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Abstract

Adaptive filtering algorithms form a cornerstone of intelligent signal processing infras-

tructure and play a vital role in a wide array of applications, including telecommunications,

biomedical sensing, and seismology. Adaptive filters typically operate via specialized, online,

iterative optimization methods such as least-mean squares or recursive least squares and aim

to process signals in unknown or nonstationary environments. Such algorithms, however,

can be slow and laborious to develop, require domain expertise to create, and necessitate

mathematical insight for improvement.

In this thesis, we present a different approach to the design of adaptive filters. Our

core contribution is a comprehensive framework that leverages the power of meta-learning

and deep learning techniques to learn adaptive signal processing algorithms directly from

data. By formulating adaptive filter development as a meta-learning problem, we train

iterative update rules for adaptive filters using various forms of supervision and training.

This approach enables us to overcome the limitations of traditional design methodologies

and opens up new possibilities for developing highly efficient and effective adaptive filters.

To validate our framework, we focus on audio applications and systematically develop a

family of meta-learned adaptive filters for key tasks such as system identification, inverse

modeling, prediction, and informed interference cancellation. Through extensive evaluations

of diverse audio applications, including acoustic echo cancellation, blind equalization, multi-

channel dereverberation, beamforming, telephony, and keyword spotting, we demonstrate

the strong performance of our approach compared to existing methods.

Our findings indicate that our meta-learned adaptive filters not only function in real-

time but also consistently excel across different tasks. We achieve remarkable performance

gains by employing a single general-purpose configuration, highlighting the versatility and

effectiveness of our framework. Moreover, our work pushes the boundaries of meta-learning

and adaptive filter literature, leading to a new conceptual framework that has the potential

to change how we approach, solve, and construct adaptive filter pipelines.
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Chapter 1: Introduction

1.1 MOTIVATION

Our lives are filled with an array of devices that constantly transmit and receive signals,

from acoustic signals played out by smart speakers to radio-frequency signals emitted by Wi-

Fi routers. With this vast amount of data, however, comes noise - unwanted elements that

contaminate every signal we send and receive. Real-world noise, such as background noise in

a crowded room or echoes bouncing off the walls of a conference hall, poses a critical challenge

for most devices. To address this issue, Adaptive Filters (AFs) have emerged as crucial

components of modern infrastructure, enabling signal processing in adverse environments.

The applications of AFs touch every signal processing domain including audio processing,

telecommunications, biomedical sensing, astrophysics and cosmology, seismology, and more.

Audio applications, in particular, are of exceptional importance and play a vital role in the

devices and services we use daily, such as video/voice calls, automatic speech recognizers,

hearing aids, and noise-canceling headphones. The language and tooling provided by AFs

offer a versatile approach to tackling these tasks.

AFs are the synergistic combination of online optimization and clever modeling techniques.

Typically, they rely on a coarse model of the task, with finer details and nuances controlled

by an update rule that customizes the AF on-the-fly for the specific scenario at hand. This

delicate balance between generic modeling and bespoke modeling necessitates the use of so-

phisticated optimization algorithms. The coarse AF atoms typically fall into four general

configurations: system identification, inverse modeling, prediction, and interference cancel-

lation. These configurations can be mixed and matched to describe a wide range of signal

processing problems.

The design of AF update rules are typically guided by online optimization or adaptation

principles such as Least Mean Squares (LMS) [1], Normalized Least Mean Squares (NLMS),

Recursive Least Squares (RLS) [2], or the Kalman Filter (KF) [3, 4, 5, 6]. These approaches

provide powerful mathematical frameworks for AF tasks. However, developing real-world

capable AFs is a challenging and laborious task that requires significant domain expertise

in both signal processing and the target domain (e.g., voice telephony). When an existing

AF is deployed in a new environment or applied to a new task, it may need to be redesigned

from scratch, requiring significant engineering hours, manual tuning, and deep mathematical

insight. These harsh design barriers lead to the infamous feedback on conference calls, the

challenge of using smart assistants in cars, and hit-or-miss hearing-aid quality. However,

1



these are mostly software challenges, meaning that we can design better algorithms today

and deploy better solutions tomorrow.

In this thesis, we aim to simplify the design and development of AF algorithms through

a data-driven approach. Our goal is to invent general development systems that can pro-

duce high-performance AF systems for almost any AF task and use case without significant

manual intervention. Additionally, we want our approach to be modular, and a drop-in

replacement within existing AF systems. We call this general approach a Meta-Learned

Adaptive Filter (Meta-AF) and benchmark it on a suite of audio tasks critical for telephony

and smart devices. We frame this challenge as a meta-learning or end-to-end learning setup,

enabling us to describe both a single isolated AF and a suite of AFs and other potentially

Deep Neural Network (DNN) modules in one unified framework. This unified framework

enables conceptual advances by connecting previously disparate approaches and provides

practical benefits by providing simpler and modular engineering abstractions. We demon-

strate this by developing end-to-end AF systems inside our framework and show that we

can draw on lessons from meta-learning, optimizer design, adaptive filter theory, and digital

signal processing (DSP) to build performant systems. In parallel, we discuss various forms

of supervision and showcase trade-offs of unsupervised/self-supervised, and fully supervised

training schemes.

The culmination of this thesis is a novel design perspective for all AF problems and

an accompanying code-base, meta-af. We use meta-af for all of our development and

evaluation. Our meta-af software enables easy translation of ideas useful for one AF domain

to another and rapid development of novel techniques. In particular, we will demonstrate

how using meta-af, we can scale from the design of a simple toy system identification task

to a full telephony capture system with echo cancellation, noise suppression, multi-channel

processing, and neural network post-processors. Our meta-af package provides both offline

training code and online inference code, which is real-time capable on a single consumer-

grade CPU core. Finally, to evaluate and benchmark all discussed algorithms, we built

and maintained a suite of AF tasks called the AF-Gym. Through our experiments in the

AF-Gym, on selected tasks, we achieve or approach state-of-the-art performance. We hope

that our tools presented here can lead to better-performing systems and entice researchers

and engineers alike.

1.2 PRIOR WORKS AND LITERATURE

AF tasks are typically classified into one of four categories: system identification, inverse

modeling, prediction, and interference cancellation [5]. Each of these categories has numer-
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ous AF applications, and advances in one category or application can often be applied to

many others. In the audio domain, Acoustic Echo Cancellation (AEC), the task of enabling

full-duplex, can be formulated as a single- or multi-channel System Identification (SYS-ID)

problem and has been extensively studied [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Equal-

ization (EQ), the task of undoing the effect of some unknown system, can be formulated

as an inverse modeling problem, has been explored in single- and multi-channel formats,

and is particularly useful for sound zone reproduction and active noise control [19, 20, 21,

22, 23, 24]. Dereverberation, the task of removing echo from a recording, can be formu-

lated as a Weighted Prediction Error (WPE) problem and has been extensively studied in

this context [25, 26, 27, 28, 29, 30, 31]. Finally, multi-microphone enhancement or Beam-

forming (BF), the task of isolating a signal of interest using spatial information, can be

formulated as an informed interference cancellation task and also has a breadth of associ-

ated approaches [32, 33, 34, 35, 36, 37, 38] and unmixing algorithms [39, 40, 41, 42, 43, 44].

These various audio tasks are both useful as standalone modules and as pre-processing steps

for larger systems. In terms of training, most AF approaches are unsupervised in that they

only perform learning at inference time and do not require oracle signals to construct the

algorithms themselves.

When considering AFs in the context of the data-driven DNN revolution, we observe two

main points. First, AFs continue to be widely used in practice but that research centers on

hybrid fully-supervised approaches, which combine neural networks with standard AF algo-

rithms. Second, the underlying AF algorithms and tools for developing new AFs have under-

gone little change. Hybrid approaches, however, have proven very successful. For example,

in AEC, neural networks can be trained for residual echo suppression, noise suppression,

reference estimation, and more [45, 46, 47, 48, 49, 50, 51, 52, 53]. Similarly, neural networks

paired with AFs for active noise control tasks have shown impressive results [54, 55, 56, 57].

For dereverberation, DNNs have proven useful for both online and offline approaches, by

directly estimating statistics of the dereverberated speech [58, 59, 60, 61, 62]. This pattern

has repeated itself for beamforming applications, where DNNs have led to many performance

improvements [63, 64, 65, 66]. In many of these works, DNNs are trained to predict ratio

masks, or directly enhance/separate the desired signal. Essentially, they act as a distinct

module within a larger pipeline that also uses AFs.

In developing larger AF pipelines, using end-to-end or joint training can significantly

enhance performance by modeling the full processing pipeline instead of each individual

component. Joint optimization techniques have led to advancements both with and without

DNN modules and are useful for signal-level objectives [67, 68, 69, 70, 71, 72] as well as

downstream objectives like speech recognition [73, 74]. This holds true for DNN modules as
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well [75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85]. Nearly all joint and hybrid training approaches

are fully supervised. However, some of them sacrifice modularity for joint optimization.

In contrast, there are a few works that more closely integrate neural networks and AFs,

to use DNNs for optimal control of AFs. These methods include both model-based [78, 82,

86, 87, 88, 89, 90] and model-free approaches [91, 92, 93, 94]. The former uses DNNs to

estimate signal statistics, step-sizes, or augment portions of existing signal models, while the

latter aims to learn AF control from scratch. These two classes of approaches differ from

hybrid methods in that they use neural networks to update or control AFs directly, aiming

to improve the performance of AFs themselves. Such improvements can be used in isolation

or together with complementary hybrid or end-to-end approaches [78, 94]. The training and

corresponding data requirements for these approaches are much more varied.

The idea of controlling AFs via neural networks is broadly related to several fields of signal

processing and machine learning, including optimal control, optimization, automatic machine

learning, reinforcement learning, and meta-learning. Relevant works in these areas involve

automatic selection of step sizes [7, 95, 96], direct control of model weights [97, 98, 99], rapid

fine-tuning [100], and meta-learning optimization rules [101]. There are many other flavors

of meta-learning, but learned optimizers are most relevant [102, 103, 104, 105, 106, 107], and

present the idea of using one neural network as a function that optimizes another function.

However, such studies focus on creating learned optimizers for training neural networks in

an offline setting, where the latter network is the final product, and the learned optimizer is

otherwise discarded (or used to train additional networks).

We take inspiration from these works but make numerous advances specific to AFs. In

particular, past learned optimizers [101] are element-wise, offline, real-valued, only a function

of the gradient, and are trained to optimize general-purpose neural networks. In contrast,

we design online AF optimizers that use multiple input signals, are complex-valued, adapt

any kind of filter, and integrate numerous domain-specific insights to reduce complexity

and improve performance. Moreover, we deploy learned optimizers to solve AF tasks as

the end goal and do not use them to train downstream neural networks. This enables

the development of modular end-to-end systems, which significantly improve performance.

Compared to prior hybrid AF works, we replace the entire update with a neural network and

provide a single comprehensive framework for all AF tasks. Furthermore, we will illustrate

how our optimization techniques can adapt to varying data volumes and quality, as well as

varying levels of computational resources.
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1.3 CONTRIBUTIONS AND OUTCOMES

The key conceptual contribution of the thesis is a new design paradigm for AF systems.

The software artifacts are contained in the open source and pip installable python package,

meta-af, hosted on GitHub. It contains implementations of all algorithms discussed in both

the background and main sections as well as the AF-Gym, which we also refer to as the Zoo.

1.3.1 Publications

The academic outcomes include workshop, conference, and journal papers:

• Auto-DSP: Learning to Optimize Acoustic Echo Cancellers [92]

• Meta-AF: Meta-Learning for Adaptive Filters [93]

• Meta-Learning for Adaptive Filters with Higher-Order Frequency Dependencies [94]

• Meta-AF Echo Cancellation for Improved Keyword Spotting [108]

• Supervised Multi-Step Adaptive Filters [109]

• NICE-Beam: Neural Integrated Covariance Estimators for Time-Varying Beamform-

ers [78]

Other publications produced during the course of this thesis but not described here include

the following references: [79, 91, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121].

1.3.2 Code

The use of software frameworks that automate autodiff has had a significant impact on

deep learning, driving progress in various application areas. This thesis includes a similar tool

tailored for adaptive filtering. The goal was to simplify and automate key tasks in adaptive

filtering, taking advantage of the widespread availability and GPU compatibility of deep

learning frameworks. This includes functions such as buffering, overlap-save computations,

overlap-add processes, and real-time filtering operations. The open-source and software

outcomes include:

• The meta-af package https://github.com/adobe-research/MetaAF

• Early meta-af work https://github.com/jmcasebeer/autodsp
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1.3.3 Patents

The invention outcomes include submitted patents on:

• Meta-AF: Meta-Learning for Adaptive Filters

• NICE-Beam: Neural Integrated Covariance Estimators for Time-Varying Beamformers

1.4 NOTATION & CONVENTIONS

We provide an overview of the symbols and operators we use in Table 1.1. We denote

scalars via lower-case symbols, column vectors via bold, lower-case symbols, and matrices

via bold upper-case symbols. We use bracket indexing [τ ] to denote time-varying signals and

an underline to denote the time-domain counterpart of a Frequency Domain (FD) symbol.

We index FD rows via the discrete frequency bin subscript, k, and columns via either the

microphone subscript, m, or the frame buffer subscript, b. A single element can be indexed

via the use of stacked subscripts kmb. Occasionally we will drop parenthesis or indices for

brevity, but only when it does not confuse the operation.
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Symbols Description
x ∈ R A real-valued scalar
x ∈ C A complex-valued scalar
x ∈ R A real-valued time-domain scalar
x ∈ RN A time-domain N -dimensional column vector
x ∈ CN A complex-valued N -dimensional column vector

X ∈ CM×N A complex-valued M ×N matrix
x[τ ] A time-varying column vector
X[τ ] A time-varying matrix
w[τ ] FD AF linear-filter
u[τ ] FD AF input
d[τ ] FD AF target or desired response
y[τ ] FD AF estimated response

d[τ ]− y[τ ] FD AF error
s[τ ] FD AF true desired signal
IN An N ×N identity matrix

0N×R N ×R matrix of zeros
1N×R N ×R matrix of ones
FN N -point discrete Fourier transform (DFT) matrix

Operators Description
∗ Convolution
·⊤ Transpose
·∗ Complex conjugate
·H Hermitian transpose

diag(·) Vector to a diagonal matrix
cat(· · · ) Column vector concatenation (vertical stack)

E Expected value
(·)
(·) Element-wise division

|| · || Euclidean norm
| · | Element-wise magnitude of complex value
∠ Phase of a complex-value
ln Natural logarithm
−1 Scalar or matrix inverse

Table 1.1: Symbols and operators for adaptive filtering that are used throughout this work.
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Chapter 2: Background on Adaptive Filtering

Adaptive filters are a crucial component of this thesis, consisting of two main elements.

The first component is the filter itself, which performs the signal processing and is typically

parametric. The second component is the adaptation or optimization rule, which governs

the adjustment of the filter parameters. We define a complete Adaptive Filter (AF) as an

algorithm or optimizer that solves a specific objective function over time,

θ̂[τ ] = argmin
θ[τ ]
L(· · · )[τ ], (2.1)

where θ̂ represents the estimated time-varying filter parameters. Usually, this optimization

is accomplished using an additive update rule of the form

θ[τ + 1] = θ[τ ] +∆[τ ], (2.2)

where ∆[τ ] denotes the update applied to the filter parameters at time τ . In this thesis, we

typically focus on linear Frequency Domain Adaptive Filter (FDAF), where the constituent

filter parameters are represented by θ[τ ] = {w[τ ]}, without loss of generality. The choice

of the objective function L and the method for applying and updating the filter parameters

θ̂[τ ] have a significant impact on the performance and applicability of the adaptive filter.

Different configurations of these parameters can yield a wide range of applications, from

linear acoustic echo cancellers to direction of arrival estimators. To ensure generality, we

provide explanations that apply to any filter kind of filtering task.

Most often, the optimization objective L is computed with respect to the filter output

ym and some reference dm, at the reference receiver m. Some common settings includes the

Mean Squared Error (MSE),

LMSE[τ ] = E[∥em[τ ]∥2] = E[∥dm[τ ]− ym[τ ]∥2], (2.3)

which is widely used and aims to minimize the expected squared error. The MSE provides a

measure of overall estimation accuracy and is quite popular when some statistical properties

of the task are known ahead of time.

A second common objective is the Instantaneous Squared Error (ISE),

LISE[τ ] = ∥em[τ ]∥2 = ∥dm[τ ]− ym[τ ]∥2, (2.4)
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which is a time-varying version of the MSE. The ISE is useful when real-time adaptation is

a concern and signal statistics are unknown or not stationary.

A third objective is the Weighted Squared Error (WSE),

LWSE[τ ] =
τ∑

n=0

γτ−n∥dm[n]− ym[n]∥2, (2.5)

where γ is a tunable forgetting factor. The WSE acts as a middle-ground between the ISE

and MSE since γ can be selected to prioritize recent information while still considering past

knowledge.

These are just a few examples of loss functions for adaptive filters. The choice of loss

depends on numerous criteria like the application, desired performance, prior knowledge,

and more. Typically, these loss functions can only rely on knowledge that is available at

inference time. This means that any oracle knowledge, such as clean signal exemplars or

ground truth information, needs to be incorporated manually into the adaptation process.

Though, oracle information like clean signal exemplars could be used to choose between ISE,

MSE, and WSE type losses.

2.1 ONLINE FREQUENCY-DOMAIN FILTERING

Filtering is the fundamental operation performed by an adaptive filter to generate its

output. In this thesis, our focus is on frequency domain filtering, which is widely used

and the default approach for implementing adaptive filters in audio. We employ streaming

frequency domain filtering using either the Overlap-Save (OLS) or Overlap-Add (OLA)

convolution techniques.

The OLS method involves block processing by dividing the input signal into overlapping

windows and recombining complete non-overlapping components. We use um[t] ∈ R to

represent the time-domain sample recorded by microphone m at discrete time t. We collect

N such samples from microphone m to form the τ th time-domain frame,

um[τ ] = [um[τR−N + 1], · · · , um[τR]] ∈ RN , (2.6)

where τ is the frame index, N is the window length in samples, R is the hop size in samples,

and O = N − R is the overlap between frames in samples. Finally, we gather samples from

all M microphones to form a multi-channel time-domain signal,

U[τ ] = [u1[τ ], · · · ,uM [τ ]] ∈ RN×M . (2.7)
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We compute the corresponding frequency-domain representation,

U[τ ] = FNU[τ ] ∈ CK×M , (2.8)

where K is the number of frequency bins, set to K = N for this work. We select the mth

channel from a multi-channel frequency-domain representation using um[τ ] ∈ CK . We define

the FD filter wm[τ ] ∈ CK and the frequency and time output for the mth channel as:

ym[τ ] = diag(um[τ ])Zww
∗
m[τ ] ∈ CK (2.9)

y
m
[τ ] = Zyym[τ ] ∈ RR, (2.10)

with the use of two anti-aliasing matrices,

Zw = FKT
⊤
K/2TK/2F

−1
K ∈ CK×K , (2.11)

Zy = T̄RF
−1
K ∈ CR×K , (2.12)

and two trimming matrices,

TK/2 = = [IK/2,0K/2×K/2] ∈ RR×K , (2.13)

T̄R = [0R×O, IR] ∈ RR×K , (2.14)

which trim the last K/2 samples from a vector and the first O samples respectively.

The counterpart to OLA is OLA filtering, which computes the frequency output, time

output, and buffer bm[τ ] as

ym[τ ] = diag(um[τ ])w
∗
m[τ ] ∈ CK (2.15)

y
m
[τ ] = TRF

−1
K ym[τ ] + T̄Rbm[τ − 1] ∈ RR (2.16)

bm[τ ] = F−1K ym[τ ] +T⊤RT̄Rbm[τ − 1] ∈ RK . (2.17)

Here,

TR = [IR,0R×O] ∈ RR×K , (2.18)

which trims the last O samples from a vector.

Typically, the forward and inverse discrete Fourier transforms are combined with analysis

and synthesis windows, and zero-padding may also be employed. We typically use Hann

windows [122], which have nice constant-overlap add properties.

For multi-channel multi-block input, single-channel output FD filters, the OLS/OLA equa-
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tions described above are applied per channel, and anti-aliasing is applied per block. The

per-frequency (anti-aliased) filter is wk[τ ] ∈ CBM where B represents the number of buffered

frames and M represents the number of channels stacked together. The filter input is sim-

ilarly stacked denoted as uk[τ ] ∈ CBM , which requires straightforward modifications to

equations (2.9) and (2.15). Picking between OLS and OLA is not always straightforward. If

speed is your top priority, choose OLS. However, if your processing might introduce unde-

sirable artifacts or vary rapidly over time, opt for OLA.

Methods like OLA and OLA are valuable for efficient real-time processing in both the

frequency and time domains. Frequency domain filtering, in particular, offers several advan-

tages that make it a popular choice in adaptive filtering applications. One key advantage

of frequency domain filtering is its improved convergence properties compared to time do-

main filtering, for natural signals like human speech. By operating in the frequency domain,

adaptive algorithms can exploit the inherent properties of the frequency representation of

signals. More custom representations are also possible, such as those based on task-specific

filter-banks [123, 124], portnoff [125] windows, learnable filter-banks [110, 111, 118, 126],

and more. Frequency domain and custom domains often lead to faster convergence and

more efficient adaptation, allowing adaptive filters to quickly adapt to changing signal con-

ditions and provide better performance. This adaptation relies on sophisticated optimization

algorithms, which we describe next.

2.2 ONLINE ADAPTATION

Given a filtering objective and filtering mechanics, we can develop filter adaptation rules.

When developing adaptive filter adaptation rules for adaptive filters, it is common to leverage

OLS or OLA filtering and solve the objective defined in (2.1) through optimization methods

applied independently to each frequency bin. So, we modify (2.2) to be

wk[τ + 1] = wk[τ ] +∆k[τ ], (2.19)

where the update ∆k[τ ] is per frequency k. We focus on three common conventional AF

optimizers in this form as well as a machine learning optimizer to ground the development

of our method to familiar, fundamental algorithms. When considering gradient-based opti-

mization methods, we calculate the partial derivative of the objective function with respect

to the conjugate transpose of the filter weights, wk[τ ]
H.
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2.2.1 Least Mean Square

The Least Mean Squares (LMS) is a stochastic gradient descent method that uses the ISE

loss and gradient. The LMS update is

∆k[τ ] = −λ∇k[τ ], (2.20)

where λ is the step-size and∇k[τ ] is the gradient of the ISE. Selecting a single λ is challenging

since a larger λ enables faster adaptation, but typically comes at the cost of lower peak

performance. Several schemes have been proposed [5] to change λ across time and adaptively

trade off convergence vs peak performance. Note, LMS is stateless and only a function of

the gradient.

2.2.2 Normalized Least Mean Square

The Normalized Least Mean Squares (NLMS) algorithm is a variation of the LMS algo-

rithm that incorporates a running normalizer based on the input power. This normalization

step helps improve the convergence and stability of the adaptive filter. The NLMS update

is

vk[τ ] = γvk[τ − 1] + (1− γ)∥uk[τ ]∥2 (2.21)

∆k[τ ] = −λ
∇k[τ ]

vk[τ ]
, (2.22)

where the division is element-wise, λ is the step-size and γ is a forgetting factor. The

NLMS algorithm combines the benefits of the LMS algorithm with the normalization of

the adaptation step based on the input power, resulting in improved performance and less

sensitivity to the specific value of λ. There is an alternative interpretation that corresponds

to running LMS with a constraint on the norm of the update [5].

2.2.3 Root Mean Squared Propagation

The Root Mean Square Propagation (RMSProp) optimizer [127] modifies NLMS by re-

placing vk[τ ] with a gradient-based per-element running normalizer, ν[τ ] using forget factor
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γ as,

νk[τ ] = γνk[τ − 1] + (1− γ)∥∇k[τ ]∥2 (2.23)

∆k[τ ] = −λ
∇k[τ ]√
νk[τ ]

, (2.24)

The value, 1/
√
νk[τ ] supplements the fixed step-size λ and acts as an adaptive learning rate,

λ/
√
νk[τ ]. RMSProp has similar properties to NLMS for linear filters.

