(©) 2023 Jiaxin Huang

EXPLOITING LANGUAGE MODELS FOR ANNOTATION-EFFICIENT KNOWLEDGE
DISCOVERY

BY

JIAXIN HUANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Professor Jiawei Han, Chair

Professor Chengxiang Zhai

Professor Tarek Abdelzaher

Dr. Jianfeng Gao, Microsoft Research

ABSTRACT

With tremendous amounts of texts across the Internet nowadays, it is incredibly difficult
for people to manually seek for valuable knowledge from massive corpora, thus automatic
knowledge acquisition systems are becoming highly desirable. Various text mining techniques
are built for machines to perform text retrieval, concept understanding, commonsense
reasoning, and question answering to solve for downstream tasks proposed by practitioners
from different areas.

Existing intelligent systems are mostly based on deep learning models that generally
require enormous amounts of annotations in downstream domains, which is expensive and
time-consuming. Furthermore, they tend to assume a pre-defined task and label space,
and are hard to handle unseen tasks that contain new emerging concepts in new domains.
For more challenging knowledge utilization tasks such as commonsense reasoning, simple
annotations of the final answer is not sufficient to reflect the complex reasoning process for
performing the task.

My research aims to design text mining approaches for weakly-supervised knowledge
extraction and utilization on domain-specific corpus, by leveraging the strong representation
and generative power of pre-trained language models. Specifically, my work can be divided

into the following three parts:

1. Seed-Guided Hierarchical Concept Organization. I build a systematic framework [79]
78, [125] that takes user-given seed hierarchy, and constructs task-specific concept
ontology from domain text corpora. Traditional ontologies often fall short in capturing
user-specific interests and relations, leading to potential irrelevance in specialized domains.
I introduce a fully automated approach to address semantic drift in entity set expansion

and present a new framework for seed-guided topical taxonomy construction.

2. Fine-Grained Entity Extraction. Extracting key information from text corpora
serve as foundational steps in text mining applications. I first provide a comprehensive
overview [76] of the few-shot learning methodologies for Named Entity Recognition and
identify useful techniques, and then introduce a novel approach [77] for Fine-Grained

Entity Typing that harnesses the representation and generation capabilities of PLMs.

3. Knowledge-Guided Commonsense Reasoning. Entity knowledge can be used to
enhance more complex user-oriented tasks such as commonsense reasoning that relies

on dynamically utilizing the static knowledge. I design methods [75] to bridge the gap

i

between the inherent capabilities of Large Language Models (LLMs) and the human
brain’s metacognitive processes, offering insights into how LLMs can self-enhance their

reasoning abilities without the need for supervised data.

iii

To my family for their love and support.

v

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my esteemed advisor,
Professor Jiawei Han, for his unwavering support, insightful guidance and constant encour-
agement throughout the course of my PhD journey. Professor Han’s professionalism and
commitment to research excellence are unparalleled. Five years ago, I cannot even believe
that Professor Han took me as one of his PhD student. Since then, Professor Han has always
encouraged me to pursue interesting research problems, address real-world challenges, and to
never lose sight of the bigger picture. Professor Han is always accessible whenever we want to
discuss with him, and during our brainstorming discussions, his vast experience and wisdom
shared from past students’ stories have continually inspired me. I still remember that during
my first year of PhD, when our paper on category-guided word embedding faced multiple
rejections, Professor Han strongly believes in the potential of our work, and kept reminding
us not to be discouraged, and should keep pushing the direction until people realize its power.
Finally, our paper is accepted by NeurIPS and we also publish a series of follow-up works.
Beyond concrete research, Professor Han has been instrumental in shaping my academic
trajectory, encouraging me to seize opportunities like the Microsoft Research PhD Fellowship
and guiding me through the intricate process of faculty applications. Professor Han is a very
nice and warm person in daily life but has a high standard on doing research, where I am
deeply impressed and will continue to work hard to strive for excellence.

I would like to extend my gratitude to the other members in my Thesis Committee:
Professor Chengxiang Zhai, Professor Tarek Abdelzaher, and Dr. Jianfeng Gao. Their
invaluable feedback and constructive critiques have greatly enhanced the quality of my thesis.
Despite their demanding schedules, they still dedicate a lot to my thesis, take consecutive
hours to attend my thesis presentation, carefully read my thesis, and provide very detailed
feedbacks.

I wish to express my profound gratitude to the Defense Advanced Research Projects Agency,
the National Science Foundation, the Army Research Laboratory, and Microsoft Research for
their invaluable support throughout my Ph.D. journey. Their generous funding and support
have been crucial to my research outcomes and this thesis.

A special thank should be given to all my coauthors, for their continued support during our
research collaborations. I feel so lucky to have the opportunity to work with such a diverse
and talented group. They inspire me a lot on research ideas, broaden my research scope, and

offer help to me whenever I need. Our brainstorming discussions, late-night experiments, and

paper writing together have been truly memorable experiences. I am deeply grateful to these
lovely people: Yu Meng, Yu Zhang, Chunyuan Li, Le Hou, Siru Ouyang, Suyu Ge, Yiqing
Xie, Hongkun Yu, Xuezhi Wang, Jiaming Shen, Shobana Balakrishnan, Weizhu Chen, Shane
Gu, Fang Guo, Damien Jose, Lance Kaplan, Martin Michalski, Baolin Peng, Jingbo Shang,
Krishan Subudhi, Xuan Wang, Zihan Wang, Guangyuan Wang, Yuexin Wu, Chenyan Xiong,
Frank Xu, Yunyi Zhang, Chao Zhang, and Honglei Zhuang.

I would also like to thank my colleagus in Data Mining Group for their generous support,
which has always brought enlightening moments to me. We have had chats and spring outings
together, fighting for the same conferenece deadline together, and had hotpots together
on cold winter nights of Urbana-Champaign. They have provided important advice and
suggestions for me, from how to read a paper, to building connections and hunting jobs. 1
would like to sincerely thank these people: Shivam Agarwal, Xiusi Chen, Xiaotao Gu, Huan
Gui, Yizhu Jiao, Bowen Jin, Priyanka Kargupta, Sha Li, Qi Li, Liyuan Liu, Ruiliang Lyu,
Yuning Mao, Chanyong Park, Wenda Qiu, Xiang Ren, Yanzhen Shen, Yu Shi, Xiangchen
Song, Fangbo Tao, Ellen Wu, Carl Yang, Susik Yoon, Xinyang Zhang, Shi Zhi, Ming Zhong,
Xianrui Zhong, Sizhe Zhou, Wanzheng Zhu, Qi Zhu, Jinfeng Xiao.

My deepest appreciation goes to my family. Their constant love has been always been my
strength to face difficulties. Their belief and understanding supported me to proceed during
challenging times, and their care and joy in my moments of achievements have led to many

cherished memories.

vi

TABLE OF CONTENTS

CHAPTER. 1 _INTRODUCTION 1
CHAPTER. 2 SEED-GUIDED HIERARCHICAL CONCEPT ORGANIZATION] . . 4
1 Overviewl. 4
2.2 Related Workl oo 6
[2.3 Discovering Parallel Instances T'hrough Set Expansion|f. 8
[2.4 Evaluation of Entity Set kxpansion| 0oL 12
[2.5 Seed-Guided Topical Ontology Construction| 14
[2.6 Evaluation of Topical Ontology Constructionl 18
2.7 Summary| 22

24

24

25

27

32

[3.5 Hierarchical Fine-Grained Entity Typingl 35
[3.6 Evaluation of Hierarchical Entity Typing 41
[3.7 Summaryl 44
CHAPTER 4 KNOWLEDGE-GUIDED COMMONSENSE REASONING 45
M1 OVerviewl. e e e e 45
4.2 Related Workl oo 47
4.3 Selt-Improving Machine Reasoning with Language Models| 48
4.4 Evaluation of Selt-Improving Language Models|. 52
M5 Discussiond 57
[4.6 Summary| 58
CHAPTER 5 FUTURE WORK] 60
[>.1 Improving Model Factuality and Calibration| 60
[5.2 Improving Model Coherence and Consistency|. 61
[>.3 User-Specific Language Models| 62
APPENDIX A IMPLEMENTATION DETAILS OF PROPOSED METHODSl . .. 64
[A.1 Implementation Details for Set-CobExpan| 64
[A.2 Implementation Details of CoRell. 65
[A.3 Implementation Details of few-shot NER| 67
[A.4 Implementation Details of ALIGNIE|. 71
[A.5 Implementation Details of LMSIL|. 73

vil

REFERENCES

viil

CHAPTER 1: INTRODUCTION

Nowadays, the proliferation of digital content has transformed the way we access and
disseminate information. With overwhelming amounts of textual data being created online
everyday, there is an increasing demand for intelligent systems to assist people by efficiently
extract, organize, and utilize knowledge from vast textual data. Existing intelligent systems
are often constrained by the need for extensive annotations along with sophisticated pre-
defined task and label space as well as the complexity of tasks like commonsense reasoning.
Therefore, it is crucial to develop few-shot or even zero-shot approaches for knowledge
extraction tasks, especially in domain-specific areas where annotations by experts are limited.

Recently, pre-trained language models (e.g., BERT-base [37] model with 110M parameters)
have shown that they are powerful at generalizing to various NLP tasks, even under low-
resource settings. This is because these models gain strong text representative power during
self-supervised pre-training on large corpus. Moreover, people have been pursuing even
larger-sized language models, such as GPT-3 [13] with 175B parameters and PaLM [24] with
540B parameters. It has been observed that as the model size scales up, it has stronger
generalization ability and performs well on complex tasks that smaller language models
cannot fulfill [194], such as multi-step reasoning, program execution, and model calibration
(the ability to predict whether its answer is correct or not).

Though these PLMs or even LLMs can reach remarkable performance on many difficult
tasks, they still suffer from several drawbacks: (1) Language models are known to perform
well on knowledge pieces related to popular/frequent entities, but suffer from long-tailed
entities which only appear a few times in the pre-trained corpus [216]. Therefore, they could
generate hallucinations (factual errors or inconsistent logic) in their responses. (2) Language
model pre-training requires a large amount of text data, which could raise copyright and
privacy issues. Public users may not want to generate a piece of text that could be identified
as private data. On the other hand, some organizations wish to use language models with
their own private data (e.g., a domain-specific corpus). (3) It would be hard to fix errors
made by language models since it is not as interpretable as explicit knowledge forms, and
continuing the fine-tuning process may lead to catastrophic forgetting on preivous tasks.

My research provides a solution that leverage the advantages of both language models
and the long-tailed knowledge in domain-specific corpus for knowledge extraction. For
example, if some researchers have access to a domain-specific corpus and want to extract
useful knowledge from it, my approaches can satisfy their needs by integrating both the LM

techniques and long-tailed knowledge inherited in the corpus, such as by regularizing the

LM space on domain-specific concepts, as well as using the regularized LMs to self-generate
domain-specific augmented data.

In my thesis, I mainly discuss three representative knowledge discovery applications:
concept ontology construction, named entity recognition, and multi-step reasoning. The

contents of this thesis can be organized and illustrated in Fig. [I.1]

\\ = Set-CoExpan [WWW’20]
=\ Z/0\ AN =
ﬂ’) X X \ CoRel [KDD'20]
= @ 111 JoSH [KDD’20]
Representation pRRER
power of Seed-Guided Ontology Construction
pretrained .
encoder models . :]_*_ A
v % @) Few-NER [EMNLP’21]
. * N) RoSTER [EMNLP’21]
Generative =l
ALIGNIE [KDD’22]
rowE Fine-Grained Entity Extraction

pretrained
decoder models

x) = @
}/ Eba] @ LMSI [EMNLP’ 23]
Multi-Step Reasoning

Figure 1.1: Overview of my research framework.

The first part (Chapter [2)) takes user-given seed entities or seed ontology, expand them both
according to the entity type and entity relations, and finally forms a task-specific concept
ontology. Ontology is a fundamental form of knowledge representation to organize concepts,
entities and documents in a hierarchical way, from coarse-grained levels to fine-grained levels.
To avoid overlapping entities from similar categories, controllable expansion is conducted
by learning a concept-regularized embedding space. This is done by jointly learning the
vocabulary and user-interested topics in the semantic space. To capture and transfer the
potential relations in the seed ontology, I develop methods [79, [78, [125] that utilize generic
linguistic knowledge preserved in Pre-trained Language Models into hierarchical inductive
bias among entities.

The second part (Chapter |3) develops few-shot methods for knowledge acquisition in
entity level [76, [77], by studying on Named Entity Recognition and Fine-Grained Entity
Typing. These tasks serve as the important first component for downstream tasks such
as information extraction [157], information retrieval [60], question answering [135], task-
oriented dialogues [145], 50] and other language understanding applications [137, 163]. T will
introduce two studies on Named Entity Recognition (NER) and Fine-grained Entity Typing

(FET), especially in scenarios with limited labeled data. I will first provide a comprehensive

overview of the few-shot learning methodologies for NER and identify useful techniques, and
then introduce novel approaches for FET that harness the representation and generation
capabilities of PLMs.

The third part (Chapter [4)) focuses on more complex user-oriented tasks such as common-
sense reasoning that relies on dynamically utilizing the static knowledge. My research aims
to outputting a generalized model that can answer various styles of reasoning questions given
a few examples of in-domain questions and answers with explanations. Specifically, I will
introduce a novel approach [75] aiming to bridge the gap between the inherent capabilities of
language models and the human brain’s metacognitive processes, offering insights into how
language models can self-enhance their reasoning abilities without the need for supervised
data.

The subsequent chapters provide a detailed exploration of these methodologies, from
seed-guided hierarchical concept organization to fine-grained entity extraction and knowledge-
guided commonsense reasoning, offering a holistic view and pave the way for more adaptable,

label-efficient, and user-centric knowledge acquisition and utilization systems.

CHAPTER 2: SEED-GUIDED HIERARCHICAL CONCEPT
ORGANIZATION

Ontology is a fundamental form of knowledge representation to organize concepts, entities
and documents in a hierarchical way, from coarse-grained levels to fine-grained levels. For
downstream knowledge-rich applications such as topic discovery, personalized recommendation
and question answering, an ontology can serve as a hierarchical label space to pinpoint groups
of text segments to a related concept or label. However, traditional ontologies often fall
short in capturing user-specific interests and relations, leading to potential irrelevance in
specialized domains. Such challenges arise from the uncontrolled expansion of ontologies
and concepts without proper guidance, leading to the inclusion of cross-category entities.
Moreover, existing ontology construction techniques typically requires heavy human efforts.
In this chapter, we focus on these challenges and propose novel approaches to make ontologies
more adaptable and user-centric. Specifically, we introduce a fully automated approach to
address semantic drift in entity set expansion and present a new framework for seed-guided

topical ontology construction.

2.1 OVERVIEW

Ontology is an essential form of knowledge representation and plays an important role in
a wide range of applications [223], 207, 129]. An ontology constructed from a large corpus
organizes a set of concepts into a hierarchy, making it clear for people to understand relations
between concepts. While most ontology construction methods focus on organizing hypernym-
hyponym pairs into tree structures, these “universal” taxonomies might not meet specific
user needs. For instance, a generic ontology might be overwhelmed with irrelevant terms
or have nodes represented by single words, limiting semantic understanding. Our goal is to
construct user-guided topical ontology in an automated way. To construct or expand the
tree structure of an ontology, can be mainly divided into two dimensions: width expansion
and depth expansion. Therefore, entity set expansion can serve as a first step of ontology
construction, where parallel nodes on the same level are expanded. A second step is to
extract potential user-interested relations on the seed ontology, before expanding it to a more
complete ontology. We will discuss techniques for these two steps sequentially.

Existing set expansion methods that rely on a large corpus typically bootstrap the initial
seeds by refining the context feature pool and candidate term pool in an iterative manner.
Though achieving reasonably good results, they still suffer from the problems of semantic

drifting and entity intrusion in the expansion process. Typical errors come from closely

related entities of different granularity or semantic types. As shown in Figure 2.1} despite
the difference in granularity of “Canada” as a country and “Ontario” as a Canadian province,
they share some local contexts. These shared contexts, when introduced into the context
feature pool, result in cross-category expansion and harm the final output continuously in
the iterative process.

Such kind of semantic drift is caused by the uncontrolled expansion without guidance.
Some previous studies [106} 179, 86] have explored to incorporate external knowledge in
set expansion using either implicit supervision from other queries or human given negative
examples. The applicability of these methods is often hindered by their prerequisites as they

are not adaptable to specialized domains with very few experts.

Skip-grams

the United Kingdom,
__, Australia

Entities

the USA, __ .

Canada

(country) , __, located at

Montreal , __,

the Canadian
province , ___

(Canadian province)

Figure 2.1: Examples of shared skip-grams between country and province/states entities.

To tackle the problem of semantic drift in set expansion, I propose a fully automated
approach Set-CoExpan without negative sets or assumptions explicitly provided by human
experts. This is done by capturing parallel relations between entities: word embedding has
shown effective in capturing certain relations between entities, such as the parallelism of
v(Berlin) — v(Germany) and v(Paris) — v(France) in the embedding space, which can
also be used to distinguish City from Country. Recognizing relationships between entities
from different semantic classes can help in set co-expansion. This co-expansion uses signals
from related classes to guide the expansion direction, avoiding overlapping of entities from
related classes by leveraging mutually exclusive signals. Specifically, the method contains an
auxiliary sets generation module that extracts entities that share certain relations to thus
different from the target semantic class, and a co-expansion module that utilizes the mutual
exclusive signals to extract features with the most discriminative power to expand multiple
sets simultaneously. Comprehensive experiments prove the effectiveness of Set-CoExpan and
justify its generalizability.

As for topical ontology construction, I focus on a weakly-supervised setting, where the user

Input 1: Seed Taxonomy

Seafood Dessert Seafood

Cake Ice-cream

< 3 Cake Oysters ' Crabs
Creme Bralée Oysters | Crabs
m Tiramisu Fresh Oysters | King Crabs
Chocolate Cake Raw Oysters | Snow Crabs
Cheesecal ke Shellfish ! Stone Crabs
. . Bread Pudding Fried Oysters ! Crab Legs
User Input 2: Corpus Output: Topical Taxonomy

Figure 2.2: Seed-guided topical ontology construction. User inputs a partial ontology,
and CoRel extracts a more complete topical ontology based on user-interested aspect and
relation, with each node represented by a cluster of words.

provides a seed ontology as guidance, and a more complete topical ontology is generated from
text corpus, with each node represented by a cluster of terms (topics). As shown in Figure
2.2 a user provides a seed ontology and wants to generate a more complete food ontology
from a given corpus. Such a more complete topical ontology can be hopefully constructed by
expanding various types of food both in width and depth, with a cluster of descriptive terms
for each concept node as a topic.

I proposed a novel framework CoRel, which consists of two modules: a relation transferring
module that passes the user-interested relation along multiple paths in different directions for
ontology structure completion; and a concept learning module that enriches the semantics
for a ontology of words by extracting distinctive terms. Comprehensive experiments on

real-world data with qualitative and quantitative studies that prove the effectiveness of CoRel.

2.2 RELATED WORK

Corpus-Based Set Expansion. Previous studies [40], [61) 62, [165], [122] on corpus-based
set extraction or expansion bootstrap the initials seeds in an iterative way by refining the
context feature pool and candidate pool. Specifically, context features narrowed down the
candidates by requiring co-occurrence between candidates and patterns (like n-gram or
skip-gram); candidates refine context features by providing supervision to learn the most
representative features commonly shared by expanded seeds. SetExpan [165], which has
the most similar setting with our work, uses a context feature selection module to select
denoised context features and a rank ensemble module to combine skip-gram patterns with

distributional similarity. setExpander [I122] captures distributional similarity on five different

context types and trains a classifier to combine multiple contexts. The classifier is pre-trained
on a labeled dataset with seeds and candidate terms. There are also other related methods
that are designed for different principles. CaSE|[214] pursues efficiency by incorporating
lexical patterns and distributional similarity in candidate scoring function to make a one-time
ranking result. Egoset [158| deals with multifaceted expansion that allows for each seed term
to generate multiple sets belonging to different senses. [6] focuses on singleton expansion
(i.e.. only one seed in the initial seed set). Above methods only pay attention to the user
given query words, suffering from possible semantic drift while expanding the seed set. Our
proposed method in this chapter focuses on this issue by expanding multiple exclusive sets

simultaneously for distinction across different categories.

Unsupervised Ontology Construction. Instance-based ontology construction algorithms
perform a two-step approach: Hypernym-hyponym pairs are first extracted from a corpus
and then organized into a tree structure. Hearst patterns [68] like “NP such as NP” are
used to acquire parent-child pairs that satisfy the “is-a” relation. Later, researchers design
more lexical patterns [140] [138] or extract such patterns automatically [173] [170] in a
bootstrapping method. These pattern-based methods suffer from low recall due to the diversity
of expressions. Distributional methods alleviate the problem of sparsity by representing
each word as a low-dimensional vector to capture their semantic similarity. There exist
approaches [192] [I7] inspired by Distributional Inclusion Hypothesis [227] (the context of
a hyponym should be the subset of that of a hypernym) to detect hypernym-hyponym
pairs without supervision. As another line of work, clustering-based ontology construction
methods first learn a representation space for terms, then perform clustering to separate
terms into different topics by different measures [26, 114), 187, 205]. TaxoGen [220] finds
fine-grained topics by spherical clustering and local-corpus embedding. Hierarchical topic
modeling algorithms [11], [132] are comparable to these methods, since they organize terms to

form a ontology of topics, each represented by a word distribution.

Seed-Guided Ontology Construction. For seed-guided ontology construction, HiEx-
pan [166] integrates a two-step approach into a tree expansion process by width and depth
expansion of the original seed ontology. Specifically, for width expansion that adds sibling
nodes to those sharing the same parent, the method uses a set expansion algorithm [165] that
leverages skip-gram features to calculate similarity between terms. For depth expansion that
attaches children nodes to new node (e.g., attaching “oyster” to “seafood”), they use word
analogy [131] to capture relations between parent-child pairs. Our proposed method in this
chapter integrates the advantages of both clustering-based and instance-based methods, by

transferring relations within node pairs and enriching concept semantics with word embedding

Australia Germany France Brisbane Queensland

Australia Stuttgart NSW
" Germany Toulouse
Australia Brisbane Stuttgart Toulouse Saxony
Canberra 1| Hamberg ™N Lyon France Pari Bavaria
Germany > N y N aris
Perth Saxony Rennes Italy Darwin Tasmania
France L1 q Paris Luxembourg Dortmund Victoria
Queensland |_1 Bavaria Canada Berlin Hesse
Current Set Nsw Belgium Bordeaux Saxony-Anhalt
(1) Generating Auxiliary Sets (2) Multiple sets Co-expansion

Figure 2.3: Workflow of Set-CoExpan in one iteration: For user-input country names, related
terms such as provinces and cities are retrieved and clustered into auxiliary sets. Multiple
sets are then co-expanded by extracting discriminative context features.

clustering.

2.3 DISCOVERING PARALLEL INSTANCES THROUGH SET EXPANSION

In this section, we introduce our proposed method Set-CoExpan for entity set expansion,
which aims to enrich same-type entities, and could be a crucial first step for ontology
construction. For example, given “ United States”, “ Canada”, and “ China”, set expansion
algorithms would extend the set by terms such as “France”, “Germany” and “ Australia”,

which also belong to the semantic class of Country.

Framework. The workflow of Set-CoExpan is shown in Figure 2.3] It consists of two
modules that are operated iteratively: Auxiliary sets generation module that finds auxiliary
sets holding certain relations with the target set in an unsupervised way, and multiple sets
co-expansion module that takes multiple sets as input and extracts the most discriminative
features to tell the target class from auxiliary sets. The auxiliary sets generation module first
retrieves semantically related terms to each seed element in an embedding space that captures
topical similarity. These related terms are then grouped by their semantic types, captured
unsupervisedly by intra-seed clustering and inter-seed merging. The latter step captures
parallel relations among inter-seed terms by imposing a parallelogram in the embedding
space. The second module, multiple sets co-expansion, takes the target seed set as well as
auxiliary sets as input. By incorporating knowledge from both seed set and auxiliary sets,
we can control the expanding directions of multiple sets. Specifically, context features are
scored by how well they can tell different sets apart, and the algorithm drives the expanding

direction away from ambiguous areas.

Semantic Space Learning. We first learn a semantic space for related terms retrieval for

core entities based on Word2Vec [I131] which is commonly used to retrieve relevant words of

a certain seed in the embedding space. training objective is

|d| |d|

=YY Y Pl =YY Y 21)

Ve, W, 7
deD i=1 0<|j—i|<h deD i=1 0<|j—i|<h ij,ev Wi Tw;

Besides this local context, we also add global context in embedding training, which assumes
that words appeared in the same document tend to be semantically similar. A distributed
representation for document as context is added to fulfill this goal. The training objective
resembles the above one while the goal is to present which document is correct for the target

word to appear in.
|d| |d|

L= Pluw) =YY 4"t (2.2)

Vo, U 1/
deD i=1 deD i=1 Zd €D "wi™d

The global context ensures that words close in the embedding space are topically similar,
thus complement the conventional word embedding like Word2Vec that only looks into a
very small window size. At the end of each epoch in embedding training, for each entity e,
we can retrieve the k most similar words by computing the following score for each entity €’

in the vocabulary and get the k highest ones, denoted as Z..
Sim(e',e) = cos(we , we) (2.3)

We refine the embedding space by adding a regularization term to push words in Z, toward
their relevant seed entity e while away from the other ones in each epoch. Let E be a list of

entities in the target seed set, ﬁ =[er, €2, ,eg)), € € S.

L =33 KL(w e Zz)|Sim(w, E)) (2.4)

e€eS weZ,

By minimizing the above KL-divergence, the most similar words are trained to be closer to
their relevant entities, and will gradually impact other similar words to be clustered around
the relevant entity in later iterations of embedding training.

The overall training objective is the sum of global, local and regularization loss. Finally,

the most relevant words for each entity is retrieved at the last epoch of embedding training.

Auxiliary Sets Generation. Here we introduce how we generate multiple auxiliary sets
that are formed by entities of parallel relation to the seed entities in the target semantic
class.

Figure shows an example of how new semantic classes are confirmed by the constraint of

T N\
_(Brisbane) New Set: Cities
Canberra -

N »fg\rT, N— e Hamburg
Stuggart >
s ==
Orig. Set: Countries | @ Australia
T TN @ Germany
[Queensland)

CoNswo I

< /' .
e ~ Bavaria A
New Set: Provinces T Saxony

Figure 2.4: Generating Sets of entities from different semantic classes.

cross-seed parallel relations. Specifically, for seed countries “Australia” and “Germany”, their
retrieved relevant words can be first clustered into initial groups belonging to certain seed
entities: Gaustratia = { T hustratiar I Austratiaf» WHETe T sraia = {Brisbane, Canberra, Perth}
and g%, .iraia = {Queensland, NSW}. For entity “Germany”, several groups can also be
formed to generate Ggermany- Then the groups with same cross-entity relations will be
detected as g}, qpania = {Brisbane, Canberra, Perth} and gé,,pman, = {Hamburg, Stuggart}
are both cities in their subscript countries. Then a new parallel set could be confirmed by
Merging gl aratia AN Ghermany t0 S1, where Sy is the subset of C1, a semantic class of cities.

We use constrained agglomerative clustering to merge similar entites, with similarity
measure as the Euclidean distance between terms in the BERT [38] embedding space, where
the representation of each entity is calculated by averaging the contextualized embedding of
each occurrence in the corpus. We choose “complete” linkage for constructing more compact
clusters.

