

ROM projection results for comparison purposes. For almost all N values, except for N = 30

and 40, m = 1 yields the most accurate results, achieving an error of 39% with N = 20. For

m = 3 and m = 4, the accuracy of L-ROM is improved as N increases but is still larger than

the m = 1 case. Compared to the ROM projection, L-ROM is more accurate except for the

(m,N) pairs (2, 10), (3, 30), (4, 20), and (4, 30).

Figure 4.13c displays the EFR-ROM results for each N and m with (δ, χ)reprod along with

the ROM projection results for comparison purposes. For N ≤ 60, m = 1 yields the most

accurate results, achieving an error of 45% for N = 40. For N ≥ 70 except for N = 90,

a higher-order filter yields better results. Specifically, m = 4 achieves an error of 53% for

N = 80. For N = 90, m = 1 achieves an error of 46%. Compared to the ROM projection,
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Figure 4.13: The relative error εu′v′ (4.20) of G-ROM, ROM projection, L-ROM, EFR-ROM
and TR-ROM in the predictive regime at Reτ = 395 for different N and m values with
optimal δ and χ values optimized in the reproduction regime.

EFR-ROM is more accurate for all N values and m = 1, 3, 4. For m = 2, EFR-ROM has a

similar level of accuracy as the ROM projection.

Figure 4.13d displays the TR-ROM results for each N and m with (δ, χ)reprod, along

with the ROM projection results for comparison purposes. For all N values except N = 10

and N = 30, m = 1 yields the most accurate results, achieving an error of around 32% for

N = 100. These results also show that m = 2 and m = 3 yield similar accuracy and m = 4 is

the least accurate. TR-ROM is more accurate than the ROM projection for all N and m

values, except for (m,N) pairs, (4, 50) and (4, 60).

Summary. Overall, our numerical investigation in the predictive regime yields the following

general conclusions:

All three Reg-ROMs are significantly more accurate than the standard G-ROM. In fact,

with respect to several second-order turbulence statistics the three Reg-ROMs’ errors are

much lower than that of projection through carefully tuned spatial filtering.
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Finally, our numerical investigation demonstrates that, for Reτ = 180, the EFR-ROM and

the TR-ROM with m = 1 (i.e., low-order filtering) consistently produce the most accurate

results for large N values, while a higher-order filter is more effective for low N values. In

addition, L-ROM is sensitive to changes in N for all m values. For Reτ = 395, the L-ROM

and the TR-ROM with m = 1 yield the most accurate results for all N values, while the

EFR-ROM yields the most accurate results for low N values for m = 1, and high N values

for m = 3, 4.

To facilitate the comparison of the three Reg-ROMs, in Table 4.2, we rank them based on

the lowest error achieved for the N and m values investigated. Specifically, for both Reynolds

numbers, we list the Reg-ROMs’ rank, the lowest εu′v′ , the corresponding εu′u′ , the ROM

dimension N and the filter order m for which the lowest εu′v′ is achieved. The results in

Table 4.2 yield the following conclusions:

Table 4.2: Reg-ROM accuracy ranking in the predictive regime for Reτ = 180 (top rows) and
395 (bottom rows). The following parameters are listed: Reg-ROMs’ rank, the lowest εu′v′

with δreprod, the corresponding εu′u′ , the ROM dimension N and the filter order m for which
the lowest εu′v′ with δreprod is achieved.

Reτ = 180 L-ROM EFR-ROM TR-ROM
Rank 2 3 1
εu′v′ ≈ 22% ≈ 25% ≈ 23%
εu′u′ ≈ 23% ≈ 26% ≈ 9%
N 10 80 70
Filter order m 1 1 1
Reτ = 395 L-ROM EFR-ROM TR-ROM
Rank 2 3 1
εu′v′ ≈ 39% ≈ 45% ≈ 32%
εu′u′ ≈ 39% ≈ 36% ≈ 30%
N 50 40 100
Filter order m 1 1 1

For Reτ = 180, TR-ROM is the most accurate model with εu′v′ ≈ 23% and εu′u′ ≈ 9%,

followed by L-ROM and EFR-ROM. For Reτ = 395, TR-ROM is still the most accurate

model with εu′v′ ≈ 32% and εu′u′ ≈ 30%, followed by EFR-ROM and L-ROM. In addition, the

results in Table 4.2 also show that m = 1 (i.e., low-order filtering) yields the most accurate

results. Moreover, these results show that TR-ROM requires large N values to achieve its

best accuracy, whereas L-ROM yields best accuracy with small N . For EFR-ROM, large N

is required for Reτ = 180 and small N is required for Reτ = 395.

Similarly to the reproduction regime (Fig. 4.11), in Fig. 4.14, we compare the total, viscous,

and the Reynolds shear stresses of the optimal Reg-ROMs (listed in Table 4.2) along with
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the results of the FOM and the ROM projection in the predictive regime for Reτ = 180 and

Reτ = 395.

In terms of the viscous shear stress, the results of the three Reg-ROMs are in good

agreement with those of the FOM and the ROM projection for both Reτ . In terms of the

Reynolds shear stress, we find that TR-ROM yields the most accurate results for both Reτ

and the L-ROM is better than the EFR-ROM for Reτ = 180. For Reτ = 395, L-ROM

and EFR-ROM perform similarly. In addition, from the results of the ROM projection, we

find N = 100 POD bases is insufficient to reconstruct the Reynolds shear stress accurately.

Finally, as a results of the discrepancy in the Reynolds shear stress, the total shear stress is

not linear in all three Reg-ROMs for both Reτ .

4.6.7 Sensitivity Study

In this section, we perform sensitivity studies for the three Reg-ROMs: We first present a

sensitivity study of the optimal parameter (δ, χ)reprod for each N and m in the predictive

regime. In addition, we present a sensitivity study of the relative ℓ2 error εu′v′ of EFR-ROM

and TR-ROM with respect to the relaxation parameter, χ. Moreover, we present a sensitivity

study of the relative ℓ2 error εu′v′ of the three Reg-ROMs with respect to the filter radius,

δ. Finally, we present a sensitivity study of the optimal filter radius, δreprod, of the three

Reg-ROMs with respect to the filter order, m.

Reg-ROM parameter sensitivity in the predictive regime. In Section 4.6.6, for

given N and m, we investigated the accuracy of the three Reg-ROMs using (δ, χ)reprod

in the predictive regime, where (δ, χ)reprod are the δ and χ values that are optimal in the

reproduction regime. In this section, we extend that study and investigate the robustness

of the optimal parameter (δ, χ)reprod for each N value with four m values by comparing

(δ, χ)reprod to (δ, χ)pred, that is, the δ and χ values that are optimal in the predictive regime.

In order to find out (δ, χ)pred, we consider the same parameter sets for δ and χ as those used

in the reproduction regime (Section 4.6.5). An additional 500 CTUs FOM simulations are

performed for both Reτ in order to compute εu′u′ and εu′v′ .

In Fig. 4.15, we plot δreprod and δpred for different N and m values for the three Reg-ROMs

at both Reτ . δreprod is displayed as a smaller filled marker while δpred is displayed as a larger

empty marker. In addition, We use different colors to distinguish filter order m and different

markers to distinguish relaxation parameter χ. Hence, for each N value, there will be eight

markers total. For a given N and m, if (δ, χ)reprod is also optimal for the predictive regime,

two markers with different size will be on top of each other.
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Figure 4.14: Comparison of the total, viscous, and Reynolds shear stresses of the FOM
(black), the ROM projection (red) and the optimal Reg-ROMs, listed in Table 4.2 (blue) in
the predictive regime for Reτ = 180 (left) and Reτ = 395 (right). The total shear stress is the
sum of the viscous and the Reynolds shear stress.

Figs. 4.15a and 4.15b display L-ROM’s (δ, χ)reprod and (δ, χ)pred for each N and m for

Reτ = 180 and Reτ = 395, respectively. Note that χ is simply 0 in L-ROM (4.1). For

Reτ = 180, we find, for m = 1, δreprod is close to δpred but not identical for most N . As m

increases, δreprod becomes optimal, i.e., δreprod = δpred for almost all N except n = 100. For
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Reτ = 395, we find δreprod is in general more robust than Reτ = 180: For m = 1, δreprod is

already identical to δpred for most N values, except N = 20, 30, 40. As m increases, the

robustness of δreprod is slightly improved. In addition, for both Reτ , we find smaller m and

larger N both lead to a larger δreprod and δpred. Moreover, δreprod and δpred are less sensitive

to Reτ with higher-order filter order (larger m).

Figs. 4.15c and 4.15d display EFR-ROM’s (δ, χ)reprod and (δ, χ)pred for each N and m

for Reτ = 180 and Reτ = 395, respectively. For Reτ = 180, we find (δ, χ)reprod is optimal

for almost all (m,N) pairs except for (1, 20), (2, 10), (2, 40), (3, 10), (3, 20), (4, 20), and

(4, 80). For Reτ = 395, we again find δreprod is in general more robust than Reτ = 180: For

m = 1, 3, 4, δreprod is identical to δpred for all N values. For m = 2, δreprod is larger and

χreprod is smaller compared to δpred and χpred.

In contrast to the results of the L-ROM, in the EFR-ROM case, for the same χreprod,

increasing m leads to larger δreprod and δpred for both Reτ . It is important to note that a

larger χreprod leads to a smaller δ for all m. For instance, at Reτ = 180, we observe that the

δreprod and δpred values for m = 2 are smaller compared to the results for other m values.

This discrepancy can be attributed to the relatively large value of χreprod = 0.3367, which

is significantly larger than 0.005. In addition, we find δ of EFR-ROM is less sensitive to

N compared to that of L-ROM. Moreover, for the same χreprod, we find (δ, χ)reprod and

(δ, χ)pred are not sensitive to Reτ for m = 1, 2, 4. The discrepancy in m = 3 is due to

a different χreprod. Finally, we find χ = 0.005 works best for most (N,m) pairs except for

m = 2 and m = 3 with Reτ = 395.

Figs. 4.15e and 4.15f display TR-ROM’s (δ, χ)reprod and (δ, χ)pred for each N and m for

Reτ = 180 and Reτ = 395, respectively. For Reτ = 180, we find, for m = 1 and m = 4, δreprod

is robust for all N values except for N = 40 with m = 1 and N = 50 with m = 4. For m = 2

and m = 3, we find at least three (δ, χ)reprod is not optimal. For Reτ = 395, we again find

δreprod is in general more robust than Reτ = 180: The non-optimal δreprod for all m are very

close to their corresponding δpred. Similar to the results of EFR-ROM, for both Reτ , we find

larger m leads to a larger δreprod. Compared to the results of L-ROM and EFR-ROM, we

find (δ, χ)reprod and (δ, χ)pred are in general more sensitive to N and Reτ .

In summary, across all three Reg-ROMs, we find δreprod is optimal for most N and m values

for both Reτ , demonstrating the predictive capabilities of the three Reg-ROMs and their

associated parameters.

Reg-ROM sensitivity to the relaxation parameter χ. In this section, we study the

EFR-ROM and TR-ROM sensitivity to the relaxation parameter, χ. To this end, we consider

εu′v′ as the metric. For each N and m, we investigate how εu′v′ is affected by χ, and what χ
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(f) TR-ROM at Reτ = 395
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Figure 4.15: (δ, χ)reprod (smaller filled marker) and (δ, χ)pred (larger empty marker) distri-
butions of the three Reg-ROMs for m = 1 and N = 10, . . . , 100 at Reτ = 180 (left) and
Reτ = 395 (right). (δ, χ)reprod and (δ, χ)pred are the optimal filter radius and relaxation
values found in the reproduction and predicitive regime, respectively.

values yield the lowest εu′v′ values.

We consider four χ values, which are uniformly sampled in the interval [∆t = 0.005, 1].

For each N and χ values, we show εu′v′ with δreprod and m = 1. We fix the filter order m

to be 1 because this is the value that yields the best Reg-ROMs in the reproduction and
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predictive regimes (Sections 4.6.5 and 4.6.6).
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Figure 4.16: The relative error εu′v′ (4.20) of EFR-ROM and TR-ROM with respect to N
and χ for Reτ = 180 (4.16a and 4.16b) and Reτ = 395 (4.16c and 4.16d) with m = 1 and
δreprod. δreprod is the optimal δ value found in the reproduction regime.

Fig. 4.16a displays the EFR-ROM results at Reτ = 180 for each N and for four χ values.

We recall that, in EFR-ROM (4.4), χ represents the contribution from the filtered solution

at each time step. We find that EFR-ROM with χ = ∆t = 0.005 yields the best results. For

χ = 1, EFR-ROM is too dissipative and leads to an error of around 100% in u′v′ for all N

values. Although the number of samples we consider for χ is limited due to the training time,

it is interesting to see that χ = ∆t yields the best EFR-ROM results, just as in the FOM

case [30, 120].

Fig. 4.16b displays the TR-ROM results for Reτ = 180 for each N and for four χ values.

We recall that, in TR-ROM (4.5), χ represents the amount of additional diffusion added to

the G-ROM (2.31). This time, we find that TR-ROM with χ = ∆t = 0.005 yields the worst

results. Because the amount of diffusion added to G-ROM is not able to stabilize it, the

error εu′v′ for each N is more than 100%. For the other three χ values, for N ≤ 30, we find
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that smaller χ values lead to better accuracy, and for N ≥ 40, we find that the error εu′v′ is

similar

Fig. 4.16c displays the EFR-ROM results for Reτ = 395 for each N and for four χ values.

We again find that EFR-ROM with χ = ∆t = 0.005 yields the best results. In contrast with

the results for Reτ = 180, we find that EFR-ROM for the other three χ values leads to an

error of around 100% in u′v′ for all N values.

Fig. 4.16d displays the TR-ROM results of Reτ = 395 for each N and for four χ values.

Again, we find that TR-ROM for χ = ∆t = 0.005 yields the worst results and the error εu′v′

is more than 100% for each N . For N ≤ 40, we find that χ = 0.6683 yields the best results

for N = 20 and 40, and χ = 1 yields the best results for N = 10 and N = 30. For N ≥ 50,

we find that χ = 0.3367 yields the best results.

In summary, we found that both EFR-ROM and TR-ROM are sensitive to the relaxation

parameter χ. Furthermore, for EFR-ROM, we found that χ = ∆t = 0.005 outperforms the

other three values for almost all N . For TR-ROM, we found that χ = 0.3367 outperforms

the other values for all N for Reτ = 180, and for large N for Reτ = 395.

