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Abstract

In many real-world dynamical systems, obtaining precise prior knowledge about system noise remains a

challenge. This uncertainty complicates traditional control strategies, such as stochastic and robust control,

especially when the noise exhibits “performativity”— an explicit dependence on control inputs. Addressing

this challenge, this paper presents a novel iterative method tailored for such systems. Our approach finds

the open-loop control law that minimizes the worst-case loss, given that the noise induced by this control

lies in its (1− p)-confidence set for a predetermined p. At each iteration, we harness conformal prediction

techniques to empirically estimate the confidence set shaped by the preceding control law. These derived

confidence sets offer empirical constraints on the system’s noise, guiding a robust control design that targets

worst-case loss minimization. Under specific regularity conditions, our method is shown to converge to a

near-optimal open-loop control. While our focus is on open-loop controls, the adaptive, data-driven nature of

our approach suggests its potential applicability across diverse scenarios and extensions.
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Chapter 1

Introduction

The concept of performativity traces back to British philosopher John L. Austin’s work in 1962, where he

posited that language and other forms of expression not only describe the world but can also influence and

change it [3]. This idea was later adapted to the realm of supervised learning by Perdomo et al., highlighting

scenarios where predictive models inadvertently alter the very data distributions they aim to learn [13].

This performative phenomenon is not exclusive to language or machine learning; it also manifests in

control systems. Consider a system governed by the following stochastic differential equation (SDE)

dXt = f(t,Xt, ut) dt+ g(t,Xt, ut) dWt, (1.1)

where (Xt)0≤t≤1 is the n-dimensional state process, (ut)0≤t≤1 is the m-dimensional control process, and

(Wt)0≤t≤1 is a k-dimensional Brownian motion. When g(Xt, ut) has an explicit dependence on ut, we say

that the control trajectory (ut)0≤t≤1 is performative. Similarly, we can also define performativity for the

discrete-time counterpart of the system in Equation 1.1

xt+1 = f(t, xt, ut, wt), (1.2)

where wt is a member of some probability space (W,F) and has distribution p(dwt|xt, ut). We say that above

system is performative if p(dwt|xt, ut) has an explicit dependence on ut.

Historically, such systems have been the focus of stochastic control, where the objective is to minimize

the expected loss, exemplified by:

J := E
[ ∫ 1

0

q(Xs, us) ds+ r(X1)

∣∣∣∣X0 = x0

]
. (1.3)

Robust control offers another perspective, especially for discrete-time systems like Equation 1.2. If w(t)

always bounded, i.e. w(t) ∈ C(u(t)) for some closed and bounded C(u(t)), then the focus shifts to minimizing

the worst-case loss:

J = max

{
T∑

i=0

q(x(t), u(t)) + r(X(T ))

∣∣∣∣∣x(0) = 0, w(t) ∈ C(u(t))

}
.

Both paradigms—stochastic and robust control— rely on explicit knowledge of the noise distribution.

Yet, real-world systems often lack this clarity. Addressing this gap, our study focus on scenarios in which no
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prior knowledge about noise distribution is available. Instead, we harness the power of empirical observations,

drawing from sample trajectories to inform and refine control laws.

Designing controllers with safety guarantees is a common theme when dealing with noisy systems. When

the noise is completely known, forward reachability and related methods can provide provable guarantees of

safety [14]. In cases where the noise is unknown, it is common to seek online learning methods to learn the

noise empirically, as in [1], [8]. This paper falls into the same category as the above works, but provides a

different type of guarantee.

A key component of our method is conformal prediction [2], [15], a technique that allows us to construct

confidence sets with rigorous probability from finite samples. There exist many prior works that apply

conformal prediction in control settings. For instance, conformal prediction is used in [4], [6], [11] to estimate

reachable sets, which is then used for safety planning of autonomous systems. In [7], the authors use conformal

prediction to derive probabilistic guarantees on the satisfication of certain system specifications. In [5], [10],

[16], conformal prediction is used to construct predictors with probabilistic guarantees, which is then used to

design model predictive controllers. Our work is another instance of applying conformal prediction on control

problems, although in a way different from all prior works.

Methodologically, our work is inspired by the works on performative prediction [13], which is the study of

performativity in supervised learning. Conceptually, our problem shares several similarities with performative

prediction: 1. the solutions to our problems alter the noise we encounter, and 2. we both seek the solution

that gives the best performance in the noise it induces. As a result, our method adopts a similar iterative

structure, in which each iteration builds upon the noise induced by the result from the previous iteration, but

eventually converges to a fixed-point under certain regularity conditions.
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Chapter 2

Tackling Performative Control

2.1 Problem Statement

This paper delves into the robust optimal control of a discrete-time, finite time horizon dynamical system

subject to noise. Consider the system given by

x(t+ 1) = f(t, x(t), u(t)) + w(t), t = 0, 1, . . . , T − 1, (2.1)

where x(t) ∈ Xt ⊆ Rn is the system state, u(t) ∈ Ut ⊆ Rm is the control input, and w(t) ∈ Rn is a zero-mean

process noise whose distribution depends on x(t) and u(t), i.e. w(t) ∼ D(x(t), u(t)). We also assume without

loss of generality that the system starts at a fixed state x(0) = x0. With a slight abuse of notation, we use

x, u, w to denote associated trajectories

x = (x(0), . . . , x(T )) ∈ Rn(T+1),

u = (u(0), . . . , u(T − 1)) ∈ RmT ,

w = (w(0), . . . , w(T − 1)) ∈ RnT .

The objective is to determine an open-loop control law u = (u(0), ...u(T − 1)) that optimally governs the

system’s behavior. To quantify the performance of a control law, we introduce a loss function J dependent

on the entire trajectory of states and control inputs. This loss function can be represented as

J(x,u) := ϕ(x(T )) +

T−1∑
t=0

φ(x(t), u(t)).