Inspired by the word analogy examples in [I31] that shows the embedding space hold the
property of capturing the relations between words, studies on relation extraction [12 [191] [108]
relies on the idea that for a triplet of head <entity, relation, tail entity> and their vector

representation <h,r,t>, it holds that:
h+r~t (2.5)

This equation basically shows that if two pairs of entities have same relations, then their
difference in the vector space are parallel. The theoretical explanation is also given in [3].
By now we have generated seeds for multiple parallel sets that hold strong relations with
the original input set S. These strong relations ensure that they are related but different
from the original semantic class. We will show how to utilize seeds from these sets to benefit

our model in distinguishing between these different semantic classes.

10

Co-Expanding Core Set and Auxiliary Sets. Conventional Set Expansion methods
often iteratively refine two elements: feature pool and candidate pool. Feature pool stores
common context features of seed entities, which best describe the target semantic class. When
more entities are added into the original set, the pattern pool will be refined by re-selecting
the context features (e.g., skip-gram) that maximize the similarity of user given and currently
expanded seeds. Candidate pool stores the possible candidates to be expanded, and they are
narrowed down by co-occurrence with patterns in the pattern pool. Weights of connecting
an entity and a pattern include TF-IDF transformation, PMI, discounted PMI , BM-25
scoring and etc. In our model, we choose TF-IDF transformation as the skip-gram weights,

specifically, the score of a skip-gram to an entity is defined as

log |E|

=log(l + X..)|—
fe,c Og(+ 676)[10gX5/,c

] (2.6)
where X, . is the number of co-occurrence between entity e and context ¢, and |E| is the
number of candidate entities. This score function resembles TF-IDF in that entities can be
seen as “documents”, while skip-grams are the “terms” that they contain.

To capturing contrastive skip-gram contexts for multiple sets co-expansion, we can score
skip-grams shared by more pairs of entities belonging to the same set higher, while penalize
skip-grams shared by arbitrary pairs from different sets. Then we have the following criterion

to select the most contrastive skip-gram context features.

F* = argmp@xz Z Sim(e;, ej|F) — Z Z Sim(e;, e;|F) (2.7)

Sk ei,eleSk Sk,Sk/ eiESk,ejESk/

The context dependent similarity function Sim(e;, e;|F') is defined as the same in [165]
using the weighted Jaccard similarity measure:
ZfeF min(fq,ca fez,c)

Sim(ey, eo| F) = S e X (for e fonr) (2.8)

To solve the NP-hard optimization problem in Equation 2.7, we apply a greedy selection
process that increments the score the most, and would benefit us in selecting complimentary
features instead of focusing on strong but similar signals. The above criterion chooses
skip-gram contexts that force satellite sets as well as the core set to be coherent, so that each

of them will expand in a right direction that avoid penetrating each other’s territories.

11

Methods Wiki APR
MAP@10 | MAP@20 | MAP@50 | MAP@10 | MAP@20 | MAP@50
EgoSet o . . o . .
CaSE 0.897 0.806 0.588 0.619 0.494 0.330
SetExpander 0.499 0.439 0.321 0.287 0.208 0.120
SetExpan 0.944 0.921 0.720 0.789 0.763 0.639
BERT 0.850 0.830 0.760
Full Model (no aux.) 0.964 0.950 0.861
Full Model (no flex.) 0.973 0.961 0.886 .. . y
Full Model 0.976 0.964 0.899 0.933 0.915 0.830

Table 2.1: Mean Average Precision across all queries on Wiki and APR.

2.4 EVALUATION OF ENTITY SET EXPANSION

We conduct our experiments on two large corpus also used in previous studies [165]: (1)
W ki is a subset of Wikipedia English dump from May 2011, which contains 780,556 entries.
(2) APR contains news articles published by two news platforms, Associated Press and
Reuters in the year of 2015, and include a total of xxx articles. We use the same queries of
seed sets and ground truth of each semantic classes with previous studies as well. For Wiki
dataset, there are 8 semantic classes, and 5 queries per class. For APR dataset, there are 4
semantic classes, and 5 queries for each class. Each query contains three seeds belonging to

the same semantic class.

Evaluation Metric. We use Mean Average Precision (MAP) to evaluate the ranking result
of our methods and other baseline methods. For a query g with 3 seeds, we take the first 10,
20, 50 entities of each algorithm as the output list L and calculate Average Precision at k,

defined as .

AP(L) =Y P(k)Ar(k) (2.9)

i=1
where P(k) denotes precision@k and Deltar(k) denotes the change in recall from the k — 1"
term to the k' term. Mean Average Precision at k is defined as the mean of Average Precision

at k over all queries.
MAP, =Y AP(L) (2.10)
L

Results and Discussions. For our method and all baseline methods, we use the same
queries in the datasets, and report M APQk (k = 10,20, 50) in Table . The result clearly

shows that our model has the best performance over all the methods in both datasets, which

12

justifies that auxiliary sets are indeed improve the set expansion process by providing clearer
discriminative context features. What’s more, our method has a larger margin over other
baselines when the ranking list is longer, which indicates that when the seed set gradually
grows out of control and more noises appear, our method is able to steer the direction of
expanding and setting barriers for out-of-category words to come in. We also observe that
SetExpan is the strongest among the baselines and SetExpander has a rather low performance
because its classifier is a pre-trained one, and might not adapt well to other corpus. CaSE
provides a one-time ranking result, which sacrifices performance in pursuit of efficiency.
BERT has a rather stable performance over different length of ranking lists, but it is still not
better than our method, which shows that distributional similarity alone is not enough for

generating accurate expansion.

Case Study. We further break down the results on Wiki Dataset into different semantic
classes to demonstrate the power of adding auxiliary sets. In Table 2.2] we show the
comparison of our full model and the ablation without auxiliary sets in each class. In the
semantic class level, we can see for classes like “ Countries”, “ TV Channels” and “ Companies”,
the auxiliary sets help improve the performance to a great extent. On the other hand, for some
categories like “ US States”, “ Diseases” and “Sports Leagues’, the improvement is marginal,
which implies that in these situations our method does not generate meaningful auxiliary
sets to learn from. Since our method of generating auxiliary sets is entirely unsupervised, it

is not guaranteed that each semantic class can find some related satellite sets.

Semantic Class | Full Model | Full Model (no aux.)
Countries 0.990 0.968
TV Channels 0.901 0.847
US States 0.930 0.930
Diseases 0.979 0.963
Sports Leagues 0.879 0.860
Chinese Provinces 0.693 0.680
Political Parties 0.960 0.927
Companies 0.857 0.709

Table 2.2: MAP@50 of Full Model vs. Full Model (no aux.) on different semantic classes in
Wiki Dataset.

Effects of Auxiliary Sets in Guiding Core Set Expansion. To justify that the
auxiliary sets help guide the set expansion process, we randomly select three semantic class in

the Wiki Dataset and show the core set expansion results under the guide of these auxiliary

13

sets in Table [2.3] In comparison, we also show the set expansion result without any auxiliary
sets. In all three cases, our algorithm successfully extracts meaningful satellite sets that are

relevant to the core set but belong to different types.

Dimension Companies Countries TV Channels
Query Myspace, Youtube, Twitter | Australia, France, Germany | ESPN News, ESPN Classic, ABC
Facebook Italy Comedy Central
Ebay Luxembourg STAR Plus
LiveJournal Canada PB
Expansion result Tunes (x) Belgiu@ B
of core sot geyle S%aicesmar}l Agstr.aha gg\é
. . aily Telegraph pain
(with satellite sets) Amazon The Netherlands Bravo
Border Denmark the CBS
New York Times England the CW
Napster Switzerland ABC Television
Facebook Italy PB
iTunes (x) Luxembourg TB
LiveJournal Canada STAR Plus
. Digg (x Belgium FOX Sports Net
Expansion result GMgfﬂ((x)) Spixin Comedy Central
of core set .
(without satellite sets) New .Statesman Australia CBS
Flickr (x) England NBC
Daily Telegraph Scandinavia () Bravo
WordPress (x) Switzerland the Price is Right (x)
Paypal Ireland Cartoon Network

Table 2.3: Satellite sets of different dimensions and their contribution to overall performance

2.5 SEED-GUIDED TOPICAL ONTOLOGY CONSTRUCTION

In this section, we introduce seed-guided topical ontology construction, where user provides
a seed ontology as guidance, and a more complete topical ontology is generated from text
corpus, with each node represented by a cluster of terms (topics).

My proposed framework CoRel has two modules as shown in 2.2} (i) A relation transferring
module learns the specific relation preserved in seed ontology and attaches new concepts to
existing nodes to complete the ontology structure.; and (ii) a concept learning module captures
user-interested aspects and enriches the semantics of each concept node. Two challenges
are met in the course: (1) Fine-grained concept names can be close in the embedding space,
and enriching the concepts might result in relevant but not distinctive terms (e.g., “sugar” is
relevant to both “cake” and “ice-cream”); and (2) with minimal user input, it is nontrivial
to directly apply weakly supervised relation extraction methods to expand the ontology
structure. Overall, noisy terms may harm the quality of new topics found.

To address these challenges, the relation transferring module first captures the relation

preserved in seed parent-child pairs and transfers it upwards and downwards for finding the

14

first-layer topics and subtopics, attached by a co-clustering technique to remove inconsistent
subtopics. The concept learning module learns a discriminative embedding space by jointly
embedding the ontology with text and separating close concepts in the embedding space.

The two modules are introduced in the following paragraphs.

Relation Classifier Training. The relation transferring module first captures the relation
between user given (p,c) pairs by training a relation classifier on the given corpus. The
relation classifier takes a relation statement of a pair of terms as input, and judges whether
there exists user-interested relation and which direction it is between the pair. After training
the relation classifier, we transfer the relation upwards for root node discovery, and then
transfer the relation downwards to find new topics/subtopics as the child of root/topic node.
In both the example and evaluation we construct two layers of topics, though this module
can be applied to discover more fine-grained topics by further going down.

Previous studies show that word analogy can capture relations between words to some
extent [131], [166], but vector offset is only preserved in a local area in the embedding space
[49]. To deal with more complicated relations, our choice of the model is inspired by the
effectiveness of the pre-trained deep language model, BERT [38], on wide downstream
applications. [I74] also shows its power in few-shot relation learning by training the model in
a distant supervised setting using large amounts of pairs of entities on Wikipedia corpus. In
our setting, user gives minimal seeds which limits the potential to train such deep language
model, thus we only employ the pre-trained BERT model and train a relation classifier as
shown in Figure [2.6]

We assume that if a pair of (p,c) co-occurs in a sentence in the corpus, then that sentence
implies their relation. We refer to sentences containing (p,c) as their relation statements
and leverage a pre-trained deep language model to understand the relation statements. To

learn the user-interested specific relation, we extract all the relation statements of user-given

Lunch Food Dish

Root Lunch Food Dish Lunch Food Dish . ’ .
QQQ QQQ *ee
\ ST X YOS
Dessert Dessert .' ,' L Pork - -
N Dessert Seafood Pork
|:> D " Cake Shrimp Roasted-
essel i
Seafood Seafood UG G [P
I\ /
Cake lce-cream Cake lIce-cream Crab ar s| Cake Ice-cream Char siu Sausage
Ice -eream Oyst er Sausage Chocolate Cake Sundae Pork bun Bacon
Cheesecake Milkshake Chasu Ham
Step 1: Relation Step 2: Relation Step 3: Concept learning for generating
transferring upwards transferring downwards topical clusters

Figure 2.5: Workflow of CoRel.

15

IR E1—E2)
- E2—»E1 | Linear Layer + Softmax |
No user-
interested é Concatenation
relation
L [[[Tel [[[Jel[[[|
[MASK] T [MASK]

| Pre-trained Language Model |

[CLS] We don’t serve [MASK] today (except for [MASK]) . [SEP]
A

We don’t serve desserts today (except for ice_cream) .

Figure 2.6: Our weakly supervised relation classifier.

(po,co) as positive training samples. We collect negative training sentences in two ways: (1)
relation statements of sibling nodes, thus avoiding the model to only find closely related
terms; and (2) random sentences from the corpus, so the model can learn from irrelevant
contexts to avoid overfitting.

We take the output of two “[MASK]” tokens from the last layer of the pre-trained language
model, and concatenate them to be the input of the classification layer, where we use a simple
linear layer before the softmax layer. The output label chooses the relation from e; to e,
among three classes in the relation set Q: (e;—es) (i.e., e; is a parent node of ey), (ea—>eq),
or non-user interested relation.

To fully utilize the asymmetric property along the ontology edges, we augment each input
training sequence by reversing the order of concatenation of el and e2. Then the label would
switch if user-interested relation exists between the pair, but will not change otherwise.

After deriving a relation classifier, we can easily transfer the user-interested relation along
the paths in the ontology. This is done by targeting an existing node and finding entities to

be its potential parent node (transferring upwards) or child node (transferring downwards).

Ontology Completion by Relation Transferring. To find the parent or child of an
existing node, we extract relation statements of a concept e and a candidate term w into the
relation classifier to judge sentence-based relations. Corpus-based relation between w and e
is then averaged over confident sentence-based results over the corpus, with the confidence
threshold being 0.

2 s LKL (Up,) > 0)

Score(w = €) = S S (KL ({py) >)

(2.11)

where s, denotes relation statements in which the relation of ¢ exists, p,, denotes the output

probability from the relation classifier, and [is the uniform distribution vector among three

16

classes of relations. Thus if the KL divergence between the two distributions is larger than a
threshold 0, we treat the prediction as a confident one. Eq. calculates the portion of
term w being the parent of concept e among all the confident predictions, and we confirm w
as the parent node of e if the portion is larger than a threshold. For each user-given first-layer
topic, we can generate a list of parent nodes, and their common parent nodes are treated as
root nodes R.

We apply the relation classifier to extract child terms for each root node r € R. This is
done in a similar way as root node discovery, but we only reverse the direction of relation.
Thus we need to replace (w — e) in Eq. with (r — w). New topics are selected by

their average score over all root nodes.

> rer Score(r — w)

7 (2.12)

Score(R — w) =

Generating Topical Clusters by Concept Learning. Our concept learning module is
used to learn a discriminative embedding space, so that each concept is surrounded by its
representative terms. Within this embedding space, subtopic candidates are also clustered to
form coherent subtopic nodes. This is motivated by the fact that relevant concept names
can be close to each other in the embedding space, and directly using unsupervised word
embedding such as Word2Vec [I31] might result in relevant but not distinctive terms (e.g.,
“food‘’ is relevant to both “seafood‘’ and “dessert‘’). Thus we use the expanded ontology as
input to guide the word embedding learning process.

We want to regularize the embedding space to be discriminative among the concepts in
the expanded ontology, we wish to form topical clusters in the embedding space where each
concept embedding is surrounded by its representative terms. We apply similar semantic
learning methods as mentioned in section [2.3]

To find subtopics for existing concepts in the seed ontology, we apply two constraints for
generating potential candidates for subtopics: (1) Topical constraints: candidates should
belong to the topic cluster C, of that concept e; and (2) relational constraints: candidates
should bear user-interested relation with the concept. The two constraints can be applied
by using the learned relation classifier and concept embedding. However, directly using the
few-shot relation classifier can still include noisy and non-consistent terms, thus we carry out
a co-clustering method to further filter out those noisy terms.

An example is shown in Table where we use a Topic-Type table to organize the valid
terms from the relation classifier. Valid terms are divided in columns by semantic meaning
and in rows by semantic type (e.g., food, cooking style or sauces). It is easily observable that

the fourth subtopic of “pieces, slices” is an outlier sharing little type similarity with other

17

subtopics. Thus we apply co-clustering method to retain those subtopics sharing similar

semantic type distribution.

Beef Pork Bread
sliced beef | sirloin, rare beef | roasted pork flat bread, wheat
stewed toasted
pieces, slices
black pepper | spicy sauce buttery

Table 2.4: An example of a Topic-Type table.

We construct an indicative (0/1) Topic-Type matrix to represent the joint distribution
of subtopics and types of candidates from the Topic-Type table as shown in Table [2.4] and
the table is created by the following process: The topic-wise clustering is done by affinity
propagation (AP) clustering [47] in the discriminative embedding space trained by concept
learning, where the concepts are separated away from each other to avoid overlapping. The
type-wise clustering is conducted by AP on the average BERT embedding space: We first
retrieve the contextualized embedding of each candidate mention using the last layer output
of BERT, and then average over the mentions to get the embedding for each candidate.

Finally, to extract high quality subtopics, we apply co-clustering [90] on the indicative

Topic-Type matrix M and define a consistency score for each cluster.

Zrow label[i|==k Zcol. labellj]==k Mi,j
Zrow label[i]==k Zcol. label[j]== 1

Consistency(Clustery) = (2.13)

If the consistency score of a cluster is high, then the cluster consists of multiple subtopics
that share similar semantic types. We retain high quality subtopics by setting a threshold

for the consistency score.

2.6 EVALUATION OF TOPICAL ONTOLOGY CONSTRUCTION

In this section we demonstrate the evaluation of our proposed method CoRel. Our ex-
periments are conducted on two large real-world datasets: (1) DBLP contains around 157
thousand abstracts from publications in the field of computer science. For preprocessing, we
use AutoPhrase [164] to extract meaningful phrases to serve as our vocabulary, we further
discard infrequent terms occuring less than 50 times, resulting in 16650 terms. (2) Yelp is

collected from the recent released Yelp Dataset Challengdl], containing around 1.08 million

thttps:/ /www.yelp.com /dataset /challenge

18

Topics Method All Subtopics found
Support vector machine, Decision trees, Neural networks, Regression models, Genetic algorithm,
Naive Bayes, Classification, Random forest, Markov random field, Nearest Neighbor, Unsupervised learning,
DBLP-Machine | Hi-Expan Artificial neural networks (<), Multilayer perceptron (<), Support vector regression (<),
Learning Conditional random fields (3<), hidden markov models (<), Radial basis function(s<), Self-organizing map (3<),
Recurrent neural networks (<), Extreme learning machine(¢<), Particle swarm optimization (x),
Support vector machine, Decision trees, Neural networks, Regression, Genetic algorithm,
CoRel Bayesian networks, Classification, Random forest, Inductive logic programming, Reinforcement learning,
Active learning, Boosting algorithms, Transfer learning, object recognition (x), Text classification (x)
association rule mining, text mining, web mining, outlier detection, anomaly detection,
spectral clustering, social network analysis, density estimation, (<) association rules (5<)

DBLP-Data Hi-Expan

mng association rule mining, text mining, web mining, outlier detection, anomaly detection,
CoRel clustering algorithms, social network analysis, data stream mining, data visualization,
online analytical processing, rule discovery, predictive modeling, sequence analysis (¥<)
Hi-Expan cake, ice cream, pastries, latte, cream, gelato, sauce (x), cheesecake (3<), taste (x), pancake (3<)
Yelp-Dessert : s - T
CoRel cake, ice cream, pastries, milk tea, cream, fruit, juice, cooked (x), sugar (x)
Yelnp-Seafood Hi-Expan fish, shrimps, salmon (<), meat (x), chicken (x), beef (x), steak (x), pork (x), rice (x)
P CoRel fish, shrimps, crab, scallop, oysters, mussel, camarones (5<), soy sauce (x), pho (x), low mein (x)

Table 2.5: Comparison of subtopics found under the same topics.

restaurant reviews. Similarly, we extract meaningful phrases and remove infrequent terms,

resulting in 14619 terms.

Qualitative Results. Figure [2.7] shows the input seed ontology and parts of the topical
ontology generated by CoRel on both datasets. For the Yelp dataset, we use minimal user
input by only giving child nodes for one input topic to test the robustness of our method.
The output in Figure shows that we can find new food types such as “soup”, “pork” and
“beet”. For subtopic finding, we can also distinguish between various western and eastern
cooking style of pork. The word clusters for each topic/subtopic are obtained by the concept
learning module trained on the corpus and the whole ontology. For DBLP, we use the same
input seed as Hi-Expan [166]. We show that CoRel successfully finds various computer science
fields in Figure other than user’s input, such as “information retrieval” and “pattern
recognition”. CoRel is also capable of finding separate fields for seed and new research areas
found.

We exhibit the effectiveness of our relation learning module by comparing the subtopics
we found with those of HiExpan (seed-guided tree expansion baseline). We randomly choose
the common topics shared by both methods, and show all subtopics found by each of them
in Table [2.5] The bold ones are seeds from the input ontology, while the wrong subtopics are
marked by (x). Since generating synonyms or included concepts at the same level harms the
overall quality of a ontology, we mark these terms as redundant (5<). For example, under the
topic of “DBLP-Machine Learning”, HiExpan generates lots of synonyms and subconcepts
for “neural networks” at the same level, such as “artificial neural networks” and “multilayer
perceptron”. These terms should be formed in the topic of “neural networks” instead of its

sibling nodes. Our design of concept learning puts these terms into the distinctive term

19

[-]

[

Dessert

’ Salad

’ Seafood

[

’ Cake [

Ice-cream ‘ ’ Pastries

(a) Seed of Yelp

Dessert Seafood Salad Soup Pork Beef
Caramel Crabs Dressing Lentil soup Roasted pork Tendon
Pudding Clams Mixed Greens Chowder Pork shoulder Tripe
Strawberry Crawfish Spring Mix Butternut squash soup Shredded pork Shank
Cheesecake Squid Lettuce Tom yum soup Pork rind Sliced beef
Chocolate Shellfish Tomato Noodle soup Marinated pork Flank steak
Crab Shrimps Oysters Fish Char siu Pork Steak Sausage
Crab Shrimp Fresh oysters Seabass Char siu Pork rib Kielbasa sausage
King crab Fried shrimp Frog legs Halibut Roasted pork Pork tenderloin Bacon
King crab legs Jumbo shrimp Raw oysters Trout Minced pork Chops Crispy bacon
Snow crab legs Prawns Oyster Unagi Pork bun Crispy skin Sauerkraut
Crab legs Scampi Rockefeller Swordfish Xiao long bao Pork loin Ham

(b) Parts of the ontology generated by CoRel on the Yelp dataset

[ﬁl.

l Machine Learning ‘ l Data Mining ‘ l Natural Language Processing ‘
Support vector Decision Neural Text Web Association Named Entity Machine Information
machines Trees Networks Mining Mining Rule Mining Recognition Translation Extraction
(c) Seed of DBLP
*
Machine Learning Image Processing Data Mining Information Retrieval Computer Security Pattern Recognition Database
Statistical machine learning Image analysis KDD Text retrieval Authentication Pattern recognition Databases
Supervised learning Edge detection Knowledge discovery Document retrieval Information security Pattern classification Repositories

Ensemble learning
Transfer learning
Meta-learning

Machine vision
Image enhancement
Medical imaging

Data analysis
Text mining
Cluster analysis

Retrieval models
Retrieval systems

Pki
Cryptographic
Key management

Feature extraction
Image recognition
Image classification

Biological database
Object database
Relational database

Outlier Detection

Clustering

Data Stream Miniing

Social Network Analysis

Hand-writing Recognition

Person Identification

Image Matching

Anomaly detection
Network intrusion detection
Fraud
Intrusion
Intrusion detection

Clustering methods
Clustering algorithms
Hierarchical clustering

K-means
Agglomerative clustering

Streaming data
Data stream
Temporal data
Continuous queries
Trajectory data

Online social networks
Social media
Link analysis
Communities

Centrality

Hand-written characters
Chinese characters
Character recognition
Signature verification
ocr

Personal identification
Biometrics
Iris recognition
Gabor wavelets
Biometric systems

Image matching
Zernike moments
Shape matching
Pose estimation
Shape representation

(d) Parts of the ontology generated by CoRel on the DBLP dataset

Figure 2.7: Input and part of output ontology generated by CoRel on DBLP and Yelp.

clusters of corresponding topics, thus avoiding such pitfalls. Under the topic of “Yelp-

Seafood”, we show that simply using word analogy is not robust in capturing parallel relations

in the global embedding space, and it is essential to utilize more advance text representations

and operations upon them as in our relation learning module.

Quantitative Results.

The evaluation of the quality of a topical ontology is a challenging

task since there are different aspects to be considered, and it is hard to construct a gold

standard ontology that contains all the correct child nodes under each parent node. Following

[166, 220], we propose three evaluation metrics: Term Coherency, Relation F1 and Sibling

Distinctiveness in this study.

e Term Coherency (TC) measures the semantic coherence of words in a topic.

e Relation F1 measures the portions of correct parent-children pairs in a ontology that

20

preserve user-interested relation.

e Sibling Distinctiveness (SD) measures how well the topics are distinctive from their

siblings.

We calculate the three metrics as follows. For TC, we recruited 5 Computer Science
students to judge the results. Specifically, we extract the top 10 representative words under
each topic, ask the evaluators to divide these words into different clusters by concepts and
compute the size of the cluster with the most words, thus a mixture of terms from different
concepts scores lower. Then we take the mean of the results given by all the evaluators as
the T'C' of this topic, and average the T'C of all the topics in a ontology.

For Relation F1, we show the evaluators all the parent-children pairs of topics in a ontology
and ask them to judge independently whether each pair truly holds user-interested relation.
Then we use majority votes to label the pairs and use all the true parent-children pairs from
different methods to construct a gold standard ontology. Since each topic is represented by a
cluster of words, for simplicity, we consider two clusters as the same if they share the same
concept. The Relation F1 is computed as follow:

_lis_ancestorpcq| () |is_ancestor gl

P = .)
lis_ancestoryred|
is__ancestoryeq|(]is__ancestor g
po_l tory ' tory (2.14)
" lis_ancestorge| ’
Fl, — 2P, x R,
P 1R,

where P,, R, and F'l, denote the Relation Precision, Relation Recall and Relation F1,
respectively.

Finally, we calculate Sibling Distinctiveness (SD) as follows: we compute the similarity
between a topic cluster C; and each of its sibling topics C; by Jaccard index [64]. Then we
calculate SD of C; as 1 minus the largest similarity score among all C;. A larger SD means
the sibling topics sharing a common parent are truly separate from each other.

Table[2.6]shows the Term Coherency (TC), Relation F1, and Sibling Distinctiveness (SD) of
different methods. For unsupervised baselines, we only take relevant topics (topics with more
than half terms belonging to food or research areas) into account. Overall, weakly-supervised
methods (Hi-Expan and CoRel) outperform unsupervised methods by a large margin, which
shows the constructed taxonomies are well guided by the user given seeds. We can see that
CoRel achieves the best performance under all evaluation metrics, especially in terms of the
Relation F1, showing that CoRel is able to find related terms for each concept and retain

ones holding certain relations with current topics in relation transferring module. For T'C|

21

CoRel also significantly outperforms HLDA, HPAM and TaxoGen, which model the intrinsic
distribution of terms in documents or corpus, and might generate topics as mixtures of terms
relevant but not distinctive of user-interested topics. They also have inferior performance in

SD since they do not enforce distinctiveness when forming topics.

Methods DBLP Yelp
TC SD Precision, Recall, Fl-score, TC SD Precision, Recall, Fl-score,
HLDA 0.582 0.981 0.188 0.577 0.283 0.517 0.991 0.135 0.387 0.200
HPAM 0.557 0.905 0.362 0.538 0.433 0.687 0.898 0.173 0.615 0.271
TaxoGen 0.720 0.979 0.450 0.429 0.439 0.563 0.965 0.267 0.381 0.314
Hi-Expan + CoL. | 0.819 0.996 0.676 0.532 0.595 0.815 1.000 0.429 0.677 0.525
CoRel 0.855 1.000 0.730 0.607 0.663 0.825 1.000 0.564 0.710 0.629

Table 2.6: Quantitative evaluation on topical taxonomies.