Reg-ROM sensitivity to the filter radius δ. In this section, for the optimal parameters

listed in Table 4.1, we study the Reg-ROM sensitivity to the filter radius δ for Reτ = 180

and Reτ = 395. Our goal is to analyze the impact of δ on the Reg-ROM performance three

Reg-ROMs and identify the δ values that yield the best results.

(a) L-ROM, Reτ = 180
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(b) L-ROM, Reτ = 395
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Figure 4.17: The relative error εu′v′ (4.20) of L-ROM with respect to δ for Reτ = 180 (4.17a)
and Reτ = 395 (4.17b).

Figures 4.17a and 4.17b display the L-ROM’s εu′v′ behavior with respect to the filter radius,

δ, for Reτ = 180 and Reτ = 395. To discuss these results, we can divide the interval [0.001, 1]

into four subintervals: (i) For δ ∈ [0.001, 0.01], εu′v′ is high and does not change with respect
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to δ. (ii) For δ ∈ [0.01, 0.1], εu′v′ increases as δ increases, and starts decreasing when δ

approaches 0.01. A much larger error drop is observed for Reτ = 180 than for Reτ = 395.

(iii) For δ ∈ [0.1, 0.2], εu′v′ decreases dramatically from O(105) down to 0.1 and 0.37 for

Reτ = 180 and Reτ = 395, respectively. For both Reτ , the optimal filter radius, δreprod, is

obtained in the interval [0.1, 0.2]. (iv) For δ ∈ [0.2, 1], εu′v′ increases as δ increases, and

eventually plateaus at O(1) because the L-ROM becomes too dissipative.

Figs. 4.18a and 4.18b display the EFR-ROM’s εu′v′ behavior with respect to the filter

radius, δ, for four χ values and for Reτ = 180 and Reτ = 395. From the results, we can

categorize EFR-ROM’s εu′v′ behavior into two types:

(a) EFR-ROM, Reτ = 180
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(b) EFR-ROM, Reτ = 395
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Figure 4.18: The relative error εu′v′ (4.20) of EFR-ROM with respect to δ for Reτ = 180
(4.18a) and Reτ = 395 (4.18b).

For χ = ∆t = 0.005, the behavior of εu′v′ with respect to δ is similar to that for L-ROM.

We can divide the interval [0.001, 1] into three subintervals: (i) For δ ∈ [0.001, 0.01], εu′v′

decreases slightly as δ increases. (ii) For δ ∈ [0.01, 0.03], εu′v′ decreases dramatically from

O(105) down to 0.27 and 0.5 for Reτ = 180 and Reτ = 395, respectively. For both Reτ values,

the optimal filter radius, δreprod, is obtained in the interval [0.01, 0.03]. (iii) For δ ∈ [0.03, 1],

εu′v′ increases as δ increases, and eventually plateaus at O(1) because EFR-ROM becomes

too dissipative.

For the other three χ values, we can divide the interval [0.001, 1] into two subintervals:

(i) For δ ∈ [0.001, 0.003], εu′v′ decreases dramatically to O(1). However, the fact that there

is no δ such that εu′v′ is below 1 suggests that the optimal filter radius δreprod is either very

sensitive, which requires more sampling points in the interval [0.001, 0.003], or it does not

exist at all. (ii) For δ ∈ [0.003, 1], εu′v′ is mostly O(1), suggesting that, for these χ values,

EFR-ROM is too dissipative regardless of the δ value.
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Figs. 4.19a and 4.19b display the TR-ROM’s εu′v′ behavior with respect to the filter radius,

δ, for four χ values and for Reτ = 180 and Reτ = 395. From the results, we can categorize

(a) TR-ROM, Reτ = 180
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(b) TR-ROM, Reτ = 395
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Figure 4.19: The relative error εu′v′ (4.20) of TR-ROM with respect to δ for Reτ = 180
(4.19a) and Reτ = 395 (4.19b).

TR-ROM’s εu′v′ behavior into two types:

For χ = ∆t = 0.005, there is no improvement in εu′v′ as δ increases. This suggests that χ

is so small that, regardless of how large the dissipative term (ur − ur) (4.6) (determined by

δ) is, the total contribution χ(ur − ur) is too small to stabilize G-ROM (2.31).

For the other three χ values, the TR-ROM’s behavior of εu′v′ with respect to δ is similar

to that of L-ROM and EFR-ROM for χ = 0.005. We can divide the interval [0.001, 1]

into three subintervals: (i) For δ ∈ [0.001, 0.01], εu′v′ decreases slightly as δ increases. (ii)

For δ ∈ [0.01, 0.1], εu′v′ decreases dramatically from O(105) down to its optimal value.

Furthermore, the smaller the χ value, the larger the δ value required to achieve its optimal

εu′v′ . This is expected because assuming that the total contribution χ(ur − ur) for optimal

TR-ROM is fixed, larger χ will then require smaller δ. (iii) For δ ∈ [0.1, 1], εu′v′ increases as

δ increases, and eventually plateaus at O(1) because TR-ROM becomes too dissipative.

In summary, we find that all three Reg-ROMs are sensitive to the filter radius, δ. For

EFR-ROM and TR-ROM, δreprod is affected by the relaxation parameter χ, and in the

worst-case scenario, δreprod might not even exist. We also find that the optimal range for δ

and the effect of χ are similar for the two Reτ values.

Sensitivity of the optimal filter radius δreprod to the filter order m. In this section,

we study the sensitivity of the optimal filter radius δreprod to filter order m for Reτ = 180

and Reτ = 395 with the three best Reg-ROMs, listed in Table 4.1.

Figs. 4.20a and 4.20b display L-ROM’s εu′v′ behavior with respect to δ for four m values

100



at Reτ = 180 and Reτ = 395, respectively. In both Reτ , we find a higher order filter (larger

m) leads to a smaller δreprod.
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(d) EFR-ROM, Reτ = 395
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Figure 4.20: The relative error εu′v′ (4.20) with respect to δ for L-ROM, EFR-ROM and
TR-ROM with four m values at Reτ = 180 (4.20a, 4.20c, 4.20e) and Reτ = 395 (4.20b, 4.20d,
4.20d). For EFR-ROM and TR-ROM, two χ values’ results are shown.

Figs. 4.20c and 4.20d display EFR-ROM’s εu′v′ behavior with respect to δ for four m values

and two χ values at Reτ = 180 and Reτ = 395, respectively. The results for different χ values

are distinguished by different markers. We choose two χ values because, as explained in

Section 4.6.7, there are only two distinct behaviors of EFR-ROM’s εu′v′ for different χ values.
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In contrast to the L-ROM results, we observe that, for both Reτ values, a higher-order filter

(larger m) leads to a larger δreprod. However, it’s noteworthy that a higher-order filter does

not resolve the issue for χ = 0.3367.

Figs. 4.20e and 4.20f display TR-ROM’s εu′v′ behavior with respect to δ for four m values

and two χ values at Reτ = 180 and Reτ = 395, respectively. The results for different χ values

are distinguished by different markers. We choose two χ values because, as explained in

Section 4.6.7, there are only two distinct behaviors of TR-ROM’s εu′v′ for different χ values.

Similar to the EFR-ROM results, we observe that, for both Reτ values, a higher-order filter

(larger m) leads to a larger δreprod. However, a higher-order filter does not resolve the issue

for χ = 0.005.

4.7 Application - T-junction

In this section, we further test the three Reg-ROMs discussed in the previous sections in

a T-junction problem. When streams of rapidly moving flow merge in a T-junction, the

potential arises for large oscillations at the scale of the diameter, D, with a period scaling

as O(D/U), where U is the characteristic flow velocity. If the streams are of different

Figure 4.21: Instantaneous temperature field of T-junction simulation at Re = 10, 000.

temperatures (see Figure 4.21), the oscillations result in experimental fluctuations (thermal

striping) at the pipe wall in the outlet branch that can accelerate thermal-mechanical fatigue

and ultimately cause pipe failure. The importance of this phenomenon has prompted the

nuclear energy modeling and simulation community to establish T-junction benchmark [103]

to test the ability of CFD codes to predict thermal striping.
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Figure 4.22: Near-wall temperature history at y = 0, z = 0.45 for several x locations in the
outlet branch.

4.7.1 Numerical Results

We consider T-junction problem at the Reynolds number Re = 10, 000. The inlet for the

main branch is at x = −9.2143 and for the hot branch at z = 6.4286. The outlet at

x=22 was chosen to allow downstream tracking of temperature data at locations provided

in the experiment. In terms of the boundary conditions, we have no-slip and insulated

boundary everywhere except laminar inflow at the two inlets and outflow at the outlet. The

computational mesh for the T-junction consists of E = 62, 176 spectral elements. Within

each element, velocity and pressure are represented as Lagrange interpolating polynomials

on tensor products of 7th-order Gauss- Lobatto-Legendre (GLL) points. The FOM degress

of freedoms is N = EN3 ≈ 21 million.

The reduced basis {φi, θi}Ni=1 for the G-ROM (2.31–2.32) is constructed by applying POD

procedure to K = 1000 snapshots collected over 10 convective time units. The zeroth mode

φ0 is set to be the mean velocity field of the snapshot collection time window. The initial

condition for the ROMs is obtained by projecting the lifted snapshot at t = 47 onto the

reduced space.

We test the G-ROM and the Reg-ROMs in the predictive regime, that is, a larger time

interval compared to the interval snapshots are collected. We consider N = 250 for the

G-ROM and N = 100 for the Reg-ROMs. To assess ROMs’ performance, the near-wall

temperature at (x,±0.5, 0), (x,±0.45, 0), (x, 0,±0.5), and (x, 0,±0.45) of the down-stream

pipe for x = 2, 3, . . . , 9 are measured (Figure 4.22). Unlike the turbulent channel flow,

T-junction has high signal-to-noise ratio (NSR) and ROMs are expected to more or less

capture the frequency of temperature fluctuations. Figs. 4.23–4.24 show the near-wall z = 0.45

temperature of the down-stream pipe at several x locations for the G-ROM, the L-ROM, the

EFR-ROM and the TR-ROM. The two vertical red lines denote the time interval in which
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(b) x = 3, y = 0, z = 0.45
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(c) x = 4, y = 0, z = 0.45
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(d) x = 5, y = 0, z = 0.45

Figure 4.23: T-junction at Re = 10, 000: Comparison of the near-wall temperature history
at z = 0.45 between the FOM, the G-ROM and the Reg-ROMs for x = 2, 3, 4, 5 (outlet
branch).

the snapshots are collected.

The results indicate that the near-wall temperature of the G-ROM initially agrees with the

FOM but becomes unstable in a relatively short time (≈ 6 CTUs after the initial condition)

even with N = 250, indicating that it can’t even solve the reproduction regime. In addition,

a larger fluctuation is observed in upstream of the outlet branch (i.e., small x values). On the

other hand, for the thee Reg-ROMs, the near-wall temperature initially agress with the FOM

and about the same time as in the G-ROM, the near-wall temperature deviates from the

FOM. However, with regularization, the temperature stays on the overall FOM trajectory.

Moreover, outside the training time interval (region between the two vertical red lines), all
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(a) x = 6, y = 0, z = 0.45
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(b) x = 7, y = 0, z = 0.45

46 48 50 52 54 56 58 60 62 64

0

0.5

1

FOM G-ROM

46 48 50 52 54 56 58 60 62 64

0

0.5

1

FOM L-ROM

46 48 50 52 54 56 58 60 62 64

0

0.5

1

FOM EFR-ROM

46 48 50 52 54 56 58 60 62 64

0

0.5

1

FOM TR-ROM

(c) x = 8, y = 0, z = 0.45
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(d) x = 9, y = 0, z = 0.45

Figure 4.24: T-junction at Re = 10, 000: Comparison of the near-wall temperature history
at z = 0.45 between the FOM, the G-ROM and the Reg-ROMs for x = 6, 7, 8, 9 (outlet
branch).

three Reg-ROMs are able to make descent prediction.

4.8 Conclusions

In this chapter, we proposed the time-relaxation ROM (TR-ROM), which is a novel regularized

ROM (Reg-ROM) for under-resolved turbulent flows. The TR-ROM employs ROM spatial

filtering to smooth out the flow velocity and eliminate the spurious numerical oscillations

displayed by the standard Galerkin ROM (G-ROM) (i.e., the ROM that does not use

any numerical stabilization). We emphasize that one novel feature of TR-ROM, which
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distinguishes it from the other Reg-ROM in current use (i.e., the Leray ROM (L-ROM) and

the evolve-filter-relax ROM (EFR-ROM)), is that it introduces different dissipation for the

large resolved scales and the small resolved scales. This is in stark contrast with the other

two types of Reg-ROMs, i.e, the L-ROM and the EFR-ROM, which use spatial filtering

without distinguishing between small and large resolved scales.

To assess the new TR-ROM, we compare it with the L-ROM and the EFR-ROM in the

numerical simulation of the turbulent channel flow at Reτ = 180 and Reτ = 395 in both

the reproduction and the predictive regimes. The spatial filtering in all three Reg-ROMs is

performed using the first-order ROM differential filter or the higher-order ROM algebraic filter.

We also investigate the sensitivity of the Reg-ROMs with respect to the following parameters:

the time interval, the relaxation parameter, and the filter radius. To our knowledge, this is

the first numerical comparison of different Reg-ROMs in the numerical simulation of turbulent

flows.

Our numerical investigation yields the following conclusions: All three Reg-ROMs are

dramatically more accurate than the classical G-ROM without significantly increasing its

computational cost. In fact, with respect to several second-order turbulence statistics, the

three Reg-ROMs’ errors are much lower than that of projection. In addition, with the

optimal parameters, the new TR-ROM yields more accurate results than the L-ROM and the

EFR-ROM in all tests. Moreover, the HOAF with filter order m = 1 yields the best results

for most of the N values. On the other hand, the HOAF with m > 1 works better for small

N , that is, N ≤ 20, at lower Reynolds number Reτ = 180.

From the sensitivity study, we find that the optimal parameters trained in the reproduction

regime (δ, χ)reprod are also optimal in the predictive regime for most of the N values and for

all three Reg-ROMs. Although we find that all three Reg-ROMs are sensitive with respect to

the relaxation parameter, χ, and filter radius, δ, we find that the optimal range for δ and the

effect of χ are similar for the two Reτ values.

From the numerical investigation of the HOAF (Section 4.5), we found that the HOAF in

the POD setting is indeed a spatial filter, and has a similar behavior as in the SEM setting,

that is , the higher-order filter (larger m) tends to damp the higher index modes more, and

has less impact on the lower index modes.

