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ABSTRACT

Quantum networks are rapidly being developed using the noisy quantum devices available today. As quantum
networks scale, noise will lead to significant challenges in quantum network characterization, design, and
automation, challenges that classical methods may be ill equipped to tackle. Moreover, the advantage and
value of quantum networks is not well understood in the presence of noise, making it difficult to justify the
cost of quantum network development for real-world applications.

In this dissertation, we define operational nonclassicality as a quantifier of quantum advantage in
general multipoint communication networks and describe a procedure for deriving operational tests of
nonclassicality in general communication networks. Then, we develop a quantum-hardware-compatible
variational optimization framework for optimizing quantum networks to exhibit nonclassicality. In a wide
range of communication network topologies, including nonsignaling networks, multiaccess networks, broadcast
networks, and interference networks, we derive operational tests that witness nonclassicality. We then use our
variational framework to optimize various quantum resource configurations for maximal performance against
these operational tests of nonclassicality. In all communication network topologies, we find examples where
quantum resources lead to observable violations of the nonclassicality witnesses, implying that quantum
resources provide a strict advantage over classical resources. Furthermore, we investigate how the presence of
noise diminishes these advantages, and by extension, the value of quantum resources. Finally, we demonstrate
that our variational optimization techniques can be deployed on quantum hardware and applied well beyond
the scope of finding nonclassical quantum behaviors.

In conclusion, we find that nearly all quantum resource configurations in communication networks can
provide operational advantage as witnessed by operational tests of nonclassicality. These nonclassical network
behaviors show novel ways that quantum physics defies the classical assumptions of locality, causality, and
realism, but nonclassicality can also be used to test and certify quantum resources in communication networks.
Furthermore, nonclassicality can also provide advantages in information security and distributed computing.
We assert that variational quantum optimization techniques are well-suited to design and automation tasks
in quantum networks. The advantages of these methods are that they are hardware agnostic, do not require
full network characterization, and can optimize quantum systems against their inherent and unknown noise
models. Thus, we introduce variational quantum networking as an engineering paradigm for designing
and automating noisy quantum networks. In many ways, variational quantum networking circumvents the

challenges of characterizing, designing, and automating noisy quantum networks.
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CHAPTER 1

INTRODUCTION

1.1  Motwation

A new era dawns in science, technology, and society—an era in which we harness the power of quantum
physics to revolutionize the ways we sense, process, secure, and communicate information. Such optimism is
shared globally as nations and venture capitalists alike accelerate their investments into quantum information
science and technology [1]-[8]. In this vision, quantum information technologies exploit the laws of quantum
physics to ascertain an advantage over existing, classical information technologies that we rely on constantly
for our computing and communications needs. Moreover, quantum advantages are expected to broadly
impact society through scientific advancements, economic growth, and national security enhancements [9].
Furthermore, the profound impact and benefit to humanity that quantum physics might offer is indicated by
the recent 2022 Nobel Prize in Physics being awarded to Aspect, Clauser, and Zeilinger for their “experiments
with entangled photons, establishing the violations of Bell inequalities, and pioneering quantum information
science” [10]. Indeed, science, technology, and society are in the midst of a quantum revolution.

From a physical standpoint, it is interesting to question why quantum physics seems to offer an information
processing advantage and what this advantage implies about the natural world. In principle, if quantum
information technologies have an advantage, then there should be some quantum physical mechanism that
leads to this advantage. According to quantum theory, the mechanisms of advantage are superposition,
entanglement, and measurement contextuality, which have been observed to lead to information processing
advantages. These strange physical mechanisms were initially met with skepticism [11] because they implied
that nature was not locally realistic. That is when two entangled quantum particles are space-like separated
and measured in a particular way, then their measurement statistics can be correlated in such a way that
cannot be reproduced by a similar classical system [12], [13]. However such nonlocal correlations were later
demonstrated to exist in nature [14]-[17]. Overall, it appears that the information processing advantages
provided by quantum system are closely related to quantum systems’ ability to exhibit stronger-than-classical
correlations. How this advantage gets applied is then a matter of innovation.

From an engineering standpoint, quantum information technologies apply quantum physics to solve
problems in computing, sensing, and communications. Quantum computers are theorized to provide significant
advantages in simulation tasks [18]-[22], which may lead to improved algorithms for designing drugs [23] or

materials [24], as well as the ability to simulate new systems in particle and high-energy physics. Similarly,
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Figure 1.1: (Left) A quantum network. The purple ovals are quantum devices and the arrows represent
quantum communication between the devices. (Right) Quantum networks are a foundational technology that
enable quantum sensors, computers, and communications to scale.

certain quantum algorithms have been identified that provide exponential improvements over the best existing
algorithms [25]. Examples include searching over big data sets [26], or factoring large numbers [27]. In sensing
applications, quantum systems can be used to sense their environment with greater precision than existing
techniques [28]. Some quantum sensing techniques can already be applied to practical applications such
as improving sensitivity gravitational wave detectors [29]. In the future, quantum sensing techniques are
expected to improve telescopes [30], [31], clock synchronization [32], and biomedical imaging applications [33],
[34]. Finally, quantum communications technologies can help improve the efficiency of data transmission,
improve information security, or be used transmit quantum systems [35]—[37].

To realize a practical quantum advantage, these quantum technologies will need to be scaled such that they
can handle problems that are more complex. To effectively scale quantum technologies, it will be important to
develop quantum communication networks that link quantum devices together using quantum communication.
In essence, the quantum information technology can then be distributed amongst many devices. This network
approach to scaling is commonly applied in examples of classical information technologies. Indeed, many
of today’s cutting edge applications in information technology rely on networks to operate. For instance,
self-driving cars rely upon a network of sensors to navigate their environments, exascale super computers rely
on networks of computers across which to distribute their processing, and smartphones rely upon wireless
communication networks to connect users to applications on the world-wide web. In each of these examples,
the network serves as the means by which technologies are scaled to handle more complex problems. In a
similar manner, modular quantum devices can be integrated into a larger system called a quantum network.
Such quantum communication networks should then be thought of as a foundational and enabling technology.
By applying quantum networks, quantum information can be communicated between connected devices
enabling large quantum sensing arrays or large quantum computers that are distributed over many devices.

Thus, we argue that quantum networking is essential to scaling quantum information technologies. As
quantum technologies scale, so will their technological advantage and value. Therefore, the quantum revolution
in science, technology, and society will be achieved through the development of quantum networks. Therefore,

we focus our investigation towards quantum networks and the advantage that they can provide.

1.2  Problem

Setting our optimism aside, a more accurate description of our current stage of technological development is,
perhaps, the Noisy Intermediate-Scale Quantum (NISQ) era [38]—an era in which noisy quantum technologies
are being developed but their advantage is fleeting. Although, a wide range of quantum computing architectures

are under development [39], their advantage has yet to be demonstrated. For instance, the recent “quantum



Figure 1.2: A quantum network with noisy communication links between devices.

supremacy” result that Google touted in 2019 [40] was later shown to be reproducible on a laptop computer
[41]. Likewise, a wealth of quantum communication networks have been constructed for the purpose of sharing
secret keys [42]-[49], yet experts from both academia [50] and the National Security Agency [51] are skeptical
of any information security improvements offered by these quantum secret sharing protocols. Despite this
skepticism, these early-stage quantum technologies will be iterated upon and scaled as quantum networks [52].
However, as quantum networks scale, noise will remain the key challenge to overcome to realize a quantum
advantage [52]-[56].

Noise is a natural process occurring when quantum systems interact with their environments. Through this
interaction, the information encoded into a quantum system leaks into the environment and is lost. In existing
quantum information technologies, noise limits the ability to store, process, and transmit quantum information
[52], [65], [66]. The type of noise that exists in a quantum system depends on its hardware architecture,
meaning that different hardware platforms each have their own strengths and weaknesses. Although, error
correction and entanglement purification protocols can be used to remove noise in quantum communication
networks [57]-[62], near-term NISQ devices are not expected to have enough qubits or entangled states
available to be able to perform with fault-tolerance [38], [52].

When quantum networks are constructed out of NISQ devices, their state preparation, evolution, and
measurement are all noisy. Therefore, noise must be considered as an inherent property of quantum hardware

that leads to technological limitations. As a result of noise, several restrictions on quantum networks follow:

e Memoryless: Quantum states cannot be stored for extended periods of time.
e Low-Depth: Extensive processing is unavailable.
e Intermediate-Scale: The number of qubits held by each device is limited.

e Inefficient Detectors: The shot rate may be limited and detectors may have inherent noise.

Overall, noisy quantum networks will operate in a prepare-and-measure setting in which quantum states are
prepared, communicated, and measured without having extensive processing, long storage times, or high shot
counts [52].

Clearly the vision of the quantum revolution is at odds with the reality of the noisy quantum information
technologies that can be built. While the vision may have piqued the interest of investors, funding will quickly
dissipate if practical quantum advantages are not demonstrated. Nonetheless, noisy quantum networks are
being developed, making it a matter of paramount importance quantify their advantages in the noisy setting.
To this end, we seek a measurable, operational, and indisputable quantifier of quantum advantage. In doing
S0, we may assign a practical value to quantum information technologes, justifying their cost and continued

development towards the bettering of society through science and technology.

4



1.3 Thesis

1.3.1 Main Question

How does the operational advantage of quantum networks deteriorate in the presence of noise?

1.3.2  Approach

To investigate our main question, we must quantify the operational advantage of a quantum network. One way
to quantify operational advantage is through quantum nonclassicality, a phenomenon in which the measurement
data of a quantum system cannot be reproduced by a similar classical system. Such nonclassical correlations
are directly related to advantages in quantum information processing systems [63]-[68]. Nonclassicality is a
practical quantifier of advantage in noisy quantum networks because it is device-independent, meaning that it
does not depend upon the physical devices, but only their measured data, the network’s causal structure, and
the network’s communication resources.

To investigate how the operational value of quantum networks deteriorate in the presence of noise, we
study the noise robustness of nonclassicality. That is, how much noise can a network tolerate before it can
no longer demonstrate nonclassicality. If a network cannot demonstrate nonclassicality, then it provides no
information processing advantage over a classical network. To this end, we apply simulation and optimization

methods to evaluate the noise robustness of nonclassicality.

1.3.3 Technical Challenges

In order to set up applications on a quantum network, the noise in the network’s devices and links must be
characterized. Furthermore, if noise is dynamic and changes over time, then the characterization process
needs to be repeated to maintain robust performance of quantum applications over extended periods of time.
This characterization task can be performed using quantum process tomography to learn the noise model
[69]-[74]. Quantum process tomography requires many identical copies of the same quantum system, and
the number of needed measurements typically grows exponentially with the number of qubits. Regardless,
full tomography can be performed in many existing quantum systems because they have only a few qubits,
however, current methods fail to scale efficiently to systems having many qubits. Thus, how can we develop
robust quantum networking applications if we can’t efficiently characterize its noisy or unknown processes in
networks?

Suppose now that the network and its noise is characterized and and can be modeled accurately, a second
challenge is then to design a networking protocol or algorithm that is robust to the inherent noise. This task

will undoubtedly rely upon simulation and optimization software tools, however, quantum simulation and
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Figure 1.3: Quantum networking characterization and design challenges. (Left) Classical computers try to
characterize an unknown quantum system. (Right) Classical computers can



optimization on classical hardware is generally very difficult [75]. A promising approach is to use a tensor
network representation for the complex quantum system, which can help reduce complex networks into smaller
systems whose dynamics can be simulated and optimized more efficiently [76]. In many cases, tensor networks
can lead to efficient classical simulation of quantum systems [77]-[85]. Furthermore, the tensor networks
can be optimized via differential programming [86]—[88]. However, these efficiencies typically vanish for the
complex, many-bodied entanglement structures, which may be common in quantum networks. Similarly,
an efficient classical algorithm is known for simulating certain entangled quantum systems called stabilizer
circuits [89], [90]. However, stabilizer circuits cannot perform universal computation nor can they account for
noise in a precise manner. Thus, efficient simulation of stabilizer circuits may not necessarily be helpful for
simulating noisy quantum systems in the real-world. Moreover, another common tool for optimizing quantum
systems is semi-definite programming (SDP)[91]-[94]. Despite the fact that these SDP methods compute
in polynomial time, they fail to scale to large quantum systems such as networks because the dimension of
quantum systems scales exponentially. Furthermore, SDP methods only solve convex optimization problems,
limiting their general applicability. Thus, how can we design future quantum networks and applications if our

classical simulation and optimization tools fail to scale?

1.4 Summary of Methods

We thus study the noise robustness of nonclassicality in quantum networks. We take a two-pronged approach
in which we develop a theoretical and operational framework for quantifying and certifying nonclassicality
in networks. Alongside this framework we also develop hybrid quantum-classical computational methods
for performing the requisite derivations, simulations, and optimizations. Our results are both reproducible
on a laptop computer, and extensible to real-world quantum network hardware. Furthermore, our hybrid
approaches show promise in circumventing technical challenges in quantum networking. Hence, we provide a

practical and comprehensive approach to establishing nonclassical correlations for operational tasks.

1.4.1 A Black-Box Approach to Communication Networks

In Chapter 2, we introduce a black-box model for characterizing physical systems in the discrete memoryless
setting. Here a black-box can be thought of as a device that maps an input = to an output y with
probability P(y|z). The black-boxes behavior is then characterized by its set of conditional probabilities
P =3 cx2 ey Pylz)|y)(z|, which can be arranged as a column stochastic matrix. We also introduce a
formulation of black-box game G € RYIXI¥| where a reward Gy > 0 is given to the black-box each time it
outputs y given input z. After many independent shots the average score is (G,P) =3 G, .P(y|z). Such
linear black-box games can serve as device-independent tests that quantify a systems ability to perform the
task encoded by the game.

In Chapter 3, we extend our black-box model to communication where network devices are black-boxes
and the network’s links are classical communication channels. We show that such networks can be expressed
as a directed acyclic graph DAG depicting the networks causal flow of information from input to output.
Assuming that each black-box operates in the memoryless setting, then each shot of the network can be
considered independent from the other. Furthermore, we introduce the resource of classical communication
and how it can be quantified by the signaling dimension of each communication channel. We also introduce
shared randomness, as a correlation between black-boxes that can be distributed prior to when shots are

taken.
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Figure 1.4: (Right) A quantum network’s directed acyclic graph (DAG) and (Left) a quantum circuit that
simulates the network.

In Chapter 4, we provide a general characterization of set of behaviors CN¢! that classical black-box networks

can exhibit. In general CN¢t

is nonconvex, however, when all network devices share an unlimited amount
of shared randomness the set of classical network behaviors becomes convex as CN°* C Conv (CN°t) = CR*
where the A subscript signifies the global shared randomness. The set of CY°® forms a convex polytope,

meaning that it is bound tightly by a finite set of linear inequalities GN®* = {v; > (G, P) ‘kgzll, which are

each satisfied for any behavior P € CY°. These linear inequalities are black-box games G- where 7 is an upper
bound on the average score that can be achieved by the considered network. These games can then serve as
operational tests where a violation to one of these inequalities, (G, P) > v, implies that P ¢ CY°*. We then

discuss various approaches for deriving linear inequalities that tightly bound a classical network’s behaviors.

1.4.2 Noisy Quantum Communication Networks

In Chapter 5 we review the fundamentals of quantum physics, taking an axiomatic approach. Here quantum
states are first prepared on a complex-valued Hilbert space |¢)) € Hg, then quantum state evolve under
unitary evolution |¢)') = U |¢), and finally the state is measured in an orthonormal basis {|y)},cy where the
output y is obtained with probability P(y) = | (y|¢) |?. Furthermore, we discuss how noisy quantum systems
are modeled by considering unitary operators that couple the system with its environment as U (|¢)) ® |¢>Env).

In Chapter 6 we discuss how quantum systems can be applied to information processing tasks in sensing,
computing, and communications. We argue that quantum networks are a foundational technology that
enables quantum applications to scale. Moreover, we discuss how advantages in quantum systems are often
quantified in terms of computing or communication resources.

In Chapter 7, we combine the quantum formalism with the classical model of networks. That is, we extend
a network DAG with quantum devices that prepare, process, or measure quantum states. Furthermore, these
devices are connected by quantum communication. We note that that the amount of quantum communication
can also be quantified by the signaling dimension allowing the resources of classical communication to be
exchanged for quantum communication in a one-to-one manner. In general the set of quantum network
behaviors ON¢t contains the set of classical network behaviors CNet C ONet where each network is described
by the same DAG and the signaling dimension of each communication channel is the same. We then introduce
entanglement-assisted communication networks in which quantum entanglement is shared amongst devices in
the network. Finally, we discuss how the quantum network model can be encoded into a quantum circuit
that simulates the network.

In Chapter 8, we describe how noise can be modeled in quantum communication networks. We apply the



quantum channel formalism in which a completely-positive trace-preserving (CPTP) map models a noisy
quantum process as p = N (p) where p is a density operator representation of a quantum state. We also
describe common noise models that are used throughout the work. Moreover, we consider classical noise

models in which stochastic operations are applied as postprocessing to a network’s behavior as P=LP.

1.4.8  An Operational Framework for Certifying Nonclassicality

In Chapter 9 we develop a device-independent framework for understanding nonclassicality in noisy quantum
networks with limited communication resources. In other words, we describe a quantum resource theory of
nonclassicality, in which the amount of communication is fixed while network devices are able to apply a
generic set of free operations [95]. We characterize both classical and quantum networks by their respective
sets of behavior CN¢* and QN¢* where any quantum behavior P € QNt is nonclassical if and only if P ¢ CNet.

We define two nonclassicality, weak and strong. Weak nonclassicality describes quantum behaviors
P € QN¢t that can be simulated when globally across all classical network devices implying that P ¢ CN¢t, but
P € C{°t. On the contrary, a quantum behavior P € QN°* is strongly nonclassical if P ¢ CY°* such that the
quantum behavior cannot be simulated when randomness is shared globally to all classical network devices.
Indeed, strong nonclassicality requires extra classical communication to simulate the quantum correlations,
implying a strict resource advantage over classical systems.

Strongly nonclassical behaviors demonstrate a clear operational advantage because such behaviors demon-
strate a specific task that cannot be reproduced using classical resources [63]-[68], [96], [97]. Therefore,
witnessing nonclassicality can be used verify the presence of quantum resources. The resource advantage can
either be quantified as the amount of classical communication needed to reproduce the nonclassical behavior,
or by the distance between the behavior and the classical set [98].

The nonclassical correlations can be certified in an operational manner. First, a linear inequality
v > <Gr7 PC> is derived that is satisfied by all classical network behaviors P € CYet. For a given behavior
P € ON°t the score (G, P) > v implies that the behavior P ¢ CY°* and is, therefore, nonclassical. Moreover,
to exhibit nonclassicality quantum systems must demonstrate quantum properties that have no classical
equivalent, such as entanglement or incompatible measurements. Thus, nonclassicality can be used to test
the quality of quantum resources.

In Chapter 10, we introduce the noise robustness of nonclassicality as the amount of noise that can be
tolerated by the quantum network before it is unable to demonstrate nonclassical behaviors. That is, noise in
the quantum networks causes their nonclassicality to deteriorate. As the nonclassicality decreases the the
amount of violation (G, P) > ~ approaches the classical bound. Therefore, the amount of nonclassicality
can be used to measure the quality of the quantum resources as the distance to the set of classical network
behaviors.

A challenge that emerges within our framework is finding the maximally nonclassical behavior maxpe gnet (G, P)
for a given set of quantum operations and communication resources. Mainly, the state preparations, processing,
and measurements must all be optimized causing the optimization to lose its convexity. Therefore, convex
optimization techniques such as semi-definite programming [93] fail to derive obtain the maximal violations
for a given set of resources. Alternatively, differential programming and machine learning techniques have
shown success in obtain maximally nonclassical behaviors [99]-[102]. Throughout this work, we will apply the
variational quantum optimization methods for noisy quantum networks developed in our work in reference
[102].
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Figure 1.5: A hybrid framework for quantum network design. From left to right, a quantum network is
modeled theoretically, the quantum network model is simulated on a quantum computer, hybrid optimization
tunes the simulation, the quantum computer advances scientific discovery and engineering design.

1.4.4 A Framework for Variational Quantum Optimization of Noisy Quantum Networks

To address the challenge of simulating and optimizing noisy quantum networks, we apply hybrid quantum-
classical computing techniques. Recently, a significant research effort has focused on hybrid quantum-classical
computing applications due to their promise of demonstrating practical advantages on NISQ hardware [38].
In these algorithms, classical and quantum computers operate in tandem, each providing its own strengths to
the algorithm. In this framework, the classical computer can be viewed as a client that instructs a server-side
quantum computer. Generally, the quantum computer is used to efficiently simulate a quantum system or run
an algorithm that has a quantum advantage. Thus, hybrid computing algorithms use quantum computers to
perform tasks that are classically difficult, but quantumly easy solve.

Variational quantum optimization (VQO) algorithms designate a family of hybrid quantum-classical
algorithms that leverage the power of quantum computers to solve optimization problems [103]. The basic
goal of VQO is to optimize the settings © of a parameterized quantum circuit UN®t(©) for a particular task by
iteratively improving upon a trial solution. The quantum circuit, also known as a variational ansatz, consists
of a sequence of quantum operations, each of which is controlled by a parameter that can be adjusted during
the optimization process. The task being optimized is then encoded into an objective function referred to as
the cost, which is minimized during optimization. The goal is to find the settings that minimize the cost.

The optimization objective is to minimize the cost as ming Cost (0). This optimization problem can be
solved using a standard gradient descent algorithm. Namely, the cost is minimized numerically by traversing
the path of steepest descent where the path of steepest descent at point © is the negative of the gradient
—VeCost (O). This optimization process is then repeated many times until a satisfactory solution is found.
In each iteration a small step is taken in the direction of steepest descent. Remarkably, the gradient can
be evaluated on quantum hardware using the parameter-shift rule [104]-[107] or a similar finite-differences
method, making VQO approaches able to optimize quantum systems themselves.

In Chapter 11 we develop a hybrid quantum-classical framework for quantum network simulation and
optimization that we adapt from our work in Ref. [102], [108]. In this framework, a noisy quantum network is
expressed as a variational ansatz circuit UN*(0) that encodes the constraints on the network’s communication
resources and free operations. The quantum circuit can evaluated on a quantum computer or classical simulator
to obtain the network’s behavior P(0) € QN°*, thereby simulating the noisy quantum network. Next we
apply variational quantum optimization to the noisy network ansatz. Our main focus is nonclassicality, thus
the optimization objective is maxg (G, P(0)) where the inequality v > <G, PC> bounds classical network

behavior P¢ € CN¢t. However, these variational quantum optimization techniques are extremely general and



can be applied to a range of network optimization problems.

1.5 Summary of Results

Our main goal is to investigate how nonclassicality deteriorates in the presence of noise to better understand
the noise robustness of the quantum advantage. To this end, we consider a broad range of communication
networks and study how incorporating quantum communication resources enables nonclassicality. Hence,
for each network, we derive linear inequalities v > (G, P) bounding the classical behaviors P € CY°*. These
linear inequalities serve as operational tests that can quantify the amount of nonclassicality by the amount of

violation. Then, using our variational optimization framework, we find examples of violations.

1.5.1 Nonclassicality in Nonsignaling networks

In Chapter 12 we consider local nonsignaling networks in which the devices do not communicate, but share
global randomness. When quantum entanglement replaces the shared randomness, the nonsignaling network
is known to exhibit nonclassical phenomena, typically referred to as Bell nonlocality [109]. Within our
framework, Bell nonlocality is an example of strong nonclassicality. The maximal violations of the inequalities
bounding CY°* are known in many cases allowing us to verify that our VQO framework is able to reproduce
known results. Furthermore, we derive the noise robustness of the violations to the CHSH inequality and and
verify that the VQO software can obtain the maximal violations of classicality.

In Chapter 13 we consider the n-local setting in which n independent shared randomness sources are
connect nonsignaling devices into a network. These networks play an important role in entanglement
distribution [52], [110]-[113]. In the n-local setting, nonlinear n-locality inequalities are known that bound
the set of classical behaviors. Furthermore, when each source instead emits quantum entanglement, quantum
violations of n-locality can be found. We find that the quantum violations of n-locality are weakly nonclassical
because they could be simulated classically if all network devices share randomness. Nevertheless, we verify
that our VQO software is able to reproduce known violations in the noiseless case. When noise is introduced
we derive maximal n-locality violations and verify that the maximal nonclassical behaviors can be obtained

using VQO, even in the presence of noise.

1.5.2  Nonclassicality in Multipoint Communication Scenarios

In Chapter 14, we consider a point-to-point signaling scenario in which a sender device communicates to a

receiver device using a finite amount of communication. Applying our work in Ref. [114], we derive families

Source: A; fori € {1, ...,n}
() Detector: Ajforj € {1,..,m}

Figure 1.6: An example nonsignaling network DAG in the n-local setting.
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of linear inequalities that bound the classical signaling polytope CX Hy Furthermore, in special cases, we
completely characterize the bounds on classical set. In general it is known that quantum signaling does
not exhibit strong nonclassicality such that cx 4y C 0¥ 4 - Cf SV [115]. Interestingly, we prove that
there exist weakly nonclassical quantum signaling systems whose behaviors require an unbounded amount of
classical communication to simulate. However, we observe that even small amounts of white noise appear
to diminish this significant resource advantage. Furthermore, we observe that when entanglement assists
classical communication of one bit that strongly nonclassical behaviors can be produced, one example of
which having been recently derived in the literature [116].

In Chapter 15 we consider networks multiple access networks in which multiple senders signaling to a
single receiver. We derive novel linear inequalities that bound the set of classical multiple access network
behaviors CM MAN " Then applying our variational quantum optimization methods, we find that unassisted
quantum communication and entanglement-assisted classical communication can produce strongly nonclassical
behaviors. As a special case of the multiple access network we also consider the random access code task in
which either quantum communication or entanglement assisted classical communication are able to yield an
advantage.

In Chapter 16 we considder broadcast networks in which one sender signals to multiple receivers. We
derive novel linear inequalities that bounds the set of classical broadcast network behaviors CREN. Applying
our variational optimization methods, we do not find any examples where quantum communication is able
to produce strongly nonclassical behaviors. However, we prove by example that quantum broadcasts can
require an unbounded amount of classical communication to simulate, hence we argue that unassisted
quantum broadcasts are weakly nonclassical such that CECN C QBN C CBCN. However, when we consider
entanglement assisted classical or quantum communication resources, strong nonclassiicality can be observed.

In Chapter 17 we consider multipoint communication networks that have multiple senders and receivers.
In particular, we consider interference and butterfly network topologies. Applying our framework of nonclas-
sicality, we derive linear inequalities that witness nonclassicality in these networks. Furthermore, we identify

examples in which quantum resources lead to strong nonclassicality.
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Figure 1.7: A collection DAGs representing the multipoint communication networks that are studied
throughout this work.
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Figure 1.8: Quantum network hardware can also is controlled in a similar manner allowing variational
quantum algorithm and other hybrid computing techniques to be applied directly on quantum networks.

1.5.3 A Framework for Hardware-Agnostic Quantum Networking

In Chapter 18 we consider the advantage of applying our variational quantum optimization approaches on
quantum networks directly. Since noise in quantum networks can be dynamic and change over time, we argue
that the network devices will have to recalibrate their operations over time. We then introduce variational
quantum networking as a hardware-agnostic approach for establishing and maintaining connections between
quantum network devices. In particular we describe a generic protocol in which devices in the network share
their tunable parameters while a classical optimizer applies VQO on the networking hardware to minimize
the cost function. If successful, the set of optimal network settings ©* is obtained, as well as a certificate
Cost (0) quantifying the performance of the optimization. As examples, we provide examples of variational

quantum networking protocols simulated on both classical and quantum hardware.

1.6  Outro

Hence we embark on the journey, so to speak, in an attempt to quantify the quantum advantage in a general,
yet practical manner. From a physical perspective, we seek to improve our understanding of the quantum
advantage and what it implies about nature. From an engineering perspective, we seek to identify practical
applications in which quantum advantages can be realized, even in the presence of noise. Moreover, we
focus our theoretical investigation on quantum networks due to their foundational role in scaling quantum

information technologies.
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CHAPTER 2

BLACK-BOX MODELS

X ? = —— 2

P(y|x)

Figure 2.1: A black-box model of a unknown system or process. When value z € X is input, the value y € ) is
output with probability P(y|z).

Definition 1. Black-Box: An unknown physical system that accepts as input a classical value x € X and
as output produces a classical value y € Y with some probability 1 > P(y|z) > 0 where ) __, P(ylr) =1
forally € Y, and X = {0,...,|X| =1} and Y ={0,...,|Y| — 1} denote finite input and output alphabets

respectively.

Black-boxes are extremely prevalent throughout our lives. The inner workings of nearly all electronic and
mechanical devices that people use daily are hidden from the people using them. In most cases, a black-box
can be opened up and someone with specialized training can determine the precise process mapping an input
to an output. For example, a mechanic can open up the hood of a car to diagnose problem, or a programmer
can investigate a software’s source code to determine how the underlying algorithm works. However, many
people do not have the skills to understand how a car or software works, yet this lack of knowledge does not
detract from their ability to apply the system. Simply put, you don’t need to understand the mechanics of a
car to operate it, nor do you need to understand the electronics in a computer to browse the internet.

A layperson’s use of black-box technologies can be compared with a physicist’s approach to quantum
system. That is, not all physical systems in nature are so easy to open up and investigate. For example, a
physicist cannot simply peer inside a quantum system to observe what is going on because quantum mechanics
cannot be observed directly. All quantum phenomena are observed indirectly by probing the system and
measuring the result. That is, the choice of probe used by the experimenter corresponds to a classical input
x and the measurement result is a classical output y. However, despite our lack of understanding of quantum
mechanics, we can still apply quantum systems in technology. Much of this technological success lies on the

shoulder of the black-box models that can be used to infer the existence of quantum mechanics, or more
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accurately, that nature does not always obey classical mechanics. However, in the spirit of black-boxes, we
leave our discussion of quantum mechanics to Chapter 5. In this chapter, we formalize black-boxes whose

underlying physical systems, quantum or classical, are hidden from the experimenter.

2.1 The Discrete Memoryless Setting

Definition 2. Discrete Memoryless Setting: An experimental setting consisting of many independent
runs or shots of a black-box device where the prior ¢(z) and conditional probabilities P(y|x) are independent

from the data collected in previous shots.

A black-box’s output y bears a conditional dependence on the input x, which reflects the causal nature of
the black-box. That is, the input z causes the output y while the output y has no affect on the input x, or its
prior distribution g(x). This type of causal structure is often referred to as the discrete memoryless setting
because neither the black-box nor the experimenter perform actions based upon the information accumulated
during the experiment. In this setting, each run or shot of the experiment is completely independent from any
other shot. At a high-level, the discrete memoryless setting mirrors a one-shot setting where a black-box is
given only a single input. The black-box is then evaluated by its average performance of mapping a uniformly
random input z € X to the “correct" output y € Y.

The one-shot setting is interesting from a theoretical and practical perspective because it does not allow
for memory effects to take place [117]. However, it doesn’t quite describe realistic systems in quantum
experiments that often consist of many shots. Such experiments can be considered in the one-shot setting if
they are also memoryless, meaning that the black-box and experimenter do not store data for the purpose of
conditioning future actions. In practice, it is a key objective to ensure that each run of an experiment is
independent from its previous runs. If this is not the case, then the experimental results will likely be very
difficult to reproduce. Thus, the discrete memoryless setting serves as a good model of quantum experiments
and technology.

The importance of imposing the memoryless constraint can be observed through a simple example. In
principle, if a black-box stored its N previous inputs #p = (x; € X)X, then its conditional probabilities
P(y|z, Zp) could depend on both the current input = and the history of black-box inputs Zy. Likewise, if each
input = depended on the black-box’s N previous outputs 4 € (y; € Y)Y, then the prior distribution could
depend on the black-box’s outputs as ¢(z|gp). Thus, if the black-box and experimenter are not assumed to
be memoryless, then the shots cannot be independent. Such a memory-ful scenario could correspond to an
adversarial system where all parties can game the system using their local data. Despite being an interesting
scenario, such memory-ful models can be quite complicated to understand and will largely be disregarded in
this dissertation.

Hence we assert a foundational assumption in this dissertation: all considered black-box systems, either
quantum or classical, are assumed to operate in the discrete memoryless settings. That is, all shots in an

experiment are assumed to be independent and any deviation from this assumption will be acknowledged.

2.2  Black-Box Behaviors

In the discrete memoryless setting, a black-box’s behavior is characterized by its conditional probabilities P(y|x)
[109]. These conditional probabilities are independent from the prior distribution g(x) on its input, which is

controlled by the experimenter. Thus, a uniform prior distribution is often assumed where ¢(z) = 1/|X|,
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Definition 3. Black-Box Behavior: P : X — ), a column stochastic matrix that characterizes a black-box

P=23 > Plyl)lyial, (2.1)

zeX yey

where {(z|}zex and {]y)},cy are orthonormal bases having 0/1 elements and for z € X and y € Y, the
probability P(y|z) is subject to the constraints of

Non-Negativity: P(y|z) >0, Normalization: Z P(ylz) =1 (2.2)
yey

A black-box’s behavior is a characteristic of that instance of a black-box, another black-box may output
may exhibit a different behavior. In general, a black-box behavior is only constrained by the non-negativity
and normalization of its underlying conditional probabilities. Thus, a black-box can produce any probability

distribution.

Definition 4. Full Probability Polytope: Py x, A convex polytope that contains all column stochastic

matrices where

Py = {P eR¥X| Pya) >0 and " Pylz) =1}, (2.3)
yey

which is equivalent to the set all black-box behavior maps P : X — ).
Lemma 1. The set of black-box behaviors Py x is convex.

Proof. The convex combination of any two behaviors Py, Py € Py|x with weights p € [0, 1] is

PP+ (1= )Py =" Y (uPi(ylz) + (1 = w)Payl2)) [y) (2] = D> Y Pa(yla) [y) (| = Ps. (24)

zEX yeEY TEX yey

The elements of P3 are non-negative because Ps(y|z) = pPi(y|z) + (1 — p)Pa(y|x) > 0. Additionally, the

columns of P3 are normalized because

S Ps(yle) =p Y Piylr) + (1—p) > Palyle) =p+ (1 —p)=1. (2.5)
yey yey yey

Thus, P3 € Py|x and the set Py x is convex. O

While Lemma 1 proves that the set of behaviors, Py x is convex, it is also important to prove that it
is a convex polytope, which requires that the set Py x has a finite number of extreme points [118]. These

extreme points correspond to deterministic behaviors that map an input x to the output y with certainty.

Definition 5. Deterministic Behavior: A black-box behavior whose matrix elements are 0/1 values such
that
Plylx)eB V z€X and ye), (2.6)

where B = {0,1}.

Lemma 2. The extreme points of the full probability polytope Py)x are exactly the complete set of

deterministic behaviors.
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Proof. Let E € RYIXI¥l bhe a perturbation to a behavior P € Py x such that
1 1
§(P+E)+§(P—E):P€Py|x (27)

and P is rewritten as the convex combination of two behaviors (P £ E) € Pyx. A behavior is extreme
if it cannot be rewritten in terms of perturbations as in Eq. (2.7). Let Vyx denote the complete set of
deterministic behaviors D : X — ) where D(y|x) € B for all x € X and y € ). The deterministic behavior
is extreme because one perturbation, (P £ E), is not a valid behavior. Furthermore, consider a stochastic

behavior P ¢ Vyx. P always admits the decomposition in (2.7) where E is

E= Z Z 5y,ymax(m)P(ymin($)|x) - (Syyymin(I)P(ymin(:I:)‘x) |y> <x| ) (2-8)
zEX yeY

where ymax (%) and ymin(z) are the row ids of largest and smallest values in column z. Thus, the extreme
points of Py x is the complete set of deterministic behaviors Vy)x. O

Deterministic behaviors provide an interesting interpretation of the discrete memoryless setting. Given
a single sampled input z, the output data appears deterministic because only one sample has been taken.
More formally, let’s refer to a round in the discrete memoryless setting as sampling the black-box’s output
once for each input = € |X|. In aggregate, the collection of |X| samples describes a deterministic behavior
because the black-box outputs one value y € ) for each input. After sampling the black-box many times in
the discrete memoryless setting, the data can be grouped into N complete rounds where D; : X — ) denotes
the deterministic behavior describing the i*"* round of the experiment. The average behavior over N samples

is then

1
P= NZDZ-, (2.9)

which is only deterministic if D; = D; for all 4,5 € [N]. An important fact results from Eq. (2.9) where any

black-box behavior decomposes as a convex combination of deterministic behaviors

N

N
P= ZuiDi where p; >0 and Zui =1 (2.10)
i=1 =1

In Eq. (2.10), the numerical precision of the convex weights p; is dependent upon the number of sampled
rounds used to construct the behavior. When the number of shots is large, the convex weights effectively
become continuous on the range u; € [0, 1], meaning that any behavior P € Py x can be expressed as a
convex combination of deterministic behaviors.

One drawback of this sampling approach is that the input is drawn from a uniform distribution, meaning
that there is no guarantee that N samples of each input x € X will be obtained within a total of n shots. In
principle, a black-box that has large input alphabet, may require a very large number of shots to ensure that
at least IV samples of each input have been obtained. A workaround for this sampling issue can be achieved
if the black-box is trusted to be memoryless. In this case, the inputs no longer need be drawn from a uniform
distribution because the black-box’s behavior is not conditioned upon the data of previous experiments. As a

result, N complete rounds of one-shot experiments can be completed in exactly |X'|N shots.
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Deterministic Behavior:
Py|x € {0)1} v xly

Black-box Game:

(G,P) =Y, GyxPyx <
B

Figure 2.2: A two-dimensional graphical analogy of the probability polytope Py x where a particular black-box
behavior corresponds to a point within this space. The whole set of black-box behaviors is contained by the
convex polygon with blue edges. The vertices of the polygon denote deterministic behaviors that are extreme
points of the set of black-box behaviors. The red dashed line denotes a linear black-box game. The shaded
red region shows the set of all behaviors that achieve an average score that loses the game, e.g., the blue star
PB. The nonshaded region shows the set of all behaviors that achieve an average score that wins the game,
e.g., the green star PC.

2.8  Playing Games with Black-Bozes

A black-box is a processing device that maps the input alphabet X to the output alphabet ). From an
operational perspective, a black-box device performs a processing task on its input data. For example, a
black-box whose task is to serve as a communication channel between two parties would need its output to
match the input y = x with a high-probability. In this case, the optimal black-box behavior would be the
identity P =T where P(y = z|z) =1 for all z € X. Different tasks require different types of behaviors, thus
a framework is needed to quantify a black-box’s performance at a particular task. To this end, we apply a
game theoretic approach to black-box models.

In this game theoretic framework, the black-box is viewed as a player in the game and the experimenter is
viewed as the referee. The referee samples input € X with uniform probability P(z) = 1/|X| and passes it
to the black-box, which outputs y € Y with probability P(y|z). The black-box is assumed to operate in the
discrete memoryless setting hence, after many experimental runs, a full behavior P can be characterized.
Each pairing of input and output is then associated with either a reward or a cost, allowing the average score

to be evaluated from the probabilities P(y|z).

Definition 6. Black-Box Game: A tuple (v,¢g) that contains a minimum average winning score 7 € R
and a predicate function g : Pyjx — R that quantifies the average performance of a black-box P € Py x
in the one-shot setting given uniform prior distribution P(x) = 1/|X|. A winning condition for the game is
encoded into the inequality

7> g(P) (2.11)

where g(P) is the average score and v € R is the minimal average score needed to “win" the game.

In general, the predicate function g(P) is unrestricted beyond the fact that it must accept a black-box
behavior and output a scalar, which leaves quite a bit of flexibility in how a task is quantified. By Lemma 2
any behavior can be expressed as a convex combination of deterministic behaviors P = 3" y1;D;. It follows

that a linear predicate function satisfies

gP) =y (Z Nz‘Dz) = Zﬂig(Di)a (2.12)
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while a nonlinear predicate function does not. When a game is linear the score g(P) is the weighted average
of the independent scores for the deterministic behaviors g(D;). On the other hand, nonlinear predicate
functions do not decompose into a weighted average over g(D;).

An example of a nonlinear game that quantifies communication through a black-box is the mutual

information between input or output can be considered
gP)=I1I(X;Y)=HX)+ HY)-H(X,Y) (2.13)

where X and Y denote random variables on the input and output and H(-) denotes the Shannon entropy of

a marginal or a joint distribution

H(X)=-> P(z)logy (P(x)) and H(X,Y)=-Y > P(x,y)log, (P(x,y)). (2.14)

TEX TEX yey

However, a difficulty with nonlinear predicates, such as entropic quantities, is that the score can only be
evaluated after many shots are taken. This is because the Shannon entropy calculated from a single shot of
the experiment is always 0. Thus, nonlinear predicate functions should only be scored against behaviors,
which have been estimated from many shots. We now turn to formalize linear black-box games with linear

predicate functions.

Definition 7. Linear Black-Box Game: A tuple (v, G) containing the minimum average score v € R and
predicate matrix G € RIYIXI¥I. For a given linear black-box game, the average score achieved by a black-box

behavior P : X — Y with uniform prior distribution is
v>(G,P)=Tr[G"P| =) > G,.P(yl»). (2.15)
zeX yey

Since the predicate function is linear, we may express it as a weighted average over the deterministic

behaviors

g(P)=(G,P) = <G, ZﬂiDi> = Z,Ui (G,D;). (2.16)

Furthermore, the inner-product (G,P) =3, G, . P(y|z) shows that each conditional probability P(y|z) is
scaled by a distinct game coefficient G, .. Additionally, G, , can be interpreted as the reward or loss for
outputting y given input z. When averaged over many shots of the game with = being drawn from a uniform

distribution the score g(z) = (G, P) is recovered.

Lemma 3. Given a linear black-box game (v, G) the maximal score that can be achieved for any behavior
Pe 'Py|X is

*= max (G,P)= max G, 2.17

v = g (GP) = 3 ma G (217)

and the minimal score that can be achieved is

i G,P) = inG, » 2.18
nggw< , P) x;(ryrg} » (2.18)

where in both cases a deterministic behavior P* having 0/1-elements can achieve the optimum.

Although Lemma 3 provides hard bounds on the possible scores that can be achieved in a black-box game,
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in practice, the lower bound can be avoided by considering a black-box that outputs white noise.

Lemma 4. Given a linear black-box game (v, G), an ignorant black-box with no knowledge of the game

being played can always achieve the score

D IPOEC R (219)

reX yey D}|

by exhibiting the white noise behavior P =3 3> -y ﬁ ly){x].

As given by Lemma 4 a behavior that exhibits white noise, always outperforms the worst case lower
bound in Eq. (2.18) unless, for all z € X and y € Y, G, = ¢ for some constant c¢. In this case, however, the
black-box game is quite useless because its score is constant for all behaviors P € Py x. As a result, in any
game scenario, if a black-box performs worse than the white noise score in Lemma 4 it should be considered
as failing to play the game. The reason being that if any amount of correlation exists between the input X’
and output ) alphabets, then the score must be better than the white noise score because the white noise

score can be achieved when there exists no correlation between input or output.

2.4 Simulating Black-Box Behaviors

Since a black-box is characterized by its behavior P € Py x, a black-box is simulated if and only if its
behavior is reproduced. Following the approach used by Brito et al. [98], we quantify the closeness of
two black-box behaviors using the following distance measure. Then, we can formally define exact and

approximate simulations of black-boxes.
Definition 8. Behavior Distance: D(P,P’), The distance between two behaviors P, P’ € Py where

AN 1 _ ! _ 1 _ /

and the factor of 1/|X| results from the inputs € X being drawn with uniform probability.
Definition 9. Consider two black-box behaviors P, P’ € Py x.
(i) Exact Simulation: One behavior eractly simulates another if and only if D(P,P’) = 0.

(ii) Approximate Simulation: One behavior approzimately simulates another if and only if D(P,P’) < e

where 0 < € < 1 is an allowable tolerance for error.

While the exact simulation of a behavior may be theoretically useful, the approximate simulation is more
practical. To see this, we must understand that behaviors result from stochastic processes, in which two
behaviors are the same only if their respective finite sets of sampled data are identical up to a reordering.
Thus, the exact simulation of a behavior exists only in an idealized sense and, as a result, it is more physically

relevant to consider simulating a behavior in the approximate sense.
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CHAPTER 3

CLASSICAL COMMUNICATION NETWORKS

Classical communication networks are ubiquitous across science, technology, and society. Everyday we use
communication networks for making online purchases, making wireless phone calls, and using GPS. In general,
classical communication networks consists of many communicating parties, each operating independently
from the others based upon their local information. There is also a causal flow of information through the
parties in the communication network. At their root, communication networks transmit data between devices
enabling distributed applications in computing, sensing, and communications.

In this section, we extend the black-box model to a general model of classical communication networks.
In our model, black-boxes serve as network devices and the communication between the black-box devices
imposes a causal structure on the network. Our approach builds upon the frameworks of network information

theory [119], causal inference [120], and Bayesian network theory [121].

3.1 A Communication Network as a Black-Box

In a classical communication network, there is a causal flow of information between devices. That is, the
network accepts input data, processes the information, and outputs some data at a later time. Naturally, a
classical communication network can be modeled as a black-box. To extend the black-box model of Chapter 2
to networks we consider multiple inputs represented as sequence of values (1, ...,z,) = 3 € ANt where
each value is given to a specific device in the network. Likewise the output (y ..., ym) = 7t € YN can
distributed amongst many devices. As a black-box, a classical communication network is characterized by its
behavior PNet . xNet _, PNet 55 described in Definition 3.

Caution should be taken when modeling a communication network as a black-box because many classical
communication networks do no operate in the discrete memoryless setting. That is, real-world communication
networks, such as the internet, often rely upon persistent memory and maintaining a record of transactions.
Such data record is essential to the networking applications that society depends on. However, the objective
of this dissertation is not to model real-world classical networks, but to compare classical networks to their
quantum counterparts. As will be reiterated later, the discrete memoryless setting is practical for many
real-world quantum systems. Therefore, it is illustrative to view classical networks as a black-box in the
discrete memoryless setting.

The black-box model provides a convenient framework for characterizing the behavior of networks, however,
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the black-box model is too general because the black-box can construct any conditional probability distribution
that maps the input set XNt to the output set YN, Since the network’s probabilities are unrestricted, its
ability to perform any task encoded as black-box game is also unrestricted. That is, the network can solve
any communication or processing problem perfectly. Realistically, a communication network has restrictions
on the behaviors it can exhibit. For example, if the amount of communication between parties is restricted,
data is lost as it propagates from input to output. This loss of data constrains the network’s behavior such
that it cannot achieve perfect communication from sender to receiver. Thus, this lost of information must be
accounted for in the behaviors produced by the network.

In general, a communication network’s causal structure and communication resources impose natural
restrictions on the network behaviors PNet . yNet _y YNet Tt js therefore important to peer inside the
black-box and investigate its causal structure and information flow. In doing so, we can identify important
constraints on the network’s behaviors given its causal structure and communication resources. As will be
discussed later, these classical restrictions are precisely where nonclassicality can be observed in quantum

systems.

3.2 A Communication Network of Black-Boxes within a Black-Box
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Figure 3.1: A classical communication network of black-box devices within a black-box device. Gray box represents a
network device modeled as a black-box. The double-lined arrows denote the classical communication between devices.

Definition 10. Communication Network Topology: Net(ﬁ ,E), A communication network’s causal
structure is represented graphically as a directed acyclic graph (DAG) where each node represents a networking
device and the double-lined arrows depict classical communication (see Fig. 3.1). Equivalently, the topology
can be expressed as a collection of nodes N and their connecting edges E where

|N| . |E]

and E = (id“‘ﬁRXi) . (3.1)

i=1

N =

T ]\77
= (Nl = (Devm-)‘j:ll) o
=1
In Eq. (3.1), the nodes N are ordered as layers of devices N; where Dev; ; labels the j*" device in the it
layer. The device layers occur sequentially in time and designate time steps in the flow of information while

devices in the same layer process their local information in parallel. While the device labels Dev; ; can be
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adapted to any network structure, the notation can become quite onerous. Our solution is to label network
layers alphabetically, e.g., N = (N A N B, N ¢ ...). Devices within each layer share the same alphabetic
label, but with a numeric subscript, e.g., NA = (A1, Az, As, ...). Throughout this work, the notation Dev; ;
is used when discussing devices in general networks while alphabetic labels are used when referring to devices
in a particular network or DAG.

The edges E in Eq. (3.1) represent noiseless one-way channels id ™~ from a sender device (Tx € N) to
a receiver device (Rx € N ). In each use of the one-way classical channel a single message m € MR g
transmitted where M ™ 7B is the message alphabet used for the communication and MN¢t = Hli‘l MR
denotes the set of all message alphabets. It is important to note that devices within the same layer are
assumed to not communicate. Therefore, if the sender is Dev; ; and receiver is Devys ;/, then ¢ < 4’ must hold,
meaning that communication occurs only between devices in subsequent layers.

Additionally, the network’s devices may have inputs and outputs. If we denote the input and output

alphabet of Dev; ; as X; ; and ) j, then the network’s aggregate input and output alphabets are

IN| |Ni| IN| |N:|

Nt =TT [[ A and YN =[] Yis (3.2)

i=1j=1 i=1j=1

Note that in Eq. (3.2) both the number of inputs [ Net| and outputs |YN¢!| for the network scale exponentially
with number of nodes |N| = Hgll |N;).

By imposing a strict spatial and causal structure onto the information flow of the black-box, we limit
the behaviors PNet : yNet 5 YNet that the network can produce. Indeed, the limitations on the network’s
behavior correspond to fundamental physical constraints. Namely, devices within the same layer Nj are
independent from one another. This independence corresponds to a space-like separation between devices
in the same layer, meaning that they do not communicate or are nonsignaling. Likewise, when there is
communication between devices, a strict time-like separation is imposed. That is, there is a causal link
connecting the sender to the receiver, which is represented by an arrow in the network’s DAG. A device
Dev; ; is said to have causal influence on Devy j/ if a path can be traversed from Dev; ; to Dev; ;» while
following the flow of the network’s DAG.

3.8 Classical Networking Devices

fDeV 5 }-;Dev
—)Dev ev —
s = iy
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PEEY(y Y, my Y |x Y, my V)

Figure 3.2: A black-box model of a generic classical networking device.

Definition 11. Classical Networking Device: Dev; ;, A device that receives, processes, and transmits
classical data in a communication network Net(N' , E) Let Dev; ; denote the networking device represented
by the i*" node in the j** layer of the network’s nodes N. As input, the device may accept classical value

x;; € & ; and a collection of classical messages m; ElS M?;‘ that Dev; ; receives from its parent nodes. As

23



output, the device may produce a classical output y; ; € J;; and a collection of classical messages rﬁlT}‘ that

Dev; ; transmits to its children nodes.

Without loss of generality, classical networking devices can be modeled as a black-box (see Def. 1).
Just like a black-box, networking devices receive, process, and transmit classical data in a causal manner.
Furthermore, if the device is assumed to operate in the discrete memoryless setting (see Def. 2), it can be
characterized by its black-box behavior P; ; : Xj j x M — V; ; x M where by Definition 3 the device

behavior is expressed as

Pij

2. 2. > ). Puymamt)

T€X; j y€Vi; mAxe MIEX mTxe MT%

y,m N, mRX’ . (3.3)

Modeling classical networking devices as black-boxes is important to this dissertation because no limitations
are placed on the device’s operation other than the size of of the device’s input and output. Therefore, any
constraints imposed on the behavior of a network Net(]\7 ; E) must result from the network’s causal structure

and the amount of communication used between signaling devices.

3.4 Classical Networking Resources

No Communication Resources Shared Randomness Classical Communication

Al 4 Y s b

Figure 3.3: Resources in Classical Communication Scenarios. From right to left we see a nonsignaling scenario
where no communication resources are present, a one-way communication scenario where device A sends a message to
device B, and a shared randomness scenario where two nonsignaling devices, Ao and A1, each receive a message from
a common source device A.
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From an operational perspective, the goal of a classical communication network is to perform a task in
multiparty communication or distributed information processing. A network’s ability to perform its task is
limited by the amount of communication between networking devices. Indeed, the communication between
devices can be thought of as a fundamental resource that enables a network to perform its task. Classical
communication resources are quantified by the number of communicated bits where each bit corresponds to a
binary value b € B = {0, 1} that is communicated between two devices. Furthermore, resources can be given
value and used to formally establish cost and performance metrics for the considered networking task.

We consider two general types of communication resources, dynamic and static. Dynamic resources, such
as classical communication, are transmitted from a sender to a receiver. This communication leads to a
causal link from the sender to the receiver. Static resources, such as shared randomness, can be used to
correlate the operations of networking devices. However, correlation does not imply causation, meaning that

correlated devices do not communicate information.
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3.4.1 Nonsignaling Devices

Consider the case where devices in the network Net(N, E) do not communicate such that [E| = 0. In this

n

case, the network can be expressed as a single layer of devices NA = (4;) 7—1- The behaviors of each device

then combine as a tensor product

PY' = QP and P(dF) = [] Plaslz,). (3.4)
j=1

j=1

Resulting from Eq. (3.4) are the nonsignaling constraints

P(ajlz;) = Z P(dj 4j,ai|%) ¥V a;€Aj, and FelX (3.5)
aj/;ﬁjE.A/.Aj

where the sum d;2;A/A; is over all outputs, excluding the output of the jt* device. The nonsignaling
constraint in Eq. (3.5) simply states that each device’s output is independent from the inputs given to other

devices.

3.4.2  Classical Communication

Definition 12. Classical Communication Resource: A dynamic communication resource used to send

a discrete message m € MT>*7?Rx =10 1, ... |IM™7EX| — 1} from a sender to receiver.

In a network’s DAG, classical communication is represented as a double-lined arrow from the sender
device (Tx) to the receiver device (Rx). Since the amount of communication between black-boxes restricts
the possible behaviors that a network can exhibit, it is important that we quantify precisely the amount of
communication between each device. To this end, we quantify the amount of communication by the size

PExoRx) — | MTx=Rx| - quantity referred to as the signaling

of the alphabet used for communication, x(
dimension. We adopt the signaling dimension from previous works [114], [122], [123] and provide a formal
description in Chapter 14. Generally, the signaling dimension quantifies the amount of classical messages
needed to simulate a given behavior, however when the channel is noiseless, the signaling dimension is simply

the size of the message alphabet. The total amount of communication used in a network Net(]\_f , E) is then

|E|
|MNet| — H ‘MTxi—>in|, (36)

i=1

where the corresponding number of bits is then log, (|MN°|), however, care should be taken because Eq. (3.6)
dissociates the communication resources from the network’s causal structure.

While we investigate the signaling dimension of noisy behaviors in Chapter 14, here we focus on noiseless
communication channels such that the classical network is restricted by the amount of communication, not the
quality of communication. Thus, the behavior P™ 8% = T; where d = | M™| = | M®¥| is deterministic and
communicates the message m € MT* from the sender to the receiver without error. The signaling dimension

PT*=Rx) — d which corresponds to the size of message alphabet used for communication. In this

is then k(
way, one-bit of communication would have d = 2 while n-bits of communication would have d = 2". Note
that if the communication channel were noisy, then the signaling dimension can decrease, hence, assuming

noiseless communication is the least restrictive constraint to place on the classical network’s communication.
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When there is communication between two devices, their behaviors combine through matrix multiplication.
Let P4 and P® be the behaviors of the sender and receiver devices respectively (see Fig. 3.3 center). Their

joint behavior is expressed as

PA7E = PPPA and P(ylr)= > P(ylm)P(m|z) (3.7)

meMA—)B

where the resulting behavior PA™% is indexed only by the input z € X and output b € B because we sum
over all possible messages m € MA~5. When device A and B have more inputs and outputs, the matrix

multiplication becomes a tensor contraction, however, we will discuss this case in greater detail in Section 3.5.

3.4.8 Shared Randomness

Shared randomness is produced by source devices A; that are represented in a network’s DAG as an elliptical
node. A source uses classical communication to distributes a shared classical message \; € M*™i to all linked

devices (see Fig. 3.3). The devices can then coordinate their operations using their shared random value.

Definition 13. Source Device: A, a device that produces m random variables X = (\; € [d])™, and
distributes each value to its receiving device using classical communication. Since source device’s do not have

inputs, their behaviors are expressed as vectors on a d™ dimensional vector space.

PA= 3" P

Xeldm

X> (3.8)

where ’X> = @7, |A\i) and \; € X.

Definition 14. Shared Randomness: A static communication resource used to correlate the behaviors of

two or more devices. A source device distributes shared randomness if its behavior decomposes as

PA=>"P()) @ IA) (3.9)

such that each recipient device receives the value A with probability P(\).

It is important to note that not all random distributions output from a source device are considered
shared randomness, only those in which each subscribed device receives the same value such that A is shared.
The effect of shared randomness on receiving device can be described through example. Consider a layer of n

nonsignaling devices that share a common randomness source A. Their behaviors combine as

PA= )" PPV @ @Py" (3.10)
AEMA

where Pfi € Paitx,s 2onemns P(A) =1, and P(A) > 0. The conditional probabilities are
P@x) = Y []Plajlz;, VPO (3.11)
AeMA j=1

Note that Eq. (3.11) satisfy the nonsignaling constraints of Eq. (3.5), showing that shared randomness does

not allow devices to communicate.
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To quantify the amount of shared randomness, we can again apply the signaling dimension. If we assume
that the shared randomness is communicated without noise, the respective classical communication channels
have behaviors that correspond to the identity matrix PA—=4
k(PA740) = |QA| because Q! is the alphabet of discrete shared random values. Thus, the amount of shared

randomness is quantified as the minimum number of discrete random values needed to distribute the shared

i = Ijga| where the signaling dimension is

random variable to one device. Note that the number of devices that share randomness could also be
considered, however, the amount of random values that each device can apply is still fixed as |Q%].

