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Abstract

Controlling mechanical wave propagation is crucial for addressing technological and environmental challenges.

These include preventing the vibration-induced structural failure of civil and energy infrastructure, enhancing

noise-cancellation and imaging technologies, and developing novel acoustic devices for protective gears and

nondestructive evaluation. Phononic materials, which are engineered materials with periodic building blocks,

exhibit wave characteristics superior to that of traditional materials and therefore have the potential to

revolutionize our ability to control waves. However, the current understanding of their functionality is

primarily limited to the linear regime, despite the prevalent occurrence of large deformations and nonlinear

mechanical responses in real-world materials. Recent research has explored the nonlinear behavior of phononic

materials through granular crystals and soft metamaterials, extending the analysis beyond the linear regime.

However, these studies primarily examined either discrete nonlinearity in the form of spring-mass chains or

continuous nonlinearities in continuous periodic materials. Consequently, there remains an open fundamental

question of how waves propagate in continuum phononic materials with discrete (or local) nonlinearities.

Addressing this question may reveal new opportunities to control the global nonlinear wave response of

phononic materials via local nonlinearities and discrete-continuum coupling.

This dissertation introduces and investigates nonlinear continuum phononic materials featuring geoma-

terial microstructures, particularly, micro-cracks as local nonlinearities. The nondestructive evaluation of

geomaterials has shown that micro-cracks display highly nonlinear responses because of rough features on their

contacting surfaces, known as rough contacts. Despite their rich nonlinear responses, rough contacts have not

yet been explored in the context of engineered periodic media. Thus, this research develops a fundamental

understanding of (1) the influence of the periodic arrangement of rough contacts on wave propagation and (2)

the role of local contact nonlinearity between successive continuum layers in shaping nonlinear wave responses.

To achieve this, extensive numerical analyses were conducted to study wave responses in these phononic

materials for varying levels of contact nonlinearity, from weak to strong, including friction. Additionally, pilot

experimental studies of acoustic characterization of base materials and ultrasonic wave propagation through

rough contact have been conducted, which serves as a foundation for the future realization of these materials.

The research reveals atypical wave signatures with no analogs in linear theory and provides insight into the

underlying physics behind their emergence. Specifically, the study reports energy transfer between frequencies

through harmonic generation, self-demodulation, and wave mixing, propagation of localized traveling waves

in the form of stegotons, energy localization through acoustic resonances, and generation of eigenstrains

from memory-dependent responses. These properties are further exploited to demonstrate novel wave

propagation control via tunable vibration filtering, tunable spectral energy transfer, broadband nonreciprocal

wave propagation, adaptive energy absorption, compact energy propagation, and acoustically-governed

programmability, and surface reconfigurability. Preliminary measurements suggest that complex mechanisms

at rough contacts such as nonlinear normal force-displacement relationship due to asperity deformation, and
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eigenstrain generation and energy dissipation due to interface sliding in a physical system may be captured

through ultrasonic measurements. Overall, this dissertation offers a new perspective on the potential of

nonlinear continuum phononic materials with local nonlinearity for wave control and manipulation, which

could have significant implications for enhancing structural integrity and innovations in acoustic technology.
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Ū Normalized wave displacement

u Wave displacement

ui Input wave displacement

v Particle velocity of wave

v0 Particle velocity of wave in an ideal system

v1 Amplitude of primary stegotons in terms of particle velocity

v2 Amplitude of secondary stegotons in terms of particle velocity

W Weight of sample

x1 Stable equilibrium point of weakly nonlinear system

x2 Unstable equilibrium point of weakly nonlinear system

z Acoustic impedance

xxiv



Chapter 1

Introduction

This chapter introduces the research motivation, scope, and objectives of the dissertation. It emphasizes

the importance of developing phononic materials to control mechanical wave propagation in engineering

applications. Additionally, it provides an overview of the existing knowledge and state-of-the-art in the

phononic materials field. The primary gap in this area is identified as the question of how waves propagate in

continuum phononic material with discrete nonlinearity. To address this question, the dissertation examines

continuum phononic material with rough contacts, which represents the system in question. Finally, the

chapter concludes by highlighting the research objectives and corresponding key accomplishments along with

the structure of the dissertation.