However, given the stochastic nature of the noise w(t), the loss function J becomes a random object. This

makes it impossible to directly minimize the value of the loss function. Traditional approaches either aim to

minimize the expected loss, requiring knowledge of the noise distribution, or minimize the worst-case loss

for bounded noise, requiring knowledge of the extreme values of the noise. Both approaches require some

prior knowledge of the behavior of the noise. This work addresses scenarios where no such prior knowledge is

available, except its zero-mean property.

When sampling is feasible, we can construct confidence sets for the noise with probabilistic guarantees

using techniques like conformal prediction. The primary focus of this work is to minimize the worst-case loss
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given these confidence sets. Formally, for a designated probability level

p ∈ (0, 1), (2.2)

let Ct(u) be the confidence set for w(t) such that w(t) ∈ Ct(u) with probability at least 1− p/T . Applying

the union bound, this would give us w ∈ C0(u) × · · · × CT−1(u) with probability at least 1 − p. We are

interested in the following optimization problem

min
u

max
w

J(x,u)

s.t w ∈ C0(u)× · · · × CT−1(u)

u ∈ U0 × · · · × UT−1.

(2.3)

For clarity, we can also equivalently express the loss as L(w,u) = J(x,u), emphasizing its dependence on the

noise and control. Further, let

C(u) := C0(u)× · · · × CT−1(u)

U := U0 × · · · × UT−1,

then we can write the optimization problem in a more concise form

min
u

max
w∈C(u)

L(w,u)

s.t u ∈ U.

(2.4)

This problem can be interpreted as a middle-ground between stochastic control and robust control. By

concentrating on the worst-case scenario within these confidence sets, we ensure robustness against the most

adverse noise scenarios while avoiding being excessively conservative.

2.2 Methods

In this section, we introduce empirical iterative refinement of performative control (E-IRPC), an algorithm

that targets the problem described in the previous section.

2.2.1 Empirical Iterative Refinement of Performative Control

The core of our methodology is an iterative process designed to progressively refine the control law to achieve

optimal performance in the presence of noise. Our method consists of the following steps:

1. Initialization: We start by finding the optimal open-loop control for the nominal system (i.e. the

system without noise) with loss function J as defined in Equation 2.1

min
u

J(x,u)

s.t x(t+ 1) = f(t, x(t), u(t))

u ∈ U0 × · · · × UT−1.

(2.5)

We denote the resulting control law as u0 = (u0(0), . . . , u0(T − 1)).
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2. Sampling and Confidence Set Construction: With the control law from the previous step fixed,

sample N1 independent trajectories of system states, represented as x
(j)
1 for j = 1, . . . , N1. This also

gives us N1 trajectories of the noise, w
(j)
1 for j = 1, . . . , N1. Notice that since we are using the same

control input, at each time step t, (w
(j)
1 (t))N1

j=1 are i.i.d. We can then use conformal prediction to

construct

P(w(t) ∈ Ĉt(u)) ≥ 1− p

T
. (2.6)

Again, for simplicity, we denote Ĉ(u) := Ĉ0(u)× · · · × ĈT−1(u). The details of such construction will

be outlined in the next subsection.

3. Robust Control Problem Formulation: With the confidence sets in hand, we can formulate a

robust control problem similar to Equation 2.3

min
u

max
w

J(x,u)

s.t w ∈ Ĉ0(u0)× · · · × ĈT−1(u0)

u ∈ U0 × · · · × UT−1.

Solve this problem to obtain a new control law u1.

4. Iterative Refinement: The new control law is then used as the initial control law in step 2, and the

process repeats.

In summary, for i = 0, 1, ..., we fix the control law ui, sample Ni trajectories (x
(j)
i+1)

Ni
j=1 and (w

(j)
i+1)

Ni
j=1 to

construct a confidence set Ĉ(ui), then formulate and solve a robust control problem to obtain ui+1. To

simplify our notation, define Â : U → U as

Â(u) ∈ argmin
{
max{L(w,u) : w ∈ Ĉ(u)} : u ∈ U

}
, (2.7)

then our method is summarized in Algorithm 1.

The iterative nature of this method is essential due to the performative aspect of the control: the control

law influences the distribution of the noise, necessitating repeated refinement.

Algorithm 1 E-IRPC

u0 ← Solution to Problem 2.5
while i > 0 do

Sample (x
(j)
i+1)

Ni
j=1 and (w

(j)
i+1)

Ni
j=1

Construct Ĉ(ui−1) from samples
ui ← Â(ui−1) ▷ where Â is as defined in Equation 2.7.

end while

2.2.2 Confidence Set Construction using conformal prediction

In this section, we will outline the method we use to construct the confidence sets in Step 2. As described in

the previous section, for each timestep t, we have Ni samples of w(t). Let’s sort their Euclidean norm in the

increasing order as follows ∣∣∣w(η1)(t)
∣∣∣ ≤ · · · ≤ ∣∣∣w(ηNi

)(t)
∣∣∣ .

5



Since these samples are i.i.d, we can easily show that the Euclidean norm of another i.i.d sample w(t) is

equally likely to fall between that of any existing samples. Formally, this gives us

P
(
|w(t)| ≤ |w(ηk)(t)|

)
=

k

Ni + 1
(2.8)

for any k = 1, . . . , Ni. This allows us to construct the confidence sets with desired probabilistic guarantee.

Specifically, for the probability level p defined in 2.2, pick k =
⌈
(Ni + 1)

(
1− p

T

)⌉
and define

Ĉt(u) :=
{
w(t) : |w(t)| ≤ |w(ηk)|

}
, (2.9)

by Equation 2.8, we have

P
(
w(t) ∈ Ĉt(u)

)
=

⌈
(Ni + 1)

(
1− p

T

)⌉
Ni + 1

≥ 1− p

T
,

which means that Equation 2.9 gives us the desired confidence set. It is worth noting that when constructing

these confidence sets, we can replace the Euclidean norm with any other score function. This will allow us to

construct confidence sets with the same probabilistic guarantee but different shapes. For example, if we can

chose s(w(t)) :=
√
w⊺(t)Hw(t) for some positive definite definite H, and rank the sample noises according

the score

s
(
w(η1)(t)

)
≤ · · · ≤ s

(
w(ηNi

)(t)
)

the resulting confidence set C̃t(u) =
{
w(t) : s(w(t)) ≤ s

(
w(ηk)(t)

)}
will still have the same probabilistic

guarantee, but takes the shape of an ellipsoid instead of a ball.