In this work we will often consider the case where an unlimited amount of shared randomness is available,
in which case || — co. One reason being that this presents the best case for classical network. Note that
the devices could distribute the shared random values prior to use and used at a later time to correlate the

devices without needing communication.

3.5 Characterizing the Behaviors of Classical Networks

Definition 15. Classical Network Behavior: PNet, The black-box behavior associated with a classical
network Net(N, E) where

PNt = %" > P[5 (3.12)

i?eXth g’echt

with each conditional probability decomposing as

IN| |N;|

Py = > [IT] Pt m™ |z, m™) (3.13)

mNet e AfNet =1 j=1

where z € X; ; and y € ) ; are the inputs and output of Dev; ; while m"* and 1M are the messages received

and transmitted by Dev; ;.

Definition 16. Set of Classical Network Behaviors: CN°t, The set of behaviors that can be generated
by the network structure Net(ﬁ , E) provided in a given a classical network Net. All behaviors Pyet € CN¢
must satisfy Def. 15. Note that the notation CN°* will typically be used when discussing the sets of classical

networks in general.

For any classical network, the set of behaviors is contained by the set of black-box behaviors
CN" C Py x. (3.14)

The subset is strict when communication resource limitations restrict the set of behaviors. Recall that the
extreme points of Py y are the deterministic behaviors with 0/1 matrix elements. Therefore, any classical
network behavior that is deterministic must be extreme. Furthermore, the extreme points of the set of
classical network behaviors are also deterministic [109], [124]. These extreme points will be denoted VNet.
Since the extreme points are deterministic, they can be achieved without using any shared randomness
because shared randomness would necessarily incorporate stochasticity into the behavior.

When randomness is shared amongst all devices in the network. The resulting set of network behaviors

becomes a convex polytope
cXet = Conv (CNet) = Conv (VNet) (3.15)
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where the deterministic behaviors correspond to vertices of the polytope and the A subscript denotes the
convex hull. On the other hand, when randomness is not shared amongst all devices the classical network set

becomes nonconvex
cNet c et (3.16)

In many settings, shared randomness can be considered as a free resource because it could have been
distributed prior to the experiment. Therefore, it is often convenient to assume that all devices are correlated

and the set of classical network behaviors is convex. We will discuss the geometric structure of this set in
Chapter 4.
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CHAPTER 4

CLASSICAL NETWORK POLYTOPES

The results in this dissertation build upon the geometric structure of convex polytopes defined on the spaces
of black-behaviors. At a high-level, a convex polytope is a closed convex set that has a finite number of
extreme points called vertices where flat faces connect the vertices to bound the set.

In general, we refer to convex polytopes on the set of black-box behaviors as probability polytopes, however,
we make note of two important convex polytopes. In Chapter 2, we introduced the set of black-box behaviors,
Py|x (see Def. 4), which is referred to as the full probability polytope. Furthermore, we will refer to as

classical network polytopes the set CRI

¢t = Conv (CNet) where CN°t is the set of behaviors for a general classical
network (see Def. 16) and the convex hull Conv (-) means that the devices have an unlimited amount of
shared randomness at their disposal. Note that C}° C Py .

In this chapter, we will provide the necessary background for understanding the structure of classical
network polytopes. Given their geometry, we point out key features that are important for understanding the

methods and results of this work. For an introduction to polyhedral theory, please see Ref. [118].

4.1 The Vertex Representation

A convex polytope P is expressed in the vertex representation as its set of extreme points or vertices V. The
polytope is then defined as the convex hull of the set of vertices P = Conv (V) [118]. We now define classical
network polytopes in the vertex representation because it admits a simple representation and the vertices are

useful for deriving other useful properties of the geometric structure.

Definition 17. Vertex Representation of a Classical Network Polytope: CRI“, Let VN¢t denote the
set vertices, or deterministic behaviors, that can be achieved by a classical communication network CN°t. The

classical network polytope is then defined
CA°" = Conv (VN°Y) (4.1)

The vertices of probability polytopes correspond to deterministic behavior matrices that have 0/1 elements

(see Def. 5). Since the full probability polytope’s vertices, Vy|x, are deterministic behaviors, it follows that

VNt C Yy p (4.2)
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and C°* C Py

Since classical network polytope have deterministic vertices, they belong to a category of integral polytopes
known as 0/1 polytopes where the vertices of 0/1 polytopes lie on the unit hypercube [125]. Furthermore,
classical network polytopes can be viewed as a generalization of the correlation polytopes introduced by
Itamar Pitowsky [126], which characterize the joint probabilities of binary events.

The set of vertices for classical network polytopes can be enumerated, however, the task can be difficult
given the large number of vertices. Let’s begin with the full probability polytope. The set of vertices Vyx
contains

Vyixl = Y1 (4.3)

unique deterministic behaviors where Vyx enumerates all possible ways to combine |V letters into a word of
length |X|. The exponential scaling of the number of vertices foreshadows the difficulties that will arise in
performing computations on classical network polytopes.

Since classical networks also have deterministic behaviors as vertices, the set of vertices can be constructed
by brute force. That is, deterministic network behaviors result from all devices performing deterministic
behaviors. Thus, to construct the set VNt the deterministic behaviors Vyijlxi,; can first be enumerated for
each device Dev; ;. Then, using Def. 15 the individual deterministic device behaviors can be combined into a
deterministic network behavior. If all combinations of device behaviors are taken, then VN°* is enumerated in
full.

When the vertices VNt are enumerated in this manner, they produce a set that is typically over complete,

VNet

however, should only contain unique vertices. Hence we derive the upper bound on the number of

classical network vertices to be
[N |N;

\
VN < T T 1l e! (4.4)

i=1j=1

where N denotes the set of nodes in the classical network’s DAG. In general, more efficient algorithms can be
used to enumerate the vertices without redundancy. Unfortunately, the number of vertices will usually still

scale exponentially with number of inputs |X; ;|.

4.2 Polytope Dimension

Convex polytopes in two or three dimension form familiar shapes such as triangles, squares, and cubes. In
this dissertation, the considered convex polytopes will require more than just three spatial dimensions to
represent. Fortunately, the geometry of convex polytopes generalizes naturally and intuitively to higher

dimensions.

Definition 18. Polytope Dimension: Dim (P), The dimension of the Euclidean space required to represent

the convex polytope P.
A polytope’s dimension Dim (P) can be evaluated from the set of vertices V in the following steps.

1. Consider the vectorization |V) of a deterministic behavior V € V where

-1
V)= > Plyl)|z)@y) <= > Plylz) ly)(z| =V (4.5)
zeX y=1 z,y
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where the last value of each column is removed to account for the |X| normalization constraints on the
behavior V.

2. Construct the matrix M € RIY*XIXIVI=1 55 the concatenation of column vectors,

[YxX|

= > D V)= Vo)l (4.6)

i=1 VeV/Vo
where V € V serves as the coordinates of the origin.
3. The dimension of the convex polytope is Dim (P) = Rank (M).
Lemma 5. The dimension of the full probability polytope is Dim (Pyx) = [X[(|V] — 1).

Proof. A behavior matrix P € Py x is isomorphic to a vector |P) on euclidean space of dimension | x X]|.
The behavior matrix is subject to a normalization constraint »_ ., P(y[z) =1 for each z € X. Since there
are n normalization constraints, dim Pyx = |V x X| — [X| = |X|(|]Y| — 1) where |¥ x X| = [V]|X]. O

As another example, consider a network of non-signaling devices Net(N4, E) where |[N4| = n, and |E| = 0.

The corresponding classical network polytope has dimension [127]
Dim (CY®) = [T (1 + |x|(1¥i] - 1)) — 1 (4.7)
i=1

due to normalization and the general nonsignaling constraints in Eq. (3.5).

4.3 The Half-Space Representation

A convex polytope can alternatively be expressed in half-space representation as the intersection of a finite set
of linear half-space inequalities G, referred to as facet inequalities [118]. Each facet inequality in G designates
a tight bound on the convex polytope P. In the case of the full probability polytope Py)x, the set of linear
half-space inequalities Gy x corresponds to the non-negativity constraints P(y|z) > 0.

Recall from Def. 7 that a linear black-box game represents a linear inequality on the probability space
Py|x. Here a linear inequality is expressed as a tuple (v,G) with G € RPYIXI* and v € R where the
tuple describes the inequality v > (G,P) = > Gy .P(ylr) < v for arbitrary behavior P € Py|x. For

convenience, we introduce two important subspaces of probability polytopes.

Definition 19. Probability Half-Space: #(v, G), A subspace of the full probability polytope Py|x where
H(7,G) = {P €Pyx |72 (G,P) and Dim(H(y,G)) =Dim (Pyx) }. (4.8)

Definition 20. Probability Hyper-Plane: F(v,G), a subspace of the full probability polytope Py)x
where

F(,G) = {P € Pyjx ‘ ¥=(G,P) and Dim(F(y,G)) = Dim (Pyx) — 1}. (4.9)
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Definition 21. Half-Space Representation of a Probability Polytope: A probability polytope P C

Py)x is expressed in the half-space representation as the intersection of a finite set of linear half-spaces GNet
|cht|

P = ﬂ H(vi, Gi) (4.10)

(see Def. 19) and that it tightly bounds the probability polytope P and belongs to the set GNet.

where each inequality v; > (G, P) is a facet inequality, meaning that the inequality is both a proper half-space

Lemma 6. A linear inequality (v, G) belongs to the set facet inequalities G for the probability polytope P if
and only if:

1. P CH(y,G);
2. Dim (P N F(v,G)) = Dim (P) — 1.

Proof. Condition 1 must hold because the half-space inequality bounds the polytope P. Condition 2 enforces
that F (v, G) is a proper half-space that tighly bounds the probability polytope P. O

An important consequence of Condition 2, Lemma 6, is that a linear inequality can be verified to be a

member of G if the equality holds
Dim ({V eV |y=(G,V)}) =Dim(P) — 1. (4.11)

That is, the upper bound for each facet inequality bounding polytope P is achieved by exactly Dim (P)
affinely independent vertices.

A general classical network polytope facet inequality (v, G) € GN* does not have a unique form. It is
therefore convenient to establish a lexicographic normal form for a given facet inequality [128]. Using the

following observations, a normal form can be established.

1. Multiplying a linear inequality (v, G) by a scalar a € R does not alter the half-space contained by the
linear inequality, that is, H(vy, G) = H(a(v), aG).

2. When the set of vertices V contains only 0/1 matrices, all coefficients of the game matrix G are rational
[118], [129]. Therefore, there exists a rational scalar a such that aGy , and ay are integers for all z € X
and y € Y.

3. The normalization and non-negativity constraints on black-box behaviors implies equivalence between

the following two inequalities

7> (G, P) <= 7+1>(G,P)+ > G, Pyl (4.12)
yey

for any 2’ € X. Therefore, it is always possible to find a form of the linear inequality (v, G) where
v>0and Gy, >0forallycYand x e X.

Definition 22. Normal Form: A facet inequality (7, G) € GN°* is expressed in its unique normal form

when the following two conditions are met:
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1. The inequality is expressed as v > (G, P), otherwise the inequality is scaled by —1 to reverse the

inequality.

2. The smallest value in each column of matrix G is 0, otherwise the smallest value is made to be zero by

adding or subtracting normalization constraints from the column as in Eq. (4.12).

3. For inequality (v, G), v and all G, , are integers with a greatest common factor of 1, otherwise the

inequality is scaled by the appropriate rational number.

One advantage of defining the normal form for each facet inequality is that it admits a lexicographic
ordering of inequalities. This means that if two game matrices are vectorized as |G1) and |Gz), then they
can each be assigned a ranking and sorted. Interpreting the vector |G) = G, |z) ® |y) as an integer with

|V x X| digits, then the vector |G) that corresponds to a larger integer has a larger rank. For example, let
|G1) = (1,0,3,3)7 and |G2) = (1,2,0,4)7, (4.13)

then |G2) > |Gq) because the first digit is the same in each case, but the second digit is larger for |G3). Note

that two vectors will only have the same rank if they have the same normal form for their game matrices.

4.4 Facet Liftings

The facet inequalities that bound a classical network polytope Cklet can be lifted to the polytopes of similar

networks with more inputs, outputs, or parties [127], [129]. The advantage of facet liftings is that known
facet inequalities can be generalized to networks of arbitrary scale.

A facet inequality v > (G, P) is input lifted to a new facet v > (G”, P) if G” € RIYI*I¥'l is obtained from
G ¢ RYIXI¥l by padding it with (J&’| — |X]) all-zero columns where |X’| > |X|. Likewise, a facet inequality
is output lifted to v > (G',P) if G’ € RIY'1XI¥1 is obtained from G € RIYIXI¥| by copying rows; i.e., there
exists a surjective function f : )’ — Y such that G;,J = Gy, forally’ € V' and x € & where |)'| > [V].

As an example, we demonstrate input and output liftings on the identity matrix G = I3,

00 100 0
G=1[0 10 LI“&L“% G'=[0 10 of, (4.14)
ifting
0 0 1 00 1 0
] ] (1 0 0
00 100
G=101 0 SN e (4.15)
Lifting 01 0
00 1
- - 0 0 1

It is important to note that lifting a facet inequality does not alter its upper bound.

4.5  Symmetries and Generators

As shown in Eq. (4.3) and Eq. (4.4), the number of vertices for the classical network polytopes can grow
exponentially with the number of inputs. Generally, the number of facet inequalities |GN°*| that bound a

classical network polytope CY°* are significantly larger than the set of vertices, |GN°t| > |VNet|. Therefore, it
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can be a significant challenge to perform calculations upon the set of facet inequalities or vertices. Fortunately,
probability polytopes offer a great deal of symmetry, which can be exploited to simplify their complex
geometric structure.

The input and output values zX and y € Y are merely labels for a black-box’s behavior P € Py .
Therefore, the full probability polytope Py is invariant under swapping the labels 2 <+ 2" and y <> ' where
z,x' € X and y,y’ € Y Rosset2014. The relabeling operation corresponds to permutations on the input

and output.

Definition 23. Set of Permutations: Let 7 € S¥ represent a permutation as a doubly stochastic matrix

having elements wf(j € B. The set of permutations is then

S¥ ={ 1 e RIX¥IXIXI ’ Zm,j = Zm,j =1 and m,;eBVi,jed,. (4.16)
ieXx jEX

A black-box behavior’s inputs and outputs can be permuted as
P' = YPr* where P,P'€Pyy, 7 €S8, and n¥eS*. (4.17)

Likewise, a facet inequality (v, G) € Gy|x can be permuted into a new facet inequality (v, G’) € Gy where
G’ = m/Gr?. As we will see later, the probability polytopes P C Py, x that we consider will also be invariant
under certain permutations. Given this permutation symmetric structure, we can construct broad classes of

vertices and facets that greatly simplify the description and computation of probability polytopes.

Definition 24. Vertex Class: A set of probability polytope vertices that can be transformed by permutation
into a canonical vertex V*, which is referred to as a generator vertex. The set corresponding to the vertex

class is constructed as
{V eV ’ VEa¥Va¥ v a¥ €SY and ¥ e Sy}. (4.18)

Definition 25. Facet Class: A set of probability polytope facets that can be transformed by permutation
into a canonical facet (v, G*), which is referred to as a generator facet. The set corresponding to the facet

class is constructed as
{(%G) €g ] Gm¥GrY vV 1¥eSY and e 53’}. (4.19)

In both cases, the generator vertex or facet is arbitrary where it may be convenient to use the vertex
or facet whose lexicographic rank is either maximum or minimum. Furthermore, when considering general
probability polytopes, it may be the case that the sets of permutations may be restricted in some way,

however, the facet and vertex classes can each be defined with respect to any permutation operations.

Definition 26. Set of Generator Vertices: V*, The set of generator vertices V* € V that each represent

a distinct vertex class.

Definition 27. Set of Generator Facets: G*, The set of generator facets (v, G*) € G that each represent

a distinct facet class.

Since the number of input and output permutations scale as factorials of |X| and |)| the sets of generators
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dramatically smaller than the full set of vertices or facets. That is,
V| < V| and |G*| < |G| (4.20)

where the complete set of vertices or facets can always be recovered by taking permutations of the generator.

Thus, it is important to exploit the relabeling symmetries of network polytope [129].

4.6 Transforming Polytope Representations

Convex polytopes can be equivalently expressed in either the vertex or half-space representation, however, the
choice of representation largely depends on how the polytope is defined. Since each representation has its own

advantages, it is important to be able to transform a convex polytope from one representation to the other
V< G. (4.21)

In practice, it is easy to enumerate the vertices of classical network polytopes, but challenging to determine

the polytope’s facets. Thus the main challenge is to convert a set of vertices into their bounding facets.

4.6.1 Deriving Facet Inequalities via Linear Programming

Linear programming is perhaps the quickest way to derive a facet inequality (v, G) € GN°* from the set of
vertices VN for a classical network polytope CY°®. For a formal introduction to linear programming please
refer to Boyd and Vandenberghe’s textbook on convex optimization [92]. Linear programs are typically
solved using software. In this work, we use the High Performance Software for Linear Optimization (HIGHS)
optimizer [130] via the Julia Mathematical Programming (JuMP.jl) interface [131] exposed through the Julia
Programming Language [132].

In general, a linear program solves an optimization problem with a linear objective function subject to
linear constraints. Linear programs can be solved efficiently using algorithms that have a time complexity
that scales polynomially with the number of variables. Due to its efficiency linear programming is a powerful
tool when it can be applied.

A linear program that derives facets of a classical network polytope is written [109], [133], [134]

max (G, P) — 4.22
(%G)< )= (4.22)
st (G, V) —y<0 V Vegphet (4.23)
(G,P)—y<1 (4.24)

where the linear program requires the complete set of vertices VNt and a black-box behavior P € Pyx- If
P € CY°Y, then the objective evaluates to 0 > (G, P) — ~, otherwise, the objective evaluates to 1 = (G, P) — 7,
which implies that P ¢ CY°. In both cases, the optimal inequality (v*, G*) will designate a linear bound
on the polytope. When P ¢ CRI“ the bound corresponds to a linear inequality that separates P from C%Ct.
Although, care should be taken to ensure that the produced inequality corresponds to a proper facet as
described in Lemma 6.

The advantage of this technique for deriving polytope facets is its performance that scales polynomially

with the problem size. Furthermore, no knowledge about the facet structure is needed, only the set of vertices
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YNet and a test point P. However, a drawback of the linear programming approach is that the set vertices

grows exponentially with the input, which will eventually render the linear program as inefficient an unable
to solve the problem at hand. Additionally, the linear program only derives a single example facet. Other

methods are needed to obtain the complete set of facets or generator facets in a guaranteed manner.

4.6.2  Full Polytope Transformation via Fourier-Motzkin Elimination

The complete set of facets can be obtained from the vertices using an algorithm based on Fourier-Motzkin
elimination [118]. In this work, we apply the Polyhedron Representation Transformation Algorithm (PORTA)
[135]. This polyhedral analysis software is especially convenient for 0/1 polytopes because the algorithm
performs computations on rational numbers rather than floats. Hence the exact values for vertices and facets
can be computed without significant risk of numerical error.

A drawback of the PORTA software is that it is not parallelized. This means that it cannot be run in a
distributed manner. In order to scale to larger polytopes parallelism is needed due to the computational
complexity of polytope transformation algorithms. Nevertheless, the algorithm is still useful for rigorously
exploring many interesting examples.

A second drawback of the PORTA software is that it is no longer maintained by the authors. As part of
this work, we have developed a wrapper XPORTA.jl [136] that integrates PORTA software with the Julia
programming language [132] through the Polyhedra.jl package interface [137]. The XPORTA.jl software
significantly improves the ease of using PORTA by making it executable by code written in Julia. The
XPORTA.jl wrapper also tests core functionality of the PORTA software to ensure that it still performs as

expected on modern operating systems.

4.6.3 Deriving Generator Facets via Adjacency Decomposition

The set of facets GN* for a classical network polytope CY°* is completely described by its set of generators

(GN*)* and its input and output symmetry group S (CY°*) and SY(CY°*). Therefore it is wasteful to perform
a complete polytope representation transformation because only the generators (GN*)* C GN°t are needed.
This task can be achieved due to some important consequences of the polytope’s permutation symmetry.

First, we define facet adjacency.

Definition 28. Facet Adjacency: Two facets (71, G1), (72, G2) € G are adjacent if and only if they share
a ridge R defined as:

1. R:= ]:('YlyGl) N .F(’)’Q,GQ) 077,
2. where dim(R) = dim(P) — 2.

A ridge can be understood as a facet of the facet polytope F (v, G). To compute the ridges of a given facet
(v, G) € G we can use the standard Fourier-Motzkin elimination procedure for computing facets [118], [135].
A facet adjacent to (v, G) can then computed from the ridge using a rotation algorithm described by Christof
and Reinelt (see Algorithm 2 of Ref. [128]). Furthermore, the ridge shared between two facets is unique to
those facets. Then, consider two adjacent facet polytopes Fi, F2 € G. Given the permutation symmetry of
the probability polytope, all permutations of F; must lie adjacent to a similarly permuted F5. This means
that the complete set of generator facets lie in a connected neighborhood with each other. The neighborhood

represents a tiling pattern that covers the probability polytope. By this symmetry, any representative of a
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given facet class has the same fixed set of facet classes adjacent to it and there cannot be two disjoint sets of

generator facets where the members of one set do not lie adjacent to the members of the other.

Definition 29. Adjacency Decomposition Algorithm: [128] An iterative algorithm which requires as

*

input the probability polytope vertices V, a generator facet (Yinit, Gly;) € G, and the permutation symmetry

groups for S* and SY. During operation, the algorithm maintains a list of generator facets £ where each
generator facet (v, G*) € LG is marked either as considered or unconsidered. Upon input, the algorithm adds
the input facet (Vinit, GZ,;;) to £ and marks it as unconsidered. In each iteration, the algorithm proceeds as

follows:
1. An unconsidered generator facet (v, G*) € L is selected.
2. All facets adjacent to (v, G*) are computed.
3. Each adjacent facet is converted into its lexicographic normal form.
4. Any new generator facets identified are marked as unconsidered and added to L.
5. Facet (v, G*) is marked as considered.

The algorithm completes when all generator facets in £ are marked as considered upon completion £ = G* is

guaranteed to hold.

The adjacency decomposition algorithm provides a few key computational advantages over the PORTA

software and Fourier-Motzkin elimination techniques:

1. The adjacency decomposition algorithm requires considerably less memory because the algorithm stores

only the generator facets G* instead of the complete set of facets G.

2. A new generator facet is guaranteed to be output in each iteration. That is, the algorithm computes

facets with less redundancy and does not need to run to completion to obtain new generator facets.

3. The algorithm can be widely parallelized because each generator facet can be considered independently

and the search for adjacent facets can be parallelized [128].

Our developed adjacency decomposition algorithm is implemented in the BellScenario.jl Julia package [138].
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CHAPTER b5

QUANTUM FUNDAMENTALS

Quantum physics describes the dynamics of systems that are incredibly small. At its heart, quantum
mechanics is a phenomenological theory of the natural world, meaning that our understanding of quantum
systems is inferred from the data we measure from them. Although quantum mechanics accurately predicts
the behavior of physical processes on average, quantum physics fails to describe the inner workings of quantum
systems with certainty. This paradox has confounded physicists and philosophers for over a century. Indeed,
it is a complete mystery as to why quantum mechanics behaves in the way it does, and any model that
describes its inner workings is metaphysical at best. Nevertheless, quantum physics can be leveraged as an
important tool for understanding the natural world.

The study of quantum mechanics dates back over a century to when researchers began to observe that
the natural world is not only quantized into discrete energy packets, but that physical systems also exhibit a
wave-particle duality [139]-[142]. These theoretical results were subsequently demonstrated experimentally
indicating that both matter and light exhibit a wave-particle duality nature. In 1930, Paul Dirac used these
established results to formulate the axiomatic approach to quantum theory that we continue to use nearly a
century later [143], while similar results were given by Von Neumann in 1932 [144].

At the highest level, the axiomatic approach to quantum mechanics breaks the dynamics of quantum
systems into three stages: preparation, evolution, and measurement. In the preparation stage, a quantum
state |¢) is represented by a complex-valued vector having norm one. In the evolution stage, the prepared
state is transformed into a new state vector |¢') = U |¢) where U is a unitary operator. In the measurement
stage, the evolved quantum state is projected onto an orthonormal basis {|¢,)}2_; to obtain a classical result
x €{0,...,d — 1} with probability P(z) = | {¢,|U|w)|?>. A familiar classical example to which a quantum
system can be compared is a coin flip where, with some probability, we expect the coin to show either the
heads or tails orientation. However, we will never observe both heads and tails at the same time. Quantum
systems are similar in that we will only observe one outcome at a time, but the ways quantum coins flip in
nature seems defy our classical understanding of physics.

In the following sections, we provide a more detailed description of the quantum formalism. The curious
reader can find a more detailed approach to quantum theory in references [61], [145]. Furthermore, we’ve
implemented the described quantum mechanical framework as an open-source software package “QBase.jl: A
base library for quantum information” [146]. This software is written in the Julia programming language

[132] and is used in numerical calculation and investigation of quantum systems.

38



5.1 Representing Quantum Systems

To discuss quantum mechanics with any precision, we must first elaborate upon the mathematical objects
that describe quantum mechanics. At its root, quantum mechanics applies physical meaning to linear algebra
and its familiar matrices and vectors. When representing quantum systems, matrix-like objects are referred
to as operators while vector-like objects are referred to as either a bra or a ket depending upon whether it
is a column or row vector. The bras, kets, and operators are then combined algebraically to describe the
dynamics of quantum systems. We now define each of these components and the mathematical operations

under which they can be combined.

5.1.1 Bra-Ket Notation

Definition 30. Ket: a column-vector on a complex-valued, d-dimension vector space C%

Zal ao,...,ad,l)T. (51)

Definition 31. Bra: a row-vector on a complex-valued, d-dimension vector space (C%)f

Za il = (ag,---,a5_1) (5.2)

where a} denotes the complex conjugate of a;.

Bras and kets can be expressed with respect to any orthonormal basis {|¢) € C?}4_, provided that it

spans C?. To express bras and kets, we use the conventional computational basis
{10),11),...,1d = 1)} = {(1,0,...,007,(0,1,...,0)F,...,(0,0,..., 1)} (5.3)

Generally, the dimension of bras and kets is unrestricted. In many quantum mechanical cases, an infinite
dimensional complex-valued vector space is needed, in which the corresponding vector space is regarded as a
Hilbert Space H. This dissertation will focus mostly on finite dimensional vector spaces.

The vector spaces of bras and kets are dual to each other in a one-to-one correspondence. For every ket
|9) € C? there exists a bra (y| € (C?)T, and vice versa. Bras and kets can each be transformed into their
corresponding dual via the conjugate transpose , (¢| = |w> and <1/1|T [1).

As dual vector spaces, an inner-product operation exists between bras and kets. For a bra (¢| = (b1, ...,bq)

and a ket 1)) = (ai,...aq)T the inner product is expressed as

(o) = Zb ai, (5.4)

which is a complex-valued scalar. Note that the naming of bras and kets comes from their inner-product

because it forms a bra(c)ket. In quantum mechanics, bras and kets are typically normalized such that
d

1= () = Z ;> where |a;|? = ala;. (5.5)

i=1
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Likewise, the outer-product between (¢| and ket |1) to produce a complex-valued d x d matrix
d
(W) (6] = > aib i) (4], (5.6)

i,j=1

where |1)(¢| € C?*4 and the outer-product of computational basis elements indexes row i and column j of

the resulting matrix.

5.1.2  Operators in Quantum Mechanics
Definition 32. Operator: A linear operator or matrix M defined on a complex-valued matrix space (Cdx‘i/7
d d d d
M=% Myli)il = (iIMlj) i)l (5.7)
i=1 j=1 i=1 j=1
where the subscript 4, j indexes the matrix element.

Since operators can be represented as matrices, they admit the same algebraic operations and properties

as matrices. For example, an operator M can be multiplied by Bras, kets, or both as

My) =1¢), (M =(¢|, and (M) = (o). (5-8)

The eigenvectors (eigenkets) of an operator then satisfy M |[¢) = u|¢), in which p is a complex-valued
scalar corresponding to the eigenvalue. Furthermore, the vector and matrix spaces of multiple bras, kets, or
operators can be combined as tensor products. For example, the tensor of bras and kets produces bras and

kets in a higher dimension,

(Ol @ (W[ = (o, 9] and ) [¢) = [d, ) (5.9)

where if |¢) , [1) € C?, then |, 1)) € C¥. Likewise, the tensor product of operators M, M’ € C¥*? produces
the matrix
N=MeM (5.10)

2 d? . . .
where N € C% >4 While the tensor product of matrices or vectors can always be expressed as a matrix or
vector respectively, it can be convenient to regard these objects as tensors whose tensor rank increases as

more subsystems are combined under the tensor product.

5.2 The State Space Axiom

Quantum systems are understood to exist as a state within an abstract metaphysical state space. Whether
quantum states correspond to a physical element in reality is a matter of interpretation. Nevertheless,

quantum states can serve as an important model in predicting the behaviors of quantum systems.

Definition 33. Quantum State: An abstract model of a physical quantum system represented as a

normalized d-dimension bra or ket

) € S(C%) = {|¢) € C*| (y|y) = 1}. (5.11)
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Figure 5.1: Bloch Sphere: The quantum state space of all qubit (d = 2) states can be mapped onto a sphere
where the z-axis corresponds to the computational basis states |0) and |1), the z-axis corresponds to the basis
states |£) = %(\O) + 1)), and the y-axis corresponds to the basis states |£) = %ﬂ()} +4]1)). A general

qubit state is expressed as [¢)) = cos(%) |0) + e*?sin(£) [1). Pure quantum states map to the surface of the
sphere while mixed quantum states map to the interior where the maximally mixed state p = %]IQ corresponds
to the origin.

The dimension of the quantum state |¢) corresponds to the fact that d orthonormal basis vectors {|i)}9=4

are needed to span C?. As a result, an orthonormal basis must be complete

I, = Z |i)(d] . (5.12)

We will refer to quantum states that have d = 2 as qubits, d = 3 as qutrits, and d-level systems as qudits.
Quantum states can also be infinite dimensional, in which case the complex vector space C? becomes a Hilbert
space H. This work mainly considers finite dimensional quantum systems hence we apply complex valued
vector space C¢.

1;1:—01 may be interpreted as the set of classical states for the quantum

The computational basis states {|i)
system. These classical basis states are orthonormal such that (i|j) = J; j, meaning that they represent
mutually exclusive states for the system.

Quantum states are distinct from classical states because they can exist in a superposition of basis
states |¢) = Z?:_Ol a; |1). Whether a state is in a superposition or not is subjective and depends upon the
orthonormal basis that is chosen by the researcher to represent the state. However, superposition allows for

two quantum states, |¢) = Z?;OI a; |i) and |¢) = Z;l;é b; |7), to be nonorthogonal

0<[{oly)] <1. (5.13)

Quantum states that are not orthogonal are said to overlap and can not be distinguished with certainty.

Quantum states may also be combined by tensor products into larger composite systems. For example,
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consider the qubit states [1) , |¢) € S(C?). The joint two-qubit state is then calculated as the tensor product
WJ> ® ‘¢> aobo |00> + (Lobl ‘01> + albO ‘10> + albl |11> . (5].4)

where |00) , |01),[10),|11) = |0),|1),]2),|3) are the computational basis states expressed as binary numbers.

Definition 34. Density Operator: p, An abstract model of a physical quantum system represented as an
operator
p € D(Cxd) = {Me(CdXd ’ M =M M>0, Tr[M] = 1} (5.15)

Any quantum state can be expressed as a density operator by taking the outer-product p = [1)(|. Such

a density operator has Rank (p) = 1 and is referred to as a pure state, otherwise the density operator is said

to be a mized state. In general, the purity of a quantum state can be quantified as Tr [pg]. Given a quantum

state p the purity Tr [pﬂ quantifies how mixed the state is. Note that Tr [p2] < Tr[p] =1 and that for pure

states Tr [pQ] = Tr [p], meaning that their purity is 1. The smallest purity is achieved by the maximally

mixed state ppix = %Hd and its purity is Tr [pmix] = 5 Thus, the purity of any density operator p € D(C*%)
is bounded as

é <Tr[p?] <1 (5.16)

The set of density operators is convex, D(C%*?) = Conv (D(CdXd)) with pure state lying on the boundary

(see Fig. 5.1). Therefore, any density operator p may be expressed as a statistical mixture of pure states

o= ZW |:)(1bs|  where |i;) € S(CY), p; >0, and Z,ui =1 (5.17)
i=1

=1

These pure states [¢;) represent possible orientations of a quantum system and p; their bias. Thus mixed

states can be interpreted as an experimenter’s uncertainty of a system’s quantum state.

5.3  The Time Evolution Axiom

Quantum systems are dynamic and their states are constantly evolving in time. To formalize the time
evolution of quantum systems we begin with closed quantum systems and extend the model to open quantum
systems. A quantum system is closed when it does not interact with its environment. In this case, a quantum
system’s evolution is ideal and modeled using unitary operators. On the other hand, an open quantum
system interacts with its environment. The coupling to the environment leads to noisy evolution of quantum
states because information is lost to the environment. In open quantum systems, the observed evolution of
the encoded quantum state is nonunitary and generally represented a completely-positive trace-preserving
(CPTP) map.

5.3.1 The Unitary Dynamics of Closed Quantum Systems

The time evolution of a state is defined according to the system’s Hamiltonian, an Hermitian operator
H € C¥™9 that assigns energy to quantum states |¢/) € S(C?). By solving the Schridinger equation for

the respective Hamiltonian, the time evolution of a quantum state |¢(t1)) — [1(t2)) is calculated to be the
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unitary operator U = e~ "1t where |1 (t2)) = U |1 (t1)) and to = t; + t. In general, a unitary operator is

defined as follows.
Definition 35. Unitary Operator: An operator U € C**? satisfying UT = U~! where UTU = UU' = 1,.

The set of unitary operators form a group because it contains an identity element I;, an inverse element
Ut =U~!, and is associative (AB)C = A(BC) for unitaries A, B, C. Furthermore, consider two unitaries U
and V. Both their matrix product, UV, and their tensor product, U ® V, results in unitaries.

An important property of unitary evolution is that it preserves the normalization and purity of quantum
states. This means that when a pure state [1)) € S(C?) is evolved by unitary U, we find the resulting state to
be U [¢p) = |¢) € S(C?) because

[(plo) | = | (VIUTU) | = | ($|y) | = 1. (5.18)

Similarly, when a mixed state p € D(C?*9) is evolved by a unitary, the resulting state is UpU' = ¢ € D(C?*9)
because
Tr[o] = Tr [UpUT] =Tr [pUTU] =Trlp =1 (5.19)

where the cyclic property of the trace is applied. Under unitary evolution, we see that the purity remains
constant because
Tr [0%] = Tr [UpUTUpU'] = Tr [Up*UT] = Tr [p?] (5.20)

where the cyclic property of the trace is used.

Perhaps one of the most interesting features of unitary operators in quantum theory are their time-
reversibility. Since UT = U~!, the dynamics of a quantum system evolved by unitary U can be reversed by
applying the unitary UT

Wit2)) = Ul(t))  amd  [o(t2)) = UT [g(ta) - (5.21)

The reversibility of quantum mechanics (and classical mechanics for that matter) introduces an interesting
paradox. Simply put, if physics is reversible, then why are certain processes seemingly irreversible? For
example, an ice cube will melt into a puddle over time on a hot day, however, there is no sensible way in
which an ice cube will spontaneously form from a puddle, even at sub-zero temperatures. Th reversibility
paradox, as it is known, is one of the more puzzling phenomena to appear as we try to map theory of physics

on to the physical universe.

Definition 36. Quantum Circuit: A graphical representation of the unitary evolution of a quantum
system where lines called wires represent qubit subsystems and blocks represent unitary operations on those
gates (see Fig. 5.2). In the diagram, time passes from left to right where unitary operators are applied in
sequential time steps. Additionally, each qubit is assumed to be independent unless acted upon by a unitary

operator coupling it to other qubits.

Quantum circuit diagrams explicitly describe when unitary operations are applied and to qubit subsys-
tem(s). Quantum circuit diagrams are often easier to read than their equivalent algebraic representation,
which consists of a series of tensor products, matrix multiplications, and permutations of tensor indices.
Fortunately, all of this tedious book keeping is explicitly handled by the wiring and ordering of unitary gates

in the circuit diagram.
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Figure 5.2: (Left) A unitary operator is applied to the zero qubit state as |¢)) = U |0). (Center) An N-qubit unitary
operator is applied to N zero qubit states as |[¢) = U \())@N. (Right) Two-qubit unitary operators are applied in a
cyclic pattern on three qubits where the vertical line connecting two U gates denotes that U® acts on only the first
and third qubit wire.

5.3.2  Quantum Channels and the Nonunitary Dynamics of Open Quantum Systems

While the unitary time evolution of a quantum system is a fundamental axiom of quantum mechanics, unitary
evolution fails to describe the noisy quantum dynamics observed in both natural and engineered systems.
The problem being that unitary operators preserve normalization and purity of a quantum state, but physical
systems typically become more mixed over time as noise interferes with the expected quantum process. This
disconnect raises the question: how can the unitary model of quantum mechanics describe noisy physical
universe?

The natural answer is that quantum systems do not exist in isolation. They are open and constantly
interacting with their environment. Through these environment interactions, the quantum states in the
investigated system are observed locally to exhibit nonunitary dynamics. This means that quantum states are
actually defined on a composite state space [1))™* @ |¢)*™ € §(C? ® HF™) where HF™ denotes the Hilbert
space of the environment, which may have unbounded dimension. When a unitary operator, U € C? @ HF»,
is applied jointly to the system and environment ass U |¢)*** @ |¢)™™, the information encoded into the
>

quantum state [1))""* is spread out into the environment. Furthermore, the resulting quantum state on Sys is

the mixed state obtained via the partial trace

P = Ty [U )™ © [8) (6" UT]. (5.22)

In principle, the original quantum state |1)) can be recovered by reversing the unitary operation that couples
the system and environment, however, an experimenter does not always have control over the environment.

This general process of noisy evolution of quantum systems is described by the formalism of quantum channels.

Definition 37. Quantum Channel: A completely-positive trace-preserving (CPTP) map, N : D(Hy) —

D(Hgar), that models the nonunitary dynamics of a noisy quantum system. For an input matrix M € C?*4

the completely-positive constraint requires that A'(M) > 0 for M > 0, while the trace-preserving constraint
requires that Tr [M] = Tr [N (M)]. The set of all CPTP maps from one density operator space to another is

denoted CPTP(Hq, Ha)-

Quantum channels can be represented in many different ways. The choice of representation largely depends

on context. The simplest representation is to express the quantum channel as a function acting upon a
quantum state, e.g.,

Noy(p) = (1 =7)p +7UpU Tr o] (5.23)

where v € [0, 1] parameterizes the amount of noise and U is an arbitrary unitary operator. In general, a
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Figure 5.3: A quantum channel is described by a quantum circuit where the system |'¢))A is modeled on an N-qubit
register and the environment is modeled on an M-qubit register |¢>E"V. The output of the quantum channel is
an N’-qubit mixed state pA/ where the remaining M’ qubits are lost to the environment. Note that all qubits are
conserved, N + M = N’ + M’, but the input and output registers A and A’ do not to have the same dimension.

channel’s functional N, is arbitrary under the condition that it produces a CPTP map for all v € [0, 1].
While it is often easy to write down a function that describes a channel’s action on a quantum state, the
detriment of this representation is that the researcher must take care to ensure that the produced channels are
CPTP. Alternatively, more direct representations of CPTP maps can be used such as the systsem-environment

representation and operator-sum representation of a quantum channel.

Definition 38. System-Environment Representation: [61], [147] A CPTP map is expressed as a unitary

operator Uﬁ/’Env acting upon a system A and its environment as

oY = N () 1) = Trew, [T (001" @10...) 0. [P) 0] (5:24)

where |) (1] € S(@I, C?) is an N qubit state, the environment is an M-qubit state |0...)™ = [0)®*,
and Trgyy [-] is the partial trace over the environment. Note that the environment can be assumed to be the

zero-state without loss of generality.

In the quantum circuit, the system is modeled using N qubits while the environment is modeled using
M ancillary qubits. Generally, the number of ancilla needed to perform any quantum channel on N qubits
is bounded as M < 2N. Therefore, given an N-qubit system, its full range of CPTP dynamics can be
modeled by a quantum circuit having in total 3N qubits where 2N of those qubits are reserved as ancilla.
However, real-world quantum computers are noisy meaning that additional noise from the quantum computer’s

environment will be incorporated into the quantum channel in an irreversible manner.

Definition 39. Opterator-Sum Representation: [61], [148] A quantum channel N € CPTP(DA(C4*4), DA'(C4 *d'))
can be expressed as a set of Kraus operators

K|
Ky = {K e Cd'xd ] S KK, = I[d} (5.25)
=1

where the Kraus operatore need not be square and the channel’s map is applied as

K|

P =N ) = 3 Kiw) I K (5.26)
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5.4 The Measurement Axiom

Quantum states are observed through measurement. In this process a researcher applies a measurement x € X
to a quantum system to obtain a result y € ) where X and ) are discrete sets. Upon measurement, quantum
systems behave stochastically such that given measurement x, outcome y is obtained with probability P(y|x).
If the experiment can be identically repeated many times the researcher can reconstruct the probability
distribution describing the quantum system’s behavior. Thus, quantum states are not observed directly, but
through their sampled data, therefore, they can be modeled as black-boxes (see Chapter 2).

In the remainder of this section, we discuss in greater detail how the measurement process is incorporated
into quantum mechanics. We introduce three types of measurement operators, projector-valued measures

(PVMs), positive-operator-valued measures (POVMs), and observables.

5.4.1 Projective Measurements

Definition 40. Projector-Valued Measure (PVM): A quantum measurement with |Y| outcomes is

modeled as a complete set of projective and orthogonal operators

|
PVM(CI*d) = {{Mi e CY | M2 = M= M, M >0, S VM, =1y, MM, = 5i,jMi} (5.27)

i=1
where each operator M; corresponds to a distinct measurement outcome and |Y| < d

In general a PVM element is an operator M, that corresponds to the measurement outcome y € ). Given
a density operate state p € D(C?*?) the probability of observing measurement outcome ¥ is given by the

Born rule
P(y) = Tr [M,p] (5.28)

where 0 < P(y) < 1. Note that the researcher has no control over the measurement outcome, but the
researcher can control choose the PVM measurement operators { M, }, where z € X' labels the PVM.
When |Y| = d, a PVM forms an orthonormal basis where each PVM element has Rank (M,) = 1. In this

case, we refer to the PVM as a measurement basis {|¢y>}fll where M, = |¢,)(dy]-

P(y) = {¢yl) [> where p=[¢)(0]. (5.29)

When a measurement result is obtained, the experimenter gains information about the state of the
quantum system. In essence, the quantum state has been projected onto one of the measurement outcomes.
Mathematically, the post-measurement state is expressed

/ HypHL

V= (5.30)

When Rank (II,) = 1, Eq. (5.30) becomes

= [dy)(y] - (5.31)

In other words, the quantum state is projected onto one of the measurement basis states.
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In a quantum circuit diagram, a projective measurement in the computational basis is denoted using
a meter symbol and occurs at the end of a wire (see Fig. 5.4). To measure in a basis other than the
computational basis, a unitary operator can be used to perform a change of measurement basis operation.
Since the quantum measurement process is stochastic, the measurement result can be regarded as a sample

from a random distribution as defined for the considered measurement operator and quantum state.

Figure 5.4: A projective two-qubit measurement in an arbitrary measurement basis that yields a two-bit measurement
result mo, m1 € B. The meters measure in the computational basis while the preceding unitary operator can arbitrarily
transform the computational basis into any measurement basis.

5.4.2  General Measurements

Projective measurements are restrictive because they require orthogonality between measurement operators.
In general, quantum measurement operators need not be orthogonal projectors. The advantage of relaxing
these constraints is that the measurement operator interacts with the quantum system more weakly, meaning
that its effect on the measured state is minimal at the expense of gaining less information about the quantum

system.

Definition 41. Positive Operator-Valued Measure (POVM): A quantum measurement represented

as a set of operators representing distinct measurement outcomes

|
POV M(C¥d) = {{Hi e cx V! ‘ >0, > VL = Hd} (5.32)

i=1
where |Y| > 0.

Since POVM elements are not required to be orthogonal projectors, the number of measurements operators

n can exceed the dimension of the state space d. However, the probability of obtaining outcome y € ) is
determined by the Born rule

P(y) = Tr[Ip]. (5.33)

The post measurement state can be calculated by factoring the POVM elements ass II,, = K;Ky where K,
are Kraus operators. In this way, a POVM resembles a quantum channel in the operator-sum representation

of Eq. (5.26). The post-measurement state is then expressed as
p = M (5.34)

Tr 1L, p]

When a POVM is viewed as a quantum channel, the Stinespring dilation theorem [147] used in system-
environment representation of a quantum in Eq. (5.24) can be extended to POVMs. This result, referred to
as the Neumark dilation theorem [149], proves that any POVM can be written as a PVM on a larger state

space.
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Figure 5.5: A qubit POVM measurement is implemented on a quantum circuit as a dilation on the input state
space |¢)) € S(C?*?) extended with an N-qubit ancilla. Note that the N + 1 bit string that is obtained through
measurement may require additional post-processing the number of measurement outcomes it not 2V+1.

5.4.83 Observables

In many cases, quantum systems are characterized by the expectation of their measurement results rather
than the probability of seeing different outcomes. The formalism of observables simplifies the calculation of

expectation values in quantum systems.

Definition 42. Observable: A Hermitian operator that describes the expectation of a measurable quantity

in a quantum system

Obs(C4*d) = {0 € Cixd ‘ 0= OT} (5.35)
An observable is O € Obs(C?*?) can be expressed in terms of its eigenvectors |¢,) and its eigenvalues b,
as
d—1
O =2 byldy){dyl- (5.36)
y=0

Note that {|¢,)}, form an orthonormal measurement basis, which is a PVM, and the eigenvalues simply apply
a physical to each outcome. Since O is Hermitian, its eigenvalues are real b, € R, but otherwise unrestricted.
For example, the Hamiltonian of a quantum system is an observable that measures the system’s energy and
its eigenvalues correspond to energy of each possible state the system can be observed in.

The expected measurement outcome for given a density operator p € D(C%*?) is expressed as

(0), =Tr[0p] = Zb Tr |y (g p] = Zb P(y (5.37)

Hence, we explicitly show the relation between an observable and the PVM described by its eigenvectors.
Furthermore, from the far right of Eq. (5.37), we recover the standard definition of the expectation value
from probability theory.

An important distinction between quantum and classical measurements is compatibility. In brief, two
observables A, B € Obs(C%*?) are compatible if and only if

[A,B]= AB— BA=0, (5.38)

which implies that both observables A and B can be known simultaneously. While Eq. (5.37) must always

hold in classical systems, it does not need to hold in quantum systems.
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5.5 Does Quantum Mechanics Describe Reality?

When quantum physics is applied, it predicts strange behaviors that defy the familiar classical intuition.
We expect that past events events causally affect the future but future events do not affect the past. We
expect that nature is realistic by having properties that are objectively defined, even when they are not being
measured. Finally, we expect that nature is local such that the dynamics of a system depend only on its
objective properties and any forces cannot propagate faster than the speed of light. These notions of causality,
realism, and locality our deeply rooted in our human experience. Thus when quantum physics defies these
classical ideals, quantum systems appear to be quite strange. This strangeness was even unsettling for the
researchers Einstein, Podolsky, and Rosen who argued in their 1935 work that quantum mechanics was not
a complete description of nature because it does not describe nature in a local and realistic way [11]. To
support this claim, they draw upon two counterintuitive examples where quantum mechanics seemingly defies
classical physics.

For instance, when incompatible observables, e.g., 0, and ¢,, are measured sequentially on same quantum
particle, the result of the second measurement precludes the result of the first in a destructive manner [11].
The dynamics of quantum systems appear to be dependent upon their applied measurements, making it
impossible to separate the observer from the observed. For this reason, the physical properties measured by
the two measurements are not described by an objective reality.

Second, consider two quantum particles that are entangled and separated by a great distance. If one
particle is measured, then the other particle is left in a state dependent upon the first particle’s measurement.
To Einstein, Podolsky, and Rosen, this theoretical nuance cannot describe nature because for the second
particle’s state to depend upon the first particle’s measurement some propagating force is needed to travel
from one to the other. If the second particle is not in the first particle’s light cone, this force would need to
propagate faster than the speed of light. However, a physical mechanism for superluminal signaling is refuted
strongly by Einstein’s theory of special relativity [150].

Given these peculiarities, the researchers postulated that quantum mechanics is an incomplete theory. As
a correction, they argued that local hidden variables must exist that determine the behaviors of quantum
systems. If these hidden variables were known, then the outcomes of quantum experiments could be calculated
with certainty. As a result, quantum mechanics is an incomplete theory resulting from our incomplete
understanding of the subatomic universe. Although, the notion of local hidden variables is enticing, it
was later proven wrong [12] and verified experimentally [151] that the entanglement correlations cannot be
described by local hidden variables.

Much later, in 1978 when J.A. Wheeler proposed a thought experiment referred to as the delayed-choice
experiment. The goal of the experiment was to determine when a quantum particle “decided” to exhibit a
wave-like or particle-like behavior [152]. In general, the delayed-choice experiment is a scenario in which the
wave-particle duality of individual quantum particles is tested as they pass a through double-slit interferometer
[153]. That is, if both slits are open, then the particle will exhibit a wave-like interference pattern. However,
if one of the two slits is blocked, then the quantum particle exhibits the particle-like behavior of having a
fixed trajectory. These two measurements are incompatible because the particle can’t be both wave-like
and particle-like simultaneously. To explain this phenomenon, it was thought by Wheeler that setting
the apparatus up for wave-like measurement or particle-like measurements could affect whether or not the
prepared quantum state is a wave or particle. In the delayed-choice experiment, this behavior is ruled out

because the quantum particle is first prepared and sent towards quantum double-slit interferometer, but while
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the particle is in flight, the choice of measurement is made. Thus, upon initialization, the particle is unable
to know which measurement will occur. The delayed-choice experiment can be demonstrated experimentally
using a Mach-Zehnder interferometer where it is shown that quantum particle always exhibits the properties
of the applied measurement [154].

It is no doubt that incompatible measurements, entanglement, and wave-particle duality allow for
counterintuitive quantum phenomena to occur. However, experiments have verified that these phenomena
also occur in nature. As a result, quantum mechanics accurately predicts the behavior of the natural world.
However, it is somewhat unsatisfying because quantum mechanics fails to make predictions with certainty.

Nevertheless, if these strange quantum phenomena exist, then they can be measured and applied.

5.6 The Nonclassicality of Quantum Mechanics and Nature

Nearly three decades passed after Einstein, Podolsky, and Rosen posited their conjecture that local hidden
variables determined quantum mechanics with certainty. However it was remarkably rebutted by Bell who
showed that two entangled quantum particles can produce correlations that are not reproducible by any
physical theory, that is local, realistic, and causal, classical physics being such an example theory [12]. Bell’s
result is interesting because it implies the existence of an operational test that can verify whether or not
the natural world obeys local realism. Experimentally, such Bell tests have been implemented and it has
been demonstrated that the predictions of quantum mechanics are correct [14]-[17], [155]-[157]. Therefore,
quantum physics is nonclassical and defies our classical understanding of physics.

Nonclassicality can also occur in systems where there is a strict time-like separation such as the delayed-
choice experiment. Although, the experimental results of delayed-choice experiments seem to indicate that
upon creation, the quantum particle has yet to “decide” whether it is a wave or particle [154], it was recently
shown that Wheeler’s delayed-choice experiment can be reproduced by a classical model [158]. However, if
the state preparation is conditioned upon a random input such that for each input z a different quantum
state |1),) is prepared, then quantum systems can exhibit nonclassical behaviors that cannot be reproduced
by a classical theory [158]-[160]. Furthermore, these nonclassical behaviors have been verified experimentally
using a Mach-Zehnder interferometer [161], [162].

The nonclassical phenomena that occur in both Bell tests and delayed-choice experiments has spurred
a broad field of research into the study of various nonclassical phenomena [64], [109], [124], [163]. The
concepts of nonclassicality have even been extended to networks using a range of theoretical frameworks
Tava, [164]-[171]. From a perspective in foundational physics, these examples of nonclassicality demonstrate
how locality, causality, and realism cannot all hold simultaneously in quantum systems. However, exactly

how these classical assumptions break down is still a mystery and remains open to interpretation.
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CHAPTER 6

QUANTUM INFORMATION TECHNOLOGY

From an engineering standpoint, quantum technologies apply quantum physics to solve problems. Quantum
technologies can be categorized into three groups: computing, sensing, and communications. A wide range
of quantum computing architectures are being developed [39], however, their advantage has yet to be
demonstrated. Quantum computers are theorized to provide significant advantages in simulation tasks
[18]-22], which may lead to improved algorithms for designing drugs (23] and materials [24]. Similarly,
quantum algorithms have been identified that provide exponential or quadratic improvements over the best
existing algorithms [25]. Examples include searching over big data sets [26], or factoring large numbers
[27]. Alternatively, quantum systems can be used to sense their environment with greater precision than
existing techniques [28]. Quantum sensing techniques are already being used in practical applications such
as improving sensitivity gravitational wave detectors [29]. More generally, quantum sensing techniques are
expected to improve telescopes [30], [31], clock synchronization [32], and biomedical imaging applications [33],
[34]. Finally, quantum communications technologies can help improve the efficiency of data transmission,

improve information security, or be used transmit quantum systems [35]—[37].

6.1 Quantum Information

The quantization of quantum systems permits information to be encoded into its discrete quantum states.
From this perspective, a bit of information (a 0 or 1 value) can be encoded into a two-level quantum
particle called a qubit. However, a qubit is distinct from a bit because the qubit can be in a superposition
of the 0 and 1 state simultaneously. The qubit superposition state is represented by the complex-valued
vector [¢) = cos(0) |0) + sin(6)e!? 1), where |0) = (1,0)T and |1) = (0,1)T correspond to the two possible
classical values. When measured, a qubit is projected into a definite outcome, 0 or 1, which is a classical
bit. The probability of obtaining each measurement outcome is calculated from the qubit’s quantum state
as P(x = 0) = |(0]¢)) |> and P(x = 1) = | (1]¢)) |*. The process of measurement alters the quantum state
such that the post-measurement qubit matches the classical bit value observed as output. There is also a
contextuality to measurements in quantum systems. That is, two measurements that could be applied to a
qubit may be incompatible such that their outcome cannot be simultaneously known. This property formally
known as the Heisenberg uncertainty principle [172], which means that when one quantity of a quantum

system is measured with certainty, any information associated with a second incompatible measurement is
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lost, hence the certainty of which both quantities can be predicted is bounded.

In quantum communication a quantum state, such as a qubit, is sent from one party to another raising
the question of whether quantum physics allows for more efficient communication. After all, an enormous
amount of information could be encoded into the continuum of possible qubit superpositions. However, there
is a fundamental limit such that only one bit of classical information can be decoded from the qubit. This
result was first formulated by Holevo stating that the classical communication capacity of a quantum system
does not exceed that of its corresponding classical system of equal dimension [173]. These results were later
strengthened by Frenkel and Weiner who showed that the classical data of a quantum communication channel
can always be simulated exactly using a dimension no greater than that of the quantum channel [115].

The prepare-evolve-measure model of quantum mechanics can be recast as an information processing
scheme: encode, process, and decode. First, information is encoded into quantum state through state
preparation. Next, the information is processed as the state undergoes unitary time evolution. Finally,
information is decoded from the state through measurement.

The encoding, processing, and decoding are controlled by classical data, meaning that they can each be
given an input x1 € X, 2 € X2, and z3 € A3 respectively. In this manner, x; corresponds to the applied
quantum state encoding p,, € D(H*), zo corresponds to the applied channel processing £,, € CPTP(A — A’),
and z3 corresponds to the applied measurement decoding {IL,,, }ycy € POVM(HA/) where mixed states,
CPTP maps, and POVMs are considered for full generality. Upon measurement, the system outputs the
value y € )Y with probability

P(ylzy, w2, 23) = Tr (114, Er, (pay )] - (6.1)

The quantum information processing system can be modeled as a black-box because classical data is
input to and output from the system, however, the evolution of the quantum state space is hidden from the
researcher. Like a black-box, the probabilities in Eq. (6.1) can be used to construct a black-box behavior
P: X x Xy x X3 — Y for the quantum system. Through the formalism of black-box games, the quantum

system can be given task and it performance evaluated.

6.2 The Quantum Internet Vision and Road Map

Central to the development and scaling of quantum technologies is connecting many quantum devices
together to construct a quantum network. In a quantum communication network, entanglement and quantum
communication are fundamental resources that enable the network to perform its functions. The advantages
of quantum information technologies are then derived from operating upon these resources. The vision is to
build a quantum network at global scale referred to as the quantum internet [52]—[54], [174], [175].