1.1 Motivation

Waves permeate our daily existence, manifesting themselves throughout nature in diverse forms. They

are disturbances that carry energy through space and time, encompassing electromagnetic and mechanical

variations. Electromagnetic waves, such as visible light, X-rays, and radio waves, traverse vacuums, while

mechanical waves, like sound, oceanic, and seismic waves, necessitate a medium—be it fluid or solid—to

propagate. Among these, the propagation of waves through solid materials is of particular significance

in addressing current engineering and societal challenges. Such challenges include environmental noise,

component failure due to vibrations, and the loss of life caused by catastrophic disasters and earthquakes.

Understanding the interactions between waves and materials is also crucial for various technologies, including

ultrasonic inspection and biomedical imaging. Hence, this dissertation research concentrates on wave

propagation through solid materials as it is highly relevant to addressing these challenges and advancing

related technologies.

The ability to control and manipulate mechanical waves holds the utmost importance in addressing

critical engineering problems. These problems include a range of objectives, such as ensuring comfort and

safety, improving energy and cost efficiency, and preventing signal interference for enhanced technologies. For

instance, excessive noise and vibration can cause discomfort and health problems, particularly in occupational

and residential environments. By exerting control over wave propagation, we gain the capability to regulate

noise and vibration levels in engineering applications like vehicles, machinery, and buildings. Similarly,

controlling the propagation of seismic waves can lead to the design of protective structures that can withstand

earthquakes and other natural disasters. Waves, such as sound or vibration, can also be harnessed to generate
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energy, and controlling their propagation enables the design of devices that can convert mechanical energy

into electrical energy. This is particularly useful in powering devices in remote areas or in places where

accessing traditional sources of energy is challenging. Additionally, controlling noise and vibration in turbines

and engines can improve their life and cost efficiency. Moreover, controlling wave propagation can enhance

medical imaging by reducing noise from signal interference and improving image quality. By directing waves

with precision to target specific tissues in the body, we can potentially enhance the efficacy of therapeutic

treatments for diseases like cancer. Therefore, controlling these waves is critical to addressing problems in

various industries, including aviation, transportation, materials, healthcare, and energy.

Wave propagation control has been historically achieved through both active and passive methods. Active

control involves a sensor-actuator system, where the sensor detects the state of wave propagation, and the

actuator alters the system or structure’s behavior based on the feedback received. An example of this method

is piezoelectric materials, which tune their properties to alter wave or vibrational responses [1]. Passive

methods rely on materials with different acoustic properties [2], and structures that can dissipate or absorb

waves, such as vibration dampers and resonators in mechanical systems [3]. However, despite the advantages

and widespread use of these active and passive methods, they suffer from certain limitations. Active methods

are complex, expensive, require maintenance and calibration, and can be less reliable due to their dependence

on sensors and actuators. Passive methods, on the other hand, are less flexible and limited in their functional

range, especially in highly fluctuating dynamic environments. Therefore, this dissertation aims to study novel

engineered materials with tailored and tunable properties, offering more flexible and precise control over wave

propagation.

1.2 Phononic materials

Phononic materials, also known as “metamaterials”, are a class of engineered materials designed to control

wave propagation. They are constructed using periodic building blocks of “unit cells”, such as material

properties, geometries, and/or boundary conditions [Fig. 1.1(a)]. Due to these periodic architectures,

phononic materials exhibit nonlinear dispersion, which is the relationship between frequency and wavenumber,

and result in band gaps [4], [5] over specific frequency ranges [Fig. 1.1(b)]. Within these band gaps, waves

cannot propagate and are reflected due to the material’s heterogeneity [refer to mode shape associated with

star marker in Fig. 1.1(b)]. This unique property has direct applications in vibration mitigation [6]–[8], noise

isolation [9], and waveguiding [10], [11], making material design an effective way to control wave propagation,

the primary focus of this dissertation.

1.2.1 Linear phononic materials

Phononic materials have been extensively studied with linear constitutive laws where stresses are linearly

proportional to strains or forces are linearly proportional to displacement. The linearity simplifies the

mathematical analysis and enables the design of phononic materials with specific band gaps for controlling

wave propagation. In-depth background on the mathematical analysis of dispersion and band gap formation

in linear phononic materials and metamaterials can be found in the review articles by Hussein et al. [12] and