2.2.3 Ideal Iterative Refinement of Performative Control

So far, we have detailed our primary method, which inherently relies on estimating specific properties of the

noise distribution using finite samples. Naturally, the algorithm’s performance is influenced by the number of

samples taken. In this section, we introduce an idealized variant of our method, termed the Ideal Iterative

Refinement of Performative Control (I-IRPC). This version sidesteps the variability introduced by finite

sample trajectories. As we will discuss, the I-IRPC can be conceptualized as the infinite sample counterpart

of our E-IRPC.

Formally, let u be the control input for the system defined by 2.1, and w(t) be the noise at time t whose

distribution is given by D(x(t), u(t)). We define the ideal conformal set for w(t) as

Ct(u) = {w(t) : |w(t)| ≤ Qt(u)}, (2.10)

where Qt(u) is the quantile function of |w(t)| defined as

Qt(u) := inf
{
r : P(|w(t)| ≤ r) ≥ 1− p

T

}
(2.11)

with p as the overall probability level predefined by 2.2. The set Ct(u) is the idealized counterpart of Ĉt(u)

defined in 2.9, which is impossible to obtain without knowing the exact distribution of w(t). In the I-IRPC,

we simply assume that there is an oracle that gives Ct(u) for any u we choose.

Notice that Qt depends solely on u because u uniquely defines the distribution of w(t). Now, let
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C(u) := C0(u)× · · · × CT−1(u) and define A : U → U as

A(u) ∈ argmin {max{L(w,u) : w ∈ C(u)} : u ∈ U} . (2.12)

Then the I-IRPC is given by Algorithm 2. The I-IRPC gives us a starting point for analysis. Specifically, due

Algorithm 2 I-IRPC

u0 ← Solution to Problem 2.5
while i > 0 do

Get C(u) from the oracle
ui ← A(ui−1) ▷ where A is as defined in Equation 2.12.

end while

to its deterministic nature, it allows us to make the following key definitions.

Definition 1 (Performatively Stable Control). A performatively stable control is a control input uPS ∈ U

such that

A(uPS) = uPS .

Definition 2 (Performatively Optimal Control). A performatively optimal control is a control input uPO ∈ U

such that

uPO ∈ argmin
u∈U

max
w∈C(u)

L(w,u).

where C(u) is defined in Equation 2.10.

Conceptually, the performatively stable control is the control law that performs optimally in the noise

it induces. The performatively optimal control, on the other hand, gives the best performance among all

feasible control laws in the presence of self-induced noise. Notice that the performative optimal control, in

contrast to performative stable control, may not be the optimal control law in the noise that it induces. As

we will see shortly, these concepts play a central role in our theoretical analysis of our proposed method.

Now, let’s revisit E-IRPC from the lens of I-IRPC. Define the empirical quantile function by

Q̂t(u) := inf

r :
1

Ni

Ni∑
j=1

1
{∣∣∣w(j)(t)

∣∣∣ ≤ r
}
≥ 1− p

T

 =
∣∣∣w(ηk)(t)

∣∣∣ . (2.13)

As the name suggests, the empirical quantile function is a finite sample approximation of the actual quantile

function defined in Equation 2.11. The conformal sets constructed in Section 2.2.2 is then given by

Ĉt(u) =
{
w(t) : |w(t)| ≤ Q̂t(u)

}
,

Ĉu = Ĉ0(u)× · · · × ĈT−1(u).

In this sense, the E-IRPC algorithm is but a finite-sample approximation of I-IRPC. This connection is

central in the upcoming analysis.

2.3 Preliminaries

We start by presenting some standard assumptions on the loss function L(w,u).
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Assumption 1 (λ-strong convexity in u). We assume that the loss function L(w,u) is λ-strongly convex in

u, i.e. for any u,u′ ∈ U , and any w ∈ RnT ,

L(w,u) ≥ L(w,u′) + (u− u′)⊺su′ +
λ

2
|u− u′|2,

where su′ ∈ ∂u′L(w,u′).

Assumption 2 (β-smoothness in w). We assume that the loss function L(w,u) is β-smooth in w, i.e.

L(w,u) is differentiable in w and the gradient ∇wL(w,u) is β-Lipschitz in w, that is, for any w,w′ ∈ RnT

and any u ∈ U ,

|∇wL(w,u)−∇w′L(w′,u)| ≤ β|w −w′|.

We now introduce an important assumption regarding the noise distribution.

Assumption 3 (Lipschitz continuity of quantile functions). Let Qt(u) be the (1− p/T )-quantile function for

|w(t)| when u is the control input and p is the predefined probability level given by Equation 2.2 (the definition

of Qt(u) is given in Equation 2.11). We assume that Qt(u) is ϵt-Lipschitz, i.e. for all u,u′ ∈ U ,

|Qt(u)−Qt(u
′)| ≤ ϵt|u− u′|.

Next, we introduce some existing results needed to establish our results. We will not prove them here,

but interested readers can find detailed proof from the reference we provide.

Proposition 1 (Maximum Theorem [12, Chapter E.3]). Let X and Θ be topological spaces, f : X ×Θ→ R
be a continuous function and C : Θ→ 2X is a set-valued function such that C(θ) is compact and non-empty

for all θ ∈ Θ. Then the function f∗ : Θ→ R defined by

f∗(θ) = sup{f(x, θ) : x ∈ C(θ)},

is continuous, and the maximizers defined by

C∗(θ) = argmax{f(x, θ) : x ∈ C(θ)} = {x ∈ C(θ) : f(x, θ) = f∗(θ)}

is upper hemicontinuous with nonempty and compact values.