Case Study. We are interested in what kind of root nodes could be generated for different
user inputs, since the root node discovery is crucial for the connection to find new topics.
In Table we show the top ranked terms scored by Equation (2.12)) as well as bottom
ranked ones. It is interesting that we are able to find terms that can summarize the user’s
interested topics from different aspects or granularity. For example, in the DBLP dataset,
we observe that “major”, “ai”, and “science” rank top, providing summarization for user given
topics in different granularity. we observe that “major” ranks top as the root node, which
might appear in terms like “major interest” or “major in”, and this word could cover very
broad subjects. The second ranked term “ai”, however, shows a rather narrow though precise
scope to summarize the user given topics. On the other hand, bottom ranked words like
“database” and “multimedia” are not good at capturing the broader field of given seeds, thus
will not be selected as root nodes. On the Yelp dataset, we can also find highly concluding
terms like “lunch special” or “chinese food”, each potential root node partially summarizes
the user-input topics. Due to the different granularity and aspects of possible root nodes, we
do not put them in the final output of our topical ontology since they cannot form coherent

clusters, but they have shown to be powerful in voting for new topics from different aspects.

2.7 SUMMARY

In this chapter we introduce two fundamental tasks in concept organization: entity set
expansion and topical ontology construction. We focus on a low-resource setting where only
keywords/seed ontology is given from the user. Our proposed frameworks Set-CoExpan and
CoRel both utilizes a semantic learning method that captures both local and global context

similarities for terms. The learned semantic space helps enrich the semantics of each concept.

22

DBLP Yelp
Term Score Term Score
major 0.963 | lunch special | 0.950
ai 0.892 | chinese food | 0.800
science 0.877 main dish 0.788
research 0.826 | daily special | 0.750
journal 0.667 signature 0.725
multimedia 0.286 wheat 0.250
information extraction | 0.250 freshness 0.250
database 0.242 sushi 0.188

Table 2.7: Top and bottom terms in root node discovery.

The proposed frameworks complete the ontology structure by relying on the relation or
analogy between nodes, then transfers it along multiple paths to expand the ontology in
width and depth. Extensive experiments show that both frameworks work effectively in
generating a high-quality topical ontology based on user-given seeds.

With the recent development of Large Language Models (LLMs), new approaches [182]
have been developed to construct explicit knowledge forms such as ontology and knowledge
graphs. However, LLM-based methods tend to make mistakes in fine-grained entities, as
these entities appear less in the LLM pre-training data. From this perspective, our approach
can better leverage domain-specific corpus to recognize fine-grained entities, by training the
model to recognize potential user-interested relations. Fine-tuning LLMs on domain-specific
corpus for each new task, on the other hand, could be computationally inefficient. However,
LLMs can still be integrated with my methods for improving the task. Though language
models may not perform well on generating fine-grained entities, they have been proven as
good text evaluators [I15], which can be used to decide whether new terms identified by my

methods are suitable to be attached to the ontology.

23

CHAPTER 3: FINE-GRAINED ENTITY EXTRACTION

Extracting key information from text corpora serve as foundational steps in text mining
applications. Named Entity Recognition (NER) involves processing unstructured text,
locating and classifying named entities (certain occurrences of words or expressions) into
particular categories of pre-defined entity types, such as persons, organizations, locations,
medical codes, dates and quantities. NER serves as an important first component for tasks
such as information extraction [157|, information retrieval [60], question answering [135],
task-oriented dialogues [145], 50| and other language understanding applications [137], 163].
In this chapter, I will introduce two studies on Named Entity Recognition (NER) and
Fine-grained Entity Typing (FET), especially in scenarios with limited labeled data. T will
first provide a comprehensive overview of the few-shot learning methodologies for NER and
identify useful techniques, and then introduce novel approaches for FET that harness the
representation and generation capabilities of PLMs. The empirical results demonstrate the

effectivenss of these methods and could shed light on the future entity recognition studies.

3.1 OVERVIEW

Named Entity Recognition (NER) and Fine-grained Entity Typing (FET) serve as important
first steps in text processing, and benefit downstream tasks such as question answering [135],
task-oriented dialogues [145] [50] and other language understanding applications [137, [163].
NER identifies named entities in unstructured text and classify them into predefined categories
like persons, organizations, and locations. FET aims to infer types of named entity mentions
in specific contexts, which serves as the essential component for many downstream text mining
applications, such as entity linking [I8], knowledge completion [42], text classification [73].
With the recent success of pre-trained language models, state-of-the-art (SoTA) NER models
are often initialized with PLM weights, fine-tuned with standard supervised learning. One
classic approach is to add a linear classifier on top of the representations provided by PLMs,
and fine-tune the entire model using a cross-entropy objective on domain-specific labels [38].

Unfortunately, even with these PLMs, building NER and FET systems still remains a labor-
intensive, time-consuming task. It requires rich domain knowledge and expert experience
to annotate a large corpus of in-domain labeled tokens to teach the models to achieve a
reasonable accuracy. However, this is in contrast to the real-world application scenarios, where

only very small amounts of labeled data are available for new domains, such as medical [71]

24

domain.

To address this issue, my research focuses on few-shot NER and few-shot FET, aiming
to improve the generalization ability of PLMs on these entity-related tasks. I first present
a systematic study for few-shot NER, a problem that is little explored in the literature.
Three distinctive schemes and their combinations are investigated, and erform comprehensive
comparisons of these schemes on 10 public NER datasets from different domains.

I also explore hierarchical fine-grained FET with few-shot learning setting, where the entity
labels form a hierarchy, and a few annotated mentions within a particular context are given
for each entity type in the label hierarchy. Recent studies have shown that factual knowledge
can be extracted from PLMs using natural language prompts, especially effective in few-shot
tasks.

Recently, some studies [148] show that without any further training of PLMs, factual
knowledge can be probed from PLMs via natural language prompts that query the PLM’s
MLM head for masked word prediction. Prompt-based tuning for few-shot FET has also been
explored very recently [40]: A prompt template is concatenated with the original context
containing the entity mention, and a PLM is used to predict the masked token in the template.
Then a verbalizer maps the probability distribution over the vocabulary to a distribution over
the entire label set. The verbalizer is typically constructed by extracting semantically relevant
words to each label name from external knowledge bases. However, the above method still
suffer from notable limitations that the verbalizer construction method cannot be applied
to label names that have composite semantics or label names that share similar semantics.
Moreover, it has not fully explored the generation power of PLMs acquired through extensive
general-domain pre-training.

I propose a novel framework, named ALIGNE, which introduces an entity type label
interpretation module to understand the relationship between type labels and vocabulary
tokens. Additionally, a type-based contextualized instance generator is proposed to create
new instances based on few-shot instances and their types, enhancing the training set for
better generalization. In tests on three benchmark datasets, ALIGNE has outperformed
existing methods significantly.

Below I will introduce these two works in detail.

3.2 RELATED WORK

General Named Entity Recognition. Named Entity Recognition(NER) is a long stand-
ing problem in NLP. Deep learning has significantly improved the recognition accuracy. Early

efforts include exploring various neural architectures [96] such as Bidrectional LSTMs [23] and

25

adding CRFs to capture structures [119]. Early studies have noticed the importance of reduc-
ing the annotation labor, where semi-supervised learning is employed, such as clustering [104],
and combining supervised objective with unsupervised word representations [I83]. PLMs
have recently revolutionized NER, where large-scale Transformer-based architectures [147, [38]
are used as backbone network to extract informative representations. Contextualized string
embedding [2] is proposed to capture subword structures and polysemous words in different
usage. Masked words and entities are jointly trained for prediction in [204] with entity-aware
self-attention. These methods are designed for standard supervised learning, and have a

limited generalization ability in few-shot settings, as empirically shown in [48].

Pre-Trained Models. In computer vision, it is a de facto standard to transfer ImageNet-
supervised pre-trained models to small image datasets to pursue high recognition accuracy
[212]. The recent work named big transfer [92] has achieved SoTA on various vision tasks
via pre-training on billions of noisily labeled web images. To gain a stronger transfer
learning ability, one may combine supervised and self-supervised methods [100, @9]. In
NLP, supervised/grounded pre-training have been recently explored for natural language
generation (NLG) [88] 219] 146, 51} 08]. They aim to endow GPT models [I51], an ability of
enabling high-level semantic controlling in language generation, and are often pre-trained
on massive corpus consisting of text sequences associated with prescribed codes such as
text style, content description, and task-specific behavior. In contrast to NLG, to our best
knowledge, large-scale supervised pre-training has been little studied for natural language
understanding (NLU). There are early studies showing promising results by transferring from
medium-sized datasets to small datasets in some NLU applications. For example, from MNLI
to RTE for sentence classification [149] 27, [5], and from OntoNER to CoNLL for NER [208].
Our work further increases the supervised pre-training at the scale of web data [55], 1000

orders of magnitude larger than [208|, showing consistent improvements.

Few-Shot Learning Methods with Pre-Trained Models. PLMs [38, [117, 27] have
shown remarkable performance through fine-tuning on downstream tasks [72], thanks to
their learned generic linguistic features [148] via pre-training. Prototype-based methods was
firstly studied in the context of image classification [184, 177, 225], and has recently been
adapted to different NLP tasks such as text classification [188] 53, 9], machine translation [57]
and relation classification [66]. Some studies also show that PLMs are able to capture
factual knowledge [148| by making predictions on manually curated “fill-in-the-blank” cloze-
style prompts. Researchers use manually created prompts as task descriptions on GPT-

3 [13] and found that prompts can guide the model to generate answers for specific tasks,

26

especially effective on few-shot tasks. Inspired by these observations, studies on prompt
engineering [82], 169] aim to automatically search for optimal templates on specific tasks. In
few-shot settings where training data is very limited, prompt-based tuning has surpassed
standard model fine-tuning in a wide range of applications including text classification [65] [74],

relation extraction [21], named entity recognition [20, 97|, and fine-grained entity typing [40].

Fine-Grained Entity Typing. The goal of fine-grained entity typing (FET) is to determine
the type of entity given a particular context and a label hierarchy [I10], 211]. Several early
studies [110], 50, [33] generate large training data by automatically labeling entity mentions
using external knowledge bases, which was followed by a line of research known as distantly-
supervised FET with the goal of denoising the automatically generated labels [I56]. Some
studies focus on leveraging type hierarchy and type inter-dependency [155], 19, [136], 107]
for noise reduction, while other studies [85], 32, 202} [102], 127, 221] combine external entity
information provided in knowledge bases and self-training techniques to automatically relabel
the data. Recently, joint training with relation extraction [203| and searching for optimal
templates under prompt-based framework [34] are also proposed in the distantly-supervised
setting.

Zero-shot FET has also been explored to mitigate human annotation burden by transferring
the knowledge learned from seen types to unseen ones. Multiple sources of information are
used for zero-shot FET: [215] maps mention embedding to type embedding space by training a
neural model to combine entity and context information. [222] captures hierarchical relation-
ship between unseen types and seen types in order to generate unseen label representations.
[120] further enhances label representations by incorporating hierarchical and prototypical
information derived from around 40 manually selected context-free entities as prototypes for
each type. [228 [141] define unseen types by generating type embeddings from Wikipedia
descriptions. [22] fuses three distinct types of sources: contexutal, pre-defined hierarchy and
label-knowledge (label prototype and descriptions), by training three independent modules
to combine their results. Nonetheless, these zero-shot learning algorithms require extensive

annotations on source domain or manually selected high-quality representative mentions.

3.3 FEW-SHOT NAMED ENTITY RECOGNITION

To deal with the challenge of few-shot learning, I focus on improving the generalization
ability of PLMs for NER from three complementary directions, shown in Figure 3.1} Instead
of limiting ourselves in making use of limited in-domain labeled tokens with the classic

approach, (i) I create prototypes as the representations for different entity types, and assign

27

Noisy
@ :’Ir:tt::)éze @ Supervised
Pretraining

Linear Classifier
Fine-tuning @ Self-Training

Figure 3.1: An overview of methods studied in our paper. Linear classifier fine-tuning is a
default baseline that updates an NER model from pre-trained Roberta/BERT. I study three
orthogonal strategies to improve NER models in the limited labeled data settings.

labels via the nearest neighbor criterion; (ii) I continuously pre-train PLMs using web data
with noisy labels that is available in much larger quantities to improve NER accuracy and
robustness; (4i) I tag the in-domain unlabeled data with soft labels via self-training [201],
and perform semi-supervised learning in conjunction with the limited labeled data.

We provide a comprehensive study specifically for limited NER data settings, and explore
three orthogonal directions shown in Figure : (i) How to adapt meta-learning such as
prototype-based methods for few-shot NER? (i) How to leverage freely-available web data
as noisy supervised pre-training data? (74) How to leverage unlabeled in-domain sentences
in a semi-supervised manner? Note that these three directions are complementary to each
other and can be used jointly to further extrapolate the methodology space. Below I will

introduce the three directions.

Background on Few-Shot NER. Few-shot NER is a sequence labeling task, where the
input is a text sequence (e.g., sentence) of length 7', X = [z, x,, ..., 7|, and the output is
a corresponding length-7" labeling sequence Y = [y, Yy, ..., Yp|, where y €) is a one-hot
vector indicating the entity type of each token from a pre-defined discrete label space. The
training dataset for NER often consists of pair-wise data D* = {(X,,,Y,)}_,, where N
is the number of training examples. Traditional NER systems are trained in the standard
supervised learning paradigms, which usually requires a large number of pairwise examples,
i.e., N is large. In real-world applications, the more favorable scenarios are that only a small
number of labeled examples are given for each entity type (N is small), because expanding
labeled data increases annotation cost and decreases customer engagement. This yields a
challenging task few-shot NER.

Following the recent self-supervised PLMs [38, [I17], a typical method for NER is to utilize
a Transformer-based backbone network to extract the contextualized representation of each
token z = fg,(x) . A linear classifier (i.e., a linear layer with parameter 8; = {W b}
followed by a Softmax layer) is applied to project the representation z into the label space

fo,(z) = Softmax(Wz + b). In another word, the end-to-end learning objective for linear

28

classifier based NER can be obtained via a function composition y = fg, o fo,(x), with
trainable parameters @ = {6, 0,}. The pipeline is shown in Figure [3.2a). The model is

optimized by minimizing the cross-entropy:

L@y = > Y KL(yllgly,lz:). (3.1)

(X,Y)eDt i=1

where the KL divergence between two distributions is KL(p||¢) = E,log(p/q), and the

prediction probability vector for each token is
q(y|x) = Softmax(W - fo,(x) + b) (3.2)

In practice, 8; = {W, b} is always updated, while 8, can be either frozen [113], [116] [84] or
updated [38, 208].

Prototype-Based Methods. Meta-learning [154] has shown promising results for few-shot
image classification [I8T] and sentence classification [213], [53]. It is natural to adapt this
idea to few-shot NER. The core idea is to use episodic classification paradigm to simulate
few-shot settings during model training. Specifically in each episode, M entity types (usually
M < |Y|) are randomly sampled from D*, containing a support set S = {(X;, Y} K (K
sentences per type) and a query set Q = {(XZ, SA{@}SQK’ (K’ sentences per type).

We build our method based on prototypical network [I72], which introduces the notion of
prototypes, representing entity types as vectors in the same representation space of individual
tokens. To construct the prototype for the m-th entity type c,,, the average of representations

is computed for all tokens belonging to this type in the support set S:

C = |S_1m| Z foo(x), (3.3)

mESm

where S, is the token set of the m-th type in S, and fy, is defined in . For an input token
x € Q from the query set, its prediction distribution is computed by a softmax function of
the distance between @ and all the entity prototypes. For example, the prediction probability
for the m-th prototype is:

exp (—d(fo, (), cm))
m' €XP <_d(f90 (w)a cm’))

9(y=Ln|@)= 5 (3.4)

where [, is the one-hot vector with 1 for m-th coordinate and 0 elsewhere, and d(fg, (), c¢m) =

| fo, (@) — € |2 is used in our implementation. We provide a simple example to illustrate the

29

Entity Types: { Org [Money][Person] [Others]}

e (0 OEDOORDEE® gk .
t ¢+ + ¢+ t t * ¢t t ¢ (2 o ™ » ocoe
(Linear Layer + SoftMax
Model: { Transformer-based Backbone Network ‘ @ Support set: Mr. Bush asked Congress to raise to $ 6 billion
Input Sentence: Mr. BlLsh ask‘ed Congress t‘o rai‘se t‘o ‘s 6‘ billion Jobs founded NeXT Inc. with $ 7 million
(a) Baseline: NER with a linear classifier (b) Prototype-based method
Teacher
Unlabeled set : i | > 1
Examples
Entity Types: { Musician } , Distiliation
g Input Sentence: Labeled set 48_' {@ o MQ .. }
WIKIPDIA Series 5 runners up JLS and performed on show Student
(c) Noisy supervised pre-training (d) Self-training

Figure 3.2: Hlustration of different methods for few-shot NER. In this example, each token
in the input sentence is categorized into one of the four entity types. (a) A typical NER
system, where a linear classifier is built on top of unsupervised pre-trained
Transformer-based networks such as BERT /Roberta. (b) A prototype set is constructed via
averaging features of all tokens belonging to a given entity type in the support set (e.g., the
prototype for Person is an average of three tokens: Mr., Bush and Jobs). For a token in the
query set, its distances from different prototypes are computed, and the model is trained to
maximize the likelihood to assign the query token to its target prototype. (c) The Wikipedia
dataset is employed for supervised pre-training, whose entity types are related but different
(e.g., Musician and Artist are more fine-grained types of Person in the downstream task).
The associated types on each token can be noisy. (d) Self-training: An NER system (teacher
model) trained on a small labeled dataset is used to predict soft labels for sentences in a
large unlabeled dataset. The joint of the predicted dataset and original dataset is used to
train a student model.

prototype method in Figure (b) At each training iteration, a new episode is sampled, and
the model parameter @ is updated via plugging (3.4)) into (3.1). In the evaluation phase, the

label of a new token x is assigned using the nearest neighbor criterion arg min,, d(fo, (),).

Noisy Supervised Pre-Training. Generic representations via self-supervised pre-trained
language models 38|, [117] have benefited a wide range of NLP applications. These models are
pre-trained with the task of randomly masked token prediction on massive corpora, and are
agnostic to the downstream tasks. In other words, PLMs treat each token equally, which is not
aligned with the goal of NER: identifying named entities as emphasized tokens and assigning la-
bels to them. For example, for a sentence “ Mr. Bush asked Congress to raise to $ 6 billion ”,
PLMs treat to and Congress equally, while NER aims to highlight entities like Congress and

downplay their collocated non-entity words like to.

30

This intuition inspires us to endow the backbone network with an ability to upweight
the representations of entities for NER. Hence, we propose to employ the large-scale noisy
web data WiFiNE [55] for noisy supervised pre-training (NSP). The authors automatically
annotated the 2013 English Wikipedia dump by querying anchored strings as well as the
coreference mentions in each wiki page to the Freebase. The WiFiNE dataset is of 6.8GB and
contains 113 entity types along with over 50 million sentences. Though introducing inevitable
noises (e.g., a random subset of 1000 mentions are manually evaluated and the accuracy of
automatic annotations reaches 77% as reported in the paper, due to the error of identifying
coreferences), this automatic annotation procedure is highly scalable and affordable. The
label set of WiFiNE covers a wide range of fine-grained entity types, which are often related
but different from entity types in the downstream datasets. For example in Figure (c),
the entity types Musician and Artist in Wikipedia are more fine-grained than Person in a
typical NER dataset. The proposed NSP learns representations to distinguish entities from
others. This particularly favors the few-shot settings, preventing over-fitting via the prior
knowledge of extracting entities from various contexts in pre-training.

Two pre-training objectives are considered in NSP, respectively: the first one is to use
the linear classifier in , the other is a prototype-based objective in . For the linear
classifier, we found that the batch size of 1024 and learning rate of le=* works best, and for
the prototype-based approach, we use the episodic training paradigm with M = 5 and set
learning rate to be 5e~®. For both objectives, we train the whole corpus for 1 epoch and
apply the Adam Optimizer [89] with a linearly decaying schedule with warmup at 0.1. We
empirically compare both objectives in experiments, and found that the linear classifier in

(3.2) improves pre-training more significantly.

Self-Training Methods. Though manually labeling entities is expensive, it is easy to
collect large amounts of unlabeled data in the target domain. Hence, it becomes desired
to improve the model performance by effectively leveraging unlabeled data DY with limited
labeled data D“. We resort to the recent self-training scheme [201] for semi-supervised

learning. The algorithm operates as follows:

1. Learn teacher model 8°°* via cross-entropy using ([3.1)) with labeled tokens D*.

2. Generate soft labels using a teacher model on unlabeled tokens:
Y; = forea(x;),VX; € DY (3.5)
3. Learn a student model °* via cross-entropy using (3.1)) on labeled and unlabeled

31

tokens:

‘CST |,DL| Z ‘C fe““ w2>’yz)

wZEDL

DU| > L(forrs (1), 9,) (3.6)

z;eDY

where \y is the weighting hyper-parameter.

A visual illustration for self-training procedure shown in Figure [3.2d). It is optional to
iterate from Step 1 to Step 3 multiple times, by initializing 8*** in Step 1 with newly learned
6°*" in Step 3. We only perform self-training once for simplicity, which has already shown

excellent performance.

3.4 EVALUATION OF OUR FEW-SHOT NER METHODS

Throughout our experiments, the pre-trained base RoBERTa model is employed as the
backbone network. We investigate the following 6 schemes for the comparative study: (i) LC
is the linear classifier fine-tuning method in Section 2, i.e., adding a linear classifier on the
backbone, and directly fine-tuning on entire model on the target dataset; (i) P indicates the
prototype-based method in Section 3.1; (ii1) NSP refers to the noisy supervised pre-training in
Section 3.2; Depending on the pre-training objective, we have LC+NSP and P+NSP. (iv)
ST is the self-training approach in Section 3.3, it is combined with linear classifier fine-tuning,
denoted as LC+ST; (v) LC+NSP+ST. We evaluate our methods on 10 public benchmark

datasets, covering a wide range of domains.

Main Results. To gain thorough insights and benchmark few-shot NER, we first perform
an extensive comparative study on 6 methods across 10 datasets. The results are shown
in Table [3.1] We can draw the following major conclusions: (i) By comparing columns
@ and @ (or comparing @ and @), it clearly shows that noisy supervised pre-training
provides better results in most datasets, especially in the 5-shot setting, which demonstrates
that NSP endows the model an ability to extract better NER-related features. (i7) The
comparison between columns D) and @) provides a head-to-head comparison between linear
classifier and prototype-based methods: while the prototype-based method demonstrates
better performance than LC on CoNLL, WikiGold, WNUT17 and Multiwoz in the 5-shot
learning setting, it falls behind LC on other datasets and in average statistics. It shows that

the prototype-based method only yields better results when there is very limited labeled

32

stasets o] @ @ €), @ ® ©
Datasets Settings
Lc |Lc + [NSB| [B] |[B]+ [NSBI| Lc +[sT]| LC -+ [NSB] + (ST

5-shot 0.535 0.614 0.584 0.609 0.567 0.654

CoNLL 10% 0.855 0.891 0.878 0.888 0.878 0.895
100% 0.919 0.920 0.911 0.915 - -

5-shot | 0.577 0.688 0.533 0.570 0.605 0.711

Onto 10% 0.861 0.869 0.854 0.846 0.867 0.867
100% | 0.892 0.899 0.886 0.883 - -

5-shot 0.470 0.640 0.511 0.604 0.481 0.684

WikiGold 10% 0.665 0.747 0.692 0.701 0.695 0.759
100% | 0.807 0.839 0.801 0.827 - -

5-shot | 0.257 0.342 0.295 0.359 0.300 0.376

WNUT17 10% 0.483 0.492 0.485 0.478 0.490 0.505
100% | 0.489 0.520 0.552 0.560 - -

5-shot | 0.513 0.531 0.380 0.438 0.541 0.559

MIT Movie 10% 0.651 0.657 0.563 0.583 0.659 0.666
100% | 0.693 0.692 0.632 0.641 - -

5-shot 0.487 0.491 0.441 0.484 0.503 0.513

MIT Restaurant 10% 0.745 0.734 0.713 0.721 0.750 0.741
100% 0.790 0.793 0.787 0.791 - -

5-shot 0.792 0.824 0.750 0.773 0.796 0.830

SNIPS 10% 0.945 0.950 0.879 0.896 0.946 0.942
100% 0.970 0.972 0.923 0.956 - -

5-shot | 0.908 0.908 0.842 0.896 0.904 0.905

ATIS 10% 0.883 0.898 0.785 0.896 0.898 0.903
100% | 0.953 0.956 0.929 0.943 - -

5-shot 0.123 0.198 0.219 0.451 0.200 0.225

Multiwoz 10% 0.826 0.830 0.787 0.805 0.835 0.841
100% | 0.880 0.885 0.837 0.845 - -

5-shot | 0.360 0.385 0.320 0.366 0.365 0.393

12B2 10% 0.855 0.869 0.703 0.762 0.865 0.871
100% | 0.932 0.935 0.895 0.906 - -

5-shot 0.502 0.562 0.488 0.555 0.526 0.585

Average 10% 0.777 0.794 0.734 0.758 0.788 0.799
100% | 0.833 0.841 0.815 0.827 - -

Table 3.1: Fl-score on benchmark datasets with various sizes of training data.

data: the size of both entity types and examples are small. (ii7) When comparing columns
® with O (or comparing columns (6 and (2)), we observe that using self-training consistently
works better than directly fine-tuning with labeled data only, suggesting that ST is a
useful technique to leverage in-domain unlabeled data if allowed. (iv) Column (& shows the
highest F'1-score in most cases, demonstrating the three proposed schemes in this paper are

complementary to each other, and can be combined to yield best results in practice.

33

©
N

205
(o]
o
T 0.3
/ LC + NSP
0.1 . L : . .
2 4 6 8 10
epoch

Figure 3.3: Testing F1l-score curves on 5-shot NER on CONLL-2003 dataset.

Testing Curve. In Figure[3.3] we show the learning curve of average F1-score on 5-shot
CONLL-2003 testing dataset over 10 repeated experiments. The checkpoint via NSP provides
a better initialization than Roberta, as NSP exhibits improvement over their counterpart

methods at the beginning of learning, and eventually leads to higher F1-score.

; Number of support ezamples per entity type

Datasets Methods 70 ‘ 30 ‘ 50 ‘ 700 ‘ 200 ‘ 500
Neigh. Tag.t 0.067+0.008 | 0.088+0.007 | 0.111+0.007 | 0.143+0.006 | 0.221+0.006 | 0.339+0.006
ExampleT 0.174+0.011 | 0.198+0.012 | 0.222+0.011 | 0.268+0.027 | 0.345+0.022 | 0.401+0.010
ATIS Prototype 0.381+0.021 | 0.39140.022 | 0.376+0.00s | 0.379+0.005 | 0.377+0.006 | 0.376+0.003
Prototype + CP 0.684+0.013 | 0.712+0.014 | 0.716x0.013 | 0.705z0.010 | 0.705:+0.006 | 0.708:+0.002
Multi-Prototype 0.396+0.015 | 0.415+0.016 | 0.419+0.012 | 0.420+0.008 | 0.422+0.006 | 0.424:+0.005
Multi-Prototype + CP | 0.712+0.014 | 0.748+0.011 | 0.760x0.00s | 0.742+0.005 | 0.743+0.003 | 0.746+0.002
Neigh.Tag.T 0.042il],l]18 0.038i().()l)8 0.037il],l]()7 0.046i().()l]8 0.055illvl]ll 0.081i().()l]6
Example.t 0.276+0.018 | 0.295+0.010 | 0.312+0.007 | 0.337+0.005 | 0.345+0.004 | 0.346-0.000
MIT.Restaurant Prototype 0.330+0.013 | 0.332+0.013 | 0.332+0.010 | 0.329+0.003 | 0.329:+0.004 | 0.331:+0.003
Prototype + CP 0.455+0.016 | 0.455+0.012 | 0.455+0.013 | 0.438+0.013 | 0.437+0.008 | 0.438+0.006
Multi-Prototype 0.345+0.012 | 0.360+0.015 | 0.371+0.012 | 0.376+0.000 | 0.385+0.005 | 0.386-+0.004
Multi-Prototype + CP | 0.461+0.019 | 0.482+0.011 | 0.496+0.00s | 0.496+0.011 | 0.500+0.005 | 0.501+0.003
Neigh. Tag. 0.031+0.020 | 0.045+0.019 | 0.041+0.011 | 0.053+0.000 | 0.054+0.007 | 0.086-+0.008
Example.t 0.401+0.011 | 0.395+0.007 | 0.402+0.007 | 0.400+0.004 | 0.400+0.005 | 0.395+0.007
MIT Movie Prototype 0.175+0.007 | 0.168+0.006 | 0.170+0.004 | 0.174+0.003 | 0.173+0.002 | 0.173+0.002
Prototype + CP 0.303+0.011 | 0.293+0.007 | 0.285+0.006 | 0.284+0.002 | 0.282+0.002 | 0.280-+0.002
Multi-Prototype 0.197+0.007 | 0.207+0.005 | 0.219+0.004 | 0.227x0.002 | 0.229:+0.003 | 0.230:0.002
Multi-Prototype + CP | 0.364+0.020 | 0.368+0.011 | 0.380%0.006 | 0.382+0.003 | 0.354+0.003 | 0.383x0.002

Table 3.2: Fl-score on training-free settings, 7.e., predicting novel entity types using nearest
neighbor methods. The best results are in bold. T indicates results from [232] [198].

