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ABSTRACT

Great advances in deep learning (DL) have led to state-of-the-art performance on a wide
range of challenging tasks. However, along with the rapid deployment of DL systems, sev-
eral trustworthy threats arise, such as weak robustness against stealthy noise perturbations
and natural transformations, bias across different subgroups, and lack of numerical reliabil-
ity. These trustworthy threats have raised great concerns, especially when deploying DL
systems in safety-critical scenarios such as autonomous driving and facial recognition for
safeguarding. To defend against these common trustworthy threats, this thesis systemati-
cally proposes or enhances certification approaches and certified training approaches for DL
systems, especially for large-scale DL systems.

A certification approach can guarantee some properties of the DL system under some
trustworthiness properties. For instance, the robustness certification approach can guar-
antee the worst-case test accuracy when the attacker imposes any input perturbations or
transformations within some bounded range. A certified training approach can improve the
DL system’s guaranteed trustworthiness under a certain property by training the DL model,
e.g., improving the guaranteed test accuracy above.

This thesis begins with a systematic taxonomy of certification and certified training ap-
proaches. Then for several critical trustworthiness properties, this thesis proposes the corre-
sponding certification and certified training approaches that lead to state-of-the-art tightness
and scalability. These approaches are motivated by a few core principles, including dual
problem analysis for randomized smoothing, general cutting planes for bound propagation,
stratified sampling, subpopulation decomposition, and abstract interpretation. The effec-
tiveness of the proposed approaches is supported by both theoretical analyses and empirical
evaluations. The thesis is concluded with a discussion of limitations, challenges, and future
directions towards achieving fully certifiable, reliable, and scalable machine learning.

In summary, this thesis enables certification of various trustworthy properties for DL
systems up to millions of parameters, representing a major step in certified deep learning, an
important research topic in machine learning, computer security, and software engineering.
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Part I

Introduction and Overview

In the past decade, we have witnessed deep learning and AI revolution in almost every as-
pect of our life. Deep learning (DL) has reshaped many fields such as image recognition[142,
191, 360] and generation [312, 349], language understanding and reasoning [44, 96, 378],
program synthesis [60, 230] and software testing [222], and decision-making [265, 338].

Despite such success, the wide deployment of DL has exposed serious safety and social
threats due to their lack of trustworthiness. For example, an adversary can rotate the
camera [110, 124, 130, 416] or attach tiny stickers on road signs [112, 464] to fool DL-based
autonomous driving systems, possibly leading to fatal traffic accidents. Such an adversary
has been made practical to attack commercial DL systems [42, 219, 220, 449]. As noted
in the recent AI bill of rights from the White House [279], such lack of trustworthiness in
current DL-based tools threatens the rights of the public and challenges democracy.

Existing literature mainly evaluates the trustworthiness via detection approaches (i.e.,
“attacks” in computer security literature). These approaches find trustworthy vulnerabili-
ties by searching trustworthiness-violating examples, e.g., specific rotation angles that fool
the DL system1 into making wrong predictions. Then, some empirical defense approaches
enhance the DL system so that detection approaches cannot find trustworthiness issues.
However, when a detection approach fails to find trustworthy vulnerabilities, it could be
because the detection approach is not powerful enough, rather than the DL system is truly
trustworthy. Indeed, many empirically defended DL systems are shown not trustworthy by
stronger detection approaches [15, 371], which brings “a false sense of trustworthiness.”

In contrast to detection approaches, certification approaches evaluate the trustwor-
thiness of a DL system by computing a theoretical guarantee under certain trustworthiness
properties and certain constraints; and the corresponding certified training approaches train
DL system to improve such guarantees. As we can see, certified approaches, including cer-
tification and certified training approaches, provide a more reliable evaluation of DL trust-
worthiness in the form of a rigorous guarantee, and they are in urgent demand, especially
in safety-critical applications such as autonomous driving, facial recognition, malware de-
tection, and cyber-physical controllers. Figure 1.1 illustrates the relation between empirical
and certified approaches, where the certified approach is the focus of this thesis.

1In this thesis, DL system refers to any system containing Deep Neural Networks (DNNs) as the machine
learning (ML) models.
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Certified approaches are usually tailored and optimized for the given trustworthiness prop-
erty. In this thesis, we will propose novel certified approaches for the following commonly
studied and widely concerned trustworthiness properties: robustness (robustness against
ℓp-bounded perturbations, robustness against semantic transformations, robustness against
state observation perturbations in reinforcement learning, robustness against training data
perturbations in reinforcement learning), distributional fairness, and numerical reliability.
For all these trustworthiness properties, we enable the construction and effective certifica-
tion with non-trivial trustworthiness for DL systems with millions of parameters, signifi-
cantly expanding the boundary of certified approaches. For example, for robustness against
ℓp-bounded perturbations, our white-box approach is integrated into α-β-CROWN, the state-
of-the-art tool that wins latest neural network verification competitions [20, 272], and our
black-box approach is the first known approach that refutes the common belief (“black-box
certification is intrinsically loose”) and establishes the theoretical foundation for applying
black-box certification to high-dimensional data domain.; for robustness against semantic
transformations, we achieve 70.0% certified accuracy against any brightness change within
˘40% on the challenging ImageNet dataset; for numerical reliability, we generate certifica-
tions for over 70 diverse DNN architectures within 3 s running time per case, and fix the
numerical defects in all these architectures within 55 s in total.

The rest of the thesis is organized as follows:

• Part I (Chapter 1) introduces background, terminologies, and taxonomy of certified
approaches for DL and contextualizes this thesis.

• Part II (Chapters 2 to 6) is dedicated to certified approaches for robustness against
ℓp-bounded perturbations. This property is widely studied in the literature, and this
thesis pushes the boundary for two main branches of certified approaches: black-box
and white-box approaches, from both certification and certified training sides.

• Part III (Chapters 7 to 10) presents two categories of generalizations of certified ap-
proaches for robustness beyond ℓp-bounded perturbations: certification against seman-
tic transformations and robustness certification in reinforcement learning.

• Part IV (Chapters 11 to 13) further generalizes certified approaches to more trustwor-
thiness properties beyond robustness: fairness and numerical reliability.

• Part V (Chapter 14) discusses limitations, challenging, and future directions towards
achieving fully certifiable, reliable, and scalable machine learning.

Figure 1.2 illustrates the overall structure of the thesis.

2



CHAPTER 1: PRELIMINARIES AND OVERVIEW
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Figure 1.1: Relation between empirical approaches and certified approaches for trustworthy
deep learning. The certified approach, including certification and certified training approach,
is the focus of this thesis.
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Figure 1.2: Thesis structure.

This chapter provides a brief introduction of key concepts in certifiably trustworthy deep
learning and presents a taxonomy and characterization of certified approaches. Based on
the taxonomy, we contextualize the approaches to present in this thesis.
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1.1 PRELIMINARIES

In this thesis, unless otherwise specified, we use normal font (e.g., a, b, x, y) to represent
normal objects and scalars, bolded font (e.g., x) to represent scalars and scalar functions,
bolded uppercase font (e.g., M) to represent matrices, regular font (e.g., x, a) to repre-
sent random variables, and calligraphic font (e.g, D,X ,P) to represent sets (can also be
represented by uppercase font) and distributions.

R is the set of real numbers, Rě0 is the set of non-negative real numbers, Rd is the d-
dimensional vector space, N is the set of natural numbers, and N` is the set of natural
numbers without 0. We denote rns as set t1, 2, . . . , nu. Prr¨s refers to probability and Er¨s
refers to expectation. } ¨ }p stands for the ℓp-norm of a vector (p “ 0 or p ě 1 or p “ 8).
Ir¨s is an indicator function, which equals to 1 if the predicate in the bracket holds otherwise
0. r¨s` and r¨s´ stand for elementwise maxt¨, 0u and mint¨, 0u respectively. “:=” or “=:”
denotes to the definition of some quantity.

⊮d is a d-dimentional all-one vector p1, 1, ¨ ¨ ¨ , 1qT. Id is a dˆd identity matrix. N pµ, σ2Idq

refers to the d-dimensional multivariate normal distribution with mean µ and covariance ma-
trix σ2Id. A special case is N pµ, σ2q which refers to single-dimensional normal distribution.
Φ : R Ñ p0, 1q is the cumulative density function (CDF) of standard normal distribution
N p0, 1q. ReLU : x ÞÑ maxtx, 0u is the ReLU activation function, which expands to vector
domain Rd Ñ Rd

ě0 naturally by applying the operation elementwise.
fθp¨q or Fθp¨q usually refers to a deep neural network (DNN) model, where θ denotes to

all model parameters. When context is clear, θ may be omitted. fθ and Fθ can usually
refer to the same model, where the image of fθ is usually a vector, indicating the predicted
confidence for all classes; the image of Fθ is usually a scalar value, indicating the predicted
scalar value or class from fθ.

Certified approaches are divided into two categories: certification approaches and certified
training approaches, as illustrated in Figure 1.1.

Certification Approaches

A certification approach provides a guarantee of some specific trustworthiness property
for the DL system in the form of whether some predicate always holds for all possible states
within the underlying set, where the underlying set is given by the threat model. As we can
see, there are two requisites to define a certification approach: threat model and property
predicate.
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Definition 1.1 (Threat Model). A threat model R : Rě0 Ñ 2S is a set of all possible states
parameterized by a radius parameter r P Rě0 satisfying:

(1) Set monotonicity with respect to r: @r1 ď r2, Rpr1q Ď Rpr2q.

(2) State validness: Given a radius r, the threat model generates set of states Rprq, such
that any state within which s P Rprq can determine the DL system’s output.

The concrete definition of threat model R is determined by the trustworthiness property.
From the perspective of computer security, the definition formalizes the exhaustive power of
the underlying attacker that can use any state within Rprq as the input to undermine the
DL system.

As an example, the property of robustness against ℓp-bounded perturbation leads to the
threat model of ℓp-bounded adversary.

Example 1.1 (ℓp-bounded Adversary). For a given benign input px0, y0q, where x0 P X is the
input instance and y0 P rCs is its true label, the ℓp-bounded adversary defines a state set of
possible input: Rprq “ Bp,rpx0q :“ tx : }x´ x0}p ď ru.

In the threat model of ℓp-bounded adversary, the attacker can add arbitrary perturbations
to the input as long as the ℓp norm of the perturbation is within r. As one of the most widely
studied trustworthiness properties, we will go back to this several times and introduce our
certified approaches for this property proprietary in Part II.

Other threat model examples can be semantic adversary that exerts domain-specific
semantic-preserving transformations to input data, data poisoning adversary that perturbs
the training data, state observation adversary that alters the agent’s observed states in re-
inforcement learning, distributional shifting, and more. We will define them respectively in
corresponding chapters.

Another requisite is the property predicate.

Definition 1.2 (Property Predicate). A property predicate ppf, sq takes a DL system f and
a state s as an input, and judges a binary result, where True indicates the property holds
and False otherwise.

For example, for the robustness property, making a correct prediction for the perturbed
or transformed input s is the goal and naturally defines the predicate. In many cases,
the predicate’s result is based on comparing some metric with a threshold (e.g., accuracy
larger than some value, or mean loss smaller than some value, or confidence margin being
positive for classification correctness). Hence, the goal of a certification approach naturally
transforms into providing a lower or upper bound of that metric.
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Now we are ready to define the certification approach.

Definition 1.3 (Certification Approach). Given a DL system f : S Ñ Y , where S is the
valid state set and Y is model output space, a threat model R defined in Definition 1.1, a
radius parameter r P Rě0, a predicate p defined in Definition 1.2, an algorithm Apf,R, p, rq
is called a certification approach if it satisfies this condition:

IfApf,R, p, rq “ True, @s P Rprq, ppf, sq (whenA is deterministic) or Prr@s P Rprq, ppf, sqs ě
1´α where α is a pre-defined small threshold (when A is probabilistic, and the randomness
should be independent of f , R, p, and r).

As we can see, when the certification approach outputs True, the trustworthiness property
holds for any state within the threat model set. Since the attacker is constrained to choose
the state from the set, such output is a guarantee of the system’s trustworthiness under an
attack or under environment uncertainties, so A is called a certification approach.

Take the robustness certification for example, when the certification approach outputs
True, any constrained perturbation to input s P R cannot change the system’s correct
prediction, so the attacker cannot succeed. Usually, we measure a DL system’s certified
robustness by the ratio of test set samples where A outputs True, and this ratio, namely,
certified robust accuracy, indicates a lower bound of system’s accuracy under the constrained
attack.

What happens if a certification approach outputs False? From the definition, the trust-
worthiness is unknown, i.e., @s P Rprq, ppf, sq could either hold or not. So a naive certification
approach may barely output False which is useless. On the other hand, we hope that when
the certification approach outputs False, the trustworthiness property does not hold, i.e.,
when the trustworthiness property holds, the approach outputs True as much as possible.
We call this expectation tightness: if the approach is tighter, the approach outputs True as
much as possible when the trustworthiness property holds. If an approach achieves perfect
tightness, it implies that when the trustworthiness property holds, it will always output
True, then we will call the approach complete certification. We will discuss this more in
Section 1.3.1.

Certified Training Approaches

Though it sounds promising to use certification approaches to bring trustworthiness guar-
antees to DL systems, it is challenging. On the one hand, the DL system to certify could
be intrinsically untrustworthy, so it is impossible to generate guarantees for it. On the

6



other hand, the DL system could be hard to certify due to its certification-unfriendly weight
assignment or architecture design.

To mitigate these challenges, certified training approaches are developed both in the lit-
erature and in this thesis. Certified training approaches train DNNs so they can be certified
with a high degree of trustworthiness. Certified training approaches significantly boost the
certified trustworthiness by jointly improving the intrinsic trustworthiness and adapting the
model architecture and weights in a certification-friendly direction.

Certified training approaches are usually strongly tied to certification approaches. They
encourage desired properties from the certification approaches for the model to emerge during
training. For the approaches to propose in this thesis, we will introduce them alongside
the corresponding certification approaches due to this strong tie. In Section 1.3.2, we will
categorize certified training approaches in detail.

Since certified training approaches are executed on the training dataset, and the degree of
trustworthiness is measured by running certification approaches on the test dataset, a strong
certified training approach under common notions also has a good degree of generalizability,
though not explicitly emphasized.

1.2 TRUSTWORTHY PROPERTIES

In this section, we provide a brief description of trustworthy properties considered in this
thesis, along with their corresponding definitions of threat models and property predicates.
Detailed motivations and illustrations of these trustworthy properties are discussed in detail
in the following chapters.

1.2.1 Robustness against ℓp-Bounded Perturbations

DL systems should be robust against arbitrary tiny perturbations directly added to normal
input. For this trustworthy property, the threat model is defined with ℓp-bounded adver-
sary (Example 1.1), and the property predicate depends on the task: for the classification
task, the predicate is making a correct prediction, i.e., for input x0 with true label y P rCs,
the output for the perturbed input F pxq “ y; for the regression task, the predicate is the
prediction error is upper bounded by some threshold, i.e., for input x0 with true value y P R,
the output for the perturbed input satisfies |F pxq ´ y| ď ϵ.

For the regression task, this property transforms into providing a lower and upper bound
of F pxq for any x in state set. For the classification task, since DL system F usually conducts
label prediction by predicting a confidence score for each class and then choosing the most
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probable class, i.e., F pxq “ argmaxiPrCs fpxqi where fpxqi is the confidence score for the i-th
class, the predicate equals to for any i P rCsztyu, fpxqy ´ fpxqi ě 0. Hence, computing a
lower bound of fpxqy´fpxqi for any x in state set is the goal. In summary, in both cases, the
certification approach can generate the certification via computing a lower or upper bound
for some quantity of interest.

When the robustness is certified for threat model Rprq, we call r certified radius or robust
radius (of model F at point x0). We study certification for this property in Part II.

1.2.2 Robustness against Semantic Transformations

DL systems should be robust against semantic-preserving transformations, such as small
brightness change, contrast change, rotation, and scaling, to the image. For this trustwor-
thy property, the threat model is defined with a predefined parameterized transformation
function ϕ : X ˆ Z Ñ X , transforming an image x P X with a Z-valued parameter α. For
example, we use ϕRpx, αq to model a rotation of the image x by α degrees counter-clockwise
with bilinear interpolation. Then, the threat model is defined as the range of transformation
function when the parameter is bounded, e.g., Rprq “ tϕpx0, δq : }δ}8 ď ru. The property
predicate definition is the same as Section 1.2.1.

We study certification for this property in Chapter 7.

1.2.3 Robustness against State Observations in Reinforcement Learning

In reinforcement learning (RL), the DL system encodes a trained policy π to interact with
the environment in multiple rounds (namely, “steps”). At each step, the policy observes
the state input from the state space s P S and chooses an action from the action space
a “ πpsq P A. Such action transforms the state to P ps, aq P S (consider deterministic
environment in this thesis) in the next round and receives a reward rps, aq. However, the
observed state by the policy agent can be maliciously perturbed by the attacker, e.g., by
hacking the camerate perceptron module, and we hope the policy is still robust in this case.

Hence, we define the threat model to be the union of ℓp-bounded adversary at each step,
i.e., denoting st to the true state at each step t, the state set Rprq “ pS 1

0, S
1
1, . . . , S

1
Hq where

S 1
t “ Bp,rpstq. The property predicate is defined at two levels: step-level — per-state action

stability, and episode-level — guaranteed cumulative reward. The former requires the action
prediction does not change, i.e., πps1

tq “ πpstq for s1
t P S

1
t. The latter requires the cumulative

reward after H steps of interaction, i.e., R “ min
řH
i“0 rpst, πps

1
tqq, s

1
t P S

1
t is larger than some

threshold.
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We study certification for this property in Chapter 8.

1.2.4 Robustness against Poisoning Attacks in Reinforcement Learning

Besides state observation perturbations, in offline reinforcement learning, the performance
of trained DL policy can also be negatively impacted by perturbations on the training data,
i.e., the malicious attacker, as a training data provider, can destroy the policy performance
by deleting, inserting, or replacing the training data samples.

Concretely, in offline RL, a training dataset D “ tτiu
N
i“1 consists of logged trajectories,

where each trajectory τ “ tpsj, rj, aj, s1
jqu

l
j“1 P pS ˆAˆ Rˆ Sql consists of multiple tuples

denoting the transitions (i.e., starting from state sj, taking the action aj, receiving reward rj,
and transitioning to the next state s1

j). Training dataset D can be poisoned in the following
manner. For each trajectory τ P D, the adversary is allowed to replace it with an arbitrary
trajectory rτ , generating a manipulated dataset rD. We denote D a rD “ pDz rDq

Ť

p rDzDq as
the symmetric difference between two datasets D and rD. For instance, adding or removing
one trajectory causes a symmetric difference of magnitude 1, while replacing one trajectory
with a new one leads to a symmetric difference of magnitude 2. Hence, the threat model
defines a set over manipulated datasets: Rprq “ t rD : D a rD ď ru.

The property predicates are the same as Section 1.2.3. We study certification for this
property in Chapter 9.

1.2.5 Distributional Fairness

DL systems may inherit bias and disparity. Specifically, for data from different groups (iden-
tified by some protected or sensitive attribute Xs), the model may have different perfor-
mances. To identify the fairness issue, we expect that the model should have a low loss
value on a perfectly fair distribution. In other words, when the distribution itself is fair, the
model should encode such distribution very well. Otherwise, the model can have bias (if
performed well on training distribution) or have bad performance (if not performed well
either on training distribution). Either is not expected.

Hence, to quantify the fairness of a model from the distributional level, we propose to
certify an upper bound of expected loss on any slightly shifted and perfectly fair distribution.
The threat model is the set of all distributions (1) whose distance to the original training
distribution is bounded; and (2) which is perfectly fair measured by group base rate. The
property predicate is the model’s expected loss on the distribution is smaller than some
threshold.
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A formal definition and our certification approach for this property is in Chapter 11.

1.2.6 Numerical Reliability

In deployment, a DL system may incur numerical failures by outputting NaN or INF instead
of producing any meaningful prediction, resulting in system crashes. This is the numerical
reliability issue for DL systems.

Numerical failures are triggered when some operators in the DL system receive invalid
input, e.g., when log operator receives negative input. Hence, to certify the numerical reli-
ability of a DL system, the threat model is defined as all valid input and all valid weights.
For example, for image models, the threat model is the valid image domain r0, 1sd concate-
nated with the typical weight domain. Note that this threat model is not parameterized by
some radius r, or it can be viewed as parameterized by a fixed radius r. Then, the property
predicate is that for all operators within the DL system, their input falls into the valid range.

In contrast to previous trustworthy properties that certify a concrete DL system, certi-
fication of numerical reliability brings a guarantee for a group of DL systems sharing the
same model architecture.

A formal definition and our certification approach is in Chapter 12.

1.3 TAXONOMY AND CHARACTERIZATION OF CERTIFIED APPROACHES

In this section, we outline important characteristics and features of certified approaches,
and use them to construct a taxonomy for both certification and certified training approaches.

1.3.1 Taxonomy of Certification

For certification approaches, we typically care about five aspects: efficiency (or scalability),
tightness, soundness, inference overhead, and generalizability. We will use them as the
taxonomy criteria.

Efficiency (Scalability). The certification approach varies in its efficiency, and efficiency
can usually be measured by time complexity with respect to model size (concretely, the
number of neurons or parameters). An efficient certification approach can support larger
models, so it is also called scalability. Given the trend of scaling up DL models, the more
efficient a certification approach is, the broader its potential applicability. Hence, we use
efficiency (scalability) as one taxonomy criterion.
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We measure the efficiency with two metrics: (1) A qualitative measure: the largest dataset
that has been demonstrated feasible to certify by existing work using the corresponding cer-
tification approach under a reasonable radius2. The dataset effectively measures scalability.
For example, the approach scaling up to ImageNet is more scalable than the one to MNIST.
(2) A quantitative measure: the best known time complexity for certifying an arbitrary
input, given an arbitrary DNN with depth l, width w in terms of neurons, and sampling
number S (for sampling-based probabilistic approaches and partition-based approaches).
Note that the time complexity for DNN inference is Oplw2q. All sampling-based probabilis-
tic approaches have complexity OpSlw2q, which is because the sampling time cost is much
higher than the actual bound computation whose time complexity is subsumed. polypl, wq

means a time complexity higher than Oplw3q.

Tightness. As discussed in Section 1.1, besides being sound (when output True, truly
trustworthy), we also expect a certification approach to be as tight as possible (when output
False, not trustworthy as much as possible). Hence, tightness is one important criterion.

The highest level of tightness is “complete”, where a False output means not trustwor-
thy for certain. For other incomplete approaches, the tightness measurement is measured
quantitatively by comparison with other approaches supporting the same architecture and
inference protocol. The comparison is based on our benchmark results in [225] and theoret-
ical results from the literature. For approaches that support generic DNNs, tightness are
ranked by Tn; and for sampling-based probabilistic approaches, they are ranked by STn.
The larger n means tighter approaches.

The intrinsic trade-off between efficiency and tightness, i.e., either scalability or tightness
can be achieved but not both, constitutes the main obstacle for trustworthiness certifica-
tion. For example, for robustness certification, all complete certification approaches have
exponential time complexity Op2lwq which is theoretically proved [180, 402].

Soundness. Though all approaches are sound by definition, the degree of soundness still
varies: some approaches bring deterministic certification and others tolerate a small proba-
bility of making false claims. We use “deterministic/probabilistic” to distinguish these two
classes in our taxonomy.

Inference Overhead. Some certification approaches do not support DNNs with normal
inference procedures. Instead, they require a customized inference procedure, e.g., adding
noise to the input and then applying majority voting. By doing so, they can require less

2For example, radius r ě 1{255 for robustness certification against ℓp-bounded perturbations.
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information from the DL system itself, e.g., require no information about model’s architec-
ture, to improve the efficiency. On the other hand, the customized inference procedure could
be much more expensive than the normal one, bringing inference overhead which is critical
for deployment. Hence, we outline the inference overhead as one taxonomy criterion and
highlight approaches that incur inference overhead.

Generalizability. Different certification approaches require different degree knowledge
from the DL system. As mentioned above, some approaches require no information about
model’s architecture but just an oracle access to the inference result. We call these ap-
proaches black-box approaches. On the other hand, other approaches require and support a
particular set of model architectures, and they are called white-box approaches. Most com-
mon white-box approaches support models with ReLU as the activation functions (named
“ReLU Nets” in Table 1.1). Some are more generic (named “generic DNNs” in Table 1.1),
and some others are more restrictive, e.g., only supporting specific Lipschitz-bounded layers.

An interesting observation is that some most generalizable approaches (i.e., black-box
approaches) have inference overhead, indicating a trade-off between efficiency and general-
izability.

Table 1.1 presents our taxonomy results of certification approaches. Besides categorizing
using the above five aspects, we use the certified trustworthy property as the first-level
criterion since approaches are proposed to certify one trustworthy property at a time. We
group approaches with the same core methodology together and use the methodology name
as the identifier. Detail references are listed in the last column.

As we can observe, there is a large family of certification approaches in the literature and
most of them are proposed within five years, reflecting the rapid development of this field.
In Section 1.4, we will describe our approaches to propose using these taxonomy criteria and
summarize how they advance the boundary of certification approaches.

More discussions and findings from the taxonomy can be found in [225]. A visualization
of the taxonomy is in https://sokcertifiedrobustness.github.io.
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Table 1.2: Taxonomy and references of certified training approaches for trustworthy ma-
chine learning. Suitable Certification summarizes the certification approaches for which the
training approach is designed. Details are explained in Section 1.3.2.

Robust Training Approaches Suitable Verification References
Regularization-Based Complete, Incomplete and Deterministic (Lipschitz & Curvature) [83, 84, 143, 206, 209, 344, 345, 346, 419, 438, 439]
Relaxation-Based Incomplete and Deterministic (Linear Relaxation, SDP) [21, 134, 221, 247, 262, 307, 337, 386, 406, 406, 446]

Augmentation-Based Incomplete and Probabilistic [16, 56, 77, 152, 204, 317, 427, 442]
Augmentation- and Regularization-Based Incomplete and Probabilistic [165, 166, 218, 430, 437]

1.3.2 Taxonomy of Certified Training

Compared to certification approaches, certified training approaches are relatively simpler,
all sharing the same procedure in deep learning: gradient-descent-based optimization over
training data in mini-batches. The main difference lies in the core methodologies in terms
of data augmentation, pretraining, loss computation, and regularization. Hence, we use the
core methodology as the taxonomy criterion. The taxonomy results are shown in Table 1.2.

Regularization-based Training. For complete certification, branch-and-bound (BaB)
and mixed integer programming (MIP) are among the most efficient methodologies so far.
Xiao et al. [419] find that for these certification approaches, the number of branches is up-
per bounded by the number of unstable ReLU neurons which motivates a regularization
term to increase the ReLU neuron’s stability for training. For complete certification based
on linear region traversal, we can train with a regularization term maximizing the margin
to non-robust regions [83, 85]. The Lipschitz and curvature certification favor small Lips-
chitz constant and small curvature bounds respectively. Therefore, the corresponding robust
training approaches are very effective by explicitly penalizing large Lipschitz or curvature
bounds [206, 209, 344, 374].

Relaxation-based Training. For linear relaxation based certification approaches, models
with tight linear relaxation bounds are favored. To train such models, corresponding robust
training approaches usually use the computed bounds from linear relaxation as the training
objective to explicitly improve the bound tightness. This idea is similar to the powerful
empirical defense named adversarial training (AT) [251] which uses effective attacks to ap-
proximately find “most adversarial” example maxxPBp,rpx0q Lpfθpxq, y0q and minimize model
weights θ with respect to it, where L is a typical loss function such as cross-entropy loss. In
relaxation-based training, instead, we compute an upper bound of maxxPBp,rpx0q Lpfθpxq, y0q
and minimize it. The bound can be derived from IBP [134, 337], polyhedra-based [21,
246, 446], zonotope-based [262], or duality-based certification [103, 221, 406]. Some useful
training tricks are: combining relaxation-based loss with standard loss to improve benign
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accuracy [134, 386, 446], applying relaxation on some layers but not all to balance benign
accuracy and certified robustness [21], specialized weight initialization and training schedul-
ing [337], and using reference space to guide the relaxation [221]. An intriguing phenomenon
of relaxation-based training is that tighter relaxation, when used as the training objective,
may not lead to more certifiably robust models [176], while the loosest IBP relaxation can
achieve almost the highest certified robustness. A conjecture is that tighter relaxation may
lead to a less smooth loss landscape containing discontinuities or sensitive regions which poses
challenges for gradient-based training [176, 207]. Theoretical understanding of relaxation-
based training is still lacking. Note that solver based and branch-and-bound based complete
certification usually use linear relaxations for bounding. Therefore, models trained with these
relaxation-based training approaches can usually be efficiently certified by these complete
certification approaches [368, 389].

Augmentation-based Training. Since smoothing-based certification favors models to
perform well for noisy inputs, to obtain high certified robustness, we can train the DNNs
with noisy inputs, resulting in augmentation-based training [77, 204, 218]. Built upon such
augmentation-based training, later approaches combine augmentation with regularization
terms to encourage the prediction stability/consistency when the input noise is added [165,
166, 437]. Strategic training regularization combined with augmentation and ensemble is
effective and achieves the state-of-the-art certified robustness against ℓ2 adversary [152, 430].
Adversarial training combined with augmentation [317], and training unlabeled data [56]
are also shown effective. Recently, diffusion models [349], which intrinsically possess the
denoising ability, are leveraged to build models for randomized smoothing [55, 418]. They
achieve superior or competitive certified robustness compared to above methods though
require large model size which results in large inference overhead.

1.3.3 Extensions beyond Taxonomy

Besides the literature and related work covered by the taxonomy, there are a few extensions
of certified approaches going further beyond. Here we illustrate some extending angles and
discuss some example approaches. For related work specific to certain approaches, we will
discuss them alongside the approach in the following chapters.

Extensions on Trustworthy Properties. The techniques of certified approaches dis-
cussed in this thesis are extended to certify other trustworthy properties. (1) Robustness
against local evasion attacks: In local evasion attacks, the adversary slightly perturbs
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the in-distribution data to mislead the model. The ℓp-bounded perturbations and semantic
transformations are both special types of local evasion attacks. Now we elaborate on some
other effective local evasion attacks and their certified approaches. (a) Generative model
based adversary uses generative models such as GAN [131] to generate input perturbation.
Similar to certification against the semantic adversary, smoothing-based approaches and
linear relaxation approaches can be extended to provide certification against this adver-
sary [264, 405]. (b) ℓ0 adversary picks a bounded number of pixels to arbitrarily change
and patch adversary picks a region of pixels with a bounded area to arbitrarily change. To
defend against ℓ0 adversary, smoothing-based approaches can be deployed [168, 205, 212].
To defend against patch adversary, the core idea of smoothing-based approaches, prediction
aggregation on several noisy inputs which are patched inputs here, is leveraged to develop
customized certification and corresponding training approaches. Starting from direct predic-
tion aggregation [211], some recent certified defenses exploit or design model architectures
and inference procedures with self-aggregation property, such as DNNs with small localized
receptive fields [413], importance-score-based pruning [138], vision transformers [320], and
two-round patch-masking [414], to improve the efficiency and tightness of robustness certi-
fication. These approaches [138, 211, 320, 413, 414] can provide robustness guarantees on
the large-scale ImageNet dataset. (2) Distributional evasion attacks: In distributional
evasion attacks, the attacker shifts the whole test data distribution within some bounded
distance to maximize the expected loss. This threat model can be used to characterize
the out-of-distribution generalization ability of ML models [334]. The certification under
this threat model is an upper bound of the expected loss, which can be derived from dual-
ity under Lipschitz and curvature assumptions [347] or from extensions of smoothing-based
approaches [197, 399]. Note that our distributional fairness property is similar to robust-
ness against distributional evasion attacks, but in distributional fairness property we further
require the perturbed distribution is perfectly fair. (3) Global evasion attacks: global
evasion attacks can perturb any valid input example to mislead the model, whereas local
evasion attacks can only perturb in-distribution data. Thus, the robustness against global
evasion attacks means that the robustness property holds for the whole input domain. An
example of a robustness property is that for any high-confident prediction, small pertur-
bations cannot change the predicted label [209]. In the security domain, Chen et al. [64]
recently proposed several domain-specific robustness properties such as requiring all low-
cost features to be robust. To certify these properties, they propose a specific solver-based
certification to verify logic ensemble models, and then use the found adversarial example
as an augmentation for certified training. The certification and certified training for DNNs
against global evasion attacks can be a promising direction.
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Extensions on Other ML Models. There are efforts on generalizing existing certified
approaches for DL systems to deal with more types of machine learning models. For exam-
ple: (1) Some approaches that are designed for ReLU networks, such as linear relaxation
based approaches, have been extended to support general DNNs [343, 407, 443], recurrent
networks [99, 187, 315], transformers [39, 336], and generative models [263]. The main
methodology is to derive the corresponding linear bounds for activation functions or at-
tention mechanisms in these system models. Some complete certification approaches, e.g.,
branch-and-bound based ones [389], also support general DNNs. Note that these complete
certification approaches become incomplete when applied on general DNNs. (2) Certification
approaches for Lipschitz-bounded networks and non-ReLU networks have not been general-
ized to other model types yet. (3) Smoothing-based approaches typically need access to only
the final prediction label, so they are applicable to any classification model. However, the
model must follow the corresponding smoothing-based inference protocol. (4) There are also
certification approaches for decision trees [10, 59, 393], decision stumps [393], nearest proto-
type classifiers [380], and logic ensembles [64]. However, there is no certification and certified
training approach that supports all these system models yet. This is because certification
and robust training approaches need to exploit properties (piecewise linearity, Lipschitz
bound, smoothness, etc) of specific system models to achieve certified trustworthiness.

Extensions for Concrete Applications. Beyond the classification task, the discussed
methodologies, such as linear relaxation and smoothing-based approaches, have been ex-
tended to certify DL systems in many concrete applications. In natural language processing,
extensions include certification for recurrent neural networks against embedding perturba-
tions [99, 187, 315], word substitutions [171], and word transformations [432, 459, 461].
Extensions have also been studied for object detection [70], segmentation [120], and point
cloud models [75, 120, 236] in computer vision, and speech recognition [119, 281].

1.4 SCOPE OF THIS THESIS

In this thesis, we will propose certified approaches for all trustworthiness properties defined
in Section 1.2. In Table 1.3, we summarize all approaches to propose and their characteristics.
The characteristics strictly follow definitions in Section 1.3 and the table adapts a similar
structure as the transpose of Table 1.1 and Table 1.2, so readers can make a clear comparison
with the literature and the preceding taxonomy. The table also lists chapters that introduce
the approaches in detail and reference links to corresponding publications, so readers can
locate them if they are interested in details. Some certified training approaches are naturally
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derived from the certification approaches, so they are introduced together under the same
approach name. Then, for some trustworthiness properties, we do not propose certified
training approaches yet. For proposed certification approaches, they achieve either state-of-
the-art tightness or scalability among comparable ones; for proposed training approaches,
they achieve state-of-the-art certified trustworthiness among approaches using similar costs.

Now we briefly outline why the proposed approaches inherit these characteristics.
For robustness against ℓp-bounded perturbations, we propose certified solutions for both

black-box and white-box settings. The black-box setting is more scalable (to ImageNet)
but induces inference overhead due to smoothing; the white-box setting is less scalable but
requires no change to the model or inference protocol. Note that the certification approach
GCP-CROWN is a part of α-β-CROWN that integrates a series of work in this field, and
we will focus only on the novel methodology part, GCP-CROWN, in this thesis.

For robustness against semantic transformations, we propose black-box solution certi-
fication since it is the only feasible way to scale up to ImageNet-scale datasets, whereas
existing black-box certification approaches can only support CIFAR-10-scale datasets to our
knowledge.

For robustness against RL observation perturbations, though our approach CROP is a
black-box certification approach, the methodology of tree search can be easily extended to
allow white-box certification with no inference overhead.

For robustness against offline-RL poisoning attacks, our certification is based on the idea
of partition aggregation, which is naturally black-box but incurs inference overhead. There
is no white-box certification against poisoning yet for DNNs to our knowledge.

For distributional fairness, the distributional nature implies that all non-trivial certifica-
tion of statistics should evolve confidence intervals, so the certification is probabilistic. Our
proposed certification incurs no inference overhead and is black-box, meaning its optimality
in terms of inference efficiency and generalizability.

For numerical reliability, since we aim at detecting and fixing the defect in an existing
system, we are not able to modify the DL system. Since the system is not altered, we incur
no inference overhead. Moreover, the numerical defect exists at the operator level inside the
DL model, so we need to look into model architecture details and the approach can only be
white-box.

More details are illustrated in the corresponding chapters.
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Table 1.3: Certified approaches to propose in this thesis and their characteristics.

Trustworthy
Property

Robustness against
Distributional

Fairness
Numerical
Reliabilityℓp-bounded

Perturabtions
Semantic

Transformations
RL Observation
Perturbations

Offline-RL
Poisoning
Attacks

Certification
Approach

Name DSRS GCP-CROWN TSS CROP COPA CertFair RANUM
Completeness ✓
Soundness Probabilistic Deterministic Probabilistic Probabilistic Probabilistic Probabilistic Deterministic

Generalizability Black-box White-box Black-box Black-box Black-box Black-box White-box
Generic DNNs Generic DNNs

Core Method Double Branch-and-Bound + Partition + Zeroth- Tree Search + Gramian Bound + Interval
Smoothing Linear Relaxation Order Smoothing Zeroth-Order Smoothing Decomposition Relaxation

Scala-
bility

(up to) ImageNet TinyImageNet ImageNet CIFAR-10 ImageNet ImageNet ImageNet
(complexity) OpSlw2q Op2lwq OpS2lw2q OpSlw2q OpSlw2q OpSlw2q Oplw2q

Inference Overhead Exist Exist Exist Exist
Chapter Chapter 2 Chapter 3 Chapter 7 Chapter 8 Chapter 9 Chapter 11 Chapter 12

Publication [224] [448] [223] [408] [409] [177] [226]
(ICML 2022) (NeurIPS 2022) (CCS 2021) (ICLR 2022) (ICLR 2022) (NeurIPS 2022) (ICSE 2023)

Certified
Training
Approach

Name DRT Robustra (same name as above, resp.)

/ /

(same name as above)

Core Method Augmentation + Relaxation + Augmentation RelaxationTransferability Reduction
Chapter Chapter 4 Chapter 5 (same chapter as above, resp.) (same chapter as above)

Publication [431] [221] (same publication
as above, resp.)

(same publication
as above)(ICLR 2022) (IJCAI 2019)
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Part II

Robustness Certification against ℓp-bounded Perturbations

Probably, one of the most well-known, widely-concerned, and studied trustworthy threat
of DL system is its robustness against ℓp-bounded perturbations. Extensive work has shown
such vulnerability in normal DL systems is wide-spread [112, 132, 304, 359, 384], and could
be turned into actual attacks into commercial DL systems [219, 449]. Hence, in this chapter,
we focus on achieving certified robustness against ℓp-bounded perturbations.

In Chapter 2, we propose a black-box certification approach, DSRS, with state-of-the-
art tightness among black-box approaches. In Chapter 3, we propose general cutting plane
bound propagation GCP-CROWN, which is an important part of state-of-the-art white-box
verifier α-β-CROWN that wins latest neural network certification competitions [20, 272].
Then, the following two chapters introduce suitable training approaches for black-box and
white-box certification respectively. Both approaches share the same principle of reducing
adversarial transferability among models. The last chapter concludes this part with a brief
discussion.

The formal definition of robustness against ℓp-bounded perturbations is in Section 1.2.1.
In the definition, there is a degree of freedom in ℓp norm types. To the best of our knowledge,
existing ℓp-bounded attacks almost always consider ℓ1, ℓ2, and ℓ8. The inputs generated by
these adversaries are within some radius r to clean input x0 measured by ℓ1 norm (i.e., Man-
hattan distance), ℓ2 norm (i.e., Euclidean distance), and ℓ8 norm (i.e., maximum difference
among all dimensions) respectively. We illustrate the region from which the attacker picks
the perturbed input in Figure 2.1 in the next page. In this part, we focus on ℓ2 and ℓ8

adversaries. For approaches for ℓ1 adversary, readers can refer to [225].
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CHAPTER 2: BLACK-BOX CERTIFICATION: DSRS
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Figure 2.1: An ℓp-bounded adversary (Example 1.1) crafts perturbed input from ℓp-bounded
region centered at clean input x0. From left to right are ℓ1-, ℓ2-, and ℓ8-bounded perturbation
regions in 2D space with radius ϵ.
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Figure 2.2: Upper: Standard certification for randomized smoothing leverages information
from only one distribution (PA) to compute robustness certification. Lower: DSRS leverages
information from two distributions (PA and QA) to compute certification for the smoothed
classifier, yielding significantly larger certified radius.

Randomized smoothing [77, 218] has emerged as a popular technique to provide certified
robustness for large-scale datasets. Concretely, it samples noise from a certain smoothing
distribution to construct a smoothed classifier, and thus certifies the robust radius for the
smoothed classifier. Compared to other techniques [134, 262, 406, 446], randomized smooth-
ing is efficient and agnostic to the model as a black-box approach, and is applicable to a
wide range of ML models, including large ResNet [142] on the ImageNet dataset.

To improve the certified robust radius, existing studies [77, 205, 218, 427] have explored
different smoothing distributions. However, the improvement is limited. For example, ℓ2

21



certified robust radius does not increase on large datasets despite that the input dimension
d increases [77], resulting in a low ℓ8 certified radius on large datasets, theoretically shown as
an intrinsic barrier of randomized smoothing (“curse of dimensionality” or “ℓ8 barrier”) [38,
141, 195, 410, 427].

Given these challenges toward tight robustness certification, a natural question arises:

Q1: Is it possible to circumvent the barrier of randomized smoothing by certifying with
additional “information”?

Q2: What type of information is needed to provide tight robustness certification?

To answer these questions, we propose a Double Sampling Randomized Smooth-
ing (DSRS) framework to leverage the sampled noises from an additional smoothing dis-
tribution as additional information to tighten the robust certification. In theory, we show
that (1) ideally, if the decision region of the base classifier is known, DSRS can provide tight
robustness certification; (2) more practically, if the inputs, which can be correctly classi-
fied by the base classifier, satisfy the concentration property within an input-centered ball
with constant mass under standard Gaussian measure, the standard Neyman-Pearson-based
certification [77, 218, 317, 427] can certify only a dimension-independent ℓ2 radius, whereas
DSRS with generalized Gaussian smoothing can certify radius Ωp

?
dq (under ℓ2 norm), which

would increase with the dimension d, leading to tighter certification. Under more general
conditions, we provide numerical simulations to verify our theory. Our results provide a
positive answer to Q1 and sufficient conditions for Q2, i.e., DSRS may be able to circumvent
the barrier of randomized smoothing.

Motivated by the theory, we leverage a type of generalized Gaussian [442] as the smooth-
ing distribution and truncated generalized Gaussian as an additional distribution. For this
type of concretization, we propose an efficient and sound computation method to compute
the certifiably robust radius for practical classifiers considering sampling error. Our method
formulates the certification problem given additional information as a constrained optimiza-
tion problem and leverages specific properties of the dual problem to decompose the effects
of different dual variables to solve it. DSRS is fully scalable since the computational time is
nearly independent of the size of the dataset, model, or sampling. Our extensive experimen-
tal evaluation on MNIST, CIFAR-10, and ImageNet shows that (1) under large sampling
size (2ˆ105´8ˆ105), the certified radius of DSRS consistently increases as suggested by our
theory; (2) under practical sampling size (105), DSRS can certify consistently higher robust
radii than existing baselines, including standard Neyman-Pearson-based certification.

As further discussed in Appendix B.6, we believe that DSRS as a framework opens a wide
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range of future directions for selecting or optimizing different forms of additional information
to tighten the certification of randomized smoothing.

We summarize the main technical contributions as follows:

• We propose a general robustness certification framework DSRS, which leverages addi-
tional information by sampling from another smoothing distribution.

• We prove that under practical concentration assumptions, DSRS certifies Ωp
?
dq radius

under ℓ2 norm with d the input dimension, suggesting a possible way to circumvent
the intrinsic barrier of randomized smoothing.

• We concretize DSRS by generalized Gaussian smoothing mechanisms and propose a
method to efficiently compute the certified radius for given classifiers.

• We conduct extensive experiments, showing that DSRS provides consistently tighter
robustness certification than existing baselines, including standard Neyman-Pearson-
based certification across different models on MNIST, CIFAR-10, and ImageNet.

2.1 RELATED WORK

For the certification method of randomized smoothing, most existing methods leverage
only the true-class prediction probability to certify. In this case, the tightest possible ro-
bustness certification is based on the Neyman-Pearson lemma [276] as first proposed by
Cohen et al. [77] for certifying ℓ2 radius under Gaussian smoothing. Several methods ex-
tend this certification to accommodate different smoothing distributions and different ℓp
norms [106, 214, 427, 442]. In randomized smoothing, the ℓ2 certified robust radius r is
similar across datasets of different scales, resulting in the vanishing ℓ8 certified radius r{

?
d

when input dimension increases. This limitation of existing certification methods of ran-
domized smoothing is formally proved [38, 141, 195, 410, 427] and named “ℓ8 barrier” or
“curse of dimensionality”.

Recent work tries to incorporate additional information besides true-class prediction prob-
ability to tighten the certification and bypass the barrier. For ℓ2 and ℓ8 certification, to
the best of our knowledge, gradient magnitude is the only exploited additional informa-
tion [215, 267]. However, in practice, the improvement is relatively marginal and requires a
large number of samples (see Appendix B.5.5). Some other methods provide tighter certifi-
cation given specific model structures [16, 70, 194, 205]. DSRS instead focuses on leveraging
model-structure-agnostic additional information.
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Recently, it is proposed that another potential way to improve the certified robustness of
randomized smoothing is to dynamically change the smoothing distribution based on the
input toward maximizing the certified radius [6, 109, 323]. In this scenario, the certification
needs to take into account that the attacker may adaptively mislead the pipeline to choose
a “bad” smoothing distribution. Therefore, additional costs such as memorizing training
data need to be paid to defend such adaptive robustness vulnerabilities. A recent work [354]
shows that input-dependent randomized smoothing may not bring substantial improvements
in certified robustness. In DSRS, we select the additional smoothing distribution dynam-
ically based on the input, which may appear like input-dependent randomized smoothing.
However, we select such distribution only for certification purposes, and the original distri-
bution that is used to construct the smoothed classifier remains static. Thus, we do not
need to consider the existence of adaptive attackers.

To improve the certified robustness of randomized smoothing, besides certification, ef-
forts have also been made on the training [165, 218, 317, 437] side. On the training side,
data augmentation [77], regularization [165, 218, 437], and adversarial training [317] help
to train stable base models under noise corruptions so that higher certified robustness for a
smoothed classifier can be achieved. In this work, we focus on certification, and these training
approaches can be used in conjunction with ours to provide higher certified robustness.

2.2 PRELIMINARIES AND BACKGROUND

Let ∆C be the C-dimensional probability simplex. We consider a multiclass classification
model F : Rd Ñ rCs as the base classifier, where d is the input dimension, and the model
outputs hard-label class prediction within rCs. The original smoothing distribution P and
additional smoothing distribution Q are both supported on Rd. We let pp¨q and qp¨q be their
density functions respectively. We assume that both p and q are positive and differentiable
almost everywhere, i.e., the set of singular points has zero measure under either P or Q.
These assumptions hold for common smoothing distributions used in the literature such as
Gaussian distribution [77, 204, 218, 427].

Randomized smoothing constructs a smoothed classifier from a given base classifier by
adding input noise following original smoothing distribution P . For input x P Rd, we define
prediction probability under P by function fP : Rd Ñ∆C :

fPpxqc :“ Pr
ϵ„P
rF px` ϵq “ cs where c P rCs. (2.1)

The smoothed classifier rFP : RÑ rCs (or rF when P is clear from the context) predicts the
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class with the highest confidence after smoothing with P :

rFPpxq :“ argmax
cPrCs

fPpxqc. (2.2)

We focus on robustness certification against ℓp-bounded perturbations for smoothed clas-
sifier rF , where the standard certification method is called Neyman-Pearson-based certifica-
tion [77] (details illustrated below). Concretely, certification methods compute robust radius
r defined as below.

Definition 2.1 (Certified Robust Radius). Under ℓp norm (p P R` Y t`8u), for given
smoothed classifier rFP and input x0 P Rd with true label y0 P rCs, a radius r ě 0 is called
certified (robust) radius for rFP if rFP always predicts y0 for any input within the r-radius
ball centered at x0:

@δ P Rd, }δ}p ă r, rFPpx0 ` δq “ y0. (2.3)

Neyman-Pearson Certification

The Neyman-Pearson-based robustness certification is the tightest certification given only
prediction probability under P [77]. This certification and its equivalent variants are widely
used for randomized smoothing. We use rN´P to represent the certified radius from the
Neyman-Pearson-based method.

If the smoothing distribution P is standard Gaussian, the following proposition gives the
closed-form certified robust radius derived from the Neyman-Pearson lemma [276].

Proposition 2.1 ([77]). Under ℓ2 norm, given input x0 P Rd with true label y0. Let
P “ N pσq be the smoothing distribution, then Neyman-Pearson-based certification yields
certified radius rN´P “ σΦ´1pfPpx0qy0q, where Φ´1 is the inverse CDF of unit-variance
Gaussian.

For other smoothing distributions, the concretization of the Neyman-Pearson certification
method can be found in [427].

Remark 2.1. In practice, the routine is to use Monte-Carlo sampling to obtain a high-
confidence interval of fPpx0qy0 , which implies a high-confidence certification (rN´P) of ro-
bust radius. A tighter radius can be obtained when the runner-up prediction probability is
known: r1

N´P “
σ
2

`

Φ´1pfPpx0qy0q ´maxyPrCs:y‰y0 Φ
´1pfPpx0qyq

˘

. However, due to efficiency
concern (for C-way classification the sampling number needs to be more than C times if
using r1

N´P for certification instead of rN´P), the standard routine is to only use top-class
probability and rN´P [77, Section 3.2.2]. DSRS follows this routine.
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2.3 DSRS OVERVIEW

We propose Double Sampling Randomized Smoothing (DSRS), which leverages the predic-
tion probability from an additional smoothing distribution Q (formally QA :“ fQpx0qy0 “

Prϵ„QrF px ` ϵq “ y0s), along with the prediction probability from the original smooth-
ing distribution P (formally PA :“ fPpx0qy0 as in Equation (2.1), also used in Neyman-
Pearson-based certification), to provide robustness certification for P-smoothed classifier
rFP . Note that both PA and QA can be obtained from Monte-Carlo sampling (see Sec-
tions 2.5.1 and 2.5.2). Formally, we let rDSRS denote the tightest possible certified radius
with prediction probability from Q, then rDSRS can be defined as below.

Definition 2.2 (rDSRS). Given PA and QA,

rDSRS :“ max r s.t.

@F : RÑ rCs, fPpx0qy0 “ PA, f
Qpx0qy0 “ QA

ñ@x, }x´ x0}p ă r, rFPpxq “ y0.

(2.4)

Intuitively, rDSRS is the maximum possible radius, such that any smoothed classifier con-
structed from base classifier satisfying PA and QA constraints cannot predict other labels
when the perturbation magnitude is within the radius.

In Section 2.4, we will analyze the theoretical properties of DSRS, including comparing
rDSRS and rN´P under the concentration assumption. Computing rDSRS is nontrivial, so in
Section 2.5, we will introduce a practical computational method that exactly solves rDSRS

when P and Q are standard and generalized (truncated) Gaussian. In Appendix B.2, we will
show method variants to deal with other forms of P and Q distributions. In Appendix B.6,
we will further generalize the DSRS framework.
Smoothing Distributions. Now we formally define the smoothing distributions used
in DSRS. We mainly consider standard Gaussian N [77, 427] and generalized Gaussian
N g [442]. Let N pσq to represent standard Gaussian distribution with covariance matrix σ2Id

that has density function 9 expp´}ϵ}22{p2σ
2qq.3 For k P N, we letN gpk, σq to represent gener-

alized Gaussian whose density function9}ϵ}´2k
2 expp´}ϵ}22{p2σ

12qq where σ1 “
a

d{pd´ 2kqσ.
Here we use σ1 instead of σ to ensure that the expected noise

a

E }ϵ}22 of N gpk, σq is the
same as N pσq. The generalized Gaussian as the smoothing distribution overcomes the “thin
shell” problem of standard Gaussian and improves certified robustness [442]; and we will
reveal more of its theoretical advantages in Section 2.4.

3In this chapter, N pσq is a shorthand of N p0, σ2Idq.
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Table 2.1: Definitions of smoothing distributions in this chapter. In the table, k P N,
σ1 “

a

d{pd´ 2kqσ.

Name Notation Density Function

Standard Gaussian N pσq 9 exp
´

´
}ϵ}22
2σ2

¯

Generalized Gaussian N gpk, σq 9}ϵ}´2k
2 exp

´

´
}ϵ}22
2σ12

¯

Truncated Standard Gaussian NtruncpT, σq 9 exp
´

´
}ϵ}22
2σ2

¯

¨ Ir}ϵ}2 ď T s

Truncated Generalized Gaussian N g
truncpk, T, σq 9}ϵ}´2k

2 exp
´

´
}ϵ}22
2σ12

¯

¨ Ir}ϵ}2 ď T s

As the additional smoothing distribution Q, we will mainly consider truncated distribu-
tions within a small ℓ2 radius ball. Specially, truncated standard Gaussian is denoted by
NtruncpT, σq with density function 9 expp´}ϵ}22{p2σ

2qq ¨ Ir}ϵ}2 ď T s; and truncated general-
ized Gaussian is denoted by N g

truncpk, T, σq with density function 9}ϵ}´2k
2 expp´}ϵ}22{p2σ

12qq ¨

Ir}ϵ}2 ď T s.
In Table 2.1, we summarize these distribution definitions.

2.4 THEORETICAL ANALYSIS OF DSRS

In this section, we theoretically analyze DSRS to answer the following core question: Does
QA, the prediction probability under additional smoothing distribution, provide sufficient in-
formation for tightening the robustness certification? We first show that if the support of Q
is the decision region of true class, DSRS can certify the smoothed classifier’s maximum pos-
sible robust radius. Then, under concentration assumption, we show the ℓ2 certified radius
of DSRS can be Ωp

?
dq that is asymptotically optimal for bounded inputs. Finally, under

more general conditions, we conduct both numerical simulations and real-data experiments
to verify that the certified radius of DSRS increases with data dimension d. These analyses
provide a positive answer to the above core question.

DSRS can certify the tightest possible robust radius.

Given an original smoothing distribution P and a base classifier F0. At input point x0 P Rd

with true label y0, we define the tightest possible certified robust radius rtight to be the largest
ℓp ball that contains no adversarial example for smoothed classifier rFP

0 :

rtight :“ max r s.t. @δ P Rd, }δ}p ă r, rFP
0 px0 ` δq “ y0. (2.5)
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Then, for binary classification, if we choose an additional smoothing distribution Q whose
support is the decision region or its complement, then DSRS can certify robust radius rtight.

Theorem 2.1. Suppose the original smoothing distribution P has non-zero density every-
where, i.e., pp¨q ą 0. For binary classification with base classifier F0, at point x0 P Rd,
let Q be an additional distribution that satisfies: (1) its support is the decision region of
an arbitrary class c P rCs shifted by x0: supppQq “ tx ´ x0 : F0pxq “ cu; (2) for any
x P supppQq, 0 ă qpxq{ppxq ă `8. Then, plugging PA “ fP

0 px0qc and QA “ fQ
0 px0qc (see

Equation (2.1)) into Definition 2.2, we have rDSRS “ rtight under any ℓp (p ě 1).

Proof sketch. We defer the proof to Appendix B.1.1. At a high level, with this type of Q,
we have QA “ 1 or QA “ 0. Then, from the mass of the Q’s support on P and PA, we can
conclude that the Q’s support is exactly the decision region of label c or its complement.
Thus, the DSRS constraints (in Equation (2.4)) are satisfied iff F differs from F0 in a zero-
measure set, and thus we exactly compute the smoothed classifier rFP

0 ’s maximum certified
robust radius in DSRS. An extension to multiclass setting is in Appendix B.1.2. QED.

Remark 2.2. For any base classifier F0, Q that satisfies conditions in Theorem 2.1 exists,
implying that with DSRS, certifying a strictly tight robust radius is possible. In contrast,
Neyman-Pearson-based is proved to certify tight robust radius for linear base classifiers [77,
Section 3.1], but for arbitrary base classifiers, its tightness is not guaranteed. This result
suggests that, to certify a tight radius, just one additional smoothing distribution Q is
sufficient rather than multiple ones.

On the other hand, it is challenging to find Q whose support (or its complement) exactly
matches the decision region of an NN classifier. In the following, we analyze the tightness
of DSRS under weaker assumptions.

DSRS can certify Ωp
?
dq ℓ2 radius under concentration assumption.

We begin by defining the concentration property.

Definition 2.3 ((σ, Pcon)-Concentration). Given a base classifier F0, at input x0 P R with
true label y0, we call F0 satisfies (σ, Pcon)-concentration property, if for within Pcon-percentile
of small ℓ2 magnitude Gaussian N pσq noise, the adversarial example occupies zero measure.
Formally, (σ, Pcon)-concentration means

Pr
ϵ„N pσq

rF0px0 ` ϵq “ y0 | }ϵ0}2 ď T s “ 1 (2.6a)

where T satisfies Pr
ϵ„N pσq

r}ϵ}2 ď T s “ Pcon. (2.6b)
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Figure 2.3: Blue curves: Probability of true-prediction w.r.t. ℓ2 length of perturbations for a
base classifier from [317] on ImageNet. Each line corresponds to one of 100 uniformly drawn
samples from test set (detailed setup in Appendix B.5.1). Green curve: Normalized density
of ℓ2 noise magnitude for ImageNet standard Gaussian N pσq with σ “ 0.5, which highly
concentrates on σ

?
d. Thus, for constant Pcon, (σ, Pcon)-concentration can be satisfied for a

significant portion of input samples.

Intuitively, (σ, Pcon)-concentration implies that the base classifier has few adversarial ex-
amples for small magnitude noises during standard Gaussian smoothing. In Figure 2.3, we
empirically verified that a well-trained base classifier on ImageNet may satisfy this property
for a significant portion of inputs. Furthermore, Salman et al. [317] show that promoting
this concentration property by adversarially training the smoothed classifier improves the
certified robustness. With this concentration property, DSRS certifies the radius Ωp

?
dq

under ℓ2 norm, as the following theorem shows.

Theorem 2.2. Let d be the input dimension and F0 be the base classifier. For an input
point x0 P Rd with true class y0, suppose F0 satisfies pσ, Pconq-Concentration property.
Then, for any sufficiently large d, for the classifier rFP 1

0 smoothed by generalized Gaussian
P 1 “ N gpk, σq with d{2 ´ 15 ď k ă d{2, DSRS with additional smoothing distribution
Q “ N g

truncpk, T, σq can certified ℓ2 radius

rDSRS ě 0.02σ
?
d (2.7)

where T “ σ
b

2ΓCDF´1
d{2pPconq and ΓCDFd{2 is the CDF of gamma distribution Γpd{2, 1q.

Proof sketch. We defer the proof to Appendix B.1.3. At high level, based on the standard
Gaussian distribution’s property (Proposition B.1), we find QA “ 1 under concentration
property (Lemma B.1). With QA “ 1, we derive a lower bound of rDSRS in Lemma B.2.
We then use: (1) the concentration of beta distribution Betapd´1

2
, d´1

2
q (see Lemma B.3)

for large d; (2) the relative concentration of gamma Γpd{2, 1q distribution around mean for
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Figure 2.4: PA histograms for models trained on TinyImageNet (left) and ImageNet (right)
with same σ “ 0.50. PA histograms are based on 1, 000 test samples from TinyImageNet
and ImageNet. Note that TinyImageNet images are downscaled ImageNet images, so the
data distribution only differs in the input dimension d. As we can observe, though d varies,
the PA distribution is highly similar, so PA is roughly unchanged along with the increase of
input dimension d.

large d (see Proposition B.2 and resulting Fact B.1); and (3) the misalignment of gamma
distribution Γpd{2 ´ k, 1q’s mean and median for small pd{2 ´ kq (see Proposition B.3) to
lower bound the quantity in Lemma B.2 and show it is large or equal to 0.5. Then, using
the conclusion in Section 2.5 we conclude that rDSRS ě 0.02σ

?
d. QED.

Remark 2.3. (1) For standard Neyman-Pearson based certificaton, rN´P “ σΦ´1pfPpx0qy0q.
Along with the increase of input dimension d, to achieve growing ℓ2 certified radius, one needs
the prediction probability of true class under P , namely fPpx0qy0 , to grow simultaneously,
which is challenging. Indeed, across different datasets, fPpx0qy0 is almost a constant, which
leads to a constant ℓ2 certified radius and shrinking ℓ8 radius for large d. We further
empirically illustrate this property in Figure 2.4.

(2) In contrast, as long as the model satisfies concentration property, which may be almost
true on large datasets as reflected by Figure 2.3, with our specific choices of P and Q,
DSRS can achieve Ωpσ

?
dq ℓ2 radius on large datasets. This rate translates to a constant

Ωpσq ℓ8 radius on large datasets and thus breaks the curse of dimensionality of randomized
smoothing. We remark that this

?
d rate is optimal when dataset input is bounded such as

images (otherwise, the ωp1q ℓ8 radius leads the radius to exceed the constant ℓ8 diameter
for large d). Therefore, under the assumption of concentration property, DSRS provides
asymptotically optimal certification for randomized smoothing.

(3) Smoothing with generalized Gaussian distribution and choosing a parameter k that
is close to d{2 play an essential role in proving the Ωpσ

?
dq certified radius. Otherwise, in

Appendix B.1.4 we have Theorem B.1 that shows any certification methods cannot certify
an ℓ2 radius c

?
d for any c ą 0. This adds another theoretical evidence for the superiority

of generalized Gaussian that is cross-validated by Zhang et al. [442].
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Figure 2.5: Tendency of DSRS certified robust radius considering sampling error. In both
(a) and (b), DSRS certified radius grows along with the increase of sampling number N but
Neyman-Pearson radius is almost fixed.

DSRS certifies tighter radius under general scenarios.

When the concentration property does not absolutely hold, a rigorous theoretical analysis
becomes challenging, since the impact of a noninfinite dual variable needs to be taken into
account. This dual variable is inside a Lambert W function where typical approximation
bounds are too loose to provide non-trivial convergence rates. Thus, we leverage the numer-
ical computational method introduced in Section 2.5 to provide numerical simulations and
real-data experiments. We generalize the concentration assumption by changing the holding
probability in Equation (2.6a) from 1 to α1{N , which corresponds to p1´ αq-confident lower
bound of QA given N times of Monte-Carlo sampling, where we set α “ 0.1% following
the convention [77]. In this scenario, we compare DSRS certification with Neyman-Pearson
certification numerically in Figure 2.5 (numerical simulations in Figure 2.5(a) and ImageNet
experiments in Figure 2.5(b)).

In Figure 2.5(a), we assume pσ, Pconq-concentration with σ “ 1, Pcon “ 0.5 and different
sampling number Ns. We further assume PA “ fPpx0qy0 “ 0.6 as the true-class prediction
probability under P . In Figure 2.5(b), we take the model weights trained by Salman et al.
[317] on ImageNet and apply generalized Gaussian smoothing with d{2´k “ 4 and σ “ 0.50.
We uniformly pick 100 samples from the test set and compute p1 ´ αq-confident certified
radius for each sample. We report certified accuracy (under different ℓ2 radius r) that is the
fraction of certifiably correctly classified samples by the smoothed classifier.

Remark 2.4. When the sampling error and confidence interval come into play, they quickly
suppress the Ωp

?
dq growth rate of DSRS certified radius (blue curve) as shown in Fig-
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ure 2.5(a). Nonetheless, DSRS still certifies a larger radius than the standard Neyman-
Pearson method and increasing the sampling number further enlarges the gap.

Instead of generalizing the concentration assumption by replacing the holding probability
1 in Equation (2.6a) by probability considering sampling confidence, we replace the holding
probability in Equation (2.6a) by expp´dαq for α P t0.1, 0.2, 0.3, 0.4, 0, 5u.

With this relaxation, we conduct numerical simulations using the same settings as above,
and the corresponding results are shown in Figure 2.6. Note that some solid curves termi-
nate when d is large, which is due to the limitation of floating-point precision in numerical
simulations, and we use dashed lines of the same color to plot the projected radius when d
is large.

Remark 2.5. When the concentration property holds with probability expp´dαq (0 ă α ď

0.5) other than 1, from Figure 2.6, we observe that rN´Pd
α{1.18 predicts the certified radius

of DSRS well where rN´P is Neyman-Pearson certified radius. Therefore, although the
?
d

growth rate of ℓ2 certified radius does not hold, the radius still increases along with the
dimension d. Interestingly, along with the increase of dimension d, the vanishing probability
expp´dαq still implies the increasing volume of adversarial examples, and smoothed classifier
is still certifiably robust with increasing radius reflected by DSRS despite the increasing
adversarial volume.

2.5 DSRS COMPUTATIONAL METHOD

The theoretical analysis in Section 2.4 implies that additional smoothing distribution Q
helps to tighten the robustness certification over standard Neyman-Pearson-based certifica-
tion significantly. In this section, we propose an efficient computational method to compute
this tight certified robust radius rDSRS (see Definition 2.2) when P is generalized Gaussian
and Q is truncated P as suggested by Theorems 2.2 and B.1.

Compared with the classical certification for randomized smoothing or its variants (cf.
[194]), incorporating additional information raises a big challenge: the Neyman-Pearson
lemma ([276]) can no longer be served as the foundation of the certification algorithm due
to its incapability to handle the additional information.

Thus, we propose a novel DSRS computational method by formalizing robustness certifi-
cation as a constrained optimization problem and proving its strong duality (§2.5.1). Then,
we propose an efficient algorithm to solve this specific dual optimization problem considering
sampling error. The detailed algorithm can be found in Algorithm 2.1 in Section 2.5.4: 1)

32



10
2

10
3

10
4

10
5

10
6

Input Dimension d

10
0

10
1

10
2

C
er

tif
ie

d 
R

ad
iu

s
Certified Radius with PA=0.6 and (1, 0.5)-Approximate Concentration Property

Neyman-Pearson Standard Gaussian
DSRS w/ Concentration Info. (Ideal)
DSRS w/ (exp(−0.1d))-Concentration
DSRS w/ (exp(−0.2d))-Concentration
DSRS w/ (exp(−0.3d))-Concentration
DSRS w/ (exp(−0.4d))-Concentration
DSRS w/ (exp(−0.5d))-Concentration
MNIST Input Dim.
CIFAR-10 Input Dim.
ImageNet Input Dim.

Figure 2.6: Tendency of DSRS certified robust radius with different input dimensions d under
relaxed concentration assumption: when holding probability in Equation (2.6a) is expp´dαq
with α from 0.1 to 0.5;. Blue line: DSRS when holding probability in Equation (2.6a)
is 1. Dotted line: Neyman-Pearson certification. Other solid lines: DSRS when holding
probability in Equation (2.6a) is expp´dαq. Other dashed lines: DSRS projected radius by
rproj
DSRS “ rN´Pd

α{1.18. α P t0.1, 0.2, 0.3, 0.4, 0.5u. Both x- and y-axes are logarithmic.

Constrained Optimatization Strong Duality

Determine 𝑃𝐴 and 𝑄𝐴
from confidence intervals 

(§3.5.2)

+

Dual Problem 

Solving (§3.5.3)

DSRS Certification as a Constrained Optimization (§3.5.1)

Binary Search

Numerical Integration

+

Figure 2.7: Overview of DSRS computational method.

we first perform a binary search on the certified radius r to determine the maximum radius
that we can certify; 2) for current r, we determine the smoothed prediction confidence PA
and QA from the confidence intervals of predicting the true class (§2.5.2); 3) then, for cur-
rent r we solve the dual problem by quick binary search for dual variables λ1 and λ2 (see
Equation (2.11)) along with numerical integration (§2.5.3). To guarantee the soundness of
numerical-integration-based certification, we take the maximum possible error into account
during the binary search. We will discuss further extensions in §2.5.7.
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2.5.1 DSRS as Constrained Optimization

We first formulate the robustness certification as a constrained optimization problem and
then show several foundational properties of the problem.

Following the notation of Definition 2.2, from the given base classifier F0, we can use
Monte-Carlo sampling to obtain

PA “ fP
0 px0qy0 , QA “ fQ

0 px0qy0 . (2.8)

In §2.5.2 we will discuss how to handle confidence intervals of PA and QA. For now, we
assume PA and QA are fixed.

Given perturbation vector δ P Rd, to test whether smoothed classifier rFP
0 still predicts

true label y0, we only need to check whether the prediction probability fP
0 px0 ` δqy0 ą 0.5.

This can be formulated as a constrained optimization problem pCq:

minimize
f

E
ϵ„P
rfpϵ` δqs (2.9a)

s.t. E
ϵ„P
rfpϵqs “ PA, E

ϵ„Q
rfpϵqs “ QA, (2.9b)

0 ď fpϵq ď 1 @ϵ P Rd. (2.9c)

Remark 2.6. pCq seeks for the minimum possible fPpx0 ` δqy0 given Equation (2.8)’s
constraint. Concretely, we let f represent whether the base classifier predicts label y0:
fp¨q “ IrF p¨ ` x0q “ y0s, and accordingly impose f P r0, 1s in Equation (2.9c). Then,
Equations (2.9a) and (2.9b) unfold fPpx0 ` δqy0 , f

Ppx0qy0 , and fQpx0qy0 respectively and
impose Equation (2.8)’s constraint.

We let CδpPA, QAq denote the optimal value of Equation (2.9) when feasible. Thus, under
norm p, to certify the robustness within radius r, we only need to check whether

@δ, }δ}p ă r ñ CδpPA, QAq ą 0.5. (2.10)

This formulation yields the tightest robustness certification given information from P and Q
under the binary setting. Under the multiclass setting, there are efforts towards tighter certi-
fication by using “ąmaximum over other classes” instead of “ą 0.5” in Equation (2.10) [106].
For saving the sampling cost and also to follow the convention [77, 165, 427, 437], we mainly
consider “ą 0.5” for multiclass setting, and extension to the other form is straightforward.

Since our choices of P and Q (standard/generalized (truncated) Gaussian) are isotropic
and centered around origin, when certifying radius r, for ℓ2 certification we only need to test
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CδpPA, QAq ą 0.5 with δ “ pr, 0, . . . , 0qT; and for ℓ8 we only need to divide ℓ2 radius by
?
d. This trick can also be extended for ℓ1 case [442].
Directly solving pCq is challenging. Thus, we construct the Lagrangian dual problem pDq:

maximize
λ1, λ2PR

Pr
ϵ„P
rppϵq ă λ1ppϵ` δq ` λ2qpϵ` δqs (2.11a)

s.t. Pr
ϵ„P
rppϵ´ δq ă λ1ppϵq ` λ2qpϵqs “ PA,

Pr
ϵ„Q
rppϵ´ δq ă λ1ppϵq ` λ2qpϵqs “ QA.

(2.11b)

In Equation (2.11), pp¨q and qp¨q are the density functions of distributions P and Q respec-
tively. We let DδpPA, QAq denote the optimal objective value to Equation (2.11a) when it
is feasible.

Theorem 2.3. For given δ P Rd, PA, andQA, if C and D are both feasible, then CδpPA, QAq “

DδpPA, QAq.

The theorem states the strong duality between pCq and pDq. We defer the proof to
Appendix B.2.1. The proof is based on min-max inequality and feasibility condition of pDq.
Intuitively, we can view pCq, a functional optimization over f , as a linear programming (LP)
problem over infinite number of variables tfpxq : x P Rdu so that the strong duality holds,
which guarantees the tightness of DSRS in the primal space.

2.5.2 Dealing with Confidence Intervals

It is practically intractable to know the exact PA and QA in Equation (2.8) by only
querying the model’s prediction for finite times. The common practice is using Monte-Carlo
sampling, which gives confidence intervals of PA and QA with a predefined confidence level
1´ α.

Suppose we have confidence intervals rPA, PAs and rQA, QAs. To derive a sound certifica-
tion, we need to certify that for any PA P rPA, PAs and any QA P rQA, QAs, CδpPA, QAq ą

0.5. Given the infinite number of possible PA and QA, the brute-force method is intractable.
Here, without computing Cδ, we show how to solve

pPA, QAq “ argmin
P 1
APrPA, PAs,Q1

APrQA, QAs

CδpP
1
A, Q

1
Aq. (2.12)

If solved PA and QA satisfy CδpPA, QAq ą 0.5, then for any PA and QA within the confidence
intervals, we can certify the robustness against perturbation δ. We observe the following
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two properties of Cδ.

Proposition 2.2. Cδp¨, ¨q is convex in the feasible region.

Proposition 2.3. With respect to x P r0, 1s, functions x ÞÑ miny Cδpx, yq and x ÞÑ

argminy Cδpx, yq are monotonically non-decreasing. Similarly, with respect to y P r0, 1s,
functions y ÞÑ minx Cδpx, yq and y ÞÑ argminx Cδpx, yq are monotonically non-decreasing.

These two propositions characterize the landscape of Cδp¨, ¨q—convex and monotonically
non-decreasing along both x and y axes. Thus, desired (PA, QA) (location of minima within
the bounded box) lies on the box boundary, and we only need to compute the location of
boundary-line-sliced minima and compare it with box constraints to solve Equation (2.12).
Formally, we propose an efficient algorithm (Algorithm 2.2 in Section 2.5.4) to solve pPA, QAq.

Theorem 2.4. If Equation (2.12) is feasible, the PA and QA returned by Algorithm 2.2
solve Equation (2.12).

The above results are proved in Appendix B.2.2. On a high level, we prove Proposition 2.2
by definition; we prove Proposition 2.3 via a reduction to classical Neyman-Pearson-based
certification and analysis of this reduced problem; and we prove Theorem 2.4 based on
Propositions 2.2 and 2.3 along with exhaustive and nontrivial analyses of all possible cases.

2.5.3 Solving the Dual Problem

After the smoothed prediction confidences PA and QA are determined from the confidence
intervals, now we solve the dual problem DδpPA, QAq as defined in Equation (2.11). We solve
the problem based on the following theorem:

Theorem 2.5 (Numerical Integration for DSRS with Generalized Gaussian Smoothing). In
DδpPA, QAq, let r “ }δ}2, when P “ N gpk, σq and Q “ N g

truncpk, T, σq, let σ1 :“
a

d{pd´ 2kq

and let ν :“ ΓCDFd{2´kpT
2{p2σ12qq,

Rpλ1, λ2q :“ Pr
ϵ„P

rppϵq ă λ1ppϵ ` δq ` λ2qpϵ ` δqs “

$

&

%

Et„Γpd{2´k,1q u1ptq, λ1 ď 0

Et„Γpd{2´k,1q u1ptq ` u2ptq, λ1 ą 0

(2.13)

where u1ptq “BetaCDF d´1
2

¨

˝

mintT 2, 2σ12kW p tke
t
k pλ1 ` νλ2q

1
k qu

4rσ1
?
2t

´
pσ1

?
2t ´ rq2

4rσ1
?
2t

˛

‚, (2.14)

u2ptq “max

$

’

&

’

%

BetaCDF d´1
2

¨

˝

2σ12kW p tke
t
kλ

1
k
1 qpσ1

?
2t ´ rq2

4rσ1
?
2t

˛

‚´ (2.15)
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´BetaCDF d´1
2

˜

T 2 ´ pσ1
?
2t ´ rq2

4rσ1
?
2t

¸

, 0

,

.

-

,

P pλ1, λ2q :“ Pr
ϵ„P

rppϵ ´ δq ă λ1ppϵq ` λ2qpϵqs “ E
t„Γpd{2´k,1q

$

&

%

u3pt, λ1q, t ě T 2{p2σ12q

u3pt, λ1 ` νλ2q, t ă T 2{p2σ12q.

(2.16)

where u3pt, λq “BetaCDF d´1
2

¨

˝

pr ` σ1
?
2tq2

4rσ1
?
2t

´
2kσ12W p tke

t
kλ´ 1

k q

4rσ1
?
2t

˛

‚, (2.17)

Qpλ1, λ2q :“ Pr
ϵ„Q

rppϵ ´ δq ă λ1ppϵq ` λ2qpϵqs “ ν E
t„Γpd{2´k,1q

u3pt, λ1 ` νλ2q ¨ Irt ď T 2{p2σ12qs.

(2.18)

In above equations, Γpd{2´k, 1q is gamma distribution and ΓCDFd{2´k is its CDF, BetaCDF d´1
2

is the CDF of distribution Betapd´1
2
, d´1

2
q, andW is the principal branch of LambertW func-

tion.

When P is standard Gaussian and Q is truncated standard Gaussian, we derive similar
expressions as detailed in Appendix B.3.1. We prove Theorem 2.5 in Appendix B.2.3. The
proof extends the level-set sliced integration and results from [427]. With the theorem, we
can rewrite the dual problem DδpPA, QAq as

max
λ1, λ2PR

Rpλ1, λ2q s.t. P pλ1, λ2q “ PA, Qpλ1, λ2q “ QA, (2.19)

Given concrete λ1 and λ2, from the theorem, these function values P pλ1, λ2q, Qpλ1, λ2q, and
Rpλ1, λ2q can be easily computed with one-dimensional numerical integration using SciPy
package.

Now, solving DδpPA, QAq reduces to finding dual variables λ1 and λ2 such that P pλ1, λ2q “
PA and Qpλ1, λ2q “ QA. Generally, we find that there is only one unique feasible pair pλ1, λ2q
for Equation (2.19), so finding out such a pair is sufficient. We prove the uniqueness and
discuss how we deal with edge cases where multiple feasible pairs exist in Appendix B.2.4.

Normally, such solving process is expensive. However, we find a particularly efficient
method to solve λ1 and λ2 and the algorithm description is in Algorithm 2.3 (in Section 2.5.4).
At a high level, from Theorem 2.5, we observe that Qpλ1, λ2q is determined only by the sum
pλ1 ` νλ2q and non-decreasing w.r.t. this sum. Therefore, we apply binary search to find
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out pλ1 ` νλ2q that satisfies Qpλ1, λ2q “ QA. Then, we observe that

P pλ1, λ2q ´
Qpλ1, λ2q

ν
“

:“hpλ1q
hkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj

E
t„Γpd{2´k,1q

u3pt, λ1q ¨ I
«

t ě T 2

2σ12

ff

. (2.20)

Thus, we need to find λ1 such that hpλ1q “ PA ´ QA{ν. We observe that hpλ1q is non-
decreasing w.r.t. λ1, and we use binary search to solve λ1. Combining with the value of
pλ1`νλ2q, we also obtain λ2. We lastly leverage numerical integration to compute Rpλ1, λ2q
following Theorem 2.5 to solve the dual problem DδpPA, QAq.

To this point, we have introduced the DSRS computational method.

2.5.4 Algorithm Pseudocode

Algorithm 2.1 is the pseudocode of the whole DSRS computational method.
Algorithm 2.1: DSRS computational method.

Data: clean input x0, base classifier F0; distributions P and Q; norm type p; confidence level α;
numerical integration error bound ∆

Result: Certified radius r
1 Query prediction y0 Ð rFP

0 px0q;
2 Sample and estimate the intervals of smoothed confidence rPA, PAs under P and rQA, QAs under

Q with confidence p1 ´ αq following [77];
3 Initialize: rl Ð 0, ru Ð rmax;
4 while ru ´ rl ą eps do /* Binary search on radius r */
5 rm Ð prl ` ruq{2;
6 δ Ð prm, 0, . . . , 0qT ; /* for ℓ2 certification with ℓ2 symmetric P and Q; for ℓ8 or ℓ1, can be

adjusted following [442] */
7 Determine PA P rPA, PAs and QA P rQA, QAs ; /* See Section 2.5.2 and Algorithm 2.2 */
8 pλ1, λ2q Ð DualBinarySearch(PA, QA) ; /* See Section 2.5.3 and Algorithm 2.3 */
9 v Ð Rpλ1, λ2q ´ ∆ ; /* Using Theorem 2.5 */

10 if v ą 0.5 then
11 rl Ð rm

12 else
13 ru Ð rm;
14 end
15 end
16 return rl;

Algorithm 2.2 is a subroutine (Line 7) of Algorithm 2.1.
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Algorithm 2.2: Determining PA and QA from confidence intervals (see
§2.5.2).

Data: Distributions P and Q; δ; rPA, PAs and rQA, QAs

Result: PA and QA satisfying Equation (2.12)
1 Compute q Ð argminy CδpPA, yq;
2 if q ą QA then
3 return pPA, mintq, QAuq

4 else
5 Compute p Ð argminx Cδpx, QAq;
6 return pmaxtmintp, PAu, PAu, QAq;

Algorithm 2.3: DualBinarySearch for λ1 and λ2.
Data: Query access to P p¨, ¨q and Qp¨, ¨q; PA; QA; ν; precision parameter ϵ; numerical integration

error bound ∆

Result: λ1 and λ2 satisfying constraints P pλ1, λ2q “ PA, Qpλ1, λ2q “ QA (see Equation (2.19))
1 aL Ð 0, aU Ð M ; /* search for a “ λ1 ` νλ2, M is a large positive number */
2 while aU ´ aL ą ϵ do
3 am Ð paL ` aU q{2;
4 if Qpam, 0q ă QA then
5 aL Ð am

6 else
7 aU Ð am

8 end
/* Following while-loop enlarges aL and aU until raL, aU s covers a˚ such that Qpa˚, 0q “ QA under

numerical integration error */
9 while pQpaL, 0q ` ∆ ą QAq or pQpaU , 0q ´ ∆ ă QAq do

10 t Ð aU ´ aL;
11 aL Ð aL ´ t{2;
12 aU Ð aU ` t{2;
13 end
14 λL

1 Ð 0, λU
1 Ð M ; /* search for λ1, M is a large positive number */

15 while λU
1 ´ λL

1 ą ϵ do
16 λm

1 Ð pλL
1 ` λU

1 q{2;
17 if hpλm

1 q ´ ∆ ă PA ´ QA{ν then
18 λL

1 Ð λm
1

19 else
20 λU

1 Ð λm
1

21 end
/* Following while-loop enlarges λL

1 and λU
1 until rλL

1 , λ
U
1 s covers λ˚

1 such that hpλ˚
1 q “ PA ´ QA{ν

under numerical integration error */
22 while phpλL

1 q ` ∆ ą PA ´ QA{νq or phpλU
1 q ´ ∆ ă PA ´ QA{νq do

23 t Ð λU
1 ´ λL

1 ;
24 λL

1 Ð λL
1 ´ t{2;

25 λU
1 Ð λU

1 ` t{2;
26 end
27 return pλL

1 , paL ´ λU
1 q{νq ; /* for soundness, choose the left endpoint of λ1 and λ2 range */

Note that Lines 1 and 5 of Algorithm 2.2 solve the constrained optimization with only
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one constraint (either one of Equation (2.9b)), reducing to the well-studied and solvable
Neyman-Pearson-based certification.

Note that we do not need to evaluate any value of Cδ in Algorithm 2.2. Although q and p
in the algorithm are “argminx or y” over Cδ, the free choices of x or y leave Cδ’s constrained
optimization with only one constraint and then q and p can be solved by Neyman-Pearson
instead of evaluating Cδ directly.

Algorithm 2.3 is the dual variable search algorithm described in Section 2.5.3, and it is a
subroutine (Line 8) of Algorithm 2.1.

From Line 1 to 8, we conduct binary search for quantity λ1 ` νλ2; from Line 14 to 21, we
conduct binary search for quantity λ1. Notice that our binary search interval is initialized
to be the non-negative interval. This is because Qpam, 0q “ 0 and hpλm1 q “ 0 if am and λm1
are non-positive observed from Theorem 2.5.

Implementation details are in Appendix B.4.1.

2.5.5 Guaranteeing Numerical Soundness

As a practical certification method, we need to guarantee the certification soundness in the
presence of numerical error. In DSRS, there are two sources of numerical error: numerical
integration error when computing P pλ1, λ2q, Qpλ1, λ2q, and Rpλ1, λ2q, and the finite precision
of binary search on λ1 and λ2. For numerical integration, we notice that typical numerical
integration packages such as scipy support setting an absolute error threshold ∆ and raising
warnings when such threshold cannot be reached. We set the absolute threshold ∆ “

1.5 ˆ 10´8 in scipy.integrad.quad function, and abstain when the threshold cannot be
reached (which never happens in our experimental evaluation). Then, when computing P ,
Q, and R, suppose the numerical value is v, we use the lower bound pv ´ ∆q and upper
bound pv ` ∆q in the corresponding context to guarantee the soundness. For the finite
precision in binary search, we use the left endpoint or the right endpoint of the final binary
search interval to guarantee soundness. For example, we use the left endpoint of λ1 in R

computation, and use the left endpoint of pλ1 ` νλ2q minus right endpoint of λ1 to get the
lower bound of λ2 to use in R computation. Therefore, both λ1 and λ2 are underestimated
and by the monotonicity of Rp¨, ¨q, the actual Rpλ1, λ2q would be underestimated to guarantee
the soundness.
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2.5.6 Complexity and Efficiency Analysis

Suppose the binary search precision is ϵ, and each numerical integration costs C time.
First, the search of certified robust radius costs Oplogp

?
d{ϵqq. For each searched radius,

we first determine PA and QA by running Neyman-Pearson-based certification, which has
cost Oplogp1{ϵqCq. Then, solving dual variables takes two binary search rounds, which has
cost Oplogp1{ϵqCq. The final one-time integration of Rpλ1, λ2q has cost OpCq. Thus, overall
time complexity is Oplogp

?
d{ϵq logp1{ϵqCq, which is the same as classical Neyman-Pearson

certification and grows slowly (in logarithmic factor) w.r.t. input dimension d.
In practice, the certification time is on average 5 s to 10 s per sample across different

datasets. For example, with σ “ 0.50 as the smoothing variance parameter, the certification
time, as an overhead over Neyman-Pearson-based certification, is 10.53 s, 4.53 s, and 3.21 s on
MNIST, CIFAR-10, and ImageNet respectively. This overhead is almost negligible compared
with the sampling time for estimating PA and QA which is around 200 s on ImageNet and is
the shared cost of all randomized smoothing certification methods. In summary, compared
with standard Neyman-Pearson-based certification, the running time of DSRS is roughly the
same.

2.5.7 Extensions

We mainly discussed DSRS computational method for generalized Gaussian P and trun-
cated generalized Gaussian Q under ℓ2 norm. Can we extend it to other settings? Indeed,
DSRS is a general framework. In appendices, we show following extensions: (1) DSRS for
generalized Gaussian with different variances as P and Q (in Appendix B.3.2); (2) DSRS for
other ℓp norms (in Appendix B.3.3); and (3) DSRS that leverages other forms of additional
information covering gradient magnitude information [215, 267] (in Appendix B.6).

2.6 EXPERIMENTAL EVALUATION

In this section, we systematically evaluate DSRS and demonstrate that it achieves tighter
certification than the classical Neyman-Pearson-based certification against ℓ2 perturbations
on MNIST, CIFAR-10, and ImageNet. We focus on ℓ2 certification because additive ran-
domized smoothing is not optimal for other norms (e.g., ℓ1 [214]) or the certification can be
directly translated from ℓ2 certification (e.g., ℓ8 [427] and semantic transformations [223]).
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Table 2.2: Certified robust accuracy under different radii r with different certification approaches.

Dataset Training Certification Certified Accuracy under Radius r
Method Approach 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

MNIST

Gaussian Aug. Neyman-Pearson 97.9% 96.9% 94.6% 88.4% 78.7% 57.6% 41.0% 25.5% 13.6% 6.2% 2.1% 0.9%
[77] DSRS 97.9% 97.0% 95.0% 89.8% 83.4% 61.6% 48.4% 34.1% 21.0% 10.6% 4.4% 1.2%

Consistency Neyman-Pearson 98.4% 97.5% 96.0% 92.3% 83.8% 67.5% 49.1% 35.6% 21.7% 10.4% 4.1% 1.9%
[165] DSRS 98.4% 97.5% 96.0% 93.5% 87.1% 71.8% 55.8% 41.9% 31.4% 17.8% 8.6% 2.8%

SmoothMix Neyman-Pearson 98.6% 97.6% 96.5% 91.9% 85.1% 73.0% 51.4% 40.2% 31.5% 22.2% 12.2% 4.9%
[166] DSRS 98.6% 97.7% 96.8% 93.4% 87.5% 76.6% 54.4% 46.2% 37.6% 29.2% 18.5% 7.2%

CIFAR-10

Gaussian Aug. Neyman-Pearson 56.1% 41.3% 27.7% 18.9% 14.9% 10.2% 7.5% 4.1% 2.0% 0.7% 0.1% 0.1%
[77] DSRS 57.4% 42.7% 30.6% 20.6% 16.1% 12.5% 8.4% 6.4% 3.5% 1.8% 0.7% 0.1%

Consistency Neyman-Pearson 61.8% 50.9% 38.0% 32.3% 23.8% 19.0% 16.4% 13.8% 11.2% 9.0% 7.1% 5.1%
[165] DSRS 62.5% 52.5% 38.7% 35.2% 28.1% 20.9% 17.6% 15.3% 13.1% 10.9% 8.9% 6.5%

SmoothMix Neyman-Pearson 63.9% 53.3% 40.2% 34.2% 26.7% 20.4% 17.0% 13.9% 10.3% 7.8% 4.9% 2.3%
[166] DSRS 64.7% 55.5% 42.1% 35.9% 29.4% 22.1% 18.7% 16.1% 13.2% 10.2% 7.1% 3.9%

ImageNet

Guassian Aug. Neyman-Pearson 57.1% 47.0% 39.3% 33.2% 24.8% 21.4% 17.6% 13.7% 10.2% 7.8% 5.7% 3.6%
[77] DSRS 58.4% 48.4% 41.4% 35.3% 28.8% 23.3% 21.3% 18.7% 14.2% 11.0% 9.0% 5.7%

Consistency Neyman-Pearson 59.8% 49.8% 43.3% 36.8% 31.4% 25.6% 22.1% 19.1% 16.1% 14.0% 10.6% 8.5%
[165] DSRS 60.4% 52.4% 44.7% 39.3% 34.8% 28.1% 25.4% 22.6% 19.6% 17.4% 14.1% 10.4%

SmoothMix Neyman-Pearson 46.7% 38.2% 28.8% 24.6% 18.1% 14.2% 11.8% 10.1% 8.9% 7.2% 6.0% 4.6%
[166] DSRS 47.4% 40.0% 30.3% 26.8% 21.6% 15.7% 14.0% 12.1% 9.9% 8.4% 7.2% 5.3%

2.6.1 Experimental Setup

Smoothing Distributions. Following Theorem 2.2, we use generalized Gaussian N gpk, σq

as smoothing distribution P where d{2´ 15 ď k ă d{2. Specifically, we set k to be d{2´ 12

on MNIST, d{2 ´ 6 on CIFAR-10, and d{2 ´ 4 on ImageNet. We use three different σ’s:
0.25, 0.50, and 1.00.

In terms of the additional smoothing distribution Q, on MNIST and CIFAR-10, we em-
pirically find that using generalized Gaussian with the same k but different variance yields
tighter robustness certification, and therefore we choose σg to be 0.2, 0.4, and 0.8 corre-
sponding to P ’s σ being 0.25, 0.50, and 1.0, respectively. On ImageNet, the concentration
property (see Definition 2.3) is more pronounced (detail study in Appendix B.5.1) and thus
we use truncated generalized Gaussian N g

truncpk, T, σq as Q. We apply a simple but effective
algorithm as explained in Appendix B.4 to determine hyperparameter T in N g

truncpk, T, σq.
Models and Training. We consider three commonly-used or state-of-the-art training meth-
ods: Gaussian augmentation [77], Consistency [165], and SmoothMix [166]. We follow the
default model architecture on each dataset respectively. We train the models with augmen-
tation noise sampled from the corresponding generalized Gaussian smoothing distribution
P . More training details can be found in Appendix B.4.
Baselines. We consider the Neyman-Pearson-based certification method as the baseline.
This certification is widely used and is the tightest given only prediction probability under
P [77, 165, 223, 427]. We remark that although there are certification methods that leverage
more information, to the best of our knowledge, they are not visibly better than the Neyman-
Pearson-based method on ℓ2 certification under practical sampling number (105). More
comparisons in Appendix B.5.5 show DSRS is also better than these baselines.

For both baseline and DSRS, following the convention, the certification confidence is
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1 ´ α “ 99.9%, and we use 105 samples for estimating PA and QA. Neyman-Pearson
certification does not use the information from additional distribution, and all 105 samples
are used to estimate the interval of PA. In DSRS, we use 5 ˆ 104 samples to estimate the
interval of PA with confidence 1´ α

2
“ 99.95% and the rest 5ˆ 104 samples for QA with the

same confidence. By union bound, the whole certification confidence is 99.9%.
Metrics. We uniformly draw 1000 samples from the test set and report certified robust accu-
racy (under each ℓ2 radius r) that is the fraction of samples that are both correctly classified
and have certified robust radii larger than or equal to r. Under each radius r, we report the
highest certified robust accuracy among the three variances σ P t0.25, 0.50, 1.00u following
[77, 317]. We also report evaluation results with ACR metric [437] in Appendix B.5.3.

2.6.2 Evaluation Results

We show results in Table 2.2. The corresponding curves and separated tables for each
variance σ are in Appendix B.5.3.

For almost all models and radii r, DSRS yields significantly higher certified ac-
curacy. For example, for Gaussian augmented models, when r “ 2.0, on MNIST the robust
accuracy increases from 25.5% to 34.1% (`8.6%), on CIFAR-10 from 4.1% to 6.4% (`2.3%),
and on ImageNet from 13.7% to 18.7% (`5.0%). On average, on MNIST the improvements
are around 6% - 9%; on CIFAR-10, the improvements are around 1.5% - 3%; and on Ima-
geNet the improvements are around 2% - 5%. Thus, DSRS can be used in conjunction with
different training approaches and provides consistently tighter robustness certification.

The improvements in the robust radius are not as substantial as those in Figure 2.5(b) (which
is around 2ˆ). We investigate the reason in Appendix B.5.1. In summary, the model in
Figure 2.5(b) is trained with standard Gaussian smoothing augmentation and smoothed
with generalized Gaussian. The models in this section are trained with generalized Gaussian
augmentation. Such training gives higher certified robustness, but in the meantime, gives
more advantage to Neyman-Pearson-based certification. This finding implies that there may
be a large space for exploring training approaches that favor DSRS certification since all
existing training methods are designed for Neyman-Pearson-based certification. Neverthe-
less, even with these “unsuitable” training methods, DSRS still achieves significantly tighter
robustness certification than the baseline.

On the other hand, all the above results are restricted to generalized Gaussian smooth-
ing. We still observe that standard Gaussian smoothing combined with strong training
methods [165, 317] and Neyman-Pearson certification (the SOTA setting) yields similar or
slightly higher certified robust accuracy than generalized Gaussian smoothing even with
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DSRS certification. Though DSRS with its suitable generalized Gaussian smoothing does
not achieve SOTA certified robustness yet, given the theoretical advantages, we believe that
with future tailored training approaches, DSRS with generalized Gaussian smoothing can
bring strong certified robustness. More discussion is in Appendix B.6.3.

Ablation Studies. We present several ablation studies in the appendix. and ver-
ify: (1) Effectiveness of our simple heuristic for selecting hyperparameter for Q: We pro-
pose a simple heuristic to select the hyperparameter T in smoothing distribution Q “

N g
truncpk, T, σq. In Appendix B.5.2, we propose a gradient-based optimization method to

select such Q. We find that our simple heuristic has similar performance compared to the
more complex optimization method but is more efficient. (2) Comparison of different types
of Q: by choosing different types of Q distributions (truncated Gaussian or Gaussian with
different variance), DSRS has different performance as mentioned in Section 2.6.1. In Ap-
pendix B.5.4, we investigate the reason. In summary, when concentration property (see
Definition 2.3) is better satisfied, using truncated Gaussian as Q is better; otherwise, using
Gaussian with different variance is better.

2.7 SUMMARY

We propose a general DSRS framework that exploits information based on an additional
smoothing distribution to tighten the robustness certification. We theoretically analyze and
compare classical Neyman-Pearson and DSRS certification, showing that DSRS has the
potential to break the curse of dimensionality of randomized smoothing.
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CHAPTER 3: WHITE-BOX CERTIFICATION: GCP-CROWN

Neural network (NN) certification aims to formally prove or disprove certain properties
(e.g., correctness and safety properties) of a NN under a certain set of inputs. These methods
can provide worst-case performance guarantees of a NN, and have been applied to mission-
critical applications that involve neural networks, such as automatic aircraft control [19, 181],
learning-enabled cyber-physical systems [372], and NN based algorithms in an operating
system [362].

The NN certification problem is generally NP-complete [180]. For piece-wise linear net-
works, it can be encoded as a mixed integer programming (MIP) [368] problem with the
non-linear ReLU neurons described by binary variables. Thus, fundamentally, the NN cer-
tification problem can be solved using the branch and bound (BaB) [49] method similar
to generic MIP solvers, by branching some binary variables and relaxing the rest into a
convex problem such as linear programming (LP) to obtain bounds on the objective. Al-
though early neural network verifiers relied on off-the-shelf CPU-based LP solvers [48, 245]
for bounding in BaB, LP solvers do not scale well to large NNs. Thus, many recent verifiers
are instead based on efficient and GPU-accelerated algorithms customized to NN certifi-
cation, such as bound propagation methods [389, 425], Lagrangian decomposition meth-
ods [47, 91] and others [62, 286]. Bound propagation methods, presented in a few different
formulations [104, 148, 343, 388, 406, 443], empower state-of-the-art NN verifiers such as
α-β-CROWN [389, 425, 443] and VeriNet [20], and can achieve two to three orders of magni-
tudes speedup compared to solving the NN certification problem using an off-the-shelf solver
directly [389], especially on large networks.

Despite the success of existing NN verifiers, we experimentally find that state-of-the-art
NN verifiers may timeout on certain hard instances which a generic MIP solver can solve
relatively quickly, sometimes even without branching. Compared to an MIP solver, a crucial
factor missing in most scalable NN verifiers is the ability to efficiently generate and solve
general cutting planes (or “cuts”). In generic MIP solvers, cutting planes are essential to
strengthen the convex relaxation, so that much less branching is required. Advanced cutting
planes are among the most important factors in modern MIP solvers [37]; they can strengthen
the convex relaxation without removing any valid integer solution from the MIP formulation.
In the setting of NN certification, cutting planes reflects complex intra-layer and inter-layer
dependencies between multiple neurons, which cannot be easily captured by existing bound
propagation methods with single neuron relaxations [318]. This motivates us to seek the
combination of efficient bound propagation method with effective cutting planes to further
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increase the power of NN verifiers.
A few key factors make the inclusion of general cutting planes in NN verifiers quite chal-

lenging. First, existing efficient bound propagation frameworks such as CROWN [443] and
β-CROWN [389] cannot solve general cutting plane constraints that may involve variables
across different layers in the MIP formulation. Particularly, these frameworks do not ex-
plicitly include the integer variables in the MIP formulation that are crucial when encoding
many classical strong cutting planes, such as Gomory cuts and mixed integer rounding (MIR)
cuts. Furthermore, although some existing works [273, 342, 367] enhanced the basic convex
relaxation used in NN certification (such as the Planet relaxation [108]), these enhanced
relaxations involve only one or a few neurons in a single layer or two adjacent layers, and
are not general enough. In addition, an LP solver is often required to handle these addi-
tional cutting plane constraints [273], for which the efficient and GPU-accelerated bound
propagation cannot be used, so the use of these tighter relaxations may not always bring
improvements.

In this thesis, we achieve major progress in using general cutting planes in bound-propagation-
based NN verifiers. To mitigate the challenge of efficiently solving general cuts, our first con-
tribution is to generalize existing bound propagation methods to their most general form,
enabling constraints involving variables from neurons of any layer as well as integer variables
that encode the status of a ReLU neuron. This allows us to consider any cuts during bound
propagation without relying on a slow LP solver, and opens up the opportunity for using
advanced cutting plane techniques efficiently for the NN certification problem. Our second
contribution involves combining a cutting-plane-focused, off-the-shelf MIP solver with our
GPU-accelerated, branching-focused bound propagation method capable of handling general
cuts. We entirely disable branching in the MIP solver and use it only for generating high-
quality cutting planes not restricting to neurons within adjacent layers. Although an MIP
solver often cannot certify large neural networks, we find that they can generate high-quality
cutting planes within a short time, significantly helping bound propagation to achieve better
bounds.

Our experiments show that general cutting planes can bring significant improvements to
NN verifiers: we are the first verifier that completely solves all instances in the oval20 bench-
mark, with an average time of less than 5 seconds per instance; on the even harder oval21
benchmark in VNN-COMP 2021 [20], we can certify twice as many instances compared to
the competition winner. We also outperform existing state-of-the-art bound-propagation-
based methods including those using multi-neuron relaxations [115] (a limited form of cutting
planes).
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3.1 RELATED WORK

Cutting plane method is a classic technique to strengthen the convex relaxation of an inte-
ger programming problem. Generic cutting planes such as Gomory’s cut [125, 126], Chvátal–
Gomory cut [76], implied bound cut [151], lift-and-project [243], reformulation-linearization
techniques [335] and mixed integer rounding cuts [256, 275] can be applied to almost any LP
relaxed problems, and problem specific cutting planes such as Knapsack cut [87], Flow-cover
cut [285] and Clique cut [174] require specific problem structures. Modern MIP solvers typ-
ically uses a branch-and-cut strategy, which tends to generate a large number of cuts before
starting the next iteration of branching, and solve the LP relaxation of the MIP problem
with cutting planes with an exact method such as the Simplex method. Our GCP-CROWN
is a specialized solver for the NN certification problem, which can quickly obtain a lower
bound of the LP relaxation with cutting planes specially for the NN certification problem.

The certification of piece-wise linear NNs can be formulated as a MIP problem, so early
works [180, 181, 368] solve an integer or combinatorial formulation directly. For efficiency
reasons, most recent works use a convex relaxation such as linear relaxation [108, 406]
or semidefinite relaxation [89, 308]. Salman et al. [318] discussed the limitation of many
convex relaxation based NN certification algorithms and coined the term “convex relaxation
barrier”, specifically for the popular single-neuron “Planet” relaxation [108]. Several works
developed novel techniques to break this barrier. Singh et al. [342] added constraints that
depends on the aggregation of multiple neurons, and these constraints were passed to an LP
solver. Müller et al. [273] enhanced the multi-neuron formulation of [342] to obtain tighter
relaxations. Anderson et al. [9] studied stronger convex relaxations for a ReLU neuron after
an affine layer, and Tjandraatmadja et al. [367] constructed efficient algorithms based on this
relaxation for incomplete certification. De Palma et al. [91] extended the formulation in [9]
to a dual form and combined it with branch and bound to achieve completeness. Botoeva
et al. [41] proposed specialized cuts by considering neuron dependencies and solve them
using a MIP solver. Ferrari et al. [115] combined the multi-neuron relaxation [273] with
branch and bound. Although these works can be seen as a special form of cutting planes,
they mostly focused on enhancing the relaxation for several neurons within a single layer or
two adjacent layers. GCP-CROWN can efficiently handle general cutting plane constraints
with neurons from any layers in a bound propagation manner, and the cutting planes we
find from a MIP solver can be seen as tighter convex relaxations encoding multi-neuron and
multi-layer correlations.
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3.2 PRELIMINARIES AND BACKGROUND

NN Cerification Problem. We consider the white-box certification problem for an L-
layer ReLU-based Neural Network (NN) with inputs x̂p0q :“ x P Rd0 , weightsWpiq P Rdiˆdi´1 ,
and biases bpiq P Rdi (i P rLs). We can get the NN outputs fpxq “ xpLq P RdL by sequentially
propagating the input x through affine layers with xpiq “Wpiqx̂pi´1q ` bpiq and ReLU layer
with x̂piq “ ReLUpxpiqq. We also let scalars x̂piq

j and x
piq
j denote the post-activation and

pre-activation, respectively, of j-th ReLU neuron in i-th layer. We use W
piq
:,j to denote the

j-th column of Wpiq.
Commonly, the input x is bounded within a perturbation set C (such as an ℓp norm ball)

and the certification specification defines a property of the output fpxq that should hold
for any x P C, e.g., whether the true label’s logit fypxq will be always larger than another
label’s logit fjpxq, (i.e., checking if fypxq ´ fjpxq is always positive). Since we can append
the certification specification (such as a linear function on neural network output) as an
additional layer of the network, canonically, the NN certification problem requires one to
solve the following one-dimensional (dL “ 1) optimization objective on fpxq:

f˚ “ min
x
fpxq, @x P C (3.1)

with the relevant property defined to be proven if the optimal solution f˚ ě 0. Throughout
this work, we consider the ℓ8 norm ball C :“ tx : }x ´ x0}8 ď ϵu where x0 is a predefined
constant (e.g., a clean input image), although it is possible to extend to other norms or
specifications [303, 424].

MIP and LP Formulation for NN Certification. The mixed integer programming
(MIP) formulation is the root of many NN certification algorithms. This formulation uses
binary variables z to encode the non-linear ReLU neurons to make the non-convex optimiza-
tion problem (3.1) tractable. Additionally, we assume that we know sound pre-activation
bounds lpiq ď xpiq ď upiq for x P C which can be obtained via cheap bound propagation
methods such as IBP [134] or CROWN [443]. Then ReLU neurons for each layer i can be
classified into three classes [406], namely “active” (I`piq), “inactive” (I´piq) and “unstable”
(Ipiq) neurons, respectively:

I`piq :“ tj : l
piq
j ě 0u; I´piq :“ tj : u

piq
j ď 0u; Ipiq :“ tj : l

piq
j ď 0, u

piq
j ě 0u. (3.2)
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Based on the definition of ReLU, activate and inactive neurons are linear functions, so only
unstable neurons require binary encoding. The MIP formulation of (3.1) is:

f˚ “ min
x,x̂,z

fpxq s.t. fpxq “ xpLq; x̂p0q “ x; x P C; (3.3)

xpiq “Wpiqx̂pi´1q ` bpiq; i P rLs, (3.4)
x̂

piq
j ě 0; j P Ipiq, i P rL´1s (3.5)
x̂

piq
j ě x

piq
j ; j P Ipiq, i P rL´1s (3.6)

x̂
piq
j ď u

piq
j z

piq
j ; j P Ipiq, i P rL´1s (3.7)

x̂
piq
j ď x

piq
j ´ l

piq
j p1´ z

piq
j q; j P Ipiq, i P rL´1s (3.8)

z
piq
j P t0, 1u; j P Ipiq, i P rL´1s (3.9)
x̂

piq
j “ x

piq
j ; j P I`piq, i P rL´1s (3.10)

x̂
piq
j “ 0; j P I´piq, i P rL´1s. (3.11)

Since a MIP problem is slow or intractable to solve, it is commonly relaxed. When the integer
variables are relaxed to continuous ones, we obtain the LP relaxation of NN certification
problem:

f˚
LP “ min

x,x̂,z
fpxq

s.t. p3.4q, p3.3q, p3.5q, p3.6q, p3.7q, p3.8q, p3.10q,p3.11q, 0 ď z
piq
j ď 1; j P Ipiq, i P rL´1s.

(3.12)

The ReLU constraints involving z is often projected out, leading to the well-known Planet
relaxation used in many NN verifiers, replacing (3.7), (3.8) and (3.9) with a single constraint
to get an equivalent LP:

f˚
LP “ min

x,x̂,z
fpxq

s.t. p3.4q, p3.3q, p3.5q, p3.6q, p3.10q, p3.11q, x̂
piq
j ď

u
piq
j

u
piq
j ´ l

piq
j

px
piq
j ´ l

piq
j q; j P Ipiq, i P rL´1s.

(3.13)

Due to the relaxations, the objective of the LP formulation is always a lower bound of
the MIP formulation: f˚

LP ď f˚. A verifier using this formulation is incomplete: if f˚
LP ě 0,

then f˚ ě 0 and the property is verified; otherwise, we cannot conclude the sign of f˚ so the
verifier must return “unknown”. Branch and bound can be used to improve the lower bound
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and achieve completeness [49, 389]. However, in this chapter, we work on an orthogonal
direction of strengthening the LP formulation by adding cutting planes to obtain larger
bounds.

Bound Propagation Methods Instead of solving the LP formulation directly using a LP
solver, bound propagation methods aims to quickly give a lower bound for f˚

LP. For example,
CROWN [443] and β-CROWN [389] propagate a sound linear lower bound backwards for
fLpxq with respect to each intermediate layer. For example, suppose we know

min
xPC

fLpxq ě min
xPC

apiqJ
x̂piq ` cpiq. (3.14)

With i “ L ´ 1 the above is trivially hold with apL´1q “ WpLq, cpL´1q “ bpLq. In bound
propagation methods, a propagation rule propagates an inequality (3.14) through a previous
layer x̂piq :“ ReLUpWpiqx̂pi´1q ` bpiqq to obtain a sound inequality with respect to x̂pi´1q:

min
xPC

fLpxq ě min
xPC

api´1qJ
x̂pi´1q ` cpi´1q. (3.15)

Here api´1q, cpi´1q can be calculated in close-form via apiq, cpiq, Wpiq, bpiq, lpiq and upiq such
that the bound still holds (see Lemma 1 in [389]). Applying the procedure repeatedly will
eventually reach the input layer:

min
xPC

fLpxq ě min
xPC

ap0qJ
x` cp0q. (3.16)

The minimization on linear layer can be solved easily when C is a ℓp norm ball to obtain
a valid lower bound of f˚. Since the bounds propagate layer-by-layer, this process can be
implemented efficiently on GPUs [424] without relying on a slow LP solver, which greatly
improves the scalability and solving time. Additionally, it is often used to obtain intermediate
layer bounds lpiq and and upiq required for the MIP formulation (3.7)(3.8), by treating each
x

piq
j as the output neuron. The bound propagation rule can either be derived in primal

space [443], dual space [406] or abstract interpretations [343]. In Section 3.3.1, we will
discuss the our bound propagation procedure with general cutting plane constraints.
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3.3 NEURAL NETWORK CERTIFICATION WITH GENERAL CUTTING PLANES

3.3.1 GCP-CROWN: General Cutting Planes in Bound Propagation

In this section, we generalize existing bound propagation method to handle general cutting
plane constraints. Our goal is to derive a bound propagation rule similar to CROWN and
β-CROWN discussed in Section 3.2, however considering additional constraints among any
variables within the LP relaxation. To achieve this, we first derive the dual problem of
the LP; inspired by the dual formulation, we derive the bound prorogation rule in a layer
by layer manner that takes all cutting plane constraints into consideration. The derivation
process is inspired by [318, 406] and [389].

LP Relaxation with Cutting Planes. In this section, we derive the bound propagation
procedure under the presence of general cutting plane constraints. A cutting plane is a
constraint involving any variables xpiq (pre-activation), x̂piq (post-activation), zpiq (ReLU
indicators) from any layer i:

L´1
ÿ

i“1

´

hpiqJ
xpiq ` gpiqJ

x̂piq ` qpiqJ
zpiq

¯

ď d. (3.17)

Here hpiq, gpiq and qpiq are coefficients for this cut constraint. The difference between a valid
cutting plane and an arbitrary constraint is that a valid cutting plane should not remove any
valid integer solution from the MIP formulation. Our new bound propagation procedure can
work for any constraints, although in this work we focus on studying the impacts of cutting
planes. When there are N cutting planes, we write them in a matrix form:

L´1
ÿ

i“1

´

H piqxpiq `Gpiqx̂piq `Qpiqzpiq
¯

ď d (3.18)

where Hpiq,Gpiq,Qpiq P RNˆdi . The LP relaxation with all cutting planes is:

f˚
LP-cut “ min

x,x̂,z
fpxq

s.t. p3.4q, p3.3q, p3.5q, p3.6q, p3.7q, p3.8q,p3.10q, p3.11q, 0 ď z
piq
j ď 1; j P Ipiq, i P rL´1s,

L´1
ÿ

i“1

´

Hpiqxpiq `Gpiqx̂piq `Qpiqzpiq
¯

ď d. (3.19)
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Since an additional constraint is added, f˚
LP-cut ě f˚

LP and we get closer to f˚. Unlike
the original LP where each constraint only contains variables from two consecutive layers,
our general cutting plane constraint may involve any variable from any layer in a single
constraint.

Dual Problem with Cutting Planes. We first show the dual problem for the above LP.
The dual problem we consider here is different from existing works in two ways: first, we
have constraints with integer variables to support potential cutting planes on z. Additionally,
we have cutting planes constraints that may involve variables in any layer, so the dual in
previous works such as [406] cannot be directly reused. Our dual problem is given below
(derivation details in Appendix C.1):

f˚
LP-cut “ max

ν,µě0,τě0
γě0,πě0,βě0

´ϵ}νp1qJWp1qx0}1 ´ βJd´
L
ÿ

i“1

νpiqJbpiq

`

L´1
ÿ

i“1

ÿ

jPIpiq

”

π
piq
j l

piq
j ´ ReLUpu

piq
j γ

piq
j ` l

piq
j π

piq
j ´ βJQ

piq
:,j q

ı

s.t. νpLq “ ´1; and for each i P rL´ 1s :

ν
piq
j “ νpi`1qJW

pi`1q
:,j ´ βJpH

piq
:,j `G

piq
:,j q; j P I`piq

ν
piq
j “ ´βJH

piq
:,j ; j P I´piq

and for each j P Ipiq the two equalities below hold:

ν
piq
j “ π

piq
j ´ τ

piq
j ´ βJH

piq
:,j ;

´

π
piq
j ` γ

piq
j

¯

´

´

µ
piq
j ` τ

piq
j

¯

“ νpi`1qJW
pi`1q
:,j ´ βJG

piq
:,j .

(3.20)
Instead of solving the dual problem exactly, we use it to obtain a lower bound of f˚

LP-cut.
Intuitively, due to the definition of dual problem, any valid setting of dual variables leads to
a lower bound of f˚

LP-cut. Informally, starting from νpLq “ ´1, by applying the constraints
in this dual formulation, we can compute νpL´1q,νpL´2q, ¨ ¨ ¨ until νp1q. The final objective
is a function of νpiq, i P rN s and other dual variables. Precisely, our GCP-CROWN bound
propagation procedure with general cutting plane constraint is presented in the theorem
below (proof in Appendix C.1):

Theorem 3.1 (Bound propagation with general cutting planes). Given any optimizable
parameters 0 ď α

piq
j ď 1 and β ě 0, f˚

LP-cut is lower bounded by the following objective
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function, πpiq
j

˚
is a function of Qpiq

:,j :

gpα,βq “ ´ϵ}νp1qJWp1qx0}1 ´

L
ÿ

i“1

νpiqJbpiq ´ βJd`
L´1
ÿ

i“1

ÿ

jPIpiq

h
piq
j pβq (3.21)

where variables νpiq are obtained by propagating νpLq “ ´1 throughout all i P rL´1s:

ν
piq
j “ νpi`1qJW

pi`1q
:,j ´ βJpH

piq
:,j `G

piq
:,j q, j P I`piq (3.22)

ν
piq
j “ ´βJH

piq
:,j , j P I´piq (3.23)

ν
piq
j “ π

piq
j

˚
´ α

piq
j rν̂

piq
j s´ ´ βJH

piq
:,j , j P Ipiq. (3.24)

Here ν̂piq
j , πpiq

j

˚
and hpiq

j pβq are defined for each unstable neuron j P Ipiq.

ν̂
piq
j :“ νpi`1qJW

pi`1q
:,j ´ βJG

piq
:,j , (3.25)

π
piq
j

˚
“ max

¨

˚

˝

min

¨

˝

u
piq
j rν̂

piq
j s` ` βJQ

piq
:,j

u
piq
j ´ l

piq
j

, rν̂
piq
j s`

˛

‚, 0

˛

‹

‚

, π
piq
j

˚
is a function of Qpiq

:,j , (3.26)

h
piq
j pβq “

$

’

’

’

&

’

’

’

%

l
piq
j , π

piq
j

˚
if l

piq
j rν̂

piq
j s` ď βJQ

piq
:,j ď u

piq
j rν̂

piq
j s`

0, if βJQ
piq
:,j ě u

piq
j rν̂

piq
j s`

βJQ
piq
:,j . if βJQ

piq
:,j ď l

piq
j rν̂

piq
j s`

(3.27)

Based on Theorem 3.1, to obtain an lower bound of f˚
LP-cut, we start with any valid setting

of 0 ď α ď 1 and β ě 0 and νpLq “ ´1. According to the bound propagation rule, we can
compute each νpiq, i P rL ´ 1s, in a layer by layer manner. Then objective gpα,βq can be
evaluated based on all νpiq to give an lower bound of f˚

LP-cut. Since any valid setting of α and
β lead to a valid lower bound, we can optimize α and β using gradient ascent in a similar
manner as in [389, 425] to tighten this lower bound. The entire procedure can also run on
GPU for great acceleration.

Connection to Convex Outer Adversarial Polytope. In convex outer adversarial
polytope [406], a bound propagation rule was developed in a similar manner in the dual
space without considering cutting plane constraints, and is a special case of ours. We de-
note their bound propagation objective function as gWK which also contains optimizable
parameters αWK.
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Proposition 3.1. Given the same input x, perturbation set C, network weights, and N

cutting plane constraints,

max
α,β

gpα,βq ě max
αWK

gWKpαWKq. (3.28)

Proof. In Theorem 3.1, when all β are set to 0, then πpiq
j

˚
“

u
piq
j rν̂

piq
j s`

u
piq
j ´l

piq
j

and hpiq
j pβq “ π

piq
j

˚
l
piq
j ,

we recover exactly the same bound propagation equations as in [406]. However, since we allow
the addition of cutting plane methods and we can maximize over the additional parameter
β, the objective given by our bound propagation is always at least as good as gWK. QED.

Connection to CROWN-like Bound Propagation Methods. CROWN [443] and α-
CROWN [425] use the same bound propagation rule as [406] so Proposition 3.1 also applies,
although they were derived from primal space without explicitly formulating the problem
as a LP. Salman et al. [318] showed that many other bound propagation methods [343, 387]
are equivalent to or weaker than [406]. Recently, Wang et al. [389] extend CROWN to
β-CROWN to handle split constraints (e.g., xpiq

j ě 0). It can be seen a special case as
GCP-CROWN where all H , G and Q matrices are zeros except:

H
piq
j,j “ 1,j P I´piq for xpiq

j ď 0 split; H
piq
j,j “ ´1,j P I`piq for xpiq

j ě 0 split.
(3.29)

In addition, Ferrari et al. [115] encode multi-neuron relaxations using sparse Hpiq and Gpiq

and each cut contains a small number of neurons involving xpiq and x̂piq for the same layer
i. Wang et al. [389] derive bound propagation rules from both the dual LP and the primal
space with a Lagrangian without LP. However, in our case, it is not intuitive to derive bound
propagation without LP due to the potential cutting planes on relaxed integer variables z,
which do not appear without the explicit LP formulation. Furthermore, although we derived
cutting planes for bound propagation methods, it is technically also possible to derive them
using other bounding frameworks such as Lagrangian decomposition [47].

3.3.2 Branch-and-bound with GCP-CROWN and MIP Solver Generated Cuts

To build a complete NN verifier, we follow the popular branch-and-bound (BaB) pro-
cedure [48, 49] in state-of-the-art NN verifiers with GPU accelerated bound propagation
method [47, 286, 389, 425], and our GCP-CROWN is used as the bounding procedure in
BaB. We refer the readers to Appendix C.2 for a more detailed background on branch-
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Figure 3.1: Overview of our cutting-plane-enhanced, fully-parallelized NN verifier.

and-bound. Having the efficient bound propagation procedure with general cutting plane
constraints, we now need to find a good set of general cutting planes Hpiq,Gpiq,Qpiq to accel-
erate NN certification. Since GCP-CROWN can adopt any cutting planes, to fully exploit
its power, we propose to use off-the-shelf MIP solvers to generate cutting planes and create
an NN verifier combining GPU-accelerated bound propagation with strong cuts generated
by a MIP solver. We make the bound propagation on GPU and the MIP solver on CPU
run in parallel with cuts added on-the-fly, so the original strong performance of bound-
propagation-based NN verifier will never be affected by a potentially slow MIP solver. This
allows us to make full use of available computing resource (GPU + CPU). The architecture
of our verifier is shown in Figure 3.1.

MIP Solvers for Cutting Plane Generation. Generic MIP solvers such as cplex [160]
and gurobi [137] also apply a branch-and-bound strategy, conceptually similar to state-of-
the-art NN verifiers. They often tend to be slower than specialized NN verifiers because MIP
solvers rely on slower bounding procedures (e.g., Simplex or barrier method) and cannot ap-
ply an GPU-accelerated method such as bound propagation or Lagrangian decomposition.
However, we still find that MIP solvers are a strong baseline when combined with tight inter-
mediate layer bounds. For example, in the oval21 benchmark in Table 3.2, α-CROWN+MIP
(MIP solver combined with tight intermediate layer bound computed by α-CROWN) is able
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to solve 4 more instances compared to all other tools in the competition. Our investigation
found that α-CROWN+MIP explores much less branches than other state-of-the-art branch-
and-bound based NN verifiers, however before branching starts, the MIP solver produces
very effective cutting planes that can often certify an instance with little branching. MIP
solvers is able to discover sophisticated cutting planes involving several NN layers reflecting
complex correlations among neurons, while existing NN verifiers only exploit specific forms
of constraints within same layer or between adjacent layers [273, 342, 367]. This motivates
us to combine the strong cutting planes generated by MIP solvers with GPU-accelerated
bound-propagation-based BaB.

In this work, we use cplex as the MIP solver for cutting plane generation since gurobi
cannot export cuts. We entirely disable all branching features in cplex and make it focus
on finding cutting planes only. These cutting planes are generated only for the root node
of the BaB search tree so they are sound for any subdomains with neuron splits in BaB.
We conduct branching using our generalized bound propagation procedure in Section (3.3.1)
with the cutting planes generated by cplex.

Fully-parallelized NN Verifier Design. We design our verifier as shown in Figure 3.1.
After parsing the NN under certification, we launch a separate process to encode the NN
certification problem as MIP problem and start multiple MIP solvers, one for each target
label to be verified. At the same time, the main NN verifier process executes branch-and-
bound without waiting for the MIP solver process. In each iteration of branch and bound,
we query the MIP solving processes and fetch any newly generated cutting planes. If any
cutting planes are produced, they are added as H piq,Gpiq,Qpiq in GCP-CROWN and tighten
the bounds for subsequent branching and bounding. If no cutting planes are produced,
GCP-CROWN reduces to β-CROWN [389]. Since our verifier is based on strengthening the
bounds in β-CROWN with sound cutting planes, it is also sound and complete.

Adjustments to Existing Branch and Bound Method. We implement GCP-CROWN
into the α-β-CROWN verifier [389, 424, 443], the winning verifier in VNN-COMP 2021, 2022,
and 2023 [20, 272], as the backbone for BaB with bound propagation. To better exploit the
power of cutting planes under a fully parallel and asynchronous design, we made a key
changes to the BaB procedure. When the number of BaB subdomains are greater than
batch size, we rank the subdomains by their lower bounds and choose the easiest domains
with largest lower bounds first to certify with GCP-CROWN, unlike most existing verifiers
which solve the worst domains first. We use such an order because the MIP solver generates
cutting planes incrementally. Solving these easier subdomains tend to require no or fewer
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Table 3.1: Average runtime and average number of branches on oval20 benchmarks with
100 properties per model. Timeout is set to 3,600 seconds (consistent with other literature
results). GCP-CROWN is the only method that can completely solve all instances (0%
timeout) and the average time per-instance is less than 5 seconds on all three networks.

CIFAR-10 Base CIFAR-10 Wide CIFAR-10 Deep
Method time(s) branches %timeout time(s) branches %timeout time(s) branches %timeout

MIPplanet [108] 2849.69 - 68.00 2417.53 - 46.00 2302.25 - 40.00
BaBSR [48] 2367.78 1020.55 36.00 2871.14 812.65 49.00 2750.75 401.28 39.00

GNN-online [245] 1794.85 565.13 33.00 1367.38 372.74 15.00 1055.33 131.85 4.00
BDD+ BaBSR [47] 807.91 195480.14 20.00 505.65 74203.11 10.00 266.28 12722.74 4.00

Fast-and-Complete [425] 695.01 119522.65 17.00 495.88 80519.85 9.00 105.64 2455.11 1.00
OVAL (BDD+ GNN)˚[47, 245] 662.17 67938.38 16.00 280.38 17895.94 6.00 94.69 1990.34 1.00

A.set BaBSR [286] 381.78 12004.60 7.00 165.91 2233.10 3.00 190.28 2491.55 2.00
BigM+A.set BaBSR [286] 390.44 11938.75 7.00 172.65 4050.59 3.00 177.22 3275.25 2.00
BaDNB (BDD+ FSB)[91] 309.29 38239.04 7.00 165.53 11214.44 4.00 10.50 368.16 0.00
ERAN˚[340, 341, 342, 343] 805.94 - 5.00 632.20 - 9.00 545.72 - 0.00

β-CROWN [389] 118.23 208018.21 3.00 78.32 116912.57 2.00 5.69 41.12 0.00
α-CROWN+MIP† 335.50 8523.37 3.00 203.87 2029.60 0.00 76.90 1364.24 0.00

GCP-CROWN with MIP cuts 4.07 2580.53 0.00 3.02 2095.18 0.00 3.87 110.92 0.00

* Results from VNN-COMP 2020 report [233].
† A new baseline proposed and evaluated in this work, not presented in previous publications.
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Figure 3.2: Percentage of solved properties on the oval20 benchmark vs. running time
(timeout 1 hour).

cutting planes, so we solve them at earlier stages where cutting planes have not been gen-
erated or are relatively weak. On the other hand, if we split worst subdomains first, the
number of subdomains will grow quickly, and it can take a long time to certify these do-
mains when stronger cuts become available later. Under a similar rationale, when certifying
a multi-class model and BaB needs to certify each target class label one by one, we start
BaB from the easiest label first (α-CROWN bound closest to 0), allowing the MIP solver to
run longer for harder labels, generating stronger cuts for harder labels.

3.4 EXPERIMENTS

We now evaluate our verifier, GCP-CROWN with MIP cuts, on a few popular certification
benchmarks. Since our verifier uses a MIP solver in our pipeline, we also include a new
baseline, α-CROWN+MIP, which uses gurobi as the MIP solver with the tightest possible
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Table 3.2: VNN-COMP 2021 benchmarks: oval21 and cifar10-resnet. Results marked
with VNN-COMP are from publicly available benchmark data on VNN-COMP 2021 Github.
“-” indicates unsupported model.

oval21 (30 properties; PGD upper bound 27) cifar10-resnet (72 properties)
Method time(s) # verified %timeout time(s) # verified %timeout

nnenum˚ [18, 19] 630.06 2 86.66 - - -
Marabou˚ [181] 429.13 5 73.33 157.70 39 45.83

ERAN˚[271, 273] 233.84 6 70.00 129.48 43 40.28
OVAL˚ [91, 286] 393.14 11 53.33 - - -

VeriNet˚ [148, 149] 414.61 11 53.33 105.91 48 33.33
α,β-CROWN˚ [389, 425, 443] 395.32 11 53.33 99.87 58 19.44

MN-BaB [115] 435.46 10 56.66 - - -
Venus2† [41, 190] 386.71 17 33.33 - - -
α-CROWN+MIP 301.23 15 40.00 125.48 46 36.11

GCP-CROWN with MIP cuts 145.26 23 13.33 53.49 63 12.5
* Results from VNN-COMP 2021 report [20]. † We use the latest code of Venus2 in the vnncomp branch, committed

on Jul 18, 2022. Older versions cannot run these convolutional networks.

Table 3.3: Verified accuracy (%) and avg. per-example certification time (s) on 7 models
from SDP-FO [89].
Dataset Model SDP-FO [89]˚ PRIMA [273] β-CROWN [389] MN-BaB [115] Venus2 [41, 190] α-CROWN+MIP GCP-CROWN Upper
ϵ “ 0.3 and ϵ “ 2{255 Verified% Time (s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) bound

MNIST CNN-A-Adv 43.4 ą20h 44.5 135.9 70.5 21.1 - - 35.5 148.4 56.5 224.3 72.0 19.9 76.5

CIFAR

CNN-B-Adv 32.8 ą25h 38.0 343.6 46.5 32.2 - - - - 27.0 360.6 48.5 57.8 65.0
CNN-B-Adv-4 46.0 ą25h 53.5 43.8 54.0 11.6 - - - - 52.5 129.5 59.0 21.5 63.5
CNN-A-Adv 39.6 ą25h 41.5 4.8 44.0 5.8 42.5 68.3 47.5 26.0 46.0 63.1 48.5 9.8 50.0
CNN-A-Adv-4 40.0 ą25h 45.0 4.9 46.0 5.6 46.0 37.7 47.5 13.1 48.5 16.4 48.5 5.7 49.5
CNN-A-Mix 39.6 ą25h 37.5 34.3 41.5 49.6 35.0 140.3 33.5 72.4 32.5 231.3 47.5 29.2 53.0
CNN-A-Mix-4 47.8 ą25h 48.5 7.0 50.5 5.9 49.0 70.9 49.0 37.3 52.5 77.7 55.5 12.4 57.5

* We run α-CROWN+MIP and MN-BaB with 600s timeout threshold for all models. “-” indicates that we could not run a model due to unsupported model structure or other
errors. We run our GCP-CROWN with MIP cuts with a shorter 200s timeout for all models and it achieves better verified accuracy than all other baselines. Other results are
reported from [389].

intermediate layer bounds from α-CROWN [424]. We use the same branch and bound
algorithm as in β-CROWN and we use filtered smart branching (FSB) [286] as the branching
heuristic in all experiments. Without cutting planes, GCP-CROWN becomes vanilla β-
CROWN as we share the same code base as β-CROWN. We include model information and
detailed setup for our experiments in Appendix C.3. GCP-CROWN has been integrated
into the α-β-CROWN verifier, and the instructions to reproduce results in this chapter are
available at http://PaperCode.cc/GCP-CROWN.

Results on oval20 Benchmark in VNN-COMP 2020. oval20 is a popular bench-
mark consistently used in huge amount of NN verifiers and it perfectly reflects the progress
of NN verifiers. We include literature results for many baselines in Table 3.1. We are the
only verifier that can completely solve all three models without any timeout. Our average
runtime is significantly lower compared to the time of baselines because we have no timeout
(counted as 3600s), and our slowest instance only takes about a few minutes while easy ones
only take a few seconds, as shown in Figure 3.2. Additionally, we often use less number
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of branches compared to the state-of-the-art verifier, β-CROWN, since our strong cutting
planes help us to eliminate many hard to solve subdomains in BaB. Furthermore, we high-
light that α-CROWN+MIP also achieves a low timeout rate, although it is much slower
than our bound propagation based approach combined with cuts from a MIP solver.

Results on VNN-COMP 2021 Benchmarks. Among the eight scoring benchmarks
in VNN-COMP 2021 [20], only two (oval21 and cifar10-resnet) are most suitable for
the evaluation of this work. Among other benchmarks, acasxu and nn4sys have low input
dimensionality and require input space branching rather than ReLU branching; verivital,
mnistfc, and eran benchmarks consist of small MLP networks that can be solved directly
by MIP solvers; marabou contains mostly adversarial examples, making it a good benchmark
for falsifiers rather than verifiers. We present our results in Table 3.2. Besides results from 6
VNN-COMP 2021 participants, we also include two additional baselines, α-CROWN+MIP
(same as in Table 3.1), and MN-BaB [115], a recently proposed branch and bound frame-
work with multi-neuron relaxations [271], which can be viewed as a restricted form of cutting
planes. On the oval21 benchmark, OVAL, VeriNet and α-β-CROWN are the best perform-
ing tools, verified 11 out of 27 instances, while we can certify twice more instances (22 out
of 27) on this benchmark. On the cifar10-resnet benchmark, our verifier also solves the
most number of instances and achieves the lowest average time. In fact, α-CROWN+MIP
is also a strong baseline, solving 4 more instances than all competition participants, showing
the importance of strong cutting planes. Our GCP-CROWN with MIP cuts combines the
benefits of fast bound propagation on GPU with the strong cutting planes generated by a
MIP solver and achieves the best performance. We present a more detailed analysis on the
cutting planes used in this benchmark in Appendix C.3.2.

The oval21 benchmark was also included as part of VNN-COMP 2022, concluded in July
2022, with a different sample of 30 instances. GCP-CROWN is part of the winning tool in
VNN-COMP 2022, α-β-CROWN, which verified 25 out of 30 instances in this benchmark,
outperforming the second place tool (MN-BaB [115] with multi-neuron relaxations) with 19
verified instances by a large margin. More results on VNN-COMP 2022 can be found in
these slides4.

Results on SDP-FO Benchmarks. We further evaluate our method on the SDP-FO
benchmarks in [89, 389]. This benchmark contains 7 mostly adversarially trained MNIST and
CIFAR models with 200 instances each, which are hard for many existing verifiers. Beyond

4A formal competition report is under preparation by VNN-COMP organizers; scores were presented in
FLoC 2022: https://drive.google.com/file/d/1nnRWSq3plsPvOT3V-drAF5D8zWGu02VF/view.
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the baselines reported in [389], we also include two additional baselines, α-CROWN+MIP
(same as in Table 3.1) and MN-BaB [115] (same as in Table 3.2). Table 3.3 shows that
our method improves the percentage of verified images (“verified accuracy”) on all models
compared to state-of-the-art verifiers, further closing the gap between verified accuracy and
empirical robust accuracy obtained by PGD attack (reported as “upper bound” in Table 3.3).

3.5 SUMMARY

In this chapter, we propose GCP-CROWN, an efficient and GPU-accelerated bound prop-
agation method for NN certification capable of handling any cutting plane constraints. We
combine GCP-CROWN with branch and bound and high quality cutting planes generated
by a MIP solver to tighten the convex relaxation for NN certification. The combination
of fast bound propagation and strong cutting planes lead to state-of-the-art certification
performance on multiple benchmarks. Our work opens up a great opportunity for studying
more efficient and powerful cutting planes for NN certification.

Limitations. Our work generalizes existing bound propagation methods that can handle
only simple constraints (such as neuron split constraints in β-CROWN [389]) to general
constraints, and we share a few common limitations as in previous works [49, 286, 425]:
the branch-and-bound procces and bound propagation procedure are developed on ReLU
networks, and it can be non-trivial to extend it to neural networks with non-piecewise-linear
operations. In addition, we currently directly use cutting planes generated by a generic MIP
solver, and there might exist stronger and faster cutting plane methods that can exploit
the structure of the neural network certification problem. We hope these limitations can be
addressed in future works.

Potential Negative Societal Impact. Our work focuses on formally proving desired
properties of a neural network under investigation such as safety and robustness, which is
an important direction of trustworthy machine learning and has overall positive societal
impact. Since our verifier is a complete verifier, it might be possible to use it to find
weakness of a neural network and guide adversarial attacks. However, we believe that
formally characterizing a model’s behavior and potential weakness is important for building
robust models and preventing real-world malicious attack.

60



CHAPTER 4: TRAINING FOR ENHANCING BLACK-BOX CERTIFIED
ROBUSTNESS: DRT

Certied approaches [77, 406] have been proposed to provide the robustness guarantees for
given ML models, so that no additional attack can break the model under certain adver-
sarial constraints. For instance, randomized smoothing has been proposed as an effective
defense providing certified robustness [77, 204, 427]. Among different certified robustness
approaches [225, 402, 424, 440], randomized smoothing provides a model-independent way
to smooth a given ML model and achieves state-of-the-art certified robustness on large-scale
datasets such as ImageNet.

Currently, almost all the existing certified approaches focus on the robustness of a single
ML model. Given the observations that ensemble ML models are able to bring additional
benefits in standard learning [284, 311], in this work we aim to ask: Can an ensemble ML
model provide additional benefits in terms of the certified robustness compared with a single
model? If so, what are the sufficient and necessary conditions to guarantee such certified
robustness gain?

Empirically, we first find that standard ensemble models only achieve marginally higher
certified robustness by directly appling randomized smoothing: with ℓ2 perturbation radius
1.5, a single model achieves certified accuracy as 21.9%, while the average aggregation based
ensemble of three models achieves certified accuracy as 24.2% on CIFAR-10 (Table 4.2).
Given such observations, next we aim to answer: How to improve the certified robustness
of ensemble ML models? What types of conditions are required to improve the certified
robustness for ML ensembles?

In particular, from the theoretical perspective, we analyze the standard Weighted En-
semble (WE) and Max-Margin Ensemble (MME) protocols, and prove the sufficient and
necessary conditions for the certifiably robust ensemble models under model-smoothness
assumption. Specifically, we prove that: (1) an ensemble ML model is more certifiably
robust than each single base model; (2) diversified gradients and large confidence margins
of base models are the sufficient and necessary conditions for the certifiably robust ML
ensembles. We show that these two key factors would lead to higher certified robustness
for ML ensembles. We further propose Ensemble-before-Smoothing as the model smoothing
strategy and prove the bounded model-smoothness with such strategy, which realizes our
model-smoothness assumption.

Inspired by our theoretical analysis, we propose Diversity-Regularized Training (DRT),
a lightweight regularization-based ensemble training approach. DRT is composed of two
simple yet effective and general regularizers to promote the diversified gradients and large
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Figure 4.1: Illustration of a robust ensemble.

confidence margins respectively. DRT can be easily combined with existing ML approaches
for training smoothed models, such as Gaussian augmentation [77] and adversarial smoothed
training [317], with negligible training time overhead while achieves significantly higher cer-
tified robustness than state-of-the-art approaches consistently.

We conduct extensive experiments on a wide range of datasets including MNIST, CIFAR-
10, and ImageNet. The experimental results show that DRT can achieve significantly higher
certified robustness compared to baselines with similar training cost as training a single
model. Furthermore, as DRT is flexible to integrate any base models, by using the pretrained
robust single ML models as base models, DRT achieves the highest certified robustness so
far to our best knowledge. For instance, on CIFAR-10 under ℓ2 radius 1.5, the DRT-trained
ensemble with three base models improves the certified accuracy from SOTA 24.2% to 30.3%;
and under ℓ2 radius 2.0, DRT improves the certified accuracy from SOTA 16.0% to 20.3%.

Technical Contributions. In this chapter, we conduct the first study for the sufficient
and necessary conditions of certifiably robust ML ensembles and propose an efficient training
algorithm DRT to achieve the state-of-the-art certified robustness. We make contributions
on both theoretical and empirical fronts.

• We provide the necessary and sufficient conditions for robust ensemble ML models
including Weighted Ensemble (WE) and Max-Margin Ensemble (MME) under the
model-smoothness assumption. In particular, we prove that the diversified gradients
and large confidence margins of base models are the sufficient and necessary conditions
of certifiably robust ensembles. We also prove the bounded model-smoothness via
proposed Ensemble-before-Smoothing strategy, which realizes our model-smoothness
assumption.

• To analyze different ensembles, we prove that when the adversarial transferability
among base models is low, WE is more robust than MME. We also prove that the
ML ensemble is more robust than a single base model under the model-smoothness
assumption.
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• Based on the theoretical analysis of the sufficient and necessary conditions, we propose
DRT, a lightweight regularization-based training approach that can be easily combined
with different training approaches and ensemble protocols with small training cost
overhead.

• We conduct extensive experiments to evaluate the effectiveness of DRT on various
datasets, and we show that to the best of your knowledge, DRT can achieve the
highest certified robustness, outperforming all existing baselines.

Related work. DNNs are known vulnerable to adversarial examples [359]. To defend
against such attacks, several empirical defenses have been proposed [252, 288]. For en-
semble models, existing work mainly focuses on empirical robustness [67, 229, 287] where
the robustness is measured by accuracy under existing attacks and no certified robustness
guarantee could be provided or enhanced; or certify the robustness for a standard weighted
ensemble [234, 444] using either LP-based [443] verification or randomized smoothing with-
out considering the model diversity [234] to boost their certified robustness. In this chapter,
we aim to prove that the diversified gradient and large confidence margin are the suffi-
cient and necessary conditions for certifiably robust ensemble ML models. Moreover, to our
best knowledge, we propose the first training approach to boost the certified robustness of
ensemble ML models.