In the long-term, quantum communication networks are predicted to provide a slew of advantages in applied
communications. A core function of quantum networks is to use quantum communication approaches [35]-[37]
to distribute quantum information and entanglement to many network users. These networked resources
can be used to bolster many existing technologies. For instance, quantum networks, enable distributed
quantum sensing [176], [177], in which quantum communication and entanglement assist in applications
such as synchronizing atomic clocks [32] or building larger telescopes arrays [178], [179]. Similarly, quantum
communications can help improve information security in applications such as secret key sharing [180]-[182]
and evaluating algorithms on a quantum computer privately [183], among many other applications [184].
Furthermore, quantum networks can be used to implement distributed quantum computing [55], [56], [64], in

which large quantum computers are developed by distributing their operations across many small quantum
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computers. While the prospect of these advantages may be exciting, we must first overcome the challenge
posed by noise in quantum networking hardware.

We are far from building the quantum internet, however, it is predicted that a quantum internet can
be developed and scaled incrementally as new functionality and novel quantum capabilities emerge [52].
Currently, quantum networks allow for prepare-and-measure communication where sender devices prepare
quantum states and transmit them to receiver devices. The receiver device measures the incoming state to
produce a classical result. Prepare-and-measure networks lack a quantum memory, meaning that quantum
states are short-lived. As a result, the inputs and outputs of a prepare-and-measure network are classical and
extensive processing cannot be applied to quantum states. Despite these limitations, such networks can be
used for applications in key distribution [181], [182], [185] and randomness generation [186]-[192]. In practice,
quantum prepare-and-measure networks have been deployed with applications in quantum key distribution
[42]-[49]. These networks are generally constructed using linear optics, leading to measurement limitations.
Furthermore, the nonclassical behaviors that occur in prepare-and-measure networks have been both studied
extensively [124] and demonstrated experimentally [193]-[197].

A more advanced quantum networking functionality incorporates the use of classical communication
to assist quantum communication resources. This functionality is often referred to as local operations
and classical communication (LOCC) where network devices operate on their local quantum states while
coordinating their operations using classical communication. LOCC networks enables important protocols
such as teleportation [198], entanglement distribution [110], [111], and quantum network coding [199], which
can be used to prepare complex multipartite quantum states or send quantum states over long-distances using
quantum repeaters [112], [113]. While LOCC networks still operate in a prepare-and-measure format, they do
require general improvements to control, short-term quantum memory, and noise robustness to accommodate
the complications of LOCC. A further challenge is that entangled measurements are needed for entanglement
distribution protocols, however, such measurements are not available using the linear optics typically sufficient
for prepare-and-measure networks. As a result, LOCC networks apply matter-based qubit architectures
[200]-[202], although, network teleportation protocols have been demonstrated using photonic qubits [35].

An interesting extension of LOCC networks is measurement-based quantum computation [203]-[207], in
which computation is performed on a large entangled quantum state and measurement results condition
downstream operations. Such measurement-based quantum computers are actively being developed by
companies such as PsiQuantum [208] and Xanadu [209]. Measurement-based quantum computation is
attractive for distributed quantum computing because once the entanglement is distributed, only local
operations and classical communication are needed to run the computation.

Indeed it is an exciting time in the development of quantum networking. We are at the cusp of being able
to scale the first real-world applications of prepare-and-measure networks while LOCC networks are actively
under development. Despite having noisy hardware, these simple quantum networking technologies are still
predicted to provide value in communications and sensing technologies. As quantum networks become more

robust to noise, their processing and storage capabilities will improve, leading to the quantum internet [52].

6.3 Quantifying the Quantum Advantage

From a physical standpoint, it is interesting to ask why quantum physics seems to offer an advantage in
information processing tasks. Indeed, if one technology provides an advantage over another, there ought to

be a way to quantify that advantage through measurement and observation. Demonstrating such operational
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advantages is necessary to justify the cost of continued research into quantum information technology.

The operational advantage of information processing tasks can be quantified in terms of the fundamental
resources consumed during the information processing task. In classical information processing system, the
resource correspond to the bits that encode information and the operations applied to those bits. Similarly,
in quantum information systems, the resources are the quantum states that encode information and the
operations applied to those states. In either setting, the number of resources can be counted simply by
inspecting the system and its applied algorithm or protocol.

In quantum communication networks, a resource advantage can be shown in two ways. A communication
complexity advantage is shown when fewer quantum resources are needed to perform an information processing
task than analogous classical resources. Alternatively, a nonclassicality advantage is demonstrated when a
fixed set of quantum communication resources produces statistics that cannot be reproduced using a similar
classical network using an equal amount of classical communication resources.

Resource complexity advantages are a standard approach taken in quantum computing where a quantum
advantage is demonstrated by showing that fewer quantum resources are needed than classical [64], however,
such an approach presents a few issues. First, it is easy to place an upper bound on the number of resources
required to solve a task because the resource complexity of any known algorithm can be counted. However, it
is generally difficult to place a lower bound on the number of resources because this requires knowledge of the
best algorithm to apply, which is a nontrivial task even in the classical case. As a result, many of the resource
complexity advantages that have been identified are compared to the classical upper bound, meaning that the
possibility of a more efficient classical algorithm has not been ruled out. Furthermore, complexity advantages
often require a large amount of quantum resources to show their advantage, but NISQ devices of may have
too few qubits or too much noise to realize the advantage. Third, measuring the resource complexity requires
the researcher to have knowledge of the applied algorithm and the hardware that runs the algorithm. Indeed,
if device performs an information processing task without error, then it is impossible to assert whether the
device used quantum or classical resources and how many resources were used. Thus, resource complexity
advantages are not very operational because they cannot be observed from the measured data easily.

Alternatively, nonclassicality advantages provide a more operational way in which the quantum advantage
can be quantified. More precisely, a quantum network exhibits nonclassicality if its produced probability
distribution cannot be reproduced using similar resources in a classical network. In order to reproduce the
quantum behavior, the classical network would need to use more classical resources. which implies that the
quantum resources are more valuable. Nonclassicality is a practical quantifier of advantage because it requires
minimal quantum resources to demonstrate and it quantifies quantum resources precisely in terms of classical

resources.
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CHAPTER 7

QUANTUM COMMUNICATION NETWORKS

Equipped with our black-box model for classical networks, we are now ready to take the quantum leap. Similar
to a classical communication network, a quantum network is a collection of communicating devices that process
information in a distributed manner. However, the network devices are able to perform quantum operations
and utilize quantum communication resources. As a classical communication network enables classical
information technologies to be distributed, a quantum network enables quantum information technologies to
be distributed. As discussed in Chapter 6, many applications can be developed using quantum networks.
Indeed, this foundational framework for quantum information technologies can be used broadly throughout

quantum information science and technology.

7.1 Graphic Representation of Quantum Communication Networks

When quantum networking devices are connected together using quantum communication resources, they
form a quantum communication network. As in the classical network case, there is a well-defined causal
flow and ordering of the network’s events and operations. This causal structure imposes clear time-like
and space-like separations between networking devices, as well as the amount of communication between
devices.. The quantum network DAG is distinct from the classical network DAG, as shown in Fig. 3.1,
because quantum networks incorporate quantum communication resources. Furthermore, devices are no

longer treated as black-boxes, but are assumed to have a set of free operations that they can apply.

Definition 43. Quantum Communication Network Topology: The structure of a quantum communi-
cation network is analogous to the communication network topology in definition 10. A quantum network’s
topology can be represented graphically by a directed acyclic graph (DAG) (see Fig. 7.1). In the DAG, each
node represents a quantum networking device and the single-lined arrows depict quantum communication
between devices while the double-lined arrow depicts classical communication. The network’s topology can
be equivalently expressed as a collection of nodes N that represent networking devices and their connecting
edges EQ and EC that represent quantum and classical communication respectively. The network is then
described as

Y B, = (id“ﬁRXi)lﬁQl, Eo = (idei*R’”)l,Ec}. (7.1)

i=1

Ner= {N = (N = (Devi)2)

i=1
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Figure 7.1: Example DAG Representing a Quantum Communication Network. A quantum network can be

decomposed into three operational layers: preparation, processing, and measurement. Network layers occur sequentially
in time. Devices that are linked directly or indirectly are time-like separated, whereas devices with no causal link
between each other are space-like separated.

where Eq. (7.1) is analogous to the definition for classical communication network topology (see Def. 10).
However, the classical case is extended with quantum communication EQ where id ™ 7®* denotes the ideal

transmission of a quantum state from a sender device (Tx) to a receiver device (Rx).

Each node in a network’s DAG corresponds to a quantum networking device. The superscripts index the
device’s location in the network where the layer’s are labeled alphabetically and device’s in the same layer are
labeled numerically. The links between nodes correspond to dynamic quantum or classical communication
resources being used to communicate. We refer to the quantum communication as wires because they will
ultimately correspond to wires in a quantum circuit when we introduce our network simulation framework.

Fundamentally, quantum networks prepare, process, and measure quantum states. The classical data that
is input to the system is encoded into the network’s operations and measurements. When the quantum state
is measured, a classical value is output from the network. Hence, a quantum network has a classical input
and output and the quantum system and communication resources are responsible for mapping the in input
alphabet Z € XN°t in the the output alphabet 7 € YN°t.

At a high-level, a quantum network decomposes into three layers: preparation, processing, and measure-

ment. In the preparation layer, the network state pNet is initialized. In the processing layer, the quantum

channel operation 5};5'“ is applied. Finally, in the measurement layer the network measurement Hggtlfé is
applied. In this simplified networking model the three layers can be combined into a concise expression using
the Born rule of Eq. (5.29) and Eq. (5.28). For pure states, unitary processing, and projective measurements,
we find

PNet _ ‘< I;Ceti,fc UNet

Net>‘2 . (7.2)

Similarly for mixed states, quantum channel processing, and POVM measurements, we find

PN (g17) = Tr [HNgt‘fceNet(pggt)}. (7.3)
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In both cases, the classical input is defined ¥ = {#4, 7%, #°} and the the output is 4 = §. Furthermore,

each layer is assumed to implicitly permute its subsystems such that each layer is properly wired together as
expressed explicitly by the network’s DAG. That is the identity channels id4~B and idB~C are implicitly
assumed to be in Eq. (7.2) and Eq. (7.3), mapping each layer to the next as directed by the DAG.

It is important to remark that our quantum network model has a classical input and output, while many
quantum networking applications, such as teleportation, rely consider quantum inputs and/or quantum
outputs. However, we argue that quantum states themselves are not operational, hence, such applications
having quantum inputs and/or outputs are not operational on their own. More simply put, no advantage can
be realized in the applications until a measurement is made, producing a classical outcome. Thus, a device
that has quantum inputs and quantum outputs serves as a convenient component of a quantum network, but
shouldn’t be regarded as being operational on its own. After all, what is the use of a teleportation device if
its input and output are quantum states that are hidden from our objective reality? Indeed, the teleportation
device might as well have not existed in the first place—Just like the wavefunction! This is not to say that
protocols like teleportation do not provide value, it’s just that the value is not realized until measurements
are made yielding an operational advantage. Therefore, we ground our approach to quantum networking in
reality, not in the metaphysical quantum state space.

Since we consider quantum networks that have classical inputs and outputs, we can characterize the
network by its behavior. In this way, a quantum network can be regarded similarly to a black-box in the
discrete memoryless setting. This setting is especially practical for near-term quantum networks, which are

unlikely to have robust quantum memories and each shot of the network can be treated as being independent.

Definition 44. Quantum Network Behavior: PNet ¢ Py|x, A quantum network is characterized by
its behavior PNt = dogey Dozex PNet(§7%) |7} (Z]. For a layer of pure state preparations )w§§t> € S(’H’Z),
a layer of unitary network processing Uggt € U(HP), and a layer of rank-one projective measurements

N ) (o'

Definition 45. The Set of Quantum Network Behaviors: QN°t, the set of quantum network behaviors
that satisfy Def. 44.

the network’s transition probabilities are given by Eq. (7.2) or Eq. (7.3).

7.2 Quantum Networking Devices

The devices in a quantum network are similar to the network of black-boxes used to model classical systems.
To extend the black-box model to quantum systems, we need to incorporate quantum inputs and outputs
into the devices. Note that each device has a discrete classical input that controls the operation, however a

classical output is only provided if the device performs measurement.

Definition 46. Quantum Networking Device: A device that can receive, processes, and transmit both
quantum and classical information. A quantum networking device may have the same classical inputs and
outputs of as black-box networking devices (see Def. 11), however, quantum devices may also have a quantum

input pR¢¥ € S(C%) and quantum output pP%Y € S(C¥).

n out

While Def. 46 is quite generic, it is convenient to give the quantum networking devices greater specificity
(see Fig. 7.2). That is, as quantum information flows through the network it must first be encoded, then
processed, and finally measured, where each step in the network may implemented by an independent device

in the network. Indeed, devices can fulfill three key roles that align with the fundamental axioms of quantum

o7



mechanics: preparation, evolution, and measurement. To help distinguish the roles and operations applied
at each device, we use a color-coding scheme where green nodes correspond to preparation devices, red
nodes correspond to processing devices, blue nodes correspond to measurement devices, and orange nodes

correspond to noise.

Pin — o e —— Pin  — 5
= e
X ==b pl?ev Pout UPEV Pout s Y 1
% " v = y|x
X =>}7 x » X
Generic Preparation Processing Measurement
Device Device Device Device

Figure 7.2: The basic types of quantum networking devices. From left to right, a generic quantum device (purple), a
preparation device (green), a processing device (red), a measurement device (blue).

Definition 47. Preparation Device: A quantum networking device that prepares a quantum state
p2° € D(HM,4) conditioned upon the classical input Z. An N-qubit pure state |¢)§CV € S(HSYN) is prepared
by unitary evolution on the zero state, |¢)2 = UP |0)(0|®Y (UPe¥)t. Mixed state preparations can be

achieved by a unitary evolution of the zero state on a dilated state space
PR = Trgyy [Uz[0...0)(0...0| (Us)'] (7.4)

Definition 48. Processing Device: A quantum networking device that applies an operation to the input
state p;n. The operation is conditioned on a classical input & and may either be unitary or a CPTP map. For
unitary operations, the output is poue = UPY p;,, (UPY)T. For CPTP operations, the output is pous = Nz(pin).

which may be implemented unitarily using the system-environment representation of a quantum channel.

Definition 49. Measurement Device: A quantum networking device that measures the input state pP¢

in
and outputs the classical result 3. The measurement is conditioned on a classical input £ and the measurement
operator may either be a PVM or POVM Hy]?‘ef". The probability that the device outputs ¢ is given by the
Born rule, P(y|%) = Tr {Hy@l%"pgf"}. Furthermore, measurement devices may measure an observable O2°V in
place of PVM or POVM operators, in which case the device outputs the expectation <O?e">p%v.
Definition 50. Noise Node: Noise is represented in a quantum network DAG as a jagged starburst node
in orange. A noise node applies the noisy quantum channel ' € CPTP(H;,,, Hout) taking the input state to
the output state as pour = N(pin). Note that noise nodes are not conditioned upon a classical input because
the noise is not controllable. Furthermore, by the system-environment representation of a quantum channel,

noise can be modeled using unitary operators as py: = Trp [UAB (P ®10...0)(0... O|B)(UAB)T .

7.3 Quantum Network Communication Resources

Quantum systems can be utilized as communication resources that link the devices of the network. In classical
networks, classical communication and shared randomness were considered as resources. In quantum networks,
similar resources of quantum communication and entanglement can be considered in addition to classical

communication.
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Figure 7.3: Depictions of quantum communication and entanglement resources. (Left) A sender device communicates
a quantum state to the receiver device. (Right) Devices A and B share an entangled quantum state.

7.3.1  Quantum Communication

Definition 51. Quantum Communication: A dynamic resource corresponding to a single use of a
quantum channel in which a quantum state p € D(H1*) is sent to a receiver using a CPTP map N €
CPTP(HI*, HEX) a p’ = N(p) where p’ € D(HEX).

Quantum communication is a dynamic resource because it involves the transmission of a physical quantum
message from one device to another. This quantum system can either be a pure state |)) € S(Hgy) or a
density operator p € D(H4). The medium over which the message is sent is a quantum channel modeled
by a CPTP map as in Definition 37. In general the quantum channel is noisy, however, noiseless quantum
communication is important to consider when comparing quantum and classical communication resources.

To quantify the amount of communication, we consider the noiseless case in which the quantum channel
is the identity id : D(HI*) — D(HE¥). Then the amount of communication is quantified by the signaling
dimension of the quantum channel x(id) = d, which is the dimension of the Hilbert space used for communi-
cation. We adopt this terminology from our work in Ref. [114] and elaborate upon the signaling dimension in
Chapter 14. The advantage of the signaling dimension is its correspondence with classical signaling where the
classical communication capacity of a quantum channel cannot exceed its signaling dimension [115], [173].
That is, a qubit of communication cannot communicate any more information than a bit of communication.
Thus, the signaling measures these to resources’ ability to signal classical information, which is a convenient

device-independent way to approach an unknown communication resource.

7.3.2  Quantum Entanglement

In the quantum network DAG, quantum entanglement resources are depicted as elliptical nodes that have no
classical or quantum inputs. These entanglement producing devices are commonly referred to as entanglement
sources or, more simply, sources.

Quantum entanglement is a static resource similar to shared randomness. An entangled system can be
considered as two or more quantum particles that originate at the same source and are distributed to different
network devices. The network devices may use the entanglement to correlate their information, teleport
quantum states, or boost the amount of communication. In the following, we define entanglement for mixed
and pure state systems. Each networking device has its own subsystem of quantum state space S ('Hﬁ:) where

the entangled state is defined on the composite system of quantum networking devices S(Q),, ka’“).

Definition 52. Pure State Entanglement: A composite quantum pure state |¢) € S(Q),. Ha, ) is entangled

if and only if |¢)) cannot be written as a tensor product state of its subsystems. An entangled state |1)) must
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satisfy
) ¢ {10) € S(@c Hay) | 16) = @y lon) where [6x) € S(Ha,) ¥ k. (7.5)

Definition 53. Mixed State Entanglement: A composite quantum mixed state p € D(Q), Hq,) is
entangled if and only if p cannot be written as a convex combination of tensor products of mixed states on its

subsystems, that is, p must satisfy

p ¢ Conv ({0’ € D(Q,Ha,) |0 =Q,0r where o, € D(Hqg,)V k}) . (7.6)

Quantum entanglement is a stronger resource than shared randomness because entanglement can simulate
shared randomness. For example, consider entangled state [1)) = cos(#)|00) + sin(6) |[11) shared between
device A and B. If each device measures its qubit in then two outcomes 00 and 11 occur with probability
P(00) = cos?(#) = | (00]1) |? and P(11) = sin?(#) = | (11[¢) |?, which is equivalent to the two devices sharing
the result of a biased coin flip. However, a shared coin flip between two devices is actually represented by the
mixed state

p = cos?(0) |00)(00| + sin*() [11)(11], (7.7)

which is not entangled because it lies in the convex hull of separable mixed states in Def. 53. When measured
in the computational basis, the devices obtain the either 00 or 11 with probability cos?(#) = P(00) and
sin?(f) = P(11). The fact that shared coin flip is represented by a mixed state in quantum systems where the
EPR pair is pure indicates that entanglement may bear some operational advantage over shared randomness.

Entanglement can be quantified similarly to shared randomness where the signaling dimension is used to
quantify the minimum amount of quantum communication needed to send a network device its portion of the
entangled state. For instance, the N-qubit entangled state |¢) € ®sz1 Ha, requires a channel of signaling

dimension xk = ming d, where it is assumed that each device gets a single particle.

7.3.8  Local Operations and Classical Communication

Pout

Entanglement Source Device B

Figure 7.4: A quantum teleportation protocol. Devices A and B share a maximally entangled two-qubit state ‘<I>+>.
An unknown input qubit state p;n can be communicated from device A to device B. In the protocol device A applies a
two-qubit Bell measurement on the input state and their entangled qubit and sends the two-bit measurement result m
to device B using classical communication. Device B can then apply to their entangled qubit a local unitary operation
UE that is conditioned upon m. If performed without error, the input state is “teleported" to the output such that
Pout = Pin-

Local operations and classical communication (LOCC) is an important quantum networking resource
in which classical communication assists the quantum network devices. Within the LOCC framework,

a sender device A measures its local quantum state p” to obtain a classical value m with probability
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P(m|z) =Tr Hﬁl‘zp‘j. The measurement result is then transmitted to a receiver device B that conditions

its local operation £5(p?) on the received message m. Thus, LOCC allows devices to coordinate their

m
operations.

LOCC is a natural framework for quantum networks because classical communications are already
necessary for controlling quantum devices. Although classical communication is a trivial task, incorporating
classical communication into a quantum network’s causal flow can be a challenging problem in precision and
control, especially if there are quantum memory limitations. One important LOCC protocol is quantum
teleportation because it shows how two-bits of classical communication and entanglement between sender
and receiver is sufficient to transmit an unknown quantum state. That is, quantum teleportation establishes
a qubit channel from the sender to the receiver. Teleportation is interesting because it exemplifies how
two communication resources, entanglement and classical communication, combine to simulate the stronger
resource of quantum communication.

LOCC operations can be modeled as a quantum channel £X0°C ¢ CPTP(HA @ HB — HB') where

ELOCC(pAB) = 3 Ty [T 0 EE7F (p1)] = 0 €57 (o) Pm) (7.8)
and P
pBP(m) = Tra [I14 @ 18 p*P] PEZ;?, and P(m) = Tr [T ® I%p*5]. (7.9)

In this setting, the measurement H;‘;L is assumed to be destructive such that the quantum state on system A
is lost upon measurement.

It is important to note that our channel model of LOCC resources is very general. There are two edge
cases that may seem to differ, but these edge cases can still be accommodated by the model in Eq. (7.8).
First, suppose that a quantum state is prepared based upon the communicated measurement result m. Then,
p® would simply correspond to |0)(0| and &,,(]0){0]) = p,, would initialize the desired state preparation
from the zero state. Second, it is convenient within our quantum network DAG for the measurements to be
performed in the final layer. Although it seems that the measurement II* must be applied to obtain the
classical result, this is not actually the case. Indeed, the deferred measurement principle [61] can be applied
where the classical communication is replaced with a controlled quantum operation and the measurement is

deferred until the last layer.

7.4 Noisy Quantum Network Behaviors

The DAG representation of a quantum network is a mathematically explicit description of a tensor network
describing the behavior of the quantum network. When contracted, the tensor network computes conditional
probabilities and expectations. In Eq. (7.3), we give a general three-layer decomposition of the quantum
network, however in this section, we give a more complete model how the operations in each layer are
constructed.

First, the preparation layer initializes the state

|A] 1Al
Net = ®pA"' ® ®pf}§i where 7P = (xAi)Lill, pi e D(HM), and pfji € D(HA).  (7.10)
j=1 i=1

Since each preparation device initializes an independent quantum state, the whole preparation layer belongs

61



to preparation layer Hilbert space HF**P = HA ® H4, which is the tensor product of the entanglement source
layer A and preparation device layer H“. Note that a similar definition can be made for the case of pure

states

Net> ®WJ ®®‘¢ > (7.11)

The processing layer(s) sit between preparation and measurement and can be modeled generally as a

quantum channel Eggt or as a unitary Uggt. A given processing layer labeled using index B is then

B |B| 5

B .
Ep = Exgj (7.12)

j=1
where 5 S CPTP(Hm ,’Hout) is the operation applied by each device in the layer. Note that the quantum
channel 5 B could be replaced with a unitary U . Furthermore, it might be the case that a wire passes
through a layer without being operated upon. In thls case, the identity map p = id(p) is applied to preserve
the quantum state. Suppose now that second processing layer B’ is considered. Then the two layers combine
as
’ . B‘ B‘/

Exdhe = ED5 0idP7 P 0 EL; (7.13)

where the identity map idJ§ —B is needed to ensure that the quantum states are wired correctly between the
two layers.
At the end of the network DAG is a measurement layer, which we label as C'. The measurement layer
decomposes as a collection of independent measurement devices
IC] IC|
Hlfgtlfc ®H§gi‘w0i where Hlfgtl o € POVM(QH), and Hfgilwci € POVM (M. (7.14)
i=1

=1

Note that € = (xc)lzgll and 376 = (yc)ﬁ‘1 are the inputs and outputs for the measurement devices. in

the case where rank-one projective measurements are applied, then the POVM operators Hfgilxci become

|¢yc7 |z ><¢yc, |zCi <

If the network does not contain any noise in its communication, then

P(5€17*, 77, 7°) = Tr I3]0 id? 7€ 0 €M 0ia =P (o151 (7.15)

where the identity channels id* 2 and id®~¢ are needed to correctly map each communicated state to its
measurement device.

When a noise node is placed on a quantum communication link, it implies that the communication is
noisy such that the input state p is taken to a noisy state N as p = N(p). Noise can also be incorporated
into the model for a device’s operations. During a shot of the network, we assume that the noise is static and
unchanging. Furthermore, to maintain node labeling consistency between the noisy and noiseless DAGs, noise

layers can be place between device layers, where noise layers can be labeled with a / symbol on the alphabetic
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superscript that indexes the layer. Thus, a layer of noise after the preparation layer A would decompose as

|A']

®N As (7.16)

where N4 should be thought of as a processing layer in the network. As such the 1dent1ty map A=A g
needed to map the preparation layer A to the noise layer A" and the identity map 1dA is needed to map
the output of the noise layer to the input of layer B.

Overall, a given quantum network DAG, noise model, and set of free operations at each device dictate the
precise decomposition for the network behavior PNt from Def. 44 and the corresponding set of quantum
network behaviors QN¢t from Def. 45. While an explicit mathematical description can always be obtained

from the DAG, the simplest representation for the network is by its DAG.

7.5 Simulating Noisy Quantum Communication Networks

It is important that noisy quantum networks can be simulated so that they can be studied and designed
prior to their implementation In the previous sections, we introduce quantum networks and characterize
them by their black-box behaviors. Recall from Section 2.4 that a black-box behavior is simulated if it is
reproduced within a tolerable amount of error. Thus, a quantum network is simulated if its behavior PNt
can be produced by another system, such as a classical or quantum computer. Indeed, the quantum network
model developed so far can easily be extended to a quantum circuit model for simulation on a quantum
computer.

In this work, we develop a quantum simulation framework for noisy quantum networks that can be run
on either classical or quantum hardware. We implement our approach in the Python package qNetVO: the
Quantum Network Variational Optimizer [108]. In this package, we extend the PennyLane software [210]
with tools for constructing quantum circuits that simulate a given noisy quantum network’s DAG. Since
PennyLane provides a hardware-agnostic circuit model, our software can easily be applied on a range of
classical simulators and existing quantum computing platforms. In the rest of this section, we elaborate upon

our framework for simulating quantum networks.

7.5.1 A Quantum Network as a Quantum Circuit

As discussed in Chapter 5, a quantum circuit is a DAG that explicitly describes a sequence of quantum
operations applied to an array of qubit subsystems on a quantum computer. Likewise, the DAG representation
of a quantum network introduced in Chapter 7 describes a quantum network in an analogous manner.
Throughout this section, we will show that there is a direct correspondence between the two DAGs, meaning
that any quantum network DAG corresponds to an explicit quantum circuit DAG (see Fig. 7.5). Thus, we
construct a procedure for transforming a quantum network DAG into a quantum circuit that simulates the
network on any quantum computing hardware or classical simulator.

The quantum circuit simulation describes network using a realistic model where physical communication
resources and device operations correspond directly to quantum circuit components that simulate those
resources and operations. Hence the constraints on locality and communication resources are embedded
implicitly into the structure of the quantum circuit. Furthermore, if the dynamics of a quantum network are

encoded properly into a quantum circuit and that circuit is executed faithfully without noise, then an exact
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Figure 7.5: Quantum circuit that simulates an entanglement swapping scenario. (Left) A DAG depicting the
quantum communication network with two entanglement sources (green), a qubit noise model (orange), an
LOCC sender device (yellow), an LOCC receiver device (red), and a measurement device (Blue). (Right) The
same network is depicted by quantum circuit.

simulation of the quantum network is achieved, meaning that the resulting network PN°® is indistinguishable
from the real quantum network behavior.

Since a quantum network is constructed modularily from quantum network devices, the network’s
simulations circuit simulation also admits a modular construction. That is, the processing applied by each
device is described by a unitary operation UP®V € U(HP®") that is conditioned upon the device’s classical
input 2 € APV, Note that HP® corresponds to the device’s local Hilbert space where the number of qubits
operated upon by Dev is NPV = log, [Dim (’HDe")]. The unitary operation then serves as a gate in the
quantum circuit model and must be expressed in terms of fundamental quantum circuit gates.

Each wire in the quantum circuit model corresponds to a qubit of communication linking two unitaries
that model network devices. The N-qubits in the network are labeled using the natural numbers ¢ € [N].
The qubits local to a networking device Dev are notated ¢P°V C [N] and these qubit wires are operated upon
by the unitary operator UPe".

A quantum network’s simulation circuit can then be constructed modularily its constituent quantum
networking devices. The construction will mirror the one used in Chapter 7. The quantum networking devices

are grouped into sequential layers where no devices in a given layer operate upon the same qubits

N 7" =0, (7.17)

DeveLay

implying independence between the networking device. Each layer describes a time-step in the network
simulation and is ordered and indexed using capitalized alphabetic characters. The events in two sequential
layers operating on a given qubit are said to be time-like separated. Furthermore, devices within the same
layer are labeled using the alphabetic character with a numeric subscript. Devices within the same layer
are independent from each other and are said to be space-like separated. Finally, any qubits that are not
operated upon in a given layer can be understood as the identity operation.

In the sections that follow, we elucidate the details of the quantum circuits that simulate quantum

networking devices.
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7.5.2  Simulating Network Dynamics

Formally, the quantum network circuit is represented by the N-qubit unitary operator U get € (CSE’N where
T € X is the set of classical inputs that condition the network’s dynamics. Since the network decomposes
into sequential layers of quantum networking devices, the unitary operator admits the decomposition

Net La; C 17B 77A 17A Meas 7P Pre
UNet — UL, = . USUBUALUN = UNES USRS ULED (7.18)

Lay€eNet
where each iterated layer’s unitary evolves the quantum network’s state by one time step and the operations
applied in each layer may be conditioned on its own classical inputs 2,
The network’s dynamics are simulated by evolving the zero state as U get |0>®N. The resulting quantum
state is then measured in the computational basis {|2)}scpm where M < N are the measured qubits. The

measured quantum state is then the reduced density matrix
pgf/[eas = Treg, |:U§6t |O> <0|®N (Uglf\let)T:| (719)

where the traced out subsystem Env denotes the unmeasured (N — M) qubit subspace. The resulting

measurement probabilities are then
P(217) = Tr [|2) (2] ple=]. (7.20)

The black-box behavior characterizing the quantum circuit is then given as

PAC = 37 3T [z (] phe]. (7.21)

ZeBM ZeXx

It is often the case that a quantum network does not output an M-bit string. In this case, a classical
postprocessing map L : BM — A is needed to map the M bit output of the quantum circuit to the |.A|
outputs of the quantum network. That is, consider the quantum network behavior PN¢ : X — A and the

simulation circuit behavior PQC : X — BM | then
plet = LPQC (7.22)
where PQC is defined in Eq. (7.21). The post-processing map L is a column stochastic matrix

L=> Y Pzlayz, (7.23)

acA zeBM

and is therefore a black-box behavior. A quantum computer can be used to construct the network behavior
PNet by repeatedly running the quantum circuit to estimate the conditional probabilities P(@|%) across all

inputs ¥ € X. We now discuss the layered decomposition of U, %\Iet in more detail.

7.5.8  Evaluating Quantum Circuits

To this point, we have only described the quantum network model. To simulate the quantum network’s
behavior, we quantum network circuit must be evaluated. A quantum circuit can either be run on quantum
hardware such as a quantum computer or a classical simulation software the reproduces the behavior of the

quantum computer.
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On a classical simulator, the quantum circuit’s probabilities can be simulated in the absence of noise,
however, simulations of quantum systems cannot scale to large systems with many qubits. Many simulation
software are available and can be run on a laptop computer, or on remote classical simulation environments.
Through PennyLane, the qNetVO software can simulate quantum networks in any simulator supported by
PennyLane. In this work, we use PennyLane’s default.qubit state vector simulator and the default.mixed
mixed state simulator. Both simulations rely on a qubit based computing architecture.

The main advantage of simulating a quantum network on quantum hardware is the promise of efficient
computation. In principle, quantum computers ought to be able to simulate quantum systems with greater
efficiency than classical computers [18], [19]. This improved efficieny is important because at some point,
quantum systems become so complex that they can no longer be efficiently simulated or stored in memory on
a classical computer. On a quantum computer however, the quantum system is simulated by the natural
evolution of the wavefunction.

To demonstrate this proof of concept we provide a few examples of evaluating simulating quantum networks
on IBM quantum hardware. However, it is important to acknowledge that existing noisy intermediate-scale
quantum (NISQ) computers may not provide significant simulation advantages [38]. In many cases, it is
beneficial to perform simulations on noiseless qubits that are simulated classically than it is to use noisy
qubits, even if it means that fewer qubits can be considered. The qNetVO framework offers the flexibility to
simulate the quantum system classically, hence it bridges the gap between classical and quantum simulation
tools for quantum networks. This feature is convenient because the quantum networks being developed are
still small enough to be simulated and optimized on a classical computer. Therefore, the approaches we
introduce in this work can be applied in scientific discovery and engineering design.

In general, when simulating quantum networks on NISQ computers, the noise present on the computer
hardware may not resemble the noise in the quantum network hardware. When simulating the network, our
objective is to precisely reproduce a noisy quantum network’s behavior. However, evaluating a simulation
circuit on noisy quantum hardware adds the quantum computer’s noise into the simulation, which may not
match the network’s noise model. Thus, to achieve precise noise modeling, we must rely upon classical
simulators or fault-tolerant quantum computers. Additionally, we accurate simulation requires accurate

characterization of the noise model of the physical quantum system that is under investigation.
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CHAPTER 8

NOISE IN QUANTUM COMMUNICATION
NETWORKS

8.1 Limitations of Noisy Quantum Networks

In general, quantum systems are noisy and quantum networks are no exception. Noise in quantum networks
can be found in all processes including preparation, processing, communication, and measurement. The noise
is very detrimental to the implementation of quantum networking applications leading to key limitations and
restrictions on the capabilities of quantum networks in the foreseeable future.

From a quantum theory perspective, noise is modeled as a quantum channel A" € CPTP as discussed
in Chapter 5. Thus, the behavior of quantum network systems can be evaluated explicitly for any noise
model considered in the network. However, simulating noise can be challenging because CPTP maps require
either ancillary qubits, or a mixed state simulation of the system. In either case, simulating noisy quantum
processes adds a significant overhead to the already difficult task of simulating quantum systems.

From an experimental perspective, noise in quantum hardware limits its performance and efficiency,
leading to fundamental restrictions on the quantum systems that can be constructed in practice. Namely,
these restrictions lead to a plethora of features that are characteristic of near-term quantum networks. We

summarize these key limitations below.

e Small Hilbert Space Dimension: In the presence of noise, it is difficult to control large arrays of
qubits or high-dimensional quantum states. As a result, noisy quantum networks will be limited in the

number of qubits they can utilize.

e Low Circuit Depth: In the presence of noise, it is difficult to perform extensive processing on
quantum systems because the error grows exponentially with the number of operations. As a result,
noisy quantum networks will be limited in the number of operations that can be applied to quantum

states between preparation and measurement.

e Short Quantum Memory Times: In the presence of noise, it is difficult to preserve a quantum
states in memory. As a result, noisy quantum networks will either be memoryless or have short-term

storage capabilities.
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e Detection Efficiency: In the presence of noise, the rate at which quantum states are lost is large
leading to a decline in the rate of detection of quantum states. Therefore the shot rate of noisy networks
will be low. As a result, the efficiency of quantum networks will be diminished, limiting their ability to

scale.

Given the restrictions of noisy quantum networks, their functionality will be limited to the prepare-and-
measure setting, in which quantum communication is available between devices, but extensive processing
and memory are not. The prepare-and-measure setting is a type of discrete memoryless setting, allowing our
general black-box framework to accurately describe the behavior of these networks. Furthermore, given the
limitations on detection efficiency and Hilbert space dimension, near-term quantum networks will also be
relatively small in scale consisting of only a handful of devices that each contain only a few qubits.

While these limitations may be disheartening, they also make studying such systems more tractable from
a theoretical perspective. Recall that large-scale, complex quantum systems are generally very difficult to
simulate and optimize. However, if we restrict the Hilbert space dimension and the circuit depth of these
networks, the complexity of these systems can be decreased considerably, leading tractable simulation and
optimization on a classical computer. Although, if quantum networks can be simulated classically, it is very
difficult to argue that they can provide much advantage. Nevertheless, understanding the theory of these

rudimentary noisy quantum networks will lead to important insights that will help these systems scale.

8.2 Loss in Quantum Systems

In quantum communication systems, loss is one of the most prevalent types of noise. In general, loss describes
a noisy process where a quantum state may have been input into a system, but never makes it to the output.
A common example can be found for photonic qubits in which a single photon encodes quantum information.
As the photon propagates through a medium, such as a fiber optic cable, the photon has a certain probability
of getting absorbed by a particle in the medium. Hence the photon and its encoded quantum information
never make it to the output of the fiber. Indeed, as the length of the fiber, or optical medium, increases, the

—oL where a > 0 is a constant that depends on the medium and frequency of light,

loss scales as I(L) = Ipe
L is the length, and I is the intensity of light at the input. This exponential scaling in loss is one of the key
factors limiting the development of long-distance quantum communications.

While it is crucial to understand how to build quantum systems robust to loss, the way that loss is
modeled depends on the physical implementation of the quantum system. Within our operational framework
loss can take on a few different forms. Namely, the way loss is treated is different if the errors are flagged or
unflagged. If an error is flagged, given one shot of the experiment, it can be determined whether the sampled
output has an error. The flag can be thought of a dedicated output value or set of values indicating that an
error occurred. On the other hand, it cannot be determined whether or not an unflagged error occurred in an
experiment given a single shot of data.

In most settings, flagged errors are preferable because they allow for either error correction to be
applied or for the erroneous data samples to be thrown away. Quantum error correction, unfortunately, is
generally resource intensive meaning that it is unlikely to be available in the noise limited quantum networks
being discussed in this work [52]. On the contrary, classical error correction techniques are feasible where
postprocessing can be combined with knowledge of the physical system in attempt to make an educated
guess to what the result would have been without error, but such techniques are limited in their ability to

function in a black-box setting. Finally, the simplest approach is to ignore the flagged errors altogether. In
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doing so, the unflagged sampled data will perform its task more precisely, however, the detriment is that high
error-rates will only serve to decrease the efficiency proportionally.

In practice, it might not always be possible to flag errors due to physical constraints, or the sheer
complexity of the network. If this is the case, then error mitigation strategies could be applied in which
knowledge of the physical quantum system and its noise are used to make the system more robust or apply
improved postprocessing. However, without having direct access to the quantum devices and their underlying
physical systems, error mitigation reduces to the task of finding the device settings that perform best in the

given noisy network.

8.3 The Noise of Relative Unitary Rotations

A very important type of noise in a network can be compared to a calibration task. In particular consider a
quantum device A that wants to send a qubit to a quantum device B, however, to do so they must agree
upon their bases used to encode and decode information. The problem is that the two devices A and B may
not agree upon the orientation of the zero state, and the communication medium may apply some unknown
unitary transformation to the communicated states as P(y|z) = Tr ||0)(0] Un |0)(0] UJH To calibrate their
communication channel, the devices need to perform some optimization over their quantum channel to ensure
that it is set up appropriately to remove the unwanted transformation Uy. While this example of noise is
very simple, failure to perform a proper calibration between all the networking devices will be extremely
detrimental to a protocol. Furthermore, the fact that transformation applied by the communication medium
may not be static and that each device’s bases might have a relative rotation with respect to the other devices
implies that calibration is will be a constant task in quantum networks. As a result, automated methods will

be needed to calibrate quantum networking devices.

8.4 Common Quantum Noise Models

It is not feasible to consider all types of noise that could affect a quantum network’s communication and
processing resources. However, there are some common types of error that can be modeled in a network to
gauge the general affect of noise on in a network. We break noise models into two categories, unital and
nonunital, in which the preserves the identity, but the latter does not. In each case, we list a handful of
important noise models cover a broad of common types of noise. Furthermore, we place an emphasis on qubit

noise models because of their simplicity and prevalence in qubit communication scenarios.

8.4.1 Unital Noise Models

Unital channels model common types of hardware noise such as depolarizing and dephasing. A quantum
channel I/ is unital if and only if it satisfies U (I) = I. Consequently, unital noise cannot improve the purity of
a general quantum state p, that is, Tr [Z/{(p)Q] <Tr [p2].

In the qubit case, the theory of unital channels is well known [211]. A unital qubit channel I/ can be

expressed in Pauli basis as a 3 x 3 matrix

1 N
My= > S Tr [ot(aa)] 1)l (8.1)
i,j€{z,y,2}
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where the operator My, is applied to the Bloch vector s of the input state p as ¥ = My s to produce 7 the
Bloch vector of the output states U(p). An important property of unital qubit channels is that the matrix
My, can always be diagonalized using rotations Rj,, Rout € SO(3) such that

Roue My Ry, = diag(uo, ui, ug) = My, (8.2)

where, without loss of generality, the singular values are bound as 1 > u,, uy,u, > 0 and can be permuted
along the diagonal of Mp«.
By the isometry between SO(3) and SU(2) [212], the rotation operators Ry, and Ryt correspond directly
to unitaries Vi, and Vo € SU(2) applied to U as
U (p) = Voud (VinpViH Vil

out»

(8.3)
where u;0; = U(0;) is an eigenoperator of the unital channel &. We now describe some common examples of

unitary noise.

Definition 54. Depolarizing Channel: W, € CPTP(H4, H4), A noise model that mixes the maximally

mixed state %]Id with an input state p as

Wale) = vp+ LT, (8.4)

where v is a parameter commonly referred to as the wvisibility. The visibility can be expressed as a noise

parameter
d?—1
T = 7(1 —) (8.5)
where if v € [0, 1], then v € [0, %}, however, WA=4" € CPTP(HA, HA) for all v € [0,1].

In the operator-sum representation of a quantum channel, an N-qubit depolarizing channel’s Kraus

operators are expressed as

, N1 VI—7 ifZ=1(0,...,0
IC(W;‘_’A )= {k@ ® Uzi} where kz = 5 2 ( ) (8.6)
i=0

1 otherwise
£€{0,1,2,3}N -

and o,, denotes on of the four qubit Pauli operators. Furthermore, in the case of qubit depolarizing noise,

the Pauli decomposition of the channel is M1 4 = diag (v,v,v) where v is the visibility.

Definition 55. Qubit Pauli Channel: A family of unital qubit channels having the form

3
U(p) = pop + P10wpos + P20ypoy + p3ozpo.  where > p; =1 (8.7)
=0

where Y. p; =1 and p; > 0. The vector p'= (pi)3_, corresponds to a distinct channel and can be interpreted

as a point confined to the convex hull of a tetrahedron The Pauli decomposition of the Pauli channel is then

My = diag (po + p1 — p2 — p3,Po — P1 + P2 — P3,Po — P1 — P2 + P3) - (8.8)
The family of qubit Pauli channels is incredibly general. Looking at the extreme points of the tetrahedron,
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we find that when pg = 1, the channel is ideal. When p; = 1, the channel corresponds to a bit-flip. When
p2 = 1, the channel corresponds to a phase-flip. When p3 = 1, the channel corresponds to a dephasing
channel. Furthermore, the center of the tetrahedron, when p; = % for all ¢ € {0,1,2,3}, the channel becomes
the completely depolarizing channel.

As an example we will consider a partially dephasing channel that describes the decoherence process as

L 4 T=y 1 yT—7
DI (p) = 5L+ — 55—

0.po,, where ~€]0,1], (8.9)

where the channel causes the off-diagonal terms of p to go to zero as the noise parameter v increases. In the

Pauli decomposition, the partially dephasing channel is then expressed as M a4 = diag (\/1 -7, v1-7, 1).
Y

The Kraus operators for the dephasing channel are

Ko = <1 10_ 7) and K = (8 \%) . (8.10)

In general, a partial bit-flip or partial phase-flip channel can be described similarly to Eq. (13.87) by swapping
out o, for o, or o, respectively. However, by Eq. (8.3), local qubit unitary operators are sufficient to convert
dephasing channel D’W“_)A/ into a phase-flip or bit-flip channel. Without loss of generality, the results of the
dephasing channel can be extended to bit-flip or phase-flip channels.

8.4.2 Nonunital Noise Models

A quantum channel is nonunital if and only if it does not preserve the identity, N'(I) # I, where important
examples include amplitude damping channels and replacer channels. It is useful to note that upon local

unitary rotations as in Eq. (8.3), a qubit nonunital channel can be represented in the Pauli basis as where
Ty, = (8.11)

where we write the 3 x 3 matrix block on the bottom right as My, = diag(us,uy,u.). Furthermore, the
matrix elements are evaluated similarly to the case of unital channels in Eq. (8.1), but we now include the

qubit identity matrix I in addition to the Pauli operators.

Definition 56. Qubit Amplitude Damping Channel: A, € CPTP(H, — H2), A channel modeling an

energy dissipation process where a high energy state |1)(1| transitions into a low energy state |0)(0|.The

(1 o0 (o A
K0_<0 1_7>, K1_<0 0) (8.12)

where the effect on a qubit density matrix is

Kraus operators are defined as

A, (p) = (Wr (L=7)poo V1 —7/)01) . (8.13)

VI=qpw0  (1-=7)pn

71



In the Pauli basis, the amplitude damping channel is expressed as

10 0 0
0 JI— 0 0

Ty, = 7 (8.14)
0 0 JI—y 0
vy 0 0 (1-7)

Definition 57. Replacer Channel: R, € CPTP(Hq — Ha'), Replaces the input state p € D(H4) with
the state o € D(H4 ) with probability + such that

Ry(p) = (L =7)p+voTr[p]. (8.15)

Indeed replacer channels represent a broad family of noise models because each distinct replacer state
corresponds to a distinct channel. In general, a replacer channel is nonunital if v > 0 and o # éﬂd. Thus,
the depolarizing channel is a special case of replacer channel because its replacer state o = éﬂd allows the
channel to be unital.

To express the replacer channel in its operator-sum representation (see Def 39), we first consider the case
where the replacer state is pure, 0 = |[¢){(¢)| € Hqr. As a result, the Kraus operators for the replacer channel
R are

K, = \/~Y)(i| Viel0,d), Kg=+/1—~Iwxq, (8.16)

where {|i)}¢=} form an orthonormal basis and Iy g = Zj/:l ZZ:1 ;.5 |7) (k| is the identity map from the
input to the output. The replacer state can be expressed as a mixed state using the fact that o =3 € [10) (1]
where j indexes each pure state in the mixture and c; € R is its weight. Then, let K; ; = \/7,/¢; [1;)(i| for

such that the operator-sum representation becomes
d—1
Ry(p) = KapKy+ ) D KigoKl ;= (1= 1p+7Y e lin) (il Tr[o] = (1 = 9)p+70Tr[o] . (8.17)
i=0 j J

Hence we give the construction of a channel whose replacer state is an arbitrary mixed state.

Definition 58. Colored Noise: C, € CPTP(#H4 — H4), A nonunital two-qubit channel modeling depolar-

ization on a preferred, entangled axis of the state,

Cn,(p):(l—’y)p+%(’\1'+><\l'+‘+|\Iff><\117 ), (8.18)

where |[UF) = (]01) & [10))/v/2.

Colored noise is typically found on the singlet states |[¥~) = %(|01> —]10)) produced by parametric
down conversion [213]. Note that colored noise is an example of a replacer channel where the replacer state is
o = £(|01)(01] 4 [10)(10]) The Kraus operators for colored noise are

Ko=+1-7], Kyg+ g+ = \/Z|\Ifi><<1>i| , and Kyt g+ = \/Z|x11i><x1/i|, (8.19)

where |®%) and |[UF) constitute the Bell basis and all combinations of 4 are considered leading to 9 Kraus

operators in total.
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Definition 59. Loss Channel: £, € CPTP(H4 — H4), Models loss of quantum information in an unflagged
manner. This noisy process is a special case of replacer channel in which the replacer state is o = [0){(0],

therefore, its Kraus operators are

Ko=+1-lg, K;=~[0)(i| Vie[l,d-1]. (8.20)

The error is said to be unflagged, because the error state ¢ is used to encode quantum information, meaning
that the error’s occurrence in one shot of data cannot be determined with certainty. In the Pauli basis the

loss channel is

10 0 0
01—y 0 0

T, = 7 (8.21)
o 0 1-4 o0

ol 0 0 1—7
Definition 60. Erasure Channel: £, € CPTP(Hqs — Hg+1) models a loss process in which the error is

flagged. The erasure channel is distinct from the loss channel where, with probability =, the output is an

error flag 0 = |d)(d| that is orthogonal to the input Hilbert space. The erasure channel is expressed as
Ey(p) = (1 = Narxaplly g + 7 |d) (d] Tx [p] (8.22)

where we note that the input p is defined on the Hilbert space spanned by {|i)}9=3 such that Tr [op] = 0 and
Tgrsa = Z?:o ZZ;(I) ;% 17)(k|. The error is said to be flagged because the error state o is orthogonal from
the rest of the Hilbert space, meaning that the output data from each shot indicates whether or not the state

was lost or not.

8.5 Detector Errors as Classical Post-Processing

Noise in quantum systems does not always have to be modeled as CPTP map acting upon a Hilbert space.
In principle, classical postprocessing can be applied to the data measured from the quantum system to model

certain noisy processes.

Definition 61. Classical Error Map: E, : ) — )’ where E,, € Py,|y. The classical error map acts upon

a network’s behavior PNet ¢ Py|x via matrix multiplication to produce a noisy quantum network behavior
PNt — EPNY*  where PN': X ) (8.23)

Modeling noise in quantum systems using classical error maps is advantageous because of its computational
efficiency. That is, it considerably more efficient to multiply two matrices E, and PNet than it is to model
noise in quantum systems, which requires either an enlarged Hilbert space, or a mixed state simulator to be
used. Both expanding the Hilbert space or using a mixed state simulator in place of a state vector simulator
adds significant computational overhead to the simulation of a quantum system. However, only certain noise

models are able to be represented using classical error maps, limiting the cases in which they can be applied.

Definition 62. Classical Replacer Error: R, € Py)y, a classical error map where each output y € ) is

replaced by a new output y’ with fixed probability P(y’|y) for all y € J. The error map is
R, = (1- ’y)l[‘y| +7R (8.24)
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where R € Py x is the replacer behavior that takes the special form R = i - 17 where i = (B, ... ,My‘)T,
=1 and > 0. The behavior with replacer noise is then
y My Hy

P=R,P=(1-7)P+1R (8.25)

where ﬁ,P,R S ,Py‘;\g.

It is important to note that the classical replacer error is defined for a measurement that has no input,
however, measurements can be conditioned upon an classical input ’ € X’. In this case, the classical error
map can be conditioned upon input as R,/ such that replaced behavior is distinct for input . We now
show that the classical error map can simulate a family of POVM measurements that be can derived from a

PVM measurement preceded by a quantum replacer channel.

Proposition 1. A classical replacer map R., € Py)y is equivalent to the POVM R, € POVM(#,) whose
yth is

Ry~ =(1—-vI,++vR, where R, =p,l4 (8.26)
where {II,, },ey € POVM(#,) is the measurement whose probabilities P(y|z) = Tr [II, p,] achieve the noiseless

behavior P for a given state ensemble {p,}.

Proof. To prove equivalence, we show that the behavior P= R, P is achieved by the quantum probabilities
P'(y|lz) = Tr [Ry ps). First, from Eq. (8.25) note that P(y|z) = (1 —v)P(y|z) + Ypy where 37 i, =1 and
ty > 0. Then, using Eq. (8.26) we find that, for any quantum state p, € D(Hg),

P/(y‘x) =Tr [Ryﬁpz] = (1 - FY)Tr [vam] + 'Winr [Hdpa:] = (1 - ’Y)P(y\fﬂ) + Yy = ﬁ(y|x) (827)

O

Proposition 2. A classical replacer error map R, is equivalent to a quantum measurement device that
implements a projective measurement {II,},cy € PVM(#,) and has replacer channel R+ (p) = (1 —~v)p+~yo
where Tr [II,0] = p, are the probabilities of the replacer behavior R =37, uy [y)(z|.

Proof. Consider a projective measurement {IL,},cy € PVM(H,) that achieves the noiseless probabilities
P(y|z) = Tr [II,p,] for a state ensemble {p;}-cx. Then, incorporate the replacer channel between the state

and measurement as
P'(y|z) = Tr [II;R, (ps)] = Tr [RL(HZl)p’E] : (8.28)

Noting that the replacer channel Kraus operators are Ko = /1 —~lg and K;; = \/7,/f; [¢;)(i| where
Zj w; =1 p; >0, we can write

d
RY(,) = (1= Iy + 5 Y g [i) (3] TL [h;)il - (8.29)

ij=1

Since II, is a PVM element, it is orthogonal to the rest of measurement operators, therefore, each [1;) can

be assigned to the subspace of H4 spanned by each distinct measurement operator II,. Taking j € Y, such
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that §;, = (¥;|11,|¢;), Eq. (8.29) becomes

RI/(Hy) (1- y 7 Z py |0}l = (1 = Iy + pylla = Ry 5 (8.30)

Note that the replacer state o must be selected carefully such that weights p; and states {|1;)}; are set
appropriately to ensure equivalence between the POVM R, and the replacer channel R,. Finally, using

Proposition 1 we find equivalence between channel R, and the classical replacer error map R . O

Remarkably, Proposition 1 and Proposition 2 show that a classical postprocessing map can suffice for
implementing either POVM measurements or a nonunitial quantum channel such the replacer channel. In
practice, if a POVM or quantum channel can be subsituted for classical postprocessing than this substitution is
advantageous because it reduces the overhead of implementing more complicated processing and measurements.

As a special case of the classical replacer map we consider the classical white noise map.

Definition 63. Classical White Noise Map: W, € Py,y, a classical replacer error map that adds white

noise to a behavior. The white noise map is represented as a column stochastic matrix
W, = (1— )y + =1 8.31
y=0-7) 1+ L (8.31)
where 1)y |y, is the [V| x || matrix of all ones. The resulting noisy behavior is
5 g
PZW,YP:(I—’}/)P+M1‘);|X|X| (8.32)

Using Proposition 1, we can express the classical white noise map in Eq. (8.31) as the POVM {W,, 1}, €
Y € POVM(H,y)
Wyl = (1= )yje +7Wyo, (8.33)

I; are white noise POVM elements and II,|, are the noiseless POVM elements. Note that

where W yle = Iyl ylz

= |y| because all outputs have equal probability.

Proposition 3. For any device whose measurement {II, },cy € POVM(#H,) satisfies Tr [IL,] = Tr [H;J for
all y,3’ € ), the classical white noise error map is equivalent to a depolarizing channel W, being applied to
the measured state p, where W, is defined in Eq. (13.69) and v = (1 — 7).

Proof. From Eq. (13.82) and Proposition 1, the classical white noise map is W, , = (1 — y)IL, + v/| V|4
where II,, is a POVM that achieves the noiseless probabilities P(y|z) = Tr [IL,p,]. Applying the depolarizing

channel before measurement, we find
P'(ylx) = Tr [T, Wy(p2)] = Tr [WI(IL,)p.] - (8.34)

Since the Kraus operators of the depolarizing channel self-adjoint, the depolarizing channel is also self-adjoint
as Wi = W,. Therefore, the POVM in Eq. (8.34) becomes

1—
Wi = oI, + & - )ty [11,] I, (8.35)
Finally, to recover Eq. (13.82) we substitute v = (1 — +) and require that Tr[II,] /d = 1/|Y| holds for all y.
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It follows that the classical white noise map simulates the depolarized measurement for any POVM satisfying
Tr [II,] = Tr [IT,/] for all y,y’ € V. O

As a result of Proposition 3, classical white noise can simulate depolarizing noise in certain measurement
devices. Thus, we show that these classical postprocessing maps can accommodate both unital and nonunital

noise.

Definition 64. Classical Loss Error: L. € Py,)y, consider the special case of classical replacer error where
the output y is mapped to a fixed output yo = 0 with probability P(yoly) = 1. The classical loss error is

expressed as

Ly =1 =Ny +7 Y by [¥) (W] (8.36)
Y,y €Y
and its effect on a behavior is
P=LP=(1-9P+7> > 5,y (8.37)
yeY xecX

Using Proposition 1, the behavior of the classical loss error is equivalent to the behavior constructed using
the POVM {L, ,},cy € POVM(%4) where

Ly~ =(1—7)Ly+ vy, yla- (8.38)

Moreover, if {II,},cy € PVM(#4) then by Proposition 2, we find that the classical loss error can simulate
the replacer channel R, whose replacer state is o = [¢) ()| where ¢, o = Tr[II,o]. For this reason, we find

that the classical loss error is analogous to the loss channel.
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CHAPTER 9

NONCLASSICALITY IN QUANTUM
NETWORKS

We are unable to peer inside a quantum system to observe its inner workings. Thus, to prove that quantum
physics or that its operational advantage exists, we must observe in the classical data the input to and output
from the quantum system. To this end, it is constructive to take on a device-independent perspective, in
which we try infer physical properties of a system using only its measured input-output statistics. This
approach is typically referred to as being device-independent [214] because no assumptions are made on the

physical workings of the devices involved, only their causal structure and communication resources.