Finally, the three Reg-ROMs are investigated for a nuclear engineering application, namely,

thermal striping in a T-junction. Our results show that all three Reg-ROMs outperforms

the G-ROM and have the capability to reproduce and predict the near-wall temperature at

multiple stations along the axis downstream of the T-junction.

Part of the motivation for considering the T-junction is due to it’s high signal-to-noise

ratio (NSR) which we expect ROMs could capture the large signal with few modes. On
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the other hand, the turbulent channel flows has low NSR due to the homogeneity in the x-

and z-directions. In fact, from the Fourier analysis, the solution has infinitely many basis

functions (sine and cosine functions) in the x- and z-directions. Therefore, it is hard for

ROMs.

We also discuss the potential issues that preclude Reg-ROMs from getting more accurate

Reynolds shear stress. From our numerical investigation, we found the projection error are

high (i.e., at least 55% errors for Reτ = 180, and 70% errors for Reτ = 395). This indicates

the poor approximation capability of the reduced basis for the Reynolds stress u′v′. With

this approximation error, it is not surprised to find that εu′v′ of Reg-ROMs is not below 10%.

In order to improve the accuracy, one either needs to increase the number of ROM basis

functions or consider a ROM basis that is designed for the Reynolds stress approximation.

The other potential issue is the necessity of including the modeling Reynolds stress tensor

when comparing with the FOM. The idea is inspired from a concept that has been used

in the large eddy simulation (LES) community. As pointed out in [122, 123], the Reynolds

stresses from a large eddy simulation (LES) can only be compared with those from a direct

numerical simulation (DNS) by also taking into account the contribution from the modeling

term. As shown in [124], the Leray model of the NSE can be written into the form of filtered

NSE with a known subgrid model, only involves the filtered solution and filtering opterators.

A further investigation is required to confirm if it is valid to include the modeling Reynolds

stress tensor in the context of reduced-order modeling since it is not clear if one could also

cast the NSE with ROM solution as the filtered Navier-Stokes equations. In addition, how

to compute the modeling Reynolds stress tensor for Reg-ROMs or more general ROMs also

needed to be investigated.

The first steps in the numerical investigation of the new TR-ROM for the turbulent

flows have been encouraging. There are, however, several other research directions that

should be pursued next. For example, one can investigate whether ROM approximate

deconvolution [125, 126] can be leveraged to further increase the localization of the dissipation

mechanism in the new TR-ROM. One could also compare the approximate deconvolution

approach with the effect of increasing the order of the higher-order algebraic filter (4.14) in

TR-ROM. Finally, TR-ROM’s numerical analysis, which could yield new, robust parameter

scalings [127], should be performed.
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Chapter 5: Accelerating the Galerkin Reduced-Order Model with
the Tensor Decomposition

In this chapter, we propose a novel approach which utilizes the CANDECOMC/PARAFAC

decomposition (CPD), a tensor decomposition technique, to accelerate the G-ROM in the

scenario of large N values. The CP decomposition reduces the O(N3) tensor contraction

cost to O(NR), where R is the CP rank. Our numerical investigation shows that at least a

factor of 10 speed-up is established, and the reduction with the CP decomposition allows

one to consider a larger N value for turbulent flows. In addition, for stability, we derive

two conditions to preserve the skew-symmetry in the CP decomposition and show that

the resulting ROM is more stable and achieves the same accuracy with a smaller rank

R. Furthermore, we discovered that the advection tensor formed using the H1
0 -POD basis

functions has a low-rank structure and this low-rank structure is preserved even in higher

Reynolds numbers with the singular value decomposition (SVD) and demonstrate that, for a

given level of accuracy, the CP decomposition is more efficient in size and cost than the SVD.

The chapter is organized as follows: In Section 5.1, we revisit the Galerkin reduced order

model (G-ROM) and the CANDECOMC/PARAFAC decomposition (CPD) for general and

partially symmetric tensors. In Section 5.2, we present the G-ROM with the CP decomposition

(CPD-ROM). In addition, we show that the advection tensor is partially skew-symmetric

with appropriate boundary and divergence-free conditions and present the CP decomposition

for a partially skew-symmetric tensor. Furthermore, we show an underlying CP structure in

the advection tensor. Finally, we present the numerical results in Section 5.3. In this section,

we also investigate the low-rank structure of the ROM tensors using the SVD, examining

their behavior under the L2 and H1
0 norms and comparing the performance of the G-ROM

with the SVD and the CPD. In Section 5.4, we present the conclusions of our numerical

investigation and potential future work.

5.1 Backgrounds

In Section 5.1.1, we revisit the G-ROM introduced in Section 2.2 with a slightly different

expression for the ease of the discussion with the CP decomposition. In Sections 5.1.2–5.1.3,

we introduce the CANDECOMC/PARAFAC decomposition (CPD) with alternating least

squares method (ALS) for general and partially symmetric tensors.
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5.1.1 Galerkin Reduced-Order Model (G-ROM)

With the reduced basis functions {φi}Ni=1 and the base state φ0 in hand, the G-ROM is

constructed by inserting the ROM basis expansion

ũr(x) = φ0(x) +
N∑
j=1

ur,jφj(x) (5.1)

into (2.8): Find ũr such that, for all v ∈ XN
0 ,(

vi,
∂ũr

∂t

)
+ ν (∇vi,∇ũr) +

(
vi, (ũr · ∇)ũr

)
= 0, (5.2)

where XN
0 := span{φi}Ni=1 is the ROM space.

With (5.2), a system of differential equations in the coefficients with respect to the reduced

bases ur,j are derived:

B
dur
dt

= −C(ũr)ũr − νAũr, (5.3)

where ur ∈ RN is the vector consists of POD coefficients {ur,j}Nj=1 and ũr ∈ RN+1 is the

augmented vector that includes the zeroth mode’s coefficient. A, B, and C represent the

reduced velocity stiffness, mass, and advection operators, respectively, with entries defined in

(2.35–2.37).

For temporal discretization of (5.3), a semi-implicit scheme with kth-order backward

differencing (BDFk) and kth-order extrapolation (EXTk) is considered. The fully discretized

reduced system at time tl is:

(
β0
∆t
B + νA

)
ul+1
r = −

k∑
i=1

αi

[
C(url−i)ur

l−i + (C1 + C2)ūr
l−i − c0

]
−B

k∑
i=1

βi
∆t
ul−i
r − νa0, (5.4)

where

c0,i =

∫
Ω

φi · (φ0 · ∇)φ0 dV, a0,i =

∫
Ω

∇φi : ∇φ0 dV, (5.5)

C1,ij =

∫
Ω

φi · (φ0 · ∇)φj dV, C2,ik =

∫
Ω

φi · (φk · ∇)φ0 dV, (5.6)
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for all i = 1, . . . , N and j, k = 0, . . . , N .

Remark 5.1. The computational cost of solving (5.4) is dominated by the application of

the rank-3 advection tensors, C, which requires O(N3) operations and memory references on

each step. The remainder of the terms are O(N2) or less. Unfortunately, O(N3) is a very

steep cost and prohibits practical consideration of, say, N > 200. In this work, our goal is to

mitigate the cost with CP decomposition.

5.1.2 CP Decomposition with ALS

The CP decomposition [128, 129] factories a tensor into a sum of component rank-one tensors.

For example, given a third-order tensor X ∈ Rs1×s2×s3 , its CP decomposition is denoted by

X ≈ JA(1), A(2), A(3)K ≡
R∑

r=1

a(1)r ◦ a(2)r ◦ a(3)r . (5.7)

where J K is the Kruskal operator [130], which provides a shorthand notation for the sum

of the outer products of the columns of a set of matrices. A(i) =
[
a
(i)
1 , · · · , a(i)R

]
∈ Rsi×R

for i = 1, 2, 3 are the factor matrices and refer to the combination of the vectors from the

rank-one components, and R is the CP rank. It is noteworthy to point out that solving (5.7)

with R = 1 is already NP-hard [131].

The rank of a tensor X is defined as the smallest number of rank-one tensors that generate

X as their sum [129, 132]. One of the major differences between matrix and tensor rank [133]

is that determining the rank of a specific tensor is NP-hard [134]. Consequently, the first issue

in computing a CP decomposition is choosing the number of rank-one components In this

work, we consider the most common strategy by simply fitting multiple CP decompositions

with different R until one is ”good”.

For a given CP rank R, finding a CP decomposition for X corresponds to a nonlinear

least-squares optimization problem:

min
A(1),A(2),A(3)

∥X − JA(1), A(2), A(3)K∥F , (5.8)

where ∥ · ∥F is the Frobenius norm and the Frobenius norm of a tensor X ∈ Rs1×s2×s3 is the

square root of the sum of the squares of all its elements.

There are many algorithms to compute CP decomposition. In this work, we consider the

alternating least squares (ALS) method [128, 135]. The idea behind ALS is that we solve for

each factor in turn, leaving all the other factors fixed. In each iteration, three subproblems
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are solved in sequence:

min
B∈Rs1×R

∥X − JB,A(2), A(3)K∥F , (5.9)

min
B∈Rs2×R

∥X − JA(1), B,A(3)K∥F , (5.10)

min
B∈Rs3×R

∥X − JA(1), A(2), BK∥F . (5.11)

Each subproblem corresponds to a linear least squares problem and is often solved via

the normal equation [133], which involves tensor contraction to solve the linear system of

equations and costs O(s3R) if si = s for all i ∈ {1, 2, 3}.

5.1.3 CP Decomposition for Partially Symmetric Tensor

Symmetric tensor plays an important role in various fields, including chemometrics, psycho-

metrics, econometrics, image processing, biomedical signal processing [136, 137, 138, 139]. A

tensor is symmetric if its elements remain the same under any permutation of the indices

[133]. Tensors can be partially symmetric in two or more modes as well.

The CP decomposition for partially symmetric tensor has been studied in [135, 140].

Assume the tensor X is symmetric in the mode-1 and mode-3, its CP decomposition is

symmetric if:

X ≈ JA(1), A(2), A(3)K = JA(3), A(2), A(1)K. (5.12)

Typically, one can ensure (5.12) by enforcing the factor matrix A(1) and A(3) to be the same.

For fully symmetric tensors, setting A(1) = A(2) = A(3) results in a decomposition whose

rank is referred to as the symmetric rank of a tensor. For such tensors, the symmetric rank

is often the same as the CP rank [138].

The factor A(2) is computed as in ALS. For A(1) and A(3), we use an iterative algorithm

[141] similar to the Babylonian square root algorithm, which updates A(1) using a series of

subiterations. At each subiteration, a linear least squares problem is solved for one of the

two repeated factors (with the other fixed),

A
(1)
next = argmin

B
∥X − JB,A(2), A(1)K∥. (5.13)

Then, both the first and third factors are updated with momentum, A
(1)
new = λA(1)+(1−λ)A(1)

next.
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5.2 Accelerating the G-ROM with the CP Decomposition

The motivation to consider CP decomposition for the G-ROM is demonstrated in Fig. 5.1.

Fig. 5.1a shows the behavior of the accumulated POD eigenvalue for 2D periodic to 3D

turbulent flows. As problems become advection-dominated, the results indicate that at least

N > 100 POD modes are required to capture 90% of the total energy. Meanwhile, Figure 5.1b

shows the solve time for the reduced system (5.4) for 500 CTUs. The results indicate that

the ROM loses efficiency as N increases due to the tensor contraction cost O(N3). The rest
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Figure 5.1: (a): Behavior of the accumulated POD eigenvalues for 2D periodic flow to 3D
turbulent flows. Here cyl, ldc and minimal are denoted as flow past a cylinder, lid-driven
cavity and minimal flow unit. (b): Behavior of the online solve time of the reduced system
(5.4) as a function of N .

of this section is organized as follows: In Section 5.2.1, we present G-ROM with the CP

decomposition (CPD-ROM). In Section 5.2.2, we show that the ROM tensor is partially

skew-symmetric with divergence-free and certain boundary conditions. In Section 5.2.3, we

present CP decomposition for partially skew-symmetric tensor. Finally, in Section 5.2.4, we

show that the ROM tensor has an underlying CP structure.

5.2.1 CPD-ROM

To address the O(N3) bottleneck, we consider CP decomposition to approximate the convec-

tion tensor C (2.37):

Cikj ≈ C̃ikj =
R∑

r=1

airbkrcjr. (5.14)
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With (5.14), the tensor contraction C(u)u is approximated by three matrix-vector multiplica-

tions 5: ∀ i = 1, . . . , N,

[
C(ur)ur

]
i
≈
[
C̃(ur)ur

]
i
=

N∑
j=0

N∑
k=0

R∑
r=1

airbkrcjrur,kur,j =
R∑

r=1

air(
N∑
k=0

bkrur,k)(
N∑
j=0

cjrur,j).

(5.15)

The cost is therefore reduced by a factor of 2N3/6NR = N2/3R in the leading order cost term.

Throughout the chapter, CPD-ROM is referred as the G-ROM (5.4) with the approximated

tensor C̃ (5.14).

5.2.2 Partially Skew-Symmetric ROM Tensor

We adapt the analysis in [142] to show that the ROM tensor (2.37) is skew-symmetric in

mode-1 and mode-3 with appropriate boundary and divergence-free conditions.

We begin with the definition of the ROM tensor (2.37). Because each POD basis function

is a vector field φi = (φi,x, φi,y, φi,z), (2.37) can be further decomposed into three terms

(5.17), which represents the x-, y- and z- direction’s contribution, respectively:

Cikj =
∫
Ω

φi · (φk · ∇)φj dV (5.16)

=

∫
Ω

φi,x(φk · ∇)φj,x dΩ +

∫
Ω

φi,y(φk · ∇)φj,y dΩ +

∫
Ω

φi,z(φk · ∇)φj,z dΩ. (5.17)

Without loss of the generality, we consider the x-direction contribution. With the divergence

theorem and the product rule, the following equation is derived:∫
Ω

φi,x(φk · ∇)φj,x dΩ =−
∫
Ω

φj,x(φk · ∇)φi,x dΩ (5.18)

−
∫
Ω

φi,xφj,x(∇ ·φk) dΩ +

∫
∂Ω

φi,xφj,xφk · n̂dA. (5.19)

where n̂ is the outward unit normal on the boundary ∂Ω. If the model problem has Dirichlet

or periodic boundary conditions and the velocity reduced basis function φk is divergence-free,

that is, ∇ ·φk = 0, the last two integrals vanish, leading to∫
Ω

φi,x(φk · ∇)φj,x dΩ = −
∫
Ω

φj,x(φk · ∇)φi,x dΩ. (5.20)

5The first two comes from contracting the factor matrices B and C with vector u, the third is due to
contraction of the factor matrix A with the vector (BTu ∗ CTu), where ∗ is the element-wise product.
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This indicates that the x-direction contribution is skew-symmetric in mode-1 and mode-3.