2.2.4 Recursive Least Squares

The aim of the Recursive Least Squares (RLS) algorithm is to exactly solve the AF loss,

most commonly the WSE error. This is accomplished by expanding the weighted least

squares error into a function of the weighted empirical signal covariance matrix,

Φk[τ ] =
∑
τ

γN−τuk[τ ]uk[τ ]
H, (2.25)

where the summation time-indices are application dependent (e.g. causal vs. non-causal

implementations), and the (weighted) empirical cross-correlation vector

zk[τ ] =
∑
τ

γN−τuk[τ ]dk[τ ]
H, (2.26)

is used to compute the exact solution to the resulting normal equations,

Φk[τ ]wk[τ ] = zk[τ ]. (2.27)

Running estimates of Φk[τ ] and zk[τ ] are also commonly used. However, instead of per-

forming repeated matrix inversion, the matrix inversion lemma is used. Thus, RLS can

be implemented using a time-varying precision (inverse covariance) matrix Pk[τ ] and the

Kalman-gain κk[τ ],

κk[τ ] =
Pk[τ − 1]uk[τ ]

γ + uk[τ ]HPk[τ − 1]uk[τ ]
(2.28)

Pk[τ ] =
Pk[τ − 1]− κk[τ ]uk[τ ]

HPk[τ − 1]

γ
(2.29)

∆k[τ ] = κk[τ ](dkm[τ ]− ykm[τ ])
∗, (2.30)
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where γ is a forgetting factor, dkm[τ ] and ykm[τ ] are the desired and estimated signal at

frequency k and reference microphone m, and the initialization of Pk[τ ] is critical and com-

monly based on the input signal-to-noise ratio.

Unlike LMS, NLMS, and RMSProp, RLS leverages higher-order or inter-parameter infor-

mation. In the case of multi-block and/or multi-channel filters, there are multiple ways to

formulate RLS, some of which differ from time-domain RLS. Common approaches include

diagonalized RLS (D-RLS) and block diagonalized RLS (BD-RLS) as well as QR decompo-

sition techniques [2, 128, 129] and differ in what terms of the covariance (precision) matrix

are modeled. D-RLS makes an uncorrelated assumption and optimizes each k,m, b filter tap

separately, forming K diagonal BM×BM precision matrices. BD-RLS couples across frames

and channels by forming K separate BM × BM precision matrices. In the case of single

block/channel filters, D-RLS, BD-RLS, and NLMS can be reduced to the same algorithm

with different parameterizations. Intuitively, the denominator in NLMS corresponds to ap-

plying a 1×1 matrix inverse, which is like a fully diagonal RLS (assuming zero-mean). This

inversion step is actually the crux of RLS, and can make RLS implementations particularly

prone to numerical issues.

2.2.5 Kalman Filtering

The Kalman Filter (KF) is a recursive algorithm that turns these optimization tasks into

state estimation problems. Intuitively, algorithms like LMS leave information on the table

since they perform an update at time τ but wait to use that update until time τ + 1. The

KF attempts to leverage this extra information at τ by updating the filter and then seeing

how well that update worked. The KF also comes with a complete noise and variance model,

which makes it much more sophisticated and enables many other beautiful connections to

both RLS and LMS [130].

At its core, the KF consists of two steps: the prediction step and the update step. The

prediction step uses the system model to predict the current state (filter), and the update step

incorporates the measurement to refine the state estimate. Here, we use m|n to represent

the estimate at time m using information up to time n. Denote the per-frequency state

vector as xk[τ ], the system model as Fk[τ ], the measurement matrix as Hk[τ ], the system

noise as nk[τ ], the process covariance matrix as Qk[τ ], and the measurement noise as vk[τ ].
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The prediction step predicts the state and its covariance as follows:

x̂k[τ |τ − 1] = Fk[τ |τ − 1]x̂k[τ − 1|τ − 1] + nk[τ ] (2.31)

Rk[τ |τ − 1] = Fk[τ |τ − 1]Rk[τ − 1|τ − 1]Fk[τ |τ − 1]H +Qk[τ ] (2.32)

In these equations, x̂k[τ |τ − 1] is the predicted state estimate given measurements up to

time τ − 1, x̂k[τ − 1|τ − 1] is the previous state estimate, Rk[τ |τ − 1] is the predicted state

covariance, and Rk[τ − 1|τ − 1] is the previous state covariance.

Kk[τ ] = Rk[τ |τ − 1]Hk[τ ]
H
(
Hk[τ ]Rk[τ |τ − 1]Hk[τ ]

H +Nk[τ ]
)−1

(2.33)

x̂k[τ |τ ] = x̂k[τ |τ − 1] +Kk[τ ](dk[τ ]−Hk[τ ]x̂k[τ |τ − 1]) (2.34)

Rk[τ |τ ] = (I−Kk[τ ]Hk[τ ])Rk[τ |τ − 1] (2.35)

In these equations, Kk[τ ] is the Kalman gain, Nk[τ ] is the measurement noise covariance,

dk[τ ] is the measurement vector, x̂k[τ |τ ] is the updated state estimate, and Rk[τ |τ ] is the

updated state covariance. This formulation is incredibly generic and requires that the user

select all appropriate parameters. The Kalman filter has numerous applications, variations,

and task-specific implementations. Similar to RLS, there can also be numerical and higher-

order variations (D-KF, BD-KF, etc).

For example, the KF is a popular choice for echo cancellation where a diagonal variant (D-

KF) [11] with particular system and measurement settings is quite popular and a common

comparison point [87]. It is also possible to run LMS/NLMS/RMSProp/RLS with an update

step, or the KF without an update step. In order to decouple these characteristics, we will

often match all algorithms in terms of whether they perform an update step or not. When

applicable, we will describe how many predict (P) or update (U) steps an algorithm takes

via a suffix (e.g. D-KF-PU).

2.2.6 Adaptation Overview

When comparing conventional optimizers, their performance can generally be ranked as

LMS, NLMS/RMSProp, RLS, and KF, with computational complexity following the reverse

order. We display the big-O of these setups and their approximate complexity costs in Ta-

ble 3.2. However, these complexity costs and inference expenses are not the end of the story.

Conventional algorithms often exhibit sensitivity to tuning, nonstationarities, nonlinearities,

and other factors that necessitate careful engineering to address issues and ensure stability.

In the case of large systems, the computational cost of the KF can become prohibitive,
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requiring simplifications. For multi-block BD-RLS filters, poor partition conditioning can

result in degraded performance and potential stability problems compared to alternatives

such as NLMS [131].

In our study, we base our comparison on these five fundamental optimizers. For each

task, we conduct an exhaustive grid-search tuning of hyperparameters, using held-out vali-

dation sets. This tuning process involves adjusting parameters, as demonstrated in Table 3.1

under the update rules column. When applicable, we also employ task-specific optimizers

to comprehensively explore the performance of different algorithms and gain insights into

state-of-the-art approaches.

For the AEC task, we included comparisons with the open-source double-talk robust

Speex algorithm [12], a weighted-RLS (wRLS) algorithm [132], WebRTC-AEC3 [133], and

the Neural-Kalman-filter [134]. It is worth noting that the Speex and wRLS algorithms were

used as linear adaptive filters (with non-linear post-processors) by the first-place [53] and

second-place [132] winners, respectively, in the ICASSP 2021 Acoustic Echo Cancellation

Challenge [135]. The Neural-Kalman-filter (NKF) is a DNN based module and the best

performing AEC at the time of this work. Since our work primarily focuses on linear adaptive

filters, which can be combined with non-linear post-processors, we believe that D-KF, wRLS,

Speex, WebRTC-AEC3, and NKF serve as strong baseline methods. In cases where AEC

is combined with downstream tasks, we will conduct tuning across the specific task and

provide pure deep learning baselines where necessary. Regarding equalization, we adhere

to our five fundamental optimizers. On the other hand, for dereverberation, we compared

our approach against NARA-WPE [30], which is a highly effective normalized BD-RLS-

based optimizer [27, 30] and comparable to the original NTT implementation [136]. For

beamforming, our comparisons encompass fundamental optimizers used in a generalized

sidelobe canceller setup, the minimum-variance distortionless response beamformer, and

mask-based beamformers [63, 64].

2.2.7 Conclusion

Adaptive filtering and optimization techniques play a crucial role in signal processing

applications, allowing us to improve signal quality, and extract valuable information from

noisy or distorted signals. These techniques are particularly useful when we need to estimate

an unknown system or remove unwanted components from a signal. In the context of

adaptive filtering, the goal is to iteratively update the filter coefficients of methods like OLS

or OLA, which are commonly used, based on different loss functions such as ISE, MSE, or

WSE. This updating process is carried out using optimization rules provided by algorithms
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like LMS, RMSProp, NLMS, RLS, and KF. These optimizers serve as the engines driving

the adaptation of the filter coefficients.

Each of these optimization algorithms has its own strengths and weaknesses in terms of

performance and computational complexity. For example, LMS and NLMS are relatively

simple and efficient stochastic gradient descent methods that can provide satisfactory results

in many cases. RLS, on the other hand, aims to solve the weighted least squares error

exactly, making it suitable for scenarios where high precision is required. The KF leverages

a state-space model and combines a priori knowledge with measurements to estimate the

filter coefficients, making it well-suited for systems with known dynamics.

It’s important to consider the specific requirements of each application and the charac-

teristics of the input signals when selecting an appropriate optimization algorithm. Factors

such as convergence speed, stability, robustness to nonstationarities and nonlinearities, and

computational complexity should be taken into account. By leveraging the power of adaptive

filtering and optimization techniques, we can enhance the performance of signal processing

systems and enable a wide range of applications in fields such as audio processing, commu-

nications, control systems, and more.
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Chapter 3: Meta-Adaptive Filtering

In this section, we describe the core conceptual contribution of this thesis: how to formu-

late the development of AF systems as a meta-learning problem. The control rules for all sub-

sequently examined adaptive filter tasks are learned via some form of supervision (un-/self-

/fully- supervised) and data. We call this general approach Meta-AF. With this approach,

it is possible to automatically develop processing pipelines that surpass expert-designed sys-

tems for a variety of tasks with no manual intervention that can scale across available data

and compute.

Meta-learning, in general, is a subfield of machine learning that aims to develop algorithms

and models capable of learning to learn. The core idea is to design systems that can acquire

new knowledge and adapt their behavior based on related prior experiences, allowing them

to learn more efficiently and effectively in new tasks or domains. The intuitive connection

with adaptive filtering is that AFs solve a streaming learning task, such as fitting a trans-

fer function, and that knowledge of other related learning tasks, like fitting other transfer

functions, can be leveraged to produce more effective algorithms. Here, we focus on meta-

learning across instances where the filtering task is the same (e.g. AEC) but the optimal

filtering parameters are different (e.g. AEC on different devices).

The two fundamental concepts in meta-learning are the notions of an optimizee, which

refers to the entity being optimized or learned, and the optimizer, which refers to the entity

controlling the optimizee. In the context of adaptive filter theory, the optimizee is the

composition of AF loss L(· · · ) and associated filtering function, hθ[τ ](·),

L(hθ[τ ](·), · · · ) (3.1)

The loss L is typically minimized by controlling the time-varying parameters of the filter,

θ[τ ], using an optimization scheme. By leveraging meta-learning techniques, the optimizer

can learn to adapt optimizee parameters θ[τ ] in a way that improves performance across a

range of input signals and environments. Ultimately, this leads to improved filter convergence

properties, higher output quality, and less manual tuning.

3.1 FORMULATION AS META-LEARNING

We approach the design of AF algorithms as a meta-learning problem, where we train

neural networks to control AFs using data, resulting in meta-learned adaptive filters. This

is a departure from conventional AFs that are manually designed by human engineers. To
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accomplish this, we introduce a learned optimizer, denoted as gϕ(·), which is a neural network

with one or more input signals and parameterized by weights ϕ. Its purpose is to optimize an

AF loss, referred to as the optimizee, denoted as L(hθ[τ ](·), · · · ), comprising a loss function

L and an adaptive filter hθ. Typically, the optimizer will use an additive update scheme:

θ[τ + 1] = θ[τ ] + gϕ(·), (3.2)

where θ[τ ] represents the parameters of the filtering function hθ[τ ] at time τ . The inner or

AF learning objective is to find optimal filter parameters, θ[τ ] whereas the outer or meta-

learning goal is to find optimal AF optimizer parameters, ϕ. We find optimal optimizer

parameters with respect to some filter, filter loss, and a given dataset D. The optimizer is

then optimal, or custom learned, for that particular combination of filter, loss, and dataset.

This two-level objective is formulated as a meta-objective,

ϕ̂ = argmin
ϕ

ED[ LM( gϕ,L(hθ(·), · · · ) ) ], (3.3)

where LM is a functional defining the meta-loss (or optimizer loss). It depends on gϕ, the

AF loss L with one or more inputs, and the filtering function hθ[τ ] that itself has one or more

inputs and parameters θ[τ ]. In essence, solving (3.3) enables us to learn a network gϕ(·) that
can effectively optimize the AF loss L through repeated additive updates. Once learned,

this optimizer can be deployed and used to optimize filtering operations on signals similar to

those encountered in D. This general formulation lets us tackle AF design with a single tool,

instead of needing to develop new approaches for each new AF task. What is particularly

useful is that the training procedure can be determined automatically by specifying the filter

and dataset, thereby removing the need for any manual intervention beyond picking the filter

structure.

3.2 FILTERING AS THE OPTIMIZEE

The optimizee, or the composition of the AF loss L and filter hθ[τ ] is optimized via (3.2)

and is typically a function of the current filter parameters, filter output, and some reference

signal. Let’s take time-domain system identification with ISE as an example. Call the vector

which holds a buffer of the previous system inputs u[τ ], the scalar system output d[τ ], and

the filter scalar output,

y[τ ] = hθ[τ ](u[τ ]) = w[τ ]⊤u[τ ], (3.4)
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where θ[τ ] = w[τ ]. The loss,

L(hθ[τ ](u[τ ]), d[τ ]) = ∥d[τ ]− hθ[τ ](u[τ ])∥2 = ∥d[τ ]− y[τ ]∥2 = ∥e[τ ]∥2, (3.5)

is now a function of all those quantities. In general, the filter can be any reasonable differen-

tiable filtering operator such as a time-domain FIR filter, lattice FIR filter, non-linear filter,

FD filters, multi-delayed block FD filter [4], etc. Similarly, the AF loss can be any reasonable

differentiable loss such as the ISE, MSE, WSE, a regularized loss, negative log-likelihood,

mutual information, etc.

For our work, we focus on single- and multi-channel multi-frame linear block FDAFs hθ

applied via OLA or OLA with parameters θ[τ ] = {w[τ ] ∈ CK×B×M} with B buffered frames

and M channels per frequency k ∈ K. In cases where the AF produces multiple outputs,

like multi-speaker and multi-microphone echo cancellation we can run multiple instances of

hθ in parallel.

We will typically set the AF loss L[τ ] to be the ISE via (2.4) with gradient computed with

respect to the per-frequency weight wk[τ ]
H as:

∇k[τ ] = uk[τ ](ykm[τ ]− dkm[τ ])
∗. (3.6)

The AF loss is an input feature for the optimizer, with the true objective being the meta-

objective. Interestingly, improved or more relevant AF losses enhance performance on the

meta-objective, as the optimizer leverages them to address the meta-optimization problem,

ultimately allowing for more efficient solutions to the global optimization challenge. The key

difference is that the AF loss can be computed at inference time since it does not depend on

oracle or non-causal information, whereas the meta-loss can only be computed at training

time.

3.3 ADAPTATION AS THE OPTIMIZER

Our optimizer gϕ is inspired by conventional AF optimizers, as described in the back-

ground, section 2.2, but updated to have a neural network form. Specifically, our focus is

on developing a generalized, stochastic variant of conventional optimizers that can process

parameters independently or coupled across frequency, channels, and buffer frame dimen-

sions of an arbitrary optimizee. Intuitively, coupling more parameters increases the modeling

demands on gϕ. However, this also enables amortization, as each instance of the optimizer

can now control multiple optimization problems (parameters) simultaneously. To achieve
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this, we share the weights ϕ across all simultaneous optimization problems, where for each

simultaneous problem we maintain a separate optimizer state, ψ[τ ], and construct separate

optimizer inputs, ξ[τ ]. A key advantage of this framing is that learned optimizers can scale

at both training and test time to optimizees with larger or smaller numbers of parameters

as long as the optimizee architecture is the same.

To illustrate this concept, we can start with the simplest yet most flexible meta-learned

optimizer, which operates on each parameter of the optimizee separately. A reasonable set

of inputs to the optimizer are the vector:

ξkbm[τ ] = [∇kbm[τ ],ukbm[τ ],dkbm[τ ],ykbm[τ ], ekbm[τ ]] ∈ C5, (3.7)

where ∇kbm[τ ] represents the gradient of the optimizee with respect to θkbm, and ekbm[τ ] =

dkbm[τ ] − ykbm[τ ]. Such an optimizer produces two outputs: the update scalar-valued

∆kbm[τ ] ∈ C and the internal state ψkbm[τ + 1] ∈ H, where H is the state size. In the

case of frequency-independent processing, we have:

(∆kbm[τ ],ψkbm[τ + 1]) = gϕ(ξkbm[τ ],ψkbm[τ ]) (3.8)

θkbm[τ + 1] = θkbm[τ ] +∆kbm[τ ]. (3.9)

Although fully independent processing is conceptually simple, it is rarely the most effective

approach. The optimizer is effectively blind to how other parameters are being updated,

and while the updates may implicitly incorporate some of this knowledge due to training, it

cannot explicitly access it. This leads to drawbacks in terms of complexity and performance.

Fortunately, it is easy to sidestep these issues. A highly effective approach is the frame-

channel coupled optimization setup. In this scheme, each frequency is treated as a separate

problem, but all values at each frequency, such as delayed frames and channels, are processed

and updated jointly. This requires minimal modification of the previous update formulas,

using the following inputs:

ξk[τ ] = cat(∇k[τ ],uk[τ ],dk[τ ],yk[τ ], ek[τ ]) ∈ C5BM, (3.10)

and vector valued outputs ∆kbm[τ ] ∈ CBM, and ψkbm[τ + 1] ∈ H. Notice that the number

of optimizer calls has decreased by a factor of BM whereas the inputs and outputs of each
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Optimizer Inputs State Params ∆k[τ ]
LMS ∇k[τ ] ∅ λ (2.20)
NLMS ∇k[τ ],uk[τ ] vk[τ ] λ, γ (2.22)

RMSProp ∇k[τ ] νk[τ ] λ, γ (2.24)
BD-RLS uk[τ ],dk[τ ],yk[τ ] Pk[τ ] γ (2.30)

KF uk[τ ],dk[τ ],yk,wk[τ ] Rk[τ ],xk[τ ]
2 (2.32), (2.35)

Meta-AF ξk[τ ] ψk[τ ] ϕ (3.2)

Table 3.1: Comparison of baseline optimizers in terms of inputs, state, and tunable param-
eters. Leveraging different input quantities leads to different kinds of state, which dictates
memory requirements, and different parameters, which dictates tuning workload. This table
compares these quantities.2 The KF has a whole host of potential parameterizations due to
its flexibility. These range from learning observation and system matrices to hand-picking
them ahead of time. We will describe the choices we make depending on the task.

optimizer call have increased by a factor of BM when using the following update equations:

(∆k[τ ],ψk[τ + 1]) = gϕ(ξk[τ ],ψk[τ ]) (3.11)

θk[τ + 1] = θk[τ ] +∆k[τ ]. (3.12)

These modifications result in a significant net complexity reduction and improve perfor-

mance. We explore more sophisticated coupling schemes in section 4.3.

The actual architecture of the optimizer has a significant impact on performance. Our

most standard setup uses a small DNN composed of a linear layer, nonlinearity, and two

Gated Recurrent Unit (GRU) layers with hidden size H = 32, followed by two additional

linear layers with nonlinearities, where all layers are complex-valued. We will discuss other

options for the optimizer in later sections since its configuration as a neural module gives

us lots of design flexibility. For a comparison of optimizer inputs, state, parameters, and

gradients, please see Table 3.1. In Table 3.1 we display one possible variation of a Meta-

AF model, which makes several modeling assumptions that we describe later. The feature

requirements shown here are meant to give a general sense to a reader.

An interesting feature of Meta-AF models is that they are highly configurable. If a prac-

titioner identifies a signal or feature that may be useful for the optimization procedure, they

can simply collate that feature to those already in ψk[τ ]. An example of this could include

anything from accelerometer information for head-mounted devices to nonlinear reference

signals in the case of AEC. For a general sense of optimizer complexity see Table 3.2. Where

we again show the configuration of a particular model.

A point of interest here is that the computational complexity of Meta-AF is highly flex-
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Optimizer Big-O ≈ CMACS
LMS O(KMB) KMB
NLMS O(KMB) 5KMB

RMSProp O(KMB) 6KMB
BD-RLS O(K(MB)2) K(4(MB)2 + 5MB)

KF O(K(MB)2) 1

Meta-AF O(K(H2 +MBH)) K(12H2 + (21 + 10MB)H)

Table 3.2: Comparison of baseline optimizers in terms of asymptotic and practical complex-
ity. All optimizers are configured to operate independently per frequency and are thus linear
in complexity with respect to K. However, they have different modeling assumptions across
microphones and frames (K, B). The diagonal nature of LMS/NLMS/RMSProp leads to
good complexity scaling however, they can not leverage the same relationships that RLS/
KF can.1 The compute of a KF varies wildly depending on the task and configuration. It
typically costs at least as much as two RLS updates.

ible. In a later section, we will discuss how to drastically reduce and increase the compute

requirements. As expected, models that require more compute are typically able to achieve

higher peak performance.

In summary, the Meta-AF design differs from LMS-, NLMS-, and RMSProp-like optimiz-

ers, which either have no state (e.g., LMS) or minimal state dynamics (e.g., NLMS, RM-

SProp). Furthermore, we also distinguish our approach from other learned optimizers [101]

by incorporating training and architecture insights that enable better performance on stream-

ing problems. We discuss these advances in a later section and also ablate their performance

characteristics. The theoretical analysis and exploration of these neural network-based opti-

mizers in adaptive filter theory hold great potential for advancing our understanding of op-

timization in signal processing and machine learning domains [137]. For example questions

about how to learn optimizers with guarantees, how to relate learned optimizers to conven-

tional ones, and how to quantify performance gains are all active areas of research [138, 139].

3.4 META-LEARNING AN OPTIMIZER

To learn an optimizer, we need to define the meta-objective and establish a training

procedure. We will explore two general classes of meta losses, denoted as LM(·), which allow

us to quantify the performance of optimizer parameters ϕ. Then, we will discuss a general

training procedure to learn the optimizer parameters, ϕ.
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3.4.1 Frame Independent Losses

First, we introduce the frame independent loss,

LM = ln
1

L

τ+L∑
τ

L(· · · ), (3.13)

which sums the AF loss across time. This loss computes the average loss across time by

summing the AF loss over a time horizon of L frames. The logarithm is applied to reduce

the dynamic range, which has been found to empirically improve learning. The frame-

independent loss assumes that optimizer performance can be decomposed into a series of

frame-wise losses. The idea of accumulating independent batch-wise losses is commonly

employed in deep-learning-based meta-learning[101]. For example, in the case of a frequency-

domain ISE loss,

LM = ln
1

L

τ+L∑
τ

E[||dm[τ ]− ym[τ ]||2], (3.14)

where dm[τ ] and ym[τ ] are the desired and estimated FD signal vectors of the reference

channel m (e.g. m = 0). A natural class of frame-independent losses are computed directly

on the filter parameters since by definition these can be decomposed across updates. Frame

independent losses align the AF loss with the meta-loss, making them straightforward to

implement and valuable for debugging and development purposes.

3.4.2 Frame Accumulated Losses

Not all useful loss metrics, however, can be decomposed in a per-frame fashion. We,

therefore, propose a more general class of losses called frame-accumulated losses, which

model the entire filtering procedure and can capture different information than a per-frame

loss. Generically,

LM = lnL(ȳ, · · · ) (3.15)

where this loss is computed by accumulating all filtered outputs across some time span.