Zhou et al. [13]. The Bragg-scattering mechanism dictates the formation of band gaps, which arises from the

interference of waves scattered by the periodic structure. Therefore, the frequencies at which band gaps form

correspond to wavelengths of the order of size of the unit cell of the phononic materials. Since the wavelength

and frequency of waves are inversely related, waves at low frequencies have high wavelengths. Thus, phononic
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Figure 1.1: Phononic materials offer promising prospects to control wave propagation. (a) The periodic
nature of phononic materials is exemplified by the presence of periodic building blocks, depicted by red dashed
rectangles, with a unit cell length denoted as s. Periodicity can arise from variations in material properties,
geometries, and/or boundary conditions. (b) Typical dispersion characteristics of phononic materials with a
Bragg scattering-induced band gap, which is influenced by both the unit cell size and the phase velocity (cp)
of the bulk wave. Mode shapes of three representative cases, namely the acoustic band (square), the band
gap (star), and the optical band (circle), illustrate the frequency-dependent nature of wave propagation. (c)
The field of linear phononic materials encompasses diverse research domains. Schematic illustrations depict
various mechanisms explored for enhancing band gaps, the utilization of external stimuli for tunability, and
demonstrated acoustic applications.

materials require unrealistically large sizes to form band gaps at low frequencies. As a result, significant

efforts have been dedicated to enhancing the band gaps, which involves lowering the center frequency and

widening the width, over the last decade [Fig. 1.1(c)]. For example, mechanisms such as local resonances

[14] and inertial amplification [15] have been developed to reduce the band gap frequency without increasing

the size of the unit cell. The architecture of the unit cell, which governs the effective mechanical and wave

propagation properties [16]–[18], has also been exploited to enhance band gaps. This includes developing

novel lattice structures [6], optimizing their mass and volume distribution [6], [19], and nodal connectivities

[6], [19] that have been shown to lower the band gap frequency and widen their width.

Researchers have also utilized the band gap properties of phononic materials to enable unique and exotic
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phenomena such as mode conversion [20] and negative refraction [21]. Within the band gap frequency range,

it is possible to achieve a negative refractive index, which leads to fascinating effects such as wave focusing

below the diffraction limit [22], [23] and invisibility cloaking [24]. Furthermore, phononic materials based

on their geometry, specifically their lattice structure, exhibit anisotropic properties due to the architecture

of their unit cells. This enables directional control of wave propagation [16], [17], wave beaming [25], and

anomalous wave polarization [16], [17]. However, phononic materials have fixed dispersion and band gap

characteristics once they are designed, making them unsuitable for applications that require adaptable

properties in fluctuating environmental conditions. Thus, recent years have seen extensive research on tuning

the properties of phononic materials in situ through stiffening, phase transformation, or geometry modulation

[26]. Various external stimuli, such as magnetic [27], electrical [28], optical [29], thermal [30], and mechanical

forces [31], have been used to tune the dispersion characteristics of phononic materials.

Although there have been significant studies on phononic materials, as reviewed in recent articles [32]

and [33], most of the current research has been limited to the linear regime of wave propagation, which only

considers infinitesimal displacements and deformations. However, many materials and structures undergo

large deformations and exhibit nonlinear mechanical responses. This restriction to linear regimes further

hinders the exploration of complex, intertwined dynamic responses that could arise in nonlinear regimes.

Thus, there is a need to better understand and design nonlinear phononic materials. This would enable the

exploration of novel avenues for the control of wave propagation, leading to new acoustic applications.

1.2.2 Nonlinear phononic materials

Nonlinearity is pervasive across diverse disciplines of physics, spanning optics [34], chemistry [35], biology

[36], thermodynamics [37], material science [38], and even cosmology [39], operating at various length scales.

These physical nonlinearities enable advanced functionalities in engineering applications [40], [41] and have

recently garnered significant attention in enhancing the dynamics of periodic media [42], [43]. From the

perspective of mechanical systems, real materials and structures often undergo larger deformations than what

can be captured by linear analysis. Therefore, it is critical to understand how phononic materials respond to

waves with amplitudes that surpass the linear regime. Further, expanding the analysis of phononic materials

into the nonlinear regime allows even more control over the distribution of energy of a mechanical wave in

time and space as it propagates through the material. This is because nonlinearity can achieve behaviors that

are inaccessible and potentially superior to their linear counterparts [44]. These richer wave responses include

amplitude-dependent material responses, energy transfer between frequencies, modal mixing, irreversibility,

and localization, among others. Incorporating nonlinearity can also manifest passive material response,

eliminating the need for external stimuli. Overall, comprehending the nonlinear behavior of phononic materials

is vital for optimizing their performance and unlocking new behaviors.