For the y- and z-direction contributions, a similar equations of (5.19)–(5.20) can be derived.

Therefore, the ROM tensor (2.37) is skew-symmetric.

Remark 5.2. If the problem has inflow and outflow boundary conditions, the skew symmetry

no longer holds.

Remark 5.3. In the case where skew-symmetry is no longer hold, the tensor C could always

be decomposed into a skew-symmetric tensor plus a low-rank tensor contributed from the

boundaries, that is, the third term in (5.19).

Remark 5.4. Even if the model problem has appropriate boundary conditions, the ROM

tensor (2.37) will not be exactly partially skew-symmetric because of the divergence-free

condition ∇ ·φk = 0 is not satisfied exactly. This is because each snapshot (FOM solution)

only satisfied the divergence-free condition in the weak form, and the condition is enforced

to a certain accuracy (10−6–10−8) only in practice. Therefore, a divergence error (albeit

small) will be present. In this case, we enforce the partially skew symmetry by doing

Cijk = 0.5(Cijk − Ckji) for all i, j, k = 1, . . . , N .

5.2.3 CP Decomposition for Partially Skew-Symmetric Tensor

Skew-symmetric tensor also arises in many fields, for example, solid-state physics [143, 144],

fluid dynamics [142], and quantum chemistry [145, 146, 147]. A tensor is skew-symmetric

if its elements alternates sign under any permutation of the indices [148]. Tensors can be

partially skew-symmetric in two or more modes as well.

Tensor decomposition for skew-symmetric tensor has been widely studied, see [149] for

Tucker decomposition, and [150, 151, 152, 153] for decomposition into directional components

(DEDICOM) and its applications. On the other hand, CP decomposition for the skew-

symmetric tensor has not been widely studied, in fact, we could only find one related work

[154] but with a different approach on enforcing skew-symmetry.

Assume the tensor X is skew-symmetric in mode-1 and mode-3, its CP decomposition is

skew-symmetric if it satisfies:

X ≈ JA(1), A(2), A(3)K = J−A(3), A(2), A(1)K. (5.21)

We impose the following conditions on the CP rank R and the factor matrices so that (5.21)
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is satisfied:

R has to be even, (5.22)

A(1) ≡
[
A

(1)
1 A

(1)
2

]
, A(2) ≡

[
A

(2)
1 A

(2)
1

]
, A(3) ≡

[
A

(1)
2 − A

(1)
1

]
, (5.23)

where A
(1)
1 and A

(1)
1 are of size N × R/2, and the factor matrix A(2) has N/2 redundant

columns. With (5.23), the CP decomposition can be expressed as:

X ≈ JA(1), A(2), A(3)K = JA(1)
1 , A

(2)
1 , A

(1)
2 K + JA(1)

2 , A
(2)
1 ,−A(1)

1 K = J−A(3), A(2), A(1)K, (5.24)

and is skew-symmetric in mode-1 and mode-3.

The factor A(2) is computed as in ALS. For A(1) and A(3), we use an iterative algorithm

[141] similar to the Babylonian square root algorithm, which updates A(1) using a series of

subiterations. At each subiteration, a linear least squares problem is solved for A(1) with A(3)

fixed,

A
(1)
next = argmin

B
∥X − JB,A(2), A(3)K∥F . (5.25)

Then both the first and third factors are updated with momentum,

A(1)
new = λA(1) + (1− λ)A

(1)
next, and A

(3)
new =

[
A

(1)
new,2 −A(1)

new,1

]
. (5.26)

5.2.4 Underlying CP Structure in the ROM Tensor

In this section, we demonstrate that CP decomposition is a reasonable low-rank approximation

for the advection tensor C (2.37) by showing there is an underlying CP structure. To see

this, recall the definition of C (2.37) and substitute φi, φj and φk with φ∗ = (φ∗,x, φ∗,y),

Cikj =
∫
Ω

φi · (φk · ∇)φj dΩ =

∫
Ω

φi,x(φk · ∇)φj,x dΩ +

∫
Ω

φi,y(φk · ∇)φj,y dΩ

=

∫ 1

−1

∫ 1

−1

(
φi,xφk,x

∂φj,x

∂x
+ φi,xφk,y

∂φj,x

∂y
+ φi,yφk,x

∂φj,y

∂x
+ φi,yφk,y

∂φj,y

∂y

)
dxdy. (5.27)

For simplicity, we assume the problem is two-dimensional and the domain is simply Ω =

[−1, 1]2 with one spectral element. For the general form with deformed geometry and

multiple elements, we suggest [155] for a detailed review.

(5.27) is used to compute each component of the tensor Cikj and the two-dimensional
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integration is computed using Gaussian quadrature:∫ 1

−1

∫ 1

−1

φi,xφk,x
∂φj,x

∂x
dxdy ≃

q∑
m=0

q∑
n=0

ωmωnφi,x(ξm, ξn)φk,x(ξm, ξn)
∂φj,x(ξm, ξn)

∂x
, (5.28)

where {ωi}q+1
i and {ξi}q+1

i are the Gauss-Lobatto-Legendre (GLL) quadrature weights and

points. Notice that, with q + 1 GLL quadrature weights and points, the approximated

integration is exact if the integrand is a polynomial of at most 2q − 1. However, the overall

polynomial order inside the integral is larger than 2q − 1. Usually the exactness of (5.28)

is enforced by interpolating the polynomial function onto a finer polynomial space of order

M = 3q/2, denoted as dealiasing [142]. Dealiasing increases the cost for evaluating (5.28)

but the representation stays the same because eventually it is projected back to the original

polynomial space of order q.

(5.28) suggests there is an underlying CP structure:

∫ 1

−1

∫ 1

−1

φi,xφk,x
∂φj,x

∂x
dxdy =

q+1∑
m=1

q+1∑
n=1

ωmωnφi,x(ξm, ξn)φk,x(ξm, ξn)
∂φj,x(ξm, ξn)

∂x

=

(q+1)2∑
l=1

ρlai,lbk,lcj,l, (5.29)

where

ρl := ωmωn, ai,l := φi,x(ξm, ξn), bk,l := φk,x(ξm, ξn), and cj,l :=
∂φj,x(ξm, ξn)

∂x
, (5.30)

with the index l := m+ (n− 1)(q + 1).

The analysis can be applied to the other three terms in (5.27) and a similar form of (5.29)

can be derived. (5.29) suggests a theoretical bound of the CP rank of the advection tensor to

be 4E(q + 1)2 and 9E(q + 1)2 for 2D and 3D problem, respectively, with E being the number

of spectral elements.

5.3 Numerical Results

In this section, we present numerical results for the CPD-ROM introduced in Section 5.2.1.

For comparison purposes, we also present the results of G-ROM (5.4) and the FOM. The

ROM is constructed through an offline-online procedure: In the offline phase, the FOM is

solved using the open-source code Nek5000/RS [61, 62]. The POD basis and the reduced

operators (2.37–5.6) are then constructed using NekROM. In addition, the CP decomposition
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for the tensor C is also carried out in the offline phase. In the online phase, the reduced system

(5.4) is formed by loading the reduced operators and the CP factor matrices and solved using

Matlab. We acknowledge that there are high-performance tools for tensor decomposition with

various optimization methods for example [148], however, the primary focus of this work is the

application of the tensor decomposition with ROM, hence we implement CP-ALS (5.11) and

CP-ALS with quadratically-occurring factors (5.25) in Matlab for easy use and investigation

with ROM. We use the campus cluster Delta and Argonne Leadership Computing Facility

(ALCF) Polaris for the offline stage and a workstation with Intel Xeon E5-2620 CPU with

two threads for the CP decomposition and solving the reduced system.

From the numerical investigation, we would like to address the following questions:

� Without sacrificing too much accuracy, is there any memory saving and speed-up with

CPD-ROM?

� Does preserving the skew-symmetry property in the approximated tensor stabilize

CPD-ROM?

� Does the advection tensor C have a low-rank structure, and how does it relate to the

parameters such as the number of POD modes N , the Reynolds number Re, the spatial

dimension d, the norm used to construct the POD basis?

The rest of this section is organized as follows: In Section 5.3.1, we compare the CPD-ROM

with the G-ROM in four model problems, ranging from 2D periodic flow to 3D turbulent

flows. We employ the H1
0 -based POD basis functions for both the G-ROM and CPD-ROM

across our study, which is motivated by the low-rank structure identified with the H1
0 norm

found in Section 5.3.4. In Section 5.3.2, we investigate the performance of the CPD-ROM

with the approximated full tensor and the approximated core tensor. In Section 5.3.3,

we investigate if preserving the skew-symmetry for the approximated tensor yields better

CPD-ROM. In Section 5.3.4, we investigate the G-ROM with singular value decomposition

(SVD). In particular, we investigate the low-rank structure of the tensor under the L2 and

H1
0 norms using the SVD. Additionally, we investigate the effectiveness of the low-rank

approximation between the SVD and CPD and compare the performance of the CPD-ROM

with the SVD-ROM, that is, the G-ROM with the singular value decomposition (SVD).

5.3.1 Performance Comparison Between the G-ROM and the CPD-ROM

In this section, we compare the performance of the CPD-ROM (Section 5.2.1) with the

G-ROM (5.4) and the FOM across various model problems: 2D flow past a cylinder, 2D
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lid-driven cavity, 3D lid-driven cavity, and 3D minimal flow unit. The comparison is based

on the accuracy of the quantities of interest (QOIs).

The compression ratio (CR) of the ALS (5.11) and ALS-quad (5.25) are defined based on

the ratio of sizes of the original tensor and the size of the CPD models:

CRALS =
N3

3NR
=
N2

3R
, CRALS-quad =

N3

3
2
NR

=
2N2

3R
. (5.31)

A factor of 2 emerges in CRALS-quad due to the presence of redundant columns in the factor

matrix A(2) and the skew-symmetric structure in A(1) and A(3) (Section 5.2.3). These

compression ratios ignore the skew-symmetry of the original tensor, since its is difficult to

exploit in storage or application of the operator (tensor contraction). Notice that the cost

reduction in tensor contraction with ALS-quad is the same as with ALS (i.e., N2/3R), as it

still involves three matrix-vector multiplications (5.15)

2D flow past a cylinder Our first example is the 2D flow past a cylinder at the Reynolds

number Re = 100, which is a canonical test case for ROMs due to its robust and low-

dimensional attractor, manifesting as a von Karman vortex street for Re = UD/ν > 34.37

[74]. The computational domain is Ω = [−2.5 : 17]D × [−5 : 5]D, with the unit-diameter

cylinder centered at [0, 0].

The reduced basis functions {φi}Ni=1 for the G-ROM (5.3) are constructed by applying

POD procedure to K = 100 snapshots collected over 100 convective time units (D/U), after

von Karman vortex street is developed. The zeroth mode φ0 is set to be the mean velocity

field of the snapshot collection time window. Already with N = 20 POD basis functions,

the reduced space contains more than 99% of the total energy of the snapshots. The initial

condition for the G-ROM and the CPD-ROM is obtained by projecting the lifted snapshot

at t = 500 (in convective time units) onto the reduced space.

We test the CPD-ROM in the reconstructive regime, ie., the same time interval in which

the snapshots were collected. The total drag on the cylinder is defined as:

FD =

∮
Γ

(−ν∇u+ p)dA, (5.32)

where Γ is the surface of the cylinder. We consider the total drag in the x-direction as the

QOI. We refer to [16] for computing the pressure drag in the ROM without solving the

pressure solution.

Fig. 5.2a displays the relative error in the mean drag and its standard deviation in CPD-

ROM with respect to both the FOM and the G-ROM as a function of the CP rank R.
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Additionally, it includes the relative error of the G-ROM’s results with respect to the FOM

for comprehensive comparison. We found the error with respect to the G-ROM decreases as

R increases. With R ≥ 200, the error in both the mean and standard deviation is less than

10−8, indicating the convergence of CPD-ROM to G-ROM. With respect to the FOM, the

error decreases initially as R increases and eventually reach to the same level of accuracy as

G-ROM (blue dashed line). This is expected because the G-ROM serves as the reference

model for the CPD-ROM. Fig. 5.2b shows the total drag history in CPD-ROM at R = 10
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Figure 5.2: 2D flow past a cylinder at Re = 100: (a) Relative error in the mean drag and its
standard deviation as a function of the CP rank R. The error is presented with respect to
both the FOM and G-ROM for each quantity. The relative error of the G-ROM’s results
with respect to the FOM is also illustrated as a blue dashed line. (b) The total drag history
of CPD-ROM at R = 10 and R = 50, along with the results of the FOM and the G-ROM.
The number of POD modes, N , is set to 20 for both the G-ROM and the CPD-ROM.

and R = 50 alongside G-ROM and FOM results. With R = 10, despite the inaccuracy in the

approximated tensor, the total drag in CPD-ROM does not blow up and eventually reaches a

constant value. This behavior could be attributed to the model problem having a robust and

low-dimensional attractor. With R = 50, the total drag in CPD-ROM shows good agreement

with the results of both FOM and G-ROM.

2D lid-driven cavity Our next example is the 2D lid-driven cavity (LDC) problem at

Re = 15, 000, which is a more challenging model problem compared to the 2D flow past a

cylinder. As demonstrated in [17], the problem requires N ≥ 60 POD modes for G-ROM to

accurately reconstruct the solutions and QOIs. A detailed description on how the FOM is

set up for this problem can be found in our previous work [26].

The reduced basis functions {φi}Ni=1 are constructed by applying POD to K = 2000

snapshots in the statistically steady state region in the time interval of [6000.4, 6200] with
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sampling time ∆ts = 0.1. The zeroth mode φ0 is set to the mean velocity field of the snapshot

collection time window. The initial condition for the G-ROM and the CPD-ROM is obtained

by projecting the lifted snapshot at t = 6000 (in convective time units) onto the reduced

space.

We test both G-ROM and CPD-ROM in the reproduction regime with N = 200 for both

models. The choice of N = 200 ensures that the G-ROM is accurate compared to the FOM.