Training-Free Setting. Some real-world applications require immediate inference on
unseen entity types. For example, novel entity types with a few examples are frequently
given in an online fashion, but updating model weights 8 frequently is prohibitive. One may
store some token examples as supports and utilize them for nearest neighbor classification.
The setting is referred to as training-free in [198, 232], as the models identify new entities in
a completely unseen target domain using only a few supporting examples in this new domain,

without updating network parameters @ in that target domain. Our prototype-based method

34

is able to perform such immediate inference. Two recent studies on training-free NER are: (i)
Neighbor-tagging [198] which copies token-level labels from weighted nearest neighbors; (i)
Ezample-based NER [232] which is the SOTA on training-free NER, identifying the starting
and ending tokens of unseen entity types.

We observed that our basic prototype-based method, under the training-free setting, does
not gain from more given examples. We hypothesize that this is because tokens belonging
to the same entity type are not necessarily close to each other, and are often separated in
the representation space. Though it is hard to find one single centroid for all tokens in the
same type, we assume that there exist local clusters of tokens belonging to the same type. To
resolve such issue, we follow [35] and extend our method to a version called Multi-Prototype,
by creating K /5 prototypes for each type given K examples per type. (e.g., 2 prototypes per
class are used for the 10-shot setting). The prediction score for a testing token belonging to
a type is computed via averaging the prediction probabilities from all prototypes of the same
type.

We compare with previous methods in Table [3.2] and observe that multi-prototype methods
not only benefit from more support examples, but also surpass neighbor tagging methods
and example-based NER by a large margin on two out of three datasets. For the MIT Movie
dataset, one entity type can span a large chunk with multiple consecutive words in a sentence,
which favors the span-based method like [232]. For example, the underlined part in the
annotated as entity type Quote. The proposed methods in this paper can be combined with
the span-based approach to specifically tackle this problem, and we leave it as future work.
Further, if slightly fine-tuning is allowed, we see that the prototype-based method achieves
0.438 with 5-shot learning in Table better than 0.395 achieved by example-based NER

given 500 examples.

3.5 HIERARCHICAL FINE-GRAINED ENTITY TYPING

Despite the effectiveness of current prompt-based tuning pipeline, there are two notable
limitations: (1) Current automatic verbalizer construction methods extract type representative
words to be mapped to the label set based on general knowledge (e.g., knowledge bases),
but they are only effective when the type label names have concrete and unambiguous
meanings (e.g., “Organization/Company”). When the label names are too abstract or have
composite meanings (e.g., “Location/GPE” refers to geopolitical locations including countries
and cities), however, suitable type indicative words cannot be easily generated only via

external knowledge. Meanwhile, it is challenging to distinguish semantically similar types

35

Hierarchical

prediction over labels prediction over vocabulary New instances: prediction over vocabulary
Type Labels newspaper A

P,

’ <

14
/Media

. euters
Level 1 e ‘) . .
newspape Correlation B : © masked token embeddings
adio VI Matrix U ;1O other token embeddings
v % augmentations = - -t ctteesstessseeeos % %) %

magazine

Level 2

___ college Pretrained Language Model R Pretrained Language Model
/Organization school :
Level2 /Education university - * . *
i { New York Times reporter Jayson wrote } v New York Times reporter Jayson wrote
New York Times is a [MASK]. New York Times, as well as [MASK] ... [MASK],
is a newspaper.
Entity Type Interpreter Entity Type Classifier Contextualized Instance Generator

Figure 3.4: Overall framework of ALIGNIE . (Left): With a given type label hierarchy, an
entity type interpretation module relates all the words in the vocabulary with the label
hierarchy by a correlation matrix, so that the top-related words of “/Organization/Media”

YRR

are “newspaper”, “radio” and “magazine”. (Middle): With an entity mention and its context
from the training set, an entity typing classifier uses a template and an MLM head to
predict word probability at the [MASK] position, and then maps the word distribution to
type probability using the correlation matrix. The word “newspaper” has a high relevance
with the label “/Organization/Media”. (Right): After the entity typing classifier predicts a
type for an entity mention in the few-shot samples, a type-based contextualized instance
generator uses that entity mention and the predicted type to construct a template for new
instance generation. The newly generated instances for “New York Times” are: “The
Washington Post”, “China Daily”, etc.They are added back to the training set to improve the
generalization of the entity typing classifier.

(e.g., “Organization/Sports Team” and “Organization/Sports League”) well for robust fine-
grained type classification. (2) The current prompt-based fine-tuning approaches have not
fully utilized the power of PLMs: PLMs are commonly used as the representation models
that predict entity types based on entity instance representations. On the other hand, the
generation power of PLMs acquired through extensive general-domain pretraining can be
exploited to generate new entity instances that do not exist in the few-shot training samples
so that the entity typing model can be trained with more instances for better generalization.

To address the above limitations, I propose two modules for prompt-based few-shot entity
typing: (1) An entity type label interpretation module automatically learns to relate the
hierarchical entity type labels to tokens in the vocabulary by jointly leveraging the given
few-shot instances and the label hierarchy; (2) A type-based contextualized instance generator
generates new instances based on few-shot instances and their types, providing the type

classifier with more training samples. Our overall framework is illustrated in Fig. [3.4]

Hierarchical Entity Label Interpretation. I will introduce how to jointly leverage

few-shot samples and the entity label hierarchy to learn a label interpretation module.

36

We consider a correlation matrix U € RYI*IVI that characterizes the correlation between
each word w € V and each type label y €). Specifically, each element u,,,, (the y-th row and
w-th column) in U represents a learnable correlation score between w and y. The correlation

matrix maps the token predictions of PLMs to the final entity label predictions p(y|h):

p(ylh) =Y p(ylw)p(w|h), (3.7)

weV

where
exp(ty)

Y’ exp(Uy)

p(ylw) = 5

When Eq. is trained via cross entropy loss on few-shot samples, the correlation matrix
U will be updated to automatically reflect the corpus-specific word-to-type correlation. For
example, consider an input text with “Ukraine” as a “GPE’-type entity, the output of the
MLM head at the [MASK] position is very likely to give high probability to words like “country”
or “nation”, therefore the corresponding elements u,,, with y being “GPE” and w being
“country” or “nation” will increase during training.

To further grant U a good initialization, we assign a higher initial value to those words that
are one of the label names of an entity type. Specifically, the elements in U are initialized to

be:

Uy = W T m WY ’ (3.9)
ol w¢y
where y denotes the label name set of label y; « is a hyperparameter controlling the initial
bias to label name match (e.g., when « is close to 0, words that do not match the label
names will have a near-zero initialization).

Apart from the information from few-shot examples, the labels of an FET dataset typically
forms a hierarchy that specifies the inclusive relationship between parent-child labels and
the exclusive relationship between sibling labels. Therefore, we can further regularize the
correlation matrix U with the hierarchical information. Following [129] that learns a spherical
tree embedding given a hierarchical structure, we learn the correlation matrix by considering
the relationship of nodes on the hierarchy.

To model the semantic inclusiveness between parent-child label pairs, we impose an inclusive

loss to relate the parent label with its child labels by minimizing their cosine distance:

»Cinc = Z (1 — COS (uy7 uParent(y))) ’ (39>

yey

37

where u, refers to the y-th row in U, and Parent(y) means the parent node of y in the label
hierarchy. Eq. encourages each label to have a similar correlation score distribution to
all its children labels (e.g., the “Organization” label is the broader type of its children labels
“Company”, “Sports Team”, and “Sports League”; “Organization” will be thus regularized to
share all the relevant words to any of its children labels).

Meanwhile, we also aim to distinguish sibling type categories like “Sports Team” and
“Sports League” for better distinctive power at finer-grained levels. Therefore, we apply an
exclusive loss that minimizes the cosine similarity between each pair of sibling labels sharing

the same parent node in the hierarchy:

Loxe = Z cos(uy,, u,,), Parent(y;) = Parent(y;). (3.10)

Yi,Y; €Y
YiFY;j

Finally, the overall learning objective for the label interpretation module is:
L= 'Cce +)\Eexc +)\Linca (311>

where L. is the cross entropy loss; A is the weight for regularization.

Contextualized Instance Generator. Previous prompt-based methods mainly utilize
the representation power of PLMs: By learning contextualized representations of the input
texts, PLMs are able to accurately predict the [MASK] tokens which are then mapped to
the final entity typing predictions. In fact, in a token-level task like FET, not only can
PLMs infer the type of an entity mention, but it also may generate new instances of specific
entity types based on pretraining knowledge. In text classification studies [128], topic-related
words are generated through pre-trained MLM for self-training. Similarly, we explore the
generation power of PLMs to construct new instances using existing instances and their types
as examples. For example, given an entity “Buffalo” and a sentence “At both Delaware State
and Buffalo, ..., as both schools transitioned from lower levels of NCAA hierarchy”, the
MLM head in the typing classifier predicts the entity “Buffalo” as a university. Based on
the predicted type, our goal is to generate new instances of the same type, such as other
universities like “Duke” and “Dartmouth”. These newly found instances can then be added
back to the training set for better generalization of the typing classifier.

To fulfill the goal of generating same-type instances from an example entity m, we need to

first use the typing classifier to predict the fine-grained type of m, denoted as ¢, and then

38

create a generative template T, (m,t) to generate new instances:
T,(m,t) = m, as well as [MASK] , is a t. (3.12)

Using the above template, the MLM head will try to predict the instances with the same
type t as entity mention m.

The above proposed template can already generate single-token instances effectively, but
will obviously miss a large amount of multi-token instances. For example, when we want
to generate new instances for New York Times, the above method will only generate
single-token newspaper names like “Reuters”, “CNN”] etc. Therefore, to generate multiple-token

instances, we inject a sequence of [MASK] tokens into the template T,(m,1).
T,(m,t) = m, as well as [MASK] ... [MASK] , is a . (3.13)

Such a multiple-token instance generation process is necessary even for single-word entities,
since they can be potentially sliced into multiple subwords by PLM tokenization (e.g., “Chanel”
will be sliced into “Chan” and “##el” in BERT tokenization), and using multiple [MASK]
positions for prediction will give chance to the generation of less frequent words that consist of
multiple subwords. Multi-token decoding is commonly carried out in autoregressive language
models [I51] as sequential left-to-right steps. However, it becomes less straightforward for
autoencoder models like BERT that uses bidirectional contexts for prediction: While BERT
can predict multiple [MASK] tokens in a sequence simultaneously by greedily picking the most
likely token at each individual [MASK] position, these predictions are made independently
from each other and the final results may not make sense as a whole. Therefore, we propose
to fill in one blank at each step by selecting the word with the highest score at that position,
and recursively predict the other blanks conditioned on the already filled blanks. Later we
will score the multiple combinations of words and select the top-M combinations as the new
instances. For example, using 7,(m,t) and decoding the masked tokens from left to right,

we can generate a new instance that has the same type with New York Times as shown in

Fig. [3.5

New York Times, as well as the; [MASK] [MASK]is a newspaper.
New York Times, as well as the; Washington, [MASK]is a newspaper.
New York Times, as well as the; Washingtons Postsis a newspaper.

Figure 3.5: An example of the decoding steps.
Since there is no ground truth for the length of the new instances, we iterate from 1 to [

39

[MASK] tokens, where [is the length of the example entity. We then rank all generated new

instances m with pseudo log likelihood [81] to select top new instances:

Score(m) = Z log(s;) (3.14)

where s; is the conditional probability of predicting the i-th sub-word based on previous i — 1
generated sub-words.

Apart from probing the knowledge in PLMs to generate new instances, sometimes entity
instances of the same type may appear in parallel. For example, the context “..., while Dan
Oster, Anjelah Johnson, and Daheli Hall were hired as feature players” include multiple
players/actors such as “Dan Oster”, “Anjelah Johnson” and “Daheli Hall”. In the few-shot
learning setting where a limited number of training examples at instance-level are provided, it
is likely that the above sentence, if appearing in the training set, only contains one annotated
entity, and other entities in the same sentence will not appear in the training set. To find
potential parallel entity instances in the sentence, we extend the template in Eq. by

adding the original context & to form our final instance generation template:
Ty(x,m,t) =2x. m, as well as [MASK] ... [MASK] , is a t. (3.15)

Using the above template, both in-context parallel instances and out-of-context new instances

based on pre-training knowledge can be generated through the instance generator.

Adding New Instances for Training. For each given entity mention m, we can generate
M new instances after the training finishes half of the total epochs when the type words
output by the MLM head become stable. The type-based new instances are then added back
to augment the training set by applying the same classification template. Since there could
be noise in generating new instances, we do not impose a hard label on a new instance m to
train the model. Instead, to improve robustness to label noise [118], we use a soft distribution

over) as its pseudo label y by smoothing the label y; of the original entity m:

. l—etmr y=u

Y= (3.16)

€

DI Y F# Vi

where € is the smoothing parameter.

40

We use the KL divergence loss to train the model on newly generated instances:

N M

new ZZKL Y, ka ‘/ml,k))ﬂ (317>

i=1 k=1
where m,;j, is the k-th instance generated from the i-th entity mention, and Y, is its

corresponding label.

Overall Training Objective. The overall training objective is the combination of training

the label interpretation module and using new generated instances as the augmentations:
Etotal = Ece +)\Eexc +)\['inc + 6/\n£new (318>

During the first half of training epochs, 3 is set to 0 to avoid generating false types for
existing entities. After half of the training epochs finish, the model becomes more stable on
predicting types, and we gradually increase [as the epoch grows: g = Qt L where T is the

total number of epochs and ¢ is the current epoch number.

3.6 EVALUATION OF HIERARCHICAL ENTITY TYPING

This section demonstrates the effectiveness of ALIGNIE . Three benchmark datasets on

FET are used and I report the main quantitative results and analyze some case studies.

OntoNotes BBN Few-NERD

Method (Acc.) (Micro-F1) (Macro-F1) (Acc.) (Micro-F1) (Macro-F1) (Acc.) (Micro-F1) (Macro-F1)

5-Shot Setting

Fine-tuning 28.60 50.70 51.60 51.03 60.03 58.22 36.09 48.56 48.56
Prompt-based MLM 32.62 60.97 61.82 67.00 75.23 73.55 44.69 59.24 59.24
PLET 48.57 70.63 75.43 71.23 79.22 78.93 56.94 68.81 68.81
ALIGNIE (- hierarchical reg.) 52.74 77.55 79.72 72.15 80.35 80.40 59.01 70.91 70.91
ALIGNIE (- new instances) 51.10 72.91 76.88 73.50 81.62 81.31 57.41 69.47 69.47
ALIGNIE 53.37 77.21 80.68 75.44 82.20 82.30 59.72 71.90 71.90
Fully Supervised Setting

Fine-tuning 56.70 75.21 78.86 78.06 82.39 82.60 79.75 85.74 85.74
Prompt-based MLM 55.18 74.57 77.47 77.10 81.77 82.05 77.38 85.22 85.22

Table 3.3: Results on three entity typing benchmark datasets. For 5-shot setting, we report
the average performance over 5 different sets of randomly-sampled few-shot examples.

Quantitative Results. We apply the widely-used metrics from [110] consisting of strict

accuracy (Acc.), loose micro-F1 score (micro-F1), and loose macro-F1 score (macro-F1). The

41

loose F1 scores tolerate partial correctness for type labels within the same branch but of
different granularities.

Table [3.3| presents the performance of all methods on three benchmark datasets. Overall,
prompt-based results have higher performance than vanilla fine-tuning in few-shot settings,
showing the prompts are better at inducing factual knowledge from PLMs. In fully supervised
settings, however, fine-tuning performs a little better than prompt-based MLM, which is also
suggested by previous studies 58], because vanilla fine-tuning has an extra linear layer to
learn more features from the full training set. Specifically, ALIGNIE achieves the best among
all prompt-based methods on all three datasets, and is mostly better than the two ablations,
demonstrating that the two proposed modules can effectively find related words and generate
new instances for each label. We also notice that ALIGNIE can perform on par with fully
supervised setting on OntoNotes and BBIN, but cannot on Few-NERD. This is because
the training set of OntoNotes and BBN are automatically inferred from external knowledge
bases, and can contain much noise, while the training set of Few-INERD is totally labeled
by human.

We further showcase some new instances generated based on few-shot examples in Few-
NERD in Table Four single-token instances and seven multiple-token instances are
shown respectively. The generated results are of reasonable correctness and rich variety, thus
ensuring the quality of the newly added training data. We can also found that the generator
is able to capture in-context instances like “Zeus”, “Hades” in the first example and “3DS” in

the last example, which are also important to improve the context-based entity typing model.

Hyperparameter Study. We study the effect of several hyperparameters in ALIGNIE .
We conduct all the hyperparameter study and case studies on Few-NERD dataset. We first
separately vary the initialization bias a in Eq. and the label smoothing parameter € in
Eq. in range [0.0,0.5], while keeping the other’s value as default (0.1 for both default
values). We report the accuracy on Few-NERD in Fig. . Overall, the performance is
insensitive to a since the values in correlation matrix U are trainable. The accuracy also does
not change much when € is reasonably close to 0, and can degrade a little when too much
weight is given away from the original label. We then vary the number of new instances M
generated added to training, and run experiments over M = [1,3,5,8,10]. We present the
results in Fig. and found that the model performance increases as more new instances
are generated. However, the increasing trend slows down at M = 5. Since generating more
new instances cost extra time, it is already sufficient for us to generate 5 instances per type

during training.

42

Generation from single-token entities

Context & entity mention

MLM predicted type

Generated new instances

From Coeus and Phoebe came Leto and Asteria, who married

Zeus, Hermes, Hades, Apollo, Athena,

Perses, producing Hekate, and from Cronus and Rhea came Hestia, god Hera. Plito. Promethets
Demeter, Hera, Poseidon, Hades, and Zeus. o ’ B
Orsonwelles malus is a species of spider endemic to Kauai . Hawaii, Fiji, Samoa, Guam, Taiwan,
. " island
in the Hawaiian Islands. Honolulu, Japan, ...
At both Delaware State and Buffalo, Townsend was responsible for Delaware, Wilmington, Syracuse,
leading the athletic department to achieve full NCAA Division I status, university Albany, Rutgers,
as both schools transitioned from lower levels of NCAA hierarchy. Dartmouth, Duke, ...
A well-known philanthropist, Shaw donated billions of yuan, euros,
Hong Kong dollars to educational institutions in Hong Kong currency sterling, yen,

and mainland China.

bitcoin, pounds, ...

Generation from multi-token entities

Context & entity mention

MLM predicted type

Generated new instances

The album also included the song “Vivir Lo Nuestro,”

Beyonce, Jennifer Lopez,

) L singer Rihanna, Taylor Swift,
a duet with Marc Anthony. Lady Gaga, Michael Jackson, ...
Warner Brothers, Paramount Pictures ,
The film was released on August 9, 1925, by Universal Pictures. company Columbia Pictures, Lucasfilm,
Hollywood Pictures, ...
Everland hosted 7.5 million guests in 2006, ranking it fourth o N o
in Asia behind the two Tokyo Disney Resort parks and ark Lotte \gﬁ ;l;l;}g?gg;? SVE\;:(EZS Japan,
Universal Studios Japan, while Lotte World attracted 5.5 million pat ghat Hisney Woric ,
suests to land in fifth place. Orlando Universal Studios, ...
Their daughter, Caroline Montgomery Marriott, was killed by the . Yellow Fever, bird flu,
X . L disease typhus, small pox,
Spanish Flu epidemic in 1918. polio
The disappearance of the Norse settlements probably resulted climate change, Ice Age,
from a combination of the Little Ice Age s cooling temperatures, disaster global warming, Norman Conquest,

abandonment after the Black Plague and political turmoils.

cannibalism, natural disasters, ...

The site of Drake’s landing as officially
recognised by the U.S. Department of the Interior
and other agencies is Drake’s Cove.

government agency

the Department of Homeland Security,
the Bureau of Land Management,
the Federal Bureau of Investigation,
the United States Forest Service,
the National Institutes of Health, ...

Pikmin also make a cameo during the process
of transferring downloadable content from a Nintendo DSi
to a 3DS, with various types of Pikmin carrying the data over.

handheld

3DS, 2DS,
Wii U, Nintendo Switch,
the PSP, PlayStation Vita, ...

Table 3.4: Top generated instances based on predicted types of example entities.

L Organization | Organization | Organization Organization | Organization Organization Organization
Organization ,) ,) , . , .) ..
/Company | /Government | /Sports League | /Sports Team | /Education | /Media_Newspaper | /ShowOrganization
association corporation bureau match teams school channel orchestra
club companies agency matches players university television choir
NGO firm bank competition squad institution newspaper band
group retailer court tournament TEAM college magazine bands
formation airline army championship side Academy broadcast ensemble

Effects of Templates.

Table 3.5: Top 5 related words of types on the “Organization” branch.

Previous studies [52, 224] point out that the quality of prompt

templates play an important role in the performance of prompt-based methods. To study the

impact of different template choices, we replace our template with two more templates and

show their performance in Table [3.6] The results indicate that the choice of templates can

impact the final performance, and the result is better when the typing template T, matches

more with the generating template 7.

43

60
60 oy
o . g
£ 59 =
g Q58
= =
58 =
& £ 57
= =
257 —— ¢
= a 0 3 5 8§10
56 00 01 02 03 02 05 # of new instances M
])?ll'éllll(‘,t(‘l' \'?1111(‘5
(b) Accuracy on Few-NERD dataset
(a) Accuracy on Few-NERD dataset with different numbers of instance
with different smoothing parameter generated per type.

€ and initialization bias « applied.

Figure 3.6: Hyperparameter study and testing curve analysis.

Typing template T,(x, m) | Instance generating template Ty(x, m,t) | Acc. | Micro-F1 | Macro-F1
x. m is a [MASK]. x. m, as well as [MASK], is a t. 59.72 | 71.90 71.90
. In this sentence, m is a [MASK]. x. m, as well as [MASK], is a ¢. 58.57 | 71.69 71.69
x. m is a type of [MASK]. x. m, as well as [MASK], is a type of ¢t. | 58.86 72.05 72.05

Table 3.6: Performance with different templates on the Few-NERD dataset.

3.7 SUMMARY

In this chapter I introduce coarse and fine-grained entity recognition tasks, along with two
frameworks for few-shot learning setting. I first introduce a systematic study for few-shot
NER with three distinct directions, and then focus on hierarchical settings where type labels
are more fine-grained. Pre-trained models are leveraged in both studies for representations of
entity instances and type labels. Experiments also demonstrate that our proposed frameworks
are very effective, and outperform previous baselines by large margins on benchmark datasets.

Recently, a bunch of instruction-tuning based methods [229, [83] are designed to align
language models on specific tasks with hundreds/thousands of human-written question answer
pairs. However, these methods still require human annotations on at least a few thousand
training pieces, and this may not be always available on domain-specific data which require
expertise. My method provides an approach to reduce the annotation burden, by leveraging

the domain corpus itself for enhancing model performance.

44

CHAPTER 4: KNOWLEDGE-GUIDED COMMONSENSE REASONING

Apart from extracting static knowledge such as entities, relations and document types from
a corpus, I also work on more complex user-oriented tasks such as commonsense reasoning that
relies on dynamically utilizing the static knowledge. For example, a question asking about
“Would Albert Einstein be more likely to know about astrology than physics?” requires entity
information about the physicist Albert from science-related documents. My research [75]
aims to outputting a generalized model that can answer various styles of reasoning questions
given a few examples of in-domain questions and answers with explanations.

In the rapidly evolving domain of NLP, Large Language Models (LLMs) have shown their
emergent abilities to reason and learn from limited examples. While previous methodologies
have primarily centered around enhancing LLM performances with different prompting
strategies, my research introduces a novel approach, named as LMSI, aiming to bridge
the gap between the inherent capabilities of LLMs and the human brain’s metacognitive
processes, offering insights into how LLMs can self-enhance their reasoning abilities without
the need for supervised data. The subsequent sections provide a comprehensive analysis of
the proposed method, its empirical validation, and its potential implications for the broader

NLP community.

4.1 OVERVIEW

Previous methods [195] 230], 91| for few-shot reasoning tasks usually focus on creating
better demonstration formats for language models to imitate on new test-time qustions,
leveraging their pre-trained generation power. For example, [I95] proposes to prompt the
language model with few-shot examples of questions, answers, and detailed reasoning text
sequences, so that the final answer can be computed based on intermediate reasoning paths.
Orthogonal to their direction, my proposed method LMSI [75] focuses on improving upon
the pre-trained model itself for general reasoning tasks via self-improving. Specifically, given
that diverse decoding paths [190] show a performance gap on the final answer accuracy over
greedy decoding, my method leverages enormous unsupervised training questions to generate
multiple reasoning paths with confidence-based sampling. Then the sampled reasoning paths
are transferred into mixed formats/styles for self-training on the language model. The model
after such unsupervised training can improve its generic reasoning performance on both
in-domain and out-of-domain tasks, including commonsense reasoning, arithmetic reasoning,

and sentence entailment.

45

Scaling has enabled Large Language Models (LLMs) to achieve state-of-the-art performance
on a range of Natural Language Processing (NLP) tasks [186], (185, 152]. More importantly,
new capabilities have emerged from LLMs as they are scaled to hundreds of billions of
parameters [194]: in-context few-shot learning [13] makes it possible for an LLM to perform
well on a task it never trained on with only a handful of examples; Chain-of-Thought (CoT)
prompting [195, OT] demonstrates strong reasoning ability of LLMs across diverse tasks with
or without few-shot examples; self-consistency [190] further improves the performance via
self-evaluating multiple reasoning paths.

Despite these incredible capabilities of models trained on large text corpus [13, 24], funda-
mentally improving the model performances beyond few-shot baselines still requires finetuning
on an extensive amount of high-quality supervised datasets. FLAN [193] 25] and TO0 [162] cu-
rated tens of benchmark NLP datasets to boost zero-shot task performances on unseen tasks;
InstructGPT [142] crowd-sourced many human answers for diverse sets of text instructions to
better align their model to human instructions. While significant efforts were committed on
collecting high-quality supervised datasets, human brain, on the contrary, is capable of the
metacognition process [44], where we can refine our own reasoning ability without external
inputs.