Definition 65. Device-Independent: A theory, protocol, or test that depends only on a black-box system’s

classical data, which is referred to as its behavior P.

From a device-independent perspective, constraints may be placed on the communication resources used
to link the devices, and remarkably, a clear separation can be found between the set of classical network
behaviors CV¢* and the set of quantum network behaviors QN¢t. That is, there exists a nonclassicality in
the behaviors of quantum networks where a given behavior P € QN°* may not be reproducible by a classical
network implying that P ¢ CNet.

9.1 Quantum Nonclassicality

Consider a given network topology Net(ﬁ , E) where CN°* and ON°* denote the sets of classical and quantum
network behaviors for a given network topology. We consider the black-box model in the discrete memoryless
setting to place quantum and classical networks on equal footing such that both networks produce behaviors

belonging to the same full probability 7931\,1‘8/{5 The distinction between the two networks is that the classical

dTX*)RX

communication channels i € E are exchanged for noiseless quantum communication channels acting

upon a d dimensional quantum state space. Generally,
cNet C QN** and  Conv (CN°*) C Conv (QN°") (9.1)

where ideal quantum communication networks can simulate the behaviors of the analogous classical network.

However, quantum resources can produce correlations that cannot be reproduced using classical communication

(i



!

— =
—~ NG — -

PQ g gNet PQ € ¢Net? Or PQ € ¢)et?

Figure 9.1: Nonclassicality can be understood in terms of classical simulability. The main question is whether
the quantum network on the left can be simulated by the classical network on the right. If the classical
network can simulate the quantum network behavior without using shared randomness, the quantum behavior
is classically simulable. If the classical network needs shared randomness to simulate, the quantum behavior
is weakly nonclassical. If the classical networks cannot simulate the quantum network behavior when an
unlimited amount of global shared randomness is present, then the quantum network behavior is strongly
nonclassical.

resources and black-box devices.

Definition 66. Nonclassical Behavior: For a given network topology Net(]\_f , E), a quantum network

behavior PNt € QNet is nonclassical if and only P ¢ CNet,

Definition 67. Weak Nonclassicality: For a given network topology Net(]\7 , E), a nonclassical quantum
network behavior P € QN°* where P ¢ CN°" is weakly nonclassical if and only P € C}°* = Conv (CNt).

Definition 68. Strong Nonclassicality: For a given network topology Net(]\_f , E), a nonclassical quantum
network behavior P € QN°t is strongly nonclassical if and only if P ¢ CY°* = Conv (CNet).

In these definitions, any behavior that cannot be reproduced by its equivalent classical resources is
nonclassical (see 9.2). We categorize nonclassical behaviors as being weak or strong. The distinction
being that weak nonclassicality can be simulated using classical communication and an unlimited amount
of shared randomness is available between all devices while strong nonclassicality cannot. To classically
simulate strong nonclassicality, additional communication resources are required. Both types of nonclassicality
demonstrate a quantum advantage, however, strong nonclassicality provides a more convincing demonstration
of quantum advantage because the quantum behaviors can only be reproduced using additional communication.
Nonclassicality is a device-independent property because a behavior being nonclassical depends only on the
produced statistics. However, the assumed causal structure Net(Z\_f , E) must hold, otherwise the bounds of
the classical correlations CN°* no longer apply. Thus, observing nonclassical behaviors in this classical data is
interesting from both a physical and technological perspective.

Nonclassicality describes a general phenomena that occurs in quantum systems that have locality con-
straints. Nonclassicality in the form described by J.S. Bell is, in which entanglement links two quantum
devices, is historically referred to as Bell nonlocality [109]. Through a range of theoretical frameworks, Bell
nonlocality can be extended to quantum networks [124]. Bell nonlocality can be viewed as a special example
of a broad class of nonclassical phenomena referred to as quantum contextuality [163]. Here, incompatible
measurements referred to as contexts and are viewed as being foundational to realizing quantum computing

advantage [66]-[68], [96]. Another example of nonclassicality is found the field of quantum causal modeling, the
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Figure 9.2: An abstraction of the probability polytope and relative sets of quantum and classical network
behaviors. The convex polytope of the border denots the full probability polytope Py x. All quantum and
classical network behaviors are subsets of the full probability polytope. The classical set of network behaviors
CNet is typically nonconvex, the triangular region CY° is convex due to the shared randomness. A set of
strongly nonclassical quantum behaviors are shown in purple. It is assumed that shared randomness is present
to make the quantum set convex and that it can extend beyond CY°*. To witness behaviors as being outside
of either CNet or C}fet, violations of the respective boundaries can be used. These witnesses take the form of
black-box games and are discussed in more detail later.

fundamental restrictions on information flow imposed by a causal structure is examined for both quantum and
classical communication networks [215]-[217]. Interestingly, quantum causal models can exhibit nonclassicality
in the delayed-choice settings with a single particle and no entanglement [158], [161]. Alternatively, quantum
nonclassicality can be understood in terms of its communication complexity, in which classical and quantum
resources are compared in their ability to solve a problem [64]. Furthermore, entropic methods have been

applied to distinguish the correlations of quantum and classical data [218]-[222].

9.1.1 The Operational Advantage of Quantum Nonclassicality

From an engineering perspective, it is natural consider how these nonclassical correlations can be applied.
Indeed, the nonclassicality of quantum systems can lead to operational advantages in distributed information
processing, certifying quantum resources, and information security.

The information processing advantage of nonclassicality can be observed in distributed computing settings
in which devices operate independently and share limited communication resources. In such settings, the
devices can play games where the maximal probability of winning the game is directly dependent upon the
communication resources used. Indeed, when entanglement is shared between devices, nonclassical winning
probabilities can be obtained [223]-[225]. In a similar approach, the communication complexity of distributed
information processing tasks can be dramatically reduced when quantum communication resources are used
[64], showing that the amount of quantum communication needed to solve a problem can be less than the
required amount of classical communication. In general, any nonclassical behavior must perform some task at
an advantage [63], [65], although the value of this task may be in question. As a simple example, consider
a nonclassical behavior P € QN°t. If the task is to use classical communication resources to reproduce P,
then there is a quantum advantage because additional classical communication is required to simulate the

quantum communication. Similarly, in quantum computing measurement contextuality has been observed to
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be a source of information processing advantage [66]-[68], [96], [97].

Quantum nonclassicality can also provide advantages certifying quantum resources and functionality.
If a black-box communication system with a known causal structure is observed to exhibit nonclassical
correlations, then it can be asserted that quantum resources were applied, however, the assumed causal
structure and amount of signaling must hold. These concepts are the foundation of device self-testing in
which known quantum devices are used to characterize the functionality of another [226]. Self-tests can certify
a range of properties such as dimensionality [227]-[231], state preparations [232]-[235], and measurements
[236]-[239]. These methods can then be extended into network settings [164], [240]—[244].

Fundamental cryptographic protocols such as key distribution or randomness generation can be made
more secure by using nonclassicality to assert that quantum resources are being used. Such protocols are
based upon the principles of self-testing procedures. In these device-independent protocols the nonclassical
behavior asserts the presence of quantum resources, which are often needed to assume security. For example,
nonclassicality can be used to certify that randomness was produced by quantum systems [186]—[192], [245],
[246]. Furthermore, the presence of nonclassicality can help ensure that eavesdroppers are not present in key
distribution [182], [247]-[255]. Such device-independent protocols can even be scaled to networking scenarios
[256]-(260].

9.2 The Hierarchy of Network Communication Resources

For a given network topology, the set of classical behaviors is contained by the set of behaviors for the
quantum network having the same topology, but upgrading some or all of the communication resources to
quantum. That is, the relation CN¢* C ONet must hold for any two networks that have the same causal
structure and communication resources. As a result, the set of deterministic behaviors VNt that are extreme

CNet

points of are also extreme points of QN°*, however, it is not always clear whether

Conv (CNet) C Conv (QN¢") (9.2)

holds with equality, or if the quantum set is greater because both cases can occur in networking systems.
The quantum and classical communication resources can be ranked based on their operational value [64].

From strongest to weakest the hierarchy of communication resources is:
1. Quantum Communication
2. Classical Communication
3. Quantum Entanglement
4. Classical Shared Randomness

The relative strength of two communication resource compares their operational value. In general, this
comparison can be quantified in the communication complexity of using a set of resources to simulate another.
To better understand the resource hierarchy, we show in example how the various communication resources
can be simulated.

Classical shared randomness is the weakest of all resources. As described in Definition 14, distributing
a shared random value A € [d] to m subscribing devices requires mlog,(d) bits of classical communication.

Furthermore, the communication cost of distributing shared to solve any two-party computation f : {0, 1}V x

80



{0,1}M — {0,1} is negligible for large N and M [261]. Therefore, shared randomness can not only be
reproduced using classical communication, but in some cases the added cost of distributing shared randomness
can be insignificant.

Generally, randomness shared amongst m devices can be modeled as a single source A that emits a
message \; € [d] to party A; with probability P();). The messages are independent, but can be chosen

arbitrarily such that the behavior decomposes as

m d

PA=Q D PO = D PO

=1 \;=1 Xe[d]m

X> : (9.3)

We find that Eq. (9.3) can be reproduced exactly by measuring the state
oA = diag (P(X)) X € [d™ e D(HE™) (9.4)

in the computational basis such that P(X) = <X|pA\X> Thus, any shared randomness is simulated using
a quantum mixed state distribution. In a more restricted example, let A;) = Ay where P()\;) = P(\;/) for
all 4,i' € [m] and A\ € [d] such that PA = ", Zi:l P(X\)|\). This behavior can be reproduced by

measuring the entangled state
m

d
oY) = VPO QN (9.5)
A=1 j=1
in the computational basis such that P(\) = | <)\|¢A> |2. Interestingly, shared randomness cannot be used
to simulate the correlations produced by quantum entanglement [12], nor can it be used to communicate
information, meaning that it is the weakest of the communication resources.

While quantum entanglement is certainly a stronger communication resource than classical shared
randomness, it is still weaker than classical communication. It was shown by Bacon and Toner that a single
bit of classical communication and and unlimited amount of shared randomness are sufficient to simulate
Bell correlations [262], [263]. Furthermore, non-signaling theories such as classical and quantum physics obey
the principle of information causality, meaning that quantum entanglement cannot be used to communicate
when assisted by classical communication [264].

Moving up the hierarchy to the dynamic resources, quantum communication can be found to be stronger
than classical communication. Quantum communication can exactly reproduce classical communication by
encoding signals into the computational basis states, however, classical communication cannot reproduce
quantum communication without using extra resources. For example, quantum communication of an unknown
quantum state can be simulated using a teleportation protocol, which requires only 2 bits of classical
communication and an entangled state shared between the sender and the receiver [198]. However, by
Holeveo’s theorem the classical communication capacity of a quantum channel cannot exceed its dimension
[173]. This statement is made even stronger by Frenkel and Weiner’s result [115], in which it was proven that
one dit of classical communication and an unlimited amount of shared randomness are sufficient to simulate
one qudit of quantum communication. However, additional classical communication is needed to simulate the
nonclassical correlations of quantum random access code in the delayed-choice setting.

Similar to quantum teleportation, entanglement-assisted classical communication can demonstrate com-
munication advantages over shared randomness-assisted classical communication. Throughout this work,

we show different configurations of entanglement-assistance in communication networks to produce strongly
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nonclassical correlations. However, the principle of information causality restricts the amount of information
that can be communicated [264]. An interesting example occurs when quantum communication is assisted by
entanglement. In this case, dense coding protocols are known where two-bits of classical communication can
be encoded into a shared entangled state and quantum communication [265]. It has recently been observed
that there is a duality between dense coding protocols and teleportation protocols [266].

The fact that different configurations of classical resources can simulate the correlations values the
correlations in terms of classical resources. If the task requires the processing of classical information, the
quantum and classical resources will be indistinguishable in their application, although more classical resources
may be needed to simulate the quantum system, if classical resources are cheap, then this cost may not be

very significant.

9.3  Witnessing Nonclassicality

Nonclassicality is a device-independent quantity that is observed in the network’s classical data where
the network’s causal structure and communcation resources are known. This task is the foundation of
device-independent certification and is even an important task to observing and proving quantum physics in
nature. Since the classical set CV* is bounded, there exist inequalities that separate the behaviors achievable
by the network P € CN°t from those that are not P ¢ CN¢t. Thus, nonclassicality can be witnessed in classical

data by demonstrating a violation of the classical boundary.

Lemma 7. Consider a nonclassical behavior PN¢ ¢ CN¢t. There exists an inequality v > ¢g(P®) that is
satisfied for all P¢ € CN°t, but violated by the nonclassical behavior as v < g(PN¢).

Applying Lemma 7, the task of witnessing nonclassicality reduces to identifying a function g : P — R
that bounds the set of classical behaviors, but is violated by the nonclassical behavior. Inequalities bounding

the set of classical behaviors can be derived using the fact that that CNet

is closed, connected, and bound by
a set of inequalities referred to as nonclassicality witnesses [109], [124]. We express nonclassicality witnesses
as the game (7, Sxet(P)) where Snet : P — R is referred to as the nonclassicality score and vy > Syt (P) for
all P € CN¢t, Unless randomness is shared amongst all device such that CN°! is convex, the nonclassicalilty
score Snet(P) is a nonlinear function of the probabilities P(d@|#). Fortunately, nonclassicality witnesses have
been derived for a large number of communication network scenarios [124], [267]-[275].

We mainly focus on the case when the nonclassicality witness linear and an unlimited amount of shared

CNet = et becomes convex and corresponds

randomness is held by all device in the network. In this setting
to a classical network polytope, which is bound by linear inequalities as discussed in Chapter 4. In this case,
a given behavior P can be tested to belong to CN°* by using the linear program in Eq. (4.22). However, the
linear program will only obtain an example facet inequality that is violated by the behavior P. On the other
hand, the classical network polytope can be completely characterized using Fourier-Motzkin elimination or
the adjacency decomposition algorithm discussed in Section 4.6. However, these algorithms can only scale
due to their computational complexity. Fortunately, the tight classical bounds have been computed for many
network scenarios. Therefore, a breadth of nonclassicality can be studied without needing to derive new
bounds.

We can also consider the case where the set of classical network behaviors is nonconvex CN°t ¢ Conv (CNEt),
the bounds become more difficult to characterize. For many network topologies, these nonlinear bounds
have been derived and general techniques for constructing new bounding inequalities have been developed

[276]-[279].
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Figure 9.3: (Left) The CHSH scenario in which two space-like separated measurement devices, A and B share
an entangled state p*. (Right) The delayed-choice setting where device A sends a quantum state to device B.

Nonclassical network behaviors can also be witnessed using a game theoretic approach in which quantum
communication resources increase the probability of winning a game [64], [223]. These games are typically
played under the assumption that the players are not communicating and the advantage comes from the
use of entanglement resources. These types of games are referred to as nonlocal games. Nonlocal games are
linear black-box game (v, G) (see Def. 7) where there is an associated reward G, , for outputting y € ) given
the input x € X and output y € . The upper bound  corresponds to the maximal average score that the
classical network can achieve given that x is drawn uniformly from X and sufficiently many data points have
been taken to dampen statistical fluctuations. Games do not necessarily represent tight bounds on the set of
classical network behaviors, but they do associate with an explicit task that demonstrates an advantage using

quantum resources.

9.4  Examples of Nonclassicality

9.4.1 Delayed-Choice Signaling Scenario

Consider the delayed-choice scenario in which a sender encodes a two-bit input 2 € X = B? into a qubit state
p. and sends it to a receiver who decodes the quantum state using a quantum measurement Hl?ly conditioned
on an input y € Y = B to produce an output b € BB. In this scenario,  and y are locally independent
variables, and a time-like separation exists between the sender and receiver.

An interesting quantum advantage emerges when a random access coding (RAC) game is considered
where the objective is for the receiver to guess the y* bit of the sender’s input , however, only one bit of
communication is allowed. That is, the gam is won if b = =, where z, is the yt* bit of the senders input z.

This game can be encoded into the game matrix that rewards the correct output for each input

1 1.1 0 0 1 0 O
G=3 3 Graylb)a,yl = . (9.6)
reEX ye) beB 00011011

The classical bound is v = 6 > (G, P) for all P € CY* [280]. However, the maximal quantum violation is
v =4+ 2v/2. The RAC game can be extended to any system where z € B”, |J| = n, and B = B.

In the classical setting, the probability that the receiver outputs the right answer is Py, < % where a
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perfect strategy doesn’t exists because the senders input cannot be compressed into one-bit without loss.
Interestingly, When one-bit of quantum communication is used instead, the probability of winning is bound as
PV?,W < 2“[ > 2 markmg a quantum advantage in this task. The advantage in quantum random access code
has been generahzed and extensively studied [187], [280]-[284]. Note however, that quantum communication
does not allow for a perfect quantum winning strategy nor does is allow for more than one-bit of information
to be communicated. Nevertheless, it does improve the probability of winning the random access code game.

The quantum random access code advantage has been studied [282], [283]. This example of strong
nonclassicality have been studied as dimensionality witnesses [227], [228] and semi-device independent
entanglement certification [234]. These violations of classicality also semi-device independent quantum key
distribution [252], and semi-device independent random number generation [188], [192], [246]. Furthermore,

the nonclassicality violations in these settings have been experimentally verified [161], [229].

9.4.2 Nonsignaling Bipartite Nonclassicality

Consider the scenario in which one source A links two devices, A and B where the inputs and outputs of each
device are binary such that x,y,a,b € B. This scenario is a fundamental example in nonclassicality and is
commonly referred to as the CHSH scenario after Clauser Horne Shimony and Holt [109]. These researchers
showed that the classical behaviors P € C{"SH are bound by the CHSH inequality [13]

Scnsi(PN) = (0 © OF) + (0f © OF) + (04 © OF) — (0 ® OF) (9.7)
Scnsu(PN) =) " (0,F) <2 where 0% = (Og' + (-1)?0f") ® OF. (9.8)
yeB

The CHSH inequality is a linear inequality whose game matrix is

1 1 1 -1

-1 -1 -1 1
GO — (9.9)
-1 -1 -1 1
11 1 -1

where Scusu (PAB) <GCHSH PAB> and behaviors decompose as
P blx,y Z Palm )\Pb|y A (9.10)

The CHSH score quantifies the performance in a game where the goal is to maximize the likelihood that the
binary inputs and outputs satisfy a @ b = = A y [109].

The maximal quantum violation of the CHSH inequality is S&ygy(P*) = 21/2 > 2 where P* ¢ QCHSH
[285]. It follows that all quantum behaviors P € QCHSH gatisfy Scusu(P) < 2v/2. To achieve the optimal

behavior P*, the two devices measure the respective observables

1
04 = (1 —x)o3 +z0; and Of = 5(03 +(—=1)Y0y) (9.11)

where 03 = 0, and 07 = 0, are Pauli matrices. If the two parties are correlated using shared randomness,

their winning probability is bound as Py, < %, however, when quantum entanglement is shared between
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the two parties, their winning probability is bound as Pv?/m < cos2(§) > %. Since there is no communication,
the quantum entanglement is shown to be a stronger resource than classical shared randomness, hence there

exists operational advantage when entanglement is used.

9.5 Nonclassical Hidden Variables in Quantum Mechanics

There is still much to understand about quantum physics, and as postulated by Einstein, Podolsky, and
Rosen, it may not be complete. The fact that operational quantum advantages seem to exist implies that

quantum physics is somehow extends beyond classical limits.

Definition 69. Realism: A model is realistic if its elements correspond to physical elements of nature. That
is, there exist hidden variables or information, that if known, allow the system’s dynamics to be predicted

with certainty.

Definition 70. Locality: A model is local if each network device operates only upon the information

present.

Definition 71. Causality: A model is causal if the transmission of information is the forward lightcone

and it operates only on information contained within its past lightcone.

However, demonstrating nonclassicality alone does not assert that one of these classical assumptions has
failed. Indeed, the causal structure of the communication network and its communication resources must be
known. Knowledge which cannot always be taken as fact. Otherwise, the nonclassical quantum behaviors
can be simulated using classical communication. Consider the randomn access code game where the sender
is allowed to send two rather than one bit. The receiver would always be able to output the right answer
because the sender can send their entire input. Similarly, the CHSH violations can be simulated if classical
communication is used [262]. The fact that nonclassicality can be simulated using classical resources allows it

to be used to quantify the amount of operational advantage provided in the quantum task.

9.6 Simulating Nonclassicality with Classical Resources

One of the main applications of nonclassicality is to certify the presence of quantum resources. Since the
security of device-independent protocols and self-testing certification relies on nonclassical behaviors, it is
important to understand how these protocols could be attacked using classical resources. In particular,
consider a simulation-based attack in which classical resources are able to reproduce nonclassical statistics, a
device-independent protocol would be unable to discern whether or not the underlying resources are quantum.
To this end, we consider two types of simulation-based attacks in which the network is malicious and attempts
to simulate quantum resources, while the researcher supplies the network with classical data attempting to
discern correctly whether quantum resources are being used.

The first simulation-based attack we consider is a side-channel attack in which network devices communicate
extra classical communication via a side-channel that is hidden from the researcher. The extra communication
expands the classical network polytope CY° such that it includes behaviors that would otherwise have been
strongly nonclassical. If the researcher is not aware of the side-channel, then the network would appear to
exhibit a nonclassical behavior. To mitigate the risk of this simulation-based attack, the researcher needs
to characterize the network’s causal structure and the amount of communication between devices. In other

words, the research must confirm that no side-channels exist.
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In practice, asserting that no classical side-channels exist is difficult because quantum networks will
require classical communications between devices to coordinate their actions. Furthermore, since classical
communication is easy to implement, there will be few limitations on the amount of classical communication
between devices. Thus, it is important that network devices are trusted to not implement simulation attacks
via a side-channel.

A second approach to simulating nonclassicality is a memory-based attack. Recall that we have so far only
discussed black-boxes in the discrete memoryless setting. However, since classical data can be stored, network
devices could use their classical memory to store their history of classical data. Consider the memoryful
black-box with probabilities PMe™ (y|x, &, 7;) where #; and ¢, are the history of inputs and outputs received
by the memoryful black-box. Now, if the researcher draws the input x from a uniform prior distribution
independent of #; and ¥, then Z; and 7; can be understood as random variables local to the black-box.
Therefore, a black-box that remembers its inputs and outputs can use that history to simulate stochasticity.
However, as a single black-box this is not interesting because even in the memoryless setting, the black-box
can be stochastic.

When considering memoryful black-boxes in a quantum network, the worst-case is that all black-boxes
know the history of classical inputs and outputs for all devices. That is, the behavior of one memoryful
network device is P(¢/]Z, 72!, 7N °') where 7t and 7N°* contain the history of inputs and outputs given to
each device. Once again, if the researcher draws the input & from a uniform distribution independent of the

device’s history, then #N* and #¥°* can be understood as global hidden variables shared amongst all devices.

As a result, the set of memoryful classical network behaviors CY' must obey the hierarchy,

cNet c onet et (9.12)

such that the memoryful network can simulate weakly nonclassical behaviors but not strongly nonclassical
behaviors. Hence the assumption that network devices are memoryless is not necessary when strongly
nonclassical behaviors are being used, but it is necessary when weak nonclassicality is considered. Furthermore,
it is important that the researcher’s input be uniformly random and independent from the black-box’s history
because otherwise a malicious network could use its history to correlate its behavior with the researcher’s

prior distribution, leading possibly to nonclassicality.
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CHAPTER 10

THE NOISE ROBUSTNESS OF
NONCLASSICAL BEHAVIORS

Quantum communication networks are naturally noisy. Within our model of quantum communication
networks, noise can be modeled as a collection of CPTP maps NNet that are applied between the ideal
operations of the quantum networking devices. As discussed in Chapter 5, noisy quantum channels can
expressed using unitary operators in the system-environment representation (see Def. 38).

We can interpret the noise in quantum networks as being caused by unwanted interactions between the
encoded quantum information and its physical surrounding environment. The environment is typically not
controlled by researchers, meaning that the environment cannot be measured, or intentionally operated upon.
This means that the noise in a quantum network cannot be recovered when lost to the environment. However,
the effects of noise can be mitigated by using extra quantum resources to perform error correction protocols.
For instance, in entanglement distillation protocols, many copies of noisy entangled states are used to produce
an entangled state with less noise [62]. Although, the extra quantum resources needed to mitigate noise are

not always available.

10.1 Nonclassicality Breaking Noise

Noise causes the set of quantum network behaviors QN°* to deform. That is, considering an arbitrary quantum
network topology (Net) and its noise model NN, the set of noisy quantum network behaviors becomes
constrained as QN (NNet) ¢ QNet (1dN°) where QN (idN°") and QNt(N'Net) denote the sets of noiseless and
noisy quantum network behaviors respectively. If QN°t contains strongly nonclassical behaviors, then it the
hierarchy Conv (CNet) = C}fet c ONet must hold. Therefore, if a sufficient amount of noise is present, it is
possible that the set of noisy quantum behaviors can deform such that it is completely contained by the set

of classical network behaviors and its nonclassicality is said to be broken.

Definition 72. Nonclassicality Breaking Noise: A network’s noise model A'N°t is said to be strong

nonclassicality breaking if and only if

QNet(NNet) g le:let C QNEt(idNet), (101)
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Figure 10.1: A depiction of the full probability polytope Py|x (outside blue polygon) that contains all
quantum and classical network behaviors. The set of noiseless quantum behaviors QN°t is purple and the
set of noise quantum behaviors QN°* (. yet) is given in orange. The nonclassicality of the network is broken
when the noise is sufficiently large such that the set of noisy quantum behaviors is contained by the set of
classical network behaviors C}°".

and is said to be weak nonclassicality breaking if and only if
QNet<NNet> C CNet C QNet(idNet), (102)

where Conv (CNet) = CRet.

The concept of strong nonclassicality breaking was originally introduced in the context of nonlocality
breaking channels [286], [287] where in these works, the authors considered the amount of noise at which
the nonlocality with respect to the CHSH inequality is broken. We extended these results in reference [102],
in which we considered the amount of noise needed to break the non-n-locality of star and chain quantum
networks. The latter work is an example of weak nonclassicality breaking while the former works are examples
of strong nonclassicality breaking.

In general, it is a difficult task to assert whether or not the set of quantum network behaviors is contained
by the classical set QNet(ANet) C CNet (See Fig. 10.1). In practice, it is easier to assert whether or not
nonclassicality broken with respect to a tight nonclassicality witness (3, Snet). That is, the nonclassicality of
a network is broken if 8 > Syt (P) is satisfied for all P € QNet(NNet) or equivalently, if

B> Snet(P*) = pegg?()/(\met) SNet (P). (10.3)

10.2  Quantifying Noise Robustness

Since quantum nonclassicality deteriorates in the presence of noise, it is important to characterize the noise
robustness of nonclassical quantum behaviors. To define the noise robustness, we first quantify the amount
of noise present in a network. This can be done by parameterizing a quantum channel N,ly\let or classical

171
i=

postprocessing map E5 by a noise parameter ¥ = (y; € [0,1])
case and /\/:I/\Iet € CPTP for all ; € [0,1].

; Where «; = 0 corresponds to the noiseless
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Definition 73. The Noise Robustness of Nonclassicality: The amount of noise that can be tolerated
by a quantum network before nonclassicality is broken. The noise robustness of quantum nonclassicality can

be quantified by the critical noise parameters 7y at which nonclassicality is broken, that is,
o = sup {&‘ e o, 1]‘ QNet(ANet) ¢ CN“}. (10.4)

where QNet (/\/'VNet) is the set of quantum network behaviors having noise model Nyet. The network’s noise

robustness is defined with respect to a nonclassicality witness (8, Sxet) as

— > * fr . .
o=sup{r e 0] |52 S (P = | max | Sva(P)] (105)

However, the challenge still remains of finding the maximal Bell score for a given noisy network.

Note that the critical noise parameter o € [0, 1] corresponds to a single point in the domain of noise
parameters. We can also consider cases where there are many noise parameters such that |¥| > 1. In this
case, the set of critical noise parameters 7, € [0, 1}'7‘ forms a surface. The surface corresponds to the set of
all 4o for which § = Snet(P*).

Theorem 1. Consider a linear nonclassicality witness (0, G) that has been scaled such that the classical
upper bound is zero and the maximal possible score is one where 1 = maxpep,, ,(G,P)- If white noise is

applied to a behavior as

1
P,=W.,P=(1-7)P+9W where W=> )" — |y, (10.6)
zEX yeY |y|

then the nonclassicality is broken at the critical noise parameter

(G, P?)

Yo = (G, P9 — (G, W) (10.7)

where P is the optimal quantum behavior for the considered system.

Proof. The optimal quantum strategy is unchanged in the presence of white noise, therefore the game score

is expressed for the noisy behavior as
<G,P§?> = (1-7){(G,P?) +7(G,W). (10.8)

We seek the critical parameter at which the nonclassity witness is no longer violated, therefore, we set

Eq. (10.8) equal to zero and solve for g

0=(1-7){(G,P?) +7 (G, W) (10.9)

70(<G7PQ> - <G3W>) = <G,PQ> (1010)
(G,P?)

Yo = G, PQ) — (G, W) (10.11)

O

The noise robustness of nonclassicality can characterize the value of quantum communication resources.
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If a quantum network does not exhibit nonclassical behaviors, then the operational advantages derived from
quantum nonclassicality must also vanish because there exists a classical network that can simulate exactly
the quantum network’s behavior. If a quantum technology is to provide advantage it ought to be able to
exhibit nonclassical behaviors. Thus, the noise robustness of nonclassicality can quantify a network’s ability
to demonstrate quantum advantages in the presence of noise.

Since the noise parameter is specific to a noise model, the noise robustness of a quantum network is
defined with respect to a particular noise model. For this reason, the robustness should not be quantitatively
compared between different noise models, even when the same network topology is considered in both cases.
On the other hand, the noise robustness of two different networks with similar noise models can be compared.

As a result, the relative noise robustness of different quantum network topologies can be compared.

10.3  Optimizing Nonclassicality in Noisy Quantum Networks

Evaluating a given network’s robustness to a noise model Nyet requires following optimization problem to be
solved

SNet(P*) = PGQINI(IJtag/(\/NOt) SNet(P)~ (10.12)

Since the network’s probabilities decompose as

P(BI,7) = T TN (o3 (10.13)
the maximization over P € QN°t(NNet) is recast as a maximization over all network state preparations
pY°t € D(HP™P) and all network measurements IIN* € POVM(HM®). For example, let SN be a linear

nonclassicality witness, then Eq. (10.12) becomes

{pNeteD(HPTeP)} o & o
{{HIE\I‘?}T)EB €POVM(HMeas)} .y,

Snet (P*) = max Z Z Z S?;thr [Hlj’itNNet (p;ﬂet)} : (10.14)
D)

Generally, Eq. (10.14) is a bilinear optimization because both states and measurements must be optimized.
If either the set of state preparations {p}¥°"}z or measurements {{Hg‘;}}g}g is fixed, then Eq. (10.14) can
be solved as a semidefinite program [92]. While there exist numerical methods for solving such bilinear
programs, e.g. the see-saw method, they are difficult to solve in general. The main drawbacks of using
numerical convex optimization techniques include there being no guarantee of convergence to a global optima,
a priori requirement of characterizing the noise model ANt and the need to perform convex optimization on
a Hilbert space that grows exponentially with the number of qubits. Furthermore, when an optimization is
run, the optimal state preparations and measurements are output as matrices where it is not necessarily clear
how the state preparations or measurements are achieved on a quantum networking device.

To resolve some of these issues, we use variational quantum optimization to maximize the nonclassicality
in Eq. (10.12). Although VQO methods are still subject to finding local optima, they provide interesting
advantages over the convex optimization techniques. These advantages include not needing to characterize
the noise A'N°* and obtaining as output from the optimization the device settings for which the optimum is
achieved. Furthermore, when implemented on quantum hardware, there is no need to store the exponentially
large Hilbert space into memory.

The maximization of nonclassicality in noisy quantum networks in Eq. (10.12) is well suited for our VQO
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framework. The noisy quantum network ansatz circuit can be constructed as described in Chapter 7. The

cost function that is minimized during variational optimization is then expressed as
Cost (Pnet(0)) = —Spen (Pret (0)), (10.15)

where the minus sign transforms the minimization of the cost into the maximization of the Bell score. It is

then a simple matter of using software such as qNetVO [108] to perform the VQO algorithm shown in Fig. 11.3.

t

Furthermore, the network settings © parameterize the network’s state preparation pge and measurements

TINet,
bly

We now formalize some notation used throughout the work. First, let SBell(Hggt;N Net | pNet) be the Bell
Net. noise model AN, and measurements IT1N°". We define the

score for a fixed network state preparation p o

maximal Bell score for a set of fixed state preparations as

St (P5™1) = max S (TG, 3™, pN) (10.16)

b7

where the optimization is over all network measurements and idNe* denotes a noiseless channel on all qubits.

Furthermore, for a static noise model NN, we define

5?* NNet — S NNet Net , 10.17
Ret (V) e T Ret (VT (05) (10.17)

where the optimization is over the set of all state preparations.
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CHAPTER 11

OPTIMIZING NOISY QUANTUM
COMMUNICATION NETWORKS

This section introduces a general framework for simulating and optimizing noisy quantum networks. At
a high-level, a quantum network’s DAG and free operations is transformed into an equivalent quantum
circuit representation. The quantum circuit can then be run by either a quantum computer, or on a classical
computer that simulates the circuit execution. Through the use of differential programming, the simulations
can be optimized in a similar manner to training a neural network.

The simulation and optimization framework described here was introduced in Variational Quantum
Optimization of Nonlocality in Noisy Quantum Networks [102], and is implemented as a Python package called
gNetVO: the Quantum Network Variational Optimizer [108]. The qNetVO software extends the PennyLane
framework for cross-platform differential programming of quantum computers [210]. That is, using PennyLane
the gNetVO simulation framework can run its simulation on a wide range of quantum hardware platforms
and simulators. Furthermore, PennyLane enables our quantum simulations to be trained like neural networks
by integrating with differential programming software packages such as Tensor Flow [288] or PyTorch [289],
however, we mainly apply Autograd, PennyLane’s default automatic differentiation software.

The variational optimization techniques applied by the qNetVO framework are compatible with both
classical and quantum simulations of the network. The advantage of having an optimizer compatible with
quantum hardware is two-fold. First, if the quantum system is too complex to simulate classically, the network
cannot be numerically optimized on a classical computer with efficiency. Second, if the quantum circuit is
evaluated on an actual quantum network, then the circuit’s functionality can be optimized with respect to
the noise model inherent to the network. This last point is quite significant because removes the necessity of

characterizing the noise in the network when running quantum networking protocols.

11.1  Variational Optimization and Differential Programming

In our optimization framework, the objective is to minimize a cost function over its variable parameters
O € R"” to obtain the optimal settings

©* = arg m@i)n Cost (©) where Cost:R" — R. (11.1)
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Black-Box White-Box

def £(x):
x ? = fx) x y = g(x)**x2 == f(x)
. return h(y)

Figure 11.1: A function f(z) is shown as a black-box and a white-box. The contents of the black-box are
unknown but the contents of the white-box function is shown and expressed as code.

To solve the optimization problem in Eq. (11.1) we apply gradient descent [290], [291] to find local optima.
This algorithm optimizes a function by incrementally stepping in the direction of steepest descent toward the

minimum. In each step of this iterative procedure the settings are updated as © — ©" where

0" =0 — nVeCost (() Pret(0)), (11.2)
in which n € R is the step size and VgCost (©) = (ddceoft,..., dd%"zt) is the gradient of the cost function

evaluated at ©. The gradient VgoCost (() Pret(©)) is evaluated numerically using automatic differentiation
[292], [293]. There are three main approach in which gradients can be evaluated computationally, numerical
differentiation, automatic differentiation, and symbolic differentiation. Although we describe each method in
terms of obtaining the first order derivative, each of these approaches can be used tto obtain higher-order
derivatives as well.

In numerical differentiation the derivative of a function f : R™ — R is evaluated at point € R™ using a

finite differences rule J )
2\ T — >\ = >, 2
s f(@) = 25(f(x +eé;) — f(T—eée;)) +0(e) (11.3)

where & € R is the i*" basis vector. Note that to evaluate all n derivatives, 2n total function evaluations
are needed such that the computational complexity of finite difference gradient is linear complexity O(n).
Importantly, numerical differentiation approximates to first order the gradient at point ©. However, its
advantage is that numerical differentiation can be applied to a black-box function with no knowledge about
the function other than its input and output.

In symbolic differentiation, a software interprets mathematical expressions symbolically using mathematical
rules to construct a new function [294]. The main advantage of symbolic differentiation is that it is analytic,
meaning that the gradient is evaluated exact. In general, the main drawbacks of symbolic differentiation
are that it requires a closed form expression of the function f(#), which can grow exponentially larger than
the original expression when differentiated [293]. These long expressions can be costly to evaluate and
compute. It is important to note that symbolic differentiation is a white-box approach because the code of
the differentiated function must be known.

Automatic differentiation is similar to symbolic differentiation in that it constructs the exact derivative
function of f(x) analytically. However, automatic differentiation supports programmatic control flow within
the function it differentiates and improved efficiency over symbolic differentiation methods [293]. In this
method a DAG modeling the function f : R™ — R where the inputs Z flow to the output f(#) with each
node corresponding to a function g¢;, and each link an intermediate variable v;. To compute the gradient
two passes are taken through the function f(x). In the first pass, the computational DAG is constructed
and th intermediate variables v; and functions g; are evaluated for the specified input 3. Then in a single
backward pass, the gradient is evaluated by accumulating all of the intermediate derivatives into a linear

combination of products using the chain to differentiate the nested functions, e.g., f(g(z)) are differentiated
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Figure 11.2: The computational DAG representing the function f(x1,x2) = sin(x1) + z1x2 is constructed
and differentiated via backpropagation. In the graph the The circular gray nodes correspond to subfunctions
of f. The forward pass is shown using blue arrows and text. The backward pass is shown using blue arrows
and text. When traversed from output to each input, a complete derivative is calculated.

1) Input: @init
Random Settings ©'Mt,

ansatz circuit, and cost /—\

2.b)Q Hardware: Simulate network
for given settings © to obtain network
behavior PN¢t(0).

2.a) Classical Computer: Gradient
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Figure 11.3: Variational Quantum Optimization Algorithm: As input the algorithm takes randomized
settings O™ and ansatz circuit UN®*(©), and a cost function Cost (PNEt(@)) that operates upon the a
behavior PN¢t, The algorithm then begins the variational quantum optimization loop in which the classical
computer uses the quantum hardware as an oracle to produce the probabilities for the ansatz circuit evaluated
at the specified settings. Using the queried data, the classical computer evaluates gradients of the cost and
performs a gradient descent optimization. Iterating the optimization optimizes the cost. At the end of the
optimization the optimal settings ©* and minimal cost Cost (©*) are output.

as % = %Z—Z. The algorithm for this process is referred to as backpropagation and can be evaluated in order
O(1) complexity where the function f(Z) is essentially evaluated twice, once for the forward pass and once for
the backward pass (see Fig. 11.2) [295]. The advantage of backpropagation is its O(1) efficiency, even when
there are millions or billions of parameters. Indeed, the main drawback of backpropagation occurs when f(z)
cannot be evaluated efficiently, although, such scaling challenges can be offset by wide parallelization and the

use of GPUs [296], [297].

11.2  Variational Quantum Optimization Framework

This section outlines the hybrid variational quantum optimization procedure applied in this work. The
described algorithm is implemented by the qNetVO software and can be run using remote quantum hardware
or a classical simulator [108].

The main difference between variational quantum optimization and variational optimization is that the
former evaluates the cost and gradients by treating a quantum device as an oracle. That is, a classical optimizer
queries the oracle asking it to run a quantum circuit and the oracle returns the results for the specified

quantum circuit evaluation. In this way, the quantum system can be treated as a black-box and black-box
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methods for evaluating gradients can be applied. However, if the applied unitary operators associated with
given optimization parameters are known, then alternative methods can be applied to evaluate the gradient.

In particular our software computes the gradient of a quantum circuit on quantum hardware using the
parameter-shift rule [104], [107]. In practice, the parameter-shift rule first runs the network simulation
over a collection of “shifted" settings {©9}, = Ops and then, the classical optimizer uses the resulting
circuit behaviors {Pqc(©9)}g,cp,, to construct the gradient. Furthermore, the parameter-shift rule can
be naturally extended to evaluate higher-order derivatives quantum hardware [105], however, this takes on
a significant overhead in the number of circuits that must be evaluated. Similarly, the quantum natural
gradient can be used to improve the gradient at the cost of additional circuit evaluations [298].

In practice, we apply the basic parameter-shift rule that is exposed by the PennyLane software [210].
The major advantage of using the parameter-shift rule is that it is more robust to the stochastic noise on
a quantum computer than the finite-differences rule [299]. While the parameter-shift rule and the finite-
difference rule each rely upon shifting the value of a parameter, the parameter-shift rule applies a macroscopic
shift whereas the finite-differences rule applies a microscopic shift. These shifts respectively lead to large and
small differences in the cost landscape. Indeed, if we allow for stochastic fluctuations in the cost evaluation,
then the finite differences can lead to large errors in the calculated gradient whereas the parameter-shift rule

is less susceptible to such fluctuations.

Algorithm 1. Variational Quantum Optimization: As input, the VQO algorithm requires a cost
function Cost (PN°*(©)) and a parameterized variational circuit ansatz UN(©z). As hyperparameters, the
algorithm accepts the step size 7, the maximum number of gradient descent iterations max_iter. The VQO

algorithm then proceeds as follows (see Fig. 11.3):

1. The network settings Oyt are randomly initialized.
2. set iter = 0 and begin the hybrid VQO loop.
3. While iter < max_iter do:

(a) The classical optimizer constructs the collection of parameter-shift settings {©9}, = Ops.
(b) The quantum computer evaluates PRC(09) for all settings in ©¢ € Opg.

(¢) The classical optimizer evaluates the gradient VgCost (PN°*(©)) using the parameter-shift rule
and updates the network settings as © = © — nVeCost (PN'(0)).

(d) Increment the iteration iter = 1+ iter.
4. Evaluate Cost (PN°(©)) on the quantum computer

5. Returns the optimal settings © and the minimal cost Cost (PN°*(0)).

Our VQO algorithm is not guaranteed to find ©*, the global minimum of the cost function. The algorithm
instead outputs settings ©’ that upper bounds the global minimum as Cost (©’) > Cost (©*). The bound
can be improved by repeating the optimization many times with randomly initialized settings. Additionally,
hyperparameters such as the step size 1 can often be adjusted to improve the tightness of the bound
Cost (©) > Cost (6*).

It may also be constructive to evaluate the cost Cost (PNet(@)) each time after each step of gradient

descent. In doing so, the performance of the cost minimization can be logged or tracked throughout the
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optimization. This information can be used to exit the optimization loop early if a satisfactory cost is found,
or the loop may also be exited if the optimization appears to be stuck in a local minimum by not making
sufficient progress towards an expected minimum. However, incorporating an extra cost evaluation require at
least one additional circuit to be evaluated on quantum hardware, which could be costly in time or money.
Thus, it may be preferred to evaluate only once per some number of steps. On the other hand, Algorithm 1
does not evaluate the cost until after the optimization. Although this approach is most efficient, the settings
obtained in the last set of gradient descent are not necessarily the most optimal because a step size that is
too large can lead to oscillations in the optimized cost. That is, when the gradient descent algorithm ends up

overshooting the minimum such that the cost increases rather than decreases.

11.8  Variational Quantum Optimization in Practice

In this section we discuss how variational quantum optimization is applied as a hybrid quantum-classical
optimization algorithm in practice. We consider VQO from two general perspectives design and automation.
From a design perspective, VQO is used to optimize a simulation of a quantum network in order to gain
insights. Here a quantum computer or a classical simulator is used to model a quantum network. The results
the simulation and optimization can be used to assist the design of the network. On the other hand, VQO can
be used to help automate a task on quantum hardware. Here a cost function encodes the desired performance
of quantum hardware, hence by minimizing the cost, the quantum system is inadvertently trained to perform
the desired task. Thus, VQO can serve as a mechanism for establishing and maintaining the performance of
quantum protocols between networking devices.

In design tasks, the use of quantum hardware can be important because it may be able to simulate the
quantum network system more efficiently. That is, a quantum computer may be able to efficiently evaluate a
cost function in cases where a classical computers cannot. If there is a big enough separation between the
evaluation times for classical and quantum systems, then a quantum computer may be more efficient to run
the O(N) number of circuits needed to evaluate the quantum gradients using the parameter shift rule for N
parameters, than a classical computer can perform the O(1) complexity of back propagation.

To scale the performance of the quantum computations it is important to note that all parameter shifts
can be run in parallel. That is, the parameter-shift settings for each parameter are evaluated independently
from the remainder of the settings, meaning that they can be run in parallel on different quantum computers.
Thus, as long as there are many quantum computers available, the overhead of the parameter-shift rule can
be mitigated. Furthermore, as quantum computing becomes more accessible, parallelizing computation across

many independent quantum computers will be a straightforward task.

11.3.1  The Quantum Cost of Evaluating the Cost

In a standard variational quantum optimization task, a quantum computer or device is used as an oracle that
accepts a question © and provides an answer P(©). However, what is the complexity of evaluating the cost
Cost (P(0)) or its gradient Vg Cost (P(©))?

We first consider the number of circuit evaluations needed to obtain Cost (P(0)). At the minimum the
behavior P(©) can be evaluated from a single circuit evaluation, However, if inputs are encoded into the settings
as © = {0, }rex, each P,(0,) must be evaluated independently and combined as P(0) = (P,(0,))scx-
Therefore a single evaluation of the cost function may require up to |X| circuit evaluations, hence the

evaluating the cost scales as order O(]X|). The number of circuit evaluations is a meaningful quantifier of
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complexity because there can be a nontrivial cost in setting up the quantum computer or device to run the
circuit for the given settings.

We can then apply a similar analysis to the parameter-shift rule where we note that Vg, Cost (P(09)) =
B(Cost (P(@ + aéi)) — Cost (P(@ - aéi))) where 6; is a unit vector on the i setting and o, 8 € R are
determined by the unitary operator and cost function being differentiated. Indeed, the gradient for each
parameter scales linearly with the number of settings |©]. Since each cost function requires O(|X|) circuit
evaluations, the gradient evaluation then requires O(]X| x |©]) circuit evaluations. Indeed, for certain
variational ansatzes, or for higher-order gradients, the number of parameter-shift terms can grow polynomially,
however, we will ignore that in our analysis.

The number of shots can also be considered when quantifying the cost of running a quantum circuit.
That is, each shot takes a well-defined amount of time to take and is usually associated a monetary cost in
practice. While the number of shots is arbitrary with respect to the variational optimization protocol, it does
affect the performance of the protocol. Namely, a small number of shots leads to large fluctuations about the
mean while a large number of shots leads to small fluctuations about the mean. Furthermore, the number
of shots also corresponds to the numeric precision in a behavior P. Let N be the number of shots, then
P(z) € {£}X where the probability P(z) can only take on a finite set of values. Therefore as N — oo, the
probability approximately lies on the continuum P(z) € [0, 1].

Other costs can be associated with the integration between classical and quantum computing devices. In
the worst case, the quantum computer is a remote device that is accessed via the cloud and the classical
optimizer is a laptop computer running from a remote location on Earth. When the classical optimizer wishes
to query the quantum oracle, the optimizer must first make a web request to the quantum oracle delivering
the set of quantum circuits {UN*(0;)}, that are to be run on the remote quantum computer. These
circuits then wait in a queue for their chance to run on the quantum computer. The queue wait times are
typically the bottleneck in the hybrid algorithm because they can be anywhere between a minute to several
hours on open-access quantum computing platforms such as IBMs quantum experience. The latency of the
web requests to the cloud device could also add a nontrivial cost if they amount of data to communicate is
large.

While network latency and queuing costs are bottlenecks for realizing practical VQO, these bottlenecks
are minor because they can be mitigated or circumvented. Namely, suppose that the collection of circuits
{UNt(©,)}M | can be batched into a single request to the quantum computer where the batch queues together.
By implementing batching, the number of queue wait times is reduced by a factor of M. On the other hand,
if the quantum computer is reserved such that it cannot be used by others, and the classical optimizer is
located in close proximity to the quantum device, then the queue wait times and network latency are no

longer relevant to the evaluation of the quantum circuit.

11.3.2  Scaling Variational Quantum Optimization with Parallelization

Scaling our VQO framework is largely limited by available quantum technology. As more qubits and larger
circuit depths become available, the number of parameters |0| in variational ansatz can become quite large,
growing exponentially with the number of qubits. As discussed in the previous section the cost of evaluating
a gradient on a quantum computer scales as O(|X| x |©]) where |X| is the number of circuits needed to
evaluate the cost. As we will find in our quantum networking applications, the number of network inputs |X|
can grow exponentially with number of devices in the network. Since both |©| and |X| can become large, it

is important to discuss how these algorithms can be scaled. In general, the main approaches to scaling are
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parallelization of existing quantum computers, development of larger quantum computers, and improvement
of fidelity and gate speed of quantum computers.

The first, most important scaling technique is parallelization across many quantum computers. In principle,
all O(|X]) circuit evaluations needed to evaluate the cost Cost (P(©)) or the O(]X| x |©|) circuit evaluations
need to evaluate the gradient are independent. That is, each circuit evaluation can be run on a separate
quantum computer at the same time. Hence the evaluation of the cost and its gradient is a widely parallelizable
task. For this reason, we argue that the most effective to scale variational quantum algorithm is through
parallelization. Since a wide range of noisy few-qubit quantum computers have already been developed, it is
only a matter of manufacturing to construct more.

Scaling VQO to larger quantum systems with more qubits presents a separate challenge. Indeed, techniques
are known by which a quantum circuit with many qubits is simulated using a small quantum computer [300],
[301]. However, this approach increases the number of circuits to be run exponentially. While parallelization
can mitigate this scaling somewhat, this technique itself is not scalable. Thus, the best way to scale to larger
systems is to use a larger quantum computer. In this regime, we may find practical simulation advantages
where a quantum circuit can solve computational problems more efficiently than classical hardware. However,
NISQ devices have yet to show a simulation advantage [302]-[307]. Nevertheless, NISQ devices are predicted
to provide simulation advantages in the near-term [38], [308] As an aside, we note that larger networks can be
simulated using smaller quantum devices where an exponential increase in the number of circuit evaluations
is accrued [300], [301]. Such methods are only feasible if wide parallelization across NISQ devices can offset
the exponential increase in circuit evaluations.

Finally, if large quantum computers are available in bulk, the remaining strategy to improve the performance
of quantum circuit evaluation is to improve the performance of the quantum computing devices. First, the
noise in the device should be mitigated or corrected to the fidelity of quantum gate operations leading to
more accurate gradient calculations and improved convergence of the optimization. Second, the speed at
which the quantum computer initializes circuits, applies gates, and performs measurements can be improved
decreasing the overall run time. In this way, the depth of quantum circuits can be increased without adding
significant error or time to the circuit execution.

Overall, we argue that variational quantum algorithms are largely limited by the hardware’s capability.
The most import way to mitigate the cost of evaluating quantum circuits in VQO is to rely upon massive
parallelization because the O(|X| x |©]) circuit evaluations to calculate the gradient becomes one circuit
evaluation, nullifying the cost altogether. Parallelization is the most important scaling strategy because it can
be implement right now through manufacturing existing quantum devices. Second, increasing the number of
qubits will allow variational quantum algorithms scale to the regime where practical quantum advantages may
emerge. However, since scaling the number of qubits often leads to the number of parameters |©| and inputs
|X| increasing as well. Thus, scaling to more qubits will require parallelization across quantum computers.
Similarly, increasing the fidelity and speed of quantum operations will lead to greater circuit depths, causing

|O] to increase. Hence parallelization will be needed once again to offset the cost of increasing |O)|.

11.3.83 Challenges in Scaling Variational Quantum Optimization

As discussed in the previous section, scaling VQO techniques to more qubits and larger circuit depths having
more parameters causes the number of circuit evaluations to increase. However, the added cost of these
circuit evaluations is offset by the fact that the circuits are independent and therefore, parallelizable. In this

section we highlight other challenges that emerge as variational quantum algorithms scale.
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A widely reported issued and major challenge in scaling variational quantum algorithms is that they can ex-
hibit barren plateaus, a phenomenon in variational quantum algorithms where the gradient Vg Cost (P(0)) —
0 approaches zero [309]. As the gradient becomes small the optimization fails to make any progress towards
its optimum. The term barren plateau likens the cost landscape to a plateau, which is flat and any major
change in the cost landscape occurs abruptly as a spike. Barren plateaus can have may causes including
random initialization of settings [309], costs that measure nonlocal observables [310], or noise in the quantum
circuit gates [311]. Furthermore, it has been observed that higher order gradients cannot completely resolve
the challenge presented by barren plateaus [312].

Another major blocker to scaling variational quantum algorithms is that the computational complexity
of the classical optimizer can be NP-hard [313]. This observation is quite unfortunate as it suggests that
the optimizations themselves become difficult to solve as they scale in size. Furthermore, it is observed in
Ref. [314] that the variational quantum eigensolver, a widely studied variational quantum algorithm, may not
provide any practical advantage even on noiseless quantum devices.

Indeed, there is some healthy skepticism doubting the ability of variational quantum algorithms to scale
and realize practical quantum advantage. While this may be disheartening, it also allows to expand the
application of variational quantum algorithms to novel problems in which the hybrid algorithms can use their
quantum resources to the fullest extent. Mainly, we argue that variational quantum algorithms could provide
value in ways that do not rely upon a classical advantage. For example, preliminary results suggest that VQO

can be used to optimize quantum systems against their inherent, uncharacterized noise models [102], [299].

11.4  Variational Optimization Applied to Quantum Networks

Our VQO framework finds the optimal settings ©* that produce a network behavior PN¢t(©*) that is optimal
for a particular task, e.g., violating a nonclassicality witness. In our optimization framework, the task is
encoded as a cost function Cost (PN*(©)), and must be tailored to the problem at hand. The optimization

objective is then expressed as a minimization of the cost function,
O* = arg r%in Cost (PN**(9)) . (11.4)

The cost function can quantify a wide range of network properties such as entropic quantities, the distance to
a desired network behavior, or the winning probability of a multipartite game.

A quantum network corresponds to a quantum circuit, and through parameterization, the quantum circuit
can be transformed into a variational ansatz for the quantum network. Suppose the unitary operations Uge"i
applied by the device Dev; are parameterized by a set of real-valued settings 5;3 such that Ugevi = UPevi (0_;)
The scalar values 6 € 0,, are continuous, differentiable, and tune a unitary gate within the device’s circuit.
In aggregate the network is parameterized by Oz = (6,,); where ¥ = (z;); € XN is the network’s classical
input. Then the network’s unitary UX°* = UN*(©;) leads to the behavior

() = 3 3 |evner o) 0 2. (115)
ZeZ TEX

The network behavior is then constructed by applying a suitable classical postprocessing map L : Z2 — )Y
such that PN¢t(Q) = LP%C.
In the gNetVO software [108], we use PennyLane [210] to automatically differentiate quantum network
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circuit ansatzes. In this way, qNetVO is an extension of the PennyLane framework, giving it the ability to run
on a wide range of hardware platforms and simulations thereof. Furthermore, PennyLane can be integrated
with new hardware and software simulators through its plugin interface.

When simulated classically, the gradients of the variational circuit ansatz can be evaluated using back
propagation [293]. On quantum hardware, our software computes the gradient of a quantum circuit using
the parameter-shift rule [104], [107]. In practice, the parameter-shift rule first runs the network simulation
over a collection of “shifted" settings {©9}, = Ops and then, the classical optimizer uses the resulting circuit
behaviors {Pqc(09)}g,cq,, to construct the gradient.

11.4.1 Variational Quantum Optimization on Quantum Network Hardware

In principle, the variational quantum optimization framework developed in this chapter can implemented
directly on a quantum network. The key requirement is that ©, the set of free parameters of the quantum
network devices, is differentiable. Furthermore, if the parameter-shift rule is used, the unitary decomposition
of the applied operators must also be known. In fact, hybrid black-box optimization techniques have previously
been used to maximize the violation of the CHSH inequality in a photonic system [315], [316]. Hence, our
VQO framework could be extended to similar photonic implementations of quantum networks [193]-[197].

A key advantage of extending our VQO framework to quantum network hardware is that network protocols
can be optimized against the noise inherent to the quantum network hardware, leading to network protocols
with greater robustness to noise [102], [299]. That is, the noise and biases on quantum computers may not
accurately reflect the noise and biases on quantum network hardware. Hence, communications protocols
optimized on quantum network hardware will be more robust because they are tailored specially for the
hardware they run on. Furthermore, the noise model does not need to be characterized for VQO methods
to optimize a quantum network. Therefore, the cost of noise tomography [69], [71], [72] can be avoided
altogether.