Studies on nonlinear bulk wave propagation have a rich history dating back to the 1960s [45]–[49], when

researchers first considered higher-order elasticity laws in the context of elastic wave propagation. These

early studies provided a solid foundation for further exploration of nonlinear bulk waves, which were later

extensively documented [50]–[52]. Nonlinear dispersive waves in waveguides [53], [54] and surface waves [55]

were also investigated. Nonlinear wave propagation in bulk materials offers unique opportunities, such as

amplitude dependence [47] and energy transfer between frequencies [47], [49], [54], which inform potential

opportunities to exploit nonlinearity in phononic media. Furthermore, classical perturbation approaches

[56], such as the Lindstedt–Poincaré method, the method of multiple scales, the method of averaging, and

approximation techniques [56] such as the method of harmonic balance, were developed and applied to general
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Figure 1.2: Novel wave responses arising from the incorporation of nonlinearity in phononic materials. Figure
adapted with permission from [44], © Springer Nature 2021.

continua, providing foundational tools to reformulate and study nonlinear wave propagation in phononic

media.

Despite several advantages offered by nonlinearity, its complexity has often discouraged researchers from

exploring its potential in phononic materials. However, recent advances in analytical methods and the

increasing availability of computational power have enabled the intentional design of nonlinearity in phononic

materials for enhanced functionalities [44]. Initial studies in the field were focused on developing approximate

analytical, numerical, or computational tools to analyze nonlinear wave propagation through phononic media

due to the absence of exact closed-form analytical solutions for most nonlinear systems. These efforts were

largely confined to simple one-dimensional (1D) discrete systems, such as periodic chains coupled with

nonlinear springs [57]–[59], linearly coupled spring-mass system with locally connected nonlinear oscillators

[60], and continuous systems such as a homogeneous bar under finite strain with periodically attached linear
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local resonators [61]. These studies showed amplitude-dependent dispersion and band gaps of nonlinear

periodic systems. Building on these fundamental studies, recent research efforts have exploited physics-driven

sources of nonlinearity in phononic materials to achieve unique nonlinear wave responses (see review by

Patil and Matlack [44]). Additional review articles have highlighted key contributions to different aspects of

nonlinear phononics [12], granular crystals [62], [63], nonlinear lattice materials [64], flexible metamaterials

[65], and nonreciprocal acoustic and elastic materials [66]. In the following paragraphs, a high-level summary

of some of the key advances in nonlinear phononic materials is provided. However, readers are advised to

refer to the aforementioned review papers for a more in-depth summary.

Granular phononic crystals or granular crystals are a class of nonlinear phononic materials, where an

ensemble of particles interacting through Hertzian contact gives rise to nonlinear responses. Remarkably, the

mechanical response of granular crystals can be tuned from the linear to nonlinear regimes by controlling

the precompression and wave amplitude. Moreover, the nonlinear response can be categorized as weak

or strong. The absence or presence of contact loss under dynamic excitation governs the weak or strong

nonlinearity, respectively. Weak nonlinearity exists when the excitation amplitude is smaller compared to

static precompression, whereas strong nonlinearity exists when the excitation amplitude is larger than the

precompression or when the precompression itself is zero. Thus, Hertzian contact nonlinearity is not a

continuous function when strong nonlinearity exists. Over the years, various analytical approaches such as

continuum approximations [67], binary collision approximation [68], and reduced-order models with periodic

boundary conditions [69] have been developed to solve wave propagation through strongly nonlinear granular

crystals, whereas weakly nonlinear granular crystals are typically approximated up to quadratic order via

asymptotic expansion [62]. Using these models and several experimental demonstrations, nonlinear wave

propagation through granular crystals has been researched extensively. These materials have also shown

exceptional wave propagation properties such as solitary waves [67], [70], discrete breathers [71], second

harmonic generation [72], [73], and modal mixing [74].

Over the past decade, several other phononic material systems with nonlinearity have been introduced

and studied. These include tensegrity structures [75], [76], bistable periodic networks [77], [78], flexible

metamaterials [79], and origami metamaterial [80]. Tensegrity structures are assemblies of rigid bars connected

by prestressed cable-like elements that only support tensile loads, all constrained between rigid masses. Similar

to granular crystals, they have a tunable nonlinearity, exhibiting a nonlinear force–displacement power law

relation that is softening, hardening, or a combination thereof, depending upon the local pre-strain (i.e., the

pretension of tensile elements) and global prestress (i.e., external axial force) [75], [76]. Phononic materials

with bistable or multistable elements exploit the transition of structural members from one stable state to

another as waves propagate [77], [78]. Flexible metamaterials exploit the configurational nonlinearity of

rotating rigid squares coupled by flexible ligaments thus coupling both translational and rotation degrees of

freedom [79]. Finally, origami metamaterials exploit the large deformation of origami-inspired linkages [80].