In terms of the QOI, we consider the energy and the energy of the fluctuated velocity:

E(t) =
1

2

∫
Ω

∥u(x, t)∥22, E(t)fluc =
1

2

∫
Ω

∥u(x, t)− ⟨u⟩(x)∥22, (5.33)

where ∥ · ∥2 is the Euclidean norm6.

Fig. 5.3a displays the relative error in the mean energy and its standard deviation in

CPD-ROM with respect to both the FOM and the G-ROM as a function of the CP rank R.

Additionally, it includes the relative error of the G-ROM’s results with respect to the FOM.

Unlike the results of the 2D flow past a cylinder, where the error with respect to G-ROM

decreases to machine precision as R increases, we found the error decreases as R increases

and starts fluctuating at the level of G-ROM’s accuracy after R ≥ 80. It is not surprising to

find this because the model problem is much more chaotic than the 2D flow past a cylinder,

and any approximation error could lead to a different solution trajectory. On the other hand,

we found the error with respect to the FOM decreases as R increases and eventually reaches

the same level of accuracy as G-ROM, as in the case of 2D flow past a cylinder. In fact, we

found that the error in the mean of CPD-ROM is smaller than the error of G-ROM with

R ≥ 250.

We further plot the energy history in CPD-ROM with R = 80 and R = 400, which both

have errors less than 0.1% in mean and about 10% in the standard deviation in Fig. 5.3b,

along with the results of the FOM and the G-ROM. In both R values, we found the energy in

CPD-ROM initially agrees with the G-ROM and departs to a different trajectory at t ≈ 6010.

This is expected due to the approximation error made in the CP decomposition.

Fig. 5.3c displays the relative error in the mean energy of the fluctuated velocity and

its standard deviation in CPD-ROM with respect to both the FOM and the G-ROM as a

function of the CP rank R. Further, it includes the relative error of the G-ROM’s results

with respect to the FOM. We found a similar error behavior as in the energy results but

with higher errors in general. This is expected because the energy of the fluctuated velocity

6E(t)fluc in (5.33) is usually referred as the turbulent kinetic energy however, for 2D and 3D low Reynolds
number flow, there is no turbulence, therefore we refer (5.33) as the energy of the fluctuated velocity for not
confusing the reader.
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Figure 5.3: 2D lid-driven cavity at Re = 15000: Relative error in both (a) mean and standard
deviation of the energy and (c) mean and the standard deviation of the energy of the
fluctuated velocity as a function of the CP rank R. The error is presented with respect to
both the FOM and G-ROM for each quantity. The relative error of the G-ROM’s results
with respect to the FOM is also illustrated as a blue dashed line; The (b) energy and (d)
energy of the fluctuated velocity history of CPD-ROM at R = 80 and 400, along with the
results of the FOM and the G-ROM. The number of POD modes, N , is set to 200 for both
the G-ROM and the CPD-ROM.

is a much harder QOI compared to the energy. Moreover, we also found that the error

with respect to the FOM in the CPD-ROM is, in general, larger than the G-ROM’s error.

Moreover, we are aware of a sudden increase in the error when increasing R from 80 to 150,

which could be due to the randomization of the CP decomposition.

We plot the energy of the fluctuated velocity history in CPD-ROM with R = 80 and

R = 400 in Fig. 5.3b, along with the results of the FOM and the G-ROM. Again, in both R

values, we found the energy in CPD-ROM initially agree with the G-ROM and depart to a

different trajectory at t ≈ 6010.
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In terms of the energy, CPD-ROM with R = 80 is sufficient to attain the same level of

accuracy as in the G-ROM for the mean and the standard deviation. The compression ratio

is CR = 333.3 and the cost of evaluating the nonlinear term is reduced by a factor of 166.6.

In terms of the energy of the fluctuated velocity, CPD-ROM with R = 300 can attain the

same level of accuracy as in the G-ROM for the standard deviation and a factor of 4 in

the error of the mean. The compression ratio is CR = 88.9 and the cost of evaluating the

nonlinear term is reduced by a factor of 44.4.

Finally, for 200, 000 time steps, the total solve time of the G-ROM with N = 200 is about

1167 (secs), and the tensor contraction kernel occupies about 86% of the total solve time,

whereas the total solve time of the CPD-ROM with R = 300 is about 101 (secs), and the CP

kernel (5.15) occupies only 15% of the total solve time. With a factor of 44.4 in reduction,

we should observe a factor of 6.25 speedup in the total solve time. In fact, from the numbers

reported here, we get a factor of 11.5 speedup. We note this is due to the favorable cache

effect. The machine used to run the G-ROM and CPD-ROM has a L1 cache of size 0.384

megabyte (MB), a L2 cache of size 3 MB and a L3 cache shared by all cores of size 30

MB. With N = 200, the advection tensor C is of size 210 MB, whereas the total size of the

factor matrices is 4.5 MB with R = 300. The additional speedup is because, in the case of

CPD-ROM, there is sufficient space in the L3 cache to store the ROM operators. We also

note that the numbers reported here are based on the results running with one computing

thread in Matlab. We choose to apply this constraint because Matlab optimizes the G-ROM

when N is large due to the large tensor, whereas no optimization is used for the CPD-ROM.

3D lid-driven cavity (LDC) We next consider the non-regularized 3D lid-driven cavity

(LDC) problem as our first 3D example, which is a much more challenging model problem

for the ROM compared to the 2D problems. We consider two Reynolds number Re = 3200

and Re = 10, 000. Following [16], for both Re, the FOM mesh consists of a tensor-product

array of E = 163 elements with a Chebyshev distribution with polynomial order 7 (2 million

degrees of freedom).

For Re = 3200, the reduced basis functions {φi}Ni=1 are constructed with POD using K =

4000 snapshots in the statistically steady state region in the time interval of [2475.125, 2975]

with sampling time ∆ts = 0.125. The zeroth mode φ0 is set to the mean velocity field of the

snapshot collection time window. The initial condition for the G-ROM and the CPD-ROM

is obtained by projecting the lifted snapshot at t = 2475 onto the POD space.

We test the G-ROM and CPD-ROM in the predictive regime, that is, a larger time interval

compared to the interval snapshots are collected. We consider N = 300 for both models and

the choice of the N value ensures that the G-ROM is accurate compared to the FOM. We
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consider the energy and the energy of the fluctuated velocity, defined in (5.33), as the QOIs.

Fig. 5.4a displays the relative error in the mean energy and its standard deviation of

CPD-ROM with respect to both the FOM and the G-ROM as a function of the CP rank

R. In addition, it includes the relative error of the G-ROM’s results with respect to the

FOM. We observed the error with respect to both the FOM and the G-ROM decreases as R

200 400 600 800 1600
10 -3

10 -2
10 -1

10 0
10 1

10 2

200 400 600 800 1600
10 -3

10 -2
10 -1

10 0
10 1

10 2

(a) Relative error in mean energy and its standard
deviation

2400 2600 2800 3000 3200 3400 3600
0.015

0.0155

0.016

0.0165

0.017

(b) Energy history

200 400 600 800 1600
10 -3
10 -2
10 -1
10 0

10 2

10 4

200 400 600 800 1600
10 -3
10 -2
10 -1
10 0

10 2

10 4

(c) Relative error in mean Efluc and its standard
deviation

2400 2600 2800 3000 3200 3400 3600

0.5

1

1.5

2
10 -3

(d) Efluc history

Figure 5.4: 3D lid-driven cavity at Re = 3200: Relative error in both (a) mean and standard
deviation of the energy and (c) mean and the standard deviation of the energy of the
fluctuated velocity as a function of the CP rank R. The error is presented with respect to
both the FOM and G-ROM for each quantity. The relative error of the G-ROM’s results
with respect to the FOM is also illustrated as a blue dashed line; The (b) energy and (d)
energy of the fluctuated velocity history of CPD-ROM at R = 1600, along with the results
of the FOM and the G-ROM. The number of POD modes, N , is set to 300 for both the
G-ROM and the CPD-ROM.

increases. Specifically, CPD-ROM with R ≥ 150 is able to predict the mean with an error

of 10%. In order to accurately predict the standard deviation, R = 1600 is required. The

energy history of CPD-ROM with R = 1600 is shown in Fig. 5.4b, along with the results of
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the FOM and the G-ROM. The energy history of CPD-ROM is similar to the results of the

FOM and the G-ROM.

Fig. 5.4c displays the relative error in the mean energy of the fluctuated velocity and

its standard deviation in CPD-ROM with respect to both the FOM and the G-ROM as a

function of the CP rank R. Compared to the results of energy, the error in Efluc is in general

larger and to achieve the same level of accuracy as the G-ROM, R ≥ 1600 is necessary. We

plot the energy of the fluctuated velocity history of CPD-ROM with R = 1600 in Fig. 5.4d,

along with the results of the FOM and the G-ROM. The results of CPD-ROM is similar to

the results of the FOM and the G-ROM.

In summary, CPD-ROM with R = 1600 is able to accurately predict the statistics of the

energy and energy of the fluctuated velocity. With N = 300 and R = 1600, the compression

ratio is CR = 37.5 and the cost is reduced by a factor of 18.75.

Finally, for 1, 000, 000 time steps, the total solve time of the G-ROM with N = 300 is

about 16538 (secs) and the tensor contraction kernel occupies about 95.8% of the total solve

time whereas, the total solve time of the CPD-ROM with R = 1600 is about 1280 (secs) and

the CP kernel (5.15) occupies only 57.6% of the total solve time. With a factor of 18.75 in

reduction, we should observe a factor of 10.7 speedup in the total solve time. In fact, from

the numbers reported here, we get a factor of 13 speedup because of the cache effect.

For Re = 10, 000, the reduced basis functions {φi}Ni=1 are constructed with POD using K =

4000 snapshots in the statistically steady state region in the time interval of [2725.125, 3225]

with sampling time ∆ts = 0.125. The zeroth mode φ0 is set to the mean velocity field of the

snapshot collection time window. The initial condition for the G-ROM and the CPD-ROM

is obtained by projecting the lifted snapshot at t = 2725 onto the POD space.

We test the G-ROM and CPD-ROM in the predictive regime, that is, a larger time interval

compared to the interval snapshots are collected. We consider N = 400 for both models and

the choice of the N value ensures that the G-ROM is accurate compared to the FOM. We

consider the energy and the energy of the fluctuated velocity, defined in (5.33), as the QOIs.

Fig. 5.5a displays the relative error in the mean energy and its standard deviation in

CPD-ROM with respect to both the FOM and the G-ROM as a function of the CP rank R.

In addition, it includes the relative error of the G-ROM’s results with respect to the FOM.

We found the error with respect to both the FOM and the G-ROM decreases as R increases.

In addition, we find at least R ≥ 1600 is required for CPD-ROM to predict the mean with an

error of 10% and in order to predict a reasonable standard deviation, R = 3200 is required.

We plot the energy history in CPD-ROM with R = 1600 and R = 3200 in Fig. 5.5b, along

with the results of FOM and G-ROM. We found the result with R = 3200 is similar to the

results of FOM and G-ROM whereas the result with R = 1600 has much larger fluctuation.
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Figure 5.5: 3D lid-driven cavity at Re = 10, 000: Relative error in both (a) mean and
standard deviation of the energy and (c) mean and the standard deviation of the energy of
the fluctuated velocity as a function of the CP rank R. The error is presented with respect
to both the FOM and G-ROM for each quantity. The relative error of the G-ROM’s results
with respect to the FOM is also illustrated as a blue dashed line; The (b) energy and (d)
energy of the fluctuated velocity history of CPD-ROM at R = 3200, along with the results
of the FOM and the G-ROM. The number of POD modes, N , is set to 400 for both the
G-ROM and the CPD-ROM.

Fig. 5.5c displays the relative error in the mean energy of the fluctuated velocity and

its standard deviation in CPD-ROM with respect to both the FOM and the G-ROM as a

function of the CP rank R. We found a similar error behavior as in the results of energy

but with larger relative errors of the G-ROM in both quantities. In fact, with R = 3200,

CPD-ROM is able to predict the standard deviation with same level of accuracy as of G-ROM

and predict the mean more accurately than the G-ROM.

We plot the energy of the fluctuated velocity history in CPD-ROM with R = 1600 and

3200 in Fig. 5.5d, along with the FOM and G-ROM results. The results with R = 3200 is
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similar to those of the G-ROM and the FOM while the results with R = 1600 has larger

fluctuation.

In summary, in order to predict the mean energy with an error less than 10%, R = 1600 is

required for the CPD-ROM. For the mean energy of the fluctuated velocity, a larger CP rank,

R = 3200, is required. In order to predict the standard deviation with an error less than

10%, R > 3200 is required. With N = 400 and R = 3200, the compression ratio is CR = 33.3

and the cost is reduced by a factor of 16.7. Finally, for 1, 000, 000 time steps, the total solve

time of the G-ROM with N = 400 is about 43819 (secs) and the tensor contraction kernel

occupies about 97% of the total solve time whereas, the total solve time of the CPD-ROM

with R = 3200 is about 4269 (secs) and the CP kernel (5.15) occupies only 64.8% of the

total solve time. We get a factor of 10.3 speedup in the total solve time which is close to the

theoretical speedup 11.4 with a factor of 16.7 in reduction.

The minimal flow unit (MFU) Our next 3D example is the minimal flow unit (MFU),

which presents some strong turbulent features while maintaining simplified flow dynamics,

resulting in significantly lower computational costs compared to a full channel flow simulation

[156]. Following the setup in [156], we consider two Reynolds numbers Re. For Re = 3000,

the streamwise (i.e, the x-direction) and spanwise (i.e, the z-direction) lengths of the channel

are set to πh and 0.3πh, respectively. For Re = 5000, the streamwise and spanwise lengths

of the channel are set to 0.6πh and 0.18πh, respectively. The channel half-height is set to

h = 1 for both Re. For both Re, the FOM mesh consists of an array of 8× 18× 4 elements

in the x× y × z directions), of order q = 9, for a total of N ≈ 420 thousands grid points.

For both Re = 3000 and Re = 5000, the reduced basis functions {φi}Ni=1 are constructed

with POD using K = 4000 snapshots in the statistically steady state region in the time

interval of [3000.125, 3500] with sampling time ∆ts = 0.125. The zeroth mode φ0 is set to

the mean velocity field of the snapshot collection time window. The initial condition for the

G-ROM and the CPD-ROM is obtained by projecting the lifted snapshot at t = 3000 onto

the POD space. The G-ROM and CPD-ROM are tested in the predictive regime, that is,

a larger time interval than the interval snapshots are collected. N = 400 is considered for

both models, and the energy and the energy of the fluctuated velocity, defined in (5.33), are

considered as the QOIs.