Randomized smoothing [77, 204] has been proposed to provide certified robustness for a
single ML model. It achieved the state-of-the-art certified robustness on large-scale dataset
such as ImageNet and CIFAR-10 under ℓ2 norm. Several approaches have been proposed
to further improve it by: (1) choosing different smoothing distributions for different ℓp
norms [106, 427, 442], and (2) training more robust smoothed classifiers, using data aug-
mentation [77], unlabeled data [56], adversarial training [317], regularization [218, 437], and
denoising [319]. In this chapter, we propose a suitable smoothing strategy and training
approach to improve the certified robustness of ML ensembles.

4.1 CHARACTERIZING ML ENSEMBLE ROBUSTNESS

In this section, we prove the sufficient and necessary robustness conditions for both general
and smoothed ML ensemble models. Based on these robustness conditions, we discuss the
key factors for improving the certified robustness of an ensemble, compare the robustness
of ensemble models with single models, and outline several findings based on additional
theoretical analysis.
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4.1.1 Preliminaries

Notations. Throughout the chapter, we consider the classification task with C classes.
We first define the classification scoring function f : Rd Ñ ∆C , which maps the input to
a confidence vector, and fpxqi represents the confidence for the ith class. We mainly focus
on the confidence after normalization, i.e., ∆C is the probability simplex. To characterize
the confidence margin between two classes, we define f y1{y2pxq :“ fpxqy1 ´ fpxqy2 . The
corresponding prediction F : Rd Ñ rCs is defined by F pxq :“ argmaxiPrCs fpxqi. We are
also interested in the runner-up prediction F p2qpxq :“ argmaxiPrCs:i‰F pxq fpxqi.

r-Robustness. For brevity, we consider the model’s certified robustness, against the ℓ2-
bounded perturbations as defined below. Our analysis can be generalizable for ℓ1 and ℓ8

perturbations, leveraging existing work [214, 218, 427].

Definition 4.1 (r-Robustness). For a prediction function F : Rd Ñ rCs and input x0, if
all instance x P tx0 ` δ : }δ}2 ă ru satisfies F pxq “ F px0q, we say model F is r-robust (at
point x0).

Remark 4.1. Using the notation in Section 1.1, model F being r-robust at point x0 means
that for the property of robustness against ℓp-bounded perturbations, model is trustworthy
under threat model Rprq, i.e., certified radius is no smaller than r.

Ensemble Protocols. An ensemble model contains N base models tFiuNi“1, where Fipxq
and F

p2q

i pxq are their top and runner-up predictions for given input x respectively. The
ensemble prediction is denoted by M : Rd Ñ rCs, which is computed based on outputs of
base models following certain ensemble protocols. In this chapter, we consider both Weighted
Ensemble (WE) and Maximum Margin Ensemble (MME).

Definition 4.2 (Weighted Ensemble (WE)). Given N base models tFiuNi“1, and the weight
vector twiuNi“1 P RN

` , the weighted ensemble MWE: Rd Ñ rCs is defined by

MWEpx0q :“ argmax
iPrCs

N
ÿ

j“1

wjfjpx0qi. (4.1)

Definition 4.3 (Max-Margin Ensemble (MME)). Given N base models tFiuNi“1, for input
x0, the max-margin ensemble model MMME : Rd Ñ rCs is defined by

MMMEpx0q :“ Fcpx0q where c “ argmax
iPrNs

´

fipx0qFipx0q ´ fipx0qF p2q
i px0q

¯

. (4.2)

64



The commonly-used WE [234, 444] sums up the weighted confidence of base models tFiuNi“1

with weight vector twiuNi“1, and predicts the class with the highest weighted confidence. The
standard average ensemble can be viewed as a special case of WE (where all wi’s are equal).
MME chooses the base model with the largest confidence margin between the top and the
runner-up classes, which is a direct extension from max-margin training [155].

Randomized Smoothing. Randomized smoothing [77, 204] provides certified robustness
by constructing a smoothed model from a given model. Formally, let ϵ „ N p0, σ2Idq be a
Gaussian random variable, for any given model F : Rd Ñ rCs (can be an ensemble), we
define smoothed confidence function gϵF : Rd Ñ∆C such that

gϵF pxqj :“ E
ϵ„N p0,σ2Idq

IrF px` ϵq “ js “ Pr
ϵ„N p0,σ2Idq

pF px` ϵq “ jq. (4.3)

Intuitively, gϵF pxqj is the probability of base model F ’s prediction on the jth class given
Gaussian smoothed input. The smoothed classifier Gϵ

F : Rd Ñ rCs outputs the class with
highest smoothed confidence: Gϵ

F pxq :“ argmaxjPrCs g
ϵ
F pxqj. Let cA be the predicted class

for input x0, i.e., cA :“ Gϵ
F px0q. Cohen et al. show that Gϵ

F is pσΦ´1pgϵF px0qcAqq-robust at
input x0, i.e., the certified radius is σΦ´1pgϵF px0qcAq (more discussed in Proposition 2.1).
In practice, we will leverage the smoothing strategy together with Monte-Carlo sampling to
certify ensemble robustness.

4.1.2 Robustness Conditions for General Ensemble Models

We will first provide sufficient and necessary conditions for robust ensembles under the
model-smoothness assumption.

Definition 4.4 (β-Smoothness). A differentiable function f : Rd Ñ RC is β-smooth, if for
any x1, x2 P Rd and any output dimension j P rCs, }∇x1fpx1qj´∇x2fpx2qj}2

}x1´x2}2
ď β.

The definition of β-smoothness is inherited from optimization theory literature, and it
is equivalent to the curvature bound in certified robustness literature [344]. β quantifies
the non-linearity of function f , where higher β indicates more rigid functions/models and
smaller β indicates smoother ones. When β “ 0 the function/model is linear.

For Weighted Ensemble (WE), we have the following robustness conditions.

Theorem 4.1 (Gradient and Confidence Margin Conditions for WE Robustness). Given
input x0 P Rd with ground-truth label y0 P rCs, and MWE as a WE defined over base
models tFiuNi“1 with weights twiuNi“1. MWEpx0q “ y0. All base models Fi’s are β-smooth.
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• (Sufficient Condition) The MWE is r-robust at point x0 if for any yi ‰ y0,

›

›

›

N
ÿ

j“1

wj∇xf
y0{yi
j px0q

›

›

›

2
ď

1

r

N
ÿ

j“1

wjf
y0{yi
j px0q ´ βr

N
ÿ

j“1

wj, (4.4)

• (Necessary Condition) If MWE is r-robust at point x0, for any yi ‰ y0,

›

›

›

N
ÿ

j“1

wj∇xf
y0{yi
j px0q

›

›

›

2
ď

1

r

N
ÿ

j“1

wjf
y0{yi
j px0q ` βr

N
ÿ

j“1

wj. (4.5)

The proof follows from Taylor expansion at x0 and we leave the detailed proof in Ap-
pendix D.1.2. When it comes to Max-Margin Ensemble (MME), the derivation of robust
conditions is more involved. In Theorem D.1 (Appendix D.1.1) we derive the robustness
conditions for MME composed of two base models. The robustness conditions have highly
similar forms as those for WE in Theorem 4.1. Thus, for brevity, we focus on discussing
Theorem 4.1 for WE hereinafter and similar conclusions can be drawn for MME (details are
in Appendix D.1.1).

To analyze Theorem 4.1, we define Ensemble Robustness Indicator (ERI) as such:

Iyi :“
›

›

›

N
ÿ

j“1

wj∇xf
y0{yi
j px0q

›

›

›

2

M

}w}1 ´
1

r}w}1

N
ÿ

j“1

wjf
y0{yi
j px0q. (4.6)

ERI appears in both sufficient (Equation (4.4)) and necessary (Equation (4.5)) conditions.
In both conditions, smaller ERI means more certifiably robust ensemble. Note that we
can analyze the robustness under different attack radius r by directly varying r in Equa-
tions (4.4) and (4.5). When r becomes larger, the gap between the RHS of two inequali-
ties (2βr

řN
j“1wj) also becomes larger, and thus it becomes harder to determine robustness

via Theorem 4.1. This is because the first-order condition implied by Theorem 4.1 becomes
coarse when r is large. However, due to bounded β as we will show, the training approach
motivated by the theorem still empirically works well under large r.

Diversified Gradients. The core of first term in ERI is the magnitude of the vector
sum of gradients: }

řN
j“1wj∇xf

y0{yi
j px0q}2. According to the law of cosines: }a ` b}2 “

a

}a}22 ` }b}
2
2 ` 2}a}2}b}2 cosxa, by, to reduce this term, we could either reduce the base

models’ gradient magnitude or diversify their gradients (in terms of cosine similarity). Since
simply reducing base models’ gradient magnitude would hurt model expressivity [159], during
regularization the main functionality of this term would be promoting diversified gradients.
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Large Confidence Margins. The core of second term in ERI is the confidence margin:
řN
j“1wjf

y0{yi
j px0q. Due to the negative sign of second term in ERI, we need to increase this

term, i.e., we need to increase confidence margins to achieve higher ensemble robustness.
In summary, the diversified gradients and large confidence margins are the sufficient and

necessary conditions for high certified robustness of ensembles. In Section 4.2, we will directly
regularize these two key factors to promote certified robustness of ensembles.

Impact of Model-Smoothness Bound β. From Theorem 4.1, we observe that: (1) if
minyi‰y0 Iyi ď ´βr, MWE is guaranteed to be r-robust (sufficient condition); and (2) if
minyi‰y0 Iyi ą βr, MWE cannot be r-robust (necessary condition). However, if minyi‰y0 Iyi P

p´βr, βrs, we only know MWE is possibly r-robust. As a result, the model-smoothness
bound β decides the correlation strength between minyi‰y0 Iyi and the robustness of MWE:
if β becomes larger, minyi‰y0 Iyi is more likely to fall in p´βr, βrs, inducing an undetermined
robustness status from Theorem 4.1, vice versa. Specifically, when β “ 0, i.e., all base models
are linear, the gap is closed and we can always certify the robustness of MWE via comparing
minyi‰y0 with 0. Similar observations can be drawn for MME. Therefore, to strengthen the
correlation between Iyi and ensemble robustness, we would need model-smoothness bound
β to be small.

4.1.3 Robustness Conditions for Smoothed Ensemble Models

Typically neural networks are nonsmooth or admit only coarse smoothness bounds [347],
i.e., β is large. Therefore, applying Theorem 4.1 for normal nonsmooth models would lead to
near-zero certified radius. Therefore, we propose soft smoothing to enforce the smoothness of
base models. However, with the soft smoothed base models, directly applying Theorem 4.1 to
certify robustness is still practically challenging, since the LHS of Equations (4.4) and (4.5)
involves gradient of the soft smoothed confidence. A precise computation of such gradient
requires high-confidence estimation of high-dimensional vectors via sampling, which requires
linear number of samples with respect to input dimension [267, 317] and is thus too expensive
in practice. To solve this issue, we then propose Ensemble-before-Smoothing as the practical
smoothing protocol, which serves as an approximation of soft smoothing, so as to leverage
the randomized smoothing based techniques for certification.

Soft Smoothing. To impose base models’ smoothness, we now introduce soft smooth-
ing [193], which applies randomized smoothing over the confidence scores. Given base model’s
confidence function f : Rd Ñ ∆C (see Section 4.1.1), we define soft smoothed confidence by

67



ḡϵf : x ÞÑ Eϵ fpx ` ϵq. Note that soft smoothed confidence is different from smoothed con-
fidence gϵF defined in (4.3). We consider soft smoothing instead of classical smoothing in
(4.3) since soft smoothing reveals differentiable and thus practically regularizable training
objectives. The following theorem shows the smoothness bound for ḡϵf .

Theorem 4.2 (Model-Smoothness Upper Bound for ḡϵf ). Let ϵ „ N p0, σ2Idq be a Gaussian
random variable, then the soft smoothed confidence function ḡϵf is p2{σ2q-smooth.

We defer the proof to Appendix D.1.4. The proof views the Gaussian smoothing as
the Weierstrass transform [401] of a function from Rd to r0, 1sC , leverages the symmetry
property, and bounds the absolute value of diagonal elements of the Hessian matrix. Note
that a Lipschitz constant

a

2{pπσ2q is derived for smoothed confidence in previous work [317,
Lemma 1], which characterizes only the first-order smoothness property; while our bound in
addition shows the second-order smoothness property. In Appendix D.1.4, we further show
that our smoothness bound in Theorem 4.2 is tight up to a constant factor.

Now, we apply WE and MME protocols with these soft smoothness confidence tḡϵi px0qu
N
i“1

as base models’ confidence scores, and obtain soft ensemble Ḡϵ
MWE

and Ḡϵ
MMME

respectively.
Since each ḡϵi is p2{σ2q-smooth, take WE as an example, we can study the ensemble robust-
ness with Theorem 4.1. We state the full statement in Corollary D.2 (and in Corollary D.3
for MME) in Appendix D.1.1. From the corollary, we observe that the corresponding ERI
for the soft smoothed WE can be written as

Īyi :“
›

›

›
E
ϵ
∇x

N
ÿ

j“1

wjf
y0{yi
j px0 ` ϵq

›

›

›

2

M

}w}1 ´
1

r}w}1
E
ϵ

N
ÿ

j“1

wjf
y0{yi
j px0 ` ϵq. (4.7)

We have following observations: (1) unlike for standard models with unbounded β, for the
smoothed ensemble models, this ERI (Equation (4.7)) would have guaranteed correlation
with the model robustness since β “ Θp1{σ2q is bounded and can be controlled by tuning
σ for smoothing. (2) we can still control ERI by diversifying gradients and ensuring large
confidence margins as discussed in Section 4.1.2, but need to compute on the noise augmented
input x0 ` ϵ instead of original input x0.

Towards Practical Certification. As outlined at the beginning of this subsection, even
with smoothed base models, certifying robustness using Theorem 4.1 is practically difficult.
Therefore, we introduce Ensemble-before-Smoothing strategy as below to construct Gϵ

MWE

and Gϵ
MMME

as approximations of soft ensemble Ḡϵ
MWE

and Ḡϵ
MMME

respectively.
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Definition 4.5 (Ensemble-before-Smoothing (EBS)). Let M be an ensemble model
over base models tFiuNi“1 and ϵ be a random variable. The EBS strategy construct smoothed
classifier Gϵ

M : Rd Ñ rCs that picks the class with highest smoothed confidence of M:
Gϵ

Mpxq :“ argmaxjPrCs g
ϵ
Mpxqj.

Here M could be either MWE or MMME. EBS aims to approximate the soft smoothed
ensemble. Formally, use WE as an example, we let fMWE

:“
řN

j“1 wjfj

}w}1
to be WE ensemble’s

confidence, then

gϵMWE
pxqi “ E

ϵ
IrMWEpx` ϵq “ is « E

ϵ
fMWE

px` ϵqi “

řN
j“1wjpḡ

ϵ
fj
qi

řN
j“1wj

“ ḡϵMWE
pxqi (4.8)

where LHS is the smoothed confidence of EBS ensemble and RHS is the soft smoothed en-
semble’s confidence. Such approximation is also adopted in existing work [193, 317, 437] and
shown effective and useful. Therefore, our robustness analysis of soft smoothed ensemble
still applies with EBS and we can control ERI in Equation (4.7) to improve the certified ro-
bustness of EBS ensemble. For EBS ensemble, we can leverage randomized smoothing based
techniques to compute the robustness certification (see Proposition D.5 in Appendix D.2).

Remark 4.2. As will present, we will control ERI of the ensemble to boost the robustness
in DRT. Then, we will compute the robustness certification leveraging the standard certi-
fication of randomized smoothing. Hence, it could be possible that standard certification
of randomized smoothing can not fully reflect the improved robustness due to the certifica-
tion looseness. Even with this negative effect, our DRT approach shows superior certified
robustness, and we conjecture advanced certification approaches (e.g., DSRS in Chapter 2)
can certify further visibly larger radii for our DRT approach.

4.1.4 Additional Properties of ML Ensembles

Comparison between Ensemble and Single-Model Robustness. In Appendix D.1.1,
we show Corollary D.1, a corollary of Theorem 4.1, which indicates that when the base mod-
els are smooth enough, both WE and MME ensemble models are more certifiably robust
than the base models. This aligns with our empirical observations (see Table 4.1 and Ta-
ble 4.2), though without advanced training approaches such as DRT, the improvement of
robustness brought by ensemble itself is marginal. In Appendix D.1.1, we also show larger
number of base models N can lead to better certified robustness.
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Comparison between WE and MME Robustness. Since in actual computing, the cer-
tified radius of a smoothed model in standard (Neyman-Pearson-based) randomized smooth-
ing is directly correlated with the probability of correct prediction under smoothed input (see
Proposition 2.1), we study the robustness of both WE and MME along with single models
from the statistical robustness perspective in the full published version of this chapter [431].
From the study, we have the following theoretical observations verified by numerical exper-
iments: (1) MME is more robust when the adversarial transferability is high; while WE
is more robust when the adversarial transferability is low. (2) If we further assume that
fipx0 ` ϵqy0 follows marginally uniform distribution, when the number of base models N is
sufficiently large, MME is always more certifiably robust.

4.2 DIVERSITY-REGULARIZED TRAINING

Inspired by the above key factors in the sufficient and necessary conditions for the cer-
tifiably robust ensembles, we propose Diversity-Regularized Training (DRT). In particular,
let x0 be a training sample, DRT contains the following two regularization terms in the
objective function to minimize:

• Gradient Diversity Loss (GD Loss):

LGDpx0qij “
›

›∇xf
y0{y

p2q
i

i px0q `∇xf
y0{y

p2q
j

j px0q
›

›

2
. (4.9)

• Confidence Margin Loss (CM Loss):

LCMpx0qij “ f
y

p2q
i {y0
i px0q ` f

y
p2q
j {y0
j px0q. (4.10)

In Equations (4.9) and (4.10), y0 is the ground-truth label of x0, and y
p2q

i (or yp2q

j ) is the
runner-up class of base model Fi (or Fj). Intuitively, for each model pair pFi, Fjq where
i, j P rN s and i ‰ j, the GD loss promotes the diversity of gradients between the base model
Fi and Fj. Note that the gradient computed here is actually the gradient difference between
different labels. As our theorem reveals, it is the gradient difference between different labels
instead of pure gradient itself that matters, which improves existing understanding of gra-
dient diversity [93, 287]. Specifically, the GD loss encourages both large gradient diversity
and small base models’ gradient magnitude in a naturally balanced way, and encodes the in-
terplay between gradient magnitude and direction diversity. In contrast, solely regularizing
the base models’ gradient would hurt the model’s benign accuracy, and solely regularizing
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gradient diversity is hard to realize due to the boundedness of cosine similarity. The CM
loss encourages the large margin between the true and runner-up classes for base models.
Both regularization terms are directly motivated by theoretical analysis in Section 4.1.

For each input x0 with ground truth y0, we use x0`ϵ with ϵ „ N p0, σ2Idq as training input
for each base model (i.e., Gaussian augmentation). We call two base models

`

Fi, Fj
˘

a valid
model pair at px0, y0q if both Fipx0 ` ϵq and Fjpx0 ` ϵq equal to y0. For every valid model
pair, we apply DRT: GD Loss and CM Loss with ρ1 and ρ2 as the weight hyperparameters
as below.

Ltrain “
ÿ

iPrNs

Lstdpx0 ` ϵ, y0qi ` ρ1
ÿ

i,jPrNs,i‰j
pFi, Fjq is valid

LGDpx0 ` ϵqij ` ρ2
ÿ

i,jPrNs,i‰j
pFi, Fjq is valid

LCMpx0 ` ϵqij.

(4.11)
The standard training loss Lstdpx0 ` ϵ, y0qi of each base model Fi is either cross-entropy
loss [77], or adversarial training loss [317]. This standard training loss will help to produce
sufficient valid model pairs with high benign accuracy for robustness regularization. Specifi-
cally, as discussed in Section 4.1.3, we compute LGD and LCM on the noise augmented inputs
px0 ` ϵq instead of x0 to improve the certified robustness for the smoothed ensemble.

Discussion. To our best knowledge, this is the first training approach that is able to
promote the certified robustness of ML ensembles, while existing work either only provide
empirical robustness without guarantees [178, 287, 428, 429], or tries to only optimize the
weights of Weighted Ensemble [234, 444]. We should notice that, though concepts similar
with the gradient diversity have been explored in empirically robust ensemble training (e.g.,
ADP [287], GAL [178]), directly applying these regularizers cannot train models with high
certified robustness due to the lack of theoretical guarantees in their design. We indicate this
through ablation studies in [431, Appendix G.4]. Our approach is generalizable for other
ℓp-bounded perturbations such as ℓ1 and ℓ8 leveraging existing work [204, 214, 218, 427].

4.3 EXPERIMENTAL EVALUATION

To make a thorough comparison with existing certified robustness approaches, we evaluate
DRT on different datasets including MNIST [203], CIFAR-10 [191], and ImageNet [94],
based on both MME and WE protocols. Overall, we show that the DRT-enabled ensemble
outperforms all baselines in terms of certified robustness under different settings.
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Figure 4.2: Pipeline for DRT-based ensemble.

4.3.1 Experimental Setup

Baselines. We consider the following state-of-the-art baselines for certified robustness:
Gaussian smoothing [77], SmoothAdv [317], MACER [437], Stability [218], and SWEEN [234].
Detail description of these baselines can be found in Appendix D.4. We follow the configura-
tions of baselines, and compare DRT-based ensemble with Gaussian Smoothing, SmoothAdv,
and MACER on all datasets, and in addition compare it with other baselines on MNIST
and CIFAR-10 considering the training efficiency. There are other baselines, e.g., [165].
However, SmoothAdv performs consistently better across different datasets, so we mainly
consider SmoothAdv as our strong baseline.

Models. For base models in our ensemble, we follow the configurations used in baselines:
LeNet [202], ResNet-110, and ResNet-50 [142] for MNIST, CIFAR-10, and ImageNet datasets
respectively. Throughout the experiments, we use N “ 3 base models to construct the
ensemble for demonstration. We expect more base models would yield higher ensemble
robustness.

Training Details. We follow Section 4.2 to train the base models. We combine DRT with
Gaussian smoothing and SmoothAdv (i.e., instantiating Lstd by either cross-entropy loss [77,
427] or adversarial training loss [317]). We leave training details along with hyperparameters
in Appendix D.4.

Pipeline. After the base models are trained with DRT, we aggregate them to form the
ensemble M, using either WE or MME protocol (see Definitions 4.2 and 4.3). If we use
WE, to filter out the effect of different weights, we adopt the average ensemble where all
weights are equal. We also studied how optimizing weights can further improve the certified
robustness in [431, Appendix G.3]. Then, we leverage Ensemble-before-Smoothing strategy to
form a smoothed ensemble (see Definition 4.5). Finally, we compute the certified robustness
for the smoothed ensemble based on Monte-Carlo sampling with high-confidence (99.9%).
The training pipeline is shown in Figure 4.2.
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Table 4.1: Certified accuracy under different radii on MNIST dataset. The grey rows present
the performance of the proposed DRT approach. The brackets show the base models we use.

Radius r 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Gaussian [77] 99.1 97.9 96.6 94.7 90.0 83.0 68.2 46.6 33.0 20.5 11.5
SmoothAdv [317] 99.1 98.4 97.0 96.3 93.0 87.7 80.2 66.3 43.2 34.3 24.0
MACER [437] 99.2 98.5 97.4 94.6 90.2 83.5 72.4 54.4 36.6 26.4 16.5
Stability [218] 99.3 98.6 97.1 93.8 90.7 83.2 69.2 46.8 33.1 20.0 11.2
SWEEN (Gaussian) [234] 99.2 98.4 96.9 94.9 90.5 84.4 71.1 48.9 35.3 23.7 12.8
SWEEN (SmoothAdv) [234] 99.2 98.2 97.4 96.3 93.4 88.1 81.0 67.2 44.5 34.9 25.0
MME (Gaussian) 99.2 98.4 96.8 94.9 90.5 84.3 69.8 48.8 34.7 23.4 12.7
DRT + MME (Gaussian) 99.5 98.6 97.5 95.5 92.6 86.8 76.5 60.2 43.9 36.0 29.1
MME (SmoothAdv) 99.2 98.2 97.3 96.4 93.2 88.1 80.6 67.9 44.8 35.0 25.2
DRT + MME (SmoothAdv) 99.2 98.4 97.6 96.7 93.1 88.5 83.2 68.9 48.2 40.3 34.7
WE (Gaussian) 99.2 98.4 96.9 94.9 90.6 84.5 70.4 49.0 35.2 23.7 12.9
DRT + WE (Gaussian) 99.5 98.6 97.4 95.6 92.6 86.7 76.7 60.2 43.9 35.8 29.0
WE (SmoothAdv) 99.1 98.2 97.4 96.4 93.4 88.2 81.1 67.9 44.7 35.2 24.9
DRT + WE (SmoothAdv) 99.1 98.4 97.6 96.7 93.4 88.5 83.3 69.6 48.3 40.2 34.8

Evaluation Metric. We report the standard certified accuracy under different ℓ2 radii r’s
as our evaluation metric following existing work [77, 165, 428, 437]. More evaluation details
are in Appendix D.4.

4.3.2 Experimental Results

Here we consider ensemble models consisting of three base models. We show that 1)
DRT-based ensembles outperform the SOTA baselines significantly especially under large
perturbation radii; 2) smoothed ensembles are always more certifiably robust than each base
model (Corollary D.1 in Appendix D.1.1); 3) applying DRT for either MME or WE ensemble
protocols achieves similar and consistent improvements on certified robustness.

Certified Robustness of DRT with Different Ensemble Protocols. The evaluation
results on MNIST, CIFAR-10, ImageNet are shown in Tables 4.1, 4.2, 4.3 respectively. It
is clear that though the certified accuracy of a single model can be improved by directly
applying either MME orWE ensemble training (proved in Corollary D.1), such improvements
are usually negligible (usually less than 2%). In contrast, in all tables we find DRT provides
significant gains on certified robustness for both MME and WE (up to over 16% as Table 4.1
shows). From Tables 4.1 and 4.2 on MNIST and CIFAR-10, we find that compared with all
baselines, DRT-based ensemble achieves the highest robust accuracy, and the performance
gap is more pronounced on large radii (over 8% for r “ 2.50 on MNIST and 6% for r “ 1.50

on CIFAR-10). We also demonstrate the scalability of DRT by training on ImageNet, and
Table 4.3 shows that DRT achieves the highest certified robustness under large radii. It is
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Table 4.2: Certified accuracy under different radii on CIFAR-10 dataset. The grey rows
present the performance of the proposed DRT approach. The brackets show the base models
we use.

Radius r 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Gaussian [77] 78.9 64.4 47.4 33.7 23.1 18.3 13.6 10.5 7.3
SmoothAdv [317] 68.9 61.0 54.4 45.7 34.8 28.5 21.9 18.2 15.7
MACER [437] 79.5 68.8 55.6 42.3 35.0 27.5 23.4 20.4 17.5
Stability [218] 72.4 58.2 43.4 27.5 23.9 16.0 15.6 11.4 7.8
SWEEN (Gaussian) [234] 81.2 68.7 54.4 38.1 28.3 19.6 15.2 11.5 8.6
SWEEN (SmoothAdv) [234] 69.5 62.3 55.0 46.2 35.2 29.5 22.4 19.3 16.6
MME (Gaussian) 80.8 68.2 53.4 38.4 29.0 19.6 15.6 11.6 8.8
DRT + MME (Gaussian) 81.4 70.4 57.8 43.8 34.4 29.6 24.9 20.9 16.6
MME (SmoothAdv) 71.4 64.5 57.6 48.4 36.2 29.8 23.9 19.5 16.2
DRT + MME (SmoothAdv) 72.6 67.2 60.2 50.4 39.4 35.8 30.4 24.0 20.1
WE (Gaussian) 80.8 68.4 53.6 38.4 29.2 19.7 15.9 11.8 8.9
DRT + WE (Gaussian) 81.5 70.4 57.9 44.0 34.2 29.6 24.9 20.8 16.4
WE (SmoothAdv) 71.8 64.6 57.8 48.5 36.2 29.6 24.2 19.6 16.0
DRT + WE (SmoothAdv) 72.6 67.0 60.2 50.5 39.5 36.0 30.3 24.1 20.3

clear that DRT can be easily combined with existing training approaches (e.g. Gaussian
smoothing or SmoothAdv), boost their certified robustness, and set the state-of-the-art
results to the best of our knowledge.

To evaluate the computational cost of DRT, we analyze the theoretical complexity in Ap-
pendix D.3 and compare the efficiency of different methods in practice in Appendices D.4.1
and D.4.2. In particular, we show that DRT with Gaussian Smoothing base models even
achieves around two times speedup compared with SmoothAdv with comparable or even
higher certified robustness, since DRT does not require adversarial training. More discus-
sions about hyper-parameters settings for DRT can be found in Appendix D.4. In the full
version [431, Appendix G.4], we also show that our proposed DRT approach could achieve
6% „ 10% higher certified accuracy compared to adapted ADP [287] and GAL [178] training
on large radii for both MNIST and CIFAR-10 datasets.

Certified Accuracy with Different Perturbation Radius. We visualize the trend
of certified accuracy along with different perturbation radii in Figure 4.3. For each ra-
dius r, we present the best certified accuracy among different smoothing parameters σ P
t0.25, 0.50, 1.00u. We notice that while simply applying MME or WE protocol could slightly
improve the certified accuracy, DRT could significantly boost the certified accuracy under
different radii. We also present the trends of different smoothing parameters separately in
the full version [431, Appendix F] which lead to similar conclusions.
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Table 4.3: Certified accuracy under different radii on ImageNet dataset. The grey rows
present the performance of the proposed DRT approach. The brackets show the base models
we use.

Radius r 0.00 0.50 1.00 1.50 2.00 2.50 3.00

Gaussian [77] 57.2 46.2 37.0 29.2 19.6 15.2 12.4
SmoothAdv [317] 54.6 49.0 43.8 37.2 27.0 25.2 20.4
MACER [437] 68.0 57.0 43.0 31.0 25.0 18.0 14.0
SWEEN (Gaussian) [234] 58.4 47.0 37.4 29.8 20.2 15.8 12.8
SWEEN (SmoothAdv) [234] 55.2 50.0 44.2 37.8 27.6 26.6 21.6
MME (Gaussian) 58.0 47.2 38.8 31.2 21.4 16.4 14.2
DRT + MME (Gaussian) 52.2 46.8 42.4 34.2 24.0 19.6 18.0
MME (SmoothAdv) 55.0 50.2 44.2 38.6 27.4 26.4 21.6
DRT + MME (SmoothAdv) 49.8 46.8 44.4 39.8 30.2 28.2 23.4
WE (Gaussian) 58.2 47.2 38.6 31.2 21.6 17.0 14.4
DRT + WE (Gaussian) 52.2 46.8 41.8 33.6 24.2 19.8 18.4
WE (SmoothAdv) 55.2 50.2 44.4 38.6 28.2 26.2 22.0
DRT + WE (SmoothAdv) 49.8 46.6 44.4 38.8 30.4 29.0 23.2
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Figure 4.3: Certified accuracy for ML ensembles with Gaussian smoothed base models, under
smoothing parameter σ P t0.25, 0.50, 1.00u on (Left) MNIST; (Right) CIFAR-10.

Effects of GD and CM Losses in DRT. To explore the effects of individual Gradient
Diversity and Confidence Margin Losses in DRT, we set ρ1 or ρ2 to 0 separately and tune
the other for evaluation on MNIST and CIFAR-10. The full results are shown in the full
version [431, Appendix G.1]. We observe that both GD and CM losses have positive effects
on improving the certified accuracy, and GD plays a major role on larger radii. By combining
these two regularization losses as DRT does, the ensemble model achieves the highest certified
accuracy under all radii.

4.4 SUMMARY

In this chapter, we explored and characterized the robustness conditions for certifiably
robust ensemble ML models theoretically, and proposed DRT for training a robust ensemble.
Our analysis provided the justification of the regularization-based training approach DRT.
Extensive experiments showed that DRT-enhanced ensembles achieve the highest certified
robustness compared with existing baselines.
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Ethics Statement. In this chapter, we characterized the robustness conditions for certi-
fying ML ensemble robustness. Based on the analysis, we propose DRT to train a certifiably
robust ensemble. On the one hand, the training approach boosts the certified robustness of
ML ensemble, thus significantly reducing the security vulnerabilities of ML ensemble. On
the other hand, the trained ML ensemble can only guarantee its robustness under specific
conditions of the attack. Specifically, we evaluate the trained ML ensemble on the held-out
test set and constrain the attack to be within predefined ℓ2 distance from the original input.
We cannot provide robustness guarantee for all possible real-world inputs. Therefore, users
should be aware of such limitations of DRT-trained ensembles, and should not blindly rely
on the ensembles when the attack can cause large deviations measured by ℓ2 distance. As
a result, we encourage researchers to understand the potential risks, and evaluate whether
our attack constraints align with their usage scenarios when applying our DRT approach to
real-world applications. We do not expect any ethics issues raised by our work.

Reproducibility Statement. Our evaluation is conducted on commonly accessible MNIST,
CIFAR-10, and ImageNet datasets. We upload the source code as the supplementary mate-
rial for reproducibility purpose in https://openreview.net/attachment?id=tUa4REjGjTf&
name=supplementary_material.
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CHAPTER 5: TRAINING FOR ENHANCING WHITE-BOX CERTIFIED
ROBUSTNESS: ROBUSTRA

Though certification approaches enable robustness guarantees for deep neural networks
(DNNs), the robustness guarantee for normally-trained DNNs is usually vacuous, due to their
lack of robustness and adaptation for certification approaches. In Chapter 4, we propose
training approach DRT for randomized smoothing, a white-box smoothing-inference-based
certification. How to train suitable DNNs for white-box certification such as GCP-CROWN?
In this chapter, we propose an approach named Robustra for effectively improving the cer-
tified robustness for ReLU-based DNNs.

In Robustra, we formalize the target task as a min-max game between the attackers and
defenders. Different from previous work [406] that solves the min-max optimization over the
whole norm-bounded space which is challenging, we use the adversarial space of a reference
model as the feasible region. Specifically, given a reference model, our formalized problem
seeks to train a model that is robust in the adversarial space of the reference model, i.e.,
the adversarial examples cannot transfer to the model that we train. In this way, the model
is adapted to “most vulnerable perturbations” at first, then gradually expands its robust
region to the whole perturbation space, which eases the burden of optimization compared
to adapting to the whole norm-bounded space at once.

Solving such a non-convex problem with constrained adversarial space is non-trivial. We
use linear approximation for ReLU activations in the DNNs, and solve its dual problem. The
constraint related to the reference adversarial space introduces a family of slack variables
in the dual problem, causing no existing approach to effectively solve it. To address the
problem, by leveraging the monotonicity and boundedness of the slack variables’ gradients,
only querying the gradients once, our approach directly calculates out the solution for slack
variables. Thus, we solve the problem in the same order of time as the previous work [407].
Furthermore, by using similar techniques introduced in the previous work [407], Robustra is
scalable to be applied to large models such as ResNet. Moreover, we train a pair of models
mutually, i.e., iteratively using one as training model and the other as reference, and thus
we obtain a pair of robust models at the same time, without requiring external reference.

We evaluate Robustra on the MNIST and CIFAR10 datasets. The evaluation results show
that our approach can provide significantly better certified robust accuracy on both datasets,
compared to the state-of-the-art results. Specifically, we improve the certified accuracy from
75.81% to 83.09% with ℓ8 norm r “ 0.3 on MNIST, and from 53.89% to 56.32% with ℓ8

norm r “ 2{255 on CIFAR10.
In summary, this chapter makes the following main contributions:
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• We propose Robustra, a novel approach for training robust ReLU-based DNNs. Ro-
bustra formalizes the problem of robust training as a min-max optimization over the
adversarial space of a reference model.

• We propose an algorithm that leverages the monotonicity and boundedness of the slack
variables in the dual problem to efficiently solve the optimization problem.

• We evaluate Robustra on both MNIST and CIFAR10 datasets. The evaluation results
show that Robustra produces DNNs with significantly better certified adversarial error
bounds compared to the state-of-the-art results.

Our code and model weights are available at https://github.com/llylly/Robustra.

5.1 PRELIMINARIES

In this work, we consider a pair of ReLU-based DNNs f and g, where f is the trainable
model, and g is the reference model. We refer to f as fθ in some places to explicitly emphasize
the trainable parameters θ.

Let d denote the dimension of input vector, and C denote the number of classes. f and g
are formally defined as follows respectively:

$

’

’

’

&

’

’

’

%

z0 “ x P Rd,

zi “ ReLUpWizi´1 ` biq, 1 ď i ď k1

fpxq “ zk1 P RC .

$

’

’

’

&

’

’

’

%

w0 “ x P Rd,

wi “ ReLUpUiwi´1 ` diq, 1 ď i ď k2

gpxq “ wk2 P RC .

(5.1)

Namely, f (resp. g): Rd Ñ RC is a k1 (resp. k2)-layer neural network with parameters
Wi,di, 1 ď i ď k1 (resp. Ui, bi, 1 ď i ď k2). All activations functions are ReLU functions in
f and g.

Given an input x, we have fpxq, gpxq P RC , representing the predicted confidence for each
class. Let

`

fpxq
˘

i
(resp.

`

gpxq
˘

i
) represent the ith dimension of fpxq (resp. gpxq), i.e., the

predicted probability of class i.
In this chapter, we use ℓ8 norm to measure the adversarial perturbation since white-

box approaches excel in certified robustness under ℓ8 norm (for black-box approaches,
smoothing-based approaches like DRT in Chapter 4 excel). The approach can be extended
to ℓ1 or ℓ2 norm by applying the techniques introduced in [407].
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Figure 5.1: A heuristic training approach that aims at reducing the overlap of adversarial
space to a reference model can make the model internally robust (see red curve).

5.2 RELATED WORK AND BACKGROUND

Attacks and Empirical Defenses. Szegedy et al. [359] discover the broad existence of
adversarial examples in neural networks. From then on, various attack approaches have been
proposed, such as FGSM [132], CW [53, 54], and PGD [251]. At the same time, heuristic
defenses have been proposed, such as Distillation [288] and Defense-GAN [321]. Although
these heuristic defenses have empirically shown effectiveness against existing attacks, they
can be adaptively attacked again after being proposed [15, 52].

Certified Training Approaches for White-box Certification. Certified training ap-
proaches (or certified/provable defenses) train DNNs with high certified robustness accuracy,
i.e., they can provably guarantee robustness for a fraction of test set inputs against any
bounded attacks for the trained DNNs. Existing certified defenses for white-box approaches
mainly use the upper bound of loss function as (part or all of) the training objective. These
upper-bound inspired approaches include SDP [307], LP-dual [406, 407], and LP [262, 340].
Besides, concurrent work by Xiao et al. [419] combines PGD adversarial training with reg-
ularization for weight sparsity and ReLU stability. However, certified robust accuracies of
DNNs obtained from these existing approaches are far from satisfaction.

5.3 MOTIVATION: AN EMPIRICAL OBSERVATION

Our approach is inspired by an empirical observation: during training, merely limiting
overlap of the adversarial space with a reference model can make the model internally robust.
This observation indicates that the adversarial space of one model should be defended against
with high priority.
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Specifically, given an input x and its true label y, a naturally trained reference model
gp¨q, we train a model fp¨q by modifying the training objective from original loss function
Lf :“ L

`

fpxq, y
˘

to Lf ` λ| cosx∇xℓf ,∇xℓgy|, where λ “ 0.1 is a tunable hyperparameter
and g, the reference model, is a naturally trained model. Our intuitive approach aims at
guiding the local gradients between two models to be diverse (orthogonal) in terms of their
cosine angle, hence reducing the overlap of their adversarial spaces.

Figure 5.1 shows the error (i.e., 100% - accuracy) curves by training epochs. The error rate
is measured by the success rate of untargeted PGD attack bounded by ℓ8 with perturbation
radius r “ 0.1. The blue curve represents the natural trained model g, where as the natural
training goes, the error rate slightly increases. The two dashed curves represent the transfer
attack’s success rate, where adversarial examples are generated from f/g model and used to
attack the other model. The curves show that the transfer error rate is reduced as expected.
The red curve represents the error rate of model f . We find that, after a few epochs, the
error rate of model f decreases below 20% although we never deliberately train the model
to be self-robust.

This observation inspires us to train a robust model constrained on the adversarial space
of another model.

5.4 ROBUSTRA

In this section, we introduce Robustra in detail.

5.4.1 Min-Max Problem Formulation

We formalize our target task as a min-max game.
Given an input sample x˚, the true label y˚, and some target label ytarg ‰ y˚, we define

Aϵpx
˚q, the adversarial space of g bounded by ℓ8 norm with radius ϵ, as follows:

Aϵpx
˚q “

"

x :
`

∥x´ x˚∥8 ď ϵ
˘

^

´

`

gpxq
˘

ytarg
´
`

gpxq
˘

y˚ ě t
¯

*

, (5.2)

where t measures the margin between the decision boundary of adversarial examples in
Aϵpx

˚q. Particularly, when t “ 0, Aϵpx
˚q is the exact adversarial space of g; when t decreases,

Aϵpx
˚q becomes larger, vice versa.

We expect the model f to be robust to adversarial examples of the reference model g.
Specifically, for each input in the adversarial space Aϵpx

˚q, the output of f has a larger
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Relaxation on g(·)

Relaxation on f(·)

A Space

FA Space

Figure 5.2: Visual illustration of approximation by linear convex relaxation. From the exact
space Aϵpx

˚q, the relaxation of model g brings convex space Âϵpx
˚q. Then, the relaxation

of model f brings convex space F̂Âpx
˚q.

value at y˚ than at ytarg. We formalize the objective as the following optimization problem:

@ytarg ‰ y˚, min
θ

ˆ

max
x

`

fθpxq
˘

ytarg
´
`

fθpxq
˘

y˚

˙

,

s.t. x P Aϵpx
˚q.

(5.3)

Let c “ eytarg ´ ey˚ , and let FA denote the value space of Aϵpx
˚q, i.e.,

FApx
˚q “

␣

fθpxq : x P Aϵpx
˚q
(

. (5.4)

Then, the optimization (5.3) can be rewritten as follows:

@ytarg ‰ y˚, min
θ

max
v

cJv,

s.t. v P FApx
˚q.

(5.5)

Since the set FApx
˚q is consecutive and highly non-convex, solving such optimization prob-

lem is computationally intractable.

81



5.4.2 Linear Convex Relaxation

To solve the optimization problem, we approximate the optimization space FApx
˚q of the

problem by using relaxation of the ReLU function. A convex space F̂Âpx
˚q is obtained from

the approximation.
Since both fp¨q and gp¨q are ReLU-based DNNs, we use the linear relaxation for ReLU

function. Let o “ ReLUpiq denote the ReLU function and rl, us denote the range of input i,
i.e., l ď i ď u. The approximation of ReLU function corresponds to its convex outer space:

1. When l ď u ď 0, o “ 0;

2. When 0 ď l ď u, o “ i;

3. When l ă 0 ă u, pu´ lqo ď upi´ lq ^ o ě 0^ o ě i.

We replace each ReLU function in the problem with corresponding linear constraints ac-
cording to the range of the input.

We apply the relaxation to both fp¨q and gp¨q models, as shown in Figure 5.2.
First, we apply the relaxation to the ReLU neurons in model gp¨q. Let Ĝp¨q denote the

output space after applying the relaxation. Note that Ĝpxq Ď RC , while gpxq P RC . Ac-
cordingly, the adversarial space Aϵpx

˚q is replaced with its approximation subspace Âϵpx
˚q:

Âϵpx
˚q “

"

x :
`

∥x´ x˚∥8 ď ϵ
˘

^

´

@v1 P Ĝpxq : cJv1 ě t
¯

*

. (5.6)

Note that Âϵpx
˚q is a convex subspace of Aϵpx

˚q, because Ĝpxq is a convex outerspace
of gpxq. Then, we obtain an approximated optimization subspace FÂpx

˚q (shown in Fig-
ure 5.2).

Second, we similarly apply the relaxation to the ReLU neurons in model fp¨q. Let
F̂ p¨q denote the output space after applying the relaxation. Then, we obtain F̂Âpx

˚q “
Ť

xPÂϵpx˚q F̂ pxq, which is a convex approximation space of FApx
˚q.

After the two-step relaxation, the optimization problem that we would like to address is
as follows:

@ytarg ‰ y˚, min
θ

max
v

cJv,

s.t. v P F̂Âpx
˚q.

(5.7)

It is an approximation of the original optimization problem (5.5).
Figure 5.2 illustrates the procedure of the relaxation. At the beginning, the optimization

space FApx
˚q is non-convex; after relaxation of model g, we obtain a subspace FÂpx

˚q; after
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relaxation of model f , we obtain F̂Âpx
˚q, which is a convex approximation of the original

space. We address the optimization problem over this approximation convex space.

5.4.3 Duality

Training on the outer minimization in Equation (5.7) requires to calculate the gradient of
model parameter θ w.r.t. the inner maximization problem: ∇θ maxv c

Jv “ ∇θc
Jv˚, where

v˚ is the solution to the inner problem. To calculate the gradient, efficiently solving the
inner problem, i.e., finding v˚, is desirable.

Since the inner maximization is an optimization over linear convex space F̂Âpx
˚q, the

minimum of its dual problem corresponds to the solution due to strong duality. Inspired
by previous work [406, 407], we formulate the dual problem by a feedforward network as
follows:

max
v

cJv ď min
ηě0

hcpηq, (5.8)

where hcpηq
“ xJpν̂1 ` ηq̂1q ` ϵ∥ν̂1 ` ηq̂1∥1 ´ ηt

`

k1´1
ÿ

i“1

νJ
i`1bi ` η

k2´1
ÿ

i“1

qJ
i`1di ´

k1´1
ÿ

i“2

ÿ

jPIi

li,jrνi,js` ´ η
k2´1
ÿ

i“2

ÿ

jPQi

l1i,jrqi,js`.

(5.9)

ν and q are defined as follows:

νk1 “´ c

ν̂i “W
J
i νi`1, for i “ k1 ´ 1, . . . , 1

νi,j “

$

’

’

’

&

’

’

’

%

0 j P I´
i

ν̂i,j j P I`
i

pui,j{pui,j ´ li,jqqν̂i,j j P Ii,

for i “ k1 ´ 1, . . . , 2

qk2 “´ c

q̂i “U
J
i qi`1, for i “ k2 ´ 1, . . . , 1

qi,j “

$

’

’

’

&

’

’

’

%

0 j P Q´
i

q̂i,j j P Q`
i

pu1
i,j{pu

1
i,j ´ l

1
i,jqqq̂i,j j P Qi,

for i “ k2 ´ 1, . . . , 2

(5.10)

In (5.9) and (5.10), ui,j and li,j represent the upper and lower bound of the ReLU function
input for the jth neuron in layer i of network fp¨q. Similarly, u1

i,j and l1i,j represent the upper
and lower bounds of the ReLU function input for the jth neuron in layer i of network gp¨q.
They are called intermediate layer bounds in Chapter 3 and literature [443, 448].

For layer i in model f and g, I`
i and Q`

i represent the sets of neurons where the inputs
are always positive, respectively (0 ď l ď u); similarly, I´

i and Q´
i are the sets of neurons

where the inputs are always negative (l ď u ď 0); and Ii and Qi are the sets of neurons
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spanning zero (l ă 0 ă u).
ν, ν̂, q, q̂, and η are newly introduced dual variables. We transform the original problem

to an optimization problem over the new variable η.

5.4.4 Gradient Monotonicity and t Selection

To solve the dual problem minηě0 hcpηq, we turn to the gradient ∇ηhcpηq, which can be
written as follows:

∇ηhcpηq

“ ϵ∇η∥ν̂1 ` ηq̂1∥1 ´ t` xJq̂1 `

k2´1
ÿ

i“1

qJ
i`1di ´

k2´1
ÿ

i“2

ÿ

jPQi

l1i,jrqi,js`

“: ϵγpηq ´ t` C,

(5.11)

where γpηq “
řn
j“1 sgnpv̂1,j ` ηq̂1,jq ¨ q̂1,j and C is a constant independent of η and t. Note

that γpηq is the analytic form of ∇η∥ν̂1 ` ηq̂1∥1.

Theorem 5.1 (Property of γpηq). γpηq is a bounded non-decreasing step-function, and the
transition points are t´ν̂1,j{q̂1,j : 1 ď j ď nu.

The theorem can be proved by case discussion over sign of q̂1,j. Since γpηq is the only
η-dependent term in (5.11), ∇ηhcpηq has the same property, i.e., ∇ηhcpηq is a bounded
non-decreasing step-function. Thus, we can obtain the value range of the gradient of hcpηq.
Specifically, we have

Theorem 5.2 (Property of hcpηq). When the domain of hcpηq is r0,8q, let ηl “ 0, ηr “

maxjp´ν̂1,j{q̂1,jq, the gradient value ▽ηhcpηq P rl, rs :“ r∇ηhcpηq|η“ηl ,∇ηhcpηq|η“ηrs.

Let us define adversarial space constraints to be constraints imposed by the reference
model, i.e., those corresponding to

´

`

gpxq
˘

ytarg
´
`

gpxq
˘

y˚ ě t
¯

in (5.2). We can relate the
solution for minηě0 hcpηq to sign of l and r:

• If l ď r ď 0, when η Ñ `8, hcpηq Ñ ´8. According to the duality theorem, there
is no solution to the original problem maxv cJv, indicating that the space F̂Âpx

˚q is
empty. In this situation, we regard adversarial space constraints to be infeasible. We
need to decrease t, i.e., enlarge adversarial space Âϵpx

˚q.

• If l ă 0 ă r, a positive η solution exists. In this situation, we regard adversarial space
constraints to be tight.
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• If 0 ď l ď r, the solution is η “ 0. As seen from (5.9), reference-model-related vari-
ables are all eliminated from objective function hcpηq, indicating that the adversarial
space constraints are loose. In this situation, we would like to increase t, i.e., narrow
adversarial space Âϵpx

˚q.

The ideal situation is that for all optimization objectives hcpηq, the adversarial space
constraints are tight and the solution exists, i.e., l ă 0 ă r. To guarantee so, we fix a
reasonable η as the solution and inversely obtain the corresponding t.

Specifically, we set η to be the median number of γpηq transition points. Combin-
ing Theorem 5.1, Theorem 5.2, and constraint η ě 0, we pick the median number in
␣

´ν̂1,j{q̂1,j : 1 ď j ď n,´ν̂1,j{q̂1,j ą 0
(

as the solution for η, denoted as ηmed.
ηmed being the solution indicates ▽ηhcpηq|η“ηmed “ 0, which yields t “ t0 “ ϵγpηmedq ` C.

Thus, the hyperparameter t is set to t0 according to ηmed.
As result, we effectively solve the inner maximization problem minηě0 hcpηq by forward

passing c to the network defined in (5.10) and extracting the median number using v̂1 and
q̂1. After that, we use t0 and ηmed to directly calculate hcpηq. Formally,

max
v

cJv ď min
ηě0

hcpηq “ hcpηq|η“ηmed,t“t0 . (5.12)

5.4.5 Scaling

To scale up the training process, we find that Cauchy random projection estimation of ℓ1
norm [407] can be directly applied in our approach. When a vector multiplies a standard
Cauchy random matrix, the median number of the result vector is an estimation of ℓ1 norm
of the vector. Using this property, we can approximately calculate

řk1´1
i“2

ř

jPIi li,jrνi,js` and
řk2´1
i“2

ř

jPQi
l1i,jrqi,js` of (5.9) in linear complexity w.r.t neuron numbers [407].

With this calculation, our approach has the same order of complexity with [407]. This
calculation enables our approach to scale up to large datasets such as CIFAR10 and large
DNN models such as ResNet.

5.4.6 Training

During the training process, we use the solution for each ytarg as the probability of that
class. Then we use cross-entropy with softmax as the training loss to jointly minimize errors
for all ytarg ‰ y˚.

85



Table 5.1: Statistics of the models used in our experiments.

Dataset Model # Layers # Hidden # ParametersUnits

MNIST Small 4 4, 804 166, 406
Large 7 28, 064 1, 974, 762
Small 4 6, 244 214, 918

CIFAR10 Large 7 62, 464 2, 466, 858
ResNet 11 107, 496 4, 214, 850

We adopt a manual training scheme to optimize a pair of models. Initially, fp¨q and gp¨q
are randomly initialized independently. When the model size is small, in each epoch, we
train model fp¨q where model gp¨q is the reference, and then train model gp¨q where model
fp¨q is the reference. When the model size is large, we accelerate the process by distributing
model fp¨q and model gp¨q to two GPUs. By loading the last epoch weights of the other
model as the reference, two models are trained parallelly, both using the other model as the
reference at the same time. This training scheme optimizes both models efficiently.

5.5 EXPERIMENTS

We evaluate Robustra on image classification tasks with two datasets: MNIST [203] and
CIFAR10 [191].

We use the same DNNs as used in [407] for comparison. All DNNs are convolutional neural
networks with multiple layers, using only ReLU activations. Table 5.1 shows the statistics
of DNNs that we use.

For each model and dataset, we run 100 epochs on the training set. Adam optimizer is
used for MNIST models, and SGD optimizer (0.9 momentum, 5 ˆ 10´4 weight decay) is
used for CIFAR10 models. The perturbation radius ϵ under ℓ8 norm is initialized by 0.01,
and then it linearly increases to the configured ϵ (0.1 or 0.3 for MNIST, 2{255 or 8{255

for CIFAR10) in the first 20 epochs. In the first 20 epochs, the learning rate is set to be
0.001; then, it decades by half every 10 epochs. The batch size is set to 50. The scaling
approximation (Section 5.4.5) is applied for training ‘Large’ and ‘ResNet’ models, where the
projection dimension is 50. Note that no hyperparameter selection or tuning is applied to
guarantee the soundness of the results. All experiments are run on Geforce GTX 1080 Ti
GPUs.

86



Table 5.2: Certified error bound of Robustra and the state of the art (SOA) [406, 407]. Two
bounds are used for evaluation: LP bound [406] and MIP bound [368]. For SOA models, we
use the error bounds reported in their chapters. We mark a ‘-’ on an entry if there are no
reported results in the corresponding chapter. For our models that are too large for MIP
bound to be calculated in feasible time (i.e., 24 hours), we mark ‘/’ on the entry. In addition,
we compare clean example test error rate (Clean Err.) of SOA models and our models.

Dataset Perturbation
Radius ϵ Model LP bound MIP bound Clean Error

SOA Robustra SOA Robustra SOA Robustra

MNIST
0.1

Small 4.48% 4.84% 4.38% 2.55% 1.26% 1.01%
Large 3.67% 3.93% 2.74% 2.09% 1.08% 0.83%

0.3
Small 43.10% 31.42% 25.79% 16.91% 11.40% 7.37%
Large 45.66% 34.59% 24.19% 24.43% 11.16% 11.61%

CIFAR10

2

255

Small 52.75% 51.47% 50.20% 47.93% 38.91% 36.03%
Large 46.59% 43.68% - / 31.28% 28.48%

ResNet 46.11% 44.43% - / 31.72% 29.51%

8

255

Small 79.25% 76.29% - 74.87% 72.24% 66.34%
Large 83.43% 78.32% - 77.56% 80.56% 71.79%

ResNet 78.22% 79.57% 77.60% 78.10% 71.33% 72.10%

5.5.1 Certified Error Bound

Under the given perturbation radius ϵ, we evaluate trained models in terms of the certified
error bound, which stands for the ratio of test points whose robustness cannot be certified
to be robust. Certified error bound is an upper bound of maximum error rate that can
be achieved by ϵ-radius ℓ8-bounded adversarial attack, and it equals to (100% - certified
robust accuracy) where certified robust accuracy is as defined in Chapter 4. We use two
certification approaches to evaluate the models trained by Robustra: LP relaxation (denoted
as LP bound) [406] and MIP solver (denoted as MIP bound) [368]. We remark that with
the latest certification approaches like GCP-CROWN we can expect lower absolute values
of error bounds, but the relative tendency should be similar. The full test set is used in our
evaluation. We compare the error bounds of Robustra to the state of the art on the same
model structures [406, 407].

The results in Table 5.2 show that on both the MNIST dataset and CIFAR10 dataset,
Robustra outperforms the state of the art in most of the settings. Specifically, on the MNIST
dataset, with ϵ “ 0.1, Robustra significantly improves the MIP bound on ‘Large’ model from
2.74% to 2.09%; with ϵ “ 0.3, Robustra achieves 16.91% certified test error using ‘Small’
model and improves LP bound, from previous 43.10%{45.66% to 31.42%{34.59% for ‘Small’
and ‘Large’ models, respectively. On the CIFAR10 dataset, with ϵ “ 2{255, Robustra
exceeds the state of the art on all models. It reduces the previous bound from 46.11% to
43.68%. With ϵ “ 8{255, Robustra reduces the error bound from 77.60% (on ‘ResNet’, MIP
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Figure 5.3: Certified error and clean error curves of each epoch, evaluated on the MNIST test
set, with ϵ “ 0.3. Certified error stands for LP bound. Clean error stands for the standard
error rate on clean examples. fp¨q and gp¨q stand for the two mutually trained models.

bound) to 74.87% (on ‘Small’, MIP bound).
Clean error represents the error rate of a model on a clean (i.e., unperturbed) test set.

The model trained by Robustra has similar or smaller clean error rate compared to state-
of-the-art models. Furthermore, we find that a model with a smaller clean error usually has
a tighter certified error bound.

5.5.2 Training Progress

The training curves are shown in Figure 5.3. Certified error is measured by LP bound.
Clean error is measured by error rate on clean (i.e., unperturbed) examples. Both are
evaluated on the test set.

In the first 20 epochs, ϵ used for training is linearly increased to desired ϵ p0.3q. The
certified robust error keeps being 100% for these first 20 epochs, and then a significant drop
occurs as the training ϵ reaches 0.3. The result reveals that the model is not robust to larger
perturbations unless it is trained at that or larger perturbation level. During these first 20
epochs, the clean error increases while the certified robust error bound decreases. Then both
certified errors and clean errors decrease.

At each epoch, both models are trained mutually: we first regard gp¨q as the reference
model and train the model fp¨q; then, we set the trained fp¨q as the reference model and
train the model gp¨q. Thus, at each epoch, the test error of gp¨q is slightly smaller than the
test error of fp¨q, as shown in Figure 5.3.
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5.5.3 t Selection Effectiveness
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Figure 5.4: On MNIST with ϵ “ 0.3: (a) curve of selected t; and (b) tightness status of
adversarial space constraints of each epoch when t “ 0.

In our approach, we select some t to solve the inner maximization problem, as discussed
in Section 5.4.4. Figure 5.4(a) plots the curve of selected t. Larger t corresponds tighter
reference space, as shown in (5.2). In the first 20 epochs, t is small and sharply increases to
around ´3. This result indicates that our approach dynamically tightens these constraints
along with increasing training ϵ. After 20 epochs, as the reference model is trained more
robust, its adversarial space becomes smaller. The approach gradually decreases t to loosen
the constraints.

In Figure 5.4(b), on MNIST with ϵ “ 0.3, we study the solution status on test dataset if
fixing t “ 0. In the first 20 epochs, non-robust models make almost all constraints loose.
After 20 epochs, the robust models make almost all constraints infeasible. Thus, when t “ 0,
we are not able to effectively solve the problem. Instead, we need to dynamically select t as
we propose in Section 5.4.4.

5.6 SUMMARY

We have presented Robustra, an approach for training certified robust neural networks.
In particular, we formalize the training procedure as a min-max game over the adversarial
space of the reference model, and effectively solve the min-max game. The experimental
results have shown that Robustra significantly outperforms existing approaches.

Our approach exploits the adversarial space of the reference model. Instead of optimizing
over the whole perturbation space, we instead consider only the overlap of the perturbation
space and transferable space. By leveraging linear approximation and monotonicity of slack
variables, we solve the dual problem efficiently.

89



However, theoretical analysis of the reasons why training over reference space produces
more robust models is desirable. Currently, the performance of existing models with cer-
tified bounds on CIFAR10 still has a relatively large gap compared with vanilla training.
Further improvement on CIFAR10 remains the future work. In future work, we plan to
derive theoretical evidence for why training over transferable spaces could get better cer-
tified robustness. Our approach is still relatively slow, and some certified bounds are still
unsatisfactory such as that of CIFAR10 when ϵ “ 8{255. Further improving our approach
remains our future work.
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CHAPTER 6: DISCUSSION FOR PART II

In this part, we first proposed two certification approaches DSRS and DRT. The former
is a black-box certification approach and requires smoothing as the post-processing infer-
ence protocol. The latter is a white-box certification approach based on branch-and-bound
and cutting plane for tightening the relaxation. Then, we proposed two certified training
approaches DRT and Robustra. The former is suitable for black-box certification, and the
latter is suitable for white-box certification. Both training approaches share the idea of re-
ducing transferability among models. The former reduces the first-order transferability by
encouraging gradient diversity and leverages smoothing to bound higher-order uncertainties.
The latter constrains the model training within the adversarial space of a reference model
to ease the optimization burden. As we can see, reducing transferability is the principle but
leveraged in different ways to cater to certification approaches.

In following sections, we will briefly discuss the whole research field of certified approaches
against ℓp-bounded perturbations.

6.1 PRACTICAL IMPLICATIONS

In practice, what are the most suitable certified approaches for users to deploy? Based on
the above results and our leaderboard in https://sokcertifiedrobustness.github.io/,
we present practical implications in Figure 6.1, where we envision two scenarios: 1) users
want to improve certified robustness for their tasks at hand; 2) users want to evaluate or
certify the robustness of given models.

When users want to improve certified robustness for their tasks, they need to achieve this
by choosing a certified training approach and certifying the robustness with the correspond-
ing certification approach as discussed in Section 1.1. The upper part of Figure 6.1 shows the
recommended combinations of certification and certified training approaches in light gray
boxes. Depending on the dataset size and the type of ℓp adversary to defend against, we
recommend the corresponding approach combinations which achieve high certified accuracy
in practice based on our leaderboard. When multiple choices are available, we show the top-2
choices and label them with “ 1⃝” and “ 2⃝” respectively. In summary, linear-relaxation-based
verification is suitable only on small datasets against ℓ8 adversary, Lipschitz-based (includ-
ing smooth layers, Lipschitz, and general Lipschitz) verification is suitable on small and
medium datasets, and smoothed DNNs (including Neyman-Pearson-based and differential-
privacy-based) are suitable on medium and large datasets. In particular, on large datasets
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Figure 6.1: Practical implications for users to select certified approaches. Gray boxes de-
pict suitable “(certification) + (certification training)” approach combinations or certified
approaches for given scenarios. If exist, “ 1⃝” and “ 2⃝” label the most and runner-up suitable
ones. Details in Section 6.1.

like ImageNet, only approaches for smoothed DNNs, like [77] and DSRS, can provide ro-
bustness certification at the current stage.

When users want to evaluate or certify the robustness of certain models, they need to
choose a suitable certificaiton approach. Inspired by our benchmark, we present the impli-
cations in the lower part of Figure 6.1. For small and medium models trained by standard
training or empirical defenses, the branch-and-bound based complete verification ([115, 389],
GCP-CROWN) and multi-neuron relaxation verification [286] can certify the robustness effi-
ciently. Specifically, for small models, the solver-based (concretely, MIP-based) certification
approaches can certify good robustness. But for large models, none of these methods can
finish in a feasible time (one day per input). Therefore, we must use more efficient but
loose certification such as interval bound propagation, which usually yields trivial certified
robustness radius and it is an active research area to make tighter certification approaches
scalable for these large models. In addition, we find that the ranking of empirical defenses
for small/medium models based on certified robustness is consistent with that evaluated by
strong empirical attacks such as PGD [89, 389]. If models are trained by robust training ap-
proaches, using the corresponding certification approaches targeted by the training approach
would be the best choice.
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6.2 CHARACTERISTICS, STRENGTHS, LIMITATIONS, AND CONNECTIONS

To reveal the fundamental connections, we adopt a unified view of robustness certification:
all existing certification approaches provide an abstraction of given DL models to verify the
robustness. For example, the branch-and-bound verification views the model as the union
of several sub-domains where the model output in each domain can be bounded, e.g., by
linear inequalities. The branching process is essentially refining the abstraction by splitting
sub-domains whose current abstractions are not precise enough. The linear relaxation-based
certification uses some linear constraints to abstract the possible behavior of the model in
the whole perturbation region. The smoothing-based certification uses queried information,
such as zeroth-order information, to abstract the model behavior. This view is closely related
to the concept of abstract interpretation in traditional program analysis [80]. Therefore, the
scalability and tightness trade-off of certification mentioned in Section 1.1 is essentially the
inherent trade-off between preciseness and efficiency of abstraction: more precise abstraction
enables tighter robustness certification, whereas has higher time and space complexity. Thus,
for a model that is not specifically trained, the most suitable certification approach is the
most precise one that can be computed for this model size. We note that, under this unified
view, the favored properties of each certification are tight conditions of the corresponding
abstraction domain. Thus, robust training approaches that promote these properties can
boost certification tightness for the model to improve certified robustness.

6.3 CHALLENGES AND BARRIERS

Although there has been remarkable progress towards certifiably robust DL systems, scal-
ability and tightness challenges persist. For example: (1) Complete verification is NP-
complete [180, 402]. (2) Multi-neuron based linear relaxation needs exponential number
of constraints [367]. (3) Smoothing-based certification based on zeroth-order information
cannot certify high robustness against ℓ8 adversary for real-world high-dimensional in-
puts [38, 195, 269, 427], where DSRS may be the key but further improvement room exists.
These theoretical barriers are intrinsic challenges for further improvements in these certifi-
cation approaches. There are also practical issues to solve, such as guaranteeing certification
soundness under floating-point arithmetic [169, 381, 468] and safeguarding robust training
against training-time attacks [260].

93



6.4 FUTURE DIRECTIONS

Despite the challenges and barriers, there are also several potential future directions. Here
we name a few promising directions.

(1) Scalable and tight verification: There are still hopes for more scalable and tighter
verification for DNNs in practice despite theoretical barriers. For example, good heuris-
tics have boosted complete verification to handle DNNs with over 105 neurons [389].
It is promising to explore other better heuristics. For instance, a recent work [115]
improves the complete verification by proposing better bounding heuristics based
on multi-neuron relaxation. GCP-CROWN also indicates a very promising research
thread by migrating research results from long-studied MIP solvers. For SDP veri-
fication, better formulation and solvers can lead to better certification [27, 89]. For
smoothed DNNs, although only using zeroth-order information cannot certify high ro-
bustness against ℓ8 adversary, this barrier may be circumvented by leveraging more
information as DSRS.

(2) Effective certified training with theoretical understanding: Unlike certifica-
tion where theoretical barriers exist, certified training can empirically boost the cer-
tified robustness without known theoretical limitations. Indeed, even the empirically
loose interval relaxations are universal approximators [17, 396] and achieve training
convergence (under some assumptions) [394], which implies that with effective and
generalizable robust training the certified accuracy could be on par with benign ac-
curacy. However, theoretical understanding of robust training, such as why robust
training generalizes, is still lacking [176]. Recent work shows that when an efficient
complete certification approach exists, generalizable robust training is achievable [13].
Extending this result to broader scenarios, e.g., the generalization of robust training
with incomplete certification, would significantly advance our understanding of ML
robustness.

(3) Design certifiably robust DNN architectures: Based on the model properties
required for different verification approaches, it is promising to leverage novel DNN
architectures, e.g., Lipschitz layers, binarized layers, and attention modules, to further
improve the certified robustness. In addition, it is also possible to design sparse DNNs
following the model compression literature [326] to achieve efficient and certifiably
robust models.

(4) Integrate domain knowledge and logic reasoning ability into ML to improve
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certified robustness: It has been shown that joint inference with knowledge rules can
improve model benign accuracy [305, 422, 458], and therefore it would be promising
to integrate domain knowledge, causal analysis, and security rules into ML pipeline to
further improve and tighten its end-to-end certified robustness [450].
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Part III

Robustness Certification beyond ℓp-bounded Perturbations

In Part II, we propose certified approaches for certifying and improving the robustness
of DL systems against ℓp-bounded perturbations. However, the threat model of ℓp-bounded
perturbations is too restrictive to cover real-world attacks. Existing studies (as will introduce
in the following chapters) have shown that physically realizable input perturbations can
either incur large ℓp difference or persist in multiple time frames, but remain imperceptible to
human and maintain high attack success rate. Hence, it is of practical demand to generalize
the certified approaches to cover these real-world threats. In this part, we propose two types
of generalization in following chapters respectively:

(1) For certified robustness against semantic transformations (threat model defined in
Section 1.2.2), we propose TSS for image models in Chapter 7 and briefly discuss its
extension to point cloud models in Appendix A; and

(2) For certified robustness in reinforcement learning (threat models defined in Sections 1.2.3
and 1.2.4), we propose CROP against observation perturbations in Chapter 8 and
briefly discuss its extension to data poisoning attacks in Chapter 9.

All these approaches are generalized from certified approaches in Part II but involve non-
trivial techniques to handle the threat-specific challenges. Though these approaches cannot
cover the full set of existing robustness threats, they are ideal examples for extending cer-
tification beyond ℓp-bounded perturbation robustness, and research status for other threat
models in the literature is briefly visited in Chapter 10.
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CHAPTER 7: ROBUSTNESS AGAINST SEMANTIC
TRANSFORMATIONS: TSS
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Figure 7.1: TSS: Transformation-Specific Smoothing-based robustness certification, a general
robustness certification framework against various semantic transformations. We develop
a range of different transformation-specific smoothing protocols and various techniques to
provide substantially better certified robustness bounds than state-of-the-art approaches on
large-scale datasets.

The existing practice of security in ML has fallen into the cycle where new empirical de-
fense techniques are proposed [249, 370], followed by new adaptive attacks breaking these
defenses [15, 112, 132, 416]. In response, recent research has attempted to provide certi-
fiable robustness guarantees for an ML model. Such certification usually follows the form
that the ML model is provably robust against arbitrary adversarial attacks, as long as the
perturbation magnitude is below a certain threshold. Different certifiable defenses and ro-
bustness verification approaches have provided nontrivial robustness guarantees against ℓp
perturbations where the perturbation is bounded by small ℓp norm [77, 221, 368, 406, 424].

However, certifying robustness only against ℓp perturbations is not sufficient for attacks
based on semantic transformation. For instance, image rotation, scaling, and other semantic
transformations are able to mislead ML models effectively [110, 124, 130, 416]. These trans-
formations are common and practical [46, 144, 291]. For example, it has been shown [153]
that brightness/contrast attacks can achieve 91.6% attack success on CIFAR-10, and 71%-
100% attack success rate on ImageNet [144]. In practice, brightness- and contrast-based
attacks have been demonstrated to be successful in autonomous driving [291, 366]. These
attacks incur large ℓp-norm differences and are thus beyond the reach of existing certifiable
defenses [38, 141, 195, 318]. Can we provide provable robustness guarantees against these
semantic transformations?

In this paper, we propose theoretical and empirical analyses to certify the ML robustness
against a wide range of semantic transformations beyond ℓp bounded perturbations. The
theoretical analysis is nontrivial given different properties of the transformations, and our
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empirical results set the new state-of-the-art robustness certification for a range of semantic
transformations, exceeding existing work by a large margin. In particular, we propose TSS:
Transformation-Specific Smoothing-based robustness certification — a general framework
based on function smoothing providing certified robustness for ML models against a range of
adversarial transformations (Figure 7.1). To this end, we first categorize semantic transfor-
mations as either resolvable or differentially resolvable. We then provide certified robustness
against resolvable transformations, which include brightness, contrast, translation, Gaussian
blur, and their composition. Second, we develop novel certification techniques for differen-
tially resolvable transformations (e.g., rotation and scaling), based on the building block that
we have developed for resolvable transformations.

For resolvable transformations, we leverage the framework to jointly reason about (1) func-
tion smoothing under different smoothing distributions and (2) the properties inherent to
each specific transformation. To our best knowledge, this is the first time that the interplay
between smoothing distribution and semantic transformation has been analyzed as existing
work [77, 218, 427] that studies different smoothing distributions considers only ℓp perturba-
tions. Based on this analysis, we find that against certain transformations such as Gaussian
blur, exponential distribution is better than Gaussian smoothing, which is commonly used
in the ℓp-case.

For differentially resolvable transformations, such as rotation, scaling, and their com-
position with other transformations, the common challenge is that they naturally induce
interpolation error. Existing work [22, 118] can provide robustness guarantees but it cannot
rigorously certify robustness for ImageNet-scale data. We develop a collection of novel tech-
niques, including stratified sampling and Lipschitz bound computation to provide a tighter
and sound upper bound for the interpolation error. We integrate these novel techniques into
our TSS framework and further propose a progressive-sampling-based strategy to accelerate
the robustness certification. We show that these techniques comprise a scalable and general
framework for certifying robustness against differentially resolvable transformations.

We conduct extensive experiments to evaluate the proposed certification framework and
show that our framework significantly outperforms the state-of-the-art on different datasets
including the large-scale ImageNet against a series of practical semantic transformations. In
summary, this chapter makes the following contributions:

(1) We propose a general function smoothing framework, TSS, to certify ML robustness
against general semantic transformations.

(2) We categorize common adversarial semantic transformations in the literature into re-
solvable and differentially resolvable transformations and show that our framework is
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general enough to certify both types of transformations.

(3) We theoretically explore different smoothing strategies by sampling from different dis-
tributions including non-isotropic Gaussian, uniform, and Laplace distributions. We
show that for specific transformations, such as Gaussian blur, smoothing with expo-
nential distribution is better.

(4) We propose a pipeline, TSS-DR, including a stratified sampling approach, an effective
Lipschitz-based bounding technique, and a progressive sampling strategy to provide
rigorous, tight, and scalable robustness certification against differentially resolvable
transformations such as rotation and scaling.

(5) We conduct extensive experiments and show that our framework TSS can provide
significantly higher certified robustness compared with the state-of-the-art approaches,
against a range of semantic transformations and their composition on MNIST, CIFAR-
10, and ImageNet.

(6) We show that TSS also provides much higher empirical robustness against adaptive
attacks and unforeseen corruptions such as CIFAR-10-C and ImageNet-C.

The code implementation and all trained models are publicly available at https://
github.com/AI-secure/semantic-randomized-smoothing.

7.1 BACKGROUND

We next provide an overview of different semantic transformations and explain the intu-
ition behind the randomized smoothing [77] that has been proposed to certify the robustness
against ℓp perturbations.

Semantic Transformation Based Attacks. Beyond adversarial ℓp perturbations, a re-
alistic threat model is given by image transformations that preserve the underlying seman-
tics. Examples for these types of transformations include changes to contrast or brightness
levels, or rotation of the entire image. These attacks share three common characteristics:
(1) The perturbation stemming from a successful semantic attack typically has higher ℓp
norm compared to ℓp-bounded attacks. However, these attacks still preserve the underlying
semantics (a car image rotated by 10˝ still contains a car). (2) These attacks are governed
by a low-dimensional parameter space. For example, the rotation attack chooses a single-
dimensional rotation angle. (3) Some of such adversarial transformations would lead to high
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interpolation error (e.g., rotation), which makes it challenging to certify. Nevertheless, these
types of attacks can also cause significant damage [144, 153] and pose realistic threats for
practical ML applications such as autonomous driving [291]. We remark that our proposed
framework can be extended to certify robustness against other attacks sharing these char-
acteristics even beyond the image domain, such as GAN-based attacks against ML based
malware detection [154, 390], where a limited dimension of features of the malware can be
manipulated in order to preserve the malicious functionalities and such perturbation usually
incurs large ℓp differences for the generated instances.

Randomized Smoothing. On a high level, randomized smoothing [77, 204, 218, 224]
provides a way to certify robustness based on randomly perturbing inputs to an ML model.
The intuition behind such randomized classifier is that noise smoothens the decision bound-
aries and suppresses regions with high curvature. Since adversarial examples aim to exploit
precisely these high curvature regions, the vulnerability to this type of attack is reduced.
Formally, a base classifier h is smoothed by adding noise ε to a test instance. The prediction
of the smoothed classifier is then given by the most likely prediction under this smoothing
distribution. Subsequently, a tight robustness guarantee can be obtained, based on the noise
variance and the class probabilities of the smoothed classifier. It is guaranteed that, as long
as the ℓ2 norm of the perturbation is bounded by a certain amount, the prediction on an ad-
versarial vs. benign input will stay the same. This technique provides a powerful framework
to study the robustness of classification models against adversarial attacks for which the
primary figure of merit is a low ℓp norm with a simultaneously high success rate of fooling
the classifier [106, 427]. However, semantic transformations incur large ℓp perturbations,
which renders classical randomized smoothing infeasible [38, 141, 195], making it of great
importance to generalize randomized smoothing to this kind of threat model.

7.2 THREAT MODEL & TSS OVERVIEW

In this section, we first introduce the notations used throughout this chapter. We then
define our threat model, the defense goal and outline the challenges for certifying the
robustness against semantic transformations. Finally, we will provide a brief overview of
our TSS certification framework.

We denote the space of inputs as X Ď Rd and the set of labels as Y “ t1, . . . , Cu “ rCs
(where C ě 2 is the number of classes). The set of transformation parameters is given by
Z Ď Rm (e.g., rotation angles). We use the notation PX to denote the probability measure
induced by the random variable X and write fX for its probability density function. For
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Figure 7.2: We provide strong robustness certification for both resolvable transformations
and differentially revolvable transformations. These two categories cover common adversarial
semantic transformations.

a set S, we denote its probability by PrXpSq. A classifier is defined to be a deterministic
function h mapping inputs x P X to classes y P Y . Formally, a classifier learns a conditional
probability distribution ppy| xq over labels and outputs the class that maximizes p, i.e.,
hpxq “ argmaxyPY ppy| xq.

7.2.1 Threat Model and Certification Goal

Semantic Transformations. We model semantic transformations as deterministic func-
tions ϕ : X ˆ Z Ñ X , transforming an image x P X with a Z-valued parameter α. For
example, we use ϕRpx, αq to model a rotation of the image x by α degrees counter-clockwise
with bilinear interpolation. We further partition semantic transformations into two differ-
ent categories, namely resolvable and differentially resolvable transformations. We will show
that these two categories could cover commonly known semantic attacks. This categoriza-
tion depends on whether or not it is possible to write the composition of the transformation
ϕ with itself as applying the same transformation just once, but with a different parameter,
i.e., whether for any α, β P Z there exists γ such that ϕpϕpx, αq, βq “ ϕpx, γq. Precise
definitions are given in Sections 7.4 and 7.5. Figure 7.2 presents an overview of the trans-
formations considered in this work.

Threat Model. As briefly defined in Section 1.2.2, We consider an adversary that launches
a semantic attack, a type of data evasion attack, against a given classification model h by
applying a semantic transformation ϕ with parameter α to an input image x Ñ ϕpx, αq.
We allow the attacker to choose an arbitrary parameter α within a predefined (attack)
parameter space S. For instance, a naìve adversary who randomly changes brightness from
within ˘40% is able to reduce the accuracy of a state-of-the-art ImageNet classifier from
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74.4% to 21.8% (Table 7.3). While this attack is an example random adversarial attack, our
threat model also covers other types of semantic attacks and we provide the first taxonomy
for semantic attacks (i.e., resolvable and differentially resolvable) in detail in Sections 7.4
and 7.5.

Certification Goal. Since the only degree of freedom that a semantic adversary has is
the parameter, our goal is to characterize a set of parameters for which the model under
attack is guaranteed to be robust. Formally, we wish to find a set Sadv Ď Z such that, for a
classifier h and adversarial transformation ϕ, we have

hpxq “ hpϕpx, αqq @α P Sadv. (7.1)

Challenges for Certifying Semantic Transformations. Certifying ML robustness
against semantic transformations is nontrivial and requires careful analysis. We identify
the following two main challenges that we aim to address in this chapter:

(C1) The absolute difference between semantically transformed images in terms of ℓp-norms
is typically high. This factor causes existing certifiable defenses against ℓp bounded
perturbations to be inapplicable [38, 141, 195, 318].

(C2) Certain semantic transformations incur additional interpolation errors. To derive a
robustness certificate, it is required to bound these errors, an endeavour that has been
proven to be hard both analytically and computationally. This challenge applies to
transformations that involve interpolation, such as rotation and scaling.

We remark that it is in general not feasible to use brute-force approaches such as grid
search to enumerate all possible transformation parameters (e.g., rotation angles) since the
parameter spaces are typically continuous. Given that different transformations have their
own unique properties, it is crucial to provide a unified framework that takes into account
transformation-specific properties in a general way.

To address these challenges, we generalize randomized smoothing via our proposed func-
tion smoothing framework to certify arbitrary input transformations via different smoothing
distributions, paving the way to robustness certifications that go beyond ℓp perturbations.
This result addresses challenge (C1) in a unified way. Based on this generalization and
depending on specific transformation properties, we address challenge (C2) and propose a
series of smoothing strategies and computing techniques that provide robustness certifica-
tions for a diverse range of transformations.
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We next introduce our generalized function smoothing framework and show how it can be
leveraged to certify semantic transformations. We then categorize transformations as either
resolvable transformations (Section 7.4) such as Gaussian blur, or differentially resolvable
transformations (Section 7.5) such as rotations.

7.2.2 Framework Overview

An overview of our proposed framework TSS is given in Figure 7.3. We propose the func-
tion smoothing framework, a generalization of randomized smoothing, to provide robustness
certifications under general smoothing distributions (Section 7.3). This generalization en-
ables us to smooth the model on specific transformation dimensions. We then consider two
different types of transformation attacks. For resolvable transformations, using function
smoothing framework, we adapt different smoothing strategies for specific transformations
and propose TSS-R (Section 7.4). We show that some smoothing distributions are more
suitable for certain transformations. For differentially resolvable transformations, to address
the interpolation error, we combine function smoothing with the proposed stratified sam-
pling approach and a novel technique for Lipschitz bound computation to compute a rigorous
upper bound of the error. We then develop a progressive sampling strategy to accelerate the
certification. This pipeline is termed TSS-DR, and we provide details and the theoretical
groundwork in Section 7.5.

7.3 TSS: TRANSFORMATION SPECIFIC SMOOTHING BASED CERTIFICATION

In this section, we extend randomized smoothing and propose a function smoothing frame-
work TSS (Transformation-Specific Smoothing-based robustness certification) for certifying
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robustness against semantic transformations. This framework constitutes the main building
block for TSS-R and TSS-DR against specific types of adversarial transformations.

Given an arbitrary base classifier h, we construct a smoothed classifier g by randomly
transforming inputs with parameters sampled from a smoothing distribution. Specifically,
given an input x, the smoothed classifier g predicts the class that h is most likely to return
when the input is perturbed by some random transformation. We formalize this intuition in
the following definition.

Definition 7.1 (ε-Smoothed Classifier). Let ϕ : X ˆ Z Ñ X be a transformation, ε „ Pε
a random variable taking values in Z and let h : X Ñ Y be a base classifier. We define the
ε-smoothed classifier g : X Ñ Y as gpx; εq “ argmaxyPY qpy|x; εq where q is given by the
expectation with respect to the smoothing distribution ε, i.e.,

qpy|x; εq :“ Epppy|ϕpx, εqqq. (7.2)

A key to certifying robustness against a specific transformation is the choice of transfor-
mation ϕ in the definition of the smoothed classifier (7.2). For example, if the goal is to
certify the Gaussian blur transformation, a reasonable choice is to use the same transfor-
mation in the smoothed classifier. However, for other types of transformations this choice
does not lead to the desired robustness certificate, and a different approach is required. In
Sections 7.4 and 7.5, we derive approaches to overcome this challenge and certify robustness
against a broader family of semantic transformations.

General Robustness Certification. Given an input x P X and a random variable ε
taking values in Z, suppose that the base classifier h predicts ϕpx, εq to be of class yA with
probability at least pA and the second most likely class with probability at most pB (i.e.,
(7.4)). Our goal is to derive a robustness certificate for the ε-smoothed classifier g, i.e.,
we aim to find a set of perturbation parameters Sadv depending on pA, pB, and smoothing
parameter ε such that, for all possible perturbation α P Sadv, it is guaranteed that

gpϕpx, αq; εq “ gpx; εq (7.3)

In other words, the prediction of the smoothed classifier can never be changed by apply-
ing the transformation ϕ with parameters α that are in the robust set Sadv. The following
theorem provides a generic robustness condition that we will subsequently leverage to ob-
tain conditions on transformation parameters. In particular, this result addresses the first
challenge (C1) for certifying semantic transformations since this result allows to certify
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robustness beyond additive perturbations.

Theorem 7.1. Let ε0 „ P0 and ε1 „ P1 be Z-valued random variables with probability
density functions f0 and f1 with respect to a measure µ on Z and let ϕ : X ˆ Z Ñ X be a
semantic transformation. Suppose that yA “ gpx; ε0q and let pA, pB P r0, 1s be bounds to
the class probabilities, i.e.,

qpyA|x, ϵ0q ě pA ą pB ě max
y‰yA

qpy|x, ϵ0q. (7.4)

For t ě 0, let St, St Ď Z be the sets defined as St :“ tf1{f0 ă tu and St :“ tf1{f0 ď tu and
define the function ξ : r0, 1s Ñ r0, 1s by

ξppq :“ suptP1pSq : Sτp Ď S Ď Sτpu

where τp :“ inftt ě 0: P0pStq ě pu.
(7.5)

Then, if the condition
ξppAq ` ξp1´ pBq ą 1 (7.6)

is satisfied, then it is guaranteed that gpx; ε1q “ gpx; ε0q.

A detailed proof for this statement is provided in Appendix E.1. At a high level, the condi-
tion (7.4) defines a family of classifiers based on class probabilities obtained from smoothing
the input x with the distribution ε0. Based on the Neyman Pearson Lemma from statistical
hypothesis testing, shifting ε0 Ñ ε1 results in bounds to the class probabilities associated
with smoothing x with ε1. For class yA, the lower bound is given by ξppAq, while for any
other class the upper bound is given by 1´ξp1´pBq, leading to the the robustness condition
ξppAq ą 1 ´ ξp1 ´ pBq. It is a more general version of what is proved by Cohen et al. [77],
and its generality allows us to analyze a larger family of threat models. Notice that it is not
immediately clear how one can obtain the robustness guarantee (7.3) and deriving such a
guarantee from Theorem 7.1 is nontrivial. We will therefore explain in detail how this result
can be instantiated to certify semantic transformations in Sections 7.4 and 7.5.

7.4 TSS-R: RESOLVEABLE TRANSFORMATIONS

In this section, we define resolvable transformations and then show how Theorem 7.1
is used to certify this class of semantic transformations. We then proceed to providing a
robustness verification strategy for each specific transformation. In addition, we show how
the generality of our framework allows us to reason about the best smoothing strategy for
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a given transformation, which is beyond the reach of related randomized smoothing based
approaches [118, 427].

Intuitively, we call a semantic transformation resolvable if we can separate transforma-
tion parameters from inputs with a function that acts on parameters and satisfies certain
regularity conditions.

Definition 7.2 (Resolvable Transform). A transformation ϕ : XˆZ Ñ X is called resolvable
if for any α P Z there exists a resolving function γα : Z Ñ Z that is injective, continuously
differentiable, has non-vanishing Jacobian and for which

ϕpϕpx, αq, βq “ ϕpx, γαpβqq x P X , β P Z. (7.7)

Furthermore, we say that ϕ is additive, if γαpβq “ α ` β.

The following result provides a more intuitive view on Theorem 7.1, expressing the con-
dition on probability distributions as a condition on the transformation parameters.

Corollary 7.1. Suppose that the transformation ϕ in Theorem 7.1 is resolvable with resolv-
ing function γα. Let α P Z and set ε1 :“ γαpε0q in the definition of the function ξ. Then, if
α satisfies condition (7.6), it is guaranteed that gpϕpx, αq; ε0q “ gpx; ε0q.

This corollary implies that for resolvable transformations, after we choose the smoothing
distribution for the random variable ε0, we can infer the distribution of ε1 “ γαpε0q. Then,
by plugging in ε0 and ε1 into Theorem 7.1, we can derive an explicit robustness condition
from (7.6) such that for any α satisfying this condition, we can certify the robustness. In
particular, for additive transformations we have ϵ1 “ γαpϵ0q “ α` ϵ0. For common smooth-
ing distributions ϵ0 along with additive transformation, we derive robustness conditions in
Appendix E.2.

In the next subsection, we focus on specific resolvable transformations. For certain trans-
formations, this result can be applied directly. However, for some transformations, e.g., the
composition of brightness and contrast, more careful analysis is required. We remark that
this corollary also serves a stepping stone to certifying more complex transformations that
are in general not resolvable, such as rotations as we will present in Section 7.5.

7.4.1 Certifying Specific Transformations

Here we build on our theoretical results from the previous section and provide approaches
to certifying a range of different semantic transformations that are resolvable. We state all
results here and provide proofs in appendices.
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Gaussian Blur

This transformation is widely used in image processing to reduce noise and image detail.
Mathematically, applying Gaussian blur amounts to convolving an image with a Gaussian
function

Gαpkq “
1

?
2πα

exp
`

´k2{p2αq
˘

(7.8)

where α ą 0 is the squared kernel radius. For x P X , we define Gaussian blur as the
transformation ϕB : X ˆ Rě0 Ñ X where

ϕBpx, αq “ x ˚ Gα (7.9)

and ˚ denotes the convolution operator. The following lemma shows that Gaussian blur
is an additive transform. Thus, existing robustness conditions for additive transformations
shown in Appendix E.2 are directly applicable.

Lemma 7.1. The Gaussian blur transformation is additive, i.e., for any α, β ě 0, we have
ϕBpϕBpx, αq, βq “ ϕBpx, α ` βq.

We notice that the Gaussian blur transformation uses only positive parameters. We
therefore consider uniform noise on r0, as for a ą 0, folded Gaussians and exponential
distribution for smoothing.

Brightness and Contrast

This transformation first changes the brightness of an image by adding a constant value b P
R to every pixel, and then alters the contrast by multiplying each pixel with a positive factor
ek, for some k P R. We define the brightness and contrast transformation ϕBC : X ˆR2 Ñ X
as

px, αq ÞÑ ϕBCpx, αq :“ ek ¨ px` b ¨ ⊮dq, α “ pk, bqT (7.10)

where k, b P R are contrast and brightness parameters, respectively. We remark that ϕBC is
resolvable; however, it is not additive and applying Corollary 7.1 directly using the resolving
function γα leads to analytically intractable expressions. On the other hand, if the parame-
ters k and b follow independent Gaussian distributions, we can circumvent this difficulty as
follows. Given ε0 „ N p0, diagpσ2, τ 2qq, we compute the bounds pA and pB to the class prob-
abilities associated with the classifier gpx; ε0q, i.e., smoothed with ε0. In the next step, we
identify a distribution ε1 with the property that we can map any lower bound p of qpy| x; ε0q
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to a lower bound on qpy| x; ε1q. Using ϵ1 as a bridge, we then derive a robustness condition,
which is based on Theorem 7.1, and obtain the guarantee that gpϕBCpx, αq; ε0q “ gpx; ε0q

whenever the transformation parameters satisfy this condition. The next lemma shows that
the distribution ε1 with the desired property (lower bound to the classifier smoothed with
ε1) is given by a Gaussian with transformed covariance matrix.

Lemma 7.2. Let x P X , k P R, ε0 „ N p0, diagpσ2, τ 2qq and ε1 „ N p0, diagpσ2, e´2kτ 2qq.
Suppose that qpy|x; ε0q ě p for some p P r0, 1s and y P Y . Let Φ be the cumulative density
function of the standard Gaussian. Then

qpy|x; ε1q ě

$

’

’

&

’

’

%

2Φ

ˆ

ekΦ´1
´

1`p
2

¯

˙

´ 1 k ď 0

2
´

1´ Φ
`

ekΦ´1p1´ p
2
q
˘

¯

k ą 0.

(7.11)

Now suppose that gp¨; ε0q makes the prediction yA at x with probability at least pA.
Then, the preceding lemma tells us that the prediction confidence of gp¨; ε1q satisfies the
lower bound (7.11) for the same class. Based on these confidence levels, we instantiate
Theorem 7.1 with the random variables ε1 and α ` ε1 to get a robustness condition.

Lemma 7.3. Let ε0 and ε1 be as in Lemma 7.2 and suppose that

qpyA|x; ε1q ě p̃A ą p̃B ě max
y‰yA

qpy|x; ε1q. (7.12)

Then it is guaranteed that yA “ gpϕBCpx, αq; ε0q as long as α “ pk, bqT satisfies
b

`

k{σ
˘2
`
`

b{pe´kτq
˘2
ă

1

2

`

Φ´1 pp̃Aq ´ Φ´1 pp̃Bq
˘

. (7.13)

In practice, we apply this lemma by replacing p̃A and p̃B in (7.13) with the bound computed
from (7.11) based on the class probability bounds pA and pB associated with the classifier
gpx; ε0q.

In the actual computation, instead of certifying a single pair pk, bq, we usually certify the
robustness against a set of transformation parameters

Sadv “ tpk, bq| k P r´k0, k0s, b P r´b0, b0su, (7.14)

which stands for any contrast change within ek0 and brightness change within b0. It is
infeasible to check every pk, bq P Sadv. To mitigate this, we relax the robustness condition
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in Lemma 7.3 from
b

`

k{σ
˘2
`
`

b{pe´kτq
˘2
ă

1

2

`

Φ´1 pp̃Aq ´ Φ´1 pp̃Bq
˘

(7.15)

to
b

`

k{σ
˘2
`
`

b{pminte´k, 1uτq
˘2
ă

1

2

`

Φ´1 pp̃Aq ´ Φ´1 pp̃Bq
˘

. (7.16)

Thus, we only need to check the condition (7.16) for pk0, b0q and p´k0, b0q to certify the
robustness for any pk, bq in (7.14). This is because the LHS of (7.16) is monotonically
increasing w.r.t. |k| and |b|, and the RHS of (7.16) is equal to Φ´1pp̃Aq that is monotonically
decreasing w.r.t. |k|. Throughout the experiments, we use this strategy for certification of
brightness and contrast.

Translation

Let ϕ̄T : X ˆ Z2 Ñ X be the transformation moving an image k1 pixels to the right
and k2 pixels to the bottom with reflection padding. In order to handle continuous noise
distributions, we define the translation transformation ϕT : X ˆ R2 Ñ X as ϕT px, αq “
ϕ̄T px, rαsq where r¨s denotes rounding to the nearest integer, applied element-wise. We note
that ϕT is an additive transform, allowing us to directly apply Corollary 7.1 and derive
robustness conditions. We note that if we use black padding instead of reflection padding,
the transformation is not additive. However, since the number of possible translations is
finite, another possibility is to use a simple brute-force approach that can handle black
padding, which has already been studied extensively [268, 292].

Composition of Gaussian Blur, Brightness, Contrast, and Translation

Interestingly, the composition of all these four transformations is still resolvable. Thus,
we are able to derive the explicit robustness condition for this composition based on Corol-
lary 7.1, as shown in details in Section 7.6. Based on this robustness condition, we compute
practically non-trivial robustness certificates as we will present in experiments in Section 7.7.

Robustness Certification Strategies

With these robustness conditions, for a given clean input x, a transformation ϕ, and a
set of parameters Sadv, we certify the robustness of the smoothed classifier g with two steps:
1) estimate pA and pB (Equation (7.4)) with Monte-Carlo sampling and high-confidence
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Table 7.1: Summary of the Robustness Certification Strategies for Resolvable Transformations.

Transformation Step 1 Step 2
Gaussian Blur

Compute pA
and pB
with
Monte-Carlo
Sampling

Check via Corollary E.2 (in Appendix E.2)
Brightness Check via Corollary E.1 (in Appendix E.2)
Translation Check via Corollary E.1 (in Appendix E.2)
Brightness Compute p̃A via Lemma 7.2, then check

via Lemma 7.3 (detail in Section 7.4.1)and Contrast
Gaussian Blur, Brightness, Compute p̃A via Corollary 7.3, then check

via Lemma 7.6 (detail in Section 7.6)Contrast and Translation
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Figure 7.4: Robust radius comparison for different noise distributions, each with unit vari-
ance and dimension.

Table 7.2: Comparison of certification radii with pA ` pB “ 1, the variance and noise
dimension are set to 1 for each distribution.

Distribution Value Space Robust Radius
Gaussianp0, 1q p´8, 8q Φ´1ppAq

Laplacep0, 1{
?
2q p´8, 8q ´ logp2´ 2pAq{

?
2

Uniformr´
?
3, ´

?
3s p´8, 8q 2

?
3 ¨ ppA ´ 1{2q

Exponential(1) r0, 8q ´ logp2´ 2pAq

FoldedGaussianp0,
a

π
π´2
q r0, 8q

a

π
π´2

¨

ˆ

Φ´1
´

1`pA
2

¯

´ Φ´1
`

3
4

˘

˙

bound following Cohen et al. [77]; and 2) leverage the robustness conditions to obtain the
certificate. A summary for each transformation including the used robustness conditions are
shown in Table 7.1.
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7.4.2 Properties of Smoothing Distributions

The robustness condition in Theorem 7.1 is generic and leaves a degree of freedom with
regards to which smoothing distribution should be used. Previous work mainly provides re-
sults for cases in which this distribution is Gaussian [77, 437], while it is nontrivial to extend
it to other distributions. Here, we aim to answer this question and provide results for a
range of distributions, and discuss their differences. As we will see, for different scenarios,
different distributions behave differently and can certify different radii. We instantiate The-
orem 7.1 with an arbitrary transformation ϕ and with ε1 :“ α`ε0 where ε0 is the smoothing
distribution and α is the transformation parameter. The robust radius is then derived by
solving condition (7.6) for α.

Figure 7.4 illustrates robustness radii associated with different smoothing distributions,
each scaled to have unit variance. The bounds are derived in Appendix E.2 and summarized
in Table 7.2. We emphasize that the contribution of this work is not merely these results
on different smoothing distributions but, more importantly, the joint study between different
smoothing mechanisms and different semantic transformations. To compare the different
radii for a fixed base classifier, we assume that the smoothed classifier gp¨; εq always has
the same confidence pA for noise distributions with equal variance. Finally, we provide the
following conclusions and we will verify them empirically in Section 7.7.3.

1. Exponential noise can provide larger robust radius. We notice that smoothing with expo-
nential noise generally allows for larger adversarial perturbations than other distributions.
We also observe that, while all distributions behave similarly for low confidence levels,
it is only non-uniform noise distributions that converge toward `8 when pA Ñ 1 and
exponential noise converges quickest.

2. Additional knowledge can lead to larger robust radius. When we have additional informa-
tion on the transformation, e.g., all perturbations in Gaussian blur are positive, we can
take advantage of this additional information and certify larger radii. For example, under
this assumption, we can use folded Gaussian noise for smoothing instead of a standard
Gaussian, resulting in a larger radius.

7.5 TSS-DR: DIFFERENTIALLY RESOLVABLE TRANSFORMATIONS

As we have seen, our proposed function smoothing framework can directly deal with re-
solvable transformations. However, due to their use of interpolation, some important trans-
formations do not fall into this category, including rotation, scaling, and their composition
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with resolvable transformations. In this section, we show that they belong to the more
general class termed differentially resolvable transformations and to address challenge (C2),
we propose a novel pipeline TSS-DR to provide rigorous robustness certification using our
function smoothing framework as a central building block.

Common semantic transformations such as rotations and scaling do not fall into the cat-
egory of resolvable transformations due to their use of interpolation. To see this issue,
consider for example the rotation transformation denoted by ϕR. As shown in Figure 7.5(b),
despite very similar, the image rotated by 30˝ is different from the image rotated separately
by 15˝ and then again by 15˝. The reason is the bilinear interpolation occurring during the
rotation. Therefore, if the attacker inputs ϕRpx, 15q, the smoothed classifier in Section 7.4
outputs

gpϕRpx, 15q; εq “ argmax
yPY

E
`

ppy|ϕRpϕRpx, 15q, εqq
˘

, (7.17)

which is a weighted average over the predictions of the base classifier on the randomly
perturbed set tϕRpϕRpx, 15q, αq : α P Zu. However, in order to use Corollary 7.1 and to
reason about whether this prediction agrees with the prediction on the clean input (i.e., the
average prediction on tϕRpx, αq : α P Zu), we need ϕR to be resolvable. As it turns out, this
is not the case for transformations that involve interpolation such as rotation and scaling.

To address these issues, we define a transformation ϕ to be differentially resolvable, if it
can be written in terms of a resolvable transformation ψ and a parameter mapping δ.

Definition 7.3 (Differentially Resolvable Transform). Let ϕ : X ˆ Zϕ Ñ X be a transfor-
mation with noise space Zϕ and let ψ : X ˆ Zψ Ñ X be a resolvable transformation with
noise space Zψ. We say that ϕ can be resolved by ψ if for any x P X there exists function
δx : Zϕ ˆ Zϕ Ñ Zψ such that for any α P Zϕ and any β P Zϕ,

ϕpx, αq “ ψpϕpx, βq, δxpα, βqq. (7.18)

This definition leaves open a certain degree of freedom with regard to the choice of re-
solvable transformation ψ. For example, we can choose the resolvable transformation corre-
sponding to additive noise px, δq ÞÑ ψpx, δq :“ x`δ, which lets us write any transformation
ϕ as ϕpx, αq “ ϕpx, βq` pϕpx, αq´ϕpx, βqq “ ψpϕpx, βq, δq with δ “ pϕpx, αq´ϕpx, βqq.
In other words, ϕpx, αq can be viewed as first being transformed to ϕpx, βq and then to
ϕpx, βq ` δ.
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Figure 7.5: (a) High-level illustration of our robustness certification pipeline TSS-DR for
differentially resolvable transformations; (b) interpolation error.

7.5.1 Overview of TSS-DR

Here, we derive a general robustness certification strategy for differentially resolvable
transformations. Suppose that our goal is to certify the robustness against a transformation
ϕ that can be resolved by ψ and for transformation parameters from the set S Ď Zϕ. To
that end, we first sample a set of parameters tαiuNi“1 Ď S, and transform the input (with
those sampled parameters) that yields tϕpx, αiquNi“1. In the second step, we compute the
class probabilities for each transformed input ϕpx, αiq with the classifier smoothed with the
resolvable transformation ψ. Finally, the intuition is that, if every α P S is close enough
to one of the sampled parameters, then the classifier is guaranteed to be robust against
parameters from the set S. In the next theorem, we show the existence of such a “proximity
set” for general δx.

Theorem 7.2. Let ϕ : X ˆ Zϕ Ñ X be a transformation that is resolved by ψ : X ˆ Zψ Ñ

X . Let ε „ Pε be a Zψ-valued random variable and suppose that the smoothed classifier
g : X Ñ Y given by qpy|x; εq “ Epppy|ψpx, εqqq predicts gpx; εq “ yA “ argmaxy qpy|x; εq.
Let S Ď Zϕ and tαiuNi“1 Ď S be a set of transformation parameters such that for any i, the
class probabilities satisfy

qpyA|ϕpx, αiq; εq ě p
piq
A ě p

piq
B ě max

y‰yA
qpy|ϕpx, αiq; εq. (7.19)

Then there exists a set∆˚ Ď Zψ with the property that, if for any α P S, Dαi with δxpα, αiq P
∆˚, then it is guaranteed that

qpyA|ϕpx, αq; εq ą max
y‰yA

qpy|ϕpx, αq; εq. (7.20)
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In the theorem, the smoothed classifier gp¨; εq is based on the resolvable transformation
ψ that serves as a starting point to certify the target transformation ϕ. To certify ϕ over
its parameter space S, we input N transformed samples ϕpx, αiq to the smoothed classifier
gp¨; εq. Then, we get ∆˚, the certified robust parameter set for resolvable transformation ψ.
This ∆˚ means that for any ϕpx, αiq, if we apply the transformation ψ with any parameter
δ P ∆˚, the resulting instance ψpϕpx, αiq, δq is robust for gp¨; εq. Since ϕ is resolvable by ψ,
i.e., for any α P S, there exists an αi and δ P ∆˚ such that ϕpx, αq “ ψpϕpx, αiq, δq, we can
assert that for any α P S, the output of gp¨; εq on ϕpx, αq is robust.

The key of using this theorem for a specific transformation is to choose the resolvable
transformation ψ that can enable a tight calculation of ∆˚ under a specific way of sampling
tαiu

N
i“1. First, we observe that a large family of transformations including rotation and

scaling can be resolved by the additive transformation ψ : X ˆ X Ñ X defined by px, δq ÞÑ
x ` δ. Indeed, any transformation whose pixel value changes are continuous (or with finite
discontinuities) with respect to the parameter changes are differentially resolvable—they
all can be resolved by the additive transformation. Choosing isotropic Gaussian noise ε „
N p0, σ2Idq as smoothing noise then leads to the condition that the maximum ℓ2-interpolation
error between the interval S “ ra, bs (which is to be certified) and the sampled parameters
αi must be bounded by a radius R. This result is shown in the next corollary, which is
derived from Theorem 7.2.

Corollary 7.2. Let ψpx, δq “ x ` δ and let ε „ N p0, σ2Idq. Furthermore, let ϕ be a
transformation with parameters in Zϕ Ď Rm and let S Ď Zϕ and tαiuNi“1 Ď S. Let yA P Y
and suppose that for any i, the ε-smoothed classifier defined by qpy| x; εq :“ Epppy|x ` εqq

has class probabilities that satisfy

qpyA|ϕpx, αiq; εq ě p
piq
A ě p

piq
B ě max

y‰yA
qpy|ϕpx, αiq; εq. (7.21)

Then it is guaranteed that @α P S : yA “ argmaxy qpy|ϕpx, αq; εq if the maximum interpo-
lation error

MS :“ max
αPS

min
1ďiďN

›

›ϕpx, αq ´ ϕpx, αiq
›

›

2
(7.22)

satisfies MS ă R :“
σ

2
min

1ďiďN

ˆ

Φ´1
´

p
piq
A

¯

´ Φ´1
´

p
piq
B

¯

˙

. (7.23)

In a nutshell, this corollary shows that if the smoothed classifier classifies all samples
of transformed inputs tϕpx, αiquNi“1 consistent with the original input and the smallest gap
between confidence levels ppiq

A and p
piq
B is large enough, then it is guaranteed to make the

same prediction on transformed inputs ϕpx, αq for any α P S.
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Figure 7.6: An overview of our interpolation error bounding technique based on stratified sampling
and Lipschitz computation.

The main challenge now lies in computing a tight and scalable upper bound M ě MS .
Given this bound, a set of transformation parameters S can then be certified by computing
R in (7.23) and checking that R ąMS . With this methodology, we address challenge (C2)
and provide means to certify transformations that incur interpolation errors. Figure 7.5(a)
illustrates this methodology on a high level for the rotation transformation as an example.
In the following, we present the general methodology that provides an upper bound of the
interpolation error MS and provide closed-form expressions for rotation and scaling. In
Section 7.6, we further extend this methodology to certify transformation compositions such
as rotation + brightness change + ℓ2 perturbations.

We remark that dealing with the interpolation error has already been tried before [22, 118].
However, these approaches either leverage explicit linear or interval bound propagation –
techniques that are either not scalable or not tight enough. Therefore, on large datasets
such as ImageNet, they can provide only limited certification (e.g., against certain random
attack instead of any attack).

7.5.2 Upper Bounding Interpolation Error

Here, we present the general methodology to compute a rigorous upper bound of the
interpolation error introduced in Corollary 7.2. The methodology presented here is based
on stratified sampling and is of a general nature; an explicit computation is shown for the
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case of rotation and scaling toward the end of this subsection.
Let S “ ra, bs be an interval of transformation parameters that we wish to certify and let

tαiu
N
i“1 be parameters dividing S uniformly, i.e.,

αi “ a` pb´ aq ¨
i´ 1

N ´ 1
, i “ 1, . . . , N. (7.24)

The set of these parameters corresponds to the first-level samples in stratified sampling.
With respect to these first-level samples, we define the functions gi : ra, bs Ñ Rě0 as

α ÞÑ gipαq :“ }ϕpx, αq ´ ϕpx, αiq}
2
2 (7.25)

corresponding to the squared ℓ2 interpolation error between the image x transformed with
α and αi, respectively. For each first-level interval rαi, αi`1s we look for an upper bound Mi

such that
Mi ě max

αiďαďαi`1

mintgipαq, gi`1pαqu. (7.26)

It is easy to see that max1ďiďN´1Mi ěM2
S and hence setting

?
M :“ max

1ďiďN´1

a

Mi (7.27)

is a valid upper bound to MS . The problem has thus reduced to computing the upper
bounds Mi associated with each first-level interval rαi, αi`1s. To that end, we now continue
with a second-level sampling within the interval rαi, αi`1s for each i. Namely, let tγi,junj“1

be parameters dividing rαi, αi`1s uniformly, i.e.,

γi,j “ αi ` pαi`1 ´ αiq ¨
j ´ 1

n´ 1
, j “ 1, . . . , n. (7.28)

Now, suppose that L is a global Lipschitz constant for all functions tgiuNi“1. By definition,
for any 1 ď i ď N ´ 1, L satisfies

L ě max

#

max
c,dPrαi,αi`1s

ˇ

ˇ

ˇ

ˇ

gipcq ´ gipdq

c´ d

ˇ

ˇ

ˇ

ˇ

, max
c,dPrαi,αi`1s

ˇ

ˇ

ˇ

ˇ

gi`1pcq ´ gi`1pdq

c´ d

ˇ

ˇ

ˇ

ˇ

+

. (7.29)

In the following, we will derive explicit expressions for L for rotation and scaling. Given the
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Figure 7.7: An illustration of Grid Pixel Generator Gi,j, Color Extractors m̄ and m∆ (take
blue channel as example), and the set Pr,s.

Lipschitz constant L, one can show the following closed-form expression for Mi:

Mi “
1

2
max

1ďjďn´1

ˆ

min
␣

gipγi,jq ` gipγi,j`1q,

gi`1pγi,jq ` gi`1pγi,j`1q
(

˙

` L ¨
b´ a

pN ´ 1qpn´ 1q
.

(7.30)

An illustration of this bounding technique using stratified sampling is shown in Figure 7.6.
We notice that, as the number N of first-level samples is increased, the interpolation error
Mi becomes smaller by shrinking the sampling interval rαi, αi`1s; similarly, increasing the
number of second-level samples n makes the upper bound of the interpolation error Mi

tighter since the term Lpb ´ aq{
`

pN ´ 1qpn´ 1q
˘

decreases. Furthermore, it is easy to see
that as N Ñ 8 or n Ñ 8 we have M Ñ M2

S , i.e., our interpolation error estimation is
asymptotically tight. Finally, this tendency also highlights an important advantage of our
two-level sampling approach: without stratified sampling, it is required to sample N ˆ n

αi’s in order to achieve the same level of approximation accuracy. As a consequence, these
N ˆ n αi’s in turn require to evaluate the smoothed classifier in Corollary 7.2 N ˆ n times,
compared to just N times in our case.

It thus remains to find a way to efficiently compute the Lipschitz constant L for different
transformations. In the following, we derive closed form expressions for rotation and scaling
transformations.
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7.5.3 Computing the Lipschitz Constant

Here, we derive a global Lipschitz constant L for the functions tgiuNi“1 defined in (7.25),
for rotation and scaling transformations. In the following, we define K-channel images of
widthW and height H to be tensors x P RKˆWˆH and define the region of valid pixel indices
as Ω :“ r0, W ´ 1s ˆ r0, H ´ 1s X N2. Furthermore, for pr, sq P Ω, we define dr,s to be the
ℓ2-distance to the center of an image, i.e.,

dr,s “

b

`

r ´ pW ´ 1q{2
˘2
`
`

s´ pH ´ 1q{2
˘2
. (7.31)

For ease of notation we make the following definitions that are illustrated in Figure 7.7.

Definition 7.4 (Grid Pixel Generator). For pixels pi, jq P Ω, we define the grid pixel
generator Gij as

Gij :“ tpi, jq, pi` 1, jq, pi, j ` 1q, pi` 1, j ` 1qu. (7.32)

Definition 7.5 (Max-Color Extractor). We define the operator that extracts the channel-
wise maximum pixel wise on a grid S Ď Ω as the mapm : RKˆWˆHˆt0, . . . , K´1uˆ2Ω Ñ R
with

mpx, k, Sq :“ max
pi,jqPS

p max
pr,sqPGij

xk,r,sq. (7.33)

Definition 7.6 (Max-Color Difference Extractor). We define the operator that extracts
the channel-wise maximum change in color on a grid S Ď Ω as the map m∆ : RKˆWˆH ˆ

t0, . . . , K ´ 1u ˆ 2Ω Ñ R with

m∆px, k, Sq :“ max
pi,jqPS

p max
pr,sqPGij

xk,r,s ´ min
pr,sqPGij

xk,r,sq. (7.34)

7.5.4 Rotation

The rotation transformation is defined as rotating an image by an angle α counter-clock
wise, followed by bilinear interpolation I. Clearly, when rotating an image, some pixels
may be padded that results in a sudden change of pixel colors. To mitigate this issue,
we apply black padding to all pixels that are outside the largest centered circle in a given
image (see Figure 7.5(a) for an illustration). We define the rotation transformation ϕR as
the (raw) rotation ϕ̃R followed by interpolation and the aforementioned preprocessing step
P so that ϕR “ P ˝ I ˝ ϕ̃R and refer the reader to Appendix E.5 for details. We remark
that our certification is independent of different rotation padding mechanisms, since these
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padded pixels are all refilled by black padding during preprocessing. The following lemma
provides a closed form expression for L in (7.30) for rotation. A detailed proof is given in
Appendix E.6.

Lemma 7.4. Let x P RKˆWˆH be a K-channel image and let ϕR “ P ˝I ˝ ϕ̃R be the rotation
transformation. Then, a global Lipschitz constant L for the functions tgiuNi“1 is given by

Lr “ max
1ďiďN´1

K´1
ÿ

k“0

ÿ

r,sPV

2dr,s ¨m∆px, k,P piq
r,sq ¨mpx, k, P piq

r,sq (7.35)

where V “
␣

pr, sq P N2| dr,s ă 1
2
pmin tW,Hu ´ 1q

(

. The set P piq
r,s is given by all integer grid

pixels that are covered by the trajectory of source pixels of pr, sq when rotating from angle
αi to αi`1.

7.5.5 Scaling

The scaling transformation ϕS first stretches height and width of the input image by a
factor α P R` where values α ă 1 (ą 1) correspond to shrinking (enlarging) an image.
Then, bilinear interpolation is applied, followed by black padding to determine pixel values.
We refer the reader to Appendix E.5 for a formal definition. Due to black padding, the
functions gi may contain discontinuities. To circumvent this issue, we enumerate all these
discontinuities as D. It can be shown that D contains at most H `W elements. Hence, for
large enough N , the interval rαi, αi`1s contains at most one discontinuity. We thus modify
the upper bounds Mi in (7.30) as

Mi :“

$

’

&

’

%

max
αiďαďαi`1

mintgipαq, gi`1pαqu rαi, αi`1s X D “ ∅

max

"

max
αiďαďti

gi`1pαq, max
tiďαďαi`1

gipαq

*

rαi, αi`1s X D “ ttiu
(7.36)

In either case, the quantity Mi can again be bounded by a Lipschitz constant. With this
definition, the following lemma provides a closed form expression for the Lipschitz constant
L in (7.30) for scaling. A detailed proof is given in Appendix E.6.

Lemma 7.5. Let x P RKˆWˆH be a K-channel image and let ϕS be the scaling transforma-
tion. Then, a global Lipschitz constant L for the functions tgiuNi“1 is given by

Ls “ max
1ďiďN´1

K´1
ÿ

k“0

ÿ

r,sPΩXN2

?
2dr,s
a2

¨ m∆px, k,Ppiq
r,sq ¨ mpx, k, Ppiq

r,sq (7.37)
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where Ω “ r0, W ´ 1s ˆ r0, H ´ 1s and a is the lower boundary value in S “ ra, bs. The set
P piq
r,s is given by all integer grid pixels that are covered by the trajectory of source pixels of
pr, sq when scaling with factors from αi`1 to αi.

7.5.6 Computational Complexity

We provide pseudo-code for computing bound M in Appendix E.7. The algorithm is
composed of two main parts, namely the computation of the Lipschitz constant L, and the
computation of the interpolation error boundM based on L. The former is of computational
complexity OpN ¨KWHq, and the latter is of OpNR ¨KWHq, for both scaling and rotation.
We note that Pr,s contains only a constant number of pixels since each interval rαi, αi`1s

is small. Thus, the bulk of costs come from the transformation operation. We improve
the speed by implementing a fast and fully-parallelized C kernel for rotation and scaling of
images. As a result, on CIFAR-10, the algorithm takes less than 2 s on average with 10

processes for rotation with N “ 556 and n “ 200 and the time for scaling is faster. We
refer readers to Section 7.7 for detailed experimental evaluation. Also, we remark that the
algorithm is model-independent. Thus, we can precompute M for test set and reuse for any
models that need a certification.

7.5.7 Acceleration with Progressive Sampling

With the methodology mentioned above, for differentially resolvable transformations such
as rotation and scaling, computing robustness certification follows two steps: (1) computing
the interpolation error bound M ; (2) generate transformed samples tϕpx, αiquNi“1, compute
p

piq
A and ppiq

B for each sample, and check whether MS ă R holds for each sample according to
Corollary 7.2.

In step (2) above, we need to estimate ppiq
A and p

piq
B for each sample ϕpx, αiq to check

whether MS ă R. In the brute-force approach, to obtain a high-confidence bound on p
piq
A

and ppiq
B , we typically sample ns “ 10, 000 or more [77] then apply the binomial statistical

test. In total, we thus need to sample the classifier’s prediction Nˆns times, which is costly.
To accelerate the computation, we design a progressive sampling strategy from the following

two insights: (1) we only need to check whether R ąMS , but are not required to compute R
precisely; (2) for any sample ϕpx, αiq if the check fails, the model is not certifiably robust and
there is no need to proceed. Based on (1), for the current ϕpx, αiq, we sample ns samples
in batches and maintain high-confidence lower bound of R based on existing estimation.
Once the lower bound exceeds MS we proceed to the next ϕpx, αi`1q. Based on (2), we
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terminate early if the check R ąMS for the current ϕpx, αiq fails. More details are provided
in Appendix E.7.

7.6 EXTENSION TO MORE TRANSFORMATIONS

For other transformations that involve interpolation, we can similarly compute the inter-
polation error bound using intermediate results in our above lemmas. For transformation
compositions, we extend our certification pipeline for the composition of (1) Gaussian blur,
brightness change, contrast change, and translation happening together, (2) rotation/scaling
with brightness, and (3) rotation/scaling with brightness and ℓp-bounded additive perturba-
tions. These compositions simulate an attacker who does not precisely perform the specified
transformation. At the end of this section, we discuss how to analyze possible new transfor-
mations and then extend TSS to provide certification.

Gaussian Blur, Brightness, Contrast, and Translation

The certification generally follows the same procedure as in certifying brightness and con-
trast. In the following, we first provide a formal definition of this transformation composition.
Specifically, the transformation ϕBTBC is defined as:

ϕBTBCpx, αq :“ ϕBpϕT pϕBCpx, αk, αbq, αTx, αTyq, αBq, (7.38)

where ϕB, ϕT and ϕBC are Gaussian blur, translation, and brightness and contrast trans-
formations respectively as defined before; α :“ pαk, αb, αTx, αTy, αBq

T P R4 ˆ Rě0 is the
transformation parameter.

Our certification relies on the following corollary (extended from Lemma 7.2) and lemma,
which are proved in Appendix E.3.

Corollary 7.3. Let x P X , k P R and let ϵ0 :“ pϵa0, ϵb0qT be a random variable defined as

ϵa0 „ N p0, diagpσ2
k, σ

2
b , σ

2
T , σ

2
T qq and ϵb0 „ ExppλBq. (7.39)

Similarly, let ϵ1 :“ pϵa1, ϵb1q be a random variable with

ϵa1 „ N p0, diagpσ2
k, e

´2kσ2
b , σ

2
T , σ

2
T qq and ϵb1 „ ExppλBq. (7.40)

For either random variable (denoted as ϵ), recall that qpy|x; ϵq :“ Epppy|ϕBTBCpx, ϵqqq.
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Suppose that qpy|x; ϵ0q ě p for some p P r0, 1s and y P Y . Then qpy|x; ϵ1q satisfies Eq. (11).

Lemma 7.6. Let ϵ0 and ϵ1 be as in Corollary 7.3 and suppose that

qpyA|x; ε1q ě p̃A ą p̃B ě max
y‰yA

qpy|x; ε1q. (7.41)

Then it is guaranteed that yA “ gpϕBTBCpx, αq; ε0q as long as p1
A ą p1

B, where

p1
A “

$

’

’

&

’

’

%

0, if p̃A ď 1 ´ expp´λBαBq,

Φ

ˆ

Φ´1
`

1 ´ p1 ´ p̃Aq exppλBαBq
˘

´

b

α2
k{σ2

k ` α2
b{pe´2αkσ2

b q ` pα2
Tx`α2

Tyq{σ2
T

˙

otherwise

(7.42)
and

p1
B “

$

’

’

&

’

’

%

1, if p̃B ě expp´λBαBq,

1 ´ Φ

ˆ

Φ´1
`

1 ´ p̃B exppλBαBq
˘

´

b

α2
k{σ2

k ` α2
b{pe´2αkσ2

b q ` pα2
Tx`α2

Tyq{σ2
T

˙

. otherwise

(7.43)

The ϵ0 specified by (7.39) is the smoothing distribution. Similar as in brightness and
contrast certification, we first obtain pA, a lower bound of qpyA|x, ε0q by Monte-Carlo sam-
pling. For a given transformation parameter α :“ pαk, αb, αTx, αTy, αBq

T , we then trigger
Corollary 7.3 to get p̃A, a lower bound of qpyA|x, ε1q and set p̃B “ 1 ´ p̃A. Finally, we use
the explicit condition in Lemma 7.6 to obtain the certification. Indeed, with p̃B “ 1 ´ p̃A,
Lemma 7.6 can be simplified to the following corollary.

Corollary 7.4. Let ϵ0 and ϵ1 be as in Corollary 7.3 and suppose that

qpyA|x; ε1q ě p̃A. (7.44)

Then it is guaranteed that yA “ gpϕBTBCpx, αq; ε0q as long as

p̃A ą 1´ expp´λBαBq

˜

1´ Φ

¨

˝

d

α2
k

σ2
k

`
α2
b

e´2αkσ2
b

`
α2
Tx ` α

2
Ty

σ2
T

˛

‚

¸

. (7.45)
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To certify against a set of transformation parameters

Sadv “ tpαk, αb, αTx, αTy, αBq
T |αk P r´k0, k0s, αb P r´b0, b0s,

}pαTx, αTyq}2 ď T, αB ď B0u,
(7.46)

we relax the robust condition in (7.45) to

p̃A ą 1´ expp´λBαBq

˜

1´ Φ

¨

˝

d

α2
k

σ2
k

`
α2
b

minte´2αk , 1uσ2
b

`
α2
Tx ` α

2
Ty

σ2
T

˛

‚

¸

. (7.47)

The LHS of Equation (7.47) is monotonically decreasing w.r.t. |αk| and the RHS is mono-
tonically increasing w.r.t. |αk|, |αb|, }pαTx, αTy}2, and |αB|, and the RHS is symmetric w.r.t.
αb and }pαTx, αTyq}2. As a result, we only need to check the condition for p´k0, b0, T, 0, B0q

and pk0, b0, T, 0, B0q to certify the entire set Sadv. Throughout the experiments, we use this
strategy for certification.

Scaling/Rotation and Brightness

To certify the composition of scaling and brightness or rotation and brightness, we fol-
low the same methodology as certifying scaling or rotation alone and reuse the computed
interpolatation error MS . We only make the following two changes: (1) alter the smooth-
ing distribution from additive Gaussian noise ψpx, δq “ x ` δ where δ „ N p0, σ2Idq to
additive Gaussian noise and Gaussian brightness change ψpx, δ, δbq “ x ` δ ` b ¨ Id where
δ „ N p0, σ2Idq, b „ N p0, σ2

b q; (2) change the robustness condition from R ą MS in Corol-
lary 7.2 to R ą

a

M2
S ` p

σ2
{σ2

bqb
2
0. We formalize this robustness condition in the following

corollary, and the proof is entailed in Appendix E.4.

Corollary 7.5. Let ψBpx, δ, bq “ x ` δ ` b ¨ ⊮d and let ε „ N p0, σ2Idq, εb „ N p0, σ2
b q.

Furthermore, let ϕ be a transformation with parameters in Zϕ Ď Rm and let S Ď Zϕ

and tαiuNi“1 Ď S. Let yA P Y and suppose that for any i, the pε, εbq-smoothed classifier
qpy| x; ε, εbq :“ Epppy|ψBpx, ε, εbqq satisfies

qpyA|x; ε, εbq ě p
piq
A ą p

piq
B ě max

y‰yA
qpy|x; ε, εbq. (7.48)

for each i. Let
R :“

σ

2
min

1ďiďN

ˆ

Φ´1
´

p
piq
A

¯

´ Φ´1
´

p
piq
B

¯

˙

(7.49)

Then, @α P S and @b P r´b0, b0s it is guaranteed that yA “ argmaxy qpy|ϕpx, αq`b¨⊮d; ε, εbq
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as long as

R ą

d

M2
S `

σ2

σ2
b

b20, (7.50)

where MS is defined as in Corollary 7.2.

Scaling/Rotation, Brightness, and ℓ2 Perturbations

We use the same smoothing distribution as above, and the following corollary directly
allows us to certify the robustness against the composition of scaling/rotation, brightness,
and an additional ℓ2-bounded perturbations—we only need to change the robustness con-
dition from R ą

a

M2
S ` p

σ2
{σ2

bqb
2
0 to R ą

a

pMS ` rq2 ` pσ
2
{σ2

bqb
2
0. The proof is given in

Appendix E.4.

Corollary 7.6. Under the same setting as in Corollary 7.5, for @α P S, @b P r´b0, b0s and
@δ P Rd such that }δ}2 ď r, it is guaranteed that yA “ argmaxk qpy|ϕpx, αq`b ¨⊮d`δ; ε, εdq

as long as

R ą

d

pMS ` rq2 `
σ2

σ2
b

b20, (7.51)

where MS is defined as in Corollary 7.2.

On More Transformations and Compositions

Our TSS is not limited to specific transformations. For a new transformation, we first
identify the parameter space Z, where the identified parameter should completely and de-
terministically decide the output after transformation for any given input. Then, we use
Definition 7.2 to check whether the transformation is resolvable. If so, we can write down
the function γα. Next, we choose a smoothing distribution, i.e., the distribution of the ran-
dom variable ε0, and identify the distribution of ε1 “ γαpε0q. Finally, we use Theorem 7.1 to
derive the robustness certificates and follow the two-step template (Section 7.4.1) to compute
the robustness certificate.

If the transformation is not resolvable, we identify a dimension in Z for which the transfor-
mation is resolvable. For example, the composition of rotation and brightness has a rotation
and a brightness axis, where the brightness axis is itself resolvable. As a result, we can
write the parameter space as Cartesian product of non-resolvable subspace and resolvable
subspace: Z :“ Zno-resolve ˆ Zresolve. We perform smoothing on the resolvable subspace and
sample enough points in the non-resolvable subspace. Next, we bound the interpolation error
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between sampled points and arbitrary points in the non-resolvable subspace, using either ℓp
difference as we did for rotation and scaling or other regimes. Specifically, our Lemma E.4
shown in Appendix E.6 is a useful tool to bound ℓp difference caused by interpolation error.
Finally, we instantiate Theorem 7.2 to compute the robustness certificate.

Theoretically, we can certify against the composition of all the discussed transformations:
Gaussian blur, brightness, contrast, translation, rotation, and scaling. However, as justified
in [146, Figure 3], the composition of more than two transformations leads to unrealistic im-
ages that are even hard to distinguish by humans. Moreover, if the composition contains too
many transformations, the parameter space would be no longer low dimensional. Therefore,
there would be much more axes that are differentially resolvable (instead of resolvable). As
a consequence, much more samples are required to obtain a small bound on interpolation
error (which is necessary for a nontrivial robustness certification). Therefore, we mainly eval-
uate on single transformation or composition of two transformations to simulate a practical
attack.

7.7 EXPERIMENTS

We validate our framework TSS by certifying robustness over semantic transformations
experimentally. We compare with state of the art for each transformation, highlight our
main results, and present some interesting findings and ablation studies.

7.7.1 Experimental Setup

Dataset

Our experiments are conducted on three classical image classification datasets: MNIST,
CIFAR-10, and ImageNet. For all images, the pixel color is normalized to r0, 1s. We follow
common practice to resize and center cropping the ImageNet images to 224ˆ224 size [77, 165,
300, 427]. To our best knowledge, we are the first to provide rigorous certifiable robustness
against semantic transformations on the large-scale standard ImageNet dataset.

Model

The undefended model is very vulnerable even under simple random semantic attacks.
Therefore, we apply existing data augmentation training [77] combined with consistency
regularization [165] to train the base classifiers. We then use the introduced smoothing
strategies, to obtain the models for robustness certification. On MNIST and CIFAR-10,
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the models are trained from scratch while on ImageNet, we either finetune undefended
models in torchvision library or finetune from state-of-the-art certifiably robust models
against ℓ2 perturbations [317]. Details are available in Appendix E.8.1. We remark that our
framework focuses on robustness certification and did not fully explore the training methods
for improving the certified robustness or tune the hyperparameters.

Implementation and Hardware

We implement our framework TSS based on PyTorch. We improve the running efficiency
by tensor parallelism and embedding C modules. Details are available in Appendix E.8.2.
All experiments were run on 24-core Intel Xeon Platinum 8259CL CPU and one Tesla T4
GPU with 15GB RAM.

Evaluation Metric

On each dataset, we uniformly pick 500 samples from the test set and evaluate all results
on this test subset following Cohen et al. [77]. In line with related work [77, 165, 317, 427] and
Part II, we report the certified robust accuracy that is defined as the fraction of samples
(within the test subset) that are both certified robust and classified correctly, and set the
certification confidence level to p “ 0.1%. We use ns “ 105 samples to obtain a confidence
lower bound pA for resolvable transformations, and ns “ 104 samples to obtain each pA

piq

for differentially resolvable transformations. Due to Progressive Sampling (Algorithm E.2),
the actual samples used for differentially resolvable transformations are usually far fewer
than ns. In addition, we report the benign accuracy in Appendix E.8.5 defined as the
fraction of correctly classified samples when no attack is present, and the empirical robust
accuracy, defined as the fraction of samples in the test subset that are classified correctly
under either a simple random attack (following [22, 118]) or two adaptive attacks (namely
Random+ Attack and PGD Attack). We introduce all these attacks in Appendix E.8.3 and
provide a detailed comparison in Appendix E.8.7. Note that the empirical robust accuracy
under any attacks is lower bounded by the certified accuracy.

Notations for Robust Radii

In the tables, we use these notations: α for squared kernel radius for Gaussian blur;
a

∆x2 `∆y2 for translation distance; b and c for brightness shift and contrast change re-
spectively as in x ÞÑ p1` cqx` b ¨ ⊮d; r for rotation angle; s for size scaling ratio; and }δ}2
for ℓ2 norm of additional perturbations.
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Table 7.3: Comparison of certified robust accuracy achieved by our framework TSS and
other known baselines and empirical robust accuracy achieved by TSS and vanilla models
under random and adaptive attacks. “-” denotes the settings where the baselines cannot
support. The parentheses show the weaker baseline settings. For certified robust accuracy,
the existing state of the art is bolded. For empirical robust accuracy, the higher accuracy
under each setting are bolded.

Transformation Type Dataset Attack Radius
Certified Robust Accuracy Empirical Robust Accuracy

TSS DeepG [22] Interval [343] VeriVis [292] Semantify-NN [268] DistSPT [118] Random Attack Adaptive Attacks
TSS Vanilla TSS Vanilla

Gaussian Blur Resolvable
MNIST Squared Radius α ď 36 90.6% - - - - - 91.4% 12.2% 91.2% 12.2%

CIFAR-10 Squared Radius α ď 16 63.6% - - - - - 65.8% 3.4% 65.8% 3.4%
ImageNet Squared Radius α ď 36 51.6% - - - - - 52.8% 8.4% 52.6% 8.2%

Translation
(Reflection Pad.)

Resolvable,
Discrete

MNIST
a

∆x2 `∆y2 ď 8 99.6% - - 98.8% 98.8% - 99.6% 0.0% 99.6% 0.0%

CIFAR-10
a

∆x2 `∆y2 ď 20 80.8% - - 65.0% 65.0% - 86.2% 4.4% 86.0% 4.2%

ImageNet
a

∆x2 `∆y2 ď 100 50.0% - - 43.2% 43.2% - 69.2% 46.6% 69.2% 46.2%

Brightness Resolvable
MNIST b˘ 50% 98.2% - - - - - 98.2% 96.6% 98.2% 96.6%

CIFAR-10 b˘ 40% 87.0% - - - - - 87.2% 44.4% 87.4% 42.6%
ImageNet b˘ 40% 70.0% - - - - - 70.4% 19.6% 70.4% 18.4%

Contrast
and

Brightness
Resolvable,
Composition

MNIST c˘ 50%, b˘ 50% 97.6%
ď 0.4% 0.0% - ď 74% - 98.0% 94.6% 98.0% 93.2%(c, b˘ 30%) (c, b˘ 30%) (c˘ 5%, b˘ 50%)

CIFAR-10 c˘ 40%, b˘ 40% 82.4%
0.0% 0.0% - - - 86.0% 21.0% 85.8% 9.6%(c, b˘ 30%) (c, b˘ 30%)

ImageNet c˘ 40%, b˘ 40% 61.4% - - - - - 68.4% 1.2% 68.4% 0.0%

Gaussian Blur,
Translation, Bright-
ness, and Contrast

Resolvable,
Composition

MNIST α ď 1,
a

∆x2 `∆y2 ď 5, c, b˘ 10% 90.2% - - - - - 97.2% 0.4% 97.0% 0.4%

CIFAR-10 α ď 1,
a

∆x2 `∆y2 ď 5, c, b˘ 10% 58.2% - - - - - 67.6% 9.6% 67.8% 5.6%

ImageNet α ď 10,
a

∆x2 `∆y2 ď 10, c, b˘ 20% 32.8% - - - - - 48.8% 9.4% 47.4% 4.0%

Rotation Differentially
Resolvable

MNIST r ˘ 50˝ 97.4%
ď 85.8% ď 6.0% - ď 92.48% 82% 98.4% 12.2% 98.2% 11.0%(r ˘ 30˝) (r ˘ 30˝)

CIFAR-10 r ˘ 10˝ 70.6% 62.5% 20.2% - - 37% 76.6% 65.6% 76.4% 65.4%
r ˘ 30˝ 63.6% 10.6% 0.0% - ď 49.37% 22% 69.2% 21.6% 69.4% 21.4%

ImageNet r ˘ 30˝ 30.4% - - - - 16% (rand. attack) 37.8% 40.0% 37.8% 37.0%

Scaling Differentially
Resolvable

MNIST s˘ 30% 97.2% 85.0% 16.4% - - - 99.2% 90.2% 99.2% 89.2%
CIFAR-10 s˘ 30% 58.8% 0.0% 0.0% - - - 67.2% 51.6% 67.0% 51.2%
ImageNet s˘ 30% 26.4% - - - - - 37.4% 50.0% 36.4% 49.8%

Rotation
and

Brightness

Differentially
Resolvable,
Composition

MNIST r ˘ 50˝, b˘ 20% 97.0% - - - - - 98.2% 11.0% 98.0% 10.4%

CIFAR-10 r ˘ 10˝, b˘ 10% 70.2% - - - - - 76.6% 59.4% 76.0% 56.8%
r ˘ 30˝, b˘ 20% 61.4% - - - - - 68.4% 13.0% 68.2% 9.0%

ImageNet r ˘ 30˝, b˘ 20% 26.8% - - - - - 37.4% 22.4% 36.8% 21.2%

Scaling
and

Brightness

Differentially
Resolvable,
Composition

MNIST s˘ 50%, b˘ 50% 96.6% - - - - - 97.8% 24.8% 97.8% 15.6%
CIFAR-10 s˘ 30%, b˘ 30% 54.2% - - - - - 67.2% 17.4% 66.8% 11.6%
ImageNet s˘ 30%, b˘ 30% 23.4% - - - - - 36.4% 16.0% 36.0% 8.8%

Rotation,
Brightness,

and ℓ2

Differentially
Resolvable,
Composition

MNIST r ˘ 50˝, b˘ 20%, }δ}2 ď .05 96.6% - - - - - 97.6% 10.8% 97.4% 9.0%

CIFAR-10 r ˘ 10˝, b˘ 10%, }δ}2 ď .05 64.2% - - - - - 71.6% 31.8% 71.2% 29.6%
r ˘ 30˝, b˘ 20%, }δ}2 ď .05 55.2% - - - - - 65.2% 0.8% 64.0% 0.4%

ImageNet r ˘ 30˝, b˘ 20%, }δ}2 ď .05 26.6% - - - - - 37.0% 17.6% 36.4% 14.0%

Scaling,
Brightness,

and ℓ2

Differentially
Resolvable,
Composition

MNIST s˘ 50%, b˘ 50%, }δ}2 ď .05 96.4% - - - - - 97.6% 22.2% 97.6% 12.2%
CIFAR-10 s˘ 30%, b˘ 30%, }δ}2 ď .05 51.2% - - - - - 65.0% 4.4% 61.8% 2.6%
ImageNet s˘ 30%, b˘ 30%, }δ}2 ď .05 22.6% - - - - - 36.0% 7.4% 35.6% 4.8%

Vanilla Models and Baselines

We compare with vanilla (undefended) models and baselines from related work. The
vanilla models are trained to achieve high accuracy only on clean data. For fairness, on all
datasets we use the same model architectures as in our approach. On the test subset, the
benign accuracy of vanilla models is 98.6%/88.6%/74.4% on MNIST/CIFAR-10/ImageNet.
We also report their empirical robust accuracy under attacks in Table 7.3. Since vanilla
models are not smoothed, we cannot have certified robust accuracy for them. In terms of
baselines, we consider the approaches that provide certification against semantic transfor-
mations: DeepG [22], Interval [343], VeriVis [292], Semantify-NN [268], and DistSPT [118].
In Appendix E.8.4, we provide more detailed discussion and comparison with these baseline
approaches, and list how we run these approaches for fair comparison.
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7.7.2 Main Results

Here, we present our main results from five aspects: (1) certified robustness compared
to baselines; (2) empirical robustness comparison; (3) certification time statistics; (4) em-
pirical robustness under unforeseen physical attacks; (5) certified robustness under attacks
exceeding the certified radii.

Certified Robustness Compared to Baselines

Our results are summarized in Table 7.3. For each transformation, we ensure that our
setting is either the same as or strictly stronger than all other baselines.5 When our setting is
strictly stronger, the baseline setting is shown in corresponding parentheses, and our certified
robust accuracy implies a higher or equal certified robust accuracy in the corresponding
baseline setting. To our best knowledge, we are the first to provide certified robustness
for Gaussian blur, brightness, composition of rotation and brightness, etc. Moreover, on
the large-scale standard ImageNet dataset, we are the first to provide nontrivial certified
robustness against certain semantic attacks. Note that DistSPT [118] is theoretically feasible
to provide robustness certification for the ImageNet dataset. However, its certification is
not tight enough to handle ImageNet and it provides robustness certification for only a
certain random attack instead of arbitrarily worst-case attacks [118, Section 7.4]. We observe
that, across transformations, our framework significantly outperforms the state of the art,
if present, in terms of robust accuracy. For example, on the composition of contrast and
brightness, we improve the certified robust accuracy from 74% to 97.6% on MNIST, from
0.0% (failing to certify) to 82.4% on CIFAR-10, and from 0% (absence of baseline) to 61.4%

on ImageNet. On the rotation transformation, we improve the certified robust accuracy from
92.48% to 97.4% on MNIST, from 49.37% to 63.6% on CIFAR-10 (rotation angle within
30˝), and from 16% against a certain random attack to 30.4% against arbitrary attacks on
ImageNet. Some baselines are able to provide certification under other certification goals
and the readers can refer to Appendix E.8.4 for a detailed discussion.

Comparison of Empirical Robust Accuracy

In Table 7.3, we report the empirical robust accuracy for both (undefended) vanilla models
and trained TSS models. The empirical robust accuracy is either evaluated under random

5The only exception is Semantify-NN [268] on brightness and contrast changes, where Semantify-NN
considers these changes composed with clipping to r0, 1s while we consider pure brightness and contrast
changes to align with other baselines. We refer the reader to Appendix E.8.4 for a detailed discussion.
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attack or two adaptive attacks–Random+ and PGD attack. When it is under adaptive
attacks, we report the lower accuracy to evaluate against stronger attackers.