All these systems are studied analytically through reduced-order models, numerically, and experimentally

to demonstrate unique wave propagation properties. Some of these notable properties consist of solitary

waves in tensegrity structures [75], [76], transition waves [77] and supratransmission [78] in bistable phononic

materials, vector solitons in flexible metamaterials [79], and transition of compressional waves to rarefaction

in origami metamaterials [80].

In summary, exploiting several forms of nonlinearities, including material, finite strains, multistability,

configuration, and contact in phononic materials enabled wave responses not achievable in corresponding

linear counterparts [Fig. 1.2]. These responses are not just limited to the passive tuning of the acoustic
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characteristics but include the propagation of localized waves such as solitary and transition waves, localization

of energy such as discrete breathers, abrupt energy transmission within band gap through supra transmission,

and nonreciprocal wave propagation [44].

1.2.3 Knowledge gap

The potential of nonlinear phononic materials for advanced engineering material design is underscored by

their superior wave propagation properties, which arise from the combination of periodicity and nonlinearity.

Yet, the nonlinear phononic materials studied so far have either considered discrete nonlinearity in discrete

chains (purely discrete form) or continuous nonlinearity in continuous materials (purely continuous form) [Fig.

1.3]. It remains an open question of how waves propagate in continuum phononic materials with discrete (or

local) nonlinearities. More importantly, what role does a continuum play on nonlinear responses generated at

discrete locations, and how does the distribution of discrete nonlinearities within a continuum govern energy

transfer between frequencies and wave evolution through the material? By addressing these questions, new

opportunities for wave propagation control through the local coupling of discrete–continuum elements can be

unlocked.

For example, studies of granular crystals are focused on frequencies having timescales of the dynamic

disturbances much larger than the timescales of the modal frequencies of individual beads. Thus, elastic

deformations were assumed to be concentrated only at the contacts while the beads were under the action

of quasi-static deformation, making it reasonable to model granular crystals as discrete spring-mass chains.

However, such treatment lacks the prospect of manipulating wave propagation through the dynamic response

of the elastic media between nonlinear contacts. Moving away from the particle mechanics, the continuous

modeling of beads has highlighted vibration-energy trapping [81], pulse propagation through an elastic–acoustic

interface [82], and the effect of localized plastic dissipation on solitary waves [83]. Notably, a comparative

study highlighted substantial differences in the dispersion of soft granular crystals obtained through continuous

and discrete modeling of beads [84]. Despite this progress, the impact of the continuum between nonlinear

contacts on wave propagation, specifically on the interactions between continuously propagating and discretely
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generated waves, is not studied. Such understanding can help improve the dynamic response of granular

crystals at frequencies close to the modal frequencies of individual beads.

Even in the case of other nonlinear phononic media, the effects of vibrational modes of structural members

are not explored. For example, beams in bistable periodic media [77], [78], rotating discs in configuration-

based metamaterials [65], and rods and discs in tensegrity structures [75], [76] are considered rigid elements.

Consequently, there also exists a lack of fundamental understanding of how local nonlinearity surrounded by

deformable media leads to global nonlinear dynamic behavior. This further restricts the development of new

platforms and strategies that exploit the local coupling of discrete-continuum elements to design phononic

materials.

1.3 Local nonlinearities of geomaterial microstructures

Geomaterials are naturally formed materials characterized by their granular, heterogeneous, porous, and

fractal nature [Fig. 1.4(a)]. These materials exhibit strong nonlinear elastic properties and rate-dependent

effects due to their micro- and mesoscopic elements [85] [Figs. 1.4(b)-(d)]. Over the past few decades, various

measurement techniques have been developed to characterize the nonlinear acoustic properties of geomaterials.

These include nonlinear resonant ultrasound [86]–[88], nonlinear elastic wave spectroscopy [89], dynamic

acoustoelastic testing [86], [90], [91], and time reversal diagnostic techniques [92], [93]. Additionally, researchers

have developed multiscale mechanics models to better understand these nonlinear and rate-dependent effects

[87], [94], [95].

Berea sandstone, one of the well-studied geomaterials, also exhibits nonlinear elastic properties (Fig.