Frame-accumulated losses can leverage different signals or information compared to frame-

independent losses. Though, it is possible to configure the frame-accumulated loss to be

similar to a frame-independent loss. For instance, instead of using frame-wise ISE, we can
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use the MSE,

LM = lnE[||d̄m[τ ]− ȳm[τ ]||2] (3.16)

ȳm[τ ] = cat(y
m
[τ ],y

m
[τ + 1], · · · ,y

m
[τ + L− 1]), (3.17)

d̄m[τ ] = cat(dm[τ ],dm[τ + 1], · · · ,dm[τ + L− 1]) (3.18)

where dm[τ ] and y
m
[τ ] are the time-domain desired and estimated responses of reference

channel m and d̄m[τ ] ∈ RRL and ȳm[τ ] ∈ RRL.

To compute this loss for a given optimizer gϕ, we run the update rule in Equation 3.2 for a

time horizon of L frames, concatenate the sequence of time-domain outputs and target signals

to form longer signals, compute the time-domain MSE loss, and finally take the logarithm.

This setup resembles the frame independent ISE, but takes into account additional filter

dynamics, and frame borders, and typically results in different optimizer dynamics.

While both styles of losses use the same time horizon, the frame accumulated loss allows

us to model more general objectives, since the loss does not need to decompose across

frames. For example, it can model boundaries between adjacent updates and implicitly

learn updates that are STFT consistent [140], and complex downstream processing like off-

the-shelf speech classifiers [108]. To the best of our knowledge, this frame accumulated loss

is novel for adaptive filters and can be easily extended to other types of information that

cannot be factored across frames. In section 5, we explore more sophisticated loss functions,

including large neural network-based loss functions, which do not admit a simple frame-wise

decomposition. Then, in section 6.1.4, we compare performance on a system identification

task in Fig. 6.3.

3.4.3 Self-Supervised and Fully Supervised Losses

Both frame and accumulated losses can be configured to leverage different information at

training times. We conceptually decompose the kind of information leveraged into mixture

information, which is available in the wild, and oracle information, which requires some

sort of collection or preparation procedure. For example, a raw mixture recorded at a

microphone is mixture information whereas the isolated speech content from that mixture

is oracle information.

We call losses that only rely on mixture information, whether frame-wise or accumulated,

self-supervised. This emphasizes the fact that they are only supervised by their own structure

and natural filter characteristics. Such losses are very versatile since they can be trained on

real-world data and customized to any kind of environment with minimal data cleaning or
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collection efforts. On the other hand, we call losses which rely on oracle information, fully-

supervised. These kinds of losses can often outperform their self-supervised counterparts.

This improved performance comes at zero additional inference complexity since the loss

function does not impact inference time complexity. However, they rely on a costly and time-

consuming data collection or cleaning procedure, since they require external information. In

noiseless or particularly friendly environments, self and fully supervised losses may be the

same.

In the later sections of this chapter, we examine one such scenario, where the noiseless

nature of the task leads the self-supervised loss to effectively be fully-supervised. We explore

these concepts in more detail in section 5.

3.4.4 Meta Training Procedure

To train the optimizer gϕ from data, we employ standard deep learning tools, such as JAX

and Haiku [141, 142], which provide automatic differentiation for training and inference. We

use truncated backpropagation through time (TBPTT) [143] with the Adam optimizer [144],

referred to as our meta optimizer, to solve the meta-objective in equation 3.3.

In Algorithm 3.1, we present a specific case of our training algorithm, which involves a

frame-channel coupled optimizer, a frame accumulated loss, and a batch size of one. In

this algorithm, Stft is an OLA or OLS processor, Grad returns the gradient of the first

argument with respect to the second, Sample randomly samples signals from a dataset D,
and NextL grabs the next L time buffers from a longer signal. In practice, we use batching.

The training algorithm in Algorithm 3.1 iterates over batches of signals. In each batch,

a random sample of signals dm,ym
is drawn from the dataset D. The hidden state ψ is

initialized to zeros, and the next L time buffers are extracted from the input signals using

NextL. The optimizer gϕ is then applied to optimize the filtered output ŷm and update

the hidden state ψ. The meta-objective LM is evaluated based on the filtered output and

the target output, and the gradient of the meta-objective with respect to the optimizer

parameters ϕ is computed using automatic differentiation. Finally, the optimizer parameters

are updated using the meta-optimizer. The process is repeated until convergence, and the

learned optimizer parameters ϕ are returned as the output of the algorithm.

In this training algorithm, we have chosen specific setups for the optimizee, optimizer, and

meta-objective to provide a comprehensive example. However, it is important to note that

in later chapters, we will discuss the flexibility and possible variations in these components.

The general procedure outlined in this algorithm remains the same for all future sections

of this paper, regardless of the specific filtering task selected. In section 6.1.4, we compare
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Algorithm 3.1 Meta-training algorithm for an STFT-based optimizee, frame-channel cou-
pled optimizer, and a frame-accumulated meta-objective.

function Forward(gϕ,ψ, hθ,U,dm)
for τ ← 0 to L do ▷ Unroll

U[τ ],d[τ ] ← Stft(U[τ ],dm[τ ]) ▷ Forward STFT
ym[τ ] ← hθ(U[τ ]) ▷ Save filter output
y
m
[τ ] ← Stft−1(ym[τ ]) ▷ Inverse STFT

L ← ||dm[τ ]− ym[τ ]||2 ▷ AF frame loss
∇[τ ] ← Grad(L,θ) ▷ Filter gradient
for k← 0 to K do ▷ Apply update per freq
ξk[τ ] ← [∇k[τ ],uk[τ ],dk[τ ],yk[τ ], ek[τ ]]
(∆k[τ ],ψk[τ + 1]) ← gϕ(ξk[τ ],ψk[τ ])
θk[τ + 1] ← θk[τ ] +∆k[τ ]

ȳ ← Cat(y[τ ], ∀τ) ▷ Concatenate accumulated frames
return ȳ,ψ, hθ

function Train(D)
ϕ ← [145] init
while ϕ not Converged do ▷ Train loop

U,dm ← Sample(D) ▷ Sample signals
θ,ψ ← 0,0 ▷ Init filter and optimizer state
for n← 0 to end do ▷ Loop across long signal

Ū, d̄m ← NextL(U,dm) ▷ Get next L frames
ȳ,ψ, hθ ← Forward(gϕ,ψ, hθ, Ū, d̄m)
LM ← via (3.15) ▷ Meta loss
∇ ← Grad(LM , ϕ) ▷ Optimizer gradient
ϕ[n+ 1] ← MetaOpt(ϕ[n],∇) ▷ Update opt

return ϕ̂ ▷ Return best ϕ

performance on a system identification task of various training settings and display results

in Fig. 6.3.

Improving meta-learning training methods is an active area of research, with significant

work being done on better initialization, training techniques, data considerations, and var-

ious other aspects of learned optimizer development. This research is being conducted by

both the machine learning [107] and signal processing [89, 90] communities. During the de-

velopment of this training algorithm, we observed an interesting interplay between these two

fields. One notable parallel is the treatment of values with a temporal component. Many

machine learning works focus on batch-wise processing, where independence across batches

is a reasonable assumption. However, in the context of adaptive filtering, this assumption

is inadequate. In fact, the signal from the last frame can serve as a good prediction for the

signal in the current frame!
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3.5 DEMONSTRATION

In this section, we train a Meta-AF and demonstrate its behavior by generating a synthetic

system identification task. We then manipulate several parameters to observe the effects on

Meta-AF performance. For a more in-depth analysis of real-world tasks, see Chapter 6.

3.5.1 Demonstration Task Setup

To begin, we create a dataset consisting of input-output pairs. Each pair is generated as

follows: we sample new random signals, resulting in 2048 pairs with a length of N = 1024

and a filter size of R = 32. Specifically,

u = N (0N , IN) (3.19)

w = N (0R, IR)/R (3.20)

d = u ∗w. (3.21)

We will use a standard full block OLS filter with a block size of K = 64 and a hop of R = 32.

We train the Meta-AF model using the MSE and equip it with an input linear layer, a single

GRU layer, an output linear layer, and a state size of 16. We perform validation on a separate

dataset of signals with 128 unseen input/output pairs. For training, we use Adam with a

learning rate of 10−4, the frame-independent ISE meta-loss Lm, and set the unroll to L in our

training algorithm 3.1. The batch size is set to 16 meaning our training dataset is composed

of 128 unique batches which we randomly sample from for 64 epochs. This procedure takes

a couple of minutes using just one consumer-grade GPU. We reuse this same procedure in

all subsequent “Demonstration” sections.

3.5.2 Training Demonstration

Using the setup from section 3.5.1, we observe the training and validation plots depicted

in the top portion of Fig. 3.1. It is evident that the model effectively minimizes the training

loss (top left plot) and does not merely memorize the signals from the training set, as shown

by its improving performance on the held-out validation (top right plot) set. Notably, the

training loss is computed across L updates, while the validation loss is computed across

the full signal span of 32 updates. This is a positive outcome, indicating that the model

generalizes well to signals longer than those used for training. Furthermore, since the model’s

performance did not plateau, it suggests that further training could lead to even better
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Figure 3.1: Here, we demo Meta-AF on a toy noiseless system identification task. The
top two plots track training and validation performance and the bottom plot shows filter
parameters recovered on a particular sample in the test set.

results. In summary, our model has learned an online optimization rule tailored to this

specific task. To gain insights into the recovered filter parameters of the Meta-AF, we

examine the bottom portion of Fig. 3.1, which displays both the recovered time-domain

system parameters (ŵ) and the true system parameters (w). Encouragingly, we observe that

the final recovered filter parameters closely resemble the true parameters. While expected,

this is promising since we trained for the systems to have matched outputs and did not

explicitly ask for the systems to match.

3.5.3 Meta-Loss Demonstration

Given promising results from our simplest setup, we now compare the accumulated loss

with the independent loss. Here, we re-run the same experiment but simply switch to a

frame-accumulated time-domain MSE loss. Our convergence results, which track system
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Figure 3.2: Here, we demo Meta-AF on a toy noiseless system identification task and compare
accumulated to independent losses. We find the accumulated loss leads to better convergence
and peak performance as well as more accurately recovered systems.

distance from the oracle solution are shown via the dB mean squared error of the system

distance. We find that accumulated systems typically converge faster and to much better

solutions as shown in the top section Fig. 3.2 via a convergence plot and the bottom section

of Fig. 3.2 via recovered systems.

3.5.4 Optimizer Scaling Demonstration

Another significant aspect of Meta-AF systems is their scalability. If we desire these

models to handle a wide range of signal scenarios or learn more implicit rules from the data,
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Figure 3.3: Here, we demo training Meta-AF with more parameters and show that this is a
simple way to improve performance without modifying the filtering setup.

we can achieve that by simply increasing the size of the optimizer deep neural network,

gϕ. To illustrate this effect, we present Figure 3.3, where we double the hidden state size

from H = 16 to H = 32, and then to H = 32 with two layers effectively quadrupling

and then again doubling model size from ≈ 2000 parameters to ≈ 8000 and then a final

≈ 16000 parameters. Training these larger models also only takes a couple of minutes on the

GPU. Remarkably, this scaled-up model exhibits improved performance without requiring

any modifications to the actual filter.

3.5.5 Optimizer Generalization Demonstration

One notable strength of Meta-AF systems is their ability to acquire and learn favorable

traits that are implicitly defined by the data. However, this also poses a challenge when

it comes to enforcing known and desired traits. For instance, achieving a balance between

convergence speed and peak performance can be problematic. To explore this further, we

can apply the same training setup as described above but use longer signals for testing.
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Figure 3.4: Here, we demo training Meta-AF on data that only differs in terms of signal
length. This leads to different convergence behaviors. The black dashed line represents the
longest signal the N = 1024 model saw in training, and the black solid line represents the
longest signal the N = 4096 model saw in training.

To investigate the effect of longer training signals on the Meta-AF model, we conduct an

experiment illustrated in Fig. 3.4. In this experiment, we use the same training scheme as

described in 3.5.1, but instead of setting the training signal lengths to N = 1024, we increase

them to N = 4096. We also cut the number of training examples in 1
4
so the amount of

training data is the same. In the plot, we depict the dB mean squared error of the system

distance. This modified training scheme aims to elicit a model with a “smaller” learning rate,

as the longer data lengths prioritize peak performance over convergence speed. However,

the results are more complex than that. Training a model with longer signals does result

in slower convergence with higher peak values, but also results in better generalization to

longer signals. Possibly the most interesting trend in this plot is that the larger H = 32

model achieves better performance on signals longer than those encountered at training,

depicting an often observed phenomenon that larger DNN models tend to generalize better.

All accumulated loss models outperform the independent loss models, even the independent
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loss model was trained on the full-length signals. Training Meta-AF on longer signals has

multiple dependent effects that lead to interesting behavior.

3.5.6 Demonstration Conclusion

In summary, Meta-AF models have fascinating scaling and training properties and demand

a new way to reason about and approach AF problems. We discuss various perspectives in

the next section. For a non-toy task and detailed analysis of per-task performance please

see Chapter 6.

3.6 OTHER PERSPECTIVES

There are various other perspectives on what Meta-Learned Adaptive Filtering means and

what exactly the learned optimizer is doing. We touch on some of them below in an attempt

to highlight future research directions and work that we haven’t been able to formally write

up.

3.6.1 Learning a Loss

Meta-AF is formulated as the process of learning the parameters of a function gϕ, which

is used to update a filter hθ through the additive update,

θk[τ + 1] = θk[τ ] +∆k[τ ]. (3.22)

This formulation bears resemblance to an LMS-like setup,

θk[τ + 1] = θk[τ ] + λ∇Lk[τ ], (3.23)

where the gradient of the loss is scaled and then additively mixed with previous filter pa-

rameters. Thus, one can argue that Meta-AF can be viewed as learning the gradient of some

implicit loss function for LMS where

∆k[τ ] = λ∇Lk. (3.24)

It could be intriguing to explore the possibility of recovering the implicit L from the integral

of gθ and further investigate this interpretation. Exploring and understanding the recovered
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L could provide valuable theoretical and practical insights for enhancing the performance

and interpretability of Meta-AF algorithms.

3.6.2 Safeguarding the Outputs of the Optimizer

Ensuring the convergence of a learned optimizer, gϕ, can be challenging due to the com-

plexity and non-linear nature of the optimization problem. However, we could employ a

safeguarding approach [139] that compares the update produced by the learned optimizer

with a known and reliable optimizer, such as the conventional LMS algorithm. By leveraging

the convergence guarantee of the conventional optimizer, we can establish a lower bound on

the behavior of the learned optimizer and enhance its reliability. We describe this procedure

below. However, we do not use this setup in our experiments.

The safeguarding process involves comparing the updates produced by both the learned

optimizer gϕ and the conventional LMS algorithm. Given the current filter parameters θ[τ ],

we obtain the updates as follows:

∆g = gϕ(ξk[τ ],ψk[τ ]) (3.25)

∆LMS = λ∇L(. . .), (3.26)

where ∆g represents the update produced by the learned optimizer, and ∆LMS represents

the update computed by the conventional LMS algorithm with a step size of λ.

To safeguard the outputs, we choose the update that results in the most significant im-

provement in terms of the objective function. Specifically, we update the filter parameters

θ[τ ] as:

θ[τ + 1] = θ[τ ] + max(∆g,∆LMS), (3.27)

where max(·) selects the update that maximizes the improvement in the objective function.

By comparing the updates and choosing the better one, we establish a lower bound on the

performance of the learned optimizer, as it is guaranteed to at least match the behavior of

the reliable conventional LMS algorithm. The proof can be broken into two cases, one where

LMS update is chosen, which inherits the LMS guarantees, and one where the meta-update

is chosen. The meta-update is only chosen when it is better, which means the LMS update

is worse and bounds the worst case. It could be interesting to study carrying this same

argument out for combinations of adaptive filters [146] or even boosted adaptive filter [147]

as well.
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Chapter 4: Meta-Adaptive Optimizer Architectures

Framing adaptive filter optimizer design as a learning problem allows us to leverage various

viewpoints to enhance performance and streamline the design process. In this section, we

will delve into these viewpoints and suggest enhancements, all of which involve making

adjustments to specific components within the Meta-AF architecture. In this discussion, we

will explore various aspects of optimization, including the design of input features for the

optimizer, the interaction between the optimizer and the optimizee, the detailed architecture

of the optimizer’s DNN, and the operational architecture of the optimizer’s execution.

4.1 INPUT FEATURES

A common approach in machine learning is feature engineering, which involves finding

a suitable representation or transformation of the data to enhance the performance of a

machine learning model. In our context, this corresponds to discovering good signal repre-

sentations for DNN optimizers to leverage when adapting a filter.

4.1.1 Input Feature Whitening

One important technique is feature whitening or normalization. Whitening the data is

a common preprocessing step in machine learning that often improves performance. This

performance gain can come from improved numerical stability, better convergence, decorre-

lation, or robustness. Simply put, it makes things better behaved.

In our work, the dynamic range of input signals, output signals, and gradients can be very

high. So, we always re-scale the inputs element-wise via

ln(1 + |ξ|)ej∠ξ. (4.1)

This transformation reduces the dynamic range of the signals while preserving their phases.

The goal is to approximate a circular complex Gaussian model. An example of the input

signal distributions before and after this transformation is shown in Fig. 4.1. The figure shows

that after the transform, the magnitudes are closer to a Gaussian, and contain fewer extreme

outliers. This preprocessing step has proven useful in several previous works [92, 101],

although those works employed explicit clipping, which we have found to be unnecessary.

This particular log transformation is a special case of the Box-Cox or power transform.

For more rigorous empirical evidence, we provide results on a system identification task
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Figure 4.1: Distribution of input features for a system identification task before (left) and
after (right) the exponential transform.

in the main ablation of Section 6.1.4, where Fig. 6.3 shows the effect of this transform on

performance.

4.1.2 Input Feature Selection

Incorporating domain-specific knowledge into the feature selection process can improve

the performance of meta-adaptive filters. By providing additional input features that may

not have an analytically established relationship with filter performance, we enable the

neural model to learn from them and potentially benefit from their inclusion. Examples of

such domain-specific features could include direction of arrival information, voice activity

information, user desire information, and more. These features provide valuable context and

allow the meta-adaptive filter to adapt its behavior based on specific aspects of the input

signals or user requirements.

On the simpler side, this corresponds to selecting input signals that are most relevant

to the optimization problem. We break features into two categories: open and closed-loop
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features. Open loop features at time τ are not affected by optimizer decisions at time < τ .

However, closed-loop features are. From the signal set:

ξk[τ ] = [∇k[τ ],uk[τ ],dk[τ ], ek[τ ],yk[τ ]], (4.2)

we identify ∇, e,y as closed-loop and u,d as open loop. We find that closed-loop features

are particularly critical for performance, and show this in the demo below. We revisit these

input features in section 4.4, where we motivate a particular combination that leads to the

best performance.

4.1.3 Demonstration

In this section, we train a Meta-AF and demonstrate its behavior by generating a syn-

thetic system identification task. We reuse the setup from section 3.5 and the task from

section 3.5.1. First, we evaluate the use of feature engineering, specifically that of the log

preprocessing which approximately whitens the inputs to the optimizer. We show results in

Fig. 4.2 and find that this scheme improves performance in terms of peak and convergence

ability. For evidence on real-world tasks, see 6, where the higher dynamic range of real-world

signal leads to a much larger effect.

Next, we show the value of providing the right input features as well as the importance

of an accompanying training procedure. In Fig. 4.3 we show different combinations of input

features, some of which provide feedback in a closed loop manner, some of which are open

loop, all accompanied by an improved architecture and training scheme for handling larger

feature sets. The improved architecture and training scheme, shown via the orange x’s is

comparable to the models in Fig. 4.2. To summarize, it consists of various regularization

and training tricks which are useful when many input features are being used. The full

feature set is composed of both open and closed-loop features. Open-loop features do not

depend on the models’ past behavior whereas closed-loop features do. Closed-loop features

dramatically improve performance, as shown by removing them, which corresponds to the

open-loop-only model in blue with squares.

4.2 OPTIMIZEE INTERFACE ARCHITECTURE

The output features, which dictate how the optimizer interfaces with the optimizee, are

of critical importance. They can make enforcing constraints and other kinds of properties

easier or harder.
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Figure 4.2: Here, we demo Meta-AF on a toy noiseless system identification task and evaluate
the use of whitening as a preprocessing step.

4.2.1 Direct Parameterization

Most optimizees can be formulated in terms of their raw frequency domain filter coefficients

or in another potentially more structured domain.

Direct Updates: When interfacing with raw coefficients, additive updates as shown in (3.2)

and below,

θ[τ + 1] = θ[τ ] + gϕ(·), (4.3)

can be a natural first step. They are simple to implement and achieve a good balance in

terms of structure enforced and structure learned.

Direct Prediction: Alternatively, it is possible to directly interface with the optimizee by

predicting the filter coefficients from scratch instead of updating them. For example,

θ[τ + 1] = gϕ(·), (4.4)
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Figure 4.3: Here, we demo Meta-AF on a toy noiseless system identification task and evaluate
the use of different input configurations.

depending on the filtering task, different parameterizations work better. Generally, we found

that direct prediction works best in scenarios where convergence speed is most important.

4.2.2 Indirect Parameterization

However, it is also possible to parameterize the filters indirectly. One common filter

statistic to track and estimate, instead of the raw values, is the per-frequency covariance

matrix. Covariance matrices possess unique structures and can be spatial in the case of

beamformers or temporal in the case of multi-frame filters. In both cases, covariance matrices

have a unique structure.

Rank-1 Updates: One approach to indirect parameterization involves interpreting the

network output as a rank-1 symmetric update to an existing Φ−1[τ − 1], where we drop the

frequency subscript for simplicity. This is accomplished by setting gϕ(·) to output φ[τ ] ∈ CM

and computing the update via the fast rank-1 update formula:
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Φ−1[τ ] = Φ−1[τ − 1]− Φ−1[τ − 1]φ[τ ]φH[τ ]Φ−1[τ − 1]

1 +φH[τ ]Φ−1[τ − 1]φ[τ ]
, (4.5)

This rank-1 update preserves most of the structure of a covariance matrix and serves as a

natural initial step toward a learned covariance update module.

Cholesky Updates: Another approach allows the network to internally manage updates

in a non-linear fashion while ensuring that the output remains a valid inverse covariance.

This is achieved by predicting the Cholesky decomposition of the output matrix, where

φ[τ ] ∈ CM×M is interpreted as a lower triangular matrix within the Cholesky decomposition.

To obtain a lower triangular matrix, elements above the diagonal are set to zero, and elements

on the diagonal are passed through the absolute value function. The estimate is then given

by:

Φ−1[τ ] = φ̄[τ ]φ̄H[τ ], (4.6)

where φ̄[τ ] represents the lower-triangular absolute-value modified φ[τ ]. This relaxes the

rank-1 update constraint while still producing outputs within the manifold of valid covari-

ances.

Arbitrary Updates: Finally, we explore a more flexible approach where all constraints are

removed, allowing the optimizer to output an arbitrary square matrix φ[τ ] ∈ CM×M :

Φ−1[τ ] = φ[τ ]. (4.7)

We refer to this approach as “Arbitrary” since any structure within the estimate is learned

rather than being imposed by construction. It is important to note that arbitrary parame-

terization of the covariance is not equivalent to arbitrary parameterization of the raw filter

values. Selecting the appropriate parameterization style often requires empirical testing or

is driven by desired guarantees. Typically, it is easier to enforce model requirements when

working in the covariance domain.

The choice of output parameterization in adaptive filters involves important tradeoffs

that impact performance and flexibility. Direct updates, where raw filter coefficients are

modified, offer a simple and balanced approach, striking a compromise between enforcing

structure and learning. Direct prediction, on the other hand, allows for faster convergence

but may sacrifice some interpretability. Indirect parameterizations, such as rank-1 updates

and Cholesky updates, leverage the structure of covariance matrices to preserve desirable

properties, but they impose additional constraints and may require more computational

resources. Finally, arbitrary updates provide the greatest indirect flexibility but require

careful consideration of the desired structure and may lead to more complex optimization
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Figure 4.4: Here, we demo Meta-AF on a toy noiseless system identification task and evaluate
the use of different optimzee interface configurations.

challenges. Choosing the appropriate output parameterization depends on the specific task

requirements, computational constraints, and the desired level of interpretability and control

over the learned models.