1. For almost all settings, TSS models have significantly higher empirical robust accuracy,
which means that TSS models are also practical in terms of defending against existing
attacks. The only exception is rotation and scaling on ImageNet. The reason is that a
single rotation/scaling transformation is too weak to attack even an undefended model.
At the same time, our robustness certification comes at the cost of benign accuracy, which
also affects the empirical robust accuracy. This exception is eliminated when rotation and
scaling are composed with other transformations.

2. Similar observations arise when comparing the empirical robust accuracy of the vanilla
model with the certified robust accuracy of ours. Hence, even compared to empirical
metrics, our certified robust accuracy is nontrivial and guarantees high accuracy.

3. Our certified robust accuracy is always lower or equal compared to the empirical one,
verifying the validity of our robustness certification. The gaps range from „ 2% on
MNIST to „ 10% - 20% on ImageNet. Since empirical robust accuracy is an upper
bound of the certified accuracy, this implies that our certified bounds are usually tight,
particularly on small datasets.

4. The adaptive attack decreases the empirical accuracy of TSS models slightly, while it de-
creases that of vanilla models significantly. Taking contrast and brightness on CIFAR-10
as example, TSS accuracy decreases from 86% to 85.8% while the vanilla model accuracy
decreases from 21.0% to 9.6%. Thus, TSS is still robust against adaptive attacks. Indeed,
TSS has robustness guarantee against any attack within the certified radius.

Certification Time Statistics

Our robustness certification time is usually less than 100 s on MNIST and 200 s on CIFAR-
10; on ImageNet it is around 200 s - 2000 s. Compared to other baselines, ours is slightly
faster and achieves much higher certified robustness. For fairness, we give 1000 s time limit
per instance when running baselines on MNIST and CIFAR-10. Note that other baselines
cannot scale up to ImageNet. Our approach is scalable due to the blackbox nature of
smoothing-based certification, the tight interpolation error upper bound, and the efficient
progressive sampling strategy. Details on hyperparameters including smoothing variance
and average certification time are given in Appendix E.8.6.
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Table 7.4: Comparison of empirical accuracy of different models under physical cor-
ruptions (CIFAR-10-C and ImageNet-C) and certified accuracy against composition of
transformations. TSS achieves higher or comparable empirical accuracy against unforeseen
corruptions and significantly higher certified accuracy (under attack radii in Table 7.3).

CIFAR-10 ImageNet
Vanilla AugMix [146] TSS Vanilla AugMix [146] TSS

Empirical Accuracy
on CIFAR-10-C and ImageNet-C 53.9% 65.6% 67.4% 18.3% 25.7% 21.9%

Certified Accuracy against
Composition of Gaussian Blur,

Translation, Brightness, and Contrast
0.0% 0.4% 58.2% 0.0% 0.0% 32.8%

Generalization to Unforeseen Common Corruptions

Are TSS models still more robust when it comes to potential unforeseen physical attacks?
To answer this question, we evaluate the robustness of TSS models on the realistic CIFAR-
10-C and ImageNet-C datasets [144]. These two datasets are comprised of corrupted images
from CIFAR-10 and ImageNet. They apply around 20 types of common corruptions to model
physical attacks, such as fog, snow, and frost. We evaluate the empirical robust accuracy
against the highest corruption level (level 5) to model the strongest physical attacker. We
apply TSS models trained against a transformation composition attack, Gaussian blur +
brightness + contrast + translation, to defend against these corruptions. We select two
baselines: vanilla models and AugMix [146]. AugMix is the state-of-the-art model on CIFAR-
10-C and ImageNet-C [86].

The results are shown in Table 7.4. The answer is yes—TSS models are more robust than
undefended vanilla models. It even exceeds the state of the art, AugMix, on CIFAR-10-C. On
ImageNet-C, TSS model’s empirical accuracy is between vanilla and AugMix. We emphasize
that in contrast to TSS, both vanilla and AugMix fail to provide robustness certification.
Details on evaluation protocols and additional findings are in Appendix E.8.8.

Evaluation on Attacks beyond Certified Radii

The semantic attacker in the physical world may not constrain itself to be within the spec-
ified attack radii. In Appendix E.8.9 we present a thorough evaluation of TSS’s robustness
when the attack radii go beyond the certified ones. We show, for example, for TSS model
defending against ˘40% brightness change on ImageNet, when the radius increases to 50%,
the certified accuracy only slightly drops from 70.4% to 70.0%. In a nutshell, there is no
significant or immediate degradation on both certified robust accuracy and empirical robust
accuracy when the attack radii go beyond the certified ones.
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(a) MNIST (b) CIFAR-10 (c) ImageNet

Figure 7.8: Certified accuracy for different smoothing distributions for Gaussian blur. On
MNIST/CIFAR-10/ImageNet the noise std. is 10{5{10.

7.7.3 Ablation Studies

Here, we provide two ablation studies: (1) Comparison of different smoothing distribu-
tions; (2) Comparison of different smoothing variances. In Appendix E.8.11, we present
another ablation study on different numbers of samples for differentially resolvable transfor-
mations, which reveals a tightness-efficiency trade-off.

Comparison of Smoothing Distributions

To study the effects of different smoothing distributions, we compare the certified robust
accuracy for Gaussian blur when the model is smoothed by different smoothing distributions.
We consider three smoothing distributions, namely exponential (blue line), uniform (green
line), and folded Gaussian (red line). On each dataset, we adjust the distribution parameters
such that each distribution has the same variance. All other hyperparameters are kept the
same throughout training and certification. As shown Figure 7.8, we notice that on all
three datasets, the exponential distribution has the highest average certified radius. This
observation is in line with our theoretical reasoning in Section 7.4.2.

Comparison of Different Smoothing Variances

The variance of the smoothing distribution is a hyperparameter that controls the accuracy-
robustness trade-off. In Table 7.5, we evaluate different smoothing variances for several
transformations on ImageNet and report both the certified accuracy and benign accuracy.
The results on MNIST and CIFAR-10 and more discussions are in Appendix E.8.10. From
these results, we observe that usually, when the smoothing variance increases, the benign
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Table 7.5: Study of the impact of different smoothing variance levels on certified robust accuracy
and benign accuracy on ImageNet for TSS. The attack radii are consistent with Table 7.3. “Dist.”
refers to both training and smoothing distribution. The variance used in Table 7.3 is labeled in
gray.

Transformation Attack
Radii

Certified Accuracy and Benign Accuracy
under Different Variance Levels

Gaussian Blur α ď 36
Dist. of α Expp1{5q Expp1{10q Expp1{20q

Cert. Rob. Acc. 0.0% 51.6% 48.4%
Benign Acc. 63.4% 59.2% 53.2%

Translation
(Reflection Pad.)

a

∆x2 `∆y2

ď 100

Dist. of p∆x,∆yq N p0, 202Iq N p0, 302Iq N p0, 402Iq
Cert. Rob. Acc. 0.0% 50.0% 55.4%
Benign Acc. 70.0% 72.6% 70.0%

Brightness b˘ 40%
Dist. of pc, bq N p0, 0.32Iq N p0, 0.42Iq N p0, 0.52Iq

Cert. Rob. Acc. 70.2% 70.0% 67.6%
Benign Acc. 73.2% 72.2% 69.4%

Contrast c˘ 40%
Dist. of pc, bq N p0, 0.32Iq N p0, 0.42Iq N p0, 0.52Iq

Cert. Rob. Acc. 58.4% 63.6% 65.0%
Benign Acc. 72.8% 71.4% 68.6%

Rotation r ˘ 30˝

Dist. of ϵ N p0, 0.252Iq N p0, 0.502Iq N p0, 1.002Iq
Cert. Rob. Acc. 9.8% 30.4% 20.0%
Benign Acc. 55.6% 46.2% 32.2%

Scaling s˘ 30%
Dist. of ϵ N p0, 0.252Iq N p0, 0.502Iq N p0, 1.002Iq

Cert. Rob. Acc. 7.2% 26.4% 17.4%
Benign Acc. 58.8% 50.8% 33.8%

accuracy drops and the certified robust accuracy first rises and then drops. This tendency is
also observed in classical randomized smoothing [77, 427]. However, the range of acceptable
variance is usually wide. Thus, without careful tuning the smoothing variances, we are able
to achieve high certified and benign accuracy as reported in Table 7.3 and Table E.1.

7.8 RELATED WORK

Semantic Attacks for Neural Networks. Recent work has shown that semantic trans-
formations are able to mislead ML models [124, 153, 416]. For instance, image rotations and
translations can attack ML models with 40% - 99% degradation on MNIST, CIFAR-10, and
ImageNet on both vanilla models and models that are robust against ℓp-bounded perturba-
tions [110]. Brightness/contrast attacks can achieve 91.6% attack success on CIFAR-10, and
71%-100% attack success rate on ImageNet [144]. Our evaluation on empirical robust accu-
racy (Table 7.3) for vanilla models also confirms these observations. Moreover, brightness
attacks have been shown to be of practical concern in autonomous driving [291]. Empirical
defenses against semantic transformations have been investigated [110, 144].
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Certified Robustness against Semantic Transformations. While heuristic defenses
against semantic attacks have been proposed, provable robustness requires further investi-
gation. Existing certified robustness against transformations is based on heuristic enumer-
ation, interval bound propagation, linear relaxation, or smoothing. Efficient enumeration
in VeriVis [292] can handle only discrete transformations. Interval bound propagation has
been used to certify common semantic transformations [22, 118, 343]. To tighten the in-
terval bounds, linear relaxations are introduced. DeepG [22] optimizes linear relaxations
for given semantic transformations, and Semantify-NN [268] encodes semantic transforma-
tions by neural networks and applies linear relaxations for NNs [402, 446]. However, linear
relaxations are loose and computationally intensive compared to our TSS. Recently, Fis-
cher et al. [118] have applied a smoothing scheme to provide provable robustness against
transformations but on the large ImageNet dataset, it can provide certification only against
random attacks that draw transformation parameters from a pre-determined distribution.
More details are available in Appendix E.8.4.

7.9 CONCLUSION

In this chapter, we have presented a unified framework, TSS, for certifying ML robustness
against general semantic adversarial transformations. Extensive experiments have shown
that TSS significantly outperforms the state of the art or, if no previous work exists, set
new baselines. In future work, we plan to further improve the efficiency and tightness of our
robustness certification and explore more transformation-specific smoothing strategies.
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CHAPTER 8: ROBUSTNESS IN REINFORCEMENT LEARNING
AGAINST OBSERVATION PERTURBATIONS: CROP

Reinforcement learning (RL) has been widely applied to different applications, such as
robotics [92, 188, 296], autonomous driving vehicles [316, 328], and trading [7, 95, 434].
However, recent studies have shown that learning algorithms are vulnerable to adversarial
attacks [112, 132, 170, 199, 270], and a range of attacks have also been proposed against the
input states and trained policies of RL [28, 156, 189, 232]. As more and more safety-critical
applications are being deployed in real-world [68, 74, 116, 376], how to test and improve
their robustness before massive production is of great importance.

To defend against adversarial attacks in RL, different empirical defenses have been pro-
posed [29, 98, 113, 117, 254, 280, 290, 332, 447]. In particular, adversarial training [29, 189,
290] and regularized RL algorithms by enforcing the smoothness of the trained models [332,
447] have been studied to improve the robustness of trained policies. However, several strong
adaptive attacks have been proposed against these empirical defenses [127, 158, 314] and it
is important to provide robustness certification for a given learning algorithm to end such
repeated game between attackers and defenders.

To provide robustness certification, several studies have been conducted on classification.
Considering the sequential decision making property of RL, which makes it more challenging
to be directly certified compared to classification, in this chapter we ask: How to provide
efficient and effective robustness certification for RL algorithms? What criteria should be
used to certify the robustness of RL algorithms?

Different from classification which involves one-step prediction only, RL algorithms pro-
vide both action prediction and reward feedback, making what to certify and how to certify
robustness of RL challenging. In this chapter we focus on Q-learning and propose two cer-
tification criteria: per-state action stability and lower bound of perturbed cumulative reward.
In particular, to certify the per-state action stability, we propose the local smoothing on each
input state and therefore derive the certified radius for perturbation at each state, within
which the action prediction will not be altered. To certify the lower bound of cumulative
reward, we propose both global smoothing over the finite trajectory to obtain the expectation
or percentile bounds given trajectories smoothed with sampled noise sequences; and local
smoothing to calculate an absolute lower bound based on our adaptive search algorithm.

We leverage our framework to test nine empirically robust RL algorithms on multiple
RL environments. We show that the certified robustness depends on both the algorithm
and the environment properties. For instance, RadialRL [280] is the most certifiably robust
method on Freeway. In addition, based on the per-state certification, we observe that for
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some environments such as Pong, some states are more certifiably robust and such pattern is
periodic. Given the information of which states are more vulnerable, it is possible to design
robust algorithms to specifically focus on these vulnerable states. Based on the lower bound
of perturbed cumulative reward, we show that our certification is tight by comparing our
bounds with empirical results under adversarial attacks.

Technical Contributions. In this chapter, we take an important step towards providing
robustness certification for Q-learning. We make contributions on both theoretical and
empirical fronts.

• We propose a framework for certifying the robustness of Q-learning algorithms, which
is notably the first that provides the robustness certification w.r.t. the cumulative
reward.

• We propose two robustness certification criteria for Q-learning algorithms, together
with corresponding certification algorithms based on global and local smoothing strate-
gies.

• We theoretically prove the certification radius for input state and lower bound of
perturbed cumulative reward under bounded adversarial state perturbations.

• We conduct extensive experiments to provide certification for nine empirically robust
RL algorithms on multiple RL environments. We provide several interesting obser-
vations which would further inspire the development of robust RL algorithms. Our
implementation is publicly available at https://github.com/AI-secure/CROP.

8.1 PRELIMINARIES: Q-LEARNING AND DEEP Q-NETWORKS (DQNS)

Markov decision processes (MDPs) are at the core of RL. Our focus is on discounted
discrete-time MDPs, which are defined by tuple pS,A, R, P, γ, d0q, where S is a set of states
(each with dimensionality N), A represents a set of discrete actions, R : S ˆA Ñ R is the
reward function, and P : S ˆAÑ PpSq is the transition function with Pp¨q defining the set
of probability measures, γ P r0, 1s is the discount factor, and d0 P PpSq is the distribution
over the initial state. At time step t, the agent is in the state st P S6. After choosing action
at P A, the agent transitions to the next state st`1 „ P pst, atq and receives reward Rpst, atq.

6Following the routine in RL literature, in this chapter and Chapter 9, we use normal instead of the
bolded font for st and other vectors.
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The goal is to learn a policy π : S Ñ PpAq that maximizes the expected cumulative reward
Er
ř

t γ
trts.

Q-learning [398] learns an action-value function (Q-function), Q‹ps, aq, which is the max-
imum expected cumulative reward the agent can achieve after taking action a in state s:
Q‹ps, aq “ Rps, aq ` γ E

s1„P ps,aq

“

maxa1 Q‹ps1, a1q
‰

. In deep Q-Networks (DQNs) [265], Q‹ is

approximated using a neural network parametrized by θ, i.e., Qπps, a; θq « Q‹ps, aq. Let
ρ P PpS ˆAq be the observed distribution defined over states s and actions a, the network
can be trained via minimizing loss function

Lpθq “ E
ps,aq„ρ,s1„P ps,aq

«

ˆ

Rps, aq ` γmax
a1

Qπ
`

s1, a1; θ
˘

´Qπps, a; θq

˙2
ff

. (8.1)

The greedy policy π is defined as taking the action with highest Qπ value in each state s:
πpsq “ argmaxaPAQ

πps, aq.

8.2 ROBUSTNESS CERTIFICATION IN Q-LEARNING

In this section, we first introduce the threat model, followed by two robustness certification
criteria for the Q-learning algorithm: per-state action and cumulative reward. We consider
the standard adversarial setting in Q-learning [156, 189, 447], where the adversary can apply
ℓ2-bounded perturbation Bϵ “ tδ P Rn : ∥δ∥2 ď ϵu to input state observations of the agent
during decision (test) time to cause the policy to select suboptimal actions. The agent
observes the perturbed state and takes action a1 “ πps ` δq, following policy π. Following
the Kerckhoff’s principle [329], we consider a worst-case adversary who applies adversarial
perturbations to every state at decision time. Our analysis and methods are generalizable
to other ℓp norms following [204, 427].

8.2.1 Robustness Certification for Q-learning with Different Criteria

To provide the robustness certification for Q-learning, we propose two certification criteria:
per-state action robustness and lower bound of the cumulative reward.

Robustness Certification for Per-State Action. We first aim to explore the robustness
(stability/consistency) of the per-state action given adversarially perturbed input states.

Definition 8.1 (Certification for Per-State Action). Given a trained network Qπ with policy
π, we define the robustness certification for per-state action as the maximum perturbation
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magnitude ϵ̄, such that for any perturbation δ P Bϵ̄, the predicted action under the perturbed
state will be the same as the action taken in the clean environment: πps`δq “ πpsq, @δ P Bϵ̄.

Robustness Certification for Cumulative Reward. Given that the cumulative reward
is important for RL, here in addition to the per-state action, we also define the robustness
certification regarding the cumulative reward under input state perturbation.

Definition 8.2 (Cumulative reward). Let P : S ˆAÑ PpSq be the transition function of
the environment with Pp¨q defining the set of probability measures. Let R, d0, γ, Qπ, π be the
reward function, initial state distribution, discount factor, a given trained Q-network, and
the corresponding greedy policy as introduced in Section 8.1. Jpπq represents the cumulative
reward and Jϵpπq represents the perturbed cumulative reward under perturbations δt P Bϵ at
each time step t:

Jpπq :“
8
ÿ

t“0

γtRpst, πpstqq,

where st`1 „ P pst, atq, s0 „ d0,

and
Jϵpπq :“

8
ÿ

t“0

γtRpst, πpst ` δtqq,

where st`1 „ P pst, πpst ` δtqq, s0 „ d0.

(8.2)

The randomness of Jpπq arises from the environment dynamics, while that of Jϵpπq includes
additional randomness from the perturbations tδtu. We focus on a finite horizon H in this
chapter, where a sufficiently large H can approximate Jpπq and Jϵpπq to arbitrary precision
when γ ă 1 and reward is bounded.

Definition 8.3 (Robustness Certification for Cumulative Reward). The robustness certifi-
cation for cumulative reward is the lower bound of perturbed cumulative reward J such that
J ď Jϵpπq under perturbation in Bϵ “ tδ P Rn :∥δ∥2 ď ϵu applied to all time steps.

We will provide details on the certification of per-state action in Section 8.3 and the
certification of cumulative reward in Section 8.4 based on different smoothing strategies and
certification methods.

8.3 ROBUSTNESS CERTIFICATION STRATEGIES FOR PER-STATE ACTION

In this section, we discuss the robustness certification for per-state action, aiming to
calculate a lower bound of maximum perturbation magnitude ϵ̄ in Definition 8.1.
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8.3.1 Certification for Per-State Action via Action-value Functional Smoothing
Let Qπ be the action-value function given by the trained network Q with policy π. We

derive a smoothed function rQπ through per-state local smoothing. Specifically, at each time
step t, for each action a P A, we draw random noise from a Gaussian distribution N p0, σ2INq

to smooth Qπp¨, aq.

rQπpst, aq :“ E
∆t„N p0,σ2IN q

Qπpst `∆t, aq @st P S, a P A, (8.3)

and π̃pstq :“ argmax
a

rQπpst, aq @st P S. (8.4)

Lemma 8.1 (Lipschitz Continuity of Smoothed Value Function). Given the action-value
function Qπ : S ˆAÑ rVmin, Vmaxs, the smoothed function rQπ with smoothing parameter σ
is L-Lipschitz continuous with L “ Vmax´Vmin

σ

b

2
π
w.r.t. the state input.

The proof is given in Appendix F.1.1. Leveraging the Lipschitz continuity in Lemma 8.1,
we derive the following theorem for certifying the robustness of per-state action.

Theorem 8.1. Let Qπ : S ˆ A Ñ rVmin, Vmaxs be a trained value network, rQπ be the
smoothed function with (8.3). At time step t with state st, we can compute the lower bound
rt of maximum perturbation magnitude ϵ̄pstq (i.e., rt ď ϵ̄pstq, ϵ̄ defined in Definition 8.1) for
locally smoothed policy π̃:

rt “
σ

2

¨

˝Φ´1

˜

rQπpst, a1q ´ Vmin

Vmax ´ Vmin

¸

´ Φ´1

˜

rQπpst, a2q ´ Vmin

Vmax ´ Vmin

¸

˛

‚, (8.5)

where Φ´1 is the inverse CDF function, a1 is the action with the highest rQπ value at state
st, and a2 is the runner-up action. We name lower bound rt as certified radius for the state
st.

The proof is omitted to Appendix F.1.2. The theorem provides a certified radius rt for
per-state action given smoothed policy: As long as the perturbation is bounded by rt, i.e.,
}δt}2 ď rt, the action does not change: π̃pst`δtq “ π̃pstq. To achieve high certified robustness
for per-state action, Theorem 8.1 implies a tradeoff between value function smoothness and
the margin between the values of top two actions: If a larger smoothing parameter σ is
applied, the action-value function would be smoother and therefore more stable; however,
it would shrink the margin between the top two action values leading to smaller certified
radius. Thus, there exists a proper smoothing parameter to balance the tradeoff, which
depends on the actual environments and algorithms.
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8.3.2 CROP-LoAct: Local Randomized Smoothing for Certifying Per-State Action

Next we introduce the algorithm to achieve the certification for per-state action. Given a
Qπ network, we apply (8.3) to derive a smoothed network rQπ. At each state st, we obtain
the greedy action ãt w.r.t. rQπ, and then compute the certified radius rt. We present the
complete algorithm in Appendix F.2.1.

There are some additional challenges in smoothing the value function and computing the
certified radius in Q-learning compared with the standard classification task [77]. Challenge
1: In classification, the output range of the confidence r0, 1s is known a priori; however, in Q-
learning, for a givenQπ, its range rVmin, Vmaxs is unknown. Challenge 2: In the classification
task, the lower and upper bounds of the top two classes’ prediction probabilities can be
directly computed via the confidence interval base on multinomial proportions [133]. For
Q-networks, the outputs are not probabilities and calculating the multinomial proportions
becomes challenging.

Pre-processing. To address Challenge 1, we estimate the output range rVmin, Vmaxs

of a given network Qπ based on a finite set of valid states Ssub Ď S. In particular, we
craft a sufficiently large set Ssub to estimate Vmin and Vmax for Qπ on S, which can be
used later in per-state smoothing. The details for estimating Vmin and Vmax are deferred
to Appendix F.2.1.

Certification. To smooth a given state st, we use Monte Carlo sampling [77] to sam-
ple noise applied to st, and then estimate the corresponding smoothed value function rQπ

at st with (8.3). In particular, we sample m Gaussian noise ∆i „ N p0, σ2INq, clip the
Q-network output to ensure that it falls within the range rVmin, Vmaxs, and then take the
average of the output to obtain the smoothed action prediction based on rQπ. We then
employ Theorem 8.1 to compute the certified radius rt. We omit the detailed inference pro-
cedure to Appendix F.2.1. To address Challenge 2, we leverage Hoeffding’s inequality [150]
to compute a lower bound of rQπpst, a1q and an upper bound of rQπpst, a2q with one-sided
confidence level parameter α given the top two actions a1 and a2. When the former is higher
than the latter, we can certify a positive radius for the given state st.

8.4 ROBUSTNESS CERTIFICATION STRATEGIES FOR THE CUMULATIVE
REWARD

In this section, we present robustness certification strategies for the cumulative reward.
The goal is to provide the lower bounds for the perturbed cumulative reward in Definition 8.2.
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In particular, we propose both global smoothing and local smoothing strategies to certify the
perturbed cumulative reward. In the global smoothing, we view the whole state trajectory
as a function to smooth, which would lead to relatively loose certification bound. We then
propose the local smoothing by smoothing each state individually to obtain the absolute
lower bound.

8.4.1 Certification of Cumulative Reward based on Global Smoothing

In contrast to Section 8.3 where we perform per-state smoothing to achieve the certification
for per-state action, here, we aim to perform global smoothing on the state trajectory by
viewing the entire trajectory as a function. In particular, we first derive the expectation
bound of the cumulative reward based on global smoothing by estimating the Lipschitz
constant for the cumulative reward w.r.t. the trajectories. Since the Lipschitz estimation in
the expectation bound is algorithm agnostic and could lead to loose estimation bound, we
subsequently propose a more practical and tighter percentile bound.

Definition 8.4 (σ-Randomized Trajectory and σ-Randomized Policy). Given a state trajec-
tory ps0, s1, . . . , sH´1q of lengthH where st`1 „ P pst, πpstqq, s0 „ d0, with π the greedy policy
of the action-value function Qπ, we derive a σ-randomized trajectory as ps1

0, s
1
1, . . . , s

1
H´1q,

where s1
t`1 „ P ps1

t, πps
1
t ` ∆tqq, ∆t „ N p0, σ2INq, and s1

0 “ s0 „ d0. We correspondingly
define a σ-randomized policy π1 based on π in the following form: π1pstq :“ πpst`∆tq where
∆t „ N p0, σ2INq.

Let the operator ‘ concatenates given input states or noise that are added to each state.
The sampled noise sequence is denoted by ∆ “ ‘H´1

t“0 ∆t, where ∆t „ N p0, σ2INq.

Definition 8.5 (Perturbed Return Function). Let R,P, γ, d0 be the reward function, tran-
sition function, discount factor, and initial state distribution in Definition 8.2. We define a
bounded perturbed return function Fπ : RHˆN Ñ rJmin, Jmaxs representing cumulative reward
with potential perturbation δ:

Fπ

´

‘H´1
t“0 δt

¯

:“
H
ÿ

t“0

γtRpst, πpst ` δtqq, where st`1 „ P pst, πpst ` δtqq, s0 „ d0. (8.6)

We can see when there is no perturbation (δt “ 0), Fπp‘H´1
t“0 0q “ Jpπq; when there are

adversarial perturbations δt P Bϵ at each time step, Fπp‘H´1
t“0 δtq “ Jϵpπq, i.e., perturbed

cumulative reward.
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Mean Smoothing: Expectation Bound. Here we propose to sample noise sequences
∆ to perform global smoothing for the entire state trajectory, and calculate the lower bound
of the expected perturbed cumulative reward E∆

“

Jϵpπ
1q
‰

under all possible ℓ2-bounded per-
turbations within magnitude ϵ. The expectation is over the noise sequence ∆ involved in
the σ-randomized policy π1 in Definition 8.4.

Lemma 8.2 (Lipschitz Continuity of Smoothed Perturbed Return Function). Let F be the
perturbed return function function defined in (8.6), the smoothed perturbed return function
rFπ is pJmax´Jminq

σ

b

2
π
-Lipschitz continuous, where

rFπ

´

‘H´1
t“0 δt

¯

:“ E
∆„N p0,σ2IHˆN q

Fπ

´

‘H´1
t“0 pδt `∆tq

¯

. (8.7)

Theorem 8.2 (Expectation Bound). Let

JE “ rFπ

´

‘H´1
t“0 0

¯

´ Lϵ
?
H, where L “

pJmax ´ Jminq

σ

c

2

π
. (8.8)

Then JE ď E
“

Jϵpπ
1q
‰

.

Proof sketch. We first derive the equality between expected perturbed cumulative re-
ward E

“

Jϵpπ
1q
‰

and the smoothed perturbed return function rFπp‘
H´1
t“0 δtq. Thus, to lower

bound the former, it suffices to lower bound the latter, which can be calculated leveraging
the Lipschitz continuity of rF in Lemma 8.2 (proved in Appendix F.1.3), noticing that the
distance between ‘H´1

t“0 0 and the adversarial perturbations ‘H´1
t“0 δt is bounded by ϵ

?
H. The

complete proof is omitted to Appendix F.1.4.
We obtain Jmin and Jmax in Lemma 8.2 from environment specifications which can be

loose in practice. Thus the Lipschitz constant L estimation is coarse and mean smoothing is
usually loose. We next present a method that circumvents estimating the Lipschitz constant
and provides a tight percentile bound.

Percentile Smoothing: Percentile Bound. We now propose to apply percentile smooth-
ing to smooth the perturbed cumulative reward and obtain the lower bound of the p-th
percentile of Jϵpπ1q, where π1 is a σ-randomized policy defined in Definition 8.4.

rF p
π

´

‘H´1
t“0 δt

¯

“ supy

#

y P R : Pr

„

Fπ

´

‘H´1
t“0 pδt `∆tq

¯

ď y

ȷ

ď p

+

. (8.9)
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Theorem 8.3 (Percentile Bound). Let Jp “ rF p1

π

´

‘H´1
t“0 0

¯

, where p1 :“ Φ
´

Φ´1ppq ´ ϵ
?
H
σ

¯

.
Then Jp ď the p-th percentile of Jϵpπ1q.

The proof is provided in Appendix F.1.5 based on Chiang et al. [70]. There are several
other advantages of percentile smoothing over mean smoothing. First, the certification given
by percentile smoothing is among the cumulative rewards of the sampled σ-randomized
trajectories and is therefore achievable by a real-world policy, while the expectation bound
is less likely to be achieved in practice given the loose Lipschitz bound. Second, for a discrete
function such as perturbed return function, the output of mean smoothing is continuous w.r.t.
σ, while the results given by percentile smoothing remain discrete. Thus, the percentile
smoothed function preserves properties of the base function before smoothing, and shares
similar interpretation, e.g., the number of rounds that the agent wins. Third, taking p “ 50%

in percentile smoothing leads to the median smoothing which achieves additional properties
such as robustness to outliers [255]. The detailed algorithm CROP-GRe, including the
inference procedure, the estimation of rFπ, the calculation of the empirical order statistics,
and the configuration of algorithm parameters Jmin, Jmax, are deferred to Appendix F.2.2.

8.4.2 Certification of Cumulative Reward based on Local Smoothing

Though global smoothing provides efficient and practical bounds for the perturbed cumu-
lative reward, such bounds are still loose as they involve smoothing the entire trajectory at
once. In this section, we aim to provide a tighter lower bound for Jϵpπ̃q by performing local
smoothing.

Given a trajectory of H time steps which is guided by the locally smoothed policy π̃, we
can compute the certified radius at each time step according to Theorem 8.1, which can be
denoted as r0, r1, . . . , rH´1. Recall that when the perturbation magnitude ϵ ă rt, the optimal
action at at time step t will remain unchanged. This implies that when ϵ ă minH´1

t“0 rt, none
of the actions in the entire trajectory will be changed, and therefore the lower bound of
the cumulative reward when ϵ ă minH´1

t“0 rt is the return of the current trajectory in a
deterministic environment. Increasing ϵ has two effects. First, the total number of time
steps where the action is susceptible to change will increase; second, at each time step, the
action can change from the best to the runner-up or the rest. We next introduce an extension
of certified radius rt to characterize the two effects.

Theorem 8.4. Let pr1t , . . . , r
|A|´1
t q be a sequence of certified radii for state st at time step

t, where rkt denotes the radius such that if ϵ ă rkt , the possible action at time step t will
belong to the actions corresponding to top k action values of rQ at state st. The definition of
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rt in Theorem 8.1 is equivalent to r1t here. The radii can be computed similarly as follows:

rkt “
σ

2

¨

˝Φ´1

˜

rQπpst, a1q ´ Vmin

Vmax ´ Vmin

¸

´ Φ´1

˜

rQπpst, ak`1q ´ Vmin

Vmax ´ Vmin

¸

˛

‚, 1 ď k ă |A|, (8.10)

where a1 is the action of the highest rQ value at state st and ak`1 is the pk`1q-th best action.
We additionally define r0t pstq “ 0, which is also compatible with the definition above.

We defer the proof in Appendix F.1.6. With Theorem 8.4, for any given ϵ, we can compute
all possible actions under perturbations in Bϵ. This allows an exhaustive search to traverse
all trajectories satisfying that all certified radii along the trajectory are smaller than ϵ. Then,
we can conclude that Jϵpπ̃q is lower bounded by the minimum return over all these possible
trajectories.

CROP-LoRe: Local Smoothing for Certified Reward

Given a policy π in a deterministic environment, let the initial state be s0, we propose
CROP-LoRe to certify the lower bound of Jϵpπ̃q. At a high-level, CROP-LoRe exhaus-
tively explores new trajectories leveraging Theorem 8.4 with priority queue and effectively
updates the lower bound of cumulative reward J by expanding a trajectory tree dynami-
cally. The algorithm returns a collection of pairs tpϵi, J ϵiqu

|C|

i“1 sorted in ascending order of
ϵi, where |C| is the length of the collection. For all ϵ, let i be the largest integer such that
ϵi ď ϵ ă ϵi`1, then as long as the perturbation magnitude ϵ ď ϵ1, the cumulative reward
Jϵpπ̃q ě J ϵi . The algorithm is shown in Algorithm F.3 in Appendix F.2.3.

Algorithm Description. The method starts from the base case: when perturbation mag-
nitude ϵ “ 0, the lower bound of cumulative reward J is exactly the benign reward. The
method then gradually increases the perturbation magnitude ϵ (later we will explain how
a new ϵ is determined). Along the increase of ϵ, the perturbation may cause the policy π
to take different actions at some time steps, thus resulting in new trajectories. Thanks to
the local smoothing, the method leverages Theorem 8.4 to figure out the exhaustive list of
possible actions under current perturbation magnitude ϵ, and effectively explore these new
trajectories by formulating them as expanded branches of a trajectory tree. Once all new
trajectories are explored, the method examines all leaf nodes of the tree and figures out
the minimum reward among them, which is the new lower bound of cumulative reward J

under this new ϵ. To mitigate the explosion of branches, CROP-LoRe proposes several
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optimization tricks. In the following, we will briefly introduce the trajectory exploration and
expansion and growth of perturbation magnitude steps, as well as the optimization tricks.
More algorithm details are deferred to Appendix F.2.3, where we also provide an analysis
on the time complexity of the algorithm.

In trajectory exploration and expansion, CROP-LoRe organizes all possible tra-
jectories in the form of search tree and progressively grows it. For each node (representing
a state), leveraging Theorem 8.4, we compute a non-decreasing sequence trkpsqu|A|´1

k“0 rep-
resenting the required perturbation radii for π to choose each alternative action. Suppose
the current ϵ satisfies ripsq ď ϵ ă ri`1psq, we can grow pi` 1q branches from current state s
corresponding to the original action and i alternative actions since ϵ ě rjpsq for 1 ď j ď i.
We expand the tree branches using depth-first search [363]. In perturbation magnitude
growth, when all trajectories for perturbation magnitude ϵ are explored, we increase ϵ to seek
certification under larger perturbations. This is achieved by preserving a priority queue [377]
of the critical ϵ’s that we will expand on. Concretely, along the trajectory, at each tree node,
we search for the possible actions and store actions corresponding to trkpsqu|A|´1

k“i`1 into the
priority queue, since these actions are exactly those need to be explored when ϵ grows.
We repeat the procedure of perturbation magnitude growth (i.e., popping out the head el-
ement from the queue) and trajectory exploration and expansion (i.e., exhaustively expand
all trajectories given the perturbation magnitude) until the priority queue becomes empty
or the perturbation magnitude ϵ reaches the predefined threshold. Additionally, we adopt
a few optimization tricks commonly used in search algorithms to reduce the complexity
of the algorithm, such as pruning and the memorization technique [261]. More potential
improvements are discussed in Appendix F.2.3.

So far, we have presented all our certification methods.

8.4.3 Discussion on the Certification Methods

We discuss the advantages and limitations of our certification methods, as well as possible
direct extensions, hoping to pave the way for future research along similar directions. We
also provide more detailed analysis that help with the understanding of our algorithms.

CROP-LoAct. The algorithm provides state-wise robustness certification in terms of the
stability/consistency of the per-state action. It treats each time step independently, smooths
the given state at the given time step, and provides the corresponding certification. Thus,
one potential extension is to expand the time window from one time step to a consecutive
sequence of several time steps, and provide certification for the sequences of actions for the
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given window of states.

CROP-GRe. As explained in Section 8.4, the expectation bound JE is too loose to have
any practical usage. In comparison, percentile bound Jp is much tighter and practical.
However, one limitation of Jp is that there exists an upper bound of the attack magnitude ϵ
that can be certified for each σ, as explained in Appendix F.2.2. For attack magnitudes that
exceed the upper bound, we can obtain no useful information via this certification (though
the upper bound is usually sufficiently large).

One limitation of CROP-GRe. Lemma 8.2 requires knowing the noise added to each
step beforehand so as to generate m randomized trajectories given the known noise sequence
tδtu

H´1
t“0 . Thus, it cannot be applied against an adaptive attacker. We clarify that our

CROP-LoAct and CROP-LoRe does not have such limitation.

CROP-LoRe. The algorithm provides the absolute lower bound J of the cumulative re-
ward for any finite-horizon trajectory with a given initial state. The advantage of the al-
gorithm is that J is an absolute lower bound that bounds the worst-case situation (apart
from the exceptions due to the probabilistic confidence α), rather than the statistical lower
bounds JE and Jp that characterize the statistical properties of the random variable Jϵ.

One potential pitfall in understanding J . What CROP-LoRe certifies is the lower bound
for the trajectory with a given initial state s0 „ d0, rather than all possible states in d0.
This is because our search starts from a root node of the tree, which is set to the fixed given
state s0.

Confidence of CROP-LoRe. Regarding the confidence of our probabilistic certification,
we clarify that we consider the independent multiple-test. Concretely, due to the indepen-
dence of decision-making errors, the confidence is p1´αqN , where N is the maximum number
of possible attacked states explored by CROP-LoRe. Formally,

PrrCROP-LoRe certification holdss (8.11)
“

ź

all s explored
by CROP-LoRe

Prrnot make error on s|not make error on spres

(i)
“

ź

all attackable s
p1´ αq ˆ

ź

all unattackable s
1

(ii)
“p1´ αqN . (8.12)

In the above equation, we can see that (i) leverages the independence which in turn gives a
bound of form p1´αqN . This is because in each step, the event of “certification does not hold”
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is independent since we sample Gaussian noise independently. Leveraging such independence,
we obtain a confidence lower bound of p1´αqN . From (ii), we see that the confidence is only
related to the number of possible attacked states N . This is because for unattackable states,
the certification deterministically holds since there is no attack at current step. Therefore,
we only need to count the confidence intervals from all possibly attackable steps instead
of all states explored. We remark that in practice, the attacker usually has the ability to
perturb only a limited number of steps, i.e., N is typically small. Therefore, the confidence
is non-trivial, and it could be further mitigated by adapting non-smoothing-based per-state
action certification, e.g., GCP-CROWN in Chapter 3.

Main limitation of CROP-LoRe. The main limitation is the high time complexity of
the algorithm (details see Appendix F.2.3). The algorithm has exponential time complexity
in worst case despite the existence of several optimizations. Therefore, it is not suitable for
environments with a large action set, or when the horizon length is set too long.

Extension to Policy-based Methods. Though we specifically study the robustness cer-
tification in Q-learning in this chapter, our two certification criteria and three certification
strategies can be readily extended to policy-based methods. The intuition is that, instead
of smoothing the value function in the Q-learning setting, we directly smooth the policy
function in policy-based methods. With the smoothing module replaced and the theorems
updated, other technical details in the algorithms for certifying the per-state action and the
cumulative reward would then be similar.

8.5 EXPERIMENTS

In this section, we present evaluation for the proposed robustness certification framework
CROP. Concretely, we apply our three certification algorithms (CROP-LoAct, CROP-
GRe, and CROP-LoRe) to certify nine RL methods (StdTrain [265], GaussAug [189],
AdvTrain [29], SA-MDP (PGD,CVX) [447], RadialRL [280], CARRL [111], NoisyNet
[121], and GradDQN [290]) on two high-dimensional Atari games (Pong and Freeway),
one low dimensional control environment (CartPole), and an autonomous driving environ-
ment (Highway). As a summary, we find that (1) SA-MDP (CVX), SA-MDP (PGD), and
RadialRL achieve high certified robustness in different environments; (2) Large smooth-
ing variance can help to improve certified robustness significantly on Freeway, while a more
careful selection of the smoothing parameter is needed in Pong; (3) For methods that demon-
strate high certified robustness, our certification of the cumulative reward is tight. We defer
the detailed descriptions of the environments, the introduction to the RL methods, imple-
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Figure 8.1: Robustness certification for per-state action in terms of certified radius r at all
time steps. Each column corresponds to a smoothing variance σ. The shaded area represents
the standard deviation which is small. RadialRL is the most certifiably robust method on
Freeway, while SA-MDP (CVX) is the most robust on Pong.

mentation details, full results, and discussions to the full version of this chapter [408] and
the open-source leaderboard: https://crop-leaderboard.github.io/.

8.5.1 Evaluation of Robustness Certification for Per-State Action
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Figure 8.2: Benign performance of locally smoothed policy
π̃ under different smoothing variance σ with clean state
observations.

In this subsection, we provide
the robustness certification eval-
uation for per-state action.

Experimental Setup and
Metrics. We evaluate the lo-
cally smoothed policy π̃ derived
in (8.3). We follow Theorem 8.1
and report the certified radius rt
at each step t. We additionally
compute certified ratio η at ra-
dius r, representing the percent-
age of time steps that can be cer-
tified, formally denoted as ηr “ 1{H

řH
t“1 Irrt ě rs. More details are omitted to [408].

Evaluation Results of CROP-LoAct. We present the certification comparison in Fig-
ure 8.1 and the benign performance under different smoothing variances in Figure 8.2; we
omit details of certified ratio to [408].
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On Freeway, we evaluate with a large range of smoothing parameter σ up to 1.0, since
Freeway can tolerate large noise as shown in Figure 8.2. Results under even larger σ are
deferred to [408], showing that the certified robustness can be further improved for the em-
pirically robust methods. From Figure 8.1, we see that RadialRL consistently achieves the
highest certified radius across all σ’s. This is because RadialRL explicitly optimizes over
the worst-case perturbations. StdTrain, GaussAug, and AdvTrain are not as robust, and
increasing σ will not make a difference. In Pong, SA-MDP (CVX) is the most certifiably
robust, which may be due to the hardness of optimizing the worst-case perturbation in Pong.
More interesting, all methods present similar periodic patterns for the certified radius on
different states, which would inspire further robust training methods to take the “confident
state” (e.g., when the ball is flying towards the paddle) into account. Overall, the certified
robustness of these methods largely matches empirical observations [29, 280, 447].

8.5.2 Evaluation of Robustness Certification for Cumulative Reward

Here we discuss the evaluation for the robustness certification regarding cumulative reward
in Section 8.4. We show the evaluation results for both CROP-GRe and CROP-LoRe.

Evaluation Setup and Metrics. We evaluate the σ-randomized policy π1 derived in Def-
inition 8.4 for CROP-GRe and the locally smoothed policy π̃ derived in (8.3) for CROP-
LoRe. We compute the expectation bound JE, percentile bound Jp, and absolute lower
bound J following Theorem 8.2, Theorem 8.3, and Section 8.4.2. To validate the tightness
of the bounds, we additionally perform empirical attacks.

Evaluation of CROP-GRe. We present the certification of reward in Figure 8.3 and
mainly focus on analyzing percentile bound. We present the bound w.r.t. different attack
magnitude ϵ under different smoothing parameter σ. For each σ, there exists an upper bound
of ϵ that can be certified, which is positively correlated with σ. Details see Appendix F.2.2.
We observe similar conclusion as in the per-state action certification that RadialRL is most
certifiably robust for Freeway, while SA-MDP (CVX,PGD) are most robust for Pong al-
though the highest robustness is achieved at different σ.

Evaluation of CROP-LoRe. In Figure 8.3, we note that in Freeway, RadialRL is the
most robust, followed by SA-MDP (CVX), then SA-MDP (PGD), AdvTrain, and GaussAug.
As for Pong, SA-MDP (CVX) outperforms RadialRL and SA-MDP (PGD). Remaining
methods are not clearly ranked.
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8.5.3 Discussion on Evaluation Results

Impact of Smoothing Parameter σ. We draw similar conclusions regarding the im-
pact of smoothing variance from the results given by CROP-LoAct and CROP-GRe. In
Freeway, as σ increases, the robustness of StdTrain, GaussAug, and AdvTrain barely in-
creases, while that of SA-MDP (PGD), SA-MDP (CVX), and RadialRL steadily increases.
In Pong, a σ in the range 0.01-0.03 shall be suitable for almost all methods. For CROP-
LoRe, there are a few different conclusions. On Freeway, it is clear that under larger attack
magnitude ϵ, larger smoothing parameter σ always secures higher lower bound J . In Pong,
CROP-LoRe can only achieve non-zero certification with small σ under a small range of
attack magnitude, implying the difficulty of establishing non-trivial certification for these
methods on Pong. We defer details on the selection of σ to [408].

Tightness of the certification JE, Jp, and J. We compare the empirical cumulative
rewards achieved under PGD attacks with our certified lower bounds. First, the empirical
results are consistently lower bounded by our certifications, validating the correctness of
our bounds. Regarding the tightness, the improved Jp is much tighter than the loose JE,
supported by discussions in Section 8.4.1. The tightness of J can be reflected by the zero
gap between the certification and the empirical result under a wide range of attack magni-
tude ϵ. Furthermore, the certification for SA-MDP (CVX,PGD) are quite tight for Freeway
under large attack magnitudes, and RadialRL demonstrates its superiority on Freeway. Ad-
ditionally, different methods may achieve the same empirical results under attack, yet their
certifications differ tremendously, indicating the importance of the robustness certification.

Game Properties. The certified robustness of any method on Freeway is much higher
than that on Pong, indicating that Freeway is a more stable game than Pong, also shown
in Mnih et al. [266].

8.6 RELATED WORK

8.6.1 Evasion Attacks in RL

We consider the adversarial attacks on state observations, where the attacker aims to add
perturbations to the state during test time, so as to achieve certain adversarial goals, such
as misleading the action selection and minimizing the cumulative reward. We discuss the
related works that fall into these two categories below.
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Figure 8.3: Robustness certification for cumulative reward, including expectation bound JE,
percentile bound Jp (p “ 50%), and absolute lower bound J . Each column corresponds to
one smoothing variance. Solid lines represent the certified reward bounds, and dashed lines
show the empirical performance under PGD.

Misleading Action Selection. It has been shown that different methods—applying ran-
dom noise to simply interfere with the action selection [189], or adopting adversarial at-
tacks (e.g., FGSM [132] and CW attacks [54]) to deliberately alter the probability of action
selection—are effective to different degrees. More concretely, when manipulating the ac-
tion selection probability, some works aim to reduce the probability of selecting the optimal
action [29, 156, 189], while others try to increase the probability of selecting the worst
action [232, 290].
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Minimizing the Cumulative Reward. ATLA [447] and PA-AD [358] consider an op-
timal adversary under the SA-MDP framework [447], which aims to lead to minimal value
functions under bounded state perturbations. To find this optimal adversary (i.e., the opti-
mal adversarial state perturbation), ATLA [447] proposes to train an adversary whose action
space is the perturbation set in the state space, while PA-AD [358] further decouples the
problem of finding state perturbations into finding policy perturbations plus finding the state
that achieves the lowest value policy, thus addressing the challenge of large state space.

8.6.2 Robust RL

Distributionally Robust RL. Nilim and El Ghaoui [277] and Iyengar [162] consider the
problem of distributionally robust RL, where there is normally an uncertainty set with prior
information regarding the distribution of the uncertain parameters. Iyengar [162] directly
puts constraints on environmental dynamics and reward functions by assuming that they
take values in an uncertainty set. Another line of research assumes the environmental dy-
namics and reward function as the uncertain parameters and are sampled from an uncertain
distribution in the uncertain set. The uncertainty set is in general state-wise independent,
i.e., “s-rectangularity” in Nilim and El Ghaoui [277]. Both types aim to derive a policy by
solving a max-min problem, with the former taking the minimum directly over the parame-
ters, while the latter taking the minimum over the distribution.

Empirically Robust RL against Evasion Attacks. Randomization methods [4, 369]
were first proposed to encourage exploration. This type of method was later systematically
studied for its potential to improve model robustness. NoisyNet [121] adds parametric noise
to the network’s weight during training, providing better resilience to both training-time
and test-time attacks [29, 30], also reducing the transferability of adversarial examples, and
enabling quicker recovery with fewer number of transitions during phase transition.

Under the adversarial training framework, Kos and Song [189] and Behzadan and Munir
[29] show that re-training with random noise and FGSM perturbations increases the resilience
against adversarial examples. Pattanaik et al. [290] leverage attacks using an engineered
loss function specifically designed for RL to significant increase the robustness to parameter
variations. RS-DQN [117] is an imitation learning based approach that trains a robust
student-DQN in parallel with a standard DQN in order to incorporate the constrains such
as SOTA adversarial defenses [251, 262].

SA-DQN [447] is a regularization based method that adds regularizers to the training loss
function to encourage the top-1 action to stay unchanged under perturbation.
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Built on top of the neural network verification algorithms [134, 402], Radial-RL [280]
proposes to minimize an adversarial loss function that incorporates the upper bound of the
perturbed loss, computed using certified bounds from verification algorithms. CARRL [111]
aims to compute the lower bounds of action-values under potential perturbation and select
actions according to the worst-case bound, but it relies on linear bounds [402] and is only
suitable for low-dimensional environments.

We emphasize two main differences between the contributions of prior works and our
CROP. First, most of these robust RL methods only provide empirical robustness against
perturbed state inputs during test time, but cannot provide theoretical guarantees for the
performance of the trained models under any bounded perturbations; while our CROP
framework can provide practically computable certified robustness w.r.t. two robustness
certification criteria (per-state action stability and cumulative reward lower bound), i.e., for
a given RL algorithm, we can compute certifications for it that indicate its robustness. (We
will discuss a few more related work that can provide certified robustness in Section 8.6.3.)
Second, most of these Robust RL methods focus on only the per-state decision, while we
additionally consider the certification of trajectories to obtain the lower bound of cumulative
rewards.

8.6.3 Robustness Certification for RL

Despite the abundant literature in robustness certification in supervised learning, there is
almost no work on robustness certification for RL, given the unclear criteria and the intrinsic
difficulty of the task. In this part, we first introduce another two works that can achieve
robustness certification at state-level, and then another concurrent work Kumar et al. [196]
which also aims to provide provable robustness regarding the cumulative reward for RL.

Robustness Certification on State Level. Fischer et al. [117] and Zhang et al. [447]
have discussed the state level robustness certification as well, but the way they obtain the
certification is different from our CROP. Concretely, we achieve robustness by probabilistic
certification via randomized smoothing [77], while Fischer et al. [117] and Zhang et al. [447]
directly achieve robustness by deterministic certification via leveraging the neural network
verification techniques [262, 424, 443].

Despite these works on state-level robustness certification for RL, we are the first to
provide the certification of cumulative rewards. We emphasize that the certification of lower
bound of the cumulative reward in RL is more challenging than the per-state certification
considering the dynamic nature of RL. Our main contribution of the chapter indeed mainly
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focuses on providing an efficient adaptive search based algorithm CROP-LoRe to certify
the lower bound of the cumulative reward together with rigorous analysis of the certification.

Robustness Certification for Cumulative Rewards. We compare our robustness cer-
tification for cumulative rewards with another concurrent work [196].

In terms of the threat model, both Kumar et al. [196] and CROP consider the type of
adversary that can perturb the state observations of the agent during test time. In our
CROP, we consider a perturbation budget per time step following previous works [29, 156,
189, 290, 447], while they assume a budget for the entire episode. The two perspectives are
closely related.

Regarding the certification criteria, we certify both per-state action stability and cumula-
tive reward lower bound. Although they also consider the cumulative reward in their certifi-
cation goal, they formulate the certification as a classification problem—certifying whether
the cumulative reward is above a threshold or not, in contrast to directly certifying the lower
bound as in our case.

For the certification technique, both works are developed based on randomized smoothing
proposed in supervised learning [77]. We propose a global smoothing technique (CROP-
GRe), as well as an adaptive search algorithm coupled with local smoothing (CROP-LoRe)
to achieve the certification of cumulative reward; while they propose an adaptive version of
the Neyman-Pearson lemma, which is similar with our global smoothing. Among the three
algorithms (CROP-GRe, CROP-LoRe, and Kumar et al. [194]), CROP-GRe cannot
defend against an adaptive adversary (as concretely stated in Section 8.4.3) while the other
two can; specifically, CROP-LoRe is much more sophisticated and tight than the global
smoothing ones, which is an important contribution in our work.

8.7 SUMMARY

To provide the robustness certification for RL methods, we propose a general framework
CROP, aiming to provide certification based on two criteria. Our evaluations show that
certain empirically robust RL methods are certifiably robust for specific RL environments.
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CHAPTER 9: ROBUSTNESS IN OFFLINE REINFORCEMENT LEARNING
AGAINST DATA POISONING: COPA

Reinforcement learning (RL) has been widely applied to a range of applications. In par-
ticular, offline RL [216] is proposed to leverage previously observed data to train the policy
without requiring expensive interaction with environments or online data collection, and en-
ables the reuse of training data [3]. However, offline RL also raises a great safety concern on
poisoning attacks [184, 385, 392]. A recent survey of industry reports that data poisoning is
significantly more concerning than other threats [198]. For offline RL, the situation is even
worse, and a recent theoretical study shows that the robust offline RL against poisoning
attacks is a strictly harder problem than online RL [456].

Although there are several empirical and certified defenses for classification tasks against
poisoning attacks [213, 293, 400], it is challenging and shown ineffective to directly apply
them to RL given its complex structure [184]. Thus, robust offline RL against poisoning
attacks remains largely unexplored with no mention of robustness certification. In addition,
though some theoretical analyses provide general robustness bounds for RL, they either
assume a bounded distance between the learned and Bellman optimal policies or are limited
to linear MDPs [456]. To the best of our knowledge, there is no robust RL method that
is able to provide practically computable certified robustness against poisoning attacks. In
this chapter, we tackle this problem by proposing the first framework of Certifying robust
policies for general offline RL against poisoning attacks (COPA).

Certification Criteria. One critical challenge in certifying robustness for offline RL is
the certification criteria, since the prediction consistency is no longer the only goal as in
classification. We extend the two criteria in Chapter 8: per-state action stability and cumu-
lative reward bound. The former guarantees that at a specific time, the policy learned with
COPA will predict the same action before and after attacks under certain conditions. This
is important for guaranteeing the safety of the policy at critical states, e.g., braking when
seeing pedestrians. For cumulative reward bound, a lower bound of the cumulative reward
for the policy learned with COPA is guaranteed under certain poisoning conditions. This
directly guarantees the worst-case overall performance.

COPA Framework. COPA is composed of two components: policy partition and ag-
gregation protocol and robustness certification method. We propose three policy partition
aggregation protocols: PARL (Per-State Partition Aggregation), TPARL (Temporal Par-
tition Aggregation), and DPARL (Dynamic Temporal Partition Aggregation), and propose
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certification methods for each of them corresponding to both proposed certification criteria.
In addition, for per-state action stability, we prove that our certifications for PARL and
TPARL are theoretically tight. For cumulative reward bound, we propose an adaptive search
algorithm, where we compute the possible action set for each state under certain poisoning
conditions. Concretely, we propose a novel method to compute the precise action set for
PARL and efficient algorithms to compute a superset of the possible action set which leads
to sound certification for TPARL and DPARL. We further prove that for PARL our certifi-
cation is theoretically tight, for TPARL the theoretically tight certification is NP-complete,
and for DPARL it is open whether theoretically tight certification exists.

Technical Contributions. We take the first step towards certifying the robustness of
offline RL against poisoning attacks, and we make contributions on both theoretical and
practical fronts.

• We abstract and formulate the robustness certification for offline RL against poison-
ing attacks, and we propose two certification criteria: per-state action stability and
cumulative reward bound.

• We propose the first framework COPA for certifying robustness of offline RL against
poisoning attacks. COPA includes novel policy aggregation protocols and certification
methods.

• We prove the tightness of the proposed certification methods for the aggregation pro-
tocol PARL. We also prove the computational hardness of the certification for TPARL.

• We conduct thorough experimental evaluation for COPA on different RL environ-
ments with three offline RL algorithms, demonstrating the effectiveness of COPA, to-
gether with several interesting findings. Code is open source at https://github.com/
AI-secure/COPA for reproducibility, and all experimental results are actively main-
tained at https://copa-leaderboard.github.io/.

9.1 RELATED WORK

Poisoning attacks [97, 274] are critical threats in machine learning, which are claimed to
be more concerning than other threats [198]. Poisoning attacks widely exist in classifica-
tion [324], and both empirical defenses [57, 237, 293, 353] and certified defenses [167, 213, 400]
have been proposed.
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After Kiourti et al. [184] show the existence of effective backdoor poisoning attacks in RL, a
recent work theoretically and empirically validates the existence of reward poisoning in online
RL [453]. Furthermore, Zhang et al. [456] theoretically prove that the offline RL is more
difficult to be robustified against poisoning than online RL considering linear MDP. From the
defense side, Zhang et al. [456] propose robust variants of the Least-Square Value Iteration
algorithm that provides probabilistic robustness guarantees under linear MDP assumption.
In addition, Robust RL against reward poisoning is studied in Banihashem et al. [24], but
robust RL against general poisoning is less explored. In this background, we aim to provide
the certified robustness for general offline RL algorithms against poisoning attacks, which is
the first work that achieves the goal.

9.2 CERTIFICATION CRITERIA OF COPA

In this section, we define two robustness certification criteria for offline RL against general
poisoning attacks: per-state action stability and cumulative reward bound.

Offline RL. We model the RL environment by an episodic finite-horizon Markov decision
process (MDP) E “ pS,A, R, P,H, d0q, where S is the set of states, A is the set of discrete
actions, R : S ˆ A Ñ R is the reward function, P : S ˆ A Ñ PpSq is the stochastic
transition function with Pp¨q defining the set of probability measures, H is the time horizon,
and d0 P PpSq is the distribution of the initial state. At time step t, the RL agent is
at state st P S7. After choosing action at P A, the agent transitions to the next state
st`1 „ P pst, atq and receives reward rt “ Rpst, atq. After H time steps, the cumulative
reward J “

řH´1
t“0 rt. We denote a consecutive sequence of all states between time step l and

r as sl:r :“ rsl, sl`1, . . . , srs.
Here we focus on offline RL, for which the threat of poisoning attacks is practical and

more challenging to deal with [456]. Concretely, in offline RL, a training dataset D “ tτiu
N
i“1

consists of logged trajectories, where each trajectory τ “ tpsj, rj, aj, s1
jqu

l
j“1 P pSˆAˆRˆSql

consists of multiple tuples denoting the transitions (i.e., starting from state sj, taking the
action aj, receiving reward rj, and transitioning to the next state s1

j).

Poisoning Attacks. Training dataset D can be poisoned in the following manner. For
each trajectory τ P D, the adversary is allowed to replace it with an arbitrary trajectory rτ ,
generating a manipulated dataset rD. We denote Da rD “ pDz rDq

Ť

p rDzDq as the symmetric
7Following the routine in RL literature, in Chapter 8 and this chapter, we use normal instead of the

bolded font for st and other vectors.
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difference between two datasets D and rD. For instance, adding or removing one trajectory
causes a symmetric difference of magnitude 1, while replacing one trajectory with a new
one leads to a symmetric difference of magnitude 2. We refer to the size of the symmetric
difference as the poisoning size.

Certification Goal. To provide the robustness certification against poisoning attacks
introduced above, we aim to certify the test-time performance of the trained policy in a
clean environment. Specifically, in the training phase, the RL training algorithm and our
aggregation protocol can be jointly modeled by M : D Ñ pS‹ Ñ Aq which provides an
aggregated policy, where S‹ denotes the set of all consecutive state sequences. Our goal
is to provide robustness certification for the poisoned aggregated policy π̃ “ Mp rDq, given
bounded poisoning size (i.e., |D a rD| ď sK).

Robustness Certification Criteria: Per-state Action Stability. We first aim to
certify the robustness of the poisoned policy in terms of the stability of per-state action
during test time.

Definition 9.1 (Robustness Certification for Per-state Action Stability). Given a clean
dataset D, we define the robustness certification for per-state action stability as that for any
rD satisfying |D a rD| ď sK, the action predictions of the poisoned and clean policies for the
state (or state sequence) s are the same, i.e., π̃ “Mp rDq, π “MpDq, π̃psq “ πpsq, under the
tolerable poisoning threshold sK. In an episode, we denote the tolerable poisoning threshold
for the state at step t by sKt.

The definition encodes the requirement that, for a particular state, any poisoned policy
will always give the same action prediction as the clean one, as long as the poisoning size
is within sK ( sK computed in Section 9.3). In this definition, s could be either a state or a
state sequence, since our aggregated policy (defined in Section 9.2) may aggregate multiple
recent states to make an action choice.

Robustness Certification Criteria: Lower Bound of Cumulative Reward. We
also aim to certify poisoned policy’s overall performance in addition to the prediction at a
particular state. Here we measure the overall performance by the cumulative reward Jpπq.

Definition 9.2 (Cumulative Reward). Let P : S ˆ A Ñ PpSq be the transition function
with Pp¨q defining the set of probability measures. Let R, d0, H be the reward function,
initial state distribution, and time horizon. We denote Jpπq as the cumulative reward of the
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given policy π:

Jpπq :“ E
H´1
ÿ

t“0

Rpst, atq, where at “ πpstq, st`1 „ P pst, atq, s0 „ d0, (9.1)

It is natural to adapt this definition when there is a discount factor. If policy π considers
recent nt states instead of only st to make action predictions, we can change at “ πpstq to
at “ πpst´nt`1:tq in Equation (9.1).

Now we are ready to define the robustness certification for cumulative reward bound.

Definition 9.3 (Robustness Certification for Cumulative Reward Bound). Robustness cer-
tification for cumulative reward bound is the lower bound of cumulative reward JK such that
JK ď Jpπ̃q for any π̃ “Mp rDq where |D a rD| ď K, i.e., π̃ is trained on poisoned dataset rD

within poisoning size K.

9.3 COPA TRAINING AND AGGREGATION PROTOCOLS

In this section, we introduce our framework COPA, which is composed of training protocols
and aggregation protocols, and certification methods. The training protocol combined with an
offline RL training algorithm provides subpolicies. The aggregation protocol aggregates the
subpolicies as an aggregated policy. In Section 9.4, we will introduce the certification method
for COPA. The certification method certifies the robustness of the aggregated policy against
poisoning attacks corresponding to different certification criteria provided in Section 9.2.

9.3.1 Partition-Based Training Protocol

COPA’s training protocol contains two stages: partitioning and training. We denote D
as the entire offline RL training dataset. We abstract an offline RL training algorithm (e.g.,
DQN) by M0 : 2D Ñ Π, where 2D is the power set of D, and Π “ tπ : S Ñ Au is the
set of trained policies. Each trained policy in Π is a function mapping a given state to the
predicted action.

Partitioning Stage. In this stage, we separate the training dataset D into u partitions
tDiu

u´1
i“0 that satisfy

Ťu´1
i“0 Di “ D and @i ‰ j,Di XDj “ H. Concretely, when performing

partitioning, for each trajectory τ P D, we deterministically assign it to one unique partition.
The assignment is only dependent on the trajectory τ itself, and not impacted by any
modification to other parts of the training set. One design choice of such a deterministic
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assignment is using a deterministic hash function h to compute the assignment, i.e., Di “

tτ P D | hpτq ” i pmod uqu, @i P rus.

Training Stage. In this stage, for each training data partition Di, we independently
apply an RL algorithm M0 to train a policy πi “ M0pDiq. Hereinafter, we call these
trained polices as subpolicies to distinguish from the aggregated policies. Concretely, let
rus :“ t0, 1, . . . , u´ 1u. For these subpolicies, the policy indicator Ii,a : S Ñ t0, 1u is defined
by Ii,apsq :“ Irπipsq “ as, indicating whether subpolicy πi chooses action a at state s. The
aggregated action count na : S Ñ Ně0 is the number of votes across all the subpolicies for
action a given state s: napsq :“ |ti|πipsq “ a, i P rusu| “

řu´1
i“0 Ii,apsq. Specifically, we denote

napsl:rq for
řr
j“l napsjq, i.e., the sum of votes for states between time step l and r. A detailed

algorithm of the training protocol is in Appendix G.1.1.
Now we are ready to introduce the proposed aggregation protocols in COPA (PARL,

TPARL, DPARL) that generate aggregated policies based on subpolicies, and corresponding
certification.

9.3.2 Aggregation Protocols: PARL, TPARL, DPARL

With u learned subpolicies tπiuu´1
i“0 , we propose three different aggregation protocols in

COPA to form three types of aggregated policies for each certification criteria: PARL,
TPARL, and DPARL.

Per-State Partition Aggregation (PARL). Inspired by aggregation in classification [213],
PARL aggregates subpolicies by choosing actions with the highest votes. We denote the
PARL aggregated policy by πP : S Ñ A. When there are multiple highest voting actions,
we break ties deterministically by returning the “smaller” (ă) action, which can be defined
by numerical order, lexicographical order, etc. Throughout the chapter, we assume argmax

over A always uses ă operator to break ties.

Definition 9.4 (Per-State Partition Aggregation). Given subpolicies tπiuu´1
i“0 , the Per-State

Partition Aggregation (PARL) protocol defines an aggregated policy πP : S Ñ A such that

πPpsq :“ argmax
aPA

napsq, (9.2)

where napsq is defined in Section 9.2.

The intuition behind PARL is that the poisoning attack within size K can change at
most K subpolicies. Therefore, as long as the margin between the votes for top and runner-
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up actions is larger than 2K for the given state, after poisoning, we can guarantee that
the aggregated PARL policy will not change its action choice. We will formally state the
robustness guarantee in Section 9.4.1.

Temporal Partition Aggregation (TPARL). In the sequential decision making process
of RL, it is likely that certain important states are much more vulnerable to poisoning
attacks, which we refer to as bottleneck states. Therefore, the attacker may just change the
action predictions for these bottleneck states to deteriorate the overall performance, say, the
cumulative reward. For example, in Pong game, we may lose the round when choosing an
immediate bad action when the ball is closely approaching the paddle. Thus, to improve the
overall certified robustness, we need to focus on improving the tolerable poisoning threshold
for these bottleneck states. Given such intuition and goal, we propose Temporal Partition
Aggregation (TPARL) and the aggregated policy is denoted as πT:

Definition 9.5 (Temporal Partition Aggregation). Given subpolicies tπiuu´1
i“0 and window

size W , at time step t, the Temporal Partition Aggregation (TPARL) defines an aggregated
policy πT : Smintt`1,W u Ñ A such that

πTpsmaxtt´W`1,0u:tq “ argmax
aPA

napsmaxtt´W`1,0u:tq, (9.3)

where sl:r and na are defined in Section 9.2.

In the above definition, at time step t, the input of policy πT contains all states between
time step maxtt ´ W ` 1, 0u and t within window size W ; and the output is the policy
prediction with the highest votes across these states. Recall that in Section 9.2, we define
napsl:rq “

řr
j“l napsjq. We break ties in the same way as in PARL.

TPARL is based on two insights: (1) Bottleneck states have lower tolerable poisoning
threshold, which is because the vote margin between the top and runner-up actions is smaller
at such state; (2) Some RL tasks satisfy temporal continuity [208, 379], indicating that good
action choices are usually similar across states of adjacent time steps, i.e., adjacent states.
Hence, we leverage the subpolicies’ votes from adjacent states to enlarge the vote margin,
and thus increase the tolerable poisoning threshold. To this end, in TPARL, we predetermine
a window size W , and choose the action with the highest votes across recent W states.

Dynamic Temporal Partition Aggregation (DPARL). The TPARL uses a fixed
window size W across all states. Since the specification of the window size W requires
certain prior knowledge, plus that the same fixed window size W may not be suitable for all
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states, it is preferable to perform dynamic temporal aggregation by using a flexible window
size. Therefore, we propose Dynamic Temporal Partition Aggregation (DPARL), which
dynamically selects the window sizeW towards maximizing the tolerable poisoning threshold
per step. Intuitively, DPARL selects the window size W such that the average vote margin
over selected states is maximized. To guarantee that only recent states are chosen, we further
constrain the maximum window size (Wmax).

Definition 9.6 (Dynamic Temporal Partition Aggregation). Given subpolicies tπiuu´1
i“0 and

maximum window size Wmax, at time step t, the Dynamic Temporal Partition Aggrega-
tion (DPARL) defines an aggregated policy πD : Smintt`1,Wmaxu Ñ A such that

πDpsmaxtt´Wmax`1,0u:tq :“ argmax
aPA

napst´W 1`1:tq, where W
1 “ argmax

1ďWďmintWmax,t`1u

∆W
t . (9.4)

In the above equation, na is defined in Section 9.2 and ∆W
t is given by

∆W
t :“

1

W

`

na1pst´W`1:tq ´ na2pst´W`1:tq
˘

,

where a1 “ argmax
aPA

napst´W`1:tq, a2 “ argmax
aPA,a‰a1

napst´W`1:tq.
(9.5)

In the above definition, ∆W
t encodes the average vote margin between top action a1 and

runner-up action a2 if choosing window size W . Thus, W 1 locates the window size with
maximum average vote margin, and its corresponding action is selected. Again, we use the
mechanism described in PARL to break ties. Robustness certification methods for DPARL
are in Sections 9.4.1 and 9.4.2.

9.3.3 Illustration of COPA Aggregation Protocols

We present a concrete example to demonstrate how different aggregation protocols induce
different tolerable poisoning thresholds, illustrate bottleneck and non-bottleneck states, and
provide additional discussions.

Suppose the action space contains two actions A “ ta1, a2u, and there are six subpolicies
tπiu

u´1
i“0 where u “ 6. We are at time step t “ 7 now. When there is no poisoning, the

subpolicies’ action predictions for state s0 to s7 are shown by Table 9.1. After aggregation,
all aggregated policies will choose action a1 at t “ 7.
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Table 9.1: A concrete example of action predictions, where “1” means action a1 and “2”
means action a2. When there is no poisoning attack, the corresponding time window spans
by PARL, TPARL, and DPARL are shown by green , blue , and pink respectively. All
aggregated policies choose action a1, but have different tolerable poisoning thresholds as
shown in the last column.

Action Prediction for s0 s1 s2 s3 s4 s5 s6 s7 sK at s7
π0 1 1 1 1 1 1 1 1
π1 1 1 1 1 1 1 1 1
π2 1 1 1 1 1 1 1 1
π3 1 1 1 1 1 1 1 2
π4 1 1 1 1 1 1 1 2
π5 1 1 1 2 1 2 2 2

PARL (πP, Definition 9.4) 1 0
TPARL with W “ 7 (πT, Definition 9.5) 1 2

DPARL with Wmax “ 8 (πD, Definition 9.6) 1 1

PARL (Definition 9.4). The PARL aggregation protocol only uses the current state s7
to aggregate the votes. On s7, three subpolicies choose action a1 and three others choose
action a2. By breaking the tie with a1 ă a2, the PARL policy πPps7q “ a1. The tolerable
poisoning threshold sKt “ 0, because one action flipping from a1 to a2 by poisoning only one
subpolicy can change the aggregated policy to a2.

TPARL (Definition 9.5). The TPARL aggregation protocol uses window size W “ 7.
This implies that, we aggregate all states s1:7 to count the votes and decide the action. Since
na1ps1:7q “ 36 and na2ps1:7q “ 6, after poisoning two subpolicies, we still rna1ps1:7q ě rna2ps1:7q.
Thus, we achieve an tolerable poisoning threshold sKt “ 2.

Compared with PARL, the temporal aggregation in TPARL increases the vote margin
between a1 and a2 and thus improve the tolerable poisoning threshold at current state.

DPARL (Definition 9.6). The DPARL aggregation protocol chooses the window size
W 1 “ 8 since this window size gives the largest average vote margin ∆W 1

t (defined in Equa-
tion (9.4)). We can easily find out that with poisoning size K “ 1, we will still choose
ĂW 1 “ 8 as the window size and the resulting votes for a1 can be kept higher than votes for
a2. However, when it comes to K “ 2, if we totally flip subpolicies π0 and π1 to let them
always predict action a2, then the DPARL aggregated policy will turn to choose W 1 “ 1 as
the window size and then choose action a2 as the action output. Thus, we achieve a tolerable
poisoning threshold sKt “ 1 this time.
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Illustrations of Bottleneck and Non-bottleneck States. According to our illustration
in Section 9.3.2, bottleneck states are those where subpolicies vote for diverse actions but
the best action is the same as previous states, and non-bottleneck states are those where
subpolicies mostly vote for the same action. As we can see, s0 to s6 are non-bottleneck states
since the subpolicies almost unanimously vote for one action. In contrast, s7 is a bottleneck
state.

From the perspectives of different aggregation protocols, we observe that for the bottleneck
state s7, both TPARL and DPARL exploit temporal aggregation to boost the certified robust
poisoning threshold (from 0 to 2 and from 0 to 1 respectively), thus demonstrating the
effectiveness of TPARL and DPARL on improving certified robustness. On the other hand,
for non-bottleneck states s0 to s6, we can easily see that different aggregation protocols do
not differ much in terms of provided certified robustness levels.

Explanations for Bottleneck and Non-bottleneck States. We provide additional
discussions regarding why bottleneck states are vulnerable and why our temporal aggregation
strategy can effectively alleviate the problem. We first explain the existence of the bottleneck
states. Given the property of the bottleneck states that there is high disagreement among
different subpolicies on such states, they may lie close to the decision boundary. This may be
a result of poisoning, or simply due to the intrinsic difficulty of the state. On the other hand,
such states naturally exist in the rollouts (like natural adversarial examples [147]), and may
induce high instability of the rollouts during testing. We next discuss additional intuitions
for our temporal aggregation. Essentially, temporal aggregation effectively leverages the
adjacent non-bottleneck states to rectify the decisions at the bottleneck states, based on the
assumption of temporal continuity which has been revealed and utilized in several previous
works [208, 379, 433].

9.4 CERTIFICATION WITH COPA PROTOCOLS

In this section, we present the certification method for COPA. Table 9.2 presents an
overview of our theoretical results supporting the certification method: For each proposed
aggregation protocol and certification criterion, we provide the corresponding certification
method and core theorems, and we also provide the tightness analysis for each certification.
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Table 9.2: Overview of theoretical results in Section 9.3. “Certification” columns entail our
certification theorems. “Analysis” columns entail the analyses of our certification bounds,
where “tight” means our certification is theoretically tight, “NP-complete” means the tight
certification problem is NP-complete, and “open” means the tight certification problem is
still open. Theorem G.1 is in Appendix G.2.6.

Certification
Criteria

Proposed Aggregation Protocol

PARL (πP, Definition 9.4) TPARL (πT, Definition 9.5) DPARL (πD, Definition 9.6)
Certification Analysis Certification Analysis Certification Analysis

Per-state Action Theorem 9.1 tight (Proposition 9.1) Theorem 9.2 tight (Proposition 9.2) Theorem 9.3 open
Cumulative Reward Theorem 9.4 tight (Theorem G.1) Theorem 9.5 NP-complete (Theorem 9.6) Theorem 9.7 open

9.4.1 Certification of Per-state Action Stability
In this section, we present our robustness certification theorems and methods for per-state

action. For each of the aggregation protocols (PARL, TPARL, and DPARL), at each time
step t, we will compute a valid tolerable poisoning threshold sK as defined in Definition 9.1,
such that the chosen action at step t does not change as long as the poisoning size K ď sK.

Certification for PARL. We certify the robustness of PARL following Theorem 9.1.

Theorem 9.1. Let D be the clean training dataset; let πi “M0pDiq, 0 ď i ď u´ 1 be the
learned subpolicies according to Section 9.3.1 from which we define na (see Section 9.2); and
let πP be the Per-State Partition Aggregation policy: πP “ MpDq where M abstracts the
whole training-aggregation process. rD is a poisoned dataset and ĂπP is the poisoned policy:
ĂπP “Mp rDq.
For a given state st encountered at time step t during test time, let a :“ πPpstq, then

sKt “

[

napstq ´ maxa1‰a

`

na1pstq ` Ira1 ă as
˘

2

_

. (9.6)

Remark 9.1. The theorem provides a valid per-state action certification for PARL, since
according to Definition 9.1, as long as the poisoning size is smaller or equal to sKt, i.e.,
|D a rD| ď sKt, the action of the poisoned policy is the same as the clean policy: ĂπPpstq “

πPpstq “ a. To compute sKt, according to Equation (9.6), we rely on the aggregated action
count na for state st from subpolicies. The a1 ă a is the “smaller-than” operator introduced
following Definition 9.4.

Proof of Theorem 9.1. Suppose the poisoning size is within K, then after poisoning, the
aggregated action count rnapstq P rnapstq ´K,napstq `Ks where napstq is such count before
poisoning. Thus, to ensure the chosen action does not change, a necessary condition is that
rnapstq ě rna1pstq ` Ira1 ă as for any other a1 ă a. Solving K yields Equation (9.6). QED.
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We use the theorem to compute the per-state action certification for each time step t along
the trajectory, and the detailed algorithm is in Algorithm G.2 (Appendix G.1). Furthermore,
we prove that this certification is theoretically tight as the following proposition shows. The
proof is in Appendix G.2.1.

Proposition 9.1. Under the same condition as Theorem 9.1, for any time step t, there
exists an RL learning algorithm M0, and a poisoned dataset rD, such that |Da rD| “ sKt`1,
and ĂπPpstq ‰ πPpstq.

Certification for TPARL. We certify the robustness of TPARL following Theorem 9.2.

Theorem 9.2. Let D be the clean training dataset; let πi “M0pDiq, 0 ď i ď u´ 1 be the
learned subpolicies according to Section 9.3.1 from which we define na (Section 9.2); and
let πT be the Temporal Partition Aggregation policy: πT “ MpDq where M abstracts the
whole training-aggregation process. rD is a poisoned dataset and ĂπT is the poisoned policy:
ĂπT “Mp rDq.
For a given state st encountered at time step t during test time, let a :“ πTpsmaxtt´W`1,0u:tq,

then at time step t the tolerable poisoning threshold (see Definition 9.1)

sKt “ min
a1‰a,a1PA

max

#

p
∣∣∣ p
ÿ

i“1

h
piq
a,a1 ď δa,a1

+

(9.7)

where thpiq
a,a1u

u
i“1 is a nonincreasing permutation of

$

&

%

mintW´1,tu
ÿ

j“0

Ii,apst´jq `mintW, t` 1u ´

mintW´1,tu
ÿ

j“0

Ii,a1pst´jq

,

.

-

u´1

i“0

“: thi,a,a1uu´1
i“0 , (9.8)

and δa,a1 :“ napsmaxtt´W`1,0u:tq ´ pna1psmaxtt´W`1,0u:tq ` Ira1 ă asq. Here, Ii,apsq “ Irπipsq “
as (Section 9.2), and W is the window size.

Remark 9.2. We defer the detailed proof to Appendix G.2.2. The theorem provides a
per-state action certification for TPARL. The detailed algorithm is in Algorithm G.3 (Ap-
pendix G.1.2). The certification time complexity per state is Op|A|upW ` log uqq and can
be further optimized to Op|A|u log uq with proper prefix sum caching across time steps.
We prove the certification for TPARL is theoretically tight in Proposition 9.2 (proof in
Appendix G.2.3). We also prove that directly extending Theorem 9.1 for TPARL (Corol-
lary G.1) is loose in Appendix G.2.4.
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Proposition 9.2. Under the same condition as Theorem 9.2, for any time step t, there
exists an RL learning algorithm M0, and a poisoned dataset rD, such that |Da rD| “ sKt`1,
and ĂπTpsmaxtt´W`1,0u:tq ‰ πTpsmaxtt´W`1,0u:tq.

Certification for DPARL. Theorem 9.3 provides certification for DPARL.

Theorem 9.3. Let D be the clean training dataset; let πi “M0pDiq, 0 ď i ď u´ 1 be the
learned subpolicies according to Section 9.3.1 from which we define na (see Section 9.2); and
let πD be the Dynamic Temporal Partition Aggregation: πD “ MpDq where M abstracts
the whole training-aggregation process. rD is a poisoned dataset and ĂπD is the poisoned
policy: ĂπD “Mp rDq.

For a given state st encountered at time step t during test time, let a :“ πDpsmaxtt´Wmax`1,0u:tq

and W 1 be the chosen time window (according to Equation (9.4)), then tolerable poisoning
threshold

sKD
t “ min

"

sKt, min
1ďW˚ďmintWmax,t`1u,W˚‰W 1,a1‰a,a2‰a

LW
˚,W 1

a1,a2

*

(9.9)

where sKt is defined by Equation (9.7) with W as W 1 and LW
˚,W 1

a,a2 defined by the below
Definition 9.7.

Definition 9.7 (L in Theorem 9.3). Under the same condition as Theorem 9.3, for given
W ˚,W 1, a, a1, a2, we let a# :“ argmaxa0‰a1,a0PA na0pst´W˚`1:tq, then

LW
˚,W 1

a1,a2 :“ max

#

p
∣∣∣ p
ÿ

i“1

gpiq `W 1pnW
˚

a1 ´ nW
˚

a# q ´W
˚pnW

1

a ´ nW
1

a2 q ´ Ira1 ą as ă 0

+

(9.10)

where nwa is a shorthand of napst´w`1:tq and tgpiquui“1 is a nonincreasing permutation of
tgiu

u´1
i“0 . Each gi is defined by

gi :“

maxtW˚,W 1u
ÿ

w“0

max
a0PA

σwpa0q ´ σ
wpπipst´wqq, where (9.11)

σwpa0q :“ W 1Ira0 “ a1, w ď W ˚s ´W 1Ira0 “ a#, w ď W ˚s ´W ˚Ira0 “ a, w ď W 1s `W ˚Ira0 “ a2, w ď W 1s.

Proof sketch. A successful poisoning attack should change the chosen action from a to an
another a1. If after attack, the chosen window size is still W 1, the poisoning size should be
at least larger than sKt according to Theorem 9.2. If the chosen window size is not W 1, we
find out that the poisoning size is at least mina2‰a L

W˚,W 1

a1,a2 ` 1 from a greedy-based analysis.
Formal proof is in Appendix G.2.5. QED.
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Remark 9.3. The theorem provides a valid per-state action certification for DPARL policy.
The detailed algorithm is in Algorithm G.4 (Appendix G.1.2). The certification time com-
plexity per state is OpW 2

max|A|2u`Wmax|A|2u log uq, which in practice adds similar overhead
compared with TPARL certification. Unlike certification for PARL and TPARL, the certi-
fication given by Theorem 9.3 is not theoretically tight. An interesting future work would
be providing a tighter per-state action certification for DPARL.

9.4.2 Certification of Cumulative Reward Bound

In this section, we present our robustness certification for cumulative reward bound. We
assume the deterministic RL environment throughout the cumulative reward certification
for convenience, i.e., the transition function is P : S ˆ A Ñ S and the initial state is a
fixed s0 P S. The certification goal, as listed in Definition 9.2, is to obtain a lower bound of
cumulative reward under poisoning attacks, given bounded poisoning sizeK. The cumulative
reward certification is based on a novel adaptive search algorithm COPA-LoRe inspired
from [408]; we tailor the algorithm to certify against poisoning attacks. We defer detailed
discussions and complexity analysis to Appendix G.1.3.

COPA-LoRe Algorithm Description. Algorithm G.5 in Appendix G.1.3 shows the
pseudocode. The method starts from the base case: when the poisoning threshold Kcur “ 0,
the lower bound of cumulative reward JKcur

is exactly the reward without poisoning. The
method then gradually increases the poisoning threshold Kcur, by finding the immediate
larger K 1 ą Kcur that can expand the possible action set along the trajectory. With the
increase of Kcur Ð K 1, the attack may cause the poisoned policy π̃ to take different actions
at some states, thus resulting in new trajectories. We need to figure out a set of all possible
actions to exhaustively traverse all possible trajectories. We will introduce theorems to
compute this set of possible actions. With this set, the method effectively explores these
new trajectories by formulating them as expanded branches of a trajectory tree. Once all
new trajectories are explored, the method examines all leaf nodes of the tree and figures out
the minimum reward among them, which is the new lower bound of cumulative reward JK1

under new poisoning size K 1. We then repeat this process of increasing poisoning size from
K 1 and expanding with new trajectories until we reach a predefined threshold for poisoning
size K.

Definition 9.8 (Possible Action Set). Given previous states s0:t, the subpolicies tπiuu´1
i“0 , the

aggregation protocol (PARL, TPARL, or DPARL), and the poisoning size K, the possible
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action set A at step t is a subset of action space: A Ď A, such that for any poisoned policy
rπ, as long as the poisoning size is within K, the chosen action at step t will always be in A,
i.e., at “ rπps0:tq P A.

Possible Action Set for PARL. The following theorem gives the possible action set for
PARL.

Theorem 9.4 (Tight PARL Action Set). Under the condition of Definition 9.8, suppose
the aggregation protocol is PARL as defined in Definition 9.4, then the possible action set
at step t

AT pKq “

#

a P A
∣∣∣ ÿ

a1PA
maxtna1pstq ´ napstq ´K ` Ira1 ă as, 0u ď K

+

. (9.12)

We defer the proof to Appendix G.2.6. Furthermore, in Appendix G.2.6 we show that:
1) The theorem gives theoretically tight possible action set; 2) In contrast, directly extending
PARL’s per-state certification gives loose certification.

Possible Action Set for TPARL. The following theorem gives the possible action set
for TPARL.

Theorem 9.5. Under the condition of Definition 9.8, suppose the aggregation protocol is
TPARL as defined in Definition 9.5, then the possible action set at step t

ApKq “

$

&

%

a P A
∣∣∣ K
ÿ

i“1

h
piq
a1,a ą δa1,a, @a

1 ‰ a

,

.

-

, (9.13)

where hpiq
a1,a and δa1,a follow the definition in Theorem 9.2.

We defer the proof to Appendix G.2.7. The possible action set here is no longer the-
oretically tight. Indeed, the problem of computing a possible action set with minimum
cardinality for TPARL is NP-complete as we shown in the following theorem (proved in
Appendix G.2.8), where we reduce computing theoretically tight possible action set to the
set cover problem [179]. This result can be viewed as the hardness of targeted attack. In
other words, the optimal untargeted attack on TPARL can be found in polynomial time,
while the optimal targeted attack on TPARL is NP-complete, which indicates the robustness
property of proposed TPARL.
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Theorem 9.6. Under the condition of Definition 9.8, suppose we use TPARL (Defini-
tion 9.5) as the aggregation protocol, then computing a possible action set ApKq such that
any possible action set S satisfies |ApKq| ď |S| is NP-complete.

Possible Action Set for DPARL. The following theorem gives the possible action set
for DPARL.

Theorem 9.7. Under the condition of Definition 9.8, suppose the aggregation protocol is
TPARL as defined in Definition 9.6, then the possible action set at step t

ApKq “ tatu Y

$

’

&

’

%

a1 P A
∣∣∣ min
1ďW˚ďmintWmax,t`1u,

W˚‰W 1,a2‰at

LW
˚,W 1

a1,a2 ď K

,

/

.

/

-

Y

$

&

%

a P A
∣∣∣ K
ÿ

i“1

h
piq
a1,a ą δa1,a,@a1 ‰ a

,

.

-

(9.14)

where at “ πDpsmaxtt´Wmax`1,0u:tq is the clean policy’s chosen action, W 1 is defined by
Equation (9.4), LW

˚,W 1

a1,a2 is defined by Definition 9.7 with a being replaced by at, and hpiq
a1,a, δa1,a

is defined in Theorem 9.2 with W replaced by W 1.

We prove the theorem in Appendix G.2.8. As summarized in Table 9.2, we further prove
the tightness or hardness of certification for PARL and TPARL, while for DPARL it is an
interesting open problem on whether theoretical tight certification is possible in polynomial
time.

9.5 EXPERIMENTS

In this section, we present the evaluation for our COPA framework, specifically, the aggre-
gation protocols (Section 9.3.2) and the certification methods under different certification
criteria (Sections 9.4.1 and 9.4.2). We defer the description of the offline RL algorithms
(DQN [265], QR-DQN [88], and C51 [31]) used for training the subpolicies to Appendix G.3.1,
and the concrete experimental procedures to Appendix G.3.2. As a summary, we obtain sim-
ilar conclusions from per-state action certification and reward certification: 1) QR-DQN and
C51 are oftentimes more certifiably robust than DQN; 2) temporal aggregation (TPARL and
DPARL) achieves higher certification for environments satisfying temporal continuity, e.g.,
Freeway; 3) larger partition number improves the certified robustness; 4) Freeway is the
most stable and robust environment among the three. Full experimental results and more
discussions are deferred to the full version of this chapter [409].

9.5.1 Evaluation of Robustness Certification for Per-state Action Stability

We provide the robustness certification for per-state action stability based on Section 9.4.1.
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Figure 9.1: Robustness certification for per-state action stability. We plot the cu-
mulative histogram of the tolerable poisoning size sK for all time steps. We provide the
certification for different aggregation protocols (PARL, TPARL, DPARL) on three environ-
ments and #partitions u “ 50. The results are averaged over 20 runs with the vertical bar
on top denoting the standard deviation.

Experimental Setup and Metrics. We evaluate the aggregated policies πP, πT, and
πD following Section 9.3.2. Basically, in each run, we run one trajectory (of maximum
length H) using the derived policy, and compute sKt at each time step t. Given t sKtu

H´1
t“0 ,

we obtain a cumulative histogram—for each threshold sK, we count the time steps that
achieve a threshold no smaller than it and then normalize, i.e.,

řH´1
t“0 Ir sKtě sKs{H. We call this

quantity stability ratio since it reflects the per-state action stability w.r.t. given poisoning
thresholds. We also compute an average tolerable poisoning thresholds for a trajectory,
defined as

řH´1
t“0

sKt{H. More details are deferred to Appendix G.3.2.

Evaluation Results. We present the comparison of per-state action certification for differ-
ent RL methods and certification methods in Figure 9.1. We plot partial poisoning thresholds
on the x-axes here, and omit full results in [409], where we also report the average tolerable
poisoning thresholds. We additionally report benign empirical reward and the comparisons
with standard training as well as more analytical statistics in [409].

The cumulative histograms in Figure 9.1 can be compared in different levels. Basically, we
compare the stability ratio at each tolerable poisoning thresholds sK—higher ratio at larger
poisoning size indicates stronger certified robustness. On the RL algorithm level, QR-DQN
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and C51 consistently outperform the baseline DQN, and C51 has a substantial advantage
particularly in Highway. On the aggregation protocol level, we observe different behaviors
in different environments. On Freeway, methods with temporal aggregation (TPARL and
DPARL) achieve higher robustness, and DPARL achieves the highest certified robustness in
most cases; while on Breakout and Highway, the single-step aggregation PARL is oftentimes
better. This difference is due to the different properties of environments. Our temporal
aggregation is developed based on the assumption of consistent action selection in adjacent
time steps. This assumption is true in Freeway while violated in Breakout and Highway.
On the partition number level, a larger partition number generally allows larger tolerable
poisoning thresholds as shown in [409]. Finally, on the RL environment level, Freeway
achieves much higher certified robustness for per-state action stability than Highway, followed
by Breakout, implying that Freeway is an environment that accommodates more stable and
robust policies.

9.5.2 Evaluation of Robustness Certification for Cumulative Reward Bound

We provide the robustness certification for cumulative reward bound according to Sec-
tion 9.4.2.

Experimental Setup and Metrics. We evaluate the aggregated policies πP, πT, and πD
following Theorem 9.4, Theorem 9.5 and Theorem 9.7. We compute the lower bounds of
the cumulative reward JK w.r.t. the poisoning size K using the COPA-LoRe algorithm
introduced in Section 9.4.2. We provide details of the evaluated trajectory length along with
the rationales in Appendix G.3.2.

Evaluation Results. We present the comparison of reward certification for different RL
algorithms and certification methods in Figure 9.2. Essentially, at each poisoning size K,
we compare the lower bound of cumulative reward achieved by different RL algorithms and
certification methods—higher value of the lower bound implies stronger certified robustness.
On the RL algorithm level, QR-DQN and C51 almost invariably outperform the baseline
DQN algorithm. On the aggregation protocol level, methods with temporal aggregation
consistently surpass the single-step aggregation PARL on Freeway but not the other two, as
analyzed in Section 9.5.1. In addition, we note that DPARL is sometimes not as robust as
TPARL. We hypothesize two reasons: 1) the dynamic mechanism is more susceptible to the
attack, e.g., the selected optimal window size is prone to be manipulated; 2) the lower bound
is looser for DPARL given the difficulty of computing the possible action set in DPARL
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Figure 9.2: Robustness certification for cumulative reward. We plot the lower bound
of cumulative reward bound JK w.r.t. poisoning size K under three aggregation protocols
(PARL, TPARL (W “ 4), DPARL (Wmax “ 5)) with two #partitions u, evaluated on three
environments with different horizon lengths H.

(discussed in Theorem 9.7). On the partition number level, a larger partition number
(u “ 50) demonstrates higher robustness. On the horizon length level, the robustness
ranking of different policies is similar under different horizon lengths with slight differences,
corresponding to the property of finite-horizon RL. On the RL environment level, Freeway
can tolerate a larger poisoning size than Breakout and Highway. More results and discussions
are in [409].

9.6 SUMMARY

In this chapter, we proposed COPA, the first framework for certifying robust policies
for offline RL against poisoning attacks. COPA includes three policy aggregation protocols.
For each aggregation protocol, COPA provides a sound certification for both per-state action
stability and cumulative reward bound. Experimental evaluations on different environments
and different offline RL training algorithms show the effectiveness of our robustness certifi-
cation in a wide range of scenarios.
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CHAPTER 10: DISCUSSION FOR PART III

In this part, we discussed certified approaches for generic robustness in terms of two as-
pects: (1) certification based on transformation-specific smoothing to certify DL system’s
robustness against real-world semantic transformations, for both image models — TSS in
Chapter 7 and point cloud models — TPC in Appendix A; (2) certification for reinforce-
ment learning involving multiple rounds of interactions with the environment, against both
observation perturbations — CROP in Chapter 8 and data poisoning attacks — COPA in
Chapter 9.

These two aspects of extension open a wide range of future directions.
For certification based on transformation-specific smoothing, could such certification be

extended beyond the vision domain, e.g., the language domain? Is there a canonical way
to dig out the domain-specific transformation and synthesis certification strategy, instead
of inspecting transformations one by one? Is there any difference between certifying against
malicious attacks and certifying against natural distortions, in other words, intuitively, under
natural distortions, DL systems should have better robustness compared with under mali-
cious attacks, and could this be reflected as tighter robustness bounds? For the application
side, our ongoing effort is to ship these robustness certification approaches into deployed DL
systems, e.g., aircraft control systems and autonomous driving systems, to bring end-to-end
safety guarantees. Along this line, this part can be viewed as a “toolbox” and the author
optimistically believes that there are few technical challenges in applying the approaches in
this thesis in deployment but only requiring engineering efforts.

For certification methods for reinforcement learning, a natural question is what connec-
tions and differences are between CROP and COPA, and whether they can be combined.
First, both CROP and COPA are based on two ideas: (1) smoothing and aggregation;
(2) tree search based exploration. In CROP, since we defend against observational pertur-
bations, we apply smoothing on the input domain to cancel out the perturbations and hence
aggregate predictions of noised inputs; in COPA, since we defend against training time data
poisoning, we apply smoothing on the input data in the form of partitioning (which can
be viewed as using a 0-1 mask on training data to mask out poisoning effects) and hence
aggregate predictions from different training sets. This methodology of smoothing and ag-
gregation is generic and can be used to defend future threats. On the other hand, since
smoothing and aggregation in CROP and COPA is in orthogonal domains, they can be di-
rectly combined together to compose a joint defense against both threats. The second idea,
tree-search-based exploration, is applied in CROP and COPA in almost the same way —
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both approaches leverage stepwise certification to generate possible action set and maintain
a tree structure to certify a lower bound of cumulative reward. Actually, this tree-search-
based algorithm can also be directly combined with other robustness certification approaches
beyond randomized smoothing. For example, for small-scale problems, we can deploy this
algorithm in conjunction with white-box certification such as GCP-CROWN in Chapter 3.
Moreover, when the transition function is known or can be precisely approximated, we can
maintain action set and state set in more fine-grained structures, e.g., set of cutting planes,
rather than a discrete trajectory tree, as an extension. We leave this promising direction as
the future work. Another question would be: COPA applies temporal aggregation to boost
the voting and hence the certified robustness. Can this idea be applied in other applications
to defend under other threat models? The author believes that temporal aggregation can
also improve robustness under other threat models, e.g., against observational perturbations.
However, there are some practical challenges. For example, the temporal aggregation works
in COPA because the dataset partitions are fixed prior to inference, so the attacker’s ability is
localized. In contrast, for free input perturbations, the attacker can change its perturbation
per step, to achieve worst-case perturbations at each step. In this case, the temporal aggre-
gation loses its advantage. In contrast, if the attacker is constrained to applying persistent
perturbations, we believe a tighter certification can be derived with a temporal aggregation
strategy similar to COPA.

As a concluding remark, the author believes that extending robustness certification beyond
ℓp-bounded perturbations like the efforts in this thesis would still be an important direction
toward practical and certifiably trustworthy deep learning. Other extensions of certified
approaches in the literature can be found in Section 1.3.3 and [225].
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Part IV

Certification of Trustworthy Properties beyond Robustness

In previous parts, though certified approaches are proposed and extended, they are all
focused on certified robustness. The differences among these certified approaches are mainly
in the applied domains, the perturbed elements, and the form of perturbations, while the
certification goals are largely similar — maintaining good performance, e.g., yielding correct
predictions. In this part, we propose certified approaches for two more novel trustworthy
properties: distributional fairness and numerical reliability. Fairness is of core interest in AI
ethics. In Chapter 11, we will see how robustness certification approaches can be extended to
certify under this important notion. Numerical reliability is a lasting topic in programming
languages and software engineering. DL systems can be viewed as numerical programs. Tak-
ing this perspective, we extend certified approaches to detect numerical reliability problems
and assure numerical reliability for DL systems.
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CHAPTER 11: FAIRNESS: CERTFAIR

As machine learning (ML) has become ubiquitous [25, 35, 73, 90, 139, 200], fairness of
ML has attracted a lot of attention from different perspectives. For instance, some auto-
mated hiring systems are biased towards males due to gender imbalanced training data [14].
Different approaches have been proposed to improve ML fairness, such as regularized train-
ing [107, 182, 231, 250], disentanglement [82, 239, 322], duality [348], low-rank matrix fac-
torization [282], and distribution alignment [23, 242, 463].

In addition to existing approaches that evaluate fairness, it is important and challenging
to provide certification for ML fairness. Recent studies have explored the certified fair rep-
resentation of ML [23, 294, 313]. However, there lacks certified fairness on the predictions
of an end-to-end ML model trained on an arbitrary data distribution. In addition, current
fairness literature mainly focuses on training an ML model on a potentially (im)balanced
distribution and evaluate its performance in a target domain measured by existing statis-
tical fairness definitions [128, 172]. Since in practice these selected target domains can
encode certain forms of unfairness of their own (e.g., sampling bias), the evaluation would
be more informative if we can evaluate and certify fairness of an ML model on an objective
distribution. Taking these factors into account, in this work, we aim to provide the first
definition of certified fairness given an ML model and a training distribution by bounding
its end-to-end performance on an objective, fairness constrained distribution. In particular,
we define certified fairness as the worst-case upper bound of the ML prediction loss on a
fairness constrained test distribution Q, which is within a bounded distance to the training
distribution P . For example, for an ML model of crime rate prediction, we can define the
model performance as the expected loss within a specific age group. Suppose the model is
deployed in a fair environment that does not deviate too much from the training, our fairness
certificate can guarantee that the loss of crime rate prediction for a particular age group is
upper bounded, which is an indicator of model’s fairness.

We mainly focus on the base rate condition as the fairness constraint for Q. We prove
that our certified fairness based on a base rate constrained distribution will imply other
fairness metrics, such as demographic parity (DP) and equalized odds (EO). Moreover,
our framework is flexible to integrate other fairness constraints into Q. We consider two
scenarios: (1) sensitive shifting where only the joint distribution of sensitive attribute and
label can be changed when optimizing Q; and (2) general shifting where everything including
the conditioned distribution of non-sensitive attributes can be changed. We then propose
an effective fairness certification framework, CertFair, to compute the certificate.
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In CertFair, we first formulate the problem as constrained optimization, where the fair-
ness constrained distribution is encoded by base rate constraints. Our key technique is to
decompose both training and the fairness constrained test distributions to several subpop-
ulations based on sensitive attributes and target labels, which can be used to encode the
base rate constraints. With such a decomposition, in sensitive shifting, we can decompose
the distance constraint to subpopulation ratio constraints and prove the transformed low-
dimensional optimization problem is convex and thus efficiently solvable. In general shifting
case, we propose to solve it based on divide and conquer: we first partition the feasible
space into different subpopulations, then optimize the density (ratio) of each subpopulation,
apply relaxation on each subpopulation as a sub-problem, and finally prove the convexity of
the sub-problems with respect to other low-dimensional variables. Our framework is appli-
cable for any black-box ML models and any distributional shifts bounded by the Hellinger
distance, which is a type of f -divergence studied in the literature [33, 100, 101, 201, 399].

To demonstrate the effectiveness and tightness of CertFair, we evaluate our fairness bounds
on six real-world fairness related datasets [11, 14, 161, 403]. We show that our certificate
is tight under different scenarios. In addition, we verify that our framework is flexible to
integrate additional constraints on Q and evaluate the certified fairness with additional non-
skewness constraints, with which our fairness certificate is tighter. Finally, as the first work
on certifying fairness of an end-to-end ML model, we adapt existing distributional robustness
bound [347] for comparison to provide more intuition. Note that directly integrating the
fairness constraint to the existing distributional robustness bound is challenging, which is
one of the main contributions for our framework. We show that with the fairness constraints
and our effective solution, our bound is strictly tighter.

Technical Contributions. In this chapter, we take the first attempt towards formulating
and computing the certified fairness on an end-to-end ML model, which is trained on a given
distribution. We make contributions on both theoretical and empirical fronts.

1. We formulate the certified fairness of an end-to-end ML model trained on a given distri-
bution P as the worst-case upper bound of its prediction loss on a fairness constrained
distribution Q, which is within bounded distributional distance with P .

2. We propose an effective fairness certification framework, CertFair, that simulates the
problem as constrained optimization and solve it by decomposing the training and
fairness constrained test distributions into subpopulations and proving the convexity
of each sub-problem to solve it.
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3. We evaluate our certified fairness on six real-world datasets to show its tightness and
scalability. We also show that with additional distribution constraints on Q, our
certification would be tighter.

4. We show that our bound is strictly tighter than adapted distributional robustness
bound on Gaussian dataset due to the added fairness constraints and our effective
optimization approach.

11.1 RELATED WORK ON MACHINE LEARNING FAIRNESS

Fairness in ML can be generally categorized into individual fairness and group fairness.
Individual fairness guarantees that similar inputs should lead to similar outputs for a model
and it is analyzed with optimization approaches [259, 404] and different types of relax-
ations [173]. Group fairness indicates to measure the independence between the sensitive
features and model prediction, the separation which means that the sensitive features are
statistically independent of model prediction given the target label, and the sufficiency which
means that the sensitive features are statistically independent of the target label given the
model prediction [238]. Different approaches are proposed to analyze group fairness via
static analysis [375], interactive computation [325], and probabilistic approaches [5, 26, 71].
In addition, there is a line of work trying to certify the fair representation [23, 294, 313]. In
[65], the authors have provided bounds for how group fairness transfers subject to bounded
distribution shift. Our certified fairness differs from existing work from three perspectives:
1) we provide fairness certification considering the end-to-end model performance instead of
the representation level, 2) we define and certify fairness based on a fairness constrained dis-
tribution which implies other fairness notions, and 3) our certified fairness can be computed
for any black-box models trained on an arbitrary given data distribution.

11.2 CERTIFIED FAIRNESS BASED ON FAIRNESS CONSTRAINED
DISTRIBUTION

In this section, we first introduce preliminaries, and then propose the definition of certified
fairness based on a bounded fairness constrained distribution, which to the best of our
knowledge is the first formal fairness certification on end-to-end model prediction. We also
show that our proposed certified fairness relates to established fairness definitions in the
literature.
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Notations. We consider the general classification setting: we denote by X and Y “ rCs

the feature space and labels. hθ : X Ñ ∆|Y| represents a mapping function parameterized
with θ P Θ, and ℓ : ∆|Y|ˆY Ñ R` is a non-negative loss function such as cross-entropy loss.
Within feature space X , we identify a sensitive or protected attribute Xs that takes a finite
number of values: Xs :“ rSs, i.e., for any X P X , Xs P rSs.

Definition 11.1 (Base Rate). Given a distribution P supported over X ˆ Y , the base rate
for sensitive attribute value s P rSs with respect to label y P rCs is bPs,y “ PrpX,Y q„PrY “

y |Xs “ ss.

Given the definition of base rate, we define a fair base rate distribution (in short as fair
distribution).

Definition 11.2 (Fair Base Rate Distribution). A distribution P supported over X ˆ Y is
a fair base rate distribution if and only if for any label y P rCs, the base rate bPs,y is equal
across all s P rSs, i.e., @i P rSs, @j P rSs, bPi,y “ bPj,y.

Remark 11.1. In the literature, the concepts of fairness are usually directly defined at the
model prediction level, where the criterion is whether the model prediction is fair against
individual attribute changes [294, 313, 435] or fair at population level [462]. In this work, to
certify the fairness of model prediction, we define a fairness constrained distribution on which
we will certify the model prediction (e.g., bound the prediction error), rather than relying
on the empirical fairness evaluation. In particular, we first define the fairness constrained
distribution through the lens of base rate parity, i.e., the probability of being any class
should be independent of sensitive attribute values, and then define the certified fairness of
a given model based on its performance on the fairness constrained distribution as we will
show next.

The choice of focusing on fair base rate may look restrictive but its definition aligns very
well with the celebrated fairness definition Demographic Parity [436], which promotes that
PrrhθpXq “ 1|Xs “ is “ PrrhθpXq “ 1|Xs “ js. In this case, the prediction performance of
hθ on Q with fair base rate will relate directly to PrrhθpXq “ 1|Xs “ is. Secondly, under
certain popular data generation process, the base rate sufficiently encodes the differences
in distributions and a fair base rate will imply a homogeneous (therefore equal or “fair”)
distribution over X,Y : consider when PrpX|Y “ y,Xs “ iq is the same across different
group Xs. Then PrpX, Y |Xs “ iq is simply a linear combination of basis distributions
PrpX|Y “ y,Xs “ iq, and the difference between different groups’ joint distribution of X,Y
is fully characterized by the difference in base rate PrpY “ y|Xsq. This assumption will
greatly enable trackable analysis and is not an uncommon modeling choice in the recent
discussion of fairness when distribution shifts [306, 454].
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11.2.1 Certified Fairness
Now we are ready to define the fairness certification based on the optimized fairness

constrained distribution. We define the certification under two data generation scenar-
ios: general shifting and sensitive shifting. In particular, consider the data generative
model PrpXo, Xs, Y q “ PrpY qPrpXs|Y qPrpXo|Y,Xsq, where Xo and Xs represent the non-
sensitive and sensitive features, respectively. If all three random variables on the RHS are
allowed to change, we call it general shifting; if both PrpY q and PrpXs|Y q are allowed to
change to ensure the fair base rate (Definition 11.2) while PrpXo|Y,Xsq is the same across
different groups, we call it sensitive shifting. In Section 11.3 we will introduce our certifica-
tion framework for both scenarios.

Problem 1 (Certified Fairness with General Shifting). Given a training distribution P
supported on X ˆ Y , a model hθp¨q trained on P , and distribution distance bound ρ ą 0,
we call ℓ̄ P R a fairness certificate with general shifting, if ℓ̄ upper bounds

max
Q

E
pX,Y q„Q

rℓphθpXq, Y qs s.t. distpP ,Qq ď ρ, Q is a fair distribution, (11.1)

where distp¨, ¨q is a predetermined distribution distance metric.

In the above definition, we define the fairness certificate as the upper bound of the model’s
loss among all fair base rate distributions Q within a bounded distance from P . Besides
the bounded distance constraint distpP ,Qq ď ρ, there is no other constraint between P and
Q so this satisfies “general shifting”. This bounded distance constraint, parameterized by a
tunable parameter ρ, ensures that the test distribution should not be too far away from the
training. In practice, the model hθ may represent a DNN whose complex analytical forms
would pose challenges for solving Problem 1. As a result, as we will show in Equation (11.5)
we can query some statistics of hθ trained on P as constraints to characterize hθ, and thus
compute the upper bound certificate.

The feasible region of optimization problem 1 might be empty if the distance bound ρ

is too small, and thus we cannot provide fairness certification in this scenario, indicating
that there is no nearby fair distribution and thus the fairness of the model trained on the
highly “unfaired” distribution is generally low. In other words, if the training distribution
P is unfair (typical case) and there is no feasible fairness constrained distribution Q within
a small distance to P , fairness cannot be certified.

This definition follows the intuition of typical real-world scenarios: The real-world training
dataset is usually biased due to the limitation in data curation and collection processes,
which causes the model to be unfair. Thus, when the trained models are evaluated on the
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real-world fairness constrained test distribution or ideal fair distribution, we hope that the
model does not encode the training bias which would lead to low test performance. That is
to say, the model performance on fairness constrained distribution is indeed a witness of the
model’s intrinsic fairness.

We can further constrain that the subpopulation of P and Q parameterized by Xs and Y
does not change, which results in the following “sensitive shifting” fairness certification.

Problem 2 (Certified Fairness with Sensitive Shifting). Under the same setting as Prob-
lem 1, we call ℓ̄ a fairness certificate against sensitive shifting, if ℓ̄ upper bounds

max
Q

E
pX,Y q„Q

rℓphθpXq, Y qs

s.t. distpP ,Qq ď ρ, Ps,y “ Qs,y @s P rSs, y P rCs, Q is a fair distribution,
(11.2)

where Ps,y and Qs,y are the subpopulations of P and Q on the support tpX, Y q : X P

X , Xs “ s, Y “ yu respectively, and distp¨, ¨q is a predetermined distribution distance metric.

The definition adds an additional constraint between P and Q that each subpopulation,
partitioned by the sensitive attribute Xs and label Y , does not change. This constraint
corresponds to the scenario where the distribution shifting between training and test dis-
tributions only happens on the proportions of different sensitive attributes and labels, and
within each subpopulation the shifting is negligible.

In addition, to model the real-world test distribution, we may further request that the test
distribution Q is not too skewed regarding the sensitive attribute Xs by adding constraint
(11.3). We will show that this constraint can also be integrated into our fairness certification
framework flexibly in Section 11.4.3.

@i P rSs, @j P rSs,

ˇ

ˇ

ˇ

ˇ

Pr
pX,Y q„Q

rXs “ is ´ Pr
pX,Y q„Q

rXs “ js

ˇ

ˇ

ˇ

ˇ

ď ∆S. (11.3)

Connections to Other Fairness Measurements. Though not explicitly stated, our
goal of certifying the performance on a fair distribution Q relates to certifying established
fairness definitions in the literature. Consider the following example: Suppose Problem 2 is
feasible and returns a classifier hθ that achieves certified fairness per group and per label
class l̄ :“ PrpX,Y q„QrhθpXq ‰ Y |Y “ y,Xs “ is ď ϵ on Q. We will then have the following
proposition:

Proposition 11.1. hθ achieves ϵ-Demographic Parity (DP) [436] and ϵ-Equalized Odds
(EO) [139]:
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‚ ϵ-DP:
ˇ

ˇPrQrhθpXq “ 1|Xs “ is ´ PrQrhθpXq “ 1|Xs “ js
ˇ

ˇ ď ϵ, @i, j.

‚ ϵ-EO:
ˇ

ˇPrQrhθpXq “ 1|Y “ y,Xs “ is ´ PrQrhθpXq “ 1|Y “ y,Xs “ js
ˇ

ˇ ď ϵ,@y, i, j.

Remark 11.2. The detailed proof is omitted to appendix H.1.1. (1) When ϵ “ 0, Propo-
sition 11.1 can guarantee perfect DP and EO simultaneously. We achieve so because we
evaluate with a fair distribution Q, where “fair distribution” stands for “equalized base
rate” and according to [185, Theorem 1.1, page 5] both DP and EO are achievable for this
fair distribution. This observation in fact motivated us to identify the fair distribution Q
for the evaluation since it is this fair distribution that allows the fairness measures to hold
at the same time. Therefore, another way to interpret our framework is: given a model,
we provide a framework that certifies worst-case “unfairness” bound in the context where
perfect fairness is achievable. Such a worse-case bound serves as the gap to a perfectly fair
model and could be a good indicator of the model’s fairness level. (2) In practice, ϵ is not
necessarily zero. Therefore, Proposition 11.1 only provides an upper lower bound of DP
and EO, namely ϵ-DP and ϵ-EO, instead of absolute DP and EO. The approximate fairness
guarantee renders our results more general. Meanwhile, there is a higher flexiblity in simul-
taneously satisfying approximate fairness metrics (for example when DP “ 0, but EO = ϵ,
which is plausible for a proper range of epsilon, regardless of the distribution Q being fair
or not). But again, similar to (1), ϵ-DP and ϵ-EO can be achieved at the same time easily
since the test distribution satisfies base rate parity.

The bounds in Proposition 11.1 are tight. Consider the distribution Q with binary classes
and binary sensitive attributes (i.e., Y,Xs P t0, 1u). When the distribution Q and classifier
hθ satisfy the conditions that PrQrhθpXq ‰ Y |Y “ 0, Xs “ 0s “ ϵ,PrQrhθpXq ‰ Y |Y “

0, Xs “ 1s “ 0 and PrQrY “ 0s “ 1,PrQrY “ 1s “ 0, the bounds in Proposition 1 are tight.
From PrQrY “ 0s “ 1,PrQrY “ 1s “ 0, we can observe that ϵ-DP is equivalent to ϵ-EO. From
PrQrhθpXq ‰ Y |Y “ 0, Xs “ 0s “ ϵ,PrQrhθpXq ‰ Y |Y “ 0, Xs “ 1s “ 0 and PrQrhθpXq ‰

Y |Y “ 0, Xs “ is “ PrQrhθpXq “ 1|Y “ 0, Xs “ is for i P t0, 1u, we know that ϵ-EO holds
with tightness since

ˇ

ˇPrQrhθpXq “ 1|Y “ 0, Xs “ 0s ´ PrQrhθpXq “ 1|Y “ 0, Xs “ 1s
ˇ

ˇ “ ϵ.
To this point, we show that both bounds in Proposition 1 are tight.

11.3 CERTFAIR: THE FAIRNESS CERTIFICATION FRAMEWORK

We will introduce our fairness certification framework which efficiently computes the fair-
ness certificate defined in Section 11.2.1. We first introduce our framework for sensitive
shifting (Problem 2) which is less complex and shows our core methodology, then general
shifting case (Problem 1).
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Our framework focuses on using the Hellinger distance to bound the distributional distance
in Problems 1 and 2. The Hellinger distance HpP ,Qq is defined in Definition 11.3.

Definition 11.3 (Hellinger Distance). Let P and Q be distributions on Z :“ X ˆY that are
absolutely continuous with respect to a reference measure µ with P ,Q ! µ. The Hellinger
distance between P and Q is defined as

HpP ,Qq :“

d

1

2

ż

Z

´

a

ppzq ´
a

qpzq
¯2

dµpzq (11.4)

where p “ dP
dµ

and q “ dQ
dµ

are the Radon-Nikodym derivatives of P and Q with respect to
µ, respectively. The Hellinger distance is independent of the choice of the reference measure
µ.

The Hellinger distance has some nice properties, e.g., HpP ,Qq P r0, 1s, and HpP ,Qq “ 0

if and only if P “ Q and the maximum value of 1 is attained when P and Q have disjoint
support. The Hellinger distance is a type of f -divergences which are widely studied in
ML distributional robustness literature [100, 399] and in the context of distributionally
robust optimization [33, 101, 201]. Also, using Hellinger distance enables our certification
framework to generalize to total variation distance (or statistic distance) δpP ,Qq8 directly
with the connection, H2pP ,Qq ď δpP ,Qq ď

?
2HpP ,Qq ([351], Equation 1). We leave the

extension of our framework to other distance metrics as future work.

11.3.1 Core Idea: Subpopulation Decomposition

The core idea in our framework is (finite) subpopulation decomposition. Consider a generic
optimization problem for computing the loss upper bound on a constrained test distribu-
tion Q, given training distribution P and trained model hθp¨q, we first characterize model
hθp¨q based on some statistics, e.g., mean and variance for loss of the model: hθp¨q satisfies
ejpP , hθq ď vj, 1 ď j ď L. Then we characterize the properties (e.g., fair base rate) of the
test distribution Q: gjpQq ď uj, 1 ď j ď M . As a result, we can upper bound the loss of
hθp¨q on Q as the following optimization:

max
Q,θ

E
pX,Y q„Q

rℓphθpXq, Y qs s.t. HpP,Qq ď ρ, ejpP, hθq ď vj @j P rLs, gjpQq ď uj @j P rM s.

(11.5)
Now we decompose the space Z :“ X ˆ Y to N partitions: Z :“

Ţ

Zi, where Z is the
support of both P and Q. Then, we denote P conditioned on Zi by Pi and similarly Q

8δpP,Qq “ supAPF |PpAq ´ QpAq| where F is a σ-algebra of subsets of the sample space Ω.
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conditioned on Zi by Qi. As a result, we can write P “
ř

iPrNs piPi and Q “
ř

iPrNs qiQi.
Since P is known, pi’s are known. In contrast, both Qi and qi’s are optimizable. Our key
observation is that

HpP ,Qq ď ρ ðñ 1´ ρ2 ´
N
ÿ

i“1

?
piqip1´HpPi,Qiq

2q ď 0 (11.6)

which leads to the following theorem.

Theorem 11.1. The following constrained optimization upper bounds Equation (11.5):

max
Qi,qi,ρi,θ

N
ÿ

i“1

qi E
pX,Y q„Qi

rℓphθpXq, Y qs (11.7a)

s.t. 1 ´ ρ2 ´

N
ÿ

i“1

?
piqip1 ´ ρ2i q ď 0, (11.7b)

HpPi,Qiq ď ρi @i P rN s,
N
ÿ

i“1

qi “ 1, qi ě 0 @i P rN s, ρi ě 0 @i P rN s, (11.7c)

e1
jptPiuiPrNs, tpiuiPrNs, hθq ď v1

j @j P rLs, g1
jptQiuiPrNs, tqiuiPrNsq ď u1

j @j P rM s,

(11.7d)

if ejpP , hθq ď vj implies e1
jptPiuiPrNs, tpiuiPrNs, hθq ď v1

j for any j P rLs, and gjpQq ď uj

implies g1
jptQiuiPrNs, tqiuiPrNsq ď u1

j for any j P rM s.

In Problem 11.5, the challenge is to deal with the fair base rate constraint. Our core
technique in Theorem 11.1 is subpopulation decomposition. At a high level, thanks to the
disjoint support among different subpopulations, we get Equation (11.6). This equation
gives us an equivalence relationship between distribution-level (namely, P and Q) distance
constraint and subpopulation-level (namely, Pi’s and Qi’s) distance constraint. As a re-
sult, we can rewrite the original problem (11.5) using sub-population as decision variables
as in Equation (11.7b) and then imposing the unity constraint (Equation (11.7c)) to get
Theorem 11.1. We provide a detailed proof in Appendix H.1.2. Although the optimization
problem (Equation (11.7)) may look more complicated then the original Equation (11.5), this
optimization simplifies the challenging fair base rate constraint, allows us to upper bound
each subpopulation loss EpX,Y q„Qi

rℓphθpXq, Y qs individually, and hence makes the whole
optimization tractable.
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11.3.2 Certified Fairness with Sensitive Shifting

For the sensitive shifting case, we instantiate Theorem 11.1 and obtain the following
fairness certificate.

Theorem 11.2. Given a distance bound ρ ą 0, the following constrained optimization,
which is convex, when feasible, provides a tight fairness certificate for Problem 2:

max
ks,ry

S
ÿ

s“1

C
ÿ

y“1

ksryEs,y, s.t.
S
ÿ

s“1

ks “ 1,
C
ÿ

y“1

ry “ 1, ks ě 0 @s P rSs, ry ě 0 @y P rCs,

1´ ρ2 ´
S
ÿ

s“1

C
ÿ

y“1

a

ps,yksry ď 0,

(11.8)
where Es,y :“ EpX,Y q„Ps,y rℓphθpXq, Y qs and ps,y :“ PrpX,Y qPPrXs “ s, Y “ ys are constants.

Proof sketch. We decompose distribution P andQ to Ps,y’s andQs,y’s according to their sen-
sitive attribute and label values. In sensitive shifting, PrpXo|Y,Xsq is fixed, i.e., Ps,y “ Qs,y,
which means EpX,Y q„Qs,y rℓphθpXq, Y qs “ Es,y and ρs,y “ HpPs,y,Qs,yq “ 0. We plug these
properties into Theorem 11.1. Then, denoting qs,y to PrpX,Y q„QrXs “ s, Y “ ys, we can rep-
resent the fairness constraint in Definition 11.2 as qs0,y0 “

´

řS
s“1 qs,y0

¯´

řC
y“1 qs0,y

¯

for any
s0 P rSs and y0 P rCs. Next, we parameterize qs,y with ksry. Such parameterization simpli-
fies the fairness constraint and allow us to prove the convexity of the resulting optimization.
Since all the constraints are encoded equivalently, the problem formulation provides a tight
certification. Detailed proof in Appendix H.1.3. QED.

As Theorem 11.2 suggests, we can exploit the expectation information

Es,y “ E
pX,Y q„Ps,y

rℓphθpXq, Y qs (11.9)

and density information
ps,y “ Pr

pX,Y q„P
rXs “ s, Y “ ys (11.10)

of each P ’s subpopulation to provide a tight fairness certificate in sensitive shifting. The
convex optimization problem with pS`Cq variables can be efficiently solved by off-the-shelf
packages.
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11.3.3 Certified Fairness with General Shifting

For the general shifting case, we leverage Theorem 11.1 and the parameterization trick
qs,y :“ ksry used in Theorem 11.2 to reduce Problem 1 to the following constrained opti-
mization.

Lemma 11.1. Given a distance bound ρ ą 0, the following constrained optimization, when
feasible, provides a tight fairness certificate for Problem 1:

max
ks,ry ,Q,ρs,y

S
ÿ

s“1

C
ÿ

y“1

ksry E
pX,Y q„Qs,y

rℓphθpXq, Y qs (11.11a)

s.t.
S
ÿ

s“1

ks “ 1,
C
ÿ

y“1

ry “ 1, ks ě 0 @s P rSs, ry ě 0 @y P rCs, (11.11b)

S
ÿ

s“1

C
ÿ

y“1

a

ps,yksryp1 ´ ρ2s,yq ě 1 ´ ρ2 (11.11c)

HpPs,y,Qs,yq ď ρs,y @s P rSs, y P rCs, (11.11d)

where ps,y :“ PrpX,Y qPPrXs “ s, Y “ ys is a fixed constant. The Ps,y and Qs,y are the
subpopulations of P and Q on the support tpX, Y q : X P X , Xs “ s, Y “ yu respectively.

Proof sketch. We show that (11.11b) ensures a parameterization of qs,y “ PrpX,Y qPQrXs “

s, Y “ ys that satisfies fairness constraints on Q. Then, leveraging Theorem 11.1 we prove
that the constrained optimization provides a fairness certificate. Since all the constraints
are either kept or equivalently encoded, this resulting certification is tight. Detailed proof in
Appendix H.1.4. QED.

Now the main obstacle is to solve the non-convex optimization in Problem 11.11. Here, as
the first step, we upper bound the loss of hθp¨q within each shifted subpopulation Qs,y, i.e.,
upper bound EpX,Y q„Qs,y rℓphθpXq, Y qs in Equation (11.11a), by [399, Theorem 2.2] (stated
as Theorem H.1). Then, we apply variable transformations to make some decision vari-
ables convex. For the remaining decision variables, we observe that they are non-convex
but bounded. Hence, we propose the technique of grid-based sub-problem construction.
Concretely, we divide the feasible region regarding non-convex variables into small grids
and consider the optimization problem in each region individually. For each sub-problem,
we relax the objective by pushing the values of non-convex variables to the boundary of
the current grid and then solve the convex optimization sub-problems. Concretely, the
following theorem states our computable certificate for Problem 1, with detailed proof in
Appendix H.1.5.
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Theorem 11.3. If for any s P rSs and y P rY s,

HpPs,y,Qs,yq ď γ̄s,y and 0 ď sup
pX,Y qPXˆY

ℓphθpXq, Y q ďM, (11.12)

given a distance bound ρ ą 0, for any region granularity T P N`, the following expression
provides a fairness certificate for Problem 1:

ℓ̄ “ max
tisPrT s:sPrSsu,tjyPrT s:yPrCsu

C

¨

˝

#

„

is ´ 1

T
,
is
T

ȷ

+S

s“1

,

#

„

jy ´ 1

T
,
jy
T

ȷ

+C

y“1

˛

‚, where (11.13)

C
´

trks, kssu
S
s“1, trry, rysuCy“1

¯

“ max
xs,y

S
ÿ

s“1

C
ÿ

y“1

´

ksry
“

Es,y ` Cs,y
‰

`
` ksry

“

Es,y ` Cs,y
‰

´

`2ksry

b

xs,yp1 ´ xs,yq
a

Vs,y ´ ksryxs,yrCs,ys` ´ ksryxs,yrCs,ys´

˙

(11.14a)

s.t.
S
ÿ

s“1

ks ď 1,
S
ÿ

s“1

ks ě 1,
C
ÿ

y“1

ry ď 1,
C
ÿ

y“1

ry ě 1, (11.14b)

S
ÿ

s“1

C
ÿ

y“1

b

ps,yksryxs,y ě 1 ´ ρ2, p1 ´ γ̄2s,yq2 ď xs,y ď 1 @s P rSs, y P rCs, (11.14c)

where Es,y “ EpX,Y q„Ps,y rℓphθpXq, Y qs, Vs,y “ VpX,Y q„Ps,y rℓphθpXq, Y qs is the variance,
ps,y “ PrpX,Y q„PrXs “ s, Y “ ys, Cs,y “ M ´ Es,y ´

Vs,y
M´Es,y

, and γ̄2s,y “ 1 ´ p1 ` pM ´

Es,yq
2{Vs,yq

´ 1
2 . Equation (11.13) only takes C’s value when it is feasible, and each C queried

by Equation (11.13) is a convex optimization.

Implications. Theorem 11.3 provides a fairness certificate for Problem 1 under two as-
sumptions: (1) The loss function is bounded (by M). This assumption holds for several
typical losses such as 0-1 loss and JSD loss. (2) The distribution shift between training and
test distribution within each subpopulation is bounded by γ̄s,y, where γ̄s,y is determined by
the model’s statistics on P . In practice, this additional distance bound assumption generally
holds, since γ̄s,y " ρ for common choices of ρ.

In Theorem 11.3, we exploit three types of statistics of hθp¨q on P to compute the
fairness certificates: the expectation Es,y “ EpX,Y q„Ps,y rℓphθpXq, Y qs, the variance Vs,y “
VpX,Y q„Ps,y rℓphθpXq, Y qs, and the density ps,y “ PrpX,Y q„PrXs “ s, Y “ ys, all of which are
at the subpopulation level and a high-confidence estimation of them based on finite samples
are tractable (Section 11.3.4).

Using Theorem 11.3, after determining the region granularity T , we can provide a fairness
certificate for Problem 1 by solving T SC convex optimization problems, each of which has SC
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decision variables. Note that the computation cost is independent of hθ, and therefore we
can numerically compute the certificate for large DNN models used in practice. Specifically,
when S “ 2 (binary sensitive attribute) or C “ 2 (binary classification) which is common in
the fairness evaluation setting, we can construct the region for only one dimension k1 or r1,
and use 1´ k1 or 1´ r1 for the other dimension. Thus, for the typical setting S “ 2, C “ 2,
we only need to solve T 2 convex optimization problems.

Note that for Problem 2, our certificate in Theorem 11.2 is tight, whereas for Problem 1,
our certificate in Theorem 11.3 is not. This is because in Problem 1, extra distribution shift
exists within each subpopulation, i.e., PrpXo|Y,Xsq changes from P to Q, and to bound such
shift, we need to leverage Theorem 2.2 in [399] which has no tightness guarantee. Future
work providing tighter bounds than [399] can be seamlessly incorporated into our framework
to tighten our fairness certificate for Problem 1.

11.3.4 Dealing with Finite Sampling Error

In Section 11.3.2 and Section 11.3.3, we present Theorem 11.2 and Theorem 11.3 that
provide computable fairness certificates for sensitive shifting and general shifting scenarios
respectively. In these theorems, we need to know the quantities related to the training
distribution and trained P and model hθp¨q:

Es,y “ E
pX,Y q„Ps,y

rℓphθpXq, Y qs, Vs,y “ V
pX,Y q„Ps,y

rℓphθpXq, Y qs, ps,y “ Pr
pX,Y q„P

rXs “ s, Y “ ys.

(11.15)
Section 11.3.3 further requires Cs,y and γ̄s,y which are functions of Es,y and Vs,y. However,
a practical challenge is that common training distributions do not have an analytical ex-
pression that allows us to precisely compute these quantities. Indeed, we only have access
to a finite number of individually drawn samples, i.e., the training dataset, from P . Thus,
we will provide high-confidence bounds for Es,y, Vs,y, and ps,y in Lemma H.1 (stated in
Appendix H.2.1).

Then, for Theorem 11.2, we can replace Es,y in the objective by the upper bounds of Es,y
and replace the concrete quantities of ps,y by interval constraints and the unit constraint
ř

s

ř

y ps,y “ 1, which again yields a convex optimization that can be effectively solved. For
Theorem 11.3, we compute the confidence intervals of Cs,y and ρs,y, then plug in either the
lower bounds or the upper bounds to the objective (11.14a) based on the coefficient, and
finally replace the concrete quantities of ps,y by interval constraints and the unit constraint
ř

s

ř

y ps,y “ 1. The resulting optimization is proved to be convex and provides an upper
bound for any possible values of Es,y, Vs,y, and ps,y within the confidence intervals. We
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Figure 11.1: Certified fairness with sensitive shifting. Grey points are results on generated
distributions (Q) and the black line is our fairness certificate based on Theorem 11.2. We
observe that our fairness certificate is usually tight.

defer the statement of Theorem 11.2 and Theorem 11.3 considering finite sampling error
to Appendix H.2.2. To this point, we have presented our framework for computing high-
confidence fairness certificates given access to model hθp¨q and a finite number of samples
drawn from P .

11.4 EXPERIMENTS

In this section, we evaluate the certified fairness under both sensitive shifting and general
shifting scenarios on six real-world datasets. We observe that under the sensitive shifting,
our certified fairness bound is tight (Section 11.4.1); while the bound is less tight under
general shifting (Section 11.4.2) which depends on the tightness of generalization bounds
within each subpopulation (details in Section 11.3.3). In addition, we show that our certifi-
cation framework can flexibly integrate more constraints on Q, leading to a tighter fairness
certification (Section 11.4.3). Finally, we compare our certified fairness bound with existing
distributional robustness bound [347] (section 11.4.4), since both consider a shifted distribu-
tion while our bound is optimized with an additional fairness constraint which is challenging
to be directly integrated to the existing distributional robustness optimization. We show
that with the fairness constraint and our optimization approach, our bound is much tighter.

Dataset & Model. We validate our certified fairness on six real-world datasets: Adult [14],
Compas [11], Health [161], Lawschool [403], Crime [14], and German [14]. Details on the
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datasets and data processing steps are provided in Appendix H.3.1. Following the standard
setup of fairness evaluation in the literature [253, 310, 313, 331], we consider the scenario
that the sensitive attributes and labels take binary values. The ReLU network composed of
2 hidden layers of size 20 is used for all datasets.

Fairness Certification. We perform vanilla model training and then leverage our fairness
certification framework to calculate the fairness certificate. Concretely, we input the trained
model information on P and the framework would output the fairness certification for both
sensitive shifting and general shifting scenarios following Theorem 11.2 and Theorem 11.3,
respectively.

Code, model, and all experimental data are publicly available at https://github.com/
AI-secure/Certified-Fairness.

11.4.1 Certified Fairness with Sensitive Shifting

Generating Fair Distributions. To evaluate how well our certificates capture the fair-
ness risk in practice, we compare our certification bound with the empirical loss evaluated on
randomly generated 30, 000 fairness constrained distributionsQ shifted from P . The detailed
steps for generating fairness constrained distributions Q are provided in Appendix H.3.2.
Under sensitive shifting, since each subpopulation divided by the sensitive attribute and
label does not change (Section 11.2.1), we tune only the portion of each subpopulation qs,y
satisfying the base rate fairness constraint, and then sample from each subpopulation of P
individually according to the proportion qs,y. In this way, our protocols can generate dis-
tributions with different combinations of subpopulation portions. If the classifier is biased
toward one subpopulation (i.e., it achieves high accuracy in the group but low accuracy in
others), the worst-case accuracy on generated distribution is low since the portion of the
biased subpopulation in the generated distribution can be low; in contrast, a fair classifier
which performs uniformly well for each group can achieve high worst-case accuracy (high
certified fairness). Therefore, we believe that our protocols can demonstrate real-world train-
ing distribution bias as well as reflect the model’s unfairness and certification tightness in
real-world scenarios.

Results. We report the classification error (Error) and BCE loss as the evaluation metric.
Figure 11.1 illustrates the certified fairness on Adult, Compas, Health, and Lawschool under
sensitive shifting. More results on two relatively small datasets (Crime, German) are shown
in Appendix H.3.5. From the results, we see that our certified fairness is tight in practice.
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Figure 11.2: Certified fairness with general shifting. Grey points are results on generated
distributions (Q) and the black line is our fairness certificate based on Theorem 11.3. We
observe that our fairness certificate is non-trivial.

11.4.2 Certified Fairness with General Shifting

In the general shifting scenario, we similarly randomly generate 30, 000 fair distributions
Q shifted from P . Different from sensitive shifting, the distribution conditioned on sen-
sitive attribute Xs and label Y can also change in this scenario. Therefore, we construct
another distribution Q1 disjoint with P on non-sensitive attributes and mix P and Q1 in each
subpopulation individually guided by mixing parameters satisfying fair base rate constraint.
Detailed generation steps are given in Appendix H.3.2. Since the fairness certification for gen-
eral shifting requires bounded loss, we select classification error (Error) and Jensen-Shannon
loss (JSD Loss) as the evaluation metric. Figure 11.2 illustrates the certified fairness with
classification error metric under general shifting. Results of JSD loss and more results on
two relatively small datasets (Crime, German) are in Appendix H.3.5.

11.4.3 Certified Fairness with Additional Non-Skewness Constraints
In Section 11.2.1, we discussed that to represent different real-world scenarios we can add

more constraints such as Equation (11.3) to prevent the skewness of Q, which can be flexibly
incorporated into our certificate framework. Concretely, for sensitive shifting, we only need
to add one more box constraint9 0.5 ´ ∆s{2 ď ks ď 0.5 ` ∆s{2 where ∆s is a parameter
controlling the skewness of Q, which still guarantees convexity. For general shifting, we only
need to modify the region partition step9, where we split r0.5´∆s{2, 0.5`∆s{2s instead of
r0, 1s. The certification results with additional constraints are in Figures 11.3a and 11.3b,
which suggests that if the added constraints are strict (i.e., smaller ∆s), the bound is tighter.
More constraints w.r.t. labels can also be handled by our framework and the corresponding
results as well as results on more datasets are in Appendix H.3.6.

9Note that such modification is only viable when sentive attributes take binary values, which is the typical
scenario in the literature of fairness evaluation [253, 310, 313, 331].
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a Sentitive Shifting b General Shifting c Comparison with WRM

Figure 11.3: Certified fairness with additional non-skewness constraints on Adult dataset is
shown in (a) (b). ∆s controls the skewness of Q (|PrpX,Y q„QrXs “ 0s ´ PrpX,Y q„QrXs “

1s| ď ∆s). More analysis in Section 11.4.3. In (c), we compare our certified fairness bound
with the distributional robustness bound [347]. More analysis in Section 11.4.4.

11.4.4 Comparison with Distributional Robustness Bound

To the best of our knowledge, there is no existing work providing certified fairness on the
end-to-end model performance. Thus, we try to compare our bound with the distributional
robustness bound since both consider certain distribution shifts. However, it is challenging
to directly integrate the fairness constraints into existing bounds. Therefore, we compare
with the state-of-the-art distributional robustness certification WRM [347], which solves the
similar optimization problem as ours except for the fairness constraint. For fair comparison,
we construct a synthetic dataset following [347], on which there is a one-to-one correspon-
dence between the Hellinger and Wasserstein distance used by WRM. We randomly select
one dimension as the sensitive attribute. Since WRM has additional assumptions on smooth-
ness of models and losses, we use JSD loss and a small ELU network with 2 hidden layers
of size 4 and 2 following their setting. More implementation details are in Appendix H.3.4.
Results in Figure 11.3c suggest that 1) our certified fairness bound is much tighter than
WRM given the additional fairness distribution constraint and our optimization framework;
2) with additional fairness constraint, our certificate problem could be infeasible under very
small distribution distances since the fairness constrained distribution Q does not exist near
the skewed original distribution P ; 3) with the fairness constraint, we provide non-trivial
fairness certification bound even when the distribution shift is large.

11.5 BROADER IMPACT

This chapter aims to calculate a fairness certificate under some distributional fairness
constraints on the performance of an end-to-end ML model. We believe that the rigorous
fairness certificates provided by our framework CertFair will significantly benefit and advance
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social fairness in the era of deep learning. Especially, such fairness certificate can be directly
used to measure the fairness of an ML model regardless the target domain, which means that
it will measure the unique property of the model itself with theoretical guarantees, and thus
help people understand the risks of existing ML models. As a result, the ML community
may develop ML training algorithms that explicitly reduce the fairness risks by regularizing
on this fairness certificate.

A possible negative societal impact may stem from the misunderstanding or inaccurate
interpretation of our fairness certificate. As a first step towards distributional fairness certi-
fication, we define the fairness through the lens of worst-case performance loss on a fairness
constrained distribution. This fairness definition may not explicitly imply an absoluate fair-
ness guarantee under some other criterion. For example, it does not imply that for any
possible individual input, the ML model will give fair prediction. We tried our best in Sec-
tion 11.2 to define the certification goal, and the practitioners may need to understand this
goal well to avoid misinterpretation or misuse of our fairness certification.

11.6 SUMMARY

In this chapter, we provide the first fairness certification on end-to-end model performance,
based on a fairness constrained distribution which has bounded distribution distance from
the training distribution. We show that our fairness certification has strong connections
with existing fairness notions such as group parity, and we provide an effective framework,
CertFair, to calculate the certification under different scenarios. We provide both theoretical
and empirical analysis of our fairness certification.
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CHAPTER 12: NUMERICAL RELIABILITY: RANUM

With the wide deployment of deep learning (DL) systems, reliability issues of DL sys-
tems have become a serious concern, where malfunctioning DL systems have led to serious
consequences such as fatal traffic accidents [258].

To assure the reliability of DL systems, it is highly critical to detect and fix numerical
defects for two main reasons. First, numerical defects widely exist in DL systems. For
example, in the DeepStability database [186], over 250 defects are identified in deep learning
algorithms where over 60% of them are numerical defects. Moreover, since numerical defects
exist at the architecture level, any model using the architecture naturally inherits these
defects. Second, numerical defects can result in serious consequences. Once numerical
defects (such as divide-by-zero) are exposed, the faulty DNN model will output NaN or INF
instead of producing any meaningful prediction, resulting in numerical failures and system
crashes [452, 457]. Thus, numerical defects hinder the application of DNNs in scenarios with
high reliability and availability requirements such as threat monitoring in cybersecurity [297]
and cloud system controlling [164, 330].

To address numerical defects in DNN architectures in an actionable manner [423], in this
chapter, we propose a workflow of reliability assurance (as shown in Figure 12.1), consisting
of three tasks: potential-defect detection, feasibility confirmation, and fix suggestion, along
with our proposed approach to support all these three tasks.

Potential-Defect Detection. In this task, we detect all potential numerical defects in a
DNN architecture via proposing a certification method, with a focus on operators with
numerical defects (in short as defective operators) that potentially exhibit inference-phase
numerical failures for two main reasons, following the literature [426, 460]. First, these
defective operators can be exposed after the model is deployed and thus are more devastating
than those that potentially exhibit training-phase numerical failures [278, 460]. Second, a
defective operator that potentially exhibits training-phase numerical failures can usually be
triggered to exhibit inference-phase numerical failures, thus also being detected by our task.
For example, the type of training-phase NaN gradient failures is caused by an operator’s
input that leads to invalid derivatives, and this input also triggers failures in the inference
phase [426].