The results of Re = 3000 are shown in Fig. 5.6. The relative error in the mean energy and

its standard deviation in CPD-ROM with respect to both the FOM and the G-ROM as a

function of the CP rank R is shown in Fig. 5.6a. We find at least R ≥ 1000 is required for

the CPD-ROM to predict the mean with an error of 10% and in order to predict a reasonable

standard deviation, R = 3200 is required. We also find that both errors with respect to the
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FOM and the G-ROM decreases as R increases but starts fluctuating around the level of

G-ROM’s accuracy when R ≥ 3200. The energy history in CPD-ROM with R = 3200 is

shown in Fig. 5.6b, along with the results of the FOM and the G-ROM. We found that both

the CPD-ROM and the G-ROM yield similar results compared to the FOM. The relative
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Figure 5.6: MFU at Re = 3000: Relative error in both (a) mean and standard deviation of
the energy and (c) mean and the standard deviation of the energy of the fluctuated velocity
as a function of the CP rank R. The error is presented with respect to both the FOM
and G-ROM for each quantity. The relative error of the G-ROM’s results with respect to
the FOM is also illustrated as a blue dashed line; The (b) energy and (d) energy of the
fluctuated velocity history of CPD-ROM at R = 3200, along with the results of the FOM
and the G-ROM. The number of POD modes, N , is set to 400 for both the G-ROM and the
CPD-ROM.

error in the mean energy of the fluctuated velocity and its standard deviation in CPD-ROM

with respect to both the FOM and the G-ROM as a function of the CP rank R in Fig. 5.6c.

Again, we observe both the error with respect to the FOM and the G-ROM decreases as R

increases and eventually reaches the level of G-ROM’s accuracy. However, the error in the
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mean is large because the G-ROM itself has an error of 70% in the mean. To further improve

the results, N > 400 is required for the G-ROM. The Efluc history in the CPD-ROM with

R = 3200 is shown in Fig. 5.6d, along with the FOM and the G-ROM results. We find that

the results of R = 3200 are quite similar to the results of the G-ROM; however, both are

inaccurate compared to the FOM.

In summary, CPD-ROM with R = 3200 can accurately predict the mean energy and its

standard deviation. In terms of the energy of the fluctuated velocity, the error in the mean

and the standard deviation is large regardless of the R because the G-ROM is inaccurate. To

resolve this, a larger N value is required for the G-ROM.

With N = 400 and R = 3200, the compression ratio is CR = 33.3 and the cost is reduced

by a factor of 16.7. Finally, for 400, 000 time steps, the total solve time of the G-ROM with

N = 400 is about 16553 (secs) and the tensor contraction kernel occupies about 97.1% of

the total solve time whereas, the total solve time of the CPD-ROM with R = 3200 is about

1456 (secs) and the CP kernel (5.15) occupies only 39.6% of the total solve time. We get a

factor of 11.4 speedup in the total solve time which agrees with the theoretical speedup with

a factor of 16.7 in reduction.

Next, we discuss the results of Re = 5000 shown in Fig. 5.7. The relative error in the

mean energy and its standard deviation in CPD-ROM with respect to both the FOM and

the G-ROM as a function of the CP rank R is shown in Fig. 5.7a. We find that at least

R ≥ 1200 is required for the CPD-ROM to predict the mean with an error of 10% and in

order to predict a reasonable standard deviation, R = 3000 is required. We also find that the

error with respect to the G-ROM decreases as R increases, whereas the error with respect

to the FOM starts fluctuating around the level of G-ROM’s accuracy when R ≥ 2000. The

energy history in CPD-ROM with R = 2000 and R = 4000 is shown in Fig. 5.7b, along with

the results of the FOM and the G-ROM. We could see that the results of R = 4000 is quite

similar to the results of the FOM and the G-ROM, whereas the results of R = 2000 has a

larger fluctuation.

The relative error in the mean energy of the fluctuated velocity and its standard deviation

in CPD-ROM with respect to both the FOM and the G-ROM as a function of the CP rank R

in Fig. 5.7c. Again we observe that both the error with respect to the FOM and the G-ROM

decreases as R increases and eventually reach to the level of G-ROM’s accuracy. However,

the errors are large because the G-ROM itself is not accurate, with an error of 70% and 21%

in the mean and the standard deviation. To further improve the results, N > 400 is required

for the G-ROM. The Efluc history in the CPD-ROM with R = 2000 and R = 4000 are shown

in Fig. 5.7d, along with the results of the FOM and the G-ROM. We find that the results of

R = 2000 are not accurate and the results of R = 4000 are quite similar to the results of the
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Figure 5.7: MFU at Re = 5000: Relative error in both (a) mean and standard deviation of
the energy and (c) mean and the standard deviation of the energy of the fluctuated velocity
as a function of the CP rank R. The error is presented with respect to both the FOM
and G-ROM for each quantity. The relative error of the G-ROM’s results with respect to
the FOM is also illustrated as a blue dashed line; The (b) energy and (d) energy of the
fluctuated velocity history of CPD-ROM at R = 4000, along with the results of the FOM
and the G-ROM. The number of POD modes, N , is set to 400 for both the G-ROM and the
CPD-ROM.

G-ROM however, both are inaccurate compared to the FOM.

In summary, CPD-ROM with R ≥ 3000 is able to predict the mean energy and its standard

deviation with error less than 10%. With R = 3000, the compression ratio is of 26.6 and the

cost is reduced by a factor of 13.3.

For the energy of the fluctuated velocity, despite CPD-ROM is able to reach to the same

level of accuracy as G-ROM with R = 4000, the errors with respect to the FOM are large

(> 20%). This is due to the inaccuracy in G-ROM and to resolve this issue, one has to

consider a larger N .
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With N = 400 and R = 3000, the compression ratio is CR = 35.5 and the cost is reduced

by a factor of 17.7. Finally, for 400, 000 time steps, the total solve time of the G-ROM with

N = 400 is about 17470 (secs) and the tensor contraction kernel occupies about 97% of the

total solve time whereas, the total solve time of the CPD-ROM with R = 3000 is about 1559

(secs) and the CP kernel (5.15) occupies only 64.1% of the total solve time. We get a factor

of 11.2 speedup in the total solve time which is close to the theoretical value 11.8 with a

factor of 17.7 in reduction.

5.3.2 Performance Investigation of the CPD-ROM with the Approximated Full
Tensor and the Approximated Core Tensor

In this section, we investigate the performance of the CPD-ROM with the approximated full

tensor (CPD-ROM-Full) and the approximated core tensor (CPD-ROM-Core). Recall the

definition of the advection tensor:

Cikj =
∫
Ω

φi · (φk · ∇)φj dV. (5.34)

The full tensor includes the contribution from the zeroth mode φ0 and is defined as Cikj with
i = 1, . . . , N and j, k = 0, . . . , N whereas the core tensor does not have the zeroth mode

contribution and is defined as Cikj with i, j, k = 1, . . . , N .

Applying the CP decomposition to either the full tensor or the core tensor is valid.

However, we expect CPD-ROM-Core outperforms the CPD-ROM-Full, because the zeroth

mode contributions, which are the C1 and C2 matrices defined in (5.6), remains exact. For

fair comparison, we consider ALS for both tensors.

Fig. 5.8a displays the energy history (5.33) of the CPD-ROM-Full and the CPD-ROM-Core

at R = 350 along with the results of FOM and the G-ROM. We found with R = 350, the

CPD-ROM-Core is able to reproduce the energy history with relative errors (with respect

to the FOM) less than 0.1% in the mean and ≈ 27% in the standard deviation. On the

other hand, the CPD-ROM-Full is not stable and its solution blows up after t > 6030.

Despite we found a significant performance difference between the CPD-ROM-Core and the

CPD-ROM-Full with same rank R, the relative residual of the approximated tensor is similar

in both case.

Fig. 5.8b displays the energy of the fluctuated velocity Efluc history (5.33) of the CPD-

ROM-Full and the CPD-ROM-Core at R = 800 along with the results of FOM and the

G-ROM. Efluc is in general a much harder QOI compared to the energy, and we find R = 800

is necessary for the CPD-ROM-Core to be accurate. We find CPD-ROM-Core is much
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Figure 5.8: 2D lid-driven cavity at Re = 15, 000: Comparison of (a) the energy history
and (b) the energy of the fluctuated velocity Efluc between the CPD-ROM-Full and the
CPD-ROM-Core, along with the results of the FOM and the G-ROM. CPD-ROM-Full and
CPD-ROM-Core are denoted as the CPD-ROM with the approximated full tensor and the
approximated core tensor.

more accurate than the CPD-ROM-Full. Although the problem is chaotic, The Efluc of

CPD-ROM-Core behaves similarly compared to the FOM with relative errors of 4% in both

the mean and the standard deviation. On the other hand, the Efluc of CPD-ROM-Full

overshoots in later time with relative errors of 16% in the mean and 71% in the standard

deviation.

We next investigate the performance of the CPD-ROM-Full and CPD-ROM-Core in the 3D

lid-driven cavity at Re = 3200. We test both modes in the reconstructive and the predictive

regimes. Fig. 5.9a displays the Efluc history of the CPD-ROM-Full and the CPD-ROM-Core
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Figure 5.9: 3D lid-driven cavity at Re = 3200: Comparison of the energy of the fluctuated
velocity in (a) the reconstructive and (b) the predictive regimes between the CPD-ROM-Full
and the CPD-ROM-Core, along with the results of the FOM and the G-ROM. CPD-ROM-Full
and CPD-ROM-Core are denoted as the CPD-ROM with the approximated full tensor and
the approximated core tensor.

in the reconstructive regime at R = 1600 along with the results of FOM and the G-ROM.
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R = 1600 is selected so that CPD-ROM-Core is accurate. We found that with R = 1600,

CPD-ROM-Core is able to reproduce the history with an error (with respect to the FOM) of

5% in the mean and 0.4% in the standard deviation. On the other hand, despite the solution

of the CPD-ROM-Full does not blow up, it is less accurate, with an error of 9% in the mean

and 127% in the standard deviation.

Fig. 5.9b displays the Efluc history of the CPD-ROM-Full and the CPD-ROM-Core in the

predictive regime at R = 1600 along with the results of FOM and the G-ROM. We found

CPD-ROM-Core is able to accurately predict the QOI with an error of 2% in the mean and

5% in the standard deviation. On the other hand, CPD-ROM-Full is not accurate, with an

error of 10% in the mean and 200% in the standard deviation.

5.3.3 Performance Investigation of the CPD-ROM with Skew-Symmetry
Preserved

In this section, we investigate if preserving the skew-symmetry for the approximated tensor

Ĉ is beneficial for the performance of the CPD-ROM. We compare the performance of the

CPD-ROM with skew-symmetry preserved (CPD-ROM-Skew) with the CPD-ROM without

preserving the property (CPD-ROM) in the 2D and the 3D lid-driven cavity and the minimal

flow unit (MFU). The selection of these model problems is deliberate, as they provide suitable

boundary conditions for skew-symmetry (5.20). The ALS-skew, introduced in Section 5.2.3,

is employed to ensure the skew-symmetry of the CP decomposition. Additionally, we enforce

skew-symmetry in the tensor C itself, as discussed in Section 5.2.2.

Fig. 5.10 displays the results of the 2D lid-driven cavity at Re = 15000. In Fig. 5.10a,

we compare the relative errors in the mean energy and its standard deviation between the

CPD-ROM-Skew and the CPD-ROM as a function of CP rank R. In the results of CPD-ROM,

the circle marker with a cross marker at several R values, indicate solution blow-up, resulting

in NaN errors. We found CPD-ROM-Skew outperforms CPD-ROM for small R values, and

as R increases, both behaves similarly. This behavior is expected because skew-symmetry

addresses stability, not accuracy. This observation is consistent with the behavior of full-order

models, where recovery of skew-symmetry (e.g., through dealiasing) is known to provide

stability but does not, in general, improve accuracy. This point was discussed in numerous

early works by Orszag and co-authors (e.g., [157, 158, 159]).

In Fig. 5.10b, we compare the energy history between the CPD-ROM-Skew and the CPD-

ROM at R = 80 and R = 400, along with the results of the FOM and the G-ROM. At

R = 80, we found the CPD-ROM is not stable leading to blowing-up solutions, whereas

the CPD-ROM-Skew is stable and has errors of less than 1% in mean and about 10% in

132



the standard deviation. At R = 400, the approximated tensor is accurate enough so that

CPD-ROM is stable.
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(a) Relative error in mean energy and its standard
deviation

6000 6050 6100 6150 6200

0.072

0.074

0.076

0.078

0.08

(b) Energy history

Figure 5.10: 2D lid-driven cavity at Re = 15, 000: (a) Comparison of the relative error in
both the mean and the standard deviation of the energy between CPD-ROM-Skew and
CPD-ROM as a function of the CP rank R. The error is presented with respect to the FOM.
The relative error of the G-ROM’s results with respect to the FOM is also illustrated as
a blue dashed line. (b) Comparison of the energy history between CPD-ROM-Skew and
CPD-ROM at R = 80 and R = 400, along with the results of the FOM and the G-ROM.
CPD-ROM-Skew is denoted as CPD-ROM with skew-symmetry preserved. The circle marker
with a cross marker at several R values, indicate solution blow-up, resulting in NaN errors.

Fig. 5.11 displays the results of the 3D lid-driven cavity. In Figs. 5.11a–5.11b, we compare

the relative errors in the mean energy and its standard deviation between the CPD-ROM-Skew

and the CPD-ROM as a function of CP rank R for Re = 3200 and Re = 10, 000, respectively.