2.4 Main Results

In this section, we delve into a rigorous theoretical analysis of our proposed method. Our exploration

commences with an in-depth examination of the deterministic counterpart of our method, termed the I-IRPC.

Initially, we delineate the sufficient conditions that guarantee the existence and uniqueness of its fixed points,

which correspond to the performatively stable control. Subsequently, we outline the conditions under which

this method converges. Furthermore, under mild supplementary assumptions, we demonstrate that the

performatively stable control closely approximates the performative optimal control. Transitioning from the

ideal to the practical, we extend these insights to our primary method, the E-IRPC. This method can be

conceptualized as an empirical adaptation of the I-IRPC. To set the stage for our detailed analysis, we first

elucidate some foundational assumptions and preliminary findings that underpin our subsequent discussions.
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2.4.1 Existence of fixed-points and optima

We are now ready to establish our main results. We starting by investigating the existence of performatively

stable control and performatively optimal control. To declutter notation, define

g(u,v) = max{L(w,v) : w ∈ C(u)}. (2.14)

Theorem 1 (Existence of performatively stable control). Suppose the following assumptions hold:

• L(w,u) is strictly convex in u,

• g(u,v) jointly continuous in u and v,

• the quantile functions Qt(u) are ϵt in u for all t = 0, . . . , T − 1 (Assumption 3), and

• U is compact and convex.

Then there exists at least one performatively stable control.

Proof. Since g(u,v) jointly continuous in u and v and the constant set-valued mapping v 7→ U is continuous,

by Proposition 1, we know that the set valued mapping given by

u 7→ argmin{g(u,v) : v ∈ U}

is upper hemicontinuous. Further, by strict convexity of L(w,u) in u, g(u,v) is also strictly convex in u.

Therefore, the set argmin{g(u,v) : v ∈ U} contains only one element, that is

argmin{g(u,v) : v ∈ U} = {A(u)}.

Then, the continuity of A follows directly from the upper hemicontinuity of u 7→ {A(u)}.

Uniqueness of the performatively stable control requires a bit more conditions, as we will see shortly. The

existence and uniqueness of the performatively optimal control, on the other hand, is much easier to establish.

Theorem 2 (Existence and Uniqueness of performatively optimal control). Suppose the following assumptions

hold:

• L(w,u) is jointly continuous in u and

• U is compact and convex.

Then there exists a unique performatively optimal control.

Before proving this, we first establish the following lemma that is necessary for this proof.

Lemma 1. If the quantile functions Qt(u) are ϵt-Lipschitz (Assumption 3), then the set-valued mapping

C(u) defined by

C(u) = C0(u)× · · · × CT−1

with

Ct(u) = {w(t) : |w(t)| ≤ Qt(u)}, t = 0, . . . , T − 1

is continuous.
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Proof. We have to show that C(u) is both upper hemicontinuous and lower hemicontinuous.

• To show upper hemicontinuity, we need to show that for every u ∈ U and any sequence (uk)∞k=1 with

limk→∞ uk = u, the limit of any convergent sequence (wk)∞k=1 with wk ∈ C(uk) lies in C(u).

Suppose for contradiction that there exists a sequence (wk)∞k=1 with wk ∈ C(uk) and limk→∞ wk =

w /∈ C(u). By the definition of C(u), this means that there exists some integer t ∈ [0, T − 1] and δ > 0

such that |w(t)| ≥ Qt(u) + δ. Since limk→∞ wk = w, we can pick a constant K1(δ/2) such that

|wk(t)| − |w(t)| ≤ |wk(t)− w(t)||wk −w| ≤ δ

2

for all k > K1(δ/2). Similarly, pick K2(δ/2ϵt) with

|Qt(u
k)−Qt(u)|ϵt|uk − u| < δ

2

for all k > K2(δ/wϵt), we have

|wk(t)| −Qt(u
k) =

(
|wk(t)| − |w(t)|

)
+
(
|w(t)| −Qt(u

k)
)
+
(
Qt(u

k)−Qt(u)
)

≥
(
|w(t)| −Qt(u

k)
)
−
∣∣|wk(t)| − |w(t)|

∣∣− ∣∣Qt(u
k)−Qt(u)

∣∣
> δ − δ/2− δ/2

= 0,

thus wk /∈ C(uk) for all k > max{K1(δ/2),K2(δ/2ϵt)}. We have a contradiction.

• To prove lower hemicontinuity, we need to show that for any u ∈ U and any sequence (uk)∞k=1 with

limk→∞ uk = u, for any w ∈ C(u), there exists (wk)∞k=1 with wk ∈ C(uk) such that limk→∞ wk = w.

Pick

wk(t) = min{Qt(u
k), |w(t)|} w(t)

|w(t)|
,

clearly wk ∈ C(uk). Now since

|wk − w| =

√√√√T−1∑
t=0

|wk(t)− w(t)|2

≤

√√√√T−1∑
t=0

|Qt(uk)−Qt(u)|2

≤
√
ϵ2t |uk − u|2

=

(
T−1∑
t=0

ϵ2t

)
|uk − u|

k→∞−−−−→ 0,

we have limk→∞ wk = w. This completes the proof.

Now we are ready to prove Theorem 2.
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Proof of Theorem 2. Define

h(u) := max
w∈C(u)

L(w,u) = g(u,u)

Notice the performative optimal control is the minimizer of h(u) over U . Since u 7→ C(u) is continuous, by

Proposition 1, h(u) is continuous in u. The existence of the performative optimal control then follows from

the Weierstrass Extreme Value Theorem.