4.2.3 Demonstration

In this section, we train a Meta-AF and demonstrate its behavior by generating a synthetic

system identification task. We reuse the setup from section 3.5 and the task from section

3.5.1. We evaluate various ways for the optimizer to interface with the optimizee. We

compare additive updates, exponential parameterization of the additive updates, and a direct

prediction scheme. The orange x’s is the all-features model from the previous demo. The

blue squares are the exponential parameterization of the raw filter coefficients, which do

not improve performance here. We found that this helps when the dynamic range of the

coefficients is very high. Interestingly, directly predicting the filter parameters (blue up
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Figure 4.5: Frequency dependency structures for meta-adaptive filters. (Left) Diagonal.
(Center) Block. (Right) Banded.

triangle), via a fully learned update scheme improves performance in this scenario. We find

this is generally the case when enough data is available.

While clearly, the direct and update approaches have the same range, they have different

training properties. The additive nature of the update approach acts as a residual connection.

The advantage of this is smoother gradients, but the disadvantage of this it discourages the

model from very aggressive updates. Perhaps a hybrid scheme could work best.

4.3 OPTIMIZER NEURAL NETWORK ARCHITECTURE

Here, we treat the task of optimizer design as one of neural network design. When de-

signing neural network models, a common strategy is to consider what relationships exist in

your data structure and how to exploit them. One good place to find these is spots where

conventional models make simplifying assumptions for tractability. For example, most AF

optimizers assume frequency-independent processing, which results in diagonalized and much

smaller models. These are typically favorable since they are easier to design. However, using

deep learning we don’t need to perform explicit design. Instead, we just need to provide

the structure to learn that design. Here, we design higher-order meta-adaptive filters, a key

improvement to meta-adaptive filters that incorporate higher-order frequency dependencies.

To learn and leverage frequency dependencies, we introduce learnable downsampling S
and upsampling U layers before and after our optimizer network. The downsampling layer

projects the per-frequency inputs ξk[τ ] into C groups, where C ≤ K. We run the optimizer

gϕ independently per coupled group c instead of per frequency k and use the upsampling layer

to expand the group update ∆c[τ ] to a per-frequency update. Formally, we modify (3.11)
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and (3.12) to be

(∆c[τ ],ψc[τ + 1]) = gϕ( S(ξ[τ ])c , ψc[τ ] ) (4.8)

θk[τ + 1] = θk[τ ] + U(∆c)k, (4.9)

where the modified network state ψc[τ + 1] stores state per group. By applying gϕ per

group of frequencies, we can model interactions within a group and share state/computation

within groups, significantly reducing the computational cost. Each shaded square/rectangle

in Fig. 4.5 represents a group.

4.3.1 Dependency structures

Our approach allows for arbitrary frequency dependencies by imposing structure into

the up-/down- sampling layers. We focus on three different forms of structure as shown

in Fig. 4.5, including diagonal (left), block (middle), and banded (right). On an intuitive

level, each coupling structure implies a different inter-frequency covariance matrix. Diagonal

corresponds to frequency-independent processing, while block/banded model higher-order

relationships and allows information sharing across frequency groups. Larger groups model

more interactions but at the cost of sharing a single H dimensional state. Thus, there is

a trade-off between group size, state size, performance, and efficiency. We describe three

potential dependency structures below.

Diagonal: For diagonal frequency dependencies, we set S and U to be dense layers op-

erating identically on each frequency. We use this configuration as a baseline as it defaults

to [93]. The complexity of gϕ is O(H2), with K executions per frame resulting in a total

complexity of O(KH2).

Block: For block frequency dependencies, we reshape each of the K per-frequency network

inputs,

ξk[τ ] = [∇k[τ ],uk[τ ],dk[τ ], ek[τ ],yk[τ ]] ∈ C5, (4.10)

into C per-group features ξc[τ ] ∈ C5B or a C × 5B matrix, where C = K/B and B is

the group size. We then apply a dense layer on the latter dimension to produce a C × H

output and apply the optimizer separately to each of the C columns. Thus, we impose

a non-overlapping block-group structure and enable information and computation sharing

within groups. This is reminiscent of sub-band processing [15]. The cost of gϕ is O(H2), the

up/down sampling layers cost O(BH), and the number of executions per frame is K
B
, for a

total of O(K
B
(H2 + BH)).
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Dependencies Computational Big-O Space Big-O
Diagonal O(K(H2 +MBH)) O(KH)
Block O(K

B
(H2 + BH)) O(K

B
H)

Banded O(K
B
(H2 + BH)) O(K

B
H)

Table 4.1: Comparison of different Meta-AF optimizer configurations. Note that all opti-
mizers have about the same number of learnable parameters in ϕ.

Banded: For banded frequency dependencies, we modify the block-reshape operation de-

scribed above to return overlapping groups of B frequencies and retain all other block de-

pendency operations. By doing so, we enable information and computation sharing across

overlapping groups of frequencies and better model adjacent frequency relationships. By

increasing and decreasing the overlap, we modulate the number of adjacent frequencies.

In this work, we set the overlap to B
2
. This style of dependencies was explored in past

work [148, 149]. The complexity of gϕ is O(H2), the up/down sampling layers cost O(BH),
and the number of executions per frame is 2K

B
for a total of O(K

B
(H2 + BH)).

We summarize this in the complexity table, Table 4.1, which places theseO compute trade-

offs along with O space requirements side-by-side. As we will highlight in the experimental

section, block, and banded models can both use less compute and perform better than

diagonal approaches. Note that banded, while equivalent in compute and memory to block,

typically uses twice as many FLOPS and MB. Though, the learned ϕs are equivalent in size.

4.3.2 Practical Implementation

Practically, we implement all dependency structures using standard deep-learning opera-

tions. We implement the downsampling layer with a 1-D convolution and the upsampling

layer with a transposed convolution. We configure different strategies with different filter

sizes (B), and stride sizes. A filter size of B = 1 with stride one implements diagonal, a filter

size where B > 1 with stride of B implements block, and a filter size of B > 1 and stride of

B/2 implements banded.

4.4 SCALABLE ARCHITECTURES

Improving the performance of AFs continues to pose an intricate challenge, requiring a

nuanced approach to optimizer design. Consequently, AF algorithm designers have relied on

mathematical insights to create tailored optimizers, starting from the foundational develop-

ment of the least mean squares algorithm (LMS) [150] to the Kalman filter [1, 2, 3, 5, 6].
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In contrast, we have witnessed countless remarkable deep learning algorithm advancements

in other domains through the principle of “scaling” [151, 152, 153, 154]. The scaling approach

involves improving an existing method by deploying additional computational resources.

Scaling methodologies are particularly enticing, as they tap into the increasing computational

capabilities of modern smart devices, minimizing the need for labor-intensive manual tuning

and intervention.

This section described a new online AF method called supervised multi-step AF (SMS-

AF). This method integrates a series of algorithm improvements on top of meta-learning

methods [93, 94] that together enable scaling performance by increasing model capacity

and/or inference cost.

In this section, we describe AFs as operating via the following steps [5]:

e[τ ] = hθ[τ−1](d[τ ],u[τ ]) (4.11)

∆[τ ] = gϕ(ξ[τ ], · · · ) (4.12)

θ[τ ] = θ[τ − 1] +∆[τ ], (4.13)

where (4.11) applies the filter, (4.12) updates the optimizer, and (4.13) uses the outputs to

update the filter parameters for the next frame. Note, that the optimizer typically inputs

filter output e[τ ] created via filter parameters θ[τ − 1] from the previous frame, creating a

feedback loop.

The Kalman filter (KF) extends the AF process above via distinct “predict” and “update”

steps. In the KF predict step, (4.11)-(4.13) are run as normal. In the KF update step,

however, the filter output is reprocessed after (4.13) using the latest available data:

e[τ ] = hθ[τ ](d[τ ],u[τ ]). (4.14)

As the foundation of our SMS-AF method, we combine Meta-AFs [93] with a higher-order

optimizer [94] with per-frequency inputs ξk[τ ], and then extend it with three task-agnostic

improvements and one task-specific change to scale up. Our complete training and inference

methods are summarized in Alg. 4.1.

Our first insight is to use only three key features to control filter adaptation: knowledge of

the filter input, final filter output, and filter state. This is deeply motivated by the findings

in 4.1.1 and makes use of both closed and open loop features. Compared to past work [93]

that uses a large set of inputs,

ξk[τ ] = [∇k[τ ],uk[τ ],dk[τ ], ek[τ ],yk[τ ]], (4.15)
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where ∇k[τ ] is a gradient w.r.t. instantaneous loss L(· · · ), we use

ξk[τ ] = [uk[τ ], ek[τ ],θk[τ ]]. (4.16)

This pruning reduces complexity by lowering input dimension and memory requirements for

the optimizer, while eliminating inference-time gradient computation w.r.t L(· · · ), as shown
in line 8 of Alg. 4.1. Our second insight is to use a high-quality supervised loss, instead of an

unsupervised loss. This opens up several new perspectives, which we cover in more detail in

section 5. Previous methods have explored supervised losses such as frame-wise independent

supervised losses for echoes [134] or oracle filter parameters [155]. These methods, however,

treat frequency bins, adjacent frames, and other channels as distinct optimization entities

and have not scaled well [134].

To overcome this, we compute our supervised loss in the time-domain after all AF opera-

tions have been performed. This strategy is similar to (5.2), but we use a supervised training

signal. Our supervision is non-causal; the loss at τ depends on updates from < τ , enabling

the optimizer to learn anticipatory updates. Better loss functions exclusively impact the

training phase, without contributing to test-time complexity or data requirements, making

this change cost-free for inference. This update corresponds to line 22 of Alg. 4.1.

Our third insight is to leverage the iterative nature of optimizers by executing multiple

optimization steps per time frame. By doing so, we offer our optimizers a more powerful

feedback mechanism and use the most current parameters for the filter output. Specifically,

we run our optimizer update via (4.11)-(4.13), (4.11)-(4.14), or looping over (4.11)-(4.14)

multiple times. The first option follows Meta-AF, the second option follows a typical KF

and the third extends the KF. We denote the number of (4.11)-(4.13) iterations via C. In-

corporating multi-step optimization in Alg. 4.1 involves three changes. First, initializing

each frame’s filter and optimizer state with results from the last frame (lines 3− 4). Second,

iteratively progressing through steps within a frame (line 5), while updating filter param-

eters/outputs, and optimizer state (lines 8 − 10). Last, running a final filter forward pass

using the latest parameters (line 11). We find this approach to be a compelling alternative

to increasing the dimension of the optimizer, H. Notably, it avoids increasing the parameter

count, and it linearly scales complexity, in stark contrast to the quadratic complexity effects

associated with H.

Our modifications are a notable departure from the Meta-AF methodology but still aim

to learn a neural optimizer for AFs end-to-end. First, by pruning input features and intro-

ducing a supervised loss, we eliminate the need for explicit meta-learning, leading to a more

streamlined BPTT training process. Second, we replace the past unsupervised loss with a
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Algorithm 4.1 Training and inference algorithm.

1: function Forward(gϕ, hθ,u,dm)
2: for τ ← 0 to L do
3: θk[τ ] ← θk[τ − 1] ▷ Initialize with last estimate
4: ψk[τ ] ← ψk[τ − 1] ▷ Initialize state with last state
5: for c← 0 to C do ▷ For each predict-update iteration
6: e[τ ] ← hθ[τ ](d[τ ],u[τ ])
7: for k← 0 to K do ▷ Predict step
8: ξk[τ ] ← [uk[τ ], ek[τ ],θk[τ ]
9: (∆k[τ ],ψk[τ ]) ← gϕ(ξk[τ ],ψk[τ ])
10: θk[τ ] ← θk[τ ] +∆k[τ ]

11: e[τ ] ← hθ[τ ](d[τ ],u[τ ]) ▷ Update step

12: ē ← Cat(e[τ ] ∀τ)
13: return ē,ψ[τ ], hθ[τ ]

14: function Train(D)
15: ϕ ← [145] init
16: while ϕ not Converged do
17: u,dm ← Sample(D) ▷ Get batch from dataset D
18: θ,ψ ← 0,0
19: for n← 0 to end do
20: u,dm ← NextL(u,dm) ▷ Grab next L frames
21: u,ψ, hθ ← Forward(gϕ,ψ, hθ,u,dm)
22: LS ← LS(· · · ) ▷ Task-dependent objective
23: ∇ ← Grad(LS, ϕ) ▷ Truncated BPTT
24: ϕ[n+ 1] ← MetaOpt(ϕ[n],∇) ▷ i.e. run Adam

return ϕ̂

new, strong supervised signal and loss, helping us scale up. Third, we leverage a multi-step

optimization scheme. This creates a generalization of the Kalman filter, where all parameters

are entirely learned while retaining explicit prediction and update steps. This also effectively

deepens our optimizer networks by sharing parameters across layers in a depth-wise manner.

Of particular interest is a modification to the loss function, which we explore more deeply

in the next section.

4.5 OTHER PERSPECTIVES

Given the interdisciplinary nature of AFs, there are several other perspectives worth ex-

ploring, which may lead to significant improvements and even open up new application

areas.
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4.5.1 Control Theory

One perspective to consider is the design of AFs from a control theory standpoint, ex-

amining open or closed-loop features. Closed-loop feedback is a fundamental principle in

control theory, and in the context of adaptive filtering, it becomes essential to provide the

filter with information about its performance to effectively adapt to changing conditions.

In our initial experiments, incorporating closed-loop feedback has demonstrated substantial

performance gains. It is reasonable to assume that other control concepts could also enhance

the performance of AFs and provide further improvements. Exploring control theory prin-

ciples in the design and optimization of AF systems holds promising potential for achieving

better adaptation and robustness in various applications.

4.5.2 Graph Signal Processing

Graph signal processing is a field that focuses on analyzing and processing signals defined

on graph structures. Traditional AFs typically operate on time-domain or frequency-domain

signals, but many real-world problems involve signals defined on complex graphs or networks.

A major advantage of meta-learned adaptive filters is that they can learn to operate on

arbitrary structures, reducing the large mathematical workload typically associated with

leveraging signal processing on graphs. The section on diagonal, block, and banded modules

is a primer on this and can be thought of as setting up different adjacency graphs. I suspect

more sophisticated connection schemes or even learnable connection schemes could excel in

other domains.

4.5.3 Reinforcement Learning

Reinforcement learning offers a promising perspective for adaptive filter design by for-

mulating the adaptation process as an agent-environment interaction and learning optimal

policies through trial and error. By treating the adaptive filter as an RL agent, and the

optimizer as a controller, one could explore adaptation to more extreme degrees. For ex-

ample, selecting the number of filter taps, frames, or channels to use all discrete actions.

Exploring the synergy between reinforcement learning and adaptive filtering can open up

new avenues for developing adaptive systems that excel in challenging and dynamic signal

processing tasks.
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Chapter 5: Meta-Adaptive Training Objectives

In Section 3.4, we introduced two conceptual flavors of losses: frame-independent losses

that can be decomposed across filter updates, and frame-accumulated losses that cannot.

Then, we conceptually described the differences between self and full supervision before

discussing how full supervision is critical to scaling performance with compute in Section 4.4.

In this section, we discuss the construction of these losses based on specific tasks or use cases.

5.1 SELF-SUPERVISION

Self-supervision leverages the inherent structure within a given filter and accompanying

data to enable learning without explicit oracle input/output pairs. Adaptive filters, by na-

ture, operate in a self-supervised manner, using signal models to optimize their parameters

in real-time without knowledge of the true filter values. This concept can be extended to

training optimization rules, where losses are computed over time spans of L filter updates.

This allows for the customization of optimizers for specific data distributions, signal classes,

and temporal dependencies, potentially leading to superior performance compared to con-

ventional models. Of major note is that these losses are non-causal; the values at τ depend

on outputs from < τ . However, the fully trained model is still causal at test-time.

Self-supervision can be applied in both frame-independent and frame-accumulated con-

texts. In the frame-independent case, the loss is computed for each individual frame. For

example, in the case of the ISE objective for system identification, the frame-independent

loss is defined as:

LM = ln
1

L

τ+L∑
τ

E[||dm[τ ]− ym[τ ]||2], (5.1)

where y represents the adaptive filter outputs and d represents the desired responses. The

desired responses are often contaminated by noise, distortions, or other signals, depending on

the specific application. Self-supervision allows us to train the model using these imperfect

but informative desired responses.

Alternatively, the loss can be computed in the time domain, resulting in the frame-

accumulated variant:

LM = lnE[||d̄m[τ ]− ȳm[τ ]||2], (5.2)

where d̄ and ȳ represent the accumulated desired responses and filter outputs, respectively.

In this case, the accumulated desired response is noisy and contaminated by distortions or

other signals.
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For example, in the case of acoustic echo cancellation, the self-supervision framework can

be applied to train adaptive filters. The desired response in this case is the unknown system

output, which is contaminated by noise, speech, and other signals,

d[t] = σ(u[t]) ∗w + n[t] + s[t], (5.3)

where n represents noise, s represents speech, σ(·) is a nonlinearity, w is an unknown transfer

function, and u is the input signal. Despite the presence of noise and other distortions, self-

supervision allows us to train the adaptive filter using these imperfect but informative desired

responses.

Self-supervision provides a powerful framework for training adaptive filters in a meta-

learning context. By leveraging the available information within the data, adaptive filters can

learn and adapt effectively in real-world applications. The flexibility of self-supervision allows

for the exploration of various loss functions and assumptions, opening up new possibilities

for improving adaptive filter performance and addressing complex signal processing tasks.

While frame-independent and frame-accumulated losses perform similarly in some tasks,

they may differ in others. In the next section on full supervision, we will discuss scenarios

where constructing frame-independent losses becomes challenging or infeasible.

5.2 FULL-SUPERVISION

In the case of full-supervision, we have prior knowledge about the expected output of

the adaptive filter. This knowledge can be used to guide the training process and optimize

the filter’s performance. A theme of this section is that better training losses do not intro-

duce additional inference time complexity, making them especially appealing in compute-

constrained scenarios because we can reduce the model size while achieving the same level

of performance.

5.2.1 Signal-Level Training

One approach in full-supervision is signal-level training, where we have information about

the desired signal that should be produced by the adaptive filter. This is particularly appli-

cable when the downstream task involves generating a specific signal. In such cases, accu-

mulated losses are commonly used. One simple form of accumulated loss is the supervised
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mean squared error (MSE):

LM = lnE[||s̄m[τ ]− ȳm[τ ]||2], (5.4)

where s̄m represents the accumulated desired signal and ȳm represents the accumulated out-

put of the adaptive filter. The MSE loss quantifies the discrepancy between the desired

signal and the output signal, allowing the adaptive filter to adjust its parameters to mini-

mize the error. However, depending on the specific downstream task, other loss functions

such as scale-invariant source-to-distortion ratio (SI-SDR), short-time objective intelligibil-

ity (STOI), or other task-specific metrics can also be employed. It is important to select a

loss function that aligns with the objectives and requirements of the downstream task. Of

note is that better losses only contribute to training-time data and compute requirements,

making them cost-free in terms of inference.

Full-supervision provides explicit guidance to the training process by incorporating knowl-

edge about the desired output. This approach allows for fine-tuning the adaptive filter to

closely match the target signal and optimize its performance for specific tasks. By leveraging

different loss functions tailored to the downstream objectives, we can effectively train the

adaptive filter for settings and objectives which would be intractable to do by hand either

due to complexity or data requirements.

It’s worth noting that in some cases, the downstream task itself may involve another

model rather than a human listener, and the loss can be designed accordingly to optimize

the performance of the subsequent model. In the next section, we discuss losses for such

tasks and how to use them.

5.2.2 Classification Training

In some cases, the downstream task is another model and not a listener. In these cases, we

can pull the entire training scheme into the meta-loss. For classification-based downstream

tasks, this leads to a new class of training paradigms. We call these approaches classification-

trained Meta-AF (CT-Meta-AF). CT-Meta-AF learns an AF optimizer for downstream clas-

sification tasks in a data-driven manner, without task/model-dependent engineering or the

need for oracle signals like clean speech. Specifically, we use an adaptive filter, such as an

echo canceller, whose time-varying parameters θ[τ ] are updated by a meta-learned update

rule gϕ. The goal is to use the processed signals from the adaptive filter for a downstream

classification task, such as keyword spotting, performed by a model mφ. To this end, we

employ an end-to-end training setup that enables joint optimization of the adaptive filter,
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optimizer, and classification model. Our approach uses feedback from the classifier during

training to learn a custom optimizer, resulting in enhanced performance without requir-

ing explicit coupling or the need for test-time feedback. This approach is also suitable for

training on real mixtures.

To address the downstream objective, we modify the original meta-loss from (5.2) that

incorporates classification feedback, which we call LCM . Specifically, LCM consists of two

components: the classification loss, denoted by LC(c, ĉ), where c is the true class and ĉ =

mφ(·) is the predicted class, and the self-supervised loss, denoted by LM , as defined in (5.2).

The joint loss,

LCM(ē, c, ĉ) = λ · LC(c, ĉ) + (1− λ) · LM(ē), (5.5)

uses λ ∈ [0, 1] to control the weighting between classification and self-supervised losses. This

approach implicitly couples the representations learned by gϕ and mφ without explicitly

sharing their parameters, using the idea of “task-splitting” [85, 156]. The hyperparameter λ

needs to be tuned. However, we find that its value is not critical as long as it is greater than

0 (the no classification feedback setting). Optimizing an AF for classification has interesting

ramifications. Typically, it is important to avoid artifacts. Here, however, they don’t matter

if the classifier can ignore them.

Pretrained Classifier When dealing with complex classification tasks, it is common to

use off-the-shelf or pre-trained models due to data, compute, or engineering constraints. In

this setting, we assume that the classifier, mφ, is frozen and not trainable. This leads to a

modified (3.3),

ϕ̂ = argmin
ϕ

ED[ LCM( mφ, gϕ,L(hθ, · · · ) ) ]. (5.6)

This equation incorporates mφ without modifying it by using mφ as an additional loss term.

This method allows custom training of the optimizer for the classifier without the classifier

needing to be aware of the custom preprocessing. It customizes the optimizer to the classifier,

automatically performing the model unification proposed by Seltzer et al. [73] in a model

and task-independent fashion.

Jointly Trained Classifier When ample data and compute resources are available, joint or

end-to-end training is a powerful approach. This involves training both the optimizer gϕ and

classifier mφ simultaneously using the modified meta-loss function LCM . The parameters of

the optimizer and classifier, ϕ and φ, are jointly optimized via

ϕ̂, φ̂ = argmin
ϕ,φ

ED[ LCM( mφ, gϕ,L(hθ, · · · ) ) ]. (5.7)

During joint training, classification feedback is used to adjust the parameters of the opti-
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Figure 5.1: A generic AF pipeline composed of pre-processor, optimizee, optimizer, and
post-processor. All components are connected to solve some overall task such as recognizing
speech in a noisy moving vehicle.

mizer, improving its ability to generate outputs that aid in classification. At the same time,

the classifier learns to operate on AF outputs. This builds upon the pre-trained classifier

setup by producing a custom-trained classifier that can better leverage the AF. To speed up

training, we can initialize ϕ and φ with pre-trained weights. It is also possible to improve

performance by allowing mφ to use information beyond the outputs of hθ.

5.3 END-TO-END TRAINING

With AF systems framed using fully supervised learning with potentially learned loss func-

tions, we can now explore pre-/post-processors or complete AF pipelines. This highlights

the fact that AF systems are typically integrated into larger pipelines, and optimizing indi-

vidual components in isolation may not yield the best overall system performance. Fig. 5.1

illustrates a generic pipeline structure. The modules involved in the pipeline can encompass

various tasks such as reference estimation, transfer function tracking, speech enhancement,

keyword spotting, or automatic speech recognition. We denote these pre-/post-modules as

m←φ←(· · · ) and m→φ→(· · · ), which can be tailored to specific tasks. It’s worth noting that

multiple AFs can be cascaded, with the first AF acting as a pre-processor for a secondary

AF.

The discussion of self-supervision, full-supervision, and the study of classification-based

training with joint-trained classifiers all angle towards a single unified idea: That all pro-

cessing modules within a system should be developed in a unified or joint fashion. This

culminates in the idea of end-to-end training, which attempts to learn all modules of a

processing pipeline jointly,

ϕ̂, φ̂←, φ̂→ = arg min
ϕ,φ←,φ→

ED[ LCM( m←φ← , gϕ,m
→
φ→ ,L(hθ, · · · ) ) ]. (5.8)
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Here, model parameters are optimized simultaneously, leading to a higher-performing system

with processing that is aware of the preceding and following operations.