In this chapter, I will introduce how an LLM capable of in-context few-shot learning and
chain-of-thought reasoning, is able to self-improve its reasoning ability without supervised
data. I show that using only input sequences (without ground truth output sequences) from
multiple NLP task datasets, a pre-trained LLM is able to improve performances for both in-
domain and out-of-domain tasks. Our method is shown in Figure 4.1} I first sample multiple
predictions using few-shot Chain-of-Thought (CoT) [195] as prompts, filter “high-confidence”
predictions using majority voting [190], and finally finetune the LLM on these high-confidence
predictions. The resulting model shows improved reasoning in both greedy and multi-path
evaluations. We call the model fine-tuned in this way as Language Model Self-Improved
(LMSI). Note that LMST depends on in-context few-shot learning and chain-of-thought
reasoning abilities which small language models do not necessarily have. I empirically verify
LMSI using a pre-trained PaLM 540B LLM, where our method not only improves training
task performances (74.4%—82.1% on GSMSK, 78.2%—83.0% on DROP, 90.0%—94.4% on
OpenBookQA, and 63.4%—67.9% on ANLI-A3), but also enhances out-of-domain (OOD)
test tasks (AQUA, StrategyQA, MNLI), achieving state-of-the-art performances in many
tasks without relying on supervised ground truth answers. Lastly, I conduct preliminary
studies on self-generating additional input questions and few-shot CoT prompts, which could
further reduce the amount of human effort required for model self-improving, and ablation

studies on important hyperparameters of our approach. We hope our simple approach and

46

strong empirical results could encourage more future work by the community to investigate

optimal performances of pretrained LLMs without additional human supervision.

4.2 RELATED WORK

Learning from Explanations. Augmenting a machine learning model with explanations
has been studied in existing literature extensively. For example, in the supervised learning
setting, a model can be fine-tuned using human-annotated rationales [217, 109} 139, [16, 29] 25].
A few works have also looked at how explanations can help the models in various settings,
e.g., in-context learning [95] and in distillation [I50]. [103] treat explanations as process
supervision to train a reward model. In this chapter, I focus more on the unsupervised learning
setting, where no rationale-augmented training dataset is available, since human-annotated

rationales can be expensive.

Few-Shot Explanations Improves Reasoning in LLMs. Recently, a lot of progress
has been made towards improving LLMs’ reasoning abilities via prompting or in-context
learning. [195] propose Chain-of-Thought prompting, which prompts the language model to
generate a series of natural-language-based intermediate steps, and show it can help language
models better solve complex and multi-step reasoning tasks. [190] improve Chain-of-Thought
prompting by sampling multiple diverse reasoning paths and finding the most consistent
answers via majority voting. [91] propose to prompt the language model with “Let’s think
step by step” to generate reasoning in a zero-shot fashion. [230] decompose the questions into

multiple sub-questions, and ask the language model to solve each sub-question sequentially.

Refining Explanations. More recent work proposes to further refine the generated
reasoning paths as some of them could be unreliable. For example, [209] calibrate model
predictions based on the reliability of the explanations, [87] show that inducing a tree of
explanations and inferring the satisfiability of each explanation can further help judge the
correctness of explanations. [101] show that sampling a diverse set of prompts from the
training data, and a voting verifier can be used to improve model’s reasoning performance.
[200] and [226] propose to polish the problem progressively before the model reaching a stable
answer. Our work is orthogonal to these lines of work, as we utilize refined explanations for
model self-improvement, and could readily incorporate these other refinement techniques for
generating higher-quality self-training data. Our work is closely related to [218] where we both
propose to fine-tune a model on self-generated CoT data, but our method does not require

ground truth labels and shows stronger empirical results with multi-task generalization.

47

Self-Training Models. One related line of work is self-training (see a survey from [4]). The
key idea is to assign pseudo labels from a learned classifier to unlabeled data, and use these
pseudo-labeled examples to further improve the original model training, e.g., [159], 201, 67].
Different from such prior work, our proposed self-improvement framework uses CoT prompting
plus self-consistency to obtain high-confidence solutions on a large set of unlabeled data to

augment the fine-tuning process.

Distillation and Dark Knowledge. Our method also tangentially relates to rich literature
on distillation [7,69]. A key detail is to learn from soft targets instead of hard predicted labels,
as softmax outputs with a high temperature reveal more detailed relative class likelihoods,
colloquially known as dark knowledge [69, 03]. Recent studies [218], 171, 45] show that dark
knowledge within LLMs can be retrieved with more computation at inference time, such as
adding informative instructions into the input sequence and output CoT generation [195] [91].
Recent works [121 [39] [70] demonstrated that distillation on explanations generated from

large models can increase the reasoning abilities of smaller models with ground truth filtering.

4.3 SELF-IMPROVING MACHINE REASONING WITH LANGUAGE MODELS

The overview of our method is illustrated in Fig. We are given a pre-trained Large
Language Model (LLM) M and a question-only training dataset D*2* = {x,}2 with
few-shot Chain-of-Thought (CoT) examples [195]. We apply multiple path decoding with a
sampling temperature 7" > 0 for generating m reasoning paths and answers {r; ,ri,..., 7}
for each question z; in D2 and use majority voting (self-consistency) to select the most
consistent, highest confidence answer [190]. We then keep all reasoning paths that lead to
the most consistent answer, apply mixed formats of prompts and answers for augmentation,
and fine-tune the model on these self-generated reasoning-answer data. We consider our
approach as making the model self-improve. In the following sections, we detail important
designs within our method, along with additional approaches for the model to self-improve

without supervised data.

Generating and Filtering Multiple Reasoning Paths. Self-consistency [190] brings
large improvements on reasoning tasks (e.g., 56.5% — 74.4% on GSMS8K test set), and the
gap between greedy decoding and diverse decoding shows there is a potential for further
improving the reasoning ability of M, using the self-selected high-confidence reasoning paths

as training data.

48

Q: John buys 20 cards and 1/4 are A5 1086 L — :
uncommon. How many uncommon vears old B A i CoT examples ‘
cards did he get? Q: ... How old is Alex?

A: John gets 20 * 1/4 = 5 uncommon Alex’s age is in the A
cards. The answer is 5. middle of 8 and 10.
,,,,,,,,,,,,,,,,, Language i)
i CoT examples } Mgde? Alex is|9 years old. U o ‘Q: ... How old is Alex?

,,,,,,,,,,,,,,,,, y 8+10)/2 = 9. A: Let’s think step-by-step.

Q: Amy is 10. Jake is 8. Alex’s age is The answer is(9.
right in the middle. How old is Alex? Output:

Majority
A: oo Y i A
1 Training-set questions or | |:| Voting [(8+10)/2=9 ... answer is 9.
| by answer

1 self-generated questions i

Multiple path [Alex is 9 years old ...

decoding [

Self-training Mixed formats of selected reasoning paths

Figure 4.1: Overview of our method. With Chain-of-Thought (CoT) examples as
demonstration [195], the language model generates multiple CoT reasoning paths and

answers (temperature 7' > 0) for each question. The most consistent answer is selected by
majority voting [190]. The “high-confidence” CoT reasoning paths that lead to the majority
answer are augmented by mixed formats as the final training samples to be fed back to the

model for fine-tuning.

Question: Stefan goes to a restaurant with his family. They order an appetizer that costs $10 and
4 entrees that are $20 each. If they tip 20% of the total, what is the total amount of money that
they spend?

Multiple Path Decoding:

Output 1: The appetizer costs $10. The entrees cost $20 each so in total 4 * $20 = $80. This means
the total cost is $10 + $80 = $90. They tip 20% of it, so the total amount they spend is $90 * 1.2

= $108. The answer is 108.

Output 2: The appetizer costs $10 and the entrees are $20 each. There are 4 entrees so the sum is
$20 * 4 = $80. The waiter gets 20% of the total. 20% of $80 is $80 * .2 = $16. The answer is $80
+ $16 = $96. (Incorrect reasoning path)

Output 3: The appetizer costs $10. The entrees cost 4 * $20 = $80. The tip is 20% of the total, so
it is 20% of the $90 they have spent. The tip is 0.2 * 90 = $18. The total they spent is $90 + $18
= $108. The answer is 108.

Table 4.1: Examples of 3 self-generated CoT reasoning paths given a question. Output 1 and
3 are the most consistent reasoning paths based on majority voting and kept as self-training

data.

For each training question x;, we sample m reasoning paths, denoted as {r;,... 7, }
(see Table for examples). Since M is prompted with the CoT examples from [195], we

apply the same output parsing with “The answer is” to generate their predicted answers

{Yi,, Yis» - - -, Yin, }- The most consistent answer, which is not necessarily a correct answer, is

selected by majority voting, denoted as g; = argmax,, > " I(y;; = v,). For all the training
J

49

questions, we filter the CoT reasoning paths that reach g as the final answer to be put into

the self-training data, denoted as D¢ = {z;, 7;}, where 7; = {r; |1 < j < m,y;, = 0:}.

1.0 oo [0,
] Qo <
50'8 o 2
© 0.6 s o
S N 200 5
9 0.44 O o
<0.2- E
0.01

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Figure 4.2: The relation of accuracy and confidence of the majority-voted answer after
multiple path decoding on GSM8K training-set questions. Predicted confidence from
self-consistency [190] is well calibrated [59].

Since we do not use any ground truth labels to filter out cases where g; # y;, it is important
that the self-generated CoT reasoning paths are mostly reliable and incorrect answers do
not hurt the self-improvement of the model. We plot the relation between the accuracy and
confidence of self-generated CoT paths for each question in GSMS8K training set in Fig. 4.2
The confidence is the number of CoT paths leading to y divided by the total path number
m. The y-axis shows the accuracy of § under a certain confidence. The circle area and the
color darkness shows the number of questions under a certain confidence. We can observe
that confident answers are more likely to be correct, which means that when a question has
many consistent CoT paths, then the corresponding 3 is more likely to be correct. On the
other hand, when ¢ is wrong, it is likely to be supported by fewer CoT paths, and brings

little noise to the training samples.

Training with Mixed Formats. To prevent the language model from overfitting to specific
prompts or answer styles, we create four different formats for each reasoning path to be mixed
in the self-training data, shown in Table [£.2] In the first format, a few Chain-of-Thought
examples (questions followed by reasoning paths leading to the correct final answers) are
prepended to the new question, while the language model output is trained to be the same
with the filtered CoT reasoning paths. In the second format, we use examples of questions
and their direct answers as standard prompting, and the language model output is supposed
to also only contain the direct answer. The third and fourth format are similar to the first
and second format, except that no example of question-answer pairs are given, so that the

model will learn to think on its own in an in-context zero-shot manner. In the third format,

50

Question: Amy is 10 years old. Jake is 8 years old. Alex’s age is right in the middle. How old is Alex?
Selected Chain-of-Thought: Amy is 10 years old. Jake is 8 years old. Alex’s age is in the middle of
Amy and Jake, so Alex is (8 + 10) / 2 = 9 years old. The answer is 9.

Mixed-formats of training data:

Format 1: Input: [CoT prompting examples| + ‘\n’ + [Question] + ‘\n’ + ‘A:’

Output: Amy is 10 years old. Jake is 8 years old. Alex’s age is in the middle of Amy and Jake, so Alex
is (8 +10) / 2 = 9 years old. The answer is 9.

Format 2: Input: [Standard prompting ezamples| + ‘\n’ + [Question] + “\n’ + ‘A’
Output: The answer is 9.

Format 3: Input: [Question] + ‘\n’ + ‘A: Let’s think step by step.’
Output: Amy is 10 years old. Jake is 8 years old. Alex’s age is in the middle of Amy and Jake, so Alex
is (8 +10) / 2 = 9 years old. The answer is 9.

Format 4: Input: [Question] + ‘\n’ + ‘A.’
Output: The answer is 9.

Table 4.2: An example of how a reasoning path is augmented into four formats of training
data with different prompts (in input) and answer styles (in output). Specifically, the CoT
prompting ezamples used for each tasks are listed in Appendix [A.5l The Standard prompting
examples are the same question-answer pairs with CoT' prompting eramples, except that
reasoning is removed.

where we want the model to output CoT reasoning without prepending examples containing
CoT reasonings, we append “Let’s think step by step.” at the end of the input sequence, to
guide the language model to generate step-by-step CoT reasoning paths [01]. The mixed

formats of training samples are then used to fine-tune the pre-trained language model M.

Generating Questions and Prompts. In some cases where even training questions or
human-curated CoT prompts are limited, our method may not generate sufficient training
samples for language model self-training. Therefore, we investigate how to self-generate more
training questions as well as example prompts to further reduce human effort.

Previous work [210], [126] discuss few-shot data augmentation by generating diverse training
samples using LLMs. However, those methods are designed for classification tasks and require
ground truth label for each few-shot example. We use a simple yet effective approach to
generate diverse questions (without using ground truth answers) from a few example questions.
Specifically, we randomly sample and concatenate example questions in a random order as
input prompt, and let the language model generate consecutive sequences as new questions.
We repeat the process to obtain a large set of new questions, then use self-consistency [190]
to only keep the questions that have a highly confident answer. Those questions are then
used as self-generated training questions.

Given a set of questions, humans can write CoT examples as reasoning paths leading to

o1

the final answer. In zero-shot setting without manual prompts, we can generate these CoT
paths using the model itself. Following [91], we start the answer with “A: Let’s think step by
step.” and let the language model generate the consecutive reasoning paths. We then use

those generated reasoning paths as examples for few-shot CoT prompting.

4.4 EVALUATION OF SELF-IMPROVING LANGUAGE MODELS

We conduct a series of experiments to demonstrate the effectiveness of our proposed
self-improving method. First, we apply our method on each individual dataset (task) and
report the results. We then merge the generated data from all datasets and train one model to
study the generalization ability of the model on unseen datasets as in [193]. In addition to the
results of using generated CoT reasoning paths, we show studies on generating input questions

and few-shot prompts. We end with ablation studies on model sizes and hyperparameters.

Tasks and Datasets. We demonstrate the effectiveness of our method on three types of
tasks}

e Arithmetic reasoning: We use the math problem set GSM8K [29], and a reading
comprehension benchmark DROP [43] which requires numerical reasoning. We follow [230]
to partition the DROP dataset into football related and non-football related subsets for
training.

e Commonsense reasoning: We use the OpenBookQA [130] dataset, and the AI2 Reason-
ing Challenge (ARC) [28] dataset. Note that for ARC, we only use the Challenge sub-set

(ARC-c) in our experiments. Both datasets contain multiple-choice questions.

e Natural Language Inference: We use the Adversarial NLI (ANLI) [I30] subsets, ANLI-
A2 and ANLI-A3, which are the more challenging subsets compared to ANLI-A1. These

datasets contain pairs of sentences with relations of entailment, neutral, or contradiction.

Main Results. We list the results of using the PaLLM 540B model before and after LIMSI
in Table [4.3] For each model, during test time, we apply three separate prompting methods
on all six datasets: standard-prompting, CoT-Prompting, and Self-Consistency. We observe
that after LMSI , the performance of all three prompting methods increase by a large
margin. We observe significant improvement, comparing self-consistency versus LIMSI with

self-consistency: +7.7% on GSMS8K, +4.8% on DROP, +4.4% on OpenBookQA, and +4.5%

2We evaluate on the test sets of GSMSK, ARC, OpenBookQA, and ANLI, and the dev set of DROP
(ground truth labels of the test set are not publicly available).

52

Prompting Method w. or w/o LMSI ~GSMS8K DROP ARC-c OpenBookQA ANLI-A2 ANLI-A3

Standard-Promotin w/o LMSI 17.9 60.0 87.1 84.4 55.8 55.8
¢ ptng w. LMSI 32.2 (+14.3) TLT (+11.7) 87.2(+0.1) 920 (+7.6) 64.8 (+9.0) 66.9 (+11.1)

CoT-Promntin w/o LMSI 56.5 70.6 85.2 86.4 58.9 60.6
pung w. LMSI 735 (+17.0) 762 (+5.6) 883 (+3.1) 93.0 (+6.6) 653 (+6.4) 67.3 (+6.7)

w/o LMSI 744 78.2 88.7 90.0 64.5 63.4

Self-Consistency w. LMSI 82.1 (+7.7) 83.0 (+4.8) 89.8 (+1.1) 94.4 (+4.4) 66.5 (+2.0) 67.9 (+4.5)

Table 4.3: Accuracy results on six reasoning benchmarks with or without LIMSI using
different prompting method.

on ANLI-A3. This shows that our proposed method is quite effective. Furthermore, the
single path CoT-Prompting performance of LIMSI is close to or even better than the multiple
path Self-Consistency performance of the model without LMSI , showing that LMSI truly
helps the language model learn from the multiple consistent reasoning paths. We also apply
LMSI on a recently proposed public language model, UL2 (20B) [178], and show the results
in Table Compared to the 540B model (decoder-only), UL2 has a smaller scale, and
a different architecture (encoder-decoder). We observe that for most datasets, LIMSI still
outperforms the original UL2 results, but the improvement is not as large as that on the
540B model.

Self-training data ~ AQUA SVAMP StrategyQA ANLI-Al RTE MNLI-M/MM
w/o LMSI - 35.8 79.0 75.3 68.8 79.1 72.0/74.0
w. LMSI GSMSK -+ DROP + ... 39.0 (+3.2) 82.8 (+3.8) 77.8(+2.5) 79.2 (+10.4) 80.1 (+1.0) 81.8/82.2 (+9.8/+8.2)

Table 4.4: Comparison of CoT-prompting accuracy results on six Out-Of-Domain
benchmarks with or without training on six In-Domain (GSM8K, DROP, ARC-c,
OpenBookQA, ANLI-A2, ANLI-A3) training-set questions.

Multi-Task Self-Training for Unseen Tasks. To demonstrate the generalization ability
of LMSI , we conduct experiments of self-training on a mixture of the training-set questions
from the above six datasets (denoted as In-Domain tasks), then use the same model checkpoint
for the evaluation on six Out-Of-Domain (OOD) tasks, as shown in Table [£.4] Of all the
OOD tasks: (1) AQUA [109] and SVAMP [I43] are arithmetic reasoning tasks; (2)
StrategyQA [54] is a commonsense reasoning task; (3) ANLI-A1 [130], RTE [3I] and
MNLI-M /MM [197] are natural language inference tasksf| Among these tasks, AQUA,
StrategyQA, and RTE are significantly different from any In-Domain task, and have their
own few-shot prompts. From Table .4 we observe that LMSI achieves higher accuracy

3We evaluate on the test set of SVAMP and ANLI, the dev set of MNLI and RTE (ground truth labels of
the test sets are not publicly available). For StrategyQA we use the question-only set from [I0].

53

results on all OOD tasks, showing that the overall reasoning ability of the language model is

improved.

Results on GSM8K
Std. Prompting CoT Prompting

w/o LMSI 17.9 56.5
LMSI w/o CoT formats 23.6 (+5.7) 61.6 (+5.1)
LMSI w/ CoT formats 32.2 (+14.3) 73.5 (+17.0)

Table 4.5: Ablation study: w/ or w/o CoT reasoning paths as training format on GSM8K
dataset.

Importance of Training with Chain-of-Thought Formats. We demonstrate the
importance of training language models with Chain-of-Thoughts compared to training with
only direct answers. In Table [4.5] we list the results of LIMSI with all four formats, and the
results of LMSI with only direct answer formats. The results clearly show that without the
CoT formats, the language model can still self-improve, but the performance gain drops by a

large amount compared to using all four formats.

Questions used GSMSK

for Self-Training CoT SC
w/o LMSI : 56.5 74.4
w. LMSI Generated 66.2 (+9.7) 78.1 (+3.7)
w. LMSI Training-set 73.5 (+17.0) 82.1 (+7.7)

Table 4.6: Accuracy on GSMS8K test set after self-training on different question sets. Results
are shown for both CoT-Prompting (CoT) and Self-Consistency (SC).

Pushing the Limit of Self-Improvements. We further explore the few-shot setting
where there are only limited training questions in the target domain. On GSMS8K, we sample
10 real questions as few-shot samples, and use the language model to generate more training
questions. We then self-train the language model with these generated questions and list the
results in Table [4.6] The results show that using self-generated questions still improves the
reasoning ability of language models, but using the real training-set questions leads to better
results.

We explore the situation where no in-domain CoT examples are provided for a task. We

apply the Step-by-Step method [91] to generate CoT examples using the language model,

o4

0.75 - o @ -n-e- @ @ - q

Accuracy
e ©
(@) ~
()] o

©
o
o

Step-by-Step
@ Few-Shot w/ Step-by-Step

o
U
ol

10 20 30 40 50 60 70 80
Total Sample Paths

Figure 4.3: Accuracy results on GSMS8K test set using PaLLM 540B model with multi-path

sampling and self-consistency [190]. “Step-by-Step” is the baseline performance of [91] plus

self-consistency [190], while our “Few-Shot w/ Step-by-Step” uses exemplers self-generated
from Step-by-Step (greedy decoding) for few-shot prompting the LLM.

and show the results in Figure [£.3] We observe that few-shot prompting with self-generated
Step-by-Step CoT examples substantially outperforms the Step-by-Step [91] baseline (66.2%
vs 53.8% at 10 paths, 74.2% vs 70.1% at 40 paths), and nearly matches the performance
of human-written few-shot CoT [193] (74.4% at 40 paths [I90]). The strong performance
of “Few-Shot w/ Step-by-Step” despite the limited accuracy of prompt examples (43.0% for
greedy Step-by-Step) likely comes from leveraging more diverse CoT prompts for multi-path
decoding [101], where at 40 paths it uses 20 generate prompt-templates, each with 4-shot
CoT examples, i.e. a total of 80 generated CoT examples compared to 8 human-written
examples use in [195]. Since we did not use training questions or few-shot CoT examples,

74.2% also marks the new state-of-the-art zero-shot performance on GSMS8K.

Results on GSMS8K
& billion 62 billion 540 billion

w/o LMSI 5.0 29.7 56.5
Distilled from LMSI 33.4 (4+28.4) 57.4 (+27.7) -

Table 4.7: Distillation from PaLLM 540B model to small models. We see that distilled smaller
models outperform models that are one-tier larger.

Distillation to Smaller Models. We also explore whether the knowledge can be distilled

to smaller models, such as in distillation [69] and in [218]. We use the same set of training

95

samples generated by the PaLM 540B model, but fine-tune on models with smaller sizes
(PaLLM 8B and PaLLM 62B respectively), and show the results of CoT-prompting in Table
It is interesting to point out that after distillation from LIMSI , the 62 billion model can
outperform the pre-trained 540 billion model, and the 8 billion model can outperform the
pre-trained 62 billion model. This implies that for downstream applications with limited
computing resources, the reasoning knowledge from large models can be used to largely

enhance small models to achieve competitive performance.

83
o
0
281 DROP
801 —*— GSM8K
0.7 1.0 1.2 1.5

Sampling Temperature

Figure 4.4: Accuracy results of LMSI on GSM8K and DROP test set when different
sampling temperatures are applied for Self-Consistency.

Hyperparameter Study. We study the effect of varying the temperature 7" for multiple
path decoding after LMSI is applied. Specifically, we vary T" between [0.7,1.0,1.2, 1.5] and
show the results on GSM8K and DROP dataset respectively in Fig. 1.4 As shown in the
figure, T' = 1.2 benefits both datasets the most, and is used in the Self-Consistency method
for LMSI on all datasets. We notice that the optimal T after model self-improvement is
larger than the optimal 7" = 0.7 [190] before self-improvement. We believe the reason is that
after training the model, the entropy of the output distribution is reduced.

We study whether the number of sampled reasoning paths m for Self-Consistency largely
affects the accuracy after LMSI is applied. We show the accuracy on GSMS8K test set for
models both with or without LMSI in Fig. [1.5] For both cases, setting m = 15 already
achieves a reasonably good accuracy, and using a larger m only brings marginal improvements.
We also notice that after Self-Improvement, using 5 paths for Self-Consistency can already
surpass the performance of using 32 paths for model without Self-Improvement. Thus,
with a well-improved model, huge computing resources can be saved when applied to real

applications.

56

80

>

o 701

5

o

< 607 LMSI

—e— w/0 LMSI

501

1 5 10 15 20 25 32
Sampled Reasoning Path

Figure 4.5: Accuracy results with or without LMSI on GSMS8K test set using different
numbers of sampled reasoning path for Self-Consistency.

4.5 DISCUSSIONS

Our approach mainly relies on the effectiveness of demonstration-based in-context few-shot
learning which works most effectively on large language models, according to [194]. For
example, [218] showed that a 6B model, GPT-J, achieves only 3.1% accuracy on GSM8K with
few-shot CoT prompting, while GPT-3 (175 B) achieves 46.9%, according to [195]. Based
on these existing studies, we believe that LMSI is more applicable to large-scale language
models, since large models generate much more reliable reasoning paths for training. In
addition, we have already shown that distillation from large models to small models are
very promising. Therefore, smaller models can also be improved when large model APIs are
accessible. We are fortunate to have enough resources for this work. Though the computation
requirements for training large-scale language models are still prohibitively high for most
researchers to conduct empirical studies along this line, we believe that our findings are
conceptually useful for the NLP community by providing new insights for the properties of

large language models.

Prompting Method GSM8K DROP ARC-c OpenBookQA ANLI-A2 ANLI-A3

, CoT-Prompting 54/71 11.1/16.8 49.9 53.6 35.9 33.8
w/o LMSI . Y !

Self-Consistency 6.4/9.9 16.8/26.5 54.7 54.0 374 36.8

LMSI CoT-Prompting 6.1/8.6 11.4/17.1 50.9 53.8 35.4 34.4

Self-Consistency 7.9/10.2 18.1/28.1 54.9 55.2 38.1 37.4

Table 4.8: Accuracy results on six reasoning benchmarks with LMSI on UL2. On GSMS8K
and DROP, we also include accuracy scores after an equation-correction postprocessing step.

We also apply LMSI on a recently proposed public language model, UL2 [I7§|, using the

o7

pre-trained model at step 2,650,00(1?]. We use a fixed set of hyperparameters for fine-tuning
on each dataset. Specifically, we generate m = 40 reasoning paths for each question in a
training set for majority voting. We fine-tune the model for 10k steps with a learning rate of
5e—b5 and a batch size of 32. For multiple path decoding, we use a sampling temperature of
T = 0.5 with the pre-trained UL2 model following [I78], and set T'= 0.7 for the language
model after LMSI . We set the maximum number of decode steps to 256 for all experiments.

The results are shown in Table For arithmetic reasoning datasets, we follow [I78| to
provide both exact matching accuracy scores as well as accuracy scores after an equation-
correction postprocessing step. We observe that for most datasets, LIMSI still improves the
reasoning accuracy (+1.6% on DROP, +1.2% on OpenBookQA, and +0.7% on ANLI-A2),
but the improvement on UL2 is not as large as that on PaLM 540B. We think the reason is
that, since LMSI exploits the implicit rationale of language models, and the capacity of a
language model is determined by its size, larger models can capture more high-order semantics
and are more likely to benefit from LIMSI . For example, on the adversarial entailment tasks
of ANLI (which is a three-class classification problem with labels “yes”, “no”, or “it is not
possible to tell”), the UL2 model w/o LMSI only achieves an accuracy of marginally above
1/3, implying that the model is slightly better than doing random guess on this challenging
task without any training. Our proposed LMSI can still improve the performance under

this hard case by training on its implicit knowledge from self-generated paths.

4.6 SUMMARY

In this chapter I introduced an approach to improve knowledge-guided commonsense
reasoning, by leveraging and self-improving large language models, without using ground
truth supervision. By leveraging the training corpus, the model can refine its own generated
responses, and can achieve competitive in-domain multi-task performances as well as out-
of-domain generalization. Two other approaches are also studied for low-resource settings,
where there are few training questions or no human given seed examples. For future work,
one potential direction to improve LIMSI is to integrate training data with self-generated
data to further enlarge the diversity of training questions and responses.