Feasibility Confirmation. In this task, we confirm the feasibility of these potential numer-
ical defects by generating failure-exhibiting system tests. As shown in Figure 12.1, a system
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Figure 12.1: Workflow for reliability assurance against numerical defects in DNN architec-
tures. The left-hand side shows three tasks and the right-hand side shows corresponding
examples. RANUM supports all the three tasks, and is the first automatic approach for
system test generation and fix suggestion.

test is a tuple of training example10 xtrain and inference example x such that after the train-
ing example is used to train the architecture under consideration, applying the resulting
model on the inference example exhibits a numerical failure.

Fix Suggestion. In this task, we fix a feasible numerical defect. To determine the fix form,
we have inspected the developers’ fixes of the numerical defects collected by Zhang et al. [457]
by looking at follow-up Stack Overflow posts or GitHub commits. Among the 13 numerical
defects whose fixes can be located, 12 fixes can be viewed as explicitly or implicitly imposing
interval preconditions on different locations, such as after inputs or weights are loaded and
before defective operators are invoked. Thus, imposing an interval precondition, e.g., by
clipping (i.e., chopping off the input parts that exceed the specified input range) the input
for defective operator(s), is an effective and common strategy for fixing a numerical defect.
Given a location (i.e., one related to an operator, input, or weight where users prefer to
impose a fix), we suggest a fix for the numerical defect under consideration.

To support all the three tasks of the reliability assurance process against DNN numerical
defects, we propose the RANUM approach in this chapter.

For task 1⃝ and task 2⃝a, which are already supported by two existing tools (DEBAR [460]
and GRIST [426]), RANUM introduces novel extensions and optimizations that substan-
tially improve the effectiveness and efficiency. (1) DEBAR [460] is the state-of-the-art tool
for potential-defect detection; however, DEBAR can handle only static computational graphs

10In real settings, multiple training examples are used to train an architecture, but generating a single
training example to exhibit failures (targeted by our work) is desirable for ease of debugging while being
more challenging than generating multiple training examples to exhibit failures.
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and does not support widely used dynamic graphs in PyTorch programs [289]. RANUM sup-
ports dynamic graphs thanks to our novel technique of backward fine-grained node labeling.
(2) GRIST [426] is the state-of-the-art tool for generating failure-exhibiting unit tests to
confirm potential-defect feasibility; however, GRIST conducts gradient back-propagation by
using the original inference input and weights as the starting point. Recent studies [132, 252]
on DNN adversarial attacks suggest that using a randomized input as the starting point leads
to stronger attacks than using the original input. Taking this observation, we combine gra-
dient back-propagation with random initialization in RANUM.

For task 2⃝ and task 3⃝, which are not supported by any existing tool, RANUM is the first
automatic approach for them.

For feasibility confirmation, RANUM is the first approach that generates failure-
exhibiting system tests that contain training examples. Doing so is a major step further
from the existing GRIST tool, which generates failure-exhibiting unit tests ignoring the
practicality of generated model weights. Given that in practice model weights are determined
by training examples, we propose the technique of two-step generation for this task. First,
we generate a failure-exhibiting unit test. Second, we generate a training example that leads
to the model weights in the unit test when used for training. For the second step, we extend
the deep-leakage-from-gradient (DLG) attack [466] by incorporating the straight-through
gradient estimator [34].

For fix suggestion, RANUM is the first automatic approach. RANUM is based on
the novel technique of abstraction optimization. We observe that a defect fix in practice is
typically imposing interval clipping on some operators such that each later-executed operator
(including those defective ones) can never exhibit numerical failures. Therefore, we propose
the novel technique of abstraction optimization to “deviate away” the input range of a
defective operator from the invalid range, falling in which can cause numerical failures.

For RANUM, we implement a tool11 and evaluate it on the benchmarks [426] of 63 real-
world DNN architectures containing 79 real numerical defects; these benchmarks are the
largest benchmarks of DNN numerical defects to the best of our knowledge. The evalu-
ation results show that RANUM is both effective and efficient in all the three tasks for
DNN reliability assurance. (1) For potential-defect detection, RANUM detects ą60% more
true defects than the state-of-the-art DEBAR approach. (2) For feasibility confirmation,
RANUM generates failure-exhibiting unit tests to confirm potential numerical defects in the
benchmarks with 100% success rate; in contrast, with the much higher time cost (17.32X),
the state-of-the-art GRIST approach generates unit tests to confirm defects with 96.96%

11Open source at https://github.com/llylly/RANUM.
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input_data = tf.placeholder("float", [1, n_features], name='x-input')
input_labels = tf.placeholder("float", [1, n_classes], name='y-input’)
self.W_ = tf.Variable(tf.zeros([n_features, n_classes]), 

name='weights')
self.b_ = tf.Variable(tf.zeros([n_classes]), 

name='biases')
model_output = tf.nn.softmax(tf.matmul(input_data, self.W_) +

self.b_)
cost = -tf.reduce_mean(input_labels * tf.log(model_output) +

(1 - input_labels) * tf.log(1 - model_output),
name='cost')

self.obj_function = tf.reduce_min(tf.abs(model_output),
name='obj_function')

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 12.2: A DL program snippet that defines a linear regression model from benchmarks
of real-world numerical defects (Case 2a in [426]).

success rate. More importantly, for the first time, RANUM generates failure-exhibiting sys-
tem tests that confirm defects (with 92.78% success rate). (3) For fix suggestion, RANUM
proposes fix suggestions for numerical defects with 100% success rate. In addition, when the
RANUM-generated fixes are compared with developers’ fixes on open-source projects, in 37
out of 40 cases, RANUM-generated fixes are equivalent to or even better than human fixes.

This chapter makes the following main contributions:

• We formulate the reliability assurance problem for DNN architectures against numer-
ical defects and elaborate on three important tasks for this problem.

• We propose RANUM—the first automatic approach that solves all these three tasks.
RANUM includes three novel techniques (backward fine-grained node labeling, two-
step test generation, and abstraction optimization) and solves system test generation
and fix suggestion for the first time.

• We implement RANUM and apply it on 63 real-world DNN architectures, showing
the high effectiveness and efficiency of RANUM compared to both the state-of-the-art
approaches and developers’ fixes.

12.1 BACKGROUND AND APPROACH OVERVIEW

In this section, we introduce the background of DNN numerical defects and failures, and
then give an overview of the RANUM approach with a running example.
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12.1.1 Background

DL developers define the DNN architecture with code using modern DL libraries such as
PyTorch [289] and TensorFlow [1]. The DNN architecture can be expressed by a compu-
tational graph. Figures 12.2 and 12.3 depict a real-world example. Specifically, the DNN
architecture in a DL program can be automatically converted to an ONNX-format compu-
tational graph [365].

The computational graph can be viewed as a Directed Acyclic Graph (DAG): G “ xV , Ey,
where V and E are sets of nodes and edges, respectively. We call nodes with zero in-degree
as initial nodes, which correspond to input, weight, or constant nodes. Initial nodes provide
concrete data for the DNN models resulted from training the DNN architecture. The data
from each node is formatted as a tensor, i.e., a multidimensional array, with a specified
data type and array shape annotated alongside the node definition. We call nodes with
positive in-degree as internal nodes, which correspond to concrete operators, such as matrix
multiplication (MatMul) and addition (Add). During model training, the model weights, i.e.,
data from weight nodes, are generated by the training algorithm. Then, in the deployment
phase (i.e., model inference), with these trained weights and a user-specified input named
inference example, the output of each operator is computed in the topological order. The
output of some specific node is used as the prediction result.

We let x and w denote the concatenation of data from all input nodes and data from all
weight nodes, respectively. For example, in Figure 12.3, x concatenates data from nodes 1
and 11; and w concatenates data from nodes 2 and 4. Given specific x and w, the input
and output for each node are deterministic.12 We use f in

n px;wq and f out
n px;wq to express

input and output data of node n, respectively, given x and w.

Numerical Defects in DNN Architecture. We focus on inference-phase numerical
defects. These defects lead to numerical failures when specific operators receive inputs
within invalid ranges so that the operators output NaN or INF.

Definition 12.1. For the given computational graph G “ xV , Ey, if there is a node n0 P V ,
such that there exists a valid input and valid weights that can let the input of node n0 fall
within the invalid range, we say there is a numerical defect at node n0.

Formally, Dx0 P Xvalid,w0 PWvalid, f
in
n0
px0;w0q P In0,invalid

ùñD numerical defect at node n0.
(12.1)

12An architecture may contain stochastic nodes. We view these nodes as nodes with randomly sampled
data, so the architecture itself is deterministic.
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Figure 12.3: Computational graph encoded by the snippet in Figure 12.2.

In the definition, Xvalid and Wvalid are valid input range and weight range, respectively,
which are clear given the deployed scenario. For example, ImageNet Resnet50 models have
valid input range Xvalid “ r0, 1s

3ˆ224ˆ224 since image pixel intensities are within r0, 1s, and
valid weight range Wvalid “ r´1, 1sp where p is the number of parameters since weights
of well-trained Resnet50 models are typically within r´1, 1s. The invalid range In0,invalid is
determined by n0’s operator type with detailed definitions in Appendix I.2. For example,
for the Log operator, the invalid range In0,invalid “ p´8, Uminq where Umin is the smallest
positive number of a tensor’s data type.

12.1.2 Approach Overview

In Figure 12.4, we show the overview structure of the RANUM approach. RANUM takes
a DNN architecture as the input. Note that although RANUM is mainly designed and
illustrated for a DNN architecture, the RANUM approach can also be directly applied to
general neural network architectures since they can also be expressed by computational
graphs. First, the DNN static analysis framework (task 1⃝ in Figure 12.1) in RANUM de-
tects all potential numerical defects in the architecture. Second, the two-step test generation
component (task 2⃝ in Figure 12.1), including unit test generation and training example gen-
eration, confirms the feasibility of these potential numerical defects. Third, the abstraction
optimization component (task 3⃝ in Figure 12.1) takes the input/output abstractions pro-
duced by the DNN static analysis framework along with the user-specified fix locations, and
produces preconditions to fix the confirmed defects.

We next go through the whole process in detail taking the DNN architecture shown in
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Figure 12.4: Overview of the RANUM approach. The output of RANUM indicates confir-
mation and manifestation of numerical defects (that can be feasibly exposed at the system
level) for a given DNN architecture and effective fixes for architecture’s confirmed defects.

Figure 12.3 as a running example.

Task 1⃝: Potential-Defect Detection via Static Analysis. The DNN static analysis
framework within RANUM first computes the numerical intervals of possible inputs and
outputs for all nodes within the given DNN architecture, and then flags any nodes whose
input intervals overlap with their invalid ranges as nodes with potential numerical defects.
This framework can be viewed as a certification approach for numerical reliability.

In Figure 12.3, suppose that the user-specified input x-input (node 1) is within (ele-
mentwise, same below) range rp´10,´10qT, p10, 10qTs; weights (node 2) are within range

r

„

´10 ´10

´10 ´10

ȷ

,

„

10 10

10 10

ȷ

s; and biases (node 4) are within range rp´10,´10qT, p10, 10qTs. Our
DNN static analysis framework computes these interval abstractions for node inputs:

1. Node 5 (after MatMul): rp´200,´200qT, p200, 200qTs;

2. Node 6 (after Add): rp´210,´210qT, p210, 210qTs;

3. Node 8 (after Softmax in float32): rp0, 0qT, p1, 1qTs;

4. Node 9 (after Sub of r1, 1s and node 8), 10: rp0, 0qT, p1, 1qTs.
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Since nodes 9 and 10 use the Log operator whose invalid input range p´8, Uminq overlaps
with their input range rp0, 0qT, p1, 1qTs, we flag nodes 9 and 10 as potential numerical defects.

This static analysis process follows the state-of-the-art DEBAR tool [460]. However, we
extend DEBAR with a novel technique named backward fine-grained node labeling. This
technique detects all nodes that require fine-grained abstractions, e.g., nodes that determine
the control flow in a dynamic graph. For these nodes, we apply interval abstractions with the
finest granularity to reduce control flow ambiguity. For other nodes, we let some neighboring
elements share the same interval abstraction to improve efficiency while preserving tightness.
As a result, the static analysis in RANUM has high efficiency and supports much more DNN
operators including dynamic control-flow operators like Loop than DEBAR does.

Task 2⃝: Feasibility Confirmation via Two-Step Test Generation. Given nodes
that contain potential numerical defects (nodes 9 and 10 in our example), we generate
failure-exhibiting system tests to confirm their feasibility. A failure-exhibiting system test
is a tuple xxtrain,xinfery, such that after training the architecture with the training example
xtrain,13 with the trained model weights winfer, the inference input xinfer triggers a numerical
failure. The name “system test” is inspired by traditional software testing, where we test the
method sequence (m = train(xtrain); m.infer(xinfer)). In contrast, GRIST [426] generates
model weights winfer along with inference input xinfer that tests only the inference method
m.infer(), and the weights may be infeasible from training. Hence, we view the GRIST-
generated tuple xwinfer,xinfery as a “unit test”.

We propose a two-step test generation technique to generate failure-exhibiting system
tests.
Step a: Generate failure-exhibiting unit test xwinfer,xinfery. The state-of-the-art GRIST
tool supports this step. However, GRIST solely relies on gradient back-propagation, which
is relatively inefficient. In RANUM, we augment GRIST by combining its gradient back-
propagation with random initialization inspired by recent research on DNN adversarial at-
tacks [132, 252]. As a result, RANUM achieves 17.32X speedup with 100% success rate.

Back to the running example in Figure 12.3, RANUM can generate
„

5 ´5

´5 5

ȷ

for node 2

and p0.9,´0.9qT for node 4 as model weights winfer; and p10,´10qT for node 1 and p1, 0qT for
node 11 as the inference input xinfer. Such winfer and xinfer induce input p0, 1qT and p1, 0qT

for nodes 9 and 10, respectively. Since both nodes 9 and 10 use the log operator and log 0

13In particular, if our generation technique outputs xtrain, the numerical failure can be triggered if the
training dataset contains only xtrain or only multiple copies of xtrain and the inference-time input is xinfer.
Our technique can also be applied for generating a batch of training examples by packing the batch as a
single example: xtrain “ pxtrain1,xtrain2, . . . ,xtrainBq.
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is undefined, both nodes 9 and 10 trigger numerical failures.
Step b: Generate training example xtrain that achieves model weights winfer. To the best of our
knowledge, there is no automatic approach for this task yet. RANUM provides support for
this task based on our extension of DLG attack [466]. The DLG attack is originally designed
for recovering the training data from training-phase gradient leakage. Here, we figure out the
required training gradients to trigger the numerical failure at the inference phase and then
leverage the DLG attack to generate xtrain that leads to such training gradients. Specifically,
many DNN architectures contain operators (such as ReLU) on which DLG attack is hard to
operate [327]. We combine straight-through estimator [34] to provide proxy gradients and
bypass this barrier. Back to the running example in Figure 12.3, supposing that the initial
weights are

„

´0.1 0.1

0.1 ´0.1

ȷ

for node 2 and p0, 0qT for node 4, RANUM can generate training

example xtrain composed of p5.635,´5.635qT for node 1 and p1, 0qT for node 11, such that
one-step training with learning rate 1 on this example leads to winfer. Combining xtrain from
this step with xinfer from step a, we obtain a failure-exhibiting system test that confirms the
feasibility of potential defects in nodes 9 and 10.

Task 3⃝: Fix Suggestion via Abstract Optimization. In this task, we suggest fixes
for the confirmed numerical defects. RANUM is the first approach for this task to our
knowledge.

The user may prefer different fix locations, which correspond to a user-specified set of
nodes Vfix Ď V to impose the fix. For example, if the fix method is clipping the inference
input, Vfix are input nodes (e.g., nodes 1, 11 in Figure 12.3); if the fix method is clipping
the model weights during training, Vfix are weight nodes (e.g., nodes 2, 4 in Figure 12.3);
if the fix method is clipping before the defective operator, Vfix are nodes with numerical
defects (e.g., nodes 9, 10 in Figure 12.3).

According to the empirical study of developers’ fixes at the beginning of this chapter,
12 out of 13 defects are fixed by imposing interval preconditions for clipping the inputs of
Vfix. Hence, we suggest interval precondition, which is interval constraint ln ď f in

n px;wq ď

un for nodes n P Vfix, as the defect fix in this chapter. A fix should satisfy that, when
these constraints

Ź

nPVfix
pln ď f in

n px;wq ď unq are imposed, the input of any node in the
computational graph should always be valid, i.e., f in

n0
px;wq R In0,invalid, @n0 P V .

In RANUM, we formulate the fix suggestion task as a constrained optimization prob-
lem, taking the endpoints of interval abstractions for nodes in Vfix as optimizable variables.
We then propose the novel technique of abstraction optimization to solve this constrained
optimization problem. Back to the Figure 12.3 example, if users plan to impose a fix on
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inference input, RANUM can suggest the fix ´1 ď x-input ď 1; if users plan to impose a
fix on nodes with numerical defects, RANUM can suggest the fix 10´38 ď node 9 & node
10.input ď `8.

12.1.3 RANUM as Certified Approach

Viewing numerical reliability as a trustworthy property, we can use terms in Section 1.1
to characterize the three tasks above. In task 1⃝, the RANUM approach is a white-box cer-
tification approach since the approach certifies whether the given DL system is numerically
reliable or not. The approach is incomplete, since it may alert when the numerical defect is
not feasible to trigger. In task 2⃝, the RANUM approach is an attack since it generates con-
crete examples to trigger numerical defects. This attack is a complement to the incomplete
certification for task 1⃝ by filtering possibly false alarms. In task 3⃝, the RANUM approach
is a certified training approach since the approach enhances numerical reliability. Unlike
other training approaches that generate weights, RANUM improves numerical reliability by
adding clipping operations, and the clipping intervals are derived from optimization similar
to but improved from gradient descent as we will show in Section 12.2.3.

12.2 THE RANUM APPROACH

In this section, we introduce the three novel techniques in RANUM: backward fine-grained
node labeling in Section 12.2.1; two-step test generation in Section 12.2.2; and abstraction
optimization in Section 12.2.3.

12.2.1 DNN Static Analysis Framework with Backward Fine-grained Node Labeling for
Potential-Defect Detection

RANUM contains a static analysis framework to enable potential-defect detection and
support downstream tasks as shown in Figure 12.4. Given a DNN architecture and valid
ranges for input and weight nodes, the static analysis framework computes interval abstrac-
tions for possible inputs and outputs of each node. As a result, we can check whether an
overlap exists between the interval abstraction and invalid input ranges for all nodes in
the graph to detect potential numerical defects. Then, the defective nodes are fed into the
two-step test generation component to confirm the feasibility of potential defects; and the
differentiable abstractions are fed into the abstract optimization component to produce fixes.
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Formally, for given valid ranges of inference input and model weights, namely X and W ,
for each node n P V , our framework computes sound input interval abstraction rln,uns :“
tx : ln ď x ď unu such that rln,uns always captures all possible inputs of the node:
rln,uns Ě tf in

n px,wq : x P X ,w P Wu. We also compute output interval abstractions
similarly.

Compared with traditional analysis tools for numerical software [136, 339], RANUM’s
static analysis framework designs abstractions for DNN primitives operating on multi-
dimensional tensors that are not supported by traditional tools. Compared with the state-
of-the-art DEBAR tool [460], RANUM uses the same abstraction domain (interval domain
with tensor partitioning), but incorporates a novel technique (backward fine-grained node
labeling) to improve abstraction precision and support a wider range of DNN architectures.

Abstract Domain: Interval with Tensor Partitioning. Following DEBAR’s design,
we use the interval with tensor partitioning [460] as the abstraction domain. This abstraction
domain partitions a tensor into multiple subblocks and shares the interval abstractions at
the block level instead of imposing abstractions at the element level. Therefore, we can
compute the abstraction of a smaller size than the original tensor to improve efficiency.

Our Technique: Backward Fine-grained Node Labeling. The interval domain with
tensor partitioning provides a degree of freedom in terms of the partition granularity, i.e., we
can choose the subblock size for each node’s abstraction. When the finest granularity, i.e.,
elementwise abstraction, is chosen, the abstraction interval is the most concrete. When the
coarsest granularity (i.e., one scalar to summarize the node tensor) is chosen, the abstraction
saves the most space and computational cost but loses much precision.

Example. Suppose that the possible input range of a node is pr´1, 0s, r0, 1s, r1, 2s, r´1, 0sq,
where each interval rl, us specifies the range of corresponding elements in the four-dimensional
vector. If we choose the finest granularity, we use rln,uns “ rp´1, 0, 1,´1q, p0, 1, 2, 0qs as
the input range abstraction. If we choose the coarsest granularity, we use rln,uns “ r´1, 2s
as the abstraction where the same interval is shared for all elements. As we can see, finer
granularity provides tighter abstraction at the expense of larger computational and space
costs.

In DEBAR, the coarsest granularity is used by default for most operators. However,
we find that using the finest instead of the coarsest granularity for some nodes is more
beneficial for overall abstraction preciseness. For example, the control-flow operators (e.g.,
Loop) benefit from concrete execution to determine the exact control flow in the dynamic
graph, and the indexing operators (e.g., Slice) and shaping operators (e.g., Reshape) benefit
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from explicit indexers and shapes to precisely infer the output range. Hence, we propose to
use the finest granularity for some nodes (namely fine-grained requiring operators) while the
coarsest granularity for other nodes during static analysis.

To benefit from the finest granularity abstraction for required nodes, typically, all of
their preceding nodes also need the finest granularity. Otherwise, the over-approximated
intervals from preceding nodes will be propagated to the required nodes, making the finest
abstraction for the required nodes useless. To solve this problem, in RANUM, we back-
propagate “fine-grained” labels from these fine-grained requiring nodes to initial nodes by
topologically sorting the graph with inverted edges, and then apply the finest granularity
abstractions on all labeled nodes. In practice, we find that this strategy eliminates the
control-flow ambiguity and indexing ambiguity with little loss of efficiency14. As a result,
RANUM supports all dynamic graphs (which are not supported by DEBAR) that comprise
39.2% of the benchmarks proposed by Yan et al. [426].

Furthermore, when preceding nodes use finer-grain abstraction granularity, the subsequent
nodes should preserve such fine granularity to preserve the analysis preciseness. Principally,
the choice of abstraction granularity should satisfy both tightness (bearing no precision loss
compared to elementwise interval abstraction) and minimality (using the minimum number
of partitions for high efficiency). To realize these principles, we dynamically determine a
node’s abstraction granularity based on the granularity of preceding nodes. The abstraction
design for some operators is non-trivial. Omitted details (formulation, illustration, and
proofs) about the static analysis framework are in Appendix I.3.

In summary, the whole static analysis process consists of three steps. (1) Determine the
tensor partition granularity of all initial nodes by our technique of backward fine-grained
node labeling. (2) Sort all nodes in the graph in the topological order. (3) Apply corre-
sponding abstraction computation algorithms for each node based on the preceding node’s
abstractions. The key insight behind the design of our static analysis framework is the
strategic granularity selection for tensor abstraction, maintaining both high efficiency (by
selecting the coarse granularity for data-intensive nodes) and high precision (by selecting
the fine granularity for some critical nodes, such as nodes with control-flow, indexing, and
shaping operators).

14Theoretically, using the finest granularity for tensor partitioning cannot fully eliminate the ambigu-
ity, since interval abstraction is intrinsically an over-approximation. Nevertheless, in our evaluation (Sec-
tion 12.3), we find that this technique eliminates control-flow and indexing ambiguities on all 63 programs
in the benchmarks.
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12.2.2 Two-Step Test Generation for Feasibility Confirmation

RANUM generates failure-exhibiting system tests for the given DNN to confirm the fea-
sibility of potential numerical defects. Here, we take the DNN architecture as the input.
From the static analysis framework, we obtain a list of nodes that have potential numerical
defects. For each node n0 within the list, we apply our technique of two-step test generation
to produce a failure-exhibiting system test tsys “ xxtrain,xinfery as the output. According
to Section 12.1.2, the test should satisfy that after the architecture is trained with xtrain,
entering xinfer in the inference phase results in a numerical failure.

We propose the novel technique of two-step test generation: first, generate failure-exhibiting
unit test xwinfer,xinfery; then, generate training example xtrain that leads model weights to be
close to winfer after training.

Step a: Unit Test Generation. As sketched in Section 12.1.2, we strengthen the state-
of-the-art unit test generation approach, GRIST [426], by combining it with random initial-
ization to complete this step. Specifically, GRIST leverages the gradients of the defective
node’s input with respect to the inference input and weights to iteratively update the in-
ference input and weights to generate failure-exhibiting unit tests. However, GRIST always
conducts updates from the existing inference input and weights, suffering from local minima
problem [252]. Instead, motivated by DNN adversarial attack literature [252, 371], a suffi-
cient number of random starts help find global minima effectively. Hence, in RANUM, we
first conduct uniform sampling 100 times for both the inference input and weights to trigger
the numerical failure. If no failure is triggered, we use the sample that induces the smallest
loss as the start point for gradient optimization. As Section 12.3.1 shows, this strategy
substantially boosts the efficiency, achieving 17.32X speedup.

Step b: Training Example Generation. For this step, RANUM takes the following
inputs: (1) the DNN architecture, (2) the failure-exhibiting unit test tunit “ xwinfer,xinfery,
and (3) the randomly initialized weights w0. Our goal is to generate a legal training example
xtrain, such that the model trained with xtrain will contain weights close to winfer.

DNNs are typically trained with gradient-descent-based algorithms such as stochastic gra-
dient descent (SGD). In SGD, in each step t, we sample a mini-batch of samples from the
training dataset to compute their gradients on model weights and use these gradients to
update the weights. We focus on one-step SGD training with a single training example,
since generating a single one-step training example to exhibit a failure is more desirable for
debugging because, in one-step training, the model weights are updated strictly following the
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direction of the gradients. Therefore, developers can inspect inappropriate weights, easily
trace back to nodes with inappropriate gradients, and then fix these nodes. In contrast, in
multi-step training, from inappropriate weights, developers cannot trace back to inappro-
priate gradients because weights are updated iteratively and interactions between gradients
and weights are complex (even theoretically intractable [228]).

In this one-step training case, after training, the model weights winfer satisfy

winfer “ w0 ´ γ∇wLpxtrain;w0q, (12.2)

where γ P R` is a predefined learning rate, and L is the predefined loss function in the DNN
architecture. Hence, our goal becomes finding xtrain that satisfies

∇wLpxtrain;w0q “ pw0 ´winferq{γ. (12.3)

The DLG attack [466] is a technique for generating input data that induce specific weight
gradients. The attack is originally designed for recovering training samples from monitored
gradient updates. Since the right-hand side (RHS) of Equation (12.3) is known, our goal here
is also to generate input example xtrain that induces specific weight gradients. Therefore, we
leverage the DLG attack to generate training example xtrain.

Extending DLG Attack with Straight-Through Estimator. Directly using DLG
attack suffers from an optimization challenge in our scenario. Specifically, in DLG attack,
suppose that the target weight gradients are∆wtarg, we use gradient descent over the squared
error }∇wLpx;w0q ´∆wtarg}

2
2 to generate x. In this process, we need meaningful gradient

information of this squared error loss to perform the optimization. However, the gradient of
this loss involves second-order derivatives of Lpx;w0q, which could be zero. For example,
DNNs with ReLU as activation function are piecewise linear and have zero second-order
derivatives almost everywhere [327]. This optimization challenge is partly addressed in DLG
attack by replacing ReLU with Sigmoid, but it changes the DNN architecture (i.e., the system
under test) and hence is unsuitable.

We leverage the straight-through estimator to mitigate the optimization challenge. Specif-
ically, for a certain operator, such as ReLU, we do not change its forward computation but
change its backward gradient computation to provide second-order derivatives within the
DLG attack process. For example, for ReLU, in backward computation we use the gradient
of Softplus function, namely 1´ 1

1`exppxq
, because Softplus is an approximation of ReLU [129]

with non-zero second-order derivatives. Note that we modify the computed gradients only
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within the DLG attack process. After such xtrain is generated by the attack, we evalu-
ate whether it triggers a numerical failure using the original architecture and gradients in
Equation (12.2).

Hyperparameters. For the unit test generation, we use the Adam optimizer where the
learning rate is 1 and the maximum iteration number is 100. For the training example gener-
ation, we target for training example under learning rate γ “ 1 and the approach has similar
performance under other learning rates. We follow the convention in the DLG attack, where
we use the L-BFGS method as the optimizer for gradient-based minimization. We terminate
the method and return “failed” if either the running time exceeds 1800 s (universal execu-
tion time limit for all experimental evaluations), or a failure-exhibiting example training is
not found after 300 iterations of L-BFGS optimization.

12.2.3 Abstraction Optimization for Fix Suggestion

In this task, we aim to generate the precondition fix given imposing locations. The inputs
are the DNN architecture, the node n0 with numerical defects, and a node set Vfix to impose
the fix. We would like to generate interval preconditions for Vfix node inputs so that after
these preconditions are imposed, the defect on n0 is fixed.

Formally, our task is to find xln, uny for each n P Vfix (ln and un are scalars so the same
interval bound applied to all elements of n’s tensor), such that for any x,w satisfying
f in
n px;wq P rln, uns, @n P Vfix, for the defective node n0, we have f in

n0
px;wq R In0,invalid, where

the full list of invalid input ranges In0,invalid is in Appendix I.2. There is an infinite number of
possible xln, uny interval candidates since ln and un are floating numbers. Hence, we need an
effective technique to find a valid solution from the exceedingly large search space that incurs
a relatively small model utility loss. To achieve so, we formulate a surrogate optimization
problem for this task.

maximize
ln,un:nPVfix

s s.t. un ě ln ` spu
valid
n ´ lvalidn q, @n P Vfix, (12.4)

lvalidn ď ln ď un ď uvalidn , @n P Vfix, (12.5)
Lprecond
n0

ptln, ununPVfix
q ă 0. (12.6)

Here, lvalidn and uvalidn are the valid ranges (of the node’s input n), which are fixed and de-
termined by the valid ranges of input and weights. Lprecond

n0
is the node-specific precondition

generation loss that is the distance between the furthest endpoint of defective node n0’s
interval abstraction and n0’s valid input range. Hence, when Lprecond

n0
ptln, ununPVfix

q becomes
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Algorithm 12.1: Abstraction Optimization (Section 12.2.3)
Input: DNN architecture G “ xV, Ey, defective node n0 P V, nodes to impose fix Vfix Ď V
1: s Ð 1, γs Ð 0.9, γc Ð 0.1,minstep Ð 0.1,maxiter Ð 1000
2: cn Ð plvalidn ` uvalidn q{2, ln Ð lvalidn , un Ð uvalidn , @n P Vfix

3: for i “ 1 to maxiter do
4: for n P Vfix do
5: loss Ð Lprecond

n0 ptln1 , un1un1PVfix
q

6: cn Ð cn ´ γcmaxt|cn|,minstepusgnp∇cn lossq

7: pln, unq Ð pcn ´
spuvalidn ´lvalidn q

2 , cn `
spuvalidn ´lvalidn q

2 q

8: pln, unq Ð pmaxtln, l
valid
n u,mintun, u

valid
n uq

9: end for
10: if Lprecond

n0 ptln, ununPVfix
q ă 0 then

11: return tln, ununPVfix
{Find precondition fix}

12: end if
13: s Ð γs ¨ s
14: end for
15: return “failed” {Failed to find precondition fix}

negative, the solution tln, ununPVfix
is a valid precondition. The optimization variables are

the precondition interval endpoints ln and un and the objective is the relative span of these
intervals. The larger the span is, the looser the precondition constraints are, and the less
hurt they are for the model’s utility. Equation (12.4) enforces the interval span requirement.
Equation (12.5) assures that the precondition interval is in the valid range. Equation (12.6)
guarantees the validity of the precondition as a fix.

For any tln, ununPVfix
, thanks to RANUM’s static analysis framework, we can compute

induced intervals of defective node n0, and thus compute the loss value Lprecond
n0

.
As shown in Algorithm 12.1, we propose the technique of abstraction optimization to

effectively and approximately solve this optimization. Our technique works iteratively. In
the first iteration, we set span s “ 1, and in the subsequent iterations, we reduce the span s
exponentially as shown in Line 13 where hyperparameter γs “ 0.9. Inside each iteration, for
each node to impose precondition n P Vfix, we use the interval center cn “ pln ` unq{2 as the
optimizable variable and compute the sign of its gradient: sgnp∇cn lossq. We use this gradient
sign to update each cn toward reducing the loss value in Line 6. Then, we use cn and the span
s to recover the actual interval in Line 7 and clip ln and un by the valid range rlvalidn , uvalidn s in
Line 8. At the end of this iteration, for updated ln and un, we compute Lprecond

n0
ptln, ununPVfix

q

to check whether the precondition is a fix. If so, we terminate; otherwise, we proceed to
the next iteration. We note that if the algorithm finds a precondition, the precondition is
guaranteed to be a valid fix by the soundness nature of our static analysis framework and
the definition of Lprecond

n0
. When no feasible precondition is found within maxiter “ 1000
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iterations, we terminate the algorithm and report “failed to find the fix”.

Remark 12.1. The key ingredient in the technique is the gradient-sign-based update rule
(shown in Line 6), which is much more effective than normal gradient descent for two rea-
sons. (1) Our update rule can get rid of gradient explosion and vanishing problems. For
early optimization iterations, the span s is large and interval bounds are generally coarse,
resulting in too large or too small gradient magnitude. For example, the input range for
Log could be r1, 1010s where gradient can be 10´10, resulting in almost negligible gradient
updates. In contrast, our update rule leverages the gradient sign, which always points to
the correct gradient direction. The update step size in our rule is the maximum of current
magnitude |cn| and minstep to avoid stagnation. (2) Our update rule mitigates the gradient
magnitude discrepancy of different cn. At different locations, the nodes in DNNs can have
diverse value magnitudes that are not aligned with their gradient magnitudes, making gra-
dient optimization challenging. Therefore, we use this update rule to solve the challenge,
where the update magnitude depends on the value magnitude (|cn|) instead of gradient mag-
nitude (∇cn loss). We empirically compare our technique with standard gradient descent in
Section 12.3.3.

12.2.4 Implementation

We have implemented a tool for RANUM in roughly 10k lines of Python code based on
PyTorch. Our tool leverages existing modules (tf2onnx for PyTorch and torch.onnx.export
for Tensorflow and Keras) to extract ONNX-format DNN architectures from DL programs
to take as the input, and automatically generates detection results, system tests, and defect
fixes (given imposing locations). The ONNX format is supported by popular DL libraries
such as PyTorch [289], Tensorflow [1], Keras [72], and GCP-CROWN (in Chapter 3). Our
tool uses PyTorch [79] to provide the tensor computation and auto-differentiation function-
ality, which has high performance on both CPU and GPU environments.

12.3 EXPERIMENTAL EVALUATION

We conduct a systematic evaluation to answer the following research questions.

RQ1 For tasks already supported by existing state-of-the-art (SOTA) tools (tasks 1⃝ and
2⃝a), how much more effective and efficient is RANUM compared to these SOTA
tools?

210



RQ2 For feasibility confirmation via generating failure-exhibiting system tests (task 2⃝),
how much more effectively and efficiently can RANUM confirm potential numerical
defects compared to baseline approaches?

RQ3 For suggesting fixes (task 3⃝), how much more efficient and effective is RANUM in
terms of guarding against numerical failures compared to baseline approaches and
developers’ fixes, respectively?

For RQ1, we compare RANUM with all SOTA tools. For RQ2 and RQ3, RANUM is the
first approach to the best of our knowledge, so we compare RANUM with baseline approaches
(constructed by leaving our novel techniques out of RANUM) and developers’ fixes. We
conduct the evaluation on the GRIST benchmarks [426], being the largest dataset of real-
world DNN numerical defects to our knowledge. The benchmarks contain 63 real-world DL
programs with numerical defects collected from previous studies and GitHub. Each program
contains a DNN architecture, and each architecture has one or more numerical defects. There
are 79 real numerical defects in total.

We perform our evaluation on a Linux workstation with a 24-core Xeon E5-2650 CPU
running at 2.20 GHz. Throughout the evaluation, we stop the execution after reaching
30min limit by following the evaluation setup by the most recent related work [426].

12.3.1 RQ1: Comparison with SOTA Tools

For two tasks, existing tools can provide automatic support: potential-defect detec-
tion (task 1⃝) where the SOTA tool is DEBAR [460], and failure-exhibiting unit test gen-
eration (task 2⃝a) where the SOTA tool is GRIST [426]. We compare RANUM with these
tools on their supported tasks, respectively.

Comparison with DEBAR. RANUM successfully detects all 79 true defects and DE-
BAR detects only 48 true defects according to both our evaluation and the literature [426].
Hence, RANUM detects 64.58% more true defects than DEBAR. In terms of efficiency,
DEBAR and RANUM have similar running time, and both finish in 3 s per case.

We manually inspect the cases where DEBAR fails but RANUM succeeds. They corre-
spond to DL programs written with the PyTorch library, which generates dynamic compu-
tational graphs that DEBAR cannot handle. In contrast, RANUM provides effective static
analysis support for dynamic computational graphs thanks to our backward fine-grained
node labeling technique (Section 12.2.1) that is capable of disambiguating the control flow
within dynamic graphs.
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Comparison with GRIST. Results are shown in Table 12.1. Since both RANUM and
GRIST have a randomness component where RANUM uses random initialization and GRIST
relies on DNN’s randomly initialized weights, we repeat both approaches for 10 runs, record
the total number of times where a failure-exhibiting unit test is generated, and the average
execution time per run. RANUM succeeds in all cases and all repeated runs, and GRIST
fails to generate such unit test in 24 out of 790 runs (i.e., 96.96% success rate). RANUM
has 6.66 s average execution time and is 17.32X faster than GRIST.

The superior effectiveness and efficiency of RANUM are largely due to the existence of
random initialization as introduced in Section 12.2.2. We observe that since GRIST always
takes initial model weights and inference input as the starting point to update from, the gen-
erated unit test is just slightly changed from initial weights and input, being hard to expose
the target numerical defect. In contrast, RANUM uses random initialization to explore a
much larger space and combines gradient-based optimization to locate the failure-exhibiting
instances from the large space. We also evaluate the pure random strategy that uses only
random initialization without gradient-based optimization, and such strategy fails in 30 runs,
being inferior to both RANUM and GRIST, implying that both random initialization and
gradient-based optimization are important. Among all the 79 cases, RANUM is slower than
GRIST on only one case (28a). For this case, we find the default inference input loaded by
the DNN program (used by GRIST) is not far from a failure-exhibiting one, but a randomly
sampled inference input (used by RANUM) is usually far from that. Hence, RANUM takes
more iterations to find a failure-exhibiting inference input by the nature of gradient-based
optimization.

12.3.2 RQ2: Feasibility Confirmation via System Test Generation

In task 2⃝, RANUM confirms the feasibility of potential numerical defects by generating
failure-exhibiting system tests.

Baseline. Since RANUM is the first approach for this task, we do not compare with
existing literature and propose one random-based approach (named “Random” hereinafter)
as the baseline. In “Random”, we first generate a failure-exhibiting unit test with random
sampling. If there is any sample that triggers a failure, we stop and keep the inference
example part as the desired xinfer. Then, we generate xtrain again by random sampling. If
any sample, when used for training, could induce model weights w that cause a numerical
failure when using xinfer as the inference input, we keep that sample as xtrain and terminate.
If and only if both xinfer and xtrain are found, we count this run as a “success” one for
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Table 12.1: (RQ1) Results of task 2⃝a (failure-exhibiting unit test generation) with RANUM
and GRIST [426]. C is the number of runs where numerical failures are triggered in 10
repeated runs, T is the average execution time per run, and òT is the average time improve-
ment achieved by RANUM compared to GRIST.

Case RANUM GRIST Case RANUM GRIST Case RANUM GRIST Case RANUM GRIST
ID C T òT C T ID C T òT C T ID C T òT C T ID C T òT C T
1 10 9.01 1.20 X 10 10.77 16b 10 0.21 20.85 X 10 4.42 32 10 0.06 27.93 X 10 1.77 47 10 0.06 32.51 X 10 1.87
2a 10 0.02 9.75 X 10 0.24 16c 10 0.25 17.54 X 10 4.43 33 10 0.06 33.63 X 10 1.91 48a 10 0.38 3.06 X 10 1.17
2b 10 0.03 614.68 X 10 16.54 17 10 439.19 `8 0 - 34 10 0.06 33.95 X 10 1.90 48b 10 0.15 7.12 X 10 1.10
3 10 0.02 432.11 X 10 8.67 18 10 0.02 1040.46 X 10 22.17 35a 10 0.44 61.76 X 10 27.33 49a 10 0.49 41.09 X 10 20.07
4 10 0.01 1.00 X 10 0.01 19 10 0.16 689.66 X 10 107.78 35b 10 0.45 819.02 X 10 364.86 49b 10 0.50 612.22 X 10 307.24
5 10 0.05 6.48 X 10 0.34 20 10 0.16 3237.27 X 10 511.06 36a 10 0.44 41.80 X 10 18.58 50 10 0.16 781.02 X 10 126.80
6 10 0.84 5.20 X 10 4.38 21 10 0.16 259.73 X 10 42.09 36b 10 0.46 783.16 X 10 362.41 51 10 1.88 671.55 X 3 1263.04
7 10 0.87 4.54 X 10 3.96 22 10 0.94 1518.43 X 10 1433.12 37 10 0.06 38.34 X 10 2.39 52 10 0.15 336.37 X 10 50.59
8 10 0.86 4.63 X 10 3.99 23 10 0.01 157.72 X 10 1.88 38 10 0.06 34.50 X 10 1.94 53 10 0.05 36.64 X 10 1.92
9a 10 0.20 11.03 X 10 2.22 24 10 0.81 40.72 X 10 33.05 39a 10 0.43 42.79 X 10 18.30 54 10 0.05 36.76 X 10 1.83
9b 10 0.14 14.46 X 10 2.09 25 10 0.04 1271.88 X 10 44.70 39b 10 0.43 843.66 X 10 362.22 55 10 0.82 44.63 X 10 36.63
10 10 0.17 228.42 X 10 39.64 26 10 0.05 37.96 X 10 2.00 40 10 0.04 1995.27 X 10 85.97 56 10 0.06 35.04 X 10 1.93
11a 10 0.15 27.58 X 10 4.26 27 10 0.01 185.61 X 10 1.91 41 10 0.04 1967.23 X 10 86.36 57 10 0.01 177.45 X 10 1.88
11b 10 0.13 34.75 X 10 4.38 28a 10 24.37 -13.30 X 10 1.83 42 10 0.05 1934.84 X 10 87.89 58 10 0.83 12.01 X 10 9.95
11c 10 0.11 4499.86 X 10 516.13 28b 10 24.17 7.28 X 10 176.02 43a 10 0.48 35.63 X 10 16.96 59 10 0.02 105.40 X 10 1.94
12 10 0.26 135.94 X 10 34.69 28c 10 0.12 8.69 X 10 1.02 43b 10 0.45 4008.93 X 10 1800.00 60 10 0.15 221.97 X 10 34.19
13 10 0.01 1.10 X 10 0.01 28d 10 0.12 1518.28 X 10 176.02 44 10 0.27 579.29 X 10 155.38 61 10 0.35 53.29 X 10 18.78
14 10 0.80 107.96 X 10 86.23 29 10 0.89 16.83 X 10 14.98 45a 10 0.16 417.25 X 10 68.08 62 10 1.85 72.19 X 10 133.62
15 10 1.71 5.95 X 10 10.18 30 10 0.16 222.12 X 10 35.61 45b 10 0.88 14.69 X 10 12.98 63 10 2.06 117.12 X 10 240.68
16a 10 0.12 34.24 X 10 4.02 31 10 3.13 2.41 X 3 7.54 46 10 0.01 168.39 X 10 1.88 Tot: 79 790 6.66 17.32 X 766 115.30

Table 12.2: (RQ2) Results of task 2⃝ (failure-exhibiting system test generation) with
RANUM and Random (baseline). C is the total number of runs where numerical failures
are triggered in 10 repeated runs. T is the average execution time per run.

Case RANUM Random Case RANUM Random Case RANUM Random Case RANUM Random Case RANUM Random
ID C T C T ID C T C T ID C T C T ID C T C T ID C T C T
1 0 9.01 0 1806.13 13 10 0.01 10 0.01 27 10 0.01 10 0.01 38 1 0.13 0 1800.65 49b 10 0.50 8 364.09
2a 10 0.03 10 0.06 14 10 12.60 10 0.50 28a 0 24.37 0 1920.29 39a 10 0.43 1 1623.72 50 10 4.89 10 0.16
2b 10 0.03 10 0.06 15 0 1.71 0 2107.24 28b 0 24.17 0 1911.26 39b 10 0.43 8 364.10 51 10 49.12 10 2.10
3 10 0.02 10 0.05 16a 10 0.12 10 0.75 28c 10 0.12 10 0.53 40 10 0.06 10 0.02 52 10 4.87 10 0.15
4 10 0.01 10 0.01 16b 10 0.21 0 1834.44 28d 10 0.12 10 0.48 41 10 0.06 10 0.02 53 10 0.07 10 0.03
5 10 0.05 10 0.06 16c 10 0.25 0 1831.67 29 10 0.89 10 11.96 42 10 0.06 10 0.02 54 10 0.07 10 0.02
6 10 0.84 10 12.42 17 10 549.98 10 235.11 30 10 4.88 10 0.14 43a 10 0.48 1 1623.71 55 10 0.82 10 12.79
7 10 0.87 10 12.51 18 10 0.02 10 0.05 31 10 14.62 10 9.31 43b 10 0.45 9 184.14 56 10 0.07 10 0.03
8 10 0.86 10 12.37 19 10 4.88 10 0.16 32 10 0.08 10 0.03 44 10 0.27 10 1.36 57 10 0.01 8 360.01
9a 10 0.20 7 541.25 20 10 4.88 10 0.14 33 10 0.07 10 0.02 45a 10 4.89 10 0.15 58 10 0.83 10 12.28
9b 10 0.14 10 1.39 21 10 4.89 10 0.14 34 10 0.42 10 0.20 45b 10 0.88 10 12.27 59 10 0.02 10 0.05
10 10 4.90 10 0.16 22 10 500.10 0 1801.60 35a 10 0.44 10 4.01 46 10 0.01 10 0.01 60 10 4.88 10 0.16
11a 10 0.15 10 0.72 23 10 0.01 10 0.01 35b 10 0.45 10 4.22 47 10 0.08 10 0.03 61 10 9.84 10 0.93
11b 10 0.13 10 0.76 24 10 0.81 10 12.52 36a 10 0.44 1 1623.76 48a 10 9.89 10 0.90 62 10 48.86 10 2.73
11c 10 0.11 10 0.74 25 10 0.04 10 0.15 36b 10 0.46 3 1263.79 48b 10 4.88 10 0.15 63 10 49.06 10 2.15
12 10 0.26 10 0.72 26 10 0.07 10 0.03 37 2 0.07 2 1440.50 49a 10 0.49 1 1623.88 Tot: 79 733 17.31 (19.30X) 649 334.14

“Random”.
For each defect, due to the randomness of the model’s initial weights, we repeat both

RANUM and “Random” for 10 runs. Both approaches use the same set of random seeds.

Evaluation Result. Results are in Table 12.2. We observe that RANUM succeeds in
733{p79ˆ10q “ 92.78% runs and the baseline “Random” succeeds in 649{p79ˆ10q “ 82.15%

runs. Moreover, RANUM spends only 17.31 s time on average per run, which is a 19.30X
speedup compared to “Random”. We also observe that RANUM is more reliable across
repeated runs. There are only 6 cases with unsuccessful repeated runs in RANUM, but there
are 19 such cases in “Random”. Hence, RANUM is substantially more effective, efficient,
and reliable for generating system tests than the baseline.
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Ablation Study. RANUM uses the two-step test generation technique to produce failure-
exhibiting system tests: it first generates failure-exhibiting unit tests with gradient back-
propagation, then generates failure-exhibiting training examples via the extended DLG at-
tack. To isolate the impact of RANUM at each step, we replace either step with random
sampling: “Random + RANUM”, which first generates failure-exhibiting unit tests via ran-
dom sampling, then generates training example via RANUM; “RANUM + Random”, which
first generates failure-exhibiting unit tests via RANUM, then generates training example via
random sampling. We follow the same evaluation protocol as above. We find that “RANUM
+ Random” takes 9.38X running time than RANUM and fails for 68 runs (RANUM only
fails for 57 runs); and “Random + RANUM” fails for 113 runs (roughly 2X failed runs
compared to RANUM). This study implies that RANUM’s technique helps to improve effec-
tiveness and efficiency at both steps of failure-exhibiting system test generation compared
to the pure random baseline. The improvement for the first step is mainly from the effec-
tiveness perspective, and the improvement for the second step is mainly from the efficiency
perspective.

Discussion. The high effectiveness of RANUM mainly comes from the advantage of
gradient-guided search compared with random search. As described in Section 12.2.2,
RANUM leverages both first-order gradients (in step a) and second-order derivatives (in
step b) to guide the search of system tests. In contrast, “Random” uses random sampling
hoping that failure-exhibiting training examples can emerge after sufficient sampling. Hence,
when such training examples are relatively rare in the whole valid input space, “Random”
is less effective. The ablation study above shows that RANUM improves over “Random” in
both steps inside RANUM.

Failing-case Analysis. We study all six defects where RANUM may fail and have the
following findings. (1) For four defects (Case IDs 1, 15, 37, and 38), the architecture is
challenging for gradient-based optimization, e.g., due to the Min/Max/Softmax operators that
provide little or no gradient information. We leave it as future work to solve these cases,
likely in need of dynamically detecting operators with vanishing gradients and reconstructing
the gradient flow. (2) Two defects (Case IDs 28a and 28b) correspond to those caused by
Div operators where only a close-to-zero divisor can trigger a numerical failure. Hence, for
operators with narrow invalid ranges, RANUM may fail to generate failure-exhibiting system
tests.
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Table 12.3: (RQ3) Results of task 3⃝ (fix suggestion) under three imposing location speci-
fications with RANUM and two baselines (RANUM-E and GD). # is the number of fixes
found. “Time (s)” is the total running time for all 79 cases.

Imposing RANUM RANUM-E GD
Locations # Time (s) # Time (s) # Time (s)

Weight + Input 79 54.23 78 540.13 57 188.63
Weight 72 58.47 71 581.86 43 219.28
Input 37 924.74 37 3977.30 29 952.19

12.3.3 RQ3: Fix Suggestion

In task 3⃝, RANUM suggests fixes for numerical defects. We compare RANUM with fixes
generated by baseline approaches and developers’ fixes.

Comparison between RANUM and Baselines

RANUM is the first approach for this task, and we propose two baseline approaches to
compare with. (1) RANUM-E: this approach changes the abstraction domain of RANUM
from interval with tensor partitioning to standard interval. To some degree, RANUM-E
represents the methodology of conventional static analysis tools that use standard interval
domain for abstraction and search of effective fixes. (2) GD: this approach uses standard gra-
dient descent for optimization instead of the abstraction optimization technique in RANUM.

Evaluation Protocol. We evaluate whether each approach can generate fixes that elimi-
nate all numerical defects for the DNN architecture under analysis given imposing locations.
We consider three types of locations: on both weight and input nodes, on only weight nodes,
and on only input nodes. In practice, model providers can impose fixes on weight nodes
by clipping weights after a model is trained; and users can impose fixes on input nodes by
clipping their inputs before loading them into the model. Since all approaches are determin-
istic, for each case we run only once. We say that the fix eliminates all numerical defects if
and only if (1) the RANUM static analysis framework cannot detect any defects from the
fixed architecture; and (2) 1,000 random samples cannot trigger any numerical failures after
imposing the fix.

Evaluation Result. We report the statistics, including the number of successful cases
among all the 79 cases and the total running time, in Table 12.3. From the table, we
observe that on all the three imposing location settings, RANUM always succeeds in most
cases and spends much less time. For example, when fixes can be imposed on both weights
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and input nodes, RANUM succeeds on all cases with a total running time 54.23 s. In
contrast, RANUM-E requires ą 10ˆ time, and GD succeeds in only 72.15% cases. Hence,
RANUM is substantially more effective and efficient for suggesting fixes compared to baseline
approaches.

Since RANUM is based on iterative refinement (see Algorithm 12.1), we study the number
of iterations needed for finding the fix. When fixes can be imposed on both weight and input
nodes, where RANUM succeeds on all the 79 cases, the average number of iterations is 29.80,
the standard deviation is 14.33, the maximum is 53, and the minimum is 2. Hence, when
RANUM can find the fix, the number of iterations is small, coinciding with the small total
running time 54.23 s.

Discussion. The two baseline approaches can be viewed as ablated versions of RANUM.
Comparing RANUM and GD, we conclude that the technique of abstraction optimiza-
tion substantially improves the effectiveness and also improves the efficiency. Comparing
RANUM and RANUM-E, we conclude that the interval abstraction with tensor partition-
ing as the abstraction domain substantially improves the efficiency and also improves the
effectiveness.

From Table 12.3, it is much easier to find the fix when imposing locations are weight
nodes compared to input nodes. Since model providers can impose fixes on weights and
users impose on inputs, this finding implies that fixing numerical defects on the providers’
side may be more effective than on the users’ side.

Comparison between RANUM and Developers’ Fixes

We conduct an empirical study to compare the fixes generated by RANUM and by the
developers.

Evaluation Protocol. We manually locate GitHub repositories from which the GRIST
benchmarks are constructed. Among the 79 cases, we find the repositories for 53 cases on
GitHub and we study these cases. We locate the developers’ fixes of the numerical defects
by looking at issues and follow-up pull requests. Since RANUM suggests different fixes for
different imposing locations, for each case we first determine the imposing locations from
the developer’s fix, and then compare with RANUM’s fix for these locations.

RANUM fixes are on the computational graph and developers’ fixes are in the source
code, so we determine to conduct code-centered comparison: RANUM fixes are considered
feasible only when the fixes can be easily implemented by code (within 10 lines of code)
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given that developers’ fixes are typically small, usually in 3-5 lines of code. In particular,
our comparison is based on two criteria: (1) which fix is sound on any valid input; (2) if
both are sound, which fix hurts less to model performance and utility (based on the span of
imposed precondition, the larger span the less hurt).

Results. We categorize the comparison results as below.

A (30 cases) Better than developers’ fixes or no available developer’s fix. Developers either
propose no fixes or use heuristic fixes, such as reducing the learning rate or using the
mean value to reduce the variance. These fixes may work in practice but are unsound,
i.e., cannot rigorously guarantee the elimination of the numerical defect for any training
or inference data. In contrast, RANUM generates better fixes since these fixes rigorously
eliminate the defect.

B (7 cases) Equivalent to developers’ fixes. Developers and RANUM suggest equivalent or
highly similar fixes.

C (13 cases) No need to fix. For these cases, there is no need to fix the numerical defect in
the given architecture. There are mainly three reasons. (1) The DNN is used in the whole
project with fixed weights or test inputs. As a result, although the architecture contains
defects, no system failure can be caused. (2) The architecture is injected a defect as a test
case for automatic tools, such as a test architecture in the TensorFuzz [278] repository.
(3) The defect can be hardly exposed in practice. For example, the defect is in a Div
operator where the divisor needs to be very close to zero to trigger a divide-by-zero failure,
but such situation hardly happens in practice since the divisor is randomly initialized.

D (3 cases) Inferior than developers’ fixes or RANUM-generated fixes are impractical. In
two cases, RANUM-generated fixes are inferior to developers’ fixes. Human developers
observe that the defective operator is Log, and its input is non-negative. So they propose
to add 10´6 to the input of Log as the fix. In contrast, RANUM can generate only a
clipping-based fix, e.g., clipping the input if it is less than 10´6. When the input is small,
RANUM’s fix interrupts the gradient flow from output to input while the human’s fix
maintains it. As a result, the human’s fix does less hurt to the model’s trainability and is
better than RANUM’s fix. In another case, the RANUM-generated fix imposes a small
span for some model weights (less than 0.1 for each component of that weight node).
Such a small weight span strongly limits the model’s expressiveness and utility. We leave
it as the future work to solve these limitations.
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From the comparison results, we can conclude that for the 40 cases where numerical
defects are needed to be fixed (excluding case C), RANUM suggests equivalent or better
fixes than human developers in 37 cases. Therefore, RANUM is comparably effective as
human developers in terms of suggesting numerical-defect fixes, and is much more efficient
since RANUM is an automatic approach.

Guidelines for Users. We discuss two practical questions for RANUM users. (1) Does
RANUM hurt model utility, e.g., inference accuracy? If no training or test data ever exposes
a numerical defect, RANUM does not confirm a defect and hence no fix is generated and
there is no hurt to the utility. If RANUM confirms numerical defects, whether the fix affects
the utility depends on the precondition-imposing locations. If imposing locations can be
freely selected, RANUM tends to impose the fix right before the vulnerable operator, and
hence the fix does not reduce inference performance. The reason is that the fix changes (by
clipping) the input only when the input falls in the invalid range of the vulnerable operator.
In practice, if the imposing locations cannot be freely selected and need to follow developers’
requirements, our preceding empirical study shows that, in only 3 out of 40 cases, compared
with developers’ fixes, our fixes incur larger hurt to the inference or training performance
of the architecture. (2) Should we always apply RANUM to fix any architecture? We can
always apply RANUM to fix any architecture since RANUM fixes do not visibly alter the
utility in most cases. Nonetheless, in deployment, we recommend first using RANUM to
confirm defect feasibility. If there is no such failure-exhibiting system test, we may not need
to fix the architecture; otherwise, we use RANUM to generate fixes.

12.4 THREATS TO VALIDITY

An external threat to validity is the evaluation subjects, which are the GRIST bench-
marks [426], used to evaluate RANUM and baseline approaches. Although the subjects
contain 63 real-world DL programs and are the largest to our knowledge, they still may not
be representative enough. Another external threat is the approach randomness. To mitigate
this threat, we repeat all randomized approaches for 10 runs. To mitigate bias in the em-
pirical study, the author worked together with another researcher to independently conduct
the study and discuss all cases to reach a consensus. A major internal threat to validity
comes from the approach implementation. We reduce this threat by conducting code review
and log checking extensively. A researcher independently checked the correctness of code
implementation. We also verify the soundness of our static analysis framework with over 50
carefully designed unit tests.
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12.5 RELATED WORK

Understanding and Detecting Defects in DL systems. Discovering and mitigat-
ing defects and failures in DL systems is an important research topic [186, 295, 457].
Following the taxonomy in previous work [157], DL defects are at four levels from bot-
tom to top. (1) Platform-level defects. Defects can exist in real-world DL compilers and
libraries. Approaches exist for understanding, detecting, and testing against these de-
fects [333, 361, 395, 421]. (2) Architecture-level defects. Our work focuses on numerical
defects, being one type of architecture-level defects. Automatic detection and localization
approaches [235, 397] exist for other architecture-level defects such as suboptimal structure,
activation function, and initialization and shape mismatch [140]. (3) Model-level defects.
Once a model is trained, its defects can be viewed as violations of desired properties, such
as all trustworthy properties discussed in previous chapters. (4) Interface-level defects. DL
systems, when deployed as services, expose interaction interfaces to users where defects may
exist, as shown by empirical studies on real-world systems [157, 382, 383].

Testing and Debugging for DNNs. A rich body of work exists for testing and debug-
ging DNN defects [451]. Some representatives are DeepXplore [291] and DeepGauge [248].
Recent work enables automatic model debugging and repair via consistency checking [420],
log checking [455], spectrum analysis [302], or analyzer-guided synthesis [350]. The RANUM
approach contains testing (task 2⃝) and debugging (task 3⃝) component for numerical de-
fects, and it also contains certification component (task 1⃝ for certifying numerical reliability
and task 3⃝ for generating certified fix).

Detecting and Exposing Numerical Defects in DNNs. Despite the widespread ex-
istence of numerical defects in real-world DL systems [157, 186, 457], only a few automatic
approaches exist for detecting and exposing these defects. To the best of our knowledge, DE-
BAR [460] and GRIST [426] are the only two approaches. We discuss and compare RANUM
with both approaches extensively in Sections 12.2 and 12.3.

12.6 SUMMARY

In this chapter, we have presented a novel automatic approach named RANUM for relia-
bility assurance of DNNs against numerical defects. RANUM supports detection of potential
numerical defects, confirmation of potential-defect feasibility, and suggestion of defect fixes.
RANUM includes multiple novel extensions and optimizations upon existing tools, and in-
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cludes three novel techniques. Our extensive evaluation on real-world DNN architectures
has demonstrated high effectiveness and efficiency of RANUM compared to both the state-
of-the-art approaches and developers’ fixes.

Data Availability. All artifacts including the tool source code and experiment logs are
available and actively maintained at https://github.com/llylly/RANUM.
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CHAPTER 13: DISCUSSION FOR PART IV

In this part, we have proposed two certified approaches, CertFair and RANUM, for two
trustworthy properties beyond robustness, distributional fairness and numerical reliability,
respectively. Unlike robustness, these two trustworthy properties are defined uniquely —
the distributional fairness property is defined at the distribution level for some statistics (ex-
pected loss), rather than at the instance level for a boolean predicate; the numerical reliability
property is defined for the whole valid input space, rather than for some local perturbations.

As we can see, even though these two properties are so different from robustness, the cer-
tified approaches can be extended to certify these two properties successfully, demonstrat-
ing the flexibility and extensibility of methodologies in certified approaches. In CertFair,
we extend the distribution overlap characterization for certifying robustness of randomized
smoothing to bring certification of expected loss, and then propose a subpopulation de-
composition technique to decompose fairness certification problem into optimizing linear
combinations of these expected losses. In the future, we believe that this type of extension
for distribution overlap characterization can further solve more certification problems involv-
ing distribution measures and statistics. In RANUM, we extend the white-box bounding
technique to certify a practical trustworthy threat in DL systems — numerical reliability,
and further propose a fixing technique based on optimizing the bounds. Before RANUM, the
bounding techniques are limited to certifying robustness or closely-related properties, and
RANUM shows their great potential in certifying other trustworthy properties and their con-
nection to program analysis. In the future, we believe that this type of extension of bounding
techniques can further solve more certification problems involving output uncertainties (e.g.,
for content legality of generative models) and neuro-symbolic systems.

221



Part V

Outlook and Conclusion

CHAPTER 14: OUTLOOK AND CONCLUSION

This thesis has developed a systematic methodology for enhancing and extending certified
approaches for deep learning systems. Starting from a taxonomy and characterization of
trustworthy properties and certified approaches in Part I, the thesis first investigates the
robustness certification against ℓp-bounded perturbations in depth in Part II, by enhancing
both black-box and white-box certified robustness with certification and certified training
approaches respectively. Then, the thesis focuses on broadening the scope of certified ap-
proaches. Part III illustrates how to achieve certified robustness beyond ℓp-bounded pertur-
bations. Inspired by real-world scenarios, robustness against semantic transformations and
robustness in reinforcement learning are studied and state-of-the-art certified approaches
are proposed under these robustness notions. Next, Part IV further extends the certified
approaches beyond robustness, by developing scalable and tight certified approaches for
distributional fairness and numerical reliability.

In summary, through extensive theoretical analysis and empirical evaluations, this thesis
proves that the certified trustworthiness of large-scale deep learning systems is feasible by
developing a series of scalable and tight certified approaches to provide and enhance the
certified trustworthiness of large-scale deep learning systems (with millions of parameters)
to the state-of-the-art level. The author believes that the thesis represents an important
step in certified machine learning, a topic of interest to machine learning, computer security,
software engineering, and programming languages.

Challenges. Despite the remarkable progress, certified approaches for DL systems are still
far from perfect. As sketched in Chapter 6, certification approaches are not scalable and tight
enough. As a result, certified training approaches need to strongly regularize the DL models
to achieve a decent level of certifiability, often resulting in a significant loss of utility, i.e.,
accuracy. Taking robustness against ℓp-bounded perturbations as an example, on MNIST,
a small-scale dataset, the certified robust accuracy against ℓ8-bounded adversary with 0.3

radius has reached over 94%. This is remarkable since the limit is 0.5 radius where any
input image can be perturbed to indistinguishable half-gray. However, on more challenging
CIFAR-10 and ImageNet datasets, certified robust accuracy is still low. On CIFAR-10,
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against ℓ8 adversary with radius 8{255, the certified robust accuracy is only 40.39%. On
the large-scale ImageNet dataset, the certified robust accuracy is only 42.2% under ℓ2 radius
2.0. Hence, on large-scale datasets, usually, there is a gap between the certified level of
trustworthiness and desired level of trustworthiness.

Another critical challenge is to deal with the complex nature of the real world. When
DL systems are deployed in the real world, it is always challenging to foresee all possible
security and trustworthy threats. Even if we can certify the degree of trustworthiness when
the attacker falls into some predefined range, e.g., ℓp-bounded perturbations, there is no
guarantee whether the attacker will always stick to such range or such attack vector. Hence,
all certified approaches cannot provide a full certificate of trustworthiness, but just a rela-
tively strong one. It is always an important research topic to discover, identify, monitor, and
formalize trustworthy issues so that certification approaches can be developed to mitigate
them. On the other hand, more recently, the development of generative models and language
models adds another layer of real-world complexity. For these models, even though threats
can be identified, they are hard to certify due to their unbounded and discrete nature. For
example, the space of the generative and language model’s output is almost infinite and it
is an open problem how to make sure any generated content is ethical, non-toxic, unbiased,
and privacy-preserving.

Future Directions. The author outlines a few future directions toward solving the above
challenges and beyond.

1. Tight and Scalable Certification for Trustworthiness. As discussed above,
tightness and scalability are core goals of trustworthiness certification approaches.
The author proposes two principles to guide the design toward tighter and more scal-
able certification: (1) Integration of domain-specific or task-specific knowledge: Pure
data-driven learning may be intrinsically limited toward human-level trustworthiness
for complex tasks [45]. Hence, domain-specific or task-specific knowledge can be lever-
aged. As a future step, the author believes that automated knowledge collection,
knowledge distillation, knowledge integration, and knowledge-based data generation,
for both certification and certified training approaches, could be the key to large-scale
certified trustworthiness. (2) Efficient abstraction of knowledge-enhanced DL system:
Certification approaches can be viewed as constructing abstractions for the DL sys-
tem to characterize its behavior on the threat model set. The abstraction of existing
certification is usually too generic, which handles the model in a way agnostic of its
training or constructing method. In the next-generation approach for DL certification,
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knowledge and reasoning components will be integrated into the abstraction to derive
a much tighter and more scalable certification.

2. Generic Certified Trustworthiness. Besides certification for existing trustworthy
properties, certification is also in need against more foreseen or unforeseen trustwor-
thy threats. In this aspect, the author proposes a roadmap containing three stages:
Stage 1: Discover, define, and certify more practical trustworthy properties. Toward
trustworthy AI, we need to identify more trustworthy properties that incur profound
social impacts. After properties are defined, we need to define them formally and pro-
pose corresponding certification approaches. To this end, one of the future research
questions is “Can we formally construct a DL-based system, such as a DL-based au-
tonomous vehicle or robotic agent, that is guaranteed to be universally safe when
deployed in the physical world?” Stage 2: Certify multiple trustworthy properties at
the same time. Existing certified methods mainly provide certified trustworthiness for
a single property. Can we achieve certified trustworthiness under multiple properties
at the same time? If so, what would be the efficient method? If not, is there any inher-
ent trade-off between different properties? What else (e.g., more data, more structured
knowledge, more human supervision, or better algorithms) do we need to achieve so?
Stage 3: Develop certifiably trustworthy DL systems holding multiple foreseen and un-
foreseen properties. Instead of defining trustworthy properties and developing methods
to certify them, is it possible to achieve “meta-trustworthiness”? In other words, can
we develop DL systems in a property-agnostic way to achieve human-level trustworthi-
ness under all existing notions (robustness, fairness, privacy, etc.) and possible future
notions?

3. Deployment of Certified Trustworthy Systems and Study of Social Impacts.
There is no free lunch—the certified methods for DL systems come at a cost. Costs
include inference overhead, training overhead, and normal performance degradation.
These negative costs are understudied but impose great barriers to deploying certified
DL systems in the real world. To deploy certified trustworthy systems in practice, we
need to mitigate these practical challenges. We also need to understand the practi-
cal implications and social impacts of certifiably trustworthy systems—if certifiably
trustworthy DL systems are deployed, to what extent they can benefit social good,
equality, democracy, and inclusion.

4. Interdescriplinary Research. Lastly, the author believes that the ultimate goal
of certified AI trustworthiness is to achieve fully controllable AI, i.e., to learn while
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perfectly conforming to human specifications and safety constraints. Hence, research
in other disciplines chasing controllable AI, such as robotics, control theory, and re-
inforcement learning, may bring many potential opportunities to better certified AI
trustworthiness.

As a closing remark, AI revolution is at the corner. Without certified trustworthiness,
human is not ready for AI revolution. It is our researcher’s responsibility to equip AI with
certification, so human can embrace the AI revolution. This thesis is just a milestone, but
never the end of the author’s quest for fully certified AI trustworthiness.
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APPENDIX A: ROBUSTNESS AGAINST SEMANTIC
TRANSFORMATIONS ON POINT CLOUD MODELS
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Figure A.1: Overview of TPC framework. TPC includes smoothing and certification strate-
gies to provide certified robustness for point cloud models against semantic transformations.
Besides the rotation as shown in the figure, TPC provides strong robustness certification for
a wide range of other semantic transformations.

Besides image models, in computer vision, deep neural networks that take point clouds
data as inputs (point cloud models) are also widely used [301, 391, 465] especially in au-
tonomous driving [61, 63, 217]. For instance, modern autonomous driving systems are
equipped with LiDAR sensors that generate point cloud inputs to feed into point cloud
models [50]. Despite their successes, point cloud models are shown to be vulnerable to
adversarial attacks that mislead the model’s prediction by adding stealthy perturbations
to point coordinates or applying semantic transformations (e.g., rotation, shearing, taper-
ing) [50, 51, 412, 417]. Specifically, semantic transformation based attacks can be easily oper-
ated on point cloud models by simply manipulating sensor positions or orientations [50, 51].
These attacks may lead to severe consequences such as forcing an autonomous driving vehi-
cle to steer toward the cliff [291]. A wide range of empirical defenses against these attacks
has been studied [12, 301, 355, 356, 357, 467], while defenses with robustness guarantees are
less explored [120, 241] and provides loose and less scalable certification.

In this appendix, we extend the TSS framework in Chapter 7 to point cloud models, yield-
ing TPC that provides tight and scalable probabilistic robustness guarantees for point cloud
models against a wide range of semantic transformation attacks. Following the method-
ology in TSS, we first categorize common semantic transformations into three categories:
additive (e.g., shearing), composable (e.g., rotation), and indirectly composable (e.g., taper-
ing). For each category, our framework proposes novel smoothing and robustness certification
strategies. With TPC, for each common semantic transformation or composition, we prove
the corresponding robustness conditions that yield efficient and tight robustness certification.

For example, regarding general rotation based attacks, we first prove that it is a type
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of composable transformations; we then propose a corresponding smoothing strategy and
certify the robustness of the smoothed model with a novel sampling-based algorithm, which
is shown to have sound and tight input-dependent sampling error bound. TPC achieves
69.2% certified robust accuracy for any rotation within 10˝. To the best of our knowledge,
no prior work can provide robustness certification for rotations within such large angles.

In addition to our theoretical analysis for the certification against different types of se-
mantic transformations, we conduct extensive experiments to evaluate TPC. Compared with
existing baselines, our TPC achieves substantially higher certified robust accuracy. For ex-
ample, for any twisting along z-axis within ˘20˝, we achieve the probabilistic certified accu-
racy of 83.8% with a high confidence level 99.9%, while the existing baseline [241] provides
a deterministic certified accuracy of 20.3%. Furthermore, compared with prior works, we
show that TPC can: (1) certify a more general class of semantic transformations; (2) cer-
tify large-size point clouds; and (3) certify under large perturbation magnitudes. We also
show that TPC can certify the robustness for multiple tasks on 3D point clouds, including
classification and part segmentation.

We illustrate our TPC framework in Figure A.1, and we summarize the main technical
contributions as follows.

• We propose a general robustness certification framework TPC for point cloud models.
We categorize common semantic transformations of point clouds into three categories:
additive, composable, and indirectly composable, and provide general smoothing and
certification strategies for each.

• We concretize our framework TPC to provide transformation-specific smoothing and
certification for various realistic common semantic transformations for point clouds,
including rotation, shearing, twisting, and tapering as well as their compositions.

• We conduct extensive experiments and show that TPC (1) achieves significantly higher
certified robust accuracy than baselines, (2) provides certification for large-size point
clouds and large perturbation magnitudes, and (3) provides efficient and effective cer-
tification for different tasks such as classification and part segmentation.

A.1 RELATED WORK

Our TPC aims to generalize the model robustness certification to point cloud models
against a more generic family of practical attacks – semantic transformation attacks. The
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semantic transformation attacks have been shown feasible for both image classification mod-
els and point cloud models [50, 145, 412], and certified robustness against such attacks is
mainly studied for 2D image classification models [22, 118, 223]. For point cloud models,
some work considers point addition and removal attacks [412] and provides robustness cer-
tification against such attacks [236]. The randomized smoothing technique is applied to
certify point cloud models on segmentation tasks by [120]. However, their certification only
covers points edition with bounded ℓ2 norm and rotations along a fixed axis. For general
semantic transformation attacks, to the best of our knowledge, the only work that can pro-
vide robustness certification against them is DeepG3D [241], which is based on linear bound
relaxations. In this work, we derive novel randomized smoothing techniques on point clouds
models to provide probabilistic robustness certification against semantic transformations.
In Appendix A.5, we conduct extensive experiments to show that our framework is more
general and provides significantly higher certified robust accuracy than DeepG3D under
different settings.

A.2 SEMANTIC TRANSFORMATION ATTACKS ON POINT CLOUD MODELS

We denote the space of point cloud inputs as X “ RNˆ3 where N is the number of points
the point cloud has. A point cloud with N points is denoted by x “ tpiu

N
i“1 with pi P R3.

Unless otherwise noted, we assume all point cloud inputs are normalized to be within a unit
ball, i.e., }pi}2 ď 1. We mainly consider classification tasks on the point clouds level. Such
classification task is defined with a set of labels Y “ rCs “ t1, . . . , Cu and a classifier is
defined by a deterministic function h : X Ñ Y . More extensions are in Appendix A.5.2.

A.2.1 Semantic Transformations

Semantic transformations on point cloud models are defined as functions ϕ : X ˆZ Ñ X
where Z is the parameter space for transformations. The semantic transformations discussed
in this paper may change the three-dimensional coordinate of each point (usually in a point-
wise manner) but do not increase or decrease the number of points. In Appendix A.3, we
will further categorize different semantic transformations based on their intrinsic properties.

A.2.2 Threat Model and Certification Goal

We consider semantic transformation attacks that an adversary can apply arbitrary se-
mantic transformations to the point cloud data according to a parameter z P Z. The
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1. Shear(0.2,0.3)
2. Shear(0.3,0.1)

Shear(0.5,0.4)

a Additive.

1. Rotate(z,30°)

Rotate(42.18°)
along 

(�, � − �, �)

2. Rotate(x,30°)

b Composable.

1. Taper(0.3)
2. Taper(0.3)

Taper(0.6)

Difference:
������, �����, 0�
where � = 0.3

c Indirectly composable.

Figure A.2: Illustration of different types of transformations. (a) additive transformations
(e.g., shearing), (b) composable transformations (e.g., rotation), and (c) indirectly compos-
able transformations (e.g., tapering).

Composable

• Z-rotation

• Z-shear

Additive

Indirectly Composable

• General 
   rotation

• Z-taper

• Z-twist × 
  Z-rotation

• Z-taper ×
  Z-twist  ×
  Z-rotation

• Z-twist

• Z-twist ×
  Z-rotation

• Linear

Figure A.3: Taxonomy of common 3D semantic transformations for point clouds.

adversary then performs evasion attacks to a classifier h with the transformed point cloud
ϕpx, zq. The attack is successful if h predicts different labels on x and ϕpx, zq15.

The main goal of this paper is to certify the robustness of point cloud classifiers against
all semantic attacks within a certain transformation parameter space. Formally, our certi-
fication goal is to find a subset Zrobust Ď Z for a classifier h : X Ñ Y , such that

hpxq “ hpϕpx, zqq, @z P Zrobust. (A.1)

A.3 TRANSFORMATION SPECIFIC SMOOTHING FOR POINT CLOUD MODELS

In this section, we first introduce the proposed randomized smoothing techniques for
general semantic transformations. Next, we categorize the semantic transformations into
three types: composable, additive, and indirectly composable transformations. We then
derive the smoothing-based certification strategies for each type.

15Without loss of generality, we consider untargeted attacks here, and the targeted attack can be derived
similarly.
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A.3.1 Transformation Specific Smoothed Classifier

We apply transformation-specific smoothing to an arbitrary base classifier h : X Ñ Y
to construct a smoothed classifier. Specifically, the smoothed classifier g predicts the class
with the highest conditional probability when the input x is perturbed by some random
transformations.

Definition A.1 (Transformation Specific Smoothed Classifier). Let ϕ : X ˆ Z Ñ X be
a semantic transformation. Let ϵ be a random variable in the parameter space Z. Sup-
pose we have a base classifier that learns a conditional probability distribution, hpxq “
argmaxyPY ppy|xq. Applying transformation specific smoothing to the base classifier h yields
a smoothed classifier g : X Ñ Z, which predicts

gpx; ϵq “ argmax
yPY

qpy|x, ϵq “ argmax
yPY

Eϵpppy|ϕpx, ϵqqq. (A.2)

We recall the theorem proved in Chapter 7, which provides a generic certification bound for
the transformation-specific smoothed classifier based on the Neyman-Pearson lemma [276].

Next, we will categorize the semantic transformations into different categories based on
their intrinsic properties as shown in Figure A.3, and we will then discuss the certification
principles for each specific category.

A.3.2 Composable Transformations

A set of semantic transformations is called composable if it is closed under composition.

Definition A.2. A set of semantic transformations defined by ϕ : XˆZ Ñ X is called com-
posable if for any α P Z there exists an injective and continuously differentiable function
γα : Z Ñ Z with non-vanishing Jacobian, such that

ϕpϕpx, αq, βq “ ϕpx, γαpβqq, @x P X , β P Z. (A.3)

The definition of composable transformations is the same as resolvable transformations
in Chapter 7, but applied to point cloud data. Common semantic transformations for point
cloud data that are composable include rotation, shearing along a fixed axis, and twisting
along a fixed axis. For example, according to Euler’s rotation theorem, we can always find
another rotation γαpβq P Z for any two rotations α, β P Z. Therefore, rotations belong to
the composable transformations as shown in Figure A.2 (b).

In general, composable transformations can be certified against by Corollary 7.1 stated
in Chapter 7. For a classifier gpx; ϵ0q smoothed by the composable transformation, we can
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simply replace the random variable ϵ1 by γαpϵq in Corollary 7.1 to derive a robustness cer-
tification condition. However, some composable transformations with complicated γαpβq

function result in intractable distribution for ϵ1, causing difficulties for the certification.
Therefore, we focus on a subset of composable transformations, called additive transforma-
tions, for which it is straight-forward to certify by applying Corollary 7.1.

A.3.3 Additive Transformations

We are particularly interested in a subset of composable transformations that the function
γα : Z Ñ Z defined in Definition A.2 satisfies γαpβq “ α ` β as shown in Figure A.2 (a)
where the one step rotation above is equivalent to the two step transformations below.

Definition A.3. A set of semantic transformations ϕ : X ˆ Z Ñ X is called additive if

ϕpϕpx, αq, βq “ ϕpx, α ` βq, @ x P X , α, β P Z. (A.4)

An additive transformation must be composable, but the reverse direction does not hold.
For instance, the set of general rotations from the SO(3) group is composable, but not ad-
ditive. Rotating 10˝ along the x axis first and then 10˝ along the y axis does not equal
rotating 20˝ along the xy axis. Thus, general rotations cannot be categorized as an additive
transformation. However, rotating along any fixed axis is additive. Based on this obser-
vation, we discuss z-rotation (i.e., rotation along z axis) and general rotations separately
in Appendix A.4. All additive transformations can be certified following the same protocol
derived from Corollary 7.1.

A.3.4 Indirectly Composable Transformations

As shown in Appendix A.3.2, composable transformations can be certified following Corol-
lary 7.1. However, some semantic transformations of point clouds do not have such closure
property under composition and thus do not fall in this category as shown in Figure A.2
(c). For example, the tapering transformation which we will discuss in Appendix A.4 is not
composable and cannot be certified directly using Corollary 7.1. This kind of transformation
is therefore categorized as a more general class called indirectly composable transformations.

Definition A.4. A set of transformations ϕ : X ˆ Zϕ Ñ X is indirectly composable if
there is a set of composable transformations ψ : X ˆ Zψ Ñ X , such that for any x P X ,
there exists a function δx : Zϕ ˆ Zϕ Ñ Zψ with
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ψpϕpx, αq, δxpα, βqq “ ϕpx, βq, @α, β P Zϕ. (A.5)

The definition is the same as differentially resolvable transformation in Chapter 7, but is
applied to point cloud data. This definition involves more kinds of transformations, since
we can choose the transformation ψ as ψpx, δq “ x` δ and let δxpα, βq “ ϕpx, βq ´ ϕpx, αq.
This specific assignment of ψ leads to a useful theorem Corollary 7.2, which we use to certify
against some more complicated transformations, such as tapering in Appendix A.4. The
theorem states that the overall robustness can be guaranteed if we draw multiple samples
within the parameter space and certify the neighboring distribution of each sampled param-
eter separately.

A.4 CERTIFYING POINT CLOUD MODELS AGAINST SPECIFIC SEMANTIC
TRANSFORMATIONS

In this section, we certify the point cloud models against several specific semantic transfor-
mations that are commonly seen for point cloud data, including rotation, shearing, twisting,
and tapering. We do not analyze scaling and translation, since the point cloud models are
usually inherently invariant to them due to the standard pre-processing pipeline [301]. For
each transformation, we specify a corresponding certification protocol based on the catego-
rization they belong to introduced in Appendix A.3.

A.4.1 Rotation, Shearing, and Twisting along a Fixed Axis

Rotation, shearing, and twisting are all common 3D transformations that are performed
pointwise on point clouds. Without loss of generality, we consider performing these trans-
formations along the z-axis.

Specifically, we define z-shear transformation as ϕSz : X ˆ Z Ñ X where X “ RNˆ3 is
the space of the point clouds with N points and Z “ R2 is the parameter space. For any
z “ pθ1, θ2q, z-shear acting on a point cloud x P X with x “ tpiu

N
i“1 yields (pi “ pxi, yi, ziqT )

ϕSzppi, zq “ pxi ` θ1zi, yi ` θ2zi, ziq. (A.6)

Z-twist transformation ϕTz : X ˆ Z Ñ X is defined similarly but with parameter space
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Z “ R. For any θ P Z and pi “ pxi, yi, ziq
T ,

ϕTzppi, θq “

¨

˚

˚

˝

xi cospθziq ´ yi sinpθziq

xi sinpθziq ` yi cospθziq

zi

˛

‹

‹

‚

. (A.7)

Note that z-rotation, z-shear and z-twist are all additive transformations. Hence, we present
the following corollary based on Corollary 7.1, which certifies the robustness of point clouds
models with bounded ℓ2 norm for the transformation parameters.

Corollary A.1. Suppose a classifier g : X Ñ Y is smoothed by a transformation ϕ :

X ˆ Z Ñ X with ϵ „ N p0, σ2Idq. Assume its class probability satisfies condition (7.4).
If the transformation is z-rotation, z-shear, or z-twist (ϕ “ ϕSz, ϕTz or ϕRot´z), then it is
guaranteed that gpϕpx, αq; ϵq “ gpx; ϵq, if the following condition holds:

}α}2 ď
σ

2

´

Φ´1ppAq ´ Φ´1ppBq
¯

, α P Z. (A.8)

A.4.2 Tapering along a Fixed Axis

Tapering a point keeps the coordinate of a specific axis k, but scales the coordinates of
other axes proportional to k’s coordinate. For clarity, we define z-taper transformation
ϕTP : X ˆZ Ñ X as tapering along the z-axis, with its parameter space defined by Z “ R.
For any point cloud x “ tpiuNi“1 P X (pi “ pxi, yi, ziq) and for any θ P Z,

ϕTP ppi, θq “
`

xip1` θziq, yip1` θziq, zi
˘

. (A.9)

However, z-taper is not a composable transformation, since the composition of two z-
taper transformations contains terms with z2i component. Therefore, we propose a specific
certification protocol for z-taper based on Corollary 7.2. To achieve this goal, we specify a
sampling strategy in the parameter space Z and bound the interpolation error of the sampled
z-taper transformations.

Theorem A.1. Let ϕTP : X ˆ R Ñ X be a z-taper transformation. Let g : X Ñ Y
be a ϵ-smoothed classifier with random noises ϵ „ N p0, σ2I3ˆNq, which predicts gpx; ϵq “
argmaxy qpy|x; ϵq “ argmaxEϵppy|x`ϵq. Let tθjuMj“0 be a set of transformation parameters
and θj “ p 2jM ´ 1qR. Suppose for any i,

qpyA|ϕTP px, θjq; ϵq ě p
pjq

A ą p
pjq

B ě max
y‰yA

qpy|ϕTP px, θjq; ϵq (A.10)
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Then it is guaranteed that @θ P r´R,Rs: yA “ argmaxy qpy|ϕTP px, θq; ϵq if for all j “
1, . . . ,M ,

σ

2

ˆ

Φ´1
´

p
pjq

A

¯

´ Φ´1
´

p
pjq

B

¯

˙

ě
R
?
N

2M
. (A.11)

Detailed proof for Theorem A.1 can be found in [75].

A.4.3 General Rotation

Rotation is one of the most common transformations for point cloud data. Therefore, we
hope the classifier is robust not only against rotation attacks along a fixed axis, but also those
along arbitrary axes. In this section, we first define general rotation and show its universality
for rotations as well as their composition; and then provide a concrete certification protocol
for smoothing and certifying the robustness against this type of transformation.

We define general rotation transformations as ϕR : X ˆ Z Ñ X where Z “ S2 ˆ R` is
the parameter space of rotations. For a rotation z P Z, its rotation axis is defined by a unit
vector k P S2 and its rotation angle is θ P R`. For any 3D point pi P R3,

ϕRppi, zq “ Rotpk, θqpi, z “ pk, θq. (A.12)

where Rotpk, θq is the rotation matrix that rotates by θ along axis k. General rotations are
composable transformations since the composition of any two 3D rotations can be expressed
by another 3D rotation.

However, certifying against the general rotation is more challenging, since the general
rotation is not additive and the expression of their composition is extremely complicated.
In particular, if we smooth a base classifier with a random variable ϵ0, a semantic attack
with parameter α P Z results in ϕRpϕRpx, αq, ϵ0q “ γαpϵ0q, which is a bizarre distribution
in the parameter space. Therefore, we cannot directly apply Corollary 7.1 to certify general
rotation.

On the other hand, as Corollary 7.2 shows, if we uniformly sample many parameters in
a subspace of Z “ S2 ˆ R` and certify robustness in the neighborhood of each sample, we
are able to certify a large and continuous subspace Zrobust Ď Z. As a result, we propose a
sampling-based certification strategy, together with a tight bound for the interpolation error
of general rotation transformations, which we summarize in the following theorem.

Theorem A.2. Let ϕR : X ˆ Z Ñ X be a general rotation transformation. Let g : X Ñ Y
be a classifier smoothed by random noises ϵ „ N p0, σ2I3ˆNq, which predicts gpx; ϵq “
argmaxy qpy|x; ϵq “ argmaxy Epppy|x` ϵqq. Let tzjuMj“1 be a set of transformation parame-
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ters with zj “ pkj, θjq, kj P S2, θj P R` such that

@k P S2, θ P r0, Rs, Dkj, θj s.t. xk, kjy ď ϵ, |θ ´ θj| ď δ (A.13)

Suppose for any j, the smoothed classifier g has class probabilities that satisfy

qpyA|ϕRpx, zjq; ϵq ě p
pjq

A ą p
pjq

B ě max
y‰yA

qpy|ϕRpx, zjq; ϵq. (A.14)

Then it is guaranteed that for any z with rotation angle θ ă R: yA “ argmaxy qpy|ϕRpx, zq; ϵq

if @j,
σ

2

ˆ

Φ´1
´

p
pjq

A

¯

´ Φ´1
´

p
pjq

B

¯

˙

ě π

c

δ2

4
`
ϵ2R2

8
}x}2. (A.15)

We present a proof sketch here and leave the details in [75]. Notice that the interpola-
tion error between two transformations on a point cloud x “ tpiu

N
i“1 can be calculated by

}ϕpx, zjq ´ ϕpx, zq}2 “ }ϕpx, z
1q ´ x}2 ď θ1p

řN
i }pi}

2
2q

1{2, where z1 “ pk1, θ1q is the compo-
sition of the rotation with parameter z and the reverse rotation z´1

j . Combined with the
generic theorem for indirectly composable transformations (Corollary 7.2), bounding θ1 using
Equation (A.13) yields Theorem A.2.

A.4.4 Linear Transformations

Here, we consider a broader class of semantic transformations that contains all linear
transformations applied to a 3D point. Formally, a linear transformation ϕL : X ˆ Z Ñ X
has a parameter space of Z “ R3ˆ3. For any point cloud x “ tpiu

N
i“1 P X and for any

A P Z,
ϕLppi,Aq “ pI`Aqpi. (A.16)

Equation (A.16) describes any linear transformation with a bounded perturbation A from
the identity transformation I. A natural threat model is considered by [309] that the per-
turbation matrix A has a bounded Frobenius norm }A}F ď ϵ, for which we present a
certification protocol in this paper. Linear transformations are composable because their
compositions are also linear, but the fact that they are not additive prohibits a direct us-
age of Corollary 7.1. Nevertheless, these transformations can still be certified with a more
complicated protocol, if Gaussian smoothing is applied.

Theorem A.3. Suppose a classifier g is smoothed by random linear transformations ϕL :

X ˆZ Ñ X where Z “ R3ˆ3, with a Gaussian random variable ϵ „ N p0, σ2I9q. If the class
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probability satisfies condition (7.4), then it is guaranteed that gpϕppx, αq; ϵq “ gpx; ϵq for all
}α}F ď R, where

R “
σ
´

Φ´1pp̃Aq ´ Φ´1p1´ p̃Aq
¯

2` σ
´

Φ´1pp̃Aq ´ Φ´1p1´ p̃Aq
¯ . (A.17)

p̃A is a function of pA as explained in [75, Lemma B.2]
The theorem is proved in [75, Appendix B.4]

A.4.5 Compositions of Different Transformations

In addition to certifying against a single transformation, we also provide certification
protocols for composite transformations, including z-twist ˝ z-rotation, z-taper ˝ z-rotation
and z-twist ˝ z-taper ˝ z-rotation.

Notice that z-twist ˝ z-rotation is an additive function:

ϕTzpϕRot´zpϕTzpϕRot´zpx, θ1q, α1q, θ2q, α2q “ ϕTzpϕRot´zpx, θ1 ` θ2q, α1 ` α2q. (A.18)

Therefore, we directly apply Corollary 7.1 to certify z-twist ˝ z-rotation transformation.
The concrete corollary is stated as below.

Corollary A.2. Suppose a classifier g : X Ñ Y is smoothed by random transformations
z-twist ˝ z-rotation ϕ : X ˆ Z Ñ X where the parameter space Z “ ZTwist ˆ ZRot´z “ R2.
The random variable for smoothing is ϵ „ N p0, diagpσ2

1, σ
2
2qq. If the class probability of g

satisfies condition (7.4), then it is guaranteed that gpϕpx, αq; ϵq “ gpx; ϵq for all pα1, α2q P Z,
if the following condition holds:

d

ˆ

α1

σ1

˙2

`

ˆ

α2

σ2

˙2

ď
σ

2

´

Φ´1ppAq ´ Φ´1ppBq
¯

. (A.19)

Another composite transformation z-taper ˝ z-rotation first rotates the point cloud along
z-axis, and then taper along z-axis. As z-taper is not composable with itself, this com-
posite transformation is also not composable. Similar to z-taper, we certify the composite
transformation z-taper ˝ z-rotation by upper-bounding the interpolation error.

Theorem A.4. We denote z-taper ˝ z-rotation by ϕ : X ˆ Z Ñ X , ϕ “ ϕTP ˝ ϕRot´z with
a parameter space of Z “ ZTP ˆ ZRot´z “ R2. Let g : X Ñ Y be a classifier smoothed by
random noises ϵ „ N p0, σ2I3ˆNq.

For a subspace in the parameter space, S “ r´φ, φs ˆ r´θ, θs Ď Z, we uniformly sample
φθM2 parameters tzjku in S. That is, zjk “ pφj, θkq where φj “ 2j

M
´ φ and θk “

2k
M
´ θ.
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Suppose for any j, k the smoothed classifier g has class probability that satisfy

qpyA|ϕpx, zjkq; ϵq ě p
pjkq

A ą p
pjkq

B ě max
y‰yA

qpy|ϕpx, zjkq; ϵq, (A.20)

then it is guaranteed that yA “ argmaxy qpy|ϕpx, zq; ϵq if @j, k and @z P S,

σ

2

ˆ

Φ´1
´

p
pjkq

A

¯

´ Φ´1
´

p
pjkq

B

¯

˙

ě

a

Np4φ2 ` 8φ` 5q

2M
. (A.21)

We also consider the composition of three transformations: z-twist ˝ z-taper ˝ z-rotation.

Theorem A.5. We define the composite transformation z-twist ˝ z-taper ˝ z-rotation by
ϕ : X ˆ Z Ñ X , with input space X “ R3ˆN and parameter space Z “ ZTwist ˆ ZTaper ˆ

ZRot´z “ R3. Let g : X Ñ Y be a classifier smoothed by random noises ϵ „ N p0, σ2I3ˆNq,
which predicts gpx; ϵq “ argmaxy qpy|x; ϵq “ argmaxy Epppy|x` ϵqq.

Let tzjkl P Z : z “ pφj, αk, θlqu be a set of parameters with φj “ 2j
M
´ φ, αk “ 2k

M
´ α and

θl “
2l
M
´ θ. Therefore pφj, αk, θlq distribute uniformly in the subspace Zrobust “ r´φ, φs ˆ

r´α, αsˆ r´θ, θs Ď Z. Suppose for any j, k, l, the smoothed classifier g has class probability
that satisfy

qpyA|ϕpx, zjklq; ϵq ě p
pjklq
A ą p

pjklq
B ě max

y‰yA
qpy|ϕpx, zjklq; ϵq, (A.22)

then it is guaranteed that for any z P Zrobust : yA “ argmaxy qpy|ϕpx, zq; ϵq, if for any
i, j, k,

σ

2

´

Φ´1
´

p
pjklq
A

¯

´ Φ´1
´

p
pjklq
B

¯¯

ě

b

Np1` 27
4
p1` αq2q

2M
(A.23)

Both Theorem A.4 and Theorem A.5 are based on our proposed approach of sampling
parameters in the parameter space and certifying the neighboring distributions of the samples
separately by bounding the interpolation error. These two theorems are rigorously proved
in [75, Appendix B.5 and B.6].

A.5 EXPERIMENTS

We conduct extensive experiments on different 3D semantic transformations and models
to evaluate the certified robustness derived from our TPC framework. We show that TPC
significantly outperforms the state-of-the-art in terms of the certified robustness against a
range of semantic transformations, and the results also lead to some interesting findings.
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A.5.1 Experimental setup

Dataset. We perform experiments on the ModelNet40 dataset [411], which includes differ-
ent 3D objects of 40 categories. We follow the standard pre-processing pipeline that places
the point clouds in the center and scales them into a unit sphere.

We also conduct experiments for part segmentation tasks, for which the ShapeNet dataset
[58] is used for evaluation. It contains 16681 meshes from 16 categories and also 50 predefined
part labels. The experiment results are presented in Appendix A.5.2.

Models. We run our experiments for point cloud classification on PointNet models [301]
with different point cloud sizes. We apply data augmentation training for each transforma-
tion combined with consistency regularization to train base classifiers. We then employ our
TPC framework to smooth these models and derive robustness certification bounds against
various transformations. TPC does not depend on specific model selection and can be di-
rectly applied to certify other point cloud model architectures. We present certification
results for other architectures (e.g., CurveNet [415]) in [75].

Evaluation Metrics. To evaluate the robustness of point clouds classification, we pick a
fixed random subset of the ModelNet40 test dataset. We report the certified accuracy
defined by the fraction of point clouds that are classified both correctly and consistently
within certain transformation space. The baseline we compare with [241] only presents
certified ratio, which is the fraction of test samples classified consistently. We believe that
the certified accuracy is a more rigorous metric for evaluation based on existing standard
certification protocols in the image domain [77]. We thus calculate the certified accuracy for
baselines based on the results reported in the paper [241] for comparison. Besides, we also
report the certified ratio comparison in Table A.2 and the full version of this appendix [75].
We remark that TPC provides a probabilistic certification for point cloud models and we
use a high confidence level of 99.9% in all experiments; while the baseline DeepG3D [241]
yields a deterministic robustness certification.

For the part segmentation task, we evaluate our method using a fixed random subset of
the ShapeNet test dataset. As the part segmentation task requires assigning a part category
to each point in a point cloud, we report the point-wise certified accuracy defined as
the fraction of points that are classified correctly and consistently. Note that other common
metrics such as IoU can be easily derived based on our bound as well. We will focus on the
point-wise certified accuracy for the convenience of comparison with baseline [241].
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Table A.1: Comparison of certified accuracy achieved by our transformation-specific smooth-
ing framework TPC and the baseline, DeepG3D [241]. “-” denotes the settings where the
baselines cannot scale up to.

Transformation Attack radius
Certified Accuracy (%)

TPC DeepG3D

ZYX-rotation 2˝ 81.4 61.6
5˝ 69.2 49.6

General rotation
5˝ 78.5 -
10˝ 69.2 -
15˝ 55.5 -

Z-rotation
20˝ 84.2 81.8
60˝ 83.8 81.0
180˝ 81.3 -

Z-shear
0.03 83.4 59.8
0.1 82.2 -
0.2 77.7 -

Z-twist
20˝ 83.8 20.3
60˝ 80.1 -
180˝ 64.3 -

Z-taper
0.1 78.1 69.0
0.2 76.5 23.9
0.5 66.0 -

Linear 0.1 74.0 -
0.2 59.9 -

Z-twist ˝

Z-rotation

20˝, 1˝ 78.9 13.8
20˝, 5˝ 78.5 -
50˝, 5˝ 76.9 -

Z-taper ˝

Z-rotation
0.1, 1˝ 76.1 58.2
0.2, 1˝ 72.9 17.5

Z-twist ˝ Z-taper
˝ Z-rotation

10˝, 0.1, 1˝ 68.8 17.5
20˝, 0.2, 1˝ 63.1 4.6

A.5.2 Main Results

In this section, we present our main experimental results. Concretely, we show that: (1)
the certified accuracy of TPC under a range of semantic transformations is significantly
higher than the baseline, and TPC is able to certify under some transformation space where
the baseline cannot be applied; (2) the certified accuracy of TPC always outperforms the
baseline for different point cloud sizes, and more interestingly, the certified accuracy of TPC
increases with the increasing of point cloud size while that of the baseline decreases due
to relaxation; (3) TPC is also capable of certifying against ℓ2 or ℓ8 norm bounded 3D
perturbations for different point clouds sizes; (4) on the part segmentation task, TPC still
outperforms the baseline against different semantic transformations and is able to certify
some transformation parameter space that the baseline is not applicable.
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Table A.2: Comparison of certified ratio as well as certified accuracy for z-rotation transfor-
mations. “-” denotes the settings which the baselines cannot scale up to.

Radius Certified Ratio (%) Certified Accuracy (%)

TPC DeepG3D TPC DeepG3D

20˝ 99.0 96.7 84.2 81.8
60˝ 98.1 95.7 83.8 81.0
180˝ 95.2 - 81.3 -

Comparison of Certified Accuracy

Table A.1 shows the certified accuracy we achieved for different transformations compared
with prior works. We train a PointNet model with 64 points, which is consistent with the
baseline. For transformations characterized by one parameter, such as z-rotation, z-twist,
and z-taper, we report the certified accuracy against attacks in ˘θ. For z-shear with a
parameter space of R2, we report the certified accuracy against attacks in a certain ℓ2

parameter radius. For the linear transformation with a parameter space of R3ˆ3, we report
the certified accuracy against attacks in a certain Frobenius norm radius.

The highlighted results in Table A.1 demonstrate that our framework TPC significantly
outperforms the state of the art in every known semantic transformation. For example, we
improve the certified accuracy from 59.8% to 83.4% for z-shear in ˘0.03 and from 20.3% to
83.8% for z-twist in ˘20˝.

Besides, we also report the certified accuracy for larger attack radius for which the baseline
cannot certify (cells with “-”). For instance, we achieve 81.3% certified accuracy on z-rotation
within ˘180˝, which is essentially every possible z-rotation transformation.

The general rotation transformations we define in Appendix A.4.3 includes rotations along
any axis with bounded angles. Lorenz et al. [241] consider ZYX-rotation, the composition of
three rotations within ˘θ (Euler angles) along x, y, z axes instead, which results in a different
geometric shape for the certified parameter space. However, the parameter space restricted
by S2 ˆ r0, 2θs of general rotation strictly contains the space defined by ˘θ for three Euler
angles. The derived results for ZYX-rotation are also shown in Table A.1 for comparison.

Comparison of Certified Ratio. Aside from the certified accuracy, we also consider
the certified ratio as another metric according to the baseline. This metric measures the
tightness of certification bounds but fails to take the classification accuracy into account
which is important. Therefore, we mainly present the comparison based on the certified
ratio for z-rotations in Table A.2 only for comparison and leave the full comparison in [75].
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Table A.3: Certification of z-rotation for different point cloud sizes. The certified accuracy
achieved by our TPC increases as the size of the point cloud model increases.

(a) θ “ ˘3˝ compared with DeepG3D [241]
Points 16 32 64 128 256 512 1024

TPC 83.2 83.8 86.6 87.4 89.4 89.8 90.5
DeepG3D 75.4 78.4 79.1 69.4 57.5 42.8 32.3

(b) Certified accuracy of TPC under θ “ ˘180˝

Points 16 32 64 128 256 512 1024

TPC 73.6 79.3 81.3 81.8 83.0 84.6 83.8

Certification on Point Clouds with Different Sizes

Here we show that our certification framework naturally scales up to larger point cloud
models. A basic principle of our TPC framework is that deriving the certification bound
for a smoothed classifier only depends on the predicted class probability. In other words, it
does not rely on specific model architectures.

The relaxation-based verifiers [241, 343] have worse certification guarantees for larger
point clouds due to the precision loss during relaxation, especially for pooling layers that
are heavily used in point cloud model architectures. For example, the DeepG3D verifier
guarantees 79.1% certified accuracy for a 64-point model on z-rotation with ˘3˝ (without
splitting); but the certification drops to 32.3% for a 1024-point model [241]. In contrast,
using our TPC framework, the certified accuracy tends to increase with a larger number
of points in point clouds. This is because larger PointNet models predict more accurately
and yield higher class probability after smoothing. We compare our TPC framework with
the baseline in terms of certified accuracy for different point cloud sizes in Table A.3(a).
The baseline DeepG3D only presents results for z-rotations in θ “ ˘3˝, which cannot fully
illustrate the capability of our method. Therefore, we also report our experimental results
for z-rotations in θ “ ˘180˝ in Table A.3(b). It shows that our method can scale up to
larger point cloud models to accommodate real-world scenarios.

Certification against ℓp-bounded 3D-Perturbations

In addition to semantic transformations, we also provide robustness certification for point
cloud models against ℓp perturbations. Defenses have been proposed for point cloud models
against ℓ2 norm bounded perturbations [120], which is a special case of our TPC framework
regarding an additive transformation ϕpx, zq “ x` z.

We cannot directly certify against perturbations with bounded ℓ8 norm. However, a
certification bound similar to the baseline [241] can still be derived, using the loose inequality
}θ}8 ď

?
3N}θ}2. Here, we exhibit the certified accuracy for bounded ℓ2 norm in Table A.4

as a benchmark; and omit more details for ℓ8 norm to [75]. We show that under the ℓ2 norm
bounded 3D-perturbations, TPC certifies even better as the point clouds sizes increase and
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Table A.4: Certified accuracy of TPC for point cloud models under ℓ2 attacks. The certified
accuracy increases as the size of point cloud models increases.

Attack Radius Certified Accuracy (%)

16 64 256

ℓ2 0.05 74.1 82.2 84.2
ℓ2 0.1 61.9 70.8 77.3

Table A.5: Comparison of point-wise certified accuracy for the part segmentation task. “-”
denotes the settings that the baseline does not consider or cannot scale up to.

Transformation Radius
Certified Accuracy (%)

TPC DeepG3D

Z-rotation 5˝ 87.8 85.7
Z-rotation 10˝ 86.1 84.8
Z-rotation 180˝ 70.8 -
Z-shear 0.2 86.1 -
Z-twist 180˝ 74.5 -

achieve a high certified accuracy of 77.3% for perturbations with ℓ2 norm bounded by 0.1.

Certification for Part Segmentation

Part segmentation is a common 3D recognition task in which a model is in charge of
assigning each point or face of a 3D mesh to one of the predefined categories. As our TPC
framework is independent of concrete model architectures, it can be naturally extended to
handle this task.

We evaluate our method using the ShapeNet part dataset [58]. We train a segmentation
version PointNet [301] with 64 points, which predicts a part category for each point in
the point cloud. The certified accuracy reported in Table A.5 denotes the percentage of
points guaranteed to be labeled correctly. We can see that for the part segmentation task,
TPC consistently outperforms the baseline against different semantic transformations. The
baseline only reports the result for z-rotations in ˘5˝ and ˘10˝, while we present robustness
guarantees for any z-rotation (˘180˝) as well as other transformations including shearing
and twisting.

A.6 SUMMARY

In this appendix, by extending from TSS, we propose a unified certification framework
TPC for point cloud models against a diverse range of semantic transformations. Our the-
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oretical and empirical analysis show that TPC is more scalable and able to provide much
tighter certification under different settings and tasks.

243



APPENDIX B: APPENDIX FOR CHAPTER 2

B.1 EXTENSIONS AND PROOFS IN Section 2.4

In this appendix, we provide formal proofs and theoretical extensions for the results in
Section 2.4.

B.1.1 Proof of Theorem 2.1

Proof of Theorem 2.1. We let Dc denote the decision region of F0 for class c, i.e., Dc :“ tx :

F0pxq “ cu. Since Q is supported on the decision region shifted by x0, fQ
0 px0qc “ 1. Thus,

from fQ
0 px0qc, we know psupppQq ` x0qzS Ď Dc, where S is some set with zero measure

under Q ` x0. Since 0 ă qpxq{ppxq ă `8, S also has zero measure under P ` x0. On the
other hand, by 0 ă qpxq{ppxq ă `8, we can determine the probability mass of supppQq on
P , i.e., Prϵ„Prϵ P supppQqs. Then, we observe that

fP
0 px0qc “ Pr

ϵ„P
rF0px0 ` ϵq “ cs

“ Pr
ϵ„P
rϵ P RdzsupppQqs Pr

ϵ„P
rF0px0 ` ϵq “ c | ϵ P RdzsupppQqs

` Pr
ϵ„P
rϵ P supppQqs ¨ Pr

ϵ„P
rF0px0 ` ϵq “ c | ϵ P supppQqs

“ Pr
ϵ„P
rϵ P RdzsupppQqs ¨ Pr

ϵ„P
rF0px0 ` ϵq “ c | ϵ P RdzsupppQqs

` Pr
ϵ„P
rϵ P supppQqs.

(B.1)

By the definition of supppQq, we observe that Prϵ„PrF0px0 ` ϵq “ c | ϵ P RdzsupppQqs “ 0.
As a result, we will find that fP

0 px0qc “ Prϵ„Prϵ P supppQqs. Then the DSRS certification
method can know

´

`

RdzsupppQq
˘

` x0

¯

XDc has zero measure under P ` x0, i.e., In sum-
mary, the certification method can determine that supppQq ` x0 differs from Dc on some
set ∆ with zero measure under P ` x0. Because P has positive density everywhere, ∆ also
has zero measure under P ` x0 ` δ for arbitrary δ P Rd. Thus, for arbitrary δ P Rd, the
certification method can compute out

fP
0 px0 ` δqc “ Pr

ϵ„P
rF0px0 ` δ ` ϵq “ cs “ Pr

ϵ„P`δ
rx0 ` ϵ P Dcs “ Pr

ϵ„P`δ
rsupppQqs. (B.2)

Under the binary classification setting, it implies that for any δ P Rd, the fP
0 px0` δq can be

uniquely determined by DSRS certification method. Since the smoothed classifier’s decision
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at any x0 ` δ is uniquely determiend by fP
0 px0 ` δq (see Equation (2.2)), the certification

method can exactly know rFP
0 px`δq for any δ and thus determine tightest possible certified

robust radius rtight. QED.

B.1.2 Extending Theorem 2.1 to Multiclass Setting

For the multiclass setting, we define a variant of DSRS as follows.

Definition B.1 (rmulti
DSRS). Given PA P r0, 1s and Qmulti

A P RC´1,

rmulti
DSRS :“ max r s.t. @F : RÑ rCs, fPpx0qy0 “ PA, f

Qcpx0qc “ pQ
multi
A qc, c P rC ´ 1s

ñ@x, }x´ x0}p ă r, rFPpxq “ y0.

(B.3)

In the above definition, rmulti
DSRS is the tightest possible certified radius with prediction prob-

ability Qmulti
A , where each component of Qmulti

A , namely pQmulti
A qc, corresponds to the predic-

tion probability for label c under additional smoothing distribution Qc. Note that there
are pC ´ 1q additional smoothing distributions tQcu

C´1
c“1 in this generalization for multiclass

setting.
With this DSRS generation, the following corollary extends the tightness analysis in The-

orem 2.1 from binary to the multiclass setting.

Corollary B.1. Suppose the original smoothing distribution P has positive density every-
where, i.e., pp¨q ą 0. For multiclass classification with base classifier F0, at point x0 P Rd, for
each class c P rC ´ 1s, let Qc be a distribution that satisfies: (1) its support is the decision
region of c shifted by x0: supppQcq “ tx ´ x0 : F0pxq “ cu; (2) for any x P supppQq,
0 ă qcpxq{ppxq ă `8. Then, plugging PA “ fP

0 px0qc and Qmulti
A where pQmulti

A qc “ fQc
0 px0qc

for c P rC ´ 1s into Definition B.1, we have rmulti
DSRS “ rtight under any ℓp (p ě 1).

Proof of Corollary B.1. Similar as the proof of Theorem 2.1, the certification method can
observe that for any c P rC´1s, fQc

0 px0qc “ 1. Thus, the method knows supppQcq`x0 « Dc

for arbitrary c P rC ´ 1s. Here, the “«” means that the difference between the two sets has
zero measure under P`x0. Thus, for arbitrary δ P Rd the certification method can precisely
compute out fPpx0qc for any c P rC ´ 1s. Since fPpx0q P ∆C , we also know fPpx0qC and
the smoothed classifier’s prediction on x0 ` δ can be uniquely determined. Then, following
the same argument in Theorem 2.1’s proof, we can determine the tightest possible certified
robust radius rmulti

DSRS. QED.
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Remark B.1. To achieve the tightest possible certified radius rtight, for binary classifica-
tion, we only need one extra scalar as the additional information (QA), while for multiclass
classification, we need pC ´ 1q extra scalars as the additional information (Qmulti

A P RC´1).
Following the convention as discussed in Section 2.2, we are interested in tight certification
under the binary classification for sampling efficiency concerns. Therefore, we focus on using
only one extra scalar (QA) to additional information in DSRS. In both Theorem 2.1 and
Corollary B.1, we only need finite quantities to achieve tight certification for any smoothed
classifier. In contrast, other existing work requires infinite quantities to achieve such optimal
tightness [267, Section 3.1].

B.1.3 Proof of Theorem 2.2

The proof of Theorem 2.2 is a bit complicated, which relies on several propositions and
lemmas along with theoretical results in Section 2.5. At high level, based on the standard
Gaussian distribution’s property (Proposition B.1), we find QA “ 1 under concentration
property (Lemma B.1). With QA “ 1, we derive a lower bound of rDSRS in Lemma B.2.
We then use: (1) the concentration of beta distribution Betapd´1

2
, d´1

2
q (see Lemma B.3)

for large d; (2) the relative concentration of gamma Γpd{2, 1q distribution around mean for
large d (see Proposition B.2 and resulting Fact B.1); and (3) the misalignment of gamma
distribution Γpd{2 ´ k, 1q’s mean and median for small pd{2 ´ kq (see Proposition B.3) to
lower bound the quantity in Lemma B.2 and show it is large or equal to 0.5. Then, using
the conclusion in Section 2.5 we conclude that rDSRS ě 0.02σ

?
d.

Proposition B.1. If random vector ϵ P Rd follows standard Gaussian distribution N pσq,
then

Prr}ϵ}2 ď T s “ ΓCDFd{2

˜

T 2

2σ2

¸

, (B.4)

where ΓCDFd{2 is the CDF of gamma distribution Γpd{2, 1q.

Proof of Proposition B.1. According to [244, Eqn. 5.19.4], he volume of a d-dimensional
ball, i.e., d-ball, with radius r is Vdprq “ πd{2

Γp d
2

`1q
rd. Thus,

Volptϵ : }ϵ}2 “ ruq “ Vdprq
1 “

dπd{2

Γpd
2
` 1q

rd´1. (B.5)

Prr}ϵ}2 ď T s
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“

ż T

0

1

p2πσ2qd{2
¨ exp

˜

´
r2

2σ2

¸

¨ Volptϵ : }ϵ}2 “ ruq dr (B.6)

“

ż T

0

1

p2πσ2qd{2
¨ exp

˜

´
r2

2σ2

¸

¨
dπd{2

Γpd
2
` 1q

rd´1 dr (B.7)

“

ż T 2

0

1

p2σ2qd{2Γpd
2
q
exp

ˆ

´
r

2σ2

˙

rd{2´1 dr (B.8)

“
1

Γpd
2
q

ż T2

2σ2

0

expp´rqrd{2´1 dr “ ΓCDFd{2

˜

T 2

2σ2

¸

. (B.9)

QED.

With Proposition B.1, now we can show that QA “ 1 under the condition of Theorem 2.2
as stated in the following lemma.

Lemma B.1. Suppose F0 satisfies pσ, Pconq-concentration property at input point x0 P Rd,
with additional smoothing distribution Q “ N g

truncpk, T, σq where T 2 “ 2σ2ΓCDF´1
d{2pPconq

and d{2´ 15 ď k ă d{2, we have

QA “ Pr
ϵ„Q
rF0px0 ` ϵq “ y0s “ 1. (B.10)

Proof of Lemma B.1. According to Definition 2.3, for T 1 that satisfies

Pr
ϵ„N pσq

r}ϵ}2 ď T 1s “ Pcon (B.11)

we have
Pr

ϵ„N pσq
rF0px0 ` ϵq “ y0 | }ϵ}2 ď T 1s “ 1. (B.12)

With Equation (B.11), from Proposition B.1, we have

T 12 “ 2σ2ΓCDF´1
d{2pPconq. (B.13)

Thus, Equation (B.12) implies

Pr
ϵ„N pσq

rF0px0 ` ϵq “ y0 | }ϵ}2 ď

b

2σ2ΓCDF´1
d{2pPconqs “ 1. (B.14)

Notice that N pσq has finite and positive density anywhere within tϵ : }ϵ}2 ď T 1u. Thus,
F0px0 ` ϵq “ y0 for any ϵ with }ϵ}2 ď T 1 unless a zero-measure set.

Now, we consider Q. Q “ N g
truncpk, T, σq where T “ T 1, and Ntrunc has finite and positive
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density anywhere within tϵ : }ϵ}2 ď T 1uzt0u. Thus,

QA “ Pr
ϵ„N g

truncpk,T,σq
rF0px0 ` ϵq “ y0s (B.15)

“ Pr
ϵ„N gpk,σq

rF0px0 ` ϵq “ y0 | }ϵ}2 ď T s (B.16)

p˚q
“ Pr

ϵ„N gpk,σq
rF0px0 ` ϵq “ y0 | }ϵ}2 ď T, ϵ ‰ 0s “ 1. (B.17)

In the above equations, p˚q is because

Pr
ϵ„N gpk,σq

rϵ “ 0 | }ϵ}2 ď T s ď lim
rÑ0

Pr
ϵ„N gpk,σq

r}ϵ}2 ď r | }ϵ}2 ď T s (B.18)

“ lim
rÑ0

C

ż r

0

x´2k exp

˜

´
x2

2σ12

¸

dxd´1 dx (B.19)

“C lim
rÑ0

ż r

0

dxd´2k´1 exp

˜

´
x2

2σ12

¸

dx “ 0 (B.20)

where C is a constant, and the last equality is due to d{2 ą k ñ d´ 2k ´ 1 ě 0. QED.

With QA “ 1, we can have a lower bound of rDSRS as stated in the following lemma.

Lemma B.2. Under the same condition as in Lemma B.1, we let BetaCDF d´1
2

be the CDF
of distributon Betapd´1

2
, d´1

2
q, let

r0 “ max u

s.t. E
t„Γp d

2
´kq

BetaCDF d´1
2

˜

T 2 ´ pσ1
?
2t´ uq2

4uσ1
?
2t

¸

ě 0.5,
(B.21)

and let rDSRS be the tightest possible certified radius in DSRS under ℓ2 when smoothing
distribution P “ N gpk, σq, then

rDSRS ě r0. (B.22)

Proof of Lemma B.2. The proof shares the same core methodology as DSRS computational
method introduced in Section 2.5. Basically, according to Equation (2.10), for any radius
r, let δ “ pr, 0, . . . , 0qT, if CδpPA, QAq ą 0.5, then rDSRS ě r, where QA “ 1 according to
Lemma B.1, and by the pσ, Pconq-concentration property

PA ě Pr
ϵ„N gpk,σq

r}ϵ}2 ď T s. (B.23)
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Therefore, to prove the lemma, we only need to show that when

E
t„Γp d

2
´kq

BetaCDF d´1
2

˜

T 2 ´ pσ1
?
2t´ uq2

4uσ1
?
2t

¸

ě 0.5, (B.24)

for any δ “ pu, 0, . . . , 0qT, CδpPA, QAq ą 0.5.
By definition (Equation (2.9)),

CδpPA, QAq

“min
f

E
ϵ„P
rfpϵ` δqs s.t. E

ϵ„P
rfpϵqs “ PA, E

ϵ„Q
rfpϵqs “ QA, 0 ď fpϵq ď 1 @ϵ P Rd

ěmin
f

E
ϵ„P
rfpϵ` δqs s.t. E

ϵ„Q
rfpϵqs “ 1, 0 ď fpϵq ď 1 @ϵ P Rd

“ E
ϵ„P
rfpϵ` δqs where fpϵq “

#

1, }ϵ}2 ď T

0. }ϵ}2 ą T

“:V.

(B.25)

We now compute V :

V “ E
ϵ„P
r}ϵ` δ}2 ď T s (B.26)

“

ż

Rd

ppxqIr}x` δ}2 ď T s dx

p1q
“

ż 8

0

y dy

ż

ppxq“y
Ir}x`δ}2ďT

dx

}∇ppxq}2

p2q
“

ż 8

0

y dy

ż

ppxq“y
Ir}x`δ}2ďT

´
dx

r1
ppr

´1
p pyqq

p3q
“

ż 8

0

y dy
2πd{2

Γpd
2
q
r´1
p pyq

d´1 ¨

˜

´
1

r1
ppr

´1
p pyqq

¸

¨ Prr}x` δ}2 ď T | ppxq “ ys

p4q
“

ż 8

0

rpptq dt
2πd{2

Γpd
2
q
td´1 Prr}x` δ}2 ď T | }x}2 “ ts

p5q
“

ż 8

0

1

p2σ12q
d
2

´kπ
d
2

¨
Γpd

2
q

Γpd
2
´ kq

t´2k exp

˜

´
t2

2σ12

¸

2πd{2

Γpd
2
q
td´1 Prr}x` δ}2 ď T | }x}2 “ ts dt

“
1

Γpd
2
´ kq

ż 8

0

td{2´k´1 expp´tqPrr}x` δ}2 ď T | }x}2 “ σ1
?
2ts dt (B.27)

“ E
t„Γp d

2
´kq

Prr}x` δ}2 ď T | }x}2 “ σ1
?
2ts. (B.28)

In above equations, p1q follows from level-set sliced integration extended from [427] and ppxq
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is the density of distribution P “ N gpk, σq at point x; in p2q we define rpp}x}2q :“ ppxq

noting that P is ℓ2 symmetric and all x with same ℓ2 length having the same ppxq, and
we have }∇ppxq}2 “ ´r1

ppr
´1
p pyqq since y “ rpp}x}2q and rp is monotonically decreasing; p3q

uses
Volptx : ppxq “ yuq “ Volptx : }x}2 “ r´1

p pyquq “
2πd{2

Γpd
2
q
r´1
p pyq

d´1; (B.29)

p4q changes the integration variable from y to t “ r´1
p pyq; and p5q injects the concrete

expression of rp.
Now, we inspect Prr}x ` δ}2 ď T | }x}2 “ σ1

?
2ts: When }x}2 “ σ1

?
2t,

řd
i“1 x

2
i “ 2tσ12.

Meanwhile, }x` δ}2 ď T means px1 ` uq2 `
řd
i“2 x

2
i ď T 2. Thus, when }x}2 “ σ1

?
2t,

}x` δ}2 ď T ðñ
x1

σ1
?
2t
ď
T 2 ´ u2 ´ 2tσ12

2uσ1
?
2t

. (B.30)

According to [427, Lemma I.23], for x uniformly sampled from sphere with radius σ1
?
2t,

the component coordinate
1` x1

σ1
?
2t

2
„ Betapd´1

2
, d´1

2
q. Thus,

Prr}x` δ}2 ď T | }x}2 “ σ1
?
2ts “ BetaCDF d´1

2

¨

˝

1` T 2´u2´2tσ12

2uσ1
?
2t

2

˛

‚ (B.31)

“ BetaCDF d´1
2

˜

T 2 ´ pσ1
?
2t´ uq2

4uσ1
?
2t

¸

. (B.32)

Finally, we get

V “ E
t„Γp d

2
´k,1q

BetaCDF d´1
2

˜

T 2 ´ pσ1
?
2t´ uq2

4uσ1
?
2t

¸

. (B.33)

In other words, when

E
t„Γp d

2
´k,1q

BetaCDF d´1
2

˜

T 2 ´ pσ1
?
2t´ uq2

4uσ1
?
2t

¸

ě 0.5, (B.34)

we have V ě 0.5, and thus CδpPA, QAq ě V ě 0.5, rDSRS ě u, which concludes the proof.
QED.

We require the following property of BetaCDF.

Lemma B.3. There exists d0 P N`, for any d ě d0,

BetaCDF d´1
2
p0.6q ě 0.999. (B.35)
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Proof of Lemma B.3. We let v „ Betapd´1
2
, d´2

2
q, then

Ervs “ 1{2, (B.36)

Varrvs “
pd´1

2
q2

pd´1
2
` d´1

2
q2pd´1

2
` d´1

2
` 1q

“
1

4d
. (B.37)

Now, applying Chebyshev’s inequality, we have

Prr|v´ 0.5| ě 0.1s ď
1

0.04d
. (B.38)

Therefore,

BetaCDF d´1
2
p0.6q “ Prrv ă 0.6s “ 1´ Prrv ě 0.6s (B.39)

ě1´ Prr|v´ 0.5| ě 0.1s ě 1´
1

0.04d
. (B.40)

Thus, when d ě 25000, BetaCDF d´1
2
p0.6q ě 0.999. QED.

We also require the following properties of the gamma distribution.

Proposition B.2. For any Pcon P p0, 1q, there exists d0 P N`, for any d ě d0,

ΓCDF´1
d{2pPconq ě 0.99 ¨

d

2
. (B.41)

Proof of Proposition B.2. We let v „ Γpd{2q, then

Ervs “ d{2,Varrvs “ d{2. (B.42)

We now apply Chebyshev’s inequality and get

Prrv ă 0.99 ¨ d{2s ď Prr|v´ d{2| ą 0.01 ¨ d{2s ď
20000

d
. (B.43)

Thus, for any Pcon P p0, 1q, when d ě
20000

Pcon
,

ΓCDFd{2

ˆ

0.99 ¨
d

2

˙

ď
20000

d
ď Pcon, (B.44)

i.e., ΓCDF´1
d{2pPconq ě 0.99 ¨ d

2
. QED.
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Table B.1: Table for proof of Proposition B.3.

d
2 ´ k ΓCDFd{2´kp0.98pd{2 ´ kqq d

2 ´ k ΓCDFd{2´kp0.98pd{2 ´ kqq

0.5 0.6778 8.0 0.5245
1.0 0.6247 8.5 0.5224
1.5 0.5990 9.0 0.5204
2.0 0.5831 9.5 0.5186
2.5 0.5718 10.0 0.5168
3.0 0.5632 10.5 0.5152
3.5 0.5564 11.0 0.5136
4.0 0.5507 11.5 0.5121
4.5 0.5459 12.0 0.5107
5.0 0.5418 12.5 0.5093
5.5 0.5381 13.0 0.5080
6.0 0.5349 13.5 0.5068
6.5 0.5319 14.0 0.5056
7.0 0.5292 14.5 0.5044
7.5 0.5268 15.0 0.5033

Proposition B.3. When d{2´ 15 ď k ă d{2, k, d P N`,

Pr
t„Γpd{2´kq

«

t ď 0.98

ˆ

d

2
´ k

˙

ff

ě
0.5

0.999
. (B.45)

Proof of Proposition B.3. We prove the proposition by enumeration. Notice that d{2 ´ k P

t0.5, 1.0, ¨ ¨ ¨ , 14.5, 15.0u, we enumerate ΓCDFd{2´kp0.98pd{2´ kqq for each pd{2´ kq and get
Table B.1.

On the other hand, 0.5
0.999

ď 0.5001, which concludes the proof. QED.

Now we are ready to prove the main theorem.

Proof of Theorem 2.2. According to Lemma B.2, we only need to show that for u “ 0.02σ
?
d,

Equation (B.21) holds. For sufficiently large d, indeed,

E
t„Γpd{2´kq

BetaCDFpd´1q{2

˜

T 2 ´ pσ1
?
2t´ uq2

4uσ1
?
2t

¸

Lemma B.3
ě 0.999 E

t„Γpd{2´kq
I

«

T 2 ´ pσ1
?
2t´ uq2

4uσ1
?
2t

ě 0.6

ff

(B.46)

p˚q

ě0.999 E
t„Γpd{2´kq

I

«

t ď 0.98

ˆ

d

2
´ k

˙

ff

(B.47)
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Proposition B.3
ě 0.999 ¨

0.5

0.999
“ 0.5. (B.48)

Thus, from Lemma B.2 we have rDSRS ě u “ 0.02
?
d.

The inequality p˚q follows from Fact B.1. QED.

Fact B.1. Under the condition of Theorem 2.2, for sufficiently large d,

t ď 0.98

ˆ

d

2
´ k

˙

ñ
T 2 ´ pσ1

?
2t´ uq2

4uσ1
?
2t

ě 0.6. (B.49)

Proof of Fact B.1.
T 2 ´ pσ1

?
2t´ uq2

4uσ1
?
2t

ě 0.6

ðñ T 2 ´ pσ1
?
2t´ uq2 ě 2.4uσ1

?
2t

x :“ σ1
?
2t

ðñ T 2 ´ px´ uq2 ě 2.4ux

ðñ x2 ` 0.4ux` u2 ´ T 2 ď 0.

(B.50)

From Proposition B.2, we have

u2 ´ T 2 “ 0.0004dσ2 ´ 2σ2ΓCDF´1
d{2pPconq ď 0.0004dσ2 ´ 0.99dσ2 ă 0. (B.51)

Thus,

x2 ` 0.4ux` u2 ´ T 2 ď 0

ðñ x ď
´0.4u`

a

0.16u2 ´ 4pu2 ´ T 2q

2
“ ´0.2u`

?
T 2 ´ 0.96u2

ðñ t ď
p´0.2u`

?
T 2 ´ 0.96u2q2

2σ12
.

(B.52)

Again, from Proposition B.2,

T 2 ´ 0.96u2

“2σ2ΓCDF´1
d{2pPconq ´ 0.96ˆ 0.0004dσ2 ě p0.99´ 0.96ˆ 0.0004qdσ2,

(B.53)

and therefore

p´0.2u`
?
T 2 ´ 0.96u2q2

ědσ2
´

´0.004`
?
0.99´ 0.96ˆ 0.0004

¯2

« 0.9816dσ2 ě 0.98dσ2.
(B.54)
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Then,

t ď
p´0.2u`

?
T 2 ´ 0.96u2q2

2σ12
ðù t ď

0.98dσ2

2σ2
¨
d´ 2k

d
ðñ t ď 0.98

ˆ

d

2
´ k

˙

. (B.55)

QED.

B.1.4 Theorem B.1

Theorem B.1. Let d be the input dimension and F0 be the base classifier. For an input
point x0 P Rd with true class y0, suppose F0 satisfies pσ, Pconq-Concentration property and
Prϵ„N pσqrF0px0`ϵq “ y0s “ Pcon where Pcon ă 1. The smoothed classifier rFP 1

0 is constructed
from F0 and smoothed by generalized Gaussian P 1 “ N gpk0, σq where k0 is a constant
independent of input dimension d. Then, for any constant c ą 0, there exists d0, such
that when input dimension d ě d0, any method cannot certify ℓ2 radius c

?
d, where

T “ σ
b

2ΓCDF´1
d{2pPconq and ΓCDFd{2 is the CDF of gamma distribution Γpd{2, 1q.

This theorem suggests that, if we use generalized Gaussian whose k is a constant with
respect to input dimension d or use standard Gaussian (whose k “ 0 is a constant) for
smoothing, we cannot achieve Ωp

?
dq certified radius rate from DSRS and any other certifi-

cation method.
The proof of Theorem B.1 is based on three lemmas listed below.

Lemma B.4. Given k0 P N, for any ϵ ą 0, there exists d0, such that when d ą d0,

Pr
t„Γp d2 ´k0,1q

«

t ď p1´ ϵq
ˆ

d

2
´ k0

˙

ff

ď
0.48

0.99
. (B.56)

Lemma B.5. Given Pcon ě 0, for any ϵ ą 0, there exists d0, such that when d ą d0,

T :“ σ
b

2ΓCDF´1
d{2pPconq ď σ

a

p1` ϵqd. (B.57)

Lemma B.6. For any ϵ ą 0, there exists d0, such that when d ą d0,

BetaCDF d´1
2
p0.5´ ϵq ď 0.01. (B.58)
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Proofs of these lemmas are based on Chebyshev’s inequality.

Proof of Lemma B.4. For t „ Γpd{2´ k0, 1q, we have

Erts “ d{2´ k0, Varrts “ d{2´ k0. (B.59)

By Chebyshev’s inequality,

Pr

«

t ď p1´ ϵq
ˆ

d

2
´ k0

˙

ff

ďPr

«

|t´ Erts| ě ϵ

ˆ

d

2
´ k0

˙

ff

ď
1

ϵ2pd
2
´ k0q

. (B.60)

Picking d0 “ 2
`

0.99
0.48ϵ2

` k0
˘

concludes the proof. QED.

Proof of Lemma B.5. We define random variable v „ Γpd{2, 1q, so Ervs “ d{2,Varrvs “ d{2.
By Chebyshev’s inequality,

Prrv ď p1` ϵqd{2s
ě1´ Prrv ě p1` ϵqd{2s
ě1´ Prr|v´ Ervs| ě ϵd{2s

ě1´
2

dϵ2
.

(B.61)

Let d0 “ 2
ϵ2p1´Pconq

. Thus, when d ą d0, Prrv ď p1 ` ϵqd{2s ě 1 ´
2

d0ϵ2
“ Pcon, which

implies that ΓCDFd{2pp1` ϵqd{2q ě Pcon and ΓCDF´1
d{2pPconq ď p1` ϵqd{2 and concludes the

proof. QED.

Proof of Lemma B.6. We define random variable v „ Betapd´1
2
, d´1

2
q, and we have Ervs “

1{2,Varrvs “ 1
4d
. By Chebyshev’s inequality,

Prrv ď 0.5´ ϵs ď Prr|v´ Ervs| ě ϵs ď
1

4dϵ2
. (B.62)

Let d0 “ 25
dϵ2

, when d ą d0, Prrv ď 0.5 ´ ϵs ď 0.01 and hence BetaCDF d´1
2
p0.5 ´ ϵq ď

0.01. QED.

Now we are ready to prove the main theorem.

Proof of Theorem B.1. According to the above three lemmas, we pick d0, such that when
d ą d0, the followings hold simultaneously.

Pr
t„Γp d2 ´k0,1q

»

–t ď
˜

1´
c2

8σ2

¸

ˆ

d

2
´ k0

˙

fi

fl ď
0.48

0.99
, (B.63)
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T “ σ
b

2ΓCDF´1
d{2pPconq ď σ

d

ˆ

1`
c2

8σ2

˙

d, (B.64)

BetaCDF d´1
2

ˆ

0.5´
c

8σ

˙

ď 0.01. (B.65)

We define vector δ “ pc
?
d, 0, 0, . . . , 0qT. Since F0 satisfies pσ, Pconq-concentration property

and Prϵ„N pσqrF0px0`ϵq “ y0s “ Pcon, up to a set of zero measure, the region tϵ : F0px0`ϵq “

y0u and region tϵ : }ϵ}2 ď T u coincide.
We now show that Eϵ„P 1“N gpk0,σqrF0px0 ` δ ` ϵq “ y0s ă 0.5 when c ď σ

a

8{7.

E
ϵ„P 1

rF0px0 ` δ ` ϵq “ y0s

“ Pr
ϵ„P 1

r}δ ` ϵ}2 ď T s

“ E
t„Γp d

2
´k0,1q

BetaCDF d´1
2

˜

T 2 ´ pσ1
?
2t´ c

?
dq2

4σ1
?
2t ¨ c

?
d

¸

(from Equation (B.33))

ď0.99 E
t„Γp d

2
´k0,1q

I

«

T 2 ´ pσ1
?
2t´ c

?
dq2

4σ1
?
2t ¨ c

?
d

ě 0.5´
c

8σ

ff

` 0.01 (by Equation (B.65) and

BetaCDF¨p¨q ď 1)

“0.99 Pr
t„Γp d

2
´k0,1q

«

T 2 ´ pσ1
?
2t´ c

?
dq2

4σ1
?
2t ¨ c

?
d

ě 0.5´
c

8σ

ff

` 0.01. (B.66)

Since

T 2 ´ pσ1
?
2t´ c

?
dq2

4σ1
?
2t ¨ c

?
d

ě 0.5´
c

8σ

ðñ T 2 ´ 2tσ2 d

d´ 2k0
´ dc2 `

c2d

2

c

2t
d´ 2k0

ě 0 (B.67)

Equation (B.64)
ùñ

˜

1`
c2

8σ2

¸

dσ2 ´ 2tσ2 d

d´ 2k0
´ dc2 `

c2d

2

c

2t
d´ 2k0

ě 0. (B.68)

We now inject t “ 0 and t “
´

1´ c2

8σ2

¯´

d
2
´ k0

¯

to the LHS of Equation (B.68).

• When t “ 0,

LHS of Equation (B.68) “
˜

1`
c2

8σ2

¸

dσ2 ´ dc2 “ d

ˆ

σ2 ´
7

8
c2
˙

ě 0. (B.69)
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• When t “
´

1´ c2

8σ2

¯´

d
2
´ k0

¯

,

LHS of Equation (B.68)

“

˜

1`
c2

8σ2

¸

dσ2 ´
2dσ2

d´ 2k0

˜

1´
c2

8σ2

¸

ˆ

d

2
´ k0

˙

´ dc2 `
dc2

2

c

1´
c2

8σ2

“dσ2 `
dc2

8
´ dσ2 `

dc2

8
´ dc2 `

dc2

2

c

1´
c2

8σ2

ď
dc2

4
´ dc2 `

dc2

2
ă 0.

(B.70)

Notice that the LHS of Equation (B.68) is a parabola with negative second-order coefficient.
Thus,

Equation (B.68) ùñ t P

»

–0,

˜

1´
c2

8σ2

¸

ˆ

d

2
´ k0

˙

fi

fl (B.71)

and hence

Pr
t„Γp d

2
´k0,1q

«

T 2 ´ pσ1
?
2t´ c

?
dq2

4σ1
?
2t ¨ c

?
d

ě 0.5´
c

8σ

ff

ď Pr
t„Γp d

2
´k0,1q

»

–t ď
˜

1´
c2

8σ2

¸

ˆ

d

2
´ k0

˙

fi

fl ď
0.48

0.99
. (by Equation (B.63))

(B.72)
Plugging this inequality to Equation (B.66), we get

E
ϵ„P 1

rF0px0 ` δ ` ϵq “ y0s ď 0.99 ¨
0.48

0.99
` 0.01 “ 0.49. (B.73)

As a result, when c ď σ
a

8{7, the smoothed classifier rFP 1

0 is not robust given the perturbation
δ “ pc

?
d, 0, 0, ¨ ¨ ¨ , 0qT, since there may exist another y1 ‰ y0 with Eϵ„P 1rF0px0 ` δ ` ϵq “

y1s ě 0.51 so rFP 1

0 px0 ` δq “ y1 ‰ y0.
When c ą σ

a

8{7, within the ℓ2 radius ball c
?
d, there exists perturbation vector δ “

pc1
?
d, 0, 0, ¨ ¨ ¨ , 0qT fooling smoothed classifier rFP 1

0 where c1 “ σ
a

8{7. Hence, for any c ą 0,
there exists a perturbation within ℓ2 ball with radius c

?
d, such that smoothed classifier rFP 1

0

can be fooled, and then any robustness certification method cannot certify ℓ2 radius c
?
d

since the smoothed classifier itself is not robust. QED.
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B.2 PROOFS OF DSRS COMPUTATIONAL METHOD

B.2.1 Proof of Strong Duality (Theorem 2.3)

Proof of Theorem 2.3. We write down the Lagrangian dual function of Equation (2.9a):

Λpf, λ1, λ2q :“ E
ϵ„P
rfpδ ` ϵqs ´ λ1

ˆ

E
ϵ„P
rfpϵqs ´ PA

˙

´ λ2

ˆ

E
ϵ„Q
rfpϵqs ´QA

˙

. (B.74)

Then, from C’s expression (Equation (2.9)), we have

CδpPA, QAq

“min
f

E
ϵ„P
rfpϵ` δqs s.t. 0 ď fpϵq ď 1 @ϵ P Rd, E

ϵ„P
rfpϵqs “ PA, E

ϵ„Q
rfpϵqs “ QA

“ min
f :RdÑr0,1s

max
λ1,λ2PR

Λpf, λ1, λ2q

piq

ě max
λ1,λ2PR

min
f :RdÑr0,1s

Λpf, λ1, λ2q

piiq
“ max

λ1,λ2PR
Pr
ϵ„P
rppϵq ă λ1ppϵ` δq ` λ2qpϵ` δqs

´ λ1 Pr
ϵ„P
rppϵ´ δq ă λ1ppϵq ` λ2qpϵqs ´ λ2 Pr

ϵ„Q
rppϵ´ δq ă λ1ppϵq ` λ2qpϵqs

` λ1PA ` λ2QA. (B.75)

In the above equation, piq is from the min-max inequality. For completeness, we provide
the proof as such: Define g : R2 Ñ R such that gpλ1, λ2q :“ minf :RdÑr0,1s Λpf, λ1, λ2q. As
a result, for any λ1, λ2 P R and any f : Rd Ñ r0, 1s, gpλ1, λ2q ď Λpf, λ1, λ2q. So for any
f : Rd Ñ r0, 1s, maxλ1,λ2PR gpλ1, λ2q ď maxλ1,λ2PR Λpf, λ1, λ2q, which implies

max
λ1,λ2PR

gpλ1, λ2q ď min
f :RÑr0,1s

max
λ1,λ2PR

Λpf, λ1, λ2q, (B.76)

where LHS is the RHS of piq and RHS is the LHS of piq.
In above equation, piiq comes from a closed-form solution of f for Λpf, λ1, λ2q given

pλ1, λ2q P R2. Notice that we can rewrite Λpf, λ1, λ2q as an integral over Rd:

Λpf, λ1, λ2q

“ E
ϵ„P
rfpδ ` ϵqs ´ λ1 E

ϵ„P
rfpϵqs ´ λ2 E

ϵ„Q
rfpϵqs ` λ1PA ` λ2QA

“

ż

Rd

fpxq ¨
`

ppx´ δq ´ λ1ppxq ´ λ2qpxq
˘

dx` λ1PA ` λ2QA. (B.77)
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We would like to minimize over f : Rd Ñ r0, 1s in Equation (B.77) and simple greedy
solution reveals that we should choose

fpxq “

$

&

%

1, ppx´ δq ´ λ1ppxq ´ λ2qpxq ă 0

0. ppx´ δq ´ λ1ppxq ´ λ2qpxq ě 0
(B.78)

We inject this f into Equation (B.77) and get

min
f :RdÑr0,1s

Λpf, λ1, λ2q

“ Pr
ϵ„P
rppϵq ă λ1ppϵ` δq ` λ2qpϵ` δqs `λ1

ˆ

PA ´ Pr
ϵ„P
rppϵ´ δq ă λ1ppϵq ` λ2qpϵqs

˙

`λ2

ˆ

QA ´ Pr
ϵ„Q
rppϵ´ δq ă λ1ppϵq ` λ2qpϵqs

˙

(B.79)
so piiq holds.