When dealing with an AF system comprising multiple components, each component may

possess its local optima when trained independently. However, it is crucial to acknowledge

that optimizing each component separately does not guarantee achieving the global opti-

mum for the overall system. This is especially significant in large-scale systems where the

interactions between components can exhibit high complexity.

In contrast, by jointly optimizing the entire system, we explore a global optimization

landscape that extends beyond the constraints of individual component landscapes. This

approach opens up the potential for discovering solutions that may not be attainable through

isolated component optimization. In essence, end-to-end training allows us to escape local

optima that are specific to individual components and instead pursue more advantageous

solutions that maximize the overall system performance.

This advantage becomes particularly relevant in large-scale AF systems, where the inter-

actions between components introduce intricate and nonlinear relationships. The process of

joint optimization takes into account these complex dependencies, enabling the exploration

of global optima that lead to superior system performance. A key advantage of end-to-end

training is that it does not incur any additional inference time complexity. We explore an

example of this in Section 6 where we train a multi-stage speech enhancement pipeline.

5.4 REGULARIZATION

Whether training smaller simpler self-supervised Meta-AF models or much larger end-to-

end models, regularization can have a large effect on performance. Here we discuss two kinds

of training time regularization, one which operates on the outputs of the optimizer, and one

which operates on the optimizer itself.

5.4.1 Temporal Consistency Regularization

A significant challenge in integrating powerful neural optimizers with flexible filters is the

potential for over-adaptation. The filter and its associated loss are typically based on a

specific signal model, designed to address noise or distortion within that model’s framework.

Neural optimizers, on the other hand, possess the capability to compensate for modeling

inaccuracies and extend beyond the boundaries of the signal model. However, this can lead

to over-adaptation, which may result in undesirable side effects.
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Algorithm 5.1 Training and inference algorithm with temporal consistency.

1: function Forward(gϕ, hθ,u,dm)
2: for τ ← 0 to L do
3: θk[τ ] ← θk[τ − 1] ▷ Initialize with last estimate
4: ψk[τ ] ← ψk[τ − 1] ▷ Initialize state with last state
5: for c← 0 to C do ▷ For each predict-update iteration
6: e[τ ] ← hθ[τ ](d[τ ],u[τ ])
7: for k← 0 to K do ▷ Predict step
8: ξk[τ ] ← [uk[τ ], ek[τ ],θk[τ ]
9: (∆k[τ ],ψk[τ ]) ← gϕ(ξk[τ ],ψk[τ ])
10: ctc ← Bernoulli(p) ▷ Randomly sample
11: if ctc == 1 then ▷ Apply the update
12: θk[τ ] ← θk[τ ] +∆k[τ ]
13: else ▷ Skip the update
14: θk[τ ] ← θk[τ ]

15: e[τ ] ← hθ[τ ](d[τ ],u[τ ]) ▷ Update step

16: ē ← Cat(e[τ ] ∀τ)
17: return ē,ψ[τ ], hθ[τ ]

To mitigate the risk of overfitting, we have developed a simple yet effective technique called

temporal consistency regularization. This approach involves randomly skipping updates

from the optimizer with a certain probability, denoted as p (typically set around 0.01).

The rationale behind this strategy is to prevent the optimizer from excessively fitting to

any specific frame. By introducing randomness in the update process, we promote a more

generalized adaptation behavior.

To incorporate this technique into the multi-step optimization scheme, we propose the

modified algorithm shown in Algorithm 5.1. This adaptation ensures that the optimizer’s

updates are occasionally skipped, introducing a level of regularization and preventing over-

adaptation. Our experiments have shown that this approach is particularly beneficial for

filters that require rapid adaptation.

The temporal consistency scheme is only used at training time, not at test time. We

dropped the update as a whole but did experiment with dropping individual frequencies or

bins and found that to be less effective. Our most significant finding was that this was able

to remove clicking artifacts from a OLS filter trained of AEC when trained with both predict

and update steps.
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5.4.2 Randomized Unroll Regularization

The choice of setting the unroll length during training is a complex decision. If the unroll

length is too short, the optimizer may struggle to capture long-term dependencies in the

data. On the other hand, if the unroll length is too long, the training process can become

unstable and excessively time-consuming. To address this challenge, we have developed a

simple randomization scheme that effectively randomizes the unroll length, allowing for an

implicit selection of shorter unrolls without sacrificing the opportunity to train on longer-

term information.

The technique works by introducing a randomization process to determine whether or not

to use the stop-gradient (SG(·)) operator. During the forward pass, the function SG(·) acts
as an identity function, while during the backward pass, it acts as a zero function. The

unroll length, denoted as L, is set to a large value such as 128, and a small probability p,

typically around 0.05, is defined. This setup creates an unroll distribution instead of a fixed

unroll length. More complex unroll distributions can be defined, but we have found this

approach to be simple to implement and enables embarrassingly parallel batch processing,

providing a significant advantage.

To incorporate this technique into the multi-step optimization scheme, we propose the

modified algorithm outlined in Algorithm 5.2. This randomized unroll scheme eliminates

the need to fine-tune the unroll length L and almost always improves performance. It

provides the flexibility to explore shorter unrolls while still ensuring exposure to longer-term

information during the training process

By incorporating the randomized unroll scheme, we eliminate the need for manual tuning

of the unroll length and achieve improved performance. This technique enables the algorithm

to dynamically explore shorter unrolls while still benefiting from exposure to longer-term

information. Furthermore, it ensures that the training process remains efficient and can be

easily parallelized, offering a significant advantage in batch-processing scenarios.

5.4.3 Demonstration

In this section, we train a Meta-AF and demonstrate the role of regularization by gener-

ating a synthetic system identification task. We reuse the setup from section 3.5 and the

task from section 3.5.1. We provide a simple study of regularization using both temporal

consistency and randomized unrolls in Fig. 5.2.

In Fig. 5.2 we train a model using a 32-step unroll, and also double the number of epochs

so that the number of training updates is the same. We find that both regularizers improve
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Algorithm 5.2 Training and inference algorithm with random unroll.

1: function Forward(gϕ, hθ,u,dm)
2: for τ ← 0 to L do
3: θk[τ ] ← θk[τ − 1] ▷ Initialize with last estimate
4: ψk[τ ] ← ψk[τ − 1] ▷ Initialize state with last state
5: for c← 0 to C do ▷ For each predict-update iteration
6: e[τ ] ← hθ[τ ](d[τ ],u[τ ])
7: for k← 0 to K do ▷ Predict step
8: ξk[τ ] ← [uk[τ ], ek[τ ],θk[τ ]
9: (∆k[τ ],ψk[τ ]) ← gϕ(ξk[τ ],ψk[τ ])
10: cu ← Bernoulli(p) ▷ Randomly sample
11: if cu == 1 then ▷ Apply the update
12: θk[τ ] ← θk[τ ] +∆k[τ ]
13: else ▷ Apply update but zero gradients
14: θk[τ ] ← θk[τ ] + SG(∆k[τ ])

15: e[τ ] ← hθ[τ ](d[τ ],u[τ ]) ▷ Update step

16: ē ← Cat(e[τ ] ∀τ)
17: return ē,ψ[τ ], hθ[τ ]

convergence performance but not peak performance for this toy task. Though, empirically

we observe that these regularizers become more important as the unroll is increased or for

more challenging tasks. Of note is that the regularized models bottom out at about -70dB,

which is about as high performing as we could expect a model to be in a realistic scenario.

As such, we find they always improve performance on real tasks. One particular strength is

that they do not add any additional inference complexity and are drop-in compatible with

any AF task.

5.5 OTHER PERSPECTIVES

The importance of losses and data is only magnified when using a Meta-AF. Interestingly,

there are various interesting perspectives on this dependence.

5.5.1 Distilling the Meta-Loss

The objective of Meta-AF is to minimize a meta-loss function LM across a given dataset in

expectation. The meta-loss, being based on acausal information, potentially includes oracle

knowledge or other types of information that are not attainable during the inference phase.

Consequently, this meta-loss effectively distills oracle knowledge into the learned function
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Figure 5.2: Here, we demo Meta-AF on a toy noiseless system identification task and different
kinds of regularization including a temporal consistency regularizer and a randomized unroll
regularizer.

gϕ. From this perspective, the meta-training procedure trains gϕ to solve the meta-loss LM
using only mixtures instead of relying on oracle signals. This learned function generalizes

and effectively captures the knowledge distilled from the meta-loss. This approach allows

for the adaptation and improvement of the adaptive filter optimization process, even when

oracle information is not available during inference.

Exploring different forms and properties of the meta-loss function LM , as well as under-

standing the impact of the meta-training procedure on the performance and generalization

of the learned function gϕ, holds great potential for advancing the field of adaptive filter

theory and its practical applications.
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Chapter 6: Adaptive Filter Gym

With our conceptual meta-framework in place, we can move to evaluation. We seek to

evaluate our claims of developing general optimizers using our conceptual Meta-AF frame-

work by using the meta-af package. We evaluate using a collection of datasets and task

implementations, which we call the AF-Gym. The AF-Gym serves as a testing ground for AF. It

contains implementations of a suite of AFs as well as simulated scenarios and other already

established data sources. We open-source the gym, generation code, and all meta-learned

modules at https://github.com/adobe-research/MetaAF. Below, we describe evaluation

metrics, constituent tasks, and results one by one. To the best of our knowledge, the AF-Gym

is the first dataset that enables the development of end-to-end AF telephony pipelines.

6.1 META-AF DESIGN AND SYSTEM IDENTIFICATION

To ablate the design and construction of Meta-AF, we select a system identification prob-

lem. Through this task, we display initial Meta-AF configurations and reason about de-

sign. We conclude with experiments on more advanced Meta-AF architectures and highlight

various unique properties. This section is comparable to a more thorough version of the

demonstration experiments from section 3.5. The prior works typically build throughout

each section.

6.1.1 System Identification

In system identification, the goal is to recover the transfer function (unknown system)

between a source and receiver, as shown in Fig. 6.1. This is a common task across modalities

from radio-frequency communication to acoustics. Acoustic system identification is a critical

component of spatial rendering pipelines which often require head-related transfer functions

to mimic spatialization. In the AF-Gym, we model the unknown system (e.g. acoustic room)

with a linear frequency-domain filter hθ (optimizee architecture), inject input signal u into

the system, measure the response d, and adapt the filter weights θ = {w} using gϕ. The AF

loss is task dependent but is often the ISE between the desired response, dk[τ ], and the AF

predicted response, yk[τ ] = wk[τ ]
Huk[τ ]. In this task, we evaluate performance by simple

signal-level metrics that describe how accurately the output of the system was predicted.
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Figure 6.1: System identification block diagram. System inputs are fed to both the adaptive
filter and the true system (shaded box). The adaptive filter is updated to mimic the true
system.

6.1.2 Prior Works

Initial work on automatically tuning AFs has been explored in incremental delta-bar-

delta [95], Autostep [96], and elsewhere. Recent machine learning work discusses the idea

of using DNNs to learn entirely novel optimizer update rules from scratch [101, 102, 103,

104]. We take inspiration from this work but make numerous advances specific to AFs. In

particular, past learned optimizers [101] are element-wise, offline, real-valued, only a function

of the gradient, and are trained to optimize general-purpose neural networks. In contrast, we

design online AF optimizers that use multiple input signals, are complex-valued, adapt block

FD linear filters, and integrate domain-specific insights to reduce complexity and improve

performance (coupling across channels and time). Moreover, we deploy learned optimizers

to solve AF tasks as the end goal and do not use them to train downstream neural networks.

We also note recent work that uses a supervised DNN to control the step-size of a D-KF

for AEC [87] and another that uses a supervised DNN to predict both the step-size and a

nonlinear reference signal for AEC [88]. Compared to these, we replace the entire update

with a neural network, do not need supervisory signals, and investigate many tasks.
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Figure 6.2: Coupled Meta-AF diagram showing inputs, pre-processing, and neural network
architecture. This diagram applies to all tasks discussed in this section.

6.1.3 Experimental Setup and Results

We train gϕ via Algorithm 3.1 using a single GPU to adapt an OLS filter with a rectangular

window size N = 2048 and hop size R = 1024 on 16 kHz audio. For training data, we created

a dataset by convolving the far-end speech from the single-talk portion of the ICASSP 2021

AEC Challenge data [157] with room impulse responses (RIRs) from [158] truncated to 1024

taps.

For evaluation metrics, we use the segmental SNR (SNRd) between the desired and esti-

mated signals in dB. We compute this per-frame as,

SNRd(d[τ ],y[τ ]) = 10 · log10
( ∥d[τ ]∥2
∥d[τ ]− y[τ ]∥2

)
, (6.1)

where higher is better. In AEC literature, this is often referred to as segmental echo-return

loss enhancement (ERLE). We use these two terms interchangeably in this section. The

AF-Gym contains this task in the noiseless setting with configurable system order both for

the filter and for the true system. It also has options to include noise at the receiver side

to evaluate robustness. Finally, it contains options for longer or shorter signals and system

changes to study convergence and steady-state properties.
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Figure 6.3: Optimizer design decision ablation. Using an accumulated log-loss leads to our
best model, particularly for more complex tasks we address later on. RLS-like inputs are
also useful. The exact value of L is not critical, but larger is better.

6.1.4 Optimizer Design Results & Discussion

In Fig. 6.3, we change one aspect of our final design at a time and show how each change

negatively affects performance. Our final design, L = 16, is colored light blue, alternative

configurations are colored differently, and our previous work [92] is approximately equivalent

to a no log, no accumulation, no extra inputs setting. After this ablation, we fix these

values for all remaining experiments and do not perform any further tuning except changing

the dataset used for training and using different checkpoints caused by early stopping on

validation performance. In contrast, we re-tune all conventional optimizer baselines for all

subsequent tasks on held-out validation sets.

Loss Function: First, we compare our selected frame accumulated loss model (light blue)

to the frame accumulated loss without log scaling (black) as well as the frame independent

loss (yellow) and without log scaling (light purple). As shown, the log-loss has the single

largest effect on SNRd and yields an astounding 11.7/7.3 dB improvement compared to the

no-log losses. When we compare the independent vs. accumulated loss, the accumulation

provides a .2 dB improvement. However, when we listen to the estimated response, especially

in more complex tasks, we find that the accumulated loss introduces fewer artifacts and

perceptually sounds better. Thus, we fix the optimizer loss to be (3.15).

Input Features: Having selected the optimizer loss, we compare the model inputs. We

compare setting the optimizer input to be only the gradient ξk[τ ] = [∇k[τ ]] for an LMS-like
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learned optimizer (dark purple) and setting the optimizer to be the full signal set,

ξk[τ ] = [∇k[τ ],uk[τ ],dk[τ ],yk[τ ], ek[τ ]], (6.2)

for our selected RLS-like learned optimizer (light blue). As shown, the inputs have the second

largest effect on SNRd, and using the full signal set yields a notable 7.9 dB improvement.

Thus, we set the input to be the full signal set.

AF Unroll: With the optimizer loss and inputs fixed, we evaluate four different values

of AF unroll length, L = 2, 8, 16, 32, where L is the number of time-steps over which the

optimizer loss is computed in (3.15). Intuitively, a larger unroll introduces less truncation

bias but may be more unstable during training due to exploding or vanishing gradients. The

case where L = 2 corresponds to no unroll, since for L = 1 the meta loss is not a function of

the optimizer parameters and yields a zero gradient. As shown, for no unroll L = 2 (grey),

we get a reduction of the SNRd by 1.8 dB compared to our best model. When selecting the

unroll between 8, 16, 32, however, there is a small (< 1 dB) overall effect. That said, we find

that longer unroll values work better in challenging scenarios but take longer to train. As a

result, we select an unroll length of 16, as it represents a good trade-off between performance

and training time. Note, that the unroll length only affects training and is not used at test

time.

System Order Modeling Error Results & Discussion: Given our fixed set of optimizer

and meta-optimizer parameters, we evaluate the robustness of our Meta-ID AF to modeling

errors by studying what happens when we use an optimizee filter that is too short or too long

compared to the true system. We do so by testing a learned optimizer with 1) optimizee filter

lengths between 256 and 4096 taps and 2) held-out signals with true filter lengths between

256 and 4096, as well as full-length systems (up to 32, 000 taps).

Results are shown in Fig. 6.4. We measure performance by computing the segmental

SNRd score via (6.1) at convergence. As expected, when the adaptive filter order is equal

to or greater than the true system order, we achieve SNRs of ≈ 40 dB. It is interesting to

note that our learned AF was only ever trained on optimizee filters with an order of 1024

and 1024 tap true systems. This experiment suggests our learned optimizers can generalize

to new optimizee filter orders. Given that these filters can recover an unknown system in a

noiseless setting to high degrees of accuracy, we switch to a more challenging dataset with

noise mixed into d.

Higher-Order Dependencies – Noisy Not Real-Time: We show the effect of different higher-

order dependencies on performance (left) and complexity (right) in Fig. 6.5. In this setting,

we use the Microsoft AEC challenge dataset with noise (double-talk). We compare diagonal,
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block, and banded dependencies across state sizes of H = {16, 32, 64}. Block and banded

optimizers outperform their diagonal counterparts and reduce complexity.

For diagonal optimizers, scaling H has little impact on performance and increases com-

plexity. However, for higher-order optimizers, scaling H improves performance. For the

higher-order optimizers, larger groups force more updates to be processed by a single GRU.

For small groups, this improves performance and reduces complexity. Intuitively, neighboring

frequencies are related, and grouping them allows the optimizer to exploit such relationships.
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All frequencies within a group share the same hidden state, which reduces the number of

states, which reduces complexity. Overall, banded has the best SERLE but block is more

efficient. For this, we used an offline setup with a 4096 point window and a 2048 point hop.

Next, we move to a real-time capable setup, that could be used in a real telephony system.

Scalable Multi-Step Adaptive Filters – Noisy Real-Time: Next, we explore the low-latency

regime where we evaluate multi-block filters with a 512 point window a 256 point hop,

and B = 8 blocks. This section uses the same Microsoft AEC challenge dataset with

noise (double-talk) as the last section. We present the results of our experiments in Fig. 6.6,

where the best-performing optimizer from Fig. 6.3 is shown as Meta-AF-M in the third

column, and the banded group size 5 optimizer from Fig. 6.5 is shown in columns 4 −
6. Interestingly, scaling trends do not hold in the lower latency regime. However, the

scaling proposal from 4.4 results in the three right-most columns. These proposed models

incorporate all Meta-AF insights including higher-order modeling, closed-loop features, full

supervision, and multi-step optimization. The ability enabled by these gains is scaling, where

a user can reliably and effectively trade compute for more performance.

To validate these techniques, we perform an initial within method ablation, then study

scaling on a synthetic AEC task and vary 1) optimizer model sizes with small (S), medium

(M), and large (L) models 2) an unsupervised (U) or supervised (S) loss and 3) the number

of predict (P) and update (U) steps per frame. Each experiment is labeled with an identifier

(e.g. S·S·PU), indicating the size, supervision, and number of predict/update steps.

We perform an initial within-method ablation on the task of AEC to understand our

modifications. First, we compare a M·U·P variant trained with the full feature vs. the

pruned feature set. The full feature set achieves an ERLE of 6.39dB (not shown), while

the pruned set scores 7.85dB, over a dB gain. We expand on the pruned model and add

supervision, resulting in an ERLE improvement to 9.84dB, a gain of nearly 2dB. We then

use multiple steps per frame. Extending the supervised model with an update step increases

ERLE to 11.22dB, and doubling the iterations reaches 11.77dB. Combined, our changes yield

a 4dB ERLE gain. An interesting note which becomes important for the AEC section, is

that we used a modified OLA scheme to mitigate clicking artifacts. This change reduces the

ERLE by ≈ 1 dB ERLE, but removes clicking and sounds better.

The insights and advances proposed in this section apply to various real-world filtering

problems. In the next sections, we systematically explore a suite of more challenging real-

world tasks. These range from perceptually motivated tasks, to smart-system tasks, to

multi-channel, and full end-to-end pipelines. We take the results here and apply them as-is.

That is, we do not make any further custom designs for Meta-AF powered modules.

65



N
L

M
S

K
F

M
et

a-
A

F-
M

M
et

a-
A

F-
S

M
et

a-
A

F-
M

M
et

a-
A

F-
L

N
K

F-
S

SM
S-

A
F-

S

SM
S-

A
F-

M

SM
S-

A
F-

L

0

2

4

6

8

10

12

14
dB

SE
R

L
E

S 5K Parameters
M 16K Parameters
L 57K Parameters

Predict
Predict-Update
Predict-Update x 2

Predict
Predict-Update
Predict-Update x 2

Figure 6.6: Acoustic echo cancellation performance vs. model size, optimization steps per
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unsupervised (left) and supervised (right) approaches. Our proposed models, shown in bold
on the far right, demonstrate robust scaling performance in terms of parameters, and RTF.

6.2 ISOLATED ACOUSTIC ECHO CANCELLATION

In acoustic echo cancellation, the goal is to remove the far-end echo from a near-end

signal for voice communication by mimicking a time-varying transfer function, as shown

in Fig. 6.7. The far-end refers to the signal transmitted to a local listener and the near-end

is captured by a local mic. This is effective system identification with noise and real-time

constraints. We model the unknown transfer function between the speaker and mic with a

linear multi-delay frequency-domain filter hθ, measure the noisy response d which includes

the input signal u, noise n, and near-end speech s, and adapt the filter weights θ using gϕ.

The time-domain signal model is d[t] = u[t] ∗w+n[t] + s[t]. The AF loss is most often ISE

between the near-end and the predicted response. The FDAF near-end speech estimate is

ŝk[τ ] = dk[τ ] −wk[τ ]
Huk[τ ]. It is common for the AEC task to rely on post-processors (as

66



Figure 6.7: AEC block diagram. System inputs are fed to the adaptive filter and true
system (shaded box). The adaptive filter is updated to mimic the true system. The desired
response can be noisy due to near-end noise and speech (n[τ ], s[τ ]).

in our end-to-end telephony) so we also make the ideal clean speech available for training.

In multi-channel acoustic echo cancellation, the goal is again to remove the far-end echo

from a near-end signal. However, there may be multiple sources of echo and there may be

multiple near-ends to process. Practically, this still amounts to using an FDAF with multiple

near-end speech estimates ŝkm[τ ] = dkm[τ ] − wkm[τ ]
Huk[τ ] where uk[τ ] ∈ CBM ′ and M ′ is

the number of farend signals. This process is typically considered more challenging due to

the presence of AF solutions that do not correspond to the true system but still minimize

the loss. Such spurious solutions typically cause over-adaptation, over-suppression, or other

issues.

We measure echo cancellation performance using segmental echo-return loss enhance-

ment (ERLE) [159], short-time objective intelligibility (STOI) [160], and scale-invariant

signal-to-distortion ratio (SI-SDR) [161]. Segmental ERLE is

ERLE(du[τ ],y[τ ]) = 10 · log10
( ∥du[τ ]∥2
∥du[τ ]− y[τ ]∥2

)
, (6.3)

where du is the noiseless system response and higher values are better. When averaging, we

discard silent frames using an energy-threshold VAD. In scenes with near-end speech, we use

STOI ∈ [0, 1] to measure the preservation of near-end speech quality. Higher STOI values

are better. SI-SDR uses a = (ŝ⊤s)/∥s∥ and is SI-SDR(s, ŝ) = 10 · log10(∥as∥2/∥as− ŝ∥2).
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6.2.1 Prior Works

When we survey further improvements to AFs with a focus on acoustic echo cancella-

tion (AEC) [9, 10], numerous improvements have been proposed. For example, near-end

signal models have been proposed for handling simultaneous far-end and near-end activ-

ity (double-talk) [8, 12, 18] as well as state-space formulations [11, 14, 15, 16]. A few

works [148, 149] also propose to use higher-order frequency dependencies for AEC AFs,

likely motivated by the success of multivariate statistics for source separation [39, 40], but

showed varied performance improvement with increased complexity. We compare our ap-

proach to LMS, RMSProp, NLMS, BD-RLS, a diagonal Kalman filter (D-KF) model [11],

and Speex [12] for a variety of acoustic echo cancellation scenarios. Our scenarios, in in-

creasing difficulty, include single-talk, double-talk, double-talk with a path change, and noisy

double-talk with a path change and non-linearity. Single-talk refers to the case where only

the far-end input signal u is active. Double-talk refers to the case where both the far-end

signal u and near-end talker signal s are active at the same time.