Recently, instruction-tuning based methods have been used for improving LLM performance
via human annotations on hundreds/thousands of annotations. To reduce the burden on
human annotations, approaches that distill knowledge from LLMs to smaller language models

have also been proposed, such as using GPT-4 generated responses for instruction-tuning [144].

4UL2: https://github.com/google-research/google-research/tree/master/ul2

58

https://github.com/google-research/google-research/tree/master/ul2

Our proposed LMSI mainly focuses on improving the language model itself. Though being
more applicable to large-sized language models, it can also be used to improve smaller

language models as shown in our experiments.

99

CHAPTER 5: FUTURE WORK

The previous chapters concluded my completed research, and in this chapter I list my

potential future direction to further enhance knowledge-based NLP applications.

5.1 IMPROVING MODEL FACTUALITY AND CALIBRATION

In Chapter [4] I introduce my work on using language models to do commonsense reasoning
guided by a few human written prompts. However, Natural Language Generation (NLG)
models are known to generate hallucinations [123], which could be factually incorrect state-
ments or logically inconsistent sentences. It remains an open problem to determine whether

the generated outputs are faithful or not.

Improving Factuality with Retrieval. To improve the facutality of language model
outputs, one direction is to leverage information retrieved from external knowledge bases, such
as Wikipedia and other online knowledge sources. There have been studies on using retrieval-
based methods in pre-training or inference stage. For example, non-parametric language
model [I33] is proposed to let language models output responses according to documents
from a certain corpus. Context-aware decoding [167] is proposed to make language models
decode contrastively according to the provided pieces of context during inference stage, and
thus can output less hallucination.

To improve the faculity of language model outputs, we can explore to develop verifier
models that leverage related external knowledge to discriminate the truthfulness of model

responses, and then decide whether or not to let the model re-generate new responses.

Improving Model Calibration. Another important factor of improving the usefulness
of language model outputs for knowledge acquisition is to let them convey the degree of
uncertainty about their statements, so users know how much to trust a given statement.
This is also important for questions with no known ground truth (using LLMs for economic
forecasts or open problems in science). A well-calibrated neural model provides a reliable
confidence measure in addition to its prediction, which means the gap between average
accuracy and average distance is small.

Three kinds of confidence/uncertainty expression can be provided by language models,
as mentioned in [I05]: verbalized expression (’61%’ or 'medium confidence’), normalized

answer logit, and the logit of “True” or “False” for each statement. [I80] has found out that

60

generating multiple top guesses increase model calibration compared to only generating
top-1 guess, since models tend to distribute lower confidence to answers that they are likely
incorrect. For long-form generated responses, different output sequences might have the
same/different meaning, so what matters is the model’s uncertainty over meanings instead
of uncertainty over tokens. This situation is studied by [94], and semantic variances are
estimated by aggregating sequence probabilities.

One direction to improve language model calibration is to explore better confidence
expressions. For example, it is found that using different numerical degree of confidence could
affect the performance [231]. Moreover, language models tend to be overconfident when they
are provided with supporting paragraphs to questions, so how to re-scale the confidence is

also worthy of explorations.

Continual Learning and Knowledge Updating within Language Models. One
major drawback of current language models is that after pre-training is done, the parameters
are kept fixed and language models lack the ability to update themselves. Knowledge can
evolve over time: for example, the answer to the question “Who is the president of the
US?” might change every four years. Fine-tuning models on new data causes degradation of
performance, thus how to edit model parameters to update the knowledge remains an open
and challenging question. [124] develops a technique to identify and localize the parameters
which are decisive for a piece of information, and only those corresponding weights are
updated for the new knowledge. Another line of study [134] leverages an external memory

network to store the edited facts.

5.2 IMPROVING MODEL COHERENCE AND CONSISTENCY

In real world practice, there could be many actionable tasks that contain long procedural
or sequential subgoals, which require long term planning for humans to carry out solutions.
While current models excel in generating coherent and contextually relevant sentences, they
sometimes lack the ability for planning ahead as well as maintaining a consistent narrative or
argument throughout longer passages. For example, a recent study [14] shows that GPT-4

cannot correctly perform the task of “Tower of Hanoi” with three rods.

Improving Decoding Strategy. One of the primary challenges in enhancing the global
planning ability of language models is refining the decoding strategy. Traditional beam
search or greedy decoding might not be sufficient for maintaining a consistent narrative

over long passages. Most models, including the transformer-based architectures, rely on

61

autoregressive decoding, where each token is generated based on the preceding tokens. This
often leads to locally coherent but globally inconsistent outputs. One potential direction is to
utilize non-autoregressive decoding, such as using hierarchical decoding, where the model first
generates an outline or skeleton of the content and then fills in the details [I76]. This ensures
that the overall structure is coherent, and the details align with the broader narrative. One

could also explore parallel decoding strategies [206], where tokens are generated in parallel.

Incorporating Symbolic Meanings and World Models. Humans think with symbolic
models, which are systematic and structured, but often rely on patterns or hand-engineering
for model learning. On the other hand, language models are flexible with natural language, but
lack ground reasoning with coherent plans. A recent study [199] integrates world knowledge,
observations and questions into language model with a rational reasoning construction
framework, by translating natural language expressions to formal languages using language
models, and modeling thinking using probabilistic programming that combines a generative
world model. Future works can also focus on how to leverage real-world structured data such

as relations, graphs and tables in the planning process.

5.3 USER-SPECIFIC LANGUAGE MODELS

As language models have become more and more powerful, it is important to align their
usage with human interest and values. One way is to improve their interactions with human

beings.

Personalized Language Models. Current language models are mostly trained on public
data, and can perform well on general tasks like commonsense reasoning. However, some
applications require the model to be tailored to a specific organization or end user. For
example, users may want a personalized recommendation for products or movies, as well
as using language models to assist article writing in personalized styles. Current language
models may not satisfy users’ needs since they tend to output very general responses that
appear frequently in the pre-training corpus. By training models on individual user data,
language models can adapt to the user’s style, preferences, and needs. A recent study [160)]
explores diverse tasks that require personalized language modeling, such as email drafting
and tweet rephrasing. However, personalized language models could raise privacy concerns
since the training data come from users. Ensuring data security and user anonymity could

rely on techniques like differential privacy [I] to prevent the extraction of training data.

62

Language Models with Psychology. Emotions play a pivotal role in human decision-
making and communication. Integrating emotional intelligence into LLMs can lead to more
empathetic and contextually appropriate responses. Pre-trained models have been employed
to detect depression and classify other mental disorders [80]. However, a deeper understanding
requires the model to recognize complex emotional states and respond in a manner that
acknowledges and respects the user’s feelings. Emotionally-aware LLMs can be particularly
useful in sensitive domains like mental health support or conflict resolution.

To further explore the integration of psychology and LLMs, future work can focus on
developing models to adapt to the cognitive and emotional states of users, by acting as
different supporting roles needed by users. Moreover, language models can be applied in
therapy chatbots or mental health monitoring systems, and can generate diagnostic reports

that therapists review before discussing with patients.

63

APPENDIX A: IMPLEMENTATION DETAILS OF PROPOSED METHODS

In this chapter, I list all the implementation details of the experiments conducted for

evaluating proposed methods.

A.1 IMPLEMENTATION DETAILS FOR SET-COEXPAN

Dataset | # classes | # queries | entity vocabulary size | # documents
Wiki 8 40 41242 780556
APR 3 15 71707 1014140

Table A.1: Descriptions of datasets.

Datasets. We conduct our experiments on two large corpus also used in previous studies
[165]: (1) Wiki is a subset of Wikipedia English dump from May 2011. (2) APR contains
news articles published by two news platforms, Associated Press and Reuters in the year of
2015. We use the same sets of seed queries and ground truth of each semantic classes with
previous studies as well. For Wiki dataset, there are 8 semantic classes, and 5 queries per
class. For APR dataset, there are 3 semantic classes, and 5 queries for each class. These
queries cover a wide range of semantic classes. Each query contains three seed terms belonging
to a certain semantic class. Table lists the detailed descriptions of these datasets and
queries. To extract possible entity mentions, we use the same preprocessing pipeline as
SetExpan [165].

Parameter Settings. Since our framework iteratively generates auxiliary sets and co-
expands target and auxiliary sets, we set the expansion number ¢ at each iteration to be 5,
and will later provide parameter study of ¢. In the auxiliary sets generation module, the
embedding training balances the global context loss and local context loss by a ratio A of
1.5, and we retrieve 10 related words for each element in the current expanded set. In the

cross-seed merging stage, two groups can be merged together if they have enough overlap,

thus we set 7 to be \/ AN, capanded: gg,emnded). In the multiple sets co-expansion module,
since the size of generated auxiliary sets are often larger than the currently expanded target
set, we need to balance the size of multiple sets to prevent the model from extracting features
that only focus on making the largest set to be cohesive. We randomly sample seeds from
each auxiliary set to keep it as large as the target set. When extracting skip-gram features
for each entity mention, we first extract a fixed window size of 3, and then transform them

into dynamic independent units, and there are two parameters in this transformation: the

64

breaking threshold ~ is set to be 1.0, and the generalizing threshold k is set to be 100, which
stops the original skip-gram to be broken down to too general contexts. We set T = 10
and @ = 200 as SetExpan [165]. We use the same hyperparameters for all queries on both

datasets.

Compared Methods. We compare our methods to several previous corpus-based set
expansion algorithms that only take corpus as input to expand entity seed sets. We also
implement a baseline named BERT that only uses the pre-trained BERT model to retrieve the
most similar entities. To show the effectiveness of auxiliary sets and flexible transformation of

skip-grams in improving set expansion, we also compared Set-CoExpan with several ablations.

e SetExpan [165]: This method uses skip-gram features, distributed representations and
coarse-grained types as context features. It uses rank ensemble to combine the result of

three pre-ranking lists. We run the algorithm using its default setting.

e SetExpander [122]: This method incorporates multiple context features by training separate
embedding space for each type of contexts, and a classifier is trained on a labeled dataset

to adjust the weight of different features.

e CaSE [214]: This method combines skip-gram patterns and distributed representations to
generate a one-time ranking for candidate entities. The model has three variants using
different distributed representations, and we report the result of CaSE-W2V which has the

highest performance.

e BERT [38]: We implement a baseline that only uses BERT, a recent contextualized
embedding framework. We use the pre-trained model (uncased, base, 768 dimensions) and
average over all occurrences in the corpus to get the centroid for any entity. We then use

KNN to search for most similar entities.

e Set-CoExpan (no aux.): This ablation excludes the auxiliary sets generation module thus

only expand one query of seed set in the co-expansion module.

e Set-CoExpan (no flex.): This ablation expands auxiliary sets simultaneously with the target

set. However, it removes the flexible transformation of skip-grams.

A.2 IMPLEMENTATION DETAILS OF COREL

Datasets. Our experiments are conducted on two large real-world datasets: (1) DBLP

contains around 157 thousand abstracts from publications in the field of computer science.

65

For preprocessing, we use AutoPhrase [164] to extract meaningful phrases to serve as our
vocabulary, we further discard infrequent terms occuring less than 50 times, resulting in 16650
terms. (2) Yelp is collected from the recent released Yelp Dataset Challengeﬂ containing
around 1.08 million restaurant reviews. Similarly, we extract meaningful phrases and remove

infrequent terms, resulting in 14619 termf].

Hyperparameter Study. For our relation classifier, the hyperparameter is set to be: batch
size = 16, training epochs = 5, model: Bert-Base (12 layers, 768 hidden size, 12 heads). When
training the relation classifier, we make a 90/10 training/validation split on training samples.
In our relation transferring process, we set the threshold for relation score in Eqgs. and
to 0.7, and the threshold for KL divergence ¢ to 0.5. For our concept learning module,
we set the following hyperparameters for embedding training process: embedding dimension
= 100, local context window size = 5, Ay = 1.5, and A, = 1.0. The threshold for Cluster

Consistency is 0.5. We use the same hyperparameters for both datasets.

Compared Methods. We compare CoRel to several previous corpus-based taxonomy
construction algorithms. To the best of our knowledge, there is no seed-guided topical
taxonomy construction methods where each node is represented by a cluster of words, so we

also compare CoRel with some unsupervised methods.

e Hi-Expan [166] + Concept Learning: Hi-Expan is a seed-guided instance-based taxonomy
construction algorithm, which has the same input as our setting and constructs the
taxonomy structure by set expansion and word analogy. Since its output node is represented
by single word, we apply our concept learning module to enrich each node with a cluster

of words.

e TaxoGen [220]: An unsupervised topical taxonomy construction method. It uses spherical
clustering and local-corpus embedding to discover fine-grained topics represented by clusters

of words.

e HLDA [I1]: A non-parametric hierarchical topic model. It models the generation of
documents in a corpus as sampling words from the paths when moving from the root node

to a leaf node. Thus we can take each node as a topic.

e HPAM [I32]: A state-of-the-art hierarchical topic model which requires a pre-defined

number of topics and outputs topics at different levels.

Shttps://www.yelp.com/dataset /challenge
60ur code and data are available at https://github.com/teapot123/CoRel

66

https://github.com/teapot123/CoRel

A.3 IMPLEMENTATION DETAILS OF FEW-SHOT NER

Experiment Settings. Throughout our experiments, the pre-trained base RoBERTa
model is employed as the backbone network. We investigate the following 6 schemes for
the comparative study: (i) LC is the linear classifier fine-tuning method in Section 2, i.e.,
adding a linear classifier on the backbone, and directly fine-tuning on entire model on the
target dataset; (7)) P indicates the prototype-based method in Section 3.1; (7ii) NSP refers
to the noisy supervised pre-training in Section 3.2; Depending on the pre-training objective,
we have LC4+NSP and P-+NSP. (i) ST is the self-training approach in Section 3.3, it is
combined with linear classifier fine-tuning, denoted as LC+ST; (v) LCH+NSP+ST.

Datasets | CoNLL | Onto | WikiGold | WNUT | Movie | Restaurant | SNIPS | ATIS | Multiwoz | 12B2

Domain News | General | General | Social Media | Review Review Dialogue | Dialogue | Dialogue | Medical
#Train 14.0k 60.0k 1.0k 3.4k 7.8k 7.7k 13.6k 5.0k 20.3k 56.2k
#Test 3.5k 8.3k 339 1.3k 2.0k 1.5k 697 893 2.8k 51.7k
#Entity Types 4 18 4 6 12 8 53 79 14 23

Table A.2: Statistics on the 10 public datasets studied in our NER benchmark.

Datasets. We evaluate our methods on 10 public benchmark datasets, covering a wide range
of domains: OntoNotes 5.0 [I53], WikiGold| [8] on general domain, CoNLL 2003 [L61] on news
domain, WNUT 2017 [36] on social domain, MIT Moive [112] and MIT Restaurantf| [I11]
on review domain, SNIPY [30], ATIS| [63] and Multiwo4™] [15] on dialogue domain, and
I2Bﬂ [T75] on medical domain. The detailed statistics of these datasets are summarized in
Table [A.2]

For each dataset, we conduct three sets of experiments using various proportions of the
training data: 5-shot, 10% and 100%. For 5-shot setting, we sample 5 sentences for each
entity type in the training set and repeat each experiment for 10 times. For 10% setting, we
down-sample 10 percent of the training set, and for 100% setting, we use the full training set
as labeled data. We only study the self-training method in 5-shot and 10% settings, by using

the rest of the training set as unlabeled in-domain corpus.

Hyperparameters. We have described details for noisy supervised pre-training. For

training on target datasets, we set a fixed set of hyperparameters across all the datasets:

"https://github.com/juand-r/entity-recognition-datasets
Shttps://groups.csail.mit.edu/sls/downloads/
‘nttps://github.com/sonos/nlu-benchmark/tree/master/2017-06-custom-intent-engines
Ohttps://github.com/yvchen/JointSLU

Uhttps://github.com/budzianowski/multiwoz
2https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/

67

https://github.com/juand-r/entity-recognition-datasets
https://groups.csail.mit.edu/sls/downloads/
https://github.com/sonos/nlu-benchmark/tree/master/2017-06-custom-intent-engines
 https://github.com/yvchen/JointSLU
https://github.com/budzianowski/multiwoz
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/

Entity type name # Entities H Entity type name # Entities
person 10976096 person/author 8603619
person/athlete 5990955 person/actor 5646333
person/fictional character 4820634 person/musician 4414457
person/ethnicity 1603194 person/politician 4196151
person/artist 3971716 person/director 870744
person/monarch 847943 person /soldier 297018
person/coach 284695 person/religious leader 272999
person/engineer 202533 person/architect 192587
person/doctor 101930 person/terrorist 2759
location 11234535 location/city 13478825
location/country 10022782 location/province 2555375
location/island 741533 location/body of water 1372583
location/county 930301 location /road 740874
location/astral body 410792 location/mountain 409878
location/cemetery 155498 location/park 78388
location/railway 61438 location/bridge 39528
location/glacier 17158
organization 5280100 organization/company 8070793
organization/sports team 3236586 organization/educational institution | 2124661
organization/government 1146508 organization /military 1118635
organization /political party 1006768 organization/sports league 854429
organization/news agency 378262 organization/government agency 314572
organization/airline 170127 organization/terrorist organization 40272
organization/fraternity sorority 35299
art 3420964 art/music 4480181
art/written work 3284486 art/film 2583704
art/play 214837 art/newspaper 17488
building 2038445 building/sports facility 289182
building /airport 235172 building /theater 134604
building /hospital 89793 building /restaurant 50499
building/hotel 41571 building/library 24556
building/power station 18211 building/dam 10634
computer/algorithm 1808698 computer/programming language 110646
event 2877275 event/military conflict 1199857
event /attack 453078 event /election 358101
event/sports event 268484 event /natural disaster 149982
event/protest 93586 event/terrorist attack 2244
livingthing 2736344 livingthing /animal 1117967
product 969818 product /ship 776310
product /game 770000 product /instrument 622648
product /train 558943 product /software 550727
product /car 347887 product/airplane 321361
product/weapon 320842 product /spacecraft 56071
product /computer 50812 product /mobile phone 14585
product/engine device 31956 product /camera 10198
education/educational degree 507088 education /department 126584
medicine /symptom 440572 medicine/medical treatment 360235
medicine/drug 158258
finance/currency 140008 finance/stock exchange 14861
broadcast program 1944347 broadcast /tv channel 91262
time 31543479 title 5752995
language 1565042 broadcast network 997300
food 903886 disease 743015
body part 741448 religion 666482
god 578091 chemistry 542973
award 488515 internet website 259798
law 230483 transit 132448
biology 123600 metropolitan transit line 92136

Table A.3: Entity type names and corresponding numbers on Wikipedia data used in
supervised pre-training. For better visualization, we group entity label names belonging to
the same root into the same blocks.

For the linear classifier, we set batch size = 16 for 100% and 10% settings, batch size = 4
for 5-shot setting. For each episode in the prototype-based method, we set the number of

68

‘ Dataset H Entity type name # Entities H Entity type name # Entities

location 7140 person 6600

CONLL-2003 organization 6321 misc. 3438
person 15429 countries, cities, states 15405
organization 12820 date 10922

cardinal 7367 political groups 6870

money 2434 percent 1763

Onto ordinal number 1640 time 1233
work of art 974 buildings,highways,bridges 860

event 748 quantity 657

product 606 language 304

law 282 other locations 12

. location 628 organization 559
Wikigold person 538 misc. 365
person 660 location 548

WNUT17 group 264 corporation 221
product 142 creative work 140

plot 6468 actor 5010

genre 3384 year 2702

. P character name 1025 director 1787
MIT Movie opinion 810 origin 779
relationship 580 award 309

quotation 126 soundtrack 50

location 3817 cuisine 2839

} . amenity 2541 restaurant name 1901
MIT Restaurant dish 1475 rating 1070
hours 990 price 730

(AddToPlaylist) playlist 1869 (AddToPlaylist) playlist owner 1107

(AddToPlaylist) music item 887 (AddToPlaylist) artist 738

(AddToPlaylist) entity name 590 (BookRestaurant) restaurant type 1359

(BookRestaurant) party size number 1022 (BookRestaurant) time range 674
(BookRestaurant) state 519 (BookRestaurant) city 513

(BookRestaurant) restaurant name 339 (BookRestaurant) country 356
(BookRestaurant) spatial relation 324 (BookRestaurant) party size description 316
(BookRestaurant) served dish 269 (BookRestaurant) cuisine 210

(BookRestaurant) sort 203 (BookRestaurant) facility 159
(BookRestaurant) poi 143 (GetWeather) time range 1047

(GetWeather) city 851 (GetWeather) country 498

(GetWeather) state 491 (GetWeather) condition temperature 476

(GetWeather) condition description 454 (GetWeather) geographic poi 290

SNIPS (GetWeather) current location 271 (GetWeather) spatial relation 209
(PlayMusic) artist 1169 (PlayMusic) music item 791

(PlayMusic) service 756 (PlayMusic) year 630

(PlayMusic) sort 346 (PlayMusic) track 211

(PlayMusic) album 176 (PlayMusic) playlist 149
(PlayMusic) genre 144 (RateBook) rating value 1924

(RateBook) rating unit 1103 (RateBook) best rating 1033

(RateBook) object name 979 (RateBook) object select 952

(RateBook) object type 919 (RateBook) object part of series type 307
(SearchCreativeWork) object name 1951 (SearchCreativeWork) object type 1462
(SearchScreeningEvent) movie name 808 (SearchScreeningEvent) object type 692
(SearchScreeningEvent) movie type 674 (SearchScreeningEvent) spatial relation 665
(SearchScreeningEvent) location name 586 (SearchScreeningEvent) object location type 458

(SearchScreeningEvent) time range 265

Table A.4: Entity type names and corresponding numbers on benchmark NER datasets
CONLL-2003, Onto, WikiGold, WNUT17, MIT Movie, MIT Restaurant, and SNIPS.

sentences per entity type in support and query set (K, K’) to be (5,15) for 100% and 10%

settings, and (2,3) for 5-shot setting. For both training objectives, we set learning rate =

69

Dataset ‘

Entity type name

| # Entities ||

Entity type name

Entities

(fromloc) city name 4326 (fromloc) airport name 89
(fromloc) state code 46 (fromloc) state name 39
(fromloc) airport code 15 (toloc) city name 4343
(toloc) state code 86 (toloc) state name 7
(toloc) airport name 39 (toloc) airport code 20
(toloc) country name 3 (depart date) day name 889
(depart date) day number 395 (depart date) month name 379
(depart date) today relative 84 (depart date) date relative 82
(depart date) year 25 (depart time) time 692
(depart time) period of day 593 (depart time) time relative 323
(depart time) period mod 44 (depart time) start time 25
(depart time) end time 25 (stoploc) city name 239
(arrive time) time relative 187 (arrive time) time 172
(arrive time) period of day 64 (arrive time) start time 21
(arrive time) end time 20 (arrive time) period mod 4
(arrive date) day name 88 (arrive date) month name 47
(arrive date) day number 47 (arrive date) date relative 11
(arrive date) today relative 2 (return date) date relative 10
(return date) month name 4 (return date) day number 4
ATIS (return date) today relative 1 return date) day name 1
(stoploc) state code 5 (stoploc) airport name 1
(return time) period of day 3 (return time) period mod 2
airline name 701 round trip 348
cost relative 344 flight mod 329
city name 227 class type 217
flight stop 168 airline code 136
flight number 84 fare basis code 76
flight time 71 meal description 57
fare amount 53 transport type 48
connect 40 flight days 39
airport name 38 economy 36
airline name 32 aircraft code 31
mod 30 airport code 29
restriction code 23 meal 17
state code 8 meal code 6
day name 5 period of day 5
days code 3 time 2
today relative 2 state name 2
month name 2 day number 2
time relative 1
restaurant food 4041 restaurant name 3054
hotel name 2863 restaurant booktime 2361
attraction name 1972 train leaveat 1617
Multiwoz train arriveby 1518 taxi departure 995
taxi destination 970 taxi leaveat 800
taxi arriveby 439 hospital department 107
bus destination 3 bus departure 2
date 5195 doctor 1989
patient 931 hospital 925
medical record 408 city 258
phone 233 state 221
username 219 street 208
1282 id num 174 profession 150
zip 139 organization 85
country 53 age 8
device 7 tax 5
other locations 4 email 3
url 2 bioid 1
health plan 1

Table A.5: Entity type names and corresponding numbers on benchmark NER datasets
ATIS, Multiwoz, and 12B2.

5e~% for 100% and 10% settings, and learning rate = le=* for 5-shot setting. For all training

data sizes, we set training epoch = 10, and Adam optimizer [89] is used with the same linear

70

decaying schedule as the pre-training stage. For self-training, we set Ay = 0.5.

Evaluation. We follow the standard protocols for NER tasks to evaluate the performance
on the test set [I61]. Since RoBERTa tokenizes each word into subwords, we generate
word-level predictions based on the first word piece of a word. Word-level predictions are then
turned into entity-level predictions for evaluation when calculating the fl-score. Two tagging
schemas are typically considered to encode chunks of tokens into entities: BIO schema marks
the beginning token of an entity as B-X and the consecutive tokens as I-X, and other tokens
are marked as 0. IO schema uses I-X to mark all tokens inside an entity, thus is defective as
there is no boundary tag between same type of entities. In our study, we use BIO schema by
default, but also report the performance evaluated by IO schema for fair comparison with

some previous studies.

Entity Types of Training and Testing Datasets. We show the entity types and their
corresponding frequencies in pre-training dataset in Table and downstream benchmark
datasets in Table and Table [A.5, We see that the entity types for pre-training and
fine-tuning are semantically related, but different in granularity. For example, the location
category in pre-training dataset contains fine-grained entity types like country, city, road,
and bridge, while the Onto dataset for fine-tuning only gives a coarse-grained partition
by geopolitical locations (countries, cities) and non geopolitical ones (highways, bridges).
Further, for each categories of entity types, the pre-training dataset has a much higher
frequency than fine-tuning dataset, allowing the model to learn heterogeneous contextual

knowledge before deploying to a specific domain.

A4 IMPLEMENTATION DETAILS OF ALIGNIE

Datasets. We use three fine-grained entity typing benchmark datasets.

e OntoNotes. The OntoNotes dataset is derived from the OntoNotes corpus [153] and
12,017 manual annotations were done by [56] with 3 hierarchical layers of 89 fine-grained
types. We follow the dataset split by [168] that retains 8,963 non-pronominal annotations,
where the training set is automatically extracted from Freebase API by [156]. Since our
paper focus on few-shot learning, we apply extra preprocessing by filtering out classes with
less than 5 annotations in training, validation, and test set, resulting in a total of 21 classes
left.

71

e BBN Pronoun Coreference and Entity Type Corpus (BBN). This dataset uses
2,311 Wall Street Journal articles and is annotated by [196] with 2 hierarchical layer of 46
types. We follow the split by [156] and also filter out classes with less than 5 annotations

in training, validation and test set, leading to a total of 25 classes.

e Few-NERD. The Few-NERD [41] dataset is a recently proposed large-scale manually
annotated dataset with 2 hierarchical layers of 66 types. We follow [40] and uses the
supervised setting of the dataset, FEW-NERD (SUP), as well as the official split for
few-shot example sampling. All 66 classes have more than 5 annotations in each of the

dataset splits.

Experiment Settings. We conduct 5-shot learning on three datasets by sampling 5
instances for training and 5 instances for dev set in each run of experiment. We repeat
experiments for each dataset for 5 times with different sampled sets and report the average
result. We use the pre-trained RoBERTa-base model as the backbone transformer model (for
ALIGNIE and all baselines). For all three datasets: the max sequence length is set to be 128;
the batch size is 8; the training epoch number is 30; the hyperparameters a and ¢ are set to
0.1; the instance generating number M is set to 5 per type; the training weights A and A,
are set to 1.0. We use a learning rate of 1le — 2 for the correlation matrix U and a gradient
multiplication layer of le — 7 is applied to the bottom Transformer backbone so that the
pre-trained weights stay very stable during the training. We use Adam [89] as the optimizer
with linear decaying schedule. The model is run on NVIDIA GeForce GTX 1080 Ti GPU.