2.4.2 Convergence Guarantees with Aligned Worst-Case Noise

We are now ready to investigate the convergence properties of the I-IRPC algorithm. Our analysis relies on

the following additional assumption.

Definition 3. We say that the worst case noise align for the loss function L and the confidence set mapping

C if for any v,u,u′ ∈ U , align if there exists w∗
1 ∈ argmaxw∈C(u) L(w,v) and w∗

2 ∈ argmaxw∈C(u′) L(w,v)

such that
w∗

1

|w∗
1|

=
w∗

2

|w∗
2|
.

Assumption 4 (Alignment of worst-case noises). We assume that the worst-case noises align.

Theorem 3 (Convergence of I-IRPC to uPS). Suppose the following assumptions hold:

• L(w,u) is λ-strongly convex in u (Assumption 1),

• L(w,u) is β-smooth in w (Assumption 2),

• the quantile function Qt(u) is ϵt-Lipschitz in u for all t = 0, . . . , T−1 with
∑T−1

t=1 ϵ2t < λ2

β2 (Assumption 3)

and

• the worst case noises align (Assumption 4).

Then the I-IRPC converges to a unique performative stable control uPS at a linear rate:

|ui − uPS | ≤ δ for all i ≥

1−
β
√∑T−1

t=0 ϵ2t

λ

−1

log

(
|u0 − uPS |

δ

)
. (2.15)

Proof. Let u,u′ ∈ U be two different control inputs. Since L(w,u) is λ-strongly convex in u, for any u ∈ U ,

g(u,v) defined by Equation 2.14 is λ-strongly convex in u. Let ∂ug(u,v) denote the subgradient of g(u,v)

with respect to u. Then by strong convexity, for any su ∈ ∂A(u)g(u,A(u)) and any su′ ∈ ∂A(u′)g(u,A(u′)),

we have

g(u,A(u))− g(u,A(u′)) ≥ (A(u)−A(u′))⊺su +
λ

2
|A(u)−A(u′)|2

g(u,A(u′))− g(u,A(u)) ≥ (A(u′)−A(u))⊺su′ +
λ

2
|A(u)−A(u′)|2,

Adding both sides we get

λ|A(u)−A(u′)|2 ≤ (A(u)−A(u′))⊺su + (A(u′)−A(u))⊺su′ (2.16)

Further, by definition of subgradients, we also have

0 ≥ g(u,A(u))− g(u,A(u′)) ≥ (A(u)−A(u′))⊺su (2.17)
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Similarly, for any s′u′ ∈ ∂A(u′)g(u
′,A(u′) (notice that the first argument in g is u′ instead of u)

0 ≥ g(u′,A(u))− g(u′,A(u′)) ≥ (A(u)−A(u′))⊺su (2.18)

Combining these with Equation 2.16, we get

λ|A(u)−A(u′)|2 ≤ (A(u)−A(u′))⊺su + (A(u′)−A(u))⊺su′

≤ (A(u′)−A(u))⊺su′ [by Equation 2.17]

≤ (A(u′)−A(u))⊺su′ − (A(u′)−A(u))⊺s′u′ [by Equation 2.18]

≤ |A(u′)−A(u)| |su′ − s′u′ |, [by Cauchy-Schwartz inequality]

or equivalently,

|A(u)−A(u′)| ≤ 1

λ
|su′ − s′u′ |. (2.19)

Notice again that this hold for any su′ ∈ ∂A(u′)g(u,A(u′)) and any s′u′ ∈ ∂A(u′)g(u
′,A(u′)). Now, take

w∗
1 ∈ argmax

w∈C(u)

L(w,A(u′))

w∗
2 ∈ argmax

w∈C(u′)

L(w,A(u′)),

it’s easy to show that

∇A(u′)L(w
∗
1,A(u′)) ∈ ∂A(u′)g(u,A(u′))

∇A(u′)L(w
∗
2,A(u′)) ∈ ∂A(u′)g(u

′,A(u′)).

By β-smoothness of L(w,u) in w, we have Combining this with Equation 2.19, we get

|A(u)−A(u′)| ≤ 1

λ

∣∣∇A(u′)L(w
∗
1,A(u′))−∇A(u′)L(w

∗
2,A(u′))

∣∣
≤ β

λ
|w∗

1 −w∗
2| [by β-smoothness (Assumption 2)]

=
β

λ

√√√√T−1∑
t=0

|Qt(u)−Qt(u′)|2 [by Assumption 4]

≤
β
√∑T−1

t=0 ϵ2t

λ
|u− u′|. [by ϵt-Lipschitz continuity (Assumption 3)]

Thus, when

β
√∑T−1

t=0 ϵ2t

λ
< 1,

by the Contraction Mapping Theorem (see, for example, [9, Appendix B]), the I-IRPC ui+1 = A(ui) converges

to a unique performatively stable control uPS . Further, we also have

|ui − uPS | ≤

β
√∑T−1

t=0 ϵ2t

λ

i

|u0 − uPS |,

which gives us the linear convergence rate.
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2.4.3 Relating Performatively Stable Control to Performatively Optimal Control

So far, we have identified the conditions that allow the I-IRPC to converges to a unique performatively stable

control, uPS . However, what we really care about is the performatively optimal control, uPO, which is the

solution to Problem 2.3. In this section, we will establish the sufficient condition that makes uPO close to

uPS . To do so, we first need to make the following additional assumption.

Assumption 5 (Lw-Lipschitz continuity in w). We assume that L(w,u) is Lw-Lipschitz in w, i.e. for any

w,w′ ∈ RnT and u ∈ U ,

|L(w,u)− L(w′,u)| ≤ Lw|w −w′|.

Theorem 4 (Relating uPS and uPO). In addition to assumptions made in Theorem 3, if Assumption 5 is

also satisfied, then

|uPS − uPO| ≤
2Lw

√∑T−1
t=0 ϵ2t

λ
. (2.20)

Proof. By the definition of uPO and uPS , we have

g(uPO,uPO) ≤ g(uPS ,uPS) ≤ g(uPS ,uPO).