1.4). Its matrix primarily consists of quartz grains with characteristic length scales ranging from 10s to 100s

of microns. The sandstone contains inclusions, cracks, other mineral phases, and both dry and fluid-filled

pores [96], [97]. Another interesting feature of these sandstones is their fractal geometry [98] - a complex

geometric shape or pattern that exhibits self-similarity at different scales. Thus, a geometric feature of these

sandstones resembles the whole structure when viewed at different levels of magnification. By combining

imaging techniques like micro-computed tomography (CT) with numerical simulations, researchers have

predicted the mechanical properties of rocks of Berea sandstones with different microstructures [97], [99].

Through 3D micro-CT and Focused Ion Beam (FIB) Scanning Electron Microscopy (SEM) imaging, a network

of larger voids connected with smaller channels of pores has been revealed in Berea sandstone [100]. However,

some digital reconstructions based on micro-CT have overpredicted the effective elastic properties of Berea

sandstone, suggesting a loss of information at the smaller scale of grain-to-grain contacts, cracks, and small

pores [97], [99]. These findings provide insights into the microstructural features that potentially contribute to

nonlinear mechanisms, such as harmonic generation [101] and resonant frequency shifts [89] due to contacting

faces of microcracks, nonclassical nonlinearity in consolidated granular media [87], and softening effects

resulting from interactions between interfaces of hard and soft phases in cracks [86], [94] of geomaterials.

Clearly, numerous studies have examined the micro- and mesoscale features of Berea sandstone [96],

[97], [99], [100], and others have explored its nonlinear mechanical and acoustic properties extensively [95].

Yet, there remains a gap in exploiting the micro- or mesoscale features of geomaterials and their nonlinear

responses in designing wave-tailoring materials. Berea sandstone possesses diverse microstructures, such as

porosities, hard-soft boundaries, and multiphase interfaces, among others. Among these microstructures,

microcracks have been widely investigated in the field of nondestructive evaluation due to their role in failure

mechanisms under dynamic loads. Therefore, several studies have leveraged nonlinearities to detect damage in
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Figure 1.4: Nonlinear responses from the microstructures of Berea sandstone. (a) FIB-SEM image of a
milled Berea sandstone sample. The image illustrates several microstructural features including (A) crater
surrounded by (B) matrix, (C) voids, and (D) microcracks. Figure adapted with permission from [100], ©
2010 Elsevier Ltd. These microstructural features give rise to nonlinear mesoscopic wave response including
(b) higher harmonic generation, (c) slow dynamics leading to change in elasticity with strains, and (d)
amplitude-dependent resonance shift. Figures adapted from [87], under the Creative Commons license CC
BY-NC-ND 4.0.

geomaterials and improve the characterization of wave propagation. But what makes these cracks interesting

is that they act as localized sources of nonlinearity. Yet, microcrack-induced nonlinearities have not been

used in the context of periodic media.

1.4 Objectives and accomplishments

This dissertation aims to investigate wave propagation in continuum phononic materials with discrete

nonlinearities, focusing on understanding the role of the continuum and distribution of such nonlinearities

in governing energy propagation. Drawing inspiration from geomaterials, the research primarily explores

microcracks as a local source of nonlinearity. Specifically, it investigates 1D nonlinear continuum phononic

materials that incorporate microcracks (or rough contacts) as discrete nonlinearities (Fig. 1.5). It aims

to develop a fundamental understanding of two key aspects: (1) the influence of the periodic arrangement

of rough contacts on wave propagation and (2) the role of local contact nonlinearity between successive

continuum layers in shaping nonlinear wave responses. To achieve these goals, a comprehensive numerical

analysis is employed, considering various levels of contact nonlinearity ranging from weak to strong, including
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friction. Through careful examination of wave evolution in the material, the research aims to uncover the

underlying physics behind the emergence of novel nonlinear responses. Moreover, it aims to demonstrate

the potential for controlling and manipulating wave-energy propagation using these novel wave responses.

Preliminary measurements of ultrasonic wave propagation through single rough contact are also conducted to

establish an experimental foundation for future studies on these materials. The specific research objectives

are as follows:

Objective 1: Understanding longitudinal wave propagation through weakly-nonlinear con-

tinuum phononic materials with rough contacts [102], [103].