Compared Methods. We include the results of vanilla fine-tuning, prompt-based MLM
using hard templates in [40], and the current state-of-the-art method PLET [40] on few-shot
entity typing, which uses multiple hard and soft templates for prompt-based tuning, and
automatically constructs verbalizers through external knowledge graph. We conduct ablation
studies by removing the following two parts one at a time: (1) not using the hierarchical
regularization in Eq. and Eq. (- hierarchical reg.); (2) not using the type-based
contextual instance generator to generate new instances for training in Eq. (- new
instances). We also compare with vanilla fine-tuning and prompt-based tuning in a fully

supervised setting.

Evaluation Metrics. We apply the widely-used metrics from [I10] consisting of strict
accuracy (Acc.), loose micro-F1 score (micro-F1), and loose macro-F1 score (macro-F1). The
loose F1 scores tolerate partial correctness for type labels within the same branch but of

different granularities.

72

A5 IMPLEMENTATION DETAILS OF LMSI

Models, Training settings and Hyperparameters. We follow previous studies [195] [190]
and conduct our experiments on an autoregressive Transformer-based language model with
540 billion parameters. The CoT examples for each dataset are listed below. We generate
m = 32 reasoning paths for each question in a training set. For DROP and ANLI-A2/A3, we
sample 5k examples for reasoning path generation to reduce the training burden; For other
datasets, we keep the whole training set. For each dataset, we fine-tune the model for 10k
steps with a learning rate of 5e—5 and a batch size of 32. We use a sampling temperature of
T = 0.7 with the pre-trained model as suggested by [190]. We use 7" = 1.2 for the language
model after self-improvement (LMSI). We set the maximum number of decoded steps to

256 for all experiments.

Chain-of-Thought Prompts for Each Dataset. We list the Chain-of-Thought Prompts

for each dataset for “CoT-Prompting” experiments and self-generated training samples.

73

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove
today. After they are done, there will be 21 trees. How many trees did the grove
workers plant today?

A: We start with 15 trees. Later we have 21 trees. The difference must be the
number of trees they planted. So, they must have planted 21 - 15 = 6 trees. The
answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars
are in the parking lot?

A: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3
2 = 5 cars. The answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces
do they have left in total?

A: Leah had 32 chocolates and Leah’s sister had 42. That means there were
originally 32 + 42 = 74 chocolates. 35 have been eaten. So in total they still have
74 - 35 = 39 chocolates. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12
lollipops. How many lollipops did Jason give to Denny?

A: Jason had 20 lollipops. Since he only has 12 now, he must have given the rest
to Denny. The number of lollipops he has given to Denny must have been 20 - 12
= 8 lollipops. The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and
dad. How many toys does he have now?

A: He has 5 toys. He got 2 from mom, so after that he has 5 + 2 = 7 toys. Then
he got 2 more from dad, so in total he has 7 + 2 = 9 toys. The answer is 9.

Q: There were nine computers in the server room. Five more computers were
installed each day, from monday to thursday. How many computers are now in
the server room?

A: There are 4 days from monday to thursday. 5 computers were added each day.
That means in total 4 * 5 = 20 computers were added. There were 9 computers
in the beginning, so now there are 9 + 20 = 29 computers. The answer is 29.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he
lost 2 more. How many golf balls did he have at the end of wednesday?

A: Michael initially had 58 balls. He lost 23 on Tuesday, so after that he has 58 -
23 = 35 balls. On Wednesday he lost 2 more so now he has 35 - 2 = 33 balls. The
answer is 33.

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she
have left?

A: She bought 5 bagels for $3 each. This means she spent 5 * $3 = $15 on the
bagels. She had $23 in beginning, so now she has $23 - $15 = $8. The answer is 8.

Table A.6: Few-shot CoT prompts for GSM8K and SVAMP, from [195].

74

Q: Poison causes harm to which of the following? (a) a Tree (b) a robot (c) a house
(d) a car

A: Poison will harm living things, only a tree is a living thing. The answer is (a).

Q: As you look deeper into a Marbel you can see (a) the future (b) minut defects (c)
colors (d) the other side

A: Marbel is not transparent, so you can not see the other side. Marbel does not
necessarily have multiple colors. You will see minut defects. The answer is (b).

Q: When food is reduced in the stomach (a) the mind needs time to digest (b) take a
second to digest what I said (c¢) nutrients are being deconstructed (d) reader’s digest
is a body of works

A: The food is being deconstructed in the stomach during digestion. The answer is

().

Q: The sun is responsible for (a) puppies learning new tricks (b) children growing
up and getting old (c) flowers wilting in a vase (d) plants sprouting, blooming and
wilting

A: The sun can affect the growing of living things, like plants. The answer is (d).

Table A.7: Few-shot CoT prompts for OpenBookQA, from [189].

75

Q: Since the 1970s, U.S. governments have negotiated managed-trade agreements,
such as the North American Free Trade Agreement in the 1990s, the Domini-
can Republic-Central America Free Trade Agreement in 2006, and a number of
bilateral agreements. In Europe, six countries formed the European Coal and
Steel Community in 1951 which became the European Economic Community in
1958. Two core objectives of the EEC were the development of a common market,
subsequently renamed the single market, and establishing a customs union between
its member states. How many years did the European Coal and Steel Community
exist?

A: According to the passage, the European Coal and Steel Community was
established in 1951 and became the EEC in 1958. 1958 - 1951 = 7. So the answer
is 7.

Q: In the county, the population was spread out with 23.50% under the age of 18,
8.70% from 18 to 24, 29.70% from 25 to 44, 24.70% from 45 to 64, and 13.30%
who were 65 years of age or older. How many more percent are under the age of
18 compared to the 18 to 24 group?

A: According to the passage, 23.5% are under the age of 18, and 8.7% are from
ages 18 to 24. 23.5% - 8.7% = 14.8%. So the answer is 14.8.

Q: Playing in their second straight Thanksgiving game, the Eagles struggled
especially on defense, where they were unable to stop the much-hyped Lions
offense. The worst of it all was how unproven rookie Eric Rowe was tasked with
covering wide receiver Calvin Johnson, leading to Johnson catching 3 touchdowns.
Stafford’s five passing touchdowns, including three of them to Johnson was too
much for the Eagles to overcome and for the second consecutive time this season,
the Eagles gave up 45 points in a game. With the loss, the Eagles drop to 4-7
on the season and 6-1 when playing on Thanksgiving. How many TD passes did
Stafford throw other than to Johnson?

A: According to the passage, Stafford threw 5 TD passes, 3 of which were to
Johnson. 5 - 3 = 2. So the answer is 2.

Table A.8: Few-shot CoT prompts for DROP (nonfootball), from [230].

76

Q: The Seahawks played the San Francisco 49ers. In the first quarter, the Hawks
RB Julius Jones got a 27-yard TD run, along with DT Craig Terrill returning a
fumble 9 yards for a touchdown. In the third quarter, the 49ers almost rallied as
RB H. J. Torres made a 12-yard TD pass to Lucas Nelly, along with Mare kicking
a 32-yard field goal. In the final quarter, Julius Jones got another 11-yard TD.
How many yards do the shortest touchdown run and the longest touchdown pass
combine for?

A: All the touchdown runs are: a 27-yard touchdown run, a 9-yard touchdown
run, a 11-yard touchdown run. The smallest number among 27, 9, 11 is 9. So the
shortest touchdown run was 9 yards. All the touchdown passes are: a 12-yard
touchdown pass. So the longest touchdown pass was 12 yards. So the shortest
touchdown run and the longest touchdown pass combine for 9 + 12 = 21 yards.
So the answer is 21 yards.

Q: The Steelers went home for a duel with the Baltimore Ravens. Pittsburgh
would deliver the opening punch in the first quarter with a 1-yard touchdown from
running back Rashard Mendenhall. The Ravens would make it even as running
back Willis McGahee got a 9-yard TD. The Ravens kicker Billy Cundiff got a
45-yard field goal in the second quarter, concluding the first half with a 10-7
lead. The Steelers brought the game into overtime with a 38-yard field goal by
Andrew Foster. The Ravens Billy Cundiff pulled off a winning 33-yard field goal
in overtime. How many points did the Ravens have at halftime?

A: The Ravens kicker Billy Cundiff got a 45-yard field goal in the second quarter,
concluding the first half with a 10-7 lead. So the Ravens had 10 points at halftime.
So the answer is 10 points.

Q: The Vikings flew to Bank of America Stadium to face the Carolina Panthers.
After a scoreless first quarter, Carolina got on the board with quarterback Matt
Moore finding fullback Brad Hoover on a l-yard TD pass. After yet another
scoreless quarter, Carolina sealed the game as Matt Moore completed a 42-yard
touchdown pass to wide receiver Steve Smith. How many scoreless quarters were
there?

A: The first and third quarters were the scoreless quarters. So there are 2 scoreless
quarters. So the answer is 2.

Table A.9: Few-shot CoT prompts for DROP (football), from [230].

77

Premise:

"Conceptually cream skimming has two basic dimensions - product and geography."
Based on this premise, can we conclude the hypothesis "Product and geography are
what make cream skimming work." is true?

OPTIONS:

- yes

- no

- it is not possible to tell

A: Based on "cream skimming has two basic dimensions" we can’t infer that these
two dimensions are what make cream skimming work. The answer is it is not possible
to tell.

Premise:

"One of our member will carry out your instructions minutely."

Based on this premise, can we conclude the hypothesis "A member of my team will
execute your orders with immense precision." is true?

OPTIONS:

- yes

- no

- it is not possible to tell

A: "one of" means the same as "a member of", "carry out" means the same as
"execute", and "minutely" means the same as "immense precision". The answer is
yes.

Premise:

"Fun for adults and children."

Based on this premise, can we conclude the hypothesis "Fun for only children." is
true?

OPTIONS:

- yes

- no

- it is not possible to tell

A: "adults and children" contradicts "only children". The answer is no.

Premise:

"He turned and smiled at Vrenna."

Based on this premise, can we conclude the hypothesis "He smiled at Vrenna who
was walking slowly behind him with her mother." is true?

OPTIONS:

- yes

- no

- it is not possible to tell

A: the premise does not say anything about "Vrenna was walking". The answer is it
is not possible to tell.

Premise:

"well you see that on television also"

Based on this premise, can we conclude the hypothesis "You can see that on television,
as well." is true?

OPTIONS:

- yes

- no

- it is not possible to tell

A: "also" and "as well" mean the same thing. The answer is yes.

Premise:

"Vrenna and I both fought him and he nearly took us."

Based on this premise, can we conclude the hypothesis "Neither Vrenna nor myself
have ever fought him." is true?

OPTIONS:

- yes

- no

- it is not possible to tell

A: "Vrenna and I both" contradicts "neither Vrenna nor myself". The answer is no.

Table A.10: Few-shot CoT prompts for NLI tasks, including ANLI and MNLI, from [189].

78

Q: George wants to warm his hands quickly by rubbing them. Which skin surface
will produce the most heat? (a) dry palms. (b) wet palms. (c¢) palms covered with
oil. (d) palms covered with lotion.

A: Dry surfaces will more likely cause more friction via rubbing than other
smoother surfaces, hence dry palms will produce the most heat. The answer is (a).

Q: Which factor will most likely cause a person to develop a fever? (a) a leg muscle
relaxing after exercise. (b) a bacterial population in the bloodstream. (c) several
viral particles on the skin. (d) carbohydrates being digested in the stomach.

A: Option (b), bacterial population is the most likely cause for a person developing
fever. The answer is (b).

Q: Which change in the state of water particles causes the particles to become
arranged in a fixed position? (a) boiling. (b) melting. (c) freezing. (d) evaporating.

A: When water is freezed, the particles are arranged in a fixed position; the
particles are still moving for all other options. The answer is (c).

Q: When a switch is used in an electrical circuit, the switch can (a) cause the
charge to build. (b) increase and decrease the voltage. (c) cause the current to
change direction. (d) stop and start the flow of current.

A: The function of a switch is to start and stop the flow of a current. The answer
is (d).

Table A.11: Few-shot CoT prompts for ARC-challenge, from [190)].

79

Q: John found that the average of 15 numbers is 40. If 10 is added to each number
then the mean of the numbers is? Answer Choices: (a) 50 (b) 45 (c) 65 (d) 78 (e)
64

A: If 10 is added to each number, then the mean of the numbers also increases by
10. So the new mean would be 50. The answer is (a).

Q:Ifa /b = 3/4 and 8a + 5b = 22 then find the value of a. Answer Choices: (a)
1/2 (b) 3/2 (c) 5/2 (d) 4/2 (e) 7/2

A:Ifa /b=3/4, then b =4a /3. So 8a + 5(4a / 3) = 22. This simplifies to 8a +
20a / 3 = 22, which means 44a / 3 = 22. So a is equal to 3/2. The answer is (b).

Q: A person is traveling at 20 km /hr and reached his destiny in 2.5 hr then find
the distance? Answer Choices: (a) 53 km (b) 55 km (c) 52 km (d) 60 km (e) 50
km

A: The distance that the person traveled would have been 20 km/hr * 2.5 hrs =
50 km. The answer is (e).

Q: How many keystrokes are needed to type the numbers from 1 to 5007 Answer
Choices: (a) 1156 (b) 1392 (c) 1480 (d) 1562 (e) 1788

A: There are 9 one-digit numbers from 1 to 9. There are 90 two-digit numbers
from 10 to 99. There are 401 three-digit numbers from 100 to 500. 9 + 90(2) +
401(3) = 1392. The answer is (b).

Table A.12: Few-shot CoT prompts for AQUA, from [190].

80

Q: Do hamsters provide food for any animals?

A: Hamsters are prey animals. Prey are food for predators. Thus, hamsters
provide food for some animals. The answer is yes.

Q: Could Brooke Shields succeed at University of Pennsylvania?

A: Brooke Shields went to Princeton University. Princeton University is about as
academically rigorous as the University of Pennsylvania. Thus, Brooke Shields
could also succeed at the University of Pennsylvania. The answer is yes.

Q: Yes or no: Hydrogen’s atomic number squared exceeds number of Spice Girls?

A: Hydrogen has an atomic number of 1. 1 squared is 1. There are 5 Spice Girls.
Thus, Hydrogen’s atomic number squared is less than 5. The answer is no.

Q: Yes or no: Is it common to see frost during some college commencements?

A College commencement ceremonies can happen in December, May, and June.
December is in the winter, so there can be frost. Thus, there could be frost at
some commencements. The answer is yes.

Q: Yes or no: Could a llama birth twice during War in Vietnam (1945-46)7

A: The War in Vietnam was 6 months. The gestation period for a llama is 11
months, which is more than 6 months. Thus, a llama could not give birth twice
during the War in Vietnam. The answer is no.

Q: Yes or no: Would a pear sink in water?

A: The density of a pear is about 0.6 g/cm3, which is less than water. Objects
less dense than water float. Thus, a pear would float. The answer is no.

Table A.13: Few-shot CoT prompts for StrategyQA, from [195].

81

Premise:

"No Weapons of Mass Destruction Found in Iraq Yet."

Based on this premise, can we conclude the hypothesis "Weapons of Mass Destruction
Found in Iraq." is true?

A: "No Weapons of Mass Destruction Found" contradicts "Weapons of Mass De-
struction Found". The answer is no.

Premise:

"A place of sorrow, after Pope John Paul II died, became a place of celebration, as
Roman Catholic faithful gathered in downtown Chicago to mark the installation of
new Pope Benedict XVI."

Based on this premise, can we conclude the hypothesis "Pope Benedict XVI is the
new leader of the Roman Catholic Church." is true?’

A: "installation of new Pope Benedict XVI." means "Pope Benedict XVI is the new
leader". The answer is yes.

Premise:

"A man is due in court later charged with the murder 26 years ago of a teenager whose
case was the first to be featured on BBC One’s Crimewatch. Colette Aram, 16, was
walking to her boyfriend’s house in Keyworth, Nottinghamshire, on 30 October 1983
when she disappeared. Her body was later found in a field close to her home. Paul
Stewart Hutchinson, 50, has been charged with murder and is due before Nottingham
magistrates later."

Based on this premise, can we conclude the hypothesis "Paul Stewart Hutchinson is
accused of having stabbed a girl." is true?

A: The premise does not say Paul Stewart Hutchinson "stabbed" this girl. The
answer is no.

Premise:

"Herceptin was already approved to treat the sickest breast cancer patients, and
the company said, Monday, it will discuss with federal regulators the possibility of
prescribing the drug for more breast cancer patients."

Based on this premise, can we conclude the hypothesis "Herceptin can be used to
treat breast cancer." is true?

A: "Herceptin was approved to treat breast cancer" implies that "Herceptin can be
used to treat breast cancer". The answer is yes.

Table A.14: Few-shot CoT prompts for RTE, from [189].

82

REFERENCES

[1] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang. Deep learning with differential privacy. Proceedings of the 2016 ACM
SIGSAC CCS, 2016.

[2] A. Akbik, D. Blythe, and R. Vollgraf. Contextual string embeddings for sequence
labeling. In COLING, 2018.

[3] C. Allen and T. M. Hospedales. Analogies explained: Towards understanding word
embeddings. In ICML, 2019.

[4] M.-R. Amini, V. Feofanov, L. Pauletto, E. Devijver, and Y. Maximov. Self-training: A
survey. Arziv, 2202.12040.

[5] B. An, J. Lyu, Z. Wang, C. Li, C. Hu, F. Tan, R. Zhang, Y. Hu, and C. Chen. Repulsive
attention: Rethinking multi-head attention as bayesian inference. In EMNLP, 2020.

[6] M. Atzori, S. Balloccu, and A. Bellanti. Unsupervised singleton expansion from free
text. In ICSC, 2018.

[7] J. Ba and R. Caruana. Do deep nets really need to be deep? In NeurlPS, 2014.

[8] D. Balasuriya, N. Ringland, J. Nothman, T. Murphy, and J. Curran. Named entity
recognition in wikipedia. In PWNLP@IJCNLP, 2009.

[9] T. Bansal, R. Jha, T. Munkhdalai, and A. McCallum. Self-supervised meta-learning
for few-shot natural language classification tasks. In EMNLP, 2020.

[10] B. bench collaboration. Beyond the imitation game: Quantifying and extrapolating
the capabilities of language models. ArXiv, abs/2206.04615, 2022.

[11] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum. Hierarchical topic
models and the nested chinese restaurant process. In NIPS, 2003.

[12] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating
embeddings for modeling multi-relational data. In NIPS, 2013.

[13] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. J.
Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei. Language models are few-shot learners. In NeurlIPS,
2020.

83

[14] S. Bubeck, V. Chandrasekaran, R. Eldan, J. A. Gehrke, E. Horvitz, E. Kamar,
P. Lee, Y. T. Lee, Y.-F. Li, S. M. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro,

and Y. Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4.
ArXiv, abs/2303.12712, 2023.

[15] P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, U. Stefan, R. Osman, and
M. Gasi¢. Multiwoz - a large-scale multi-domain wizard-of-oz dataset for task-oriented
dialogue modelling. In EMNLP, 2018.

[16] O.-M. Camburu, T. Rocktéschel, T. Lukasiewicz, and P. Blunsom. e-snli: Natural
language inference with natural language explanations. In NeurIPS, 2018.

[17] H.-S. Chang, Z. Wang, L. Vilnis, and A. McCallum. Distributional inclusion vector
embedding for unsupervised hypernymy detection. In NAACL-HLT, 2017.

[18] S. Chen, J. Wang, F. Jiang, and C.-Y. Lin. Improving entity linking by modeling latent
entity type information. In AAAI 2020.

[19] T. Chen, Y. Chen, and B. V. Durme. Hierarchical entity typing via multi-level learning
to rank. In ACL, 2020.

[20] X. Chen, N. Zhang, L. Li, X. Xie, S. Deng, C. Tan, F. Huang, L. Si, and H. Chen.
Lightner: A lightweight generative framework with prompt-guided attention for low-
resource ner. In COLING, 2022.

[21] X. Chen, N. Zhang, X. Xie, S. Deng, Y. Yao, C. Tan, F. Huang, L. Si, and H. Chen.
Knowprompt: Knowledge-aware prompt-tuning with synergistic optimization for rela-
tion extraction. In WWW, 2022.

[22] Y. Chen, H. Jiang, L. Liu, S. Shi, C. Fan, M. Yang, and R. Xu. An empirical study on
multiple information sources for zero-shot fine-grained entity typing. In EMNLP, 2021.

[23] J. P. Chiu and E. Nichols. Named entity recognition with bidirectional lstm-cnns.
Transactions of the Association for Computational Linguistics, 2016.

[24] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez,
A. B. Rao, P. Barnes, Y. Tay, N. M. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. C.
Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke,
A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson,
L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi,
D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz,
E. O. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz,
O. Firat, M. Catasta, J. Wei, K. S. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and
N. Fiedel. Palm: Scaling language modeling with pathways. ArXiv, abs/2204.02311,
2022.

84

[25] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li, X. Wang,
M. Dehghani, S. Brahma, A. Yu, A. Webson, X. Chen, G. Mishra, Z. Dai, S. S. Gu,
M. Suzgun, V. Zhao, A. Chowdhery, S. Narang, Y. Huang, A. Dai, H. Yu, E. H. Chi,
J. Dean, J. Devlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei. Scaling instruction-
finetuned language models. ArXiv, abs/2210.11416, 2022.

[26] P. Cimiano, A. Hotho, and S. Staab. Comparing conceptual, divise and agglomerative
clustering for learning taxonomies from text. In FCAI 2004.

[27] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. Electra: Pre-training text
encoders as discriminators rather than generators. In ICLR, 2020.

[28] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord.
Think you have solved question answering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457, 2018.

[29] K. Cobbe, V. Kosaraju, M. Bavarian, J. Hilton, R. Nakano, C. Hesse, and J. Schulman.
Training verifiers to solve math word problems. ArXiv, abs/2110.14168, 2021.

[30] A. Coucke, A. Saade, A. Ball, T. Bluche, A. Caulier, D. Leroy, C. Doumouro, T. Gissel-
brecht, F. Caltagirone, T. Lavril, M. Primet, and J. Dureau. Snips voice platform: an
embedded spoken language understanding system for private-by-design voice interfaces.
ArXiv, abs/1805.10190, 2018.

[31] I. Dagan, O. Glickman, and B. Magnini. The pascal recognising textual entailment
challenge. In MLCW, 2005.

[32] H. Dai, D. Du, X. Li, and Y. Song. Improving fine-grained entity typing with entity
linking. In EMNLP, 2019.

[33] H. Dai, Y. Song, and X. Li. Exploiting semantic relations for fine-grained entity typing.
In AKBC, 2020.

[34] H. Dai, Y. Song, and H. Wang. Ultra-fine entity typing with weak supervision from a
masked language model. In ACL/IJCNLP, 2021.

[35] J. Deng, J. Guo, T. Liu, M. Gong, and S. Zafeiriou. Sub-center arcface: Boosting face
recognition by large-scale noisy web faces. In ECCV, 2020.

[36] L. Derczynski, E. Nichols, M. Erp, and N. Limsopatham. Results of the wnut2017
shared task on novel and emerging entity recognition. In NUTQEMNLP, 2017.

[37] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

[38] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

85

[39] K. S. dhar, A. Stolfo, and M. Sachan. Distilling reasoning capabilities into smaller
language models. In ACL, 2023.

[40] N. Ding, Y. Chen, X. Han, G. Xu, P. Xie, H. Zheng, Z. Liu, J.-Z. Li, and H.-G. Kim.
Prompt-learning for fine-grained entity typing. In EMNLP, 2022.

[41] N. Ding, G. Xu, Y. Chen, X. Wang, X. Han, P. Xie, H. Zheng, and Z. Liu. Few-nerd:
A few-shot named entity recognition dataset. In ACL/IJCNLP, 2021.

[42] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. P. Murphy, T. Strohmann,
S. Sun, and W. Zhang. Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In KDD, 2014.

[43] D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner. Drop: A reading
comprehension benchmark requiring discrete reasoning over paragraphs. In NAACL,
2019.

[44] J. Dunlosky and J. Metcalfe. Metacognition. Sage Publications, 2008.

[45] J. Eisenstein, D. Andor, B. Bohnet, M. Collins, and D. Mimno. Honest students
from untrusted teachers: Learning an interpretable question-answering pipeline from a
pretrained language model. ArXiv, abs/2210.02498, 2022.

[46] O. Etzioni, M. J. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland,
D. S. Weld, and A. Yates. Unsupervised named-entity extraction from the web: An
experimental study. Artificial Intelligence, 165:91-134, 2005.

[47] B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science,
315 5814:972-6, 2007.

[48] A. Fritzler, V. Logacheva, and M. Kretov. Few-shot classification in named entity
recognition task. Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, 2019.

[49] R. Fu, J. Guo, B. Qin, W. Che, H. Wang, and T. Liu. Learning semantic hierarchies
via word embeddings. In ACL, 2014.

[50] J. Gao, M. Galley, and L. Li. Neural approaches to conversational ai. Foundations and
Trends®) in Information Retrieval, 13(2-3):127-298, 2019.

[51] J. Gao, B. Peng, C. Li, J. Li, S. Shayandeh, L. Liden, and H.-Y. Shum. Robust
conversational ai with grounded text generation. ArXiv, abs/2009.03457, 2020.

[52] T. Gao, A. Fisch, and D. Chen. Making pre-trained language models better few-shot
learners. In ACL, 2021.

[53] R. Geng, B. Li, Y. Li, X.-D. Zhu, P. Jian, and J. Sun. Induction networks for few-shot
text classification. In EMNLP/IJCNLP, 2019.

86

[54] M. Geva, D. Khashabi, E. Segal, T. Khot, D. Roth, and J. Berant. Did aristotle use a
laptop? a question answering benchmark with implicit reasoning strategies. TACL,
2021.

[55] A. Ghaddar and P. Langlais. Transforming wikipedia into a large-scale fine-grained
entity type corpus. In LREC, 2018.

[56] D. Gillick, N. Lazic, K. Ganchev, J. Kirchner, and D. Huynh. Context-dependent
fine-grained entity type tagging. ArXiv, abs/1412.1820, 2014.

[57] J. Gu, Y. Wang, Y. Chen, K. Cho, and V. Li. Meta-learning for low-resource neural
machine translation. In FMNLP, 2018.

[58] Y. Gu, X. Han, Z. Liu, and M. Huang. Ppt: Pre-trained prompt tuning for few-shot
learning. In ACL, 2022.

[59] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural
networks. In ICML, 2017.

[60] J. Guo, G. Xu, X. Cheng, and H. Li. Named entity recognition in query. In SIGIR,
2009.

[61] S. Gupta, D. L. MacLean, J. Heer, and C. D. Manning. Research and applications:
Induced lexico-syntactic patterns improve information extraction from online medical

forums. JAMIA, 21 5:902-9, 2014.

[62] S. Gupta and C. D. Manning. Improved pattern learning for bootstrapped entity
extraction. In CoNLL, 2014.

[63] D. Z. Hakkani-Tiir, G. Tiir, A. Celikyilmaz, Y.-N. Chen, J. Gao, L. Deng, and Y.-Y.
Wang. Multi-domain joint semantic frame parsing using bi-directional rnn-lstm. In
INTERSPEECH, 2016.

[64] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 3rd edition, 2011.

[65] X. Han, W. Zhao, N. Ding, Z. Liu, and M. Sun. Ptr: Prompt tuning with rules for
text classification. ArXiv, abs/2105.11259, 2021.

[66] X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu, and M. Sun. Fewrel: A large-scale
supervised few-shot relation classification dataset with state-of-the-art evaluation. In
EMNLP, 2018.