Since uPS is a maximizer of g(uPS ,v), we know that 0 ∈ ∂vg(uPS ,v). Therefore, by λ-strong convexity

(Assumption 1), we have

g(uPS ,uPO)− g(uPS ,uPS) ≥
λ

2
|uPS − uPO|2.

Further, let by Assumption 5, we also have

g(uPS ,uPO)− g(uPO,uPO) ≤ Lw|w∗
1 −w∗

2|.

Combining above equations and applying Assumption 4, we get

|uPS − uPO|2 ≤

2Lw

λ

√√√√T−1∑
t=0

ϵ2t

 |uPS − uPO|.

Simplifying this completes the proof.

2.4.4 Finite Sample Results

So far, we have focused our analysis on the I-IRPC, which is the ideal version of our proposed method. Now

we are finally ready to bridge the gap between them, and establish the convergence properties of our E-IRPC

algorithm. The key here is to view the radius of conformal sets obtained in Section 2.2.2 as the empirical

approximation of the quantile function defined by Equation 2.11.

Definition 4 (Hazard rate). Let X be a 1-dimensional random variable. The hazard rate of X evaluated at

point x is defined by

h(x) = lim
θ→0

P(x ≤ X ≤ x+ θ|X ≥ x)

θ
=

f(x)

1− F (x)
,

where f is the p.d.f (assuming that it exists) and F is the c.d.f.
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Assumption 6 (Additional assumptions on the distribution of noise). We assume that for any u ∈ U , we

have

• the hazard rate of |w| is positive and non-decreasing

• the p.d.f of |w| exists and is continuously differentiable.

This assumption is the combination of [17, Assumption 1 and 2].

Theorem 5 (Convergence of E-IRPC to a neighborhood of uPS). Suppose the following assumptions hold:

• L(w,u) is λ-strongly convex in u (Assumption 1),

• L(w,u) is β-smooth in w (Assumption 2),

• the quantile function Qt(u) is ϵt-Lipschitz in u for all t = 0, . . . , T − 1 with
∑T−1

t=1 ϵ2t < λ2

4β2 , (Assump-

tion 3),

• the worst case noises align (Assumption 4) and

• Assumption 6.

Then the E-IRPC converges to the neighborhood of a unique performative stable control uPS at a linear rate.

Specifically, for any δ ∈ (0, 1), if we take Ni = O
(

4λ2T 3

β2δ2
∑T−1

t=0 ϵ2t
log
(

6p
π2i2T 2

))
samples in each iteration, then

with probability 1− p (p is the same as the overall probability level defined in Equation 2.2),

|ui − uPS | ≤ δ for all i ≥

1−
2β
√∑T−1

t=0 ϵ2t

λ

−1

log

(
|u0 − uPS |

δ

)
. (2.21)

Proof. For each timestep t, take the Ni samples of w(t) and sort their Euclidean norm in the increasing order

as follows ∣∣∣w(η1)(t)
∣∣∣ ≥ · · · ≥ ∣∣∣w(ηNi

)(t)
∣∣∣ .

Let k =
⌊
Np
T

⌋
, then the empirical quantile function is given by

Q̂t(u) := inf

r :
1

Ni

Ni∑
j=1

1
{∣∣wj(t)

∣∣ ≤ r
}
≥ 1− p

T

 =
∣∣∣w(ηk)(t)

∣∣∣ . (2.22)

and the conformal sets constructed in Section 2.2.2 is given by

Ĉt(u) =
{
w(t) : |w(t)| ≤ Q̂t(u)

}
,

Ĉu = Ĉ0(u)× · · · × ĈT−1(u).

Then for any u,u′ ∈ U , we have∣∣∣Q̂t(u)−Qt(u
′)
∣∣∣ ≤ ∣∣∣Q̂t(u)−Qt(u)

∣∣∣+ |Qt(u)−Qt(u
′)| .

By [17, Theorem 2], for any ϵ > 0, we have

P
(∣∣∣Q̂t(u)−Qt(u)

∣∣∣ ≥ ϵ
)
≤ exp

(
− ϵ2

2 (vr + (cr + ωn) ϵ)

)
+ exp

(
− ϵ2

2 (vl + ωnϵ)

)
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where vr = 2
kL2 , v

l = 2(Ni−k+1)
(k−1)2L2 , cr = 2

kL and ωn = b
Ni

, with L and b finite for all u ∈ U . With some

algebraic manipulations, we get that with Ni = O
(

4λ2T 3

β2δ2
∑T−1

t=0 ϵ2t
log
(

6p
π2i2T 2

))
,

P

∣∣∣Q̂t(ui)−Qt(ui)
∣∣∣ ≥ β

√∑T−1
t=0 ϵ2t

λT
δ

 ≤ 6p

π2i2T
.

Following the same arguments as in the proof of Theorem 3, we get

|Â(ui)−A(ui)| ≤
β

λ

√√√√T−1∑
t=0

∣∣∣Q̂t(u)−Qt(u)
∣∣∣2 ≤ δβ

√∑T−1
t=0 ϵ2t

λ

with probability at least 1− 6p
π2i2 . Now, applying Theorem 3 we get that when |ui − uPS | ≥ δ,

|ui+1 − uPS | = |Â(ui)−A(uPS)|

≤ |Â(ui)−A(ui)|+ |A(ui)−A(uPS)|

≤
β
√∑T−1

t=0 ϵ2t

λ
|ui − uPS |+

β
√∑T−1

t=0 ϵ2t

λ
δ

≤
2β
√∑T−1

t=0 ϵ2t

λ
|ui − uPS |.

Therefore, when

2β
√∑T−1

t=0 ϵ2t

λ
,

applying the union bound, with probability at least 1−
∑∞

i=0
6p

π2i2 = 1− p, for all i = 0, 1, ... we have

|ui − uPS | ≤ max


2β

√∑T−1
t=0 ϵ2t

λ

i

|u0 − uPS |, δ

 .