The circle marker with a cross marker in the results of CPD-ROM, indicates solution blow-up,

resulting in NaN errors. In both Re, we found CPD-ROM-Skew outperforms CPD-ROM for

small R values, and as R increases, both behaves similarly. Moreover, with higher Reynolds

number, CPD-ROM is unstable with all R values except R = 3200. Fig. 5.12 displays the

results of the 3D MFU. In Figs. 5.12a–5.12b, we compare the relative errors in the mean

energy and its standard deviation between the CPD-ROM-Skew and the CPD-ROM as a

function of CP rank R for Re = 3000 and Re = 5000, respectively. The circle marker with

a cross marker in the results of CPD-ROM, indicates solution blow-up, resulting in NaN

errors. Again, we found CPD-ROM-Skew outperforms CPD-ROM for small R values, and as

R increases, both behaves similarly. Moreover, higher Reynolds number requires larger R for

the CPD-ROM to be stable.
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Figure 5.11: 3D lid-driven cavity: Comparison of the relative error in both the mean and the
standard deviation of the energy between CPD-ROM-Skew and CPD-ROM as a function
of the CP rank R for (a) Re = 3200 and (b) Re = 10, 000. The error is presented with
respect to the FOM. The relative error of the G-ROM’s results with respect to the FOM
is also illustrated as a blue dashed line. CPD-ROM-Skew is denoted as CPD-ROM with
skew-symmetry preserved. The circle marker with a cross marker at several R values, indicate
solution blow-up, resulting in NaN errors.
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Figure 5.12: MFU: Comparison of the relative error in both the mean and the standard
deviation of the energy between CPD-ROM-Skew and CPD-ROM as a function of the CP
rank R for (a) Re = 3000 and (b) Re = 5000. The error is presented with respect to the FOM.
The relative error of the G-ROM’s results with respect to the FOM is also illustrated as a
blue dashed line. CPD-ROM-Skew is denoted as CPD-ROM with skew-symmetry preserved.
The circle marker with a cross marker at several R values, indicate solution blow-up, resulting
in NaN errors.

5.3.4 Numerical Investigation of the G-ROM with the Singular Value
Decomposition (SVD)

In this section, we explore the use of the singular value decomposition (SVD) in the G-ROM

as an alternative low-rank approximation for the tensor C. In Section 5.3.4, we investigate

134



the low-rank structure of the tensor using the SVD, specifically examining their behavior

under the the L2 and the H1
0 norms. Additionally, we investigate the effectiveness of the

low-rank approximation between the SVD and CPD by examining its relative residual in

terms the compression ratio. Subsequently, in Section 5.3.4, we compare the performance of

the SVD-ROM with the CPD-ROM.

Low-rank structure ablation In the case of the SVD, we investigate the behavior of

the singular values of C(1), C(2) and C(3), representing the mode-1, mode-2 and mode-3

matricized versions of the tensor C. Note that each row of C(3) preserves the skew-symmetric

property, unlike C(1) and C(2). For comparison purpose, we normalize the singular value with

the first singular value.

In Fig. 5.13, the singular value behavior of C(1), C(2) and C(3) is presented with the POD

basis functions using L2 and H1
0 norm, denoted as the L2- and H1

0 -POD basis, respectively,

in the 2D flow past a cylinder at Re = 100. We found the singular value of C(3) decays much

faster compared to the results of C(1) and C(2) in both norm. This suggests there is a low-rank

structure in C(3). In addition, the singular value of all three matricized matrices decays much
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Figure 5.13: 2D flow past a cylinder at Re = 100: Singular value behavior of mode-1, mode-2,
and mode-3 matricized version of C with (a) the L2-POD basis and (b) the H1

0 -POD basis.

faster with the H1
0 norm compared to the L2 norm. As highlighted in [17], the H1

0 -POD basis

is expected to perform better in capturing small-scale structures and distinguishing them

from large-scale structures in the solution compared to the L2-POD basis. Therefore, it is

not surprising to find the singular value of all three matrices decay faster with the H1
0 norm.

Fig. 5.14 shows the singular value behavior of C(1), C(2) and C(3) with L
2- and H1

0 -POD

basis in the 2D lid-driven cavity at Re = 15000. We found the singular values of C(1) and

C(2) behave similarly regardless of the norm. For the singular value of C(3), we still found it

decays much faster compared to the singular value of the other two matrices. However, the

results with H1
0 norm decays much faster compared to the L2 norm. This indicates there is a

low-rank structure in C(3) with H
1
0 but not L2 norm.
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Similar investigations were conducted for the tensors in the 3D lid-driven cavity and MFU,

yielding consistent results with those observed in the 2D lid-driven cavity: the matrix C(3)

exhibits a low-rank structure under the H1
0 norm.
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Figure 5.14: 2D lid-driven cavity at Re = 15, 000: Singular value behavior of mode-1, mode-2,
and mode-3 matricized version of C with (a) the L2-POD basis and (b) the H1

0 -POD basis.

We further investigate the impact of the Reynolds number on the singular values’ behavior

in the 3D lid-driven cavity and the MFU in Fig. 5.15 with a primary focus on the H1
0 -POD

basis. Fig. 5.15a shows the singular value behavior of C(1) and C(3) in the 3D lid-driven

cavity at Re = 3200 and Re = 10, 000. We found the singular values of both C(1) and C(3)

decay slightly faster in the case of higher Reynolds number. Fig. 5.15b shows the singular

value behavior of C(1) and C(3) in the MFU at Re = 3000 and Re = 5000. Here we found a

faster decay in the singular values of C(1) with the higher Reynolds number. Overall, our

results do not reveal a significant difference in the singular values’ behavior between low and

high Reynolds numbers.
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Figure 5.15: The effect of the Reynolds number on the singular value behavior of mode-1
and mode-3 matricized version of C with the H1

0 -POD basis in (a) the 3D lid-driven cavity
and (b) the MFU with two Reynolds numbers presented in each case.

We next investigate the behavior of the relative residual as a function of the compression

ratio (CR) to study the effectiveness of the SVD and the CPD for approximating the tensor
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C. Given a tensor C and its approximated tensor Ĉ, the relative residual is defined as:

rrel :=
∥C − Ĉ∥F
∥C∥F

. (5.35)

For the SVD, the relative residual (5.35) is used to measure the approximation but with C(3)

and Ĉ(3). In this study, we focus the CP decomposition with skew-symmetry preserved and

the compression ratio for the ALS-skew and the SVD are defined as

CRALS−Skew =
N3

3
2
NR

=
2N2

3R
, CRSV D =

N3

N2R
=
N

R
. (5.36)

Fig. 5.16 shows the behavior of the relative residual as a function of the CR for the SVD

and the CPD in the 3D lid-driven cavity and the MFU. We found for a fixed relative residual,

the CPD is much more effective compared to the SVD in terms of the compression ratio.

Although the SVD is more robust in achieving a smaller relative residual compared to the

CPD, the CR is nearly 1 and therefore use of the SVD achieves almost no speed-up. Moreover,

based on our investigation in previous sections, a relative residual between 0.35 to 0.1 is

sufficient for the CPD-ROM to perform comparably to the G-ROM.
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Figure 5.16: The behavior of the relative residual of the approximated tensor with the SVD
and the CPD as a function of the compression ratio (CR) in (a) the 3D lid-driven cavity and
(b) the MFU. The compression ratio of the CPD and SVD are defined as 2N2/R and N/R,
respectively.

Performance investigation of the SVD-ROM with the CPD-ROM In this section,

we compare the performance of the SVD-ROM with the CPD-ROM. In the SVD-ROM, the

tensor contraction C(u)u is evaluate using the approximated the mode-3 matricized version
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of the tensor C:

C(3) ≈ Ĉ(3) = URΣRV
T
R , (5.37)

where UR and VR are the left and right singular vector matrices of size RN×R and RN2×R,

respectively. ΣR is the singular value matrix of size RR×R.

In Figs. 5.17–5.18, the relative error in the mean and the standard deviation of the energy

and energy of the fluctuated velocity is shown as a function of the compression ratio (CR)

for the 3D lid-driven cavity and the MFU, respectively. In both the mean and the standard

deviation, we found the CPD-ROM has a larger CR compared to the SVD-ROM for a given

accuracy. This indicates CPD is more effective than the SVD.
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Figure 5.17: 3D lid-driven cavity at Re = 3200: Comparison of the relative error in both the
mean and the standard deviation of (a) the energy and (b) the energy of the fluctuated velocity
between the SVD-ROM and the CPD-ROM as a function of the compression ratio (CR) The
compression ratio of the CPD and SVD are defined as 2N2/R and N/R, respectively.

5.4 Conclusions

In this chapter, we proposed a novel approach which utilizes the CANDECOMC/PARAFAC

decomposition (CPD) to mitigate the O(N3) tensor contraction cost for the scenario of large

N values. With the CP decomposition, the reduced advection tensor is approximated by a

sum of R rank-1 tensors and the cost is reduced down to O(NR). Our numerical investigation

shows that the G-ROM with the CP decomposition (CPD-ROM) is able to obtain at least a

factor of 10 speed-up. Moreover, the reduction obtained with the CP decomposition allows

one to consider a larger N value for turbulent flows.

Besides, we derived two conditions on the CP rank and factor matrices to preserve the

skew-symmetry in the CP decomposition and show that the CPD-ROM with skew-symmetry
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Figure 5.18: MFU at Re = 5000: Comparison of the relative error in both the mean and the
standard deviation of (a) the energy and (b) the energy of the fluctuated velocity between the
SVD-ROM and the CPD-ROM as a function of the compression ratio (CR) The compression
ratio of the CPD and SVD are defined as 2N2/R and N/R, respectively.

preserved is more stable and achieves the same accuracy with a smaller CP rank R leading

to a larger speed-up.

Furthermore, we investigated the tensor with the singular value decomposition and discov-

ered that the advection tensor with the H1
0 -POD basis functions has a low-rank structure in

its mode-3 matricized version and this low-rank structure is preserved even in higher Reynolds

numbers. We also compared the CPD-ROM with the SVD-ROM (i.e., the G-ROM with

the singular value decomposition (SVD)). For a given accuracy, we show that CPD-ROM

outperforms the SVD-ROM in terms of compression ratio.

The first step in the numerical investigation of the CPD-ROM has been encouraging. There

are, however, several other research directions that should be pursued next. For example,

the CP decomposition can also be applied to the energy equation, potentially leading to

further reduction in the computational costs for fluid-thermal applications. Besides, as

previously noted, for a general flow problem, the reduced tensor could be decomposed into a

skew-symmetric part with a low-rank tensor contributed from the boundaries and it would

be intriguing to assess the performance of the CPD-ROM in this context. Moreover, in this

work, we used the alternating least squares method (ALS) and its variant for computing the

CP decomposition. However, ALS may exhibit slow or no convergence, especially when high

accuracy is required [160]. Therefore, it will be interesting to consider other optimization

methods to construct the CPD-ROM and investigate if the resulting CPD-ROM is more

accurate and is capable of achieving a larger speed-up. Finally, another possibility is to

consider other decompositions such as Tucker decomposition.
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Chapter 6: Conclusions

This dissertation pushes the state-of-the-art for Galerkin-based ROMs simulation of turbulent

flows by tackling three leading challenges.

In Chapter 3, we propose an error-indicated pMOR for buoyancy-driven flows by extending

the error indicator proposed in [17] for the energy equation and Leray regularization. Applied

to a 2D unsteady natural convection in a tilted high-aspect ratio slot, we demonstrate

the error-indicated pMOR with Leray regularization can accurately and efficiently predict

several quantities of interests. In addition, we identify spatio-temporal chaos as a source of

irreproducibility in both the FOM and the ROM and that the FOM variance in these cases

provides a lower bound on the pMOR error.

In Chapter 4, we propose a new regularized ROM, the time-relaxation ROM (TR-ROM),

which filters the marginally resolved scales. We compare the TR-ROM with the two existing

regularization models, the Leray ROM and the evolve-filter-relax ROM. Our investigation

shows that with the optimal parameters, the new TR-ROM yields the most accurate results

in both reconstructive and predictive regimes for turbulent channel flow and thermal striping

in a T-junction. Moreover, all three Reg-ROMs are dramatically more accurate than the

classical G-ROM without a significant increase in computational cost. In fact, with respect to

the Reynolds normal stress ⟨u′u′⟩ and the Reynolds shear stress ⟨u′v′⟩, the three Reg-ROMs’

errors are much lower than that of projection.

Our numerical investigation also shows that the differential filter (i.e., higher-order algebraic

filter (HOAF) with filter order m = 1) yields the best results for most of the N values. On

the other hand, the HOAF with m > 1 works better for small N , i.e., N ≤ 20, at lower

Reynolds number Reτ = 180.

From the sensitivity study, we demonstrate the predictive capability of the Reg-ROMs by

showing that the optimal parameters trained in the reconstructive regime (δ, χ)reprod are

also optimal in the predictive regime for most of the N values. On the other hand, we find

that all three Reg-ROMs are sensitive with respect to the relaxation parameter, χ, and filter

radius, δ.

In Chapter 5, we propose a novel approach which utilizes the CANDECOMC/PARAFAC

decomposition (CPD) to accelerate the G-ROM for N values. The CP decomposition is used

to approximate the reduced advection tensor by a sum of R rank-1 tensors, which reduced

the O(N3) tensor contraction cost down to O(NR). Our numerical investigation shows that

the G-ROM with CP decomposition (CPD-ROM) is able to obtain at least a factor of 10

speed-up, which allows the use of larger N values for turbulent flows. Additionally, we showed
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that skew-symmetry-preserving CPD-ROM is more stable and, for a given accuracy, allows a

smaller CP rank R, which implies more speed-up. We also compared the CPD-ROM with the

SVD-ROM (i.e., the G-ROM with the singular value decomposition). For a given accuracy,

we showed that CPD-ROM outperforms the SVD-ROM in terms of the compression ratio.

Finally, from the singular value behavior, we showed that the advection tensor with the

H1
0 -POD basis functions has a low-rank structure in its mode-3 matricized version.

In summary, this dissertation contributes several strategies for developing parametric

model order reduction for turbulent flows. Future directions include combining the methods

from the principal chapters to generate accurate (i.e., through the regularization techniques

of Chapter 4 and increased N afforded by the CPD-ROM of Chapter 5), error-indicated

(through the techniques of Chapter 3) pMOR for cases with more complex geometries and

more general boundary conditions. All the techniques developed herein are available in

an open-source repository (NekROM), which we hope will foster future collaboration and

development in this important approach to thermal-fluid analysis.
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Appendix A: Streamwise Reynolds Normal Stress Results with
Reg-ROMs

In this appendix, we present the results of the streamwise Reynolds normal stress ⟨u′u′⟩ in
the three Reg-ROMs presented in Sections 4.1–4.3, the G-ROM and the ROM projection in

the simulation of the turbulent channel flow.

Notice that, as discussed in Section 4.6, for each N andm values, the Reg-ROMs parameters

δ and χ are optimized for the Reynolds shear stress ⟨u′v′⟩. Here, we do not retrain the

parameters to minimize the error in the streamwise Reynolds normal stress ⟨u′u′⟩ but examine

how well the normal Reynolds stress ⟨u′u′⟩ is reconstructed and predicted with the three

Reg-ROMs trained for ⟨u′v′⟩.