On the other hand, we know that DδpPA, QAq (defined by Equation (2.11)) is feasible by
theorem statement. Denote pλ˚

1 , λ
˚
2q P R2 to a feasible solution to DδpPA, QAq and d˚ to the

objective value, then from the constraints of pDq we know

Pr
ϵ„P
rppϵ´ δq ă λ˚

1ppϵq ` λ
˚
2qpϵqs “ PA,

Pr
ϵ„Q
rppϵ´ δq ă λ˚

1ppϵq ` λ
˚
2qpϵqs “ QA,

Pr
ϵ„P
rppϵq ă λ˚

1ppϵ` δq ` λ˚
2qpϵ` δqs “ d˚.

(B.80)

Plugging in these equalities into Equation (B.75), we have

CδpPA, QAq ě d˚ ´ λ1PA ´ λ2QA ` λ1PA ` λ2QA “ d˚. (B.81)

At the same time, we define function f˚ : Rd Ñ r0, 1s such that

f˚pxq “ Irppx´ δq ´ λ˚
1ppxq ´ λ

˚
2qpxq ă 0s. (B.82)

From Equation (B.80), f˚ satisfies the constraints of (C) (Equations (2.9b) and (2.9c)).
Since pCq minimizes over all possible functions f : Rd Ñ r0, 1s, we have

CδpPA, QAq ď E
ϵ„P
rf˚pϵ` δqs “ d˚. (B.83)

Combining Equations (B.81) and (B.83), CδpPA, QAq “ d˚ and hence strong duality holds.
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QED.

B.2.2 Proofs of Propositions 2.2 and 2.3 and theorem 2.4

Proof of Proposition 2.2. Suppose f1 is the optimal solution to CδpP
1
A, Q

1
Aq and f2 is the

optimal solution to CδpP
2
A, Q

2
Aq. Due to the linearity of expectation, pf1 ` f2q{2 satisfies

all the constraints of Equation (2.9) for PA “ pP 1
A ` P 2

Aq{2 and QA “ pQ1
A ` Q2

Aq{2, i.e.,
pf1 ` f2q{2 is feasible for PA “ pP 1

A ` P 2
Aq{2 and QA “ pQ

1
A ` Q2

Aq{2 with objective value
`

CδpP
1
A, Q

1
Aq ` CδpP

2
A, Q

2
Aq
˘

{2. Thus, we have

Cδ

˜

P 1
A ` P

2
A

2
,
Q1
A `Q

2
A

2

¸

ď
1

2

`

CδpP
1
A, Q

1
Aq ` CδpP

2
A, Q

2
Aq
˘

(B.84)

since C is a minimization problem. By definition, CδpPA, QAq is convex. QED.

Remark B.2. Since CδpPA, QAq is defined on a compact R2 subspace, the convexity implies
continuity. The continuity property is used in the following proof of Theorem 2.4.

Proof of Proposition 2.3. Here, we only prove the monotonicity for functions x ÞÑ miny Cδpx, yq

and x ÞÑ argminy Cδpx, yq. The same statement for y ÞÑ minx Cδpx, yq and y ÞÑ minx Cδpx, yq

is then straightforward due to the symmetry.
For simplification, we define C1

δ : x ÞÑ miny Cδpx, yq and let C̃δ : x ÞÑ argminy Cδpx, yq.
We notice that both functions can be exactly mapped to the constrained optimization prob-
lem (C1) which removes the second constraint in Equation (2.9b) in (C):

minimize
f

E
ϵ„P
rfpδ ` ϵqs (B.85a)

s.t. E
ϵ„P
rfpϵqs “ x, 0 ď fpϵq ď 1 @ϵ „ Rd. (B.85b)

C1
δpxq is the optimal objective to (C1) and C̄δpxq is Eϵ„Qrf

˚pϵqs where f˚ is the optimal
solution.

Either based on Neyman-Pearson lemma [1933] or strong duality, pC1
q is equivalent to

pD1q defined as such:

Pr
ϵ„P
rppϵq ă λppϵ` δqs (B.86a)

s.t. Pr
ϵ„P
rppϵ´ δq ă λppϵqs “ x. (B.86b)
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For a given x, we only need to find λ satisfying Equation (B.86b). Then,

C1
δpxq “ Pr

ϵ„P
rppϵq ă λppϵ` δqs, (B.87)

C̄δpxq “ Pr
ϵ„Q
rppϵ´ δq ă λppϵqs. (B.88)

Now the monotonicity (what we would like to prove) is apparent. For x1 ă x2, from
Equation (B.86b), we have λ1 ă λ2, since the probability density function p is non-negative.
Thus, we inject λ1 and λ2 into Equation (B.87) and Equation (B.88), and yield

C1
δpx1q ď C1

δpx2q, C̄δpx1q ď C̄δpx2q, (B.89)

which concludes the proof. QED.

Proof of Theorem 2.4. We discuss the cases according to the branching statement in the
algorithm (Algorithm 2.2).

If q ą QA,

• if q ď QA, by definition we have CδpPA, qq ď CδpPA, yq for arbitrary y. According to
Proposition 2.3, we also have CδpPA, qq ď Cδpx, yq for arbitrary x ě PA and arbitrary
y. Given that pPA, qq P rPA, PAs ˆ rQA, QAs, pPA, qq solves Equation (2.12);

• if q ą QA, by convexity, CδpPA, QAq ď CδpPA, yq for y P rQA, QAs.

We further show that CδpPA, QAq ď Cδpx, QAq for x P rPA, PAs: assume that this is
not true, by Proposition 2.2, the function y ÞÑ argminx Cδpx, yq has function value
larger than PA at y “ QA. Since Cδp0, 0q “ 0 is the global minimum of Cδ, the
function value at y “ 0 is x “ 0. By Proposition 2.3, there exists y0 P r0, QAs such
that PA “ argminx Cδpx, y0q. Then, we get

CδpPA, y0q
pi.q

ď Cδpargmin
x

Cδpx, QAq, QAq
pii.q

ď CδpPA, QAq, (B.90)

where pi.q follows from Proposition 2.3 for y ÞÑ argminx Cδpx, yq; pii.q is implied
in the meaning of argminx Cδpx, QAq. Since y0 P r0, QAs, Equation (B.90) implies
that q should be in r0, QAs as well, which violates the branching condition. Thus,
CδpPA, QAq ď Cδpx, QAq for x P rPA, PAs.

Using Proposition 2.3 for function x ÞÑ argminy Cδpx, yq in interval rPA, PAs together
with Proposition 2.2, we get Cδpx, QAq ď Cδpx, yq for x P rPA, PAs and y P rQA, QAs.
Thus, pPA, QAq solves Equation (2.12).
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If q ď QA,

• if p ď PA, by definition we have Cδpmaxtp, PAu, QAq ď Cδpx, QAq for x P rPA, PAs.
According to Proposition 2.3 and condition q ď QA, we further have Cδpmaxtp, PAu, QAq ď

Cδpmaxtp, PAu, yq ď Cδpx, yq for arbitrary x P rPA, PAs and y P rQA, QAs. Given that
pmaxtp, PAu, QAq P rPA, PAs ˆ rQA, QAs, pp, QAq solves Equation (2.12);

• if p ą PA, according to Proposition 2.2, CδpPA, QAq ď Cδpx, QAq for x P rPA, PAs.

We further show that CδpPA, QAq ď CδpPA, yq for y P rQA, QAs: assume that this is
not true, by Proposition 2.2, the function x ÞÑ argminy Cδpx, yq has function value
larger than QA at x “ PA. Since Cδp0, 0q is the global minimum, by Proposition 2.3
on x ÞÑ argminy Cδpx, yq, there exists x0 P r0, PAs such that QA “ argminy Cδpx0, yq.
Then, we get

Cδpx0, QAq ďCδpPA, argmin
y

CδpPA, yqq ď CδpPA, QAq (B.91)

following the similar deduction as in Equation (B.90). Since x0 P r0, PAs, Equa-
tion (B.91) implies that p should be in r0, PAs as well, which violates the branching
condition. Thus, CδpPA, QAq ď CδpPA, yq for y P rQA, QAs.

Using Proposition 2.3 for function y ÞÑ argminx Cδpx, yq in interval rQA, QAs together
with Proposition 2.2, we get CδpPA, yq ď Cδpx, yq for y P rQA, QAs and x P rPA, PAs.
Thus, pPA, QAq solves Equation (2.12).

QED.

B.2.3 Proof of Theorem 2.5

Proof of Theorem 2.5. We first define rpp}ϵ}2q “ ppϵq and rqp}ϵ}2q “ qpϵq, then easily seen
the concrete expressions of rp and rq are:

rpptq “
1

p2σ12qd{2´kπd{2
¨

Γpd{2q

Γpd{2´ kq
, (B.92)

rqptq “
ν

p2σ12qd{2´kπd{2
¨

Γpd{2q

Γpd{2´ kq
, (B.93)

where
ν :“

Γpd{2´ kq

γpd{2´ k, T 2

2σ12 q
ą 1 (B.94)

and γ is the lower incomplete Gamma function.
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Now we use level-set integration similar as the proof in Lemma B.2 to get the expressions
of P , Q, and R respectively. Since P and Q are ℓ2-symmetric, without loss of generality, we
let δ “ pr, 0, . . . , 0qT.

(P).
Suppose PT “ rppT q.

P pλ1, λ2q

“ Pr
ϵ„P“N gpk,σq

rppϵ´ δq ă λ1ppϵq ` λ2qpϵqs (B.95)

“

ż

Rd

Irppx´ δq ă λ1ppxq ` λ2qpxqsppxq dx (B.96)

“

ż PT

0

y dy

ż

ppxq“y
ppx´δqăλ1ppxq

dx

}∇ppxq}2
`

ż 8

PT

y dy

ż

ppxq“y
ppx´δqăpλ1`λ2νqppxq

dx

}∇ppxq}2
(B.97)

“

ż PT

0

y dy
2πd{2

Γpd{2q
r´1
p pyq

d´1

˜

´
1

r1
ppr

´1
p pyqq

¸

¨ Prrppx´ δq ď λ1ppxq | ppxq “ ys`

(B.98)
ż 8

PT

y dy
2πd{2

Γpd{2q
r´1
p pyq

d´1

˜

´
1

r1
ppr

´1
p pyqq

¸

¨ Prrppx´ δq ă pλ1 ` λ2νqppxq | ppxq “ ys

(B.99)
y“rpptq
“

ż 8

T

rpptq dt
2πd{2

Γpd{2q
td´1 ¨ Prrppx´ δq ă λ1ppxq | }x}2 “ ts` (B.100)

ż T

0

rpptq dt
2πd{2

Γpd{2q
td´1 ¨ Prrppx´ δq ă pλ1 ` λ2νqppxq | }x}2 “ ts (B.101)

“
1

Γpd{2´ kq

ż 8

T 2{p2σ12q

td{2´k´1 expp´tq dt ¨ Prrppx´ δq ă λ1ppxq | }x}2 “ σ1
?
2ts`

(B.102)

1

Γpd{2´ kq

ż T 2{p2σ12q

0

td{2´k´1 expp´tq dt ¨ Prrppx´ δq ă pλ1 ` λ2νqppxq | }x}2 “ σ1
?
2ts

(B.103)

“ E
t„Γpd{2´k,1q

#

u3pt, λ1q, t ě T 2{p2σ12q

u3pt, λ1 ` λ2νq. t ă T 2{p2σ12q
(B.104)

Here, u3pt, λq “ Prrppx´ δq ă λppxq | }x}2 “ σ1
?
2ts.

(Q).
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Similarly,

Qpλ1, λ2q

“ Pr
ϵ„Q“N g

truncpk,T,σq
rppϵ´ δq ă λ1ppϵq ` λ2qpϵqs (B.105)

“

ż

}x}2ďT

Irppx´ δq ă λ1ppxq ` λ2qpxqsqpxq dx (B.106)

“

ż 8

νPT

y dy

ż

qpxq“y
ppx´δqăpλ1`λ2νqppxq

dx

}∇qpxq}2
(B.107)

y“rqptq
“

ż T

0

rqptq dt
2πd{2

Γpd{2q
td´1 ¨ Prrppx´ δq ă pλ1 ` λ2νqppxq | }x}2 “ ts (B.108)

“ν E
t„Γpd{2´k,1q

u3pt, λ1 ` λ2νq ¨ I

«

t ď
T 2

2σ12

ff

. (B.109)

(R).
Now, for R:

Rpλ1, λ2q

“ Pr
ϵ„P“N gpk,σq

rppϵq ă λ1ppϵ` δq ` λ2qpϵ` δqs (B.110)

“

ż

Rd

Irppxq ă λ1ppx` δq ` λ2qpx` δqsppxq dx (B.111)

“ E
t„Γpd{2´k,1q

u4pt, λ1, λ2q. (B.112)

Here, u4pt, λ1, λ2q “ Prrλ1ppx` δq ` λ2qpx` δq ą rppσ
1
?
2tq | }x}2 “ σ1

?
2ts.

Plugging Lemma B.7 into P pλ1, λ2q and Qpλ1, λ2q, and then plugging Lemma B.8 into
Rpλ1, λ2q, we yield the desired expressions in theorem statement. QED.

Lemma B.7. Under the condition of Theorem 2.5, let δ “ pr, 0, . . . , 0qT,

u3pt, λq :“ Prrppx´ δq ă λppxq | }x}2 “ σ1
?
2ts

“ BetaCDF d´1
2

˜

pr ` σ1
?
2tq2

4rσ1
?
2t

´
2kσ12W p t

k
e

t
kλ´ 1

k q

4rσ1
?
2t

¸

,
(B.113)

where W is the principal branch of Lambert W function.

Proof of Lemma B.7. ppx´ δq ă λppxq means that rpp}x´ δ}2q ă λrpp}x}2q and therefore
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}x´ δ}2 ą r´1
p pλrpp}x}2qq. Given that }x}2 “ σ1

?
2t, we have

$

’

’

’

’

’

&

’

’

’

’

’

%

x21 `
d
ÿ

i“2

x2i “ 2tσ12,

px1 ´ rq
2 `

d
ÿ

i“2

x2i ě r´1
p pλrppσ

1
?
2tqq2.

(B.114)

This is equivalent to

x1 ď
2tσ12 ` r2 ´ r´1

p pλrppσ
1
?
2tqq2

2r
. (B.115)

From the expression of rp (Equation (B.92)), we have

r´1
p pλrppσ

1
?
2tqq2 “ 2σ12kW

ˆ

t

k
e

t
kλ´ 1

k

˙

. (B.116)

Thus, when }x}2 “ σ1
?
2t and x uniformly sampled from this sphere,

ppx´ δq ă λppxq

ðñ x1 ď
2tσ12 ` r2 ´ 2σ12kW p t

k
e

t
kλ´ 1

k q

2r

ðñ
1` x1

σ1
?
2t

2
ď
pr ` σ1

?
2tq2 ´ 2σ12kW

´

t
k
e

t
kλ´ 1

k

¯

4rσ1
?
2t

.

(B.117)

According to [427, Lemma I.23], for x uniformly sampled from sphere with radius σ1
?
2t,

the component coordinate
1` x1

σ1
?
2t

2
„ Betapd´1

2
, d´1

2
q. Combining Equation (B.117) with

this result concludes the proof. QED.

Lemma B.8. Under the condition of Theorem 2.5, let δ “ pr, 0, . . . , 0qT,

u4pt, λ1, λ2q :“ Prrλ1ppx` δq ` λ2qpx` δq ą rppσ
1
?
2tq | }x}2 “ σ1

?
2ts

“

#

u1ptq, λ1 ď 0

u1ptq ` u2ptq, λ1 ą 0

(B.118)
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where

u1ptq “BetaCDF d´1
2

˜

mintT 2, 2σ12kW p t
ke

t
k pλ1 ` νλ2q

1
k qu

4rσ1
?
2t

´
pσ1

?
2t ´ rq2

4rσ1
?
2t

¸

,

u2ptq “max

$

&

%

0,BetaCDF d´1
2

¨

˝

2σ12kW p t
ke

t
k λ

1
k
1 q ´ pσ1

?
2t ´ rq2

4rσ1
?
2t

˛

‚´ BetaCDF d´1
2

˜

T 2 ´ pσ1
?
2t ´ rq2

4rσ1
?
2t

¸

,

.

-

,

(B.119)

Proof of Lemma B.8. Under the condition that }x}2 “ σ1
?
2t, we separate two cases: qpx`

δq ą 0 and qpx` δq “ 0, which corresponds to }x` δ}2 ď T and }x` δ}2 ą T .
(1) qpx` δq ą 0:
Notice that

qpx` δq ą 0 ðñ }x` δ}22 ď T 2 ðñ x1 ď
T 2 ´ 2tσ12 ´ r2

2r
. (B.120)

From Equation (B.93), qpx` δq “ νppx` δq. Thus,

λ1ppx` δq ` λ2qpx` δq ą rppσ
1
?
2tq

ðñ pλ1 ` νλ2qppx` δq ě rppσ
1
?
2tq

ðñ }x` δ}22 ď r´1
p

˜

rppσ
1
?
2tq

λ1 ` νλ2

¸2

ðñ x1 ď
r´1
p

´

rppσ1
?
2tq

λ1`νλ2

¯2

´ 2tσ12 ´ r2

2r
.

(B.121)

Therefore,

Prrλ1ppx` δq ` λ2qpx` δq ą rppσ
1
?
2tq ^ qpx` δq ą 0 | }x}2 “ σ1

?
2ts

“ Pr

»

—

—

—

–

x1 ď

min

"

r´1
p

´

rppσ1
?
2tq

λ1`νλ2

¯2

, T 2

*

´ 2tσ12 ´ r2

2r

ˇ

ˇ

ˇ
}x}2 “ σ1

?
2t

fi

ffi

ffi

ffi

fl

.
(B.122)

By [427, Lemma I.23] and Equation (B.116), we thus have

Prrλ1ppx` δq ` λ2qpx` δq ą rppσ
1
?
2tq ^ qpx` δq ą 0 | }x}2 “ σ1

?
2ts

“BetaCDF d´1
2

˜

mintT 2, 2σ12kW p t
k
e

t
k pλ1 ` νλ2q

1
k qu

4rσ1
?
2t

´
pσ1
?
2t´ rq2

4rσ1
?
2t

¸

“ u1ptq.
(B.123)

(2) qpx` δq “ 0:
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Similarly,
qpx` δq “ 0 ðñ x1 ą

T 2 ´ 2tσ12 ´ r2

2r
. (B.124)

When λ1 ď 0, the condition λ1ppx ` δq ` λ2qpx ` δq “ λ1ppx ` δq ą rppσ
1
?
2tq can never

be satisfied. When λ1 ą 0, we have

λ1ppx` δq ` λ2qpx` δq ą rppσ
1
?
2tq

ðñ }x` δ}22 ď r´1
p

˜

rppσ
1
?
2tq

λ1

¸2

ðñ x1 ď
r´1
p

´

rppσ1
?
2tq

λ1

¯2

´ 2tσ12 ´ r2

2r
.

(B.125)

Therefore, when λ1 ď 0,

Prrλ1ppx` δq ` λ2qpx` δq ą rppσ
1
?
2tq ^ qpx` δq “ 0 | }x}2 “ σ1

?
2ts “ 0. (B.126)

When λ1 ą 0, the condition that lambda1ppx` δq`λ2qpx` δq ą rppσ
1
?
2tq is equivalent to

x1 P

¨

˚

˚

˝

T 2 ´ 2tσ12 ´ r2

2r
,
r´1
p

´

rppσ1
?
2tq

λ1

¯2

´ 2tσ12 ´ r2

2r

fi

ffi

ffi

fl

. (B.127)

Again, by [427, Lemma I.23] and Equation (B.116), we have

Prrλ1ppx ` δq ` λ2qpx ` δq ą rppσ1
?
2tq ^ qpx ` δq “ 0 | }x}2 “ σ1

?
2ts

“max

$

&

%

0,BetaCDF d´1
2

¨

˝

2σ12kW p t
ke

t
k λ

1
k
1 q ´ pσ1

?
2t ´ rq2

4rσ1
?
2t

˛

‚´ BetaCDF d´1
2

˜

T 2 ´ pσ1
?
2t ´ rq2

4rσ1
?
2t

¸

,

.

-

“u2ptq.

(B.128)

(3) Combining the two cases:
Now we are ready to combine the two cases.

Prrλ1ppx` δq ` λ2qpx` δq ą rppσ
1
?
2tq | }x}2 “ σ1

?
2ts

“Prrλ1ppx` δq ` λ2qpx` δq ą rppσ
1
?
2tq ^ qpx` δq ą 0 | }x}2 “ σ1

?
2ts`

Prrλ1ppx` δq ` λ2qpx` δq ą rppσ
1
?
2tq ^ qpx` δq “ 0 | }x}2 “ σ1

?
2ts

“

#

u1ptq, λ1 ď 0

u1ptq ` u2ptq. λ1 ą 0

(B.129)
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QED.

B.2.4 Discussion on Uniqueness of Feasible Pair

As we sketched in Section 2.5.3, in general cases, the pair that satisfies constraints in
Equation (2.19) is unique. We formally state this finding and prove it in Theorem B.2.

Theorem B.2 (Uniqueness of Feasible Solution in Equation (2.19)). Under the same setting
of Theorem 2.5, if QA P p0, 1q and PA P pQA{ν, 1´p1´QAq{νq, then there is the pair pλ1, λ2q
that satisfies both P pλ1, λ2q “ PA and Qpλ1, λ2q “ QA is unique.

We prove the theorem in the end of this section, which is based on the strict monotonicity
of two auxiliary functions: gpλ1`νλ2q :“ Qpλ1, λ2q and hpλ1q (defined in Section 2.5.3). For
other types of smoothing distributions P and Q, in Theorem B.6 we characterize and prove
a sufficient condition that guarantees the uniqueness of feasible pair.

We observe that the feasible region of pPA, QAq is

R “ tpx, yq : y{ν ď x ď 1´ p1´ yq{ν, 0 ď y ď 1u. (B.130)

Therefore, the theorem states that when pPA, QAq is an internal point of R, the feasible
solution is unique and we can use our proposed method to find out such a feasible solution
and thus solve the dual problem pDq. Now, the edge cases are that pPA, QAq lies on the
boundary of R. We discuss all these cases and show that these boundary cases correspond
to degenerate problems that are easy to solve respectively:

• QA “ 0:
When QA “ 0, and PA P p0, 1q (otherwise, trivially Rpλ1, λ2q “ PA P t0, 1u solves
pDq), we have λ1 ` νλ2 Ñ 0` and thus Rpλ1, λ2q “ Et„Γpd{2´k,1q u2ptq. Since u2ptq
only involves λ1, we only require λ1 to be unique to deploy the method. Since
PA “ P pλ1, λ2q “ Et„Γpd{2´k,1q u3pt, λ1q ¨ Irt ě T 2{p2σ12qs and PA P p0, 1q, by simi-
lar arguments as in Theorem B.2, we know λ1 is unique. Hence, all feasible pairs give
the same Rpλ1, λ2q, i.e., have the same objective value and the proposed method that
computes a feasible one is sufficient for solving pDq.

• QA “ 1:
WhenQA “ 1 and PA P p0, 1q, we observe that u1ptq ď BetaCDF d´1

2

´

T 2

4rσ1
?
2t
´

pσ1
?
2t´rq2

4rσ1
?
2t

¯

where equality is feasible with the selected pλ1` νλ2q Ñ `8 and hence the maximum
of Et„Γpd{2´k,1q u1ptq among all feasible pλ1, λ2q is a constant. On the other hand, since
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u2ptq only involves λ1 that is unique as discussed in “QA “ 0” case, all feasible pairs
give the same value of Et„Γpd{2´k,1q u2ptq. As a result, the maximum of Rpλ1, λ2q can
be computed by adding the unique value of Et„Γpd{2´k,1q u2ptq and the constant corre-
sponding to the maximum of Et„Γpd{2´k,1q u1ptq among all feasible pλ1, λ2q, which solves
the dual problem pDq.

• PA “ QA{ν:
We assume PA, QA P p0, 1q (otherwise covered by former cases). In this case, λ1 satisfies
that hpλ1q “ PA ´ QA{ν “ 0, so λ1 Ñ 0`. As a result, u2ptq “ 0 for all t ą 0 and
Rpλ1, λ2q “ Et„Γpd{2´k,1q u1ptq. We observe that u1ptq is only related to pλ1 ` νλ2q

where pλ1 ` νλ2q satisfying Qpλ1, λ2q “ QA is unique since QA P p0, 1q. Thus, any
feasible pλ1, λ2q would have the same pλ1`νλ2q and hence leads to the same Rpλ1, λ2q.
So the proposed method that finds one feasible pλ1, λ2q suffices for solving pDq.

• PA “ 1´ 1´QA

ν
:

We again assume PA, QA P p0, 1q (otherwise covered by former cases). In this case,
λ1 satisfies that hpλ1q “ 1 ´ 1{ν. Since Et„Γpd{2´k,1q Irt ă T 2{p2σ12qs “ 1{ν, we know
u3pt, λ1q “ 1 for t ě T 2{p2σ12q except a zero-measure set, and thus λ1 Ñ `8. As
a result, Et„Γpd{2´k,1q u2ptq “ 1 ´ Et„Γpd{2´k,1q BetaCDF d´1

2

´

T 2´pσ1
?
2t´rq2

4rσ1
?
2t

¯

is a con-
stant. Similar as “PA “ QA{ν” case, feasible pλ1 ` νλ2q is unique. Therefore, feasible
pλ1, λ2q leads to a unique Et„Γpd{2´k,1q u1ptq. We compute out these two quantities
Et„Γpd{2´k,1q u2ptq and Et„Γpd{2´k,1q u1ptq so as to obtain the unique Rpλ1, λ2q that solves
pDq.

We remark that in practice, we never observe any instances that correspond to these edge
cases though we implemented these techniques for solving them.

Proof of Theorem B.2. The high-level proof sketch is implied in the derivation of our feasible
pλ1, λ2q finding method introduced in Section 2.5.3. We first show hpλ1q is monotonically
strictly increasing in a neighborhood of λ1 where hpλ1q “ PA´QA{ν, so the λ1 that satisfies
PA ´ QA{ν is unique. We then define gpγq “ ν Et„Γpd{2´k,1q u3pt, γq ¨ Irt ď T 2{p2σ12qs, and
show its strict monotonicity around the neighborhood of λ˚ that satisfies gpγ˚q “ QA, which
indicates that pλ1`νλ2q that satisfies QA is unique. Combining this two arguments, we know
feasible pλ1, λ2q is unique. Note that the key in this proof is the local strict monotonicity, and
the global (nonstrict) monotonicity for both hp¨q and gp¨q is apparent from their expressions.
We now present the proofs for the local strict monotonicity of these two functions h and g.

(1) hpλ1q is monotonically strictly increasing in a neighborhood of λ1 where hpλ1q “
PA ´QA{ν.
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From the theorem condition, we know that hpλ1q P p0, 1 ´ 1{νq. Thus, there exists
t0 ě T 2{p2σ12q, such that u3pt0, λ1q P p0, 1q (otherwise hpλ1q “ 0 or 1 ´ 1{ν). From the
closed-form equation of u3, for any neighboring λ1

1 ‰ λ1, we will have W pt0{ket0{kλ
´1{k
1 q ‰

W pt0{ke
t0{kλ

1´1{k
1 q by the monotonicity of Lambert W function. On the other hand, since

u3pt0, λ1q P p0, 1q and BetaCDF d´1
2
p¨q is also strict monotonic in the neighborhood, we have

u3pt0, λ
1
1q ‰ u3pt0, λ1q. Same happens to t0’s neighborhood, i.e., Dδ ą 0, s.t., @t P pt0´ δ, t0`

δq, u3pt, λ1
1q ‰ u3pt, λ1q and sgnpu3pt, λ

1
1q´u3pt, λ1qq is consistent for any t P pt0´δ, t0`δq. As

a result, hpλ1q ‰ hpλ1
1q. By definition and the fact that hp¨q is monotonically non-decreasing,

the argument is proved.
(2) gpγq is monotonically strictly increasing in a neighborhood of γ˚ where gpγ˚q “ QA.
Since QA P p0, 1q by the theorem condition, we know that there exists t0 P p0, T 2{p2σ12qq,

such that u3pt0, γ˚q P p0, 1q (otherwise gpγ˚q “ 0 or 1, which contradicts the theorem condi-
tion). Following the same reasoning as in (1)’s proof, for any γ1 ‰ γ˚ that lies in a sufficiently
small neighborhood of γ˚, we have u3pt0, γ˚q ‰ u3pt0, γ

1q, and Dδ ą 0, s.t., @t P pt0´δ, t0`δq,
u3pt, γ

˚q ‰ u3pt, γ
1q and sgnpu3pt, γ

˚q´u3pt, γ
1qq is consistent for any t P pt0´ δ, t0` δq. As a

result, gpγ˚q ‰ gpγ1q. By definition and the fact that gp¨q is monotonically non-decreasing,
the argument is proved. QED.

B.3 EXTENSIONS OF DSRS COMPUTATIONAL METHODS

In this appendix, we exemplify a few extensions of DSRS computational method.

B.3.1 Certification with Standard and Truncated Standard Gaussian

In main text and Theorem 2.5, we focus on DSRS certification with generalized Gaussian as
P and truncated generalized Gaussian asQ, which has theoretical advantages (Theorem 2.2).
On the other hand, DSRS can also be applied to other distributions. Concretely, to certify
robustness with standard Gaussian as P and truncated standard Gaussian as Q, we can
directly plug the following theorem’s numerical integration expressions into the described
DSRS algorithm (Algorithm 2.1).

Theorem B.3. In DδpPA, QAq, let r “ }δ}2, when P “ N pσq and Q “ NtruncpT, σq, let
ν :“ ΓCDFd{2pT

2{p2σ2qq´1,
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Rpλ1, λ2q :“ Pr
ϵ„P

rppϵq ă λ1ppϵ ` δq ` λ2qpvϵ ` δqs

“

#

Et„Γpd{2,1q u1ptq, λ1 ď 0

Et„Γpd{2,1q u1ptq ` u2ptq, λ1 ą 0
where

u1ptq “BetaCDF d´1
2

˜

mintT 2, 2tσ2 ` 2σ2 lnpλ1 ` νλ2qu

4rσ
?
2t

´
pσ

?
2t ´ rq2

4rσ
?
2t

¸

,

u2ptq “max

$

&

%

0,BetaCDF d´1
2

˜

2tσ2 ` 2σ2 lnλ1 ´ pσ
?
2t ´ rq2

4rσ
?
2t

¸

´ BetaCDF d´1
2

˜

T 2 ´ pσ
?
2t ´ rq2

4rσ
?
2t

¸

,

.

-

.

P pλ1, λ2q :“ Pr
ϵ„P

rppϵ ´ δq ă λ1ppϵq ` λ2qpϵqs

“ E
t„Γpd{2,1q

#

u3pt, λ1q, t ě T 2{p2σ2q

u3pt, λ1 ` νλ2q, t ă T 2{p2σ2q.
where

u3pt, λq “BetaCDF d´1
2

˜

1

2
`

r2 ` 2σ2 lnλ

4rσ
?
2t

¸

.

Qpλ1, λ2q :“ Pr
ϵ„Q

rppϵ ´ δq ă λ1ppϵq ` λ2qpϵqs

“ν E
t„Γpd{2,1q

u3pt, λ1 ` νλ2q ¨ Irt ď T 2{p2σ2qs.

(B.131)

In above equations, Γpd{2, 1q is gamma distribution and ΓCDFd{2 is its CDF, and BetaCDF d´1
2

is the CDF of distribution Betapd´1
2
, d´1

2
q.

Proof of Theorem B.3. The proof largely follows the same procedure as the proof of Theo-
rem 2.5. The only difference is that, since P “ N pσq, let rpp}ϵ}2q “ ppϵq, different from
Equation (B.116), now

r´1
p pλrppσ

?
2tqq2

“´ 2σ2 lnpλrppσ
?
2tq ¨ p2πσ2qd{2q

“ ´ 2σ2 ln

¨

˝

λ

p2πσ2qd{2
exp

˜

´
2tσ2

2σ2

¸

¨ p2πσ2qd{2

˛

‚

“´ 2σ2plnλ´ tq “ 2tσ2 ´ 2σ2 lnλ.

(B.132)

By plugging this equation into the proof of Theorem 2.5, we prove Theorem B.3. QED.

In practice, DSRS with standard Gaussian and truncated standard Gaussian as smoothing
distributions gives marginal improvements over Neyman-Pearson-based certification. This
is because, for standard Gaussian distribution, the noise magnitude is particularly concen-
trated on a thin shell as reflected by the green curve in Figure 2.3. As a result, the truncated
standard Gaussian as Q either has a tiny density overlap with P or provides highly similar
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Table B.2: The numerical integration expression for P , Q, and R (see definition in Theo-
rem 2.5). See Appendix B.3.2 for notation description.

P pλ1, λ2q “ E
x„Γp d

2
´kq

BetaCDF d´1
2

˜

pr ` σ1
?
2xq2 ´ g´1pλ1gpσ

1
?
2xq ` λ2hpσ

1
?
2xqq2

4rσ1
?
2x

¸

Qpλ1, λ2q “ E
x„Γp d

2
´kq

BetaCDF d´1
2

˜

pr ` β1
?
2xq2 ´ g´1pλ1gpβ

1
?
2xq ` λ2hpβ

1
?
2xqq2

4rβ1
?
2x

¸

Rpλ1, λ2q “ E
x„Γp d

2
´kq

BetaCDF d´1
2

˜

1

2
`
pλ1g ` λ2hq´1pgpσ1

?
2xqq2 ´ r2 ´ 2xσ12

4rσ1
?
2x

¸

´ BetaCDF d´1
2

˜

1

2
`
pλ1g ` λ2hq

´1pgpσ1
?
2xqq2 ´ r2 ´ 2xσ12

4rσ1
?
2x

¸

Table B.3: Simplified terms in numerical integration for P and Q, whereW is the real-valued
branch of the Lambert W function.

Functions P pλ1, λ2q Qpλ1, λ2q

Term to Simplify g´1
´

λ1gpσ
1
?
2xq ` λ2hpσ

1
?
2xq

¯2

g´1
´

λ1gpβ
1
?
2xq ` λ2hpβ

1
?
2xq

¯2

Simplified k “ 0 ´2σ12 ln

ˆ

λ1 expp´xq ` λ2

´

σ1

β1

¯d

exp
´

´σ12

β12x
¯

˙

´2σ12 ln

ˆ

λ1 exp
´

´
β12

σ12x
¯

` λ2

´

σ1

β1

¯d

expp´xq

˙

Terms k ą 0 2kσ12W

˜

x

k

ˆ

λ1 expp´xq ` λ2

´

σ1

β1

¯d´2k

exp
´

´σ12

β12x
¯

˙´1{k
¸

2kσ12W

˜

x

k
¨
β12

σ12

ˆ

λ1 exp
´

´
β12

σ12

¯

` λ2

´

σ1

β1

¯d´2k

expp´xq

˙´1{k
¸

information (i.e., QA « PA). In either case, Q provides little additional information. There-
fore, in practice, we do not use standard Gaussian and truncated standard Gaussian as P
and Q, which is also justified by Theorem 2.2, though DSRS can provide certification for
this setting.

B.3.2 Certification with Generalized Gaussian with Different Variances

We now consider the robustness certification with smoothing distribution P “ N gpk, σq

and additional smoothing distribution Q “ N gpk, βq where σ and β are different (i.e.,
different variance).

Computational Method Description

Hereinafter, for this P andQ we define the radial density function gprq :“ ppxq and hprq :“
qpxq for any }x}2 “ r, where p and q are the density functions of P and Q respectively.
pλ1g ` λ2hq´1pxq :“ max y s.t. λ1gpyq ` λ2hpyq “ x and similarly pλ1g ` λ2hq´1pxq :“

min y s.t. λ1gpyq ` λ2hpyq “ x.
In this case, we can still have the numerical expression for P pλ1, λ2q, Qpλ1, λ2q, and

Rpλ1, λ2q as shown in Theorem B.4.

Theorem B.4. When the smoothing distributions P “ N gpk, σq and additional smoothing
distribution Q “ N gpk, βq, let P pλ1, λ2q, Qpλ1, λ2q, and Rpλ1, λ2q be as defined in Theo-
rem 2.5, then P , Q, and R can be computed by expressions in Table B.2.
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In Table B.2, the numerical integration requires the computation of several inverse func-
tions. In this subsection, we simplify the numerical integration expressions for P and Q by
deriving the closed forms of these inverse functions, as shown in Table B.3. In the actual
implementation of numerical integration, for P and Q, we use these simplified expressions to
compute; for R, benefited from the unimodality (Lemma B.10), we deploy a simple binary
search to compute.

Theorem B.5. When the smoothing distributions P “ N gpk, σq and Q “ N gpk, βq, the
terms g´1pλ1gpσ

1
?
2xq ` λ2hpσ

1
?
2xqq2 and g´1pλ1gpβ

1
?
2xq ` λ2hpβ

1
?
2xqq2 in P pλ1, λ2q

and Qpλ1, λ2q’s computational expressions (see Table B.2) are equivalent to those shown in
Table B.3.

With the method to compute P , Q, and R for given λ1 and λ2, now the challenge is to
solve λ1 and λ2 such that P pλ1, λ2q “ PA and Qpλ1, λ2q “ QA.

Luckily, as Theorem B.6 shows, for given PA and QA, such pλ1, λ2q pair is unique. Indeed,
such uniqueness holds not only for this P and Q but also for a wide range of smoothing
distributions.

Theorem B.6 (Uniqueness). Suppose distributions P and Q’s are ℓp-spherically symmetric,
i.e., there exists radial density functions g and h such that ppxq “ gp}x}pq and qpxq “

hp}x}pq, then if g and h are continuous and g
h
is continuous and strictly monotonic almost

everywhere, for any given pPA, QAq P R2
`, there is at most one pλ1, λ2q pair satisfying

constraint of Equation (2.19).

The proof is shown in the next subsection, which is based on Cauchy’s mean value theorem
of the probability integral.

With Theorem B.6 and Proposition 2.3, we can use joint binary search as shown in Algo-
rithm B.1 to find λ1 and λ2 that can be viewed as the intersection of two curves. At a high
level, Each time, we leverage the monotonicity to get a point pλmid1 , λmid2 q on the P ’s curve,
then compute corresponding Q, and update the binary search intervals based on whether
Qpλmid1 , λmid2 q ą QA. We shrink the intervals for both λ1 and λ2 (Lines 5 and 7) in Algo-
rithm B.1 to accelerate the search. The algorithm is plugged into Line 8 of Algorithm 2.1.
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Algorithm B.1: DualBinarySearch for λ1 and λ2.
Data: Query access to P p¨, ¨q and Qp¨, ¨q, PA and QA

Result: λ1 and λ2 satisfying constraints P pλ1, λ2q “ PA, Qpλ1, λ2q “ QA

1 λL
1 Ð ´M,λU

1 Ð `M,λL
2 Ð ´M,λU

2 Ð `M ; /* M is a large positive number */
2 while λU

1 ´ λL
1 ą eps do

3 λmid
1 Ð pλL

1 ` λU
1 q{2;

4 Binary search for λmid
2 P rλL

2 , λ
U
2 s such that P pλmid

1 , λmid
2 q “ PA ; /* pλmid

1 , λmid
2 q lies on red

curve */
5 if Qpλmid

1 , λmid
2 q ă QA then

6 λU
1 Ð λmid

1 , λL
2 Ð λmid

2 ; /* pλmid
1 , λmid

2 q is right to intersection */
7 else
8 λL

1 Ð λmid
1 , λU

2 Ð λmid
2 ; /* pλmid

1 , λmid
2 q is left to intersection */

9 end
10 return pλL

1 , λ
L
2 q ; /* for soundness: RpλL

1 , λ
L
2 q lower bounds pDq */

Proofs

Proof of Theorem B.4. The ℓ2-radial density functions of ppxq and qpxq have these expres-
sions: gprq9r´k expp´r2{p2σ12qq and hprq9r´k expp´r2{p2β12qq. When r increases, r´k,
expp´r2{p2σ12qq, and expp´r2{p2β12qq decrease so that g and h are both strictly decreas-
ing. Therefore, they have inverse functions, which are denoted by g´1 and h´1. Now we are
ready to derive the expressions.

(I.) We start with P :

P pλ1, λ2q

“

ż

Rd

I
“

ppx´ δq ă λ1ppxq ` λ2qpxq
‰

ppxq dx (B.133)

p1.q
“

ż 8

0

y dy

ż

ppxq“y
ppx´δqăλ1ppxq`λ2hpxq

dx

}∇ppxq}2
(B.134)

p2.q
“

ż 8

0

y dy

ż

ppxq“y
ppx´δqăλ1ppxq`λ2hpxq

´
dx

g1
`

g´1pyq
˘ (B.135)

p3.q
“

ż 8

0

y dy ¨
πd{2dg´1pyqd´1

pd{2q!

ˆ

´
dx

g1pg´1pyqq

˙

¨ Pr
”

ppx´ δq ă λ1ppxq ` λ2qpxq
ˇ

ˇ ppxq “ y
ı

(B.136)
p4.q
“

ż 8

0

gptq dt ¨
πd{2dtd´1

pd{2q!
¨ Pr

”

ppx´ δq ă λ1gptq ` λ2hptq
ˇ

ˇ }x}2 “ t
ı

(B.137)
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p5.q
“

ż 8

0

1

p2σ12q
d
2

´kπ
d
2

¨
Γpd{2q

Γpd{2´ kq
¨ t´2k exp

˜

´
t2

2σ12

¸

¨
πd{2dtd´1

pd{2q!
¨ (B.138)

Pr
”

ppx´ δq ă λ1gptq ` λ2hptq
ˇ

ˇ }x}2 “ t
ı

(B.139)

“

ż 8

0

2

p2σ12q
d
2

´kΓpd
2
´ kq

td´2k´1 exp

˜

´
t2

2σ12

¸

¨ Pr
”

ppx´ δq ă λ1gptq ` λ2hptq
ˇ

ˇ }x}2 “ t
ı

(B.140)
p6.q
“

1

p2σ12q
d
2

´kΓpd
2
´ kq

ż 8

0

t
d
2

´k´1 exp

ˆ

´
t

2σ12

˙

¨ (B.141)

Pr
”

ppx´ δq ă λ1gp
?
tq ` λ2hp

?
tq
ˇ

ˇ }x}2 “
?
t
ı

(B.142)

p7.q
“

1

Γpd
2
´ kq

ż 8

0

t
d
2

´2k´1 expp´tq ¨ Pr
”

ppx´ δq ă λ1gpσ
1
?
2tq ` λ2hpσ

1
?
2tq

ˇ

ˇ }x}2 “ σ1
?
2t
ı

(B.143)
p8.q
“ E

t„Γp d
2

´kq

Pr
”

ppx´ δq ă λ1gpσ
1
?
2tq ` λ2hpσ

1
?
2tq

ˇ

ˇ }x}2 “ σ1
?
2t
ı

. (B.144)

As a reminder, d is the input dimension. The Γp¨q here refer to either the Gamma distribu-
tion (in t „ Γpd

2
´kq) or Gamma function (in some denominators). In the above integration:

p1.q uses level-set sliced integration as first proposed in [427]; p2.q leverages the fact that ppxq
is ℓ2-symmetric and g1p¨q ă 0; p3.q injects the surface area of ℓ2-sphere with radius g´1pyq;
p4.q alters the integral variable: t “ g´1pyq, which yields dt “ dy{g1ptq “ dy{g1pg´1pyqq and
y “ gptq; p5.q injects the expression of gptq; p6.q alters the integral variable from t to t2;
p7.q does re-scaling; and p8.q observes that the integral can be expressed by expectation over
Gamma distribution.

Due to the isotropy, let r “ }δ}2, we can deem δ “ pr, 0, . . . , 0qT by rotating the axis.
Then we simplify the probability term by observing that

$

&

%

}x}2 “ σ1
?
2t

ppx´ δq ă λ1gpσ
1
?
2tq ` λ2hpσ

1
?
2tq

ðñ

$

’

’

’

’

’

&

’

’

’

’

’

%

x21 `
d
ÿ

i“2

x2i “ 2tσ12

px1 ´ rq
2 `

d
ÿ

i“2

x2i ě g´1
´

λ1gpσ
1
?
2tq ` λ2hpσ

1
?
2tq

¯2

ùñx1 ď
2tσ12 ´ g´1

´

λ1gpσ
1
?
2tq ` λ2hpσ

1
?
2tq

¯2

` r2

2r
.

(B.145)
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Lemma B.9 (Lemma I.23; [427]). If px1, ¨ ¨ ¨ , xdq is sampled uniformly from the unit sphere
Sd´1 Ď Rd, then

1` x1
2

is distributed as Beta
ˆ

d´ 1

2
,
d´ 1

2

˙

. (B.146)

Combining Lemma B.9 and Equation (B.145), we get

Pr
”

ppx ´ δq ă λ1gpσ1
?
2tq ` λ2hpσ1

?
2tq

ˇ

ˇ }x}2 “ σ1
?
2t
ı

“BetaCDF d´1
2

¨

˚

˚

˝

pr ` σ1
?
2tq2

4rσ1
?
2t

´
g´1

´

λ1gpσ1
?
2tq ` λ2hpσ1

?
2tq

¯2

4rσ1
?
2t

˛

‹

‹

‚

.
(B.147)

Injecting Equation (B.147) into p8.q yields the expression shown in Table B.2.

(II.) The integration for Q is similar:

Qpλ1, λ2q

“

ż

Rd

Irppx´ δq ă λ1ppxq ` λ2qpxqsqpxq dx (B.148)

“

ż 8

0

y dy

ż

qpxq“y
ppx´δqăλ1ppxq`λ2qpxq

dx

}∇qpxq}2
(B.149)

“

ż 8

0

y dy

ż

qpxq“y
ppx´δqăλ1ppxq`λ2qpxq

´
dx

h1ph´1pyqq
(B.150)

“

ż 8

0

hptq dt ¨
πd{2dtd´1

pd{2q!
¨ Pr

”

ppx´ δq ă λ1ppxq ` λ2qpxq
ˇ

ˇ }x}2 “ t
ı

(B.151)

“
1

p2β12q
d
2

´kΓpd
2
´ kq

ż 8

0

t
d
2

´k´1 exp

ˆ

´
t

2β12

˙

¨ Pr
”

ppx´ δq ă λ1gp
?
tq ` λ2hp

?
tq
ˇ

ˇ }x}2 “
?
t
ı

(B.152)

“ E
t„Γp d

2
´kq

Pr
”

ppx´ δq ă λ1gpβ
1
?
2tq ` λ2hpβ

1
?
2tq

ˇ

ˇ }x}2 “ β1
?
2t
ı

, (B.153)

where

Pr
”

ppx´ δq ă λ1gpβ
1
?
2tq ` λ2hpβ

1
?
2tq

ˇ

ˇ }x}2 “ β1
?
2t
ı

“BetaCDF d´1
2

¨

˚

˚

˝

pr ` β1
?
2tq2

4rβ1
?
2t

´
g´1

´

λ1gpβ
1
?
2tq ` λ2hpβ

1
?
2tq

¯2

4rβ1
?
2t

˛

‹

‹

‚

.
(B.154)
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(III.) Finally, we derive the integration for R:

Rpλ1, λ2q

“

ż

Rd

I
“

ppx´ δq ă λ1ppxq ` λ2qpxq
‰

ppx´ δq dx (B.155)

“

ż

Rd

I
“

ppxq ă λ1ppx` δq ` λ2qpx` δq
‰

ppxq dx (B.156)

“

ż 8

0

y dy

ż

ppxq“y
ppxqăλ1ppx`δq`λ2qpx`δq

dx

}∇ppxq}2
(B.157)

“

ż 8

0

y dy

ż

ppxq“y
ppxqăλ1ppx`δq`λ2qpx`δq

´
dx

g1pg´1pyqq
(B.158)

“

ż 8

0

gptq dt ¨
πd{2dtd´1

pd{2q!
¨ Pr

”

λ1ppx` δq ` λ2qpx` δq ą ppxq
ˇ

ˇ }x}2 “ t
ı

(B.159)

“
1

p2σ12q
d
2

´kΓpd
2
´ kq

ż 8

0

t
d
2

´k´1 exp

ˆ

´
t

2σ12

˙

¨ (B.160)

Pr
”

λ1ppx` δq ` λ2qpx` δq ą gp
?
tq
ˇ

ˇ }x}2 “
?
t
ı

(B.161)
p9.q
“ E

t„Γp d´k
2

q

Pr
”

λ1ppx` δq ` λ2qpx` δq ą gpσ1
?
2tq

ˇ

ˇ }x}2 “ σ1
?
2t
ı

. (B.162)

To simplify the probability term, this time we have
$

&

%

}x}2 “ σ1
?
2t,

λ1ppx` δq ` λ2qpx` δq ą gpσ1
?
2tq

(B.163)

ðñ

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

x21 `
d
ÿ

i“2

x2i “ 2tσ12

pλ1g ` λ2hq

¨

˚

˝

g

f

f

epx1 ` rq2 `
d
ÿ

i“2

x2i

˛

‹

‚

ą gpσ1
?
2tq

(B.164)

ùñpλ1g ` λ2hq
´

a

2tσ12 ` r2 ` 2x1r
¯

ą gpσ1
?
2tq, (B.165)

where r “ }δ}2 and we deem δ “ pr, 0, . . . , 0qT by rotating the axis.

Lemma B.10. The function pλ1g ` λ2hq is unimodal in its domain p0, `8q.
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Proof of Lemma B.10. We expand pλ1g ` λ2hq then consider its derivative.

λ1gprq ` λ2hprq

“C1λ1r
´2k exp

˜

´
r2

2σ12

¸

` C2λ2r
´2k exp

˜

´
r2

2β12

¸

,
(B.166)

where C1 and C2 is the constant normalization coefficient of g and h respectively.

pλ1g ` λ2hq
1prq (B.167)

“´

¨

˝C1λ12kr
´2k´1 exp

˜

´
r2

2σ12

¸

` C1λ1 ¨
r´2k`1

σ12
exp

˜

´
r2

2σ12

¸

`C2λ22kr
´2k´1 exp

˜

´
r2

2β12

¸

` C2λ2 ¨
r´2k`1

β12
exp

˜

´
r2

2β12

¸

˛

‚.

Now we show that
pλ1g ` λ2hq

1prq “ 0 (B.168)

has at most one solution.
When either λ1 “ 0 or λ2 “ 0, since both g and h are monotonic, λ1g ` λ2 is monotonic

and there is no solution. Thus, we assume λ1, λ2 ‰ 0. We observe that

pλ1g ` λ2hq
1prq “ 0 (B.169)

ðñ C1λ1

˜

2k `
r2

σ12

¸

exp

˜

´
r2

2σ12

¸

` C2λ2

˜

2k `
r2

β12

¸

exp

˜

´
r2

2β12

¸

“ 0 (B.170)

ðñ ´
C1λ1
C2λ2

¨
2k ` r2

σ12

2k ` r2

β12

“ exp

˜

r2

2σ12
´

r2

2β12

¸

(B.171)

x:“r2

ðñ ´
C1λ1
C2λ2

¨
2k ` x

σ12

2k ` x
β12

“ exp

ˆ

x

2σ12
´

x

2β12

˙

(B.172)

ðñ ´
C2λ2
C1λ1

¨
2k ` x

β12

2k ` x
σ12

“ exp

ˆ

x

2β12
´

x

2σ12

˙

. (B.173)

We focus on Equation (B.173). Without loss of generality, we assume σ1 ą β1, then both
function x ÞÑ 2k`x{β12

2k`x{σ12 and function x ÞÑ exp
`

x{p2β12q ´ x{p2σ12q
˘

are monotonically increas-
ing. If λ1λ2 ą 0, the LHS and RHS of Equation (B.173) are continuous and monotonic in
opposite directions. Thus, there is at most one solution to Equation (B.173). If λ1λ2 ă 0,

278



the LHS is monotonic increasing but the derivative is decreasing because

´
C2λ2
C1λ1

¨
2k ` x

β12

2k ` x
σ12

“ ´
C2λ2
C1λ1

¨
1` x

2kβ12

1` x
2kσ12

(B.174)

where the numerator 1 ` x
2kβ12 is linearly increasing and the denominator 1 ` x

2kσ12 is also
linearly increasing. On the other hand, the RHS is monotonic increasing and the derivative
is also increasing because

1

2β12
´

1

2σ12
ą 0. (B.175)

As a result, the difference function between RHS and LHS is monotone and there is at most
one solution. Thus, we have shown Equation (B.173) has at most one solution.

Given that pλ1g ` λ2hq
1 is also continuous, we thus know the function pλ1g ` λ2hq is

unimodal. QED.

Moreover, since g and h approach 0 when r Ñ 8, pλ1g` λ2hq approaches 0 when r Ñ 8.
We define

pλ1g ` λ2hq´1pyq :“ max y1 s.t. λ1gpy
1q ` λ2hpy

1q “ x, (B.176)
pλ1g ` λ2hq

´1pyq :“ min y1 s.t. λ1gpy
1q ` λ2hpy

1q “ x. (B.177)

Then, Lemma B.10 and pλ1g ` λ2hq Ñ 0 when r Ñ 8 imply that, when y ą 0,

y0 P
´

pλ1g ` λ2hq
´1pyq, pλ1g ` λ2hq´1pyq

¯

ðñ λ1gpy0q ` λ2hpy0q ą y.
(B.178)

We simplify Equation (B.165) by observing that gpσ1
?
2tq ą 0:

Equation (B.165)

ðñ
a

2tσ12 ` r2 ` 2x1r P
´

pλ1g ` λ2hq
´1pgpσ1

?
2tqq, pλ1g ` λ2hq´1pgpσ1

?
2tqq

¯

(B.179)

ðñ
pλ1g ` λ2hq

´1pgpσ1
?
2tqq2 ´ 2tσ12 ´ r2

2r
ď x1 ď

pλ1g ` λ2hq´1pgpσ1
?
2tqq2 ´ 2tσ12 ´ r2

2r
.

(B.180)
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Combining Lemma B.9 with Equation (B.180) we get

Pr
”

λ1ppx ` δq ` λ2qpx ` δq ą gpσ1
?
2tq

ˇ

ˇ }x}2 “ σ1
?
2t
ı

“BetaCDF d´1
2

˜

1

2
`

pλ1g ` λ2hq´1pgpσ1
?
2tqq2 ´ 2tσ12 ´ r2

4rσ1
?
2t

¸

´ BetaCDF d´1
2

˜

1

2
`

pλ1g ` λ2hq´1pgpσ1
?
2tqq2 ´ 2tσ12 ´ r2

4rσ1
?
2t

¸

.

(B.181)

Combining the above equation with p9.q yields the expression shown in Table B.2. QED.

Proof of Theorem B.5. To prove the theorem, the main work we need to do is deriving the
closed-form expression for the inverse function g´1, where

gprq “
1

p2σ12q
d
2

´kπ
d
2

¨
Γpd

2
q

Γpd
2
´ kq

r´2k exp

˜

´
r2

2σ2

¸

. (B.182)

(I.) When k “ 0,

Equation (B.182)

ðñ y “
1

p2σ12πq
d
2

exp

˜

´
g´1pyq2

2σ12

¸

(B.183)

ðñ g´1pyq2 “ ´2σ12 ln
´

p2σ12πq
d
2 y
¯

. (B.184)

(II.) When k ą 0, we notice that the Lambert W function W is the inverse function of
w ÞÑ wew, i.e., W pxq exppW pxqq “ x. We let the normalizing coefficient of gprq be

C :“
1

p2σ12q
d
2

´kπ
d
2

¨
Γpd

2
q

Γpd
2
´ kq

. (B.185)

Then

Equation (B.182)

ðñ y “ Cg´1pyq´2k exp

˜

´
g´1pyq2

2σ12

¸

(B.186)

ðñ
C

y
“ g´1pyq2k exp

˜

g´1pyq2

2σ12

¸

(B.187)

ðñ

ˆ

C

y

˙
1
k

“ g´1pyq2 exp

˜

g´1pyq2

kσ12

¸

(B.188)
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ðñ
1

2kσ2

ˆ

C

y

˙
1
k

“ W´1

˜

g´1pyq2

2kσ12

¸

(B.189)

ðñ g´1pyq2 “ 2σ12kW

¨

˝

1

2kσ12

ˆ

C

y

˙
1
k

˛

‚. (B.190)

Plugging in Equations (B.184) and (B.190) to g´1pλ1gpσ
1
?
2xq ` λ2hpσ

1
?
2xqq2 and

g´1pλ1gpβ
1
?
2xq ` λ2hpβ

1
?
2xqq2 for k “ 0 and k ą 0 case, then results in Table B.3 follow

from algebra. QED.

Proof of Theorem B.6. We prove the theorem by contradiction. Suppose that the pλ1, λ2q
that satisfy the constraint of Equation (2.19) are not unique, and we let pλa1, λa2q and pλb1, λb2q
be such two pairs. Without loss of generality, we assume λa1 ‰ λb1.

If λa2 “ λb2, we have P pλa1, λa2q “ P pλb1, λ
b
2q, i.e., the region

␣

x´ δ : ppx´ δq P
”

mintλa1, λ
b
1uppxq ` λ

a
2qpxq,

maxtλa1, λ
b
1uppxq ` λ

a
2qpxq

¯

* (B.191)

has zero mass under distribution P . Given that P and Q have positive and continuous
density functions almost everywhere, the volume of the region is non-zero thus the mass
under distribution P is also non-zero. Therefore, we also have λa2 ‰ λb2. Because of the partial
monotonicity of P and Q functions (shown in Section 2.5.3), without loss of generality, we
assume

λa1 ă λb1, λa2 ą λb2. (B.192)

Lemma B.11. There exists a point r0 ě 0, either (1) or (2) is satisfied.

(1) When r ą r0,

Prrppϵ´ δq ă λa1ppϵq ` λ
a
2qpϵq

ˇ

ˇ }ϵ}p “ rs ě Prrppϵ´ δq ă λb1ppϵq ` λ
b
2qpϵq

ˇ

ˇ }ϵ}p “ rs;

(B.193)

(B.194)

when r ă r0,

Prrppϵ´ δq ă λa1ppϵq ` λ
a
2qpϵq

ˇ

ˇ }ϵ}p “ rs ď Prrppϵ´ δq ă λb1ppϵq ` λ
b
2qpϵq

ˇ

ˇ }ϵ}p “ rs.

(B.195)
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(2) When r ą r0,

Prrppϵ´ δq ă λa1ppϵq ` λ
a
2qpϵq

ˇ

ˇ }ϵ}p “ rs ď Prrppϵ´ δq ă λb1ppϵq ` λ
b
2qpϵq

ˇ

ˇ }ϵ}p “ rs;

(B.196)

(B.197)

when r ă r0,

Prrppϵ´ δq ă λa1ppϵq ` λ
a
2qpϵq

ˇ

ˇ }ϵ}p “ rs ě Prrppϵ´ δq ă λb1ppϵq ` λ
b
2qpϵq

ˇ

ˇ }ϵ}p “ rs.

(B.198)

Note that in Prr¨
ˇ

ˇ }ϵ}p “ rs, the vector ε P Rd is uniformly sampled from the ℓp-sphere of
radius r.

Proof of Lemma B.11. For a given r, since P and Q are both ℓp-spherically symmetric, and
the density functions are both positive almost everywhere, as long as

λa1gprq ` λ
a
2hprq ď λb1gprq ` λ

b
2hprq, (B.199)

then
rppϵ´ δq ă λa1ppϵq ` λ

a
2qpϵq

ˇ

ˇ }ϵ}p “ rs

ďrppϵ´ δq ă λb1ppϵq ` λ
b
2qpϵq

ˇ

ˇ }ϵ}p “ rs.
(B.200)

It still holds if we change the “ď“’s to “ě”’s in both Equations (B.199) and (B.200). Mean-
while,

λa1gprq ` λ
a
2hprq ď λb1gprq ` λ

b
2hprq ðñ

gprq

hprq
ą
λb2 ´ λ

a
2

λa1 ´ λ
b
1

. (B.201)

Since gprq{hprq is strictly monotonic, there exists at most one point r0 ě 0 that divides

gprq

hprq
ą
λb2 ´ λ

a
2

λa1 ´ λ
b
1

and gprq

hprq
ă
λb2 ´ λ

a
2

λa1 ´ λ
b
1

. (B.202)

If that r0 exists, from Equations (B.199) to (B.201) the lemma statement follows.
Now we only need to show that r0 exists. Assume that the point r0 does not exist, it

implies that for all r, we have either

λa1gprq ` λ
a
2hprq ă λb1gprq ` λ

b
2hprq (B.203)
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or
λa1gprq ` λ

a
2hprq ą λb1gprq ` λ

b
2hprq (B.204)

while P pλa1, λa2q “ P pλb1, λ
b
2q ą 0 and Qpλa1, λa2q “ Qpλb1, λ

b
2q ą 0. It implies that for almost

every r,
Prrppϵ´ δq P pa, bq

ˇ

ˇ }ϵ}p “ rs “ 0 (B.205)

where
a “ mintλa1gprq ` λ

a
2hprq, λ

b
1gprq ` λ

b
2hprqu,

b “ maxtλa1gprq ` λ
a
2hprq, λ

b
1gprq ` λ

b
2hprqu.

(B.206)

This violates the continuous assumption on both P andQ. Therefore, point r0 exists. QED.

With Lemma B.11, we define auxiliary function D : R` Ñ R such that

Dprq “Prrppϵ´ δq ă λa1ppϵq ` λ
a
2qpϵq | }ϵ}p “ rs

´ Prrppϵ´ δq ă λb1ppϵq ` λ
b
2qpϵq | }ϵ}p “ rs.

(B.207)

We let Sprq be the surface area of ℓp sphere of radius r. Then the P and Q can be written
in integral form:

P pλ1, λ2q “

ż 8

0

Prrppε´ δq ă λ1ppεq ` λ2ppεq | }ε}p “ rs ¨ gprqSprq dr, (B.208)

Qpλ1, λ2q “

ż 8

0

Prrppε´ δq ă λ1ppεq ` λ2ppεq | }ε}p “ rs ¨ hprqSprq dr. (B.209)

Since P pλa1, λa2q “ P pλb1, λ
b
2q and Qpλa1, λa2q “ Qpλb1, λ

b
2q by our assumption, simple arrange-

ment yields
ż r0

0

DprqgprqSprq dr “

ż 8

r0

p´DprqqgprqSprq dr ‰ 0, (B.210)
ż r0

0

DprqhprqSprq dr “

ż 8

r0

p´DprqqhprqSprq dr ‰ 0. (B.211)

As Lemma B.11 shows, Dprq where r P r0, r0s always has the same sign as ´Dprq where
r P rr0, `8s, and the last inequality (‰ 0) is again due to the continuity of p and q and
the fact that P pλa1, λa2q ą 0 and Qpλa1, λ

a
2q ą 0. Now we can divide Equation (B.210) by

Equation (B.211) and apply the Cauchy’s mean value theorem, which yields

Dpξ1qgpξ1qSpξ1q

Dpξ1qhpξ1qSpξ1q
“
Dpξ2qgpξ2qSpξ2q

Dpξ2qhpξ2qSpξ2q
, (B.212)
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where ξ1 P p0, r0q and ξ2 P pr0, `8q. Apparently, it requires

gpξ1q

hpξ1q
“
gpξ2q

hpξ2q
. (B.213)

However, g{h is strictly monotonic. By contradiction, there is no distinct pair pλa1, λa2q and
pλb1, λ

b
2q satisfying the constraint of Equation (2.19) simultaneously. QED.

Remark B.3. Suppose P and Q are ℓp-radial extended Gaussian/Laplace distributions, i.e.,
their density functions ppxq and qpxq are

ppxq9}x}´k
p exp

`

´}x}p{σ
˘α
,

qpxq9}x}´k
p exp

`

´}x}p{β
˘α

(B.214)

with α ą 0 (for Gaussian α “ 2 and for Laplace α “ 1). Note that this is a broader family
than the family considered in DSRS shown in the main text. we have

g

h
9 exppr{β ´ r{σqα (B.215)

that is strictly monotonic. Thus, Theorem B.6 is applicable for this large family of smoothing
distributions that are commonly used in the literature [77, 165, 204, 427, 437, 442].

B.3.3 Discussion on Certification of Other ℓp Norms

DSRS can also be extended to provide a certified robust radius under ℓp norm other than
ℓ2.

Different from the case of ℓ2 certification, for other ℓp norm the challenge is to compute
P pλ1, λ2q, Qpλ1, λ2q, and Rpλ1, λ2q as defined in Theorem 2.5. For ℓ2 certification, as shown
by Theorems 2.5 and B.4, there exist closed-form expressions for these quantities that can
be efficiently implemented with numerical integrations. However, for other ℓp norms, finding
such closed-form expressions for P , Q, and R is challenging.

Luckily, we notice that P , Q, and R are all probability-based definitions, as long as we
can effectively sample from P and Q and effectively compute the density functions pp¨q and
qp¨q, we can estimate these function quantities from the empirical means of Monte-Carlo
sampling.

Compared to numerical integration based ℓ2 certification, Monte-Carlo sampling has sam-
pling uncertainty and efficiency problems. Here we discuss these two problems in detail and
how we can alleviate them.
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Sampling Uncertainty and Mitigations. The empirical means for P andQ are stochas-
tic, which breaks the nice properties of P and Q (shown in Section 2.5.3) with respect to
pλ1, λ2q as the different queries to P and Q fluctuate around the actual value. Therefore,
the joint binary search (Algorithm B.1) may fail to return the correct pλ1, λ2q pair. Thus,
we propose a stabilization trick: the same set of samples is used when querying P and
Q during the joint binary search. With this same set of samples, it can be easily verified
that the nice properties (Propositions 2.2 and 2.3) still hold even if P and Q are empirical
means. To guarantee the certification soundness in the context of probabilistic Monte-Carlo
sampling, we introduce a different set of samples to test whether the solved pλ1, λ2q indeed
upper bounds the intersection point (if the test fails we fall back to the classical Neyman-
Pearson-based certification though it seldom happens). Since the test is also probabilistic,
we need to accumulate this additional failing probability and use the lower bound of the
confidence interval for soundness, which results in 1 ´ 2α “ 99.8% certification instead of
1 ´ α “ 99.9% as in classical randomized smoothing certification [77, 427]. Note that the
existence of additional confidence intervals caused by Monte-Carlo sampling makes DSRS
based on Monte-Carlo sampling slightly looser than DSRS based on numerical integration.

Efficiency Concern and Mitigations. Traditionally we need to sample several (denoted
as M , in our implementation we set M “ 5 ˆ 104) high-dimensional vectors for each P or
Q computation, which induces the efficiency concern. With the usage of the aforementioned
stabilization trick, now we only sample one set of M samples during the whole joint binary
search instead of during each P and Q computation. Combining with the testing phase
sampling, the whole algorithm needs to sample 2M vectors rather thanOpM log2Mq without
the stabilization trick, so it greatly solves the efficiency concern. Moreover, we notice that
for the samples tϵiuMi“1 we only need to care about its densities tppεiquMi“1, tqpεiqu

M
i“1 and

tppεi´δquMi“1. Thus, we store only these three quantities instead of the whole d-dimensional
vectors tϵiuMi“1, reducing the space complexity from OpM ˆ dq to OpMq.

These techniques significantly improve efficiency in practice. Although DSRS based on
Monte-Carlo sampling is still slightly looser and slower than DSRS based on numerical inte-
gration, DSRS based on Monte-Carlo sampling makes certifying robustness under other ℓp
norms feasible. In this work, we focus on the ℓ2 norm, because additive randomized smooth-
ing is not optimal for other norms (e.g., ℓ1 [214]) or the state-of-the-art certification can be
directly translated from ℓ2 certification (e.g., ℓ8 [427] and semantic transformations [223]).
Moreover, to the best of our knowledge, standard ℓ2 certification is the most challenging
setting where additive randomized smoothing achieves state-of-the-art and no other work
can achieve visibly tighter robustness certification than standard Neyman-Pearson certifica-
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tion [215, 267, 427].

B.4 IMPLEMENTATION AND OPTIMIZATIONS

In this appendix, we discuss the implementation tricks and optimizations, along with our
simple heuristic for selecting the hyperparameter T in the additional smoothing distribution
Q “ N g

truncpk, T, σq.

B.4.1 Implementation Details

We implement DSRS in Python with about two thousand lines of code. The tool uses
PyTorch16 to query a given base classifier with Monte-Carlo sampling in order to derive
the confidence intervals rPA, PAs and rQA, QAs. Then, the tool builds the whole DSRS
pipeline on SciPy17 and NumPy18. Specifically, the numerical integration is implemented with
scipy.integrate.quad() method. We exploit the full independence across the certification
for different input instances and build the tool to be fully parallelizable on CPUs. By default,
we utilize 10 processes, and the number of processes can be dynamically adjusted.

The tool is built in a flexible way that adding new smoothing distributions is not only
theoretically straightforward but also easy in practice. In the future, we plan to extend
the tool to 1) provide GPU support; 2) reuse existing certification results from previous
instances with similar confidence intervals to achieve higher efficiency. We will also support
more smoothing distributions.

In the implementation, we widely use the logarithmic scale, since many quantities in the
computation have varied scales. For example, since the input dimension d is typically over
500 on a real-world dataset, the density functions p and q decay very quickly along with
the increase of noise magnitude. Another example is the input variable for lnp¨q and W p¨q
in Theorem 2.5. These variables are exponential with respect to the input dimension d

so they could be very large or small. To mitigate this, we perform all computations with
varied scales in logarithmic scale to improve the precision and floating-point soundness. For
example, we implement a method lnlogadd to compute logpλ1 exppx1q ` λ2 exppx2qq and
apply method wlog in [427] to compute W pexppxqq. We remark that in the binary search
for dual variables (see Section 2.5.3), we also use the logarithmic scale for λ1 and λ2.

16http://pytorch.org/
17https://scipy.org/scipylib/index.html
18https://numpy.org/
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The code, model weights, and all experiment data are publicly available at https://
github.com/llylly/DSRS.

B.4.2 T Heuristics

As briefly outlined in Section 2.6.1, we apply a simple yet effective heuristic to determine
the hyperparameter T in additional smoothing distribution Q “ N g

truncpk, T, σq.
Concretely, we first sample the prediction probability from the original smoothing dis-

tribution P and get the confidence lower bound PA of PA “ fPpx0qy0 . Then, we use the
following empirical expression to determine T from PA:

T “ σ

c

2d

d´ 2k
ΓCDF´1

d{2´kppq, (B.216)

where
p “ maxt´0.08 lnp1´ PAq ` 0.2, 0.5u. (B.217)

It can be viewed as we first parameterize T by p and then find a simple heuristic to determine
p by PA.

The T ’s parameterization with p is inspired by the probability mass under original smooth-
ing distribution P “ N gpk, σq if true-decision region is concentrated in a ℓ2-ball centered at
x0. Concretely, from P ’s definition,

Pr
ϵ„P
r}ϵ}2 ď T s “ p. (B.218)

Then, we use a randomly sampled CIFAR-10 training set containing 1, 000 points with mod-
els trained using Consistency [165] under σ “ 0.50 to sweep all p P t0.1, 0.2, ¨ ¨ ¨ , 0.9u. We
plot the minimum p and maximum p that gives the highest certified robust radius as a seg-
ment and find Equation (B.217) fits the general tendency well as shown in Appendix B.4.2.
Thus, we use this simple heuristic to determine T . Empirically, this simple heuristic gener-
alizes well and is competitive with more complex methods as shown in Appendix B.5.

Another heuristic that we have deployed is the fall-back strategy. When the empirical
probability ĂPA “ 1, i.e., if for all the sampled ϵ „ P , F px0 ` ϵq “ y0, then we fall back to
still using P instead of using another distribution Q for the second round of sampling. This
strategy is inspired by a finding that, with the fixed sampling budget, if PA is already very
high, it is more efficient to use more samples to further increase the confidence interval of
PA rather than querying imprecise information under another distribution Q. Notice that
such strategy does not break the high-confidence soundness of our certification, because
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Figure B.1: Our p heuristic (Equation (B.217)) shown as orange curve fits the generalization
tendency of optimal p ranges (shown as blue segments) well.

PrrĂPA “ n{N |PA ď ts ě PrrĂPA “ n{N ^ĆP half
A “ 1 |PA ď ts for any t ă 1 and Bernoulli

distributed sampling (which is our case), and we use Bernoulli confidence interval that
corresponds to PrrĂPA “ n{N |PA ď ts. Due to the tight experiment time, we only deployed
this strategy on ImageNet evaluation but not on MNIST and CIFAR-10 evaluations.

B.4.3 Training Strategy for Generalized Gaussian Smoothing

We train the base classifiers on each dataset using Gaussian augmentation training [77],
Consistency training [165], and SmoothMix training [166], which are typical training meth-
ods for randomized smoothing. We do not consider other training approaches such as
[56, 218, 317, 437] because: (1) Some training approaches either require additional data [56,
317], or relatively time-consuming [317], or are reported to be not as effective as later ap-
proaches [218]; (2) Selected training approaches are widely used or achieve state-of-the-art
with high training efficiency.

On MNIST, for all training methods, we use a convolutional neural network with 4 convo-
lutional layers and 3 fully connected layers following Cohen et al. [77] as the base classifiers’
architecture. On CIFAR-10, for all training methods, we use ResNet-110 [142] as the base
classifiers’ architecture. These architecture settings follow the prior work on smoothed clas-
sifier training [77, 317, 437].
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On both MNIST and CIFAR-10, for all training methods, we train for 150 epochs. The
learning rate is 0.01 and is decayed by 0.1 at the 50th and 100th epoch. For Consistency
training, the hyperparameter λ “ 5 on MNIST and λ “ 20 on CIFAR-10. We use two noise
vectors per training batch per instance. These are the best hyperparameters reported in
[165]. The batch size is 256 on both MNIST and CIFAR-10 following [165]. For SmoothMix
training, we directly use the best hyperparameters from their open-source repository: https:
//github.com/jh-jeong/smoothmix/blob/main/EXPERIMENTS.MD.

On ImageNet, we use ResNet-50 [142] as the base classifiers’ architecture and finetune
from the open-source model trained by Cohen et al. [77] with Gaussian smoothing. We train
for 10 epochs due to the expensive training cost on ImageNet and we remark that better
results can be achieved with a larger training time budget. The learning rate is 0.001 and
is decayed at the end of every epoch by 0.1. For Consistency training, the hyperparameter
λ “ 5 and we use two noise vectors per training batch per instance following the best
hyperparameters reported in [165]. For SmoothMix training, since the open-source repository
does not contain the best hyperparameters, we select the hyperparameters as suggested in
the original paper [166].

During training, the training samples are augmented by adding noises following training
smoothing distribution. In typical training approaches [56, 77, 165, 317, 437], the training
smoothing distribution is set to be the same as the original smoothing distribution P for
constructing the smoothed classifier. However, for our generalized Gaussian N gpk, σq as P
with large k, we find this strategy gives a poor empirical performance.

To better train the base classifier for our original smoothing distribution P with large
k, we introduce a warm-up stage on the training smoothing distribution. Suppose our
original smoothing distribution P for constructing the smoothed classifier is N gpk0, σq We
let e0 “ 100 be the number of warm-up epochs on MNIST and CIFAR-10, or e0 “ 10000 be
the number of warm-up steps on ImageNet. In the first e0 epochs (on MNIST and CIFAR-10)
or steps (on ImageNet), we use the training smoothing distribution with smaller k. Formally,
in the eth epoch/step where e ď e0, the training smoothing distribution P 1 “ N gpk, σq where

k “ rk0 ´ k
1´e{e0
0 s. (B.219)

For later epochs/steps, we use the original smoothing distribution P itself as the train-
ing smoothing distribution. This strategy gradually increases the k of training smoothing
distribution throughout the training, so that the base classifier can be a better fit for the
final desired distribution P . Using this strategy, the smoothed classifier constructed from
our trained base classifier has similar certified robustness compared to standard Gaussian
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augmentation under classical Neyman-Pearson-based certification.

B.5 ADDITIONAL EXPERIMENTAL RESULTS

In this appendix, we present additional experiment results and studies.

B.5.1 Empirical Study Setup of Concentration Property

In Figure 2.3, we present our investigation of the decision regions of base classifiers. The
investigation follows the following protocol: (1) We choose the base classifier from [317]
on ImageNet trained for σ “ 0.5 Gaussian smoothing as the subject. The reason is that
this base classifier is one of the state-of-the-art certifiably robust classifiers on the large-scale
ImageNet dataset and our code uses the same preprocessing parameters so it is easy to adopt
their model. (2) We pick every 500-th image from the test set of the ImageNet dataset to
form a subset of 100 samples. (3) We filter out the samples where the base classifier cannot
classify correctly even without adding any noise, which results in 89 remaining samples.
(4) For each of these 89 samples, for each perturbation magnitude r, we uniformly sample
1000 perturbation vectors from the hypersphere with ℓ2-radius r and compute the empirical
probability of true-prediction, where the step size of r is 10.

Figure 2.3 implies that for a vast majority of samples, the true-prediction samples are
highly concentrated on an ℓ2 ball around the clean input since there exists apparent ℓ2
magnitude thresholds where the true-prediction probability is almost 1 within the thresholds
and almost 0 beyond the thresholds. This implies that the concentration property may be
achievable for real-world base classifiers in randomized smoothing.

In Figure B.3, we follow the same protocol but plot the landscape of base classifiers
trained using generalized Gaussian distribution (instead of standard Gaussian distribution
as in Figure 2.3). By comparing Figure B.3 and Figure 2.3, we find that although base
classifiers in Figure 2.3 can achieve better certified robustness using Neyman-Pearson certi-
fication and generalized Gaussian smoothing (compare Figure 2.5(b) and Neyman-Pearson
rows in Table B.9), they also sacrifice the concentration property, which can explain why
DSRS improvements are much smaller on models in Section 2.6 compared with models in
Figure 2.5(b). Thus, as discussed in Section 2.6, there may be a large space for exploring
training approaches that favor DSRS certification by preserving the concentration property.

290



B.5.2 Effectiveness of T -Heuristics and Attempts on Better Optimization Tricks

Better Optimization Tricks. For obtaining a tighter certified radius, we should make the
support of N g

truncpk, T, σq more aligned with the decision region while keeping the QA large
enough. So except using a simple heuristic, we can also turn the search for an appropriate
value of T into an optimization problem. In order to make the optimization more stable,
here we will construct the optimization based on Pcon that is more scale-invariant, and then
transform it to get the final appropriate T “ σ

b

2ΓCDF´1
d{2pPconq.

The final optimization objective is now built as Pcon “ argmin´QA `
λ
2
pPcon ´ PAq

2,
where λ is a hyperparameter that controls the relative weight of the two loss terms. The
QA here is estimated by sampling from the distribution N g

truncpk, T, σq in which the T is
determined by Pcon; however, the actual process of such sampling is implemented by reject-
ing the sampled noise whose norm is bigger than T . Therefore, there will be no gradient
obtained for Pcon through the backward of the loss, namely, the optimized objective. So
instead, we attempt to approximate the gradient comes from the first loss term ´QA with
GQA

“ Eϵ„Qr∇||ϵ||2CrossEntropyLosspfpx0 ` ϵq, y0qs. Then, we will only have the gradi-
ent information, and there is no explicit form of QA anymore. The PA is estimated with
the PA which we have already obtained, so the final estimation of the gradient for Pcon is
GQA

` λpPcon ´ PAq.

Experiment Setting. The Pcon is optimized for different input test images respectively,
and the initialized Pcon is set to 0.7. For each input, we will update Pcon 20 steps on datasets
MNIST and CIFAR10 while updating only 10 steps on dataset ImageNet to reduce time
complexity. For each step, we will sample 2, 000 times for estimating the term GQA

, and
the learning rate is set to 2, 000. Besides, to avoid the Pcon being optimized too large or too
small, we will clip the final optimized Pcon within 0.1 and 0.9. Since the optimization is a
bit time-consuming, we only test it on CIFAR10 with σ “ 0.5 and test it on MNIST and
ImageNet with σ “ 1.0. Different λ is also tried for different datasets and different training
methods for getting better performance.

Performance. The final results are shown in Table B.4, and the certification approach
based on the optimization tricks mentioned above is denoted as “Opt” in the table. As
we can see, our simple T -Heuristics could still be competitive with the method based on
complicated optimization but with a cheaper cost.
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Table B.4: ℓ2 certified robust accuracy w.r.t. different radii r for different certification approaches.

Dataset Training Certification Certified Accuracy under Radius r
Method Approach 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

MNIST

Gaussian Aug. Neyman-Pearson 95.5 % 93.5 % 90.0 % 86.1 % 80.4 % 72.8 % 61.4 % 50.2 % 36.6 % 25.2 % 14.5 % 8.5 %

pσ “ 1.00q
DSRS(T -heuristic) 95.5 % 93.5 % 90.2 % 86.9 % 81.4 % 74.4 % 64.6 % 55.2 % 42.8 % 30.9 % 20.3 % 11.3 %
Opt pλ “ 7e´ 05q 95.5% 93.5% 90.0% 86.9% 81.7% 74.9% 65.6% 55.8% 43.8% 30.5% 19.1% 10.2%

Consistency Neyman-Pearson 94.5 % 92.6 % 89.3 % 85.9 % 80.7 % 74.4 % 65.9 % 56.9 % 44.1 % 34.4 % 23.3 % 12.8 %

pσ “ 1.00q
DSRS(T -heuristic) 94.5 % 92.8 % 89.3 % 86.3 % 81.4 % 76.1 % 68.3 % 59.5 % 50.7 % 39.8 % 30.7 % 20.0 %
Opt pλ “ 6e´ 06q 94.5% 92.8% 89.3% 86.2% 81.2% 75.8% 68.2% 59.6% 50.5% 39.6% 30.7% 19.8%

Certified Accuracy under Radius r
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

CIFAR-10

Gaussian Aug. Neyman-Pearson 60.4 % 55.2 % 51.3 % 45.9 % 40.8 % 35.6 % 30.1 % 24.3 % 20.0 % 16.7 % 13.0 % 10.1 %

pσ “ 0.50q
DSRS(T -heuristic) 60.6 % 55.5 % 51.5 % 46.8 % 42.1 % 37.3 % 32.5 % 27.4 % 22.8 % 19.3 % 16.0 % 12.7 %
Opt pλ “ 3e´ 06q 60.6% 55.5% 51.3% 46.7% 42.0% 37.2% 32.5% 27.4% 23.0% 19.3% 16.0% 12.5%

Consistency Neyman-Pearson 53.1 % 50.5 % 48.6 % 45.5 % 43.6 % 41.5 % 38.7 % 36.7 % 35.1 % 32.0 % 29.1 % 25.7 %

pσ “ 0.50q
DSRS(T -heuristic) 53.1 % 50.7 % 48.7 % 45.7 % 44.0 % 41.8 % 39.6 % 37.8 % 36.0 % 34.4 % 31.3 % 28.6 %
Opt pλ “ 4e´ 06q 53.1% 50.7% 48.7% 45.7% 44.0% 41.8% 39.5% 37.8% 36.0% 34.4% 31.4% 28.4%

ImageNet

Gaussian Aug. Neyman-Pearson 57.5 % 55.1 % 52.2 % 49.7 % 47.0 % 43.9 % 40.8 % 38.1 % 35.0 % 33.2 % 29.6 % 25.3 %

pσ “ 1.00q
DSRS(T -heuristic) 57.7 % 55.6 % 52.7 % 51.0 % 48.4 % 45.5 % 43.1 % 40.2 % 37.9 % 35.3 % 32.8 % 30.5 %
Opt pλ “ 1e´ 05q 57.7% 55.5% 52.4% 50.5% 48.2% 45.0% 42.9% 40.0% 38.0% 35.0% 32.7% 29.9%

Consistency Neyman-Pearson 55.9 % 54.4 % 53.0 % 51.2 % 48.2 % 46.2 % 44.2 % 41.7 % 39.1 % 36.4 % 34.4 % 32.1 %

pσ “ 1.00q
DSRS(T -heuristic) 56.0 % 54.6 % 53.1 % 51.8 % 49.9 % 47.4 % 45.7 % 44.2 % 41.7 % 39.3 % 37.8 % 35.8 %
Opt pλ “ 1e´ 05q 56.0% 54.6% 53.1% 51.8% 49.7% 47.4% 45.3% 44.0% 41.6% 39.3% 37.8% 35.9%

B.5.3 Full Curves and Separated Tables

Separate Tables by Smoothing Variance

Table B.5: MNIST: Certified robust accuracy for models smoothed with different variance σ
certified with different certification approaches.

Variance Training Certification Certified Accuracy under Radius r
Method Approach 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

0.25

Gaussian Aug. Neyman-Pearson 97.9% 96.4% 92.1%
[77] DSRS 97.9% 96.6% 92.7%

Consistency Neyman-Pearson 98.4% 97.5% 94.4%
[165] DSRS 98.4% 97.5% 95.4%

SmoothMix Neyman-Pearson 98.6% 97.6% 96.5%
[166] DSRS 98.6% 97.7% 96.8%

0.50

Gaussian Aug. Neyman-Pearson 97.8% 96.9% 94.6% 88.4% 78.7% 52.6%
[77] DSRS 97.8% 97.0% 95.0% 89.8% 83.4% 59.1%

Consistency Neyman-Pearson 98.4% 97.3% 96.0% 92.3% 83.8% 67.5%
[165] DSRS 98.4% 97.3% 96.0% 93.5% 87.1% 71.8%

SmoothMix Neyman-Pearson 98.2% 97.1% 95.4% 91.9% 85.1% 73.0%
[166] DSRS 98.1% 97.1% 95.9% 93.4% 87.5% 76.6%

1.00

Gaussian Aug. Neyman-Pearson 95.2% 91.9% 87.7% 80.6% 71.2% 57.6% 41.0% 25.5% 13.6% 6.2% 2.1% 0.9%
[77] DSRS 95.1% 91.8% 88.2% 81.5% 73.6% 61.6% 48.4% 34.1% 21.0% 10.6% 4.4% 1.2%

Consistency Neyman-Pearson 93.9% 90.9% 86.4% 80.8% 73.0% 61.1% 49.1% 35.6% 21.7% 10.4% 4.1% 1.9%
[165] DSRS 93.9% 91.1% 86.9% 81.7% 75.2% 65.6% 55.8% 41.9% 31.4% 17.8% 8.6% 2.8%

SmoothMix Neyman-Pearson 92.0% 88.9% 84.4% 78.6% 69.8% 60.7% 49.9% 40.2% 31.5% 22.2% 12.2% 4.9%
[166] DSRS 92.2% 89.0% 84.8% 79.7% 72.0% 63.9% 54.4% 46.2% 37.6% 29.2% 18.5% 7.2%

Due to the page limit, in the main text (Section 2.6, Table 2.2), we aggregate the certified
robust accuracy across models with different smoothing variance σ P t0.25, 0.50, 1.00u. To
show the full landscape, we present the certified robust accuracy for each model trained with
each variance. The evaluation protocol is the same as the one in the main text, and the
tables for MNIST, CIFAR-10, and ImageNet models are Table B.5, Table B.6, and Table B.7
respectively. We observe that DSRS outperforms standard Neyman-Pearson certification for
a wide range of radii.
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Table B.6: CIFAR-10: Certified robust accuracy for models smoothed with different variance σ
certified with different certification approaches.

Variance Training Certification Certified Accuracy under Radius r
Method Approach 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

0.25

Gaussian Aug. Neyman-Pearson 56.1% 35.7% 13.4%
[77] DSRS 57.4% 39.4% 17.3%

Consistency Neyman-Pearson 61.8% 50.9% 34.7%
[165] DSRS 62.5% 52.5% 37.8%

SmoothMix Neyman-Pearson 63.9% 53.3% 38.4%
[166] DSRS 64.7% 55.5% 41.1%

0.50

Gaussian Aug. Neyman-Pearson 53.7% 41.3% 27.7% 17.1% 9.1% 2.8%
[77] DSRS 54.1% 42.7% 30.6% 20.3% 12.6% 4.0%

Consistency Neyman-Pearson 49.2% 43.9% 38.0% 32.3% 23.8% 18.1%
[165] DSRS 49.6% 44.1% 38.7% 35.2% 28.1% 19.7%

SmoothMix Neyman-Pearson 53.2% 47.6% 40.2% 34.2% 26.7% 19.6%
[166] DSRS 53.3% 48.5% 42.1% 35.9% 29.4% 21.7%

1.00

Gaussian Aug. Neyman-Pearson 40.2% 32.6% 24.7% 18.9% 14.9% 10.2% 7.5% 4.1% 2.0% 0.7% 0.1% 0.1%
[77] DSRS 40.3% 33.1% 25.9% 20.6% 16.1% 12.5% 8.4% 6.4% 3.5% 1.8% 0.7% 0.1%

Consistency Neyman-Pearson 37.2% 32.6% 29.6% 25.9% 22.5% 19.0% 16.4% 13.8% 11.2% 9.0% 7.1% 5.1%
[165] DSRS 37.1% 32.5% 29.8% 27.1% 23.5% 20.9% 17.6% 15.3% 13.1% 10.9% 8.9% 6.5%

SmoothMix Neyman-Pearson 43.2% 39.5% 33.9% 29.1% 24.0% 20.4% 17.0% 13.9% 10.3% 7.8% 4.9% 2.3%
[166] DSRS 43.2% 39.7% 34.9% 30.0% 25.8% 22.1% 18.7% 16.1% 13.2% 10.2% 7.1% 3.9%

Table B.7: ImageNet: Certified robust accuracy for models smoothed with different variance σ
certified with different certification approaches.

Variance Training Certification Certified Accuracy under Radius r
Method Approach 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

0.25

Gaussian Aug. Neyman-Pearson 57.1% 41.6% 17.4%
[77] DSRS 58.4% 47.9% 24.4%

Consistency Neyman-Pearson 59.8% 49.8% 36.9%
[165] DSRS 60.4% 52.4% 40.4%

SmoothMix Neyman-Pearson 46.7% 38.2% 28.2%
[166] DSRS 47.4% 40.0% 29.8%

0.50

Gaussian Aug. Neyman-Pearson 53.3% 47.0% 39.3% 33.2% 24.5% 17.0%
[77] DSRS 54.1% 48.4% 41.4% 35.3% 28.8% 19.1%

Consistency Neyman-Pearson 53.6% 48.3% 43.3% 36.8% 31.4% 24.5%
[165] DSRS 53.7% 49.9% 44.7% 39.3% 34.8% 27.4%

SmoothMix Neyman-Pearson 38.7% 33.5% 28.8% 24.6% 18.1% 13.5%
[166] DSRS 39.1% 34.9% 30.3% 26.8% 21.6% 15.6%

1.00

Gaussian Aug. Neyman-Pearson 42.5% 37.2% 33.0% 29.2% 24.8% 21.4% 17.6% 13.7% 10.2% 7.8% 5.7% 3.6%
[77] DSRS 42.5% 38.1% 34.4% 30.2% 27.0% 23.3% 21.3% 18.7% 14.2% 11.0% 9.0% 5.7%

Consistency Neyman-Pearson 40.0% 38.3% 34.2% 31.8% 28.7% 25.6% 22.1% 19.1% 16.1% 14.0% 10.6% 8.5%
[165] DSRS 40.2% 38.5% 35.4% 32.6% 30.7% 28.1% 25.4% 22.6% 19.6% 17.4% 14.1% 10.4%

SmoothMix Neyman-Pearson 29.8% 25.6% 21.8% 19.2% 17.0% 14.2% 11.8% 10.1% 8.9% 7.2% 6.0% 4.6%
[166] DSRS 29.7% 26.2% 23.0% 20.6% 18.0% 15.7% 14.0% 12.1% 9.9% 8.4% 7.2% 5.3%
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Figure B.2: Certified robust accuracy - radius curve corresponding to Table 2.2.

Curves

Following the convention [77, 317], we plot the certified robust accuracy - radius curve in
Figure B.2.

The curves correspond to the certified robust accuracy data in Table 2.2 (in Section 2.6),
i.e., the certified robust accuracy under each radius r is the maximum certified robust accu-
racy among models trained with variance σ P t0.25, 0.50, 1.00u. We observe that among all
medium to large radii (including those not shown in Table 2.2), DSRS provides higher certi-
fied robust accuracy than Neyman-Pearson certification. The margin of DSRS is relatively
small on CIFAR-10 but is apparent on MNIST and ImageNet. Especially, the margins on
ImageNet reflect that DSRS is particularly effective on large datasets.
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Table B.8: Average certified radius (ACR) statistics. The smoothing variance hyperparam-
eter σ “ 1.00. The evaluation protocol is the same as that in the main text.

Training Method Certification MNIST CIFAR-10 ImageNet

Gaussian
Augmentation

Neyman-Pearson 1.550 0.447 0.677
DSRS 1.629 0.469 0.750

Relative Improvement +5.10% +4.92% +10.78%

Consistency
Neyman-Pearson 1.645 0.636 0.796

DSRS 1.730 0.659 0.862
Relative Improvement +5.17% +3.62% +8.29%

SmoothMix
Neyman-Pearson 1.716 0.676 0.490

DSRS 1.806 0.712 0.525
Relative Improvement +5.24% +5.33% +7.14%

ACR Results

In the literature, another common metric of certified robustness is ACR (average certified
radius) [165, 166, 437]. In Table B.8, we report the ACR comparison between Neyman-
Pearson-based certification and our DSRS certification. Across the three smoothing variance
choices σ P t0.25, 0.50, 1.00u, we find σ “ 1.00 yields the highest ACR, so we only report the
ACR for models smoothed with σ “ 1.00. As we can see, in all cases, DSRS significantly
improves over Neyman-Pearson-based certification in terms of ACR.

B.5.4 Using Distribution with Different Variance as Q

We take the models trained with Gaussian augmentation [77] and variance σ “ 1.00 as
examples. We use “DSRS-trunc” to represent DSRS using truncated generalized Gaussian
as Q, and “DSRS-var” to represent DSRS using generalized Gaussian with different variance
as Q, and compare their robustness certification (i.e., certified robust accuracy) in Table B.9.
From the table, we find that on MNIST and CIFAR-10, DSRS-var is better than DSRS-trunc,
whereas on ImageNet, DSRS-trunc is slightly better than DSRS-var. Both DSRS-trunc and
DSRS-var are significantly better than Neyman-Pearson-based certification.

To investigate the reason, we follow the protocols for studying the concentration property
in Appendix B.5.1 to plot the landscape of models on MNIST, CIFAR-10, and ImageNet,
as shown in Figure B.3. From the figure, we find that the curves on ImageNet are generally
steeper, which corresponds to that the concentration property is better satisfied on ImageNet.
Therefore, we conjecture that when the concentration property (see Definition 2.3) is better
satisfied, DSRS with truncated Gaussian asQ is better than Gaussian with different variance
as Q.
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Figure B.3: Probability of true-prediction w.r.t. ℓ2 length of perturbations for base classi-
fiers from Gaussian augmentation training studied in Appendix B.5.4. Figures are plotted
following the same protocol as in Appendix B.5.1.

Table B.9: Comparison of DSRS certified robust accuracy with different types of additional
smoothing distribution Q and Neyman-Pearson-based certification. Detail experiment set-
tings are in Appendix B.5.4.

Dataset Certification Certified Accuracy under Radius r
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

MNIST
Neyman-Pearson 95.2% 91.9% 87.7% 80.6% 71.2% 57.6% 41.0% 25.5% 13.6% 6.2% 2.1% 0.9%

DSRS-trunc 95.1% 91.8% 87.9% 81.3% 72.9% 60.2% 46.1% 30.9% 17.4% 9.4% 3.6% 1.2%
DSRS-var 95.1% 91.8% 88.2% 81.5% 73.6% 61.6% 48.4% 34.1% 21.0% 10.6% 4.4% 1.2%

CIFAR-10
Neyman-Pearson 40.2% 32.6% 24.7% 18.9% 14.9% 10.2% 7.5% 4.1% 2.0% 0.7% 0.1% 0.1%

DSRS-trunc 40.3% 32.9% 25.5% 20.1% 15.7% 11.5% 8.0% 5.5% 2.7% 1.5% 0.6% 0.1%
DSRS-var 40.3% 33.1% 25.9% 20.6% 16.1% 12.5% 8.4% 6.4% 3.5% 1.8% 0.7% 0.1%

ImageNet
Neyman-Pearson 42.5% 37.2% 33.0% 29.2% 24.8% 21.4% 17.6% 13.7% 10.2% 7.8% 5.7% 3.6%

DSRS-trunc 42.5% 38.1% 34.4% 30.2% 27.0% 23.3% 21.3% 18.7% 14.2% 11.0% 9.0% 5.7%
DSRS-var 42.9% 38.5% 35.0% 31.0% 26.5% 23.2% 21.0% 18.3% 14.6% 10.5% 8.2% 5.3%

B.5.5 Comparison with Higher-Order Randomized Smoothing

It is difficult to have a direct comparison with higher-order randomized smoothing [215,
267], which is the only work to the best of our knowledge that uses additional information
beyond PA to tighten the robustness certification in randomized smoothing. This difficulty
comes from the following reasons: (1) Higher-order randomized smoothing only supports
standard Gaussian smoothing, while DSRS is particularly useful with generalized Gaussian
smoothing. (2) All experiment evaluations in higher-order randomized smoothing are con-
ducted with large sampling numbers (N “ 2 ˆ 105 on CIFAR-10 and N “ 1.25 ˆ 106 on
ImageNet) that makes the evaluation costly, while DSRS is designed for practical sampling
numbers (N “ 105). (3) The code is not open-source yet [267]. Nonetheless, we can directly
compare with the curves provided by Mohapatra et al. [267].

We digest the certified robust accuracy vs. ℓ2 radius r curves from [267] in Figure B.4.
As we can see, compared with Neyman-Pearson-based certification, the improvements from
higher-order randomized smoothing are small especially on the large ImageNet dataset de-
spite the excessive sampling numbers (1.25 ˆ 106). In contrast, as shown in Figure B.2,
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a [267, Figure 2(b)]: Higher-
order randomized smoothing
on CIFAR-10.

b [267, Figure 4]: Higher-order randomized smoothing on Ima-
geNet for models trained with different smoothing variances.

Figure B.4: Higher-order randomized smoothing certification (solid curves) compared with
standard Neyman-Pearson-based certification (dotted curves).

within only 105 sampling number, DSRS is visibly tighter than Neyman-Pearson-based cer-
tification. In fact, to the best of our knowledge, DSRS is the first model-agnostic approach
that is visibly tighter than Neyman-Pearson-based certification under ℓ2 radius.

B.6 DISCUSSIONS ON GENERALIZING DSRS FRAMEWORK

In this appendix, we first introduce prior work that leverages additional information for
certification in randomized smoothing, then generalize our DSRS as a more general frame-
work to theoretically compare with the related work and highlight future directions.

B.6.1 Existing Work on Leveraging Additional Information for Certification

We discuss all known work that leverages more information to achieve tighter robustness
certification for randomized smoothing prior to this paper to the best of our knowledge.

Additional Black-Box Information. Our DSRS leverages additional information to
tighten the certification for randomized smoothing. We leverage the information from an
additional smoothing distribution. This information can be obtained from the base classifier
that we only have query access on the predicted label. We call the information from this
limited query access “black-box” information. The certification approaches that only require
black-box information can be applied to any classification model regardless of the model
structure. Thus, they are usually more general and more scalable. The classical Neyman-
Pearson certification only requires black-box information.

Besides our DSRS, the only other form of additional black-box information that is leveraged
is the higher-order information [215, 267]. Formally, our additional black-box information
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has the form
Pr
ϵ„Q
rF0px` ϵq “ ys. (B.220)

In contrast, the higher-order information, especially second-order information used by Levine
et al. [215], Mohapatra et al. [267] has the form

}∇fP
0 px0qy0}p “ }∇ Pr

ϵ„P
rF0px0 ` ϵq “ y0s}p (B.221)

that is also shown to be estimable given the black-box query access. However, the higher-
order information has several limitations: (1) It is hard to leverage the information beyond
the second order. Therefore, only second-order information is used in existing certification
approaches yet. However, to achieve optimal tightness, one needs to leverage infinite orders
of information, which brings an infinite number of constraints and is thus intractable. In
contrast, we show that extra information from only one additional distribution suffices to
derive a strongly tight certification. (2) In practice, the second-order information shows
marginal improvements in the widely used ℓ2 and ℓ8 certification settings on real-world
datasets [215, 267] and even such improvements require a large number of samples (usually
in million order instead of ours 105).

Dvijotham et al. [106] also propose to use additional information to tighten the ro-
bustness certification for randomized smoothing (“full-information” setting). They formal-
ize the tightest possible certification and compare it with Neyman-Pearson-based certifia-
tion (“information-limited” setting), but in practice, they do not try to leverage information
from distributions other than P .

Constraining Model Structure. If we discard the “black-box information” constraint,
we can obtain tighter robustness certification than classical Neyman-Pearson. For example,
knowing the model structure can benefit the certification. Lee et al. [205] show that when
the base classifier is a decision tree, we can use dynamic programming to derive a strongly
tight certification against ℓ0-bounded perturbations. Awasthi et al. [16] show that, if the base
classifier first performs a known low-rank projection, then works on the low-rank projected
space, for the corresponding smoothed classifier, we can have a tighter certification on both
ℓ2 and ℓ8 settings. However, it is challenging to find a projection such that the model
preserves satisfactory performance while the projection rank is low. Indeed, the approach is
evaluated on DCT basis to show the improvement on ℓ8 certification, and there exists a gap
between the actual achieved certified robustness and the state of the art. We do not compare
with these approaches since they impose additional assumptions on the base classifiers so
their applicable scenarios are limited, and currently, the state-of-the-art base classifier does
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not satisfy their imposed constraints under ℓ2 and ℓ8 certification settings. Recently, for
ℓ1 certification, a deterministic and improved smoothing approach (a type of non-additive
smoothing mechanism) is proposed to handle the case where input images are constrained
in space t0, 1{255, ¨ ¨ ¨ , 244{255, 1ud [214]. This could be viewed as constraining the attack
space from another aspect and implies that certified robustness can be improved by better
smoothing mechanisms, which is orthogonal to our work that focuses on certification for
existing smoothing mechanisms.

Confidence Smoothing. A group of certification approaches assumes that the base clas-
sifier outputs normalized confidence on the given input, and the smoothed classifier predicts
the class with the highest expectation of normalized confidence under noised input. This
assumption can be viewed as a special type of “Constraining Model Structure”. Under this
assumption, we can query and approximate the quantile of the confidence under noised in-
put: F0px0 ` ϵq where ϵ „ P . With this information, we can leverage the Neyman-Pearson
lemma in a more delicate way to provide a tighter (higher) lower bound of the expected
confidence under perturbation, i.e., Eϵ„P F0px` δ ` ϵq.

These certification approaches provide tighter certification than the classical Neyman-
Pearson for the smoothed classifier that predicts the class with the highest expected nor-
malized confidence. They are also useful for regression tasks such as object detection in
computer vision as shown in [70]. However, for the classification task, for utilizable base
classifiers (i.e., benign accuracy ą 50% under noise), if we simply set the predicted class
to have 100% confidence, we only increase the certified radius of the classifier and the cer-
tification for this “one-hot” base classifier only requires classical Neyman-Pearson. Thus,
these certification approaches, e.g., [194], may not achieve higher certified robustness on the
classification task than Neyman-Pearson and therefore we do not compare with them.

B.6.2 General Framework

Focusing on the certification with additional black-box information, we generalize the
DSRS to allow more general additional information.

Definition B.2 (General Additional Black-Box Information). For given base classifier F0,
suppose the true label at x0 is y0, for certifying robustness at x0, the general additional
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black-box information has the form
$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ż

Rd

f1pxqI
“

F0pxq “ y0
‰

dx “ c1,

¨ ¨ ¨
ż

Rd

fipxqI
“

F0pxq “ y0
‰

dx “ ci,

¨ ¨ ¨
ż

Rd

fNpxqI
“

F0pxq “ y0
‰

dx “ cN ,

(B.222)

where fi and ci are pre-determined; fi is integrable in Rd and ci P R for 1 ď i ď N .

Remark B.4. Obtaining the information in Equation (B.222) requires only the black-box
access to whether F0pxq equals to y0. We define the general additional black-box information
in this way because: (1) The information from finite points is useless since the smoothed
classifier has zero probability mass on finite points, so the useful information is based on
integration; (2) To provide a lower bound of rFP

0 px0 ` δqy0 , we only need to care whether
F0pxq equals to y0 in region of interest.

Examples. (1) Our DSRS, the additional information Eϵ„Qrfpϵqs “ QA instantiates Defi-
nition B.2 by setting N “ 1, f1p¨q “ qp¨´x0q and c1 “ QA. (2) In [215, 267], the second-order
information ∇fP

0 px0q instantiates Definition B.2 by setting N “ d, fipxq “ ´∇ppx ´ x0qi,
and ci “

`

∇fP
0 px0q

˘

i
according to Theorem 1 in [267]. We remark that due to the sam-

pling difficulty, instead of using the whole vector ∇fP
0 px0q as the information, second-order

smoothing [215, 267] uses its p-norm in practice. However, using the full information only
gives tighter certification so we consider this a more ideal variant.

Then, we can extend the constrained optimization problem pCq in Section 2.5.1 to pCext
q

to accommodate the general information as such

minimize
f

E
ϵ„P
rfpδ ` ϵqs (B.223)

s.t. E
ϵ„P
rfpϵqs “ PA, (B.224)

ż

Rd

f1pϵqfpϵq dϵ “ c1, ¨ ¨ ¨ ,

ż

Rd

fNpϵqfpϵq dϵ “ cN , (B.225)

0 ď fpϵq ď 1 @ϵ „ Rd. (B.226)
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Similarly, by the strong duality (Theorem 2.3), to solve the certification problem

@δ s.t. }δ}p ď r, Cext
δ pPA, c1, . . . , cNq ą 0.5, (B.227)

we only need to solve the dual problem pDextq:

maximize
η,λ1,...,λNPR

Pr
ϵ„P

»

–ppϵq ă ηppϵ` δq `
N
ÿ

i“1

λifipϵ` δq

fi

fl (B.228)

s.t. Pr
ϵ„P

»

–ppϵ´ δq ă ηppϵq `
N
ÿ

i“1

λifipϵq

fi

fl “ PA, (B.229)

ż

Rd

I

»

–ppϵ´ δq ă ηppϵq `
N
ÿ

i“1

λifipϵq

fi

fl f1pϵq dϵ “ c1, (B.230)

¨ ¨ ¨

ż

Rd

I

»

–ppϵ´ δq ă ηppϵq `
N
ÿ

i“1

λifipϵq

fi

fl fNpϵq dϵ “ cN . (B.231)

We remark that this generalization shares a similar spirit as one type of generalization
of Neyman-Pearson Lemma [69, 267]. Following the same motivation, Dvijotham et al.
[106] try to generalize the certification by adding more constraints in their “full-information
setting”. However, it is unclear whether their constraints in f -divergences form have the
same expressive power as ours in practice (i.e., the practicality of theoretically tight Hockey-
Stick divergence). A study of these different types of generalization would be our future
work.

More importantly, we believe that the pipeline of DSRS can be adapted to solve this
generalized dual problem. We hope that this generalization and the corresponding DSRS
could enable the exploration and exploitation of more types of additional information for
tightening the robustness certification of randomized smoothing.

Implications. The generalized DSRS framework allows us to explicitly compare differ-
ent types of additional information. For example, comparing our additional distribution
information and higher-order information, we find that (1) for additional distribution in-
formation, from Theorem 2.1 and Corollary B.1, the strong tightness can be acheived for
N “ C ´ 1 where C is the number of classes; (2) for higher-order information, from [267,
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Asymptotic-Optimality Remark], the strong tightness can be achieved when all orders of in-
formation are used, i.e., N Ñ 8. This comparison suggests that our additional information
from another smoothing distribution should be more efficient.

Another implication is that, from Corollary B.1, under multiclass setting, with proper
choices of the pC ´ 1q additional smoothing distributions, if we base DSRS on solving dual
problem pDextq, the DSRS can achieve strong tightness in multiclass setting.

B.6.3 Limitations and Future Directions

Despite the promising theoretical and empirical results of DSRS, DSRS still has some
limitations that open an avenue for future work. We list the following future directions:
(1) tighter certification from a more ideal additional smoothing distribution Q: there may
exist better smoothing distribution Q or better methods to optimize hyperparameters in Q
than what we have considered in this work in terms of certifying larger certified radius in
practice; (2) better training approach for DSRS: there may be a large space for exploring
training approaches that favor DSRS certification since all existing training methods are de-
signed for Neyman-Pearson-based certification. We believe that advances in this aspect can
boost the robustness certification with DSRS to achieve state-of-the-art certified robustness.
(3) better additional information: more generally, besides the prediction probability from an
additional smoothing distribution, there may exist other useful additional information for
certification in randomized smoothing. We hope our generalization of the DSRS framework
can inspire future work in tighter and more efficient certification for randomized smoothing.
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APPENDIX C: APPENDIX FOR CHAPTER 3

C.1 DERIVING DUAL PROBLEM WITH CUTTING PLANES

In this section we derive the dual formulation for neural network certification problem
with general cutting planes (or arbitrarily added linear constraints across any layers). Our
derivation is based on the linearly relaxed MIP formulation with original binary variables
z intact, to allow us to add cuts also to the integer variable (the mostly commonly used
triangle relaxation does not have z). We first write the full LP relaxation with arbitrary
cutting planes, as well as their corresponding dual variables:

f˚
LP-cut “ min

x,x̂,z
fpxq (C.1)

s.t. fpxq “ xpLq; x0 ´ ϵ ď x ď x0 ` ϵ; (C.2)
xpiq “Wpiqx̂pi´1q ` bpiq; i P rLs, ñ νpiq P Rdi (C.3)
x̂

piq
j ě 0; j P Ipiq ñ µ

piq
j P R (C.4)

x̂
piq
j ě x

piq
j ; j P Ipiq ñ τ

piq
j P R (C.5)

x̂
piq
j ď u

piq
j z

piq
j ; j P Ipiq ñ γ

piq
j P R (C.6)

x̂
piq
j ď x

piq
j ´ l

piq
j p1´ z

piq
j q; j P Ipiq ñ π

piq
j P R (C.7)

x̂
piq
j “ x

piq
j ; j P I`piq (C.8)

x̂
piq
j “ 0; j P I´piq (C.9)
0 ď z

piq
j ď 1; j P Ipiq, i P rLs (C.10)

L´1
ÿ

i“1

´

Hpiqxpiq `Gpiqx̂piq `Qpiqzpiq
¯

ď d. ñ β P RN (C.11)

The Lagrangian function can be constructed as:

f˚
LP-cut “ min

x,x̂,z
max

ν,µ,τ ,γ,π,β
xpLq `

L
ÿ

i“1

νpiqJ
´

xpiq ´ Wpiqx̂pi´1q ` bpiq
¯

`

L´1
ÿ

i“1

ÿ

jPIpiq

”

µ
piq
j p´x̂

piq
j q ` τ

piq
j px

piq
j ´ x̂

piq
j q ` γ

piq
j px̂

piq
j ´ u

piq
j z

piq
j q ` π

piq
j px̂

piq
j ´ x

piq
j ` l

piq
j ´ l

piq
j z

piq
j q

ı

` βJ

»

–

L´1
ÿ

i“1

´

Hpiqxpiq ` Gpiqx̂piq ` Qpiqzpiq
¯

´ d

fi

fl

(C.12)
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s.t. x̂piq
j “ 0, j P I´piq; x̂

piq
j “ x

piq
j , j P I`piq; x0 ´ ϵ ď x ď x0 ` ϵ; 0 ď z

piq
j ď 1, j P Ipiq

µ ě 0; τ ě 0; γ ě 0; π ě 0; β ě 0.
(C.13)

Here µ, τ ,γ,π are shorthands for all dual variables in each layer and each neuron. Note
that for some constraints, their dual variables are not created because they are trivial to
handle. Rearrange the equation and swap the min and max (strong duality) gives us:

f˚
LP-cut “ max

ν,µ,τ ,γ,π,β
min
x,x̂,z

pνpLq ` 1qxpLq ´ νp1qJWp1qx̂p0q

`

L´1
ÿ

i“1

ÿ

jPI`piq

´

ν
piq
j ` βJH

piq
:,j ´ νpi`1qJW

pi`1q
:,j ` βJG

piq
:,j

¯

x
piq
j

`

L´1
ÿ

i“1

ÿ

jPI´piq

´

ν
piq
j ` βJH

piq
:,j

¯

x
piq
j

`

L´1
ÿ

i“1

ÿ

jPIpiq

” ´

ν
piq
j ` βJH

piq
:,j ` τ

piq
j ´ π

piq
j

¯

x
piq
j

`

´

´νpiqJW
piq
:,j ´ µ

piq
j ´ τ

piq
j ` γ

piq
j ` π

piq
j ` βJG

piq
:,j

¯

x̂
piq
j

`

´

´u
piq
j γ

piq
j ´ l

piq
j π

piq
j ` βJQ

piq
:,j

¯

z
piq
j

ı

´

L
ÿ

i“1

νpiqJbpiq `

L´1
ÿ

i“1

ÿ

jPIpiq

π
piq
j l

piq
j ´ βJd

(C.14)

s.t. x0 ´ ϵ ď x ď x0 ` ϵ; 0 ď z
piq
j ď 1, j P Ipiq

µ ě 0; τ ě 0; γ ě 0; π ě 0; β ě 0.
(C.15)

Here W
pi`1q
:,j denotes the j-th column of Wpi`1q. Note that for the term involving j P I`piq

we have replaced x̂piq with xpiq to obtain the above equation. For the the term x
piq
j , j P I`piq

it is always 0 so does not appear.
Solving the inner minimization gives us the dual formulation:

f˚
LP-cut “ max

ν,µ,τ ,γ,π,β
´ ϵ}νp1qJWp1qx0}1 ´

L
ÿ

i“1

νpiqJbpiq ´ βJd

`

L´1
ÿ

i“1

ÿ

jPIpiq

”

π
piq
j l

piq
j ´ ReLUpu

piq
j γ

piq
j ` l

piq
j π

piq
j ´ βJQ

piq
:,j q

ı

(C.16)

s.t. νpLq “ ´1 (C.17)
ν

piq
j “ νpi`1qJW

pi`1q
:,j ´ βJpH

piq
:,j `G

piq
:,j q, for j P I`piq, i P rL´ 1s

(C.18)
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ν
piq
j “ ´βJH

piq
:,j , for j P I´piq, i P rL´ 1s (C.19)

ν
piq
j “ π

piq
j ´ τ

piq
j ´ βJH

piq
:,j for j P Ipiq, i P rL´ 1s (C.20)

´

π
piq
j ` γ

piq
j

¯

´

´

µ
piq
j ` τ

piq
j

¯

“ νpi`1qJW
pi`1q
:,j ´ βJG

piq
:,j , for j P Ipiq, i P rL´ 1s (C.21)

s.t. µ ě 0; τ ě 0; γ ě 0; π ě 0; β ě 0. (C.22)

The } ¨ }1 comes from minimizing over x0 with the constraint x0 ´ ϵ ď x ď x0 ` ϵ, and
the ReLUp¨q term comes from minimizing over zpiq

j with the constraint 0 ď z
piq
j ď 1.

Before we give the bound propagation procedure, we first give a technical lemma:

Lemma C.1. Given u ě 0, l ď 0, π ě 0, γ ě 0, and π ` γ “ C, and define the function:

gpπ, γq “ ´ReLUpuγ ` lπ ` qq ` lπ. (C.23)

Then

max
πě0,γě0

gpπ, γq “

$

’

’

’

&

’

’

’

%

lπ˚, if ´uC ď q ď ´lC

0, if q ă ´uC

´q, if q ą ´lC

(C.24)

where the optimal values for π and γ are:

π˚ “ max

˜

min

ˆ

uC ` q

u´ l
, C

˙

, 0

¸

, γ˚ “ max

˜

min

ˆ

´lC ´ q

u´ l
, C

˙

, 0

¸

. (C.25)

Proof. Case 1: when uγ ` lπ ` q ě 0, the objective becomes:

max
πě0,γě0

gpπ, γq “ ´uγ ´ q (C.26)

s.t. π ` γ “ C; uγ ` lπ ` q ě 0. (C.27)

Since q is a constant and the object only involves a non-negative variable γ with non-positive
coefficient ´u, γ needs to be as smaller as possible as long as the constraint is satisfied.
Substitute π “ C ´ γ into the constraint uγ ` lπ ` q ě 0,

uγ ` lpC ´ γq ` q ě 0ñ γ ě
´lC ´ q

u´ l
(C.28)
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Considering γ is within r0, Cs, the optimal γ and π are:

γ˚ “ max

˜

min

ˆ

´lC ´ q

u´ l
, C

˙

¸

, π˚ “ max

˜

min

ˆ

uC ` q

u´ l
, C

˙

¸

(C.29)

Case 2: when uγ ` lπ ` q ď 0, the objective becomes:

max
πě0,γě0

gpπ, γq “ lπ (C.30)

s.t. π ` γ “ C (C.31)
uγ ` lπ ` q ď 0 (C.32)

Since q is a constant and the object only involves a non-negative variable π with non-positive
coefficient l, π needs to be as smaller as possible as long as the constraint is satisfied.
Substitute γ “ C ´ π into the constraint uγ ` lπ ` q ď 0,

upC ´ πq ` lπ ` q ď 0ñ π ě
uC ` q

u´ l
. (C.33)

The optimal π˚ and γ˚ are the same as in case 1. The optimal objective can be obtained by
substitute π˚ and γ˚ into gpπ, γq. The objective depends on q because when q is too large
pq ě ´lCq or too small pq ď ´uCq, π˚ and γ˚ are fixed at either 0 or C. QED.

With this lemma, we are now ready to prove Theorem 3.1, the bound propagation rule
with general cutting planes (GCP-CROWN):

Theorem 3.1 (Bound propagation with general cutting planes). Given the following bound
propagation rule on ν with optimizable parameter 0 ď α

piq
j ď 1 and β ě 0:

νpLq “ ´1 (C.34)

ν
piq
j “ νpi`1qJW

pi`1q
:,j ´ βJpH

piq
:,j ` G

piq
:,j q, j P I`piq, i P rL ´ 1s

(C.35)

ν
piq
j “ ´βJH

piq
:,j , j P I´piq, i P rL ´ 1s

(C.36)

ν̂
piq
j :“ νpi`1qJW

pi`1q
:,j ´ βJG

piq
:,j j P Ipiq, i P rL ´ 1s

(C.37)

ν
piq
j :“ max

¨

˚

˝

min

¨

˝

u
piq
j rν̂

piq
j s` ` βJQ

piq
:,j

u
piq
j ´ l

piq
j

, rν̂
piq
j s`

˛

‚, 0

˛

‹

‚

´ α
piq
j rν̂

piq
j s´ ´ βJH

piq
:,j j P Ipiq, i P rL ´ 1s

(C.38)
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Then f˚
LP-cut is lower bounded by the following objective with any valid 0 ď α ď 1 and

β ě 0:

gpα,βq “ ´ϵ}νp1qJWp1qx0}1 ´

L
ÿ

i“1

νpiqJbpiq ´ βJd`
L´1
ÿ

i“1

ÿ

jPIpiq

h
piq
j pβq (C.39)

where hpiq
j pβq is defined as:

h
piq
j pβq “

$

’

’

’

’

&

’

’

’

’

%

u
piq
j l

piq
j rν̂

piq
j s``l

piq
j βJQ

piq
:,j

u
piq
j ´l

piq
j

if l
piq
j rν̂

piq
j s` ď βJQ

piq
:,j ď u

piq
j rν̂

piq
j s`;

0 if βJQ
piq
:,j ě u

piq
j rν̂

piq
j s`;

βJQ
piq
:,j if βJQ

piq
:,j ď l

piq
j rν̂

piq
j s`.

(C.40)

Proof. Given (C.21), for j P Ipiq, observing that the upper and lower bounds of ReLU
relaxations for a single neuron cannot be tight simultaneously [406], πpiq

j ` γ
piq
j and µpiq

j ` τ
piq
j

cannot be both non-zero19. Thus, we have

π
piq
j ` γ

piq
j “

”

νpi`1qJW
pi`1q
:,j ´ βJG

piq
:,j

ı

`
:“

”

ν̂
piq
j

ı

`
, (C.41)

µ
piq
j ` τ

piq
j “

”

νpi`1qJW
pi`1q
:,j ´ βJG

piq
:,j

ı

´
:“

”

ν̂
piq
j

ı

´
. (C.42)

To avoid clutter, we define ν̂piq
j :“ νpi`1qJW

pi`1q
:,j ´ βJG

piq
:,j .

To derived the proposed bound propagation rule, in (C.16), we must eliminate variable
γ

piq
j and πpiq

j . Ignoring terms related to ν, we observe that we can optimize the term π
piq
j l

piq
j ´

ReLUpu
piq
j γ

piq
j ` l

piq
j π

piq
j ´βJQ

piq
:,j q for each j for Ipiq individually. We seek the optimal solution

for the follow optimization problem on function h:

max
π

piq
j ě0,γ

piq
j ě0

h
piq
j pπ

piq
j , γ

piq
j ;βq : “ π

piq
j l

piq
j ´ ReLUpu

piq
j γ

piq
j ` l

piq
j π

piq
j ´ βJQ

piq
:,j q (C.43)

s.t. πpiq
j ` γ

piq
j “

”

ν̂
piq
j

ı

`
; π

piq
j ě 0; γ

piq
j ě 0. (C.44)

Note that we optimize over πpiq
j and γpiq

j here and treat β as a constant. Applying Lemma C.1
with π “ π

piq
j , γ “ γ

piq
j , u “ u

piq
j , l “ l

piq
j , q “ ´βJQ

piq
:,j , C “ rν̂

piq
j s` we obtain the optimal

19In theorey, it is possible that τ
piq
j ‰ 0, γpiq

j ‰ 0, πpiq
j “ µ

piq
j “ 0 or π

piq
j ‰ 0, µpiq

j ‰ 0, τ piq
j “ γ

piq
j “ 0.

This situation may happen when u
piq
j or lpiqj is exactly tight and the solution x

piq
j is at the intersection of one

lower and upper linear equatlities. Practically, this can be avoided by adding a small δ to u
piq
j or l

piq
j , and

in most scenarios u
piq
j are l

piq
j are loose bounds so this situation will not occur. The same argument is also

applicable to [406].
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objective for (C.43):
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%
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j π

piq
j if l
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(C.45)

π
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˛

‹

‚

. (C.46)

Substitute this solution of πpiq
j into (C.20), and also observe that due to (C.42), τ piq

j is a
variable between 0 and

”

ν̂
piq
j

ı

´
, so we can rewrite (C.20) as:

ν
piq
j :“ max

¨

˚

˝

min

¨

˝

u
piq
j rν̂

piq
j s` ` βJQ

piq
:,j

u
piq
j ´ l

piq
j

, rν̂
piq
j s`

˛

‚, 0

˛

‹

‚

´ α
piq
j rν̂

piq
j s´ ´ βJH

piq
:,j . (C.47)

Here 0 ď α
piq
j ď 1 is an optimizable parameter that can be updated via its gradient during

bound propagation, and any 0 ď α
piq
j ď 1 produces valid lower bounds. All above substitu-

tions replace each dual variable π, γ and µ to a valid setting in the dual formulation, so the
final objective gpα,βq is always a sound lower bound of f˚

LP-cut. This theorem establishes
the soundness of GCP-CROWN. QED.

Note that an optimal setting of α and β do not necessarily lead to the optimal primal
value f˚

LP-cut. The main reason is that (C.43) gives a closed-form solution for π and γ to
eliminate these variables without considering other dual variables like ν to simplify the bound
propagation process. To achieve theoretical optimality, π and γ can also be optimized.

C.2 DETAILS AND BACKGROUND OF GCP-CROWN WITH MIP CUTS

Branch-and-bound. Our work is based on branch-and-bound (BaB), a powerful frame-
work for neural network certification [49] which many state-of-the-art verifiers are based
on [115, 149, 286, 389]. Here we give a brief introduction for the concept of branch-and-
bound for readers who are not familiar with this field.

We illustrate the branch-and-bound process in Figure C.1. Neural network certification
seeks to minimize the objective (3.1): f˚ “ minx fpxq, @x P C, where fpxq is a ReLU
network under our setting. A positive f˚ indicates that the network can be verified. However,
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Figure C.1: Branch and Bound (BaB) for neural network certification. A unstable ReLU
neuron (e.g., x1 may receive either negative or positive inputs for some input x in perturba-
tion set C. On the other hand, a stable ReLU neuron is always positive or negative for all
x P C, so it is a linear operation and branching is not needed.

since ReLU neurons are non-linear, this optimization problem is non-convex, and it usually
requires us to relax ReLU neurons with linear constraints (e.g., the LP relaxation in (3.12))
to obtain a lower bound for objective f˚. This lower bound (´3.0 at the root node in
Figure C.1) might become negative, even if f˚ (the unknown ground-truth) is positive.
Branch-and-bound is a systematic method to tighten this lower bound. First, we split an
unstable ReLU neuron, such as x3, into two cases: x3 ě 0 and x3 ď 0 (the branching
step), producing two subproblems each with an additional constraint x3 ě 0 or x3 ď 0. In
each subproblem, neuron x3 does not need to be relaxed anymore, so the lower bound of
f˚ becomes tighter in each of the two subdomains in the subsequent bounding step (´3.0
becomes ´2.0 and 0.5) in Figure C.1. Any subproblem with a positive lower bound is
successfully verified and no further split is needed. Then, we repeat the branching and
bounding steps on subproblems that still have a negative lower bound. We terminate when
all unstable neurons are split or all subproblems are verified. In Figure 3, all leaf subproblems
have positive lower bounds so the network is verified. On the other hand, if we have split
all unstable neurons and there still exist domains with negative bounds, a counter-example
can be constructed.

The contribution of this work is to improve the bounding step using cutting planes. As one
can observe in Figure C.1, if we can make the bounds tighter, they approach to zero faster
and less branching is needed. Since the number of the subproblems may be exponential to
the number of unstable neurons in the worst case, it is crucial to improve the bounds quickly.
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Informally, cutting planes are additional valid constraints for the relaxed subproblems, and
adding these additional constraints as in (3.19) makes the lower bounds tighter. We refer the
readers to integer programming literature [36, 78] for more details on cutting plane methods.
Existing neural network verifiers mostly use bound propagation method [286, 343, 389, 425,
443] for the bounding step thanks to their efficiency and scalability, but none of them can
handle general cutting planes. Our GCP-CROWN is the first bound propagation method
that supports general cutting planes, and we demonstrated its effectiveness in Section 3.4
when combined with cutting planes generated by a MIP solver.

Soundness and Completeness. GCP-CROWN is sound because Theorem 3.1 guaran-
tees that we always obtain a sound lower bound of the certification problem as long as valid
cutting planes (generated by a MIP solver in our case) are added. Our method, when com-
bined with branch-and-bound, is also complete because we provide a strict improvement in
the bounding step over existing methods such as [389], and the arguments for completeness
in existing verifiers using branch-and-bound on splitting ReLU neurons such as [48, 389] are
still valid for this work.

C.3 ADDITIONAL EXPERIMENT DETAILS

C.3.1 Experimental Setup

Our experiments are conducted on a desktop with an AMD Ryzen 9 5950X CPU, one
NVIDIA RTX 3090 GPU (24GB GPU memory), and 64GB CPU memory. Our implemen-
tation is based on the open-source α,β-CROWN verifier20 with cutting plane related code
added. Both α-CROWN+MIP and GCP-CROWN with MIP cuts use all 16 CPU cores and
1 GPU. gurobi is used as the MIP solver in α-CROWN+MIP. Although gurobi usually out-
performs other MIP solvers for NN certification problems, it cannot export cutting planes,
so our cutting planes are acquired by the cplex [160] solver (version 22.1.0.0). We use the
Adam optimizer [183] to solve both α and β with 20 iterations. The learning rates are set as
0.1 and 0.02 (0.01 for oval20) for optimizing α and β respectively. We decay the learning
rates with a factor of 0.9 (0.8 for oval20) per iteration. Timeout for properties in oval20 are
set as 1 hour follow the original benchmark. Timeout for oval21 and cifar10-resnet are
set as 720s and 300s respectively, the same as in VNN-COMP 2021. Timeout for SDP-FO
models are set as 600s for α-CROWN+MIP and MN-BaB, and a shorter 200s timeout is

20https://github.com/Verified-Intelligence/alpha-beta-CROWN
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Table C.1: Model structures used in our experiments. The notation Conv(a, b, c) stands
for a conventional layer with a input channel, b output channels and a kernel size of c ˆ c.
Linear(a, b) stands for a fully connected layer with a input features and b output features.
ResBlock(a, b) stands for a residual block that has a input channels and b output channels.
We have ReLU activation functions between two consecutive linear or convolutional layers.

Model name Model structure Batch size
Base (CIFAR-10) Conv(3, 8, 4) - Conv(8, 16, 4) - Linear(1024, 100) - Linear(100, 10) 1024
Wide (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10) 1024
Deep (CIFAR-10) Conv(3, 8, 4) - Conv(8, 8, 3) - Conv(8, 8, 3) - Conv(8, 8, 4) - Linear(412, 100) - Linear(100, 10) 1024

cifar10-resnet2b Conv(3, 8, 3) - ResBlock(8, 16) - ResBlock(16, 16)) - Linear(1024, 100) - Linear(100, 10) 2048
cifar10-resnet4b Conv(3, 16, 3) - ResBlock(16, 32) - ResBlock(32, 32)) - Linear(512, 100) - Linear(100, 10) 2048

CNN-A-Adv (MNIST) Conv(1, 16, 4) - Conv(16, 32, 4) - Linear(1568, 100) - Linear(100, 10) 4096
CNN-A-Adv/-4 (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10) 4096
CNN-B-Adv/-4 (CIFAR-10) Conv(3, 32, 5) - Conv(32, 128, 4) - Linear(8192, 250) - Linear(250, 10) 1024
CNN-A-Mix/-4 (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10) 4096

used for GCP-CROWN with MIP cuts.
We summarize the model structures and batch size used in our experiments in Table C.1.

The CIFAR-10 Base, Wide and Deep models are used in oval20 and oval21 benchmarks.

C.3.2 A case study on cutting planes

The effectiveness of GCP-CROWN with MIP cuts motivates us to take a more careful look
at the cutting planes generated by off-the-shelf MIP solvers, and understand how well it can
contribute to tighten the lower bounds and strengthen certification performance. We use
the oval21 as a sample case study because GCP-CROWN with MIP cuts is very effective
on this benchmark.

The oval21 benchmark has 30 instances, each with 9 target labels (properties) to certify.
Among the total of 270 properties, we filter out the easy cases where fast incomplete verifiers
like α-CROWN can certify directly, and 39 hard properties remain which must be solved
using branch and bound and/or cutting planes. Cutting planes are generated on these hard
properties and they greatly help GCP-CROWN.

Number of Cuts Used to Certify Each Property. The maximal number of cuts
applied per property is 4,162 and the minimal number is 318. On average, we have 1,683
cuts applied to our GCP-CROWN to solve these hard properties.

Improvements on Lower Bounds. In branch-and-bound, we lower bound the objective
of Eq. 3.1 with ReLU split constraints [389]. A tighter lower bound can reduce the number
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of branches used and usually leads to stronger certification. We measure how well the
cuts generated by off-the-shelf solvers in improving the tightness of the lower bound for
certification. Without branching and cutting planes, the average α-CROWN lower bound is
-2.54. With generated cutting planes, we can improve the lower bound by 0.51 on average
and can directly certify 4 out of 39 hard properties without branching. The lower bound
without branching can be maximally improved by 1.54 and minimally improved by 0.04.

Structure of Generated Cuts. Finally, we investigate the variables involved in each
generated cutting plane. In total, the MIP solver generates 65,647 cutting planes in total
for the 39 hard properties. 65,301 of the cuts involve variables across multiple layers. It
indicates that single layer cutting planes (e.g., constraints involving pre- and post-activation
variables of a single ReLU layer only) commonly used in previous works [273, 342] are not
optimal in general. Additionally, all of 65,647 cuts have at least one ReLU integer variable
zpiq used, which was not supported in existing bound propagation methods. 65,197 of all cuts
involve at least one variable of input neurons. 23,600 of all cuts have at least one pre-ReLU
variables and 51,617 of them have at least one post-ReLU variables.
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APPENDIX D: APPENDIX FOR CHAPTER 4

D.1 DETAILED ANALYSIS AND PROOFS OF ENSEMBLE ROBUSTNESS

In this appendix, we first show the omitted theoretical results in Section 4.1, which are
the robustness conditions for Max-Margin Ensemble (MME) and the comparison between
the robustness of ensemble model and single model. We then present all proofs for these
theoretical results.

D.1.1 Detailed Theoretical Results and Discussion

Here we present the theoretical results omitted from Section 4.1 along with some discus-
sions.

Robustness Condition of MME

For MME, we have the following robustness condition.

Theorem D.1 (Gradient and Confidence Margin Condition for MME Robustness). Given
input x0 P Rd with ground-truth label y0 P rCs, and MMME as an MME defined over base
models tF1, F2u. MMMEpx0q “ y0. Both F1 and F2 are β-smooth.

• (Sufficient Condition) If for any y1, y2 P rCs such that y1 ‰ y0 and y2 ‰ y0,

}∇xf
y0{y1
1 px0q `∇xf

y0{y2
2 px0q}2 ď

1

r
pf

y0{y1
1 px0q ` f

y0{y2
2 px0qq ´ 2βr, (D.1)

then MMME is r-robust at point x0.

• (Necessary Condition) Suppose for any x P tx0 ` δ : ||δ||2 ď ru, for any i P t1, 2u,
either Fipxq “ y0 or F p2q

i pxq “ y0. If MMME is r-robust at point x0, then for any
y1, y2 P rCs such that y1 ‰ y0 and y2 ‰ y0,

}∇xf
y0{y1
1 px0q `∇xf

y0{y2
2 px0q}2 ď

1

r
pf

y0{y1
1 px0q ` f

y0{y2
2 px0qq ` 2βr. (D.2)

Comparing with the robustness conditions of MME (Theorem 4.1), the conditions for
MME have highly similar forms. Thus, the discussion for ERI in main text (Equation (4.6))
still applies here, including the positive impact of diversified gradients and large confidence
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margins towards MME ensemble robustness in both sufficient and necessary conditions and
the implication of small model-smoothness bound β. A major distinction is that the condi-
tion for MME is limited to two base models. This is because the “maximum” operator in
MME protocol poses difficulties for expressing the robust conditions in succinct continuous
functions of base models’ confidence. Therefore, Taylor expansion cannot be applied. We
leave the extension to N ą 2 base models as future work, and we conjecture the tendency
would be similar as Equation (4.5). The theorem is proved in Appendix D.1.2.

Comparison between Ensemble Robustness and Single-Model Robustness

To compare the robustness of ensemble models and single models, we have the following
corollary that is extended from Theorem 4.1 and Theorem D.1.

Corollary D.1 (Comparison of Ensemble and Single-Model Robustness). Given an input
x0 P Rd with ground-truth label y0 P rCs. Suppose we have two β-smooth base models
tF1, F2u, which are both r-robust at point x0. For any ∆ P r0, 1q:

• (Weighted Ensemble) Define Weighted Ensemble MWE with base models tF1, F2u. Sup-
pose MWEpx0q “ y0. If for any label yi ‰ y0, the base models’ smoothness β ď

∆ ¨mintf
y0{yi
1 px0q, f

y0{yi
2 px0qu{pc

2r2q, and the gradient cosine similarity

cosx∇xf
y0{yi
1 px0q,∇xf

y0{yi
2 px0qy ď cos θ, (D.3)

then the MWE with weights tw1, w2u is at least R-robust at point x0 with

R “ r ¨
1´∆

1`∆

`

1´ CWEp1´ cos θq
˘´1{2

,where (D.4)

CWE “ min
yi:yi‰y0

2w1w2f
y0{yi
1 px0qf

y0{yi
2 px0q

pw1f
y0{yi
1 px0q`w2f

y0{yi
2 px0qq2

, c “ maxt1´∆
1`∆

`

1´ CWEp1´ cos θq
˘´1{2

, 1u.

• (Max-Margin Ensemble) Define Max-Margin Ensemble MMME with the base models
tF1, F2u. Suppose MMMEpx0q “ y0. If for any label y1 ‰ y0 and y2 ‰ y0, the base
models’ smoothness β ď ∆ ¨ mintf

y0{y1
1 px0q, f

y0{y2
2 px0qu{pc

2r2q, and the gradient cosine
similarity cosx∇xf

y0{y1
1 px0q,∇xf

y0{y2
2 px0qy ď cos θ, then the MMME is at least R-robust

at point x0 with

R “ r ¨
1´∆

1`∆

`

1´ CMMEp1´ cos θq
˘´1{2

,where (D.5)
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CMME “ min
y1,y2:

y1,y2‰y0

2f
y0{y1
1 px0qf

y0{y2
2 px0q

pf
y0{y1
1 px0q`f

y0{y2
2 px0qq2

, c “ maxt1´∆
1`∆

`

1´ CMMEp1´ cos θq
˘´1{2

, 1u.

The proof is given in Appendix D.1.3.

Optimizing Weighted Ensemble. As we can observe from Corollary D.1, we can ad-
just the weights tw1, w2u for Weighted Ensemble to change CWE and the certified robust
radius (Equation (D.4)). Then comes the problem of which set of weights can achieve the
highest certified robust radius. Since larger CWE results in higher radius, we need to choose

pwOPT1 , wOPT2 q “ arg max
w1,w2

min
yi:yi‰y0

2w1w2f
y0{yi
1 px0qf

y0{yi
2 px0q

pw1f
y0{yi
1 px0q ` w2f

y0{yi
2 px0qq

2
. (D.6)

Since this quantity is scale-invariant, we can fix w1 and optimize over w2 to get the optimal
weights. In particular, if there are only two classes, we have a closed-form solution

pwOPT1 , wOPT2 q “ arg max
w1,w2

2w1w2f
y0{y1
1 px0qf

y0{y1
2 px0q

pw1f
y0{y1
1 px0q ` w2f

y0{y1
2 px0qq

2

“ tk ¨ f
y0{y1
2 px0q, k ¨ f

y0{y1
1 px0q : k P R`u,

(D.7)

and corresponding CWE achieves the maximum 1{2.
For a special case—average weighted ensemble, we get the corresponding certified robust

radius by setting w1 “ w2 and plug the yielded

CWE “ min
yi:yi‰y0

2f
y0{yi
1 px0qf

y0{yi
2 px0q

pf
y0{yi
1 px0q ` f

y0{yi
2 px0qq

2
P p0, 1{2s. (D.8)

into Equation (D.4).