VQO on quantum networks can also be used to establish and maintain networking protocols on noisy
quantum networks. Using VQO, quantum network devices may be able to automatically align photon
polarization bases, maintain the communication capacity of channels, or set up device-independent protocols.
Such self-organization amongst network devices may significantly reduce the manual work and expertise
needed to build, scale, and maintain quantum networks. We refer to this network automation paradigm as

variational quantum networking and we formally introduce its methodology in Chapter 18

11.5 Table of Variational Circuit Ansatzes
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Ansatz Name

Number of

Ansatz Circuit Parameters Ansatz Description
Parameterizes all M-qubit pure state
Arbitrary preparations. See the
M-Qubit Pure oMM - M ~ ArbitraryStatePreparation method in
State Preparation 10) ? v ((b) 7 ‘qb’ =M+l _9 PennyLane for implementation details.
|®*) State \0>._
Preparation None Prepares the state |®) = (|00) + [11))/v/2.
0)———b—
[U+) State o— # |—+—
Preparation None Prepares the state |¥7) = (|01) + [10))/v/2.
0 H—

Maximally (—») | Parameterizes all 2-qubit maximally entangled
Entangled State ‘0>_|E Rot (¢ state preparations using an arbitrary qubit
Preparation ‘¢| =3 rotation Rot(¢) = R.(¢1)Ry(d2)R-(¢3).

0 D
Nonmaximally _{ H Parameterizes a family of separable through
0 R, R. }—0—
Entangled State 10) v(91) (¢2) . maximally entangled states as
Preparation |p| =2 ) = cos(¢1/2) [00) + sin(¢p1/2)e'®2 [11).
0 D
Arbitrary
M-Qubit QM Parameterizes all M-qubit projective
Proiecti {4, I1_} . .
rojective M > i . measurements. See the ArbitraryUnitary
Measurement ——U (9) |6] = 2** —1 | method in PennyLane for implementation details.
Parameterizes all M-qubit projective
q1 ]%7 0
M-Qubit Local R, ™) v(01) measurements that decompose as
Measurement m =M H’g‘f - ®i¥i1 Ry (i) |29 ) (2%,
[pIM)— Ry (6m)
Parameterizes all M-qubit projective
Arbitrary Local 1) Rot(61) f?easuref\l}ents th_;%t dec.ompbose as
Qubit . . 5z = @1:1 Rot(¢i) |2%)(z"| where
Measurement : 6] =3M Rot(¢) = R.(¢1)Ry(p2)R=(¢3).
|4p M ) — ROt(gM)

Table 11.1: Variational Circuit Ansatz Glossary: We list ansatzes by name, circuit, number of parameters,

and description.

101




Part II1

Results

102



CHAPTER 12

NONCLASSICALITY IN LOCAL SETTING OF
NONSIGNALING QUANTUM NETWORKS

Definition 74. Local Nonsignaling Scenario: A network scenario in which a source A signals to m

detectors A; € A, each having inputs |X;| and outputs |A;]. The DAG is expressed as

LNS(m) = Net(N,E) where N = (A, A), E={A<(A)} (12.1)

-,

where A = (A)™, and the source A signals to all detectors A4; € A, but the detectors do not communicate.

1=

12.1  Classical Bounds on Nonsignaling Networks in the Local Setting

Since the source A shared randomness with all devices in the network, if we allow A to emit an unlimited
amount of randomness, the classical set forms a convex polytope C};NS(m) (see Chapter 4). Therefore, classical
bounds correspond to linear inequalities that describe facets of the polytope CII{NS(m). Therefore, any bound

on the classical set has the form [317]

SinsemyP)=(G,P)= > - > Y oo ¥ GasPyz <8 (12.2)

T1EX, Ty, €Xy a1 €A an€A,

where the network’s behavior is expressed

m

PLNS(m) _ Z P){\ ® Pfi (12.3)
A i=1

with Pfi : X; — A; being the local behavior of device A; conditioned upon the shared random value A. The

classical bound on the inequality is found by maximizing the extreme points of the convex polytope CII;NS(m)

= P). 12.4
B Peg}%}s{(m)SLNS(m)( ) (12.4)
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12.1.1 Classical Bounds in Bipartite Nonsignaling Networks

In this section we consider the local nonsignaling scenario LNS(2) in which two measurement devices, A and
B, exhibit the behavior

PP X xY -+ AxB where PP =)"P!P{aP} (12.5)
A

where Pf : X = A and Pf : Y — B are the local behaviors of each device conditioned upon the shared

random value A, which occurs with probability P/{\

Definition 75. Full-Correlation Inequality: [318] Consider the local nonsignaling scenario LNS(2) in
which each device’s outcome is binary, |A| = |B| = 2 such that a,b € B. We refer to as a full-correlation

nonclassicality witness any linear inequality taking the form

SPAP)=>"% "G, (010F), where (020F) =" (-1)"®*PAS <8 (12.6)

TeX yey a,beB

Any full-correlation nonclassicality witness can be expressed as

S(PAP) =" (0)7) where (037) =Y Gy (020]). (127)

yey rxeX

The classical bound f is obtained by optimizing over deterministic strategies having O2, Of € {£1} to find

- Gay070,) = ‘ Gy OL 12.8
v {Ofe?fﬁ}zexzz T Ty {OfGI{nfl}i}IEXZ Z Wz ( )

yeEY zeX yeY z€X
o B _ A
where it is assumed that O, = sign(}_, G ,0;).

Definition 76. CHSH Inequality: [13] (Scusn,2), For binary inputs |X| = |Y| = 2, the CHSH inequality

is the full-correlation witness

Scusu(PAP) =" (0§15 <2 where (OJMSH) =" (—1)*v (020F) (12.9)

yeB z€B

where GgZISH = (—1)*"v.

12.1.2 Mazimal CHSH Violations for Arbitrary Mized State Preparations

Not all quantum states can be used to generate nonclassical behaviors. After all, a quantum state with
a density matrix p = >, i; |7)(i| that is diagonal in the z-basis is a classical state, which cannot exhibit
nonclassical behaviors. From a theoretical perspective, it is useful to quantify the amount of nonclassicality
achievable by a given density matrix p with respect to some nonclassicality witness Snet(p). Indeed, the
Horodeckis’ derived the maximal violation of the CHSH inequality for all two-qubit mixed states [319]. The
proof of this result provides useful mathematical machinery for obtaining the optimal measurements for
maximal CHSH violation. We now elucidate the details of this important method.

We begin by characterizing the two-qubit correlation matrix because it contains a quantum state’s
nonclassical content with respect to the CHSH inequality Scusu(P) < 2 in Eq. (12.9).
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Definition 77. Two-Qubit Correlation Matrix: 7, € R3*3, The correlation matrix of a two-qubit mixed
state p € D(H{ @ HP) is

3
T,= > Tr[of @] p"P]1i)(j (12.10)

i,j=1

where 01, 02, and o3 are the Pauli matrices 0., 0y, and o, respectively.

Due to the homomorphism mapping SU(2) to SO(3) [212], local qubit unitaries U4, UP € SU(2)
correspond to rotations R, RE € SO(3) such that unitary evolution of a state § corresponds to a rotation of

its correlation matrix T; such that
T, = RAT;(RP)T <= U @ UPpAB (U4 @ UB)! = p*B. (12.11)
Therefore, there exists local qubit unitaries U4 and U® such that the correlation matrix is diagonal [320]
T, = diag () = R*T5(R?)T (12.12)

where 7 = (71, 72,73) and 1 > 71 > 75 > |73| > 0 are the singular values of Tj. If the qubit unitaries U4 and
U® can be chose freely, then the rotations R4 and R” allow for the the singular values Tj € T to be permuted
and/or sign-flipped provided that det(T;) = det(T},) = H?zl 7j. Therefore, as we optimize over local qubit
measurements it can be assumed without loss of generality that the correlation matrix of p is diagonal.
Using the correlation matrix, we can now describe the Horodeckis’ main result. Given a two-qubit mixed

state p, the maximal CHSH score is [319]

Stnsu(p) = 24/ + 73 <2V2 (12.13)

where 7; are the two largest singular values of T},. Remarkably, p can be used to generate nonlocal correlations
if and only if 72 + 73 > 1. Otherwise, a state is classical with respect to the CHSH inequality. Examples
of classical states include the product of two pure qubit states, v = ) ()| ® |¢p){(¢|, or a shared coin flip,
v = 3(100)(00] + [11)(11]).

To obtain the maximal CHSH violation, S&ngp(p), there are two choices of optimal qubit observables,

{07 = (1 = 2)or + (2)s, OF = 771”1%1—:;%} or {04 = 771”1%1—:;%, OF = (1—y)o1 +yoa}
(12.14)

where in the two cases, the observables are swapped as Of = 65 and Of = 6;4 This fact follows from T},
being being symmetric and the two devices being indistinguishable. However note that one party always
measures using mutually unbiased bases o1 and o5 while the other device measures observables that can be
nonorthogonal such that Tr [OpO4] > 0. From a self-testing perspective, a maximal CHSH score, S&yusy(p),
is insufficient on its own to determine with certainty which of the two parties measured in mutually unbiased
bases.

Although the two optimal measurement strategies in Eq. (12.14) yield the same maximal CHSH score
Sé&nsu(p), they yield distinet expectations for the CHSH bipartite correlator

1., - 2
<O;B>p =/ +T7i= 55¢usn(p) and (077), = W(Tf(l —y) +73y). (12.15)
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where O = (Og + (=1)Y07") ® OF and OAB (Of + (-1)OM @ 65 As we will see later in star and
chain networks, the distinct optimal CHSH observables in Eq. (12.15) will play an important role in their

nonclassicality.

12.1.3 Unital Noise Robustness of CHSH Nonlocality

In this section, we provide a theoretical analysis of the maximal CHSH violations of locality in the presence
of unital noise. For various qubit unital CPTP maps U : Ho — Hz where U(I) = I, we derive the maximal
CHSH score §6HSH(U A ®UP) that can be attained for any choice of quantum state and local observables.

Theorem 2. Consider the CHSH scenario in which the state preparation has a unital noise model that is
separable across qubits U4 @ UB. The maximal noisy CHSH score is achieved using a maximally entangled
state preparation |1) = VA @ VB &), that is,

StasuU* @UP) = Stysys (U 2UP (W) (WI")) - (12.16)

Proof. Consider a two-qubit mixed state p € D(H* @ HP) and local qubit PVM observables, 04 = @, - &
and OF = Ey - ¢, where a, are Ey Bloch vectors of unit length |d,| = |l;y| = 1. The CHSH score is

Scus = Y ,ep (Oy o) where
Oy = (0 + (-0 @ OF = (do + (=1)¥d1) -G @ by - 5. (12.17)
Let p* =UA @UP (p"), then
<OSHSH>5A - Ty [OyCHSHuA ®uB(pA)] — Ty [(UA ®UB)T(05HSH)pA] — Ty {5SHSHpA] (12.18)

where we use the fact that the adjoint of a unital channel is unital. Given local qubit unitary freedom on the
unital channels’ input and output, the channels 4/ and U can be diagonalized such that their Bloch matrix
representation is M 4. = diag(uZ, u;;‘, u?) where u2 > u?‘j > u4 and similarly for My .. Then, the correlation
operator for observable OSHSH is expressed in terms of Pauli vectors as Tocnsn = |do + (—1)y61><5y\ and the

correlation operator of the noisy observable 6yCHSH is

Tgonsu = Myas | + (—1)?a1) (by| My = |G + (~1)a ) (B, (12.19)
where @, = (ula,, u;‘ay, ula,) and By = (uPb,, ubey, uBb.). We make the important observation that

Rank(TécHSH) < 1 where the rank is 0 in only the case where the unital channel is fully depolarizing u; = 0

for all j € {z,y,2}. It follows that Rank( Gensn +T5 CHSH) < 2. Furthermore, observables O and Of

can always be chosen such that Tr TO

provided that either of the following equahtles hold

CHSHTOCHSH = 0 are orthogonal. Indeed, orthogonality is satisfied

(@0 + dr|do — ar) = (uf)*(ag, — af ) + (ug)*(ag, — af ) + (u2)*(ap . —ai ) =0, (12.20)
<30|51> = (ul)?bo,ab1,e + (u))?boyb1,y + (Ul )?bo by . = 0. (12.21)

Next, Proposition 1 from Zhang et al. [287] states that for any 4 x 4 matrix M = > j=1lijo0i ® 0
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whose correlation operator Thy = Z? =1 ti,j [1)(j] satisfies Rank(Tys) < 2, the quantity Tr [Mp] is maximized
by a maximally entangled state p = [1)(1)| where [1)) = VA ®@ VE|®T). It follows that there exists a
maximally entangled state p = [¢)(¢p| that maximizes simultaneously Tr [653051{4, Tr [(i(fflsHp}, and
Tr [(OSESH + OJEFH) p] because the correlation operators TGSE(JSH and T5§§§H are each rank-one and can
be chosen to be orthogonal. That is, the correlation operator for a maximally entangled state is diagonalized
as T, = diag(1, —1,1), hence p can simultaneously maximize two observables if their correlation operators are
orthogonal as Tr |T; 553()SHT 5531511] Since there exists a maximally entangled state, |)) <1MA, that maximizes
the expectation of <OSHSH>pA for both y = 0,1, maximally entangled states are optimal for achieving the

maximal CHSH score in the presence of unital qubit noise. [

Theorem 2 is quite remarkable because it indicates that the presence of unital qubit noise does not
alter the optimal state preparations for CHSH violation. However, multi-qubit unital noise models do not
necessarily preserve the maximal state preparation. Nevertheless, Theorem 2 allows to derive the maximal

CHSH violation in a straight forward manner because the optimal state preparation is known.

Theorem 3. Consider a CHSH scenario that has unital qubit noise model 44 ® UZ. The maximal CHSH

score is

SeusuUA ©UP) = 21/ (ugul)? + (uiuf)2, (12.22)
where ug > u; are the two largest singular values of matrix M.

Proof. By Theorem 2, the optimal state preparation for CHSH violation is a maximally entangled state
) = VA @ VB |®T) where the Bell state’s correlation operator is Tjg+yg+| = diag(l,—1,1). Since we
allow qubit unitary freedom on the state preparation and measurement, we can diagonalize the unital qubit
channels in the Pauli basis as Mya = diag(uf',ud', ug') and Mys = diag(uf, uf,uf) where ug > uy > us.
Then, p* =UA @UB(|®T)(®]) can be expressed as

T

'a = MyaTigryer Mis = diaguiu?, —ujuf, ufuf). (12.23)

Noting that 7; = u]‘-‘uf, we use Eq. (12.13) to find

Sémsu U ©UP) = 2/ (uul)? + (uftuf)2. (12.24)

Finally, since Tjg+ya+|, Ml’j‘, and le are all diagonal, the singular values of T, and the resulting Bell scores

are maximal. O

We can now apply Theorem 3 to explicitly evaluate the noise robustness of the CHSH violation with
respect to different types of unital qubit channels. Each derivation requires only the calculation of each unital

channel’s singular values My~ = diag (ug, u1,us), then Theorem 3 can be applied directly.

Proposition 4. Consider a CHSH scenario having a qubit depolarizing noise model, WfA ® WEB. The

maximal n-local star and chain scores are

StusuWih @ W) = 2v2 (v*?) (12.25)
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Proof. A qubit depolarizing channel is diagonalized in the Pauli basis as Mp, = diag(v,v,v). Eq. (12.25)
follows directly from Theorem 3. O

Proposition 5. Consider a star or chain quantum network having a qubit dephasing noise model, D,‘?A ®D§’B.

The maximal n-local star and chain scores are

n 1
Seusu(Dia ® D5 = H (1+(1- (1 - “YB))% ) (12.26)
i=1
Proof. A qubit dephasing channel is diagonalized in the Pauli basis as Mp, = diag(y/T—~,v/T—7,1).
Eq. (12.26) follows directly from Theorem 3. O

Up to this point, we have only considered the noise robustness of the CHSH scenario with respect to
single qubit unital noise models. We now derive the robustness for two-qubit depolarizing and classical white

noise models.

Proposition 6. Consider the CHSH scenario that has a two-qubit depolarizing channel W:'B € CPTP(H4 —

H,) on its source. The maximal noisy CHSH score is

3 16
StusuWy'7) = (1 - BV)Qﬁ (12.27)

where v = 15/16(1 — v) and v € [0, 1].

Proof. Applying the two-qubit depolarizing channel to a two qubit state pAB € D(H4 @ HP) yields pA8 =
W, (pAP) = vpAP + (1 — v)1L4. Noting that the correlation matrix Tyy, is all zeros shows that the term
(1- v)ih contributes 0 to the CHSH score. Then, note that the correlation matrix 7,45 = diag (7o, 71, 72)
where 1 > 79 > 71 > |72| > 0. Thus, the noisy state 547 has the correlation matrix T545 = vdiag (10, 71, T2).
It follows from Eq. (12.13) that the maximal CHSH score is Sgyq (W) = 2¢/02(18 + 72) = v2\/78 + 72. If
the maximally entangled state pA8 = |®)(®F] is used, then 7o = 7y = 1 and SEygy(W,) = 20v/2. Finally,
substituting the noise parameter for the visibility as v = 15/16(1 —v) where € [0, 1] recovers Eq. (12.27). O

Proposition 7. Consider the CHSH scenario in which each detector has a classical white noise model

W:?A & WfB € PaxBlAxp acting on each detector’s output. The maximal noisy CHSH score is
Séusu (W @ Wh) = (1 - 4% (1—+7)2v2. (12.28)

Proof. As given by Eq. (13.82), white noise on each dichotomic detector can be modeled by a POVM with

elements W, . = (1—~")P{,

subspaces and Wf‘w = %Hg. The corresponding noisy qubit dichotomic observable is constructed

+ ’nyl , Where Pf‘ s € PVM(H4') are projectors onto even and odd parity
O 4 =Wijpaa = Wojgpa = (1= ")(Pf, — P2,) = (1 - 7107, (12.29)

where O is the observable used in the noiseless case whereas 557 5 1s similarly constructed. The noisy joint
observable is then 5SHSH =1 -y - ’yB)OSHSH. Finally, if O and OF attain the maximal CHSH score
of 2¢/2 in the noiseless case, then maximal CHSH score in the noisy case is (1 —v4)(1 —v5)2v/2. O
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12.1.4 Nonunital Noise Robustness of CHSH Nonlocality

In this section, we derive the maximal violations of the CHSH inequality in the presence of nonunital noise

models. For an introduction to nonunital noise, please refer to Chapter 8.

Theorem 4. Consider the family of noisy two-qubit state gy = N4 @ NB(p)) where py = [¢2) (5] and
VA100) + /1= X|11) is a nonmaximally entangled state with A € [0,1] and N4, NZ € CPTP(H, — Ho)
are nonunital qubit channels that can be diagonalized in the Pauli basis as

0 0 o0
0 w, 0 0
Ty = . 12.30
“Tlo 0w 0 (12.30)

If the amount entanglement specified by A can be varied freely, the maximal CHSH score for a given channel

two-qubit nonunital channel is

2,/ (ufu 2 + (uifufl )2,
Stasu(Pa+) = max (12.31)

Aq,B)2 AtB | A, BY2 _ (t2tEtutul)2(tdub+uldtD)?
2\/(“30 Uy ) + (tz tz + Uz Uy ) z(t%ufiugtf);_(zu;‘uz?)g

where \* = arg max¢o,1) S¢usu (/) is the optimal entanglement parameter for maximal CHSH violation

and, \* = 1 if Sgyey(Aas) = 2\/(u;§‘uf)2 + (uflul)? and otherwise,

2 (tfuf +uftl)? — (ugu)?
Proof. The correlation matrix for py = |¢x) {1y is expressed
1 0 0 22 —1
0 2V A1 — A 0 0
T,, = VA (12.33)
0 0 —2V/AV1 =X
22 —1 0 0 1

and the qubit nonunital channels, N4 and B, are applied as Ts, = Tha TPA’IFJZC/B, leading to the singular

values of M, , the 3x3 correlation matrix subblock, to be

e = 20BN =N, T, = 2u?uyB M1=2), and 7, =tM8 4 udul + (2N - 1) (2l +ultD).
(12.34)

Using Eq. (12.13), we find maxyepo,1] Stusu(Px) by checking the singular value pairs (75, 7,) and (74, 7.)

where it is assumed without loss of generality that |7,| > |7,|. For the pair (7,,7,), we find

]

max 72 + 72 = max 4\(1 — A)((ufuf)Q + (uAuB)Q) = (udub)

A, By2
12.35
xel0] &Y T ae0] y Uy + (uy )", ( )

Y

where \* = % is the optimal entanglement parameter. Inserting Eq. (12.35) into the maximal CHSH score in

Eq. (12.13) achieves the maximal violation in the upper case of Eq. (12.31). Next, we consider the singular
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value pair (7, 7,) where

2

max 72 + 72 = max 4\(1 — \)(u2u)? + (tftf +utul + 2) - 1) (2l + uftf)) . (12.36)
A€0,1] A€0,1]

To maximize Eq. (12.36), we take the derivative of the RHS with respect to A and set the result equal to

0. Solving for the critical point, we find A* as given by Eq. (12.32). Next, inserting A* into Eq. (12.36) and

rearranging the terms recovers the lower case of Eq. (12.31). O

Theorem 4 is significant because for a broad family of qubit nonunital channels, the maximal CHSH
violation can be computed. The nonunital channel in Eq. (12.30) can describe both loss channels and
amplitude damping channels. Furthermore, the maximal violation is found to not always be by a maximally
entangled state. In fact, based on the parameters in the matrices Tpra and T s it can be asserted whether a
maximally or nonmaximally entangled state achieves the maximum. Thus, the CHSH violation of nonunital
qubit channels is distinct from unital qubit channels because the noise model optimal state is no longer the
maximally entangled state as shown in Theorem 3. As an example, we now derive the maximal violation of
both maximally and nonmaximally entangled states with amplitude damping on each qubit. We find a region
of noise parameter for which nonmaximally entangled states achieve larger CHSH violations than maximally

entangled states.

Proposition 8. Consider the CHSH scenario in which a maximally entangled state p = |1){(¢| is prepared
where |[¢) = UA®UPB |®+). When an amplitude damping channel is applied to each qubit as 5 = A a@A5(p),
the CHSH inequality is violated only if

1
(1= =" >3 (12.37)
and for v and v7 € [0, ], the maximal CHSH score is
Stusu(p) = \/2(1 — (1 =~P). (12.38)

Proof. Let p = |®)(®T| be a maximally entangled state preparation and u, = u, = /1T —7, u, = (1 —7),
and t, = 7 be the nonunital channel parameters for the amplitude damping channel. Substituting these

values into the singular value expressions listed in the proof of Theorem 4, we find

=1y = /(L= 7P) (12:39)
7. =7+ (1= (1 —47) (12.40)

In the domain y*,~% € [0, ], the maximal singular values are (7,,7,). Therefore, Eq. (12.13) calculates the

maximal CHSH score to be

Stus(P) = 2/2(1 —74)(1 —45), (12.41)

for which the CHSH inequality is violated if and only if (1 —~*)(1 —~%) > 1. For all = [3,1] and
7% € [0,1] no violations occur because 72 + 72 < 1 and 72 + 77 < 1 (and similarly for the values v* € [0, 1]
and vP € [$,1]). Thus, the CHSH inequality is violated only when (1 —~4)(1 —~%) > 1. Since 7, = 7, are
the two maximal eigenvalues of R, when v4,7F € [0, %], Eq. (12.13) can be applied to recover the n-local

star score in Eq. (12.38). Finally, the Bell state |®*)(®*| and amplitude damping channel are both diagonal
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in the Pauli basis, therefore the evaluated score is maximal. O]

Proposition 9. Consider the CHSH scenario with single qubit amplitude damping noise Ai;‘ ®1id? where

74 = 4. For a noisy nonmaximally entangled state preparation jy , = .A:;‘ @ idZ (|9a) (¥]) where |1)) =

VA100) + /T — X|11), the maximal CHSH score is

S* ~ _ 2\/2(1_7)7 S [07%]
Cusu (P y) = . (12.42)
27 v e [Ea 1]
where A\* = 1 when v € [0, 3] and A* = 1 when v € [$,1].
Proof. Considering nonmaximally entangled states, we use Theorem 4 to find that
1 (1= )
A*=<1— , 12.43
2 7= (1= (12.43)
which yields
. (1 =72
SE ) =21-+(1-7)?2— o0—+~~——. 12.44
Cusu(Px) \/( )+ (1 =7) B (12.44)
However, \* = 1 when v = £ and within the domain v € [0, ] it can be verified that
(1—7)*?
1—9) >0 -7 - — 221, 12.45
(1= 2 (- = = (12.43)

Thus, when amplitude damping is applied to a single qubit, maximally entangled state preparations are

optimal on the range v € [0, 1] and the classical state preparation is optimal for v € [3,1]. O

Proposition 10. Consider the CHSH scenario with uniform qubit amplitude damping noise .Aﬁ ® Af where

74 = 4B = 4. For a noisy nonmaximally entangled state preparation jy ., = .A,‘;x ® A5(|¢A><w>\|) where

la) = VA]00) + +/T — X[11), the maximal CHSH score is

2 2(1 - 7)27 v e [0776]
* ~ 2__ 2
SCHSH(pA*ﬁ) = 2\/(1 —7)% - %7 ¥ € [es %] (12.46)
2 v el
where the optimal entanglement parameter is
3 v € [0,7]
2H(1—7)?)(2v(1—
X={3 (1 GG ey Y, (12.47)
1, v el
the crossover noise parameter is
1 3y/114 — 32)3 1
Ye = 7% 4+ ( 2 ) - 1 ) (1248)
6 23 (6v/114 — 64)3

and the nonlocality is broken with respect to the CHSH inequality when v = vg = %
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Proof. Using Theorem 4, we substitute the values u, = uy, = /1 —~, u; = (1—7), and ¢, = ~ into Eq. (12.31)
and Eq. (12.32) to obtain Eq. (12.46) and Eq. (12.47). Note that when v € [%,1], then A* = 1 and the
optimal state preparation corresponds to the classical state |00)(00]. Setting A = 1 in Eq. (12.36) yields
Sénsa(Pr=1) = 2, implying that the CHSH nonlocality is broken for all nonmaximally entangled states when
v = % For v > %, the classical state preparation |00)(00| is optimal and achieves the classical bound. To
obtain the crossover noise parameter 7, we set the two cases in Eq. (12.50) to be equal and solve for ~ to find
Eq. (12.48). 0

12.2  Variational Optimization of Nonlocality in Noisy Networks

12.2.1 Mazimizing CHSH Violation in the Presence of Nonunital Noise

In this section we demonstrate that variational optimization methods can find the maximal violations in the
presence of amplitude damping noise. Hence, we reproduce the theoretical results obtained in Section 12.1.4,
in which we show that when uniform qubit amplitude damping noise is present, the maximal CHSH violation
is not obtained by an entangled state.

Consider the CHSH scenario in which uniform qubit amplitude damping noise is applied to a maximally
entangled p,_ 1 state as py_1 = A, @ Ay (pr= %) where the maximally entangled state. For maximally

entangled states, we use Proposition 15 to find that the maximal CHSH score is

. i 2 2(1— )2, v €|
Sensu(P1 ) = {2\/1 (292 —2v+1)2, v€]

=

3)
B (12.49)

bl

SIS

where 7, 1= % is the noise parameter at which the crossover occurs between the two curves in Eq. (12.49)

Furthermore, we see from Eq. (12.49) that the CHSH nonlocality is broken for all maximally entangled states

pa—1 at the critical noise parameter vy 1 = (1 — %)

Next, we show in Proposition 10 that for noisy nonmaximally entangled states, the maximal CHSH score

is

2 2(1 - ’7)27 Y S [0,%]
Stusu(Pr~) 2\/ 2 G2y e e 3 (12.50)
2 v € (3.1
where the optimal entanglement parameter is
%7 Y € [07 ’YC]
_ 71 (P+(1=71)(2y(1=7)) 1
x=03(1- GEERESR) vebail, (12.51)
1, vel31]

the crossover noise parameter is

wl=

32) 1
o - (6\/@_64)%), (12.52)

'Yc—6

1 <4+(3m

and the nonlocality is broken with respect to the CHSH inequality when v = vy = % Therefore, in the
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Maximal CHSH Scores in the Presence of

0.0 0.2 0.4 0.6 0.8 10 0.25 0.27 0.29 031 033 0.35

Noise Parameter (y) Noise Parameter (y)
—— Quantum Bound = e Crossover Parameter yc, 1
Classical Bound .. Crossover Parameter yc, -

Max CHSH Score S¢ysy (62, y) —-— Nonlocality Broken yo,1

—— Max CHSH Score Séysy(fa-,y)  —.— Nonlocality Broken yo,»-

Figure 12.1: Uniform qubit amplitude damping in the CHSH scenario. We plot the maximal CHSH
scores obtained when uniform qubit amplitude damping noise is applied to maximally entangled states (green) and
nonmaximally entangled states (red). (Left) The noise parameter v € [0, 1] is scanned over an interval of 0.01. (Right)
The noise parameter v € [0.25,0.35] is scanned over an interval of 0.001. The solid green line plots the maximal
CHSH score for maximally entangled states as given by Eq. (12.49) while the diamond markers plot numerical
results obtained using VQO. The solid red line plots the maximal CHSH score for nonmaximally entangled states
as given by Eq. (12.50). The green and red dotted vertical lines plot the crossover parameters at which the cases
switch in Eq. (12.49) and Eq. (12.50) respectively. Likewise, the green and red dash-dotted vertical lines plot the
critical parameters at which nonlocality is broken for maximally entangled states and nonmaximally entangled states
respectively.

presence of uniform qubit amplitude damping noise, maximally entangled states maximize the CHSH score
in the range 7 € [0, 7.], nonmaximally entangled states maximize the CHSH score in the range v € (7., %),
and the classical state [00)(00| maximizes the CHSH score in the range v € [3,1]. The maximal separation

between the CHSH scores of maximally and nonmaximally entangled states occurs at v = (1 — %) where

the nonmaximally entangled state achieves S&yay(pa) = 24/ (3 + 8v/2) =~ 2.0222836 > 2. We plot this
data in Fig. 12.1 in which we show that VQO successfully finds the maximal CHSH score for both maximally
entangled and nonmaximally entangled state preparations.
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CHAPTER 13

NONCLASSICALITY IN THE n-LOCAL
SETTING OF NONSIGNALING QUANTUM
NETWORKS

The n-local setting describes a class of prepare-and-measure networks where n independent entanglement
sources link together m nonsignaling measurement devices. The n-local setting extends the local case by
incorporating multiple sources into the nonsignaling scenario. In this setting, a network’s DAG is expressed as

n-Loc = Net (1\7 - (K, /T) . E={A < A;f"}?:l) (13.1)
where A = (A;)?_, denotes a layer of source devices, A= (A;)7L, denotes a layer of nonsignaling measurement
devices, and AT* denotes the set measurement devices that are children of source A;. As input each detector
device A; accepts a classical value z; € &; and outputs a classical value a; € A;. Since the network is

nonsignaling, the network’s behavior must satisfy the nonsignaling constraints (see Subsection 3.4.1)

P(ajlz;) = Y PlijzalE) ¥V a;€A;, and FEX =X x - x Xy, (13.2)
ﬁj/¢j€A/Aj

When classical resources are used, the sources emit shared randomness. Here the i*" source outputs the

Source: A; fori € {1, ...,n}
() Detector: Ajforj € {1,..,m}

Figure 13.1: Example Quantum Network in the n-Local Setting: The network consists of n entangle-
ment sources (green ellipses) and m detectors (blue rectangles).
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classical value \; drawn randomly from the distribution Q"¢ with probability P();) and transmits the value to
its linked children devices A; € AT*. All sources are assumed to be independent such that P(X N =17 i1 P(N\i),
where X = (A\i)7—; contains the random value output from each source. A given detector A; may receive
random values from multiple sources, thus M C X denotes the set of random values received from its parent

sources. The transition probabilities in the classical setting then decomposes as

m

Paz = > - Y J[Pn H (ajlz;, XA9). (13.3)

A EQM Ap €EQAR i=1 j=1

Definition 78. n-Local Set of Behaviors: The set of behaviors C"o¢ C Pgle; such that Eq. (13.3) is
satisfied. Note that when n = 1, the n-local set corresponds to the local set.

In the quantum setting, each source prepares a multi-qubit state p” that is distributed to the detector

devices that are its children. The detectors then each apply a measurement IT4 {Hfﬁx.}rg‘e x; to their local
J J “

quantum states pAJR ", The transition probabilities are then

P(a]#) = Tr T4 a4 (o )] Tr[(@)] T m) id“ 4 (@ lpAi)} (13.4)

where id* 74 is the identity channel that transmits the quantum states prepared at each source to its child

detectors.

Definition 79. Set of Quantum Behaviors in the n-Local Setting: The set of behaviors Qn-Loc C le\fle}(
that satisfy Eq. (13.4).

Having defined the set of quantum and classical behaviors for nonsignaling networks in the n-local setting,

we can formaly describe their nonclassicality, which is typically referred to as non-n-locality [124].

Definition 80. Non-n-Locality: A quantum behavior P € Q"¢ is said to be non-n-local if and only if

P ¢ C"'°¢ where n-Loc denotes the DAG corresponding to a nonsignaling network in the n-local setting.

The set of n-local correlations is bound by n-locality inequalities, whose violation witnesses correlations

as non-n-local [124]. These inequalities are expressed in terms of the n-body correlator
<0§> =Tr [og’idbg(pﬂ)] (13.5)
P

where Og = ®;”:1 ij is the joint ne}work Hermitian observable. When the outputs are binary strings such
that @ € A = B™, the observable O;Ci1 has eigenvalues £1 that correspond to the parity of the output bit
string @ such that
(07) 0= S @ P (13.6)
Quantum violations of n-locality inequalities are known for many networks [267]-[273], [275], [276], [318],
[321]-[325], and have been demonstrated experimentally [193]-[197], [326], [327].
Like all quantum nonclassicality, non-n-local correlations deteriorate in the presence of noise. The noise
robustness has been investigated with respect to various noise models on the sources, communication, or
measurement [102], [269]-[271], [328], [329]. However, noise robustness can more generally be characterized in

terms of the maximal n-local violation attainable for a given mixed state. Previously, we have discussed how
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the maximal violation of the CHSH inequality [13] is known for any two-qubit mixed state [319]. This result
has been extended to star and chain networks in the n-local setting [330]-[332]. In these works, multiqubit
observables are assumed to be obtained using general GHZ measurements where the qubits are projected
onto the GHZ basis. It was observed in Ref. [331] that the GHZ measurement results can be coarse-grained
into two observables in mutually unbiased bases, namely @, X and Q);~, Z where the two observables
correspond to outputting either the phase or the parity of the measured m-qubit GHZ state.

Recently, however, we applied variational optimization methods to obtained larger n-local violations using
arbitrary local qubit observables [102]. Hence we were motivated to generalize the n-local violations for local
qubit observables in Ref. [333], and compare them with the maximal violations obtained when the central
parties measures their qubits in mutually unbiased bases [330]-[332]. We find that reference [318] misses an
equality condition between the star network’s n-local violation and its upper bound, the geometric mean of
each source’s CHSH violation. Exploiting this condition, we achieve the upper bound for all two-qubit mixed
states where the external parties must measure observables in mutually unbiased bases, e.g., X and Z. These
n-local violations are larger and more robust to noise than those obtained previously under the assumption

that the central parties, instead, measure observables in mutually unbiased bases.

13.1 Local Qubit Measurements in the n-Local Setting

When investigating the nonclassicality of quantum networks in the n-local setting, interesting theoretical
results can readily be obtained when measurements are assumed to be separable across qubits, or even general
qudit systems. As such, consider an M-qubit measurement performed by device A; where ¢4 = (q1,. .., qn)-

The corresponding observable is
M
0 = ou (13.7)
i=1

where each local qubit observable is independent, but conditioned upon the same input x;. Furthermore, if

all qubit observables Ogij have eigenvalues +1, then they take the form
Of =d-d where G =(0y,0y,0.), d€ R® and |d@] = 1. (13.8)

It follows that O?j also has eigenvalues +1 such that <O;4jj > is the expected parity of the M-bit string
P

containing each individual qubit’s measurement result. That is, a; = @f\il aj; where aj,a;; € B and a;;
is the value output from the i** qubit at the j** measurement device. Alternatively, the qubit observables
could be ng = 41, which corresponds to a static output of £1 respectively. When the qubit observable is
the identity, the qubit’s measurement result is disregarded and replaced with a fixed classical value.

When local qubit measurements are used such that Eq. (13.7) holds for all measurement devices A; € A,

then the network correlator factors across the sources as

<§Of_ﬁ> :ﬁ< X 0§q> A (13.9)

oA =1 \gegqh e

where z, is the classical input to the device that measures qubit ¢ as determined by the network’s DAG.
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a) Local Network c) n-Local Chain Network

Figure 13.2: DAGs for n-local star and chain networks where green ellipses are sources and blue rectangles are
detectors. a) The local network that corresponds to the CHSH scenario. b) The bilocal network corresponding
to the simplest n-local network. c¢) The n-local Chain network. d) The n-local star network.

13.2  Nonclasicality in Star and Chain Networks

In this work we consider star [270] and chain [271] networks in the n-local setting (see Fig. 13.1). Star
networks are known to have important applications in entanglement distribution protocols [110], [111], [198],
[270], while chain networks can enable long-distance quantum communication via quantum repeater relay
nodes [112], [113]. These applications, however, require signaling between measurement devices and are not
representative of a nonsignaling scenario. Nevertheless, investigating the nonclassicality of the nonsignaling
case is important because the space-like separation between measurement devices can often be enforced
experimentally [193]-[197]. Under these space-like separations, the n-local nonsignaling setting can be used
in a wide range of device-independent certification tasks [164], [240]-[244] and security protocols [182],
[256]-[260].

13.2.1 Nonclassicality in Bilocal Networks

Consider the bilocal n = 2 network depicted in Fig. 13.2.b having two sources and three measurement devices.
In the classical setting an unlimited amount of shared randomness is produced as each source, while in the
quantum setting each source emits a two-qubit entangled state. This scenario was among the first n-local
cases to be investigated due to its relative simplicity and its application in entanglement swapping [268], [269].

In the quantum case, the network consists of four qubits total where the two sources each emit two-qubits,

A1 _
gt =

74 = (q1) and 42 = (q4), and the central node jointly measures the qubits 72 = (g2, ¢3) where A; and As.

(q1,q2) and ¢*2 = (g3,q4). The two exterior measurement nodes measure the first and last qubits as
The bilocal network lays the theoretical foundation for its generalizations to star and chain networks.

For this reason, we refrain from any serious analysis and reserve the technicalities to our discussion of star

and chain networks. Nevertheless, we provide an example bilocality inequality that can be used to witness
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Star Network n-Local Bounds
and Maximal Quantum Violations

1.0 1

0.8 |

024 &

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 13.3: The n-local bounds for the star network network are plotted in terms of the I, , network
correlators where the shaded region denote the n-local regions. The maximal quantum violation is also
plotted by the star marker. Note that for n > 2, the local bound is not violated by the maximally nonclassical
strategy, however, for n > 2 the I,, , network correlators can also violate the bound for the n’ =n — 1 case.

nonclassical quantum behaviors in the bilocal setting.
Consider the case where the inputs and outputs of all measurement devices are binary such that &; =
A; =B for all j € [m]. The set of bilocal behaviors C*1°¢ is bounded by the nonlinear inequality [268], [269]

S210e(P) = /I loy=0(P)| + /|1yt (P)] < 1, (13.10)
where the quantity
1
Iy (P) =7 D (—)EEmN 02 0B 022) 4y g pr (13.11)
x1,T2

is a linear combination of tripartite correlators on the state p™* ® p™2 with the correlators being expressed as

<O:ID4110yBO;:422>pA1®pA2 = Z (_1)&1@ag@bp(a1,a2,b|xl,m2,y). (1312)
ai,a2,b€B

The maximal quantum violation is So.p0c(P*) = v/2 > 1 where P* € Q%%°¢ [269)].

13.3  Nonclassicality in Noisy Quantum Star Networks

Definition 81. Star Network: n-Star = Net(]\_f ,E), A network consisting of n, independent sources
{A;};=, and n external nonsignaling measurement devices {A;}7_, that each share a source with a central

measurement device B (see Fig. 13.2.d). The network nodes and edges are expressed

N = (A} {4, 4w BY), E={A < (4, B)}, . (13.13)
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13.3.1 Nonclassicality Witnesses in the Star Network

A family of nonclassicality witnesses for star networks can be constructed from a collection of n bipartite
full-correlation inequalities applied to each independent source [318] (see Def. 75). Here the full-correlation

inequality is described by the tuple (v¢, G*)

i=1

yey

where

n,y - Z Z Gll Y Zn Y <O£11 . ‘I/n OB> (1315)

r1€X T €Xn

and G;’y € R is a matrix element of G’. Furthermore, the correlator is

(O .0t0B) = 3 Y Y (—=1)/v®) P(a, b, y) (13.16)

a1 €A; an, €A, bEB

where @,#,b € B" are n-bit strings and the central node outputs b = f, (b ) for some function f, : B" — B
mapping the central node’s n-bit measurement result b into a binary value b. Each set of full-correlator
inequalities {(v, G*)}?*_; and binary functions {f,},cy correspond to a distinct classical bound on the star
network in the n-local setting.

An important case occurs when local qubit (or qudit) observables are considered on the central node such
that O = ®] i1 Oy and b= f, (b b) = ., b; for all y. In this case, the correlator factors as in Eq. (13.9)

such that
= > > HG (02:0%) (13.17)

r1EX, Tp €Xp 1=1

where Of’i is the qubit observable applied on the central node’s side of source A;. Let

AiB; _ i Aj i
ofP =3 G, 0keol (13.18)
T, €X;
then Eq. (13.17) becomes
Ly = [T(O55) . - (13.19)
i=1

It follows that the star network inequality for local qubit observables is

Sn—Star{Gi}i (P) = Z H ‘ <OA B

ye)yi=1

3=

(13.20)

where the absolute value results from the fact that the observables Ofi can always be selected to enforce

that <O;/4iBi>pv > 0. Then the following inequality must hold for any state preparation pK and measurement
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(05155) . [318]

n 1 n
> 11 ‘ (o "< H o (13.21)
yeyi=1 i=1 yGy
n 1
Sn Star{Gl (CNet H SLNS(Q) 1) " (1322)
=1

where, for local qubit observables, the star inequality score is upper bounded by the geometric mean of

bipartite full-correlator inequalities. The conditions for equality are given in the following lemma.

Lemma 8. [333] Equality is obtained in Eq. (13.21) if and only if the matrix with elements M, ; =
| <O;4iBi>pAi | has Rank (M) = 1, or for some i € [n], <O?‘J4iBi>pAi =0forallye ).

Proof. Let M, ; = ayb;, then the RHS and LHS of Eq. (13.21) are equal because

1 1 1 1 .
() =X (o) = (S ) (TT0) ~T1(Sn ) ~TT(Z o
yey \i=1 yey \i=1 yeEY i=1 i=1 \yey i=1 \yey

(13.23)

Since equality holds when M = @- b for positive vectors @ and b any matrix that has Rank (M) = 1 must
yield equality. As an edge case, since both RHS and LHS of Eq. (13.21) are positive, equality is also obtained
yey My, = 0. Finally, if
M, ; # ayb; for all y € Y and ¢ € [n], then the inequality in Eq. (13.21) is strict because the sum and product

when, for some i € [n], M, ; = 0 for all y € Y because the upper bound is zero )

cannot be interchanged. O

Note that reference [318] presents a similar result to Lemma 8, however, the authors incorrectly state that
equality is obtained if and only if M, ; = M, ;s for all 4,7’ € [n]. While the example matrix M is rank-one, the
authors’ equality condition neglects a large number of rank-one matrices. Indeed, these matrices correspond

to correlations that lead to greater violations of star n-locality than previously known.

13.3.2  Mazimal n-Locality Violations in Noisy Star Networks

We now consider the maximal violations of the star n-locality inequalities when there is noise present in a
quantum star network. To this end, we first derive general bounds on the maximal n-locality violations given
arbitrary mixed state preparations and local observables that are separable across qudit subsystems. Then,

we compare our results with the maximal star n-locality violations discussed in Ref. [331].

Theorem 5. For any ensemble of two-qudit mixed states pp,) = -, pi where p; € D(Hﬁi ® /Hfi), the

maximal star n-locality score obtained using local qudit observables satisfies

S searay, (Pin) < T2y G (pi) (13.24)

where equality occurs if and only if the conditions in Lemma ?? are satisfied by the matrix M € RIZI*

where M, ; = <O;47"Bi>; > 0 are the correlators that maximize G™*(p;).
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Proof. For any set of correlators {<OZAiBi>p‘ }Yien),zez where <O;41'Bi>pv is defined in Eq. (12.7), the inequality
in Eq. (??) must hold. Thus, if the set of correlators {<O;4iBi>;_ }ie[n),zez maximize the star n-locality score,

then
1
S;:—Star{G'i}i (p[n]) S Hi:l (Zz62<0?131>zl) " (1325)

where we may assume that <O;4’iBi>: > 0 because the qubit observable B! may be selected to ensure
nonnegativity. However, this set of observables is not guaranteed to maximize each respective locality
inequality, implying that S*_ Star{Gi}; (pmy) <11y G“(p,) Now let M be a matrix with elements M, ;, =
(OB >p > 0. Then, using Lemma 8, S} o gy, (o)) = 1Ty G*(p;)= if and only if either Rank (M) = 1
or, for some i € [n <OAB> =0 forall z € Z. O

Remarkably, Theorem 5 shows that any full-correlation star inequality as defined in Eq. (13.14) can
achieve its maximal score § = H;L:l(’yi)l/ " using local qubit observables and a coarse-graining function
1,6 = @, b

Although Theorem 5 applies to a broad family of star n-locality inequalities, it fails to dictate whether
or not there exist local qudit observables that achieve the upper bound. However, we make an interesting
observation when all parties are given binary inputs where X; = Z = B for all ¢ € [n]. In this setting, the
CHSH inequality in Eq. (12.9) is considered for each source such that [[;_; G% . = []i; (—1)""* and
=1

Theorem 6. For any ensemble of two-qubit mixed states pp,) = @;_; where p; € D(H3" @ HE'), the

maximal CHSH n-locality star score obtained using local qubit observables is

St stanggensiey, () = Ty Seass (00) (13.26)

where S&ygp(pi) = (/770 + 771 as in Eq. (12.13).

Proof. By Theorem 5, S» o\ onsn,y, (Pn)) < Tliq S&usu(pi)- To prove equality, consider the optimal

CHSH observables A% and BZ* from Eq. (12.14). Since the expectations in Eq. (??) satisfy <OgHSHi> =
Pi

<OfHSHi> for all ¢ € [n], the matrix M with elements M, ; = <O§HSH’?>; > 0 has Rank (M) = 1. Thus,
pi ‘
Lemma ?7 is satisfied, implying that S:L—Star{GCHSHi}i (pmy) =TTy Stsr (pi)™ - O

Theorem 6 contrasts with previous results, which assume that the multi-qubit observables are in the

mutually unbiased bases

CM=(1-2)Q 2" + QX" (13.27)

This choice of observables has physical significance because they can be obtained by coarse-graining the
outcomes of the GHZ measurement, which is necessary for generalized entanglement swapping the star
network [111]. The observables C" lead to the maximal n-local star score [330]—[332]

2/n 2/n
'rLSta»r{GrZ \/Hz 17, z(/) z lTi,{ (1328)
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where each external party measures the qubit observables

n l/n n 1/n
y Z+ (-1 T X
i Hz 1 ’L 0 ( ) H1,1 i,1 . (1329)

Ti 2/n n 2/n
Hz 1730 [Tz 171

In general, §,*L_Star{gi}i( ) < S ~Star{GCHSH; }, (pNet) where taking the square of both sides and substi-
tuting Eq. (13.28) and Eq. (13.26) yields the inequality in Eq. (13.21)

Ty 20" + Ty 7t < T (720 + 724) 7. (13.30)

Applying Lemma 8, we derive the condition for equality between these two contrasting n-local star scores.

Corollary 1. S} o rqonsn,y, (pNet) = S\;—Star{Gi}i (pNet) if and only if either :[1’ = % for all 4,5 € [n], or

70 = 0 for some i € [n].

Proof. Let M;; = 77

7,57
equality requires the ratio :—‘; to be constant for all ¢ € [n]. Otherwise, equality is obtained when 7,9 =0

then Rank (M) = 1 when the two rows of M are scalar multiples of each other. Hence

because 7,0 > 7,1 = 0. O

In theoretical works, the conditions in Corollary 1 are often assumed to hold. For instance, equality holds
when all sources emit the same mixed state, or when white noise is modeled on sources. However, these
examples of equality are exceptions that would rarely occur in general ensembles of two-qubit mixed states.

N

While Sn Star{Gi), (pNet)

party measures local qubit observables in Eq. (13.27), which are in mutually unbiased bases. On the

is not globally maximal, it is maximal under the assumption that the central

contrary, S:L-Star{GCHSHi}i (pNY)

is achieved when the external parties each measure their qubit observables in mutually unbiased bases, e.g.,
AL € {X,Z}. As noted earlier, a CHSH violation S&ye(p) > 1 is alone insufficient to determine which

is globally maximal for all mixed state ensemble where S Star{GOHSH, }, (p Net)

qubit was measured in mutually unbiased bases. However, this is not the case in the star network because the

Net) for a known state pN°' requires the external

maximal violation S* Star{GCHSH, }, (pNet) > Sn Star{Gi}: (p
parties to measure observables in mutually unbiased bases. This fact could be used to self-test whether the
external parties are measuring in mutually unbiased bases.
In reference [102], an extreme example is noted where Sn Star{GCHSH, }, (pNet) > 1 > Sn Star{G'}; (pNet) in
which k& € [1,n) sources each emit the classical state o; = |00)(00| while the remaining sources each emit
maximally entangled states. In this case,
* ( Net)

Net)
n-Star{ GCHSH; 1,

= 2“2; >1 = STL Star{G?}; (p , (13.31)

thus showing an example where significant n-local violations occurs where no violation is predicted by previous

results [331]. We now use Theorem 6 to generalize this example.

Corollary 2. For two-qubit states oy, p; € D(H5* @ HEP'), consider the ensemble of k classical states
Ok = ®f:1 o; where T,, = diag(0,0,1), and the ensemble of general mixed states pjy41,n = ®?:k+1 Di-
Then,

S+ * * n—k
nestar{G}; (O] @ Pltin]) S 1S S) gprgonsny, (O] @ pr1,n) = S(a—py-cusu(Plr+in)) ™ - (13.32)
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Figure 13.4: Comparing the Star n-Locality Violations: of S* _Star{GCHSH, }, (pNet) (solid) and
S’\:L-Star{Gi}i (pNet) (dashed): (Left) We consider k < n = 12 noisy sources that have 7,0 = 1 and 7;1 € [0,1].
The remaining (n— k:) sources have Ti0 = 7,1 = 1. (Right) For all i € [n], we set $Scusu*(p;) = 8* € [1.0,1.1]
while 72, = (8*)% — 72, where 72 are evenly spaced in [5 (77, + 77), mm{l,Tl o+ 12}

Corollary 2 leads to bounds whose violation witnesses full quantum network nonlocality, in which all

sources are verified to be nonclassical [170]. Namely, if k¥ = 1, then the maximal n-local violation is bounded

as Sn Star{ GCHSH; 1, (

Similarly, if the central party measures the observable éi such that Sn Star{G}, (p
Net)

°t) < 2% . Thus, if Sp-star{gensi; y, (CN) > 2", then all sources are nonclassical.

Net) is maximal, then the

violation Sn Star{G}; (p > 1, witnesses all sources to be nonclassical. Thus for either choice of observables,
a sufficiently large n-local violation asserts that no classical sources are present.
Overall, the n-locality violations of S*_ Star[GCHSH, }, (pNet) are more robust to noise than :9\:; Star{Gf}l( Net),
N
Star{Gi}, (P et). In the left

plot, we consider k sources to be affected by noise that dampens 7; ; but preserves 7; o, while the remaining

In Fig. 13.4, we illustrate the separation between S’ Star{GCHSH, ), (p Net) and S’n

sources are noiseless. As 7; 1 becomes small, a large separation exists. In the right plot, we consider a case
where Corollary 1 does not hold. That is, for all i € [n], S&pgr(pi) is constant, but the pair 7, o and 7, ; are

unique. We thus construct examples where S* o consn, ), (PNt > 1 > Sn Star{Gi}; (P Net),

153.4 Nonclassicality in Noisy n-Local Chain Networks

Definition 82. Chain Network: n-Chain = Net(]\_f, E), A network consisting of n, independent sources
{A;}7—,, two external nonsignaling measurement devices A; and B,,, and n — 1 central nonsignaling measure-
ment devices devices C; ;41 where the subscript indexes the linked sources (see Fig. 13.2.c). The layers of

nodes are then

= ({Ai}?:h {Ah 01,27 s n 1,m)5 n}) (1333)

where the collection of edges are

E={A < (A1,C12), ..., A < (Ci_1.6,Cii1)s s Mg < (Cimy Bn) Y} (13.34)
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18.4.1 Nonclassicality Witnesses in the Chain Network

Consider the n-local chain network in Def. 82. When each party outputs a binary value a,b,c € {1}, we

introduce a family of chain network n-locality inequalities

Sn—Chain{Gl,G" CNet Z ’an CNet S Ba (1335)
zEZ
Tn (CNY) = YN Gh LGy (O (13.36)
TEX yey

where OShain — Al @ (1! ciithy @ By with C»"*1 = B. ® AZ*! and the coefficients for the bipartite
Gy . € R. The n-local bound of 8 = \/’W is derived by

assuming that each party’s correlator satisfies A1 By, Cu*l € {£1} and is separable from the other parties

[271], [318], [334]. When considering local qudit observables, we use Eq. (13.9) to rewrite Eq. (13.36) as

full-correlation locality inequalities are Gm s

Jn:(CNY = [ (025 H (AL®BL), (13.37)
i€e{l,n} =2

where (O1P1) =% . GL. (Al® B;>p1 (similarly for n) is the full-correlation observable from Eq. (12.7).

P1
Then, inserting Eq. (13.37) into Eq. (13.35) and noting that [ (04:B3) = I, ,(CY™), we find

i€{l,n}
n—1 1
: ; 2
Sn-chain(ar,an (C¥) = 3 [Lo(C) [ (ALe B, (13.38)
zEZ =2

where C1'" denotes the correlations of sources 1 and n.

13.4.2 Mazimal n-Locality Violations in Noisy Chain

We now consider the maximal violations of the chain n-locality inequalities when there is noise present in a
quantum chain network. To this end, we first derive general bounds on the maximal n-locality violations
given arbitrary mixed state preparations and local observables that are separable across qudit subsystems.
Then, we compare our results with the maximal chain n-locality violations discussed in Ref. [332].

First, we derive an upper bound on the maximal chain n-locality score in Eq. (13.38) for any quantum
correlations CN¢* € QNet. First, since (A% ® Bl),, < 1,0 for all z € Z, it follows that

n—1 n—1
1
Sn-Chain{Gl,G" CNCt Z |12 z Cl n 2 H VTi,0 < SS_Star{Gl,G2}(p1 & pn) H vV Ti,0 (13.39)
Z2EZ =2 =2

where in the second line ) g |[Ip,.(CY™)|2 = Sy-star{G!,g2} (CH™) < S5 star{a1,G2} (P1 ® pn). When the
number of inputs for a party exceeds 3, sources i € {1,n} may need to prepare bipartite entangled states
of dimension larger than two to obtain the maximal quantum violation [334]. However, as shown in the
following theorem, the maximal violation of the chain n-locality inequalities can be obtained when the central

sources ¢ € [2,n — 1] prepare classical two-qubit states.

Theorem 7. For any ensemble of two-qudit mixed states pN°* = @, p; where p; € D(”H:?i ® Hfi), the
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maximal n-local chain score obtained by measuring local dichotomic observables is

e n—1
S:L—Chain{Gl,Gn}(pN ‘) = S§_Scar{G1,G2}(P1 ® pn) [Lics V74,0 (13.40)

where 53 ;.. (c G2}(p1 ® pp) is the maximal bilocal star score using local qudit observables.

Proof. For all sources i € [2,n — 1], let p; € D(H3* @ HP?) be measured by the observable AL ® Bi = Z® Z
such that (AL ® B),, = 7,0 for all 2 € Z. Then, for the two sources i € {1,n}, consider the optimal
full-correlation observables <O;4iBi>;i that maximize the bilocal star score to obtain S .. {Gl,G”}(pNet) =
S5 star{G1,Gg2}(P1 ® pn). Inserting these observables into Eq. (13.38) yields the upper bound on the n-local
chain score in Eq. (13.39). O

Theorem 7 shows that to obtain the maximal n-local chain score, it is sufficient to measure all central
sources i € [2,n — 1] using the fixed local qubit observable Z ® Z. Only the measurements that share a
source with an external party depend on z. Thus, the maximal n-local chain score can be achieved even
when all sources i € [2,n — 1] emit a classical state such as  where T, = diag (0,0,1). Similarly, consider the
single-outcome observables A: @ B¢ = I; ® I; measured on sources i € [2,n — 1], then for any mixed state p;,
(AL ® Bi>pi =1forall z € Z and

S:L—Chain{Gl,G"}(pNet) = 52*-Star{G1,G2}(P1 ® pn)- (13.41)

That is, the maximal violation of chain n-locality is achieved by disregarding all sources i € [2,n — 1] and
replacing their measurements with a constant output.