A.1 Reproduction Regime

In this section, we report the results of the streamwise Reynolds normal stress ⟨u′u′⟩ for the
three Reg-ROMs: L-ROM (Section 4.1), EFR-ROM (Section 4.2), and the new TR-ROM

(Section 4.3) for the reproduction regime, the time interval in which the snapshots were

collected, at Reτ = 180 and Reτ = 395. For comparison purposes, we include results for

the G-ROM (Section 2.2) and the ROM projection, which represents the best theoretical

approximation of the FOM solution in the given ROM space.

A.1.1 Reτ = 180

In Figure A.1, we plot the relative ℓ2 error εu′u′ (4.20) for different ROM dimensions, N , and

filter orders, m, for the G-ROM, the ROM projection, and the three Reg-ROMs at Reτ = 180.

Two sets of ROM-projection results are shown: The solid and the dotted lines represent

the errors of ⟨u′u′⟩Proj (4.26) for the snapshot data and the FOM data, respectively. It is

expected that the error εu′u′ for the snapshot data is smaller than the error for the FOM

data, because the POD basis set is constructed using only K = 2000 snapshots instead of

using all the FOM solutions. For each Reg-ROM, the error is plotted for the optimal δ values

and, for EFR-ROM and TR-ROM, for the optimal χ values that are trained to yield optimal

⟨u′v′⟩.
Figure A.1a displays the G-ROM results. This plot shows that, for all N values, the

G-ROM results are very inaccurate. Even with N = 100, G-ROM fails to reconstruct ⟨u′u′⟩
with an error of O(105).
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Figure A.1b displays the L-ROM results for each N and m, along with the results of the

ROM projection for comparison purposes. For most N values, m = 2 yields the most accurate

results among four m values except at N = 10 and N = 40 where m = 1 is better. Among

the N and m values, we find m = 2 and N = 60 yields the smallest error εu′v′ (17%). This is

different from what we found in the results of εu′v′ reported in Section 4.6.5 where m = 1

yields the most accurate results for N ≥ 30. In addition, compared to the ROM projection,

L-ROM is more accurate.
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Figure A.1: The relative error εu′u′ (4.20) of G-ROM, ROM projection, L-ROM, EFR-ROM
and TR-ROM in the reproduction regime at Reτ = 180 for different N and m values with δ
and χ values that are trained for optimal ⟨u′v′⟩.

Figure A.1c displays the EFR-ROM results for each N and m, along with the results of

the ROM projection for comparison purposes. Compared to the results of εu′v′ in Fig. 4.9c,

we find a similar behavior in εu′u′ for all N and m values and εu′u′ is smaller than εu′v′ for

all N values with m = 1, 2, 3. For N ≥ 40, m = 1 yields the most accurate results among

four m values, achieving an error of 10% for N = 90. Conversely, for N ≤ 30, higher-order

filters perform better, with m = 2 resulting in 20% and 25% error for N = 10 and N = 30,

respectively, and m = 3 in 18% error for N = 20.
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In addition, EFR-ROM is more accurate than the ROM projection for all N with m =

1, 2, 3. With m = 4, it is only more accurate than the ROM projection for N ≤ 20.

Figure A.1d displays the TR-ROM results for each N and m, along with the results of the

ROM projection for comparison purposes. Compared to the results of εu′v′ in Fig. 4.9d, we

find a similar behavior in εu′u′ for all N and m values but εu′u′ is smaller than εu′v′ for all N

values only with m = 1. For 20 ≤ N ≤ 90, m = 1 yields the most accurate results among

four m values, achieving an error of 10% for N = 80. For N = 10 and N = 100, m = 3

achieving an error of 18% and 24%, respectively. In addition, TR-ROM is more accurate

than the ROM projection for all N and m values.

A.1.2 Reτ = 395

In Figure A.2, we plot the relative ℓ2 error εu′u′ (4.20) for different N and m values for

the G-ROM, the ROM projection, and the three Reg-ROMs at Reτ = 395. Two sets of

ROM-projection results for the snapshot data and the FOM data are shown.

Figure A.2a displays the G-ROM results. Just as in the Reτ = 180, for all N values, the

G-ROM results are very inaccurate. Even with N = 100, εu′u′ is still about O(105).

Figure A.2b displays the L-ROM results for each N and m, along with the results of the

ROM projection for comparison purposes. Compared to the results of εu′v′ in Fig. 4.10b,

we find a similar behavior in εu′u′ for all N and m values. In addition, the εu′u′ has similar

magnitude compared to εu′v′ . For all N and m values, the error is found to be much higher

compared to the results for Reτ = 180. For N ≥ 60, the most accurate results are achieved

with m = 1, with an error of 37% for N = 60. For N = 10, m = 3 achieves an error of 43%.

Compared to the ROM projection, the L-ROM is more accurate for all values of N and m.

Figure A.2c displays the EFR-ROM results for each N and m, along with the results of

the ROM projection for comparison purposes. Compared to the results of εu′v′ in Fig. 4.10c,

we find a similar behavior in εu′u′ for all N and m values. In addition, the εu′u′ has similar

magnitude compared to εu′v′ . These results are qualitatively different from the EFR-ROM

results for Reτ = 180. For N ≤ 60, m = 1 yields the most accurate results and achieves an

error of 40% for N = 40. For N ≥ 70, higher-order filter yields better results. Specifically,

m = 4 achieves an error of 60% for N = 80. Moreover, the EFR-ROM is found to be more

accurate than the ROM projection for all N with m = 1 and for N ≥ 40 with m = 3, 4.

With m = 2, the EFR-ROM only has a similar level of accuracy as the ROM projection.
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Figure A.2: The relative error εu′u′ (4.20) of G-ROM, ROM projection, L-ROM, EFR-ROM
and TR-ROM in the reproduction regime at Reτ = 395 for different N and m values with δ
and χ values that are trained for optimal ⟨u′v′⟩.

Figure A.2d displays the TR-ROM results for each N and m, along with the results of the

ROM projection for comparison purposes. Compared to the results of εu′v′ in Fig. 4.10d, we

find a similar behavior in εu′u′ for all N and m values. However, with TR-ROM, we find the

εu′u′ is smaller compared to εu′v′ for all N values with m = 1. For all N values, m = 1 yields

the most accurate results, achieving an error of around 22% for N = 100. These results

also show that m = 2 and m = 3 yield similar results, while m = 4 is found to be the least

accurate. Moreover, the TR-ROM is found to be more accurate than the ROM projection

for all N and m values.

In Fig. A.3, we compare the streamwise Reynolds normal stress ⟨u′u′⟩ of the optimal

Reg-ROMs (listed in Table 4.1) along with the results of the FOM and the ROM projection

in the reproduction regime for Reτ = 180 and Reτ = 395.

For Reτ = 180, we find TR-ROM accurately predict the ⟨u′u′⟩ compared to the FOM.
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On the other hand, L-ROM and EFR-ROM overpredict the peak values. For Reτ = 395,

we find the results of the TR-ROM are the best and it is better in capturing the profile

outside the boundary layer compared to the L-ROM and the EFR-ROM. However, all three

Reg-ROMs underpredict peak values compared to the FOM. Although the results of the

Reg-ROMs are not perfect, we find the results are much better than the ROM projection.

This also indicates that N = 100 POD bases are not able to reconstruct the Reynolds stress.
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Figure A.3: Comparison of the streamwise Reynolds normal stress ⟨u′u′⟩ of the FOM (black),
the ROM projection (red) and the optimal Reg-ROMs, listed in Table 4.1 (blue) in the
reproduction regime for Reτ = 180 (left) and Reτ = 395 (right).
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A.2 Predictive Regime

In this section, we report the results of the streamwise Reynolds normal stress ⟨u′u′⟩ for the
three Reg-ROMs: L-ROM (Section 4.1), EFR-ROM (Section 4.2), and the new TR-ROM

(Section 4.3) for the predictive regime, a time interval that is 500 CTUs larger than the

snapshot collected time interval, at Reτ = 180 and Reτ = 395.

A.2.1 Reτ = 180

In Figure A.4, we plot the relative ℓ2 error εu′u′ (4.20) for different N and m values for the

G-ROM, the ROM projection, and the three Reg-ROMs at Reτ = 180. We emphasize that,

we plot the error for (δ, χ)reprod that were optimized in the reproduction regime (Section

4.6.5).
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Figure A.4: The relative error εu′u′ (4.20) of G-ROM, ROM projection, L-ROM, EFR-ROM
and TR-ROM in the predictive regime at Reτ = 180 for different N and m values with δ and
χ values optimized in the reproduction regime for ⟨u′v′⟩.

Figure A.4a displays the G-ROM results. As in the reproduction regime, for all N values,

the G-ROM results are very inaccurate.
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Figure A.4b displays the L-ROM results for each N and m with δreprod along with the ROM

projection results for comparison purposes. Compared to the results of εu′v′ in Fig. 4.12b, we

also find the behavior of εu′u′ is sensitive to changes in N across all m values compared to

the results observed in the reproduction regime. Except for N = 20, higher order filter (i.e.,

larger m) yields better results, achieving an error of 18% for N = 10 and m = 4. For the

majority of N and m values, we find L-ROM is less accurate than the ROM projection.

Figure A.4c displays the EFR-ROM results for each N and m with (δ, χ)reprod along with

the ROM projection results for comparison purposes. Compared to the results of εu′v′ in

Fig. 4.13c, we find a similar behavior in εu′u′ for all N and m values. In addition, εu′u′ is

in general smaller compared to εu′v′ . For N ≤ 30, m > 1 yields better results and achieves

an error of 22% for N = 30 with m = 3. For N ≥ 40, except at N = 70, m = 1 yields the

most accurate results, achieving an error of 10% for N = 60. In addition, compared to the

ROM projection, EFR-ROM is more accurate for m ≤ 3, except for N = 10 and N = 20

with m = 3. For m = 4, EFR-ROM is not accurate and has a similar level of accuracy as the

ROM projection.

Figure A.4d displays the TR-ROM results for each N and m with (δ, χ)reprod along with

the ROM projection results for comparison purposes. Compared to the results of εu′v′ in

Fig. 4.12d, we find a similar behavior in εu′u′ for all N and m values. For N = 10, m = 2

yields the best results with an error of 22% and for N ≥ 20, m = 1 yields the best results

among four m values, achieving an error less than 10% for N = 70. In addition, TR-ROM is

more accurate than the ROM projection for all N and m values.

A.2.2 Reτ = 395

In Figure A.5, we plot the relative ℓ2 error εu′u′ for different N and m values for the G-ROM,

the ROM projection, and the three Reg-ROMs at Reτ = 395. We emphasize that, to test the

predictive capabilities of the Reg-ROM parameters, we plot the error for (δ, χ)reprod that

were optimized in the reproduction regime (Section 4.6.5).

Figure A.5a displays the G-ROM results. Just as in Section 4.6.6, for all N values, the

G-ROM results are very inaccurate with an error of O(105) for N = 100.

Figure A.5b displays the L-ROM results for each N and m with δreprod, along with the ROM

projection results for comparison purposes. Compared to the results of εu′v′ in Fig. 4.13b, we

find a similar behavior in εu′u′ for all N and m values. For N = 20, 30 and 40, m = 2 yields

the most accurate results among four m values and for the rest of the N values, m = 1 yields

the most accurate results.
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Among the N and m values, m = 1 with N = 50 yields the best error of 39%. For m = 3

and m = 4, the accuracy of L-ROM is improved as N increases but is still larger than the

m = 1 case. In addition, compared to the ROM projection, L-ROM is more accurate except

for the (m,N) pairs (2, 10), (3, 20), (3, 30), (4, 20), and (4, 30).
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Figure A.5: The relative error εu′u′ (4.20) of G-ROM, ROM projection, L-ROM, EFR-ROM
and TR-ROM in the predictive regime at Reτ = 395 for different N and m values with δ and
χ values optimized in the reproduction regime for ⟨u′v′⟩.

Figure A.5c displays the EFR-ROM results for each N and m with (δ, χ)reprod along with

the ROM projection results for comparison purposes. Compared to the results of εu′v′ in

Fig. 4.13c, we find a similar behavior in εu′u′ for all N and m values. For N ≤ 60, m = 1

yields the most accurate results, achieving an error of 39% for N = 40. For N ≥ 70 except

for N = 90, a higher-order filter yields better results. In particular, m = 4 achieves an

error of 60% for N = 80. For N = 90, m = 1 achieves an error of 48%. Compared to the

ROM projection, EFR-ROM is more accurate for all N values and m = 1, 3, 4. For m = 2,

EFR-ROM is in general less accurate than the ROM projection the ROM projection.

Figure A.5d displays the TR-ROM results for each N and m with (δ, χ)reprod, along with

the ROM projection results for comparison purposes.
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Compared to the results of εu′v′ in Fig. 4.13d, we find a similar behavior in εu′u′ for all N

and m values. For all N values except N = 10 and N = 30, m = 1 yields the most accurate

results, achieving an error of around 28% for N = 100. These results also show that m = 2

and m = 3 yield similar accuracy and m = 4 is the least accurate. Compared to the ROM

projection, TR-ROM is more accurate for all N and m values, except for (m,N) pairs, (4, 50)

and (4, 60).
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(e) TR-ROM, Reτ = 180

-1 -0.5 0 0.5 1
0

0.01

0.02

0.03

(f) TR-ROM, Reτ = 395

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

Figure A.6: Comparison of the streamwise Reynolds normal stress ⟨u′u′⟩ of the FOM (black),
the ROM projection (red) and the optimal Reg-ROMs, listed in Table 4.2 (blue) in the
predictive regime for Reτ = 180 (left) and Reτ = 395 (right).
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Similarly to the reproduction regime (Fig. A.3), in Fig. A.6, we compare the streamwise

Reynolds normal stress ⟨u′u′⟩ of the optimal Reg-ROMs (listed in Table 4.2) along with the

results of the FOM and the ROM projection in the predictive regime for Reτ = 180 and

Reτ = 395.

For Reτ = 180, we find TR-ROM accurately predict the ⟨u′u′⟩ compared to the FOM

whereas the L-ROM and EFR-ROM overpredict the peak values. For Reτ = 395, we again

find the results of the TR-ROM are the best and it has better agreement outside the boundary

layer compared to the L-ROM and the EFR-ROM. However, all three Reg-ROMs underpredict

peak values compared to the FOM. Although the results of the Reg-ROMs are not perfect,

we find the results are much better than the ROM projection.
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