Comparison between Ensemble and Single-model Robustness. The similar forms
of R in the corollary allow us to discuss the Weighted Ensemble and Max-Margin Ensemble
together. Specifically, we let C be either CWE or CMME, then

R “ r ¨
1´∆

1`∆

`

1´ Cp1´ cos θq
˘´1{2

. (D.9)

Since when R ą r, both ensembles have higher certified robustness than the base models,
we solve this condition for cos θ:

R ą r ðñ

ˆ

1´∆

1`∆

˙2

ą 1´ Cp1´ cos θq ðñ cos θ ď 1´
4∆

Cp1`∆q2
. (D.10)
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Notice that C P p0, 1{2s. From this condition, we can easily observe that when the gradient
cosine similarity is smaller, it is more likely that the ensemble has higher certified robustness
than the base models. When the model is smooth enough, according to the condition on β,
we can notice that ∆ could be close to zero. As a result, 1´ 4∆

Cp1`∆q2
is close to 1. Thus, unless

the gradient of base models is (or close to) colinear, it always holds that the ensemble (either
WE or MME) has higher certified robustness than the base models.

Larger Certified Radius with Larger Number of Base Models N . Following the
same methodology, we can further observe that larger number of base models N can lead to
larger certified radius as the following proposition shows.

Proposition D.1 (More Base Models Lead to Higher Certified Robustness of Weighted
Ensemble). At clean input x0 P Rd with ground-truth label y0 P rCs, suppose all base
models tfiuN`M

i“1 are β-smooth. Suppose the Weighted Ensemble M1 of base models tfiuNi“1

and M2 of base models tfiuN`M
i“N`1 are both r-robust according to the sufficient condition in

Theorem 4.1, and for any yi ‰ y0 theM1 andM2’s ensemble gradients (
řN
j“1wj∇xf

y0{yi
j px0q

and
řN`M
j“N`1wj∇xf

y0{yi
j px0q) are non-zero and not colinear, then the Weighted Ensemble M

of tfiuN`M
i“1 is r1-robust for some r1 ą r.

Proof of Proposition D.1. For any yi ‰ y0, since both M1 and M2 are r-robust according
to the sufficient condition of Theorem 4.1, we have

›

›

›

N
ÿ

j“1

wj∇xf
y0{yi
j px0q

›

›

›

2
ď

1

r

N
ÿ

j“1

f
y0{yi
j px0q ´ βr

N
ÿ

j“1

wj, (D.11)

›

›

›

N`M
ÿ

j“N`1

wj∇xf
y0{yi
j px0q

›

›

›

2
ď

1

r

N`M
ÿ

j“N`1

f
y0{yi
j px0q ´ βr

N`M
ÿ

j“N`1

wj. (D.12)

Adding above two inequalties we get

›

›

›

N
ÿ

j“1

wj∇xf
y0{yi
j px0q

›

›

›

2
`

›

›

›

N`M
ÿ

j“N`1

wj∇xf
y0{yi
j px0q

›

›

›

2
ď

1

r

N`M
ÿ

j“1

f
y0{yi
j px0q ´ βr

N`M
ÿ

j“1

wj. (D.13)

Since gradients of ensemble are not colinear and non-zero, from the triangle inequality,

›

›

›

N`M
ÿ

j“1

wj∇xf
y0{yi
j px0q

›

›

›

2
ă

›

›

›

N
ÿ

j“1

wj∇xf
y0{yi
j px0q

›

›

›

2
`

›

›

›

N`M
ÿ

j“N`1

wj∇xf
y0{yi
j px0q

›

›

›

2
(D.14)
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and thus
›

›

›

N`M
ÿ

j“1

wj∇xf
y0{yi
j px0q

›

›

›

2
ă

1

r

N`M
ÿ

j“1

f
y0{yi
j px0q ´ βr

N`M
ÿ

j“1

wj, (D.15)

which means we can increase r to r1 and still keep the inequality hold with “ď”, and in turn
certify a larger radius r1 according to Theorem 4.1. QED.

Since DRT imposes diversified gradients via GD Loss, the “not colinear” condition easily
holds for DRT ensemble, and therefore the proposition implies larger number of base models
N lead to higher certified robustness of WE. For MME, we empirically observe similar trends.

Robustness Conditions for Smoothed Ensemble Models

Following the discussion in Section 4.1.3, for smoothed WE and MME, with the model-
smoothness bound (Theorem 4.2), we can concretize the general robustness conditions in
this way.

We define the soft smoothed confidence function ḡϵf pxq :“ Eϵ fpx ` ϵq. This definition is
also used in the literature [193, 317, 437]. As a result, we revise the ensemble protocols of
WE and MME by replacing the original confidences tfipx0qu

N
i“1 with these soft smoothed

confidences tḡϵi px0qu
N
i“1. These protocols then choose the predicted class by treating these

tḡϵi px0qu
N
i“1 as the base models’ confidence scores. In the experiments, we did not actually

evaluate these revised protocols since their robustness performance are expected to be similar
as original ones [193, 317, 437]. The derived results connect smoothed ensemble robustness
with the confidence scores.

Corollary D.2 (Gradient and Confidence Margin Conditions for Smoothed WE Robust-
ness). Given input x0 P Rd with ground-truth label y0 P rCs. Let ϵ „ N p0, σ2Idq be a
Gaussian random variable. Define soft smoothed confidence ḡϵi pxq :“ Eϵ fipx ` ϵq for each
base model Fi (1 ď i ď N). The Ḡϵ

MWE
is a WE defined over soft smoothed base models

tḡϵiu
N
i“1 with weights twiuNi“1. Ḡϵ

MWE
px0q “ y0.

• (Sufficient Condition) The Ḡϵ
MWE

is r-robust at point x0 if for any yi ‰ y0,

›

›

›

N
ÿ

j“1

wj∇xpḡ
ϵ
jq
y0{yipx0q

›

›

›

2
ď

1

r

N
ÿ

j“1

wjpḡ
ϵ
jq
y0{yipx0q ´

2r

σ2

N
ÿ

j“1

wj, (D.16)
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• (Necessary Condition) If Ḡϵ
MWE

is r-robust at point x0, for any yi ‰ y0,

›

›

›

N
ÿ

j“1

wj∇xpḡ
ϵ
jq
y0{yipx0q

›

›

›

2
ď

1

r

N
ÿ

j“1

wjpḡ
ϵ
jq
y0{yipx0q `

2r

σ2

N
ÿ

j“1

wj. (D.17)

Corollary D.3 (Gradient and Confidence Margin Condition for Smoothed MME Robust-
ness). Given input x0 P Rd with ground-truth label y0 P rCs. Let ϵ „ N p0, σ2Idq be a
Gaussian random variable. Define soft smoothed confidence ḡϵi pxq :“ Eϵ fipx` ϵq for either
base model F1 or F2. The Ḡϵ

MMME
is a MME defined over soft smoothed base models tḡϵ1, ḡϵ2u.

Ḡϵ
MMME

px0q “ y0.

• (Sufficient Condition) If for any y1, y2 P rCs such that y1 ‰ y0 and y2 ‰ y0,

}∇xpḡ
ϵ
1q
y0{y1px0q `∇xpḡ

ϵ
2q
y0{y2px0q}2 ď

1

r
ppḡϵ1q

y0{y1px0q ` pḡ
ϵ
2q
y0{y2px0qq ´

4r

σ2
, (D.18)

then Ḡϵ
MMME

is r-robust at point x0.

• (Necessary Condition) Suppose for any x P tx0 ` δ : ||δ||2 ď ru, for any i P t1, 2u,
either GFi

pxq “ y0 or Gp2q

Fi
pxq “ y0. If Ḡϵ

MMME
is r-robust at point x0, then for any

y1, y2 P rCs such that y1 ‰ y0 and y2 ‰ y0,

}∇xpḡ
ϵ
1q
y0{y1px0q `∇xpḡ

ϵ
2q
y0{y2px0q}2 ď

1

r
ppḡϵ1q

y0{y1px0q ` pḡ
ϵ
2q
y0{y2px0qq `

4r

σ2
. (D.19)

Remark D.1. The above two corollaries are extended from Theorem 4.1 and Theorem D.1
respectively, and correspond to our discussion in Section 4.1.3. We defer the proofs to
Appendix D.1.5. From these two corollaries, we can explicit see that the Ensemble-before-
Smoothing (see Definition 4.5) provides smoothed classifiers Ḡϵ

MWE
and Ḡϵ

MMME
with bounded

model-smoothness; and we can see the correlation between the robustness conditions and
gradient diversity/confidence margin for smoothed ensembles.

D.1.2 Proofs of Robustness Conditions for General Ensemble Models

This subsection contains the proofs of robustness conditions. First, we connect the pre-
diction of ensemble models with the arithmetic relations of confidence scores of base models.
This connection is straightforward to establish for Weighted Ensemble (shown in Proposi-
tion D.2), but nontrivial for Max-Margin Ensemble (shown in Theorem D.2). Then, we
prove the desired robustness conditions using Taylor expansion with Lagrange reminder.
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Proposition D.2 (Robustness Condition for WE). Consider an input x0 P Rd with ground-
truth label y0 P rCs, and an ensemble model MWE constructed by base models tFiuNi“1 with
weights twiuNi“1. Suppose MWEpx0q “ y0. Then, the ensemble MWE is r-robust at point x0

if and only if for any x P tx0 ` δ : }δ}2 ď ru,

min
yiPrCs:yi‰y0

N
ÿ

j“1

wjf
y0{yi
j pxq ě 0. (D.20)

Proof of Proposition D.2. According the the definition of r-robust, we know MWE is r-
robust if and only if for any point x :“ x0 ` δ where }δ}2 ď r, MWEpx0 ` δq “ y0, which
means that for any other label yi ‰ y0, the confidence score for label y0 is larger or equal
than the confidence score for label yi. It means that

N
ÿ

j“1

wjfjpxqy0 ě
N
ÿ

j“1

wjfjpxqyi (D.21)

for any x P tx0`δ : }δ}2 ď ru. Since this should hold for any yi ‰ y0, we have the sufficient
and necessary condition

min
yiPrCs:yi‰y0

N
ÿ

j“1

wjf
y0{yi
j pxq ě 0. (D.22)

QED.

Theorem D.2 (Robustness Condition for MME). Consider an input x0 P Rd with ground-
truth label y0 P rCs. Let MMME be an MME defined over base models tFiuNi“1. Suppose:
(1) MMMEpx0q “ y0; (2) for any x P tx0 ` δ : }δ}2 ď ru, given any base model i P rN s,
either Fipxq “ y0 or F p2q

i pxq “ y0. Then, the ensemble MMME is r-robust at point x0 if and
only if for any x P tx0 ` δ : }δ}2 ď ru,

max
iPrNs

min
yiPrCs:yi‰y0

f
y0{yi
i pxq ě max

iPrNs
min

y1
iPrCs:y1

i‰y0
f
y1
i{y0
i pxq. (D.23)

The theorem states the sufficient and necessary robustness condition for MME. We divide
the two directions into the following two lemmas and prove them separately. We mainly use
the alternative form of Equation (D.23) as such in the following lemmas and their proofs:

max
iPrNs

min
yiPrCs:yi‰y0

f
y0{yi
i pxq ` min

iPrNs
min

y1
iPrCs:y1

i‰y0
f
y0{y1

i
i pxq ě 0. (D.24)
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Lemma D.1 (Sufficient Condition for MME). Let MMME be an MME defined over base
models tFiuNi“1. For any input x0 P Rd, the Max-Margin Ensemble MMME predicts
MMMEpx0q “ y0 if

max
iPrNs

min
yiPrCs:yi‰y0

f
y0{yi
i px0q ` min

iPrNs
min

y1
iPrCs:y1

i‰y0
f
y0{y1

i
i px0q ě 0. (D.25)

Proof of Lemma D.1. For brevity, for i P rN s, we denote yi :“ Fipx0q, y
1
i :“ F

p2q

i px0q for
each base model’s top class and runner-up class at point x0.

Suppose MMMEpx0q ‰ y0, then according to ensemble definition (see Definition 4.3), there
exists c P rN s, such that MMMEpx0q “ Fcpx0q “ yc, and

@i P rN s, i ‰ c, fcpx0q
yc{y1

c ą fipx0q
yi{y

1
i . (D.26)

Because yc ‰ y0, we have fcpx0qy0 ď fcpx0qy1
c
, so that fcpx0q

yc{y0 ě fcpx0q
yc{y1

c . Now consider
any model Fi where i P rN s, we would like to show that there exists y˚ ‰ y0, such that
fipx0q

yi{y
1
i ě fipx0q

y0{y˚ :

• If yi “ y0, let y˚ :“ y1
i, trivially fipx0q

yi{y
1
i “ fipx0q

y0{y˚ ;

• If yi ‰ y0, and y1
i ‰ y0, we let y˚ :“ y1

i, then fipx0q
yi{y

1
i “ fipx0q

yi{y
˚

ě fipx0q
y0{y˚ ;

• If yi ‰ y0, but y1
i “ y0, we let y˚ :“ yi, then fipx0q

yi{y
1
i “ fipx0q

yi{y0 ě fipx0q
y0{yi “

fipx0q
y0{y˚ .

Combine the above findings with (D.26), we have:

@i P rN s, i ‰ c, Dy˚
c P rCs and y

˚
c ‰ y0, Dy

˚
i P rCs and y

˚
i ‰ y0, fcpx0q

y˚
c {y0 ą fipx0q

y0{y˚
i .

(D.27)
Therefore, its negation

Di P rN s, i ‰ c, @y˚
c P rCs and y

˚
c ‰ y0, @y

˚
i P rCs and y

˚
i ‰ y0, fcpx0q

y0{y˚
c ` fipx0q

y0{y˚
i ě 0

(D.28)
implies Mpx0q “ y0. Since Equation (D.28) holds for any y˚

c and y˚
i , the equation is

equivalent to

Di P rN s, i ‰ c, min
ycPrCs:yc‰y0

fcpx0q
y0{ycpx0q ` min

y1
iPrCs:y1

i‰y0
fipx0q

y0{y1
ipx0q ě 0. (D.29)

320



The existence qualifier over i can be replaced by maximum:

min
ycPrCs:yc‰y0

fcpx0q
y0{ycpx0q `max

iPrNs
min

y1
iPrCs:y1

i‰y0
fipx0q

y0{y1
ipx0q ě 0. (D.30)

It is implied by

max
iPrNs

min
yiPrCs:yi‰y0

f
y0{yi
i px0q ` min

iPrNs
min

y1
iPrCs:y1

i‰y0
f
y0{y1

i
i px0q ě 0. (D.23)

Thus, Equation (D.23) is a sufficient condition for MMMEpx0q “ y0. QED.

Lemma D.2 (Necessary Condition for MME). For any input x0 P Rd, if for any base model
i P rN s, either Fipx0q “ y0 or F p2q

i px0q “ y0, then Max-Margin Ensemble MMME predicting
MMMEpx0q “ y0 implies

max
iPrNs

min
yiPrCs:yi‰y0

f
y0{yi
i px0q ` min

iPrNs
min

y1
iPrCs:y1

i‰y0
f
y0{y1

i
i px0q ě 0. (D.23)

Proof of Lemma D.2. Similar as before, for brevity, for i P rN s, we denote yi :“ Fipx0q, y
1
i :“

F
p2q

i px0q for each base model’s top class and runner-up class at point x0.
Suppose Equation (D.23) is not satisfied, it means that

Dc P rN s, Dy˚
c P rCs and y

˚
c ‰ y0, @i P rN s, Dy

˚
i P rCs and y

˚
i ‰ y0, f

y˚
c {y0
c px0q ą f

y0{y˚
i

i px0q.

(D.31)

• If yc “ y0, then f y
˚
c {y0
c px0q ď 0, which implies that f y0{y˚

i
i px0q ă 0, and hence Fipx0q ‰

y0. Moreover, we know that f yi{y
1
i

i px0q “ f
yi{y0
i px0q ě f

y˚
i {y0
i px0q ą f

y0{y˚
c

c px0q ě

f
y0{y1

c
c px0q “ f

yc{y1
c

c px0q so Mpx0q ‰ Fcpx0q “ y0.

• If yc ‰ y0, i.e., y1
c “ y0, then f yc{y0

c px0q ě f
y˚
c {y0
c px0q ą f

y0{y˚
1

i px0q. If Fipx0q “ y0, then
f
y0{y˚

i
i px0q ě f

y0{y1
i

i px0q “ f
yi{y

1
i

i px0q. Thus, f yc{y1
c

c px0q “ f
yc{y0
c px0q ą f

yi{y
1
i

i px0q. As the
result, Mpx0q “ Fcpx0q ‰ y0.

For both cases, we show that MMMEpx0q ‰ y0, i.e., Equation (D.23) is a necessary condition
for Mpx0q “ y0. QED.

Proof of Theorem D.2. Lemmas D.1 and D.2 are exactly the two directions (necessary and
sufficient condition) of MMME predicting label y0 at point x. Therefore, if the condi-
tion (Equation (D.23)) holds for any x P tx0 ` δ : }δ}2 ď ru, the ensemble MMME is
r-robust at point x0; vice versa. QED.
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For comparison, here we list the trivial robustness condition for single model.

Fact D.1 (Robustness Condition for Single Model). Consider an input x0 P Rd with ground-
truth label y0 P rCs. Suppose a model F satisfies F px0q “ y0. Then, the model F is r-robust
at point x0 if and only if for any x P tx0 ` δ : }δ}2 ď ru,

min
yiPrCs:yi‰y0

f y0{yipxq ě 0. (D.32)

The fact is apparent given that the model predicts the class with the highest confidence.

Now we are ready to apply Taylor expansion to derive the robustness conditions shown in
main text.

Theorem 4.1 (Gradient and Confidence Margin Condition for WE Robustness). Given
input x0 P Rd with ground-truth label y0 P rCs, and MWE as a WE defined over base
models tFiuNi“1 with weights twiuNi“1. MWEpx0q “ y0. All base model Fi’s are β-smooth.

• (Sufficient Condition) MWE is r-robust at point x0 if for any yi ‰ y0,

›

›

›

N
ÿ

j“1

wj∇xf
y0{yi
j px0q

›

›

›

2
ď

1

r

N
ÿ

j“1

wjf
y0{yi
j px0q ´ βr

N
ÿ

j“1

wj. (D.33)

• (Necessary Condition) If MWE is r-robust at point x0, then for any yi ‰ y0,

›

›

›

N
ÿ

j“1

wj∇xf
y0{yi
j px0q

›

›

›

2
ď

1

r

N
ÿ

j“1

wjf
y0{yi
j px0q ` βr

N
ÿ

j“1

wj. (D.34)

Proof of Theorem 4.1. From Taylor expansion with Lagrange remainder and the β-smoothness
assumption on the base models, we have

N
ÿ

j“1

wjf
y0{yi
j px0q ´ r

›

›

›

N
ÿ

j“1

wj∇xf
y0{yi
j px0q

›

›

›

2
´

1

2
r2

N
ÿ

j“1

p2βwjq ď min
x:}x´x0}2ďr

N
ÿ

j“1

wjf
y0{yi
j pxq

ď

N
ÿ

j“1

wjf
y0{yi
j px0q ´ r

›

›

›

N
ÿ

j“1

wj∇xf
y0{yi
j px0q

›

›

›

2
`

1

2
r2

N
ÿ

j“1

p2βwjq,

(D.35)
where the term ´

1

2
r2
řN
j“1p2βwjq and

1

2
r2
řN
j“1p2βwjq are bounded from Lagrange remain-

der. Note that the difference f y0{yi
j is p2βq-smooth instead of β-smooth since it is the differ-

ence of two β-smooth function, and thus
řN
j“1wjf

y0{yi
j is

řN
j“1p2βwjq-smooth. From Proposi-

tion D.2, the sufficient and necessary condition of WE’s r-robustness is
řN
j“1wjf

y0{yi
j pxq ě 0
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for any yi P rCs such that yi ‰ y0, and any x “ x0 ` δ where }δ}2 ď r. Plugging this term
into Equation (D.35) we get the theorem. QED.

Theorem D.1 (Gradient and Confidence Margin Condition for MME Robustness). Given
input x0 P Rd with ground-truth label y0 P rCs, and MMME as an MME defined over base
models tF1, F2u. MMMEpx0q “ y0. Both F1 and F2 are β-smooth.

• (Sufficient Condition) If for any y1, y2 P rCs such that y1 ‰ y0 and y2 ‰ y0,

}∇xf
y0{y1
1 px0q `∇xf

y0{y2
2 px0q}2 ď

1

r
pf

y0{y1
1 px0q ` f

y0{y2
2 px0qq ´ 2βr, (D.36)

then MMME is r-robust at point x0.

• (Necessary Condition) Suppose for any x P tx0 ` δ : ||δ||2 ď ru, for any i P t1, 2u,
either Fipxq “ y0 or F p2q

i pxq “ y0. If MMME is r-robust at point x0, then for any
y1, y2 P rCs such that y1 ‰ y0 and y2 ‰ y0,

}∇xf
y0{y1
1 px0q `∇xf

y0{y2
2 px0q}2 ď

1

r
pf

y0{y1
1 px0q ` f

y0{y2
2 px0qq ` 2βr. (D.37)

Proof of Theorem D.1. We prove the sufficient condition and necessary condition separately.

• (Sufficient Condition)
From Lemma D.1, since there are only two base models, we can simplify the sufficient
condition for MMMEpxq “ y0 as

min
yiPrCs:yi‰y0

f
y0{yi
1 pxq ` min

y1
iPrCs:y1

i‰y0
f
y0{y1

i
2 pxq ě 0. (D.38)

In other words, for any y1 ‰ y0 and y2 ‰ y0,

f
y0{y1
1 pxq ` f

y0{y2
2 pxq ě 0. (D.39)

With Taylor expansion and model-smoothness assumption, we have

min
x:}x´x0}2ďr

f
y0{y1
1 pxq ` f

y0{y2
2 pxq

ěf
y0{y1
1 px0q ` f

y0{y2
2 px0q ´ r}∇xf

y0{y1
1 px0q `∇xf

y0{y2
2 px0q}2 ´

1

2
¨ 4βr2.

(D.40)

Plugging this into Equation (D.39) yields the sufficient condition.
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In the above equation, the term ´1
2
¨ 4βr2 is bounded from Lagrange remainder. Here,

the 4β term comes from the fact that f y0{y1
1 pxq ` f

y0{y2
2 pxq is p4βq-smooth since it is

the sum of difference of β-smooth function.

• (Necessary Condition)
From Lemma D.2, similarly, the necessary condition for MMMEpxq “ y0 is simplified
to: for any y1 ‰ y0 and y2 ‰ y0,

f
y0{y1
1 pxq ` f

y0{y2
2 pxq ě 0. (D.41)

Again, from Taylor expansion, we have

min
x:}x´x0}2ďr

f
y0{y1
1 pxq ` f

y0{y2
2 pxq

ďf
y0{y1
1 px0q ` f

y0{y2
2 px0q ´ r}∇xf

y0{y1
1 px0q `∇xf

y0{y2
2 px0q}2 `

1

2
¨ 4βr2.

(D.42)

Plugging this into Equation (D.39) yields the necessary condition.

In the above equation, the term `1
2
¨ 4βr2 is bounded from Lagrange remainder. The

4β term appears because of the same reason as before.

QED.

Since we will compare the robustness of ensemble models and the single model, we show
the corresponding conditions for single-model robustness.

Proposition D.3 (Gradient and Confidence Margin Conditions for Single-Model Robust-
ness). Given input x0 P Rd with ground-truth label y0 P rCs. Model F px0q “ y0, and it is
β-smooth.

• (Sufficient Condition) If for any y1 P rCs such that y1 ‰ y0,

}∇xf
y0{y1px0q}2 ď

1

r
f y0{y1px0q ´ βr, (D.43)

F is r-robust at point x0.

• (Necessary Condition) If F is r-robust at point x0, for any y1 P rCs such that y1 ‰ y0,

}∇xf
y0{y1px0q}2 ď

1

r
f y0{y1px0q ` βr. (D.44)
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Proof of Proposition D.3. This proposition is apparent given the following inequality from
Taylor expansion

f y0{y1px0q´r}∇xf
y0{y1px0q}2´βr

2 ď min
x:}x´x0}2ďr

f y0{y1pxq ď f y0{y1px0q´r}∇xf
y0{y1px0q}2`βr

2

(D.45)
and the sufficient and necessary robust condition in Fact D.1. QED.

D.1.3 Proof of Robustness Comparison Results between Ensemble Models and Single
Models

Corollary D.1 (Comparison of Ensemble and Single-Model Robustness). Given an input
x0 P Rd with ground-truth label y0 P rCs. Suppose we have two β-smooth base models
tF1, F2u, which are both r-robust at point x0. For any ∆ P r0, 1q:

• (Weighted Ensemble) Define Weighted Ensemble MWE with base models tF1, F2u. Sup-
pose MWEpx0q “ y0. If for any label yi ‰ y0, the base models’ smoothness β ď

∆ ¨mintf
y0{yi
1 px0q, f

y0{yi
2 px0qu{pc

2r2q, and the gradient cosine similarity

cosx∇xf
y0{yi
1 px0q,∇xf

y0{yi
2 px0qy ď cos θ, (D.46)

then the MWE with weights tw1, w2u is at least R-robust at point x0 with

R “ r ¨
1´∆

1`∆

`

1´ CWEp1´ cos θq
˘´1{2

,where (D.47)

CWE “ min
yi:yi‰y0

2w1w2f
y0{yi
1 px0qf

y0{yi
2 px0q

pw1f
y0{yi
1 px0q`w2f

y0{yi
2 px0qq2

, c “ maxt1´∆
1`∆

`

1´ CWEp1´ cos θq
˘´1{2

, 1u.

• (Max-Margin Ensemble) Define Max-Margin Ensemble MMME with the base models
tF1, F2u. Suppose MMMEpx0q “ y0. If for any label y1 ‰ y0 and y2 ‰ y0, the base
models’ smoothness β ď ∆ ¨ mintf

y0{y1
1 px0q, f

y0{y2
2 px0qu{pc

2r2q, and the gradient cosine
similarity cosx∇xf

y0{y1
1 px0q,∇xf

y0{y2
2 px0qy ď cos θ, then the MMME is at least R-robust

at point x0 with

R “ r ¨
1´∆

1`∆

`

1´ CMMEp1´ cos θq
˘´1{2

,where (D.48)

CMME “ min
y1,y2:

y1,y2‰y0

2f
y0{y1
1 px0qf

y0{y2
2 px0q

pf
y0{y1
1 px0q`f

y0{y2
2 px0qq2

, c “ maxt1´∆
1`∆

`

1´ CMMEp1´ cos θq
˘´1{2

, 1u.

Proof of Corollary D.1. We first prove the theorem for Weighted Ensemble. For arbitrary
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yi ‰ y0, we have

}w1∇xf
y0{yi
1 px0q ` w2∇xf

y0{yi
2 px0q}2 (D.49)

“

b

w2
1}∇xf

y0{yi
1 px0q}22 ` w2

2}∇xf
y0{yi
2 px0q}22 ` 2w1w2x∇xf

y0{yi
1 px0q, f

y0{yi
2 px0qy (D.50)

ď

b

w2
1}∇xf

y0{yi
1 px0q}22 ` w2

2}∇xf
y0{yi
2 px0q}22 ` 2w1w2}∇xf

y0{yi
1 px0q}2}∇xf

y0{yi
2 px0q}2 cos θ (D.51)

pi.q
ď

d

w2
1

ˆ

1

r
f
y0{yi
1 px0q ` βr

˙2

` w2
2

ˆ

1

r
f
y0{yi
2 px0q ` βr

˙2

` 2w1w2

ˆ

1

r
f
y0{yi
1 px0q ` βr

˙ˆ

1

r
f
y0{yi
2 px0q ` βr

˙

cos θ (D.52)

“
1

r

c

w2
1

´

f
y0{yi
1 px0q ` βr2

¯2
` w2

2

´

f
y0{yi
2 px0q ` βr2

¯2
` 2w1w2

´

f
y0{yi
1 px0q ` βr2

¯´

f
y0{yi
2 px0q ` βr2

¯

cos θ (D.53)

pii.q
ď

1

r
¨

ˆ

1 `
∆

c2

˙

b

w2
1f

y0{yi
1 px0q2 ` w2

2f
y0{yi
2 px0q2 ` 2w1w2f

y0{yi
1 px0qf

y0{yi
2 px0q cos θ (D.54)

“
1

r
¨

ˆ

1 `
∆

c2

˙

c

´

w1f
y0{yi
1 px0q ` w2f

y0{yi
2 px0q

¯2
´ 2p1 ´ cos θqw1f

y0{yi
1 px0qw2f

y0{yi
2 px0q (D.55)

piii.q
ď

1

r
¨

ˆ

1 `
∆

c2

˙

b

1 ´ p1 ´ cos θqCWE

´

w1f
y0{yi
1 px0q ` w2f

y0{yi
2 px0q

¯

(D.56)

where pi.q follows from the necessary condition in Proposition D.3; pii.q uses the condition
on β; and piii.q replaces 2w1w2f

y0{yi
1 px0qf

y0{yi
2 px0q leveraging CWE. Now, we define

K :“
1´∆

1`∆

`

1´ CWEp1´ cos θq
˘´1{2

. (D.57)

All we need to do is to prove that MWE is robust within radius Kr. To do so, from
Equation (4.4), we upper bound }w1∇xf

y0{yi
1 px0q ` w2∇xf

y0{yi
2 px0q}2 by

1

Kr

´

w1f
y0{yi
1 px0q ` w2f

y0{yi
2 px0q

¯

´ βKrpw1 ` w2q : (D.58)

}w1∇xf
y0{yi
1 px0q ` w2∇xf

y0{yi
2 px0q}2

ď
1

r
¨

ˆ

1`
∆

c2

˙

a

1´ p1´ cos θqCWE

´

w1f
y0{yi
1 px0q ` w2f

y0{yi
2 px0q

¯

(D.59)

ď
1

r
p1`∆q

a

1´ p1´ cos θqCWE

´

w1f
y0{yi
1 px0q ` w2f

y0{yi
2 px0q

¯

(D.60)

“
1

r
¨

1´∆

1´∆
1`∆

`

1´ p1´ cos θqCWE

˘´1{2

´

w1f
y0{yi
1 px0q ` w2f

y0{yi
2 px0q

¯

(D.61)

“
1

Kr
p1´∆q

´

w1f
y0{yi
1 px0q ` w2f

y0{yi
2 px0q

¯

(D.62)

ď
1

Kr

´

w1f
y0{yi
1 px0q ` w2f

y0{yi
2 px0q ´∆mintf

y0{yi
1 px0q, f

y0{yi
2 px0qupw1 ` w2q

¯

. (D.63)

Notice that ∆mintf
y0{yi
1 px0q, f

y0{yi
2 px0qu ě βc2r2 from β’s condition, so

}w1∇xf
y0{yi
1 px0q ` w2∇xf

y0{yi
2 px0q}2
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ď
1

Kr

´

w1f
y0{yi
1 px0q ` w2f

y0{yi
2 px0q ´ βc

2r2pw1 ` w2q

¯

(D.64)

“
1

Kr

´

w1f
y0{yi
1 px0q ` w2f

y0{yi
2 px0q

¯

´ βKrpw1 ` w2q ¨
c2

K2
(D.65)

ď
1

Kr

´

w1f
y0{yi
1 px0q ` w2f

y0{yi
2 px0q

¯

´ βKrpw1 ` w2q. (D.66)

From Equation (4.4), the theorem for Weighted Ensemble is proved.

Now we prove the theorem for Max-Margin Ensemble. Similarly, for any arbitrary y1, y2
such that y1 ‰ y0, y2 ‰ y0, we have

}∇xf
y0{y1
1 px0q `∇xf

y0{y2
2 px0q}2

ď
1

r
¨

ˆ

1`
∆

c2

˙

a

1´ p1´ cos θqCMME

´

f
y0{y1
1 px0q ` f

y0{y2
2 px0q

¯

.
(D.67)

Now we define
K 1 :“

1´∆

1`∆

`

1´ CMMEp1´ cos θq
˘´1{2

. (D.68)

Again, from β’s condition we have ∆mintf
y0{y1
1 px0q, f

y0{y2
2 px0qu ě βc2r2 and

}∇xf
y0{y1
1 px0q `∇xf

y0{y2
2 px0q}2 ď

1

K 1r

´

f
y0{yi
1 px0q ` f

y0{yi
2 px0q

¯

´ 2βK 1r. (D.69)

From Equation (D.1), the ensemble is pK 1rq-robust at point x0, i.e., the theorem for Max-
Margin Ensemble is proved. QED.

D.1.4 Proofs of Model-Smoothness Bounds for Randomized Smoothing

Theorem 4.2 (Model-Smoothness Upper Bound for ḡϵf ). Let ϵ „ N p0, σ2Idq be a Gaussian
random variable, then the soft smoothed confidence function ḡϵf is p2{σ2q-smooth.

Proof of Theorem 4.2. Recall that ḡϵf pxqj “ Eϵ„N p0,σ2Idq fpx ` ϵqj, where fpx ` ϵqj is a
function from Rd to t0, 1u. Therefore, to prove that gϵM is p2{σ2q-smooth, we only need to
show that for any function f : Rd Ñ r0, 1s, the function f̄ :“ f ˚N p0, σ2Idq is p2{σ2q-smooth.

According to [317, Lemma 1], we have

f̄pxq “
1

p2πσ2qd{2

ż

Rd

fptq exp

˜

´
}x´ t}22

2σ2

¸

dt, (D.70)

∇f̄pxq “ 1

p2πσ2qd{2σ2

ż

Rd

fptqpx´ tq exp

˜

´
}x´ t}22

2σ2

¸

dt. (D.71)
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To show f̄ is p2{σ2q-smooth, we only need to show that ∇f̄ is p2{σ2q-Lipschitz. Let
Hf̄ pxq be the Hessian matrix of f̄ . Thus, we only need to show that for any unit vec-
tor u, |uTHf̄ pxqu| ď 2{σ2. By the isotropy of Hf̄ pxq, it is sufficient to consider u “

p1, 0, 0, . . . , 0qT, where uTHf̄ pxqu “ Hf̄ pxq11. Now we only need to bound the absolute
value of Hf̄ pxq11:

|Hf̄ pxq11| “
ˇ

ˇ

ˇ

1

p2πσ2qd{2σ2

ż

Rd

fptq ¨
B

Bx1

px´ tq exp

˜

´
}x´ t}22

2σ2

¸

dt
ˇ

ˇ

ˇ
(D.72)

“
1

p2πσ2qd{2σ2

ˇ

ˇ

ˇ

ż

Rd

fptq ¨

˜

1´
px1 ´ t1q

2

σ2

¸

exp

˜

´
}x´ t}22

2σ2

¸

dt
ˇ

ˇ

ˇ
(D.73)

ď
1

p2πσ2qd{2σ2

ˇ

ˇ

ˇ

ż

Rd

exp

˜

´
}x´ t}22

2σ2

¸

dt
ˇ

ˇ

ˇ

`
1

p2πσ2qd{2σ2

ˇ

ˇ

ˇ

ż

Rd

px1 ´ t1q
2

σ2
exp

˜

´
}x´ t}22

2σ2

¸

dt
ˇ

ˇ

ˇ
(D.74)

“
1

σ2
`

1
?
2πσ2σ2

¨ 2

ż 8

0

x2

σ2
exp

˜

´
x2

2σ2

¸

dx (D.75)

“
1

σ2
`

c

2

π
¨
1

σ2

ż 8

0

t2 expp´t2{2q dt. (D.76)

Let Γp¨q be the Gamma function, we note that
ż 8

0

t2 expp´t2{2q dt “

ż 8

0

t expp´t2{2q dp´t2{2q “
?
2

ż 8

0

?
t expp´tq dt “

?
2Γp3{2q “

a

π{2,

(D.77)
and thus

|Hf̄ pxq11| ď
1

σ2
`

c

2

π
¨
1

σ2
¨

c

π

2
“

2

σ2
, (D.78)

which concludes the proof. QED.

Remark D.2. The model-smoothness upper bound Theorem 4.2 is not limited to the en-
semble model with Ensemble-before-Smoothing strategy. Indeed, for arbitrary classification
models, since the confidence score is in range r0, 1s, the theorem still holds. If the confi-
dence score is bounded in ra, bs, simple scaling yields the model-smoothness upper bound
β “ 2pb´aq

σ2 .

Proposition D.4 (Model-Smoothness Lower Bound for ḡϵf ). There exists a smoothed con-

fidence function ḡϵf that is β-smooth if and only if β ě
ˆ

1
?
2πeσ2

˙

.
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Proof of Proposition D.4. We prove by construction. Consider the single dimensional input
space R, and a model f that has confidence 1 if and only if input x ě 0. As a result,

gϵf pxqy0 “
1

?
2πσ

ż `8

0

exp

˜

´
pt´ xq2

2σ2

¸

dt “
1

?
2πσ

ż `8

´x

exp

˜

´
t2

2σ2

¸

dt. (D.79)

Thus,

dgϵf pxqy0
dx

“
1

?
2πσ

exp

˜

´
x2

2σ2

¸

and
ˇ

ˇ

ˇ

dgϵf pxq
2
y0

d2 x

ˇ

ˇ

ˇ
“

1
?
2πσ2

¨

ˇ

ˇ

ˇ

x

σ

ˇ

ˇ

ˇ
exp

˜

´
x2

2σ2

¸

. (D.80)

By symmetry, we study the function hpxq “ x expp´x2{2q for x ě 0. We have h1pxq “

p1 ´ xq expp´x2{2q. Thus, hpxq obtains its maximum at x0 “ 1: hpx0q “ expp´1{2q, which
implies that

max
ˇ

ˇ

ˇ

dgϵf pxq
2
y0

d2 x

ˇ

ˇ

ˇ
“

expp´1{2q
?
2πσ2

“
1

?
2πeσ2

(D.81)

which implies β ě 1
?
2πeσ2

for this ḡϵf per smoothness definition (Definition 4.4). QED.

D.1.5 Proofs of Robustness Conditions for Smoothed Ensemble Models

Corollary D.2 (Gradient and Confidence Margin Conditions for Smoothed WE Robust-
ness). Given input x0 P Rd with ground-truth label y0 P rCs. Let ϵ „ N p0, σ2Idq be a
Gaussian random variable. Define soft smoothed confidence ḡϵi pxq :“ Eϵ fipx ` ϵq for each
base model Fi (1 ď i ď N). The Ḡϵ

MWE
is a WE defined over soft smoothed base models

tḡϵiu
N
i“1 with weights twiuNi“1. Ḡϵ

MWE
px0q “ y0.

• (Sufficient Condition) The Ḡϵ
MWE

is r-robust at point x0 if for any yi ‰ y0,

›

›

›

N
ÿ

j“1

wj∇xpḡ
ϵ
jq
y0{yipx0q

›

›

›

2
ď

1

r

N
ÿ

j“1

wjpḡ
ϵ
jq
y0{yipx0q ´

2r

σ2

N
ÿ

j“1

wj, (D.82)

• (Necessary Condition) If Ḡϵ
MWE

is r-robust at point x0, for any yi ‰ y0,

›

›

›

N
ÿ

j“1

wj∇xpḡ
ϵ
jq
y0{yipx0q

›

›

›

2
ď

1

r

N
ÿ

j“1

wjpḡ
ϵ
jq
y0{yipx0q `

2r

σ2

N
ÿ

j“1

wj. (D.83)

Proof of Corollary D.2. Since Ḡϵ
MWE

is a WE defined over tḡϵiuNi“1, we apply Theorem 4.1
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directly for Ḡϵ
MWE

. Notice that each ḡϵi has model-smoothness bound β “ 2{σ2 from Theo-
rem 4.2 and the corollary statement follows. QED.

Corollary D.3 (Gradient and Confidence Margin Condition for Smoothed MME Robust-
ness). Given input x0 P Rd with ground-truth label y0 P rCs. Let ϵ „ N p0, σ2Idq be a
Gaussian random variable. Define soft smoothed confidence ḡϵi pxq :“ Eϵ fipx` ϵq for either
base model F1 or F2. The Ḡϵ

MMME
is a MME defined over soft smoothed base models tḡϵ1, ḡϵ2u.

Ḡϵ
MMME

px0q “ y0.

• (Sufficient Condition) If for any y1, y2 P rCs such that y1 ‰ y0 and y2 ‰ y0,

}∇xpḡ
ϵ
1q
y0{y1px0q `∇xpḡ

ϵ
2q
y0{y2px0q}2 ď

1

r
ppḡϵ1q

y0{y1px0q ` pḡ
ϵ
2q
y0{y2px0qq ´

4r

σ2
, (D.84)

then Ḡϵ
MMME

is r-robust at point x0.

• (Necessary Condition) Suppose for any x P tx0 ` δ : ||δ||2 ď ru, for any i P t1, 2u,
either GFi

pxq “ y0 or Gp2q

Fi
pxq “ y0. If Ḡϵ

MMME
is r-robust at point x0, then for any

y1, y2 P rCs such that y1 ‰ y0 and y2 ‰ y0,

}∇xpḡ
ϵ
1q
y0{y1px0q `∇xpḡ

ϵ
2q
y0{y2px0q}2 ď

1

r
ppḡϵ1q

y0{y1px0q ` pḡ
ϵ
2q
y0{y2px0qq `

4r

σ2
. (D.85)

Proof of Corollary D.3. Since Ḡϵ
MMME

is constructed over confidences ḡϵ1 and ḡϵ2, we can
directly apply Theorem 4.1. Again, with the model-smoothness bound β “ 2{σ2 we can
easily derive the corollary statement. QED.

D.2 ANALYSIS OF ENSEMBLE SMOOTHING STRATEGIES

In Section 4.1.3, we use the adapted randomized model smoothing strategy which is named
Ensemble-before-Smoothing (EBS). We also consider Ensemble-after-Smoothing (Ensemble-
after-Smoothing). Through the following analysis, we will show Ensemble-before-Smoothing
generally provides higher certified robust radius than Ensemble-after-Smoothing which jus-
tifies our choice of the strategy.

The Ensemble-before-Smoothing strategy is defined in Definition 4.5. The Ensemble-after-
Smoothing strategy is defined as such.

Definition D.1 (Ensemble-after-Smoothing (EAS)). Let M be an ensemble model
over base models tFiuNi“1. Let ϵ be a random variable. The EAS ensemble Hϵ

M : Rd ÞÑ rCs
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at input x0 P Rd is defined as:

Hϵ
Mpx0q :“ Gϵ

Fc
px0q where c “ argmax

iPrNs

gϵFi
px0qGϵ

Fi
px0q. (D.86)

Here, c is the index of the smoothed base model selected.

Remark D.3. In EBS, we first construct a model ensemble M based on base models using
WE or MME protocol, then apply randomized smoothing on top of the ensemble. The
resulting smoothed ensemble predicts the most frequent class of M when the input follows
distribution x0 ` ϵ.

In EAS, we use ϵ to construct smoothed classifiers for base models respectively. Then, for
given input x0, the ensemble agrees on the base model which has the highest probability for
its predicted class.

D.2.1 Certified Robustness

In this subsection, we characterize the certified robustness when using both strategies.

Ensemble-before-Smoothing

The following theorem gives an explicit method (first compute gϵMpx0qGϵ
Mpx0q via sampling

then compute r) to compute the certified robust radius r for EBS protocol. This method is
used for computing the certified robust radius in our paper. All other baselines appeared in
our paper also use this method.

Proposition D.5 (Certified Robustness for Ensemble-before-Smoothing). Let Gϵ
M be an

ensemble constructed by EBS strategy. The random variable ϵ „ N p0, σ2Idq. Then the
ensemble Gϵ

M is r-robust at point x0 where

r :“ σΦ´1
´

gϵMpx0qGϵ
Mpx0q

¯

. (D.87)

Here, gϵMpx0qj “ PrϵpMpx0 ` ϵq “ jq.

The proposition is a direct application of Proposition 2.1.

Ensemble-after-Smoothing

The following theorem gives an explicit method to compute the certified robust radius r
for EAS protocol.
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Theorem D.3 (Certified robustness for Ensemble-after-Smoothing). LetHϵ
M be an ensemble

constructed by EAS strategy over base models tFiuNi“1. The random variable ϵ „ N p0, σ2Idq.
Let y0 “ Hϵ

Mpx0q. For each i P rN s, define

ri :“

$

’

&

’

%

σΦ´1
´

gϵFi
px0qGϵ

Fi
px0q

¯

, if Gϵ
Fi
px0q “ y0

´σΦ´1
´

gϵFi
px0qGϵ

Fi
px0q

¯

. if Gϵ
Fi
px0q ‰ y0

(D.88)

Then the ensemble Hϵ
M is r-robust at point x0 where

r :“
maxiPrNs ri `miniPrNs ri

2
. (D.89)

Remark D.4. The theorem appears to be a bit counter-intuitive — picking the best
smoothed model in terms of certified robustness cannot give strong certified robustness
for the ensemble. As long as the base models have different certified robust radius (i.e., ri’s
are different), the r, certified robust radius for the ensemble, is strictly inferior to that of
the best base model (i.e., max ri). Furthermore, if there exists a base model with wrong
prediction (i.e., ri ď 0), the certified robust radius r is strictly smaller than half of the best
base model.

Proof of Theorem D.3. Without loss of generality, we assume r1 ą r2 ą ¨ ¨ ¨ ą rN . Let the
perturbation added to x0 has ℓ2 length δ.

When δ ď rN , since picking any model always gives the right prediction, the ensemble is
robust.

When rN ă δ ď r1`rN
2

, the highest robust radius with wrong prediction is δ ´ rN , and we
can still guarantee that model F1 has robust radius at least r1 ´ δ from the smoothness of
function x ÞÑ gϵF1

pxqGϵ
F1

px0q [317]. Since r1 ´ δ ě r1´rN
2

ě δ ´ rN , the ensemble will agree on
F1 or other base model with correct prediction and still gives the right prediction.

When δ ą r1`rN
2

, suppose fN is a linear model and only predicts two labels (which achieves
the tight robust radius bound according to [77]), then fN can have robust radius δ ´ rN for
the wrong prediction. At the same time, for any other model Fi which is linear and predicts
correctly, the robust radius is at most ri ´ δ. Since ri ´ δ ă r1 ´ δ ă r1´rN

2
ă δ ´ rN , the

ensemble can probably give wrong prediction.
In summary, as we have shown, the certified robust radius can be at most r. For any

radius δ ą r, there exist base models which lead the ensemble Hϵ
Mpx0 ` δeq to predict the

label other than y0. QED.
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D.2.2 Comparison of Two Strategies

In this subsection, we compare the two ensemble strategies when the ensembles are con-
structed from two base models.

Corollary D.4 (Smoothing Strategy Comparison). Given MMME, a Max-Margin Ensem-
ble constructed from base models tfa, fbu. Let ϵ „ N p0, σ2Idq. Let Gϵ

MMME
be the EBS

ensemble, and Hϵ
MMME

be the EAS ensemble. Suppose at point x0 with ground-truth label
y0, Gϵ

Fa
px0q “ Gϵ

Fb
px0q “ y0, gϵFa

px0q ą 0.5, gϵFb
px0q ą 0.5.

Let δ be their probability difference for class y0, i.e, δ :“ |gϵFa
px0qy0 ´ g

ϵ
Fb
px0qy0 |,. Let pmin

be the smaller probability for class y0 between them, i.e., pmin :“ mintgϵFa
px0qy0 , g

ϵ
Fb
px0qy0u.

We denote p to the probability of choosing the correct class when the base models disagree
with each other; denote pab to the probability of both base models agreeing on the correct
class:

p :“ Pr
ϵ

`

MMMEpx0 ` ϵq “ y0 |Fapx0 ` ϵq ‰ Fbpx0 ` ϵq and pFapx0 ` ϵq “ y0 orFbpx0 ` ϵq “ y0q
˘

,

(D.90)

pab :“ Pr
ϵ

`

Fapx0 ` ϵq “ Fbpx0 ` ϵq “ y0
˘

. (D.91)

We have:

1. If p ą 1{2` p2` 4ppmin ´ pabq{δq
´1, rG ą rH .

2. If p ď 1{2, rH ě rG.

Here, rG is the certified robust radius of Gϵ
MMME

computed from Equation (D.87); and rH is
the certified robust radius of Hϵ

MMME
computed from Equation (D.89).

Remark D.5. Since p is the probability where the ensemble chooses the correct prediction
between two base model predictions, with Max-Margin Ensemble, we think p ą 1{2 with
non-trivial margin.

The quantity pmin´pab and δ both measure the base model’s diversity in terms of predicted
label distribution, and generally they should be close. As a result, 1{2 ` p2 ` 4ppmin ´

pabq{δq
´1 « 1{2 ` 1{6 “ 2{3, and case (1) should be much more likely to happen than

case (2). Therefore, EBS usually yields higher robustness guarantee. We remark that the
similar tendency also holds with multiple base models.

Proof of Corollary D.4. For convenience, define pa :“ gϵFa
px0qy0 , pb :“ gϵFb

px0qy0 , where pa “
pb ` δ and pmin “ pb.
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From Proposition D.5 and Theorem D.3, we have

rG :“
σ

2
¨ 2Φ´1

ˆ

Pr
ϵ
pMMMEpx0 ` ϵq “ y0q

˙

, rH :“
σ

2

`

Φ´1ppaq ` Φ´1ppbq
˘

. (D.92)

Notice that PrϵpMMMEpx0 ` ϵq “ y0q “ pab ` pppa ` pb ´ 2pabq, we can rewrite rG as

rG “
σ

2
¨ 2Φ´1ppab ` pppa ` pb ´ 2pabqq. (D.93)

1. When p ą 1{2` p2` 4ppmin ´ pabq{δq
´1,

since

p ą
1

2
`

1

2` 4ppmin´pabq

δ

“
1

2
`

δ

2δ ` 4ppb ´ pabq
“
pa ` pb ` δ ´ 2pab
2ppa ` pb ´ 2pabq

“
pa ´ pab

pa ` pb ´ 2pab
,

(D.94)
we have pab ` pppa ` pb ´ 2pabq ą pa. Therefore, rG ą σΦ´1ppaq. Whereas, rH ď σ{2 ¨

2Φ´1ppaq “ σΦ´1ppaq. So rG ą rH .

2. When p ď 1{2,

pab ` pppa ` pb ´ 2pabq ď pab ` 1{2 ¨ ppa ` pb ´ 2pabq “ ppa ` pbq{2. (D.95)

Therefore, rG ď σΦ´1pppa` pbq{2q. Notice that Φ´1 is convex in r1{2,`8q, so Φ´1ppaq`

Φ´1ppbq ě 2Φ´1pppa ` pbq{2q, i.e., rH ě rG.

QED.

D.3 ANALYSIS OF ALTERNATIVE DESIGN OF DRT

In Section 4.2, we design our DRT based on GD Loss

LGDpx0qij “
›

›∇xf
y0{y

p2q
i

i px0q `∇xf
y0{y

p2q
j

j px0q
›

›

2
(D.96)

and CM Loss
LCMpx0qij “ f

y
p2q
i {y0
i px0q ` f

y
p2q
j {y0
j px0q. (D.97)

Following the convention, we apply Gaussian augmentation to train the models, i.e., replacing
x0 by x0 ` ϵ where ϵ „ N p0, σ2Idq in Equation (4.9) and Equation (4.10). We apply these
two regularizers to every valid base model pair pFi, Fjq, where the valid pair means both
base models predict the ground truth label y0: Fipx0 ` ϵq “ Fjpx0 ` ϵq “ y0.
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One may concern that in the worst case, there could be OpN2q valid pairs, i.e., OpN2q

regularization terms in the training loss. However, we should notice that each base model
Fi only appears in OpNq valid pairs. Therefore, when N is large, we can optimize DRT by
training iteratively, i.e., by regularizing each base model one by one to save the computational
cost.

An alternative design inspired from the theorems (e.g., Theorem 4.1) is to use overall sum-
mation instead of pairwise summation, which directly correlates with Iyi (Equation (4.6)):

L1
GDpx0q “

›

›

›

N
ÿ

i“1

∇xf
y0{y

p2q
i

i px0q
›

›

›

2
, (D.98)

L1
CMpx0q “

N
ÿ

i“1

f
y

p2q
i {y0
i px0q. (D.99)

Although this design appears to be more aligned with the theorem and more efficient with
OpNq regularization terms, it also requires all base models Fi to have the same runner-up
prediction yp2q

i as observed from both theorem and intuition (otherwise diversified gradients
and confidence margins are for different and independent labels that are meaningless to
jointly optimize). It is less likely to have all base models having the same runner-up pre-
diction than a pair of base models having the same runner-up prediction especially in the
initial training phase. Therefore, this alternative design will cause fewer chances of mean-
ingful optimization than the previous design and we use the previous design for our DRT in
practice.

D.4 EXPERIMENT DETAILS

Baselines. We consider the following state-of-the-art baselines for certified robustness:
(1) Gaussian smoothing [77] trains a smoothed classifier by applying Gaussian augmen-
tation. 2. MACER [437]: Adding the regularization term to maximize the certified radius
R “ σ

2
ppA ´ pBq on training instances. (2) SmoothAdv [317] combines adversarial train-

ing with Gaussian augmentation. (3) MACER [437] improves a single model’s certified
robustness by adding regularization terms to minimize the Negative Log Likelihood (NLL)
between smoothed classifier’s output gF pxq and label y, and maximize the certified radius
R “ σ

2
pΦ´1pgϵF pxqyq ´ Φ´1pmaxy1‰y g

ϵ
F pxqy1qq, where ϵ „ N p0, σ2Idq and gϵF is as defined

in Equation (4.3). (4) Stability [218] maintains the stability of the smoothed classifier gF
by minimizing the Rényi Divergence between gF pxq and gF px ` ϵq where ϵ „ N p0, σ2Idq.
(5) SWEEN [234] builds smoothed Weighted Ensemble (WE), which is the only prior work
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computing certified robustness for ensemble to our knowledge.

Evaluation Metric. We report the standard certified accuracy under different ℓ2 radii r’s
as our evaluation metric following Cohen et al. [77], which is defined as the fraction of the
test set samples that the smoothed classifier can certify the robustness within the ℓ2 ball of
radius r. Since the computation of the accurate value of this metric is intractable, we report
the approximate certified test accuracy [77] sampled through the Monte Carlo procedure. For
each sample, the robustness certification holds with probability at least 1´α. Following the
literature, we choose α “ 0.001, n0 “ 100 for Monte Carlo sampling during prediction phase,
and n “ 105 for Monte Carlo sampling during certification phase. On MNIST and CIFAR-10
we evaluated every 10-th image in the test set, for 1, 000 images total. On ImageNet we
evaluated every 100-th image in the validation set, for 500 images total. This evaluation
protocol is the same as prior work [77, 317].

D.4.1 MNIST

Baseline Configuration. Following the literature [165, 317, 437], in each batch, each
training sample is Gaussian augmented twice (augmenting more times yields negligible differ-
ence as Salman et al. [317] show). We choose Gaussian smoothing variance σ P t0.25, 0.5, 1.0u
for training and evaluation for all methods. For SmoothAdv, we consider the attack to be
10-step ℓ2 PGD attack with perturbation scale δ “ 1.0 without pretraining and unlabelled
data augmentation. We reproduced results similar to their paper by using their open-sourced
code21.

Training Details. First, we use LeNet architecture and train each base model for 90

epochs. For the training optimizer, we use the SGD-momentum with the initial learning
rate α “ 0.01. The learning rate is decayed for every 30 epochs with decay ratio γ “ 0.1

and the batch size equals to 256. Then, we apply DRT to finetune our model with small
learning rate α for another 90 epochs. We explore different DRT hyper-parameters ρ1, ρ2
together with the initial learning rate α, and report the best certified accuracy on each radius
r among all the trained ensemble models.

Efficiency Analysis. We regard the execution time per mini-batch as our efficiency cri-
terion. For MNIST with batch size equals to 256, DRT with the Gaussian smoothing base
model only requires 1.04s to finish one mini-batch training to achieve the comparable results

21https://github.com/Hadisalman/smoothing-adversarial/
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to the SmoothAdv method which requires 1.86 s. Moreover, DRT with the SmoothAdv base
model requires 2.52 s per training batch but achieves much better results. The evaluation is
on single NVIDIA GeForce GTX 1080 Ti GPU.

D.4.2 CIFAR-10

Baseline Configuration. Following the literature [165, 317, 437], in each batch, each
training sample is Gaussian augmented twice (augmenting more times yields negligible differ-
ence as Salman et al. [317] show). We choose Gaussian smoothing variance σ P t0.25, 0.5, 1.0u
for training and evaluation for all methods. For SmoothAdv, we consider the attack to be
10-step ℓ2 PGD attack with perturbation scale δ “ 1.0 without pretraining and unlabelled
data augmentation. We also reproduced the similar results mentioned in baseline papers.

Training Details. First, we use ResNet-110 architecture and train each base model for
150 epochs. For the training optimizer, we use the SGD-momentum with the initial learning
rate α “ 0.1. The learning rate is decayed for every 50-epochs with decay ratio γ “ 0.1.
Then, we use DRT to finetune our model with small learning rate α for another 150 epochs.
We also explore different DRT hyper-parameters ρ1, ρ2 together with the initial learning rate
α, and report the best certified accuracy on each radius r among all the trained ensemble
models.

Efficiency Analysis. We also use the execution time per mini-batch as our efficiency
criterion. For CIFAR-10 with batch size equals to 256, DRT with the Gaussian smoothing
base model requires 3.82 s to finish one mini-batch training to achieve the competitive results
to 10-step PGD attack based SmoothAdv method which requires 6.39 s. All the models are
trained in parallel on 4 NVIDIA GeForce GTX 1080 Ti GPUs.

D.4.3 ImageNet

For ImageNet, we utilize ResNet-50 architecture and train each base model for 90 epochs
using SGD-momentum optimizer. The initial learning rate α is set to 0.1. During training,
the learning rate is decayed for every 30-epochs with decay ratio γ “ 0.1. We tried different
Gaussian smoothing parameter σ P t0.50, 1.00u, and consider the best hyper-parameter
configuration for each σ. Then, we use DRT to finetune base models with the learning rate
α “ 5 ˆ 10´3 for another 90 epochs. Due to the consideration of achieving high certified
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accuracy on large radii, we choose large DRT training hyper-parameter ρ1 and ρ2 in practice,
which lead to relatively low benign accuracy.
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APPENDIX E: APPENDIX FOR CHAPTER 7

Below is an overview of this appendix.

• Appendix E.1 contains the proofs for TSS general framework, which is introduced
in Section 7.3.

• Appendix E.2 contains the theorem statements and proofs for the robustness condi-
tions derived for common smoothing distributions. These statements are instantiations
of Theorem 7.1, and serve for both certifying resolvable transformations and differen-
tially resolvable transformations.

• Appendix E.3 contains the proofs of robustness conditions for various resolvable
transformations.

• Appendix E.4 contains the proofs of general theorems for certifying differentially
resolvable transformations.

• Appendix E.5 formally defines the rotation and scaling transformations, two typical
differentially resolvable transformations.

• Appendix E.6 proves our supporting theorems for computing the interpolation bound,
which is used when certifying differentially resolvable transformations.

• Appendix E.7 contains concrete algorithm descriptions for certifying differentially
resolvable transformations.

• Appendix E.8 presents the omitted details in experiments, including experiment
settings, detailed discussion of baseline approaches, implementation details, and addi-
tional results.

E.1 PROOFS FOR GENERAL CERTIFICATION FRAMEWORK

Here we provide the proof for Theorem 7.1. For that purpose, recall the following definition
from the main part of this chapter:

Definition 7.1 (restated). Let ϕ : X ˆ Z Ñ X be a transformation, ε „ Pε a random
variable taking values in Z and let h : X Ñ Y be a base classifier. We define the ε-smoothed
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classifier g : X Ñ Y as gpx; εq “ argmaxyPY qpy|x; εq where q is given by the expectation
with respect to the smoothing distribution ε, i.e.,

qpy|x; εq :“ Epppy|ϕpx, εqqq. (E.1)

Here, we additionally define the notion of level sets separately. These sets originate from
statistical hypothesis testing correspond to rejection regions of likelihood ratio tests.

Definition E.1 (Lower level sets). Let ε0 „ P0, ε1 „ P1 be Z-valued random variables with
probability density functions f0 and f1 with respect to a measure µ. For t ě 0 we define
lower and strict lower level sets as

St :“
␣

z P Z : Λpzq ă t
(

, St :“
␣

z P Z : Λpzq ď t
(

,

where Λpzq :“
f1pzq

f0pzq
.

(E.2)

We also make the following definition in order to reduce clutter and simplify the notation.
This definition will be used throughout the proofs presented here.

Definition E.2 (ppA, pBq-Confident Classifier). Let x P X , yA P Y and pA, pB P r0, 1s with
pA ą pB. We say that the ε-smoothed classifier q is ppA, pBq-confident at x if

qpyA|x; εq ě pA ě pB ě max
y‰yA

qpy|x; εq. (E.3)

E.1.1 Auxiliary Lemmas

Lemma E.1. Let ε0 and ε1 be random variables taking values in Z and with probability
density functions f0 and f1 with respect to a measure µ. Denote by Λ the likelihood ratio
Λpzq “ f1pzq{f0pzq. For p P r0, 1s let τp :“ inftt ě 0: P0pStq ě pu. Then, it holds that

P0

´

Sτp

¯

ď p ď P0

´

Sτp

¯

. (E.4)

Proof. We first show the RHS of inequality (E.4). This follows directly from the definition of
τp if we show that the function t ÞÑ P0

´

St

¯

is right-continuous. For that purpose, let t ě 0

and let ttnun be a sequence in Rě0 such that tn Ó t. Define the sets An :“ tz : Λpzq ď tnu

and note that An`1 Ď An. Clearly, if z P St, then @n : Λpzq ď t ď tn, thus z P XnAn and
hence St Ď XnAn. If on the other hand z P XnAn, then @n : Λpzq ď tn Ñ t as n Ñ 8 and
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thus z P St, yielding St “ XnAn. Hence for any t ě 0 we have that

lim
nÑ8

P0 pAnq “ P0

˜

č

n

An

¸

“ P0 pStq . (E.5)

Thus, the function t ÞÑ P0

´

St

¯

is right continuous and in particular it follows that P0

´

Sτp

¯

ě

p. We now show the LHS of inequality (E.4). Consider the sets Bn :“ tz : Λpzq ă τp ´ 1{nu

and note that Bn Ď Bn`1. Clearly, if z P YnBn, then Dn such that Λpzq ă τp ´ 1{n ă τp and
thus z P Sτp . If on the other hand z P Sτp , then we can choose n large enough such that
Λpzq ă τp ´ 1{n and thus z P YnBn yielding Sτp “ YnBn. Furthermore, by the definition of
τp and since for any n P N we have that P0pBnq “ P0

`

Spτp ´ 1{nq
˘

ă p it follows that

P0

´

Sτp

¯

“ P0

˜

ď

n

Bn

¸

“ lim
nÑ8

P0 pBnq ď p (E.6)

concluding the proof. QED.

Lemma E.2. Let ε0 and ε1 be random variables taking values in Z and with probability
density functions f0 and f1 with respect to a measure µ. Let h : Z Ñ r0, 1s be a determinstic
function. Then, for any t ě 0 the following implications hold:

(i) For any S Ď Z with St Ď S Ď St the following implication holds:

Erhpε0qs ě P0pSq ñ Erhpε1qs ě P1pSq. (E.7)

(i) For any S Ď Z with St
c
Ď S Ď St

c the following implication holds:

Erhpε0qs ď P0pSq ñ Erhpε1qs ď P1pSq. (E.8)

Proof. We first prove (i). For that purpose, consider

Erfpε1qs ´ P1pSq “

ż

hf1 dµ´

ż

S

f1 dµ (E.9)

“

ż

Sc

hf1 dµ´

ˆ
ż

S

p1´ hqf1 dµ

˙

(E.10)

“

ż

Sc

hΛf0 dµ´

ˆ
ż

S

p1´ hqΛf0 dµ

˙

(E.11)

ě t ¨

ż

Sc

hf0 dµ´ t ¨

ˆ
ż

S

p1´ hqf0 dµ

˙

(E.12)
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“ t ¨

ˆ
ż

hf0 dµ´

ż

S

f0 dµ

˙

(E.13)

“ t ¨
`

Erfpε0qs ´ P0pSq
˘

ě 0. (E.14)

The inequality in (E.12) follows from the fact that whenever z P Sc, then f1pzq ě t ¨ f0pzq

and if z P S, then f1pzq ď t ¨f0pzq since S is a lower level set. Finally, the inequality in (E.14)
follows from the assumption. The proof of piiq is analogous and omitted here. QED.

E.1.2 Proof of Theorem 7.1

Theorem 7.1 (restated). Let ε0 „ P0 and ε1 „ P1 be Z-valued random variables with
probability density functions f0 and f1 with respect to a measure µ on Z and let ϕ : XˆZ Ñ

X be a semantic transformation. Suppose that yA “ gpx; ε0q and let pA, pB P r0, 1s be
bounds to the class probabilities, i.e.,

qpyA|x, ϵ0q ě pA ą pB ě max
y‰yA

qpy|x, ϵ0q. (E.15)

For t ě 0, let St, St Ď Z be the sets defined as St :“ tf1{f0 ă tu and St :“ tf1{f0 ď tu and
define the function ξ : r0, 1s Ñ r0, 1s by

ξppq :“ suptP1pSq : Sτp Ď S Ď Sτpu

where τp :“ inftt ě 0: P0pStq ě pu.
(E.16)

If the condition
ξppAq ` ξp1´ pBq ą 1 (E.17)

is satisfied, then it is guaranteed that gpx; ε1q “ gpx; ε0q.

Proof. For ease of notation, let ζ be the function defined by

t ÞÑ ζptq :“ P0pStq (E.18)

and notice that τp “ ζ´1ppq where ζ´1 denotes the generalized inverse of ζ. Furthermore, let
τA :“ τpA , τB :“ τ1´pB , SA :“ SpτAq, SB :“ SpτBq, SA :“ SpτAq and SB :“ SpτBq. We first
show that qpyA| x, ε1q is lower bounded by ξpτAq. For that purpose, note that by Lemma E.1
we have that ζpτAq “ P0pSAq ě pA ě P0pSAq. Thus, the collection of sets

SA :“ tS Ď Z : SA Ď S Ď SA, P0pSq ď pAu (E.19)
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is not empty. Pick some A P SA arbitrary and note that, since by assumption gp¨; ε0q is
ppA, pBq-confident at x it holds that

EpppyA|ϕpx, ε0qqq “ qpyA|x; ε0q ě pA ě P0pAq. (E.20)

Since SA Ď A Ď SA we can apply part piq of Lemma E.2 and obtain the lower bound

qpyA|x, ε1q “ EpppyA|ϕpx, ε1qqq ě P1pAq. (E.21)

Since A P SA was arbitrary, we take the sup over all A P SA and obtain

qpyA|x; ε1q ě sup
APSA

P1pAq “ ξppAq (E.22)

We now show that for any y ‰ yA the prediction qpy|x; ε1q is upper bounded by 1´ξp1´pBq.
For that purpose, note that by Lemma E.1 we have that ζpτBq “ P0pSAq ě 1´pB ě P0pSBq.
Thus, the collection of sets

SB :“ tS Ď Z : SB Ď S Ď SB, P0pSq ď 1´ pBu (E.23)

is not empty. Pick some B P SA arbitrary and note that, since by assumption gp¨; ε0q is
ppA, pBq-confident at x it holds that

Epppy|ϕpx, ε0qqq “ qpy|x; ε0q ď pB “ 1´ p1´ pBq ď 1´ P0pBq. (E.24)

Since ScB Ď Bc Ď S
c

B we can apply part piiq of Lemma E.2 and obtain the upper bound

qpy|x; ε1q “ Epppy|ϕpx, ε1qqq ď 1´ P1pBq. (E.25)

Since B P SB was arbitrary, we take the inf over all B P SB and obtain

qpy|x; ε1q ď inf
BPSB

p1´ P1pBqq “ 1´ ξp1´ pBq. (E.26)

Combining together (E.26) and (E.22), we find that, whenever

ξppAq ` ξp1´ pBq ą 1 (E.27)

it is guaranteed that
qpyA|x; ε1q ą max

y‰yA
qpy|x; ε1q (E.28)
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what concludes the proof. QED.

E.2 PROOFS FOR CERTIFICATION WITH DIFFERENT SMOOTHING
DISTRIBUTIONS

Here, we instantiate Theorem 7.1 with different smoothing distributions and solve the
robustness condition (7.6) for the case where the distribution of ε1 results from shifting the
distribution of ε0, i.e., ε1 “ α` ε0. For ease of notation, let ζ : Rě0 Ñ r0, 1s be the function
defined by

t ÞÑ ζptq :“ P0

´

St

¯

(E.29)

where P0 is the distribution of ε0 and St is a lower level set; recall that the definitions of
lower level sets is

St :“
␣

z P Z : Λpzq ă t
(

, St :“
␣

z P Z : Λpzq ď t
(

,

where Λpzq :“
f1pzq

f0pzq
.

(E.30)

Note that the generalized inverse of ζ corresponds to τp, i.e.,

ζ´1ppq “ inftt ě 0| ζptq ě pu “ τp (E.31)

and the function ξ is correspondingly given by

ξppq “ suptP1pSq|Spζ´1ppqq Ď S Ď Spζ´1ppqqu (E.32)

E.2.1 Gaussian Smoothing

Corollary E.1. Suppose Z “ Rm, Σ :“ diagpσ2
1, . . . , σ

2
mq, ε0 „ N p0, Σq and ε1 :“ α ` ε0

for some α P Rm. Suppose that the ε0-smoothed classifier g is ppA, pBq-confident at x P X
for some yA P Y . Then, it holds that qpyA|x; ε1q ą maxy‰yA qpy|x; ε1q if α satisfies

g

f

f

e

m
ÿ

i“1

ˆ

αi
σi

˙2

ă
1

2

`

Φ´1ppAq ´ Φ´1ppBq
˘

. (E.33)

Proof. By Theorem 7.1 we know that if ε1 satisfies

ξppAq ` ξp1´ pBq ą 1, (E.34)
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then it is guaranteed that
qpyA|x; ε1q ą max

y‰yA
qpy|x; ε1q. (E.35)

The proof is thus complete if we show that (E.34) reduces to (E.33). For that purpose,
denote by f0 and f1 density functions of ε0 and ε1, respectively. Let A :“ Σ´1 and note that
the bilinear form pz1, z2q ÞÑ zT1 Az2 “: xz1, z2yA defines an inner product on Rm. Let z P Rm

and consider

Λpzq “
f1pzq

f0pzq
“

exp
`

´1
2
xz ´ α, z ´ αyA

˘

exp
`

´1
2
xz, zyA

˘ “ exp

ˆ

xz, αyA ´
1

2
xα, αyA

˙

(E.36)

and thus

Λpzq ď t ðñ xz, αyA ď logptq `
1

2
xα, αy. (E.37)

Let Z „ N p0, 1q and notice that

xε0, αyA
a

xα, αyA

d
“ Z

d
“
xε1, αyA ´ xα, αyA

a

xα, αyA
. (E.38)

Let Bt :“ StzSt “ tz : Λpzq “ tu and notice that P0 pBtq “ P1 pBtq “ 0 and P0pStq “ P0pStq.
Similarly, it holds that P1pStq “ P1pStq. The function p ÞÑ ξppq is thus given by

ξppq “ P1

´

Sζ´1ppq

¯

. (E.39)

We compute ζ as

ζptq “ Pr
`

Λpε0q ď t
˘

“ Pr

ˆ

xε0, αyA ď logptq `
1

2
xα, αyA

˙

“ Φ

˜

logptq ` 1
2
xα, αyA

a

xα, αyA

¸

(E.40)

and for p P r0, 1s its inverse is

ζ´1ppq “ exp

ˆ

Φ´1ppq
a

xα, αyA ´
1

2
xα, αyA

˙

. (E.41)

Thus

Pr
`

Λpε1q ď ζ´1ppq
˘

(E.42)
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“ Pr

˜

xε1, αyA ´ xα, αyA
a

xα, αyA
ď

logpζ´1ppqq ´ 1
2
xα, αyA

a

xα, αyA

¸

(E.43)

“ Φ

¨

˚

˝

´

Φ´1ppq
a

xα, αyA ´
1
2
xα, αyA

¯

´ 1
2
xα, αyA

a

xα, αyA

˛

‹

‚

(E.44)

“ Φ
´

Φ´1ppq ´
a

xα, αyA

¯

. (E.45)

Finally, algebra shows that

Φ
´

Φ´1ppAq ´
a

xα, αyA

¯

` Φ
´

Φ´1p1´ pBq ´
a

xα, αyA

¯

ą 1 (E.46)

is equivalent to
g

f

f

e

m
ÿ

i“1

ˆ

αi
σi

˙2

ă
1

2

`

Φ´1ppAq ´ Φ´1ppBq
˘

(E.47)

what concludes the proof. QED.

E.2.2 Exponential Smoothing

Corollary E.2. Suppose Z “ Rm
ě0, fix some λ ą 0 and let ε0,i iid

„ Expp1{λq, ε0 :“

pε0,1, . . . , ε0,mq
T and ε1 :“ α ` ε0 for some α P Rm

ě0. Suppose that the ε0-smoothed classi-
fier g is ppA, pBq-confident at x P X for some yA P Y . Then, it holds that qpyA|x; ε1q ą
maxy‰yA qpy|x; ε1q if α satisfies

}α}1 ă ´
logp1´ pA ` pBq

λ
. (E.48)

Proof. By Theorem 7.1 we know that if ε1 satisfies

ξppAq ` ξp1´ pBq ą 1, (E.49)

then it is guaranteed that
qpyA|x; ε1q ą max

y‰yA
qpy|x; ε1q. (E.50)

The proof is thus complete if we show that (E.49) reduces to (E.48). For that purpose,
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denote by f0 and f1 density functions of ε0 and ε1, respectively, and note that

f1pzq “

$

&

%

λ ¨ expp´λ}z ´ α}1q, minipzi ´ αiq ě 0,

0, otherwise,
(E.51)

f0pzq “

$

&

%

λ ¨ expp´λ}z}1q, minipziq ě 0,

0, otherwise,
(E.52)

and @i, zi ´ αi ď zi and hence f0pzq “ 0ñ f1pzq “ 0. Thus

Λpzq “
f1pzq

f0pzq
“

$

&

%

exp
`

λ ¨ }α}1
˘

minipzi ´ αiq ě 0,

0, otherwise.
(E.53)

Let S0 :“ tz P Rm
ě0 : minipzi ´ αiq ă 0u and note that due to independence

P0 pS0q “ Pr

˜

m
ď

i“1

tε0,i ă αiu

¸

(E.54)

“ 1´ Pr

˜

m
č

i“1

tε0,i ě αiu

¸

“ 1´
m
ź

i“1

Pr
`

ε0,i ě αi
˘

(E.55)

“ 1´
m
ź

i“1

´

1´
`

1´ exp p´λαiq
˘

¯

(E.56)

“ 1´ exp
`

´λ}α}1
˘

. (E.57)

Let tα :“ exppλ}α}1q and compute ζ as

ζptq “ Pr
`

Λpε0q ď t
˘

(E.58)

“ Pr

ˆ

tmin
i
pε0,i ´ αiq ě 0u ď t ¨ exp

`

´λ}α}1
˘

˙

(E.59)

“

$

&

%

1´ exp
`

´λ}α}1
˘

t ă tα,

1 t ě tα.
(E.60)

Recall that ζ´1ppq :“ inftt ě 0: ζptq ě pu for p P r0, 1s and hence

ζ´1ppq “

$

&

%

0 p ď 1´ expp´λ}α}1q,

exppλ}α}1q p ą 1´ expp´λ}α}1q.
(E.61)
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In order to evaluate ξ we compute the lower and strict lower level sets at t “ ζ´1ppq. Recall
that St “ tz P Rm

ě0 : Λpzq ă tu and St “ tz P Rm
ě0 : Λpzq ď tu and consider

Sζ´1ppq “

ˆ

Sc0 X

!

z P Rmě0 : exppλ}α}1q ă ζ´1ppq

)

˙

Y

ˆ

S0 X

!

z P Rmě0 | 0 ă ζ´1ppq

)

˙

(E.62)

“

$

&

%

∅ p ď 1´ expp´λ}α}1q,

S0 p ą 1´ expp´λ}α}1q
(E.63)

and

Sζ´1ppq “

ˆ

Sc0 X

!

z P Rmě0 : exppλ}α}1q ď ζ´1ppq

)

˙

9Y

ˆ

S0 X

!

z P Rmě0 : 0 ď ζ´1ppq

)

˙

(E.64)

“

$

&

%

S0 p ď 1´ expp´λ}α}1q,

Rm
` p ą 1´ expp´λ}α}1q.

(E.65)

Suppose that p ď 1 ´ expp´λ}α}1q. Then we have that Sζ´1ppq “ ∅ and Sζ´1ppq “ S0 and
hence

p ď 1´ expp´λ}α}1q

ñ ξppq “ suptP1pSq : S Ď S0 ^ P0pSq ď pu “ 0.
(E.66)

Condition (E.49) can thus be satisfied only if pA ą 1 ´ expp´λ}α}1q and 1 ´ pB ą 1 ´

expp´λ}α}1q. In this case Sζ´1ppq “ S0 and Sζ´1ppq “ Rm
ě0
. For p P r0, 1s let Sp “ tS Ď

Rm
ě0 : S0 Ď S Ď Rm

ě0, P0pSq ď pu. Then

p ą 1´ expp´λ}α}1q ñ ξppq “ sup
SPSp

P1pSq. (E.67)

We can write any S P Sp as the disjoint union S “ S0 9YT for some T Ď Rm
ě0 such that

P0pS0 9YT q ď p. Note that P1 pS0q “ 0 and since S0 X T “ ∅ any z P T satisfies 0 ď

mini pzi ´ αiq ď mini zi and hence Λpzq “ exppλ}α}1q. Thus

P1 pSq “ P1 pT q “

ż

T

f1pzq dz (E.68)

“

ż

T

exppλ}α}1qf0pzq dz “ exppλ}α}1q ¨ P0 pT q . (E.69)

Thus, The supremum of the left hand side over all S P Sp equals the supremum of the right
hand side over all T P tT 1 Ď Sc0 : P0pT

1q ď 1´ P0pS0qu

sup
SPSp

P1 pSq “ exppλ}α}1q ¨ sup tP1pT
1q : T 1 Ď Sc0, P0pT

1q ď p´ P0pS0qu (E.70)
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“ exppλ}α}1q ¨ pp´ P0pS0qq. (E.71)

Computing ξ at pA thus yields

ξppAq “ sup
SPSpA

P1 pSq “ exppλ}α}1q ¨
`

pA ´ P0 pS0q
˘

(E.72)

“ exppλ}α}1q ¨

ˆ

pA ´
´

1´ exp
`

´λ}α}1
˘

¯

˙

(E.73)

“ exppλ}α}1q ¨ ppA ` exp
`

´λ}α}1
˘

´ 1q (E.74)

where the third equality follows from (E.57). Similarly, computing ξ at 1´ pB yields

ξp1´ pBq “ sup
SPS1´pB

P1 pSq (E.75)

“ exppλ}α}1q ¨
`

1´ pB ´ P0 pS0q
˘

(E.76)

“ exppλ}α}1q ¨

ˆ

1´ pB ´
´

1´ exp
`

´λ}α}1
˘

¯

˙

(E.77)

“ exppλ}α}1q ¨
´

´pB ` exp
`

´λ}α}1
˘

¯

. (E.78)

Finally, condition (E.49) is satisfied whenever α satisfies

exppλ}α}1q ¨
´

pA ` exp
`

´λ}α}1
˘

´ 1
¯

` exppλ}α}1q ¨
´

´pB ` exp
`

´λ}α}1
˘

¯

ą 1

(E.79)

ðñ expp´λ}α}1q ` pB ´ expp´λ}α}1q ă pA ` exp
`

´λ}α}1
˘

´ 1 (E.80)
ðñ 1´ pA ` pB ă exp

`

´λ}α}1
˘

(E.81)

ðñ }α}1 ă ´
logp1´ pA ` pBq

λ
(E.82)

what completes the proof. QED.

E.2.3 Uniform Smoothing

Corollary E.3. Suppose Z “ Rm, and ε0 „ Upra, bsmq for some a ă b. Set ε1 :“ α` ε0 for
α P Rm. Suppose that the ε0-smoothed classifier g is ppA, pBq-confident at x P X for some
yA P Y . Then, it holds that qpyA|x; ε1q ą maxy‰yA qpy|x; ε1q if α satisfies

1´

ˆ

pA ´ pB
2

˙

ă

m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

(E.83)
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where p¨q` :“ maxt¨, 0u.

Proof. By Theorem 7.1 we know that if ε1 satisfies

ξppAq ` ξp1´ pBq ą 1, (E.84)

then it is guaranteed that
qpyA|x; ε1q ą max

y‰yA
qpy|x; ε1q. (E.85)

The proof is thus complete if we show that (E.84) reduces to (E.83). For that purpose,
denote by f0 and f1 density functions of ε0 and ε1, respectively, and let I0 “ ra, bsm and
I1 :“

śm
i“1ra` αi, b` αis bet the support of ε0 and ε1. Consider

f0pzq “

$

&

%

pb´ aq´m z P I0,

0 otherwise
(E.86)

f1pzq “

$

&

%

pb´ aq´m z P I1,

0 otherwise.
(E.87)

Let S0 :“ I0zI1. Then, for any z P I0 Y I1

Λpzq “
f1pzq

f0pzq
“

$

’

’

’

&

’

’

’

%

0 z P S0,

1 z P I0 X I1,

8 z P I1zI0.

(E.88)

Note that

P0 pS0q “ 1´ P0 pI1q (E.89)

“ 1´
m
ź

i“1

P
`

a` αi ď ε0,i ď b` αi
˘

(E.90)

“ 1´
m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

(E.91)

where pxq` “ maxtx, 0u. We then compute ζ for t ě 0

ζptq “ P
`

Λpε0q ď t
˘

“

$

&

%

P0 pS0q t ă 1,

P0 pI0q t ě 1.
“

$

’

&

’

%

1´
śm

i“1

´

1´ |αi|

b´a

¯

`
t ă 1,

1 t ě 1.
(E.92)
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Recall that ζ´1ppq :“ inftt ě 0: ζptq ě pu for p P r0, 1s and hence

ζ1ppq “

$

’

&

’

%

0 p ď 1´
śm

i“1

´

1´ |αi|

b´a

¯

`
,

1 p ą 1´
śm

i“1

´

1´ |αi|

b´a

¯

`
.

(E.93)

In order to evaluate ξ, we compute the lower and strict lower level sets at t “ ζ´1ppq. Recall
that St “ tz P Rm

ě0 : Λpzq ă tu and St “ tz P Rm
ě0 : Λpzq ď tu and consider

Sζ´1ppq “

$

’

&

’

%

∅ p ď 1´
śm

i“1

´

1´ |αi|

b´a

¯

`
,

S0 p ą 1´
śm

i“1

´

1´ |αi|

b´a

¯

`

(E.94)

and

Sζ´1ppq “

$

’

&

’

%

S0 p ď 1´
śm

i“1

´

1´ |αi|

b´a

¯

`
,

I0 p ą 1´
śm

i“1

´

1´ |αi|

b´a

¯

`

(E.95)

Suppose p ď 1´
śm

i“1

´

1´ |αi|

b´a

¯

`
. Then Sζ´1ppq “ ∅ and Sζ´1ppq “ S0 and hence

p ď 1´
m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

ñ ξppq “ suptP1pSq : S Ď S0, P0pSq ď pu “ 0. (E.96)

Condition (E.84) can thus be satisfied only if pA ą 1 ´
śm

i“1

´

1´ |αi|

b´a

¯

`
and 1 ´ pB ą

1´
śm

i“1

´

1´ |αi|

b´a

¯

`
. In this case Sζ´1ppq “ S0 and Sζ´1ppq “ I0. For p P r0, 1s let Sp “ tS Ď

Rm : S0 Ď S Ď I0, P0pSq ď pu. Then

p ą 1´
m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

ñ ξppq “ sup
SPSp

P1pSq. (E.97)

We can write any S P Sp as the disjoint union S “ S0 9YT for some T Ď I0 X I1 such that
P0pS0 9YT q ď p. Note that P1 pS0q “ 0 and for any z P T , we have f0pzq “ f1pzq. Hence

P1 pSq “ P1pT q “ P0pT q (E.98)

ď p´ P0pS0q “ p´

˜

1´
m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

¸

. (E.99)
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Thus, The supremum of the left hand side over all S P Sp equals the supremum of the right
hand side over all T P tT 1 Ď I0 X I1 : P0pT

1q ď 1´ P0pS0qu

sup
SPSp

P1 pSq “ sup tP1pT
1q : T 1 Ď I0 X I1,P0pT

1q ď p´ P0pS0qu (E.100)

“ p´

˜

1´
m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

¸

. (E.101)

Hence, computing ξ at pA and 1´ pB yields

ξppAq “ pA ´

˜

1´
m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

¸

, (E.102)

ξp1´ pBq “ 1´ pB ´

˜

1´
m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

¸

. (E.103)

Finally, condition (E.84) is satisfied whenever α satisfies

1´

¨

˝1´ pB ´

˜

1´
m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

¸

˛

‚ă pA ´

˜

1´
m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

¸

(E.104)

ðñ

pB ` 1´
m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

ă pA ´ 1`
m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

(E.105)

ðñ 2´ pA ` pB ă 2 ¨
m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

(E.106)

ðñ 1´

ˆ

pA ´ pB
2

˙

ă

m
ź

i“1

ˆ

1´
|αi|

b´ a

˙

`

(E.107)

what concludes the proof. QED.

E.2.4 Laplacian Smoothing

Corollary E.4. Suppose Z “ R and ε0 „ Lp0, bq follows a Laplace distribution with
mean 0 and scale parameter b ą 0. Let ε1 :“ α ` ε0 for α P R. Suppose that the ε0-
smoothed classifier g is ppA, pBq-confident at x P X for some yA P Y . Then, it holds that
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qpyA|x; ε1q ą maxy‰yA qpy|x; ε1q if α satisfies

|α| ă

$

&

%

´b ¨ log
`

4 pB p1´ pAq
˘

ppA “
1
2
^ pB ă

1
2
q _ ppA ą

1
2
^ pB “

1
2
q,

´b ¨ log p1´ pA ` pBq pA ą
1
2
^ pB ă

1
2
.

(E.108)

Proof. By Theorem 7.1 we know that if ε1 satisfies

ξppAq ` ξp1´ pBq ą 1, (E.109)

then it is guaranteed that
qpyA|x; ε1q ą max

y‰yA
qpy|x; ε1q. (E.110)

The proof is thus complete if we show that (E.109) reduces to (E.108). For that purpose
denote by f0 and f1 density functions of ε0 and ε1, respectively, and consider

f0pzq “
1

2b
exp

ˆ

´
|z|

b

˙

, f1pzq “
1

2b
exp

ˆ

´
|z ´ α|

b

˙

. (E.111)

Due to symmetry, assume without loss of generality that α ě 0. Then for z P R

Λpzq “
f1pzq

f0pzq
“ exp

ˆ

´
|z ´ α| ´ |z|

b

˙

(E.112)

“

$

’

’

’

&

’

’

’

%

exp
`

´α
b

˘

z ă 0,

exp
`

2z´α
b

˘

0 ď z ă α,

exp
`

α
b

˘

z ě α.

(E.113)

Note that the CDFs for ε0 and ε1 are given by

F0pzq “

$

&

%

1
2
exp

`

z
b

˘

z ď 0,

1´ 1
2
exp

`

´ z
b

˘

z ą 0,
(E.114)

F1pzq “

$

&

%

1
2
exp

`

z´α
b

˘

z ď α,

1´ 1
2
exp

`

´ z´α
b

˘

z ą α.
(E.115)
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Note that for exp
`

´α
b

˘

ď t ă exp
`

α
b

˘

we have

P0

˜

exp

ˆ

2ε0 ´ α

b

˙

ď t ^ 0 ď ε0 ă α

¸

“ P0

˜

exp

ˆ

´
α

b

˙

ď exp

ˆ

2ε0 ´ α

b

˙

ď t

¸ (E.116)

“ P0

ˆ

0 ď ε0 ď
b logptq ` α

2

˙

(E.117)

“ F0

ˆ

b logptq ` α

2

˙

´ F0p0q (E.118)

“
1

2
´

1

2
exp

˜

´
1

b

ˆ

b logptq ` α

2

˙

¸

(E.119)

“
1

2
´

1

2
?
t
exp

ˆ

´
α

2b

˙

. (E.120)

Computing ζ yields

ζptq “ Pr
`

Λpε0q ď t
˘

(E.121)

“ Pr

˜

exp

ˆ

´
α

b

˙

ď t ^ ε0 ă 0

¸

` Pr

˜

exp

ˆ

α

b

˙

ď t ^ ε0 ě α

¸

` Pr

˜

exp

ˆ

2ε0 ´ α

b

˙

ď t ^ 0 ď ε0 ă α

¸ (E.122)

“

$

’

’

’

&

’

’

’

%

0 t ă exp
`

´α
b

˘

,

1´ 1
2

?
t
exp

`

´ α
2b

˘

exp
`

´α
b

˘

ď t ă exp
`

α
b

˘

,

1 t ě exp
`

α
b

˘

.

(E.123)

The inverse is then given by

ζ´1ppq “

$

’

’

’

&

’

’

’

%

0 p ă 1
2
,

1
4p1´pq2

exp
`

´α
b

˘

1
2
ď p ă 1´ 1

2
expp´α

b
q,

exp
`

α
b

˘

p ě 1´ 1
2
expp´α

b
q.

(E.124)

In order to evaluate ξ, we compute the lower and strict lower level sets at t “ ζ´1ppq. Recall
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that St “ tz P R : Λpzq ă tu and St “ tz P R : Λpzq ď tu and consider

Sζ´1ppq “

$

’

’

’

’

&

’

’

’

’

%

∅ p ď 1
2
,

ˆ

´8, b ¨ log
´

1
2p1´pq

¯

˙

1
2
ă p ă 1´ 1

2
exp

`

´α
b

˘

,

p´8, αs , p ě 1´ 1
2
exp

`

´α
b

˘

(E.125)

and

Sζ´1ppq “

$

’

’

’

’

&

’

’

’

’

%

∅ p ă 1
2
,

ˆ

´8, b ¨ log
´

1
2p1´pq

¯

ȷ

1
2
ď p ă 1´ 1

2
exp

`

´α
b

˘

,

R p ě 1´ 1
2
exp

`

´α
b

˘

.

(E.126)

Suppose p ă 1{2. Then Sζ´1ppq “ Sζ´1ppq “ ∅ and hence ξppq “ 0 and condition (E.109)
cannot be satisfied. If p “ 1{2, then Sζ´1ppq “ ∅ and Sζ´1ppq “ p´8, 0s. Note that for
z ď 0 we have f1pzq “ f0pzq expp´α{bq and hence for any S Ď Sζ´1p1{2q we have P1pSq “

expp´α{bq ¨ P0pSq. We can thus compute ξ at 1{2 as

p “
1

2
ñ ξ

`

1{2
˘

“ sup

"

P1pSq : S Ď p´8, 0s, P0pSq ď
1

2

*

“
1

2
. (E.127)

Now suppose 1{2 ă p ă 1 ´ 1{2 expp´α{bq. In this case, Sζ´1ppq “ p´8, b ¨ logp1{2p1´pqqq and
Sζ´1ppq “

´

´8, b ¨ log
`

1{2p1´pq

˘

ı

. Since the singleton tb ¨ logp1{2p1´pqqu has no probability
mass under both P0 and P1, the function ξ is straight forward to compute: if 1

2
ă p ă

1´ 1
2
expp´α

b
q, then

ξppq “ P

˜

ε1 ď b ¨ log

ˆ

1

2p1´ pq

˙

¸

(E.128)

“
1

2
exp

¨

˚

˝

b ¨ log
´

1
2p1´pq

¯

´ α

b

˛

‹

‚

“
1

4p1´ pq
exp

ˆ

´
α

b

˙

. (E.129)

Finally, consider the case where p ě 1´ 1{2 expp´α{bq. Then Sζ´1ppq “ p´8, αs and Sζ´1ppq “

R. Any p´8, αs Ď S Ď R can then be written as S “ p´8, αs 9YT for some T Ď pα, 8q.
Hence

P1pSq “ Prpε1 ď αq ` P1pT q “
1

2
` exp

ˆ

α

b

˙

P0pT q, (E.130)
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P0pSq “ Prpε0 ď αq ` P0pT q “ 1´
1

2
expp´

α

b
q ` P0pT q. (E.131)

Thus, if p ě 1´ 1
2
expp´α

b
q, then

ξ ppq “ sup
␣

P1pSq : p´8, αs Ď S Ď R, P0pSq ď p
(

(E.132)

“
1

2
` sup

"

P1pT q : T Ď pα, 8q, P0pT q ď p´ 1`
1

2
exp

ˆ

´
α

b

˙*

(E.133)

“
1

2
` exp

ˆ

α

b

˙

˜

p´ 1`
1

2
exp

ˆ

´
α

b

˙

¸

(E.134)

“ 1´ exp

ˆ

α

b

˙

p1´ pq . (E.135)

In order to evaluate condition (E.109), consider

1´ ξ p1´ pBq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 pB ą
1
2

1
2

pB “
1
2

1´ 1
4pB

exp
`

´α
b

˘

1
2
ą pB ą exp

`

´α
b

˘

exp
`

α
b

˘

pB exp
`

´α
b

˘

ě pB,

(E.136)

ξ ppAq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 pA ă
1
2

1
2

pA “
1
2

1

4p1´ pAq
exp

ˆ

´
α

b

˙

1
2
ă pA ă 1´ 1

2
expp´α

b
q

1´ exp

ˆ

α

b

˙

p1´ pAq pA ě 1´ 1
2
expp´α

b
q.

(E.137)

Note that the case pB ą 1{2 can be ruled out, since by assumption pA ě pB. If pA “ 1{2, then
we need pB ă 1{2. Thus, if pA “ 1{2, then condition (E.109) is satisfied if pB ă 1{2 and

max

#

1´
1

4pB
exp

ˆ

´
α

b

˙

, exp

ˆ

α

b

˙

¨ pB

+

ă
1

2
(E.138)

ðñ pB ¨ exp

ˆ

α

b

˙

ă
1

2
(E.139)

ðñ α ă ´b ¨ log p2pBq . (E.140)
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Now consider the case where pA ą 1{2. If pB “ 1{2, then condition (E.109) is satisfied if

1

2
ă min

#

1

4p1´ pAq
exp

ˆ

´
α

b

˙

, 1´ exp

ˆ

α

b

˙

p1´ pAq

+

(E.141)

ðñ
1

2
ă 1´ exp

ˆ

α

b

˙

p1´ pAq (E.142)

ðñ α ă ´b ¨ log
`

2p1´ pAq
˘

. (E.143)

If on the other hand, pA ą 1{2 and pB ă 1{2, condition (E.109) is satisfied if

max

#

1´
1

4pB
exp

ˆ

´
α

b

˙

, exp

ˆ

α

b

˙

¨ pB

+

ă

min

#

1

4p1´ pAq
exp

ˆ

´
α

b

˙

, 1´ exp

ˆ

α

b

˙

p1´ pAq

+ (E.144)

ðñ pB ¨ exp

ˆ

α

b

˙

ă 1´ exp

ˆ

α

b

˙

p1´ pAq (E.145)

ðñ α ă ´b ¨ log p1´ pA ` pBq . (E.146)

Finally, we get that condition (E.109) is satisfied, if

|α| ă

$

&

%

´b ¨ log
`

4 pB p1´ pAq
˘

ppA “
1
2
^ pB ă

1
2
q _ ppA ą

1
2
^ pB “

1
2
q

´b ¨ log p1´ pA ` pBq pA ą
1
2
^ pB ă

1
2

(E.147)

what concludes the proof. QED.

E.2.5 Folded Gaussian Smoothing

Corollary E.5. Suppose Z “ Rě0, ε0 „ |N p0, σq| and ε1 :“ α`ε0 for some α ą 0. Suppose
that the ε0-smoothed classifier g is ppA, pBq-confident at x P X for some yA P Y . Then, it
holds that qpyA|x; ε1q ą maxy‰yA qpy|x; ε1q if α satisfies

α ă σ ¨

˜

Φ´1

ˆ

1`mintpA, 1´ pBu

2

˙

´ Φ´1

ˆ

3

4

˙

¸

. (E.148)

Proof. By Theorem 7.1 we know that if ε1 satisfies

ξppAq ` ξp1´ pBq ą 1, (E.149)
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then it is guaranteed that
qpyA|x; ε1q ą max

y‰yA
qpy|x; ε1q. (E.150)

The proof is thus complete if we show that (E.149) reduces to (E.148). For that purpose
denote by f0 and f1 density functions of ε0 and ε1, respectively, and consider

f0pzq “

$

’

&

’

%

2?
2πσ

exp
´

´ z2

2σ2

¯

z ě 0

0 z ă 0
(E.151)

f1pzq “

$

’

&

’

%

2?
2πσ

exp
´

´
pz´αq2

2σ2

¯

z ě α

0 z ă α.
(E.152)

Then, for z ě 0,

Λpzq “
f1pzq

f0pzq
“

$

’

&

’

%

0 z ă α,

exp
´

zα
σ2 ´

α2

2σ2

¯

z ě α.
(E.153)

Let tα :“ exp
´

α2

2σ2

¯

and suppose t ă tα. Then

ζptq “ Pr
`

Λpε0q ď t
˘

“ Pr pε0 ă αq (E.154)

“

ż α

0

2
?
2πσ

exp

˜

´
z2

2σ2

¸

dz (E.155)

“ 2 ¨

ż α{σ

0

1
?
2π

exp

˜

´
s2

2

¸

ds “ 2 ¨ Φ

ˆ

α

σ

˙

´ 1. (E.156)

If t ě tα, then

ζptq “ Pr
`

Λpε0q ď t
˘

(E.157)

“ Pr

˜

ε0 α

σ2
´

α2

2σ2
ď logptq ^ ε0 ě α

¸

` Pr pε0 ă αq (E.158)

“ Pr

˜

ε0 ď
σ2

α
logptq `

1

2
α

¸

“ 2 ¨ Φ

ˆ

σ

α
logptq `

α

2σ

˙

´ 1 (E.159)
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and hence

ζptq “

$

&

%

2 ¨ Φ
`

α
σ

˘

´ 1 t ă tα

2 ¨ Φ
`

σ
α
log ptq ` α

2σ

˘

´ 1 t ě tα.
(E.160)

Note that ζptαq “ 2¨Φ
`

α
σ

˘

´1 and let pα :“ ζptαq. Recall that ζ´1ppq :“ inftt ě 0: ζptq ě pu,
which yields

ζ´1ppq “

$

’

&

’

%

0 p ď pα

exp

ˆ

α
σ
Φ´1

´

1`p
2

¯

´ α2

2σ2

˙

p ą pα.
(E.161)

In order to evaluate ξ we compute the lower and strict lower level sets at t “ ζ´1ppq. Recall
that St “ tz P Rě0 : Λpzq ă tu and St “ tz P Rě0 : Λpzq ď tu. Let S0 :“ r0, αq and note
that if p ď pα, we have ζ´1ppq “ 0 and hence Sζ´1ppq “ ∅ and Sζ´1ppq “ S0. If, on the other
hand p ą pα, then

Sζ´1ppq “
␣

z ě 0: Λpzq ă ζ´1ppq
(

(E.162)

“ S0 Y

#

z ě α :
z α

σ2
´

α2

2σ2
ă
α

σ
Φ´1

ˆ

1` p

2

˙

´
α2

2σ2

+

(E.163)

“ S0 Y

#

z ě α : z ă σ ¨ Φ´1

ˆ

1` p

2

˙

+

(E.164)

“ S0 Y

«

α, σ ¨ Φ´1

ˆ

1` p

2

˙

¸

(E.165)

and

Sζ´1ppq “
␣

z ě 0: Λpzq ď ζ´1ppq
(

(E.166)

“ S0 Y

#

z ě α :
z α

σ2
´

α2

2σ2
ď
α

σ
Φ´1

ˆ

1` p

2

˙

´
α2

2σ2

+

(E.167)

“ S0 Y

#

z ě α : z ď σ ¨ Φ´1

ˆ

1` p

2

˙

+

(E.168)

“ S0 Y

«

α, σ ¨ Φ´1

ˆ

1` p

2

˙

ff

(E.169)

“ Sζ´1ppq Y

#

σ ¨ Φ´1

ˆ

1` p

2

˙

+

. (E.170)
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In other words

Sζ´1ppq “

$

’

&

’

%

∅ p ď pα,

S0 Y

„

α, σ ¨ Φ´1
´

1`p
2

¯

˙

p ą pα,
(E.171)

Sζ´1ppq “

$

’

&

’

%

S0 p ď pα,

S0 Y

„

α, σ ¨ Φ´1
´

1`p
2

¯

ȷ

p ą pα.
(E.172)

Let Sp :“ tS Ď Rě0 : Sζ´1ppq Ď S Ď Sζ´1ppq, P0pSq ď pu and recall that ξppq “ supSPSp
P1pSq.

Note that for p ď pα, we have Sp “ tS Ď Rě0 : S Ď S0 ^ P0pSq ď pu and for S Ď S0, it
holds that P1pSq “ 0. Hence

p ď pα ñ ξ ppq “ sup
SPSp

P1pSq “ 0. (E.173)

If p ą pα, then

Sp “
"

S Ď Rě0 : S0 Y

”

α, σ ¨ Φ´1
`

1`p{2
˘

¯

Ď S

Ď S0 Y

”

α, σ ¨ Φ´1
`

1`p{2
˘

ı

, ^P0pSq ď p

*

.

(E.174)

Since the singleton
"

σ ¨ Φ´1
´

1`p
2

¯

*

has no mass under both P0 and P1, we find that if
p ą pα, then

ξ ppq “ P

˜

0 ď ε1 ď σ ¨ Φ´1

ˆ

1` p

2

˙

¸

(E.175)

“ P

˜

0 ď ε0 ď σ ¨ Φ´1

ˆ

1` p

2

˙

´ α

¸

(E.176)

“ 2 ¨ Φ

˜

Φ´1

ˆ

1` p

2

˙

´
α

σ

¸

´ 1. (E.177)

Condition (E.149) can thus be satisfied only if pB ă pA and

2 ¨ Φ

ˆ

α

σ

˙

´ 1 ă mintpA, 1´ pBu ^ ξ ppAq ` ξ p1´ pbq ą 1 (E.178)
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that is equivalent to

α ă σ ¨ Φ´1

ˆ

1`mintpA, 1´ pBu

2

˙

^ Φ

˜

Φ´1

ˆ

1` p1´ pBq

2

˙

´
α

σ

¸

` Φ

˜

Φ´1

ˆ

1` pA
2

˙

´
α

σ

¸

ą
3

2
.

(E.179)

Thus, the following is a sufficient condition for the two inequalities in (E.179) and hence (E.149)
to hold

α ă σ ¨

˜

Φ´1

ˆ

1`mintpA, 1´ pBu

2

˙

´ Φ´1

ˆ

3

4

˙

¸

(E.180)

what completes the proof. QED.

E.3 PROOFS FOR CERTIFYING RESOLVABLE TRANSFORMATIONS

Here, we state the proofs and technical details concerning our results for resolvable trans-
formations. Recall the definition of resolvable transformations from the main part of this
chapter.

Definition 7.2 (restated). A transformation ϕ : X ˆ Z Ñ X is called resolvable if for
any α P Z there exists a resolving function γα : Z Ñ Z that is injective, continuously
differentiable, has non-vanishing Jacobian and for which

ϕpϕpx, αq, βq “ ϕpx, γαpβqq x P X , β P Z. (E.181)

We say that ϕ is additive, if γαpβq “ α ` β.

E.3.1 Proof of Corollary 7.1

Corollary 7.1 (restated). Suppose that the transformation ϕ in Theorem 7.1 is resolvable
with resolving function γα. Let α P Z and set ε1 :“ γαpε0q in the definition of the functions
ζ and ξ. Then, if α satisfies condition (7.6), it is guaranteed that gpϕpx, αq; ε0q “ gpx; ε0q.

Proof. Since ϕ is a resolvable transformation, by definition γα is injective, continuously
differentiable and has non-vanishing Jacobian. By Jacobi’s transformation formula (see e.g.,
[163]), it follows that the density of ε1 vanishes outside the image of γα and is elsewhere
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given by
f1pzq “ f0pγ

´1
α pzqq|detpJγ´1

α pzqq| for any z P Impγαq (E.182)

where Jγ´1
α pzq is the Jacobian of γ´1

α pzq. Since f1 is paramterized by α, it follows from Theo-
rem 7.1 that if α satisfies (7.6) it is guaranteed that argmaxy qpy| x, ε1q “ argmaxy qpy| x, ε0q.
The statement of the corollary then follows immediately from the observation that for any
y P Y we have

qpy|x; ε1q “ Epppy|ϕpx, ε1qqq (E.183)
“ Epppy|ϕpx, γαpε0qqqq (E.184)
“ Epppy|ϕpϕpx, αq, ε0qqq (E.185)
“ qpy|ϕpx, αq; ε0q. (E.186)

QED.

E.3.2 Gaussian Blur

Recall that the Gaussian blur transformation is given by a convolution with a Gaussian
kernel

Gαpkq “
1

?
2πα

exp

˜

´
k2

2α

¸

(E.187)

where α ą 0 is the squared kernel radius. Here we show that the transformation x ÞÑ

ϕBpxq :“ x ˚ G is additive.

Lemma 7.1 (restated). The Gaussian blur transformation is additive, i.e., for any α, β ě 0,
we have ϕBpϕBpx, αq, βq “ ϕBpx, α ` βq.

Proof. Note that associativity of the convolution operator implies that

ϕBpϕBpx, αq, βq “ pϕBpx, αq ˚ Gβq (E.188)
“ ppx ˚ Gαq ˚ Gβq (E.189)
“ px ˚ pGα ˚ Gβqq. (E.190)

The claim thus follows, if we can show that pGα ˚ Gβq “ Gα`β. Let F denote the Fourier
transformation and F´1 the inverse Fourier transformation and note that by the convolution
theorem pGα ˚Gβq “ F´1tFpGαq¨FpGβqu. Therefore we have to show that FpGαq¨FpGβq “

362



FpGα`βq. For that purpose, consider

FpGαqpωq “

ż 8

´8

Gαpyq expp´2 πiωyq dy (E.191)

“

ż 8

´8

1
?
2πα

exp

˜

´
y2

2α

¸

exp p´2 πiωyq dy (E.192)

“
1

?
2πα

ż 8

´8

exp

˜

´
y2

2α

¸

`

cos p2πωyq ` i sin p2πωyq
˘

dy (E.193)

piq
“

1
?
2πα

ż 8

´8

exp

˜

´
y2

2α

¸

cos p2πωyq dy (E.194)

piiq
“ exp

`

´ω2π22α
˘

, (E.195)

where piq follows from the fact that the second term is an integral of an odd function over
a symmetric range and piiq follows from

ş8

´8
exp

`

´a y2
˘

cos p2πωyq dy “
a

π
a
expp´pπωq2

a
q

with a “ 1
2α

(see p. 302, eq. 7.4.6 in [2]). This concludes our proof since

pFpGαq ¨ FpGβqqpωq “ exp
`

´ω2π22α
˘

¨ exp
`

´ω2π22β
˘

(E.196)
“ exp

`

´ω2π22pα ` βq
˘

“ FpGα`βqpωq (E.197)

and hence

pGα ˚ Gβq “ F´1tFpGαq ¨ FpGβqu (E.198)
“ F´1tFpGα`βqu “ Gα`β. (E.199)

QED.

Remark E.1. We notice that the preceding theorem naturally extends to higher dimensional
Gaussian kernels of the form

Gαpkq “
1

p2παq
m
2

exp

˜

´
}k}2

2α

¸

, k P Rm. (E.200)

Consider

FpGαqpωq “

ż

Rm

Gαpyq exp
`

´2πixω, yy
˘

dy (E.201)

“
1

p2παq
m
2

ż

Rm

exp

˜

´
}y}22
2α

´ 2πixω, yy

¸

dy (E.202)
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“

m
ź

j“1

¨

˝

1
?
2πα

ż

R
exp

˜

´
y2j
2α
´ 2πiωjyj

¸

dyj

˛

‚ (E.203)

“ exp
´

´}ω}22 π
22α

¯

(E.204)

that leads to pGα ˚Gβq “ Gα`β, and hence additivity.

E.3.3 Brightness and contrast

Recall that the brightness and contrast transformation is defined as

ϕBC : X ˆ R2 Ñ X , px, αq ÞÑ eα1px` α2q. (E.205)

Lemma 7.2 (restated). Let x P X , k P R, ε0 „ N p0, diagpσ2, τ 2qq and
ε1 „ N p0, diagpσ2, e´2kτ 2qq. Suppose that qpy|x; ε0q ě p for some p P r0, 1s and y P Y .
Then

qpy|x; ε1q ě

$

’

’

&

’

’

%

2Φ

ˆ

ekΦ´1
´

1`p
2

¯

˙

´ 1 k ď 0

2
´

1´ Φ
`

ekΦ´1p1´ p
2
q
˘

¯

k ą 0.

(E.206)

Proof. Note that ε0 „ N p0, Σq and ε1 “ Aε0 „ N p0, A2 Σq where

A “

˜

1 0

0 e´k

¸

, Σ “

˜

σ2 0

0 τ 2

¸

(E.207)

and denote by f0 and f1 the probability density functions of ε0 and ε1, respectively, and
denote by P0 and P1 the corresponding probability measures. Recall the Definition of Lower
Level sets (Definition E.1: for t ě 0, (strict) lower level sets are defined as

St :“
␣

z P Z : Λpzq ă t
(

, St :“
␣

z P Z : Λpzq ď t
(

,

where Λpzq :“
f1pzq

f0pzq
.

(E.208)

Furthermore, recall that the function ζ is given by

t ÞÑ ζptq :“ P0

´

St

¯

(E.209)

where P0 is the distribution of ε0 and note that the generalized inverse of ζ corresponds to
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τp, i.e.,
ζ´1ppq “ inftt ě 0| ζptq ě pu “ τp (E.210)

and the function ξ is correspondingly given by

ξppq “ suptP1pSq|Spζ´1ppqq Ď S Ď Spζ´1ppqqu. (E.211)

By assumption we know that Epppy|ϕpx, ε0qqq “ qpy|x; εoq ě p. Note that by Lemma E.1,
for any p P r0, 1s we have that

P0pSζ´1ppqq ď p. (E.212)

Let S Ď Z be such that Sζ´1ppq Ď S Ď Sζ´1ppq and P0pSq ď p. Then, from part piq of
Lemma E.2, it follows that Epppy|ϕpx, ε1qqq “ qpy|x; ε1q ě P1pSq. Note that

Λpzq “
f1pzq

f0pzq
(E.213)

“

`

p2πq2|A2 Σ|
˘´ 1

2 expp´1
2
pzT pA2Σq´1zqq

`

p2πq2|Σ|
˘´ 1

2 expp´1
2
pzT pΣq´1zqq

(E.214)

“
1

|A|
exp

ˆ

´
1

2
zT ppA2 Σq´1 ´ Σ´1q z

˙

(E.215)

“ exp

˜

k ´
z22
2τ 2

´

e2k ´ 1
¯

¸

. (E.216)

Note that, if k “ 0, then ε1 “ ε0 and hence the statement holds in this case. Suppose that
k ą 0 and consider

ζptq “ P0

´

St

¯

“ P

¨

˝exp

˜

k ´
ε20,2
2τ 2

´

e2k ´ 1
¯

¸

ď t

˛

‚ (E.217)

“ 1´ P

˜

ˆ

ε0,2
τ

˙2

ď 2 ¨
k ´ logptq

e2k ´ 1

¸

(E.218)

“ 1´ Fχ2

ˆ

2 ¨
k ´ logptq

e2k ´ 1

˙

(E.219)

“

$

’

’

’

’

&

’

’

’

’

%

0 t “ 0,

1´ Fχ2

´

2 ¨ k´logptq
e2k´1

¯

0 ă t ă ek,

1 t ě ek,

(E.220)

where Fχ2 denotes the CDF of the χ2-distribution with one degree of freedom. Note that for
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any t ě 0 we have that P0pStq “ P0pStq and thus the inverse ζ´1ppq “ inftt ě 0: ζptq ě pu

is given by

ζ´1ppq “

$

’

’

’

’

&

’

’

’

’

%

0 p “ 0

exp
´

k ´ F´1
χ2 p1´ pq ¨

e2k´1
2

¯

0 ă p ă 1

ek p “ 1.

(E.221)

Thus, for any p P r0, 1s, we find that

P0pSζ´1ppqq “ P0pSζ´1ppqq “ ζpζ´1ppqq “ p (E.222)

and

E
0
pppy|ϕpx, ε0qqq “ qpy|x; ε0q ě p “ P0pSζ´1ppqq. (E.223)

Part piq of Lemma E.2 implies that qpy| x; ε1q ě P1pSζ´1ppqq. Computing P1pSζ´1ppqq yields

qpy| x; ε1q ě P1pSζ´1ppqq (E.224)

“ 1´ P

˜

ˆ

ε1,2
τ 2

˙2

ď pk ´ logpζ´1ppqqq
2

e2k ´ 1

¸

(E.225)

“ 1´ P

˜

ˆ

ε0,2
τ 2

˙2

ď pk ´ logpζ´1ppqqq
2e2k

e2k ´ 1

¸

(E.226)

“ 1´ Fχ2

˜

pk ´ logpζ´1ppqqq
2e2k

e2k ´ 1

¸

(E.227)

“ 1´ Fχ2

¨

˚

˝

¨

˝k ´

˜

k ´
e2k ´ 1

2
F´1
χ2 p1´ pq

¸

˛

‚

2e2k

e2k ´ 1

˛

‹

‚

(E.228)

“ 1´ Fχ2

´

e2kF´1
χ2 p1´ pq

¯

. (E.229)

If, on the other hand, k ă 0, then

ζptq “ P0

´

St

¯

(E.230)

“ P

¨

˝exp

˜

k `
ε20,2
2τ 2

ˇ

ˇ

ˇ
e2k ´ 1

ˇ

ˇ

ˇ

¸

ď t

˛

‚ (E.231)

366



“ P

˜

ˆ

ε0,2
τ

˙2

ď 2 ¨
logptq ´ k
ˇ

ˇe2k ´ 1
ˇ

ˇ

¸

(E.232)

“ Fχ2

˜

2 ¨
logptq ´ k
ˇ

ˇe2k ´ 1
ˇ

ˇ

¸

(E.233)

“

$

’

&

’

%

0 t ď ek,

Fχ2

ˆ

2 ¨ logptq´k

|e2k´1|

˙

t ą ek.
(E.234)

A similar computation as in the case where k ą 0 leads to an expression for the inverse
ζ´1ppq “ inftt ě 0| ζptq ě pu

ζ´1ppq “

$

’

&

’

%

0 p “ 0,

exp

ˆ

k ` F´1
χ2 ppq ¨

|e2k´1|
2

˙

p ą 0.
(E.235)

Thus, for any p P r0, 1s, we find that

P0pSζ´1ppqq “ P0pSζ´1ppqq “ ζpζ´1ppqq “ p (E.236)

and
Epppy|ϕpx, ε0qqq “ qpy|x; ε0q ě p “ P0pSζ´1ppqq. (E.237)

Part piq of Lemma E.2 implies that gε1c pxq ě P1pSζ´1ppqq. Computing P1pSζ´1ppqq yields

qpy| x; ε1q ě P1pSζ´1ppqq (E.238)

“ P

˜

ˆ

ε1,2
τ

˙2

ď 2 ¨
logpζ´1ppqq ´ k

|e2k ´ 1|

¸

(E.239)

“ P

˜

ˆ

ε0,2
τ

˙2

ď 2e2k ¨
logpζ´1ppqq ´ k

|e2k ´ 1|

¸

(E.240)

“ Fχ2

¨

˚

˝

¨

˝

˜

k ` F´1
χ2 ppq

|e2k ´ 1|

2

¸

´ k

˛

‚

2 e2k

|e2k ´ 1|

˛

‹

‚

(E.241)

“ Fχ2

´

e2kF´1
χ2 ppq

¯

. (E.242)

Finally, note the following relation between the χ2p1q and the standard normal distribution.
Let Z „ N p0, 1q and denote by Φ the CDF of Z. Then, for any z ě 0, Fχ2pzq “ PrpZ2 ď

zq “ Prp´
?
z ď Z ď

?
zq “ Φp

?
zq ´ Φp´

?
zq “ 2Φp

?
zq ´ 1 and the inverse is thus given
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by F´1
χ2 ppq “ pΦ

´1p
1`p
2
qq2. It follows that

qpy|, x; ε1q ě

$

’

’

&

’

’

%

2Φ

ˆ

ekΦ´1
´

1`p
2

¯

˙

´ 1 k ď 0,

2
´

1´ Φ
`

ekΦ´1p1´ p
2
q
˘

¯

k ą 0,

(E.243)

what concludes the proof. QED.

The following lemma establishes another useful property of the distribution of ε1.

Lemma E.3. Let ε0 „ N p0, diagpσ2, τ 2qq, α “ pk, bqT P R2 and ε1 „ N p0, diagpσ2, e´2kτ 2qq.
Then, for all x P X , it holds that gpϕBCpx, αq; ε0q “ gpx; α ` ε1q.

Proof. Let x P X , and write εi “ pεi,1, εi,2qT for i “ 0, 1. Note that

ϕBCpϕBCpx, αq, ε0q “ eε0,1
`

ϕBCpx, αq ` ε0,2 ¨ ⊮d

˘

“ eε0,1
´

ek px` b ¨ ⊮dq ` ε0,2 ¨ ⊮d

¯

(E.244)

“ eε0,1`k

ˆ

x`
´

b` e´kε0,2

¯

¨ ⊮d

˙

“ ϕBCpx, α ` ε̃0q (E.245)

where ε̃0 “ pε0,1, e´kε0,2q
T . Note that ε̃0 follows a Gaussian distribution since

ε̃0 “ A ¨ ε0, A “

˜

1 0

0 e´k

¸

(E.246)

and hence E pε̃0q “ A ¨ E pε0q “ 0 and

Cov pε̃0q “ E
´

ε0AA
T εT0

¯

“ A2 ¨

˜

σ2 0

0 τ 2

¸

“

˜

σ2 0

0 e´2kτ 2

¸

. (E.247)

The choice ε1 :“ ε̃0 „ N p0, diagpσ2
1, e

´2kσ2
2qq shows that for any y P Y

qpy|ϕBCpx, αq; ε0q “ E
`

ppy|ϕpϕpx, αq, ε0q
˘

(E.248)
“ E

`

ppy|ϕpx, α ` ε1q
˘

(E.249)
“ qpy|x; α ` ε1q (E.250)

what concludes the proof. QED.

These observations, together with the Gaussian robustness bound from Corollary E.1 allow
us to prove Lemma 7.3.
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Lemma 7.3 (restated). Let ε0 and ε1 be as in Lemma 7.2 and suppose that

qpyA|x; ε1q ě p̃A ą p̃B ě max
y‰yA

qpy|x; ε1q. (E.251)

Then it is guaranteed that yA “ gpϕBCpx, αq; ε0q as long as α “ pk, bqT satisfies
d

ˆ

k

σ

˙2

`

ˆ

b

e´kτ

˙2

ă
1

2

`

Φ´1 pp̃Aq ´ Φ´1 pp̃Bq
˘

. (E.252)

Proof. Since ε1 „ N p0, diagpσ2, e´2kτ 2qq, it follows from Corollary E.1 that whenever α “
pk, bqT satisfies

d

ˆ

k

σ

˙2

`

ˆ

b

e´kτ

˙2

ă
1

2

`

Φ´1 pp̃Aq ´ Φ´1 pp̃Bq
˘

, (E.253)

then it is guaranteed that yA “ gpx; ε1q. The statement now directly follows from Lemma E.3.
QED.

E.3.4 Gaussian Blur, Brightness, Contrast, and Translation

Recall that the composition of Gaussian Blur, with brightness, contrast and translation
is defined as

ϕBTBCpx, αq :“ ϕBpϕT pϕBCpx, αk, αbq, αTx, αTyq, αBq, (E.254)

where ϕB, ϕT and ϕBC are Gaussian blur, translation, and brightness and contrast trans-
formations respectively as defined before and α :“ pαk, αb, αTx, αTy, αBq

T P R4 ˆ Rě0 is the
transformation parameter. It is easy to see that this transformation composition satisfies
the following properties:

• (P1) For arbitrary αp1q, αp2q P R4 ˆ Rě0,

ϕBTBCpϕBTBCpx, α
p1qq, αp2qq “ ϕBTBCpx, αq (E.255)

where

α “
´

α
p1q

k ` α
p2q

k , α
p1q

b ` α
p2q

b {e
α

p1q
k ,

α
p1q

Tx ` α
p2q

Tx, α
p1q

Tx ` α
p2q

Tx, α
p1q

B ` α
p2q

B

¯

. (E.256)
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• (P2) For an arbitrary α P R4 ˆ Rě0, define the parameterized operators:

ϕαB :“ ϕBp¨;αBq, ϕαT :“ ϕT p¨;αTx, αTyq,

ϕαBC :“ ϕBCp¨;αk, αbq
(E.257)

and let ϕα1 , ϕα2 , ϕα3 be an arbitrary permutation of the above three operators. Then, we
have that

ϕBTBCpx, αq “ ϕα1 ˝ ϕ
α
2 ˝ ϕ

α
3 pxq. (E.258)

The property (P1) states that ϕBTBC is almost additive where the exception happens only
on the brightness dimension (αb). The brightness dimension is subject to the same contrast
effect implied and proved in Lemma 8 (in main part). The property (P2) states that all the
three transformations ϕB, ϕT , and ϕBC are commutative. The reason is that: (1) ϕBC is a
per-pixel color shift and independent of ϕB and ϕT ; (2) ϕB, Gaussian blur, relies on relative
position of pixels and the translation with reflection padding, ϕT , does not change it.

Based on these two properties, we prove the key results as follows.

Corollary 7.3 (restated). Let x P X , k P R and let ϵ0 :“ pϵa0, ϵ
b
0q
T be a random variable

defined as
ϵa0 „ N p0, diagpσ2

k, σ
2
b , σ

2
T , σ

2
T qq and ϵb0 „ ExppλBq. (E.259)

Similarly, let ϵ1 :“ pϵa1, ϵb1q be a random variable with

ϵa1 „ N p0, diagpσ2
k, e

´2kσ2
b , σ

2
T , σ

2
T qq and ϵb1 „ ExppλBq. (E.260)

For either random variable (denoted as ϵ), recall that qpy|x; ϵq :“ Epppy|ϕBTBCpx, ϵqqq.
Suppose that qpy|x; ϵ0q ě p for some p P r0, 1s and y P Y . Then qpy|x; ϵ1q satisfies Eq. (11).

Proof. According to the commutative property (P2), we can view qpy|x; ϵq as

qpy|x, ϵq “ E
ϵ
ppy|ϕBTBCpx, ϵqq (E.261)

“ E
ϵk,ϵb

E
ϵTx,ϵTy ,ϵB

ppy|ϕBCpϕT pϕBpx, ϵBq, ϵTx, ϵTyq, ϵk, ϵbqq
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

“:q1py|x; ϵk, ϵbq

. (E.262)

Notice that q1py|x; ϵk, ϵbq is a deterministic value in r0, 1s. Its value is dependent on the
distribtuion of ϵTx, ϵTy, ϵB and the underlying base classifier. Luckily, the random variables
ϵ0 and ϵ1 have the same distribution over the components ϵTx, ϵTy and ϵB. Thus, they share
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the same q1 and we write qpy|x; ϵ0q and qpy|x; ϵ1q as

qpy|x; ϵ0q “ E
pϵk,ϵbq„N p0,diagpσ2

k,σ
2
b qq
q1py|x; ϵk, ϵbq, (E.263)

qpy|x; ϵ1q “ E
pϵk,ϵbq„N p0,diagpσ2

k,e
´2kσ2

b qq
q1py|x; ϵk, ϵbq. (E.264)

Now, we directly apply Lemma 7.2 and the desired lower bound for qpy|x; ϵ1q follows. QED.

Lemma 7.6 (restated). Let ϵ0 and ϵ1 be as in Corollary 7.3 and suppose that

qpyA|x; ε1q ě p̃A ą p̃B ě max
y‰yA

qpy|x; ε1q. (E.265)

Then it is guaranteed that yA “ gpϕBTBCpx, αq; ε0q as long as p1
A ą p1

B,

p1
A “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, if p̃A ď 1´ expp´λBαBq,

Φ
´

Φ´1
`

1´ p1´ p̃Aq exppλBαBq
˘

´

b

α2
k{σ2

k `
α2
b{pe´2αkσ2

b q` pα2
Tx`α2

Tyq{σ2
T

˙

,
otherwise

(E.266)

and

p1
B “

$

’

’

’

’

’

&

’

’

’

’

’

%

1, if p̃B ě expp´λBαBq,

1´ Φ
´

Φ´1
`

1´ p̃B exppλBαBq
˘

´

b

α2
k{σ2

k `
α2
b{pe´2αkσ2

b q` pα2
Tx`α2

Tyq{σ2
T

˙

.
otherwise

(E.267)

Proof. We notice that for any y P Y ,

qpy|ϕBTBCpx, αq; ϵ0q

“ E
ϵ0
ppy|ϕBTBCpϕBTBCpx, αq, ϵ0qq (E.268)

pa.q
“ E

ϵ0
p
´

y
ˇ

ˇx; α ` ppϵ0qk, pϵ0qb{e
αk , pϵ0qTx, pϵ0qTy, pϵ0qBq

T
¯

(E.269)
pb.q
“ Eϵ1p

`

y|x;α ` ϵ1
˘

. (E.270)

The step pa.q uses the property (P1) of transformation ϕBTBC , and the step pb.q follows
the definition of ε1 in Corollary 7.3 (we define k :“ αk hereinafter for simplicity). Thus,
gpϕBTBCpx, αq; ϵ0q “ gpx;α`ϵ1q, and the robustness condition is equivalent to gpx;α`ϵ1q “
gpx; ϵ1q “ yA.

According to Theorem 7.1, to prove the robustness, we only need to show that ξpp̃Aq `

371



ξp1 ´ p̃Bq ą 1 given p1
A ą p1

B. Note that in the definition of ξ, the density functions f0 and
f1 are for distributions of ϵ1 „ P0 and pα ` ϵ1q „ P1 respectively.

In the proof below, we will compute the closed-form solution of ξppq for any 0 ď p ď 1,
and show that ξpp̃Aq ` ξp1 ´ p̃Bq ą 1 given p1

A ą p1
B. To begin with, we write down f0 and

f1.

f0pzq “
λB

p2πq2σkσbσ2
T

exp
`

´λBzB ´ pz2Tx`z2Tyq{2σ2
T ´

z2k{2σ2
k ´

z2b{2e´2kσ2
b

˘

, (E.271)

f1pzq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

λB exppλBαBq

p2πq2σkσbσ2
T

exp p´λBzB

´ pzTx´αTxq2{2σ2
T ´

pzTy´αTyq2{2σ2
T

´pzk´αkq2{2σ2
k ´

pzb´αbq2{2e´2kσ2
b

˘

,

if zB ě αB,

0, otherwise,

(E.272)

where z “ pzk, zb, zTx, zTy, zBqT P R4 ˆRě0. As a result, function Λ “ f1{f0 in Theorem 7.1
writes as

Λpzq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

exp

˜

λBαB ´
α2
Tx

2σ2
T

´
α2
Ty

2σ2
T

´
α2
k

2σ2
k

´
α2
b

2e´2kσ2
b

`
αTxzTx
σ2
T

`
αTyzTy
σ2
T

`
αkzk
σ2
k

`
αbzb
e´2kσ2

b

¸

,

if zB ě αB,

0 otherwise.

(E.273)

It turns out that for any t ą 0,

St “ tf1{f0 ă tu

“

!

pẑkσk, ẑbe
´kσb, ẑTxσT , ẑTyσT q

T

| α̂TxẑTx ` α̂TyẑTy ` α̂kẑk ` α̂bẑb

ă ln t` α̂2
Tx{2` α̂

2
Ty{2` α̂

2
k{2` α̂

2
b{2´ λBαB

)

ˆ rαB,`8q

Y R4 ˆ r0, αBq, (E.274)
St “ tf1{f0 ď tu

“

!

pẑkσk, ẑbe
´kσb, ẑTxσT , ẑTyσT q

T

| α̂TxẑTx ` α̂TyẑTy ` α̂kẑk ` α̂bẑb

ď ln t` α̂2
Tx{2` α̂

2
Ty{2` α̂

2
k{2` α̂

2
b{2´ λBαB

)

ˆ rαB,`8q
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Y R4 ˆ r0, αBq, (E.275)

where α̂Tx “ αTx{σT , α̂Ty “ αTy{σT , α̂k “ αk{σk, α̂b “ αb{pe
´kσbq. When t “ 0, St “ H and

St “ R4 ˆ r0, αBq. Then, the probability integration shows that

τp “ inftt ě 0 : P0pStq ě pu

“

$

’

’

’

’

&

’

’

’

’

%

0, if p ď 1´ expp´λBαBq,

exp
´

λBαB ` }α̂:´1}Φ
´1

`

1´ exppλBαBqp1´ pq
˘

´ 1{2}α̂:´1}
2
¯

,

otherwise,

(E.276)

where }α̂:´1} “

b

α̂2
Tx ` α̂

2
Ty ` α̂

2
k ` α̂

2
b . Now we are ready to compute ξppq “ suptP1pSq :

Sτp Ă S Ă Sτpu. When p ď 1 ´ expp´λBαBq, we have S Ă R4 ˆ r0, αBq and P1pSq “ 0

because P1 has zero mass for any zB ă αB (see (E.272)). When p ą 1´expp´λBαBq, τp ą 0.
Again, from probability integration, we get

P1pSτpq “ P1pSτpq “ Φ

ˆ

ln τp ´ λBαB
}α̂:´1}

´
1

2
}α̂:´1}

˙

. (E.277)

We inject the closed-form solution of τp in (E.276) and yield

ξppq “ P1pSq “ Φ
´

Φ´1
`

1´ p1´ pq exppλBαBq
˘

´ }α̂:´1}

¯

(E.278)

for any S satisfying Sτp Ă S Ă Sτp . We summarize the above equations and write down the
closed-form solution of ξppq as such:

ξppq “

$

’

&

’

%

0, if p ď 1´ expp´λBαBq,

Φ
´

Φ´1
`

1´ p1´ pq exppλBαBq
˘

´ }α̂:´1}

¯

, otherwise.
(E.279)

We can easily observe that p1
A in lemma statement (E.266) is indeed ξpp̃Aq, and p1

B (E.267)
is indeed 1´ ξp1´ p̃Bq. Therefore,

ξpp̃Aq ` ξp1´ p̃Bq ą 1 ðñ p1
A ą p1

B (E.280)

and using Theorem 7.1 concludes the proof. QED.

Finally, we simplify the statement of Lemma 7.6 with slight relaxation.
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Corollary 7.4 (restated). Let ϵ0 and ϵ1 be as in Corollary 7.3 and suppose that

qpyA|x; ε1q ě p̃A. (E.281)

Then it is guaranteed that yA “ gpϕBTBCpx, αq; ε0q as long as

p̃A ą 1´ expp´λBαBq

¨

˚

˝

1´ Φ

¨

˝

d

α2
k

σ2
k

`
α2
b

e´2αkσ2
b

`
α2
Tx ` α

2
Ty

σ2
T

˛

‚

˛

‹

‚

. (E.282)

Proof. Since qpyA|x; ε1q ě p̃A, according to the complement rule, maxy‰yA qpy|x; ε1q ă

1 ´ p̃A “: p̃B. Inject the p̃A and p̃B into Lemma 7.6 we find that p1
A ` p1

B “ 1 always hold.
Therefore, p1

A ą 0.5 guarantees that p1
A ą p1

B and thus the robustness. Indeed, from simple
algebra, p1

A ą 0.5 ðñ (E.282q. QED.

E.4 PROOFS FOR DIFFERENTIALLY RESOLVABLE TRANSFORMATIONS

Here we provide proofs and technical details for theoretical results about certifying dif-
ferentially resolvable transformations. First, let us recall the definition of differentially
resolvable transformations.

Definition 7.3 (restated). Let ϕ : X ˆ Zϕ Ñ X be a transformation with noise space Zϕ

and let ψ : X ˆZψ Ñ X be a resolvable transformation with noise space Zψ. We say that ϕ
can be resolved by ψ if for any x P X there exists function δx : Zϕ ˆ Zϕ Ñ Zψ such that for
any β P Zϕ

ϕpx, αq “ ψpϕpx, βq, δxpα, βqq. (E.283)

Theorem 7.2 (restated). Let ϕ : X ˆ Zϕ Ñ X be a transformation that is resolved by
ψ : X ˆ Zψ Ñ X . Let ε „ Pε be a Zψ-valued random variable and suppose that the
smoothed classifier g : X Ñ Y given by qpy|x; εq “ Epppy|ψpx, εqqq predicts gpx; εq “ yA “

argmaxy qpy|x; εq. Let S Ď Zϕ and tαiuNi“1 Ď S be a set of transformation parameters such
that for any i, the class probabilities satisfy

qpyA|ϕpx, αiq; εq ě p
piq
A ě p

piq
B ě max

y‰yA
qpy|ϕpx, αiq; εq. (E.284)

Then there exists a set∆˚ Ď Zψ with the property that, if for any α P S, Dαi with δxpα, αiq P
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∆˚, then it is guaranteed that

qpyA|ϕpx, αq; εq ą max
y‰yA

qpy|ϕpx, αq; εq. (E.285)

Proof. We prove the theorem by explicitly constructing a region∆˚ with the desired property
by applying Theorem 7.1. For that purpose let δ P Zψ and denote by γδ : Zψ Ñ Zψ the
resolving function of ψ, i.e.,

ψpψpx, δq, δ1q “ ψpx, γδpδ
1qq. (E.286)

Let Pγ be the distribution of the random variable γ :“ γδpεq with density function fγ and
let

St “ tz P Zψ : Λpzq ă tu, St “ tz P Zψ : Λpzq ď tu (E.287)

where Λpzq “
fγpzq

fεpzq
. (E.288)

Furthermore, recall the definition of the function ζ : Rě0 Ñ r0, 1s that is given by t ÞÑ

ζptq :“ PεpStq with generalized inverse ζ´1ppq :“ inftt ě 0: ζptq ě pu. For t ě 0 and the
function ξ : r0, 1s Ñ r0, 1s is given by by

ξppq :“ suptPγpSq : Sζ´1ppq Ď S Ď S
´1

ζ ppq, PεpSq ď pu. (E.289)

By assumption, for every i “ 1, . . . , n, the ε-smoothed classifier g is pppiq
A , p

piq
B q-confident

at ϕpx, αiq. Identify ∆i Ď Zψ with the set of perturbations that satisfy the robustness
condition (7.6) in Theorem 7.1, i.e.,

∆i :“ tδ P Zψ : 1´ ξp1´ p
piq
B q ă ξpp

piq
A qu. (E.290)

Thus, by Theorem 7.1, we have that for any δ P ∆i

qpyA|ψpϕpx, αiq, δq; εq ą max
y‰yA

qpy|ψpϕpx, αiq, δq; εq. (E.291)

Finally, note that for the set

∆˚ :“
N
č

i“1

∆i (E.292)

it holds that, if for α P S there exists αi with δxpα, αiq P ∆˚, then in particular δxpα, αiq P ∆i

375



and hence, by Theorem 7.1 it is guaranteed that

qpyA|ϕpx, αq; εq “ qpyA|ψpϕpx, αiq, δxpα, αiqq; εq (E.293)
ą max

y‰yA
qpy|ψpϕpx, αiq, δxpα, αiqq; εq (E.294)

“ max
y‰yA

qpy|ϕpx, αq; εq (E.295)

what concludes the proof. QED.

Corollary 7.2 (restated). Let ψpx, δq “ x`δ and let ε „ N p0, σ2Idq. Furthermore, let ϕ be
a transformation with parameters in Zϕ Ď Rm and let S Ď Zϕ and tαiuNi“1 Ď S. Let yA P Y
and suppose that for any i, the ε-smoothed classifier defined by qpy|x; εq :“ Epppy|x ` εqq

has class probabilities that satisfy

qpyA|ϕpx, αiq; εq ě p
piq
A ě p

piq
B ě max

y‰yA
qpy|ϕpx, αiq; εq. (E.296)

Then it is guaranteed that @α P S : yA “ argmaxy qpy|ϕpx, αq; εq if the maximum interpo-
lation error

MS :“ max
αPS

min
1ďiďN

›

›ϕpx, αq ´ ϕpx, αiq
›

›

2
(E.297)

satisfies
MS ă R :“

σ

2
min

1ďiďN

ˆ

Φ´1
´

p
piq
A

¯

´ Φ´1
´

p
piq
B

¯

˙

. (E.298)

Proof. Since the resolvable transformation ψ is given by ψpx, δq “ x` δ we can write

ϕpx, αq “ ϕpx, αiq ` pϕpx, αq ´ ϕpx, αiqq
loooooooooooomoooooooooooon

“:δxpα, αiq

. (E.299)

Furthermore, by assumption ε „ N p0, σ2Idq and gp¨; εq is pppiq
A , p

piq
B q-confident at ϕpx, αiq

for yA and for all i. Thus, by Corollary E.1, if δ satisfies

}δ}2 ă Ri :“
σ

2

ˆ

Φ´1
´

p
piq
A

¯

´ Φ´1
´

p
piq
B

¯

˙

(E.300)

then it is guaranteed that yA “ argmaxy qpy|ϕpx, αiq ` δ; εq. Let ∆i :“ BRi
p0q and notice

that R :“ miniRi and thus
N
č

i“1

BRi
p0q “ BRp0q “ ∆˚. (E.301)

376



To see that ∆˚ has the desired property, consider

@α P S Dαi : δxpα, αiq P ∆˚ (E.302)
ðñ @α P S Dαi :

›

›ϕpx, αq ´ ϕpx, αiq
›

›

2
ă R. (E.303)

Since R ď Ri it follows that for δi “ ϕpx, αq ´ ϕpx, αiq it is guaranteed that

yA “ argmax
y

qpy|ϕpx, αiq ` δi; εq (E.304)

“ argmax
y

qpy|ϕpx, αq; εq. (E.305)

Thus, the set ∆˚ has the desired property. In particular, since

@α P S Dαi :
›

›ϕpx, αq ´ ϕpx, αiq
›

›

2
ă R (E.306)

ðñ max
αPS

min
1ďiďN

›

›ϕpx, αq ´ ϕpx, αiq
›

›

2
ă R (E.307)

the statement follows. QED.

Corollary 7.5 (restated). Let ψBpx, δ, bq “ x ` δ ` b ¨ ⊮d and let ε „ N p0, σ2Idq, εb „
N p0, σ2

b q. Furthermore, let ϕ be a transformation with parameters in Zϕ Ď Rm and let
S Ď Zϕ and tαiuNi“1 Ď S. Let yA P Y and suppose that for any i, the pε, εbq-smoothed
classifier qpy|x; ε, εbq :“ Epppy|ψBpx, ε, εbqq satisfies

qpyA|x; ε, εbq ě p
piq
A ą p

piq
B ě max

y‰yA
qpy|x; ε, εbq. (E.308)

for each i. Let
R :“

σ

2
min

1ďiďN

ˆ

Φ´1
´

p
piq
A

¯

´ Φ´1
´

p
piq
B

¯

˙

(E.309)

Then, @α P S and @b P r´b0, b0s it is guaranteed that yA “ argmaxy qpy|ϕpx, αq`b¨⊮d; ε, εbq

as long as

R ą

d

M2
S `

σ2

σ2
b

b20, (E.310)

where MS is defined as in Corollary 7.2.

Proof. Since the resolvable transformation ψB is given by

ψBpx, δ, bq “ x` δ ` b ¨ ⊮d, (E.311)
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we can write

ϕpx, αq ` b ¨ ⊮d “ ϕpx, αiq `
`

ϕpx, αq ´ ϕpx, αiq
˘

` b ¨ ⊮d
loooooooooooooooooomoooooooooooooooooon

“:δxppα,bq, pαi,0qq

. (E.312)

Furthermore, by assumption ε „ N p0, σ2Idq, εb „ N p0, σ2
b q and gp¨; ε, εbq is pppiq

A , p
piq
B q-

confident at ϕpx, αiq for yA and all i. Thus, by Corollary E.1, if δ and b satisfy
d

}δ}22
σ2

`
b2

σ2
b

ă
1

2

´

Φ´1pp
piq
A q ´ Φ´1pp

piq
B q

¯

, (E.313)

then it is guaranteed that

yA “ argmax
y

qpy|ϕpx, αiq ` δ ` b ¨ ⊮d; ε, εbq. (E.314)

Let
Ri :“

σ

2

´

Φ´1pp
piq
A q ´ Φ´1pp

piq
B q

¯

(E.315)

and note that without loss of generality we can assume that Ri ą σ{σbb0, because otherwise
the robustness condition is violated. Rearranging terms in (E.313) leads to the condition

}δ}2 ă

d

R2
i ´

σ2

σ2
b

b2 (E.316)

that can be turned into a sufficient robustness condition holding for any b P r´b0, b0s simul-
taneously

}δ}2 ă

d

R2
i ´

σ2

σ2
b

b20 (E.317)

Note that, without loss of generality For each i let ∆i be the set defined as

∆i :“

$

&

%

δ ` b ¨ 1d P Rd : }δ}2 ă

d

R2
i ´

σ2

σ2
b

b20, |b| ď b0

,

.