This completes the proof.

2.4.5 Relaxing the Alignment Constraint on the Noise

As one might notice, most of our results so far are based on the assumption that the worst-case noises align

when we change the control low (Assumption 4). This assumption, however, is not easy to satisfy. In this

section, we establish results based on the following weaker assumption.

Definition 5. Given the loss function L and the confidence set mapping C, we say that the worst-

case noises weakly align if For any v,u,u′ ∈ U , there exists w∗
1 ∈ argmaxw∈C(u) L(w,v) and w∗

2 ∈
argmaxw∈C(u′) L(w,v) such that for any t = 0, . . . , T − 1,

(w∗
1(t)− w∗

2(t))
⊺w∗

t (t) ≥ 0

Assumption 7 (weak alignment of worst-case noises). We assume that the worst-case noises weakly align.
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Our first result concerns the convergence of the I-IRPC under the weak alignment condition (Assumption 7),

which is the counterpart of Theorem 3.

Theorem 6 (Convergence of I-IRPC). Suppose the following assumptions hold:

• L(w,u) is λ-strongly convex in u (Assumption 1),

• L(w,u) is β-smooth in w (Assumption 2),

• the quantile function Qt(u) is ϵt-Lipschitz in u for all t = 0, . . . , T − 1 with
∑T−1

t=1 ϵ2t < λ2

β2 (Assump-

tion 3),

• worst case noises weakly align (Assumption 7),

Then the I-IRPC converges to the neighborhood of a performative stable control uPS at a linear rate. Specifically,

for any

δ >

∑T−1
t=1 2ϵtQt(uPS)

λ2/β2 −
∑T−1

t=1 ϵ2t
+

∑T−1
t=0 ϵtQt(uPS)∑T−1

t=0 ϵ2t
,

we have

|ui − uPS | ≤ δ for all i ≥

1−
β

(√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

))
λ


−1

log

(
|u0 − uPS |

δ

)
. (2.23)

Proof. For any u,u′ ∈ U , take

w∗
1 ∈ argmax

w∈C(u)

L(w,A(u′))

w∗
2 ∈ argmax

w∈C(u′)

L(w,A(u′)),

following the same argument as the proof of Theorem 3 (using λ-strong convexity and β-smoothness), we

have

|A(u)−A(u′)| ≤ 1

λ

∣∣∇A(u′)L(w
∗
1,A(u′))−∇A(u′)L(w

∗
2,A(u′))

∣∣
≤ β

λ
|w∗

1 −w∗
2|.
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By weak alignment, we have

|w∗
1 −w∗

2| =

√√√√T−1∑
t=0

|w∗
1(t)− w∗

2(t)|2

≤

√√√√T−1∑
t=0

|Q2
t (u)−Q2

t (u
′)|

=

√√√√T−1∑
t=0

|Qt(u)−Qt(u′)||Qt(u) +Qt(u′)|

≤

√√√√T−1∑
t=0

(
|Qt(u)−Qt(u′)|2 + 2|Qt(u)−Qt(u′)|Qt(u′)

)

≤

√√√√T−1∑
t=0

(ϵ2t |u− u′|2 + 2ϵt|u− u′|Qt(u′))

=


√√√√T−1∑

t=0

(
ϵ2t + 2ϵt

Qt(u′)

|u− u′|

) |u− u′|.

(2.24)

Thus, at the i-th iteration of I-IRPC, we have

• When |ui − uPS | > δ,

|ui+1 − uPS | = |A(ui)−A(uPS)|

≤
β

(√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

))
λ

|ui − uPS |.

• When |ui − uPS | ≤ δ,

|ui+1 − uPS | = |A(ui)−A(uPS)|

≤ β

λ

√√√√T−1∑
t=0

(ϵ2t δ
2 + 2ϵtδQt(uPS))

=
β

λ

√√√√√√

√√√√T−1∑

t=0

ϵ2t δ +

∑T−1
t=0 ϵtQt(uPS)√∑T−1

t=0 ϵ2t

2

−

(∑T−1
t=0 ϵtQt(uPS)

)2
∑T−1

t=0 ϵ2t

≤
β
√∑T−1

t=0 ϵ2t

λ

(
δ +

∑T−1
t=0 ϵtQt(uPS)∑T−1

t=0 ϵ2t

)

≤ δ +

∑T−1
t=0 ϵtQt(uPS)∑T−1

t=0 ϵ2t
.

When
∑T−1

t=1 ϵ2t < λ2

β2 , we can pick

δ >

∑T−1
t=1 2ϵtQt(uPS)

λ2/β2 −
∑T−1

t=1 ϵ2t
> 0,
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to make A(u) contractive for all |u− uPS | > δ. This gives us

|ui − uPS | ≤ max


β

(√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

))
λ


i

|u0 − uPS |, δ +
∑T−1

t=0 ϵtQt(uPS)∑T−1
t=0 ϵ2t

 ,

Rearranging this completes the proof.

Note that this is weaker than Theorem 3 in two ways. First, it does not guarantee the uniqueness of the

uPS . In fact, even the existence of uPS does not come for free—it relies on Theorem 1. Second, we cannot

get arbitrarily close to uPS . There is always a gap.

Our second result concerns the relationship between uPS and uPO under the weak alignment condition

(Assumption 7), which is the counterpart of Theorem 4.

Theorem 7 (Relating uPS and uPO). In addition to assumptions made in Theorem 6, if Assumption 5 is

also satisfied, then for any δ > 0, we have

|uPO − uPS | ≤ max


2Lw

√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

)
λ

, δ

 .