6.2.2 Evaluation

We train gϕ via Algorithm 3.1 using one GPU, which took ≈ 72 hours. We use a four-

block multi-delay OLS filter (MDF) with window sizes of N = 1024 samples and a hop of

R = 512 samples on 16 kHz audio. In double-talk scenarios, we use the noisy near-end, d as

the target, and do not use oracle cancellation results (such as du).

With respect to datasets for single-talk, double-talk, and double-talk with path-change

experiments, we re-mix the synthetic fold of the ICASSP 2021 AEC Challenge dataset

(ICASSP-2021-AEC) [157] with impulse responses from [158]. We partition [158] into the

non-overlapping train, test, and validation folds and set the signal-to-echo-ratio randomly

between [−10, 10] with uniform distribution. To simulate a scene change, we splice two files

such that the change occurs randomly between seconds four and six. For the noisy double-

talk with nonlinearity experiments, we use the synthetic fold of [157]. We apply a random

circular shift and random scale to all files, each ten seconds long. For each task, there are

9000 training, 500 validation, and 500 test files. Finally, we also use an unmodified version

of the ICASSP-2021-AEC training, validation, and test set (does not include scene changes)

to compare to other previously published works directly. Overall, we find that our approach

significantly outperforms all previous methods in all scenarios, but has a larger advantage

in harder scenes—more details discussed below.

Single-Talk: Our approach (light blue, x) exhibits strong single-talk performance and
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Figure 6.8: AEC single-talk performance. Meta-AEC converges rapidly and has better
steady-state performance. We use this same legend for all AEC plots.

surpasses all baselines by>≈ 3 dB in both median and converged ERLE, as shown in Fig. 6.8.

Additionally, Meta-AEC converges fastest, reaching steady-state ≈ 4 seconds before other

baselines.

Double-Talk: Our method (light blue, x) converges fastest in double-talk, and matches the

D-KF in converged performance, as shown in Fig. 6.9. Meta-AEC converges ≈ 5 seconds

faster while scoring better in STOI. This result is striking as it is typically necessary to

either explicitly freeze adaptation via double-talk detectors or implicitly freeze adaption via

carefully derived updates as found in both the D-KF model (dark blue, down triangle) and

Speex (green, up triangle). We hypothesize our method automatically learns how to adapt

to double-talk in a completely autonomous fashion.

Double-Talk With Path Change: Our method (light blue, x) is able to more robustly handle

double-talk with path changes compared to other methods as shown in Fig. 6.10. Similar to

straight double-talk, our approach effectively learns how to deal with adverse conditions (i.e.

a path change) without explicit supervision, converging and reconverging in ≈ 2.5 seconds,

with .044 better median STOI. All other algorithms similarly struggle, even Speex (green,

up triangle), which has explicit self-resetting and dual-filter logic.

Noisy Double-Talk With Nonlinearities and Path Change: When we evaluate scenes with

noise, and nonlinearities to simulate loudspeaker distortion and path changes, we find that

our Meta-AEC approach (light blue, x) continues to perform well, as shown in Fig. 6.11.

That is, our peak performance is ≈ 2 dB above the nearest baseline. In STOI, Meta-AEC

scores .027 above Speex (green, up triangle). We hypothesize that our approach effectively

learns to compensate for the signal model inaccuracy, even if we only use a linear filter.
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Figure 6.9: AEC double-talk performance. Meta-AEC converges fastest and has a similar
peak performance to the D-KF while preserving near-end speech quality.

0.8 0.9 1.0
Median STOI

LM
S

RM
SPropNLM

S
BD-R

LSD-K
FSpe

ex
M

eta
-A

EC

0.825
0.886
0.875
0.852
0.875
0.892
0.936

0.0 1.6 3.2 4.8 6.5 8.1 9.7
Time (Seconds)

0

5

10

15
M

ed
ia

n
E

R
L

E
(d

B
)

Figure 6.10: AEC double-talk with a path change (shaded region) performance. Our ap-
proach re-converges rapidly with high speech quality.

ICASSP 2021 AEC Challenge Results: In addition to testing with our own variant of the

ICASSP-AEC-2021 dataset that includes scene changes, we test our work with an unmodified

version of the test set in Table 6.1. Furthermore, we evaluate performance when we train (or

tune) on our custom training dataset versus when we train on the original training dataset

(denoted with ⋆). See also a similar Table in past work [132]. To the best of our knowledge,

this dataset is the most recent and widely used dataset for benchmarking AEC algorithms.

Here, results from WebRTC-AEC3 and wRLS, β = 0.2 come from past work [132]. All other

methods have the same MDF filtering architecture as described above.

Our approach outperforms all methods we compare against for both training datasets,

including Speex and wRLS, which were the linear filters used in the first- and second-place
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Figure 6.11: AEC noisy double-talk with nonlinearities and a path change (shaded region)
performance. Meta-AEC learns to compensate for the nonlinearity.

Method STOI STOI⋆ ERLE (dB) ERLE⋆ (dB)

LMS 0.794 0.794 0.937 0.560
RMSProp 0.802 0.856 1.02 4.63
NLMS 0.854 0.861 4.81 5.96
BD-RLS 0.829 0.835 3.66 4.07
D-KF [11] 0.817 0.875 1.98 6.55

wRLS, β = 0.2 [132] N.A 0.85 N.A N.A
WebRTC-AEC3 [133] 0.82 N.A N.A N.A

Speex [12] 0.869 N.A 3.92 N.A
Meta-AEC 0.881 0.899 7.73 9.13

Table 6.1: ICASSP-2021-AEC test set linear filter results. Our proposed method outperforms
several past comparable linear-filtering approaches. A ⋆ denotes results when models were
trained/tuned on the ICASSP-2021-AEC data.

winners of the ICASSP 2021 AEC Challenge [135]. Interestingly, there is a significant effect

on training or tuning with data that includes scene changes (ours) vs. the original data (e.g.

RMSProp and D-KF [87]). That is, because the ICASSP-2021-AEC train and test set does

not include scene changes, most algorithms give better performance when trained/tuned on

the matching, unmodified train set, even though such results are less realistic.

Computational Complexity: Our learned AF has a single CPU core real-time factor (RTF),

computation / time, of ≈ 0.36, and 32ms latency (OLS hop size). Our optimizer network

alone has ≈ 14K complex-valued parameters and a single CPU core RTF of ≈ 0.31. While

this performance is already real-time capable, we suspect it could easily be improved with

better-optimized code.
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6.2.3 Scaling-Up Acoustic Echo Cancellation

In this section, we evaluate the proposed SMS-AF approach. This method enables scaling

performance by increasing model capacity and/or inference cost as shown. The goal of our

experiments is to benchmark SMS-AF and demonstrate how it scales across. We take the

initial ablation from the system identification section and then study scaling on an AEC task

and vary 1) optimizer model sizes with small (S), medium (M), and large (L) models and 2)

unsupervised (U) or supervised (S) loss and 3) the number of predict (P) and update (U)

steps per frame. Each experiment is labeled with an identifier (e.g. S·S·PU), indicating the

size, supervision, and number of predict/update steps. We label baseline methods when

applicable.

Prior Works: Our baselines are NLMS, KF [11], Meta-AF [93], HO-Meta-AF [94], and

Neural-Kalman Filter [134]. We also test several HO-Meta-AF model sizes as well as multi-

step NLMS, KF, and HO-Meta-AF.

When using overlap-save, we noticed artifacts due to rapid filter adaptation. So, we

applied a straightforward solution: overlap-add with a synthesis window, but no analysis

window. This aims to maintain analysis signal model integrity, while still removing clicking.

We use this synthesis-only overlap-add scheme for all models in this experiment.

Evaluation: We use a linear MDF filter with 8 blocks, each of size 512, a hop of 256, and

construct the output using overlap-add with a Hann window (16ms latency). For details

see Benesty et al. [9]. We use higher-order Meta-AF optimizers with banded coupling and

a group size of 5 [94]. This amounts to a Conv1D layer, two GRU layers, and a transposed

Conv1D layer. To train, we use Adam with a batch size of 16, a learning rate of 10−4, and

randomize the truncation length L with a maximum of 128. We apply gradient clipping

and reduce the learning rate by half if the validation performance does not improve for 10

epochs, and stop training after 30 epochs with no improvement. We use log-MSE loss on

the echo,

LS(du, e) = lnE[∥d̄u[τ ]− ē[τ ]∥2], (6.4)

where du[τ ] = u[τ ]∗w[τ ] is the true echo. All models are complex and trained on one GPU.

Note, our S, M, and L model sizes correspond to gϕ hidden state sizes of 16, 32, and 64 total

parameters counts of about 5K, 16K, and 57K respectively.

Next, we explore scaling in AEC as shown in Fig. 6.6 and Table 6.2. We attempt to scale

up our baselines and then do so with our proposed model. When scaling model size, we

notice that scaling the unsupervised model from S to L (S·U·P to L·U·P) results in a peak

gain of ≈ 1dB, to 8.03dB ERLE. In contrast, scaling the supervised model from S to L (S·S·P
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to L·S·P) yields larger gains, peaking at 11.62dB. When scaling optimization steps, we find

the unsupervised models from S·U·P to S·U·PUx2 results in marginal or even a negative

performance changes (indicating overfitting). In contrast, scaling from S·S·P to S·S·PUx2
provides +1dB, and L·S·P to L·S·PUx2 provides +2.65dB, showing supervision is crucial to

unlock the benefit of multiple opt. steps per frame. Our best·performing L·S·PUx2 scores

over 14dB ERLE, doubling the S·U·P performance of 7.09dB. In sum, SMS-AF outperforms

prior models, yielding ≈ 0.085H + 8dB, or an additional db for each 12 hidden units in the

optimizer.

When benchmarking against competing methods, we note that SOTA supervised NKF

method is the most comparable. Our S·S·PU model matches NKF performance while using

only one-fifth of the NKF MFLOP count. Our M·S·PU model further enhances all met-

rics and uses fewer MFLOPs. For our best-performing L·S·PUx2, we score 14.25dB ERLE,

a 4.96dB improvement over NKF. With respect to perceptual metrics, our top-performing

L·S·PUx2 model achieves over 11dB in real ERLE and a real AEC-MOS of 3.94, while re-

maining real-time on a single CPU core. Surprisingly, RTF scales non-linearly with MFLOPs

and model size, underscoring untapped scaling potential. In all, SMS-AF outperforms past

work in signal-level metrics, perceptual metrics, and on real playback.

6.3 ACOUSTIC ECHO CANCELLATION AND SPEECH ENHANCEMENT

Acoustic echo cancellation is typically just one element within a telephony pipeline. Given

the input mixture represented as d[t] = u[t] ∗w + n[t] + s[t], the goal of AEC is to reduce

it to n[t] + s[t], leaving the desired speech signal still affected by noise. Generally, AEC

is not flawless, and the speech signal may still carry some residual echo. To address this,

engineers usually build a post-processing module for residual echo and noise suppression. In

this section, we treat this as another learning problem by training a post-processing DNN

to serve as a speech enhancer, ultimately recovering the clean, desired speech. This pipeline

is illustrated in Fig. 6.12, where the output of AEC is fed into another DNN.

6.3.1 Prior Works

In AEC, neural networks can be trained for residual echo suppression, noise suppres-

sion, reference estimation, and more [45, 46, 47, 48, 49, 50, 51, 52, 53]. We compare

block-frequency NLMS, RLS, KF [11], and diagonalized Meta-AF [93] to higher-order Meta-

1The public NKF implementation is not an online algorithm.
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Model ERLE↑ Real↑
ERLE

AEC-
MOS↑

Real
AEC-
MOS↑

MFLOPs↓ RTF↓

Mixture - - 2.33 2.69 - -
NLMS·P 4.37 1.74 3.16 3.06 0.08 0.31
KF·P 5.44 2.71 3.32 3.18 0.12 0.32
KF·PU 6.65 3.83 3.65 3.38 0.12 0.35
KF·PUx2 7.15 5.58 3.89 3.66 0.18 0.39

M·U·P [93] 6.30 2.99 3.62 3.31 9.02 0.41
S·U·P 7.09 3.30 3.57 3.26 2.80 0.36
M·U·P 7.85 3.75 3.62 3.30 7.07 0.39
L·U·P 8.03 3.91 3.65 3.33 20.42 0.48

NKF·S·PU 9.29 6.38 3.69 3.59 10.16 1

S·S·P 8.63 3.81 3.63 3.31 2.80 0.36
M·S·P 9.84 4.62 3.73 3.40 7.07 0.39
L·S·P 11.62 5.52 3.83 3.50 20.42 0.48

S·S·PU 9.13 6.05 3.85 3.55 2.81 0.38
M·S·PU 11.22 7.87 3.99 3.72 7.08 0.41
L·S·PU 13.34 9.78 4.05 3.85 20.43 0.49

S·S·PUx2 9.80 6.96 3.85 3.66 5.56 0.50
M·S·PUx2 11.77 8.86 4.04 3.80 14.11 0.56
L·S·PUx2 14.25 11.15 4.12 3.94 40.81 0.69

Table 6.2: AEC Performance vs. Computational Cost on both the real and synthetic folds
of the Microsoft AEC Challenge dataset.

AF with block and banded frequency dependency structures. We also train a pure neural

network-based speech enhancer based on the model in Microsoft AEC challenge [157].

6.3.2 Evaluation

For AEC, we use a 4096 pt. window and a 2048 pt. hop. We train Meta-AF models using

(3.16) and the training scheme from algorithm 3.1 with Adam (λ = 10−4). We train the

DNN-SE using a 512 point window, 256 point hop, Adam (λ = 6·10−4), with AEC-processed

inputs and clean speech as the target using mean-squared error on the magnitude short-time

Fourier-transform. We set L = 20 for Meta-AF training and L = 150 for DNN-SE training.

We use gradient clipping, cut the learning rate in half if validation performance does not

improve for 5 epochs, and stop training after 16 with no improvement.

For our enhancermφ(e[τ ],u[τ ]), we follow [157] and use a 2-layer GRU with log-magnitude

74



Figure 6.12: Meta-AF for AEC with a DNN speech enhancer. The shaded box represents an
unknown system. The system acts as a complete telephony pipeline and attempts to remove
echo, residual echo, and any non-speech noise.

short-time Fourier transforms of the far-end, u[τ ] and the AEC output e[τ ] as inputs with

output,

ŝ[τ ] = e[τ ]⊙M[τ ], (6.5)

using magnitude mask, M[τ ] ∈ RK bounded with a Sigmoid function. ⊙ is the hadamard

product. mφ(·) is trained to remove noise and residual echo.

We show the effect of AEC on speech enhancement performance in Fig. 6.13. In solid

colors, we show the performance of the AEC, and in striped colors we show the performance

of AEC along with a DNN-SE. We show three Meta-AEC models all with H = 32: diagonal,

banded with group 9, and banded with group 3. Banded-3 performs best and beats KF by

3.21 dB SI-SDR and .038 STOI. The less complex Banded-9 performs similarly and both

beat diagonal Meta-AEC by > 1 dB SI-SDR and > .01 STOI. The trend holds when paired

with a DNN-SE. Banded-9 surpasses KF by 2.2 dB SI-SDR and .018 STOI and diagonal by

1.3 dB SI-SDR and .01 STOI. This demonstrates that modeling higher-order dependencies

translates to better downstream performance and highlights that AF advances can improve

overall system performance. The raw mixture scores−1.15 dB SI-SDR and 0.78 STOI. Oracle

AEC and DNN-SE score 32.27 dB SI-SDR and 0.97 STOI.

Perceptually, the Banded-3 model with a DNN-SE sounds very good. Residual echo is

basically eliminated and noise levels are very low. The models are also quite practical. All

AECs run in real-time on a single CPU core with RTFs of: 0.12 for KF, 0.15 for Diag.,

0.18 for Banded-3, and 0.13 for Banded-9. Banded-9 is as fast as KF and outperforms

Diag. Meta-AEC models have 14K complex parameters. Note that this DNN-SE approach
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Figure 6.13: Effect of AEC on DNN-SE performance. Block Meta-AEC performs best before
and after the DNN-SE.

is compatible with any AEC, including the SMS-AF approaches for even better performance.

We evaluated the M ·S ·PU SMS-AF model with this same DNN-SE setup and scored some

16.23dB SI-SDR all while running with a latency of 16ms, and a real-time-factor (processing

time / elapsed-time) of 0.48.

6.4 ACOUSTIC ECHO CANCELLATION AND KEYWORD SPOTTING

Adaptive filters (AFs) are essential for many smart systems, including automatic speech

recognition, sound event detection, and keyword spotting [162]. These AFs serve as key

preprocessing steps and are designed to enhance the performance of their downstream com-

ponents by removing noise, reverberation, and other distortions from their input signals.

Traditionally, AFs have been optimized for signal-level objectives, such as minimizing mean-

squared error, using techniques like recursive least squares [1, 3, 5]. However, recent ad-

vancements in deep learning have introduced methods for controlling pre-built AF update

rules [78, 155, 163], or for learning entirely new update rules from scratch [92, 93]. Despite

these innovations, existing techniques often do not take into account the downstream task

and may not lead to the best performance in practice.

Our goal is a framework that allows for the incorporation of downstream classification

task knowledge into AFs without task-dependent design or test-time feedback, CT-Meta-

AF. CT-Meta-AF is unique in that it does not require oracle signal-level supervision such

as impulse responses or clean speech. Instead, it leverages a combination of signal-level

self-supervision and automatic classifier feedback. This eliminates the need for manual
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Figure 6.14: The echo canceller hθ[τ ], controlled by optimizer gϕ, cancels own-playback and
passes its output to keyword classifier mφ. The optimizer is trained end-to-end with the
classifier, improving performance without the need for additional tuning.

task/model-dependent tuning and is directly compatible with both off-the-shelf and end-to-

end jointly trained models.

6.4.1 Prior Works

Several pioneering works demonstrated that incorporating of downstream task knowledge

into AF control through manual unification schemes can enhance performance [73, 164, 165].

This improvement necessitates a complex, task/model-dependent derivation process as well

as feedback from the downstream model to the AF at test time. This line of work inspired

many DNN-based approaches. These DNN approaches can be broadly grouped into two

categories. The first explicitly decouples preprocessing and downstream operations, treating

them as sequential components within a larger DNN pipeline [76, 83, 162, 166]. This is highly

modular but typically requires more complex training schemes and engineering overhead [80].

The second takes an end-to-end strategy, trading modularity for simpler design and training

schemes [81, 85, 156, 167]. These approaches have varied trade-offs, making them suitable

for different scenarios.

6.4.2 Evaluation

To evaluate our framework, we apply it to two fundamental tasks for smart devices: acous-

tic echo cancellation (AEC) and keyword spotting (KWS). AEC is a critical component of

nearly all devices with own-playback, and KWS is essential for enabling hands-free operation
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Figure 6.15: Detailed view of the AEC, Optimizer, and KWS. The AEC preprocesses the
KWS inputs and the optimizer controls the AEC parameters. At test time, only the AEC
parameters change

of smart devices. We construct a challenging joint AEC and KWS dataset by combining

two existing datasets [157, 168], and benchmark CT-Meta-AFs against Meta-AF [94] and

a Kalman Filter [15], two state-of-the-art approaches for signal-level objectives. Results

show that CT-Meta-AF achieves consistent performance gains across synthetic and real

playback scenarios, different playback lengths, various task/model configurations, and both

pre-trained and joint-trained keyword spotting models.

The goal of our setup is to demonstrate that CT-Meta-AF strikes the right balance between

flexibility and structure, enabling high performance while still being a direct replacement

for existing approaches. We evaluate the performance of CT-Meta-AF on KWS with device

playback. The AEC removes own-playback from recordings by learning the echo path, as

shown in Fig. 6.14. For model details, see Fig. 6.15. We evaluate three scenarios: one with

a pre-trained KWS, one with test-time swapped KWS, and one with a jointly trained KWS,
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all implemented using JAX [141], Haiku [142], and Meta-AF [93]. All CT-Meta-AFs use

the classifier for training. The jointly trained KWS is optimized end-to-end and trained

simultaneously with the AEC.

To perform AEC, we fit an AF to cancel echo, e[τ ]. The signal model is d[t] = σ(u[t]) ∗
w+ n[t] + s[t], where n is noise, s is a keyword, σ(·) is a nonlinearity, and w is the transfer

function. We only assume access to the playback, u and its recording, d. We set up KWS

as a multi-class classification task, where the keyword s belongs to a single class c. All

classification-trained Meta-AFs use the classifier for training. The jointly trained KWS is

optimized end-to-end and trained simultaneously to improve performance.

To perform AEC, we fit an AF to cancel the echo. At inference time, we only assume

access to the playback, u and echoic mixture, d. The AF uses frequency-domain overlap save

with a window of K = 1024, a hop of R = 512, and B = 4 blocks. Each block is denoted

by CFilter in Fig. 6.15. Each AEC filters the farend u[τ ] with estimated filter ŵ[τ ] and

subtracts the result from d[τ ]. For a review of AEC see Benesty et al. [9]. We compare our

approach to four baselines: regular Meta-AF [93], a Kalman filter AEC (Diag. KF) [15], No-

Echo, and No-AEC. We grid-search-tune Diag. KF using KWS accuracy. No-Echo simulates

running the KWS model in a playback-free environment, while No-AEC performs no echo

cancellation and simulates deploying a KWS without AEC.

CT-Meta-AF and Meta-AF use the same higher-order architecture [94] and training scheme,

with the only difference being the loss. For CT-Meta-AF, we use λ = 0.5 in (5.5), and for

regular Meta-AF, we use 0. We set the group size, group hop, and hidden size to 5, 2, and

48, respectively (see Fig. 6.15 for details). We use Adam with a batch size of 16, a learning

rate of 2 · 10−4, momentum β1 = 0.99, and we randomize the truncation length L. Addi-

tionally, we apply gradient clipping and reduce the learning rate by half if the validation

performance does not improve for 10 epochs, and we stop training after 30 epochs with no

improvement. For pre-trained KWS experiments, we train ϕ from scratch, and for joint

training, we initialize with the best pre-trained ϕ. When joint training with Diag. KF or

Meta-AF we do not update the pre-trained ϕ and just train the KWS. Each model has 32K

complex parameters and takes < 48 hours to train on a single RTX 2080Ti.

We set up KWS as a multi-class classification task, where the keyword s belongs to a

single class c. We base our KWS on the model proposed by Cornell et al. [85]. Our version

uses 40 log-mel-filter-bank inputs and short-time Fourier transform with a 256 point hop

and a 512 point window. The KWS has 3 residual blocks, each with a 1 × 1 convolution,

layer norm, ReLU, a dilated convolution with kernel size 5, layer norm, ReLU, and a final

1 × 1 convolution. The last residual block is averaged across time and fed to a dense layer

with softmax to predict the class distribution. See Fig. 6.15. We use a binary cross-entropy
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loss and train the KWS for 50 epochs with a batch size of 128, a learning rate of 10−3,

and use the best checkpoint based on validation performance. We pre-train on a dataset

without playback. For joint training, due to limited GPU capacity, we use a batch size of

16, a learning rate of 10−4, β1 = .9, reduce the learning rate by half after 10 epochs with

no improvement, and stop training after 50 epochs with no improvement. All KWS models

have ≈ 300K parameters and use ≈ 20 MFLOPs per second.

We use synthetic playback during training and evaluate our models using both synthetic

and real playback data from the Microsoft AEC Challenge [157] and keywords from the

Google Speech Commands V2 dataset [168], sampled at 16KHz. During training, we trim

playback to 3 seconds, randomly mix playback with keywords, zero-pad keywords as needed,

apply a random shift, and set the signal-to-echo ratio (SER) uniformly at random between

−25 dB and 0 dB. Each keyword is used once. To test, we use playback trimmed to either

4 or 12 seconds. We evaluate three datasets: a 35-class dataset and two smaller datasets

with 10 and 2 classes, respectively. The smaller datasets contain approximately one-third

and one-tenth of the full dataset. We always use the same folds and never mix across folds.