This objective investigates longitudinal wave propagation in nonlinear phononic materials with external

precompression. Finite element simulations are conducted to study two phenomena: wave self-interactions

and wave-wave interactions. Wave self-interactions focus on the generation of zero (DC), self-demodulated

low, and second harmonic frequencies, considering finiteness and embedded contacts. Results provide insights

into the influence of dispersion zones on nonlinear wave amplitudes and their evolution through the phononic

material. Additionally, controlling and tuning energy propagation between frequencies through external

precompression is also explored. Wave-wave interactions investigate the generation of sum and difference

frequencies, leading to the development of a contact-based phononic diode enabling nonreciprocal wave

propagation. This diode offers control over broadband frequency, mode, and direction of energy propagation.

Objective 2: Understanding longitudinal wave propagation through strongly-nonlinear

continuum phononic materials with rough contacts [104], [105].

This objective investigates longitudinal wave propagation in nonlinear phononic materials without pre-

compression, specifically examining the effects of wave-induced contact clapping. Finite element simulations

explore elastodynamic effects resulting from the strong nonlinear coupling between layers. Results capture

remarkable phenomena, including energy transfer in the frequency domain from the acoustic resonances of the

layers. The study also presents the interplay of strong nonlinearity and dispersion, giving rise to stegotons,

which are solitary-like localized traveling waves exhibiting spatial profile variations due to layers. It also

examines the influence of rough contact nonlinearity on stegoton parameters and the generation of secondary

stegotons through the collision of counterpropagating waves. Additionally, the effects of physical constraints,

such as light precompression, disorder, and finite lateral size, are studied to understand their influence on the

ideal system’s behavior.

Objective 3: Understanding shear wave propagation through hysteretically-nonlinear con-

tinuum phononic materials with rough contacts [106].

This objective explores the untapped potential of hysteretic nonlinearity in nonlinear phononic materials,

specifically focusing on shear wave-induced friction and its role in enabling superior wave responses and

programmable functionalities for acoustic devices. A hybrid analytical-numerical approach is employed

to solve the strongly nonlinear problem of shear wave propagation through a single and periodic array

of contacts. Frictional effects, captured using the Jenkin friction model with experimentally-obtained

properties, account for the stick-slip transition behavior at the contacts. Results show the generation of

shear-polarized eigenstrains, which are residual static deformations within the system, resulting from friction.

These eigenstrains are further exploited for smart functionality, including mechanical switches, precision

actuation, and surface reconfigurability. Additionally, energy dissipation from contact sliding is also studied

and exploited to form amplitude-dependent wide-band attenuation zones.

Objective 4: Developing experimental foundation by measuring ultrasonic wave propagation

through a single rough contact.
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Figure 1.5: Dissertation Overview

This objective aims to develop an experimental framework to study ultrasonic wave propagation through

rough contacts. To achieve this, preliminary measurements are conducted to characterize the acoustic

properties of the base materials and analyze longitudinal and shear wave propagation through a rough contact.

Acoustic characterization involves using ultrasonic pulse-echo measurements in an immersion tank, which

provides wave speed and frequency-dependent attenuation coefficient of the parent material. Measurements

of wave propagation through a rough contact suggest that complex mechanisms at contacts, such as nonlinear

normal force-displacement relationship due to asperity deformation, and eigenstrain generation and energy

dissipation due to interface sliding may be observed in a physical system. These experiments outline the

challenges and guidelines for future experimental work, establishing the groundwork for realizing phononic

materials with periodic rough contacts.
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1.5 Organization of the dissertation

The rest of the dissertation is organized as follows: Chapter 2 focuses on the nonlinear laws at rough

contacts and introduces different configurations of continuum phononic materials with contacts studied in the

dissertation. Chapter 3 presents the modeling details of nonlinear wave propagation through these materials.

It includes an analytical model for linear dispersion analysis and comprehensive details of finite element

models for weakly and strongly nonlinear phononic materials. It also introduces a hybrid model to capture the

hysteresis effect resulting from frictional instability. These initial chapters lay the foundation for subsequent

chapters, which delve deeper into specific aspects of nonlinear wave responses. Chapter 4 investigates wave

dynamics of the phononic materials under strong external precompression (weak nonlinearity), while Chapter

5 focuses on the same materials under zero or light external precompression (strong nonlinearity). Chapter

6 examines nonlinear shear wave propagation in these materials while capturing the effects of hysteretic

nonlinearity from frictional effects.

Chapter 7 presents the experimental results of ultrasonic wave propagation through rough contacts.