Proof. Following the same argument as the proof of Theorem 4, we have

λ

2
|uPO − uPS |2 ≤ g(uPS ,uPO)− g(uPS ,uPS) ≤ g(uPS ,uPO)− g(uPO,uPO) ≤ Lw|w∗

1 −w∗
2|,

where
w∗

1 ∈ argmax
w∈C(uPS)

L(w,A(uPO))

w∗
2 ∈ argmax

w∈C(uPO)

L(w,A(uPO)).

By weak alignment (as in Equation 2.24), we have

|w∗
1 −w∗

2| ≤


√√√√T−1∑

t=0

(
ϵ2t + 2ϵt

Qt(uPS)

|uPO − uPS |

) |uPO − uPS |.

combining this with Equation 2.4.5 which gives us

|uPO − uPS | ≤
2Lw

λ

√√√√T−1∑
t=0

(
ϵ2t + 2ϵt

Qt(uPS)

|uPO − uPS |

)
.

Therefore for any δ > 0, we have

|uPO − uPS | ≤ max


2Lw

√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

)
λ

, δ

 .
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Our third result concerns the convergence of the E-IRPC under the weak alignment condition (Assump-

tion 7), which is the counterpart of Theorem 5.

Theorem 8 (Convergence of E-IRPC). Suppose the following assumptions hold:

• L(w,u) is λ-strongly convex in u (Assumption 1),

• L(w,u) is β-smooth in w (Assumption 2),

• the quantile function Qt(u) is ϵt-Lipschitz in u for all t = 0, . . . , T − 1 with
∑T−1

t=1 ϵ2t < λ2

4β2 (Assump-

tion 3),

• the worst case noises weakly align (Assumption 7) and

• Assumption 6.

Then the E-IRPC converges to the neighborhood of a performative stable control uPS at a linear rate.

Specifically, for any

δ >

∑T−1
t=1 2ϵtQt(uPS)

λ2/β2 −
∑T−1

t=1 ϵ2t
+

∑T−1
t=0 ϵtQt(uPS)∑T−1

t=0 ϵ2t
,

if we take Ni = O
(

4λ2T 3

β2
∑T−1

t=0 (ϵ2tδ+2ϵtQt(uPS))
log
(

6p
π2i2T 2

))
samples in each iteration, then with probability 1− p

(p is the same as the overall probability level defined in Equation 2.2),

|ui − uPS | ≤ δ for all i ≥

1−
β

(√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

))
λ


−1

log

(
|u0 − uPS |

δ

)
. (2.25)

Proof. This proof builds on the proof of Theorem 6, in the same way as the proof of Theorem 5 builds on

that of Theorem 3. Specifically, by [17, Theorem 2], for any ϵ > 0, we have

P
(∣∣∣Q̂t(u)−Qt(u)

∣∣∣ ≥ ϵ
)
≤ exp

(
− ϵ2

2 (vr + (cr + ωn) ϵ)

)
+ exp

(
− ϵ2

2 (vl + ωnϵ)

)

where vr = 2
kL2 , v

l = 2(Ni−k+1)
(k−1)2L2 , cr = 2

kL and ωn = b
Ni

, with L and b finite for all u ∈ U . Now pick any

δ >

∑T−1
t=1 2ϵtQt(uPS)

λ2/β2 −
∑T−1

t=1 ϵ2t
+

∑T−1
t=0 ϵtQt(uPS)∑T−1

t=0 ϵ2t
,

as in Theorem 6, with some algebraic manipulations, we get that withNi = O
(

4λ2T 3

β2
∑T−1

t=0 (ϵ2tδ+2ϵtQt(uPS))
log
(

6p
π2i2T 2

))
,

P

∣∣∣Q̂t(ui)−Qt(ui)
∣∣∣ ≥ β

(√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

))
λ

δ

 ≤ 6p

π2i2T
.
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Following the same arguments as in the proof of Theorem 6, we get

|Â(ui)−A(ui)| ≤
β

λ

√√√√T−1∑
t=0

∣∣∣Q̂t(u)−Qt(u)
∣∣∣2 ≤ β

(√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

))
λ

δ

with probability at least 1− 6p
π2i2 . Now, applying Theorem 6 we get that when |ui − uPS | ≥ δ,

|ui+1 − uPS | = |Â(ui)−A(uPS)|

≤ |Â(ui)−A(ui)|+ |A(ui)−A(uPS)|

≤
β

(√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

))
λ

|ui − uPS |+
β

(√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

))
λ

δ

≤
2β

(√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

))
λ

|ui − uPS |.

Therefore, when

2β

(√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

))
λ

< 1,

applying the union bound, with probability at least 1−
∑∞

i=0
6p

π2i2 = 1− p, for all i = 0, 1, ... we have

|ui − uPS | ≤ max


2β

(√∑T−1
t=0

(
ϵ2t + 2ϵt

Qt(uPS)
δ

))
λ


i

|u0 − uPS |, δ

 .

This completes the proof.
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Chapter 3

Conclusion and Further Discussions

In this study, we present a novel way to approach noisy dynamical systems, particularly those characterized

by performative noise. Drawing inspiration from the literature on performative prediction and conformal

prediction, we tailored an approach that addresses the challenges posed by real-world noisy discrete-dynamical

systems where the characteristics of the noise remain largely unknown.

Our proposed method, E-IRPC, is applicable in settings where we do not have explicit knowledge of the

noise distribution. Leveraging empirical observations with conformal prediction techniques, we’ve showcased

an adaptive strategy that converges to near-optimal open-loop controls, while remaining attuned to the

system’s inherent noise dynamics. By investigating its infinite sample limit, I-IRPC, we are able to derive

rigorous convergence bounds under certain regularity conditions, offering a theoretical foundation for future

investigation and experiments.

As we reflect on our journey, it is evident that the challenges posed by performative noise in control

systems are not insurmountable. With the right blend of theory, empirical observation, and innovative

methodologies, we can navigate the complexities of such systems, ensuring stability and optimal performance.

While our current focus has been on open-loop controls, our approach holds immense promise for various

extensions including closed-loop control.
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