Consider now the special case where all inputs are binary X =) = Z = B. The n-local chain inequality
then becomes a generalization of the CHSH inequality in Eq. (12.9). Since all inputs are binary, the maximal
n-local chain score can be obtained using maximally entangled two-qubit states [334]. In this setting,
Gy .Gy, = 1(—1)®"*(—1)¥"* and B8 = 1. Inserting these values into Eq. (13.36) and considering local qubit
observables we find

n—1
Jna(CY) = [ (o) [ (Ale B, (13.42)
i€{l,n} =2
where OFHSH: = 1 (A} + (—1)?Al) @ B! as in Eq. (12.9). It follows that
n—1
1 , oL
Su-chaingaensny (C¥) =" [ [(0%11) |7 [ |(alw B |*. (13.43)

z€Bie{l,n} i=2

Theorem 8. For any ensemble of two-qubit mixed states pN°® = @' | p; where p; € D(Hf” ® Hf ), the

maximal n-local chain score obtained by local qubit observables is

n—1
- Chain{gensiy (PNY) = H S&nsn(pi) H VTi0- (13.44)
i€{l,n} =2

Proof. By direct application of Theorem 7, S;—Chain{GCHSH}(pNet) = S;—Star{GCHSH}(pl ® pn) H?;zl \/Ti.0, then
using Theorem 6 we recover Eq. (13.44) because S;-Star{GCHSH}(pl ®pn) =Licg1,n / GCHSH(p). To achieve
the maximal score, the central sources i € [2,n — 1] are measured by the observables AL @ B! = Z @ Z for all

z € B while sources i € {1,n} are measured by the observables described in the proof of Theorem 6. That is,
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Figure 13.5: Comparing the chain n-locality scores S;_Chain{GCHSH}(pNEt) (solid) is compared
with §:L-Chain{GCHSH}(pNet) (dashed): (Left) For various n, We set 77, = 1 and vary 77, € [0,1]. (Right)

We set 72 = 2 + 172, and vary 72, € [0,1].

the external parties measure A} = Bf = Z and A} = B = X, while B = (110Z+71,1(-1)?X) /(1o +78,)"/?
and A = (1,02 + Tn,l(_l)ZX)/(TrQL,O + 7—721,1)1/2~ O

Net )

The maximal n-local chain score S;_Chain {GCHSH}(p derived in Theorem 8 is distinct from previous

results that assume the central parties to measure the observables [332]
Cohitl = (1-2)Z20 Z+2X ® X. (13.45)

This choice of observable is physically motivated because it can be implemented as a coarse-graining on the
outputs of a Bell state measurement, which is important for entanglement swapping [110]. However, these

observables lead to a suboptimal n-local chain score

\/H?:I 70 + [Ty T (13.46)

& N
S:L—Chain{GCHSH}(p “)
where the two external parties measure the observables

a - s vmoZ + (O IT, yraX (13.47)
! VI mio + ITimy 7in

and similarly for Eg In general, SZ—Chain{GCHSH}<pNet) > 5*

n-Chain {GCHSH}(pNet) where equality occurs only

in special cases.

Corollary 3. S;_Chain{GCHSH}(pNCt) = §:L_Chain{GCHSH}(pNCt) if 7,0 = 74 for all i € [2,n — 1] and

Sg-Star{Gl,G2}(p1 ® pn) = SS_Star{GCHSH}(pl & Pn)-

The result Corollary 3 was observed in reference [102] where significant chain n-locality observations
were obtained when §n_0hain{GCHSH}(CNCt) < 1. For instance, let pN°* = p; ® (®?:_21 Vi) @ pn where

*

T, = diag(0,0,1), then SZ-Chain{GCHSH}(pNet) = SQ—Star{GCHSH}(pl ® pp) and §;—Chain{GCHSH}(pNet) <L
However, if the central parties measure the observables C‘Z(i,iﬂ) as in Eq. (13.45), then an n-local violation
§n_chain{GCHSH}(CNet) > 1 asserts that each source is nonclassical. As a consequence, full quantum network
nonlocality [170] cannot be witnessed in the chain network with respect to local qubit observables, but can if

central parties measure their qubits in mutually unbiased bases.
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Overall, the n-local violations of Sn Chain {GCHSH}( N t) are more robust to noise than the n-local violations
of Sn Cham{GCHSH}( et). In Fig. 13.5, we illustrate cases where S;_Chain{GCHSH}(pNEt) > S;_Chain{GCHSH}(pNet).
In both plots, we consider uniform noise on all sources such that Corollary 1 is satisfied such that

S3 Star{GonsH} (M1 ®pn) = SS—Star{GCHSH} (p1®pr). Thus, we ensure that the separation between S:L—Chain{GCHSH} (pNet

and Sn Chain {GCHSH}( et) is inherent to the chain network. In the left plot, we consider noise where 7; o
is preserved but 7;; is damped. For all n > 2, we find S;_Chain{GCHSH}(pNEt) = S;—Star{GCHSH}(pl ® pn) >
§;‘L_Chain {GCHSH}(pNCt) > 1 where the separation increases with n. In the right plot, we consider noise such
that 7,0 is also damped, but the bias 7; 0 > 7;,1 is preserved. For all n > 2, we find that

S5 stargomsny (01 ® pn) > S} opaingaensmy (P = Sy opaingaensmy (P°) (13.48)

and we find examples where S;_Chain{GCHSH}(pNet) > 1> §:L-Chain{GCHSH}(pNet)' Hence the local qubit
measurement strategy discussed in Theorem 8 lead to n-locality violations in noisy settings when the results

of previous works predict the correlations to be local [332].

13.5 The Noise Robustness of Star and Chain Non-n-Locality

In the previous sections we derived general results for the maximal n-locality violations in the star and chain
networks. Here we extend these results to the noise robustness of star and chain non-n-locality. Since we
derive explicit maximal violations for S, _g.(gonsn;y, and S, chain{gensn) in terms of the CHSH violation
on each source, the following noise robustness results are generalizations of the CHSH noise robustness results
in Chapter 12.

13.5.1 Unital Noise Robustness of Star and Chain Non-n-Locality

Theorem 9. Consider an n-local star or chain network that has qubit-separable PVM measurements and a
unital qubit noise model on each source such that NNt = R, U4 @ UPi. The maximal noisy n-local star

and chain scores are

~:L-Star{GCHSHi} (W) = H Sensu Ut @UP )% (13.49)
i=1
. n—1
S:L—Chain{GCHSH}(N ‘) = S, Star{GCHSH}(Z/{Al @UP @ U @ UP) H Vudiul (13.50)
where SCHSH(Z/IAL QUB) = 2\/ (ug ud)? + (utuP)? as given in Theorem 3 and ug > u; are the two largest

singular values of the respective channel’s Pauli matrix representation Mp,.

Proof. In Theorem 3 we showed that SCHSH U @UP) = 2\/ (ugiuP)2 + (utuP¥)2. Then, since Theorem 6
and Theorem 8 give the maximal n-locality star and chain scores for arbitrary mixed states in terms of their
CHSH violation, we simply insert the maximal CHSH violation into these results to recover Eq. (13.49) and
Eq. (13.50). Note that in Eq. (13.50), we use 7; = uj ul'. O

Proposition 11. Consider a star or chain quantum network having a qubit depolarizing noise model,
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whet = Q> DAA ® DB The maximal n-local star and chain scores are

3=

g’:—star{GCHSHi} (DNEt (H v ) ) (1351)

gn Cham{GCHSH}( <H v > . (1352)

=

Proof. A qubit depolarizing channel is diagonalized in the Pauli basis as Mp, = diag(v,v,v). Eq. (13.51)
and Eq. (13.52) follow directly from Theorem 9. O

Proposition 12. Consider a star or chain quantum network having a qubit dephasing noise model, D,%Iet =

A; B; . i
®?=1 Dv 4; ® D,y 2, - The maximal n-local star and chain scores are

n- Star{GCHSHt} H )(1 - )) n ; (1353)
g:z-Chain{GCHSH}(D'l'y\'Iet) Sz Star{GCHSH}(D DBél ® D L ® ngn )- (13.54)

Proof. A qubit dephasing channel is diagonalized in the Pauli basis as Mp, = diag(y/T—~,v/T—7,1).
Eq. (13.53) and Eq. (13.54) follow directly from Theorem 9. O

Proposition 13. Consider a star or chain quantum network having a two-qubit depolarizing noise model
on each source VVNet Qi Wi, where W, € CPTP(HL P — H{¥B1) and ; = 12(1 = v;). The maximal

noisy n-local star and chain scores are
) (13.55)

(13.56)

3=

S:L Star{GCHSHi} (WNet <H ‘1

§n Cham{GCHSH}( ) \[ H ‘1 I

Proof. In references [269], [270] it was derived that the maximal n-local star score is S Star{GOHSH, (WNet)

1
V2 ([T, v:)™ and in reference [271] it was derived that the maximal n-local chain score is Sn—Chain (qonsmy (W’_yNet) =
V2/TI_, v;. Substituting the noise parameter ~; for the visibility v; as 7; = (1 — v;) recovers Eq. (13.55)
and Eq. (13.56). O

Proposition 14. Consider a quantum network with a classical white noise model on each dichotomic detector

nget = ®;n:1 W; The maximal noisy n-local scores for the star and chain networks are

+
Sh-staraensuy, (W5*) = V2 H 1= | (13.57)

~:L—Chain{GCHSH} (W$Ct) = \/§ H (1 - 'Y]) (1358)
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Proof. As given by Eq. (13.82), white noise on each detector is modeled by a POVM with elements W, , =

(1 = )Py + YWy, where P, are projectors onto even and odd parity subspaces and Wy, = %HQM

is a white noise POVM. For each external node P:_:Jqc € PVM(Hs2) while for the M-qubit central nodes,
e}

Pf"; . € PVM(Hqn) where Tr { Pffz J =Tr [Pfl’cz J . In both cases, the corresponding dichotomic observables

having +1 eigenvalues are constructed as

ob., = W+|xj,’Yj - W—lxj,’yj =(1- 'Vj)(PHm - P—\Jc) =(1- ’Vj)Oija (13.59)

L5575

where Off is the device’s observable in the noiseless case. Note here that the classical white noise has the
same effect on the observables of both single and multi-qubit detectors. Then, consider the noisy m-partite

correlator

m m

<5§eﬁt>pw:“ g@;‘; P = || @1 =708 | et =[] =) (0F) . (13.60)

J=1 Jj=1

where the m detectors can be in any entangled topology and Og“ is the product of all m detecotors’ noiseless
observables. Since [(O¥°')| < 1, it must hold that |<FOV§E$>\ < [}, (1 = 7;) where the upper bound is
achieved only if the optimal observables are chosen for maximal non-n-locality. For the noisy quantum

network the quantity I, , defined in Eq. (13.15) is bound as
1 n+1
I, < — T -~ 13.61
[yl /2 31;[1( ) ( )

hence the maximal noisy n-local star score is

n+1 %
St starfaensiy, (W) = v2 [ TT(1—) (13.62)

Jj=1

and achieved using the optimal noiseless strategy for the star network [270]. Likewise, if the optimal strategy

for the chain inequality is used [271], then

|J27y

1 n+1
=5 [Ta-), (13.63)
j=1
and the maximal noisy n-local chain score is

§:L—Chain{GCHSH}(W'I§et) = \/i (1364)

13.5.2  Nonunital Noise Robustness of Star and Chain Non-n-Locality

In this section we take a theoretical approach to the noise robustness of n-locality violations in star and chain

networks. Using Theorem 6 and Theorem 8, we can extend the nonunital noise robustness results obtained
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for the CHSH scenario in Section 12.1.4 to star and chain networks having local qubit measurements.

Consider the case where a nonunital channel is applied to each qubit such that
= NNet(pNet) ®NA @ NBi(pAB), where N4 NB € CPTP(Hy — Ha). (13.65)

when local qubit observables are measured, then Theorem 6 and Theorem 8 can be used to obtain the
maximal star and chain n-locality violations §;-Star{GCHSHi}¢(NNet) and §;—Chain{GCHSH}(NNet>‘

In general, in the presence of nonunital noise, the CHSH violation is found to be greater for nonmaximally
entangled state preparations than maximally entangled state preparations. Here a state is maximally entangled
if [¢) = U @ UP |®+) while a state is nonmaximally entangled if |1)y) = v/A|00) + /T — X|11) and local

unitary rotations thereof.

Proposition 15. Consider an n-local star or chain network that prepares maximally entangled states
pNet = Q" [¥) (Y| where |[¢) = UA @ UP |@F), applies local qubit PVM measurements, and has an
amplitude damping channel applied to each qubit as N, get = Qi A4, ® A, 5,. The maximal n-local scores

for the star and chain networks are

S*

n 1
n- St'lr{GCHSH7} p et H <\/2 1 - 1 - ’Y )) ) (1366)

i=1

n—1
Sn Chaln{GCHSH} \/\/2 1- Al - ’YBI)\/Q(l - 'YAn)(l - ,an) H V' Ti,0 (1367)
=2

where 7,0 = min{y/(T— 72)(1 — 750), 7475 4 (1= 44)(1 = 754)}

Proof. Using Proposition 15 we find that Sgyey (5745 = 24/2(1 — )(1 —~B4). Then using Theorem 6,
we find the maximal n-local star score to be as shown in Eq. (13.66). Flnally7 using Theorem 8, we find

the maximal n-local chain score to be as shown in Eq. (13.67) where we note that the maximal singular

value 79 = max{+/(1 — v4)(1 — vB:), vy B + (1 — 449)(1 — 4B%)} where the two options are taken from
Eq. (12.39) and Eq. (12.40). O

13.6  Variational Optimization of Non-n-locality in Noisy Star and Chain Net-

works

In this section, we demonstrate on a classical simulator that VQO can reproduce the maximal n-local scores
derived Section 13.5. We begin with an overview of our use of VQO to investigate the noise robustness of
quantum non-n-locality. Then, for unital and nonunital channel examples, we show that our VQO methods
can obtain the theoretical n-local scores. We find that network noise models consisting of general unital qubit
channels have their non-n-locality maximized by maximally entangled states are optimal. On the contrary,
we show that when nonunital qubit amplitude damping channels are considered, there exists nonmaximally
entangled state preparations that outperform maximally entangled preparations.

Our objectives are to verify that our VQO framework can reproduce known noise robustness results. Our
investigative approach to noise robustness is distinct from previous works [286], [287] that evaluate the precise
noise parameters at which nonlocality is broken. Instead, we use VQO to find maximal violations of a Bell

inequality given a static noise model N, :I/\Iet. By scanning through the noise parameters, we create a picture
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Figure 13.6: Noise Models in Quantum Networks. a) Source Noise: A quantum channel is applied to all qubits
at a given source. b) Communication Noise: A quantum channel is applied independently to each qubit. c¢) Detector
Noise: Classical post-processing is applied to the classical data output from the network.

of how the non-n-locality deteriorates as the amount of noise increases. Hence we are able to compare the
relative noise robustness across different quantum network topologies.

We consider noise applied during the preparation, communication, and measurement stages of a quantum
network in the n-local setting (see Fig. 13.6). Source noise occurs during the state preparation at each
source and is modeled as N,ly\]et =Qi, Né\z Communication noise occurs during transmission of quantum
states and is modeled as N,ly\]et = ®f€=1 N’vak Detector noise occurs during measurement and is modeled
as Eg“ = ®;n:1 Eff . Alternatively, detector noise can be modeled as an adjoint channel applied to the
measurement NVI\TetT(HaIES)_ For more details about dector noise please refer to Section 8.5.

To simplify our investigation, we characterize the network noise using one parameter. However, our VQO
approach can easily be extended to nonuniform noise models as it introduces no additional computational
overhead in comparison to the uniform noise model. First, we consider an ideal quantum network that
has a single faulty component such as a noisy source, link, or measurement device. In this case, the noise
parameters take the form ~, = (v,0,...,0). Second, we consider quantum networks having noise applied
uniformly to all sources, links, or measurement devices. In this case, the noise parameters are v, = (,...,7).

To evaluate the noise robustness we begin with a static noise model N}/\Iet. To create a high-level overview
of the noise robustness, we scan through the noise parameter v € [0, 1] using an interval of 0.05. For each ~,
we use VQO to find the optimal state preparations and measurements that maximize non-n-locality with
respect to the Bell inequality Sgei. We repeat this procedure for all considered network topologies depicted
in Fig. 13.2 and compare their relative noise robustness. Furthermore, we compare the optimized results with
theoretical bounds on the max violation.

We organize our investigation into two broad classes of noise, unital and nonunital. In each case, we
consider noise applied to sources, qubit communication, and detectors. For each noise model we compare
the n < 4 cases for the chain and star n-local inequalities S, _giar{gousuiy, and S, _cpain{genssy. Finally,
we explore a wide range of state preparation and measurement ansatzes to broadly investigate the relation

between entanglement and noise robustness. For details, please refer to Table 11.1.

13.6.1 Unital Noise Robustness of Star and Chain non-n-locality

In this section, we demonstrate on a classical simulator that our VQO framework finds the theoretically

maximal n-local violations in the presence of unital channels such as qubit depolarizing noise, source
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depolarizing noise, detector white noise, and qubit dephasing noise. We show that network ansatzes allowing
maximally entangled state preparation and local qubit measurements can achieve the theoretical maximum.
Furthermore, we find no example of entangled measurements or nonmaximally entangled states that achieve a
larger Bell score. These numerical results provide evidence that maximally entangled state preparations and
local qubit measurements are optimal for general unital noise models on sources and measurements. Indeed,
the numerical VQO results in this section led to the derivation of Theorem 6 and Theorem 8 in reference
[333], thus our VQO framework demonstrates the ability to obtain novel theoretical insights.
We first consider qubit depolarizing noise on each qubit as

WR = QW @ Wi, (13.68)

where we consider either uniform noise or noise on just qubit A;. A qubit depolarizing channel mixes white

noise with the input qubit state as

D,(p) = vp + L), (13.69)

where v is a parameter commonly referred to as the wisibility. The visibility relates to the noise parameter as
3
v = Z(l — ). (13.70)

The qubit depolarizing channel’s Kraus operators are
KOZ\/1_7H27 Kl_\/Zarv

K, = % oy, K3 = \/Zaz. (13.71)

In Proposition 11, we show that in the presence of qubit depolarizing noise, Dget = ®ZL:1 Df};i ® ngi the

maximal n-local star and chain scores are

3=

St starfgensi;y, (D5 ) = V2 (H vAivBl’) : (13.72)
=1

Nl=

Srr-Chain{gensny (D5 ) = V2 <H UAiUBi) . (13.73)
i=1

In Fig. 13.7, we find a close correspondence between the theoretical maximal Bell scores given by Eq. (13.72)
and Eq. (13.73) and the maxima obtained using our VQO framework. In our optimizations, we consider
arbitrary preparation and measurement ansatzes (see Table 11.1). We find that maximal violations can be
achieved using the Bell state |®1) and local qubit measurements.

We now consider depolarizing noise on each source where the network noise model is

WE = QWi (13.74)
=1
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Figure 13.7: Qubit depolarizing noise robustness of non-n-locality. (Left) Qubit depolarizing noise is applied
to qubit ¢1. (Right) Qubit depolarizing noise is applied uniformly to all qubits. The markers show the maximal Bell
score achieved using VQO. The dashed lines show the theoretical maximal given by Eq. (13.72) and Eq. (13.73) where
the relation between the visibility v and the noise parameter v is v = %(1 —v).

where Wi € CPTP(H4 — H4). Depolarizing noise on two-qubit sources is expressed as

1—-v
Wale) = v+ S VL (13.75)
where the visibility v relates to the noise parameter as
15
1= 100 ), (13.76)
The Kraus operators for a two-qubit depolarizing channel are expressed as
3
K07Q = \/1—’)/]14, {K@j = EUi@O’j}' ) 0, (1377)
1,]=

where all ¢ and j are considered except ¢ = j = 0. The maximal Bell scores have previously been derived
for n-local star and chain networks having source depolarizing noise. Namely, the maximal noisy Bell score
for the star network is §;_Star{GCHSHi}i(®?:1 wiiy = v2 (1L, Ui)l/n [269], [270] and the maximal noisy
Bell score for the chain network is §;—Chain{GCHSH}(®?:1 Whi) = V2 /TT, vi [271]. We use Eq. (13.76) to

redefine the maximal violations in terms of the noise parameter as

n 1/n
I n . 16
Sn—Star{GCHSHi}i(®i:1 ijj\ll) = \/§ (H ‘1 - T57i ) , (1378)
=1
o* n A, \/‘ o 16
n—Chain(®i:1 Dv;) = 2 H ‘1 - 17571 . (1379)
=1

In Fig. 13.8, we show that there is a close correspondence between the theoretical maximal Bell scores given
by Eq. (13.78) and Eq. (13.79) and the maxima obtained using VQO optimization. In our optimization we
consider source depolarizing noise an a broad range of preparation and measurement ansatzes (see Table 11.1).
We find that the state preparation |®*) and local qubit measurements optimized over rotations about the
y-axis are sufficient for maximal violations in all cases.

In the case when all detectors have binary outputs, consider a classical white noise error on all detectors
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Figure 13.8: Source depolarizing noise robustness of non-n-locality. (Left) Depolarizing noise is applied to
source Ai. (Right) Depolarizing noise is applied uniformly to all sources. The markers show the maximal Bell score
achieved using VQO. The dashed lines show the theoretical maximal score from Egs. (13.78) and (13.79).

in the network A where
Wi = () Wj;‘;, (13.80)
A,;EA‘

and we define a white noise error as the classical postprocessing map

v (1 1
W, =(1-9)+~ 13.81
v = v)2+2<1 1>, (13.81)

where with probability 7, the detector outputs a binary value drawn from a uniform random distribution.
Noting that Eq. (13.81) is a convex combination of noiseless and white noise measurements, we can equivalently

express W, as the POVM
Wiz = (1= ey + Wap, (13.82)

where W, |, = %HM are white noise POVM elements and II |, are projectors onto even (+) and odd (—) parity
subspaces that satisfy Tr [Hﬂgg] = 2M=1_ The projector onto even and odd parity subspaces corresponds to
the fact that we use parity to coarse grain a multi-bit output into a single bit.

In Proposition 3, we show that detector white noise post-processing map W, is a unital process equivalent
to a depolarizing channel on the detector’s M-qubits provided that Tr [HHA =Tr [H_|x] for all x,

Aj _ v

Then in Proposition 14, we find that given the network noise model N. yet = ®;n=1 Dél,yl), the maximal
J

n-local star and chain scores are

~. A; 1/n
St @ D) = V2 (I (=) (13.84)
Sx m Aj n

n—Chain(®j:1 D(lfryj)) = \/i Hjill(l - 7]) (1385)

In Fig. 13.9, we show that there is a close correspondence between the theoretical maximal n-local
violations given by Eq. (13.84) and Eq. (13.85) and the maxima obtained using VQO. In our optimizations
we consider a broad range of preparation and measurement ansatzes (see Table 11.1). For all networks, we
find that the state preparation |®*) and local qubit measurements optimized over rotations about the y-axis

are sufficient to achieve the theoretical maximum.
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Figure 13.9: Detector white noise robustness of non-n-locality. (Left) Detector white noise is applied to
measurement device A;. (Right) Detector white noise is applied uniformly to all measurement devices. The markers

show the maximal Bell score achieved using VQO. The dashed lines show the theoretical maximal score from Egs.
(13.84) and (13.85).
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Figure 13.10: Qubit dephasing noise robustness of non-n-locality. (Left) Dephasing noise is applied to qubit
q1- (Right) Dephasing noise is applied uniformly to all qubits. The markers show the maximal Bell score achieved
using VQO. The dashed lines show the maximal scores predicted by Eq. (13.89).

We now consider the case where dephasing noise is applied to each qubit such that we consider the noise
model

DY = QD @ DY (13.86)
i=1

Qubit dephasing noise is a unital channel that describes the decoherence process as

_1+W—7p+1—,/71—7
- 2

DW(P) 9

0.p0, (13.87)

where the off diagonal terms go to zero as the noise parameter v increases. The Kraus operators for the
dephasing channel are
1 0 0 0
Ky = and K; = . (13.88)
0 1—»vn 0 7
In Proposition 12 we show that, given a network noise model Dget =, DA};i ® Dféw the maximal

n-local star and chain scores are

n

Sp staraensiyy, (DY) = [ (1 4+ (1 =71 =+%)) ™", (13.89)
=1
S chamgaensny (DY) = 53 g qonsny (D24, @ D25, @ D, @ DI, ). (13.90)
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In Fig. 13.11, we show that there is a close correspondence between the theoretical maximal n-local
violations given by Eq. (13.89) and Eq. (13.90) and the maxima obtained using VQO. In our optimizations
we consider a broad range of preparation and measurement ansatzes (see Table 11.1). We find that maximally

entangled states and local qubit measurements are sufficient for maximal n-local violation.

13.6.2 Nonunital Noise Robustness of Star and Chain non-n-locality

In this section, we investigate the noise robustness of quantum non-n-locality with respect to nonunital noise.
A quantum channel is nonunital if and only if it does not preserve the identity, N'(I) # I, where important
examples include qubit amplitude damping, fixed errors on measurements, and two-qubit colored noise. As
opposed to unital channels, we show that maximally entangled state preparations are not necessarily optimal
in the presence of nonunital noise. We verify that VQO can be used to find the optimal state preparations and
measurements for maximal n-local violation results by comparing our numerical results with the theoretical
maximal noisy n-local scores derived in Section 13.5.2.

We first consider the case where an amplitude damping channel is applied to each qubit such that the

network’s noise model is .
AT = Q) A%, @ AT (13.91)

i=1

The qubit amplitude damping channel A, has Kraus operators

K0:<1 0 ) K1:<0 \ﬁ) (13.92)
0 JT=H 0 0

where the effect on a qubit density matrix is

A(p) = <v+ (1=9)poo VI —wm) . (13,99

V1—="7p10 (1 =7)p11

In star and chain networks, we compare the noise robustness of n-local violations for nonmaximally
entangled states, [¢5) = VA |00) + /T — X|11) for A € [0,1], and maximally entangled states |rz1/2). We
express the noisy maximally entangled states as p 1= A,‘;‘ ® Af (pr— 1 ), and noisy nonmaximally entangled
states as py ., = Ai? ® AZ(px). We now prove through example that nonmaximally entangled states achieve
larger Bell scores than maximally entangled states. Then, we verify that our VQO software can reproduce
our theoretical results.

In the CHSH scenario it was observed that, in the presence of uniform qubit amplitude damping noise
nonmaximally entangled states lead to larger violation than maximally entangled states (see Fig. 12.1). This
improvement in CHSH noise robustness can be generalized to our uniform qubit amplitude damping results

in n-local star and chain networks. Using Proposition 10 and Theorem 6, we can write

starfgonsiiy, (@i Aamt ) = 35Emsu(Ars ) (13.94)

. For the chain network, we note that A, ® A,(]00)(00]) = |00)(00|, that is, the |00)(00| state experiences

no noise from amplitude damping. Since for p = [00)(00|, the largest singular value of T}, is 79 = 1, then
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Theorem 8 can be used to obtain

S;—Chain(®1 1p)\_2 'y) SCHSH(p)\* ) (1395)

However, in the case of maximally entangled state preparations, the maximal singular value is 79, =
max{1l —v,7? + (1 —v)?}, thus by Eq. (??)

n—1

x noos L . 1
S -Chain (®i:1 P,\:é,y) = §SCHSH(/)>\:%,V) H (7o) - (13.96)
i=2
We now consider the case where amplitude damping noise is applied to a single qubit in the network.
Like in the uniform noise case, we start with the CHSH scenario and maximally entangled states. Using
Proposition 15 and setting 72 = 0 and ¥4 = € [0, 1], we find that 70 = 7y = /T — v > 72 = 1 — 7. Thus,

S’Z—Star{GCHSHi}i(ﬁ)\:%,’y) =2v2(1-7) (13.97)
and by Theorem 6 we see that
S starfaensiy, (Pr=1 5 Qs [2T)(@T]) = ((\/5)"*1 2(1 — 7)) " (13.98)

Note that the n-local chain score is equivalent to Eq. (13.98) because the interior chain nodes are not affected
by the amplitude damping noise.

When nonmaximally entangled states are considered we use Proposition 9 to find that

2/2(1 — €0, 3]
S* Fye — ’ 2 13.99
Crsu(Pas,y) { 2, ~e [%’ 1] ( )
where A* = 1 when v € [0, 3] and A* = 1 when 7 € [4,1]. Thus, when amplitude damping is applied to a

single qubit, max1mally entangled state preparations are optimal on the range v € [0, ] and the classical

state preparation is optimal for v € [5, 1]. Then by Theorem 6, we find

;, Star{GCHSH; }, ( 2,’)/ ®z 2 |¢)+><(I)+|)

:max{ﬁ", (x/i"f \/M)l} (13.100)

In Fig. 12.1 and Fig. 13.11 we see a close correspondence between theoretical results and those found using
VQO. In our optimizations, we consider a range of preparation and measurement ansatzes (see Table 11.1).
We find that nonmaximally entangled state preparations and local qubit measurements are sufficient for
maximal n-local violation

Now consider the case in which colored noise is applied to each source in the network as
et ®C A (pM). (13.101)

Colored noise is typically found on the singlet state |¥—) = %(|01> — ]10)) produced by parametric down

conversion [213]. Colored noise is a two-qubit noise model representing depolarization on a preferred axis of
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the state,
2 _ _
Cy(p)=(1—’y)p+§(’\11+><\11+‘+|\11 W), (13.102)
where [U*) = (|01) £ |10))/+/2. The Kraus operators for colored noise are

KO = v/ 1-— ’}/]I,
Kyz gt = \/7/2| U5 )(@*], (13.103)
K\piﬂ,i = \/’7/2|\Iji><\lfi

)

where |®%) and |¥T) constitute the Bell basis. Without loss of generality, we focus colored noise on |¥™)
and |®1) Bell states.

We begin by evaluating the CHSH score of the state gy = C,(|%*)(¥*]). It follows that that the correlation
matrix is Tj» = diag(1l —v,1 — 7, —1). Then, we use Eq. (12.13) to obtain Seusu(Py) = 2¢/1+ (1 —7)2
We note that this CHSH score is equivalent to Eq. (13.89), the score obtain for uniform qubit dephasing
noise, hence, there is a direct correspondence between uniform qubit dephasing and colored noise applied to
the [UF) (U state.

For uniform source colored noise, the maximal n-local star score is given by Theorem 6 as

nstarigensiy, (Qizg Y) = 1+ (1 —7)% (13.104)

Since the maximal singular value of Tﬁ$ isTg =1, S:L—Chain{GCHSH}(®?=1 /53’) = S;_Sm{GCHSH}(@)f:l ﬁ,‘f)
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Figure 13.11: Qubit amplitude damping noise robustness Amplitude damping noise is applied to a single
qubit (left column) and uniformly to all qubits (right column). The markers show the maximal Bell score achieved
using VQO while the dashed lines show the theoretical maximum. The top row plots the maximal n-local scores for
maximally entangled state preparations and local qubit measurements while the bottom row plots the maximal n-local
scores over arbitrary state preparations and measurements. The theoretical scores are given by Eq. (13.98) (top right),
Eq. (13.94) and Eq. (13.96) for the n-local star and chain networks respectively (top left), Eq. (13.100) (bottom left),
and Eq. (12.50) (bottom right).
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Figure 13.12: Colored noise is applied to a single source (left column) and uniformly to all sources (right column). The
markers show the maximal Bell score achieved using VQO over ‘<I>+> state preparations and local qubit measurements
(top row) and over ‘\I/+> state preparations and arbitrary measurements (bottom row). The dashed lines show the
theoretically maximal score. (Top row) The theoretical lines are given by Eq. (13.109) for single source noise and by
Eq. (13.107) and Eq. (13.108) for uniform source noise. (Bottom row) The theoretical lines are given by Eq. (13.105)
and (13.104) for single source and uniform source noise.

When colored noise is applied to a single source we find that

* . n n—1 %
St stargaensny, (AY @y (W) (W) = (V2 TH (T =7)2) " (13.105)

Next we evaluate the CHSH score of the state 52 = C(|®*)(®"]). It follows that that the correlation matrix
is T/3$ = diag(1 —v,1 — 27, —1). Then, we use Eq. (12.13) to obtain

)2 2
2¢/2(1=7)2, v€l0:3] (13.106)

2/ (T=P+(-2)2, el

Sémsu(p5) = {
When colored noise is applied uniformly to |®1)(®*| sources, it follows from Theorem 6 that

S’;,—Star{GCHSHi}i(®?=l ﬁf) = %SéHSH(ﬁf)- (13~107)

Furthermore, using Theorem 8 in the presence of uniform colored noise, we find that the n-local chain score is

" chain(aonsny (1) A7) = 3S&usu (P2 [ V7o (13.108)

where 7p = 1 — . When colored noise is applied to a single source in a star we find that

1
n

~P n—1 -
Z—Star{GCHSHi}i(p'Y Rio [TFN(TF) = (ﬂ %SEHSH(p’Y)) (13.109)
where the n-local chain score is given by the bilocal score.
In Fig. 13.12, we show that there is a close correspondence between the theoretical maximal n-local
violations in the presence of colored noise and the maxima obtained using VQO. We consider a range of

preparation and measurement ansatzes (see Table 11.1). We find that |¥*) is the optimal state preparation
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Figure 13.13: Biased detector noise robustness. (Left) Biased detector noise is applied to a single detector.
(Right) Biased detector noise is applied uniformly to all detectors. The markers show the maximal Bell score achieved
using VQO when using arbitrary state preparations. The dashed lines show the maximal Bell score achieved using
VQO with respect to maximally entangled states

and that local qubit measurements are sufficient to achieve the maximal n-local violation in all cases.
Now consider the case in which each dichotomic detector has a bias in their output. We define a biased

detector error as the classical post-processing map,

11
Ry=(0-7Iz2+~ (0 0) : (13.110)

where the fixed classical value of +1 is output whenever an error occurs. The biased detector error can be
described by the POVM with elements

~

Hypp = (1 =)y, + 7w, and (13.111)
O, = (1 -, (13.112)

where I |, and II_|, constitute an M-qubit PVM. In Proposition 2, we show that the post-processing map

R, in Eq. (13.110) is nonunital and equivalent to a partial replacer channel
Ry(p™) = (1= 7)p™ + 70, Tr [p%] (13.113)

applied to the local quantum state p“s where the replacer state, p,, is a density operator contained by the
A

+|7w'

In Fig. 13.13 we compare the VQO results of maximally entangled state preparations and arbitrary state

projective subspace of IT

preparations. We find significant improvements when arbitrary state preparations are considered, implying

that nonmaximally entangled states are optimal for n-local violations in the presence of biased detector noise.
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CHAPTER 14

NONCLASSICALITY IN POINT-TO-POINT
SIGNALING SYSTEMS

Definition 83. Signaling Scenario DAG: Consider the signaling scenarios as depicted in Fig. 14.1 in
which a sender device A encodes a classical input z € X into a physical signal that is communicated to a
receiver device B that decodes the signal into a classical output y € ). The physical signal may be either a
classical message m € M where | M| = d or quantum state p € D(H4) (see Fig. 14.1.a) and b)) where the

corresponding DAG is expressed
A— B=Net(N = (A4,B),E = {A— B}). (14.1)

The communication can be assisted by a static nonsignaling resource shared by the sender and receiver such

as shared randomness or entanglement (see. Fig 14.1.c-e)) where the corresponding DAG is expressed

— —

A=< A— B=Net(N = (A A B),E={A < (A,B),A— B}). (14.2)

Both DAGs have a strict ordering of events in which a source A shares the static resource, the sender A

encodes its message, and the receiver B decodes the message where the source and input = are independent.

No matter which resources, quantum or classical, are considered in the signaling scenario, a behavior
P: X — Y is produced. Thus, we can investigate the nonclassicality of the quantum resource configurations
depicted in the signaling scenarios in Fig. 14.1.b,d,e) by comparing them with the similar classical resource
configurations in Fig. 14.1.a,c). While the lens of operational nonclassicality allows us to view signaling
scenarios with an interesting new perspective, their behaviors have been extensively studied over the past 5
decades. Nevertheless, our theoretical and computational frameworks are able to push our understanding of
signaling systems further.

A famous result by Holevo implies that when quantum signals are used, the classical communication
capacity is limited as log,(d), where d is the input Hilbert space dimension of the quantum signaling state
pz € D(Hg) [173]; hence a noiseless classical channel transmitting d messages has a capacity no less than the
quantum signaling system. However, channel capacity is just one figure of merit, and there may be other
features of the quantum system’s behavior that do not readily admit a classical simulation. The strongest

form of simulation being an exact replication of the transition probabilities P(y|z) = Tr [II, p,| for any set of
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Figure 14.1: Signaling Systems: From left to right signaling resources increase in their operational value
when considering the behavior of a signaling systems P : X — ) where x € X and y € ). Double-lined
arrows depict classical communication while single-lined arrows depict quantum communication. Classical
devices are shown in gray while quantum devices are colored by their function where green represents
preparation devices, blue represents measurement devices, and red represents processing devices. a) Classical
communication, device A sends a classical message m to device B. b) Quantum communication, device A
sends a quantum state p, to device B. c) Shared randomness-assisted classical communication where devices
A and B share a randomness source. d) Entanglement-assisted classical communication where devices A and
B share an entanglement source. ¢) Entanglement-assisted quantum communication where devices A and B
share entanglement and perform quantum communication.

states {pz}zex and POVM {II,},cy. This problem falls in the domain of zero-error quantum information
theory [335]-[339], which considers the classical and quantum resources needed to perfectly simulate a given
quantum channel A/. Unlike the communication capacity, a zero-error simulation of P, typically requires
additional communication beyond the input dimension of A/. For example, a noiseless qubit channel id; can
generate channels P;q, that cannot be faithfully simulated using a one bit of classical communication [231].

The simulation question becomes more interesting if “static” nonsignaling resources are used for the
channel simulation [340], [341], in addition to the “dynamic” resource of noiseless classical communication.
For example, shared randomness is a relatively inexpensive classical resource that Alice and Bob can use to
coordinate their encoding and decoding maps used in the simulation protocol shown in Fig. ?7.c). Using
shared randomness, a channel can be exactly simulated with a forward noiseless communication rate that
asymptotically approaches the channel capacity; a fact known as the Classical Reverse Shannon Theorem
[342]. More powerful static resources such as shared entanglement or non-signaling correlations could also be
considered [338], [343], [344].

While the Classical Reverse Shannon Theorem describes many-copy channel simulation, we focus on
zero-error channel simulation in the single-copy case. That is, we define the signaling dimension classical and
quantum channels to be the minimum amount of classical communication (with unlimited shared randomness)
needed to perfectly simulate every behavior that can be produced by a channel. The concept of signaling
dimension was first introduced in Reference 77 in which it was shown that both quantum and classical
signaling systems obey a no hyper-signaling principle that prevents physical systems from communicating too
much. Significant progress in understanding the signaling dimension was made by Frenkel and Weiner who
showed that every d-dimensional quantum channel requires no more than d classical messages to perfectly
simulate [115]. This result is a “fine-grained” version of Holevo’s Theorem for channel capacity mentioned
above. However, the Frenkel-Weiner bound is not tight in general when noisy quantum communication
channels are considered. For example, suppose the completely depolarizing channel acts upon a d dimensional
quantum state as D(p) = I/d. For any choice of inputs {p, }, and POVM {Il, },, the Frenkel-Weiner protocol

yields a simulation of Pp that uses a forward transmission of d messages. However, this is clearly not
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optimal since Pp can be reproduced with no forward communication whatsoever; Bob just samples from the
distribution P(y) = Tr[[]II,]/d. A fundamental problem is then to understand when a noisy classical channel
sending d messages from Alice to Bob actually requires d noiseless classical messages for zero-error simulation.
As a key result of this chapter, we provide a family of simple tests that determine when this amount of
communication is needed. In other words, we characterize the conditions in which the simulation protocol of
Frenkel and Weiner is optimal for the purposes of sending d messages over a d-dimensional quantum channel.

To this end, we develop a framework for device-independent certification and estimation of signaling
dimension similar to previous approaches used for the device-independent dimensionality testing of classical
and quantum devices [227], [228], [345]—[347]. Specifically, we obtain signaling dimension witnesses that
stipulate necessary conditions on the signaling dimension of A in terms of the probabilities Py (y|z), with
no assumptions made about the quantum states {p,},, POVM {II,},, or channel N' DallArno-2017a.
Complementary results have been obtained by Dall’Arno et al. who approached the simulation problem from
the quantum side and characterized the set of channels P that can be obtained using binary encodings for
special types of quantum channels /' DallArno-2017a. In this paper, we compute a wide range of signaling
dimension witnesses using the adjacency decomposition technique [128], recovering prior results of Frenkel
and Weiner [115] and generalizing work by Heinosaari and Kerppo [348]. For certain cases we prove that
these inequalities are complete, i.e. providing both necessary and sufficient conditions for signaling dimension.
As a further application, we compute bounds for the signaling dimension of partial replacer channels. The

supporting software and numerics for this work is found on Github [349].

14.1 The Behaviors of Signaling Systems

In this section, we discuss the general structure of the behaviors that can be produced by signaling scenarios
and compare broadly, the behaviors that can be produced when classical and quantum resources are present.
We consider each of the signaling scenarios depicted by the DAGs in Fig. 14.1 when a limited amount of
communication is allowed between the sender and receiver. Such scenrios describe a lossy communication
process where the sender must compress the input, making it impossible for the receiver to decode the message
without error. Overall, we build upon results in the literature to establish a general hierarchy based upon the

operational value of each signaling resource configuration.

14.1.1 Unassisted Classical Communication

Consider the signaling scenario A — B in the discrete memoryless setting where for each input x € X given
to the sender A, the receiver outputs y € ) with probability P(y|z) (see Fig. 14.1.a). The associated behavior
PA75 then belongs to the full set of probabilities such that PA~5 ¢ Py|x- However, if the amount of
communication is restricted such that in each shot, the sender can only send one classical message m € M
where |[M| =d.

Definition 84. The Set of Classical Signaling Behaviors: xSV C Py, the set of behaviors pASE .
X — Y that decompose as

PA%E _prpA = 3 S PEYPA =SS S PE P )l (14.3)

meM memM reEX yeY m=emM

where |M| = d and P4 : X — M and PP : M — ) correspond to the sender’s and receiver’s respective
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encoding and decoding behaviors. Furthermore, (Pi| =3 4 Pa . |m)(z| is the m™ row of behavior P4,

m|x

and [P5) = > yey Pylm) |y)(m] is the m'" column of behavior P5.

Lemma 9. [123], [350] A behavior P € Py x belongs to CX4Y C Py|x if and only if the nonnegative rank
of P satisfies
Rank, (P) <d (14.4)

where the nonnegative rank of a matrix M € R" *™ where M; ; > 0 is defined [351]

k

Rank, (M) = min {k | Z la;)(b;| = M where |a;),|b;) € Ri}, (14.5)
i=1
or alternatively,
Rank,, (M) = min {k | M, = {aylb,) where |ay), |bs) € Ri} (14.6)

where the two nonnegative rank definitions are equivalent, but differ in how the matrix M is decomposed.

Since the set of classical signaling behaviors is characterized by the nonnegative, it is important to note

that for a nonnegative matrix M € R™ X" that
Rank (M) < Ranky (M) < min{n,n’}. (14.7)
Lemma 10. The extreme points of the set CXSY are
YASE — [DASE ¢ BT | Rank (DA4F) < a} (14.8)

d,
where D475 are deterministic behaviors having binary elements.

Proof. The extreme points of a set of classical behaviors correspond to deterministic behaviors. Then, behavior
P? and P# have ranks Rank (P?) < d and P# < d then Rank (PPP#) < min{Rank (P?),Rank (P4). O

14.1.2  Unassisted Quantum Signaling

Consider the quantum signaling scenario A — B in the discrete memoryless setting where for each input
x € X given to the sender A, the receiver outputs y € ) with probability P(y|z) (see Fig. 14.1.b). The
associated behavior P4~ then belongs to the full set of probabilities such that PA=5 ¢ Py|x. However,
the amount of quantum communication is restricted such that, in each shot, the sender can transmit only

one quantum state p € Hy .

Definition 85. The Set of Quantum Signaling Behaviors: QXi}y C Pyjx, the set of behaviors
PAiB : X — ) that decompose as

d,
PASE = 3 S T [Fia P (o) | ) al (14.9)
rEX yeY

where p, € D(HZ) is the encoded quantum state, id*~? ¢ CPTP(H4 — HE) is a noiseless quantum
communication channel, and {II7},ey € POVM(H[) is the receiver’s measurement. Note that the dimension
of the quantum state and measurement need not be equal, that is, d # d’ is permitted as long as the channel
satisfies NA78 . D(H4) — D(HE).
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Definition 86. The Set of Noisy Quantum Signaling Behaviors: QXiy(N) - ngy, the set of
behaviors PAB : X — V) that decompose as

PAYE = 3 3 T [MENAE ()] [y) (a] (14.10)

zeEX yey

where p, € D(H4) is the encoded quantum state, N' € CPTP(H4 — HZ) is a noisy quantum communication
channel, and {II}},cy € POVM(#) is the receiver’s measurement. Note that the dimension of the quantum

state and measurement need not be equal, that is, d # d' is permitted as long as the channel satisfies
NAZB . D(HY) = D(HE).

Lemma 11. (Ref. [352] Lemma 5 and Ref. [123] Proposition 6) A behavior P € Py belongs to QY C
Py|x if and only if the positive semidefinite rank of P satisfies

RaﬂkpSD (P) < d (1411)
where the positive semidefinite rank of a matrix M € R " where M; ; > 0 is defined [353]
Rankpgp (M) = min{k €Zso | M;; =Tr[A;Bj] Vie[n], j€[n] where 0<A; Bj€ (C’”k}. (14.12)

For a nonnegative matrix M € R"lxn, the positive semidefinite rank and nonnegative rank are related as
[353]

1 1
5\/1 + 8Rank (M) — 3 < Rankpsp (M) < Rank, (M) < min{n,n’}. (14.13)

In Eq. (14.13), the inequality Rankpgp (M) < Rank, (M) asserts that any behavior PCY*Y satisfies
Rankpsp (P) < Ranky (P) < d, implying that quantum signaling resources can simulate the classical
behavior using equal, or less communication. As a result, the relation C* 4y c Q¥ Y must hold in general,
which is not surprising as a qudit of quantum communication ought to be able to simulate a dit of classical
communication. Nevertheless, the inequality in Eq. (14.13) provides sufficient grounds to suggest the existence

of weakly nonclassical quantum signaling correlations.

14.1.8 Shared Randomness-Assisted Classical Signaling

Consider the classical signaling scenario AZ (AgB ) in which d classical messages are used, but the sender and
receiver share an unlimited amount of randomness (see Fig. 14.1.c). The set of classical signaling behaviors

then forms a convex polytope that we refer to as the signaling polytope.

Definition 87. Signaling Polytope: Cff%y = Conv (CX Sy ), The set of all classical signaling behaviors
P € Py|x whose probabilities decompose as

P= Y PPIP{=> > > N pr'PI PA Iyl (14.14)

AeQA AEQA mEM yeY xzeX

where P{ € Pxiam and Pl e Pyjm M| =d, and QM is a countably infinite set from which A is drawn with
probability P

It is important to note that the signalling polytope has been described previously in references [114],

[115], [347]. The signaling polytope C\ Y is convex due to the fact that any randomuness in the encoding or
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decoding maps of Eq. (14. 14) can be absorbed into the shared randomness distribution P)/\‘. The vertices
CX%y C{)\(&y = Conv (VAiB) where VA5 is the set of
deterministic behaviors having linear rank d or less as defined in Lemma 14.8. When d > 2, we find that
Dim (Cj\v =Y ) = |X|(JY|—1) when d > 2 as a result of the |X'| normalization constraints on the full probability

d,
VA=E where

of the signaling polytope are then

polytope Py|x. When d = 1, Dim (Cf\( S |V| because the input and and output are independent such
that P(y|lx) = P(y|a’) for all z,2' € X and y € Y. By the Weyl-Minkowski Theorem [118], the signaling

polytope can be described as the intersection of a finite set of linear half-spaces

CXY = N H(6G) (14.15)

(1,G)egA*B

where G is the set signaling polytope facet inequalities (G, P) < v and a half-space is explicitly defined as
H(y,G) = {P € Pyx ‘ v >(G,P) and Dim(#(y,G)) = Dim (PW{)} : (14.16)

Lemma 12. A behavior P € Py x belongs to the signaling polytope such that P € C¥Y if and only if it
satisfies all facet inequalities (v, G) € GAB where (G,P) <~.

d,
Lemma 13. [115] The hierarchy Q¥ 4y ¢ Cf\(_w holds such that the behavior of any quantum signaling
system that transmits d-dimensional states p, € D(H4) can be simulated exactly using noiseless |M| = d-level

classical communication.

14.1.4 Entanglement-Assisted Classical Signaling

Consider the classical signaling scenario A =< (A$B) in which d classical messages are used, but the sender
and receiver share an entangled state pAZ € D(H; @ HE (see Fig. 14.1.d). Note that the dimension of the
entangled state is independent from the amount of communication. Moreover, the the entanglement is a
correlating resource such that it does not require communication to use and can be distributed prior to the

experiment being run.

Definition 88. The Set of Entanglement-Assisted Classical Signaling Behaviors: CX_*y C Pyx,
the set of behaviors PA_’B : X = Y that decompose as

=33 Y T mh e g M el = D03 Y T W P el (147)

z€X yeY memM zEX ye¥Y meM

where |[M| = d is the number of distinct classical messages m, {Hﬁllw}meM, {Hﬁm}yey € POVM(H%)
measure the entangled state,

P =T [, @150 ] o8 = Teg [, @ 15577 ] (14.18)

PA

m|x

Interestingly, it has been observed that entanglement-assisted classical signaling can lead to behaviors
that cannot be reproduced by shared randomness-assisted classical signaling [116], [350] Furthermore, if
the dimension of entanglement is unrestricted, then it must hold that CX =Y C CX >V , indicating that

entanglement assisted classical signaling can produce strongly nonclassical behaviors. Indeed, we will show
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examples for which a classical bit of communication assisted by a two-qubit entangled state can achieve strongly

nonclassical behaviors that cannot be reproduced, even with an unlimited amount of shared randomness.

14.1.5 Entanglement-Assisted Quantum Signaling

Consider the quantum signaling scenario A = (A% B) in which d-dimensional quantum states p, € D(#4) are
used as messages and the sender and receiver share an entangled state pAZ € D(H; ® HE) (see Fig. 14.1.e).
Note that we set the subsystems of the entangled state to have dimension d for convenience. Moreover,
the entanglement is a correlating resource such that it does not require communication to use and can be

distributed prior to the experiment being run.

Definition 89. The Set of Entanglement-Assisted Quantum Signaling Behaviors: Qgﬁ’y C Pyx,
the set of behaviors PAE’B : X — Y that decompose as

PP =33 Ty [HEB'E;“_*B/ ® 1B (pAB)] |y) (x| (14.19)
rEX yeY

where 475" € CPTP(H4 — HE') is the quantum encoding map, {II4 },en, {TIFF'} ey € POVM(HE ®

m|x

HZ') is the receiver’s joint measurement on the the entangled state EA75" @ 17 (pAB).

The entanglement-assisted quantum signaling scenario encompasses the standard dense-coding protocol
[37], [265] in which the classical communication capacity of a quantum channel is doubled through the use
of entanglement-assistance. In this way, entanglement-assisted quantum signaling behaviors demonstrate a
significant operational advantage over other resource configurations in signaling scenarios, leading to behaviors

that are more strongly nonclassical than those produced in entanglement-assisted classical signaling scenarios.

14.2  Signaling Dimension

In this section, we describe the classical bounds on signaling scenarios and how it relates to the classical
simulation cost of the signaling system. Indeed, we introduce the signaling dimension as the amount classical
communication needed to exactly reproduce a given signaling behavior P, which may apply classical or
quantum resources. Furthermore, in characterizing the signaling dimension we obtain witnesses of both weak

and strong nonclassicality.

Definition 90. Consider the behavior P € Py x.
(i) Classical Signaling Dimension: x(P) =min{de N |P ¢ CXi*y}
(ii) Signaling Dimension: xx(P) =min{de N| P ¢ Cfgy}

where C¥*Y is the set of classical signaling behaviors (see Def. 84 and Fig. 14.1.a), and cy Y is the signaling
polytope (see Def. 87 and Fig. 14.1.c).

Remarkably, these device-independent quantities describe the minimal classical communication resources
needed to simulate a given behavior. The key difference between the two is that the classical signaling
dimension does not permit shared randomness while the signaling dimension allows for an unlimited amount

of shared randomness between sender and receiver. A similar quantity to the classical signaling dimension is
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given by Heinosaari et al. [123] while the signaling dimension was introduced by Dall’Arno et al. [122]. In
general, the two signaling dimensions relate as

1< ka(P) < #(P) < min{|X], [V}, (14.20)

where the inclusion of shared randomness can reduce the cost of simulation. Indeed, when the upper bound
on the RHS is achieved, the sender and receiver can simulate any P € Py, x: either the sender applies channel
P on the input x € X and sends the output y € ) to the receiver, or the sender transmits the input « to the
receiver who locally applies the behavior P. In Theorem 10 we provide necessary and sufficient conditions for
when this trivial upper bound is attained.

In our work “Certifying the Classical Simulation Cost of a Quantum Channel” [114], we extend the concept

of signaling dimension to quantum channels.

Definition 91. For a quantum channel N : CPTP(H7, — HE ), let Q¥ 7Y(N) denote the set of all
quantum signaling behaviors whose probabilities decompose as P(y|z) = Tr [Hf)\/ (p2))] for any choice of
state preparations {p5 € D(H{,)}zex and measurements {II7},cy € POVM(HE)).

(i) The X — Y Signaling Dimension of a Quantum Channel: x} ¥ (N) = min{d € N | Q¥>Y(N\) C
d,
CY ™Y} where X and Y are fixed.

(ii) The Signaling Dimension of a Quantum Channel: k;(N) = min{d € N | Q*¥*Y(N) C
Cf\($y YV X, Y} where the optimization is over all X and Y.

The signaling dimension of a quantum channel quantifies the amount of classical communication needed
to simulate any behavior that can be generated using a particular channel and any choice of state preparation

and measurement. The two quantum channel signaling dimensions relate as
1< KY7Y(N) < kiAW) < min{da,dp}. (14.21)

where d4 and dp are the respective Hilbert space dimensions of the sender and receiver’s systems. This
bound is a direct consequence of Frenkel and Weiner’s result [115], summarized in Lemma 13, which can
be restated in our terminology as ka(idg) = d, where idy € CPTP(H4 — Ha) is the noiseless channel on a
d-dimensional quantum system. To prove Eq. (14.21), either the sender prepares the states {p, }.x to the
receiver who measures the POVM {NT(II,)},, or the sender transmits the states {N(p,)}zcx to the receiver
who measures the POVM {II, } ,cy. Here N/  denotes the adjoint map of A/. Furthermore, we consider only
classical simulations assisted by unlimited shared randomness because otherwise an unbounded amount of
classical communication may be needed to simulate a channel. Moreover, since quantum signaling systems
have signaling dimension no larger than their Hilbert space, allowing shared randomness allows the minimal
Hilbert space dimension to be estimated. Hence a device-independent certification of signaling dimension leads
to a device-independent certification of the physical input/output Hilbert spaces of the channel connecting
the sender and receiver.

Another relationship we observe is
2
RV =Ry W) Y Y > dd (14.22)

This follows from Carathéodory’s Theorem [354], which implies that every POVM on a d g-dimensional system

can be expressed as a convex combination of POVMs with no more than d% outcomes [355]. Since unlimited
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shared randomness sis considered, the sender and receiver can always restrict their attention to POVMs with
no more than d% outcomes for the purposes of simulating any behavior in Q% 4y (N) when |Y| > d%.

The signaling dimension of quantum and classical channels can be unified through the following observation.
A classical channel from set X to ) can be represented by a CPTP map N' € CPTP(H; — HEF) that
completely dephases its input and output in fixed orthonormal bases {|z) }zcx and {|y) }ycy, respectively. The
transition probabilities of Py € Qng(./\/) are then given by Eq. (14.10) as Py (y|z) = Tr [|y)(y| N (|z)(z| )]
The channel N can be used to generate another channel N with input and output alphabets X and Y
by performing a preprocessing column stochastic map T : X — X and postprocessing column stochastic
map R : Y — Y, thereby yielding the channel Px = RPyT. When this relationship holds, P57 is said
to be ultraweakly magjorized by P s [123], [348], and the signaling dimension of xx(Px) < ka(Pa) [338].
Thus, ka(Par) can always be obtained from the transition probabilities Py (y|z) directly with no need for
pre/postprocessing.

It is important to note that the signaling dimension of the quantum channel as in Definition 91 assumes
that there is no entanglement assistance between the sender and receiver. In principle, however, these

quantities can be generalized to account for entanglement assistance.

Definition 92. Let NA748 ¢ CPTP(H"* — HAP) denote a noisy channel applied to bipartite entangled
state pt € D(H42) and NA=B" ¢ CPTP(HA — HP') denote a noisy quantum channel between sender
and receiver where Cp Y (MVA74B) and Q¥ 2Y(NAAB N A=B") denote the sets of entanglement-assisted

classical and quantum behaviors respectively.

(i) Signaling Dimension of an Entanglement-Assisted Classical Channel:
ka(NA=4B) = min{d € N | CX0Y (WA—4B) € X5y (14.23)

(ii) Signaling Dimension of an Entanglement-Assisted Quantum Channel:

ka(NA=AB NA=B'y — in{d € N | QXY (WA=AB NA=B'y € cX5Y) (14.24)

14.2.1 Nonnegative Rank as a Signaling Dimension Witness

As discussed in Lemma 9, the set of classical signaling behaviors C* SV s exactly the subset of behaviors

P € Py that have nonnegative rank satisfying Rank (P) < d. Therefore,
k(P) = Ranky (P), (14.25)

meaning that the behavior P can be simulated using only |M| = Rank, (P) classical messages. In this way,
a behavior’s nonnegative rank places a lower bound on the amount of unassisted classical communication
present in the signaling system.