To evaluate performance, we use macro and micro averaged F1, where higher is better. The

goal is to reflect the class imbalance in the KWS Dataset. We display results as macro

F1 (micro F1).

Here, we investigate the effect of classification training for Meta-AF on AEC with a

downstream KWS. This task simulates a device attempting to classify a spoken keyword

while emitting playback. We show results for zero playback (No-Echo), no cancellation (No-

AEC), and Diag. KF, Meta-AF-based AEC without classification training (Meta-AEC),

and Meta-AF-based AEC with classification training (CT-Meta-AEC). The Diag. KF and

Meta-AEC baselines are state-of-the-art traditional and data-driven approaches. All models

are trained on synthetic playback with challenging SERs distributed uniformly at random

between −25 dB and 0 dB, and real playback is only used for evaluation. We use an off-the-

shelf KWS that is not customized for AEC in sections 6.4.2 and 6.4.3 but do experiment with

retraining the KWS in section 6.4.3. We evaluate longer playback and compute statistical

significance for select models. Across experiments, CT-Meta-AF proved highly stable and

required no additional tuning, making it a drop-in replacement for prior approaches.

Pretrained KWS: First, we test the effectiveness of classification training as described in

(5.6). In Table 6.3, all AEC models share a frozen KWS model pre-trained on keywords

without playback. This setup mimics using an off-the-shelf KWS without retraining but

with access to your own dataset, a common real-world setup. For CT-Meta-AEC training,

we use λ = 0.5 when computing LCM . The F1 degradation from No-Echo to No-AEC shows

the importance of AEC.
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Model Synthetic Playback Real Playback
No-Echo .928 (.935) .931 (.936)
No-AEC .087 (.098) .102 (.117)
Diag. KF .196 (.208) .165 (.180)
Meta-AEC .335 (.340) .226 (.236)

Meta-AEC-KWS .500 (.508) .317 (.326)

Table 6.3: F1 Macro (F1 Micro) with a pretrained KWS and SER ∈ [−25, 0] dB. No-AEC
and No-Echo are lower/upper bounds.

In Table 6.3, CT-Meta-AEC significantly outperforms its signal-level Diag. KF and Meta-

AEC counterparts, as indicated by better F1 scores. In synthetic playback (left column),

CT-Meta-AEC improves over Meta-AEC by some .165 F1. This gap persists in real playback,

where CT-Meta-AEC is the top-performing model by .091 F1. Interestingly, CT-Meta-AEC

achieves a 5.80 dB reduction in echo, while regular Meta-AF attains a 9.57 dB reduction.

This observation underscores the limitations of signal-level metrics as effective descriptors

of downstream performance, especially in the context of nonlinear processing methods such

as DNN-based KWS. Classification-based training effectively addresses this discrepancy and

optimizes downstream performance. In a secondary evaluation with 12-second signals, CT-

Meta-AEC outperforms Meta-AEC by 0.279 F1 in synthetic playback and 0.119 F1 in real

playback.

6.4.3 Specialization and Sensitivity

Next, we study the specialization capabilities of CT-Meta-AEC in different KWS setups.

We use the approach from (5.7) to train three CT-Meta-AEC models: CT-Meta-AEC-35,

CT-Meta-AEC-10, and CT-Meta-AEC-2, corresponding to datasets with 35, 10, and 2 key-

word classes, respectively. We assess the performance of each CT-Meta-AEC model on all

three datasets, but always use a downstream KWS model specifically trained on a matching

keyword setup. Table 6.4 presents the results of our experiments on synthetic playback sce-

narios, where each row corresponds to a distinct AEC model and each column represents a

unique test-time KWS configuration. The first row displays our Meta-AEC baseline. Table

entries on the diagonal show matched train/test setups.

In all columns of Table 6.4, CT-Meta-AEC with a matching KWS performs best. This

demonstrates that CT-Meta-AEC is learning a specialized optimizer (the diagonal) which

outperforms both generalist optimizer (top row) and optimizers trained on different mod-

els (off-diagonal). Notably, results above the diagonal show that specialization can yield
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Model KWS-35 KWS-10 KWS-2
Meta-AEC .335 (.340) .476 (.465) .751 (.754)

Meta-AEC-KWS-35 .500 (.508) .513 (.483) .786 (.788)
Meta-AEC-KWS-10 .344 (.348) .533 (.529) .781 (.781)
Meta-AEC-KWS-2 .274 (.281) .413 (.400) .802 (.802)

Table 6.4: Specialization of classification-trained Meta-AEC with performance shown as F1
Macro (F1 Micro). A different model with different keywords is swapped in at test time.
SER ∈ [−25, 0] dB.

Model Synthetic Playback Real Playback
No-Echo .922 (.928) .931 (.936)
No-AEC .609 (.619) .583 (.593)
Diag. KF .778 (.781) .690 (.698)

Meta-AEC* .870 (.876) .746 (.754)
Meta-AEC-KWS* .871 (.877) .754 (.762)

Table 6.5: F1 Macro (F1 Micro) with a jointly trained KWS and SER ∈ [−25, 0] dB. No-AEC
and No-Echo are lower/upper bounds. An asterix denotes that we averaged three trials.

superior results even in the presence of limited training data. Specifically, Meta-AEC and

CT-Meta-AEC-35, which are trained with three times more data than CT-Meta-AEC-10,

are surpassed by the latter on 10 class KWS. This suggests that classification training is a

data-efficient approach for improving performance on downstream tasks. The results from

mismatched train/test setups show that CT-Meta-AECs are good at related tasks, and usu-

ally still outperform Meta-AEC.

Jointly Trained KWS: We investigate joint training of the AEC and KWS to simulate

having sufficient data for training a complete system, without oracle signal-level supervi-

sion. Both the AEC and KWS models undergo joint training, following the approach in

(5.7). The KWS models undergo a pre-training phase on scenes devoid of playback, fol-

lowed by fine-tuning using the output of their corresponding AEC models. This represents a

significant departure from the approach outlined in (5.6), where KWS models were trained

without consideration for echo presence. We call this approach JCT-Meta-AEC. For statis-

tical robustness, we ran three separate trials of the meta-models.

In Table 6.5, we find that the training scheme from (5.7) improves performance. JCT-

Meta-AEC outperforms Meta-AEC by .008 F1 (p-value .01) in real playback scenarios, un-

derscoring the efficacy of classification training for real-world performance. While JCT-

Meta-AEC outperforms Meta-AEC on synthetic data, the improvement is not significant.

However, on the longer 12-second test set, JCT-Meta-AEC beats Meta-AEC by a margin of
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0.057 (p-value .0005). Of note, we did not encounter any training stability issues.

Varying the size of Meta-AEC and Meta-AEC-KWS models showed that the performance

gap increased with size. At all sizes, the performance gap increased with SER, implying

a better KWS architecture could improve performance significantly. Meta-AEC-KWS was

also tolerant to quantization, unlike classic AFs. Finally, Meta-AEC is real-time capable

and KWS improvements come without additional inference costs.

In this section, we proposed a simple yet effective approach for improving the performance

of downstream classification tasks by incorporating classifier feedback into learned adaptive

filter update rules. Our approach, classification-trained meta-adaptive filtering (CT-Meta-

AF) enables end-to-end training without oracle single-level supervision. We evaluated CT-

Meta-AF on echo cancellation and keyword spotting and observed consistent performance

gains across synthetic and real playback, multiple keyword configurations, and both pre and

jointly-trained keyword models. CT-Meta-AF yields performance improvements without

additional inference costs or manual tuning. We believe our approach has the potential to

improve many adaptive filter pipelines, thanks to its plug-and-play design and promising

real-world performance.

6.5 EQUALIZATION

Inverse modeling is a class of AF problems where the goal is to invert some unknown

system. In equalization, the goal is to estimate the inverse of an unknown transfer function,

while only observing the input and outputs of the forward system, as shown in Fig. 6.16.

This is a common component of loudspeaker tuning or active noise control. We model the

unknown inverse transfer function with a linear frequency-domain filter hθ, measure the

response d to an input signal u, and adapt the filter weights θ using gϕ. The AF loss is

usually the ISE between the true and predicted responses. More precisely, the frequency-

domain AF output is yk[τ ] = wk[τ ]
Huk[τ ].

We measure performance with signal SNRd, and system SNRw. We define these as

SNRd(d,y) = 10 · log10
( ∥d∥2
∥d− y∥2

)
(6.6)

SNRw(ŵ
−1,w−1) = 10 · log10

( ∥|w−1|∥2
∥|w−1| − |ŵ−1|∥2

)
(6.7)

respectively, where higher is better. We compute SNRw using the inverse system magnitude,

which ignores the phase.

83



Figure 6.16: Inverse modeling block diagram. System outputs are fed to the adaptive filter.
The adaptive filter is continually updated to invert the unknown system (shaded box).

6.5.1 Prior Works

Equalization (EQ) can be formulated as an inverse modeling problem, has been explored

in single- and multi-channel formats, and is particularly useful for sound zone reproduction

and active feedback or noise control [19, 20, 21, 22, 23, 24, 169]. We compare our Meta-EQ

approach to LMS, RMSProp, NLMS, and D-RLS on the task of frequency equalization.

6.5.2 Evaluation

We train gϕ via Algorithm 3.1 on one GPU, which took at most 36 h. We use an OLS

filter with a window size of N = 1024 samples and a hop of R = 512 samples on 16 kHz

audio. To construct the equalization dataset, we use speech from the DAPS dataset [170],

take the cleanraw recordings as inputs, and apply random equalizer filters from the sox

library to generate the outputs, where we randomly pick between [5, 15] filters with settings

c ∈ [1, 8] kHz, g ∈ [−18, 18], and q ∈ [.1, 10]. All values are sampled uniformly at random

to produce 16, 384 train, 2048 validation, and 2048 test signals, all 5 seconds long. At train,

validation, and test time we truncate the system response to 512 taps. Additionally, we

ablate the equalization filtering mechanics for two cases: constrained and unconstrained

filters (optimizee architecture modifications). In the constrained case, we set hθ to use

standard OLS. However, in the unconstrained case, we set hθ to use aliased OLS where
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Figure 6.17: Equalization results for signal (SNRd) and system (SNRw) SNR. Meta-EQ
performance is the least impacted by constraints.

Zw = IK . This comparison lets us test if Meta-EQ is automatically learning constraint-

aware update rules. We train a new gϕ for each case (no separate tuning) and tune all

baselines for each case.

Results & Discussion: We find our approach (blue, solid) outperforms LMS, RMSProp,

NLMS, and D-RLS for our equalization task by a noticeable margin as shown in Fig. 6.17

and further verify with a qualitative analysis plot in Fig. 6.18.

Constrained vs Unconstrained: For the unconstrained case, our method outperforms D-

RLS in SNRd by .75 dB and by 4.67 dB in SNRw. When we look at the constrained case,

the performance for all models is degraded. Interestingly, however, our performance is

proportionally degraded the least. We hypothesize that our approach learns to perform

updates that are aware of the constraint.

Temporal Performance Analysis: We display the final system and convergence results in

Fig. 6.18. Our Meta-EQ model finds better solutions more rapidly than D-RLS. D-RLS

diverged ≈ 300 times but Meta-EQ never did.

Computational Complexity: Our learned AF has a single CPU core RTF of ≈ 0.24, and

32ms latency. Our optimizer network alone has ≈ 14K complex-valued parameters and a

single CPU core RTF of ≈ 0.19.
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Figure 6.18: Comparison of true and estimated systems over time. The Meta-EQ system
rapidly fits to the correct inverse model. The top plot shows an example system and the
bottom shows SNRw over time across the test set.

6.6 DEREVERBERATION

Prediction tasks are widespread in AFs. In some prediction tasks recovering the system is

the goal and in others, the predicted values are the most important. In dereverberation, the

goal is to remove reverb from a signal. We do this via multi-channel linear prediction (MCLP)

or the weighted prediction error (WPE) formulation, as is commonly used for speech-to-text

pre-processing. The WPE formulation is based on the idea of being able to predict the

reverberant part of a signal from a linear combination of past samples, most commonly in

the frequency-domain [25, 26] and shown as a block diagram in Fig. 6.19. We use a multi-

channel linear frequency-domain filter hθ and adapt the filter weights θ using a gϕ. Often,

normalized ISE is the loss.

Assuming an array of M microphones, we estimate a dereverberated signal with a linear

model via

ŝkm[τ ] = dkm[τ ]−wk[τ ]
Huk[τ ] (6.8)

where ŝkm[τ ] ∈ C is the current dereverberated signal estimate at frequency k and channel

m, dkm[τ ] ∈ C is the input microphone signal, wk[τ ] ∈ CBM is a per frequency filter with B
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Figure 6.19: Prediction block diagram. A buffer of past inputs are used to estimate a future,
unknown signal. The delay, z−D signifies a delay by D frames.

time frames and M channels flattened into a vector, and uk[τ ] ∈ CBM is a running flattened

buffer of dk[τ −D].

We then minimize a per channel and frequency loss

L(ŝkm[τ ], λk[τ ]) =
∥ŝkm[τ ]∥2
λ2
k[τ ]

, (6.9)

λ2
k[τ ] =

1

M(B +D)

τ∑
n=τ−B−D

dk[n]
Hdk[n], (6.10)

where λ2
k[τ ] is a running average estimate of the signal power and dk[τ ] ∈ CM . We use

this formation within our framework to perform online multi-channel dereverberation or

Meta-WPE and focus on dereverberating a single output channel.

We measure performance with two metrics, segmental speech-to-reverberation ratio (SRR)

[31] and STOI. SRR is a signal level metric and measures how much energy was removed

from the signal. It is computed as

SRR(dk[τ ], ŝk[τ ]) = 10 · log10
( ∥ŝk[τ ]∥2
∥dk[τ ]− ŝk[τ ]∥2

)
, (6.11)

where smaller values indicate more removed energy and better performance. STOI is com-

puted between the dereverberated signal estimate and the ground truth anechoic signal.
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6.6.1 Prior Works

Dereverberation can be formulated as a weighted prediction (WPE) problem and has been

extensively studied in this context [25, 26, 27, 28, 29, 30, 31]. We compare our Meta-WPE

to frame-online NARA-WPE [30], a BD-RLS-based AF that uses the WPE formulation.

6.6.2 Evaluation

We train gϕ via Algorithm 3.1 on two GPUs, which took at most 24 h. We use an OLA filter

with a Hann window size of N = 512 samples and a hop of R = 256 samples on 16 kHz audio.

We fix the buffer size B = 5 taps and the delay to D = 2 frames. We use the simulated

REVERB challenge dataset [171]. The REVERB challenge contains echoic speech mixed

with noise at 20 dB in small (T60 = .25 sec), medium (T60 = .5 sec) and large (T60 = .7 sec)

rooms at near and far distances. The array is circular with a diameter of 20 cm. Background

noises are generally stationary. The dataset has 7861 training files, 1484 validation files, and

2176 test files. We ablate the filter size and inputs across M = 1, 4, 8 microphones (optimizee

size and input modification). We seek to test if our method can scale from single- to multi-

channel tasks without modification. We train a new gϕ for each M (no tuning). We find that

our approach (blue, solid) outperforms NARA-WPE in SRR across all filter configurations,

but is worse in STOI as shown in Fig. 6.20. We discuss this below.

Overall and Temporal Performance As shown in Fig. 6.20, Meta-WPE (blue, solid) scores

strongly on SRR, where our single-channel Meta-WPE model scores better than 4 and 8

channel NARA-WPE (red, dotted) models. However, as shown by STOI, the perceptual

quality is poor. While Meta-WPE is solving the prediction more rapidly, as shown by

segmental SRR, it is not doing so in a perceptual pleasing manner. Previous studies [31, 172]

have also encountered this phenomenon, and propose a variety of regularization tools to

align the instantaneous optimization objective with perceptually pleasing processing. We

re-ran these experiments with a buffer of size B = 10 as well as with larger and smaller

optimizer network capacities and found this trend was consistent. As a result, we conclude

our approach is very effectively improving the online optimization of the target loss, but the

instantaneous loss itself needs to be changed to better align with perception.

Computational Complexity The 4 channel learned AF has a single CPU core RTF of

≈ 0.47, and 16ms latency. Our Meta-WPE optimizer network alone has ≈ 17K complex-

valued parameters and single CPU core RTF of ≈ 0.38.
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Figure 6.20: Dereverberation performance in terms of SRR. Meta-WPE excels in SRR, a
metric that measures energy removed. However, in STOI, Meta-WPE scores worse.

6.7 ISOLATED BEAMFORMING

In interference cancellation, the task is to process some signal given some sort of processed

or otherwise extracted signal. In this task, the goal is to remove the interfering noise provided

spatial information about the source of interest. We do this by using the minimum variance

distortionless response (MVDR) beamformer. The MVDR beamformer can be implemented

as an AF using the generalized sidelobe canceller (GSC) [38] formulation and is commonly

used for far-field voice communication and speech-to-text pre-processing. We depict a version

of this problem setup in Fig. 6.21 and use a linear frequency-domain filter hθ. We use the

mixture d[τ ] as the target, informed input u[τ ], and adapt the filter weights θ[τ ] using our

learned Meta-GSC AF gϕ and ISE AF loss.

Assuming an array of M microphones, we have the time-domain signal model for mic m

via,

um[t] = rm[t] ∗ s[t] + nm[t] (6.12)
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Figure 6.21: Informed interference cancellation block diagram. An auxiliary signal is used
as input to an adaptive filter which is fit to an alternate signal.

where um[t] ∈ R is the input signal, nm[t] ∈ R is the noise signal, s[t] ∈ R is the target signal,

and rm[t] ∈ R is the impulse response from the source to mic m. In the time-frequency

domain with a sufficiently long window, this can be reformulated as

ukm[τ ] = rkm[τ ]sk[τ ] + nkm[τ ]. (6.13)

The GSC beamformer also assumes access to a steering vector, vk. While estimating the

steering vector is well studied [38], it remains non-trivial for real-world applications. For our

case, we assume access to a clean speech recording sk[τ ] and first compute

Φss
k [τ ] = γΦss

k [τ − 1] + (1− γ)(sk[τ ]sk[τ ]
H + λIM) (6.14)

where Φss
k [τ ] ∈ CM×M is a time-varying estimate of the target signal spatial covariance

matrix, γ is a forgetting factor, and λ is a regularization parameter. We then estimate the

steering vector by computing the normalized first principal component of the target source

covariance matrix,

ṽk[τ ] = P(Φss
k [τ ]) (6.15)

vk[τ ] = ṽk[τ ]/ṽk0[τ ] (6.16)

where P(·) extracts the principal component and vk[τ ] ∈ CM is the final steering vector.
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We then use the steering vector to estimate a blocking matrix Bk[τ ]. The blocking matrix

is orthogonal to the steering vector and can be constructed as

Bk[τ ] =

[
− [vk1[τ ],··· ,vkM [τ ]]H

vk0[τ ]H

IM−1×M−1

]
∈ CM×M−1. (6.17)

The distortionless constraint is then satisfied by applying the GSC beamformer as

ŝk[τ ] = (vk[τ ]−Bk[τ ]wk[τ ])
Huk[τ ] (6.18)

where wk[τ ] ∈ CM−1 is the adaptive filter weight, and the desired response for the loss is

dk[τ ] = vk[τ ]
Huk[τ ].

Our objective is to learn an optimizer gϕ that minimizes the AF ISE loss using this GSC

filter implementation. By doing so, we learn an online, adaptive beamformer that listens in

one direction and suppresses interferers from all others.

We measure performance using scale-invariant source-to-distortion ratio (SI-SDR) [161]

and STOI. SI-SDR is computed as

a = (ŝ⊤s)/∥s∥ (6.19)

SI-SDR(s, ŝ) = 10 · log10(∥as∥2/∥as− ŝ∥2), (6.20)

where larger values indicate better performance. STOI is computed between the output

and desired speech signal. We also compute the BSS eval metrics, source-to-distortion

ratio (SDR), source-to-interference ratio (SIR), and source-to-artifact ratio (SAR) [173].

6.7.1 Prior Works

Finally, multi-microphone enhancement or beamforming (BF) can be formulated as an in-

formed interference cancellation task and also has a breadth of associated BF approaches [32,

33, 34, 35, 36, 37, 38] and unmixing algorithms [39, 40, 41, 42, 43, 44].

6.7.2 Experimental Design

We compare our Meta-GSC beamformer to LMS, RMSProp, NLMS, and BD-RLS beam-

formers, in scenes with either diffuse or directional noise sources.
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Figure 6.22: Performance comparison across interferers. The directional noise is the most
challenging and diffuse is the easiest.

6.7.3 Evaluation

We use the CHIME-3 challenge proposed in [174, 175]. This dataset contains scenes with

simulated speech and relatively diffuse noise sources in a multi-channel environment. The

array is rectangular and has six microphones spaced around the edge of a smart tablet.

There are 7, 138 training files, 1, 640 validation files, and 1, 320 test files. When running

this dataset with directional sources, we mix spatialized speech from one mixture with the

spatialized speech from a random other mixture. We do not mix speech across folds.

We find that Meta-GSC outperforms LMS, RMSProp, NLMS, and BD-RLS in median per-

formance metrics as shown in Fig. 6.22 and Fig. 6.23 and in a qualitative analysis in Fig. 6.24.

Diffuse Interferers: The diffuse scenario tests the ability to suppress omnidirectional noise

in a perceptually pleasant fashion. We show these comparisons in the “Diffuse Interferer”

rows of Fig. 6.22 and Fig. 6.23. The median input STOI was 0.675 and the median input

SI-SDR was −0.67. Meta-GSC (blue, solid) outperforms BD-RLS (red, dotted) in SI-SDR

performance with Meta-GSC scoring 12.54 dB improvement and BD-RLS scoring 10.53 dB

improvement. In STOI, Meta-GSC outperforms BD-RLS by 0.004. The BSS Eval metrics

show that Meta-GSC provides 5.8 dB more interferer suppression (SIR) while simultaneously

introducing 1.4 dB fewer artifacts (SAR) and 2.02 dB less distortion (SDR) than BD-RLS.

Typically, enhancement algorithms trade improved interference suppression for additional

artifacts. However, the meta-training scheme produces an optimizer that simultaneously
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Figure 6.23: BSS eval comparison across interferers. Meta-GSC provides more suppression
with less distortion and artifacts.

improves both.

Directional Interferers: The directional scenario tests the ability to suppress sources from

one particular direction – typically achieved by steering nulls in the beam pattern. We show

these comparisons in the “Directional Interferer” rows of Fig. 6.22 and Fig. 6.23. The median

input STOI was 0.734 and the median input SI-SDR was −0.45. Meta-GSC scores 11.03 dB

on SI-SDR improvement whereas BD-RLS scores 8.58 dB. STOI performance trends similarly

with Meta-GSC outperforming BD-RLS by 0.029. The BSS-Eval metrics show a similar

trend with Meta-GSC providing 7.37 dB more SIR while simultaneously introducing .29 dB

fewer artifacts (SAR) and 2.51 dB less distortion (SDR) than BD-RLS. We hypothesize that

Meta-GSC steers sharper nulls and learns an automatic VAD-like controller.

Beampattern Comparison: We compute beam plots for Meta-GSC and BD-RLS at ≈ 1

sec. and ≈ 2 sec. in a scene with a directional interferer. As expected, the models share

the same look direction. However, our Meta-GSC method appears to steer more aggressive

nulls as shown in Fig. 6.24

Computational Complexity: Our Meta-GSC method has a single CPU core RTF of ≈ 0.54,

and 32ms latency. The optimizer network alone has ≈ 14K complex-valued parameters and

a single CPU core RTF of ≈ 0.25.
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Figure 6.24: Spatial response plots at ≈ 1KHz for a directional interferer at ≈ 1 sec. (left)
and ≈ 2 sec. (right).

6.8 SCALING-UP BEAMFORMING

Multi-channel speech enhancement using beamforming is a core task for smart systems

and researchers have been developing better solutions for decades. Typically, for better

performance, researchers need to invent or otherwise develop novel approaches. In this

section, we attempt to get better performance just by deploying more compute within an

existing method. The goal of our experiments is to confirm the AEC results for SMS-AF and

demonstrate how it scales across the task of beamforming. We take the same GSC setup from

before and we again vary 1) optimizer model sizes with small (S), medium (M), and large (L)

models 2) an unsupervised (U) or supervised (S) loss and 3) the number of predict (P) and

update (U) steps per frame. We again label baseline methods when applicable.