-

(E.318)

and note that

∆˚ :“
N
č

i“1

∆i “

$

&

%

δ ` b ¨ 1d P Rd : }δ}2 ă

d

R2 ´
σ2

σ2
b

b20, |b| ď b0

,

.

-

(E.319)
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with R :“ miniRi. Clearly, if @α P S, @b P r´b0, b0s Di such that

δxppα, bq, pαi, 0qq P ∆
˚ (E.320)

then it is guaranteed that

yA “ argmax
y

qpy|ϕpx, αiq ` δxppα, bq, pαi, 0qqq (E.321)

“ argmax
y

qpy|ϕpx, αq ` b ¨ Idq. (E.322)

We can thus reformulate the robustness condition as

@α P S, @b P r´b0, b0s Di s.t. δxppα, bq, pαi, 0qq P ∆˚ (E.323)

ðñ @α P S, @b P r´b0, b0s Di s.t. }ϕpx, αq ´ ϕpx, αiq}2 ă

d

R2 ´
σ2

σ2
b

b20

ðñ max
αPS

min
1ďiďN

}ϕpx, αq ´ ϕpx, αiq}2 ă

d

R2 ´
σ2

σ2
b

b20

that, written in terms of the maximum ℓ2 interpolation error MS , is equivalent to

R ą

d

M2
S `

σ2

σ2
b

b20 (E.324)

what concludes the proof. QED.

Corollary 7.6 (restated). Under the same setting as in Corollary 7.5, for @α P S, @b P
r´b0, b0s and @δ P Rd such that }δ}2 ď r, it is guaranteed that yA “ argmaxk qpy|ϕpx, αq `
b ¨ ⊮d ` δ; ε, εdq as long as

R ą

d

pMS ` rq2 `
σ2

σ2
b

b20, (E.325)

where MS is defined as in Corollary 7.2.

Proof. Note that we can write the transformed input as

ϕpx, αq`b ¨ Id ` δ

“ϕpx, αiq ` pϕpx, αq ´ ϕpx, αiq ` δq ` b ¨ ⊮d
loooooooooooooooooooomoooooooooooooooooooon

“:δxppα,b,δq, pαi,0,0qq

. (E.326)

Since we use the same smoothing protocol as in Corollary 7.5, the general proof idea is
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similar to Corollary 7.5 — we use the same resolvable transformation ψB and define the
same set ∆i, namely

∆i :“

"

δ1 ` b ¨ 1d ` δ P Rd : }δ1 ` δ}2 ă

d

R2
i ´

σ2

σ2
b

b20, |b| ď b0, }δ}2 ď r

*

. (E.327)

and set

∆˚ :“
N
č

i“1

∆i “

"

δ1 ` b ¨ 1d ` δ P Rd : }δ1 ` δ}2 ă

d

R2 ´
σ2

σ2
b

b20, |b| ď b0, }δ}2 ď r

*

(E.328)

with R :“ miniRi. Clearly, if @α P S, @b P r´b0, b0s, }δ}2 ď r Di such that

δxppα, b, δq, pαi, 0qq P ∆
˚ (E.329)

then it is guaranteed that

yA “ argmax
y

qpy|ϕpx, αiq ` δxppα, bq, pαi, 0qqq (E.330)

“ argmax
y

qpy|ϕpx, αq ` b ¨ ⊮dq. (E.331)

We can thus reformulate the robustness condition as

@α P S, @b P r´b0, b0s, }δ}2 ď r Di s.t. δxppα, b, δq, pαi, 0, 0qq P ∆
˚

ðñ @α P S, @b P r´b0, b0s, }δ}2 ď r Di s.t. }ϕpx, αq ´ ϕpx, αiq ` δ}2 ă

d

R2 ´
σ2

σ2
b

b20

ðñ max
αPS

min
1ďiďN

}ϕpx, αq ´ ϕpx, αiq ` δ}2 ă

d

R2 ´
σ2

σ2
b

b20.

(E.332)

Note that by the triangle inequality have

max
αPS

min
1ďiďN

}ϕpx, αq ´ ϕpx, αiq ` δ}2 ďMS ` }δ}2 ďMS ` r (E.333)

and thus, robustness is implied by

R ą

d

pMS ` rq2 `
σ2

σ2
b

b20 (E.334)
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what concludes the proof.
QED.

E.5 TRANSFORMATION DETAILS

In this section, we provide detailed definitions of rotation and scaling transformation.

E.5.1 Bilinear Interpolation

Let ΩK :“ t0, . . . , K´1u and Ω :“ r0, W´1sˆr0, H´1s. We define bilinear interpolation
to be the map Q : RKˆWˆH Ñ L2pΩK ˆ R2, Rq, x ÞÑ Qpxq “: Qx where Qx is given by

pk, i, jq ÞÑ Qxpk, i, jq :“

$

’

’

’

&

’

’

’

%

0 pi, jq R Ω

xk,i,j pi, jq P ΩX N2

x̃k, i, j pi, jq P ΩzN2.

(E.335)

and where

x̃k,i,j :“
`

1´ pi´ tiuq
˘

¨

´

`

1´ pj ´ tjuq
˘

¨ xk,tiu,tju ` pj ´ tjuq ¨ xk,tiu,tju`1

¯

` pi´ tiuq ¨
´

`

1´ pj ´ tjuq
˘

¨ xk,tiu`1,tju ` pj ´ tjuq ¨ xk,tiu`1,tju`1

¯

.
(E.336)

E.5.2 Rotation

The rotation transformation is denoted as ϕR : RKˆWˆH ˆ R Ñ RKˆWˆH and acts on
an image in three steps that we will highlight in greater detail. First, it rotates the image
by α degrees counter-clockwise. After rotation, pixel values are determined using bilinear
interpolation (E.335). Finally, we apply black padding to all pixels pi, jq whose ℓ2-distance
to the center pixel is larger than half of the length of the shorter side, and denote this
operation by P . Let cW and cH be the center pixels

cW :“
W ´ 1

2
, cH :“

H ´ 1

2
. (E.337)

and
di,j “

b

pi´ cW q
2
` pj ´ cHq

2, gi,j “ arctan2 pj ´ cH , i´ cW q . (E.338)
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We write ϕ̃R for the rotation transformation before black padding and decompose ϕR as
ϕR “ P ˝ ϕ̃R, where ϕ̃R : RKˆWˆH ˆ RÑ RKˆWˆH is defined by

ϕ̃Rpx, αqk,i,j :“ Qxpk, cW ` di,j cospgi,j ´ αq, cH ` di,j sinpgi,j ´ αqq (E.339)

and P : RKˆWˆH Ñ RKˆWˆH by

f ÞÑ P pfqk,i,j “

$

&

%

fpk, i, jq di,j ă min tcW , cHu

0 otherwise
. (E.340)

The rotation transformation in practice may use different padding mechanisms. For ex-
ample, the rotation in the physical world may fill in boundary pixels with real elements
captured by the camera. We remark that our TSS against the transformation ϕR implies the
defense against rotation with any other padding mechanisms, because we first apply black-
padding P to any such rotated input and then feed into TSS models so that TSS models
always receive black-padded inputs.

E.5.3 Scaling

The scaling transformation is denoted as ϕS : RKˆWˆH ˆ R Ñ RKˆWˆH . Similar as for
rotations, ϕS acts on an image in three steps. First, it stretches height and width by a fixed
ratio α P R. Second, we determine missing pixel values with bilinear interpolation. Finally,
we apply black padding to regions with missing pixel values if the image is scaled by a factor
smaller than 1. Let cW and cH be the center pixels

cW :“
W ´ 1

2
, cH :“

H ´ 1

2
. (E.341)

We notice that black padding is naturally applied during bilinear interpolation in cases where
the scaling factor is smaller than 1 (that is, when we make images smaller). We can thus
write the scaling operation as ϕS : RKˆWˆH ˆ Rą0 Ñ RKˆWˆH , px, αq ÞÑ ϕpx, αq where

ϕSpx, αqk,i,j :“ Qx

ˆ

k, cW `
i´ cW
α

, cH `
j ´ cH
α

˙

. (E.342)

When the scaling transformation in practice uses different padding mechanisms, we can
simply apply black padding to the outer pixels during preprocessing. For example, if we
know the semantic attacker could choose 0.7 as the smallest scaling ratio, we can apply
black padding to all pixels that are out of canvas after 0.7 scaling. Therefore, we overwrite
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all different padding mechanisms and ensure the generalizability. As a trade-off, the classifier
has a narrower reception field that affects the clean accuracy.

E.6 PROOFS FOR INTERPOLATION BOUND COMPUTATION

In this section we state the proofs for the theoretical results governing our approach to
certifying rotations and scaling transformations using randomized smoothing. We first define
the maximum ℓ2 interpolation error. First, let us recall the following definitions from the
main part of this chapter.

Definition E.3 (ℓ2 interpolation error). Let x P X , ϕ : X ˆ Z Ñ X a transformation,
S “ ra, bs, N P N and suppose tαiuNi“1 Ď S. The maximum ℓ2 interpolation error is defined
as

MS :“ max
aďαďb

min
1ďiďN

}ϕpx, αq ´ ϕpx, αiq}2. (E.343)

Definition 7.4 (restated). For pixels pi, jq P Ω, we define the grid pixel generator Gij as

Gij :“ tpi, jq, pi` 1, jq, pi, j ` 1q, pi` 1, j ` 1qu. (E.344)

Definition 7.5 (restated). We define the operator that extracts the channel-wise maximum
pixel wise on a grid S Ď Ω as the map m : RKˆWˆH ˆ t0, . . . , K ´ 1u ˆ 2Ω Ñ R with

mpx, k, Sq :“ max
pi,jqPS

˜

max
pr,sqPGij

xk,r,s

¸

(E.345)

Definition 7.6 (restated). We define the operator that extracts the channel-wise maximum
change in color on a grid S Ď Ω as the map m∆ : RKˆWˆH ˆ t0, . . . , K ´ 1u ˆ 2Ω Ñ R with

m∆px, k, Sq :“ max
pi,jqPS

˜

max
pr,sqPGij

xk,r,s ´ min
pr,sqPGij

xk,r,s

¸

(E.346)

The following auxiliary lemma is used for both rotation and scaling:

Lemma E.4. Let x P RKˆWˆH , ´8 ă t1 ă t2 ă 8 and suppose ρ : rt1, t2s Ñ r0, W ´ 1s ˆ

r0, H ´ 1s is a curve of class C1. Let

ψk : rt1, t2s Ñ R, ψkptq :“ Qxpk, ρ1ptq, ρ2ptqq (E.347)

383



where k P ΩK and Qx denotes bilinear interpolation. Then ψk is Lk-Lipschitz continuous
with constant

Lk “ max
tPrt1,t2s

´?
2
›

› 9ρptq
›

›

2
¨m∆px, k, tρptquq

¯

(E.348)

Proof. Note that the function t ÞÑ tρptqu is piecewise constant and let t1 “: u1 ă u2 ă

. . . ă uN0
:“ t2 such that tρptqu is constant on rui, ui`1q for all 1 ď i ď N0 ´ 1 and

9YN0
i“1 rui, ui`1q “ rt1, t2q. We notice that ψk is a continuous real-valued function since it is

the composition of the continuous Qx and C1-curve ρ. Lk-Lipschitz continuity on rt1, t2q
thus follows if we show that ψk is Lk-Lipschitz on each interval in the partition. For that
purpose, let 1 ď i ď N0 be arbitrary and fix some t P rui, ui`1q. Let pw, hq :“ tρptqu and
γptq :“ ρptq ´ tρptqu and notice that γptq P r0, 1q2. Let

V1 :“ xk,w,h, V2 :“ xk,w,h`1, (E.349)
V3 :“ xk,w`1,h, V4 :“ xk,w`1,h`1, (E.350)

Then, for any u P rui, ui`1q

ψkpuq “ Qxpk, ρ1puq, ρ2puqq (E.351)

“ p1´ γ1puqq ¨ pp1´ γ2puqq ¨ V1 ` γ2puq ¨ V2q ` γ1puq ¨ pp1´ γ2puq ¨ V3 ` γ2puq ¨ V4q.

(E.352)

Let m∆ :“ m∆px, k tρptquq and notice that by definition

m∆ “ max
i

Vi ´min
i
Vi (E.353)

and in particular
ˇ

ˇVi ´ Vj
ˇ

ˇ ď m∆ @ i, j. (E.354)

Since Vi is constant for each i and γ is differentiable, ψk is differentiable on rui, ui`1q and
hence

9ψkpuq “ p 9γ1puqγ2puq ` γ1puq 9γ2puqqpV1 ´ V2 ´ V3 ` V4q (E.355)
` 9γ1puqpV3 ´ V1q ` 9γ2puqpV2 ´ V1q. (E.356)

Note that the derivative 9ψk is linear in γ1 and γ2 and hence its extreme values are bounded
when evaluated at extreme values of γ, that is pγ1, γ2q P t0, 1u2. We treat each case sepa-
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rately:

• γ1 “ γ2 “ 0. Then,
ˇ

ˇ

ˇ

9ψk

ˇ

ˇ

ˇ
ď
ˇ

ˇ 9γ1pV3 ´ V1q ` 9γ2pV2 ´ V1q
ˇ

ˇ (E.357)

ď | 9γ1| ¨ |V3 ´ V1| ` | 9γ2| ¨ |V2 ´ V1| ď m∆p| 9γ1| ` | 9γ2|q (E.358)

• γ1 “ γ2 “ 1. Then,
ˇ

ˇ

ˇ

9ψk

ˇ

ˇ

ˇ
ď
ˇ

ˇ 9γ1pV4 ´ V2q ` 9γ2pV4 ´ V3q
ˇ

ˇ (E.359)

ď | 9γ1| ¨ |V4 ´ V2| ` | 9γ2| ¨ |V4 ´ V3| ď m∆p| 9γ1| ` | 9γ2|q (E.360)

• γ1 “ 0, γ2 “ 1. Then,
ˇ

ˇ

ˇ

9ψk

ˇ

ˇ

ˇ
ď
ˇ

ˇ 9γ1pV4 ´ V2q ` 9γ2pV2 ´ V1q
ˇ

ˇ (E.361)

ď | 9γ1| ¨ |V4 ´ V2| ` | 9γ2| ¨ |V2 ´ V1| ď m∆p| 9γ1| ` | 9γ2|q (E.362)

• γ1 “ 1, γ2 “ 0. Then,
ˇ

ˇ

ˇ

9ψk

ˇ

ˇ

ˇ
ď
ˇ

ˇ 9γ1pV3 ´ V1q ` 9γ2pV4 ´ V3q
ˇ

ˇ (E.363)

ď | 9γ1| ¨ |V3 ´ V1| ` | 9γ2| ¨ |V4 ´ V3| ď m∆p| 9γ1| ` | 9γ2|q (E.364)

Hence, for any u P rui, ui`1q, the modulus of the derivative is bounded by m∆p| 9γ1| ` | 9γ2|q.
We can further bound this by observing the following connection between ℓ1 and ℓ2 distance

@x P Rn : }x}1 “
ˇ

ˇx|x| , 1y
ˇ

ˇ ď }x}2 }1}2 “
?
n }x}2 (E.365)

and hence @u P rui, ui`1q

ˇ

ˇψkpuq
ˇ

ˇ ď m∆

›

› 9γpuq
›

›

1
ď m∆

?
2
›

› 9γpuq
›

›

2
“ m∆

?
2
›

› 9ρpuq
›

›

2
. (E.366)

Since ψk is differentiable on rui, ui`1q, its Lipschitz constant is bounded by the maximum
absolute value of its derivative. Hence

max
uPrui, ui`1q

m∆

?
2
›

› 9ρpuq
›

›

2
“ max

uPrui, ui`1q
m∆px, k, tρpuquq

?
2
›

› 9ρpuq
›

›

2 (E.367)

ď max
uPrt1, t2q

m∆px, k, tρpuquq
?
2
›

› 9ρpuq
›

›

2
“ Lk (E.368)

385



is a Lipschitz constant for ψk on rui, ui`1q. Note that Lk does not depend on i. Furthermore,
i was chosen arbitrarily and hence Lk is a Lipschitz constant for ψk on rt1, t2q and due to
continuity on rt1, t2s, concluding the proof. QED.

E.6.1 Rotation

Lemma 7.4 (restated). Let x P RKˆWˆH be a K-channel image and let ϕR “ P ˝ I ˝ ϕ̃R be
the rotation transformation. Then, a global Lipschitz constant L for the functions tgiuNi“1 is
given by

Lr “ max
1ďiďN´1

K´1
ÿ

k“0

ÿ

r,sPV

2dr,s ¨m∆px, k,P piq
r,sq ¨mpx, k, P piq

r,sq (E.369)

where V “
␣

pr, sq P N2| dr,s ă 1
2
pmin tW,Hu ´ 1q

(

. The set P piq
r,s is given by all integer grid

pixels that are covered by the trajectory of source pixels of pr, sq when rotating from angle
αi to αi`1.

Proof. Recall that ϕR acts on images x P RKˆWˆH and that gi is defined as

gipαq “
›

›ϕRpx, αq ´ ϕRpx, αiq
›

›

2

2
“

K´1
ÿ

k“0

W´1
ÿ

r“0

H´1
ÿ

s“0

`

ϕRpx, αqk,r,s ´ ϕRpx, αiqk,r,s
˘2 (E.370)

Let cW and cH denote the center pixels

cW :“
W ´ 1

2
, cH :“

H ´ 1

2
. (E.371)

and recall the following quantities from the definition of ϕR (Appendix E.5.2):

dr,s “

b

pr ´ cW q
2
` ps´ cHq

2, gr,s “ arctan 2 ps´ cH , r ´ cW q (E.372)

Note that
dr,s ě mintcW , cHu ñ ϕRpx, αqk,r,s “ 0. (E.373)

We thus only need to consider pixels that lie inside the centered disk. We call the collection
of such pixels valid pixels, denoted by V :

V :“
␣

pr, sq P N2 | dr,s ă mintcW , cHu
(

. (E.374)
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Let f r,s1 : RÑ R and f r,s2 : RÑ R be functions defined as

f r,s1 pαq “ cW ` dr,s cospgr,s ´ αq, f
r,s
2 pαq “ cH ` dr,s sinpgr,s ´ αq. (E.375)

Then for any valid pixel pr, sq P V , the value of the rotated image ϕRpx, αq is given by

ϕRpx, αqk,r,s “ Qxpk, f
r,s
1 pαq, f

r,s
2 pαqq (E.376)

where Qx denotes bilinear interpolation. We define the shorthand

gk,r,si pαq :“
`

ϕRpx, αqk,r,s ´ ϕRpx, αiqk,r,s
˘2 (E.377)

and denote by Lk,r,si and Lk,r,si`1 the Lipschitz constants of gk,r,si and gk,r,si`1 on rαi, αi`1s. We
can write (E.370) as

gipαq “
K´1
ÿ

k“0

ÿ

pr, sqPV

gk,r,si pαq,

gi`1pαq “
K´1
ÿ

k“0

ÿ

pr, sqPV

gk,r,si`1 pαq

(E.378)

and note that Lipschitz constants of gi and gi`1 on rαi, αi`1s are given by

max
c, dPrαi, αi`1s

ˇ

ˇgipcq ´ gipdq
ˇ

ˇ

|c´ d|
ď

¨

˝

K´1
ÿ

k“0

ÿ

pr, sqPV

Lk,r,si

˛

‚“: Li (E.379)

max
c, dPrαi, αi`1s

ˇ

ˇgi`1pcq ´ gi`1pdq
ˇ

ˇ

|c´ d|
ď

¨

˝

K´1
ÿ

k“0

ÿ

pr, sqPV

Lk,r,si`1

˛

‚“: Li`1 (E.380)

We can hence determine L according to equation (7.29) as

L “ max
i

␣

max tLi, Li`1u
(

. (E.381)

Without loss of generality, consider Lk,r,si and note that

max
c,dPrαi, αi`1s

ˇ

ˇ

ˇ

ˇ

ˇ

gk,r,si pcq ´ gk,r,si pdq

c´ d

ˇ

ˇ

ˇ

ˇ

ˇ

(E.382)

“ max
c,dPrαi, αi`1s

ˇ

ˇ

ˇ

ˇ

ϕRpx, cqk,r,s ´ ϕRpx, dqk,r,s
c´ d

ˇ

ˇ

ˇ

ˇ

¨
ˇ

ˇϕRpx, cqk,r,s ` ϕRpx, dqk,r,s ´ 2ϕRpx, αiqk,r,s
ˇ

ˇ

(E.383)
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ď max
c,dPrαi, αi`1s

ˇ

ˇ

ˇ

ˇ

ϕRpx, cqk,r,s ´ ϕRpx, dqk,r,s
c´ d

ˇ

ˇ

ˇ

ˇ

looooooooooooooooomooooooooooooooooon

pIq

¨2 max
θPrαi, αi`1s

ˇ

ˇϕRpx, θqk,r,s ´ ϕRpx, αiqk,r,s
ˇ

ˇ

loooooooooooooooooomoooooooooooooooooon

pIIq

.

(E.384)

To compute a Lipschitz constant for gk,r,si on the interval rαi, αi`1s we thus only need to
compute a Lipschitz constant for ϕRpx, ¨q on rαi, αi`1s and an upper bound on (II). For that
purpose, note that ϕR takes only positive values and consider

pIIq ď max
θPrαi, αi`1s

␣

ϕRpx, θqk,r,s, ϕRpx, αiqk,r,s
(

“ max
θPrαi, αi`1s

ϕRpx, θqk,r,s (E.385)

Notice that now both Lk,r,si and Lk,r,si`1 share the same upper bound. Recall (E.376), i.e.,

ϕRpx, θqk,r,s “ Qxpk, f
r,s
1 pθq, f

r,s
2 pθqq. (E.386)

Now, we upper bound (E.385) by finding all integer grid pixels that are covered by the
trajectory pf r,s1 pθq, f

r,s
2 pθqq. Specifically, let

P piq
r,s :“

ď

θPrαi, αi`1s

`

tf r,s1 pθqu, tf r,s2 pθqu
˘

. (E.387)

Since ϕR is interpolated from integer pixels, we can consider the maximum over P piq
r,s in order

to upper bound (E.385):

max
θPrαi, αi`1s

ϕRpx, θqk,r,s “ max
θPrαi, αi`1s

Qxpk, f
r,s
1 pθq, f

r,s
2 pθqq (E.388)

ď max
pi,jqPPr,s

max
␣

xpk, i, jq, xpk, i` 1, jq, xpk, i, j ` 1q, xpk, i` 1, j ` 1q
(

(E.389)

“ m̄px, k, P piq
r,sq. (E.390)

We now have to find an upper bound of (I), that is, a Lipschitz constant of ϕRpx, ¨qk,r,s
on the interval rαi, αi`1s. For that purpose, consider the following. Note that the curve
ρ : rαi, αi`1s Ñ R2, ρptq :“ pf r,s1 ptq, f

r,s
2 ptqq is of class C1 and

df r,s1 ptq

dt
“

d

dt

`

cW ` dr,s cospgr,s ´ tq
˘

“ dr,s sinpgr,s ´ tq (E.391)

df r,s2 ptq

dt
“

d

dt

`

cH ` dr,s sinpgr,s ´ tq
˘

“ ´dr,s cospgr,s ´ tq (E.392)
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and hence

›

› 9ρptq
›

›

2
“

d

ˆ

df r,s1 ptq

dt

˙2

`

ˆ

df r,s2 ptq

dt

˙2

“
?
2 dr,s. (E.393)

By Lemma E.4 a Lipschitz constant for the function ϕRpx, ¨qk,r,s is thus given by

max
c,dPrαi, αi`1s

ˇ

ˇ

ˇ

ˇ

ϕRpx, cqk,r,s ´ ϕRpx, dqk,r,s
c´ d

ˇ

ˇ

ˇ

ˇ

ď 2 dr,s ¨m∆px, k, P piq
r,sq. (E.394)

We can thus upper bound (I) and (II) in (E.384) yielding a Lipschitz constant for gk,r,si and
gk,r,si`1 on rαi, αi`1s

max
c,dPrαi, αi`1s

ˇ

ˇ

ˇ

ˇ

ˇ

gk,r,si pcq ´ gk,r,si pdq

c´ d

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2 dr,s ¨m∆px, k, P piq
r,sq ¨ m̄px, k, P piq

r,sq (E.395)

“ Lk,r,si p“ Lk,r,si`1 q. (E.396)

Finally, we can compute Lr as

L “ max
1ďiďN´1

K´1
ÿ

k“0

ÿ

pr,sqPV

Lk,r,si “ max
1ďiďN´1

K´1
ÿ

k“0

ÿ

r,sPV

2dr,s ¨m∆px, k,P piq
r,sq¨mpx, k, P piq

r,sqq (E.397)

what concludes the proof. QED.

E.6.2 Scaling

Lemma 7.5 (restated). Let x P RKˆWˆH be a K-channel image and let ϕS be the scaling
transformation. Then, a global Lipschitz constant L for the functions tgiuNi“1 is given by

Ls “ max
1ďiďN´1

K´1
ÿ

k“0

ÿ

r,sPΩXN2

?
2dr,s
a2

¨m∆px, k,P piq
r,sq ¨mpx, k, P piq

r,sq (E.398)

where Ω “ r0, W ´ 1s ˆ r0, H ´ 1s and a is the lower boundary value in S “ ra, bs. The set
P piq
r,s is given by all integer grid pixels that are covered by the trajectory of source pixels of
pr, sq when scaling with factors from αi`1 to αi.

Proof. Recall the Definition of the Scaling transformation ϕS given by ϕS : RKˆWˆH ˆRÑ
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RKˆWˆH , where

ϕSpx, αqk,r,s :“ Qx

ˆ

k, cW `
r ´ cW
s

, cH `
s´ cH
s

˙

. (E.399)

Recall that the set Ω is given by Ω “ r0, W ´ 1s ˆ r0, H ´ 1s “ t1, . . . , Ku and let

ΩN :“ ΩX N2 (E.400)

be the set of integers in Ω. Let f r1 : ra, bs Ñ R and f r,s2 : ra, bs Ñ R be functions defined as

f r1 pαq :“ cW `
r ´ cW
α

, f s2 pαq :“ cH `
s´ cH
α

. (E.401)

Then, the value of the scaled image ϕSpx, αq is given by

ϕSpx, αqk,r,s “ Qxpk, f
r
1 pαq, f

s
2 pαqq (E.402)

where Qx denotes bilinear interpolation. Let

ψk : ra, bs Ñ R, α ÞÑ Qxpk, f
r
1 pαq, f

s
2 pαqq. (E.403)

We notice that, in contrast to rotations, ψk is not continuous at every α P Rą0. Namely,
when considering scaling factors in p0, 1q, bilinear interpolation applies black padding to
some pr, sq P Ω resulting in discontinuities of ψk. To see this, consider the following. The
interval rαi`1, αis contains a discontinuity of ψk, if

$

’

&

’

%

αi`1 ă
r ´ cW
cW

ă αi, r ą cW ,

αi`1 ă
cW ´ r

cW
ă αi, r ă cW ,

(E.404)

because then Dα0 P rαi`1, αis such that f r1 pα0q P t0, W ´ 1u Ď Ω and hence

ϕSpx, α0qk,r,s ‰ 0 (E.405)

but, for r ą cW ,
ϕSpx, α0 ` εqk,r,s “ 0 @ε ą 0 (E.406)

or, when r ă cW ,
ϕSpx, α0 ´ εqk,r,s “ 0 @ε ą 0. (E.407)
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A similar reasoning leads to a discontinuity in the s-coordinates. We can thus define the set
of discontinuities of ψk as

D :“

¨

˝

W´1
ď

r“0

Dr
1

˛

‚Y

¨

˝

H´1
ď

s“0

Ds
2

˛

‚ (E.408)

where
Dr

1 :“
␣

α0 P ra, bs | f
r
1 pα0q P t0, W ´ 1u

(

Ds
2 :“

␣

α0 P ra, bs | f
s
2 pα0q P t0, H ´ 1u

(

.
(E.409)

We notice that |D| ď H`W and hence for large enough N , each interval rαi, αi`1s contains
at most 1 discontinuity.

Due to these continuities, we need to modify the general upper bound M of the interpo-
lation error MS Recall that for a ă b and tαiuNi“1, the maximum L2-sampling error Ma,b is
given by

MS :“ max
aďαďb

min
1ďiďN

ˇ

ˇ

ˇ

ˇ

ˇϕSpx, αq ´ ϕSpx, αiq
ˇ

ˇ

ˇ

ˇ

ˇ

2
. (E.410)

In order to compute an upper bound on (E.410) for scaling, we are interested in finding
M ě 0 such that

M2
S ďM (E.411)

For scaling, similar as in the case for rotations, we sample αi uniformly from ra, bs:

αi “ a`
b´ a

N ´ 1
pi´ 1q for 1 ď i ď N. (E.412)

and note that α1 “ b and αN “ a. For 1 ď i ď N Let gi be the functions gi : ra, bs Ñ Rě0

defined by

gipαq :“
›

›ϕSpx, αq ´ ϕSpx, αiq
›

›

2

2
. (E.413)

Note that @α P ra, bs, D i such that α P rαi`1, αis. Suppose that N is large enough such that
@ i : |D X rαi`1, αis| ď 1 and denote the discontinuity in interval rαi`1, αis by ti if it exists.
Let

Mi :“

$

’

&

’

%

max
αiďαďαi`1

mintgipαq, gi`1pαqu rαi, αi`1s X D “ ∅

max

"

max
αiďαďti

gi`1pαq, max
tiďαďαi`1

gipαq

*

rαi, αi`1s X D “ ttiu
(E.414)
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Similarly as in the case for rotations, we find

M2
S ď max

1ďiďN´1
Mi. (E.415)

For simplicity, we assume for the sequel that D “ ∅. The case where discontinuities exist
can be treated analogously. We further divide each interval rαi, αi`1s by sampling n P N
points tγi,junj“1 according to

γi,j :“ αi `
αi`1 ´ αi
n´ 1

pj ´ 1q for 1 ď j ď n (E.416)

and define
mi,j :“ max

γi,jďγďγi,j`1

min
␣

gipγq, gi`1pγq
(

. (E.417)

We can thus upper bound each Mi by

Mi ď max
1ďjďn´1

mi,j. (E.418)

In order to find an upper bound on M2
S , we thus need to find an upper bound on mi,j and

can proceed analogously to rotations. Namely, setting

M :“ max
1ďiďN´1

"

max
1ďjďn´1

"

1

2
¨

´

min
␣

gipγi,jq ` gipγi,j`1q,

gi`1pγi,jq ` gi`1pγi,j`1q
(

¯

` L ¨
γi, j`1 ´ γi, j

2

** (E.419)

yields a computable upper bound of the maximum ℓ2 interpolation error. Computing a
Lipschitz constant for gi and gi`1 is also analogous to rotations. The difference lies only in
computing a Lipschitz constant for ϕS what we will explain in greater detail.

Recall that Lemma E.4 provides a Lipschitz constant for the function t ÞÑ ψkptq :“

Qxpk, ρ1ptq, ρ2ptqq where ρ is a differentiable curve with values in R2. Namely, a Lipschitz
constant for ψk is given by

Lk “ max
tPrt1,t2s

´?
2
›

› 9ρptq
›

›

2
¨m∆px, k, tρptquq

¯

. (E.420)

Consider the curve
ρptq :“ pf r1 ptq, f

s
2 ptqq, t ą 0 (E.421)
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and note that it is differentiable with derivatives

df r1 ptq

dt
“

d

dt

ˆ

cW `
r ´ cW

t

˙

“
cW ´ r

t2
(E.422)

df s2 ptq

dt
“

d

dt

ˆ

cH `
s´ cH
t

˙

“
cH ´ s

t2
(E.423)

and
›

› 9ρptq
›

›

2
“

1

t2

b

pcW ´ rq
2
` pcH ´ sq

2. (E.424)

A Lipschitz constant for ϕSpx, ¨qk,r,s is thus given by

Lr,sk “ max
tPrt1, t2s

ˆ

b

pcW ´ rq
2
` pcH ´ sq

2

t2
¨
?
2m∆px, k, tρptquq

˙

(E.425)

ď

b

pcW ´ rq
2
` pcH ´ sq

2

t21
¨
?
2 ¨m∆px, k, Pr,sq (E.426)

ď

b

pcW ´ rq
2
` pcH ´ sq

2

a2
¨
?
2 ¨m∆px, k, Pr,sq (E.427)

where
Pr,s “

ď

αPrt1, t2s

tptf r1 ptqu, tf s2 ptququ. (E.428)

Finally, setting
Lk,r,si :“ Lr,sk ¨ m̄px, k, P piq

r,sq (E.429)

and

Ls “ max
1ďiďN´1

K´1
ÿ

k“0

ÿ

pr,sqPΩN

Lk,r,si

“ max
1ďiďN´1

K´1
ÿ

k“0

ÿ

r,sPΩXN2

?
2dr,s
a2

¨m∆px, k,P piq
r,sq ¨mpx, k, P piq

r,sq

(E.430)

yields the desired Lipschitz constant. QED.

E.7 ALGORITHM DESCRIPTION FOR DIFFERENTIALLY RESOLVABLE
TRANSFORMATIONS

Algorithm E.1 presents a pseudo-code for interpolation error M computation, taking ro-
tation transformation as the example. It corresponds to the description in Section 7.5.2.
Algorithm E.2 presents a pseudo-code for progressive sampling. It corresponds to the de-
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Algorithm E.1: Interpolation ErrorM Computation for Rotation Transformation.
Input: clean input image x;
interval of rotation angle to certify ra, bs;
number of first-level samples N ;
number of second-level samples n
Output: rotation angle samples tαiu

N
i“1;

upper bound M of squared ℓ2-interpolation error

M2
S “ argmax

αPra,bs
min

1ďiďN
}ϕ̃Rpx, αq ´ ϕ̃Rpx, αiq}22.

/* Compute Lipschitz constant Lr (7.35) */
α1 Ð a
for i “ 1, . . . , N ´ 1 do

αi`1 Ð a ` pb ´ aq ¨ i
N´1 (7.24)

for all pr, sq P V do
/* V and Ppiq

r,s are defined in Lemma 7.4 */
Compute trajectory covered grid pixels Ppiq

r,s

for k “ 0, . . . ,K ´ 1 do
Compute 2dr,s ¨ m∆px, k,Ppiq

r,sq ¨ m̄px, k,Ppiq
r,sq (7.35)

end for
end for
Lr,i Ð

řK´1
k“0

ř

pr,sqPV 2dr,s ¨ m∆px, k,Ppiq
r,sq ¨ m̄px, k,Ppiq

r,sq.
end for
Lr Ð max1ďiďN´1 Lr,i (7.35)
/* Compute interpolation error bound M (7.27) from stratified sampling */
for i “ 1, . . . , N ´ 1 do

for j “ 1, . . . , n do
/* Second-level sampling */
γi,j Ð αi ` pαi`1 ´ αiq ¨

j´1
n´1 (7.28)

end for
Mi Ð 0
for j “ 1, . . . , n ´ 1 do

Compute gipγi,jq, gipγi,j`1q, gi`1pγi,jq, and gi`1pγi,j`1q (7.25)
Mi Ð max

!

Mi,min
␣

gipγi,jq ` gipγi,j`1q,

gi`1pγi,jq ` gi`1pγi,j`1q
(

)

end for
Mi Ð 1

2Mi ` L ¨ b´a
pN´1qpn´1q

(7.30)
end for
Return: M Ð max1ďiďN´1Mi (7.27)

scription in Section 7.5.7. We remark that in practice, we sample in mini-batches with batch
size B. The error tolerance T is set to MS (7.23) if certifying rotation or scaling, is set to
a

M2
S ` σ

2{σ2
b ¨ b

2
0 (7.50) if certifying the composition of rotation or scaling with brightness
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Algorithm E.2: Progressive Sampling for Certification.
Input: clean input image x with true class kA; first-level parameter samples tαiu

N
i“1;

perturbation random variable ε with variance σ2; ℓ2 error tolerance T ; batch size B; sampling
size limit ns; confidence level p.
Output: with probability 1 ´ p, whether gp¨; εq is certifiably robust at ϕpx, αq.
for i “ 1, . . . , N do

xpiq Ð ϕpx, αiq
j Ð 0
while j ď ns do

Sample B instances of ϕpxpiq, εq, and use them to update empirical mean q̂pyA|xpiq; εq.
j Ð j ` B.
/* Lower confidence interval bound with these j samples */
pA

piq “ LowerConfBoundpq̂pyA|xpiq; εq, j, 1 ´ p{Nq.
if Ri “ σΦ´1

´

pA
piq
¯

ą T then
/* Already get the certification that Ri ą T , break */
Break

end if
end while
if Ri “ σΦ´1

´

pA
piq
¯

ď T then
/* Cannot ensure that Ri ą T . So cannot ensure that R “ minRi ą T . Early halt */
Return: false

end if
end for
Return: true

change within r´b0, b0s; and is set to
a

pMS ` rq2 ` σ2{σ2
b ¨ b

2
0 (7.51) if certifying the com-

position of rotation or scaling, brightness change r´b0, b0s, and ℓ2 bounded perturbations
within r. The two algorithms jointly constitute our pipeline TSS-DR for certifying against
differentially resolvable transformations as shown in Figure 7.5(a).

E.8 EXPERIMENT DETAILS

Here we provide all omitted details about experiment setup, implementation, discussion
about baselines, evaluation protocols, results, findings, and analyses.

E.8.1 Model Preparation

As previous work shows, an undefended model is very vulnerable even under simple ran-
dom semantic attacks. Therefore, to obtain nontrivial certified robustness, we require the
model itself to be trained to be robust against semantic transformations. We apply data
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augmentation training [77] combined with Consistency regularization [165] to train the base
classifiers. The data augmentation training randomly transforms the input by the specified
transformation using parameters drawn from the specified smoothing distribution/strat-
egy. The Consistency regularization further enhances the consistency of the base classifiers’
prediction among the drawn parameters. Then, the base classifiers are used to construct
smoothed classifiers by the specified smoothing distribution/strategy, and we compute its
robustness certification with our approach.

On relatively small datasets MNIST and CIFAR-10, the models are trained from scratch.
On MNIST, we use a convolutional neural network (CNN) composed of four convolutional
layers and three fully connected layers. On CIFAR-10, we use the neural network ResNet-110,
a 110-layer ResNet model [142]. These model structures are the same as in the literature [77,
317, 427] for direct comparison. On MNIST, we train 100 epochs; on CIFAR-10, we train 150

epochs. The batch sizes (B) are 400 and 256 on MNIST and CIFAR-10, respectively. The
learning rate on both datasets is initialized to 0.01, and after every 50 epochs, the learning
rate is multiplied by 0.1. For resolvable transformations, the data augmentation usually uses
the same smoothing distribution/strategy as we will use to construct the smoothed classifier.
In particular, for brightness and contrast transformation, we empirically observe that a larger
variance during inference time helps to improve the certified accuracy under large attack
radius, and for the composition of Gaussian blur, brightness, contrast, and translation,
we additionally add small additive Gaussian noise to improve its ability to defend against
other unforeseen attacks as we will discuss in Appendix E.8.8. For differentially resolvable
transformations, since Gaussian noise is required in constructing the smoothed classifier, the
data augmentation jointly adds Gaussian noise and the transformation to certify against.
The detailed hyperparameters such as distribution type and variance are listed in Table E.2.
The weight of Consistency regularization is set to 10 throughout the training.

On the large ImageNet dataset, we finetune the existing trained models. For resolvable
transformations, we finetune from ResNet-50 model in torchvision library [300]. For dif-
ferentially resolvable transformations, since the base classifier should also be robust under
Gaussian noise, we finetune from Resnet-50 model in [317] that achieves state-of-the-art
robustness under Gaussian noise. In either case, we follow the same data augmentation
scheme as on MNIST and CIFAR-10, and we finetune for two epochs with batch size (B)
128, learning rate 0.001, and Consistency regularization weight 10. During certification (e.g.,
Algorithm E.2), we use the same batch sizes as during training on these datasets.

The channel-wise normalization is used for all models on these three datasets as in [77, 317].
On all three datasets, in each training epoch, we feed in the whole training dataset without
random shuffle.
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We remark that since our approach focuses on robustness certification and the smoothing
strategy to improve certified robustness, we did not fully explore the potential of improving
certified robustness from the training side, nor did we file-tune the training hyperparame-
ters. Therefore, though we already achieved the state of the art by our effective robustness
certification and smoothing strategies, we believe the results could be further improved by
more effective training approaches.

E.8.2 Implementation Details

We implement the whole approach along with the training scripts in a tool based on
PyTorch. For resolvable transformations, we extend the smoothing module from Cohen et al
[77] to accommodate various smoothing strategies and smoothing distributions. The predict
and certify modules are kept the same. For differentially resolvable transformations, since
the stratified sampling requires N ˆ n times of transformation to compute the interpolation
error bound (where N is the number of first-level samples and n the number of second-
level samples), we implement a fast C module and integrate it to our Python-based tool.
It empirically achieves 3´ 5x speed gain compared with OpenCV[283]-based transformation.
For Lipschitz upper bound computation, since the loop in Python is slow, we reformulate the
computation by loop-free tensor computations using numpy. It empirically achieves 20´ 40x
speed gain compared to the plain loop-based implementation. The full code implementation
of our TSS tool along with all trained models are publicly available at https://github.com/
AI-secure/semantic-randomized-smoothing.

E.8.3 Details on Attacks

We use the following three attacks to evaluate the empirical accuracy of both TSS models
and vanilla models: Random Attack, Random+ Attack, and PGD Attack. The Random
Attack is used in previous work [22, 118] but does not consider the intrinsic characteris-
tics of semantic transformations. Thus, we propose Random+ Attack and PGD Attack as
the alternatives since they are adaptively designed for our smoothed TSS models and also
consider the intrinsic characteristics of these transformations.

Random Attack

The random attack is used to evaluate the empirical robust accuracy, which is an upper
bound of the certified robust accuracy. The random attack reads in the clean input, and
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uniformly samples N parameters from the pre-defined transformation parameter space to
transform the input following uniform distribution. If the model gives a wrong prediction
on any of these N transformed inputs, we treat this sample as being successfully attacked;
otherwise, the sample counts toward the empirical robust accuracy. We denote by N the
“number of initial starts”. In the main experiments, we set N “ 100, and in the following
ablation study (Appendix E.8.7), we also compare the behaviors of the three attacks under
N “ 10{20{50.

For transformations with a hyper-rectangle parameter space, including brightness, con-
trast, scaling, rotation, Gaussian blur, and their compositions, we uniformly sample transfor-
mation parameters for each coordinate. For transformations with discrete parameter space,
such as translation, we draw the parameter with equal probability. When the transforma-
tion is composed with ℓp-bounded perturbations, we additionally generate the perturbation
vector using FGSM attack [359], where the precise gradient is used for vanilla models, and
the empirical mean gradient over 100 samples is used for smoothed TSS models.

Adaptive Attack: Random+

The Random+ attack follows the same procedure as the Random attack. The only differ-
ence is that, instead of using uniform distribution for sampling transformation parameters,
we use the Beta distribution Betap0.5, 0.5q.

Formally, suppose the transformation space is ra, bs. In Random attack, we generate the
attack parameter ε randomly as follows:

ε1 „ Unifp0, 1q, εÐ a` pb´ aq ˆ ε1. (E.431)

In Random+ attack, we generate the attack parameter δ randomly as follows:

δ1 „ Betap0.5, 0.5q, δ Ð a` pb´ aq ˆ δ1. (E.432)

We choose the Beta distribution because, intuitively, an adversarial example would be more
likely to exist at the boundary, i.e., closer to a or b. For example, suppose the rotation
attacker has permitted angles in r´r, rs, then the adversarial samples may be more likely
to have large rotation angle. As shown in Figure E.1, the Beta distribution helps to assign
more mass when the parameter becomes closer to the boundary. Choosing other Beta distri-
bution hyperparameters could control the trade-off on sampling weights over the boundary
or over center, and we empirically find Betap0.5, 0.5q already works very well as shown in
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Figure E.1: Comparison of probability density of Random and Random+ attack when at-
tacking the rotation transformation with rotation angle between ´10˝ and `10˝.

experiments (Appendix E.8.7).

Adaptive Attack: PGD

We propose the semantic transformation version of PGD attack as follows: (1) Initialize
the transformation parameter following the same process as in Random+ Attack; (2) Suppose
the current parameter is pα1, ¨ ¨ ¨ , αzq. The attack slightly perturbs each coordinate from
αi to αi ˘ τi respectively and obtain 2z perturbed candidates. (3) The attack clips each
coordinate to be within the specified range, and then choose the candidate that yields the
largest gain of cross-entropy loss (for vanilla models) or empirical mean cross-entropy loss
(for TSS models) to update the current parameter. Then go to step (2). The loop repeats for
10 iterations for each sample obtained in step (1). The perturbed step size τi “ li{10 where li
is the length of the specified interval on the i-th coordinate. Finally, if the transformation is
composed with ℓp-bounded perturbations, we additionally generate the perturbation vector
in the same way as in Random attack.

For each Step (1) sample we would have an output and thus there are N outputs. If any
of these outputs fool the target model, we treat this sample as being successfully attacked;
otherwise, the sample counts toward the empirical robust accuracy. Note that the translation
transformation has a discrete parameter space, thus PGD attack is not applicable.

We refer to the attack as the semantic transformation version of PGD attack because:
(1) It involves multiple initial starts; (2) It leverages the local landscape information to
maximize the loss function iteratively. (3) It clips (i.e., “projects”) the parameters to be
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within the perturbation range. Compared to the classical PGD attack under ℓp-norm con-
straint, we use coordinate-wise perturbations to probe the local landscape to circumvent the
hardness of obtaining the gradient with respect to transformation parameters.

E.8.4 Details on Baseline Approaches

DeepG [22] is based on linear relaxations. The code is open-sourced, and we utilize it
to provide a direct comparison. The code provides trained models on MNIST and CIFAR-
10, while on ImageNet the method is too slow and memory-consuming to run. On both
MNIST and CIFAR-10, we use the provided trained models from the code. In terms of
computation time, since our approach uses far less than 1000 s for certification per input on
MNIST and CIFAR-10, we tune the hyperparameters to let the code spend roughly 1000 s

for certification.
Interval [343] is based on interval bound propagation. We also utilize the open-sourced

code to provide a direct comparison. The settings are the same as in DeepG.
VeriVis [292] provides an enumeration-based solution when the number of possible trans-

formation parameters or the number of possible transformed images is finite. In our evalu-
ation, only translation satisfies this property. Therefore, as the baseline, we implement the
enumeration-based robustness certification algorithm for our trained robust models.

Semantify-NN [268] proposes to insert a preprocessing layer to reduce the verification
against semantic transformations to the verification against classical ℓp noises. To our knowl-
edge, the code has not been open-sourced yet. Therefore, we directly compare with the num-
bers reported in their paper. Since they report the average of certified robust magnitude,
we apply Markov’s inequality to obtain an upper bound of their certified robust accuracy.
For example, they report 46.24 degrees as the average certified robust rotation angles. It
means that Prrr ě 50˝s ď Errs{50 “ 92.48%, i.e., the certified robust accuracy is no larger
than 92.48% when fixing the rotation angle to be 50˝.

For brightness and contrast changes, Semantify-NN considers first applying the change
and then clipping to r0, 1s, while our TSS considers only brightness and contrast changes.
This makes a one-to-one comparison with [268] difficult, but since other baselines (e.g.,
[22]) consider the same setting as we do, and to align with most baselines, we slightly
sacrifice comparability in this special case. For interested readers who would like to have an
absolutely fair comparison with Semantify-NN on brightness and contrast changes, they can
extend our TSS by modeling Semantify-NN’s tranformation by ϕBCpx, pb, cqq ˝ϕclippx, tl, thq,
where ϕclip clips the pixel intensities lower than tl and higher than th. Applying TSS-R
on transformation parameters pb, c, tl, thq then derives the robustness certification under the
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same threat model as Semantify-NN.
DistSPT [118] combines randomized smoothing and interval bound propagation to pro-

vide certified robustness against semantic transformations. Concretely, the approach lever-
ages interval bound propagation to compute the upper bound of interpolation error and
then applies randomized smoothing. On small datasets such as MNIST and CIFAR-10, the
approach is able to provide nontrivial robustness certification. Though the certified robust
accuracy is inferior than TSS as reflected in Table 7.3. We use their reported numbers in
[118, Table 4] for DistSPTx for comparison, since the certification goal and evaluation pro-
tocol are the same as ours. On ImageNet, as described in [118, Section 7.4], the interval
bound propagation is computationally expensive and loose. Therefore, they use sampling
to estimate the interpolation error, which makes the robustness certification no longer hold
against arbitrary attacks but just a certain random attack (“worst-of-10” attack).

IndivSPT [118] provides a different certification goal from the above approaches. At a
high level, the approach uses a transformed image as the input where the transformation
parameter is within predefined threshold. Then the approach certifies whether the prediction
for the transformed image and the prediction for the original image are the same. In contrast,
TSS and other baseline approaches take original image as the input and certifies whether
there exists no transformed image that can mislead the model. Due to different certification
goals, TSS is not comparable with IndivSPT.

E.8.5 Benign Accuracy

Table E.1 shows the benign accuracy of our models corresponding to Table 7.3. For
comparison, the vanilla trained models have benign accuracy 98.6% on MNIST, 88.6% on
CIFAR-10, and 74.4% on ImageNet.

We observe that though the trade-off between accuracy and (certified) robustness is widely
reported both theoretically [269, 427, 442] and empirically (e.g., [77, 165, 437]) in classical
ℓp threat model, it does not always exist in our semantic defense setting. Specifically, for
resolvable transformations, we do not observe an apparent loss of benign accuracy in our
certifiably robust models; while for differentially resolvable transformations (those involving
scaling and rotation), there is no loss on MNIST, slight losses on CIFAR-10, and apparent
losses on ImageNet. When there does exist a trade-off between benign accuracy and certified
robust accuracy, we show that smoothing variance levels control it in Appendix E.8.10.
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Table E.1: Benign accuracy of our TSS models corresponding to those in Table 7.3. Certified
robust accuracy shown as reference.

Transformation Dataset Attack Radius Certified Benign
Robust Acc. Acc.

Gaussian Blur
MNIST Squared Radius α ď 36 90.6% 96.8%

CIFAR-10 Squared Radius α ď 16 63.6% 76.2%
ImageNet Squared Radius α ď 36 51.6% 59.2%

Translation
(Reflection Pad.)

MNIST
a

∆x2 `∆y2 ď 8 99.6% 99.6%

CIFAR-10
a

∆x2 `∆y2 ď 20 80.8% 87.0%

ImageNet
a

∆x2 `∆y2 ď 100 50.0% 73.0%

Brightness
MNIST b˘ 50% 98.2% 98.2%

CIFAR-10 b˘ 40% 87.0% 87.8%
ImageNet b˘ 40% 70.0% 72.2%

Contrast
and

Brightness

MNIST c˘ 50%, b˘ 50% 97.6% 98.0%
CIFAR-10 c˘ 40%, b˘ 40% 82.4% 86.8%
ImageNet c˘ 40%, b˘ 40% 61.4% 72.2%

Gaussian Blur,
Translation, Bright-
ness, and Contrast

MNIST α ď 1, c, b˘ 10%,
a

∆x2 `∆y2 ď 5 90.2% 98.2%

CIFAR-10 α ď 1, c, b˘ 10%,
a

∆x2 `∆y2 ď 5 58.2% 77.6%

ImageNet α ď 10, c, b˘ 20%,
a

∆x2 `∆y2 ď 10 32.8% 61.6%

Rotation

MNIST r ˘ 50˝ 97.4% 99.4%

CIFAR-10 r ˘ 10˝ 70.6% 83.2%
r ˘ 30˝ 63.6% 82.6%

ImageNet r ˘ 30˝ 30.4% 46.2%

Scaling
MNIST s˘ 30% 99.0% 99.4%

CIFAR-10 s˘ 30% 58.8% 79.8%
ImageNet s˘ 30% 26.4% 50.8%

Rotation
and

Brightness

MNIST r ˘ 50˝, b˘ 20% 97.0% 99.4%

CIFAR-10 r ˘ 10˝, b˘ 10% 70.2% 83.0%
r ˘ 30˝, b˘ 20% 61.4% 82.6%

ImageNet r ˘ 30˝, b˘ 20% 26.8% 45.8%

Scaling
and

Brightness

MNIST s˘ 50%, b˘ 50% 96.6% 99.4%
CIFAR-10 s˘ 30%, b˘ 30% 54.2% 79.6%
ImageNet s˘ 30%, b˘ 30% 23.4% 50.8%

Rotation,
Brightness,

and ℓ2

MNIST r ˘ 50˝, b˘ 20%, }δ}2 ď .05 96.6% 99.4%

CIFAR-10 r ˘ 10˝, b˘ 10%, }δ}2 ď .05 64.2% 83.0%
r ˘ 30˝, b˘ 20%, }δ}2 ď .05 55.2% 82.6%

ImageNet r ˘ 30˝, b˘ 20%, }δ}2 ď .05 26.6% 45.8%

Scaling,
Brightness,

and ℓ2

MNIST s˘ 50%, b˘ 50%, }δ}2 ď .05 96.4% 99.4%
CIFAR-10 s˘ 30%, b˘ 30%, }δ}2 ď .05 51.2% 79.6%
ImageNet s˘ 30%, b˘ 30%, }δ}2 ď .05 22.6% 50.8%

E.8.6 Smoothing Distributions and Running Time Statistics

In Table E.2, we present the smoothing distributions with concrete parameters and av-
erage certification computing time per sample for results in main table (Table 7.3). In the
table, α is for squared kernel radius for Gaussian blur; ∆x and ∆y are for translation dis-
placement on horizontal and vertical direction; b and c are for brightness shift and contrast
change respectively as in x ÞÑ p1` cqx` b; r is for rotation angle; s is for size scaling ratio;
ε is for additive noise vector; and }δ}2 for ℓ2 norm of permitted additional perturbations.
Specifically, “Training Distribution” stands for the distributions for data augmentation dur-
ing training the base classifiers; and “Smoothing Distribution” stands for the distributions
for constructing the smoothed classifiers for certification.

We select these distributions according to the principles in Appendix E.8.1.
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Table E.2: Detailed smoothing distributions and running time statistics for our TSS.N pµ,Σq
is the normal distribution, exppλq is the exponential distribution, Upra, bsq is the uniform
distribution. Random variable ϵ is the elementwise noise as in Corollary 7.2. “Cert.” means
certification.

Transformation Dataset Attack Radius Training
Distribution

Smoothing
Distribution

Avg. Cert.
Time per
Sample

Gaussian Blur
MNIST Squared Radius α ď 36 α „ Expp1{10q 7.9 s

CIFAR-10 Squared Radius α ď 16 α „ Expp1{5q 30.9 s
ImageNet Squared Radius α ď 36 α „ Expp1{10q 45.7 s

Translation
(Reflection Pad.)

MNIST
a

∆x2 `∆y2 ď 8 p∆x,∆yq „ N p0, 102Iq 10.2 s

CIFAR-10
a

∆x2 `∆y2 ď 20 p∆x,∆yq „ N p0, 152Iq 39.4 s

ImageNet
a

∆x2 `∆y2 ď 100 p∆x,∆yq „ N p0, 302Iq 161.9 s

Brightness
MNIST b˘ 50% b „ N p0, 0.62q 2.1 s

CIFAR-10 b˘ 40% b „ N p0, 0.32q 4.4 s
ImageNet b˘ 40% b „ N p0, 0.42q 45.1 s

Contrast
and

Brightness

MNIST c˘ 50%, b˘ 50% pc, bq „ N p0, 0.62Iq pc, bq „ N p0, 1.02Iq 9.8 s
CIFAR-10 c˘ 40%, b˘ 40% pc, bq „ N p0, 0.42Iq pc, bq „ N p0, 0.62Iq 45.0 s
ImageNet c˘ 40%, b˘ 40% pc, bq „ N p0, 0.42Iq 325.6 s

Gaussian Blur,
Translation, Bright-
ness, and Contrast

MNIST
α ď 5, c, b˘ 10%,
a

∆x2 `∆y2 ď 5

α „ Expp1{10q α „ Expp1{10q

p∆x,∆yq „ N p0, 102Iq
pc, bq „ N p0, 0.32Iq

12.9 s
p∆x,∆yq „ N p0, 102Iq
pc, bq „ N p0, 0.32Iq
ϵ „ N p0, 0.052Iq

CIFAR-10
α ď 1, c, b˘ 10%,
a

∆x2 `∆y2 ď 5

α „ Expp1q α „ Expp1q

p∆x,∆yq „ N p0, 102Iq
pc, bq „ N p0, 0.32Iq

43.1 s
p∆x,∆yq „ N p0, 102Iq
pc, bq „ N p0, 0.32Iq
ϵ „ N p0, 0.012Iq

ImageNet
α ď 10, c, b˘ 20%,
a

∆x2 `∆y2 ď 10

α „ Expp1{5q α „ Expp1{5q

p∆x,∆yq „ N p0, 202Iq
pc, bq „ N p0, 0.42Iq

238.1 s
p∆x,∆yq „ N p0, 202Iq
pc, bq „ N p0, 0.42Iq
ϵ „ N p0, 0.012Iq

Rotation

MNIST r ˘ 50˝

Same as
Rotation and
Brightness

ϵ „ N p0, 0.122Iq 20.1 s

CIFAR-10 r ˘ 10˝ ϵ „ N p0, 0.052Iq 52.8 s
r ˘ 30˝ ϵ „ N p0, 0.052Iq 141.0 s

ImageNet r ˘ 30˝ ϵ „ N p0, 0.52Iq 2358.1 s

Scaling
MNIST s˘ 30% Same as

Scaling and
Brightness

ϵ „ N p0, 0.122Iq 17.7 s
CIFAR-10 s˘ 30% ϵ „ N p0, 0.122Iq 42.2 s
ImageNet s˘ 30% ϵ „ N p0, 0.52Iq 1201.2 s

Rotation
and

Brightness

MNIST r ˘ 50˝, b˘ 20%
r „ Upr´55, 55sq

ϵ „ N p0, 0.122Iq
b „ N p0, 0.22q 31.4 sϵ „ N p0, 0.122Iq

b „ N p0, 0.22q

CIFAR-10

r ˘ 10˝, b˘ 10%
r „ Upr´12.5, 12.5sq

ϵ „ N p0, 0.052Iq
b „ N p0, 0.22q 62.3 sϵ „ N p0, 0.052Iq

b „ N p0, 0.22q

r ˘ 30˝, b˘ 20%
r „ Upr´35, 35sq

ϵ „ N p0, 0.052Iq
b „ N p0, 0.22q 157.0 sϵ „ N p0, 0.052Iq

b „ N p0, 0.22q

ImageNet r ˘ 30˝, b˘ 20%
r „ Upr´35, 35sq

ϵ „ N p0, 0.52Iq
b „ N p0, 0.22q 2475.6 sϵ „ N p0, 0.52Iq

b „ N p0, 0.22q

Scaling
and

Brightness

MNIST s˘ 50%, b˘ 50%
s „ Upr0.45, 1.55sq

ϵ „ N p0, 0.122Iq
b „ N p0, 0.52q 74.9 sϵ „ N p0, 0.122Iq

b „ N p0, 0.52q

CIFAR-10 s˘ 30%, b˘ 30%
s „ Upr0.65, 1.35sq

ϵ „ N p0, 0.122Iq
b „ N p0, 0.32q 44.5 sϵ „ N p0, 0.122Iq

b „ N p0, 0.32q

ImageNet s˘ 30%, b˘ 30%
s „ Upr0.65, 1.35sq

ϵ „ N p0, 0.52Iq
b „ N p0, 0.32q 1401.6 sϵ „ N p0, 0.52Iq

b „ N p0, 0.32q

Rotation,
Brightness,

and ℓ2

MNIST r ˘ 50˝, b˘ 20%, }δ}2 ď .05
Same as

Rotation and
Brightness

Same as
Rotation and
Brightness

35.1 s

CIFAR-10 r ˘ 10˝, b˘ 10%, }δ}2 ď .05 132.5 s
r ˘ 30˝, b˘ 20%, }δ}2 ď .05 520.2 s

ImageNet r ˘ 30˝, b˘ 20%, }δ}2 ď .05 3463.8 s

Scaling,
Brightness,

and ℓ2

MNIST s˘ 50%, b˘ 50%, }δ}2 ď .05 Same as
Scaling and
Brightness

Same as
Scaling and
Brightness

75.1 s
CIFAR-10 s˘ 30%, b˘ 30%, }δ}2 ď .05 50.0 s
ImageNet s˘ 30%, b˘ 30%, }δ}2 ď .05 1657.7 s
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E.8.7 Comparison of Random Attack and Adaptive Attacks: Detail

In Table 7.3, we compare the empirical robust accuracy of vanilla models and TSS models
under random attacks and two adaptive attacks: Random+ and PGD. However, due to
space limits, we omit the empirical accuracy of each adaptive attack and we just present the
minimum empirical accuracy among them. In Table E.3, Table E.4, and Table E.5, for all
transformations on MNIST, CIFAR-10, and ImageNet respectively, we present the detailed
empirical accuracy of each attack under different number of initial starts N “ 10{20{50{100.
Note that the main table (Table 7.3) shows the empirical accuracy with N “ 100 for all
attacks.

From these three tables, we cross-validate the findings shown in the main chapter: the
adaptive attack decreases the empirical accuracy of TSS models slightly, while it decreases
that of vanilla models more. Moreover, when comparing these three attacks, we find that
with a small number of initial starts (e.g., N “ 10), the PGD attack is typically the most
powerful. However, with a large number of initial starts (e.g., N “ 100), Random+ attack
sometimes becomes better. We conjecture that the optimization goal of PGD attack—
maximization of cross-entropy loss—might be sub-optimal in terms of increasing the mis-
classification rate. Thus, with a small number of initial starts, PGD is better than Ran-
dom/Random+ attack due to the iterative ascending. However, with a large number of
initial starts, both PGD and Random+ attack can sufficiently explore the adversarial re-
gion, and PGD may be misled by the optimization goal to a benign region. It would be an
interesting future work to study these intriguing properties of semantic attacks.

E.8.8 Empirical Robustness against Unforeseen Attacks: Evaluation Protocol and Result
Breakdown

In the main text (Section 7.7.2), we briefly show that TSS is generalizable to defend against
unforeseen physical attacks by evaluating on CIFAR-10-C and ImageNet-C. Here, we first
introduce the detailed evaluation protocol, then a breakdown of the result table (Table 7.4)
in the main text and show empirical accuracy on each type of corruption.

Evaluated Models

On either CIFAR-10-C and ImageNet-C, we choose three models for evaluation: the vanilla
model, the AugMix [146] trained model, and our TSS model for defending the composition of
Gaussian blur, translation, brightness, and contrast. The vanilla models and TSS models are
the same models as used in main experiments. The AugMix is the state-of-the-art empirical
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Table E.3: Comparison between empirical robust accuracy against random and adaptive
attacks and certified robust accuracy on MNIST. The attack radii are consistent with Ta-
ble 7.3. The most powerful attack in each setting is highlighted in bold font. The adaptive
attacks are shown in gray rows. Note that PGD attack cannot apply to translation trans-
formation because the parameter space is discrete.

Transformation Attack
Radius Model Attack

Empirical Robust Accuracy Certified
Initial Starts N “ Robust

10 20 50 100 Accuracy

Gaussian
Blur

Squared
Radius
α ď 36

TSS
Random 93.2% 92.2% 92.0% 91.4%

90.6%Random+ 92.4% 92.2% 91.2% 91.2%
PGD 91.6% 91.6% 91.6% 91.6%

Vanilla
Random 14.0% 12.4% 12.2% 12.2%

-Random+ 12.4% 12.4% 12.2% 12.2%
PGD 12.2% 12.2% 12.2% 12.2%

Translation
(Reflection Pad.)

a

∆x2 `∆y2

ď 8

TSS
Random 99.6% 99.6% 99.6% 99.6%

99.6%Random+ 99.6% 99.6% 99.6% 99.6%
PGD - - - -

Vanilla
Random 0.0% 0.0% 0.0% 0.0%

-Random+ 0.0% 0.0% 0.0% 0.0%
PGD - - - -

Brightness b˘ 50%

TSS
Random 98.2% 98.2% 98.2% 98.2%

98.2%Random+ 98.2% 98.2% 98.2% 98.2%
PGD 98.2% 98.2% 98.2% 98.2%

Vanilla
Random 97.2% 96.6% 96.6% 96.6%

-Random+ 96.8% 96.6% 96.6% 96.6%
PGD 96.6% 96.6% 96.6% 96.6%

Contrast
and

Brightness
c˘ 50%,
b˘ 50%

TSS
Random 98.0% 98.0% 98.0% 98.0%

97.6%Random+ 98.0% 98.0% 98.0% 98.0%
PGD 98.0% 98.0% 98.0% 98.0%

Vanilla
Random 96.8% 95.8% 95.0% 94.6%

-Random+ 95.8% 94.4% 93.8% 93.6%
PGD 93.6% 93.4% 93.2% 93.2%

Gaussian Blur,
Translation
Contrast,

and Brightness

α ď 5,
c˘ 10%,
b˘ 10%,

a

∆x2 `∆y2

ď 5

TSS
Random 97.6% 97.6% 97.6% 97.2%

90.2%Random+ 97.6% 97.2% 97.0% 97.0%
PGD 97.4% 97.4% 97.2% 97.0%

Vanilla
Random 10.0% 4.4% 1.4% 0.4%

-Random+ 6.8% 2.4% 1.2% 0.4%
PGD 7.0% 1.4% 0.8% 0.4%

Rotation r ˘ 50˝

TSS
Random 98.6% 98.4% 98.2% 98.4%

97.4%Random+ 98.6% 98.6% 98.4% 98.2%
PGD 98.2% 98.4% 98.4% 98.2%

Vanilla
Random 27.2% 17.4% 13.8% 12.2%

-Random+ 15.4% 13.0% 11.0% 11.0%
PGD 16.4% 15.6% 15.4% 15.2%

Scaling s˘ 30%

TSS
Random 99.2% 99.2% 99.2% 99.2%

97.2%Random+ 99.2% 99.2% 99.2% 99.2%
PGD 99.2% 99.2% 99.2% 99.2%

Vanilla
Random 92.0% 91.4% 90.2% 90.2%

-Random+ 90.0% 89.4% 89.2% 89.2%
PGD 90.4% 90.2% 90.2% 90.2%

Rotation
and

Brightness
r ˘ 50%,
b˘ 20%

TSS
Random 98.8% 98.4% 98.2% 98.2%

97.0%Random+ 98.6% 98.2% 98.0% 98.2%
PGD 98.2% 98.0% 98.0% 98.0%

Vanilla
Random 28.8% 17.8% 12.6% 11.0%

-Random+ 16.6% 11.6% 10.4% 10.4%
PGD 13.4% 13.6% 13.0% 12.6%

Scaling
and

Brightness
s˘ 50%,
b˘ 50%

TSS
Random 98.6% 98.6% 98.4% 97.8%

96.6%Random+ 98.4% 98.0% 97.8% 97.8%
PGD 98.2% 97.8% 97.8% 97.8%

Vanilla
Random 57.4% 46.0% 31.0% 24.8%

-Random+ 40.4% 28.0% 19.8% 15.6%
PGD 29.0% 25.2% 25.0% 24.0%

Rotation,
Brightness,

and ℓ2

r ˘ 50%,
b˘ 20%,
}δ}2 ď .05

TSS
Random 98.2% 97.8% 97.6% 97.6%

96.6%Random+ 98.4% 98.0% 97.8% 97.6%
PGD 97.6% 97.6% 97.6% 97.4%

Vanilla
Random 27.6% 17.2% 11.4% 10.8%

-Random+ 15.2% 11.2% 9.4% 9.0%
PGD 13.4% 11.8% 12.0% 11.8%

Scaling,
Brightness,

and ℓ2

s˘ 50%,
b˘ 50%,
}δ}2 ď .05

TSS
Random 98.4% 98.4% 97.6% 97.6%

96.4%Random+ 97.8% 97.8% 97.6% 97.6%
PGD 97.8% 97.6% 97.6% 97.6%

Vanilla
Random 50.4% 38.2% 28.2% 22.2%

-Random+ 34.4% 23.2% 13.4% 12.2%
PGD 23.4% 22.0% 21.6% 20.8%
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Table E.4: Comparison between empirical robust accuracy against random and adaptive
attacks and certified robust accuracy on CIFAR-10. The attack radii are consistent with
Table 7.3. The most powerful attack in each setting is highlighted in bold font. The adaptive
attacks are shown in gray rows. Note that the PGD attack cannot apply to translation
transformation because the parameter space is discrete.

Transformation Attack
Radius Model Attack

Empirical Robust Accuracy Certified
Initial Starts N “ Robust

10 20 50 100 Accuracy

Gaussian
Blur

Squared
Radius
α ď 16

TSS
Random 66.4% 66.4% 65.8% 65.8%

63.6%Random+ 66.8% 66.0% 65.8% 65.8%
PGD 65.8% 65.8% 65.8% 65.8%

Vanilla
Random 4.8% 4.2% 3.4% 3.4%

-Random+ 4.6% 4.0% 3.6% 3.4%
PGD 3.4% 3.4% 3.4% 3.4%

Translation
(Reflection Pad.)

a

∆x2 `∆y2

ď 20

TSS
Random 86.2% 86.0% 86.2% 86.2%

80.8%Random+ 86.4% 86.0% 86.0% 86.0%
PGD - - - -

Vanilla
Random 8.0% 7.0% 4.4% 4.2%

-Random+ 8.2% 7.2% 4.2% 4.2%
PGD - - - -

Brightness b˘ 40%

TSS
Random 87.2% 87.2% 87.4% 87.2%

87.0%Random+ 87.0% 87.0% 87.0% 87.4%
PGD 87.4% 87.4% 87.4% 87.4%

Vanilla
Random 57.8% 51.2% 45.8% 44.4%

-Random+ 49.8% 44.2% 42.8% 42.6%
PGD 52.4% 51.0% 50.8% 50.8%

Contrast
and

Brightness
c˘ 40%,
b˘ 40%

TSS
Random 86.2% 86.2% 86.2% 86.0%

82.4%Random+ 85.8% 86.2% 86.0% 85.8%
PGD 85.8% 85.8% 85.8% 85.8%

Vanilla
Random 48.0% 40.0% 27.2% 21.0%

-Random+ 32.0% 23.2% 14.8% 9.6%
PGD 17.0% 13.0% 12.2% 11.8%

Gaussian Blur,
Translation,
Contrast,

and Brightness

α ď 1,
c˘ 10%,
b˘ 10%,

a

∆x2 `∆y2

ď 5

TSS
Random 71.0% 69.2% 68.0% 67.6%

58.2%Random+ 70.6% 69.8% 68.4% 67.8%
PGD 69.8% 69.8% 69.0% 68.0%

Vanilla
Random 21.2% 16.6% 12.0% 9.6%

-Random+ 18.6% 14.2% 9.0% 7.2%
PGD 12.8% 9.8% 6.8% 5.6%

Rotation

r ˘ 10˝

TSS
Random 78.0% 77.0% 76.8% 76.6%

70.6%Random+ 77.4% 76.8% 76.4% 76.4%
PGD 76.8% 76.8% 76.8% 76.6%

Vanilla
Random 69.2% 68.0% 65.6% 65.6%

-Random+ 68.4% 67.2% 66.0% 65.6%
PGD 66.4% 66.0% 65.6% 65.4%

r ˘ 30˝

TSS
Random 71.8% 70.2% 69.8% 69.2%

63.6%Random+ 71.0% 69.4% 69.2% 69.4%
PGD 70.4% 70.0% 70.0% 69.8%

Vanilla
Random 31.6% 27.4% 22.6% 21.6%

-Random+ 32.2% 27.2% 23.8% 21.4%
PGD 25.2% 23.8% 23.2% 23.2%

Scaling s˘ 30%

TSS
Random 69.6% 67.8% 67.8% 67.2%

58.8%Random+ 69.2% 68.4% 67.4% 67.0%
PGD 67.8% 67.6% 67.2% 67.0%

Vanilla
Random 60.0% 54.6% 52.8% 51.6%

-Random+ 56.6% 53.8% 52.2% 51.2%
PGD 53.2% 52.4% 52.0% 52.0%

Rotation
and

Brightness

r ˘ 10˝,
b˘ 10%

TSS
Random 77.2% 76.8% 77.0% 76.6%

70.6%Random+ 77.2% 76.6% 76.4% 76.0%
PGD 76.6% 76.6% 76.4% 76.4%

Vanilla
Random 67.2% 64.8% 60.6% 59.4%

-Random+ 66.0% 63.0% 59.4% 57.8%
PGD 57.8% 57.6% 57.0% 56.8%

r ˘ 30˝,
b˘ 20%

TSS
Random 72.0% 70.2% 68.8% 68.4%

61.4%Random+ 70.6% 68.8% 68.0% 68.2%
PGD 69.2% 68.6% 68.6% 68.6%

Vanilla
Random 26.6% 20.2% 15.8% 13.0%

-Random+ 18.8% 16.0% 11.6% 9.4%
PGD 12.2% 10.4% 9.2% 9.0%

Scaling
and

Brightness
s˘ 30%,
b˘ 30%

TSS
Random 68.6% 68.6% 67.4% 67.2%

54.2%Random+ 68.4% 68.0% 67.0% 66.8%
PGD 67.4% 67.4% 66.8% 66.8%

Vanilla
Random 39.2% 30.6% 20.0% 17.4%

-Random+ 30.4% 19.4% 15.4% 11.6%
PGD 16.0% 14.4% 13.0% 13.0%

Rotation,
Brightness,

and ℓ2

r ˘ 10˝,
b˘ 10%,
}δ}2 ď .05

TSS
Random 74.2% 72.8% 71.8% 71.6%

64.2%Random+ 72.8% 72.2% 71.8% 71.2%
PGD 71.6% 71.6% 71.6% 71.6%

Vanilla
Random 40.4% 35.8% 34.4% 31.8%

-Random+ 36.4% 34.6% 30.8% 29.6%
PGD 36.0% 35.0% 34.6% 34.6%

r ˘ 30˝,
b˘ 20%,
}δ}2 ď .05

TSS
Random 67.6% 66.2% 64.8% 65.2%

55.2%Random+ 65.6% 65.6% 65.2% 64.4%
PGD 65.2% 64.6% 64.0% 64.0%

Vanilla
Random 7.6% 5.4% 2.6% 0.8%

-Random+ 3.8% 2.4% 1.2% 0.4%
PGD 1.2% 0.6% 0.6% 0.6%

Scaling,
Brightness,

and ℓ2

s˘ 30%,
b˘ 30%,
}δ}2 ď .05

TSS
Random 67.6% 66.8% 65.2% 65.0%

51.2%Random+ 66.0% 66.2% 64.6% 64.4%
PGD 64.2% 62.2% 61.8% 61.8%

Vanilla
Random 15.6% 11.4% 5.8% 4.4%

-Random+ 8.2% 5.0% 2.0% 2.0%
PGD 3.8% 2.8% 2.8% 2.6%
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defense on the CIFAR-10-C and ImageNet-C dataset according to [86]. For AugMix, on
CIFAR-10-C, since the model weights are not released, we use the official implementation of
AugMix (https://github.com/google-research/augmix) and extend the code to support
our used model architecture (ResNet-110) for a fair comparison. We run the code with the
suggested hyperparameters and achieve similar performance as reported in their paper. On
ImageNet-C, we directly use the officially released model weights. The model has the same
architecture (ResNet-50) as ours so the comparison is naturally fair. Note that all these
models are trained only on the clean CIFAR-10 or ImageNet training set. We do not include
the evaluation of MNIST models since there is no corrupted MNIST dataset available within
our best knowledge.

Empirical Accuracy Computation

We compute the empirical accuracy (on CIFAR-10-C/ImageNet-C) as the ratio of cor-
rectly predicted samples among the test samples, where the test samples are all corrupted
at the highest severity level (level 5) to model the strongest unforeseen semantic attacker.
For each corruption type, there is a full test set generated by 1-to-1 mapping from the orig-
inal clean test set samples processed with the corruption. Being consistent with the main
experiment’s protocol, for each corruption type, we uniformly pick 500 samples from the
corresponding test set. Then, we compute the average empirical accuracy among all 19
corruptions and report it in Table 7.4 in main text.

As a reference, we also include their certified accuracy against the composition of Gaussian
blur, brightness, contrast, and translation. Since our TSS provides robustness certification
only for smoothed models, we apply the same smoothing strategy as our TSS models, hoping
for providing robustness certificates for baseline models. As shown in Table 7.4, only TSS
models can be certified with nontrivial certified robust accuracy.

Breakdown

In Table E.6, we show the breakdown of empirical accuracy for all models evaluated
in Table 7.4. Note that our TSS models are trained using only four of these 19 corrup-
tions (brightness, contrast, Gaussian blur, and additive Gaussian noise). Almost on all the
corruptions, TSS has higher accuracy than vanilla models and sometimes higher than the
state-of-the-art defense—AugMix. Interestingly, we find TSS models have different general-
ization abilities on these corruptions. The additive Gaussian noise has the best generalization
ability, because TSS model also achieves much higher accuracy against impulse noise and
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shot noise than all the baselines. The Gaussian blur also generalizes well, because we can see
significantly higher accuracy of TSS models against zoom blur, glass blur, motion blur, and
defocus blur especially on CIFAR-10-C. Finally, brightness and contrast, even though they
seem to be among the simplest transformations, have the poorest generalization ability. For
example, under severe corruptions, the empirical accuracy of brightness is even below than
that of vanilla models. Manual inspection of the corrupted images showed that corrupted
brightness or contrast images are severely altered so that they are hard to be distinguished
even by humans, giving a hint for possible reasons for the poor performance on these images.
We thus conjecture that overly severe corruption could be the reason, and we think that it
would be an interesting future direction to study these different generalization abilities in
depth.

E.8.9 Certified Accuracy Beyond Certified Radii
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Certified Accuracy under Different Attack Radii on MNIST

Figure E.2: The blue curves show the certified robust accuracy on MNIST. The predefined
certified radii are shown as purple vertical dotted lines. No significant degradation
after exceeding the predefined radii. For Contrast subfigure, we allow additional 50%
brightness change.

In Figure E.2 and Figure E.3, on MNIST and CIFAR-10, the purple vertical dotted lines
stand for the predefined certified radii that the models aim to defend, and the blue curves
show the certified robust accuracy (y axis) with respect to attack radii (x axis). The fig-
ures imply that the TSS models that aim to defend against transformations within certain
thresholds still maintain high certified accuracy when the transformation parameters go
even far beyond the thresholds.

In Table E.7, Table E.8, and Table E.9, we further list the empirical robust accuracy of
TSS and vanilla models when the attacker goes beyond the predefined certified radius. The
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Figure E.3: The blue curves show the certified robust accuracy on CIFAR-10. The prede-
fined certified radii are shown as purple vertical dotted lines. No significant degradation
after exceeding the predefined certified radii. For Contrast subfigure, we allow addi-
tional 40% brightness change.

empirical robust accuracy is computed as the minimum among all three attacks: Random,
Random+, and PGD. We observe that the empirical robust accuracy follows the same ten-
dency. For example, on CIFAR-10 dataset, the TSS model is trained to defend against
the rotation transformation within 30˝ where it achieves 69.2%/63.6% empirical/certified
accuracy. When the rotation angle goes up to 60˝ the model still preserves 46.8%/37.4%
empirical/certified accuracy. On the contrary, the vanilla model’s empirical accuracy is
reduced from 21.4% (30˝ rotation) to 3.2% (60˝ rotation).

E.8.10 Different Smoothing Variance Levels: More Results

In Section 7.7.3 we have shown the study on smoothing variance levels on ImageNet (Ta-
ble 7.5). Here, we further present our study of smoothing variance levels on MNIST and
CIFAR-10. They are shown in Table E.10 and Table E.11 respectively. The smoothing vari-
ances shown in the two tables are for both training and inference-time smoothing. Except
for smoothing variance, all other hyperparameters for training and certification are kept the
same and consistent with the main experiments (Table 7.3). As we can observe, the same
conclusion still holds: usually, when the smoothing variance increases, the benign accuracy
drops and the certified robust accuracy first rises and then drops. The reason is that larger
smoothing variance makes the input more severely transformed so that the benign accuracy
becomes smaller. On the other hand, larger smoothing variance makes the robustness easier
to be certified as we can observe in various robustness conditions in Appendix E.2, where
the required lower bound of pA becomes smaller. This is the reason for the “first rise” on
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certified accuracy. However, when the smoothing variance becomes too large, the benign
accuracy becomes too low, and according to our definition, the certified accuracy is upper
bounded by the benign accuracy (precondition of robustness is correctness). This is the
reason for the “then drop” on certified accuracy.

We again observe that the range of acceptable variance is usually wide. For example, on
CIFAR-10, for rotation transformation, the certified robust accuracy is 63.6%/62.0%/59.0%
across a wide range of smoothing variance: 0.05, 0.09, 0.12. Thus, even in the presence of
such trade-off, without fine-tuning the smoothing variances, we can still obtain high certified
robust accuracy and high benign accuracy as reported in Table 7.3 and Table E.1 respectively.

We remark that the gray cells in Table E.10 and Table E.11 indicate the smoothing
variances used in our main experiments. We did not tune the smoothing variances so these
cells might be sub-optimal (though usually close to optimal) and they are just placed here
for indication purpose.

E.8.11 Tightness-Efficiency Trade-Off

We notice that as we increase the number of samples when estimating the interpolation
error in (7.27) and (7.30), the interpolation error MS and the upper bound

?
M ě MS

become smaller and the certification becomes tighter, leading to higher certified robust
accuracy. However, the computation time is also increased, resulting in a trade-off between
speed and accuracy. In Table E.12 and Table E.13, we illustrate this trade-off on two
differentially resolvable transformations: composition of rotation and brightness on CIFAR-
10, and composition of scaling and brightnes on MNIST. From the tables, we find that,
for these compositions, as the sample numbers N and n increase, the interpolation error
decreases and computing time increases (linearly with N and n). As a consequence, if using
a large number of samples, we can decrease the smoothing noise level σ and achieve both
higher certified accuracy and higher benign accuracy at the cost of larger computation time.
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Table E.5: Comparison between empirical robust accuracy against random and adaptive
attacks and certified robust accuracy on ImageNet. The attack radii are consistent with
Table 7.3. The most powerful attack in each setting is highlighted in bold font. The adap-
tive attacks are shown in gray rows. Note that PGD attack cannot apply to translation
transformation because the parameter space is discrete.

Transformation Attack
Radius Model Attack

Empirical Robust Accuracy Certified
Initial Starts N “ Robust

10 20 50 100 Accuracy

Gaussian
Blur

Squared
Radius
α ď 36

TSS
Random 53.2% 52.8% 52.8% 52.8%

51.6%Random+ 53.2% 52.8% 52.8% 52.8%
PGD 52.8% 52.8% 52.8% 52.6%

Vanilla
Random 9.6% 8.6% 8.4% 8.4%

-Random+ 8.8% 8.2% 8.2% 8.2%
PGD 8.4% 8.2% 8.2% 8.2%

Translation
(Reflection Pad.)

a

∆x2 `∆y2

ď 100

TSS
Random 70.0% 69.6% 69.2% 69.2%

50.0%Random+ 69.4% 69.2% 69.2% 69.2%
PGD - - - -

Vanilla
Random 55.8% 53.4% 48.8% 46.6%

-Random+ 57.2% 54.6% 50.6% 46.2%
PGD - - - -

Brightness b˘ 40%

TSS
Random 70.8% 70.4% 70.4% 70.4%

70.0%Random+ 70.4% 70.4% 70.4% 70.4%
PGD 70.4% 70.4% 70.4% 70.4%

Vanilla
Random 31.6% 26.6% 21.6% 19.6%

-Random+ 22.8% 19.8% 18.4% 18.4%
PGD 22.0% 22.4% 21.8% 21.8%

Contrast
and

Brightness
c˘ 40%,
b˘ 40%

TSS
Random 70.4% 69.2% 68.4% 68.4%

61.4%Random+ 69.2% 68.8% 68.4% 68.4%
PGD 68.4% 68.4% 68.4% 68.4%

Vanilla
Random 20.8% 10.4% 3.6% 1.2%

-Random+ 8.0% 2.0% 0.4% 0.0%
PGD 1.8% 0.2% 0.0% 0.0%

Gaussian Blur,
Translation
Contrast,

and Brightness

α ď 10,
c˘ 20%,
b˘ 20%,

a

∆x2 `∆y2

ď 10

TSS
Random 51.8% 50.2% 49.2% 48.8%

32.8%Random+ 51.4% 49.6% 48.0% 48.2%
PGD 49.6% 49.6% 48.2% 47.4%

Vanilla
Random 20.6% 17.4% 12.0% 9.4%

-Random+ 15.2% 12.8% 7.8% 6.6%
PGD 11.2% 8.0% 6.0% 4.0%

Rotation r ˘ 30%

TSS
Random 40.2% 38.4% 38.4% 37.8%

30.4%Random+ 39.0% 38.6% 38.0% 37.8%
PGD 40.4% 39.8% 39.8% 39.4%

Vanilla
Random 47.8% 44.4% 41.4% 40.0%

-Random+ 45.0% 43.6% 40.6% 38.8%
PGD 39.6% 38.4% 37.8% 37.0%

Scaling s˘ 30%

TSS
Random 40.2% 38.0% 37.4% 37.4%

26.4%Random+ 38.8% 37.2% 36.8% 36.4%
PGD 39.0% 37.8% 37.6% 37.8%

Vanilla
Random 55.2% 53.0% 51.2% 50.0%

-Random+ 55.6% 52.8% 50.6% 50.0%
PGD 50.6% 49.8% 49.4% 49.8%

Rotation
and

Brightness
r ˘ 30˝

b˘ 20%

TSS
Random 38.8% 38.0% 37.2% 37.4%

26.8%Random+ 39.0% 38.2% 37.0% 36.8%
PGD 39.6% 39.4% 38.6% 38.8%

Vanilla
Random 40.4% 35.4% 29.2% 22.4%

-Random+ 35.2% 31.2% 25.2% 21.2%
PGD 25.0% 23.2% 22.2% 21.4%

Scaling
and

Brightness
s˘ 30%,
b˘ 30%

TSS
Random 40.2% 38.0% 36.4% 36.4%

23.4%Random+ 38.0% 37.0% 36.6% 36.0%
PGD 37.0% 37.0% 36.6% 36.6%

Vanilla
Random 34.4% 26.2% 19.4% 16.0%

-Random+ 21.0% 15.0% 12.4% 8.8%
PGD 17.6% 15.2% 13.8% 13.4%

Rotation,
Brightness,

and ℓ2

r ˘ 30˝,
b˘ 20%,
}δ}2 ď .05

TSS
Random 39.4% 38.2% 37.8% 37.0%

26.6%Random+ 38.2% 37.8% 36.6% 36.4%
PGD 38.8% 38.8% 38.4% 38.0%

Vanilla
Random 26.0% 23.2% 19.8% 17.6%

-Random+ 21.4% 18.4% 16.0% 14.4%
PGD 16.6% 14.6% 14.2% 14.0%

Scaling,
Brightness,

and ℓ2

s˘ 30%,
b˘ 30%,
}δ}2 ď .05

TSS
Random 40.2% 38.2% 37.2% 36.0%

22.6%Random+ 38.0% 36.4% 35.8% 35.6%
PGD 36.8% 36.4% 36.4% 36.0%

Vanilla
Random 24.4% 17.2% 11.4% 7.4%

-Random+ 13.8% 8.4% 5.8% 4.8%
PGD 9.8% 8.8% 7.4% 7.4%

411



Table E.6: Comparison of Empirical Accuracy for each corruption evaluated from the highest
severity level (5) of CIFAR-10-C and ImageNet-C.

Corruption CIFAR-10 ImageNet
Category Type Vanilla AugMix [146] TSS Vanilla AugMix [146] TSS
Weather Snow 68.2% 75.6% 69.4% 16.0% 22.6% 13.8%

Fog 63.4% 65.4% 62.0% 24.0% 22.2% 18.0%
Frost 59.2% 67.8% 73.8% 21.6% 24.8% 22.6%

Brightness 82.4% 82.4% 71.8% 56.8% 56.6% 35.8%
Blur Zoom Blur 52.6% 70.8% 75.2% 21.4% 31.0% 20.4%

Glass Blur 46.6% 50.2% 72.2% 8.0% 14.0% 13.8%
Motion Blur 54.8% 68.6% 70.2% 14.2% 25.2% 11.4%
Defocus Blur 49.0% 72.2% 75.6% 14.0% 22.6% 25.6%

Noise Impulse Noise 29.8% 51.0% 46.2% 4.0% 9.8% 12.0%
Gaussian Noise 34.8% 56.4% 62.8% 4.4% 9.6% 12.8%
Shot Noise 43.0% 63.4% 62.6% 4.0% 13.0% 14.0%

Digital Pixelate 42.0% 59.0% 76.0% 19.6% 39.2% 55.6%
Elastic Transform 71.4% 65.2% 74.4% 14.8% 23.8% 23.6%

Contrast 23.8% 26.0% 49.8% 4.2% 11.6% 5.0%
JPEG Compression 70.8% 73.0% 71.8% 33.6% 45.4% 31.6%

Extra Saturate 79.6% 83.4% 63.6% 41.6% 43.4% 25.8%
Spatter 72.8% 82.0% 69.0% 22.4% 30.6% 17.6%

Speckle Noise 45.2% 64.0% 58.8% 11.4% 27.4% 23.6%
Gaussian Blur 34.6% 67.4% 75.8% 11.2% 15.2% 33.0%

Average 53.89% 65.46% 67.42% 18.27% 25.68% 21.89%

Table E.7: Empirical and certified robust accuracy on MNIST when attack radii go beyond
the predefined one. The predefined certified radii are consistent with Table 7.3.
* For Contrast we allow additional ˘50% brightness change since a single Contrast attack
is not powerful enough.

Beyond Predefined Radii

Gaussian
Blur

Radii: 36 40 44 48

TSS Empirical 91.2% 90.8% 90.4% 89.2%
Certified 90.6% 90.0% 89.6% 88.8%

Vanilla Empirical 12.2% 11.8% 11.2% 11.2%

Translation
(Reflection Pad.)

Radii: 8 10 12 14

TSS Empirical 99.6% 99.6% 99.6% 99.6%
Certified 99.6% 99.6% 99.4% 99.0%

Vanilla Empirical 0.0% 0.0% 0.0% 0.0%

Brightness

Radii: 50% 52% 55% 60%

TSS Empirical 98.2% 98.2% 98.2% 98.2%
Certified 98.2% 98.2% 98.2% 98.2%

Vanilla Empirical 96.6% 96.2% 95.6% 94.4%

Contrast*

Radii: 50% 52% 55% 60%

TSS Empirical 98.0% 98.0% 98.0% 98.0%
Certified 97.6% 97.2% 96.8% 96.2%

Vanilla Empirical 93.2% 93.2% 93.2% 93.0%

Rotation

Radii: 50˝ 52˝ 55˝ 60˝

TSS Empirical 98.2% 98.2% 98.2% 97.8%
Certified 97.4% 97.4% 97.4% 96.6%

Vanilla Empirical 11.0% 9.8% 8.4% 7.2%

Scaling

Radii: 30% 35% 40% 50%

TSS Empirical 99.2% 98.8% 98.8% 98.6%
Certified 97.2% 96.8% 96.8% 96.0%

Vanilla Empirical 89.2% 82.6% 72.8% 45.4%
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Table E.8: Empirical and certified robust accuracy on CIFAR-10 when attack radii go
beyond the predefined one. The predefined certified radii are consistent with Table 7.3.
* For Contrast we allow additional 40% brightness change since a single Contrast attack is
not powerful enough.

Beyond Predefined Radii

Gaussian
Blur

Radii: 16 20 24 28

TSS Empirical 65.8% 63.4% 61.2% 56.4%
Certified 63.6% 60.8% 56.0% 52.6%

Vanilla Empirical 3.4% 3.2% 3.0% 2.8%

Tranlation
(Reflection Pad.)

Radii: 20 25 30 35

TSS Empirical 86.0% 86.0% 85.8% 85.8%
Certified 80.8% 77.4% 74.8% 70.6%

Vanilla Empirical 4.2% 3.6% 3.6% 2.8%

Brightness

Radii: 40% 45% 50% 55%

TSS Empirical 87.2% 87.0% 87.0% 87.0%
Certified 87.0% 87.0% 87.0% 87.0%

Vanilla Empirical 42.6% 32.8% 21.2% 14.0%

Contrast*

Radii 40% 45% 50% 55%

TSS Empirical 85.8% 85.8% 85.4% 85.2%
Certified 82.4% 80.8% 79.2% 71.8%

Vanilla Empirical 9.6% 7.8% 5.6% 4.8%

Rotation

Radii: 30˝ 40˝ 50˝ 60˝

TSS Empirical 69.2% 64.0% 57.8% 46.8%
Certified 63.6% 57.6% 48.2% 37.4%

Vanilla Empirical 21.4% 8.8% 5.0% 3.2%

Scaling

Radii: 30% 35% 40% 50%

TSS Empirical 67.0% 65.0% 60.6% 54.8%
Certified 58.8% 53.6% 51.0% 43.4%

Vanilla Empirical 51.2% 43.0% 34.8% 21.2%

Table E.9: Empirical and certified robust accuracy on ImageNet when attack radii go
beyond the predefined one. The predefined certified radii are consistent with Table 7.3.
* For Contrast/Rotation/Scaling we allow additional ˘40%/˘20%/˘30% brightness change
since a single Contrast/Rotation/Scaling attack is not powerful enough.

Beyond Predefined Radii

Gaussian
Blur

Radii: 36 40 44

TSS Empirical 52.6% 51.2% 49.8%
Certified 51.6% 50.0% 48.8%

Vanilla Empirical 8.2% 7.2% 6.2%

Translation
(Reflection Pad.)

Radii: 100 105 110

TSS Empirical 69.2% 69.2% 69.0%
Certified 50.0% 49.4% 46.8%

Vanilla Empirical 46.2% 37.6% 36.6%

Brightness

Radii: 40% 45% 50%

TSS Empirical 70.4% 70.2% 70.0%
Certified 70.0% 69.8% 69.6%

Vanilla Empirical 18.4% 10.0% 5.2%

Contrast*

Radii: 40% 45% 50%

TSS Empirical 68.4% 68.2% 67.6%
Certified 61.4% 55.8% 45.0%

Vanilla Empirical 0.0% 0.0% 0.0%

Rotation*

Radii: 30˝ 35˝ 45˝

TSS Empirical 36.8% 36.4% 33.4%
Certified 26.8% 26.2% 21.8%

Vanilla Empirical 21.2% 19.4% 16.2%

Scaling*

Radii: 30% 40% 50%

TSS Empirical 36.0% 32.4% 26.6%
Certified 23.4% 18.4% 11.6%

Vanilla Empirical 8.8% 8.8% 7.0%
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Table E.10: Study of the impact of different smoothing variance levels on certified robust accuracy
and benign accuracy on MNIST for TSS. The attack radii are consistent with Table 7.3. The
“Dist.” refers to both training and smoothing distribution. The variance used in Table 7.3 is labeled
in gray.

Transformation Attack
Radius

Certified Accuracy and Benign Accuracy
under Different Variance Levels

Gaussian Blur α ď 36
Dist. of α Expp1{5q Expp1{10q Expp1{20q

Cert. Rob. Acc. 90.4% 90.6% 89.2%
Benign Acc. 97.0% 96.8% 93.4%

Translation
(Reflection Pad.)

a

∆x2 `∆y2

ď 8

Dist. of p∆x,∆yq N p0, 52Iq N p0, 102Iq N p0, 152Iq
Cert. Rob. Acc. 99.0% 99.6% 99.4%
Benign Acc. 99.6% 99.6% 99.6%

Brightness b˘ 50%
Dist. of pc, bq N p0, 0.52Iq N p0, 0.62Iq N p0, 0.72Iq

Cert. Rob. Acc. 98.4% 98.2% 98.4%
Benign Acc. 98.4% 98.4% 98.4%

Contrast c˘ 50%
Dist. of pc, bq N p0, 0.52Iq N p0, 0.62Iq N p0, 0.72Iq

Cert. Rob. Acc. 0.0% 98.0% 98.4%
Benign Acc. 98.4% 98.4% 98.4%

Rotation r ˘ 50˝

Dist. of ϵ N p0, 0.052Iq N p0, 0.122Iq N p0, 0.202Iq
Cert. Rob. Acc. 97.6% 97.4% 97.6%
Benign Acc. 99.2% 99.4% 99.2%

Scaling s˘ 30%
Dist. of ϵ N p0, 0.052Iq N p0, 0.122Iq N p0, 0.202Iq

Cert. Rob. Acc. 96.6% 97.2% 96.0%
Benign Acc. 99.4% 99.4% 99.0%

Table E.11: Study of the impact of different smoothing variance levels on certified robust accuracy
and benign accuracy on CIFAR-10 for TSS. The attack radii are consistent with Table 7.3. The
“Dist.” refers to both training and smoothing distribution. The variance used in Table 7.3 is labeled
in gray.

Transformation Attack
Radius

Certified Accuracy and Benign Accuracy
under Different Variance Levels

Gaussian Blur α ď 16
Dist. of α Expp1{5q Expp1{10q Expp1{20q

Cert. Rob. Acc. 63.6% 60.6% 53.0%
Benign Acc. 76.2% 68.0% 57.4%

Translation
(Reflection Pad.)

a

∆x2 `∆y2

ď 20

Dist. of p∆x,∆yq N p0, 102Iq N p0, 152Iq N p0, 202Iq
Cert. Rob. Acc. 76.2% 80.8% 74.4%
Benign Acc. 89.0% 87.0% 84.6%

Brightness b˘ 40%
Dist. of pc, bq N p0, 0.22Iq N p0, 0.32Iq N p0, 0.42Iq

Cert. Rob. Acc. 87.4% 87.0% 86.2%
Benign Acc. 87.8% 87.8% 86.4%

Contrast c˘ 40%
Dist. of pc, bq N p0, 0.22Iq N p0, 0.32Iq N p0, 0.42Iq

Cert. Rob. Acc. 0.0% 82.4% 82.4%
Benign Acc. 87.8% 87.8% 86.4%

Rotation r ˘ 30˝

Dist. of ϵ N p0, 0.052Iq N p0, 0.092Iq N p0, 0.122Iq
Cert. Rob. Acc. 63.6% 62.0% 59.0%
Benign Acc. 82.0% 78.6% 72.2%

Scaling s˘ 30%
Dist. of ϵ N p0, 0.052Iq N p0, 0.092Iq N p0, 0.122Iq

Cert. Rob. Acc. 59.0% 59.4% 58.8%
Benign Acc. 85.4% 81.6% 79.2%
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Table E.12: Average interpolation upper bound
?
M (7.27), average computation time, and “Cer-

tified accuracy (average certification time)” for varying number of samples and smoothing noise
levels. Results on CIFAR-10 against the composition of rotation ˘10˝ and brightness change
˘10%.

Number of Samples Interpolation Smoothing Noise Level σ
First-Level Second-Level Avg.

?
M Avg. Comp. Time 0.05 0.09 0.12

N “ 556 n “ 2, 000 0.050 22.50 s
70.2% 65.2% 61.2%

(62.32 s) (86.60 s) (53.73 s)

N “ 556 n “ 200 0.131 1.97 s
42.0% 59.2% 60.4%

(490.21 s) (93.19 s) (86.60 s)

N “ 56 n “ 2, 000 0.322 1.90 s
1.2% 12.6% 29.2%

(6.18 s) (16.64 s) (25.77 s)

N “ 56 n “ 200 0.499 0.27 s
0.0% 1.2% 3.4%

(5.22 s) (5.68 s) (8.49 s)
Benign Accuracy: 83.0% 79.2% 79.6%

Table E.13: Average interpolation upper bound
?
M (7.27), average bound computation time, and

“Certified robust accuracy (average certification time)” when using different number of samples and
various smoothing noise levels. Data is collected on MNIST dataset against the composition of
scaling ˘50% and brightness change ˘50%.

Number of Samples Interpolation Smoothing Noise Level σ
First-Level Second-Level Avg.

?
M Avg. Comp. Time 0.05 0.09 0.12

N “ 2, 500 n “ 500 0.064 10.52 s
97.2% 97.4% 96.6%

(92.36 s) (76.25 s) (67.44 s)

N “ 2, 500 n “ 50 0.163 0.90 s
18.8% 97.0% 95.0%

(157.48 s) (217.97 s) (97.91 s)

N “ 250 n “ 500 0.441 0.74 s
0.0% 6.0% 16.2%

(0.80 s) (4.91 s) (12.48 s)

N “ 250 n “ 50 0.641 0.13 s
0.0% 0.0% 0.6%

(0.79 s) (0.71 s) (1.60 s)
Benign Accuracy: 99.4% 99.6% 99.4%
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APPENDIX F: APPENDIX FOR CHAPTER 8

F.1 PROOFS

F.1.1 Proof of Lemma 8.1

We recall Lemma 8.1:

Lemma 8.1 (Lipschitz Continuity of Smoothed Value Function). Given the action-value
function Qπ : S ˆAÑ rVmin, Vmaxs, the smoothed function rQπ with smoothing parameter σ
is L-Lipschitz continuous with L “ Vmax´Vmin

σ

b

2
π
w.r.t. the state input.

Proof. To prove Lemma 8.1, we leverage the technique in the proof for Lemma 1 of Salman
et al. [317] in their Appendix A.

For each action a P A, our smoothed value function is

rQπps, aq :“ E
∆„N p0,σ2IN q

Qπps`∆, aq “
1

p2πqN{2σN

ż

Rn

Qπpt, aq exp

ˆ

´
1

2σ2
}s´ t}2

˙

dt.

(F.1)

Taking the gradient w.r.t. s, we obtain

∇s
rQπps, aq “

1

p2πqN{2σN

ż

Rn

Qπpt, aq
1

σ2
ps´ tq exp

ˆ

´
1

2σ2
}s´ t}2

˙

dt. (F.2)

For any unit direction u, we have

u ¨ ∇s
rQπps, aq

ď
1

p2πqN{2σN

ż

Rn

Vmax ´ Vmin

σ2
|ups ´ tq| exp

ˆ

´
1

2σ2
}s ´ t}2

˙

dt (F.3)

“
Vmax ´ Vmin

σ2

ż

Rn

1

p2πq1{2σ
|si ´ t| exp

ˆ

´
1

2σ2
|si ´ t|2

˙

dt ¨
ź

j‰i

ż

Rn

1

p2πq1{2σ
exp

ˆ

´
1

2σ2
|sj ´ t|2

˙

dt

(F.4)

“
Vmax ´ Vmin

σ

c

2

π
(F.5)

Thus, rQπ is L-Lipschitz continuous with L “ Vmax´Vmin

σ

b

2
π
w.r.t. the state input. QED.
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F.1.2 Proof of Theorem 8.1

We recall Theorem 8.1:

Theorem F.1. Let Qπ : S ˆ A Ñ rVmin, Vmaxs be a trained value network, rQπ be the
smoothed function with (8.3). At time step t with state st, we can compute the lower bound
rt of maximum perturbation magnitude ϵ̄pstq (i.e., rt ď ϵ̄pstq, ϵ̄ defined in Definition 8.1) for
locally smoothed policy π̃:

rt “
σ

2

¨

˝Φ´1

˜

rQπpst, a1q ´ Vmin

Vmax ´ Vmin

¸

´ Φ´1

˜

rQπpst, a2q ´ Vmin

Vmax ´ Vmin

¸

˛

‚, (F.6)

where Φ´1 is the inverse CDF function, a1 is the action with the highest rQπ value at state st,
and a2 is the runner-up action. We name the lower bound rt as certified radius for the state st.

We first present a lemma that can help in the proof of Theorem 8.1.

Lemma F.1. Let Φ be the CDF of a standard normal distribution, the mapping ηapsq :“
σ ¨ Φ´1

´

rQπps,aq´Vmin

Vmax´Vmin

¯

is 1-Lipschitz continuous.

The lemma can be proved following the same technique as the proof for Lemma 8.1 in Ap-
pendix F.1.1. The detailed proof can be referred to in the proof for Lemma 2 of Salman et al.
[317] in their Appendix A. We next show how to leverage Lemma F.1 to prove Theorem 8.1.

Proof for Theorem 8.1. Let the perturbation be δt, based on the Lipschitz continuity of the
mapping η, we have

ηa1pstq ´ ηa1pst ` δtq ď∥δt∥2 , (F.7)
ηa2pst ` δtq ´ ηa2pstq ď∥δt∥2 . (F.8)

Suppose that under perturbation δt, the action selection would be misled in the sense that
the smoothed value for the original action a1 is lower than that of another action a2, i.e.,
rQπpst ` δt, a1q ď rQπpst ` δt, a2q. Then, based on the monotonicity of η, we have

ηa1pst ` δq ď ηa2pst ` δq. (F.9)

Summing up (F.7), (F.8), and (F.9), we obtain

∥δt∥2 ě
1

2

`

ηa1pstq ´ ηa2pstq
˘

(F.10)
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“
σ

2

¨

˝Φ´1

˜

rQπpst, a1q ´ Vmin

Vmax ´ Vmin

¸

´ Φ´1

˜

rQπpst, a2q ´ Vmin

Vmax ´ Vmin

¸

˛

‚ (F.11)

which is a lower bound of the maximum perturbation magnitude ϵ̄pstq that can be tolerated
at state st. Hence, when rt takes the value of the computed lower bound, it satisfies the
condition that rt ď ϵ̄pstq. QED.

F.1.3 Proof of Lemma 8.2

We recall Lemma 8.2:

Lemma 8.2 (Lipschitz Continuity of Smoothed Perturbed Return Function). Let F be the
perturbed return function function defined in (8.6), the smoothed perturbed return function
rFπ is pJmax´Jminq

σ

b

2
π
-Lipschitz continuous, where

rFπ

´

‘H´1
t“0 δt

¯

:“ E
∆„N p0,σ2IHˆN q

Fπ

´

‘H´1
t“0 pδt `∆tq

¯

. (8.7)

Proof. The proof can be done in a similar fashion as the proof for Lemma 8.1 in Ap-
pendix F.1.1. Compared with the smoothed value network where the expectation is taken
over the sampled states, here, similarly, the smoothed perturbed return function is derived
by taking the expectation over sampled σ-randomized trajectories. The difference is that the
output range of the Q-network is rVmin, Vmaxs, while the output range of the perturbed return
function is rJmin, Jmaxs. Thus, the smoothed perturbed return function rF is pJmax´Jminq

σ

a

2{π-
Lipschitz continuous. QED.

F.1.4 Proof of Theorem 8.2

We recall the definition of rFπ as well as Theorem 8.2:

rFπ

´

‘H´1
t“0 δt

¯

:“ E
ζ„N p0,σ2IHˆN q

Fπ

´

‘H´1
t“0 pδt ` ζtq

¯

. (F.12)

Theorem 8.2 (Expectation Bound). Let

JE “ rFπ

´

‘H´1
t“0 0

¯

´ Lϵ
?
H, where L “

pJmax ´ Jminq

σ

c

2

π
. (8.8)

Then JE ď E
“

Jϵpπ
1q
‰

.
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Proof. We note the following equality

rFπp‘
H´1
t“0 δtq

paq
“ E

„

Fπ

´

‘H´1
t“0 pδt ` ζtq

¯

ȷ

pbq
“ E

„

Fπ1

´

‘H´1
t“0 δt

¯

ȷ

pcq
“ E

”

JHϵ pπ
1q

ı

, (F.13)

where (a) comes from the definition of the smoothed perturbed return function rFπ, (b)
is due to the definition of the σ-randomized policy π1, and (c) arises from the definition
of the perturbed cumulative reward JHϵ . Thus, the expected perturbed cumulative re-
ward E

“

JHϵ pπ
1q
‰

is equivalent to the smoothed perturbed return function rFπ

´

‘H´1
t“0 δt

¯

.
Furthermore, since the distance between the all-zero ‘H´1

t“0 0 and the adversarial perturba-
tions ‘H´1

t“0 δt is bounded by ϵ
?
H, leveraging the Lipschitz smoothness of rF in Lemma 8.2,

we obtain the lower bound of the expected perturbed cumulative reward E
“

JHϵ pπ
1q
‰

as
rFπ

´

‘H´1
t“0 0

¯

´ Lϵ
?
H. QED.

F.1.5 Proof of Theorem 8.3

We recall the definition of rF p
π as well as Theorem 8.3:

rF p
π

´

‘H´1
t“0 δt

¯

:“ supy

#

y P R | Pr
„

Fπ

´

‘H´1
t“0 pδt ` ζtq

¯

ď y

ȷ

ď p

+

. (F.14)

Theorem 8.3 (Percentile Bound). Let Jp “ rF p1

π

´

‘H´1
t“0 0

¯

, where p1 :“ Φ
´

Φ´1ppq ´ ϵ
?
H
σ

¯

.
Then Jp ď the p-th percentile of Jϵpπ1q.

Proof. To prove Theorem 8.3, we leverage the technique in the proof for Lemma 2 of Chiang
et al. [70] in their Appendix B.

For brevity, we abbreviate δ :“ ‘H´1
t“0 δt and redefine the plus operator such that δ ` ζ :“

‘H´1
t“0 pδt ` ζtq. Then, similar to Lemma F.1, we have the conclusion that

δ ÞÑ σ ¨ Φ´1

ˆ

Pr
”

Fπpδ ` ζq ď rF p1

π p0q
ı

˙

(F.15)

is 1-Lipschitz continuous, where ζ „ N p0, σ2IHˆNq.
Thus, under the perturbations δt P Bϵ for t “ 0 . . . H ´ 1, we have

Φ´1

ˆ

Pr
”

Fπpδ ` ζq ď rF p1

π p0q
ı

˙

ď Φ´1

ˆ

Pr
”

Fπpζq ď rF p1

π p0q
ı

˙

`
∥δ∥2
σ

(F.16)
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ď Φ´1

ˆ

Pr
”

Fπpζq ď rF p1

π p0q
ı

˙

`
ϵ
?
H

σ
(Since ∥δ∥2 ď ϵ

?
H)

(F.17)

“ Φ´1pp1q `
ϵ
?
H

σ
(By definition of rF p

π )

(F.18)

“ Φ´1ppq (By definition of p1).
(F.19)

Since Φ´1 monotonically increase, this implies that Pr
”

Fπpδ ` ζq ď rF p1

π p0q
ı

ď p. Accord-
ing to the definition of rF p

π in (F.14), we see that rF p1

π p0q ď rF p
π pδq, i.e., Jp ď the p-th percentile

of Jϵpπ1q. Hence, the theorem is proved. QED.

F.1.6 Proof of Theorem 8.4

We recall Theorem 8.4:

Theorem 8.4. Let pr1t , . . . , r
|A|´1
t q be a sequence of certified radii for state st at time step

t, where rkt denotes the radius such that if ϵ ă rkt , the possible action at time step t will
belong to the actions corresponding to top k action values of rQ at state st. The definition of
rt in Theorem 8.1 is equivalent to r1t here. The radii can be computed similarly as follows:

rkt “
σ

2

¨

˝Φ´1

˜

rQπpst, a1q ´ Vmin

Vmax ´ Vmin

¸

´ Φ´1

˜

rQπpst, ak`1q ´ Vmin

Vmax ´ Vmin

¸

˛

‚, 1 ď k ă |A|, (8.10)

where a1 is the action of the highest rQ value at state st and ak`1 is the pk`1q-th best action.
We additionally define r0t pstq “ 0, which is also compatible with the definition above.

Proof. Replacing a2 with ak`1 in the proof for Theorem 8.1 in Appendix F.1.2 directly leads
to Theorem 8.4. QED.

F.2 DETAILS OF CERTIFICATION STRATEGIES

In this section, we cover the concrete details regarding the implementation of our three
certification strategies, as a complement to the high-level ideas introduced back in Section 8.3
and Section 8.4.
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F.2.1 Detailed Algorithm of CROP-LoAct

Algorithm F.1: CROP-LoAct: Local smoothing for certifying per-state action
Input: state s, trained value network Qπ with

range rVmin, Vmaxs; parameters for
smoothing: sampling times m, smoothing
variance σ2, one-sided confidence
parameter α

Output: smoothed value network rQπ, selected
action a, certification indicator cert,
certified radius r constant L

// Step 1: smoothing
1 Generate noise samples δi „ N p′, σ∈Iq for

1 ď i ď m

2 for each action a P A do
// clipping and averaging

3 rQπps, aq Ð 1
m

řm
i“1 clippQπps ` δi, aq,min “

Vmin,max “ Vmaxq

4 end
5 a1, a2 Ð best action and runner-up action given by

rQπ

// Step 2: certification

6 ∆ “ pVmax ´ Vminq

b

1
2m ln 1

α

// confidence interval

7 if rQπps, a1q ě rQπps, a2q ` 2∆ then
// certification success

8 cert Ð True

9 r Ð σ
2 pΦ´1p

rQπps,a1q´∆´Vmin

Vmax´Vmin
q ´

Φ´1p
rQπps,a2q`∆´Vmin

Vmax´Vmin
qq

10 else
// certification failure

11 cert Ð False
12 r Ð undefined
13 end
14 return rQπ, a1, cert, r

We present the concrete algorithm of CROP-LoAct in Algorithm F.1 for the procedures
introduced in Section 8.3.2. For each given state st, we first perform Monte Carlo sam-
pling [77, 204] to achieve local smoothing. Based on the smoothed value function rQπ, we
then compute the robustness certification for per-state action, i.e., the certified radius rt at
the given state st, following Theorem 8.1.

Detailed Inference Procedure. During inference, we invoke the model with m samples
of Gaussian noise at each time step, and use the averaged Q value on these m noisy samples
to obtain the greedy action selection and compute the certification. This procedure is similar
to Predict in Cohen et al. [77], but since RL involves multiple step decisions, we do not
take the “abstain” decision as in Predict in Cohen et al. [77]; instead, CROP-LoAct will
take the greedy action at all steps no matter whether the action can be certified or not.

Estimation of the Algorithm Parameters Vmin, Vmax. Our estimate is obtained via
sampling the trajectories and calculating the Q values associated with the state-action pairs
along these trajectories. Since we perform clipping using the obtained bounds, the certi-
fication is sound. The cost for estimating Vmin and Vmax is essentially associated with the
number of sampled trajectories, the number of steps in each trajectory, the number of sam-
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Algorithm F.2: CROP-GRe: Global smoothing for certifying cumulative reward
Input: initial state distribution d0, trained value

network Qπ, game cumulative reward range
rJmin, Jmaxs, number of steps in an episode
H, perturbation magnitude at each state ϵ,
percentile p; parameters for smoothing:
sampling times m, smoothing variance σ2,
one-sided confidence parameter α

Output: Expectation bound JE , p-th percentile
bound Jp

// Step 1: smoothing
1 for i “ 1 to m do
2 s0 „ d0, J

C
i Ð 0 // initialization

3 Generate macro-state noise δt „ N p′, σ∈Iq for
0 ď t ă H

4 for t “ 0 to H ´ 1 do
5 at Ð argmaxa Qpst ` δt, aq

6 Execute action at and observe reward ret
and next state st`1 // take a step

7 JC
i Ð JC

i ` ret // accumulate the reward
8 end

9 end
// Step 2.1: certifying expectation bound

10 rF Ð 1
m

řm
i“1 J

C
i // smoothed actual reward

11 ∆conf Ð pRmax ´ Rminq

b

lnp1{αq

2m

// confidence interval

12 ∆lip Ð Rmax´Rmin

σ

b

2
π ¨ ϵ

?
H

// bound given by Lipschitz continuity

13 JE Ð rF ´ ∆conf ´ ∆lip

14
// Step 2.2: certifying percentile bound

15 k Ð ComputeOrderStatspϵ, σ, p,m,Hq

16 Jp Ð k-th smallest value in tJC
i umi“1

17
18 return JE , Jp

pled Gaussian noise m per step, and the cost of doing one forward pass of the Q network;
thus, the estimation can be done with low cost. Furthermore, we can balance the trade-off
between the accuracy and efficiency of the estimation, and for any configuration of Vmin and
Vmax, the certification will invariably be sound (reason above).

F.2.2 Detailed Algorithm of CROP-GRe

We present the concrete algorithm of CROP-GRe in Algorithm F.2 for the procedures
introduced in Section 8.4.1. Similarly to CROP-LoAct, the algorithm also consists of
two parts: performing smoothing and computing certification, where we compute both the
expectation bound JE and the percentile bound Jp.

Step 1: Global Smoothing. We adopt Monte Carlo sampling [77, 204] to estimate the
smoothed perturbed return function rF by sampling multiple σ-randomized trajectories via
drawing m noise sequences. For each noise sequence ζ „ N p0, σ2IHˆNq, we apply noise ζt
to the input state st sequentially, and obtain the sum of the reward JCi “

řH´1
t“0 ret as the

return for this σ-randomized trajectory. We then aggregate the smoothed perturbed return
values tJCi umi“1 via mean smoothing and percentile smoothing.
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Step 2: Certification for Perturbed Cumulative Reward. First, we compute the
expectation bound JE using Theorem 8.2. Since the smoothed perturbed return function
rF is obtained based on m sampled noise sequences, we use Hoeffding’s inequality [150] to
compute the lower bound of the random variable rF

´

‘H´1
t“0 0

¯

with a confidence level α. We

then calculate the lower bound of rF
´

‘H´1
t“0 δt

¯

under all possible ℓ2-bounded perturbations
δt P Bϵ leveraging the smoothness of rF .

We then compute the percentile bound Jp using Theorem 8.3. We let JCi be sorted in-
creasingly, and perform normal approximations [352] to compute the largest empirical order
statistic JCk such that Pr

”

Jp ě JCk

ı

ě 1 ´ α. The empirical order statistic JCk is then
used as the proxy of Jp under α confidence level. We next provide detailed explanations
for ComputeOrderStats, which aims to compute the order k using binomial formula plus
normal approximation.

Estimation of rFπ (in Lemma 8.2). For computing the expectation bound (i.e., the
lower bound of E∆

“

Jϵpπ
1q
‰

), an intermediate step is to estimate rFπ (as shown in line 8
of Algorithm F.2).

We emphasize that the accuracy of the estimation does not influence the soundness of the
lower bound calculation. The reason is given below. The number of sampled randomized
trajectories m controls the trade-off between the estimation efficiency and accuracy, as well
as the tightness of the derived lower bound. Concretely, a small m would provide high
efficiency, low estimation accuracy, and loose lower bound; but the lower bound is always
sound, since our algorithm explicitly accounts for the inaccuracy associated with m via
leveraging the Hoeffding’s inequality in line 9 in Algorithm F.2.

Details of ComputeOrderStats. We consider the sorted sequence JC1 ď JC2 ď ¨ ¨ ¨ ď JCm.
We additionally set JC0 “ ´8 and JCm`1 “ 8. Our goal is to find the largest k such that
Pr

”

Jp ě JCk

ı

ě 1´ α. We evaluate the probability explicitly as follows:

Pr
”

Jp ě JCk

ı

“

m
ÿ

i“k

Pr
”

JCi ď Jp ă JCi`1

ı

“

m
ÿ

i“k

˜

m

i

¸

pp1qip1´ p1qm´i. (F.20)

Thus, the condition Pr
”

Jp ě JCk

ı

ě 1´ α is equivalent to

k´1
ÿ

i“0

˜

m

i

¸

pp1qip1´ p1qm´i ď α. (F.21)
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Given large enough m, the LHS of (F.21) can be approximated via a normal distribution
with mean equal to mp1 and variance equal to mp1p1 ´ p1q. Concretely, we perform binary
search to find the largest k that satisfies the constraint.

We finally explain the upper bound of ϵ that can be certified for each given smoothing
variance. In practical implementation, for a given sampling number m and confidence level
parameter α, if p1 is too small, then the condition (F.21) may not be satisfied even for
k “ 1. This implies that the existence of an upper bound of ϵ that can be certified for each
smoothing parameter σ, recalling that p1 :“ Φ

`

Φ´1ppq ´ ϵ
?
H{σ

˘

.

Detailed Inference and Certification Procedures. We next provide detailed descrip-
tions of the inference and certification procedures, respectively.

Inference procedure. We deploy the σ-randomized policy π1 as defined in Definition 8.4
in Section 8.4.1. That is, for each observed state, we sample one time of Gaussian noise ∆t

to add to st, and take action according to this single randomized observation at “ πpst`∆tq.
Thus, in deployment time, the ∆-randomized policy π1 executes on one rollout—at each step
it takes one observation and chooses one action (following the procedure described above).

Certification procedure. We samplem randomized trajectories in CROP-GRe instead of
sampling m noisy states per time step as in CROP-LoAct. For each sampled randomized
trajectory, at each time step in the trajectory, we invoke the model with 1 sample of Gaussian
noise (as shown in (8.6)). Given the m randomized trajectories and the cumulative reward
for each of them, we compute the certification using Theorem 8.2 and Theorem 8.3.

Algorithm Parameters Jmin, Jmax. We use the default values of Jmin, Jmax in the game
specifications rather than estimate them, which are independent with the trained models.
Thus there is no computational cost at all for obtaining the two parameters. As mentioned
under Theorem 8.2 in Section 8.4.1, using these default values may induce a loose bound in
practice, so we further propose the percentile smoothing that aims to eliminate the depen-
dency of our certification on Jmin and Jmax, thus achieving a tighter bound.

F.2.3 Detailed Algorithms of CROP-LoRe

In the following, we will explain the trajectory exploration and expansion, the growth of
perturbation magnitude, and optimization tricks in details.

Trajectory Exploration and Expansion. CROP-LoRe organizes all possible trajecto-
ries in the form of a search tree and progressively grows it. Each node of the tree represents
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a state, and the depth of the node is equal to the time step of the corresponding state in
the trajectory. The root node (at depth 0) represents the initial state s0. For each node,
leveraging Theorem 8.4, we compute a non-decreasing sequence trkpsqu|A|´1

k“0 corresponding
to required perturbation radii for π to choose each alternative action (the subscript t is
omitted for brevity). Suppose the current ϵ satisfies ripsq ď ϵ ă ri`1psq. We grow pi ` 1q

branches from current state s corresponding to the original action and i alternative actions
since ϵ ě rjpsq for 1 ď j ď i. For nodes on the newly expanded branch, we repeat the
same procedure to expand the tree with depth-first search [363] until the terminal state of
the game is reached or the node depth reaches H. As we expand, we keep the record of
cumulative reward for each trajectory and update the lower bound J when reaching the end
of the trajectory if necessary.

Perturbation Magnitude Growth. When all trajectories for perturbation magnitude
ϵ are explored, we need to increase ϵ to seek for certification under larger perturbations.
Luckily, since the action space is discrete, we do not need to examine every ϵ P R` (which
is infeasible) but only need to examine the next ϵ where the chosen action in some step
may change. We leverage priority queue [377] to effectively find out such next “critical” ϵ.
Concretely, along the trajectory exploration, at each tree node, we search for the possible
actions and store actions corresponding to trkpsqu|A|´1

k“i`1 into the priority queue, since these
actions are exactly those need to be explored when ϵ grows. After all trajectories for ϵ
are fully explored, we pop out the head element from the priority queue as the next node
to expand and the next perturbation magnitude ϵ to grow. We repeat this process until
the priority queue becomes empty or the perturbation magnitude ϵ reaches the predefined
threshold.

Additional Optimization. We adopt some additional optimization tricks to reduce the
complexity of the algorithm. First, for environments with no negative reward, we perform
pruning to limit the tree size—if the cumulative reward leading to the current node already
reaches the recorded lower bound, we can perform pruning, since the tree that follows will
not serve to update the lower bound. This largely reduces the potential search space. We
additionally adopt the memorization [261] technique which is commonly applied in search
algorithms.

We point out a few more potential improvements. First, with more specific knowledge
of the game mechanisms, the search algorithm can be further optimized. Take the Pong
game as an example, given the horizontal speed of the ball, we can compress the time steps
where the ball is flying between the two paddles, thus reducing the computation. Second,
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empirical attacks may be efficiently incorporated into the algorithm framework to provide
upper bounds that help with pruning.

Time Complexity. The time complexity of CROP-LoRe isOpH|Sexplored|ˆplog |Sexplored|`

|A|T qq, where |Sexplored| is the number of explored states throughout the search procedure,
which is no larger than cardinality of state set, H is the horizon length, |A| is the cardinal-
ity of action set, and T is the time complexity of performing local smoothing. The main
bottleneck of the algorithm is the large number of possible states, which is in the worst
case exponential to state dimension. However, to provide a sound worst-case certification
agnostic to game properties, exploring all possible states may be inevitable.

Detailed Inference and Certification Procedures and Important Modules in Al-
gorithm F.3. We next provide detailed descriptions of the inference and certification
procedures, respectively, along with other important modules.

Inference procedure. In CROP-LoRe, we deploy the locally smoothed policy π̃ as de-
fined in (8.3) in Section 8.3.1. Concretely, for each observed state st, we sample a batch of
Gaussian noise to add to st, and take action according to the computed mean Q value on
the batch of randomized observations. (Actually, the inference procedure per step is exactly
the same as in CROP-LoAct described in Appendix F.2.1.)

Certification procedure. We obtain the certification via Theorem 8.4 and the adaptive
search algorithm, which outputs a collection of pairs tpϵi, J ϵiqu

|C|

i“1 sorted in ascending order
of ϵi, where |C| is the length of the collection. The interpretation for this collection of pairs is
provided below. For all ϵ, let i be the largest integer such that ϵi ď ϵ ă ϵi`1, then as long as
the perturbation magnitude ϵ ď ϵ1, the cumulative reward Jϵpπ̃q ě J ϵi . This is supported by
the fact that all certified radii associated with all nodes in the entire expanded tree compose
a discrete set of finite cardinality; and the perturbation value between two adjacent certified
radii in the returned collection will not lead to a different tree from the tree corresponding
to the largest smaller perturbation magnitude. This actually is also the inspiration for the
certification design.

Important modules. The function GetAction computes the possible actions at a given
state s under the limit ϵ, while the procedure Expand accomplishes the task of expanding
upon a given node/state. The main part of the algorithm involves a loop that repeatedly
selects the next element from the priority queue, i.e., a node associated with an ϵ value, to
expand upon.
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Additional Clarifications. We clarify that the algorithm only requires access to the
environment such that it can obtain the reward and next state via interacting with the
environment E (i.e., taking action a at state s and obtain next action s and reward r),
but does not require access to an oracle transition function Γ. We further emphasize that
access to the environment that supports back-tracking is already sufficient for conducting
our adaptive search algorithm.
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Algorithm F.3: CROP-LoRe: Adaptive search for certifying cumulative reward
Input: Environment E “ pS,A,R,−, ⌈′q, trained

value network Qπ with range rVmin, Vmaxs;
parameters for randomized smoothing:
sampling times m, smoothing variance σ2,
one-sided confidence parameter α

Output: a map M that maps an attack magnitude
ϵ to the corresponding certified lower
bound of reward J

// Initialize global variables
1 p_que Ð H // initialize an empty priority

queue containing tuples of (state s,
action a, radius r, reward J), sorted by
increasing r

2 M Ð H

3 Jglobal Ð 8 // initialize global minimum
reward

4 ∆ “ pVmax ´ Vminq

b

1
2m ln 1

α // confidence
bound

5
6 Function GetActions(s, ϵlim, Jcur):
7 Generate noise samples δi „ N p′, σ∈Iq for

1 ď i ď m
8 for each action a P A do
9 rQπps, aq Ð 1

m

řm
i“1 clippQπps `

δi, aq,min “ Vmin,max “ Vmaxq

10 end
11 a‹ Ð argmaxaPA

rQπps, aq

12 a_list Ð H

13 for each action a P A do
14 if Γps, aq “ K then
15 continue
16 end
17 if rQπps, a‹q ě rQπps, aq ` 2∆ then
18 r Ð σ

2 pΦ´1p
rQπps,a‹q´∆´Vmin

Vmax´Vmin
q ´

Φ´1p
rQπps,aq`∆´Vmin

Vmax´Vmin
qq

19 else
20 r Ð 0
21 end
22 if r ď ϵlim then

// take possible actions
23 a_list Ð a_list Y tau

24 else
// store impossible actions in

queue for later expansion
25 p_que.pushpps, a, r, Jcurqq

26 end
27 end
28 return a_list

29
30 Procedure Expand(s, ϵlim, Jcur):
31 if Jcur ě Jglobal then
32 return 0 // pruning
33 end
34 a_list Ð GetActionsps, ϵlim, Jcurq
35 if a_list “ H then
36 Jglobal Ð minpJglobal, Jcurq
37 return 0

38 end
39 for a P a_list do
40 s1 Ð Γps, aq

41 ret Ð Expandps1, ϵlim, Jcur ` Rps, aqq

42 end
43
44 s0 „ d0 // initialize initial state
45 Expand (s0, ϵlim “ 0, Jcur “ 0) // expand initial

trajectory
46 while True do
47 if p_que “ H then
48 break
49 end

// pop out the first element
50 ps, a, r, Jq Ð p_que.poppq

// examine the next first element
51 p_,_, r1,_q Ð p_que.toppq

// derive the critical ϵ's
52 ϵ Ð r, ϵ1 Ð r1

// obtain a pair of mapping
53 M rϵs Ð Jglobal

// expand the tree from the new node
54 Expand pΓps, aq, ϵ1, J ` Rps, aqq

55 end
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APPENDIX G: APPENDIX FOR CHAPTER 9

G.1 ALGORITHM PSEUDOCODE AND DISCUSSION

G.1.1 COPA Training Protocol

Algorithm G.1: COPA training protocol.
Input: training dataset D, number of partitions k, deterministic hash function h

Output: COPA subpolicies tπiu
k´1
i“0

1 for i P rks do
2 Di Ð tτ P D | hpτq ” i pmod kqu // Separate the training data D into k partitions

3 end
4 for each partition Di do
5 πi Ð M0pDiq // Subpolicy trained on partition Di with offline RL algorithm M0

6 end
7 return tπiu

k´1
i“0

G.1.2 COPA Per-state Action Certification

Per-State Partition Aggregation (PARL).

Algorithm G.2: COPA per-state certification algorithm for Per-State Partition
Aggregation (PARL).

Input: environment E “ pS,A, R, P,H, d0q, subpolicies tπiu
k´1
i“0

Output: COPA robust size at each time step t sKtu
H´1
t“0

1 s0 „ d0 // sample initial state

2 for t from 0 to H ´ 1 do
3 for each a P A do
4 Compute napstq from subpolicies’ tπiu

k´1
i“0 decisions // na is defined in Section 9.2

5 end
6 Determine the chosen action at Ð πPpstq according to PARL (Definition 9.4)
7 Compute sKt according to Equation (9.6) in Theorem 9.1
8 st`1 „ P pst, atq

9 end
10 return t sKtu

H´1
t“0
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Temporal Partition Aggregation (TPARL).

Algorithm G.3: COPA per-state certification algorithm for Temporal Partition
Aggregation (TPARL).

Input: environment E “ pS,A, R, P,H, d0q, subpolicies tπiu
k´1
i“0 , window size W

Output: COPA robust size at each time step t sKtu
H´1
t“0

1 s0 „ d0 // sample initial state

2 for t from 0 to H ´ 1 do
3 for each a P A do
4 Compute napstq from subpolicies’ tπiu

k´1
i“0 decisions // na is defined in Section 9.2

5 end
6 Determine the chosen action at Ð πTpstq according to TPARL (Definition 9.5)
7 pmin Ð 8

8 for each a1 P A, a1 ‰ at do
9 for i from 0 to k ´ 1 do

10 Compute hi,at,a1 according to Equation (9.8)
11 end
12 th

piq
at,a1 u

k
i“1 Ð sortedpthi,at,a1 uk´1

i“0 , reverse “ Trueq

13 Compute δat,a1

14 sum Ð 0, p Ð 0

15 for j from 1 to k do
16 if sum ` h

pjq

at,a1 ą δat,a1 then
17 p Ð j ´ 1

18 break
19 end
20 p Ð j, sum Ð sum ` h

pjq

at,a1

21 end
22 pmin Ð mintpmin, pu

23 end
24 sKt Ð pmin

25 st`1 „ P pst, atq

26 end
27 return t sKtu

H´1
t“0
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Dynamic Temporal Partition Aggregation (DPARL).
Algorithm G.4: COPA per-state certification algorithm for Dynamic Temporal
Partition Aggregation (DPARL).

Input: environment E “ pS,A, R, P,H, d0q, subpolicies tπiu
k´1
i“0 , maximum window size Wmax

Output: COPA robust size at each time step t sKtu
H´1
t“0

1 s0 „ d0 // sample initial state

2 for t from 0 to H ´ 1 do
3 for each a P A do
4 Compute napstq from subpolicies’ tπiu

k´1
i“0 decisions given st // na is defined in

Section 9.2

5 end
6 Determine the chosen action at Ð πDpstq and chosen window size W 1 according to

DPARL (Definition 9.6)
7 pmin Ð 8

8 sKt Ð Algorithm G.3 // use Algorithm G.3 with W replaced by W 1 to compute sKt

9 sKD
t Ð sKt

10 for each a1 P A, a1 ‰ at do
11 for each a2 P A, a2 ‰ at do
12 for W˚ from 1 to mintWmax, t ` 1u do
13 a# Ð argmaxa0‰a1,a0PA na0pst´W˚`1:tq

14 for w from 1 to maxtW 1,W˚u do
15 Compute maxa0PA σwpa0q according to Equation (9.11)
16 end
17 for i from 0 to k ´ 1 do
18 for w from 1 to maxtW 1,W˚u do
19 Compute σwpπipst´wqq according to Equation (9.11)
20 end
21 Compute gi according to Equation (9.11)
22 end
23 tgpiquki“1 Ð sortedptgiu

k´1
i“0 , reverse “ Trueq

24 Compute nW˚

a1 , nW˚

a# , nW 1

at
, nW 1

a2

25 tmp Ð W 1pnW˚

a1 ´ nW˚

a# q ´ W˚pnW 1

at
´ nW 1

a2 q ´ Ira1 ą ats

26 sum Ð 0, p Ð 0

27 for j from 1 to k do
28 if sum ` tmp ě 0 then
29 p Ð j ´ 1

30 break
31 end
32 p Ð j, sum Ð sum ` gpjq

33 end
34 LW˚,W 1

a1,a2 Ð p, sKD
t Ð mint sKD

t , LW˚,W 1

a1,a2 u

35 end
36 end
37 end
38 st`1 „ P pst, atq

39 end
40 return t sKD

t uH´1
t“0

G.1.3 COPA Cumulative Reward Certification

COPA-LoRe alternately executes the procedure of trajectory exploration and expansion
and poisoning threshold growth. In trajectory exploration and expansion, COPA-LoRe
organizes all possible trajectories in the form of a search tree and progressively grows it.
For each node (representing a state), we leverage Theorems 9.4, 9.5 and 9.7 to compute the
Possible Action Set. We then expand the tree branches corresponding to the actions in the
derived set. In poisoning threshold growth, when all trajectories for the current poisoning
threshold are explored, we increase K to seek certification under larger poisoning sizes, via
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maintaining a priority queue of all poisoning sizes during the expansion of the tree. The
iterative procedures end when the priority queue becomes empty.

The highlighted line in the following algorithm needs to inject different algorithms based
on the aggregation protocol: for PARL (πP), use Theorem 9.4; for TPARL (πT), use Theo-
rem 9.5; for DPARL (πD), use Theorem 9.7.

Algorithm G.5: COPA-LoRe: adaptive tree search for cumulative reward certi-
fication.

Input: environment
E “ pS,A, R, P,H, d0q, subpolicies
tπiu

k´1
i“0 , aggregated policy πP or

πT (with W ) or πT (with Wmax)
Output: a map M that maps poisoning

size K to corresponding certified
lower bound of cumulative
reward JK

// Initialize global variables
1 p_que Ð H // initialize an empty

priority queue containing tuples
of (state historys0:t, action a,
poisoning size K, reward J)
sorted by increasing K

2 Jglobal Ð 8 // initialize global
minimum reward

3 Function GetActions(s0:t,Klim, Jcur):
4 A Ð

possibleActionsps0:t, tπiu
k´1
i“1 , π˚,Klimq

// compute the possible action
set given state history,
subpolicies, aggregation
policy π˚, and poisoning size
according to theorems in
Section 9.4.2

5 a_list Ð H

6 for each action a P A do
7 if P ps, aq “ K then
8 continue // game terminate

here, no possible
larger or lower
cumulative reward to
search

9 end
10 a_list Ð a_list Y tau

// record possible actions
to expand

11 end
12 if A ‰ A then
13 K 1 Ð

minpossibleActionsps0:t,tπiuk´1
i“0 ,π˚,Kq‰AK

14 Anew Ð

possibleActionsps0:t, tπiu
k´1
i“1 , π˚,K

1qzA

// compute the immediate
actions that will possibly
be chosen if enlarging the
poisoning size

15 for each action a P Anew do
16 p_que.pushpps0:t, a,K

1, Jcurqq

17 end
18 end
19 return a_list

20 Procedure Expand(s0:t,Klim, Jcur):
21 if Jcur ě

Jglobal ^ pstep reward is non-negativeq

then
22 return // pruning
23 end
24 a_list Ð

GetActions(s0:t, tπiu
k´1
i“0 , π˚,Klim)

// compute according to
theorems in Section 9.4.2

25 if a_list “ H then
26 Jglobal Ð mintJglobal, Jcuru

27 return
28 end
29 for a P a_list do
30 st`1 Ð P pst, aq

31 if st`1 “ K then
32 Jglobal Ð mintJglobal, Jcuru

33 end
34 else
35 Expand

ps0:t`1,Klim, Jcur ` Rpst, aqq

36 end
37 end
38 M Ð H

39 s0 Ð d0

// initial state is s0

40 Expand (s0,Klim “ 0, Jcur “ 0) // expand
initial trajectory

41 while True do
42 if p_que “ H then
43 break // no state to expand
44 end
45 ps0:t, a,K, Jq Ð p_que.poppq // pop

out the first element
46 p_,_,K 1,_q Ð p_que.toppq

// examine the next element
47 MpKq Ð Jglobal // obtain one new

point of certification result
48 st`1 Ð P pst, aq

49 Expand ps0:t`1,K
1, J ` Rpst, aqq

// expand the tree from the
new node

50 end
51 return M // indeed the algorithm can

terminate at any time within the
while loop
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Time Complexity. The complexity of COPA-LoRe is OpH|Sexplored|plog |Sexplored| `

|A|T qq, where |Sexplored| is the number of explored states throughout the search procedure,
which is no larger than cardinality of state set S, H is the horizon length, |A| is the cardi-
nality of action set, and T is the time complexity of per-state action certification. The main
bottleneck of the algorithm is the large number of possible states, which is in the worse case
exponential to state dimension. However, to provide a deterministic worst-case certification
agnostic to environment properties, exploring all possible states may be inevitable.

Relation with Chapter 8. The COPA-LoRe algorithm is inspired from CROP-LoRe
in Chapter 8, which also leverages tree search to explore all possible states and thus derive
the robustness guarantee. However, the major distinction is that the algorithm in Chap-
ter 8 tries to derive a probabilistic guarantee of RL robustness against state perturbations,
while COPA-LoRe derives a deterministic guarantee of RL robustness against poisoning
attacks. We think this general tree search methodology can be further extended to provide
certification beyond evasion attack and poisoning attack and we leave it as future work.

Extension to stochastic MDPs. In the current version of COPA-LoRe, the exhaustive
search is enabled by the deterministic MDP assumption. However, we foresee the potential
of conveniently extending COPA-LoRe to stochastic MDPs and will discuss one concrete
method below. In contrast to interacting with the environment for one time to obtain the
deterministic next state transition in the deterministic MDP case, in the case of stochastic
MDPs, we can leverage sampling (i.e., by repeatedly taking the same action at the same
state) to obtain the set of high probability next state transitions with high confidence. In
this way, our COPA-LoRe will be able to yield a probabilistic bound, in comparison with the
deterministic bound achieved in this chapter enabled by the deterministic MDP assumption.