On the contrary, recall from Lemma 11 that the set of quantum signaling behaviors Q% SV i exactly the
subset of behaviors P € Py, x that have positive semidefinite rank satisfying Rankpsp (P) < d. Therefore, the
positive semidefinite rank of a behavior quantifies the amount of unassisted quantum communication needed to
simulate the behavior. Thus if a quantum signaling system exhibits a behavior P that has Rankpgp (P) = &,
then k lower bounds the dimension of the Hilbert space of the communicated quantum state.

d,
As a result, to witness nonclassicality in unassisted quantum signaling behavior P € Q¥ ™Y it is sufficient
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to show that classical signaling dimension is bounded as x(P) > d because
k(P) = Rank, (P) > Rankpgp (P) =d (14.26)

where Rankpsp (P) = d follows from the fact that the Hilbert space H4 is used for signaling. The inequality
in Eq. (14.26) follows directly from Eq. (14.13), in which it is stated that the nonnegative rank is no less
than the positive semidefinite rank. In the literature, examples have been identified where strict separations
between these two ranks exist [123], indicating the presence of operational nonclassicality in unassisted
quantum signaling scenarios. In general, such quantum signaling behaviors are regarded as being weakly
nonclassical because Lemma 13 shows that the set of quantum signaling behaviors is contained by the set of

shared randomness-assisted classical behaviors such that Q% Sy C Cf s .

14.2.2  Linear Black-Box Games as Signaling Dimension Witnesses

The signaling dimension s (P) is a device-independent quantity that can be ascertained from any black-
box behavior. The goal is to find the smallest positive integer d that satisfies P € Cj\v_d)y . To develop a
device-independent test for signaling dimension, we can exploit the structure of general signaling polytopes
Cff 4y . The polytope is convex and exhibits a permutation symmetry on its input and output alphabets
X and ). Therefore, a signaling polytope Cf\(_d’y is bound by a set of linear facet inequalities G¥ Y that
tightly bound Cfiy . These linear facet inequalities can then test whether or not a behavior P belongs to
Cff 4y . This approach is taken by Dall’Arno et al. to demonstrate using a toy physical model to violate the
No-Hypersignaling Principle [122]. Moreover, these linear witnesses are similar to those applied in classical
and quantum dimensionality witnessing [227], [228], [345]-[347].

Definition 93. Signaling Dimension Witness: (v, G) € Q)(iy, A linear inequality (G,P) < v that
d,

satisfies Cy Y C {P ¢ Pyix | (G,P) < v}. A signaling dimension witness is “tight” if the equality (G, P) = v

is satisfied by Dim (Cffgy> = |X|(|Y| — 1) affinely independent vertices. In other words, a tight signaling

d,
dimension witness describes a facet of Cff =Y,

Signaling

g == Dimension
Witnesses

Figure 14.2: A graphical analogy illustrating key features of signaling polytopes. Note that the geometry has been
simplified by removing vertices and and projecting the polytope onto a plane. The example shows a hierarchy of

d,
three signaling polytopes C*~¥ where d € [1,3] and |X| = |V| = 3. Each signaling polytope is a convex set where

. de)ly deQy de)Sy . . . .
the hierarchy Cj CCy CCy holds for any |X| and |Y|. The vertices of each polytope are depicted as

. . . x5y . 2952y . 2953y
circles while the facets are lines. The Cy polytope is blue, the Cjy polytope is green, and the Cj =Py\x
polytope is red. A facet of the signaling polytope constitutes a signaling dimension witness. The behavior Porange

(orange star) has kA (Porange) = 3 while the behavior P gy (blue star) has ka(Ppiue) = 2.
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If a behavior P € Py x violates a signaling dimension witness as (G, P) > v, then P ¢ Cf\(gy and a lower
bound k4 (P) > d is placed on the signaling dimension. Alternatively, if P satisfies all signaling dimension
witnesses belonging to the complete set of signaling polytope facets g’fiy, then P € C/“fi’y and the upper
bound kj(P) < d is placed on the signaling dimension. It then becomes our objective to procure signaling
dimension witnesses that can be applied to certify the signaling dimension in practice.

In addition to certifying the classical simulation cost, signaling dimension witnesses can also be used
to witness strong nonclasasicality in signaling scenario. That is, if the amount of classical or quantum
communication is known for a given signaling system, a violation of a signaling dimension witness would
observe a behavior that cannot be reproduced classically. Since signaling dimension witnesses allow for an
unlimited amount of shared randomness between devices, such violations would observe strong nonclassicality
in signaling scenarios. Although it is known that O~ 4y - Cf_d’y , holds generally as given by Lemma 13,
violations to signaling dimension witnesses have been observed when the sender and receiver share entanglement
[116]. These violations correspond an increase in the classical simulation cost of entanglement-assisted signaling
scenarios, an observation made previously by Cubitt et al. [350], in which the zero-error simulation using
entanglement-assisted communication is considered. However, the extent to which such violations occur in

quantum systems has not been investigated thoroughly.

14.5  Signaling Dimension Witnesses

In this section we derive the signaling dimension witnesses that bound signaling polytopes. The signaling
dimension is introduced in Section 14.2 as a device-independent quantifier of the amount communication.
Since signaling polytopes are invariant under the relabelling of inputs and outputs, all discussed inequalities
describe a family of inequalities where each member of the family is obtained by a distinct relabelling of the
inputs and/or outputs, i.e., the rows and columns of the behavior matrix are permuted. To obtain signaling
polytope facets, we follow the standard procedure where we first enumerate the vertices and then, use a
polytope transformation technique such as Fourier-Motzkin elimination to derive the facets [118|. Software
such as PORTA [135], [136] assists in this computation, but the large number of vertices leads to impractical
run times. To improve efficiency, we utilize the adjacency decomposition technique which heavily exploits
the permutation symmetry of signaling polytopes [128] (see Section 4.6 of Chapter 4). Our software and
computed facets are publicly available on GitHub [349] while a catalog of general tight signaling dimension
witnesses are provided in this section.

In general, each signaling dimension witness corresponds to a linear black-box game (v, G) played by the
signaling system. For an overview of black-box games, please refer to Section 2.3 of Chapter 2. In signaling
scenarios, the black-box game is viewed as a cooperative game played by the sender and receiver. Here the
referee, or researcher, gives the sender an input z € X drawn with uniform probability 1/|X|. The sender
encodes x into a message that is transmitted to the receiver and then decoded to produce the output y € Y

with probability P(y|z). The reward G, , € R then scales the behavior to achieve the score

S(P)=(G,P)=Tr[G"P] = > > G,.Pylr). (14.27)

zeEX yey

Hence a violation of a signaling dimension witness corresponds precisely to achieving a score S(P) > +.
Not all linear inequalities that bound a signaling polytope are facet inequalities. To prove that an

inequality (v, G) is facet inequality of Cf\( 4y , the signaling dimension must be tight as described in Def. 91.
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Furthermore, by the permutation symmetry of the signaling polytope, it suffices to use describe a family of
signaling dimension witnesses by generator facet. The other members of the family are produced from the
generator by taking row and column permutations of the game matrix G. Similarly, facet inequalities can be

lifted to signaling polytopes with more inputs and/or outputs (for details, see Section 4.4 of Chapter 4).

14.3.1 Ambiguous Guessing Games

Definition 94. Ambiguous Guessing Game: (d, Gfﬁ’y), A signaling dimension witness. For k €
{0,...|Y]} and d < min{|X|, |V|}, let Gf$y € RYIXI*l such that (i) k rows are stochastic with 0/1 elements,
and (ii) the remaining (|| — k) rows have the value 1/(|X| — d + 1) in each column.

It will be helpful to refer to rows of type (i) as “guessing rows" and rows of type (ii) as “ambiguous rows."

For example, if |X| = |Y| =6, k =5, and d = 2, then up to a permutation of rows and columns we have
(1 0 0 0 0 0]
1 0 0 0 0 O
01 0 0 0 O
GY™Y = (14.28)
01 0 0 0 O
0 01 0 0 0
11 1 1 1 1
5 5 5 5 5 5]
Then, for any channel P € Cfiy , the inequality
(GESY P) <d (14.29)

is satisfied. To prove this bound holds in general, suppose without loss of generality that the first k£ rows
Cfiy where ¢ of its first k rows are nonzero. If
t = d, then clearly Eq. (14.29) holds. Otherwise, if t < d, then <ij’y,V) <t+ (X -8)/(X]—d+1) <d,

where the last inequality follows after some algebraic manipulation.

d,
of ka =Y are guessing rows. Then, let V be any vertex of

Equation (14.29) can be interpreted as the score of cooperative game played between the sender and
receiver. In this game, the y'" guessing row corresponds to an answer y that is correct for only a single
input x. If the receiver correctly outputs y when the sender is given the input x awards 1 point, whereas an
incorrect guess awards 0 points. On the other hand, if the y** row is an ambiguous row, then it corresponds
to an answer y that is correct for all inputs x € X. That is, if the receiver outputs a value y that indexes
an ambiguous row, then the associated reward is 1/(|X| —d + 1) for any x € X. Note that the action of
guessing an ambiguous row can be interpreted as the receiver asserting that the message is ambiguous or
indistinguishable, meaning that the receiver is trying to mitigate risk by taking a small reward with certainty

instead guessing the correct answer with small probability.

Definition 95. (k,d)-Ambiguous Polytope: .A,f$y C Py|x, The collection of all behaviors P € Py
that satisfy Eq. (14.29) for all G where k, d, X, and Y are fixed.

Naturally, CXiy C AXﬁ)y for all £ € {0,...,|)|}, therefore, if P AX_d)y for some k, then P CX_d’y.
A k k A

d,
This observation is convenient when it comes to deciding whether or not P € Ak).(ﬁy .
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Proposition 16. A behavior P € Py x belongs to A,fiy if and only if

k |V
1
ma | 4+ = ril <d, 14.30
wes§i§:1 iy lloo |X|_d+1i:§k+1” @lh (14.30)

where the maximization is taken over S¥ the set of all permutations on Y, r; denotes the i*" row of P, ||r; ||

is the largest element in the row r;, and ||r;||; is the row sum of r;.

The maximization on the LHS of Eq. (14.30) is performed efficiently using the following procedure. For
each row r; we assign a pair (a;,b;) where a; = ||r;||oo and b; = m“riHL Define 07 = a; — b;, and
relabel the rows of P in non-increasing order of the §;. Then according to this sorting, we have an ambiguous
guessing game score of Zle a; + Zg‘k 41 bi, which we claim attains the maximum on the LHS of Eq. (14.30).

Indeed, for any other row permutation 7, the guessing game score is given by

Z a; + Z b; + Z a; + Z b;. (14.31)

ie{l,-- ,k} ie{l,--- ,k} ie{k+1,---,|V|} ie{k+1,---,|Y|}
71'(7:)6{1,~~,k‘} ﬂ'(7)€{k+1vv‘y|} W(i)e{lv”'vk} W(Z)E{k-‘rl,,‘yl}

Hence the difference in these two scores is

Z (ai - bl) - Z (ai — bl) Z 0, (14.32)
i€{1,--,k} i€{k+1,-,|Y|}
m(i)€{k+1,,|VI} m(i)€{L, -k}
where the inequality follows from the fact that we have ordered the indices in non-increasing order of (a; —b;),
and the number of terms in each summation is the same since 7 is a bijection.
A special case of the ambiguous guessing games arises when k = |)| such that all rows are guessing rows.
Then up to a normalization factor %, we interpret the LHS of Eq. (14.30) as the success probability when

the receiver performs maximum likelihood estimation of the sender’s input value x based on the message m

(i.e. the receiver guesses the value y that maximizes P(y = z|x)).
Definition 96. Maximum Likelihood (ML) Estimation Polytope: MESY = A@%y.

Using Proposition 16 we find that

xdy <
PeM = ze:y max P(ylz) <d. (14.33)
y—

In general, the ambiguous guessing signaling dimension witnesses of Eq. (14.29) are not tight for a signaling
d, d,

polytope Cy ~¥. For instance, (G; Y, P) < d is trivially satisfied whenever k = 0. Nevertheless, in many

cases we can establish tightness of these inequalities.

14.3.2  Fully Characterized Signaling Polytopes

In general, it is not feasible to identify the complete set of tight signaling dimension witnesses that bound

d,
each signaling polytope Cf\(ﬁy . However, we analytically solve the problem in special cases.
Theorem 10. Consider the signaling polytope Cfiy :
(i) If d = |Y| — 1, then C¥™Y = M¥Y.
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10000 0 010000

@) 2109 g ¢ 0 o0 M) 221501 0 0 o0
00100 0 000 1 0 0
1 1.0 0 0 0] 2 0 0 0 0 0]
101000 020000
> >

© 3215 1100 0 DA4=15 0 9 0 0 0
000 1 0 0 1 1 10 0 0
2 0 0 0 0 0] 200 0 0 0]
020000 010100

@410 01100 D20 0101 0
1 1100 0 1110 0 0
1 0 0 1 0 0] 1110 0 0]
010010 1001 10

@415 0100 1| ™51 1 01 01
1 110 0 0 0010 1 1

Table 14.1: Generator facets for the signaling polytope Cx %Y where d = 2, |X| = 6, and |Y| = 4. Each inequality is
expressed as v > G where the inner product (G, P) is implied. (a) ML facet input/output lifted from the d = 2 and
|X| = |Y| = 3 signaling polytope. (b) ML facet output lifted from the d = 2 and |X| = || = 4 signaling polytope. (c)
Anti-guessing facet output lifted from the d = 2 and |X| = |Y| = 4 signaling polytope. (d) Ambiguous guessing facet
output lifted from the d = 2, |X| = 3, and |Y| = 4 signaling polytope. (e-g) Rescalings of the d = 2, |X| = 3, and
|| = 4ambiguous guessing facet output lifted to C57*. General forms of these tight signaling dimension witnesses are
derived in Appendix 14.3. (h) k-guessing facet of the d = 2, |X| = 6, and |)| = 4 signaling polytope.

VI
d, d,
(ii) If d = |X| - 1, then Cy ¥ = ) AF Y.
k=|X|
In other words, to decide whether or not a channel can be simulated by an amount of classical messages
strictly less than the input/output alphabets, it suffices to consider the ambiguous guessing games. Moreover,

by Eq. (14.30) it is simple to check if these conditions are satisfied for a given channel P.
Proof. For a complete proof, refer to Appendix A.1 or our work in Ref. [114]. O

We also fully characterize the family of signaling polytopes where d = 2, |Y| = 4, and |X| is arbitrary.
This result can be used to understand the classical simulation cost of performing Bell measurements on a
two-qubit system, since this process induces a classical channel with four outputs. Similarly, this scenario can
be used to witness strong nonclassicality in entanglement-assisted signaling scenarios using either a bit or

qubit of communication.

Theorem 11. For any integer |X|, d = 2, and || = 4 a behavior P € Py, belongs to Cfgy if and only if
it satisfies the eight signaling dimension witnesses depicted in Fig. 14.1 and all their input/output liftings

and permutations.
Proof. For a complete proof, please see Appendix A.2.3 or our work in Ref. [114]. O

Remarkably, the result in Theorem 11 shows that when |)| = 4 and d = 2, no new facet classes for Cyy s

are found when |X'| > 6. Consequently, to demonstrate that a behavior P € P" 7% requires more than one bit
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for simulation, it suffices to consider input sets of size no greater than six. For |X| < 6, the signaling polytope
facet classes are given by the facets in Table 14.1 having (6 — |X|) all-zero columns. We conjecture that in
general, no more than |X| = (‘?j |) inputs are needed to certify that a behavior P € Py x has a signaling

dimension larger than d.

14.8.8 Tight Signaling Dimension Witnesses for General Signaling Polytopes

In this section, we generalize the facets in Table 14.1 to broad families of signaling polytopes. For each
inequality, we describe the black-box game and the conditions for which the inequality is tight. Proof that
each inequality is tight can be found in Appendix B or in our work [114].

It is important to note that we describe the generator form for each inequality (v, G). By the permutation
symmetry of the signaling polytope, each input and output permutation of G must also be a tight signaling
dimension witness. Likewise, the tight signaling dimension witnesses can be lifted to signaling scenarios
having more inputs and outputs. Therefore, the example generator facet inequalities that we list below can
be extended to nearly all signaling polytopes. This fact is important because it enables the use of adjacency

decomposition for any signaling polytope because a seed facet can always be obtained.

14.3.4  Maximum Likelithood Signaling Polytope Facets

Definition 97. Maximum Likelihood Facet: (d,Gy) € GXY | Let |Y| = |X| and consider the game
Gg{ = Iy, the | Y| x )| identity matrix. For all vertices V € VY the inequality

(G V) <4, (14.34)

is satisfied because Rank (V) < d and both V and GB{I‘J are doubly stochastic. The maximum likelihood game
is a tight signaling dimension witness whenever and |Y| > d > 1. For proof please refer to Proposition 23 in

Appendix B, or our work [114].

14.8.5 Ambiguous Guessing Signaling Polytope Facets

Definition 98. Ambiguous Guessing Facet: (’yl,yl’d,Gl_,y"d) € gxgy, Let |X| = || — 1 and consider
the game where
G =3 (VI = d) el + Vel and 7 = (Y] - d). (14.35)

zeX

The ambiguous guessing game is tight signaling dimension witness whenever |Y| — 1 > d > 1. For proof see

Proposition 24 in Appendix B.

This signaling dimension witness can be interpreted as a combination between a maximum likelihood

game for which a correct answer provides (])| — d) points extended by one ambiguous row for which 1 point
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is scored for any input « € X'. For example, when || = 6 and d = 2 we have

: (14.36)

=l

ey
Gl — [ (V] = d)Gyp, , eg GY?—

O O O O
=IO O O = O
=IO O = O O
=IO = O O O
=l O O O O

where we refer to rows of the Gly‘_l) block as guessing rows and 1 is a row vector of ones which we refer to as
the ambiguous row. Note that Gly‘ s a special case of the ambiguous guessing game GXHy and without
loss of generality, we express G‘yl’ in a normal form where all elements G , are non-negative integers. For

any vertex V€ V¥ 4y , the inequality
(G V) <d(y| - d) (14.37)

is satisfied

An ambiguous guessing facet (v; |I.d Gl?yl’d) exhibits nontrivial input lifting to C~'r/?|y"2 € RVIX(XI+D) by
taking a guessing row y where G, , = (|Y| — d) distributing the value between between two columns such
that G} , =1 and G} ,, = (|Y| — d) — 1 where 2’ = |X| + 1 is a new column (see Table 14.1.f-h). The bound
of the input-lifted facet is then the same as the unlifted version. For example, when |Y| =5 and d = 2, the

G?’Q is rescaled along the 4th row as,

300 0 30000
030 0 03000

G?=10 0 3 0|=GP=]003 0 0 (14.38)
000 3 000 1 2
11 1 1 11110

We observe this type of input lifting to be a general trend observed in our computed signaling polytope facets

[349], however, it is not quite clear how this lifting rule generalizes.

14.3.6  k-Guessing Signaling Polytope Facets

Consider a guessing game where for each input x € X’ there are k correct answers out of || possible answers.
In this game, the sender has |X| = (If ‘) inputs where each value x corresponds to a unique set of k correct
answers. Given an input x € X, the sender signals to the receiver using a message m € M where |[M| =d
and Bob makes a guess y € ). A correct guess scores 1 point while an incorrect guess scores 0 points. This
type of guessing game is described by Heinosaari et al. [123], [348] and used to test the communication
performance of a particular theory, as well as by Frenkel and Weiner [116] who used it to demonstrate a

violation of signaling dimension when a bit of communication is assisted by entanglement and |Y| = 4.

[V]kd ~|V]k
7GK 7)

Definition 99. k-Guessing Game: (v €g¥ Sy , A linear signaling dimension witness where

Dbk _ (Iz) B (D’Ik— d) (14.39)
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RAAN . . o . .
and Glg bk e RVIX(YY) is a matrix with each column containing a unique arrangement of k£ unit elements

and (|Y| — k) null elements. For example,

1111100O0O0O0O0O0O0TO0TGO
10000111 1O0O0O0O0O0O0

G%Q _ 010001O0O0O0OT1T1T1TQO0TO0O0 (14.40)
001 00O0O1O0OO0OT1TO0OO0OT1TT1PO0
0001 0O0O0O1O0O0OT1IO0T1OQO01
o000100010010 1 1]

The k-guessing game is tight signaling dimension witness whenever |X| = (li}‘), Y| -2 >k > 1, and
d = |Y| — k. For proof see Proposition 25 in Appendix B.

Note that the maximum likelihood signaling dimension witness (d, GB[}I‘J) is a (k = 1)-guessing game where
Gﬁ;{ = G‘g 1 This general signaling dimension witness was identified by Frenkel and Weiner [115], who
d,
showed that given a channel P € Cf\( =Y the k-guessing game score is bounded as

e _ (%I) - (Iylk— d) > (G Py > (';’::Z) (14.41)

14.3.7 Anti-Guessing Facets

A special case of the k-guessing game is the anti-guessing game, (|y|,G|§}‘), where Glli}‘ = Gl}?"(‘ylfl).

However, for any behavior P € Py x that has [X| = ||, the anti-guessing game inequality (GB‘,P> <|Y| is
satisfied. Therefore, anti-guessing games are not very useful for witnessing signaling dimension. That said,
the anti-guessing game is significant because it can be combined with a maximum likelihood game in block

d,
form to construct a facet of the d = (|| — 2) signaling polytope Cyy Y.

Definition 100. Anti-Guessing Facet: (ys’d,GZ’m,) € QXﬁy, A signaling dimension witness where

|X] = |Y| = e+ m and the game matrix is constructed as
11 1 0[]0 0]
110 1(0 0
: Gi| O 101 1/00
GaA,m _ AA , . eg G4A72 — (1442)
0 | G 01 1 1]0 0
0 00 0|1 O
|00 0 0]0 1]

~ d,
where 0 is a matrix block of zeros. For any behavior P € ij —Y the upper bound for the anti-guessing game
is
Val=ctd—2>(Gy™,P), (14.43)
which follows from the fact that no more than two rows are required to score € in the G4 block and the
remaining d — 2 rows score one point each against the GﬁL block. The anti-guessing inequality is a tight

signaling dimension witness whenever |Y| —2 >d > 2 and |Y| — d+ 1 > € > 3. For proof see Proposition 27
in Appendix B or our work [114].
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14.4  Certifying Signaling Dimension

In this section we discuss the how the signaling dimension of classical and quantum channels can be certified.
Our approach is practical and can always obtain lower bound on the signaling dimension. Furthermore, when
trust is placed on the various devices we find applications in self-testing. We then extend this procedure to
quantum channels for which our variational methods and convex optimization techniques can be applied.
Remarkably, we find that in the case of general partial replacer channels, the signaling dimension can be
certified with a very high-degree of accuracy.

In practice, certification and self-testing tasks reduce to the trust that a researcher has in a device and
its resources. That is, the classical or quantum channel from a sender to a receiver may be unknown or not
fully characterized. Indeed, the same can be said for sender and receiver devices. In a more extreme case,
the devices and channels may be malicious and trying to trick the researcher into believing that they utilize
quantum resources when in fact, the devices are classical.

In such scenarios where there are noisy, uncharacterized, or untrustworthy devices, it will still be necessary
to ascertain certain properties of the quantum resources at play without having direct access to the physical
devices or pre-established trust in their hardware. To perform such tests, a device-independent approach that
infers properties of the quantum by analyzing the observed behavior Py, obtained as sample averages over
many uses of the black-box system, which we assume to be memoryless and uncorrelated with the research
who is certifying the system.

To this end, we develop device-independent procedures that certify and bound the signaling dimension
of classical and quantum channels. The utility of our tests improves as more trust is placed on the tested
devices. Counsider first the untrusted black-box signaling system in Fig. 14.3.a). Here the researcher only has
access to the behavior P € Py x, however, the researcher can use signaling dimension witnesses to obtain
a lower bound on the signaling dimension of the quantum system. Note that without more trust in the
devices, the upper bound of kx(P) < k(P) < min{|X|,|Y|} must hold, but an upper limit on the amount of
communication that the devices can perform remains unknown. Furthermore, it cannot be asserted from the
behavior alone whether or not quantum resources are used within the black-box signaling system.

In the remaining cases of Fig. 14.3.b-d), one or more of the quantum devices are trusted, meaning that
their operations and resources are characterized completely. In these cases, the Hilbert space dimension of
either the sender or receiver is known placing an immediate upper bound on the signaling dimension of any
produced behavior as xx(P) < min{da,dp} as given in Eq. (14.21). Settings in which the dimension of the
signaling state is known are typically referred to as semi-device-independent. Such settings are important
in practice because they facilitate the use of trusted quantum devices to certify and test the capabilities of

untrusted quantum devices.

14.4.1 Certifying the Unassisted Signaling Dimension of a Behavior

To calculate the classical signaling dimension as given in Definition 90.(i) it is sufficient calculate the
nonnegative rank of the behavior as x(P) = Rank, (() P). However, this task is NP-Hard in general [351],
[356]. Nonetheless, we provide an algorithm that can evaluate the nonnegative rank.

In practice, the nonnegative rank can be evaluated by numerically in an iterative algorithm. In each step,
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Figure 14.3: A depiction of the required device trust to implement the device-independent certification of the signaling
dimension for classical and quantum channels. a) The signaling dimension of an untrusted classical behavior P is
certified using only the probabilities P(y|z) for all z € X and y € ). b) A trusted sender and receiver device certify
the signaling dimension of a noisy quantum channel V. ¢) A trusted sender device self-tests a noisy measurement
applied by a receiver device. d) A trusted receiver device self-tests a noisy state preparation of a sender devices.

a nonnegative matrix factorization C’ = AB where Ranky (C’) = k is optimized as

1 n n
= min — M; ;| where M =C — AB 14.44
AER™ xk BeRkxn 21 ;; | M 51 ( )

where £* is the minimal trace distance between C' and C’. Note that in nonnegative matrix factorization
algorithms more complicated optimization objectives are considered [357]-[359], however, we use the trace
distance in Eq. (14.44) to quantify the closeness of the nonnegative matrix factorization to the original matrix.
Using the trace distance in Eq. (14.44), if £* = 0, then C' = C” and Rank, (C) < k, otherwise Rank, (C) > k.
In practice, the optimization in Eq. (14.44) will have some numerical error, thus a small tolerance 0 < £ < 1
should be allowed when checking equality, the condition that ¢* ~ 0 can then be understood as ¢* —¢ <0
such that ¢* falls within the specified tolerance. Thus, a certification procedure of nonnegative rank follows,

and by extension, a certification procedure for the unassisted classical signaling dimension x(P).

Algorithm 2. Certification of x(P) via Nonnegative Rank: Given a behavior P € Py, x, evaluate
its nonnegative rank Rank, (P) = x(P). In this algorithm, the nonnegative rank is evaluated iteratively
using a binary search over nonnegative matrix factorization P’ = AB where Rank, (P’) = k. Note that the
optimization over nonnegative matrix factorization in Eq. (14.44) can be performed using software tools such

as scikit-learn [359]. The algorithm proceeds as follows:

1. Use Eq. (14.7) to set lower and upper bounds on the nonnegative rank as the integers 1b := Rank (P)
and ub := min{|X|,|V[} and set the integer & = 1b+ |1 (ub — 1b)] such that 1b< k <ub.

2. While 1b < ub do:

(a) Use Eq. (14.44) to find an optimal nonnegative matrix factorization P’ = AB that obtains the

minimal distance ¢* between P’ and P.

(b) If ¢* —e <0, set ub:=k and k := 1b+ [ (k — 1b)], else, set 1b:=k + 1 and k := k + [ (ub — k)].
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3. Return k where Rank, (P) = k because 1b = ub = k.

Remark. Since Rank (M) = Rank, (M) when Rank (M) = 1 or Rank (M) = 2 [351], if 1b < 2, then
Rank, (P) = 1b. In this way, the algorithm can short-circuit to improve the performance significantly in

special cases.

Since we perform a binary search over Rank (P) < Rank, (P’) = k < min{|X|,|)|}, the nonnegative rank
of the matrix factorization P’ = AB, the number of k values to test scales as O(log, (min{|X|, |Y|} —Rank (P))).
The main challenge in our algorithm is optimizing the nonnegative matrix factorization. While available
software tools can compute the nonnegative rank efficiently for many of the examples considered in this
work, eventually, large matrix dimensions for nonnegative matrices A and B will limit the performance of
these algorithms considerably. Furthermore, our nonnegative matrix factorization algorithm is approximate,
susceptible to finding local optima. That is, it may be observed that P % P’ = AB, although, there exist
nonnegative matrices A’ and B’ having same dimension as A and B such that P ~ A’B’. To mitigate this
sort of error, the nonnegative rank factorization can be repeated with randomized initial settings to increase
the probability of converging to a global optimum. Finally, the set of matrices having a fixed nonnegative rank
is unstable to perturbations. That is, consider a nonnegative matrix C' € R™*" and a small perturbation
C’ having elements 0 < |C] ;| < 1 such that C'— C” is nonnegative. If Rank, (C) = k, then it is possible
that either Rank; (C' — C’") = k + Kk’ for some k' > 0. To accommodate such errors in a practical manner,
we apply a numerical tolerance ¢* — ¢ < 0, then we can only estimate that Rank, (C) > k. Although, the
tolerance € should be tuned to the particular task and physical system.

Generally, we must be cautious with the fact that the nonnegative rank computed in Algorithm 2 is
approximate. That is, the behavior P is only approximately equivalent to its computed nonnegative matrix
P’ ~ P, meaning that it can only be certified that Rank; (P’) < Ranky (P). Likewise, if a local optimum
is found, then Given the limitations of approximate nonnegative rank factorizations, it is important to
acknowledge their practical implications. The main advantage being that experimental data from quantum
systems is stochastic and fluctuates, meaning that the expected behavior P and its construction from sampled
data P are only approximately equal P ~ P. In practice, the nonnegative matrix factorization P’ = AB may
lie within the expected deviations of the data. Hence, the behavior P’ approximately simulates P, while its
nonnegative rank is smaller as Rank, (P’) < Rank, (P). Indeed, an approximate simulation that resembles

experimental data may better characterize the classical simulation cost of the behavior P.

14.4.2  Certifying the Signaling Dimension of a Classical Channel

In this section we outline a certification procedure for the signaling dimension when an unlimited amount
of shared randomness is permitted in the corresponding simulation (see Def. 90.(ii). In principle, given a
classical behavior P € Py the signaling dimension x4 (P) can be certified incrementally in a similar manner
to the nonnegative rank (see Algorithm 2). However, instead of computing the nonnegative rank of the
behavior P, it must be verified whether or not the behavior belongs to a given signaling polytope Cf\( Y .
This task can be achieved by using signaling dimension witnesses to test for inclusion in or exclusion from a

given signaling polytope.

Algorithm 3. Certification of s, (P) via Linear Signaling Dimension Witnesses: Given a behavior
P € Py)x, evaluate its signaling dimension £ (P). In this algorithm, the signaling dimension is evaluated
iteratively using a binary search over the possible signaling dimension d € [1, min{|X|, |)|}. The agorithm

proceeds as follows:
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1. Use Proposition 16, set the lower bound on the signaling dimension to be

k [V

1
1b = Y lrrlloe + o > lnyln] s 14.45
oéréiﬁ‘y\ resy — = |X| —d+1 i=k+1 ool ( )

which can efficiently be evaluated for each k by first sorting the rows r; of P in non-increasing order
by the value 0; = (||r;|lcc — ||Irs|l1) Where ||r;|oo is the maximum value in each row and Vertr;||; is the

sum of each row.

2. By Theorem 10, if 1b > min{|X|, ||} — 1, set the upper bound on the signaling dimension as ub := 1b,
else, set ub := min{|X|, |Y|} — 1.

(ub — 1b)].

3. Set the tested signaling dimension as d := 1b —|—L%

4. While 1b < ub do:

(a) For each signaling dimension witness (v, G) € QX%’, if v < (G, P), then set 1b := d + 1 and
d:=d+ [5(ub—d)] and continue to the next iteration of the loop.

(d — 1b)].

(b) If no signaling dimension witnesses are violated, then set ub :=d and d := 1b + |1

5. Return d where k5 (P) =d = 1b = ub.

The initial upper and lower bounds can be computed with relative efficiency given an behavior matrix
P € Pyx. Indeed, if kA(P) > min{|X],|V[} — 1, then the signaling dimension is evaluated exactly.
Unfortunately, computing the complete set of signaling dimension witnesses G¥ Y is not generally feasible.
In practice, the generalized tight signaling dimension witnesses discussed in Section 14.3 can represent a
subset of the complete set of facet inequalities, ?Xﬁ)y c gt Y. In this case, the upper bound cannot be
improved because not all facet inequalities of the signaling polytope are tested. However, if an inequality
#,G) € axﬁw is violated as ¥ < <é, P>7 then the lower bound can be improved beyond the initial bound
given by the ambiguous guessing games in Proposition 16.

As a special case, consider the scenario in which |Y| =4, 1 < d < 4, and |X| € N. In this setting,
Theorem 10 and Theorem 11 give the complete set of facet inequalities for all signaling polytopes Cff 4y,
That is when d = 2, the tight signaling dimension witnesses are listed in Table 14.1 and when d = 3, the tight

signaling dimension witnesses correspond to maximum likelihood games as described in Section 14.3.4.

14.4.8  Certifying the Signaling Dimension of a Quantum Channel

In this section, we extend Algorithm 3 to certifying the signaling dimension of a given quantum channel
Ky YV(N) and kA(N) (see Def. 91). Although the quantum channel N' € CPTP(H7, — HZ ) may be
untrusted or uncharacterized, the signaling dimension of a quantum channel can be certified provided that
both the quantum sender and receiver are be trusted devices (see Fig. 14.3.b). If neither the sender or
receiver are trusted to use quantum resources, the device statistics are alone insufficient to decide whether
a signaling system is quantum or classical. This restriction results directly from Lemma 13, in which
o Sy C C[/\Y 4y shows that a classical signaling system can simulate exactly a quantum signaling system
[115]. Before describing our certification procedure, we first introduce an important quantity referred to as

the communication value of a quantum channel.

161



Definition 101. The X — Y Communication Value of a Quantum Channel: [360] For a quantum
channel N € CPTP(H;?A — M) its communication value is

min{|X|,| Y[}
X—=Y _ B A
cv WN) = max E Tr I, N (p2) (14.46)
{p2EDHS e, i, |
{11} yey EPOVM(HT)

z=1

where the communication value corresponds to the maximal score for the maximal likelihood game, e.g.,
Maxp e Q¥ (A) <Gﬁlﬁl{w"|y‘}, PN> (see Section 14.3.4). Since the maximum likelihood facet is a tight
signaling polytope facet, [ev*7Y(N)] < kY 7Y (N).

Algorithm 4. Certification of the Signaling Dimension of a Quantum Channel x} 7Y (N): Given

a quantum channel N' € CPT P(?—[g‘A — ’HfB), evaluate its signaling dimension for fixed inputs X and ).

1. Use Eq. (14.21) to set the upper bound on the signaling dimension to be ub := min{d4,dg}.

2. Use Definition 101 to set the lower bound on tthe signaling dimension to be 1b := [cv* =Y (N)].
3. Set the tested signaling dimension as d := 1b + [ 1 (ub — 1b)].

4. While 1b < ub do:

(a) For each signaling dimension witness (v, G) € G¥ 4y , evaluate the conic optimization program

S&(N)=  max G,Py) = max GyTr BN (o], (14.47
G( ) PNEQX_’y(N)< > {pfeD(HﬁA)}zex, ;{yze:; Y [ Y (p )] ( )
{17 }yey EPOVM(HT)

if S&(N) > v, then set 1b := d+1 and d := d + [1(ub —d)], and continue to the next iteration of
the while loop.

(b) If no signaling dimension witnesses are violated, then set ub :=d and d := 1b + |3 (d — 1b)].

5. Return d where 7 *Y(N) = d = 1b = ub.

Remark. The X — ) signaling dimension of a quantum channel can be extended to the full signaling
dimension k5 (N) as in Definition 91.(ii) by repeating the algorithm for various X and ). Although, bounds
on the signaling dimension should only be expected in practice due to the difficulty of evaluating the conic

program in Eq. (14.47) as well as deriving signaling dimension witnesses for general d, X, and ).

The certification in Algorithm 4 presents some practical challenges. First, the conic optimization programs
in Eq. (14.46) and Eq. (14.47) can be analytically solved only in special cases [360]. Hence deciding whether
a given quantum channel can violate a particular signaling dimension witness is typically quite challenging.
However, even if the maximum is not obtained in Eq. (14.46), it can still serve as a lower bound. Furthermore,
the challenge of identifying linear signaling dimension witnesses discussed in Algorithm 3 also persists in the
certification of the signaling dimension of a quantum channel. In spite of these challenges, one convenience is
that the permutations of the induced classical channel P need not be considered because these permutations

are implicit in the optimized quantum states {p; },x and measurements {II,},cy.

162



In practice, the optimization problem in Eq. 14.47 is solved numerically using either variational quantum
optimization techniques or semidefinite programming. When applying variational optimization, the cost
function is

Cost (Pyr) :== —Sa(Py) = —(G,Py) (14.48)

where the minus sign results because when the cost is minimized, the violation with respect to the signaling
dimension should be maximized. On the contrary, when semidefinite programming optimization methods are
applied, a see-saw algorithm must be implemented in which the measurements and states are optimized such
that either the measurements or states are held constant and the other is optimized as a semidefinite program
(see Eq. (14.49) and Eq. (14.50)). Alternating between state and measurement optimization incrementally
improves the score S(P ). For an implementation please refer to our CVChannel.jl julia package [361], which
supports our work in reference [360]. In both cases, the optimization can be run on classical computing
hardware for a known quantum channel expressed in the operator-sum representation where both methods
are subject to finding local optima. The variational quantum optimization methods have a key advantage over
convex optimization techniques because variational quantum optimization allows the signaling dimension of
an unknown channel to be certified (see Fig. 14.3.a). On the contrary, convex optimization techniques can be
applied only when the channel is completely characterized such that it can be expressed in the operator-sum
representation.

It is important to point out that the certification procedure in Algorithm 4 requires the sender and receiver
to both be trusted and characterized. This trust or characterization may not exist in practice. Consider first
the case Fig. 14.3.c) where the measurement device is untrusted. The noise can be incorporated into the

measurement as f[f =Nt (Hf ) and the conic optimization program reduces to the semidefinite program

max Z Z Gy Tr [ﬁfpﬂ . (14.49)

A
{PIED(HdA)}zex CEX yey

Similarly, if the sender is not trusted as in Fig. 14.3.d), then the noise is incorporated into the states as

2 = N(p2) and the folowing semidefinite program results,

B+A
{Hf}yeyrergg(VM(HfB) ;\/ y%; Gy’xTr [Hy Px] . (14.50)
In both cases, if p2 or ﬁf can be expressed in matrix form, then semidefinite programming can be used
to optimize the problem with relative efficiency on classical hardware. If these quantum operators are not
known, then variational quantum optimization can be applied on the quantum hardware directly. Such
scenarios correspond to a self-testing procedure where a trusted device is used to characterize the other device
combined with the noisy channel.

In the worst case, neither the sender device or the receiver device are trusted then the upper bound
kA(N) <min{da,dp} in Eq. (14.21) no longer holds. However, this lack of trust is not entirely detrimental
as lower and upper bounds can still be found using the certification procedure for signaling dimension of a
classical behavior r, (Pxr) where Py € Q% s (N) is the observed classical channel generated using a noisy
quantum channel. Alternatively, if the sender and receiver are untrusted, but their devices can be tuned
over a range of state preparations and measurements (without having knowledge of what these states or
measurements are), then the conic program in Eq. (14.47) can be optimized using a black-box optimization

technique (see Section 11.1 in Chapter 11) to obtain violations of signaling dimension witnesses and improve
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the lower bound on 4 (N). However, with no knowledge of the Hilbert space dimension, the upper bounds
are given as k3 ¥ (N) < min{|X|, |¥|} and kx(N) < oo.

As a final remark, we can extend Algorithm 4 to scenarios in which entanglement assists the sender and
receiver. Here the structure of the quantum system changes to fit the communication resources at play,
changing the form of the conic program in Eq. (14.47). Although the optimization program changes, the
approach stays remains the same. Indeed, we simply apply our variational optimization methods to the

entanglement-assisted resources to find violations of signaling dimension witnesses.

14.4.4  The Signaling Dimension of Replacer Channels

Despite the general difficulty of certifying x5 (N'), we nevertheless establish bounds for the signaling dimension
of partial replacer channels. Remarkably, this example demonstrates a given case where the signaling
dimension is certified using analytic methods. Consider first a d-dimensional partial replacer channel, which
has the form

Ru(X)=pX+ (1 —p)Tr[X]o € CPTP(Hq = Har), (14.51)

where 1 > 1 > 0 and o is some fixed density matrix. The partial depolarizing channel D,, corresponds to o
being the maximally mixed state whereas the partial erasure channel £, corresponds to o being an erasure
flag |E)(E| with |E) being orthogonal to {|1),---,|d)}.

Theorem 12. [114] The signaling dimension of a d-dimensional partial replacer channel is bounded by
[pd+1—p] < ka(Ry) < min{d, [pd + 11} (14.52)

Moreover, for the partial erasure channel, the upper bound is tight for all u € [0, 1].

Proof. We first prove the upper bound in Eq. (14.52). The trivial bound ks (R,) < d was already
observed in Eq. (14.21). To show that ka(R,) < [ud + 1], let {p}» be any collection of inputs and
{IIy }yey € POVM(H4). Then

Pr,, (yle) = pP(ylz) + (1 = pn)S(y), (14.53)

where P(y|z) = Tr[Il,p,] and S(y) = Tr[IIyo]. From Lemma 13, we know that P(y|z) can be simulated
classically using d signals and shared randomness. Substituting this into Eq. (14.53) yields

d
P, (1) = 3200 32 RAGalD) T olm) + (1 = 1) (1) (14.54)
A m=1

For r = [ud + 1], let v be a random variable uniformly distributed over {(,%,)}, which is the collection of
all subsets of [d] having size r — 1. For a given A, v, and input z, Alice performs the channel Ty. If m € v,
Alice sends message m’ = m; otherwise, Alice sends message m’ = 0. Upon receiving m’, Bob does the
following: if m’ # O he performs channel R with probability % and samples from distribution S(y) with
probability 1 — —, if m" # 0 he samples from S(y) with probability one. Since Pr{m € v} = =1, this
protocol faithfully simulates Pr,. To establish the lower bound in Eq. (14.53), suppose that Alice sends

orthogonal states {|1),--,|d)} and Bob measures in the same basis. Then

d
>l )Ni) = dp+ (1 —p), (14.55)
=1
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which will violate Eq. (14.29) for the ML polytope M%7¢ whenever r < ud + (1 — p). Hence any zero-error
simulation will require at least [ud + 1 — ] classical messages. For the erasure channel, this lower bound can

be tightened by considering the score for other ambiguous games, as detailed in Appendix B.5. O

14.5 Nonclassicality in Signaling Scenarios

The signaling dimension witnesses and certification procedures described earlier can serve as witness of
nonclassicality in signaling scenarios. By Lemma 13 we know that Q% Sy - Cff e , indicating that quantum
signaling is not stronger of a resource than classical signaling assisted with an unlimited amount of shared
randomness. However, there are also clear examples showing that C* By C QXY [123]. As a result, the
foundation is laid for weak nonclassicality in quantum signaling scenarios. Furthermore, it was recently
observed that the k-guessing game in Definition 99 can be violated when a bit of communication is assisted
by entanglement [116] hence CX 4y - CX Sy and strong nonclassicality is expressed. It naturally follows
that Cgf’ Y c Q%A x4y because a dense coding protocol can be used to communicate 2-bits using one qubit of
communication and entanglement between the sender and receiver [37], [265]. As a result, both classical and
quantum entanglement-assisted scenarios can exhibit strong nonclassicality. We now turn to elaborate upon

these nonclassical behaviors that can be generated in signaling systems.

14.5.1  Weak Nonclassicality in Unassisted Quantum Signaling Scenarios

In this section we show that unassisted quantum signaling scenarios can exhibit weak nonclassicality.
Furthermore, we provide an example where an unbounded amount of classical communication is needed to
simulate a quantum signaling behavior. Hence we prove that an unlimited amount of shared randomness can
be needed to simulate weakly nonclassical behaviors. Indeed, this observation indicates a resource advantage

in quantum signaling systems.

Theorem 13. Consider a quantum signaling system where |X| = |J| = N and the noiseless channel
idg—o € CPTP(H4 — HP) is used to communicate the qubit signals. As N — oo there exists behaviors

Peo? Y Such that the unassisted signaling dimension is unbounded as k(P) — oc.

Proof. We prove this theorem by showing an example unassisted signaling scales With the number of inputs
and outputs N. Consider the planar symmetric N-element qubit POVM {II, = |1/Jy><¢y| 0 where N is

even and [1),) = cos(5¢) |0) + sin(F¢) [1). The maximum likelihood facet inequahty is saturated only if

9 N—-1 9 N—

The resulting conditional probabilities are then

P(y|z) = (COSQ(Ly)COSQ(Lx %y) cos(%)sin(%)sin(%x) +sin2(%y)sin2(7]rv—x)) (14.57)

I N)+2cos(
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and the quantum signaling behavior takes the form

o401t
TR A
2
p_ | T % i v 0 (14.58)
ot t 5 + 4
R B
Lolbooor 3

where indicate the direction of increasing values in each column, the largest value in each column is
P(y = z|z) = £, the smallest value is in each column is P(y = f(z)|z) = 0 where f(z) = z + N/2 mod N,
and P(y|z) > 0 when y # f(z). Upon making these observations, we can derive two lower bounds on the
Rank, (P). The first lower bound is quite naive, but clearly proves the statement that Rank, (P) — oo as
N — o0o. The second lower bound improves the first, but is less straightforward. The remainder of our proof
is adapted from Fawzi et al. [353] while similar results are presented by Beasley et al. [362].

Using the definition of nonnegative rank in Eq. (14.6), we seek the smallest integer k such that the N
nonnegative vectors |ag), ..., lan—1),|bo) ..., |[bn_1) € R satisfy P(y|z) = (ay|b,) for all z and y. Observe
that the constraint P(f(z)|x) = (ap(|bz) = 0 requires that Supp(|as))) N Supp(|bz)) = @ and, for all
y # f(x), the constraint P(y|z) = (ay|b;) > 0 requires that Supp(|a,)) N Supp(|bs;)) # 0. Suppose now that
Supp(|ay)) = Supp(|as(,)) for y # f(z), then (ay|bs) = (af()|bs) = 0, which is a contradiction because
(ay|by) > 0. Therefore, there cannot be two vectors |a,) and |a,/) with matching supports for y # 3’ where
a similar constraint also holds for the vectors {|b,)}.cx. Since there are 2¥ ways to choose the support of
la,), k must be sufficiently large such that 2¢ > N. Taking the logarithm of both sides yields k > log,(N),
therefore it must hold that

Ranky (P) > [log,(N)]. (14.59)

It follows that Ranky (P) — oo as N — oo, which proves that an unbounded amount of classical communica-
tion is needed to simulate one qubit of quantum communication.

The lower bound in Eq. (14.59) is quite naive, however, because it assumes that all 2% supports of |a,)
are relevant. To be more restrictive, consider the case where Supp(|ay)) € Supp(|as.))) for y # f(z). As
a result, we again obtain the contradiction (ay|by) = (a(z)|bs) = 0. Therefore, for any y # ', Supp(|ay))
cannot contain Supp(|a,)) and vice versa. Obeying this constraint yields (Lkl;2 J) vectors whose supports

mutually exclude the other vectors, hence

Rank. (P) = min {k eEN|N< (L]’EJ)} > Tlog,(N)]. (14.60)

Note that Eq. (14.60) improves upon the naive lower bound in Eq. (14.59). O

To verify the results of Theorem 13, we apply our nonnegative rank certification procedure in Algorithm 2
to the planar symmetric qubit signaling behaviors having the form in Eq. (14.57) and plot the results in
Fig. 14.4. While the numerical data confirms that the nonnegative rank, and equivalently the unassisted

signaling dimension, is bounded as

| > Rank, (P) = x(P) > min{k € N | || < (Lk];2J> 1 (14.61)
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the numerical data also suggests that the lower bound could be quite loose in general. Indeed, our numerical
results imply that the lower bound scales linearly with |X'| rather than logarithmically as proven in Theorem 13.

In Fig. 14.4, we also consider the case when white noise is mixed into the behavior as 157 =(1-7P++yW
where W =37 > cy \71| |y)(z|. This noise model corresponds to a depolarizing channel being placed on
the the state prior to measurement. Even when v = 0.01 (purple crosses), we find that the approximate
nonnegative rank is below the theoretical lower bound given by the dash-dotted blue steps. Furthermore
as the noise parameter « increases, the nonnegative rank Rank (f’v) decreases to its minimal value of
3. Since matrices M having Rank (M) = 2 also have Rank, (M) = 2, if Rank (M) > 2, then it follows
that Ranky (M) > 3. Overall, we find that white noise can decrease considerably the unassisted classical
simulation cost 5(137).

We must be cautious in asserting these numerical results as fact because Algorithm 2 certifies the
approximate nonnegative rank whereas Theorem 13 considers exact nonnegative rank. The difference being that
two behaviors P, P’ € Py, y are approximately equal if D(P,P’) = ﬁ Dowex 2oyey [Pylz) — P(ylr)| <e,
while exact equivalence requires € = 0. An approximate nonnegative rank should always lower bound the

true nonnegative rank, implying that the cases in Fig. 14.4 where |X| = n = Rank, (P) are asserting the

The Nonnegative Rank of Qubit
Planar Symmetric Signaling Behaviors

36 4 Theoretical Lower Bound: .
3¢ 4 7" Rank.:(P)zmin{k|n=(.% )} P
3(2): Theoretical Upper Bound: n= Rank 4+ (P) v - ? ]
28 1 == Est. Lower Bound: Rank+(P) =|n/2] ! :‘:
- 52: .- Numerically Approximate Rank s (P) o[
B 2.1 .« Rank.(0.99P+0.01W)
+ 201 .4. Rank.(0.95P + 0.05W) . A - B
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Figure 14.4: We use Algorithm 2 to certify the nonnegative rank of qubit signaling behaviors P € Q¥ S
that have the planar symmetric form in Eq. (14.57) where |X| = |Y| = n € {2,...,37}. Furthermore,
we also certify the nonnegative rank when white noise W = - \71| ly) (x| is mixed into the planar

symmetric behavior as f’7 = (1 — v)P + YW. To mitigate the risk of finding local optima during the
nonnegative matrix factorization, we repeat each factorization 20 times with randomized initial parameters
and consider only the factorization having smallest error. The solid orange line plots the trivial upper bound
n > Rank, (P), the blue dash-dotted line plots the theoretical lower bound in Eq. (14.60), and the green
dashed line plots the lower bound Rank, (P) > |3 | estimated from the numerical data. The markers plot

the Rank (Pw> as certified using Algorithm 2 where red squares mark the noiseless v = 0 case, purple

crosses mark the v = 0.01 case, brown circles mark the v = 0.05 case, and pink stars mark the v = 0.1
d=k

case. The algorithm outputs an approximate classical signaling behavior P’ € C¥ =Y that has distance

D(P,.P') = LY [P(yle) — P/(yle)| << = 107",
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exact nonnegative rank. However, this is still not necessarily fact because the certification algorithm can still
converge to local optima, meaning that, perhaps, the nonnegative rank is much lower in these cases where
the algorithm simply failed to find the optimal nonnegative matrix factorization.

To improve upon these numerical results, the most conservative option would be to improve the numerical
precision of the nonnegative matrix factorization, however, this could incorporate a significant computational
overhead as the computational problem is NP-hard. Alternatively, more trials of nonnegative rank certifications
could be run in the hopes that we win the lottery so-to-speak where the ideal initial parameters are chosen
at random to allow the optimal matrix factorization to be found. Lastly, perhaps the tolerance for error
e = 1077 is too strict and should be increased, however, doing so could be detrimental because the resulting
behaviors would include more error.

Theorem 13 implies the behaviors of noiseless qubit signaling systems can require an unbounded amount
of classical communication to simulate. However, since the hierarchy holds that cx 4y C Q¥ 4y - Cf SV ,
the extra communication needed to simulate the qubit serves only to distribute an unbounded amount of
shared randomness. Thus, the example of planar symmetric qubit encodings and decodings described in
the proof of Theorem 13 describe an instance of weak nonclassicality, in which the weak nonclassicality of
quantum signaling scenarios is no more than an exhibition of the randomness intrinsic to quantum systems
[214]. This is because the planar symmetric encodings and decodings are analog in nature, meaning that
there is no limit to the number of states or measurement operators that can be oriented symmetrically along
a plane of the Bloch sphere. From this perspective, the observed weak nonclassicality is likened to a digital
classical system attempting to simulate an analog quantum system. At some point, the numerical precision is
insufficient to replicate the behavior exactly. However, depending on the context, there may be little value to
improving numerical precision of a classical simulation by using additional classical communication.

We show that when white noise is present on the planar symmetric quantum behavior f’n,, the unassisted
simulation cost /i(f)) decreases considerably. Thus, even the amount of noise is relatively small, the logarithmic
scaling in the nonnegative rank of the noiseless behavior vanishes. Although it is not clear from Fig. 14.4
whether the nonnegative rank of the noisy behaviors will continue to increase with n or not, there is still a
clear separation from the noisy and noiseless cases. Remarkably, we find that there will always be a slight

quantum advantage because Rank (f)v) > 2 for all n > 3 and v € [0,1). Hence, the nonnegative rank of the

noisy behavior is bounded below as Rank (f)v) > 3. However, the signaling dimension of this scenario is

ka(Py) <2, meaning that a quantum advantage persists in the unassisted cases for all noise models except

v=1.

14.5.2  Strong Nonclassicality in Entanglement-Assisted Signaling Scenarios

Violations of signaling dimension witnesses can observe strong nonclassicality in entanglement assisted
signaling scenarios (see Fig. 14.1.d,e). Consider the certification scenario in which that the amount of
communication between sender and receiver is known as d and the amount of entanglement between the
sender and receiver is to be tested.

In Theorem 11, we derived the complete set of signaling dimension witnesses that bound the signaling
polytopes of any qubit signaling system. These signaling dimension witnesses are listed in Table 14.1 and are
labeled similarly using alphabetic subscripts, e.g, (va, G4). These signaling dimension witnesses can test for
strong nonclassicality in entanglement-assisted signaling scenarios. Furthermore, these signaling dimension

violations can be used to self-test LOCC resources such as entanglement-assisted classical and quantum
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Figure 14.5: Variational ansatzes for entanglement-assisted signaling scenarios. a) Quantum communication with no
entanglement assistance where the receiver applies a POVM qubit measurement with four outcomes. b) Entanglement-
assisted classical communication where the sender’s ansatz is given in Fig. 14.6. Note that the receiver performs a
qubit POVM measurement conditioned upon the sender’s classical measurement outcome m. c) Entanglement-assisted
quantum communication where the sender applies an arbitrary qubit unitary to their portion of the entangled state.
The receiver jointly measures the two qubits using a projective measurement.

communication.

SWAP

— U6}, 62,6%) = m

Figure 14.6: The expanded entanglement-assisted classical signaling encoding ansatz U (¢,) shown in Fig. 14.5.b).
The R,(¢2) gate controls whether or not the SW AP gate exchanges the |0) state with the p?* part of the entangled
state. The output bit m is obtained from arbitrary qubit measurement applied. Note that either the state |0) or p? is
measured depending on the controlled SWAP. All remaining qubits are ignored.

To obtain these nonclassical violations we apply our variational optimization methods. The optimization
objective being
m@i)n Cost (P(09)) = m@i)n —(G,P(09)). (14.62)

where G is one of the signaling dimension witness in Table 14.1. To construct the behavior P(©), we consider
distinct variational ansatzes for classical and quantum communication scenarios as shown in Fig. 14.5. It
is important to note that the signaling dimension witness in Table 14.1 have |X| € {3,4,5,6} and |Y| = 4,
meaning that it is sufficient to consider only four outputs.

We then optimize the variational ansatzes in Fig. 14.5 with respect to the signaling dimension witnesses
in Table 14.1 to obtain the results in Fig. 14.7. As expected from Lemma 13, we find no violations for the
unassisted quantum signaling case in Fig. 14.5.a) because ngy - Cfgy. Hence, we do not plot this data.

In the entanglement-assisted classical signaling cases shown by the blue bars we find that the maximum

likelihood games G, and G; do not have violations. This result indicates that entanglement cannot improve
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communication value or capacity of a signaling system. Nonetheless there still exists an operational advantage
because all remaining signaling dimension witnesses are violated by entanglement-assisted classical signaling.
It is important to note that these violations could only be found when the sender uses the encoding ansatz in
Fig. 14.6, that is, the violations seem to require the sender to abstain from measuring the entangled state
when given certain inputs.