[67] J. He, J. Gu, J. Shen, and M. Ranzato. Revisiting self-training for neural sequence
generation. In ICLR, 2020.

[68] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In COLING,
1992.

87

[69] G. Hinton, O. Vinyals, J. Dean, et al. Distilling the knowledge in a neural network. In
NeurIPS, 2015.

[70] N. Ho, L. Schmid, and S.-Y. Yun. Large language models are reasoning teachers. In
ACL, 2023.

[71] M. Hofer, A. Kormilitzin, P. Goldberg, and A. J. Nevado-Holgado. Few-shot learning
for named entity recognition in medical text. ArXiv, abs/1811.05468, 2018.

[72] J. Howard and S. Ruder. Universal language model fine-tuning for text classification.
In ACL, 2018.

[73] L. Hu, T. Yang, C. Shi, H. Ji, and X. Li. Heterogeneous graph attention networks for
semi-supervised short text classification. In FMNLP, 2019.

[74] S. Hu, N. Ding, H. Wang, Z. Liu, J.-Z. Li, and M. Sun. Knowledgeable prompt-tuning:
Incorporating knowledge into prompt verbalizer for text classification. In ACL, 2022.

[75] J. Huang, S. S. Gu, L. Hou, Y. Wu, X. Wang, H. Yu, and J. Han. Large language
models can self-improve. In EMNLP, 2023.

[76] J. Huang, C. Li, K. Subudhi, D. Jose, S. Balakrishnan, W. Chen, B. Peng, J. Gao, and
J. Han. Few-shot named entity recognition: An empirical baseline study. In EMNLP,
2021.

[77] J. Huang, Y. Meng, and J. Han. Few-shot fine-grained entity typing with automatic
label interpretation and instance generation. In KDD, 2022.

[78] J. Huang, Y. Xie, Y. Meng, J. Shen, Y. Zhang, and J. Han. Guiding corpus-based set
expansion by auxiliary sets generation and co-expansion. In WW W, 2020.

[79] J. Huang, Y. Xie, Y. Meng, Y. Zhang, and J. Han. Corel: Seed-guided topical taxonomy
construction by concept learning and relation transferring. In KDD, 2020.

[80] S. Ji, T. Zhang, L. Ansari, J. Fu, P. Tiwari, and E. Cambria. Mentalbert: Publicly
available pretrained language models for mental healthcare. In LREC, 2021.

[81] Z. Jiang, A. Anastasopoulos, J. Araki, H. Ding, and G. Neubig. X-factr: Multilingual
factual knowledge retrieval from pretrained language models. In EMNLP, 2020.

[82] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig. How can we know what language models
know? TACL, 8:423-438, 2020.

[83] Y. Jiao, M. Zhong, S. Li, R. Zhao, S. Ouyang, H. Ji, and J. Han. Instruct and extract:
Instruction tuning for on-demand information extraction. In EMNLP, 2023.

[84] Z. Jie and W. Lu. Dependency-guided lstm-crf for named entity recognition. In
EMNLP/IJCNLP, 2019.

88

[85] H. Jin, L. Hou, J.-Z. Li, and T. Dong. Fine-grained entity typing via hierarchical multi
graph convolutional networks. In EMNLP, 2019.

[86] P. Jindal and D. Roth. Learning from negative examples in set-expansion. In ICDM,
2011.

[87] J. Jung, L. Qin, S. Welleck, F. Brahman, C. Bhagavatula, R. L. Bras, and Y. Choi.
Maieutic prompting: Logically consistent reasoning with recursive explanations. In

ACL, 2022.

[88] N.S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher. Ctrl: A conditional
transformer language model for controllable generation. ArXiv, abs/1909.05858, 2019.

[89] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[90] Y. Kluger, R. Basri, J. T. Chang, and M. B. Gerstein. Spectral biclustering of microarray
data: coclustering genes and conditions. Genome research, 13 4:703-16, 2003.

[91] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are
zero-shot reasoners. In NeurlPS, 2022.

[92] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby. Big
transfer (bit): General visual representation learning. In ECCV, 2020.

[93] A. Korattikara Balan, V. Rathod, K. P. Murphy, and M. Welling. Bayesian dark
knowledge. In NeurIPS, 2015.

[94] L. Kuhn, Y. Gal, and S. Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. ArXiv, abs/2302.09664, 2023.

[95] A. K. Lampinen, I. Dasgupta, S. C. Y. Chan, K. Matthewson, M. H. Tessler, A. Creswell,
J. L. McClelland, J. X. Wang, and F. Hill. Can language models learn from explanations
in context? In ACL Findings, 2022.

[96] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. Neural
architectures for named entity recognition. In NAACL, 2016.

[97] D.-H. Lee, M. Agarwal, A. Kadakia, J. Pujara, and X. Ren. Good examples make
a faster learner: Simple demonstration-based learning for low-resource ner. In ACL,
2022.

[98] C. Li, X. Gao, Y. Li, X. Li, B. Peng, Y. Zhang, and J. Gao. Optimus: Organizing
sentences via pre-trained modeling of a latent space. In EMNLP, 2020.

[99] C. Li, X. Li, L. Zhang, B. Peng, M. Zhou, and J. Gao. Self-supervised pre-training
with hard examples improves visual representations. ArXiv, abs/2012.13493, 2020.

[100] J. Li, C. Xiong, and S. C. Hoi. Mopro: Webly supervised learning with momentum
prototypes. In ICLR, 2021.

89

[101] Y. Li, Z. Lin, S. Zhang, Q. Fu, B. Chen, J.-G. Lou, and W. Chen. On the advance of
making language models better reasoners. ArXiv, abs/2206.02336, 2022.

[102| C. Liang, Y. Yu, H. Jiang, S. Er, R. Wang, T. Zhao, and C. Zhang. Bond: Bert-assisted
open-domain named entity recognition with distant supervision. In KDD, 2020.

[103] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schul-
man, [. Sutskever, and K. Cobbe. Let’s verify step by step. ArXiv, abs/2305.20050,
2023.

[104] D. Lin and X. Wu. Phrase clustering for discriminative learning. In ACL/IJCNLP,
pages 1030-1038, 2009.

[105] S. C. Lin, J. Hilton, and O. Evans. Teaching models to express their uncertainty in
words. TMLR, 2022.

[106] W. Lin, R. Yangarber, and R. Grishman. Bootstrapped learning of semantic classes
from positive and negative examples. In ICML, 2003.

[107] Y. Lin and H. Ji. An attentive fine-grained entity typing model with latent type
representation. In FMNLP, 2019.

[108] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation embeddings
for knowledge graph completion. In AAAIL 2015.

[109] W. Ling, D. Yogatama, C. Dyer, and P. Blunsom. Program induction by rationale
generation: Learning to solve and explain algebraic word problems. In ACL, 2017.

[110] X. Ling and D. S. Weld. Fine-grained entity recognition. In AAAI 2012.

[111] J. Liu, P. Pasupat, D. Cyphers, and J. R. Glass. Asgard: A portable architecture for
multilingual dialogue systems. In ICASSP, 2013.

[112] J. Liu, P. Pasupat, Y. Wang, D. Cyphers, and J. R. Glass. Query understanding
enhanced by hierarchical parsing structures. IEEE Workshop on Automatic Speech
Recognition and Understanding, 2013.

[113] T. Liu, J. Yao, and C.-Y. Lin. Towards improving neural named entity recognition
with gazetteers. In ACL, 2019.

[114] X. Liu, Y. Song, S. Liu, and H. Wang. Automatic taxonomy construction from keywords.
In KDD, 2012.

[115] Y. Liu, D. Tter, Y. Xu, S. Wang, R. Xu, and C. Zhu. G-eval: Nlg evaluation using
gpt-4 with better human alignment. ArXiv, abs/2303.16634, 2023.

[116] Y. Liu, F. Meng, J. Zhang, J. Xu, Y. Chen, and J. Zhou. Gedt: A global context
enhanced deep transition architecture for sequence labeling. In ACL, 2019.

90

[117] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized BERT pretraining approach. ArXiv,
abs/1907.11692, 2019.

[118] M. Lukasik, S. Bhojanapalli, A. K. Menon, and S. Kumar. Does label smoothing
mitigate label noise? In ICML, 2020.

[119] X. Ma and E. Hovy. End-to-end sequence labeling via bi-directional lstm-cnns-crf. In
ACL, 2016.

[120] Y. Ma, E. Cambria, and S. Gao. Label embedding for zero-shot fine-grained named
entity typing. In COLING, 2016.

[121] L. C. Magister, J. Mallinson, J. Adamek, E. Malmi, and A. Severyn. Teaching small
language models to reason. In ACL, 2023.

[122] J. Mamou, O. Pereg, M. Wasserblat, A. Eirew, Y. Green, S. Guskin, P. Izsak, and
D. Korat. Term set expansion based nlp architect by intel ai lab. In EMNLP, 2018.

[123] J. Maynez, S. Narayan, B. Bohnet, and R. T. McDonald. On faithfulness and factuality
in abstractive summarization. In ACL, 2020.

[124] K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual
associations in gpt. In NeurlPS, 2022.

[125] Y. Meng, J. Huang, G. Wang, Z. Wang, C. Zhang, Y. Zhang, and J. Han. Discriminative
topic mining via category-name guided text embedding. In WWW, 2020.

[126] Y. Meng, J. Huang, Y. Zhang, and J. Han. Generating training data with language
models: Towards zero-shot language understanding. In NeurIPS, 2022.

[127] Y. Meng, Y. Zhang, J. Huang, X. Wang, Y. Zhang, H. Ji, and J. Han. Distantly-
supervised named entity recognition with noise-robust learning and language model
augmented self-training. In EMNLP, 2021.

[128] Y. Meng, Y. Zhang, J. Huang, C. Xiong, H. Ji, C. Zhang, and J. Han. Text classification
using label names only: A language model self-training approach. In EMNLP, 2020.

[129] Y. Meng, Y. Zhang, J. Huang, Y. Zhang, C. Zhang, and J. Han. Hierarchical topic
mining via joint spherical tree and text embedding. In KDD, 2020.

[130] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal. Can a suit of armor conduct
electricity”? a new dataset for open book question answering. In EMNLP, 2018.

[131] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representa-
tions of words and phrases and their compositionality. In NIPS, 2013.

[132] D. M. Mimno, W. Li, and A. McCallum. Mixtures of hierarchical topics with pachinko
allocation. In ICML, 2007.

91

[133] S. Min, W. Shi, M. Lewis, X. Chen, W. tau Yih, H. Hajishirzi, and L. Zettlemoyer.
Nonparametric masked language modeling. In ACL, 2022.

[134] E. Mitchell, C. Lin, A. Bosselut, C. D. Manning, and C. Finn. Memory-based model
editing at scale. ArXiv, abs/2206.06520, 2022.

[135] D. Molla, M. Van Zaanen, D. Smith, et al. Named entity recognition for question
answering. In ALTW, 2006.

[136] S. Murty, P. Verga, L. Vilnis, I. Radovanovic, and A. McCallum. Hierarchical losses
and new resources for fine-grained entity typing and linking. In ACL, 2018.

[137] D. Nadeau and S. Sekine. A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3-26, 2007.

[138] N. Nakashole, G. Weikum, and F. M. Suchanek. Patty: A taxonomy of relational
patterns with semantic types. In EMNLP-CoNLL, 2012.

[139] S. Narang, C. Raffel, K. Lee, A. Roberts, N. Fiedel, and K. Malkan. Wt57! training
text-to-text models to explain their predictions. ArXiv, abs/2004.14546.

[140] R. Navigli and P. Velardi. Learning word-class lattices for definition and hypernym
extraction. In ACL, 2010.

[141] R. Obeidat, X. Z. Fern, H. Shahbazi, and P. Tadepalli. Description-based zero-shot
fine-grained entity typing. In NAACL, 2019.

[142] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray, et al. Training language models to follow instructions
with human feedback. In NeurlPS, 2022.

[143] A. Patel, S. Bhattamishra, and N. Goyal. Are nlp models really able to solve simple
math word problems? In NAACL, 2021.

[144] B. Peng, C. Li, P. He, M. Galley, and J. Gao. Instruction tuning with gpt-4. ArXiv,
abs/2304.03277, 2023.

[145] B. Peng, C. Li, J. Li, S. Shayandeh, L. Liden, and J. Gao. Soloist: Few-shot task-oriented
dialog with a single pre-trained auto-regressive model. TACL, 2021.

[146] B. Peng, C. Zhu, C. Li, X. Li, J. Li, M. Zeng, and J. Gao. Few-shot natural language
generation for task-oriented dialog. In EMNLP, 2020.

[147] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. S.
Zettlemoyer. Deep contextualized word representations. In NAACL-HLT, 2018.

[148] F. Petroni, T. Rocktéschel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller, and S. Riedel.
Language models as knowledge bases? In EMNLP, 2019.

92

[149] J. Phang, T. Févry, and S. R. Bowman. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. ArXiv, abs/1811.01088, 2018.

[150] D. Pruthi, R. Bansal, B. Dhingra, L. B. Soares, M. Collins, Z. C. Lipton, G. Neubig,
and W. W. Cohen. Evaluating explanations: How much do explanations from the
teacher aid students? In TACL 2021.

[151] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models
are unsupervised multitask learners. 2019.

[152] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP, 2016.

[153] W. Ralph, M. Palmer, M. Marcus, E. Hovy, S. Pradhan, L. Ramshaw, and N. X. et al.
Ontonotes release 5.0 1dc2013t19. Linguistic Data Consortium, 2013.

[154] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR,
2017.

[155] X. Ren, W. He, M. Qu, L. Huang, H. Ji, and J. Han. Afet: Automatic fine-grained
entity typing by hierarchical partial-label embedding. In EMNLP, 2016.

[156] X. Ren, W. He, M. Qu, C. R. Voss, H. Ji, and J. Han. Label noise reduction in entity
typing by heterogeneous partial-label embedding. In KDD, 2016.

[157] A. Ritter, Mausam, O. Etzioni, and S. Clark. Open domain event extraction from
twitter. In KDD, 2012.

[158] X. Rong, Z. Chen, Q. Mei, and E. Adar. Egoset: Exploiting word ego-networks and
user-generated ontology for multifaceted set expansion. In WSDM, 2016.

[159] A. RoyChowdhury, P. Chakrabarty, A. Singh, S. Jin, H. Jiang, L. Cao, and E. G.
Learned-Miller. Automatic adaptation of object detectors to new domains using
self-training. In CVPR, 2019.

[160] A. Salemi, S. Mysore, M. Bendersky, and H. Zamani. Lamp: When large language
models meet personalization. ArXiv, abs/2304.11406, 2023.

[161] E. F. T. K. Sang and F. D. Meulder. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In HLT-NAACL, 2003.

[162] V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawika, Z. Alyafeai, A. Chaffin,
A. Stiegler, T. L. Scao, A. Raja, et al. Multitask prompted training enables zero-shot
task generalization. In ICLR, 2022.

[163] K. Shaalan. A survey of arabic named entity recognition and classification. Computa-
tional Linguistics, 2014.

[164]| J. Shang, J. Liu, M. Jiang, X. Ren, C. R. Voss, and J. Han. Automated phrase mining
from massive text corpora. TKDFE, 30:1825-1837, 2017.

93

[165] J. Shen, Z. Wu, D. Lei, J. Shang, X. Ren, and J. Han. Setexpan: Corpus-based set
expansion via context feature selection and rank ensemble. In ECML/PKDD, 2017.

[166] J. Shen, Z. Wu, D. Lei, C. Zhang, X. Ren, M. T. Vanni, B. M. Sadler, and J. Han.
Hiexpan: Task-guided taxonomy construction by hierarchical tree expansion. In KDD,
2018.

[167] W. Shi, X. Han, M. Lewis, Y. Tsvetkov, L. Zettlemoyer, and S. Yih. Trusting your
evidence: Hallucinate less with context-aware decoding. ArXiv, abs/2305.14739, 2023.

[168] S. Shimaoka, P. Stenetorp, K. Inui, and S. Riedel. Neural architectures for fine-grained
entity type classification. In EACL, 2017.

[169] T. Shin, Y. Razeghi, R. L. L. IV, E. Wallace, and S. Singh. Eliciting knowledge from
language models using automatically generated prompts. In EMNLP, 2020.

[170] V. Shwartz, Y. Goldberg, and I. Dagan. Improving hypernymy detection with an
integrated path-based and distributional method. In ACL, 2016.

[171] C. Snell, D. Klein, and R. Zhong. Learning by distilling context. ArXiv, abs/2209.15189,
2022.

[172] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. In
NIPS; 2017.

[173] R. Snow, D. Jurafsky, and A. Y. Ng. Learning syntactic patterns for automatic
hypernym discovery. In NIPS, 2004.

[174] L. B. Soares, N. FitzGerald, J. Ling, and T. Kwiatkowski. Matching the blanks:
Distributional similarity for relation learning. In ACL, 2019.

[175] A. Stubbs and O. Uzuner. Annotating longitudinal clinical narratives for de-
identification: The 2014 i2b2/uthealth corpus. Journal of biomedical informatics,
58 Suppl:S20-9, 2015.

[176] S.-Y. Su, K.-L. Lo, Y.-T. Yeh, and Y.-N. V. Chen. Natural language generation by
hierarchical decoding with linguistic patterns. In NAACL, 2018.

[177] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning to
compare: Relation network for few-shot learning. In CVPR, 2018.

[178] Y. Tay, M. Dehghani, V. Q. Tran, X. Garcia, J. Wei, X. Wang, H. W. Chung, D. Bahri,
T. Schuster, H. Zheng, D. Zhou, N. Houlsby, and D. Metzler. Ul2: Unifying language
learning paradigms. In ICLR, 2023.

[179] M. Thelen and E. Riloff. A bootstrapping method for learning semantic lexicons using
extraction pattern contexts. In FMNLP, 2002.

94

[180] K. Tian, E. Mitchell, A. Zhou, A. Sharma, R. Rafailov, H. Yao, C. Finn, and C. D.
Manning. Just ask for calibration: Strategies for eliciting calibrated confidence scores
from language models fine-tuned with human feedback. ArXiv, abs/2305.14975, 2023.

[181] Y. Tian, Y. Wang, D. Krishnan, J. Tenenbaum, and P. Isola. Rethinking few-shot
image classification: a good embedding is all you need? ArXiv, abs/2003.11539, 2020.

[182] M. Trajanoska, R. Stojanov, and D. Trajanov. Enhancing knowledge graph construction
using large language models. ArXiv, abs/2305.04676, 2023.

[183] J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple and general
method for semi-supervised learning. In ACL, 2010.

[184] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one
shot learning. In NIPS, 2016.

[185] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. R.
Bowman. Superglue: A stickier benchmark for general-purpose language understanding
systems. In NeurIPS, 2019.

[186] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A
multi-task benchmark and analysis platform for natural language understanding. In
BlackboxtNLP@QEMNLP, 2018.

[187] C. Wang, M. Danilevsky, N. Desai, Y. Zhang, P. Nguyen, T. Taula, and J. Han. A
phrase mining framework for recursive construction of a topical hierarchy. In KDD 15,
2013.

[188] G. Wang, C. Li, W. Wang, Y. Zhang, D. Shen, X. Zhang, R. Henao, and L. Carin.
Joint embedding of words and labels for text classification. In ACL, 2018.

[189] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, and D. Zhou. Rationale-augmented
ensembles in language models. ArXiv, abs/2207.00747, 2022.

[190] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, and D. Zhou. Self-consistency improves
chain of thought reasoning in language models. In ICLR, 2023.

[191] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by translating
on hyperplanes. In AAAI 2014.

[192] J. Weeds, D. J. Weir, and D. McCarthy. Characterising measures of lexical distributional
similarity. In COLING, 2004.

[193] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and
Q. V. Le. Finetuned language models are zero-shot learners. In ICLR, 2022.

[194] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama,
M. Bosma, D. Zhou, D. Metzler, et al. Emergent abilities of large language models.
TMLR, 2022.

95

[195] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of
thought prompting elicits reasoning in large language models. In Neurl/PS, 2022.

[196] R. Weischedel and A. Brunstein. Bbn pronoun and coreference and entity type corpus.
Linguistic Data Consortium, 2005.

[197] A. Williams, N. Nangia, and S. R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In NAACL, 2018.

[198] S. Wiseman and K. Stratos. Label-agnostic sequence labeling by copying nearest
neighbors. In ACL, 2019.

[199] L. S. Wong, G. Grand, A. K. Lew, N. D. Goodman, V. K. Mansinghka, J. Andreas,
and J. B. Tenenbaum. From word models to world models: Translating from natural
language to the probabilistic language of thought. ArXiv, abs/2306.12672, 2023.

[200] Z. Xi, S. Jin, Y. Zhou, R. Zheng, S. Gao, T. Gui, Q. Zhang, and X. Huang. Self-
polish: Enhance reasoning in large language models via problem refinement. ArXiv,
abs/2305.14497, 2023.

[201] Q. Xie, E. Hovy, M.-T. Luong, and Q. V. Le. Self-training with noisy student improves
imagenet classification. In C'VPR, 2020.

[202] J. Xin, Y. Lin, Z. Liu, and M. Sun. Improving neural fine-grained entity typing with
knowledge attention. In AAAI 2018.

[203] Y. Yaghoobzadeh, H. Adel, and H. Schiitze. Noise mitigation for neural entity typing
and relation extraction. In FACL, 2017.

[204] I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Matsumoto. Luke: Deep contextual-
ized entity representations with entity-aware self-attention. In EMNLP, 2020.

[205] G. H. Yang and J. P. Callan. A metric-based framework for automatic taxonomy
induction. In ACL/IJCNLP, 2009.

[206] K. Yang, W. Lei, D. Liu, W. Qi, and J. Lv. Pos-constrained parallel decoding for
non-autoregressive generation. In ACL, 2021.

[207] S. Yang, L. Zou, Z. Wang, J. Yan, and J.-R. Wen. Efficiently answering technical
questions - a knowledge graph approach. In AAAI 2017.

[208] Y. Yang and A. Katiyar. Simple and effective few-shot named entity recognition with
structured nearest neighbor learning. In EMNLP, 2020.

[209] X. Ye and G. Durrett. The unreliability of explanations in few-shot in-context learning.
In NeurIPS, 2022.

[210] K. M. Yoo, D. Park, J. Kang, S.-W. Lee, and W. Park. Gpt3mix: Leveraging large-scale
language models for text augmentation. In EMNLP Findings, 2021.

96

[211] M. A. Yosef, S. Bauer, J. Hoffart, M. Spaniol, and G. Weikum. Hyena: Hierarchical
type classification for entity names. In COLING, 2012.

[212] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep
neural networks? In NeurIPS, 2014.

[213] M. Yu, X. Guo, J. Yi, S. Chang, S. Potdar, Y. Cheng, G. Tesauro, H. Wang, and
B. Zhou. Diverse few-shot text classification with multiple metrics. In NAACL-HLT,
2018.

[214] P. Yu, Z. Huang, R. Rahimi, and J. Allan. Corpus-based set expansion with lexical
features and distributed representations. In SIGIR, 2019.

[215] Z. Yuan and D. Downey. Otyper: A neural architecture for open named entity typing.
In AAAI 2018.

[216] M. Yuksekgonul, V. Chandrasekaran, E. Jones, S. Gunasekar, R. Naik, H. Palangi,
E. Kamar, and B. Nushi. Attention satisfies: A constraint-satisfaction lens on factual
errors of language models. ArXiv, abs/2309.15098, 2023.

[217] O. Zaidan, J. Eisner, and C. Piatko. Using “annotator rationales” to improve machine
learning for text categorization. In NAACL, 2007.

[218] E. Zelikman, Y. Wu, J. Mu, and N. D. Goodman. Star: Bootstrapping reasoning with
reasoning. In NeurIPS, 2022.

[219] R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner, and Y. Choi.
Defending against neural fake news. In NeurlPS, 2019.

[220] C. Zhang, F. Tao, X. Chen, J. Shen, M. Jiang, B. M. Sadler, M. Vanni, and J. Han.
Taxogen: Unsupervised topic taxonomy construction by adaptive term embedding and
clustering. In KDD, 2018.

[221] H. Zhang, D. Long, G. Xu, M. Zhu, P. Xie, F. Huang, and J. Wang. Learning with noise:
Improving distantly-supervised fine-grained entity typing via automatic relabeling. In
IJCAI, 2020.

[222] T. Zhang, C. Xia, C.-T. Lu, and P. S. Yu. Mzet: Memory augmented zero-shot
fine-grained named entity typing. In COLING, 2020.

[223] Y. Zhang, A. Ahmed, V. Josifovski, and A. J. Smola. Taxonomy discovery for person-
alized recommendation. In WSDM, 2014.

[224] T. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh. Calibrate before use: Improving
few-shot performance of language models. In ICML, 2021.

[225] Y. Zhao, C. Li, P. Yu, and C. Chen. Remp: Rectified metric propagation for few-shot
learning. C'VPR Workshops, 2020.

97

[226] C. Zheng, Z. Liu, E. Xie, Z. Li, and Y. Li. Progressive-hint prompting improves
reasoning in large language models. ArXiv, abs/2304.09797, 2023.

[227] M. Zhitomirsky-Geffet and I. Dagan. The distributional inclusion hypotheses and
lexical entailment. In ACL, 2005.

[228] B. Zhou, D. Khashabi, C.-T. Tsai, and D. Roth. Zero-shot open entity typing as
type-compatible grounding. In EMNLP, 2018.

[229] C. Zhou, P. Liu, P. Xu, S. Iyer, J. Sun, Y. Mao, X. Ma, A. Efrat, P. Yu, L. Yu, S. Zhang,
G. Ghosh, M. Lewis, L. Zettlemoyer, and O. Levy. Lima: Less is more for alignment.
ArXiv, abs/2305.11206, 2023.

[230] D. Zhou, N. Scharli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, O. Bousquet,
Q. Le, and E. Chi. Least-to-most prompting enables complex reasoning in large language
models. In ICLR, 2023.

[231] K. Zhou, D. Jurafsky, and T. Hashimoto. Navigating the grey area: Expressions of
overconfidence and uncertainty in language models. ArXiv, abs/2302.13439, 2023.

[232] M. Ziyadi, Y. Sun, A. Goswami, J. Huang, and W. Chen. Example-based named entity
recognition. ArXiv, abs/2008.10570, 2020.

98

	CHAPTER 1 INTRODUCTION
	CHAPTER 2 SEED-GUIDED HIERARCHICAL CONCEPT ORGANIZATION
	Overview
	Related Work
	Discovering Parallel Instances Through Set Expansion
	Evaluation of Entity Set Expansion
	Seed-Guided Topical Ontology Construction
	Evaluation of Topical Ontology Construction
	Summary

	CHAPTER 3 FINE-GRAINED ENTITY EXTRACTION
	Overview
	Related Work
	Few-Shot Named Entity Recognition
	Evaluation of Our Few-Shot NER Methods
	Hierarchical Fine-Grained Entity Typing
	Evaluation of Hierarchical Entity Typing
	Summary

	CHAPTER 4 KNOWLEDGE-GUIDED COMMONSENSE REASONING
	Overview
	Related Work
	Self-Improving Machine Reasoning with Language Models
	Evaluation of Self-Improving Language Models
	Discussions
	Summary

	CHAPTER 5 FUTURE WORK
	Improving Model Factuality and Calibration
	Improving Model Coherence and Consistency
	User-Specific Language Models

	APPENDIX A IMPLEMENTATION DETAILS OF PROPOSED METHODS
	Implementation Details for Set-CoExpan
	Implementation Details of CoRel
	Implementation Details of few-shot NER
	Implementation Details of ALIGNIE
	Implementation Details of LMSI

	REFERENCES