6.8.1 Prior Works

We compare against NLMS, recursive-lease-squares (RLS), and Meta-AF. We again test

multiple HO-Meta-AF model sizes as well as multi-step NLMS, RLS, and HO-Meta-AF. We

used the CHIME-3 [174] dataset which as 7.1K training, 1.6K validation, and 1.3K test files.

CHIME-3 uses a rectangular six-microphone array.
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6.8.2 Evaluation

For speech enhancement, we use a single-block frequency-domain GSC beamformer with

64ms latency. The signal model at each of M microphones is um[t] = rm[t]∗ s[t]+nm[t], and

rm[t] is the impulse response from source to mic m. The goal is to recover the clean speech s

given the input signal um[t]. This requires fitting a filter to remove the effects of noise, nm.

We assume access to a steering vector. For a review, see Gannot et al. [38]

We use higher-order Meta-AF optimizers with banded coupling and a group size of 5.

The training setup is identical to the AEC scaling section except that we use scale-invariant

signal-to-distortion ratio (SI-SDR) as our loss.

Beamforming results are in Table 6.6. Notably, SMS-AF improvements apply without any

modifications. Here, all models assume access to a steering vector, which can be challenging

to estimate in practice. Again, supervision and multi-step optimization yield significant

performance gains. Our S·S·P model outperforms all baselines including L·U·P across all

metrics. Our model scales reliably with the L·S·P variant improving performance in all

metrics. Scaling up the iterations to S·U·PUx2 yields larger gains across all metrics. Our

largest and best model, L·S·PUx2 scores a remarkable 17.72 dB SI-SDR while still being

real-time. Of note, the L·S·PU model has the same RTF as RLS·PU, even though RLS uses

fewer operations. Thus, for a second task, we show that SMS-AF performance scales with

both model capacity and optimization steps per frame.

Across this GSC and the AEC experiments, we have introduced a new method for neural

network-based adaptive filter optimizers called supervised multi-step adaptive filters (SMS-

AF). To do so, we extend recent meta-adaptive filtering methods with several critical ad-

vances that cohesively work together to reliably increase performance by simply leveraging

more computation. We evaluate our proposed method on low latency, online AEC, and GSC

AF tasks, compare against many baselines, and test on both synthetic and real data. Our

method improves both subjective and objective metrics, achieving ≈ 5 dB ERLE/SI-SDR

gains compared to prior work, and increases the performance ceiling across AEC and GSC.

Furthermore, we relate our work to the Kalman filter and meta-AFs, giving insight into

many other applications. We believe scaling up AFs is a promising research direction and

hope our results encourage future work on scalable, general-purpose AFs.

6.9 BEAMFORMING, STEERING AND POST-FILTERING

Beamforming is an integral part of more comprehensive speech capture systems, often

accompanied by a preceding steering or direction-of-arrival system and followed by an en-
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Model SI-SDR↑ SIR↑ SAR↑ STOI↑ MFLOPs↓ RTF↓
Mixture -0.71 - - 0.674 - -
NLMS·P 8.60 16.21 9.78 0.905 0.43 0.36
NLMS·PU 8.84 16.54 10.00 0.910 0.47 0.47
RLS·P 9.84 16.70 9.70 0.919 0.53 0.50
RLS·PU 10.14 17.16 11.49 0.924 0.54 0.62

S·U·P 12.20 22.57 12.79 0.931 4.70 0.41
M·U·P 12.62 22.56 13.26 0.938 12.08 0.45
L·U·P 12.45 22.43 13.09 0.935 36.35 0.53

S·S·P 13.92 23.00 14.66 0.950 4.70 0.41
M·S·P 14.34 23.45 15.07 0.953 12.08 0.45
L·S·P 14.69 24.36 15.33 0.954 36.35 0.53

S·S·PU 15.46 25.69 16.09 0.956 4.74 0.51
M·S·PU 16.83 27.70 17.41 0.960 12.12 0.54
L·S·PU 17.22 28.37 17.80 0.962 36.39 0.62

S·S·PUx2 15.67 25.89 16.35 0.956 9.07 0.70
M·S·PUx2 17.06 28.42 17.63 0.961 23.83 0.76
L·S·PUx2 17.72 29.52 18.25 0.964 72.37 0.91

Table 6.6: GSC Performance vs. Computational Cost on the standardized Chime 3 dataset.

hancement module. In this context, we establish a complete capture system, treating each

step as an individual neural network task. This approach results in a sequence of neural

network modules that amalgamate spectral and spatial data over time, even in intricate

scenarios. To gain a broader understanding of this setup, please refer to Fig. 6.25, in which

a pre-processor gathers information that is subsequently directed to a Meta module, and

finally processed by a post-processor.

For a more detailed view of this setup, see Fig. 6.26. This pipeline strings together an

enhancer, a covariance estimator, and a beamformer. The estimator outputs are translated

into spatial covariance matrices and fed to the beamformer. The convolutions (blue, solid

edges) are applied across frequencies whereas the LSTM, Linear layers, and beamformer (yel-

low, dashed edges) are applied separately to each frequency. We train this pipeline using on

various datasets in the next section.

6.9.1 Prior Works

The growing success of deep neural networks (DNN) in single-channel spectral separation

and speech enhancement has led to several works integrating single- and/or multi- channel
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Figure 6.25: Meta-AF for GSC with a DNN steering vector estimator and a DNN speech
enhancer.
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Figure 6.26: A highly customized processing pipeline composed of an enhancer, covariance
estimator, and a beamformer.

enhancers into beamforming pipelines for spatially stationary scenes [63, 64]. These works

leverage a two-part procedure where a pre-trained DNN mask-estimation module is inserted

into an existing beamforming pipeline and used for spectral estimation. Training modules

of a beamforming pipeline in one-step or end-to-end has proved challenging due to the nu-

merical instability of spatial covariance matrix inversion but has led to improved speech

recognition performance [80]. Moreover, it is also possible to do away with the beamform-

ing structure entirely and learn DNN-based multi-channel modules that learn to leverage

spatial information implicitly [176, 177, 178]. However, some works have found that it is

advantageous to incorporate explicit spectral and spatial estimation steps either in the form

of explicit masking and beamforming [66, 179] or more abstractly [180].

6.9.2 Evaluation

We evaluate our approach in spatially stationary and dynamic scenes. For comparison, we

construct several validation-set-tuned conventional estimators. We also evaluate the test-

time modularity of our approach by modifying portions of the processing pipeline without
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retraining. In all, we find that Meta-AF model with covariance outputs can outperform their

conventional counterparts by a significant amount in all metrics, are modular, robust, and

computationally efficient.

We created a spatialized version of the DNS challenge dataset [181] using pyroomacous-

tics [182] for simulations. Each scene lasts 5 seconds, contains 1 to 3 noise sources, 1 speech

source, and is randomly mixed at SNR between −5 dB and 5 dB. We simulate rooms with

dimensions uniformly distributed between 4m, and 8m, and with a T60 between 0.25 s and

0.75 s. Within each room, we simulate a 7 cm diameter circular microphone array with

6 microphones. For the dynamic dataset, we simulate array rotation by computing fixed

impulse responses at 250 rotations and perform a time-varying convolution. We generate ro-

tation patterns according to the EasyCom dataset [183]. To prevent leakage we use separate

room geometries, rotation patterns, and speech/noise files for training/validation/testing.

We generated two separate datasets, one spatially static (no rotations) and one spatially

dynamic (with rotations). The train, validation, and test set splits of each dataset contain

20, 000, 5, 000, and 5, 000 scenes respectively.

To evaluate the effect of enhancement quality and isolate analysis of the covariance esti-

mator, we experiment with semi-oracle, learned, and oracle enhancers. For the semi-oracle

enhancers, we use an IRM (ideal-ratio mask) computed using either the echoic (Echoic IRM)

or anechoic (Anechoic IRM) clean speech. For the learned enhancer, we predict a single-

channel real-valued mask using a 3-layer LSTM with a hidden size of either 256 or 512

trained with SI-SDR [161] loss w.r.t the anechoic clean speech. This is a simple but capable

model. All masks are applied via M⊙xm[τ ] where M is the mask and ⊙ is the element-wise

product. For the Oracle enhancer, we set ŝ = s and n̂ = x − s. The IRM and oracle en-

hancers use ground truth knowledge and only serve as comparison points. The LSTM serves

as an example of a suitable model whose performance lies between the Echoic and Anechoic

IRMs.

For beamforming, we use MVDR with a steering vector based on the estimated relative-

transfer function. When running Meta-AF, we use the normalized first column of the target

covariance matrix as a steering vector. We do this to reduce computational complexity

during training. When testing all other covariance estimators, we use the normalized largest

principal component of the target covariance matrix. We denote the extraction of this

time-varying steering vector with the operation P(·). We then compute MVDR weights

as (frequency indices dropped for readability),

w[τ ] =
Φ−1nn [τ ]v[τ ]

vH[τ ]Φ−1nn [τ ]v[τ ]
, (6.21)
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where v[τ ] = P(Φss[τ ]).

We experiment with two conventional covariance estimators as well as learned methods.

On the conventional side, we experiment with offline Fixed and online Buffer estimates,

which we pair with the enhancers discussed above. For the Fixed case, we compute a single

non-causal estimate across the entire scene. For the Buffer case, we use a sliding buffer to

compute an online time-varying estimate. In each experiment, we tune the buffer size with a

grid search over [5, 50] on the validation dataset. We tested exponentially smoothed updates

but found they performed worse.

The learned estimators, gθ(· · · ), are composed of a 2-layer D = 128 dimension hidden

size unidirectional LSTM. We stack the real/imaginary components of each STFT bin as

input. On the output, we predict the real and imaginary parameters independently using a

set of linear layers. When experimenting with frequency information sharing we set fψ(· · · )
to be a stack of three convolutional layers each with kernel size 3 and 64 channels. The

convolutional layers run across frequency while the LSTMs run on each time/frequency

independently effectively performing parameter sharing across all frequencies. This makes

the model independent of the STFT frame/hop but constrained to a predetermined number

of microphones. We implemented this framework in PyTorch.

Static Scenes: First, we study static scenes and evaluate all methods using the Scale-

Invariant Signal to Distortion Ratio (SI-SDR), Short-Time Objective Intelligibility (STOI),

and the Perceptual Evaluation of Speech Quality (PESQ) metric. For this initial analysis,

we equip all learned estimator models with a semi-oracle Echoic IRM as the enhancer. These

results are shown in Table 6.7. The first grouping (rows 0-3) displays the results for a refer-

ence microphone and three single-channel models, which do not estimate spatial statistics.

The next grouping (rows 4-7) shows results for a variety of conventional estimators paired

with a variety of enhancers. We evaluated all pairs of enhancers/estimators and chose to only

show the best. The third grouping (rows 8-9) shows a Meta-AF estimator which predicts

Rank-1 updates and how incorporating banded dependencies improves performance in all

metrics. Based on this, we use learned frequency information sharing in all other Meta-AF

models. The final grouping (rows 10-11) demonstrates that relaxing the enforced structure

of the estimator and shifting all covariance processing within the learned module improves

performance. Both the Cholesky and Arbitrary models outperform the conventional esti-

mators equipped with perfect source separation knowledge. This is remarkable since the

learned modules are causal and rely on worse speech/noise estimates.

The model in row 4 corresponds to [63, 64] where a DNN enhancer is combined with a

conventional covariance estimator. Our proposed method is compatible with this approach

as we demonstrate next where we study spatially dynamic scenes.
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# Model Attributes Metrics

Enhancer Estimator SI-SDR STOI PESQ
0 N/A N/A -1.10 .738 1.17
1 Echoic IRM N/A -0.06 .813 1.51
2 LSTM (512) N/A 2.32 .804 1.44
3 Anechoic IRM N/A 3.28 .950 3.08

4 LSTM (512) Fixed [63, 64] 3.26 .855 1.43
5 Anechoic IRM Fixed 3.32 .866 1.50
6 Oracle Fixed 5.12 .895 1.75
7 Oracle Buffer 4.78 .898 1.75

8 Echoic IRM Diag-Meta-AF Rank-1 5.78 .866 1.61
9 Echoic IRM Banded-Meta-AF Rank-1. 6.57 .876 1.64

10 Echoic IRM Banded-Meta-AF Cholesky 7.32 .918 2.26
11 Echoic IRM Banded-Meta-AF Arbitrary 7.60 .919 2.24

Table 6.7: Results in spatially stationary scenes. Models are made of an enhancer and an
estimator. The learned estimators in rows 8-11 outperform their fixed counterparts. The
highest scores are in boldface.

Dynamic Scenes: Next, we study spatially dynamic scenes. These results are shown in

Table 6.8 and can be compared to Table 6.7. The single-channel approaches in rows 0-3

are minimally impacted by spatial changes since they do not perform spatial processing.

The next grouping (rows 4-7) shows results for several pairs of non-learned estimators and

enhancers. Unsurprisingly, the fixed estimators shown in rows 4 and 5 drop in performance

from static to dynamic scenes. This occurs since collected statistics are dependent on array

pose. The buffer-based model shown in row 6 maintains performance as it was re-tuned for

dynamic scenes. The second to last grouping (rows 7-9) shows Meta-AF estimators with

Rank-1, Cholesky, and Arbitrary structure. While the Rank-1 estimates (row 7) do not out-

perform the models with oracle knowledge (row 6), the Cholesky (row 8) and Arbitrary (row

9) estimates do. However, they drop in performance when compared to their results in

static scenes. This performance drop is the largest for the Rank-1 model. We hypothesize

that the fully learned state of the Cholesky and Arbitrary models can adapt more rapidly.

Though, sometimes additional structure is useful. The Cholesky model scores better in per-

ceptual metrics than the Arbitrary model, indicating that the Cholesky structure may be

more faithful to the MVDR objective.

In the final grouping (rows 10-11), we replace the Echoic IRM, a practically unrealizable
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# Model Attributes Metrics

Enhancer Estimator SI-SDR STOI PESQ
0 N/A N/A -1.09 .738 1.17
1 Echoic IRM N/A -0.04 .812 1.51
2 LSTM (512) N/A 2.31 .804 1.43
3 Anechoic IRM N/A 3.34 .950 3.09

4 LSTM (512) Fixed [63, 64] 1.43 .798 1.31
5 Oracle Fixed 1.37 .820 1.42
6 Oracle Buffer 4.04 .889 1.70

7 Echoic IRM Banded-Meta-AF Rank-1 4.53 .856 1.61
8 Echoic IRM Banded-Meta-AF Cholesky 6.60 .916 2.26
9 Echoic IRM Banded-Meta-AF Arbitrary 6.80 .915 2.19

10 LSTM (256) Banded-Meta-AF Arbitrary 6.58 .865 1.75
11 LSTM (256) Banded-Meta-AF (2×H) Arbitrary 7.13 .873 1.84

Table 6.8: Results in spatially dynamic scenes. Pairing learned estimators and enhancers
yields the best SI-SDR as shown in row 11.

enhancer, with an LSTM enhancer. In effect, we create a Meta-AF model with multiple

learned components and extend [63, 64]. Though, instead of a two-part training procedure

we train the enhancer and estimator jointly, in an end-to-end fashion. This model is entirely

realizable as it is online and uses no ground truth knowledge. The only other comparable

models are in rows 2 and 4. To push performance, we double the estimator state size from

128 to 256. This largest model achieves our best dynamic scene SI-SDR of 7.13 dB. We

believe these models could perform better with a more exhaustive hyperparameter search

and tuning, as they run to our max epochs limit of 50.

Test Time Adaptation: Our approach is modular which enhances its real-world usability.

Since it is part of a pipeline, we can modify various modules at test time. We study modi-

fications in dynamic scenes and show results in Table 6.9. Our initial model shown in row

0 (same as Table 6.8 row 9) is the banded Arbitrary model trained with a 512 window, 256

point hop, and Echoic IRM.

First, we experiment with doubling and halving the window and hop size at test time (rows

1-4). Effectively, we evaluate test-time latency and resolution adaption. Next, we experiment

with changing the enhancer at test time. In row 5, the masker is changed from an Echoic

IRM to an Anechoic IRM. This is a case of swapping in better enhancers at test time
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# Test-Time Modification Metrics

SI-SDR STOI PESQ
0 No Modification 6.80 .915 2.19

1 Double Window 6.92 .923 2.26
2 Halve Hop 6.39 .910 2.05
3 Double Window and Hop 6.23 .911 2.16
4 Halve Window and Hop 5.11 .886 1.87

5 Anechoic IRM 4.15 .916 2.21
6 Oracle Separation 3.65 .909 2.14

7 Dead Microphone 0.13 .832 1.48

Table 6.9: Results evaluating test-time modularity. All adaptation is tested on the banded
Arbitrary model using the Echoic-IRM.

without retraining. However, the enhancer modification can not be too large. In row 6, we

provide oracle separation, and all metrics drop. We believe this stems from the model being

trained with an IRM-based enhancer. Finally, we study robustness and simulate hardware

failures by replacing a random microphone signal with white noise (row 7). As expected,

all metrics drop, however, they remain higher than the Echoic-IRM (Table 6.8 row 1) and

buffer estimator, which, in our experiments, errored out.

Computational Complexity: The estimators have 550 K parameters and use 2.5 MB of

storage. They can run in real-time with a real-time factor of 0.05 on an Nvidia P100 GPU and

0.9 on a 2.4 GHz Xeon CPU using vanilla Python without any tuning. The computational

budget is 80 MFLOP per frame, or 2 GFLOP per second.

Conclusion: We evaluated Meta-AF with covariance outputs, a learning-based method

for estimating time-varying spatial covariance matrices, with application to joint speech en-

hancement and dereverberation. We applied these methods to a dataset containing both

spatially -stationary and -dynamic scenes. Our empirical results showed that the proposed

methods outperform a variety of conventional estimation approaches. Moreover, by incor-

porating the learned modules into a conventional beamforming pipeline, we can perform

real-time inference, and apply test-time adaptation with respect to latency, resolution, and

masking modification. The model is also robust to hardware failures. We believe our pro-

posed method could also be a valuable tool for complex spatial processing in other domains.

Further, we have empirical evidence of this model working in real-time on devices.
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Chapter 7: Future Work And Conclusions

In this thesis, we present a novel approach for the development of adaptive filter (AF)

systems that leverages the power of meta-learning and end-to-end learning techniques. The

approach is based on the idea of learning control rules for AF tasks directly from data using

some form of supervision. This framework enables the development of processing pipelines

that surpass expert-designed systems for a variety of tasks. These techniques can scale from

unsupervised to fully supervised to accommodate all available data and scale gracefully with

available computational resources.

When we review the cumulative results of our approach, we note several interesting obser-

vations. First, the performance of our meta-learned AFs is strong and compares favorably

to conventional optimizers across all tasks. Second, the performance gain achieved by meta-

learned AFs over conventional AFs is larger for tasks that are traditionally more difficult to

model by humans including AEC double-talk, AEC path changes, and directional interfer-

ence cancellation. Third, we found that we could use general configurations of our method

for many tasks, which significantly reduced our development time. This suggests that our

learned AFs are a viable replacement for human-derived AFs for a variety of audio signal

processing tasks and are most valuable for complex AF tasks that typically require more

human engineering effort.

When we reflect on how our learned optimizers can achieve this success, we note two

core reasons. First, and most obvious, our meta-learned AFs are data-driven and trained

on a particular class of signals (e.g. speech, directional noise, etc). Thus, Meta-AF is

limited by the capacity of our optimizer network and training data and not signal modeling

skills. Second, by framing AF development as a learning problem, we effectively distill

the knowledge of our loss into the AF loss and corresponding learned update rules, thus

enabling us to learn AFs that optimize objectives that would be very difficult (e.g. our

frame accumulated) or even impossible to develop manually (e.g. supervised losses, STOI,

SI-SDR, KWS, etc).

7.1 FUTURE WORK

The field of meta-learning and meta-learned optimizers is young and has a bright future

for signal processing applications. Future research directions include: enhancing training

methods, investigating non-linear optimization problems, developing more efficient optimizer

architectures, and refining optimizer/meta-loss functions. Particularly promising avenues for
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future work include identifying better optimization losses and better filter representations

for Meta-AF style optimization. Overall, we are optimistic that our Meta-AF approach can

benefit from both adaptive filtering advances as well as deep learning progress and will be

an exciting research topic.

7.2 CONCLUSION

We introduce a general framework capable of automatically learning adaptive filter update

rules through deep learning from scratch. Our approach provides substantial advantages by

eliminating the need for extensive manual tuning and development. It is also the first

task-agnostic method for learning AF update rules directly from data. Furthermore, our

framework boasts the capability to smoothly adapt across a spectrum of scenarios, ranging

from those with limitations such as no supervised training data and minimal computational

resources to scenarios abundant in labeled data and ample computational power.

To demonstrate the power of our framework, we use a universal configuration trained

on different datasets and test it on all four canonical adaptive filtering architectures and

five unique tasks, including system identification, acoustic echo cancellation, equalization,

dereverberation, GSC-based beamforming, and heart-rate estimation. We also assess down-

stream tasks, such as keyword spotting, as well as end-to-end systems like joint echo cancel-

lation and noise reduction. Whenever feasible, we conduct testing using real-world datasets.

In all cases, we were able to train high-performing AFs, which surpassed conventional

optimizers as well as certain state-of-the-art methods. We are excited about the future of

adaptive filtering backed by deep learning and hope this thesis will stimulate further research

and rapid progress.

104



Appendix A: Experiments on Non-Audio Tasks

A.1 PHOTOPLETHYSMOGRAPH HEART RATE ESTIMATION VIA MOTION
ARTIFACT REMOVAL

The task of Photoplethysmograph (PPG) Heart Rate Estimation is critical in the field

of physiological monitoring and health assessment. PPG is a non-invasive optical technique

used to measure changes in blood volume within tissue, primarily at the fingertip or earlobe,

which allows for the estimation of heart rate. However, in real-world scenarios, motion

artifacts, such as body movements or ambient light interference, can corrupt PPG signals,

leading to inaccurate heart rate readings [184]. This task involves developing sophisticated

algorithms and signal processing techniques to extract the true heart rate signal from the

noisy PPG data, effectively filtering out unwanted artifacts. Accurate heart rate estimation

is essential for various applications, from wearable fitness trackers to clinical monitoring,

and it plays a pivotal role in ensuring the reliability of health-related data collected through

PPG sensors.

In this appendix section, we address the challenging problem of PPG-based heart rate

estimation in the presence of motion artifacts. We consider this motion as a reference signal

and employ informed interference cancellation techniques to minimize its adverse effects on

heart rate measurement accuracy. This is an approach commonly taken when performing

manual filter design [185, 186, 187]. To achieve this, we employ a straightforward yet effective

full-block OLS filter, which we control using a diagonal single-layer Meta-AF model. This

is the same model and training procedure outlined in the toy system identification task.

We also implement a basic heart-rate recovery problem using cross-correlation and peak

picking. We perform all evaluations on the TROIKA dataset [188]. This dataset contains

PPG recordings from a smart ring from a subject performing physical tasks, like running

on the treadmill. The dataset also contains ground truth estimated via standard heart rate

estimation techniques.

When we adapt this approach to PPG estimation, we observe some performance gains.

We randomly select a demo file and display it in Fig. A.1. This shows that Meta-AF

improves tracking qualitatively, a surprising finding since Meta-AF was developed for a vastly

different task. We observe a modest improvement in accuracy, resulting in an error reduction

from 33.76 root-MSE to 31.74 root-MSE. This achievement is particularly noteworthy since

PPG estimation involves different sampling rates, relies on diverse sensor modes (including

accelerometers and PPG sensors), and represents a distinct task from traditional audio signal
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Figure A.1: Results of using Meta-AF to perform motion artifact removal during PPG
estimation. Ground truth is shown in solid orange, results without Meta-AF are shown in
dark blue dashed, and Meta-AF is light blue dotted. Meta-AF performed well despite never
being developed on this task.

processing problems. Nevertheless, our approach seamlessly translates to the realm of PPG-

based heart rate estimation, demonstrating its potential for broader applications beyond

audio signal processing.
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