It is very interesting the maximum likelihood games show no advantage whereas the anti-guessing game
G. and ambiguous guessing game G4, G¢, Gy, G, signaling dimension witnesses do show advantages. We
find this interesting because these games bear many similarities to the maximum likelihood game, for which
we do not find a violation. Moreover, the signaling dimension witnesses G, Gy, and G, that are nontrivial
input liftings of the ambiguous guessing game yield larger violations than the ambiguous guessing game.
Thus, these facet inequalities appear to be distinct from the ambiguous guessing game in Gg.

For the k-guessing game Gy, our variational optimization successfully reproduces the results given by
Frenkel et al. [116]. Indeed, we can reiterate their optimal encoding and decoding strategy as follows. Let
entanglement source A prepare the two-qubit state [1)) = \/LE(|01) —110)). Let the sender perform the following
measurements

1 1
4, € {I, 0}, M%, € {5 +0:)}, 4, € {5+ 0.}, (14.63)
1 1
If; € {52 Fo2)} I, € {52 F ox)} 5 € {0, I} (14.64)

Then, let the receiver perform the following POVM measurements conditioned upon m = +

1 1
0, = 5l = —(0=+00)) Thjy, T, =T —Tig, T3, =I5, =0 (14.65)
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Figure 14.7: For each of the qubit signaling dimension witnesses listed in Table 14.1 we use variational
optimization to find maximal violations for entanglement-assisted classical communication (EACC) and
entanglement-assisted quantum communication (EAQC). The y-axis plots the maximal violation rescaled as
S&, = (8g,(P) — i)/ (v — i) where 7 > «; is the largest possible violation. This rescaling ensures that,
for all signaling dimension witnesses, the maximal violation possible is 1 and classical bound is 0. The orange
bar denotes the EAQC violation and obtains the max violation 4* in all cases. The blue bar denotes the
EACC violation that violates all inequalities that are not maximum likelihood facets. The dashed bar is a
predicted upper bound for all EACC violatons. For games G, and G, we predict that this upper bound is
loose, while in all other cases, we predict the bound to be tight.
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Figure 14.8: The robustness of nonclassicality is plotted for each of the entanglement-assisted violations
of signaling dimension shown in Fig. 14.7. For each signaling dimension witness, we plot the curve P, =
(1—=7)P +W where W = - |71\ ly){(z| is a white noise behavior. Each colored line corresponds to a
different nonclassicality witness where the markers are aesthetic for distinguishing overlapping lines. The
classical violations are scaled such that the maximum possible violation is one where zero is the classical
bound. (Left) The noise robustness of entanglement-assisted quantum signaling behaviors. (Right) The noise
robustness of entanglement-assisted classical signaling behaviors.

and
1 1
g =T =0 MI§ = 5(112 + E(az —0.)), M§ =D =T . (14.66)

Finally, the probabilities are calculated as
Plyle) = Tr (13}, @ T, ) (wl] + Tr (114, @ 15 [v) (v . (14.67)

The maximal score is then Sg, =4+ V2 =~ 5.414.

When quantum signaling is assisted by entanglement as in Fig. 14.5.c) the violations correspond to the
orange bars in Fig. 14.7. Naturally, a dense coding protocol can be implemented using these quantum
resources such that 2-bits of classical communication can be achieved between the sender and receiver. Since
|V| = 4, we find from Eq. (14.20) that x5 (P) < 4, hence entanglement-assisted qubit communication can
produce any behavior in Py x, the full probability polytope. As a result, the perfect winning score can be
achieved for all considered signaling dimension witnesses. Our variational optimizations are able to obtain

the perfect winning scores as shown in Fig. 14.7 by the orange bars achieving the violation bound.

14.5.3 The Noise Robustness of Strong Nonclassicality in Signaling Systems

To gain a high-level perspective of the relative noise robustness of each qubit signaling dimension witness,
we consider depolarizing noise W1_.)(II¥) where II7 = (UP)"|y)(y|U® is a the two-qubit projective
measurement given in Fig. 14.5. Note that the action of the depolarizing channel on each measurement
operator is

1
Wi () = (1 = NI + 77T, (14.68)
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therefore, the noisy probabilities are
g v
Plyl) = (L= )T [(UP) )yl UPp2] + 0% [o] = (1 = )T [(UP) ) UPpE) + 3. (14.69)

In the entanglement-assisted quantum signaling case, the measured state is p2 = (U2 @ I)p* (U2 @ I)T

where applying a depolarizing channel to the entangled state produced at the source yields the probalities

P(ylz) = Tr [T (U2 @ Wiy (0" (UL @ D] = (1=9)Tx [T (U @ Wi (0™ (U @ T)'] +}Tr ]

(14.70)
If HyB is a projective rank-one measurement, then Tr [HyB} =1 and Eq. (14.70) is equivalent to Eq. (14.69),
showing that within our entanglement-assisted quantum communication ansatz, a depolarized measurement
is equivalent to a depolarized state preparation at the source.

Using Proposition 3 we can conveniently replace the depolarizing noise on the measurement with the
postprocessing map W, = (1 — )Ly + YW where W =3" > ‘71| ly)(z|. It then becomes a simple
matter of taking the optimal behavior P for violating a particular signaling dimension witness G and
calculating the noisy behavior as

P,=(1-7)P +1W = W, P. (14.71)

It then follows that

<G,1~37> =(1-7)(G,P)++(G,W). (14.72)

where the first term is the maximal quantum violation and the second is the white noise score (G, W) =
Do Doyey % from Lemma 4. Then, if the classical bound and game have been rescaled such that for
any P € Cfi}y

8=0>(G,P) (14.73)

where the maximal possible score is one, then the critical noise parameter g is given by Theorem 1 as

B (G,P)
TG P) - (G W)

(14.74)

In fig. 14.8, we plot the maximal nonclassicality for entanglement-assisted violations of qubit signaling
dimension. Furthermore, in Fig. 14.9 we plot the critical parameters at which nonclassicality is broken. It
is important to note that the noise robustness of entanglement-assisted quantum signaling is significantly
greater than the entanglement-assisted classical signaling case. Although the white noise scores (G, W) are
the same in both cases, the quantum signaling case saturates the maximal possible score giving it a greater
robustness to noise across all signaling dimension witnesses. This improved robustness is reflected by the fact
that the Fig. 14.8 shows the EA classical signaling plot on the right to have its nonclassicality broken by
v = 0.2 while the quantum signaling case shows nonclassicality at significantly greater values of 7. Other key
distinctions show that the most robust signaling dimension violation for the EA classical signaling case is Gy,
while the EA quantum signaling case shows this signaling dimension witness to be the least robust to noise.
Furthermore, each witness has its nonclassicality broken at a different critical noise parameter, showing that
not all tests for nonclassicality have the same noise robustness, even when considering the same quantum

resources.
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Figure 14.9: The y-axis shows the critical noise parameter vy derived from Eq. (14.74) while the z-axis
plots each qubit signaling dimension witness. The orange bars show the entanglement-assisted quantum
communication (EAQC) critical parameters and the blue bars show the entanglement-assisted classical

communication (EACC) critical parameters.
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CHAPTER 15

NONCLASSICALITY IN MULTIPLE ACCESS
NETWORKS

In this chapter we consider nonclassicality in signaling scenarios where multiple senders Ay, ..., A, each send
a message to a single receiver B. These multi-sender communication networks can be considered as multiple

access channel (MAC), hence we refer to these signaling systems as multiple access networks (MANSs).

Definition 102. Multiple Access Network: MAN(/T, B) = Net(]\7, E), A DAG describing a communica-

tion network that has n independent senders A = {A;}, that signal to a single receiver where
N = (E, B) . E={A, B} . (15.1)

Each sender is given a classical input z; € &; while the receiver outputs the classical value y € V.

In the scientific literature, the communication capacity of multiple access channels has been extensively
studied in the classical [363] and quantum settings [364]—[367]. Furthermore, nonclassical behaviors have
recently been identified in MAC systems that use either qubit communication between sender and receiver
[368], [369] or entanglement between the senders [370]. Hence there is motivation to explore further the
nonclassical behaviors in multiple access networks that use quantum resources.

To investigate the nonclassicality in multiple access networks we follow the standard prespriction and
derive linear witnesses that bound the classical set of MAN behaviors when the amount of communication
between a sender and receiver is limited. Then, we show by examples obtained via variational optimization
that application of equivalent quantum resources leads to strongly nonclassical behaviors in MANs. Thus,
we derive a collection of operational tests that can be used to certify the quantum resources present in

multi-sender communication scenarios.

15.1  Multiple Access Network Behaviors

For simplicity, we focus on a two-sender multiple access networks in which the senders A; and A, each accept

independent inputs 1 € X; and zo € X,, respectively. The receiver B then outputs a classical value y € V.
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Figure 15.1: DAGs for MANs with two senders. Each diagram depicts the causal flow of classical information
from inputs 1 and 2 to output y. The nodes in the diagram represent devices in the multiple access network and the
arrows linking them describe classical communication (double line) or quantum communication (single line). The gray
nodes represent classical network devices whereas the colored nodes represent quantum network devices where green
nodes are preparation devices, blue nodes are measurement devices, and red nodes are processing devices. Elliptical
nodes represent static resources such as classical shared randomness or quantum entanglement. Rectangular nodes
represent information processing devices. a) CMAN: a classical MAN where each sender transmits a classical message
to the receiver and all devices share randomness. b) EA CMAN: an entanglement-assisted classical MAN where the
two senders share entanglement and each send a classical message to the receiver. ¢) EA3 CMAN: a classical MAN
assisted by tripartite entanglement between all devices. d) QMAN: a quantum MAN where each sender transmits a
quantum state to the receiver. ¢) EA QMAN: an entanglement-assisted quantum MAN where the two senders share
entanglement. f EA3 QMAN: a quantum MAN where all devices share tripartite entanglement.

Taking a black-box approach, we characterize each multiaccess network by its behavior

PN T T S, 152)

r1EX] x2€X2 Y€y

The set of behaviors that can be produced by each respective multiaccess network depend upon the com-
munication resources. Therefore, we describe the behavior decomposition for each respective resource

configuration.

Definition 103. We define the sets of multiaccess network behaviors P € Py x, xx, for the six resource

configurations shown in Fig. 15.1.
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a) Set of Classical MAN Behaviors: C}'*N, The set of all behaviors P € Py, x x, that decompose as

PMAN = N PR(P{ @ P{*) P} (15.3)
AeQh

where P} € [0,1], P{* € Pty ars P2 ¢ Prts)ay» and PY € Pyjag, xm, are the behaviors of the

respective network devices.

b) Set of Entanglement-Assisted Classical MAN Behaviors: CNAN, The set of all behaviors
P € Py|x, xx, that decompose as PMAN = PBPAi42 where

PSS Y Y Y T, om0 ol (050

L1 EX] x2E€X2 m1EM] maEMo
and p? € D(HAT @ HA2).

c) Set of Tripartite Entanglement-Assisted Classical MAN Behavior: CEA3 , The set of all

behaviors P € Py, x x, Whose probabilities decompose as

A A A
(o) = > 3 T[h, em enlk (15.5)
m1EM1 maEMa

where p* € D(HA* @ HA2 @ HP).

d) Set of Quantum MAN Behaviors: QMAN The set of all behaviors P € Py)x, x x, whose probabilities

decompose as
P(ylay, wz) = Tr [T1] (p3t @ pif2)] . (15.6)

e) Set of Entanglement-Assisted Quantum MAN Behaviors: QMAN The set of all behaviors

P € Py, x, xx, Whose probabilities decompose as
P(y|z1,22) =Tr [HyBUIAl1 @ UM UL @ US)T. (15.7)

f) Set of Tripartite Entanglement-Assisted Quantum MAN Behaviors: QM{N The set of all

P € Py|x, xx, whose probabilities decompose as
P(yley,@2) = Tr [IJ (U2 @ U2 @ DN (UL @ U2 @ 1)1 (15.8)

In the six resource configuration shown in Fig. 15.1, quantum resources are added incrementallly to
the class multiaccess network configuration in Fig. 15.1.a), in which all network devices share aa common
randomness source A. Going along the top row, classical communication is used, but the shared randomness
is replaced by bipartite entanglement between the senders (Fig. 15.1.b), then by tripartite entanglement
between all network devices (Fig. 15.1.c). In the bottom row, the classical communication is replaced with
quantum communication in Fig. 15.1.d). Then, the quantum communication is assisted by bipartite and

tripartite entanglement in Fig. 15.1.¢e,f).
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15.2  Witnessing Nonclassicality in Multiple Access Networks

Our objective is to quantify and compare the amount of nonclassicality produced in multiaccess networks
using quantum resources. To quantify nonclassicality, we apply the standard device-independent approach
discussed in Chapter 9. Namely, we follow the approach given in Chapter 4 to enumerate the complete set of
deterministic network behaviors V € CMAN that have 0/1 elements and then we use convex optimization
and polyhedral transformations to obtain linear inequalities that bound the multiaccess network polytope
C%AN. Using the variational optimization techniques discussed in Chapter 11 we then find state encodings

and measurements that produce strongly nonclassical behaviors P ¢ CAAN.

15.2.1 A Complete Multiaccess Network Polytope

Consider the multiaccess network where each sender has three inputs |X;| = |X2| = 3, signals to the receiver
using a bit or qubit, |[M;| = |Maz| = 2, while the receiver outputs a binary value || = 2. This example is
the minimal example in which strong nonclassicality can be observed.

The set of vertices for the multiaccess network polytope are VMAN where Conv (VMAN) = C}\\/IAN. If each

sender uses a bit a communication, then the number of vertices are counted to be

[VMAN| ||+ (non-communication case)
X
X

+mir§j} { o } { ";ﬂ} ({:1} - 2{2}) ('%')m! (IMy] = 2, [My] = 2 case).  (15.9)

where {Z} is Striling’s number of the 2nd kind, i.e., the number of ways to partition n elements into k
non-empty sets. Note that if £ > n, then this number is 0 because the partitioning does not exist. Note that
the case where senders A; and A, each send a bit also contains the cases where A; or As or both do not
communicate. Thus, our expression in Eq. (15.9) accounts for each communication individually.

In our example, when |X}| = |X3| = 3 and || = 2, we find 104 unique vertices. For this example, the set of
half-space inequalities GMAN bounding C}\\/IAN can be computed efficiently in full using PORTA XPORTA..jl,
[135]. We find a total of 1230 unique inequalities, however, when relabeling symmetry is taken into account,
we find 20 canonical half-space inequalities (See Table 15.1). We will refer to the half-space inequalities by
number as G; where j corresponds to the number in Table 15.1.

Note that inequality Gy is a trivial bound 1 > P(y|z1, z2), hence, we will not disregard it for the remainder
of this work. Furthermore, inequalities G; and Gy are equivalent to the qubit dimensionality witnesses
derived in reference [227]. To see equivalence, we note that these inequalities are simply lifted [127], [129]
from the scenario where |X| = 2 or |Y| = 2 by adding 3 columns of all zeros to the matrix G. The remainder

of the inequalities are novel to the considered multiaccess network scenario.
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Table 15.1:  Canonical Multiaccess Network Nonclassicality Witnesses. The 20 canonical witness of

nonclassicality are listed in the format § > G. Note that G is a 2 x 9 matrix reflecting the 2 classical outputs and
3 x 3 classical inputs.

15.2.2  The Finger Printing Inequality

The inequalities in Table 15.1 do not admit a simple operational interpretation. Hence we introduce a finger
printing game in which the objective is for the multiaccess network to output y = 0 when z1 = 22 and y =1

otherwise. We encode this task into the following linear inequality which we call the finger-printing inequality,
GFPZ

(15.10)

100 01 0O0O01
GFp2=7Z[ ]

011101110

In the finger-printing game a score of 1 is rewarded for a correct answer and 0 otherwise. The classical bound

is 7 and can be achieved by two distinct deterministic classical strategies

PElOOOOOOOO 1 000 110 11 (15.11)
MAN 011111111 Jo1110071°0o0[ '
In each case, the sender A; and Ay each send mq = mo = 0 for the inputs x1 = 0 and z2 = 0 respectively.

Hence the receiver knows with certainty if x1 = x5 = 0. The rest of the behavior is implemented either by
fixing the output to be y = 1 for all m; #% 0 or mo # 0 or by inverting sender As’s bit if sender A; sends a
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1. In total, there are 6 such classical strategies which can achieve a score of 7 against the finger-printing
inequality. Since the Dim (C%AN) =9 when |X;| = |X2| = 3 and |Y| = 2, the finger printing inequality does
not designate a tight nonclassicality witness. In other words, (7,Grp) is not a facet inequality of CAAN.

Nevertheless, a violation (Ggp, P) > 7 witnesses strong nonclassicality.

15.8  Strong Nonclassicality in Multiaccess Networks

Our main result is that all quantum resource configurations in Fig. 15.1 can produce strongly nonclassical
behaviors. We prove this by example for the complete set of nonclassicality witnesses derived for the
multiaccess network that has |X;| = |X2] = 3 and |Y| = 2. Then, for more general multiaccess network

scenarios we apply derived nonclassicality witnesses.

15.3.1 Variational Optimization of Multiaccess Networks

a) QMAN b) EA CMAN c) EA QMAN
""s;;.ie;{'"\; .' """" R }Z&Je‘, """ ; Source | ""iiﬁ;'". Receiver [ source
0= V@) TH K U(®) \_0{ gi|iy il U@ -ﬁ 0es,) FKXF%’ yo}y IO)_U(:S")
0= 0@ S HA= | 0= U(¢")Ff7<=‘=’ » 10—
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Figure 15.2: Variational Ansatz Circuits for Multiaccess Networks. Each diagram depicts a variational
ansatz circuit for the MAN DAGs in Fig. 15.1. All gates are fully parameterized arbitrary unitary operators acting on
the shown qubits. The operations of preparation devices are green, processing devices are red, measurement devices
are blue, and classical devices are gray.

To find strongly nonclassical behaviors, we optimize general variational ansatzes that correspond to each
of the quantum resource configurations in Fig. 15.1. These ansatzes are shown in Fig. 15.2. The optimization

objective is expressed as
ngn Cost (0) = — max (G,P(0)) (15.12)

where G is a linear nonclassicality witness, © € R™ is a collection of settings for the multiaccess network
variational ansatz circuits, and P(©) is the evaluated behavior for the given settings.

The general variational optimization procedure is given in Chapter 11. Namely, we use a standard gradient
descent algorithm to minimize the cost function Eq. (15.12). We evaluate the quantum circuits in Fig. 15.2
on a classical simulator allowing us to use backpropagation to calculate the gradients of the cost function
with efficiency. In general, however, our approach could be applied on quantum hardware.

It is important to remarks that there is no guarantee that the global optimum will be found. For this
reason, it is best practice to repeat the optimization with randomized initial settings. We argue that the
optimized nonclassical behaviors are likely approximately optimal because in all instances of known maximal

violations, our variational optimizations have found the global optimum. Nevertheless, when the variational
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optimization algorithm obtains a violation of the inequality (G, P) < ~, the violation confirms the presence of
strongly nonclassical behaviors. Thus, we identify a broad range of novel nonclassical behaviors for multiaccess

networks using quantum resources.
o (2,2) .
15.3.2  Quantum Nonclassicality in the (3,3) > 2 Multiaccess Network

Quantum Violations of Multiaccess Network Nonclassicality Witnesses
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Figure 15.3: The five quantum ansatzes of Fig. 15.2 are optimized against the finger-printing inequality Irp and the
19 nontrivial inequalities bounding the the multiaccess network in Table. 15.1. The amount of violation is plotted
on the y-axis as ((G|P*) —v)/(y* — ) where v* is the maximal possible score for the black-box game (v, G) and
(G|P*) is the maximal score obtained via optimization.

When the variational ansatzes in Fig. 15.2 are optimized we find that all quantum resource configurations
violate nonclassicality witnesses in Table 15.1. The maximal violations obtained are plotted in Fig. 15.3. In all
cases, the entanglement-assisted multiaccess networks achieved larger violations than the unassisted quantum
multiaccess network. Furthermore, we find that the tripartite entanglement-assisted quantum multiaccess
network is able to v* the maximal possible violation for each respective black-box game G;. As a result, we

assert that the following general hierarchy likely holds,
CYIAY € QAN ¢ CHAN C e ¢ QRN € Qi (15.13)

where shared randomness is implicitly assumed in each set to maintain convexity. Indeed, it is possible that
the set inclusions are not so simple such that the set is not contained in its entirety, however, the violations
demonstrate that each respective resource configuration is insufficient for simulating all behaviors in its
containing set.

Additionally, unassisted quantum multiaccess network are found to be insufficient to violate the finger
printing inequality Gpp. Unfortunately, our numerics only lead to the conjecture that entanglement is
required between the senders to violate the finger printing inequality. However, if this conjecture holds, then
the finger-printing inequality can serve as a test for entanglement between the two senders.

In the case of entnaglement-assisted classical multiaccess networks, we can describe an encoding and
decoding strategy that achieves the maximal violation. Indeed, we find that (G rp|P*) < 7.5 for P* € CMAN

where
|1 025 025 025 1 025 025 025 1

0 075 0.75 0.75 0 0.75 0.75 0.75 0|

*

(15.14)

This behavior is achieved using the maximally entangled state preparation |®1) = \%(\00) + |11)) followed
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by projective measurements in the following local qubit bases,
{ |dojo) = 10), |d1j0) = |1) }7 (15.15)
1 V3 V3 1
{|¢01>2|0>+2|1>7 |¢1|1>: |0>|1>}, and (15.16)

2
{|¢02> = % 0) — ? 1), |oup2) = Vs 0) + % |1>} : (15.17)

Note that if ;1 = o, then senders A; and Ay measure |®T) in the same basis resulting in a bitstring
mimg € {00,11} with certainty. Otherwise, if 1 # x4, then,

2

P, ma € {00, 11} o1, @3) = | (@1, &2, [07)] =174, and (15.18)
2

P(mims € {01,101, 22) = (6., 62, |04 = 3/4. (15.19)

Finally, the receiver outputs y = 0 when the received classical bits mims € {00,11} and otherwise, outputs
y = 1. With some calculation it can be verified that the Bell state preparation and the bases in Eqgs. (15.15)
through (15.17) produce the behavior matrix in Eq. (15.14).

15.3.8 Noisy Multiple Access Networks

In this section, we investigate the noise robustness of the nonclassicality violations obtained in the previous
section 15.3.2. As a worst-case example, we consider depolarizing white noise applied to receiver’s measurement
as Wi—)(I1F) = (1 — I} + 215, where 11} = (U |y)(y| UB where I17 is the receiver’s two-outcome
measurement, which we assume to measure the parity of each measured qubit as denoted in Fig. 15.2. Using
Proposition 3 we can model the depolarizing noise as a classical postprocessing operation on the multiaccess
network behavior where the noisy behavior is f’w =1-yP+yWand W =3 x> ey ﬁ ly) (@1, z2].

Then we apply Theorem 1 to derive the critical noise parameter at which nonclassicality is broken to be

B (G,P)
TG, P) - (G, W)

(15.20)

where P is the maximum violation of the classical bound obtained through variational optimization.

We find that our noise model for depolarizing noise on the measurement also describes depolarizing noise
on the entanglement source in in scenarios Fig. 15.2.b,c,e). That is, since all qubits in the ansatz circuit are
prepared at the same source and measured at the same measurement device, it doesn’t matter whether the
depolarizing noise is applied to the produced entangled state W _. (p™) or to the joint qubit measurement
Wai—n) (H?’/3 ). The main condition being that the measurement is projective and Tr [Hf ] =1 for all y.

We plot our results in Fig. 15.4 showing that noise robustness is unique for each nonclassicality witness.
Furthermore, resources that achieve a larger nonclassicality score with respect to other resource configurations
also have a larger critical parameter, indicating greater robustness. As shown in Fig. 15.5, we plot the linear
curve that the noisy behavior 137 follows as + increases. The y-intercept of the line depends on the maximal

score for the given nonclassicality witness, while the rate of decrease depends on the white noise score (G, W).
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White Noise Robustness of Multiaccess Network Nonclassicality
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Figure 15.4: For each qubit signaling dimension witness, we plot the critical noise parameter g as calculated
from Eq. (15.20). From left to right the colored bars show the multiaccess network quantum resource
configurations: unassisted quantum signaling (blue), entanglement-assisted classical senders (orange), global
entanglement-assisted classical signaling (green), entanglement-assisted quantum senders (red), and global
entanglement-assisted quantum senders (purple).
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Figure 15.5: The detector white noise robustness of nonclassicality is plotted for the multiaccess network
having |X;| = |X2| = 3, |Y| = 2, and |[M;| = |[M3| = 2. For each signaling dimension witness, we plot
the curve f’v =(1-7)P ++yW where W =3 \71| ly) (x| is a white noise behavior and P is the optimal
behavior for the specified resources. Each colored line and marker combination corresponds to a different
nonclassicality witness where the markers are aesthetic for distinguishing overlapping lines. The classical
violations are scaled such that the maximum possible violation is one where zero is the classical bound.
(Top Left) The noise robustness of global entanglement-assisted quantum signaling. (Top Right) The noise
robustness of entanglement-assisted senders using quantum signaling. (Bottom Left) The noise robustness of
entanglement-assisted senders using classical signaling. (Bottom Right) The noise robustness of quantum
signaling.
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CHAPTER 16

NONCLASSICALITY IN BROADCAST
NETWORKS

In this section we consider another important networking architecture known as broadcast networks. In this

network, a single sender signals to many independent receiver devices.

Definition 104. Broadcast Network: BON(A, B) = Net((4, B), {A — Bi}i:1)|§‘, A DAG consisting of
a sender device A and a collection of receivers B. The receiver is given a classical input z € X' and the i*?
receiver outputs a classical value y; € );. The signaling dimension of the channel connecting the sender to

the ' receiver is bounded as |M].

16.1 Broadcast Network Behaviors

PBCN with n receivers belongs to the full probability polytope

In general, a broadcast network behavior
Py, x...xy,|x Where additional constraints on the behaviors are imposed by the amount of communication
between the sender and each receiver. For simplicity, we consider broadcast networks with two receivers and

consider a range of quantum resource configurations that can be used to assist the broadcast (see Fig. 16.1).

Definition 105. We define the sets of broadcast network behaviors P € Py, . y,x for the six resource

configurations in Fig. 16.1).

CBCN

a) Set of Classical Broadcast Behaviors: , The set of all behaviors that decompose as P =

(PP @ PB2)PA where P4 € Pty x Mz x5 PB ¢ Py, im,»> and PB: ¢ Py,|m, are the respective

behaviors for each device.

b) Set of Global Shared Randomness Assisted-Classical Broadcast Behaviors: CECN, The set

of all behaviors that decompose as

P= Y (P oPy)PIP (16.1)
AEQA

where P € [0,1] and >, P} = 1, P{ € Puyg,wry) s P ¢ Py, im,, and Py € Py,m, are the

respective behaviors for each device.
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Figure 16.1: Broadcast Network Resource Configurations: Directed acyclic graphs depicting different
resource configurations for a broadcast network with two receivers. Classical communication is depicted
by double-lined arrows and quantum communication is depicted by single-lined arrows. Elliptical nodes
show static resources while rectangles show network devices. In the top row classical broadcast networks are
shown and in the bottom row, quantum broadcast networks are shown. a) Unassisted classical broadcast.
b) Classical broadcast assisted by shared randomness. c¢) Classical broadcast with entanglement-assisted
receivers. d) Classical broadcast assisted by entanglement between all devices. e) Quantum broadcast. f)
Quantum broadcast with entanglement-assisted receivers. g) Quantum broadcast assisted by entanglement
between all devices.

c)

Set of Entanglement-Assisted Receiver Classical Broadcast Behaviors: CS{N, The set of all
behaviors that decompose as P = PB1B2P4 where

y1,y2|mi,me y1|ma ya|ma

pbiBe _ [(HBl ® I )pA} . (16.2)
Set of Global Entanglement-Assisted Classical Broadcast Behaviors: CS{Y, The set of all

behaviors that decompose as

B B A A
Py17y2|x = Z Z Tr [(Hy11|m1 ® Hy;‘mz ® Hml,Mer)p ] N (16'3)
m1EM1 maEMs

Set of Unassisted Quantum Broadcast Behaviors: QBN The set of all behaviors that decompose
as
P =Tr (TP @ IE2)pl] . (16.4)

y1,y2|T
Set of Entanglement-Assisted Receiver Quantum Broadcast Behaviors: QEEN, The set of

all behaviors that decompose as
Py oo = Tr [(TIL @ T12) (o7 © pM)] - (16.5)

Set of Global Entanglement-Assisted Quantum Broadcast Behaviors: QESESN, The set of all

behaviors that decompose as

P =Tr (I @ T2 (UL @ 171P2) oM (U2 @ 171 P2)T] (16.6)

y1,Y2]x
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To show how these behavior decompositions generalize to arbitrary numbers of receivers, we provide as an
example the construction for unassisted classical and quantum broadcasts. For a general classical broadcast

network with n receivers, the behavior is constructed as

PBON — (@ PB’L'> p4 (16.7)
=1

where PB: ¢ Py, |m, and PA € Prgxx M, |x- Similarly the quantum broadcast behavior with n receivers

decomposes as

BCN __
Pzﬂx =Tr

<(§) Hf;) pf‘| (16.8)

where I} € POVM(H@”) and p? € D(®;_; H ). Entanglement and shared randomness-assisted
broadcasts can be generalized accordingly using the DAG structure the tensor calculi for constructing
the behaviors of classical, quantum, and LOCC networks. However, the complexity of different resource

configurations is too large and should be handled only as needed.

16.2  Bounds on the Behaviors of Classical Broadcasts

In this section we derive bounds on the shared random-assisted classical broadcast behaviors in both general
and specific cases. We begin with some trivial bounds describing when broadcast networks can achieve
the full probability polytope Py, «..y,|x, then we explore examples in which more restrictive bounds can
be derived. Since we permit an unlimited amount of global shared randomness in our classical model, the

classical bounds take the form of linear black-box games that can serve as witnesses of strong nonclassicality.

Lemma 14. Consider a broadcast network with n receivers. If |Y;| = |M;| for all ¢ € {1,...,n}, then
CBON — CE‘CN = Py, x...xy,|x for any input alphabet X'. Hence all broadcasts using quantum resources can

be simulated exactly using unassisted classical communication.

Proof. For all i € {1,...,n}, let |V;| = |M;| and let the device B; output the received message such that
y; = m; € M;. That is, the receivers do not operate upon their received data and the broadcast network
reduces to a single black box PBN : X — Y x --- x ),. The behavior PECN € Py, .. .y, is unrestricted and

exhibit any behavior in the full probability polytope. Therefore, CEN = Py, ...y, and since all quantum

resource assisted broadcasts are contained by the probability polytope, the unassisted classical broadcast

CBON can simulate all possible broadcast behaviors with zero error. O

Lemma 15. Consider a broadcast network with n receivers. If |X| < min{|M;|}®,, then CBN C QBCN C
CBCN = Py, »...xy, for output alphabets sizes of arbitrary size. Hence any entanglement-assisted quantum or
classical broadcast behavior can be simulated exactly using classical communication assisted by an unlimited

amount of shared randomness.

Proof. If |X| < min{|M;|}!_,, then the entire input can be communicated to each receiver. Since each
receiver knows the entire input z € X the collection of receivers B can produce any deterministic behavior
V € Py x..xy,|x- Therefore, if the receivers share an unlimited amount of randomness, then they can

BCN
CA

construct any behavior P € Py, ...xy,|x- Thus, it must hold that = Py, x-..xy,|x- Now suppose that

the receivers do not share randomness and |);| > | M;| for one or more receivers. It follows that set of behaviors
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becomes nonconvex such that CBN < CB“N. For example, consider the case where |M;| = |[My| = |X],
|V1| = 3, and |V2| = 2 and the receivers are tasked with outputting y; = y2 = 0 when z = 0 and when
x =1, y1 = yo = 1 with probability 1/2 while also y; = 2 and y; = 0 with probability 1/2 such that
P(1,1]1) = P(2,0[1) = 3. Since the receivers do not share randomness, they must independently guess the
output y; € {1,2} and y2 € {0,1} when the observe = 1. However, they are unable to coordinate such that
P(1,1|1) = P(2,0|1) = 1/2 with zero error because receiver By does not know Bj’s output. Therefore, CBN
is a strict subset of CRCN. Tt follows directly that the hierarchy CBEN C QBCN C CBON =Py, .5 holds

_ (BCN
_CA

generally where CBCN only occurs in special cases when no receivers have |;| > | M;|. O

16.2.1 Complete Broadcast Network Polytopes

In this section, we discuss general and specific cases where we can define complete broadcast network
polytopes CECN that are not equivalent to the full probability polytope. Hence we obtain complete sets of
facet inequalities that bound the set of shared randomness-assisted classical broadcast behaviors. To begin

we show that all bounds for the signaling polytopes discussed in Chapter 14 also bound broadcast networks.

Theorem 14. Consider the n-receiver broadcast network where min{|X|,|Vi|} > |M;| and for i > 1,
|M;| = |;]. Tt follows that the broadcast network polytope CFCN is lifted from the signaling polytope Cy 4y

with ) = )1 where the set of generator facet inequalities GECN bounding CE’CN are constructed from the

d, d,
inequalities G 7Y bounding Cf_)y as

GBON _ g™V (é L>> (16.9)

=2

where

L»>:(1,...71)T and

fi> has length |M,].

Proof. Note that for i > 1 |Y;| = |M;]|, thus following the arguments in Lemma 14, the partial broadcast
network BCN(A, {B;}{_,) can exhibit any behavior in the probability polytope Py, ...xy,|x, Which excludes
the receiver By. Therefore, any restrictions imposed on the full broadcast network must be induced by the
fact that min{|X|, |V1|} > |M1|. This fact is further supported by the vertex structure of the broadcast
polytope where the outcomes (ya2,...,yn) € Yo X -+ X Y, are unrestricted for each input = € X, hence
any restrictions on the vertices are due to the limited amount of communication to the first receiver Bj.
The limitations on the vertices. That is, let P2B1 = Doie 2omieMs PBr(yy|my)PA(my|z) |y1) (x| and
PPz =37 anevaxexy, P2 yn) [ya, - - yn) (2] be column vectors, then PPN = P21 @ PPz
PAB1 = PAB1 ¢ C/)\(ﬁy

where P2B2..n are totally unrestricted whereas P81 has restrictions such that Y owex

the signaling polytope where d = |M;|. Hence PAB satisfies all facet inequalities G Sy bounding the
d,

signaling polytope Cy 7.

We then note that any given signaling polytope inequality (v, GYXHY ) can be output lifted to the

dimensions of the broadcast network as GBCN = G¥*Y @ (®?:2 TZ>) where L> =(1,...,1)T and TZ>

has length |M;|. Since (v, Gbf* Sy ) is a signaling polytope facet, it is satisfied with equality by exactly

|X|(|J)1| — 1) signaling polytope vertices using only |V:| of the |[YBN| = []"_ |Vi| rows of the broadcast
behavior. Then since the remaining broadcast receivers are unrestricted, |X| affinely independent vertices
can be enumerate that satisfy the inequality for all remaining |YB“N| — |));| rows. This enumeration follows
precisely from the enumeration used when output lifting a signaling polytope facet. Hence in total we obtain
|X[(]YBON| —1) = Dim (CFCN) — 1. Hence all signaling polytope facets can be lifted to the broadcast network.
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Furthermore, there can be no additional facet inequalities, because the lifted signaling polytope inequalities
are all tight, and any other output lifting on the columns of the behavior P45 would not allow a sufficient

number of affinely independent vertices to be enumerated. O

16.2.2  The 3-22-33 Broadcast Polytope

Consider the broadcast scenario having two receivers where | X| = 3, |M;| = |[Msz| =2 and |J1| = |I=| = 3.
The classical broadcast network polytope can be computed in full where there are a total of 441 vertices and
417 facets. Upon calculating the generator facets, we find 7 facet classes where one is the trivial non-negativity

facet, while the remaining six are nontrivial bounds on the classical 3-22-33 broadcast.

00 1 00 1 0 0 1
000 00 1 01 0
1 00 00 1 1 00
000 01 0 0 0 1
(@ 2>10 1 0|, (®2>10 1 0], (¢)2>10 1 0f, (16.10)
100 01 0 1 00
1 00 1 00 0 0 1
1 00 1 0 0 01 0
1 0 0] 1 0 0] 1 0 0]
[0 0 1] (0 0 2] [0 0 2]
000 0 0 1 0 2 0
00 0 01 1 1 00
000 0 2 0 0 0 1
(d2>11 0 0|, (¢)4>10 1 0], (fy4>10 1 0 (16.11)
01 0 01 1 2 0 0
000 1 00 01 1
01 0 2 0 0 01 1
1 0 0 11 1 11 1

16.3 The Weak Nonclassicality of Unassisted Bipartite Quantum Broadcasts

In this section, we prove for a wide range of examples, that bipartite quantum broadcast networks having
two receiver exhibit weak nonclassicality, but not strong nonclassicality. Although our proofs cover only
specific edge cases, we find no examples where unassisted quantum communication is able to violate a
linear nonclassicality witnesss bounding a broadcast network. Thus, we conjecture that unassisted quantum
broadcasts are classically simulable in general.

In our first main result for the weak nonclassicality of broadcast networks, we show by example that an
unbounded amount of classical communication is required to simulate an entanglement source A emitting a
two-qubit state. Thus, even in the simplest case of distributing randomness, a quantum advantage is identified.

This result is a natural extension of Theorem 13, in which a similar result was proven for point-to-point
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signaling using one qubit. This example is relevant to broadcast networks because it is equivalent to the

scenario in which |X]| =1

Theorem 15. An entanglement source A that emits a maximally entangled state |®1) measured using local
qubit POVMs Hf’ll ® HyB;Q requires and unbounded amount of classical communication to simulate a local

qubit POVM measurements on that state.

Proof. Consider the planar symmetric N-element qubit POVM {II, = % [tV (] ivz_ol where N is even and
[¢2) = cos(5F) [0) +sin(5F) [1). It follows that

1 1
P(y1,y2) = Tr [T} @ T2 |@F)(@F[] = T [Ty, | = < (U0, [T ]l00y,) = Plyily2) P(y2) - (16.12)

where P(ys) = Tr []IB 1 ® H%} = %Tr [Hfﬂ = % and py, is the post-measurement state after being measured

by receiver Bg 5
1 IL,?

, = —1rp, 15: @ 1182 [ ) (@t = —L2— = . Y 16.13

Py P(yg) rp [( Yo ) | >< H e [H%} W}y ><¢y | ( )

and |1,,) belongs to the set of a planar symmetric states. Since [¢)5) is real, [¢;) (15| is symmetric for all

hence p,, = pJ,. Expanding Eq. (16.12) we find

Py1,y2) = % (cos?(61) cos®(02) + 2 cos(6:) cos(6:) sin(61 ) sin(6a) + sin®(6;) sin®(62)) (16.14)

where §; = T and 6, = T2, Then, the quantum behavior can be matricized as

2 L L 0 1t 1
(T A
1yt + & L L o
PC = PEyPB)T = — N 16.15
®™) Nlo + 1t % | | ( )
A R
N -

where the matrix elements are bound as % > PbQ|c > 0, the scalar factor corresponds to P(c) = %, and the
arrows depict the fact that the matrix elements are increasing as you approach the diagonal of % and depart
from the shifted diagonal of zeros.

In the classical setting where shared randomness is held between two receiver B; and B the joint behavior

can be viewed i the matrix form

piib =N PP (PP (16.16)
A
and since PP and P52 are non-negative,
k
Rank, (PP172) = | | = min{k | Y P2 (PP)T} (16.17)
A=1

is precisely the minimum number of shared random values needed to simulate the joint broadcast behavior.

Since we consider a qubit broadcast having |[M;| = |[Ma| = 2, weak nonclassicality is shown to exist if
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Rank (PBlBZ) > 2. Since the matrix in Eq. (16.15) is identical to the planar symmetric behavior in

Theorem 13, it follows that the number of classical message needed to simulate exactly the behavior P is
k
5]

Therefore, as N — oo an unbounded amount of classical communication is need to exactly simulate the

Rank, (P?) > min{k € N| N < ( )} > Tlog,(N)]. (16.18)

observed behavior of a maximally entangled two-qubit state. O

The result in Theorem 15 proves that entanglement is weakly nonclassical even in the simplest case where
a source distributes a static entangled states to receivers By and Bs. This example demonstrates the inclusion
hierarchy CBN ¢ QBCN ¢ CBON where an unlimited amount of shared randomness is required to simulate
planar symmetric POVM measurements on each qubit.

We now consider the weak nonclassicality of quantum broadcasts when |X'| > 1 and more than one input

is given to the sender.

Proposition 17. Consider the broadcast scenario with n receivers. Suppose that for all z € X the sender
prepares a separable state p2 = @/, pPi where pBi € D(’H[%). It follows that CBN C QBCN C Conv (CBN),

hence all quantum broadcasts using separable states are classically simulable.

Proof. Let the state p2 = -, pBi be measured by the n receivers as

n

P(jlz) =Tr | [ QL | pit | =[] T o2 ] = [[ Puil2). (16.19)
j=1 i=1 )

Since a classical broadcast’s behavior decomposes as

n

PUCN — é)PBf P} = éPBi <®P3H51>éPBiP;‘HBi’ (16.20)
j=1 j=1 i=1

i=1

the classical probabilities factor as P(jlz) = []i_; P(yilz) where P53 = Y _ o P(ii|z) |[m)(z|. From
Eq. (16.19), we find that the broadcast network’s behavior also factors as the product of each receiver’s local
behavior. Hence the quantum broadcast system reduces to n parallel signaling scenarios. If the signaling
dimension of each independent broadcast is constant across the quantum and classical versions of the network,
then by Lemma 13, the classical signaling scenario can always simulate each individual channel when an
unlimited amount of shared randomness is present. That is QBCN ¢ CECN. Similarly using Theorem 13 we
know that each independent point-to-point signaling scenario can require an unlimited amount of shared

randomness to simulate. Therefore we show the complete hierarchy CBN € QBCN C C}?CN. O

Theorem 16. Consider the broadcast scenario with two receivers in which the sender prepares the maximally
entangled state p2 = |2 (¥ where |[¢p2) = UPr @ IP2 |@7) and @) = Z?Zl ﬁ i) |7). Al bipartite
maximally entangled states are classically simulable in a two-receiver broadcast such that CBN € QBCN C
CEON,
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Proof. Suppose pz = |13 )(12'| where [p2) = UP @ 152 |@*) and [@F) = Z?Zl ﬁ ) |2), then

P(y1,yole) = Tr [P @ T2 p?] = Tr (1] @ D2 (US @ 172) [@F) (| (U @ 172)1] (16.21)

+
=Tr [((IDUP @ 172)(17 @ \/T1;2) [@F)(F| (1P @ /11,72 )(Uf‘l@]IBZ)T] (16.22)

Bi77B B BT B BTT B ByIP2)t
= Tr |(BUP @ 1%) (I @1P2) [0+ )(@F| (/152 )T @ 1) (U™ (16.23)

T
T f
1 t
=Tr |IP Ul 112 -1 («/H%) (uby) (16.24)

where in the second to last line, the ricochet property was used to carry the H% terms into the B
subsystem, and in last line the partial trace is taken over subsystem Bs. Furthermore the post-measurement

state of a POVM measurement is

)
., Tm (A% @ 5 (@)@ 4] VL (16.25)
vz P(y2) Tr [H%%H] Tr [H%}

It follows by the ricochet property that when the By subsystem is traced out instead we find

L (M) @I [et)@t|] ()T (16.26)
Y2 P(y2) Tr [Hfﬁ}

Then, if we multiply Eq. (16.24) by P(y2)/P(y2) we find

T
T t
B, 1 By | Py2)
Pl le) = Tr [NEUP /12 A\ Ve | (U2) ] 5= (16.27)
-
=T [ UP o, (U] Pys) (16.28)

= P(y1lz, y2)P(y2) (16.29)

where in the last line it is shown P(y3) is independent from the input . Thus, y» can be interpreted
as a shared random value between the sender and receiver By. Furthermore, given shared randomness
between devices A and Bj the distribution P(y;|z,y2) can be simulated exactly using Lemma 13 where
P(y1|z,y2) = an:l PB1(yy|m, \)PA(m|z, y2, \)P(N). If using global shared randomness, the value yo can be
shared between all devices A, By, and Bs, the classical simulation strategy is for device By to simply output
the shared random value yo, while the signaling from device A to Bj is simulated using an additional shared
random value A. Interestingly, no communication is needed between A and B, just shared randomness. Hence
QBCN ¢ CECN and QBCN can be simulated using only one-bit of communication and shared randomness.
Furthermore, when |V5| > |Ms| there is no way for the message alphabet My to fully communicate the value
y1 € V1, therefore, shared randomness is necessary to simulate the quantum broadcast using entanglement,

but only half of the communication. O

Lemma 16. Any bipartite pure state, |¢)) € ’Hfl ® 7—[52, can be expressed as |1)) = M @ I|®T) where
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M = UDV with U and V being unitary operators on Hq and D = >, Vdy/\; [i)(i] is a diagonal matrix

where Y.\ = 1.

Proof.
) =M @I|®T) =UDV @I|dT) =UDe V' |ot)

U®VTZ\[<Z\T\F )IJ ® 7)

=UeVvh) qu ® 5)

j=1
Yoo

where in the last line |¢) is expressed in its Schmidt decomposition.

16.4 Strong Nonclassicality in Quantum Broadcast Networks

(16.30)

(16.31)

(16.32)

(16.33)

Now consider the case where |X| = |V1| = |J2] = 4 and | M| = |Maz| = 2 such that the two receivers each
have 4 outputs.. In total the 4-22-44 classical broadcast polytope has 7744 vertices, which is too much to

efficiently compute the polytope in full. Nevertheless, we construct 2 interesting witnesses for broadcast

nonclassicality. We write these witnesses as

10 0 0 30 00
01 0 0 0 3 00
0 0 00 0 0 0 3
0 0 0 O 11 0 2
01 0 0 1 1 0 2
10 0 O 1 1 0 2
0 0 0O 2 1 0 2
() 2> 0 0 0 O L) 8> 1 3 0 2
0 0 0 O 10 2 0
0 0 00 01 2 0
0 010 0 0 0 3
0 0 01 11 0 2
0 0 0 O 2 1 0 2
0 0 00 1 2 0 2
0 0 01 11 1 2
00 10 2 2 1 2

(16.34)

We find that first inequality (a) bounds all behaviors for quantum communication and entanglement

assisted receivers. The second inequality (b) is a tight facet of the CECN. We derive it using the linear

program in Eq. (4.22) where the nonclassical reference behavior PV¢ was obtained allowing the receivers to

share a PR box, a static resource that is stronger than entanglement.
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When using variational optimization to maximize the inequality in Eq. (16.34).b) we find that unassisted
quantum signaling does not violate the inequality, but entanglement-assisted receivers with quantum or
classical signaling can violate the inequality. Both quantum and classical broadcasts with entangled receivers
can achieve a maximal score of 8.5, which corresponds to a violation of 0.5 beyond the classical bound.

To summarize, we provide an example of a broadcast network in which entanglement-assisted receivers
produce strongly nonclassical behaviors. However, we find no strongly nonclassical example for quantum
signaling. The derived example was obtained by using as reference, a nonclassical behavior produced when
the receivers share a PR box, so perhaps it is not surprising that entanglement-assisted receivers can also yield
strongly nonclassical behaviors. Thus, these violations could be used to verify that receivers in a broadcast

network share entanglement.
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CHAPTER 17

NONCLASSICALITY IN MULTIPOINT
COMMUNICATION NETWORKS

Definition 106. Multipoint Communication Network: (MPN), A communication network having

mulitple senders and multiple receivers.

In this chapter we investigate the nonclassicality that occurs in multipoint communication networks
when quantum resources are used. We restrict our focus to a handful of network topologies for which linear

nonclassicality witnesses can be derived and nonclassical behaviors can be optimized (see Fig. 17.1).

17.1 Nonclassicality Witnesses for Multipoint Networks

We consider multipoint networks that have two senders and two receivers with intermediate interference
nodes. To derive nonclassicality witnesses, we obtain the set of vertices for the considered network topology,
then we apply the linear program in Eq. (4.22) to derive a facet of the multipoint network polytope. The
linear program requires a nonclassical behavior PV¢ ¢ CY¢t, which we obtain by considering the behaviors
that are impossible to obtain using the fixed set of classical communication resources. To begin, we define

the sets of classical behaviors for each of the multipoint networks given in Fig. 17.1.d,e,f).

Definition 107. The set of Classical Interference Network Behaviors C'N,| A behavior belongs to

the set of classical interference network (IN) behaviors if and only if it decomposes as
PIN _ (PCl ® PCz)PB(PAl PAQ) (17.1)

where PIN ¢ Pylxy2|xlxx2, PAi e ,PA,;\X“ PB ¢ PleBg\.Alegv and P% e 'Pylugi.

Definition 108. The Set of Classical Compressed Interference Network Behaviors: CCIN A
behavior belongs to the set of classical compressed interference networks (CIN) behaviors if and only if it

decomposes as
PN = (PP: @ PP2)POPB(PAPA) (17.2)

IN A, B D;
where P EPleyZ|X1><X2,P GPAi\XﬂP GPB|A1><A27PCEPC1><CQ\87 and P EP)’ilCi'
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Figure 17.1: Multipoint Communication Network DAGs: The top row shows communication networks
studied previously in this work and the bottom row shows the multipoint communication network investigated
in this chapter. a) Point-to-point signaling network, b) multiaccess network, ¢) broadcast network, d)
interference network, e) compressed interference network, and f) butterfly network.

Definition 109. The Set of Classical Butterfly Network Behaviors: CP*N A behavior belongs to
the set of classical butterfly network (BFN) behaviors if and only if it decomposes

PEN = (PP1 @ PP2)(I|4,,) @ (POPY) @) 4,,)) (P11 P2) (17.3)
Where PBFN € P)il ><372\X1 X X3 PAl S P.A“XX.A»;leiV PB € PBlAl XAz PC € PC1 XCQlB? and PDl € Py,lA“ XCj+

Note that the identity matrices are included because the butterfly network has two classical communication

wires that are unused during layers B and C.

The behaviors of each of these networks are described without the use of global shared randomness,
meaning that CN°t is generally nonconvex. However, when an unlimited amount of global shared randomness
is considered, the set of classical network behaviors is convex and forms the respective classical network
polytope CY°. The vertices of the classical network polytope are exactly the set of deterministic behaviors
YNet — [P ¢ CNet | P(]7) e BY & € X, i € V}. The facet inequalities bounding the network polytope then
constitute linear nonclassicality witnesses whose violations witnesses strong nonclassicality.

In the case where |X;| = |X2| = |V1| = |)2] = 3 and all communication has a signaling dimension of
k(IR = 2. the complete set of vertices can be derived for each of the multipoint communication
networks shown in Fig. 17.1. The number of vertices is too large to efficiently compute the complete set of
facets bounding the respective classical network polytope, however, the linear program in Eq. (4.22) can still
be used to obtain example facets. The linear program requires a nonclassical behavior for which to derive a
facet that witnesses its violation.

To derive examples of nonclassical behaviors, we simply consider behaviors that require additional
communication to implement (see Table 17.1). Each of these behaviors corresponds to a task that is not
possible given the restricted communication. Although, these nonclassical behaviors could be interpreted as
linear games in which one point is awarded for the correct answer and zero points for an incorrect answer,
these linear games do not represent facets of the classical network polytope. Therefore, to derive proper
facets of the signaling polytope, we use these behaviors as nonclassical reference points for which the linear
program in Eq. (4.22) can derive a facet that bounding the classical network polytope. Since the derived linear

inequalities are tight nonclassicality witnesses, the serve as ideal operational tests for strong nonclassicality in
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multipoint communication networks.

17.2  Strong Nonclassicality in Multipoint Communication Networks

We now cater our analysis for each of the multipoint networks considered in Fig. 17.1. For each network we
list the derived linear nonclassicality witnesses, and show when quantum communication or entanglement is
added that violations can be obtained in certain cases. Thus we show by example, that strong nonclassicality
can be witnessed in multipoint communication networks indicating that operational advantages can be derived
in the multipoint network setting.

Overall, we find many example of strong nonclassicality when either unassisted quantum signaling is used,
or quantum signaling is used with entanglement-assisted senders or receivers. However, the violations we find
are only lower bounds of the possible quantum violations of these nonclassicality witnesses. The reason being
that the applied variational quantum optimization methods are not guaranteed to find the global optimum.
Furthermore, the free operations within the respective variational ansatzes for the network may not enable
the maximal violation to be achieved. Nevertheless, a violation to any of these inequalities indicates that
strong nonclassicality is present. Therefore, these violations correspond directly with an operational resource

advantage.

17.2.1 Nonclassicality in the Interference Network

Consider the interference network (Fig. 17.1.d) having |X1| = |X2| = V1| = |V2] = 3 and one bit of
communication used in each wire. Enumerating the vertices we find a total of 17,289 vertices. Then we
derive a facet inequality of C{N for each behavior in Table 17.1. The derived faced inequalities are listed in
Table 17.2 where by the relabeling symmetry, any local permutation of inputs or outputs yields a similar
inequality.

We then consider three distinct quantum interference network ansatzes. First, we replace all classical
communication with one qubit of quantum communication. Then we consider the case where the senders
are assisted with quantum entanglement (EATx). Finally, we consider the case where the receivers are
assisted with quantum entanglement (EARx). In all entanglement-assisted cases, quantum communication is
used. Applying our variational optimization framework yields the violations shown in Fig. 17.2. We find
that each of our considered quantum signaling variational ansatzes were able to violate at least one of the
nonclassicality inequalities. The largest violations were achieved for the entanglement-assisted senders. Note
that the results in Fig. 17.2 show lower bounds on the possible violation, but the maximal violation for each

resource configuration is not necessarily known.

17.2.2  Nonclassicality in the Compressed Interference Network

Consider the compressed interference network (Fig. 17.1.e) having |X;| = |X2]| = |[W1]| = |V2] = 3 and one bit
of communication used in each wire. Enumerating the vertices we find a total of 3,681 vertices. Then we
derive a facet inequality of C{™N for each behavior in Table 17.1. The derived faced inequalities are listed in
Table 17.3 where by the relabeling symmetry, any local permutation of inputs or outputs yields a similar
inequality.

We then consider three distinct quantum compressed interference network ansatzes. First, we replace all

classical communication with one qubit of quantum communication. Then we consider the case where the
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Table 17.1: Nonclassical behaviors for multipoint networks having |X;|

one-bit of communication for each wire. Pypt—g, multiplication starting from zero, y1y2 = z1 * 2 where
Y1, Y2, 21, T2 € {0,1,2}. Pyat—1, multiplication start from one, y1y2 = 1 * x2 where y1,ya, 21, 22 € {1,2,3}.

P ada.0 addition, y1y2 = o1 + x9 where y1, yo, 1, 22 € {0,1,2}. Pp;g, subtraction where y; = yo

|1 — 2]

21 and y; = 2. Pcov, noiseless communication where y; = x4

yo =y1+1if 22 > 1. Pperm, y1 = 21 and ya = my, (22) where 7y, is a permutation depending on the output

where y1,y2, 21,22 € {0,1,2}. Pcomp, comparison where y; =y =0 if 21 = @2, y1 = y2 + 1 if 21 > 22, and

Y1- Pswap, the output swaps the input as y»

and yo = 3
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Table 17.2: Derived nonclassicality witnesses for the interference network. Each inequality (v, G) is expressed

as v > G.
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Quantum Violations of
Interference Network Nonclassicality Witnesses

Violation

B QInt [EEE EATXQInt HEE EARX QInt

Figure 17.2: Quantum violations of classical bounds for the interference network. The z-axis labels the
nonclassicality witness while the y-axis shows the violation where the classical bound is fixed to zero. The
left plot shows the full violations while the right plot shows the same data but zoomed in to show detail. The
blue bars show the case where unassisted quantum signaling is used. The orange bars show the case when
quantum signaling is used and the senders are assisted with entanglement. The green bars show the case
when quantum signaling is used and the receivers are assisted with entanglement.

senders are assisted with quantum entanglement (EATx). Finally, we consider the case where the receivers are
assisted with quantum entanglement (EARx). In all entanglement-assisted cases, quantum communication is
used. Applying our variational optimization framework yields the violations shown in Fig. 17.3. For each
nonclassicality witness, we find a quantum violation except in the for the inequality (12, G{, ). The
entanglement-assisted senders are able to violate each of the example nonclassicality witnesses. We find the
entanglement-assisted receivers to only be able to violate the nonclassicality witness (12, Gggﬂlp). Remarkably,

unassisted quantum communication is able to achieve violations in most cases, and for the Gg‘}gp and Gg}g

the unassisted quantum signaling achieves stronger violations than the entanglement-assisted senders.

17.2.3 Nonclassicality in the Butterfly Network

Consider the butterfly network (Fig. 17.1.f) having |X;| = |X2| = | V1| = |V2| = 3 and one bit of communication
used in each wire. Enumerating the vertices we find a total of 690,813 vertices. Then we derive a facet
inequality of CEFN for each behavior in Table 17.1. The derived faced inequalities are listed in Table 17.4
where by the relabeling symmetry, any local permutation of inputs or outputs yields a similar inequality.
We then consider three distinct quantum compressed interference network ansatzes. First, we replace all
classical communication with one qubit of quantum communication. Then we consider the case where the
senders are assisted with quantum entanglement (EATx). Finally, we consider the case where the receivers are
assisted with quantum entanglement (EARx). In all entanglement-assisted cases, quantum communication
is used. Applying our variational optimization framework yields the violations shown in Fig. 17.4. We

find no examples in which unassisted quantum signaling is able to violate a nonclassicality witness. The
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