G.2 PROOFS

G.2.1 Tightness of Per-state Action Certification in PARL

Proof of Proposition 9.1. We prove by construction. Given the state st, we first locate the
subpolicies whose chosen action is a, and denote the set of them as

B “ ti P rus | πipstq “ a “ πPpstqu. (G.1)
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We also denote a1 “ argmaxa1‰a na1pstq ` Ira1 ă as. According to sKt’s definition (Equa-
tion (9.6)),

|B| “ napstq ą napstq{2 ě sKt. (G.2)

We now pick an arbitrary subset B1 Ď B such that |B1| “ sKt` 1. For each i P B1, we locate
its corresponding parititioned dataset Di for training subpolicy πi. We insert one point pi to
Di, such that our chosen learning algorithm M0 can train a subpolicy π̃i “M0pDi Y tpiuq

that satisfies π̃ipstq “ a1. For example, the point could be pi “ tpst, a1, s1,8qu and M0 learns
the action with maximum reward for the memorized nearest state, where s1 can be adjusted
to make sure the point is hashed to parition i.22 Then, we construct the poisoned dataset

rD “

˜

ď

iPB1

Di Y tpiu

¸

Y

¨

˝

ď

iPruszB1

Di

˛

‚. (G.3)

Therefore, we have rD aD “ YiPB1pi “ |B
1| “ sKt ` 1.

On this poisoned dataset, we train subpolicies tπ̃iuu´1
i“0 and get the aggregated policy ĂπP.

To study ĂπPpstq, we compute the aggregated action count rna on these poisoned subpolicies.
We found that rnapstq “ napstq ´ |B

1| and rna1pstq “ na1pstq ` |B
1|. Therefore,

rnapstq ´ rna1pstq “ napstq ´ na1pstq ´ 2p sKt ` 1q (G.4)

“ napstq ´ na1pstq ´ 2

ˆ

Ynapstq ´ na1pstq ´ Ira1 ă as

2

]

` 1

˙

(G.5)

ă napstq ´ na1pstq ´ pnapstq ´ na1pstq ´ Ira1 ă asq “ Ira1 ă as. (G.6)

Therefore, if a1 ă a, rnapstq ď rna1pstq, and a1 has higher priority to be chosen than a; if a1 ą a,
rnapstq ď rna1pstq ´ 1, and a1 still has higher priority to be chosen than a. Hence, ĂπPpstq ‰
a “ πPpstq. To this point, we conclude the proof with a feasible construction. QED.

G.2.2 Per-state Action Certification in TPARL

Proof of Theorem 9.2. For ease of notation, we let w “ mintW, t ` 1u so w is the actual
window size used at step t. We let t0 “ t ´ w ` 1, i.e., t0 is the actual start time step
for TPARL aggregation at step t. Now we can write the chosen action at step t without

22Strictly speaking, we need to choose a determinisitc hash function h for dataset partitioning such that
adjustment on s1 and reward (currently 8, but can be an arbitrary large enough number) can make the point
being partitioned to i, i.e., hppiq ” i pmod uq. Since our adjustment space is infinite due to infinite number
of large enough reward, such assumption can be easily achieved. Same applies to other attack constructions
in the following proofs.
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poisoning as a “ πTpst0:tq.
We prove the theorem by contradiction: We assume that there is a poisoning attack

whose poisoning size K ď sKt where sKt is defined by Equation (9.7) in the theorem, and
after poisoning, the chosen action is aT ‰ a. We denote tπ̃iuu´1

i“0 to the poisoned subpolicies
and ĂπT to the poisoned TPARL aggregated policy. From the definition of sKt, we have

K
ÿ

i“1

h
piq

a,aT
ď

sKt
ÿ

i“1

h
piq

a,aT
ď δa,aT , (G.7)

since K ď sKt, and each hpiq

a,aT
is an element of hi1,a,aT for some i1 where

hi1,a,aT “
w´1
ÿ

j“0

Ii1,apst´jq ` w ´
w´1
ÿ

j“0

Ii1,aT pst´jq ě 0 (G.8)

by Equation (9.8) in the theorem. Since the poisoning attack within threshold K can at
most affect K subpolicies, we let B be the set of affected policies and assume |B| “ K

without loss of generality. Formally, B “ ti P rus | Dt1 P rt0, ts, π̃ipst1q ‰ πipst1qu. Therefore,
according to the monotonicity of hpiq

a,aT
, from Equation (G.7),

ÿ

iPB

hi,a,aT ď
K
ÿ

i“1

h
piq

a,aT
ď δa,aT . (G.9)

According to the assumption of successfully poisoning attack, after attack, the sum of
aggregated vote for aT plus IraT ă as should be larger then that of a. Formally, after the
poisoning,

rnaT pst0:tq ` IraT ă as ą rnapst0:tq (G.10)

or equivalently
rnapst0:tq ´ prnaT pst0:tq ` IraT ă asq ă 0. (G.11)

From the statement of Theorem 9.2,

δa,aT “ napst0:tq ´ pnaT pst0:tq ` IraT ă asq. (G.12)

Take the difference of the above two equations, we know that the attack satisfies

napst0:tq ´ rnapst0:tq ´ pnaT pst0:tq ´ rnaT pst0:tqq ą δa,aT . (G.13)

Since the attack only changes the subpolicies in B, we have
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napst0:tq ´ rnapst0:tq “
ÿ

iPB

¨

˝

w´1
ÿ

j“0

Irπipst´jq “ as ´
w´1
ÿ

j“0

Irπ̃ipst´jq “ as

˛

‚

ď
ÿ

iPB

w´1
ÿ

j“0

Ii,apst´jq, (G.14)

naT pst0:tq ´ rnaT pst0:tq “
ÿ

iPB

¨

˝

w´1
ÿ

j“0

Irπipst´jq “ aT s ´
w´1
ÿ

j“0

Irπ̃ipst´jq “ aT s

˛

‚

ě
ÿ

iPB

¨

˝

w´1
ÿ

j“0

Ii,aT pstjq ´ w

˛

‚. (G.15)

Inject them into Equation (G.13) yields

ÿ

iPB

¨

˝

w´1
ÿ

j“0

Ii,apst´jq ` w ´
w´1
ÿ

j“0

Ii,aT pst´jq

˛

‚

looooooooooooooooooooooomooooooooooooooooooooooon

h
i,a,aT

ą δa,aT (G.16)

which contradicts Equation (G.9) and thus concludes the proof. QED.

G.2.3 Tightness of Per-state Action Certification in TPARL

Proof of Proposition 9.2. For ease of notation, we let w “ mintW, t ` 1u so w is the actual
window size used at step t. We let t0 “ t ´ w ` 1, i.e., t0 is the actual start time step
for TPARL aggregation at step t. Now we can write the chosen action at step t without
poisoning as a “ πTpst0:tq.

We prove by construction, i.e., we construct an poisoning attack with poisoning size sKt`1

that deviates the prediction of the poisoned policy. Specifically, we aim to craft a poisoned
dataset rD with poisoning size |D a rD| “ sKt ` 1, such that for certain learning algorithm
M0, after partitioning and learning on the poisoned dataset, the poisoned subpolicies π̃i “
M0p rDiq can be aggregated to produce different action prediction: ĂπTpst0:tq ‰ a.

Before construction, we first show that sKt given by Equation (9.7) satisfies sKt ă u. If
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sKt “ u, it means that for arbitrary a1 ‰ a,

u
ÿ

i“1

h
piq
a,a1 “

u´1
ÿ

i“0

hi,a,a1 “

u´1
ÿ

i“0

¨

˝

w´1
ÿ

j“0

Ii,apst´jq ` w ´
w´1
ÿ

j“0

Ii,a1pst´jq

˛

‚“ napst0:tq ` uw ´ na1pst0:tq

ď δa,a1 “ napst0:tq ´ na1pst0:tq ´ Ira1 ă as,

(G.17)
which implies uw ď 0 contracting uw ą 0. Now, we know sKt ă u, so sKt ` 1, our poisoning
size, is smaller or equal to u.

We start our construction by choosing an action aT :

aT “ argmin
a1‰a,a1PA

argmax
řp

i“1 h
piq

a,a1 ďδa,a1

p. (G.18)

According to the definition of sKt in Equation (9.7), for aT we have

sKt`1
ÿ

i“1

h
piq

a,aT
ą δa,aT . (G.19)

We locate the subpolicies to poison as

B “ ti P rus | hia,aT is hpjq

a,aT
in the nonincreasing permutation in Equation (9.8), j ď sKt`1u

(G.20)
Therefore, |B| “ sKt ` 1 and

ÿ

iPB

hi,a,aT ą δa,aT (G.21)

by Equation (G.19). For each of these subpolicies i P B, we locate its corresponding parti-
tioned dataset Di for training subpolicy πi, and insert one trajectory pi to Di, such that our
chosen learning algorithmM0 can train a subpolicy π̃i “MpDiYtpiuq satisfying π̃ipst1q “ aT

for any t1 P rt0, ts. For example, the trajectory could be pi “ tpst1 , aT , s1,8qutt1“t0 and M0

learns the action with maximum reward for the memorized nearest state, where s1 can be ad-
justed to make sure the trajectory is hashed to partition i. Then, we construct the poisoned
dataset

rD “

˜

ď

iPB1

Di Y tpiu

¸

Y

¨

˝

ď

iPruszB1

Di

˛

‚. (G.22)

Therefore, we have rD a D “ YiPB1pi “ |B1| “ sKt ` 1. Now, we compare the aggregated
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votes for a and aT before and after poisoning:

rnapst0:tq ´ napst0:tq “
ÿ

iPB

¨

˝

w´1
ÿ

j“0

Irrπipst´jq “ as ´
w´1
ÿ

j“0

Irπipst´jq “ as

˛

‚ (G.23)

“ ´
ÿ

iPB

w´1
ÿ

j“0

Irπipst´jq “ as, (G.24)

rnaT pst0:tq ´ naT pst0:tq “
ÿ

iPB

¨

˝

w´1
ÿ

j“0

Irrπipst´jq “ aT s ´
w´1
ÿ

j“0

Irπipst´jq “ aT s

˛

‚ (G.25)

“
ÿ

iPB

¨

˝w ´
w´1
ÿ

j“0

Irπipst´jq “ aT s

˛

‚. (G.26)

Now we compare the margin between aggregated votes for a and aT after poisoning:

rnaT pst0:tq ´ rnapst0:tq ` IraT ă as (G.27)
“naT pst0:tq ´ napst0:tq ` IraT ă as ` rnaT pst0:tq ´ naT pst0:tq ´

`

rnapst0:tq ´ napst0:tq
˘

(G.28)

“´ δa,aT `
ÿ

iPB

¨

˝

w´1
ÿ

j“0

Irπipst´jq “ as ` w ´
w´1
ÿ

j“0

Irπipst´jq “ aT s

˛

‚ (G.29)

“´ δa,aT `
ÿ

iPB

hi,a,aT ą 0. (G.30)

As a result, after poisoning, aT has higher priority to be chosen than a, i.e., ĂπTpst0:tq ‰ a “

πTpst0:tq. To this point, we conclude the proof with a feasible attack construction. QED.

G.2.4 Loose Per-state Action Certification in TPARL and Comparision with Tight One

The following corollary of Theorem 9.1 states a loose per-state action certification.

Corollary G.1. Under the same condition as Theorem 9.2,

sKt “

[

napsmaxtt´W`1,0u:tq ´maxa1‰a

`

na1psmaxtt´W`1,0u:tq ` Ira1 ă as
˘

2mintW, t` 1u

_

(G.31)

is a tolerable poisoning threshold at time step t in Definition 9.1, where W is the window
size.

Proof of Corollary G.1. We let w “ mintt ` 1,W u to be the actual aggregation window

438



size at time step t. After poisoning with size K, at most K subpolicies are affected and
each affected policy can only make ˘w changes to the aggregated action count. This im-
plies that, after poisoning, for any action a1 P A, the aggregated vote count rna1pst´w`1:tq P

rna1pst´w`1:tq ´ uw, na1pst´w`1:tq ` uws. Thus, when K ď sKt where sKt is defined in Theo-
rem 9.2, for any a1 ‰ a, we have

ñapst´w`1:tq ´ ña1pst´w`1:tq ´ Ira1 ă as (G.32)
“napst´w`1:tq ´ na1pst´w`1:tq ´ Ira1 ă as ´ 2Kw (G.33)
ěnapst´w`1:tq ´ na1pst´w`1:tq ´ Ira1 ă as ´ 2w ¨ sKt (G.34)

ěnapst´w`1:tq ´ na1pst´w`1:tq ´ Ira1 ă as ´

ˆ

napst´w`1:tq ´max
a2‰a

pna2pst´w`1:tq ` Ira2 ă asq

˙

(G.35)

“max
a2‰a

pna2pst´w`1:tq ` Ira2 ă asq ´
`

na1pst´w`1:tq ` Ira1 ă as
˘

ě 0. (G.36)

From the definition of TPARL protocol, the poisoned policy still chooses action a, which
implies sKt is a tolerable poisoning threshold. QED.

In the main text, we mention that the certification from Corollary G.1 is looser than that
from Theorem 9.2. This assertion is based on the following two facts:

1. According to Proposition 9.2, the certification given by Theorem 9.2 is theoretically tight,
which means that any other certification can only be as tight as Theorem 9.2 or looser
than it.

2. There exists examples where the computed sKt from Theorem 9.2 is larger than that from
Corollary G.1.
For instance, suppose W “ 5, action set A “ ta1, a2u, and there are three subpolicies.
At time step t “ 4, πi for s0 to s4 are ra1, a1, a1, a1, a2s for all subpolicies (i.e., i P r3s).
Thus, the benign policy πTps0:4q “ a1. By computation, the sKt from Theorem 9.2 is 1;
while the sKt from Corollary G.1 is 0.

Indeed, Corollary G.1 can be viewed as using 2w to upper bound hi,a,a1 “ w`
řw´1
j“0 Ii,apst´jq´

řw´1
j“0 Ii,a1pst´jq. Intuitively, Corollary G.1 assumes every subpolicy can provide 2w vote mar-

gin shrinkage, and Theorem 9.2 uses hi,a,a1 to capture the precise worse-case margin shrinkage
and thus provides a tighter certification.
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G.2.5 Per-state Action Certification in DPARL

Proof of Theorem 9.3. Without loss of generality, we assumeWmax ď t`1 and otherwise we
let Wmax Ð mintWmax, t`1u. We let t0 “ maxtt´Wmax`1, 0u be the start time step of the
maximum possible window. To prove the theorem, our general methodology is to enumerate
all possible cases of a successful attack, and derive the tolerable poisoning threshold for each
case respectively. Taking a minimum over these tolerable poisoning thresholds gives the
required result.

Specifically, we denote P to the predicate of robustness under poisoning attack: P “

rĂπDpst0:tq “ as, and denote K to the poisoning attack size. Therefore, we can decompose P
as such:

P “ PpW 1q ^
ľ

1ďW˚ďWmax,W˚‰W 1

a1‰a

␣QpW ˚, a1q. (G.37)

Recall thatW 1 is the chosen window size by the protocol DPARL with unattacked subpolicies
πD (Equation (9.4)). In Equation (G.37), the predicate PpW 1q means that after poisoning
attack, whether the prediction under window sizeW 1 is still a; the predicateQpW ˚, a1qmeans
that after poisoning attack, whether the chosen action is a1 at window size W ˚ and average
vote margin is larger (or equal if a1 ă a) at window size W ˚ compared to W 1. Formally, let
rna be the aggregated action count after poisoning and r∆W

t be the average vote margin after
poisoning at window W (see Equation (9.5)),

PpW 1q “

ˆ

argmax
aPA

rnapst´W 1`1:tq “ a

˙

, (G.38)

QpW ˚, a1q “

ˆ

argmax
aPA

rnapst´W˚`1:tq “ a1

˙

^

˜

ˆ

´

r∆W˚

t ě r∆W 1

t

¯

^ pa1 ă aq

˙

_

ˆ

´

r∆W˚

t ą r∆W 1

t

¯

^ pa1 ą aq

˙

¸

. (G.39)

According to Theorem 9.2,
K ď sKt ùñ PpW 1q (G.40)

where sKt is defined by Equation (9.7) with W replaced by W 1. The following Lemma G.1
shows a sufficient condition for QpW ˚, a1q. We then aggregate these conditions together with
minimum to obtain a sufficient condition for P :

K ď min

"

sKt, min
1ďW˚ďmintWmax,t`1u,W˚‰W 1,a1‰a,a2‰a

LW
˚,W 1

a1,a2

*

(G.41)

and thus conclude the proof. QED.
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Lemma G.1. Let QpW ˚, a1q, K, W 1 be the same as defined in proof of Theorem 9.3, then

K ď min
a2‰a

LW
˚,W 1

a1,a2 ùñ ␣QpW ˚, a1q, (G.42)

where LW
˚,W 1

a1,a2 is defined in Definition 9.7.

Proof. We prove the equivalent form:

QpW ˚, a1q ùñ K ą min
a2‰a

LW
˚,W 1

a1,a2 . (G.43)

Suppose a poisoning attack can successfully achieve QpW ˚, a1q, we now induce the require-
ment on its poisoning size K. First, we notice that

ˆ

´

r∆W˚

t ě r∆W 1

t

¯

^ pa1 ă aq

˙

_

ˆ

´

r∆W˚

t ą r∆W 1

t

¯

^ pa1 ą aq

˙

ðñW ˚W 1
r∆W˚

t ě W ˚W 1
r∆W 1

t ` Ira1 ą as

(G.44)

since W ˚W 1
r∆
W˚{W˚

t is an integer by definition. According to the definition and QpW ˚, a1q’s
assumption that argmaxaPA rnapst´W˚`1:tq “ a1,

W ˚W 1
r∆W˚

t ď W 1
`

rna1pst´W˚`1:tq ´ rna#pst´W˚`1:tq
˘

, (G.45)

where “ď” comes from the fact that the margin in r∆W˚

t should be with respect to the
runner-up class after poisoning, and computing with respect to any other class provides an
upper bound. Here we choose a# “ argmaxa0‰a1,a0PA na0pst´W˚`1:tq (see Definition 9.7),
the runner-up class before poisoning, to empirically shrink the gap between the bound and
actual margin. On the other hand,

W ˚W 1
r∆W 1

t ě W ˚

ˆ

rnapst´W 1`1:tq ´max
a2‰a

rna2pst´W 1`1:tq

˙

, (G.46)

where “ě” comes from the fact that the margin in r∆W 1

t should use the top class after poison-
ing, and computing with any other class provides a lower bound. Thus, from Equation (G.44)
and the above two relaxations, we get

QpW ˚, a1q (G.47)

ùñW 1
`

rna1pst´W˚`1:tq ´ rna#pst´W˚`1:tq
˘

ě W ˚

ˆ

rnapst´W 1`1:tq ´ max
a2‰a

rna2pst´W 1`1:tq

˙

` Ira1 ą as

(G.48)
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ùñDa2 ‰ a,

W 1
`

rna1pst´W˚`1:tq ´ rna#pst´W˚`1:tq
˘

ě W ˚
`

rnapst´W 1`1:tq ´ rna2pst´W 1`1:tq
˘

` Ira1 ą as.

(G.49)

For each a2 ‰ a, now we use the last equation as the condition, and show that K ą LW
˚,W 1

a1,a2

is a necessary condition. This proposition is equivalent to

K ď LW
˚,W 1

a1,a2

ùñW 1
`

rna1pst´W˚`1:tq ´ rna#pst´W˚`1:tq
˘

ă W ˚
`

rnapst´W 1`1:tq ´ rna2pst´W 1`1:tq
˘

` Ira1 ą as.

(G.50)
Suppose a poisoning attack within poisoning size K changes the subpolicies in set B Ď rus.

Note that |B| ď K. We inspect the objective in Equation (G.50):

W 1
`

rna1pst´W˚`1:tq ´ rna#pst´W˚`1:tq
˘

´ W ˚
`

rnapst´W 1`1:tq ´ rna2pst´W 1`1:tq
˘

´ Ira1 ą as

(G.51)

“W 1
`

na1pst´W˚`1:tq ´ na#pst´W˚`1:tq
˘

´ W ˚
`

napst´W 1`1:tq ´ na2pst´W 1`1:tq
˘

´ Ira1 ą as

`
ÿ

iPB

¨

˝W 1
W˚´1
ÿ

w“0

Irπ̃ipst´w`1q “ a1s ´ W 1
W˚´1
ÿ

w“0

Irπ̃ipst´w`1q “ a#s

´W ˚
W 1´1
ÿ

w“0

Irπ̃ipst´w`1q “ as ` W ˚
W 1´1
ÿ

w“0

Irπ̃ipst´w`1q “ a2s

˛

‚

´
ÿ

iPB

¨

˝W 1
W˚´1
ÿ

w“0

Irπipst´w`1q “ a1s ´ W 1
W˚´1
ÿ

w“0

Irπipst´w`1q “ a#s

´W ˚
W 1´1
ÿ

w“0

Irπipst´w`1q “ as ` W ˚
W 1´1
ÿ

w“0

Irπipst´w`1q “ a2s

˛

‚ (G.52)

“W 1
`

na1pst´W˚`1:tq ´ na#pst´W˚`1:tq
˘

´ W ˚
`

napst´W 1`1:tq ´ na2pst´W 1`1:tq
˘

´ Ira1 ą as

`
ÿ

iPB

maxtW˚,W 1u
ÿ

w“0

σwpπ̃ipst´wqq ´ σwpπipst´wqq (G.53)

ďW 1
`

na1pst´W˚`1:tq ´ na#pst´W˚`1:tq
˘

´ W ˚
`

napst´W 1`1:tq ´ na2pst´W 1`1:tq
˘

´ Ira1 ą as

`
ÿ

iPB

maxtW˚,W 1u
ÿ

w“0

max
a0PA

σwpa0q ´ σwpπipst´wqq

looooooooooooooooooooooooomooooooooooooooooooooooooon

gi

(G.54)

paq

ďW 1
`

na1pst´W˚`1:tq ´ na#pst´W˚`1:tq
˘
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´ W ˚
`

napst´W 1`1:tq ´ na2pst´W 1`1:tq
˘

´ Ira1 ą as `

K
ÿ

i“1

gpiq (G.55)

pbq
ďW 1

`

na1pst´W˚`1:tq ´ na#pst´W˚`1:tq
˘

´ W ˚
`

napst´W 1`1:tq ´ na2pst´W 1`1:tq
˘

´ Ira1 ą as `

LW˚,W 1

a1,a2
ÿ

i“1

gpiq (G.56)

pcq
ă0. (G.57)

Thus, Equation (G.50) is proved. Therefore, K ą LW
˚,W 1

a1,a2 is a necessary condition for
QpW ˚, a1q, i.e., Equation (G.43).

In the above deriviation, the definitions of gi, gi, and σw are from Equation (9.11). paq
comes from the facts that tgpiquui“1 is a nondecreasing permutation of tgiuu´1

i“0 , gi ě 0, and
|B| ď K. pbq comes from the assumption K ď LW

˚,W 1

a,a2 and also gpiq ě 0. pcq comes from the
definition in Equation (9.10). QED.

G.2.6 Possible Action Set in PARL and Comparison

Certification

Proof of Theorem 9.4. According to the definition of possible action set, we only need to
prove the contrary: for any a P AzAT pKq, within poisoning size K, the poisoned policy
cannot choose a: ĂπPpstq ‰ a.

According to Equation (9.12), any a P AzAT pKq satisfies

ÿ

a1PA
maxtna1pstq ´ napstq ´K ` Ira1 ă as, 0u ą K. (G.58)

Given poisoning size K, since each poisoning size can affect only one subpolicy, we know

rnapstq ď napstq `K (G.59)

where rna denotes to the poisoned aggregated action count. We suppose the attack could be
successful, then for a1 ă a, rna1pstq ď rnapstq´1, and thus na1pstq´rna1pstq ě na1pstq´napstq´

K`1. Similarly, for a1 ą a, ra1pstq ď rnapstq, and thus na1pstq´rna1pstq ě na1pstq´napstq´K.
Also, for any a1 ‰ a after poisoning na1pstq ´ rna1pstq ě 0; otherwise deviating the difference
subpolicies’ decisions’ from a1 to a is strictly no-worse. Given these facts, the amount
of votes that need to be reduced is the LHS of Equation (G.58) which is larger than K.
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However, we only have K poisoning size, i.e., K votes that can be reduced. As a result, our
assumption that the attack could be successful is falsified and the poisoned policy cannot
choose a. QED.

Corollary G.2 (Loose PARL Action Set). Under the condition of Definition 9.8, suppose
the aggregation protocol is PARL as defined in Definition 9.4, then the possible action set
at step t

ALpKq “

"

a P A
∣∣∣ max
a1PA

na1pstq ´ napstq ď 2K ´ Ira ą argmax
a1PA

na1pstqs

*

. (G.60)

Proof of Corollary G.2. Again, we prove the contrary, for any a P AzALpKq, within poison-
ing size K, the poisoned policy cannot choose a: ĂπPpstq ‰ a.

According to Equation (G.60), let am “ argmaxa1PA na1pstq, then any a P AzALpKq
satisfies

nampstq ´ napstq ą 2K ´ Ira ą ams. (G.61)

After poisoning, we thus have

nampstq ´ napstq ą ´Ira ą ams ùñ nampstq ´ napstq ě 1´ Ira ą ams (G.62)

From the definition, a R ALpKq so a ‰ am. If am ă a, nampstq ě napstq; if am ą a,
nampstq ą napstq. In both cases, am has higher priority to be chosen than a, and thus the
poisoned policy cannot choose a. QED.

Comparison

Theorem G.1. Under the condition of Definition 9.8, suppose the aggregation protocol is
PARL as defined in Definition 9.4, AT pKq, ALpKq are defined according to Equations (9.12)
and (G.60) accordingly, then

1. AT pKq Ď ALpKq; and there are subpolicies tπiuu´1
i“0 and state st such that AT pKq Ĺ

ALpKq.

2. Given subpolicies tπiuu´1
i“0 and state st, for any a P AT pKq, there exists a poisoned training

set rD whose poisoning size |D a rD| ď K and some RL training mechanism, such that
ĂπPpstq “ a where ĂπP is the poisoned PARL policy trained on rD.

Proof of Theorem G.1. We prove the two arguments separately.
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1. We first prove AT pKq Ď ALpKq. For any a P AT pKq, let am “ argmaxa1PA na1pstq, then

ÿ

a1PA
maxtna1pstq ´ napstq ´K ` Ira1 ă as, 0u ď K (G.63)

ùñnampstq ´ napstq ´K ` Iram ă as ď K (G.64)
ùñnampstq ´ napstq ď 2K ´ Ira ą ams (G.65)

where the last proposition is exactly the set selector of ALpKq so a P ALpKq.

We then prove that AT pKq Ĺ ALpKq can happen by construction. Suppose that there are
three actions in the action space: A “ ta1, a2, a3u. We construct subpolicies for current
state st such that the aggregated action counts are

na1pstq “ 10, na2pstq “ 9, na3pstq “ 1. (G.66)

Given poisoning size K “ 5, we find that

na1pstq ´ na3pstq “ 9 ď 10´ Ira3 ě a1s “ 9 ùñ a3 P a
LpKq, (G.67)

`

na1pstq ´ na3pstq ´K ` Ira1 ă a3s
˘

`
`

na2pstq ´ na3pstq ´K ` Ira2 ă a3s
˘

“ 9 ą K “ 5 ùñ a3 R a
T pKq. (G.68)

Therefore, AT pKq Ĺ ALpKq for these subpolicies and state st.

2. We prove by construction. For any a P AT pKq, we construct the set of subpolicies to
poison Ba Ď rus such that |Ba| ď K, then describe the corresponding poisoned dataset
rDa, and finally prove that the poisoned policy ĂπP

a
pstq “ a.

For a P AT pKq, by definition (Equation (9.12)), we know

ÿ

a1PA
maxtna1pstq ´ napstq ´K ` Ira1 ă as

looooooooooooooooooomooooooooooooooooooon

:“ta,a1

, 0u ď K. (G.69)

We now define a set of actions Ca Ď A such that

Ca “ ta1 P A | ta,a1 ą 0u. (G.70)

According to this definition, a R Ca since ta,a ď 0.

Fact G.1. For a P AT pKq and any a1 P A, napstq `K ´ Ira1 ă as ě 0.
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Proof of Fact G.1. Suppose napstq `K ´ Ira1 ă as ď 0, then napstq “ K “ 0 and a1 ă a.
Then

ÿ

a1PA
maxtna1pstq´napstq´K`Ira1 ă as, 0u ě

ÿ

a1PA
na1pstq´napstq´K “

ÿ

a1PA
na1pstq “ u ą 0

(G.71)
which contradicts the requirement that the LHS of the above inequality should be ď K “

0. QED.

Give Fact G.1, for any a1 P Ca, na1pstq ě ta,a1 . Notice that na1pstq is the number of
subpolicies that vote for action a1 at state st. Therefore, we can pick an arbitrary subset
of those subpolicies whose cardinality is ta,a1 . We denote Ba

a1 to such subset:

Ba
a1 Ď ti P rus | πipstq “ a1u, |Ba

a1 | “ ta,a1 . (G.72)

Now define Ba
α: Ba

α “
Ť

a1PCa Ba
a1 . We construct Ba

β to be an arbitrary subset of those
subpolicies whose prediction is not a and who are not in Ba

α, and limit the Ba
β’s cardinality:

Ba
β Ď ti P rus | πipstq ‰ auzBa

α, |B
a
β| “ mintK ´ |Ba

α|, u´ napstq ´ |B
a
α|u. (G.73)

Such Ba
β can be selected, because:

• From definition, Ba
α Ď ti P rus | πipstq ‰ au, where the cardinality of ti P rus |

πipstq ‰ au is u´ napstq. So 0 ď u´ napstq ´ |B
a
α|.

• Since
|Ba

α| ď
ÿ

a1PCa

|Ba
a1 | “

ÿ

a1PCa

ta,a1 “
ÿ

a1PA,ta,a1 ą0

ta,a1

p˚q

ď K, (G.74)

K ´ |Ba
α| ě 0, and thus |Ba

β| ě 0. Here p˚q is due to Equation (G.69).

• The superset ti P rus | πipstq ‰ auzBa
α has cardinality u ´ napstq ´ |B

a
α| and

|Ba
β| ď u´ napstq ´ |B

a
α|.

To this point, we can define the set of subpolicies to poison:

Ba :“ Ba
α YB

a
β, (G.75)

and |Ba| “ |Ba
α| ` |B

a
β| ď K.

In a similar fashion as the attack construction in proof of Proposition 9.1, for each i P Ba,
we locate its corresponding partitioned dataset Di for training subpolicy πai . We inset
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one trajectory pai to Di such that our chosen learning algorithm M0 can train a subpolicy
π̃ai “ M0pDi Y tp

a
i uq such that π̃ai pstq “ a. For example, the trajectory could be pai “

tpst, a, s
1,8qu where s1 is an arbitrary state that guarantees pai is hashed to partition i;

and M0 learns the action with maximum reward for the memorized nearest state. Then,
the poisoned dataset

rDa “

˜

ď

iPBa

Di Y tp
a
i u

¸

Y

¨

˝

ď

iPruszB1

Di

˛

‚. (G.76)

Thus, rDa is |D a rDa| “ |Ba| ď K, i.e., the constructed attack’s poisoning size is within
K.

We now analyze the action prediction of the poisoned policy ĂπP. For action a, after
poisoning, rnapstq “ napstq ` |B

a| “ napstq `mintK, u´ napstqu “ mintnapstq `K, uu. If
rnapstq “ u, then all subpolicies vote for a, apparently ĂπP

a
pstq “ a; otherwise, rnapstq “

napstq ` K. In this case, for any action a1 P Ca, since we at least choose subpolicies in
Ba
a1 and change their action prediction to a, the aggregated action count after poisoning

is rna1pstq ď na1pstq ´ |B
a
a1 | “ na1pstq ´ ta,a1 “ na1pstq ´ na1pstq ` napstq ` K ´ Ira1 ă

as “ napstq ` K ´ Ira1 ă as “ ñapstq ´ Ira1 ă as. Thus, a1 has lower priority to be
chosen than a. For any action a1 R Ca and a1 ‰ a, by the definition of Ca, ta,a1 “

na1pstq´napstq´K` Ira1 ă as ď 0. After poisoning, the vote of a1 does not increase, i.e.,
rna1pstq ď na1pstq ď napstq `K ´ Ira1 ă as “ rnapstq ´ Ira1 ă as. Thus, a1 also has lower
priority to be chosen than a. In conclusion, we have ĂπP

a
pstq “ a.

To this point, for any a P AT pKq, we successfully construct the corresponding poisoned
dataset rDa within poisoning size K such that ĂπPapstq “ a, thus concludes the proof.

QED.

G.2.7 Possible Action Set in TPARL

Proof of Theorem 9.5. For ease of notation, we let w “ mintW, t ` 1u, so w is the actual
window size used at step t. We let t0 “ t ´ w ` 1, i.e., t0 is the actual start time step for
TPARL aggregation at our current step t. Now we can write chosen action at step t without
poisoning as πTpst0:tq.

We only need to prove the contrary: for any a P AzApKq, within poisoning size K, the
poisoned policy cannot choose a: ĂπTpst0:tq ‰ a.

447



According to Equation (9.13), for such a, there exists a1 ‰ a such that

K
ÿ

i“1

h
piq
a1,a ď δa1,a “ na1pst0:tq ´ napst0:tq ´ Ira ă a1s. (G.77)

Suppose there exists such poisoning attack that lets ĂπTpst0:tq “ a. This implies that for a1,
after poisoning, we have

rna1pst0:tq ´ rna1pst0:tq ´ Ira1 ă as ă 0, (G.78)

where rna is the aggregated action count after poisoning. Since the poisoning size is within
K, it can affect at most K subpolicies. We let B Ď rus, |B| ď K to represent the affected
subpolicy set. Therefore,

rna1pst0:tq ´ rnapst0:tq ´ Ira1 ă as

“na1pst0:tq ´ napst0:tq ´ Ira1 ă as
looooooooooooooooooomooooooooooooooooooon

δa1,a

`prna1pst0:tq ´ na1pst0:tqq ´ prnapst0:tq ´ napst0:tqq (G.79)

“δa1,a `
ÿ

iPB

¨

˝

w´1
ÿ

j“0

Irπ̃ipst´jq “ a1, πipst´jq ‰ a1s ´

w´1
ÿ

j“0

Irπ̃ipst´jq ‰ a1, πipst´jq “ a1s

˛

‚ (G.80)

´
ÿ

iPB

¨

˝

w´1
ÿ

j“0

Irπ̃ipst´jq “ a, πipst´jq ‰ as ´
w´1
ÿ

j“0

Irπ̃ipst´jq ‰ a, πipst´jq “ as

˛

‚ (G.81)

ěδa1,a ´
ÿ

iPB

¨

˝

w´1
ÿ

j“0

Irπ̃ipst´jq ‰ a1, πipst´jq “ a1s `

w´1
ÿ

j“0

Irπ̃ipst´jq “ a, πipst´jq ‰ as

˛

‚ (G.82)

ěδa1,a ´
ÿ

iPB

¨

˝

w´1
ÿ

j“0

Irπipst´jq “ a1s `

w´1
ÿ

j“0

Irπipst´jq ‰ as

˛

‚ (G.83)

“δa1,a ´
ÿ

iPB

¨

˝

w´1
ÿ

j“0

Ii,a1pst´jq ` w ´
w´1
ÿ

j“0

Ii,apst´jq

˛

‚ (G.84)

“δa1,a ´
ÿ

iPB

hi,a1,a

paq

ě δa1,a ´

|B|
ÿ

i“1

h
piq
a1,a

pbq

ě δa1,a ´

K
ÿ

i“1

h
piq
a1,a

pcq

ě 0. (G.85)

This contradicts with Equation (G.78), and thus the assumption is falsified, i.e., there is no
such poisoning attack that let ĂπTpst0:tq “ a. In the above equations, paq is due to the fact
that hpiq

a1,a is a nonincreasing permutation of thi,a1,au
u´1
i“0 . pbq is due to the facts that |B| ď K
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and hpiq
a1,a ě 0. pcq comes from Equation (G.77). QED.

G.2.8 Hardness for Computing Tight Possible Action Set in TPARL

Proof of Theorem 9.6. By Definition 9.8, the possible action set with minimum cardinal-
ity (called minimal possible action set hereinafter) is unique. Otherwise, suppose A and B
are both minimal possible action set, but A ‰ B, then AXB is a smaller and valid possible
action set. Therefore, the oracle that returns the minimal possible action set, denoted by
MINSET, can tell whether any action a P MINSET and thus whether any action a can be
chosen by some poisoned policy rπ whose poisoning size is within K. In other words, the
problem of determining whether an action a can be chosen by some poisoned policy π̃ whose
poisoning size is within K, denoted by ATTKACT, is polynomially equivalent to MINSET:
MINSET ”P ATTKACT. Now, we show a polynomial reduction from the set cover problem
to ATTKACT, which implies that our MINSET problem is an NP-complete problem.

The decision version of the set cover problem [179], denoted by SETCOVER, is a well-
known NP-complete problem and is defined as follows. The inputs are

1. a universal set of n elements: U “ tu1, u2, ¨ ¨ ¨ , unu;

2. a set of subsets of U : V “ tV1, ¨ ¨ ¨ , Vmu, Vi Ď U , 1 ď i ď m,
Ťm
i“1 Vi “ U ;

3. a positive number K P R`.

The output is a boolean variable b, indicating that whether there exists a subset W Ď

V , |W | ď K, such that @ui P U , DV P W , ui P V . Given an oracle to ATTKACT, we need to
show SETCOVER can be solved in polynomial time, i.e., SETCOVER ďP ATTKACT.

• If K ě n:
We scan all sets Vi P V . To being with, we have a record set S Ð H, and an answer
set W Ð H. Whenever we encounter a set that contains a new element ui R S, we put
W ÐW YtVju, and record this element S Ð SYtuiu. After one scan pass, W covers all
elements of U (since

Ťm
j“1 Vj “ U), and |W | ď n ď K. Therefore, W is a valid set cover.

Since we can always find such W , we can directly answer true.

• If K ě m:
We can directly return V as a valid set cover, since

Ťm
j“1 Vj “ U and |V | ď m ď K. Thus,

we can answer true.
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• If K ă mintn,mu:
This is the general case which we need to handle. Now we construct the ATTKACTpKq
problem so that we can trigger its oracle to solve SETCOVER.

1. The poisoning size is K.

2. The action space A “ U YtbuYΓ where Γ :“ t#1, . . . ,#m2nu. (|A| “ n` 1`m2n.)
The sorting of actions is u1 ă u2 ă ¨ ¨ ¨ ă un ă b ă #1 ă ¨ ¨ ¨ ă #m2n.

3. The subpolicies are tπaj umj“1 Y tπ
b
i , π

c
i,j | 1 ď i ď n, 1 ď j ď K ´ 1u, where πaj

corresponds to Vj P V , and πbi , π
c
i,j correspond to ui P U . (Number of subpolicies

u “ m`Kn ď m` n2.)

4. The current time step is t “ nm, and the window size W “ nm.

5. The input action is b, i.e., asking whether b can be chosen by some poisoned TPARL
policy, i.e., ĂπTps1:tq “ b, if the poisoning size is within K.

Now, we construct the states at each step t (1 ď t ď nm) so that the subpolicies’ action
predictions at these steps are as follows.

1. Count the appearing time of each ui in V , and denote it by ci: ci “
řm
j“1 Irui P Vjs.

For each ui, select a Vj0 that contains ui, and in the corresponding πaj0 , assign
m´ ci` 1 steps to predict ui; for all other Vj that contains ui, in the corresponding
πaj , assign one step to predict ui.

2. After this process, each πaj at least has one time step whose action prediction is ui
for each ui P Vj. Among all tπaj umj“1 and all time steps 1 ď t ď nm, mn step-action
cells are filled, and the remaining pm2n´mnq cells are filled by #l P Γ sequentially.

3. For each πbi , arbitrarily select W ´m time steps to assign action prediction as ui;
and fill in other m time steps by remaining #l P Γ sequentially.

4. For each πci,j, for all time steps, let the action prediction be ui.

As we can observe, the number of actions, the number of subpolicies, and the window
size are all bounded by a polynomial of n and m. Therefore, such construction can be
done in polynomial time.

We then show SETCOVER “ true ðñ DK 1, b P ATTKACTpK 1q, 1 ď K 1 ď K.

– ùñ:
Suppose the covering set is W Ď V , we denote K 1 to |W |, and construct the AT-
TKACT problem with poisoning size K 1 as described above.
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We can construct a poisoning strategy to let ĂπTps1:nmq “ b, The poisoning strategy
is to find out πaj for each Vj P W , and to let them predict action b throughout all
time steps: rπaj ps1

tq “ b, 1 ď t1 ď nm.
After poisoning, the aggregated action count rnbps1:nmq “ |W | ˆ nm “ K 1nm. Since
W covers every ui P U , for each ui P U there exists a set Vj Q ui, whose corresponding
rπaj is poisoned to predict b. Thus, rnuips1:nmq ă nuips1:nmq “ m`pW´mq`WˆpK 1´

1q “ WK 1 “ K 1nm. For any #l P Γ, rn#l
ps1:nmq ď n#l

ps1:nmq “ 1. In summary,

rnuips1:nmq ă K 1nm, rnbps1:nmq “ K 1nm, rn#l
ps1:nmq “ 1. (G.86)

Thus, after TPARL aggregation, the poisoned policy ĂπTps1:nmq “ b, and therefore
b P ATTKACTpK 1q.

– ðù:
Suppose it is K 1 that let b P ATTKACTpK 1q, which implies that there exists such a
poisoning attack within sizeK 1 that misleads the poisoned policy to b: ĂπTps1:nmq “ b.
Since the poisoning size is K 1, after poisoning the aggregated action count

rnbps1:nmq ď K 1W “ K 1nm. (G.87)

For each ui P U , since nuips1:nmq “ m`pW ´mq`W ˆpK 1´1q “ K 1nm, we always
have

rnuips1:nmq
p˚q

ă rnbps1:nmq ď nuips1:nmq, (G.88)

where p˚q is due to the condition of successful attack. We denote the set of poisoned
subpolicies by Π (|Π| ď K 1). Therefore, Equation (G.88) implies that for each
ui P U , there exists at least one subpolicy

π1
ui
P Π, π1

ui
P tπaj | ui P Vju Y tπ

b
i u Y tπ

c
i,j | 1 ď j ď K ´ 1u (G.89)

that is poisoned by the attack, otherwise the aggregated vote rnui cannot change.
We partition Γ by Γa and Γbc, where

Γa “ ΓX tπaj u
m
j“1, Γb “ ΓX tπbi , π

c
i,j | 1 ď i ď n, 1 ď j ď K ´ 1u. (G.90)

We construct additional poisoning set Γa` following this process: In the beginning,
Γa` Ð H. For each ui P U , if Γa X tπaj | ui P Vju is not empty, skip. Otherwise,
according to Equation (G.89), Γb X tπbi , πci,j | 1 ď j ď K ´ 1u is not empty. In this
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case, we find an arbitrary covering set of ui, namely Vj0 Q ui, and put πaj0 into Γa`.
When the process terminates, we find that for each ui P U ,

pΓa Y Γa`q X tπ
a
j | ui P Vju ‰ H. (G.91)

Following the mapping tπaj umj“1 ÐÑ tVj | 1 ď j ď mu “ V , the subset pΓa Y Γa`q Ď

tπaj u
m
j“1 can be mapped to pWa YWa

`q Ď V . From Equation (G.91), pWa YWa
`q is

a valid set cover for U . We now study the cardinality of this set cover. From the
process, we know that every Vj0 P Wa

` corresponds to a different set in Γb. Thus,
|Wa

`| ď |Γ
b|, which implies that

|Wa YWa
`| ď |Wa| ` |Wa

`| ď |Γ
a| ` |Γb| “ |Γ| ď K 1. (G.92)

To this point, we successfully construct a set cover within cardinally K 1 ď K that
covers U , so SETCOVER “ true.

Therefore, we can check whether SETCOVER “ true by iterating K 1 from 1 to K (ă
mintn,mu iterations), constructing the ATTKACTpK 1q problem, and querying the oracle.
The whole process can be done in polynomial time assumping Op1q computation time of
the ATTKACTpK 1q oracle.

To this point, we have shown SETCOVER ďP ATTKACT. On the other hand, an unde-
terminisitic Turing machine can try different poisoning strategies by branching on whether
to poison current subpolicy and what actions to be assigned to each poisoned subpolicy.
The decision of whether the poisoning is successful can be done in polynomial time and
b P ATTKACTpKq corresponds to the existence of successfully attacked branches. Thus,
ATTKACT P NP. Given that SETCOVER is an NP-complete problem, so does ATTKACT
and MINSET (since MINSET ”P ATTKACT). QED.

G.2.9 Possible Action Set in DPARL

Proof of Theorem 9.7. For ease of notation, we assume that Wmax ď t`1, and otherwise we
let Wmax Ð t` 1. We let t0 “ maxtt´Wmax ` 1, 0u be the start time step of the maximum
possible window.

We only need to prove the contrary: for any a P AzApKq, within poisoning size K, the
poisoned policy cannot choose a: ĂπDpst0:tq ‰ a. We prove by contradiction: we assume that
there exists such a poisoning attack within poisoning size K that lets ĂπDpst0:tq “ a. From
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the expression of ApKq (Equation (9.14)), a ‰ at “ πDpst0:tq. Suppose the selected time
window before the attack is W 1 (selected according to Equation (9.4) based on ∆W

t and na),
and the selected time window after the attack is ĂW 1 (selected according to Equation (9.4)
based on r∆W

t and rna).

• If ĂW 1 “ W 1:
Suppose we use the TPARL aggregation policy with window size W “ W 1 instead of cur-
rent DPARL aggregation policy, then we will have πTpst´W 1`1:tq “ at and ĂπTpst´W 1`1:tq “

a. Thus, according to the definition of possible action set (Definition 9.8), a P ApKq where
ApKq is defined by Equation (9.13) in Theorem 9.5. This implies that a P ApKq where
ApKq is defined by Equation (9.14), which contradicts the assumption that a P AzApKq.

• If ĂW 1 ‰ W 1:
According to the definition in Equation (9.14),

min
1ďW˚ďWmax,W˚‰W 1,a2‰at

LW
˚,W 1

a,a2 ą K. (G.93)

We define a#t “ argmaxa0‰at rna0pst´W 1`1:tq. Then, the above equation implies that

L
ĂW 1,W 1

a,a#t
ą K (G.94)

and thus
L

ĂW 1,W 1

a,a
#
t

ÿ

i“1

gpiq `W 1pn
ĂW 1

a ´ n
ĂW 1

a# q ´
ĂW 1pnW

1

at ´ n
W 1

a#t
q ´ Ira ą ats ă 0. (G.95)

Since gpiq ě 0 by definition (9.11),

K
ÿ

i“1

gpiq `W 1pn
ĂW 1

a ´ n
ĂW 1

a# q ´
ĂW 1pnW

1

at ´ n
W 1

a#t
q ´ Ira ą ats ă 0, (G.96)

where a# “ argmaxa0‰a1,a0PA na0pst´ĂW 1`1:tq and nwa is a shorthand of napst´w`1:tq.

Following the derivation from Equation (G.50) to paq, we have

K
ÿ

i“1

gpiq`W 1pn
ĂW 1

a ´n
ĂW 1

a# q´ĂW 1pnW
1

at ´nW
1

a#t
q´Ira ą ats ě W 1prn

ĂW 1

a ´rn
ĂW 1

a# q´ĂW 1prnW
1

at ´rnW
1

a#t
q´Ira ą ats.

(G.97)
Combined with Equation (G.96),

W 1prn
ĂW 1

a ´ rn
ĂW 1

a# q ´
ĂW 1prnW

1

at ´ rnW
1

a#t
q ´ Ira ą ats ă 0. (G.98)
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On the other hand, the successful attack assumption, i.e., ĂπDpst0:tq “ a and πDpst0:tq “ at,
implies that

r∆
ĂW 1

t “
rn
ĂW 1

a ´ rn
ĂW 1

ap2q

ĂW 1
ą

rnW
1

aW 1
´ rnW

1

a
p2q

W 1

W 1
“ r∆W 1

t , (G.99)

where “ą” is “ě” if a ă at. In the above equation,

ap2q “ argmax
a0‰a,a0PA

rn
ĂW 1

a0
, aW 1 “ argmax

a0PA
rnW

1

a0
, a

p2q

W 1 “ argmax
a0‰aW 1 ,a0PA

rnW
1

a0
. (G.100)

Intuitively, after poisoning, ap2q is the runner-up action at window ĂW 1, aW 1 is the action at
window W 1, and ap2q

W 1 is the runner-up action at window W 1. We rewrite Equation (G.99)
to

W 1prn
ĂW 1

a ´ rn
ĂW 1

ap2qq ě ĂW 1prnW
1

aW 1
´ rnW

1

a
p2q

W 1

q ` Ira ą ats. (G.101)

We have the following two observations:

1. rn
ĂW 1

a ´ rn
ĂW 1

a#
ě rn

ĂW 1

a ´ rn
ĂW 1

ap2q , since a is the top action and ap2q is the runner-up action
and their margin should be the smallest.

2. rnW
1

aW 1
´rnW

1

a
p2q

W 1

ě rnW
1

at ´rnW
1

a#t
, because 1) if at “ aW 1 , LHS equals to RHS; 2) if at ‰ aW 1 ,

LHS ě 0 and RHS ď 0.

Plugging these two observations to two sides of Equation (G.101), we get

W 1prn
ĂW 1

a ´ rn
ĂW 1

a# q ě
ĂW 1prnW

1

at ´ rnW
1

a#t
q ` Ira ą ats. (G.102)

This contradicts with Equation (G.98).

Since in both cases, we find contradictions. Now we can conclude that for any a P AzApKq,
within poisoning size K, the poisoned policy cannot choose a: ĂπDpst0:tq ‰ a. QED.

G.3 EXPERIMENTAL DETAILS

G.3.1 Details of the Offline RL algorithms and Implementations

We experimented with three offline RL algorithms: DQN [265], QR-DQN [88], and
C51 [31]. The first one is the standard baseline, while the latter two are distributional
RL algorithms which show SOTA results in offline RL tasks. We first briefly introduce the
algorithm ideas, followed by the implementation details.
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Algorithm Ideas. The core of Q-learning [398] is the Bellman optimality equation [32]

Q‹ps, aq “ ERps, aq ` γEs1„P max
a1PA

Q‹
`

s1, a1
˘

, (G.103)

where a parameterized Qθ is adopted to approximate the optimal Q‹ and iteratively im-
proved. In DQN [265] specifically, the parameterization is achieved by using a convolutional
neural network [202]. In contrast to estimating the mean action value Qπps, aq in DQN,
distributional RL algorithms estimate a density over the values of the state-action pairs.
The distributional Bellman optimality can be expressed as follows:

Z‹ps, aq
D
“ r ` γZ‹

´

s1, argmaxa1PAQ
‹
`

s1, a1
˘

¯

where r „ Rps, aq, s1 „ P p¨ | s, aq. (G.104)

Concretely, QR-DQN [88] approximates the density D‹ with a uniform mixture of K Dirac
delta functions, while C51 [31] approximates the density using a categorical distribution over
a set of anchor points.

Implementation Details. For training the subpolicies using offline RL training algo-
rithms, we use the code base of Agarwal et al. [3]. The configuration files containing the
detailed hyperparameters can be found at their public repository https://github.com/
google-research/batch_rl/tree/master/batch_rl/fixed_replay/configs. For the
three methods DQN, QR-DQN, and C51, the names of the configuration files are dqn.gin,
quantile.gin, and c51.gin, respectively. On each partition, we train the subpolicy for 50
epochs.

G.3.2 Concrete Experimental Procedures

We conduct experiments on two Atari 2600 games, Freeway and Breakout from OpenAI
Gym [43], and one autonomous driving environment Highway [210], following Section 9.3.

Concretely, in the training stage, we first partition the training dataset into u partitions
(u “ 30, 50, or 100) by using the hash function hpτq pre-defined in each environment. Let
si be the i-th value in the state representation and d be the dimensionality of the state.
In Atari games where the state is the game frame, hpτq is defined as the sum of all pixel
values of all frames in the trajectory τ , i.e., hpτq “

ř

sPτ

ř

iPrds s
i. In Highway where the

state is a floating point number scalar containing the positions and velocities of all vehicles,
we define hpτq “

ř

sPτ

ř

iPrds fps
iq where f : R Ñ Z is a deterministic function that maps

the given float value to integer space. Concretely, we take fpxq as the sum of the higher
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16 bits and the lower 16 bits of its 32-bit representation under IEEE 754 standard [135].
We then train the subpolicies on the partitions with offline RL training algorithm M0 P

{DQN [265], QR-DQN [88], C51 [31]}. The detailed description of the algorithms can be
found in Appendix G.3.1.

In the aggregation stage, we apply the three proposed aggregation protocols (PARL (The-
orem 9.1), TPARL (Theorem 9.2), and DPARL (Theorem 9.3)) on the trained u subpolicies
and derive the aggregated policies πP, πT, and πD accordingly.

Finally, in the certification stage, for each aggregated policy, we provide the per-state
action and cumulative reward certification following our theorems. When certifying the per-
state action, we constrain the maximum trajectory length H “ 1000 for Atari games and
H “ 30 for Highway (which is the full length in Highway) and report results averaged over
20 runs; for the cumulative reward certification, we adopt the trajectory length H “ 400 for
evaluating Freeway, H “ 75 for Breakout, and H “ 30 for Highway.

Configuration of Trajectory Length H. For Atari games, we do not evaluate the full
episode length (up to tens of thousands steps), since our goal is to compare the relative cer-
tified robustness of different RL algorithms, and the evaluation on relatively short trajectory
is sufficient under affordable computation cost. Moreover, different episodes in Atari games
are oftentimes of different lengths; thus it is necessary that we restrict the episode length to
enable a fair comparison. For Highway, we evaluate on the full episode (H “ 30) where we
can efficiently achieve effective comparisons.
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APPENDIX H: APPENDIX FOR CHAPTER 11

H.1 PROOFS OF MAIN RESULTS

This appendix entails the complete proofs for Proposition 11.1, Theorem 11.1, Theo-
rem 11.2, Lemma 11.1, and Theorem 11.3 in the main text. For complex proofs such as
that for Theorem 11.3, we also provide high-level illustrations before delving into the formal
proof.

H.1.1 Proof of Proposition 11.1

Proof of Proposition 11.1. Since each term PrpX,Y q„QrhθpXq ‰ Y |Y “ y,Xs “ is is within
r0, ϵs, we consider two cases: y ‰ 1 and y “ 1. If y ‰ 1, PrpX,Y q„QrhθpXq “ 1|Y “ y,Xs “

is ď PrpX,Y q„QrhθpXq ‰ Y |Y “ y,Xs “ is ď ϵ and so will be their differences for Xs “ i

and Xs “ j. If y “ 1, PrpX,Y q„QrhθpXq “ 1|Y “ y,Xs “ is “ 1 ´ PrpX,Y q„QrhθpXq ‰

Y |Y “ y,Xs “ is P r1 ´ ϵ, 1s, and also the differences for Xs “ i and Xs “ j are always
within ϵ. This proves ϵ-EO.

Now consider DP. We notice that for any a,

Pr
pX,Y q„Q

rhθpXq “ 1|Xs “ as “
C
ÿ

y“1

Pr
pX,Y q„Q

rhθpXq “ 1|Y “ y,Xs “ as¨ Pr
pX,Y q„Q

rY “ y|Xs “ as.

(H.1)
Thus,

ˇ

ˇ

ˇ
Pr

pX,Y q„Q
rhθpXq “ 1|Xs “ is ´ Pr

pX,Y q„Q
rhθpXq “ 1|Xs “ js

ˇ

ˇ

ˇ
(H.2)

p˚q

ď

C
ÿ

y“1

ˇ

ˇ

ˇ
Pr

pX,Y q„Q
rhθpXq “ 1|Y “ y,Xs “ is ´ Pr

pX,Y q„Q
rhθpXq “ 1|Y “ y,Xs “ js

ˇ

ˇ

ˇ

¨ Pr
pX,Y q„Q

rY “ y|Xs “ is (H.3)

ď

C
ÿ

y“1

ϵ Pr
pX,Y q„Q

rY “ y|Xs “ is “ ϵ (H.4)

which proves ϵ-DP, where p˚q leverages the fair base rate property of Q which gives
PrpX,Y q„QrY “ y|Xs “ is “ PrpX,Y q„QrY “ y|Xs “ js.

QED.
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H.1.2 Proof of Theorem 11.1

Proof of Theorem 11.1. We first prove the key eq. (11.6).

HpP ,Qq ď ρ ðñ H2pP ,Qq ď ρ2 (H.5)

ðñ
1

2

ż

Z

´

a

ppzq ´
a

qpzq
¯2

dµpzq ď ρ2 (H.6)

ðñ
1

2

ˆ
ż

Z
ppzqdµpzq `

ż

Z
qpzqdµpzq

˙

´

ż

Z

a

ppzqqpzqdµpzq ď ρ2 (H.7)

ðñ

ż

Z

a

ppzqqpzqdµpzq ě 1´ ρ2 (H.8)

ðñ

N
ÿ

i“1

ż

Zi

?
piqi ¨

a

pipzqqipzqdµpzq ě 1´ ρ2 (H.9)

ðñ

N
ÿ

i“1

?
piqi

`

1´H2pPi,Qiq
˘

ě 1´ ρ2 (H.10)

where pip¨q and qip¨q are density functions of subpopulation distributions Pi and Qi respec-
tively.

Then, we show that any feasible solution of Equation (11.5) satisfies the constraints in
Equation (11.7). We let Q‹ and θ‹ denote a feasible solution of Equation (11.5), i.e.,

HpP ,Q‹q ď ρ, ejpP , hθ‹q ď vj @j P rLs, gjpQ‹q ď uj @j P rM s. (H.11)

We let tq‹
i u
N
i“1 denote the proportions of Q‹ within each support partition Zi, and tQ‹

i u
N
i“1

the Q‹ in each subpopulation. By Equation (H.10), we have 1´ ρ2´
řN
i“1

?
piq‹

i p1´ ρ
2
i q ď 0

where ρi “ H2pPi,Q‹
i q. Note that by definition,

řN
i“1 q

‹
i “ 1 and @i P rN s, q‹

i ě 0, ρi ě

0. Furthermore, by the implication relations stated in Theorem 11.1, for any j P rLs,
e1
jptPiuNi“1, tpiu

N
i“1, hθ‹q ď v1

j; and for any j P rM s, g1
jptQ‹

i u
N
i“1, tq

‹
i u
N
i“1q ď u1

j. To this point,
we have shown Q‹ and θ‹ satisfy all constraints in Equation (11.7), i.e., Q‹ and θ‹ is a
feasible solution of Equation (11.7). Since Equation (11.7) expresses the optimal (maximum)
solution, Equation (11.7) (in Theorem 11.1) ě Equation (11.5). QED.

H.1.3 Proof of Theorem 11.2

Proof of Theorem 11.2. The proof of Theorem 11.2 is composed of three parts: (1) the
optimization problem provides a fairness certificate for Problem 2; (2) the certificate is
tight; and (3) the optimization problem is convex.
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(1) Suppose the maximum of Problem 2 is attained with the test distribution Q‹ in the
sensitive shifting setting, then we decompose both P and Q‹ according to both the
sensitive attribute and the label:

P “
S
ÿ

s“1

C
ÿ

y“1

ps,yPs,y, Q‹ “

S
ÿ

s“1

C
ÿ

y“1

q‹
s,yQ‹

s,y. (H.12)

Since Q‹ is a fair base rate distribution, for any i, j P rSs, bQ‹

i,y “ bQ
‹

j,y where bQ‹

s,y “

PrpX,Y q„Q‹rY “ y|Xs “ ss. As a result, PrpX,Y q„Q‹rY “ y|Xs “ ss “ PrpX,Y q„Q‹rY “

ys. Now we define

k‹
s :“ Pr

pX,Y q„Q‹
rXs “ ss, r‹

y :“ Pr
pX,Y q„Q‹

rY “ ys, (H.13)

and then

q‹
s,y “ Pr

pX,Y q„Q‹
rXs “ s, Y “ ys “ Pr

pX,Y q„Q‹
rXs “ ss ¨ Pr

pX,Y q„Q‹
rY “ y|Xs “ ss “ k‹

sr
‹
y.

(H.14)
By the distance constraint in Problem 2 (namely HpP ,Q‹q ď ρ) and Equation (H.10),
we have

S
ÿ

s“1

C
ÿ

y“1

a

ps,yq‹
s,y

´

1´H2pPs,y,Q‹
s,yq

¯

ě 1´ ρ2. (H.15)

Since there is only sensitive shifting, H2pPs,y,Q‹
s,yq “ 0, given Equation (H.14), we have

S
ÿ

s“1

C
ÿ

y“1

b

ps,yk‹
sr

‹
y ě 1´ ρ2. (H.16)

Now, we can observe that the k‹
s and r‹

y induced by Q‹ satisfy all constraints of Prob-
lem 2. For the objective,

Objective in Theorem 11.2

“

S
ÿ

s“1

C
ÿ

y“1

k‹
sr

‹
s E

pX,Y q„Ps,y

rℓphθpXq, Y qs (H.17)

“

S
ÿ

s“1

C
ÿ

y“1

q‹
s,y E

pX,Y q„Q‹
s,y

rℓphθpXq, Y qs (by Equation (H.14) and H2pPs,y,Q‹
s,yq “ 0)

(H.18)

“ E
pX,Y q„Q‹

rℓphθpXq, Y qs (H.19)
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“Optimal value of Problem 2.

Therefore, the optimal value of Theorem 11.2 will be larger or equal to the optimal value
of Problem 2 which concludes the proof of the first part.

(2) Suppose the optimal value of Theorem 11.2 is attained with k‹
s and r‹

y. We then construct
Q‹ “

řS
s“1

řC
y“1 k

‹
sr

‹
yPs,y. We now inspect each constraint of Problem 2. The constraint

distpP ,Q‹q ď ρ is satisfied because 1 ´ ρ2 ´
řS
s“1

řC
y“1

a

ps,yk‹
sr

‹
y ď 0 is satisfied as a

constraint of Theorem 11.2. Apparently, Ps,y “ Q‹
s,y. Then, Q‹ is a fair base rate

distribution because

bQ
‹

s,y “ Pr
pX,Y q„Q‹

rY “ y|Xs “ ss “
k‹
sr

‹
y

k‹
s

“ r‹
y (H.20)

is a constant across all s P rSs. Thus, Q‹ satisfies all constraints of Problem 2 and

Optimal objective of Problem 2
ě E

pX,Y q„Q‹
rℓphθpXq, Y qs

“

S
ÿ

s“1

C
ÿ

y“1

k‹
sr

‹
y E

pX,Y q„Ps,y

rℓphθpXq, Y qs

“

S
ÿ

s“1

C
ÿ

y“1

k‹
sr

‹
yEs,y “ Optimal objective of Theorem 11.2.

(H.21)

Combining with the conclusion of the first part, we know optimal values of Theorem 11.2
and Problem 2 match, i.e., the certificate is tight.

(3) Inspecting the problem definition in Theorem 11.2, we find the objective and all con-
straints but the last one are linear. Therefore, to prove the convexity of the optimization
problem, we only need to show that the last constraint

1´ ρ2 ´
S
ÿ

s“1

C
ÿ

y“1

a

ps,yksry ď 0 (H.22)

is convex with respect to ks and ry. Given two arbitrary feasible pairs of ks and ry

satisfying Equation (H.22), namely pkas , rayq and pkbs, rbyq, we only need to show that
pkms , r

m
y q also satisfies Equation (H.22), where kms “ pkas ` kbsq{2, rmy “ pray ` rbyq{2.
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Indeed,

1´ ρ2 ´
S
ÿ

s“1

C
ÿ

y“1

b

ps,ykms r
m
y (H.23)

“1´ ρ2 ´
1

2

S
ÿ

s“1

C
ÿ

y“1

?
ps,y ¨

a

kas ` k
b
s ¨

b

ray ` r
b
y (H.24)

ď1´ ρ2 ´
1

2

S
ÿ

s“1

C
ÿ

y“1

?
ps,y ¨

ˆ

b

kasr
a
y `

b

kbsr
b
y

˙

(Cauchy’s inequality)

(H.25)

“
1

2

¨

˝1´ ρ2
S
ÿ

s“1

C
ÿ

y“1

b

ps,ykasr
a
y

˛

‚`
1

2

¨

˝1´ ρ2
S
ÿ

s“1

C
ÿ

y“1

b

ps,ykbsr
b
y

˛

‚ (H.26)

ď0.

QED.

H.1.4 Proof of Lemma 11.1

Proof of Lemma 11.1. The proof of Lemma 11.1 is composed of two parts: (1) the optimiza-
tion problem provides a fairness certificate for Problem 1; and (2) the certificate is tight.
The high-level proof sketch is similar to the proof of Theorem 11.2.

(1) Suppose that the maximum of Problem 1 is attained with the test distribution Q‹ under
the general shifting setting, then we decompose both P and Q‹ according to both the
sensitive attribute and the label:

P “
S
ÿ

s“1

C
ÿ

y“1

ps,yPs,y, Q‹ “

S
ÿ

s“1

C
ÿ

y“1

q‹
s,yQ‹

s,y. (H.27)

Unlike sensitive shifting setting, in general shifting setting, here the subpopulation of
Q‹ is Q‹

s,y instead of Ps,y due to the existence of distribution shifting within each sub-
population.

Following the same argument as in the first part proof of Theorem 11.2, since Q‹ is a
fair base rate distribution, we can define

k‹
s :“ Pr

pX,Y q„Q‹
rXs “ ss, r‹

y :“ Pr
pX,Y q„Q‹

rY “ ys, (H.28)
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and write

Q‹ :“
S
ÿ

s“1

C
ÿ

y“1

k‹
sr

‹
yQ‹

s,y (H.29)

since q‹
s,y “ k‹

sr
‹
y. We also define ρ‹

s,y “ HpPs,y,Q‹
s,yq. Now we show these k‹

s , r
‹
y,Q‹

s,y, ρ
‹
s,y

along with model parameter θ constitute a feasible point of Equation (11.11), and the
objectives of Equation (11.11) and Problem 2 are the same given Q‹.

• (Feasibility)
There are three constraints in Equation (11.11). By the definition of k‹

s and r‹
y,

naturally Equation (11.11b) is satisfied. Then, according to Equation (H.10) and the
definifition of ρ‹

s,y above, Equation (11.11c) and Equation (11.11d) are satisfied.

• (Objective Equality)

Equation (11.11a) “
S
ÿ

s“1

C
ÿ

y“1

k‹
sr

‹
y E

pX,Y q„Q‹
s,y

rℓphθpXq, Y qs

“

S
ÿ

s“1

C
ÿ

y“1

q‹
s,y E

pX,Y q„Q‹
s,y

rℓphθpXq, Y qs

“ E
pX,Y q„Q‹

rℓphθpXq, Y qs “ Optimal value of Problem 1.

(H.30)

As a result, the optimal value of Equation (11.11) is larger than or equal to the optimal
value of Problem 1, and hence the optimization problem encoded by Equation (11.11)
provides a fairness certificate.

(2) To prove the tightness of the certificate, we only need to show that the optimal value
of the optimization problem in Equation (11.11) is also attainable by the original Prob-
lem 1.

Suppose that the optimal objective of Equation (11.11) is achieved by optimizable pa-
rameters k‹

s , r
‹
y,Q‹, and ρ‹

s,y. Then, we construct Q: “
řS
s“1

řC
y“1 k

‹
sr

‹
yQ‹

s,y. We first
show that Q: is a feasible point of Problem 1, and then show that the objective given
Q: is equal to the optimal objective of Equation (11.11).

• (Feasibility)
There are two constraints in Problem 1: the bounded distance constraint and the fair
base rate constraint. The bounded distance constraint is satisfied due to applying
Equation (H.10) along with Equations (11.11c) and (11.11d). The fair base rate
constraint is satisfied following the same deduction as in Equation (H.20).
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• (Objective Equality)

Objective Problem 1 “ E
pX,Y q„Q:

rℓphθpXq, Y qs “
S
ÿ

s“1

C
ÿ

y“1

k‹
sr

‹
y E

pX,Y q„Q‹
s,y

rℓphθpXq, Y qs

“ Optimal value of Equation (11.11).
(H.31)

Thus, the optimal value of the optimization problem in Equation (11.11) is attainable
also by the original Problem 1 which concludes the tightness proof.

QED.

H.1.5 Proof of Theorem 11.3

High-level Illustration. The starting point of our proof is Lemma 11.1, where we have
shown a fairness certificate for Problem 1 (general shifting setting). Then, we plug in The-
orem 2.2 in [399] (stated as Theorem H.1 below) to upper bound the expected loss within
each sub-population. Now, we get an optimization problem involving ks, ry, and ρs,y that
upper bounds the optimization problem in Lemma 11.1. In this optimization problem, we
find ks and ry are bounded in r0, 1s, and once these two variables are fixed, the optimization
with respect to xs,y :“ p1 ´ ρ2s,yq

2 becomes convex. Using this observation, we propose to
partition the feasible space of ks and ry into sub-regions and solve the convex optimization
within each region bearing some degree relaxation, which yields Theorem 11.3.

Theorem 2.2 in [399]. As mentioned in Section 11.3.3, we leverage Theorem 2.2 from
[399] to upper bound the expected loss of hθp¨q in each shifted subpopulation Qs,y. Here we
restate Theorem 2.2 for completeness.

Theorem H.1 (Theorem 2.2, [399]). Let P 1 and Q1 denote two distributions supported on
X ˆ Y , suppose that 0 ď ℓphθpXq, Y q ďM , then

max
Q1,θ

E
pX,Y q„Q1

rℓphθpXq, Y qs s.t. HpP 1,Q1q ď ρ

ď E
pX,Y q„P 1

rℓphθpXq, Y qs ` 2Cρ

b

VpX,Y q„P 1rℓphθpXq, Y qs`

ρ2p2´ ρ2q

˜

M ´ E
pX,Y q„P 1

rℓphθpXq, Y qs ´
VpX,Y q„P 1rℓphθpXq, Y qs

M ´ EpX,Y q„P 1rℓphθpXq, Y qs

¸

,

(H.32)
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where Cρ “
a

ρ2p1´ ρ2q2p2´ ρ2q, for any given distance bound ρ ą 0 that satisfies

ρ2 ď 1´

˜

1`
pM ´ EpX,Y q„P 1rℓphθpXq, Y qsq

2

VpX,Y q„P 1rℓphθpXq, Y qs

¸´1{2

. (H.33)

This theorem provides a closed-form expression that upper bounds the mean loss of
hθp¨q on shifted distribution (namely EQ1rℓphθpXq, Y qs), given bounded Hellinger distance
HpP ,Qq and the mean E and variance V of loss on P under two mild conditions: (1) the
function is positive and bounded (denote the upper bound by M); and (2) the distance
HpP ,Qq is not too large (specifically, HpP ,Qq2 ď γ̄2 :“ 1 ´ p1 ` pM ´ Eq2{V q´

1
2 ). Since

Theorem H.1 holds for arbitrary models and loss functions ℓphθp¨q, ¨q as long as the function
value is bounded by r0,M s, using Theorem H.1 allows us to provide a generic and succinct
fairness certificate in Theorem 11.3 for general shifting case that holds for generic models
including DNNs without engaging complex model architectures. Indeed, we only need to
query the mean and variance under P for the given model to compute the certificate in
Theorem H.1, and this benefit is also inherited by our certification framework expressed by
Theorem 11.3. Note that there is no tightness guarantee for this bound yet, which is also
inherited by our Theorem 11.3.

Proof of Theorem 11.3. The proof is done stage-wise: starting from Lemma 11.1, we apply
relaxation and derive a subsequent optimization problem that upper bounds the previous
one stage by stage, until we get the final expression in Theorem 11.3.

To demonstrate the proof, we first define the optimization problems at each stage, then
prove the relaxations between each adjacent stage, and finally show that the last optimization
problem contains a finite number of C’s values where each C is a convex optimization, so
that the final optimization problem provides a computable fairness certificate.

We define these quantities, for s P rSs, y P rCs:

Es,y “ E
pX,Y q„Ps,y

rℓphθpXq, Y qs, Vs,y “ VpX,Y q„Ps,y rℓphθpXq, Y qs,

ps,y “ Pr
pX,Y q„P

rXs “ s, Y “ ys, Cs,y “M ´ Es,y ´
Vs,y

M ´ Es,y
,

γ̄2s,y “ 1´ p1` pM ´ Es,yq
2{Vs,yq

´ 1
2 .

(H.34)

Given ρ ą 0 and the above quantities, the optimization problem definitions are:
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• Lemma 11.1:

max
ks,ry ,Q,ρs,y

S
ÿ

s“1

C
ÿ

y“1

ksry E
pX,Y q„Qs,y

rℓphθpXq, Y qs (H.35a)

s.t.
S
ÿ

s“1

ks “ 1,
C
ÿ

y“1

ry “ 1, ks ě 0 @s P rSs, ry ě 0 @y P rCs, (H.35b)

S
ÿ

s“1

C
ÿ

y“1

a

ps,yksryp1´ ρ
2
s,yq ě 1´ ρ2 (H.35c)

HpPs,y,Qs,yq ď ρs,y @s P rSs, y P rCs. (H.35d)

• After applying Theorem H.1:

max
ks,ry ,ρs,y

S
ÿ

s“1

C
ÿ

y“1

ksry

ˆ

Es,y ` 2
b

ρ2s,yp1´ ρ
2
s,yq

2p2´ ρ2s,yq
a

Vs,y ` ρ
2
s,yp2´ ρ

2
s,yqCs,y

˙

(H.36a)

s.t.
S
ÿ

s“1

ks “ 1,
C
ÿ

y“1

ry “ 1, ks ě 0 @s P rSs, ry ě 0 @y P rCs, (H.36b)

S
ÿ

s“1

C
ÿ

y“1

a

ps,yksryp1´ ρ
2
s,yq ě 1´ ρ2, (H.36c)

0 ď ρs,y ď γ̄s,y. (H.36d)

• After variable transform xs,y :“ p1´ ρ
2
s,yq

2:

max
ks,ry ,xs,y

S
ÿ

s“1

C
ÿ

y“1

ksry

ˆ

Es,y ` 2
b

xs,yp1´ xs,yq
a

Vs,y ` p1´ xs,yqCs,y

˙

(H.37a)

s.t.
S
ÿ

s“1

ks “ 1,
C
ÿ

y“1

ry “ 1, ks ě 0 @s P rSs, ry ě 0 @y P rCs, (H.37b)

S
ÿ

s“1

C
ÿ

y“1

a

ps,yksryxs,y ě 1´ ρ2, (H.37c)

p1´ γ̄2s,yq
2 ď xs,y ď 1 @s P rSs, y P rCs. (H.37d)
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• After feasible region partitioning on ks and ry:

max
tisPrT s:sPrSsu,tjyPrT s:yPrCsu

C1

¨

˝

#

„

is ´ 1

T
,
is
T

ȷ

+S

s“1

,

#

„

jy ´ 1

T
,
jy
T

ȷ

+C

y“1

˛

‚, where

(H.38a)

C1
´

trks, kssu
S
s“1, trry, rysu

C
y“1

¯

“ (H.38b)

max
ksďksďks,ryďryďry ,xs,y

S
ÿ

s“1

C
ÿ

y“1

ksry

ˆ

Es,y ` 2
b

xs,yp1´ xs,yq
a

Vs,y ` p1´ xs,yqCs,y

˙

s.t.
S
ÿ

s“1

ks “ 1,
C
ÿ

y“1

ry “ 1, (H.38c)

S
ÿ

s“1

C
ÿ

y“1

a

ps,yksryxs,y ě 1´ ρ2, (H.38d)

p1´ γ̄2s,yq
2 ď xs,y ď 1 @s P rSs, y P rCs. (H.38e)

• Final quantity in Theorem 11.3:

max
tisPrT s:sPrSsu,tjyPrT s:yPrCsu

C

¨

˝

#

„

is ´ 1

T
,
is
T

ȷ

+S

s“1

,

#

„

jy ´ 1

T
,
jy
T

ȷ

+C

y“1

˛

‚, where

(H.39a)

C
´

trks, kssu
S
s“1, trry, rysu

C
y“1

¯

“ max
xs,y

S
ÿ

s“1

C
ÿ

y“1

´

ksry
“

Es,y ` Cs,y
‰

`
` (H.39b)

ksry
“

Es,y ` Cs,y
‰

´
` 2ksry

b

xs,yp1´ xs,yq
a

Vs,y ´ ksryxs,yrCs,ys` ´ ksryxs,yrCs,ys´

˙

s.t.
S
ÿ

s“1

ks ď 1,
S
ÿ

s“1

ks ě 1,
C
ÿ

y“1

ry ď 1,
C
ÿ

y“1

ry ě 1, (H.39c)

S
ÿ

s“1

C
ÿ

y“1

b

ps,yksryxs,y ě 1´ ρ2, (H.39d)

p1´ γ̄2s,yq
2 ď xs,y ď 1 @s P rSs, y P rCs. (H.39e)
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We have this relation:

Problem 1 ď
loomoon

Lemma 11.1

(H.35)
(when ℓphθpXq, Y q P r0,Ms

and HpPs,y ,Qs,yq ď γ̄s,y)
ď

looooooooooomooooooooooon

(A)

(H.36) “
loomoon

(B)

(H.37) “
loomoon

(C)

(H.38) ď
loomoon

(D)

(H.39).

(H.40)
Thus, when HpPs,y,Qs,yq ď γ̄s,y and suppX,Y qPXˆY ℓphθpXq, Y q ď M , given that ℓ is a
non-negative loss by Section 11.2, we can see Equation (H.39), i.e., the expression in Theo-
rem 11.3’s statement, upper bounds Problem 1, i.e., provides a fairness certificate for Prob-
lem 1. The proofs of these equalities/inequalities are in the following parts labeled by (A),
(B), (C), and (D) respectively.

Now we show that each C queried by Equation (11.13) (or equally Equation (H.39a)) is
a convex optimization. Inspecting C’s objective, with respect to the optimizable variable xs,y,
we find that the only non-linear term in the objective is

řS
s“1

řC
y“1 2ksry

a

Vs,y
a

xs,yp1´ xs,yq.
Consider the function fpxq “

a

xp1´ xq. Define gpyq “ ?y and hpxq “ xp1´ xq, and then
fpxq “ gphpxqq. Thus, f 1pxq “ g1phpxqqh1pxq and f 2pxq “ g2phpxqqh1pxq2 ` g1phpxqqh2pxq.
Notice that g2phpxqq ď 0, g1phpxqq ą 0, and h2pxq ă 0 for x P p0, 1s. Thus, f 2pxq ď 0. Since
f is twice differentiable in p0, 1s, we can conclude that f is concave and so does the objec-
tive of Equation (11.13). Inspecting C’s constraints, we observe that the only non-linear
constraint is

řS
s“1

řC
y“1

b

ps,yksryxs,y ě 1 ´ ρ2. Due to the concavity of function x ÞÑ
?
x,

we have
b

ps,yksrypxas,y ` x
b
s,yq{2 ě

1
2

ˆ

b

ps,yksryxas,y `
b

ps,yksryxbs,y

˙

for any two feasible

points xas,y and xbs,y. Thus, this non-linear constraint defines a convex region. To this point,
we have shown that C’s objective is concave and C’s constraints are convex, given that C is
a maximization problem, C is a convex optimization. QED.

Under the assumptions that ℓphθpXq, Y q P r0,M s and HpPs,y,Qs,yq ď γ̄s,y:

(A) Proof of Equation (H.35) ď Equation (H.36).
Given Equation (H.35d), for each Qs,y, applying Theorem H.1, we get

E
pX,Y q„Qs,y

rℓphθpXq, Y qs ď Es,y ` 2
b

ρ2s,yp1´ ρ
2
s,yq

2p2´ ρ2s,yq
a

Vs,y ` ρ
2
s,yp2´ ρ

2
s,yqCs,y.

(H.41)
Plugging this inequality into all EpX,Y q„Qs,y rℓphθpXq, Y qs in Equation (H.35a), we
obtain Equation (H.36). QED.

(B) Proof of Equation (H.36) “ Equation (H.37).
By Equation (H.36d), ρs,y P r0, 1s. Therefore, xs,y :“ p1´ρ2s,yq2 is a one-to-one mapping,
and we can use xs,y to parameterize ρs,y, which yields Equation (H.37). QED.
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(C) Proof of Equation (H.37) “ Equation (H.38).
From Equation (H.37b), we notice that the feasible range of ks and ry is subsumed
by r0, 1s. We now partition this region r0, 1s for each variable to T sub-regions: rpi ´
1q{T, i{T s, i P rT s, and then consider the maximum value across all the combinations of
each sub-region for variables ks and ry, when feasible. As a result, Equation (H.37) can
be written as the maximum over all such sub-problems where ks’s and ry’s enumerate
all possible sub-region combinations, which is exactly encoded by Equation (H.38).
QED.

(D) Proof of Equation (H.38) ď Equation (H.39).
We only need to show that when C1

´

trks, kssu
S
s“1, trry, rysu

C
y“1

¯

is feasible,

C1
´

trks, kssu
S
s“1, trry, rysu

C
y“1

¯

ď C
´

trks, kssu
S
s“1, trry, rysu

C
y“1

¯

. (H.42)

Since both C1 and C are maximization problem, we only need to show that the objective
of C upper bounds that of C1, and the constraints of C1 are equal or relaxations of those
of C.

For the objective, given that ks ď ks ď ks and ry ď ry ď ry, for any xs,y, We observe
that

ksrypEs,y ` Cs,yq ď ksry
“

Es,y ` Cs,y
‰

`
` ksry

“

Es,y ` Cs,y
‰

´
,

ksry ¨

ˆ

2
b

xs,yp1´ xs,yq
a

Vs,y

˙

ď ksry ¨

ˆ

2
b

xs,yp1´ xs,yq
a

Vs,y

˙

,

´ksryCs,yxs,y ď ´ksryxs,yrCs,ys` ´ ksryxs,yrCs,ys´,

(H.43)

and by summing up all these terms for all s P rSs and y P rCs, the LHS would be the
objective of C1 and the RHS would be the objective of C. Hence, C’s objective upper
bounds that of C1.

For the constraints, similarly, given that ks ď ks ď ks and ry ď ry ď ry, we have

(H.38c)
S
ÿ

s“1

ks “ 1,
C
ÿ

y“1

ry “ 1 ùñ

S
ÿ

s“1

ks ď 1,
S
ÿ

s“1

ks ě 1,
C
ÿ

y“1

ry ď 1,
C
ÿ

y“1

ry ě 1(H.39c),

(H.38d)
S
ÿ

s“1

C
ÿ

y“1

a

ps,yksryxs,y ě 1 ´ ρ2 ùñ

S
ÿ

s“1

C
ÿ

y“1

b

ps,yksryxs,y ě 1 ´ ρ2(H.39d),

(H.38e) is as same as (H.39e),

which implies that all feasible solutions of C1 are also feasible for C. Combining with
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the fact that for any solution of C1, its objective value C is greater than or equal to
that of C1 as shown above, we have Equation (H.42) which concludes the proof. QED.

H.2 THEOREM STATEMENTS AND PROOFS FOR FINITE SAMPLING ERROR

H.2.1 Finite Sampling Confidence Intervals

Lemma H.1. Let P̂ be set of i.i.d. finite samples from P , and let P̂s,y :“ tpXi, Yiq P P̂ :

pXiqs “ s, Yi “ yu for any s P rSs, y P rCs. Let ℓ : pŷ, yq Ñ r0,M s be a loss function. We de-
fine L̂n “ 1

|P̂s,y |

ř

pXi,YiqPP̂s,y
ℓphθpXiq, Yiq, s2n “ 1

npn´1q

řn
1ďiăjďn

`

ℓphθpXiq, Y q ´ ℓphθpXjq, Y q
˘2,

and P̂s,y :“ tpXi, Yiq P P̂ : pXiqs “ s, Yi “ yu. Then for δ ą 0, with respect to the random
draw of P̂ from P , we have

Pr

¨

˝L̂n ´M

d

lnp2{δq

2|P̂s,y|
ď E

pX,Y q„Ps,y

rℓ
`

hθpXq, Y
˘

s ď L̂n `M

d

lnp2{δq

2|P̂s,y|

˛

‚ě 1´ δ, (H.44)

Pr

¨

˝

a

s2n ´M

d

2 lnp2{δq

|P̂s,y| ´ 1
ď

c

V
pX,Y q„Ps,y

rℓ
`

hθpXq, Y
˘

s ď
a

s2n `M

d

2 lnp2{δq

|P̂s,y| ´ 1

˛

‚ě 1´ δ,

(H.45)

Pr

¨

˝

|P̂s,y|

|P̂ |
´

d

lnp2{δq

2|P̂ |
ď Pr

pX,Y q„P
rXs “ s, Y “ ys ď

|P̂s,y|

|P̂ |
`

d

lnp2{δq

2|P̂ |

˛

‚ě 1´ δ. (H.46)

Proof of Lemma H.1. We can get Equation (H.45) according to Theorem 10 in [257]. Here,
we will provide proofs for Equation (H.44) and Equation (H.46), respectively. The general
idea is to use Hoeffding’s inequality to get the high-confidence interval.

We will prove Equation (H.44) first. From Hoeffding’s inequality, for all t ą 0, we have:

Pr

˜

ˇ

ˇ

ˇ

ˇ

L̂n ´ E
pX,Y q„Ps,y

rℓ
`

hθpXq, Y
˘

s

ˇ

ˇ

ˇ

ˇ

ě t

¸

ď 2 exp

˜

´
2|P̂s,y|

2t2

|P̂s,y|M2

¸

(H.47)

Since we want to get an interval with confidence 1´ δ, we let 2 exp
˜

´
2|P̂s,y|

2t2

|P̂s,y|M2

¸

“ δ, from

which we can derive that

t “M

d

lnp2{δq

2|P̂s,y|
(H.48)
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Plugging Equation (H.48) into Equation (H.47), we can get:

Pr

¨

˝L̂n ´M

d

lnp2{δq

2|P̂s,y|
ď E

pX,Y q„Ps,y

rℓ
`

hθpXq, Y
˘

s ď L̂n `M

d

lnp2{δq

2|P̂s,y|

˛

‚ě 1´ δ (H.49)

Then we will prove Equation (H.46). From Hoeffding’s inequality, for all t ą 0, we have:

Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

|P̂s,y|

|P̂ |
´ Pr

pX,Y q„P
rXs “ s, Y “ ys

ˇ

ˇ

ˇ

ˇ

ˇ

ě t

˛

‚ď 2 exp

˜

´
2|P̂ |2t2

|P̂ |

¸

(H.50)

Since we want to get an interval with confidence 1 ´ δ, we let 2 exp
˜

´
2|P̂ |2t2

|P̂ |

¸

“ δ, from

which we can derive that

t “

d

lnp2{δq

2|P̂ |
(H.51)

Plugging Equation (H.51) into Equation (H.50), we can get:

Pr

¨

˝

|P̂s,y|

|P̂ |
´

d

lnp2{δq

2|P̂ |
ď Pr

pX,Y q„P
rXs “ s, Y “ ys ď

|P̂s,y|

|P̂ |
`

d

lnp2{δq

2|P̂ |

˛

‚ě 1´ δ (H.52)

QED.

H.2.2 Fairness Certification Statements with Finite Sampling

Theorem H.2 (Theorem 11.2 with finite sampling). Given a distance bound ρ ą 0 and any
δ ą 0, the following constrained optimization, which is convex, when feasible, provides a
fairness certificate for Problem 2 with probability at least 1´ 2SCδ:

max
ks,ry ,ps,y

S
ÿ

s“1

C
ÿ

y“1

ksryEs,y (H.53a)

s.t.
S
ÿ

s“1

ks “ 1,
C
ÿ

y“1

ry “ 1, ks ě 0 @s P rSs, ry ě 0 @y P rCs, (H.53b)

1´ ρ2 ´
S
ÿ

s“1

C
ÿ

y“1

a

ps,yksry ď 0, (H.53c)

ps,y ď ps,y ď ps,y, @s P rSs, @y P rCs (H.53d)
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S
ÿ

s“1

C
ÿ

y“1

ps,y “ 1 (H.53e)

where Es,y :“ L̂n ` M

c

lnp2{δq{
´

2|P̂s,y|
¯

, ps,y :“ |P̂s,y|{|P̂ | ´

c

lnp2{δq{
´

2|P̂ |
¯

, ps,y :“

|P̂s,y|{|P̂ | `

c

lnp2{δq{
´

2|P̂ |
¯

are constants computed with Lemma H.1.

Theorem H.3. If for any s P rSs and y P rY s, HpPs,y,Qs,yq ď γ̄s,y and
0 ď suppX,Y qPXˆY ℓphθpXq, Y q ď M , given a distance bound ρ ą 0 and any δ ą 0, for
any region granularity T P N`, the following expression provides a fairness certificate for
Problem 1 with probability at least 1´ 3SCδ:

ℓ̄ “ max
tisPrT s:sPrSsu,tjyPrT s:yPrCsu

C

¨

˝

#

„

is ´ 1

T
,
is
T

ȷ

+S

s“1

,

#

„

jy ´ 1

T
,
jy
T

ȷ

+C

y“1

˛

‚, where (H.54)

C
´

trks, kssu
S
s“1, trry, rysu

C
y“1

¯

“ max
xs,y ,ps,y

S
ÿ

s“1

C
ÿ

y“1

ˆ

ksry

”

Es,y ` Cs,y

ı

`
` ksry

”

Es,y ` Cs,y

ı

´

`2ksry

b

xs,yp1´ xs,yq

b

Vs,y ´ ksryxs,yrCs,ys` ´ ksryxs,yrCs,ys´

˙

(H.55a)

s.t.
S
ÿ

s“1

ks ď 1,
S
ÿ

s“1

ks ě 1,
C
ÿ

y“1

ry ď 1,
C
ÿ

y“1

ry ě 1, (H.55b)

S
ÿ

s“1

C
ÿ

y“1

b

ps,yksryxs,y ě 1´ ρ2,
´

1´ γ̄2s,y

¯2

ď xs,y ď 1, (H.55c)

ps,y ď ps,y ď ps,y,
S
ÿ

s“1

C
ÿ

y“1

ps,y “ 1 (H.55d)

where Es,y :“ L̂n ´ M

c

lnp2{δq{
´

2|P̂s,y|
¯

, Es,y :“ L̂n ` M

c

lnp2{δq{
´

2|P̂s,y|
¯

, Vs,y “
˜

a

s2n ´M

c

2 lnp2{δq{
´

|P̂s,y| ´ 1
¯

¸2

, Vs,y “
˜

a

s2n `M

c

2 lnp2{δq{
´

|P̂s,y| ´ 1
¯

¸2

, ps,y :“

|P̂s,y|{|P̂ |´

c

lnp2{δq{
´

2|P̂ |
¯

, ps,y :“ |P̂s,y|{|P̂ |`
c

lnp2{δq{
´

2|P̂ |
¯

computed with Lemma H.1,

and Cs,y “ M ´ Es,y ´ Vs,y{pM ´ Es,yq, Cs,y “ M ´ Es,y ´ Vs,y{pM ´ Es,yq, γ̄2s,y “
1 ´ p1 ` pM ´ Es,yq

2{Vs,yq
´ 1

2 . Equation (H.54) only takes C’s value when it is feasible,
and each C queried by Equation (H.54) is a convex optimization.
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H.2.3 Proofs of Fairness Certification with Finite Sampling

High-level Illustration. We use Hoeffding’s inequality to bound the finite sampling error
of statistics and add the high confidence box constraints to the optimization problems, which
can still be proved to be convex.

Proof of Theorem H.2. The proof of Theorem H.2 is composed of two parts: (1) the opti-
mization problem provides a fairness certificate for Problem 2; (2) the optimization problem
is convex.

(1) We prove that Theorem H.2 provides a fairness certificate for Problem 2 in this part.
Since Theorem 11.2 provides a fairness certificate for Problem 2, we only need to prove:
(a) the feasible region of the optimization problem in Theorem 11.2 is a subset of the
feasible region of the optimization problem in Theorem H.2, and (b) the optimization
objective in Theorem 11.2 can be upper bounded by that in Theorem H.2.

To prove (a), we first equivalently transform the optimization problem in Theorem 11.2
into the following optimization problem by adding psy to the decision variables:

max
ks,ry ,ps,y

S
ÿ

s“1

C
ÿ

y“1

ksryEs,y (H.56a)

s.t.
S
ÿ

s“1

ks “ 1,
C
ÿ

y“1

ry “ 1, ks ě 0 @s P rSs, ry ě 0 @y P rCs, (H.56b)

1´ ρ2 ´
S
ÿ

s“1

C
ÿ

y“1

a

ps,yksry ď 0, (H.56c)

ps,y “ |P̂s,y|{|P̂ |, @s P rSs, @y P rCs (H.56d)
S
ÿ

s“1

C
ÿ

y“1

ps,y “ 1 (H.56e)

For decision variables ks,y and rs,y, optimization H.53 and H.56 has the same constraints
(Equation (H.53b) and Equation (H.56b)). For decision variables ps,y, the feasible region
of ps,y in optimization H.53 (decided by Equations (H.53d) and (H.53e)) is a subset of the
feasible region of ps,y in optimization H.56 (decided by Equations (H.56d) and (H.56e)),
since ps,y ď |P̂s,y|{|P̂ | ď ps,y. Therefore, the feasible region with respect to ks,y, rs,y, and
ps,y of the optimization problem in Theorem 11.2 is a subset of that in Theorem H.2.

To prove (b), we only need to show that the objective in Equation (H.53a) can be upper
bounded by the objective in Equation (H.56a). The statement

řS
s“1

řC
y“1 ksryEs,y ď
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řS
s“1

řC
y“1 ksryEs,y consistently holds because Es,y ď Es,y and ks, ry ě 0.

Combining the proofs of (a) and (b), we prove that Theorem H.2 provides a fairness
certificate for Problem 2.

(2) Inspecting that the objective and all the constraints in optimization problem in Equa-
tion (H.53) are linear with respect to ks, ry, ps,y but the one in Equation (H.53c).
Therefore, we only need to prove that the following constraint is convex with respect to
ks, ry, ps,y:

1´ ρ2 ´
S
ÿ

s“1

C
ÿ

y“1

a

ps,yksry ď 0 (H.57)

We define a function f with respect to vector p :“ rps,yssPrSs,yPrCs: fppq “ 1 ´ ρ2 ´
řS
s“1

řC
y“1

a

ps,yksry. Then we can derive that:

B2f

Bp2
“

S
ÿ

s“1

C
ÿ

y“1

a

ksry

4
ps,y

´ 3
2 ě 0 (H.58)

Therefore, the function f is convex with respect to ps,y. Similarly, we can prove the
convexity with respect to ks and ry. Finally, we can conclude that the constraint in
Equation (H.57) is convex with respect to ks, ry, ps,y and the optimization problem
defined in Theorem H.2 is convex.

Since we use the union bound to bound Es,y and ps,y for all s P rSs, y P rCs simultaneously,
the confidence is 1´ 2SCδ. QED.

Proof of Theorem H.3. The proof of Theorem H.3 includes two parts: (1) the optimization
problem provides a fairness certificate for Problem 1; (2) each C queried by Equation (H.54)
is a convex optimization.

(1) Since Theorem 11.3 provides a fairness certificate for Problem 1, we only need to prove:
(a) the feasible region of the optimization problem in Theorem 11.3 is a subset of that in
Theorem H.3, and (b) the optimization objective in Theorem 11.3 can be upper bounded
by that in Theorem H.3.

To prove (a), we first equivalently transform the optimization problem in Theorem 11.3
into the following optimization problem by adding psy to the decision variables:

C
´

trks, kssu
S
s“1, trry, rysu

C
y“1

¯

“ max
xs,y ,ps,y

S
ÿ

s“1

C
ÿ

y“1

´

ksry
“

Es,y ` Cs,y
‰

`
` ksry

“

Es,y ` Cs,y
‰

´
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`2ksry

b

xs,yp1´ xs,yq
a

Vs,y ´ ksryxs,yrCs,ys` ´ ksryxs,yrCs,ys´

˙

(H.59a)

s.t.
S
ÿ

s“1

ks ď 1,
S
ÿ

s“1

ks ě 1,
C
ÿ

y“1

ry ď 1,
C
ÿ

y“1

ry ě 1, (H.59b)

S
ÿ

s“1

C
ÿ

y“1

b

ps,yksryxs,y ě 1´ ρ2,
´

1´ γ̄2s,y

¯2

ď xs,y ď 1, (H.59c)

ps,y “ |P̂s,y|{|P̂ |, @s P rSs, @y P rCs (H.59d)
S
ÿ

s“1

C
ÿ

y“1

ps,y “ 1 (H.59e)

For decision varibales xs,y, since
b

ps,yksryxs,y ď
b

ps,yksryxs,y and
´

1´ γ̄2s,y

¯2

ě

´

1´ γ̄2s,y

¯2

, the feasible region of xs,y in Equation (H.59) is a subset of
that in Equation (H.55). For decision variables ps,y, since ps,y ď |P̂s,y|{|P̂ | ď ps,y, the
feasible region of ps,y in Equation (H.59) is also a subset of that in Equation (H.55).
Therefore, the feasible region of the optimization problem in Theorem 11.3 is a subset
of that in Theorem H.3.

To prove (b), we only need to show that the objective in Equation (H.59a) can be upper
bounded by the objective in Equation (H.55a). Since ks, ks, ry, ry ě 0 and 0 ď xs,y ď 1

hold, we can observe that @s P rSs, @y P rCs,

ksry
“

Es,y ` Cs,y

‰

`
` ksry

“

Es,y ` Cs,y

‰

´
` 2ksry

b

xs,yp1 ´ xs,yq
a

Vs,y ´ ksryxs,yrCs,ys`´

ksryxs,yrCs,ys´ ď ksry

”

Es,y ` Cs,y

ı

`
` ksry

”

Es,y ` Cs,y

ı

´
` 2ksry

b

xs,yp1 ´ xs,yq

b

Vs,y

´ ksryxs,yrCs,ys` ´ ksryxs,yrCs,ys´

(H.60)

Therefore, we prove that the optimization in Theorem H.3 provides a fairness certificate
for Problem 1.

(2) We will prove that each C queried by Equation (H.54) is a convex optimization with
respect to decision variables xs,y and ps,y in this part. In the proof of Theorem 11.3,
we provide the proof of convexity with respect to xs,y, so we only need to prove that
the optimization problem is convex with respect to ps,y. We can observe that the
constraints of ps,y in Equation (H.55d) is linear, and thus we only need to prove that
řS
s“1

řC
y“1

b

ps,yksryxs,y ě 1 ´ ρ2 (the constraint in Equation (H.55c)) is convex with
respect to ps,y. Here, we define a function f with respect to vector p :“ rps,yssPrSs,yPrCs:
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fppq “ 1´ ρ2 ´
řS
s“1

řC
y“1

b

ps,yksry. Then we can derive that:

˜

B2f

Bp2

¸

sy,s1y1

“

S
ÿ

s“1

C
ÿ

y“1

b

ksry

4
ps,y

´ 3
2 ¨ Irs “ s1, y “ y1s ě 0 (H.61)

Thus, the function f is convex and fppq ď 0 defines a convex set with respect to ps,y.
Then, we prove that the constraint

řS
s“1

řC
y“1

b

ps,yksryxs,y ě 1 ´ ρ2 is convex with
respect to ps,y.

Since we use the union bound to bound Es,y, Vs,y and ps,y for all s P rSs, y P rCs simultane-
ously, the confidence is 1´ 3SCδ. QED.

H.3 EXPERIMENT DETAILS

H.3.1 Datasets

We validate our certified fairness on six real-world datasets: Adult [14], Compas [11],
Health [161], Lawschool [403], Crime [14], and German [14]. All the used datasets contain
categorical data.

In Adult dataset, we have 14 attributes of a person as input and try to predict whether
the income of the person is over 50k $/year. The sensitive attribute in Adult is selected as
the sex.

In Compas dataset, given the attributes of a criminal defendent, the task is to predict
whether he/she will re-offend in two years. The sensitive attribute in Compas is selected as
the race.

In Health dataset, given the physician records and and insurance claims of the patients,
we try to predict ten-year mortality by binarizing the Charlson Index, taking the median
value as a cutoff. The sensitive attribute in Health is selected as the age.

In Lawschool dataset, we try to predict whether a student passes the exam according to
the appication records of different law schools. The sensitive attribute in Lawschool is the
race.

In Crime dataset, we try to predict whether a specific community is above or below the
median number of violent crimes per population. The sensitive attribute in Crime is selected
as the race.

In German dataset, each person is classified as good or bad credit risks according to the
set of attributes. The sensitive attribute in German is selected as the sex.
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Following [313], we consider the scenario where sensitive attributes and labels take binary
values, and we also follow their standard data processing steps: (1) normalize the numerical
values of all attributes with the mean value 0 and variance 1, (2) use one-hot encodings to
represent categorical attributes, (3) drop instances and attributes with missing values, and
(4) split the datasets into training set, validation set, and test set.

Training Details. We directly train a ReLU network composed of two hidden layers on
the training set of six datasets respectively following the setting in [313]. Concretely, we train
the models for 100 epochs with a batch size of 256. We adopt the binary cross-entropy loss
and use the Adam optimizer with weight decay 0.01 and dynamic learning rate scheduling
(ReduceLROnPlateau in [289]) based on the loss on the validation set starting at 0.01 with
the patience of 5 epochs.

H.3.2 Fair Base Rate Distribution Generation Protocol

To evaluate how well our certificates capture the fairness risk in practice, we compare our
certification bound with the empirical loss evaluated on randomly generated 30, 000 fairness
constrained distributions Q shifted from P . Now, we introduce the protocols to generate
fairness distributions Q for sensitive shifting and general shifting, respectively. Note that
the protocols are only valid when the sensitive attributes and labels take binary values.

Fair base rate distributions generation steps in the sensitive shifting scenario:

(1) Sample the proportions of subpopulations of the generated distribution q0,0, q0,1, q1,0, q1,1:
uniformly sample two real values in the interval r0, 1s, and do the assignment: q0,0 :“ kr,
q0,1 :“ kp1´ rq, q1,0 :“ p1´ kqr, q1,1 :“ p1´ kqp1´ rq.

(2) Determine the sample size of every subpopulation: first determine the subpopulation
which requires the largest sample size, use all the samples in that subpopulation, and
then calculate the sample size in other subpopulations according to the proportions.

(3) Uniformly sample in each subpopulation based on the sample size.

(4) Calculate the Hellinger distance HpP ,Qq “
b

1´
ř1
s“0

ř1
y“0

?
ps,y
?
qs,y. Suppose that

the support of P and Q is X ˆY and the densities of P and Q with respect to a suitable
measure are fP and fQ, respectively. Since we consider sensitive shifting here, we have
fQs,y “ λs,yfPs,y , s, y P t0, 1u where λs,y is a scalor. The derivation of the distance
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calculation formula is shown as follows,

H2pP ,Qq “ 1´

ĳ

XˆY

a

fPpx, yq
a

fQpx, yqdxdy (H.62a)

“ 1´
1
ÿ

s“0

1
ÿ

y“0

ĳ

fPs,y px,yqą0

b

fPs,ypx, yq
b

λs,yfPs,ydxdy (H.62b)

“ 1´
1
ÿ

s“0

1
ÿ

y“0

a

λs,y

ĳ

fPs,y px,yqą0

fPs,ypx, yqdxdy (H.62c)

“ 1´
1
ÿ

s“0

1
ÿ

y“0

a

λs,yps,y (H.62d)

“ 1´
1
ÿ

s“0

1
ÿ

y“0

?
ps,y
?
qs,y. (H.62e)

Fair base rate distribution generation steps in the general shifting scenario:

(1) Construct a data distribution Q1 that is disjoint with the training data distribution P
by changing the distribution of non-sensitive values given the sensitive attributes and
labels.

(2) Sample mixing parameters αs,y and α1
s,y in the interval r0, 1s satisfying p00α00`q00α1

00

p01α01`q01α1
01
“

p10α10`q10α1
10

p11α11`q11α1
11

(base rate parity) and p00α00 ` q00α
1
00 ` p01α01 ` q01α

1
01 ` p10α10 ` q10α

1
10 `

p11α11 ` q11α
1
11 “ 1.

(3) Determine the proportion of every subpopulation in distribution Q: qs,y :“ αs,yps,y `

α1
s,yq

1
s,y, s, y P t0, 1u.

(4) Determine the sample size of every subpopulation in P and Q1: first determine the
subpopulation which requires the largest sample size, use all the samples in that sub-
population, and then calculate the sample size in other subpopulations according to the
proportions.

(5) Calculate the Hellinger distance between distribution P and Q:

HpP ,Qq “

g

f

f

e1´
1
ÿ

s“0

1
ÿ

y“0

?
αs,yps,y. (H.63)
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Suppose that the support of P and Q is X ˆ Y and the densities of P and Q with
respect to a suitable measure are fP and fQ, respectively. The derivation of the distance
calculation formula is shown as follows,

H2pP ,Qq “ 1´

ĳ

XˆY

a

fPpx, yq
a

fQpx, yqdxdy (H.64a)

“ 1´

ĳ

XˆY

g

f

f

e

1
ÿ

s“0

1
ÿ

y“0

fPs,ypx, yq

g

f

f

e

1
ÿ

s“0

1
ÿ

y“0

´

αs,yfPs,ypx, yq ` α
1
s,yfQ1

s,y
px, yq

¯

dxdy

(H.64b)

“ 1´
1
ÿ

s“0

1
ÿ

y“0

?
αs,y

ĳ

fPs,y px,yqą0

fPs,ypx, yq

d

1`
α1
s,yfQs,ypx, yq

αs,yfPs,ypx, yq
dxdy (H.64c)

“ 1´
1
ÿ

s“0

1
ÿ

y“0

?
αs,y

ĳ

fPs,y px,yqą0

fPs,ypx, yqdxdy (H.64d)

“ 1´
1
ÿ

s“0

1
ÿ

y“0

?
αs,yps,y. (H.64e)

H.3.3 Implementation Details of Our Fairness Certification

We conduct vanilla training and then calculate our certified fairness according to our
certification framework. Concretely, in the training step, we train a ReLU network composed
of 2 hidden layers of size 20 for 100 epochs with binary cross entropy loss (BCE loss) using an
Adam optimizer. The initial learning rate is 0.05 for Crime and German datasets, while for
other datasets, the initial learning rate is set 0.001. We reduce the learning rate with a factor
of 0.5 on the plateau measured by the loss on the validation set with patience of 5 epochs. In
the fairness certification step, we set the region granularity to be 0.005 for certification in the
general shifting scenario. We use 90% confidence interval when considering finite sampling
error. The codes we used follow the MIT license. All experiments are conducted on a 1080
Ti GPU with 11,178 MB memory.
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H.3.4 Implementation Details of WRM

The optimization problem of tackling distributional robustness is formulated as:

max
Q

E
pX,Y q„Q

rℓphθpXq, Y qs s.t. distpP ,Qq ď ρ (H.65)

where distp¨, ¨q is a predetermined distribution distance metric. Note that the optimization is
the same as our certified fairness optimization in Problem 1 except for the fairness constraint.

WRM [347] proposes to use the dual reformulation of the Wasserstein worst-case risk
to provide the distributional robustness certificate, which is formulated in the following
proposition.

Proposition H.1 ([347], Proposition 1). Let ℓ : Θ ˆ Z Ñ R and c : Θ ˆ Z Ñ R` be
continuous and let ϕγpθ; z0q :“ supzPZtℓpz;θq ´ γcpz;θqu. Then, for any distribution P and
any ρ ą 0,

sup
Q:WcpP,Qqďρ

E
Q
rℓpθ;Zqs “ inf

γě0
tγρ` E

P
rϕγpθ;Zqsu (H.66)

where WcpP ,Qq :“ infπPΠpP,Qq

ş

Z cpz, z
1qdπpz, z1q is the 1-Wasserstein distance between P

and Q.

One requirement for the certificate to be tractable is that the surrogate function ϕγ is
concave with respect to Z, which holds when γ is larger than the Lipschitz constant L of
the gradient of ℓ with respect to Z. Since we use the ELU network with JSD loss, we can
efficiently calculate γ iteratively as shown in Appendix D of [399].

We select Gaussian mixture data for fair comparison. The Gaussian mixture data can be
formulated as P px|θq “

řK
k“1 αkϕpx|θkq where K is the number of Gaussian data, αk is the

proportion of the k-th Gaussian, and θk “ pµk, σ
2
kq. In our evaluation, we use 2-dimension

Gaussian and mixture data composed of 2 Gaussian (K “ 2) labeled 0 and 1, respectively.
Concretely, we let µ1 “ p´2,´0.5q, σ1 “ 1.0, α1 “ 0.5 and µ2 “ p2, 0.5q, σ2 “ 1.0, α2 “ 0.5.
The second dimension of input vector is selected as the sensitive attribute Xs, and the base
rate constraint becomes: PrpY “ 0|Xs ă 0q “ PrpY “ 1|Xs ą 0q. Given the perturbation
δ P R2 that induces X ÞÑ X ` δ, the Wasserstein distance and Hellinger distance can be
formulated as follows:

W2pP ,Qq “ }δ}2, HpP ,Qq “
a

1´ e´}δ}22{8. (H.67)
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H.3.5 More Results of Certified Fairness with Sensitive Shifting and General shifting
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Figure H.1: Certified fairness with sensitive shifting on Crime and German.
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Figure H.2: Certified fairness with general shifting on Crime and German.
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Figure H.3: Certified fairness with general shifting using JSD loss on Adult, Compas, Health,
and Lawschool.
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H.3.6 More Results of Certified Fairness with Additional Non-Skewness Constraints

Figure H.4: Certified fairness upper bounds with additional non-skewness constraints of
labels on Adult. (|PrpX,Y q„P rY “ 0s ´ PrpX,Y q„P rY “ 1s| ď ∆L)

Figure H.5: Certified fairness upper bounds with additional non-skewness constraints of
sensitive attributes on Compas. (|PrpX,Y q„P rXs “ 0s ´ PrpX,Y q„P rXs “ 1s| ď ∆s)
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Figure H.6: Certified fairness upper bounds with additional non-skewness constraints of
labels on Compas. (|PrpX,Y q„P rY “ 0s ´ PrpX,Y q„P rY “ 1s| ď ∆L)

Figure H.7: Certified fairness upper bounds with additional non-skewness constraints of
sensitive attributes on Health. (|PrpX,Y q„P rXs “ 0s ´ PrpX,Y q„P rXs “ 1s| ď ∆s)

Figure H.8: Certified fairness upper bounds with additional non-skewness constraints of
labels on Health. (|PrpX,Y q„P rY “ 0s ´ PrpX,Y q„P rY “ 1s| ď ∆L)
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Figure H.9: Certified fairness upper bounds with additional non-skewness constraints of
sensitive attributes on Lawschool. (|PrpX,Y q„P rXs “ 0s ´ PrpX,Y q„P rXs “ 1s| ď ∆s)

Figure H.10: Certified fairness upper bounds with additional non-skewness constraints of
labels on Lawschool. (|PrpX,Y q„P rY “ 0s ´ PrpX,Y q„P rY “ 1s| ď ∆L)
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H.3.7 Fair Classifier Achieves High Certified Fairness

We compare the fairness certificate of the vanilla model and the perfectly fair model on
Adult dataset to demonstrate that our defined certified fairness in Problem 1 and Problem 2
can indicate the fairness in realistic scenarios. In Adult dataset, we have 14 attributes of a
person as input and try to predict whether the income of the person is over 50k $/year. The
sensitive attribute in Adult is selected as the sex. We consider four subpopulations in the
scenario: 1) male with salary below 50k, 2) male with salary above 50k, 3) female with salary
below 50k, and 4) female with salary above 50k. We take the overall 0-1 error as the loss.
The vanilla model is real, and trained with standard training loss on the Adault dataset.
The perfectly fair model is hypothetical and simulated by enforcing the loss within each
subpopulation to be the same as the vanilla trained classifier’s overall expected loss for fair
comparison with the vanilla model. From the experiment results in Table H.1 and Table H.2,
we observe that our fairness certificates correlate with the actual fairness level of the model
and verify that our certificates can be used as model’s fairness indicator: the certified fairness
of perfectly fair models are consistently higher than those for the unfair model, for both the
general shifting scenario and the sensitive shifting scenario. These findings demonstrate the
practicality of our fairness certification.

Table H.1: Comparison of the fairness certificate of the vanilla model (an “unfair” model)
and the perfectly fair model (a “fair” model) for sensitive shifting. 0-1 error is selected as
the loss in the evaluation.

Hellinger Distance ρ 0.1 0.2 0.3 0.4 0.5
Vanilla Model Fairness Certificate 0.182 0.243 0.297 0.349 0.397
Fair Model Fairness Certificate 0.148 0.148 0.148 0.148 0.148

Table H.2: Comparison of the fairness certificate of the vanilla model (an “unfair” model)
and the perfectly fair model (a “fair” model) for general shifting. 0-1 error is selected as the
loss in the evaluation.

Hellinger Distance ρ 0.1 0.2 0.3 0.4 0.5
Vanilla Model Fairness Certificate 0.274 0.414 0.559 0.701 0.828
Fair Model Fairness Certificate 0.266 0.407 0.553 0.695 0.824
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APPENDIX I: APPENDIX FOR CHAPTER 12

I.1 LIST OF SUPPORTED OPERATORS

In this section, we provide a list of the 84 supported operators in the RANUM static
analysis framework. These operators cover common operators used in DNNs. To the best
of our knowledge, RANUM provides abstractions for the largest number of operator types
among existing DNN abstraction frameworks. We believe that the framework can be further
extended to support other types of analysis, testing, and debugging for general DL systems.

In particular, when compared to the state-of-the-art tool DEBAR [460], the underlined
17 operators are newly supported by RANUM.

Sub Add Mul Div Pow MatMul
Gemm MaxPool GlobalMaxPool GlobalAveragePoolCos Sin
AveragePool Conv ConvTranspose Pad Reciprocal Sqrt
Tanh Relu Softplus LeakyRelu Softsign Sigmoid
Neg Exp Log Softmax LogSoftmax Abs
Ceil Floor Sign Reshape Flatten Transpose
Shape Cast Slice Gather GatherND Squeeze
Unsqueeze ScatterElements Expand Concat Split Identity
ConstantOfShape RandomNormalLike RandomUniformLike RandomNormal RandomUniform Range
Constant Less LessOrEqual Greater GreaterOrEqual Equal
Not Or Min Max Clip Sum
ReduceMin ReduceMax ReduceSum ReduceMean ArgMax ArgMin
Tile NegativeLogLikelihoodLoss Loop SequenceInsert BatchNormalization OneHot
NonZero Resize ReduceProd ReduceSumSquare IsInf IsNaN

Figure I.1: List of supported operators in RANUM.

I.2 LIST OF OPERATORS WITH POTENTIAL NUMERICAL DEFECTS

In this section, we provide a full list of DNN operators that may contain numerical defects,
along with their invalid ranges In0,invalid (see definition of the numerical defect in Defini-
tion 12.1), respectively. In the table, Umin and Umax stand for the minimum and maximum
positive number of the input tensor’s data type, respectively.

Table I.1: List of operators with potential numerical defects.

Op. Type In0,invalid

Pow r´Umin, Umins ˆ p´8,´Umins

Div Rˆ r´Umin, Umins

Reciprocal r´Umin, Umins

Sqrt p´8, Umins

Exp rlnUmax,8q
Log p´8, Umins

Range Rˆ Rˆ r´Umin, Umins

NegativeLogLikelihoodLoss r0, 0s for number of non-zero cells using mean reduction
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I.3 DETAILS OF RANUM STATIC ANALYSIS FRAMEWORK

We present the omitted details in Section 12.2.1.

I.3.1 Abstraction Domain and Characteristics

Abstract Interval Domain with Tensor Partitioning

Tensor: 𝒙!"×$×%

Dim 0 splits: 
{0, 3, 6, 9}

Dim 1 splits: 
{0, 3, 6}

Dim 2 splits: 
{0, 2}

Abstract Domain:
⟨𝒍%×&×", 𝒖%×&×", 0,3,6,9 , 0,3,6 , 0,2 ⟩

Interval 
Lower Bound

Interval 
Upper Bound

Split Indices

Figure I.2: Example of tensor partitioning. Tensor partitioning reduces the size of tensors in
the abstract domain by sharing one interval bound among all elements inside one subblock.

We first formally define our abstraction domain: interval with tensor partitioning. Fol-
lowing the notation in abstract interpretation literature [81], suppose the tensor has m
dimensions with shape n1 ˆ n2 ˆ ¨ ¨ ¨ ˆ nm, we define the abstract domain as such:

A :“ txl,u, pSiq
m
i“1y : l,u P Rn1

1ˆ¨¨¨ˆn1
m |Si| “ n1

i, @s P Si, s P N, 0 ď s ă niu. (I.1)

Each element in A is a triplet a “ xl,u, pSiqmi“1y, where the first two elements are subblock-
wise interval lower bound and upper bound, respectively, and the last element pS1, S2, . . . , Smq

contains m sets, where each set Si corresponds to the 0-indexed split indices for the i-th di-
mension to form subblocks. We use Sirjs P N to represent the j-th element of split index set
Si sorted in ascending order and define Sir|Si|s “ ni. Figure I.2 illustrates this abstraction
domain.

To define the correspondence between the abstract domain and concrete domain C :“

2R
n1ˆ¨¨¨ˆnm , we form Galois connection xC,Ďy α

é
γ
xA,Ďy, where an abstraction function α :
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CÑ A and the concretization function γ : AÑ C are defined as follows:

αpX q “ xl,u, pSiqmi“1y where
li1,i2,...,im “ min

xPX
min

1ďkďm
SkriksďjkăSkrik`1s

xj1,j2,...,jm ,

ui1,i2,...,im “ max
xPX

max
1ďkďm

SkriksďjkăSkrik`1s

xj1,j2,...,jm ,

(I.2a)

γpxl,u, pSiq
m
i“1yq “ tx :li1,i2,¨¨¨ ,im ď xj1,j2,¨¨¨ ,jm ď ui1,i2,¨¨¨ ,im ,

Skriks ď jk ă Skrik ` 1s, 1 ď k ď mu.
(I.2b)

In Equation (I.2a), the split indices pSiqmi“1 can be arbitrarily chosen but need to be kept
consistent with those in Equation (I.2b). Take Figure I.2 as the example, to abstract a set
of tensors X with shape 12ˆ 9ˆ 4, we define split indices for each dimension, respectively,
then impose interval constraints on each subblock of the tensor. For example, rl0,0,0,u0,0,0s

constrain any element in x0:2,0:2,0:1, rl3,2,1,u3,2,1s constrain any element in x9:11,6:8,2:3.

Abstraction Characteristics. There are multiple ways to compute the abstractions,
and we design our particular computational algorithms to achieve soundness, tightness, and
differentiability.

(1) Soundness: We guarantee that all abstractions are sound. Formally, suppose ax and
aw are the abstractions for input and weights, respectively, we guarantee f˚

n pγpaxq; γpawqq Ď

γpT ˚
n pax; awqq where ˚ P tin, outu, n is any node in the architecture, and T ˚

n pax; awq is our
computed abstract domain for input or output of node n. The soundness property the-
oretically guarantees that our detection approach is a certification approach of numerical
reliability, i.e., flag all potential numerical defects, and the validity of generated precondi-
tions (see Section 12.1.2).

(2) Tightness: For most operators in DNN, given abstractions for its inputs, we compute
the tightest possible interval abstraction for the output. Formally, for any atomic DNN
operator op and any abstract domain i P A of op’s input, if oppγpiqq Ď rl,us, i.e., rl,us is
an interval abstraction of op’s output, then γpToppiqq Ď rl,us, i.e., our generated abstract
domain Toppiq is always tighter or equal to any interval abstraction rl,us. Such tightness
can reduce false positives for detecting potential numerical defects and increase the span
of generated failure-exhibiting intervals and fix intervals, which improves the quality of
generated tests and preconditions.

(3) Differentiability: We compute differentiable abstractions. Concretely, if the input
of node n2 is deferentially dependent on output of node n1, we can compute out gradi-
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ents ∇io for any i P tln1 ,un1u and any o P tln2 ,un2u, where xln1 ,un1 , pS
n1
i q

dimpn1.outq
i“1 y and

xln2 ,un2 , pS
n2
i q

dimpn2.inq

i“1 y are abstractions of f out
n1
p¨; ¨q and f in

n2
p¨; ¨q, respectively. When tight-

ness and differentiability cannot be achieved at the same time (e.g., for floor operator, tight
abstraction xl,uy ÞÑ xtlu, tuuy is not generally differentiable, and differentiable abstraction
xl,uy ÞÑ xl´ 1,uy is not tight), we implement two abstract algorithms to achieve tightness
and differentiability, respectively.

The existing approach DEBAR [460] also proposes a static analysis framework for DNN
architectures with tensor partitioning. In contrast to our framework, the abstract domain
in DEBAR contains affine equalities besides interval domains. Therefore, DEBAR can be
tighter than ours in some cases and can produce fewer positives, but due to the additional
complexity of affine equalities, DEBAR tends to use the coarsest abstraction (i.e., tensor
partitioning) granularity and supports fewer operators than ours. At the same time, our al-
gorithms produce the tightest interval abstractions while DEBAR has no tightness guarantee.
As a result, RANUM detects more true numerical defects and has a comparable number of
false positives (see Section 12.3.1), and we can leverage the feasibility confirmation support
in RANUM to filter out false positives.

I.3.2 Initial Abstraction Construction with Backward Fine-grained Node Labeling

We construct abstract domains for initial nodes in two steps: First, we determine the
tensor partitions, i.e., the split index sets pSiqmi“1 (see Equation (I.1)), which determine the
tightness and efficiency of our static analysis framework, because the tensor partitions of all
other nodes will be solely dependent on the partitions of initial nodes as we will show in
Appendix I.3.3. Second, we compute the interval bounds l and u.

We use the following principle to decide the tensor partitions: For nodes that are connected
to operators requiring fine-grained abstractions (e.g., the shape input for operator Reshape)
with valid paths (which we will specify later), we construct tensor partitions with the finest
granularity, i.e., Si “ t0, 1, . . . , niu. We call these nodes fine-grained initial nodes and
starting from the next paragraph we introduce our novel technique of backward fine-grained
node labeling to find them out. For other nodes, we rely on downstream task requirements
and user specifications to determine the partitions. For example, for fix generation (see
Section 12.2.3), we use the coarsest granularity by default.

Backward Fine-grained Node Labeling. The fine-grained initial nodes are those start-
ing a valid path in DNN computational graph G, where a path is valid if and only if the path
does not traverse through fine-grained stopping operators and terminates at a fine-grained
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requiring operator with some specific input indices. As discussed in Section 12.2.1, the
fine-grained requiring operators fall into three categories: control-flow operators (e.g., Loop),
indexing operators (e.g., Slice), and shaping operators (e.g., Reshape). Fine-grained stop-
ping operators are those whose output is independent of input abstraction granularity (so
the granularity of preceding nodes does not matter). Detail lists of fine-grained stopping
operators and fine-grained requiring operators are provided in Appendix I.3.4.

To find out fine-grained initial nodes, we propose backward fine-grained node labeling,
which is similar to data dependency analysis in traditional programs: First, we invert all
edges of the given computational graph G “ xV , Ey to get G 1 “ xV , E 1y. Second, we attach
a boolean label for each node n P V and initialize them with False. Third, we do topology
sorting on G 1. When encountering a node n with True, if the node does not contain a fine-
grained stopping operator, we propagate this label to all its subsequent nodes; otherwise,
we propagate False. When encountering a node n with False, if the node is a fine-grained
requiring operator, we propagate True to some subsequent nodes corresponding to specific
input indices and False to others; otherwise, propagate False to all subsequent nodes.
Lastly, we collect all labels for initial nodes. The nodes with True label are fine-grained
initial nodes.

To this point, we have determined the tensor partitions pSiqmi“1 for all initial nodes, and
we now compute l and u and thus finish the abstraction domain construction for the valid
ranges of initial nodes. Initial nodes are further divided into input, weight, and constant
nodes. In practice, most weight nodes and all constant nodes have their initial values stored
in the ONNX file, and we directly use Equation (I.2a) with these initial values to compute l
and u. Otherwise, we rely on user specifications and built-in heuristics to determine l and
u for initial nodes.

I.3.3 Internal Abstraction with Dynamic Partitioning

For all supported operator types (listed in Appendix I.1), we propose concrete algorithms
to compute abstract domains for output with dynamic tensor partitioning. Formally, for each
operator op, we construct the computable function Top : AÑ A that satisfies soundness and
tentatively satisfies tightness and differentiability, where A is the abstract domain defined
in Equation (I.1). Therefore, following the computational procedure introduced at the end
of Section 12.2.1, we can compute end-to-end abstractions for all nodes in the given DNN
architecture. As the showcase of our abstraction algorithm, we describe the algorithms for
four representative operators: MatMul, Conv, Softmax, and Loop.
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MatMul. The MatMul operator computes the matrix multiplication of two operands. This
operator is widely used in DNNs to express fully-connected layers. To simplify the narration,
we focus on the two-dimensional case where we compute oppA,Bq “ C “ AB with A P

Rnˆm and B P Rmˆl. Extensions to other dimensions by abstracting the broadcasting
mechanism can be found in our open-source implementation.

We denote the input abstractions of op by a “ xLa,Ua, pS
1
A, S

2
Aqy and b “ xLb,Ub, pS

1
B, S

2
Bqy,

respectively. First, we compute the union U “ S2
A Y S1

B. Second, we dynamically par-
tition both a and b with split points pS1

A, Uq and pU, S2
Bq, respectively, and get a1 “

xL1
a,U

1
a, pS

1
A, Uqy and b1 “ xL1

b,U
1
b, pU, S

2
Bqy. Note that a and a1 (or b and b1) correspond to

the same concrete domain, but a1 and b1 have finer or equal partition granularity than a and
b. Third, we compute output abstraction Toppa, bq “ c “ xLc,Uc, pS

1
A, S

2
Bqy

where pLcqij “

|U |
ÿ

k“1

vk min
APtL1

a,U
1
au,BPtL1

b,U
1
bu
AikBkj,

pUcqij “

|U |
ÿ

k“1

vk max
APtL1

a,U
1
au,BPtL1

b,U
1
bu
AikBkj,

vk “ U rks ´ U rk ´ 1s.

(I.3)

This formulation can guarantee tightness but is not efficient for tensor computation due to
the inner minimum and maximum. Therefore, we also implement a fast-mode abstraction
trading tightness for efficiency: T 1

oppa, bq “ c1 “ xL1
c,U

1
c, pS

1
A, S

2
Bqy where

L
1

c “U
1´
a vU

1´
b `U

10
a vL

1´
b `U

1`
a vL

1´
b `

L
1´
a vU

10
b `U

10
a vL

10
b `L

10
a vU

10
b `U

1`
a vL

10
b `

L
1´
a vU

1`
b `L

10
a vU

1`
b `L

1`
a vL

1`
b ,

U
1

c “L
1´
a vL

1´
b `L

10
a vL

1´
b `L

1`
a vU

1´
b `

L
1´
a vL

10
b `L

10
a vL

10
b `U

10
a vU

10
b `U

1`
a vU

10
b `

U
1´
a vL

1`
b `U

10
a vU

1`
b `U

1`
a vU

1`
b .

(I.4)

In the above equation, for any ˚ P ta, bu, let ˝ be the elementwise (Hadamard) product,

L
1´
˚ “L

1

˚ ˝ IrU
1

˚ ă 0s,U
1´
˚ “ U

1

˚ ˝ IrU
1

˚ ă 0s,

L
10
˚ “L

1

˚ ˝ IrL
1

˚ ď 0,U
1

˚ ě 0s,U
10
˚ “ U

1

˚ ˝ IrL
1

˚ ď 0,U
1

˚ ě 0s,

L
1`
˚ “L

1

˚ ˝ IrL
1

˚ ą 0s,U
1`
˚ “ U

1

˚ ˝ IrL
1

˚ ą 0s.

(I.5)
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From Equation (I.4), we can observe that the abstraction can be easily implemented with
tensor computations. In Appendix I.3.5, we prove the soundness and tightness of these
abstractions.

Conv. The Conv operator computes the discrete convolution of two operands. This operator
is widely used in convolutional neural networks (CNNs, [192]). To simplify the narration, we
focus on the single-channel single-stride two-dimensional case where we compute oppA,W q “

C withA being the input matrix andW being the convolution kernel. Extensions to general
cases are provided in our open-source implementation.

We first dynamically split the kernel abstraction to the finest granularity. Second, we
compute the receptive field, which is the sub-region of A that decides each output position,
of each output position. Third, we inspect the alignment between receptive fields and A’s
partitions. If neighboring output positions have their receptive fields partitioned in the
same sub-block of A, it means that these positions can be abstracted by a single interval,
i.e., these positions can be partitioned together. Fourth, using this principle, we derive the
partitions of the output tensor, and repeat the input tensors accordingly and efficiently so
that the abstract computation can be written as convolutional operations. Last, we modify
the abstraction computation equations in Equation (I.4) by replacing matrix multiplication
with convolution to compute the abstraction of output C.

Softmax. The Softmax operator computes normalized exponential values for the given input.
Softmax is widely deployed for classification tasks to yield normalized confidence. In one-
dimensional case, for input x P Rn, a Softmax operator outputs oppxq “ exppxq

řn
i“1 exppxqi

. The out-
put abstraction of Softmax operator op can be thus computed: Toppxl,u, pSqyq “ xlo,uo, pSqy
where

loi “
exppliq

exppuqTv ´ exppuiq ` exppliq
,uoi “

exppuiq

expplqTv ´ exppliq ` exppuiq
,

vk “ Srks ´ Srk ´ 1s.

(I.6)

The output abstraction’s partition is dynamically decided by the input abstraction’s parti-
tion. We prove the soundness and tightness of the abstraction in Appendix I.3.5.

Loop. The node with a Loop operator contains a sub-computational graph with dynamic
controlling counters and conditions to represent a runtime loop. The Loop operator can
be used to represent recurrent neural networks (RNNs) and handle the input sequence of
variable length. We require the controlling counter and loop termination condition to have
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the finest abstraction granularity. Then, we recursively apply our static analysis framework
to the sub-graph representing the loop body and update the interval of the loop counter
iteratively. When the abstraction interval of the loop counter can explicitly decide whether to
terminate the loop, we continue or terminate the loop iterations, respectively; otherwise, we
merge the current abstraction interval with the interval obtained after another iteration. We
repeat this process until termination. Theoretically, this execution process cannot guarantee
the termination, i.e., the loop body may execute for infinite times. However, in practice,
on our dataset, our analysis framework already suffices to guarantee the termination in all
cases. In the future, we can apply a widening operation if termination cannot be tightly
abstracted.

Remark I.1. As we can see, the novel dynamic partition technique is incorporated into
the computation process of each operator’s abstraction. The soundness and tightness of our
designed abstractions are immediately achieved by design, and the differentiability of our de-
signed abstractions can be implemented via the auto-differentiation functionality of popular
DL libraries like PyTorch [289] and Tensorflow [1] where we use PyTorch for implementation.
The abstractions for DNNs are also implemented for other applications, e.g., for robustness
certification as shown in previous chapters. However, our abstractions are tailored for the
tensor-partitioned interval domain that is particularly suitable for testing and debugging the
numerical defects. To the best of our knowledge, these abstractions are the first that achieve
soundness, tightness, and differentiability.

I.3.4 List of Fine-grained Requiring and Stopping Operators

We use fine-grained requiring and fine-grained stopping operators in Appendix I.3.2.
Among all supported operators, the fine-grained requiring operators are

Reshape (input #2), Slice (input #2, #3, #4, #5), Squeeze (input #2), Unsqueeze
(input #2), Tile (input #2, #3), Loop (input #1, #2), SequenceInsert (input #3),
ConstantOfShape (input #1), Gather (input #2), GatherND (input #2), ReduceSum
(input #2), ScatterElements (input #2), Expand (input #2), Split (input #2),
Pad (input #2, #3), NegativeLogLikelihoodLoss (input #2), Clip (input #2, #3),
OneHot (input #2), Resize (input #2, #3, #4).

The fine-grained stopping operators are

Shape, RandomNormalLike, RandomUniformLike.
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I.3.5 Proofs

Here we present the omitted proofs in Appendix I.3.3.

MatMul.

Theorem I.1 (Tightness of Abstraction by Equation (I.3) for MatMul). Suppose op is the
MatMul operator and Top is as defined in Equation (I.3), then if oppγpaq, γpbqq Ď rL,U s for
a, b P A, γpToppa, bqq Ď rL,U s.

Proof. We useLa andUa to denote the element-wise interval lower and upper bounds of γpaq;
and use Lb and Ub to denote these bounds of γpbq, respectively, where a formal definition is
in Equation (I.2b). Then, there exist A and B with La ď A ď Ua and Lb ď B ď Ub, such
that

pABqij “
l
ÿ

k“1

mintLa,ikLb,kj ,La,ikUb,kj ,Ua,ikLb,kj ,Ua,ikUb,kju, (I.7)

or pABqij “
l
ÿ

k“1

maxtLa,ikLb,kj ,La,ikUb,kj ,Ua,ikLb,kj ,Ua,ikUb,kju. (I.8)

By definition, we have

Lij ď Equation (I.7),Uij ě Equation (I.8). (I.9)

We let L1
c andU 1

c to denote the element-wise interval lower and upper bounds for γpToppa, bqq,
let S1

Ari
1s ď i´ 1 ă S1

Ari
1 ` 1s and S2

Brj
1s ď j ´ 1 ă S2

Brj
1 ` 1s, then from Equation (I.3),

pL1
cqij “ pLcqi1j1

“

|U |
ÿ

k“1

Urks
ÿ

k1“Urk´1s`1

mintLa,ik1Lb,k1j,La,ik1Ub,k1j,Ua,ik1Lb,k1j,Ua,ik1Ub,k1ju

“

l
ÿ

k“1

mintLa,ikLb,kj ,La,ikUb,kj ,Ua,ikLb,kj ,Ua,ikUb,kju

“Equation (I.7) ě Lij.

(I.10)

Similarly, pU 1
cqij ď Uij. Thus, γpToppa, bqq Ď rL,U s. QED.

Theorem I.2 (Soundness of Abstraction by Equation (I.3) for MatMul). Suppose op is the
MatMul opeartor and Top is as defined in Equation (I.3), then oppγpaq, γpbqq Ď γpToppa, bqq.
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Proof. We useLa andUa to denote the element-wise interval lower and upper bounds of γpaq;
and use Lb and Ub to denote these bounds of γpbq, respectively, where a formal definition is
in Equation (I.2b). For any A and B such that La ď A ď Ua and Lb ď B ď Ub,

pABqij “
l
ÿ

k“1

AikBkj

ě mintLa,ikLb,kj ,La,ikUb,kj ,Ua,ikLb,kj ,Ua,ikUb,kju

“: pL1
abqij

(I.11)

and
pABqij ď maxtLa,ikLb,kj ,La,ikUb,kj ,Ua,ikLb,kj ,Ua,ikUb,kju

“: pU 1
abqij.

(I.12)

Thus, oppγpaq, γpbqq Ď rL1
ab,U

1
abs. On the other hand, γpToppa, bqq “ rL1

ab,U
1
abs as seen from

Equation (I.10). Therefore, oppγpaq, γpbqq Ď γpToppa, bqq. QED.

Theorem I.3 (Soundness of Abstraction by Equation (I.4) for MatMul). Suppose op is the
MatMul operator and T 1

op is as defined in Equations (I.4) and (I.5), then oppγpaq, γpbqq Ď

γpT 1
oppa, bqq.

Proof. We useLa andUa to denote the element-wise interval lower and upper bounds of γpaq;
and use Lb and Ub to denote these bounds of γpbq, respectively, where a formal definition
is in Equation (I.2b). We define L1

ab and U 1
ab by Equations (I.11) and (I.12). From the

proof of Theorem I.2, we have oppγpaq, γpbqq Ď rL1
ab,U

1
abs. We now only need to show that

rL1
ab,U

1
abs Ď γpT 1

oppa, bqq.
γpT 1

oppa, bqq imposes independent interval abstractions element-wise, therefore, we study
each element independently. For the element pi, jq, from Equations (I.4) and (I.5), the
interval lower bound of γpT 1

oppa, bqq, namely pLcqij, satisfies

pLcqij “

l
ÿ

k“1

pU´
a qikpU

´
b qkj ` pU

0
a qikpL

´
b qkj ` pU

`
a qikpL

´
b qkj`

pL´
a qikpU

0
b qkj ` pU

0
a qikpL

0
bqkj ` pL

0
aqikpU

0
b qkj ` pU

`
a qikpL

0
bqkj`

pL´
a qikpU

`
b qkj ` pL

0
aqikpU

`
b qkj ` pL

`
a qikpL

`
b qkj.

(I.13)

By Equation (I.5),

• when La,ik ď Ua,ik ă 0,
pL´

a qik “ La,ik, pU
´
a qik “ Ua,ik, pL

0
aqik “ 0, pU 0

a qik “ 0, pL`
a qik “ 0, pU`

a qik “ 0;
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• when La,ik ď 0 ď Ua,ik,
pL´

a qik “ 0, pU´
a qik “ 0, pL0

aqik “ La,ik, pU
0
a qik “ Ua,ik, pL

`
a qik “ 0, pU`

a qik “ 0;

• when 0 ă La,ik ď Ua,ik,
pL´

a qik “ 0, pU´
a qik “ 0, pL0

aqik “ 0, pU 0
a qik “ 0, pL`

a qik “ La,ik, pU
`
a qik “ Ua,ik.

Similarly for pL´
b qkj, pU´

b qkj, pL0
bqkj, pU 0

b qkj, pL`
b qkj and pU`

b qkj. Thus, by enumerating all
cases, we have

Equation (I.13) ď mintLa,ikLb,kj ,La,ikUb,kj ,Ua,ikLb,kj ,Ua,ikUb,kju “ pL
1
abqij. (I.14)

Similarly, the interval lower bound of γpT 1
oppa, bqq, namely pUcqij,

pUcqij ě maxtLa,ikLb,kj ,La,ikUb,kj ,Ua,ikLb,kj ,Ua,ikUb,kju “ pU
1
abqij. (I.15)

Thus, rL1
ab,U

1
abs Ď γpT 1

oppa, bqq. QED.

Softmax.

Theorem I.4 (Tightness of Abstraction for Softmax). Suppose op : Rn Ñ Rn is the
Softmax operator and Top is as defined in Equation (I.6), if oppγpxl,u, pSqyqq Ď rlr,urs,
then γpToppxl,u, pSqyqq Ď rlr,urs.

Proof. We use l1 and u1 to denote the element-wise interval lower and upper bounds of
γpxl,u, pSqyq. Formally, l1

i “ li1 and u1
i “ ui1 where Sri1s ď i´ 1 ă Sri1 ` 1s. Then, for each

i, by setting xi “ li and xj “ uj for all j ‰ i, we get

lri ď
exppl1

iq

exppl1
iq `

řn
k“1,k‰i exppu

1
kq

“
exppli1q

exppli1q `
řn
k“1 exppu

1
kq ´ exppu1

iq

“
exppli1q

exppli1q ` vT exppukq ´ exppui1q
“ loi1 .

(I.16)

In addition, by setting xi “ ui and xj “ lj for all j ‰ i, we get uri ě uoi1 . Here, lo and uo

are as defined in Equation (I.6). Combining these two arguments, we get

γpToppxl,u, pSqyqq Ď rl
r,urs. (I.17)

QED.
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Theorem I.5 (Soundness of Abstraction for Softmax). Suppose op : Rn Ñ Rn is the Softmax
operator and Top is as defined in Equation (I.6), then

oppγpxl,u, pSqyqq Ď γpToppxl,u, pSqyqq. (I.18)

Proof. Leveraging the fact that the softmax function is monotonically increasing, i.e., doppxqi
dxj

ą

0, we have γpxl,u, pSqyqi P rloi1 ,uoi1s, where Sri1s ď i ´ 1 ă Sri1 ` 1s. Since rloi1 ,uoi1s “
γpToppxl,u, pSqyqqi by our definition of Top, oppγpxl,u, pSqyqq Ď γpToppxl,u, pSqyqq follows.

QED.
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