It includes immersion pulse-echo measurements for acoustic characterization of materials and investigates

wave-contact interaction for longitudinal and shear wave propagation. Finally, Chapter 8 concludes the

dissertation by summarizing the major results, research outputs, and the significance of the study. It also

provides recommendations for future work in this area, emphasizing potential avenues for further research

and development.
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Chapter 2

Continuum phononic materials with

rough contacts

This chapter introduces nonlinear laws for rough contacts and different configurations of continuum phononic

materials studied in this dissertation. It starts by discussing the nonlinear relationships used at the contacts in

both normal and tangential directions, along with the underlying assumptions and their physical interpretation.

The generalized formulation and deduction of nonlinear laws for specific cases, in line with the Hertzian

contacts formulation, are also presented. Subsequent sections delve into the exploration of different phononic

material systems. The contents of this chapter have been adapted from various sections of my published

articles, [102], [104], [106], which were written as part of the research for this dissertation.

2.1 Rough contact nonlinearity

Inspired by the presence of microcracks in geomaterials, rough contacts represent interfaces characterized

by surface roughness or microscale asperities (unevenness of rough surfaces) [Fig. 2.1(a)]. These interfaces

exhibit a nonlinear mechanical response due to the deformation of the contact asperities. Such nonlinear

responses manifest in both the normal and tangential directions. When subjected to compressive loads, the

asperities undergo significant deformation, leading to a change in the contact area and thereby resulting in a

nonlinear response. Similarly, under tangential loads, the asperities initially deform, but once the applied

tangential load surpasses the friction limit, sliding occurs, thus demonstrating a nonlinear tangential response.

The modeling of rough contacts and the determination of their mechanical response have been subjects of

interest for decades. Hertz investigated frictionless contact between elastic solids with smooth surface profiles,

approximating them as parabolic near the contact area [107]. According to this theory, the contact area

exhibits a nonlinear increase with the squeezing force, following a power-law relationship with an exponent

of 2/3. Although this model can approximate a randomly rough but nominally flat surface composed of

spherical bumps with uniform radii of curvature and height [108], it is not suitable for practical calculations

due to its idealized representation of real surfaces. Alternatively, more comprehensive models have been

developed. Some include models incorporating hierarchical asperities [109], a Gaussian distribution of spherical

bumps [110], models utilizing paraboloids with random height distributions [111], and numerous others [112].

However, these models have limitations. Firstly, they neglect the interactions between neighboring asperities

and the bulk material. Secondly, these models are only applicable to small asperity deformations and contact
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Figure 2.1: (a) Physical rough contacts and (b) the reduced-order models of their normal and tangential
interactions for wavelength larger than asperity size.

areas significantly smaller than the nominal area.

In this research, the contact laws are informed by experimental studies that consider the effects of actual

roughness, real deformations, and multi-asperity interactions. By incorporating these factors, the research

aims to overcome the limitations of idealized models and provide a more accurate representation of the

mechanical response of rough contacts. The surfaces in focus, however, are idealized and assumed to be

non-fractal, i.e. there is no repeating pattern on the contacting surfaces at length scales other than the

microscale asperities. This dissertation, specifically, focuses on wave interactions with rough contacts at

wavelengths (λ) much larger than the size of individual asperities (δ). In other words, the interest lies in

studying the effective nonlinear response of a collection of asperities, which includes the normal as well as

lateral interactions between adjecent asperities along with local sliding between them. To investigate such

mesoscale interactions, a reduced-order model is employed, treating the contacts as nonlinear springs with

experimentally-derived effective contact properties [Fig. 2.1(b)]. This approach enables the modeling of

force continuity and displacement discontinuity across the contacts while incorporating realistic nonlinear

contact laws. The study does not account for interfacial mass or inertia at the contact, as the effects of gap

resonances or cavities are negligible at wavelengths significantly larger than the rough asperities [113].

2.1.1 Normal contact law

The normal contact law utilized in this research is derived from a combination of ultrasonic experiments

[113], a micromechanics contact model [114], and asymptotic analysis [115]. A normal stiffness-pressure

(KN − p0) relation at the pre-compressed interface of two aluminum blocks with rough surfaces was obtained

experimentally based on the quasi-spring model [113]. This relationship was later expanded asymptotically

to eventually derive a nonlinear relationship between the contact pressure, p(∆u), and normal contact

displacement, ∆u [115]. This nonlinear relation follows a power-law dependence [115] as given by

p(∆u) =

[p1−β
0 − (1− β)C(∆u− δ0)]

1/(1−β), β ̸= 1,

p0 exp [−C(∆u− δ0)], β = 1,
(2.1)

where C, β are curve fitting parameters of the experimental data of contact stiffness and pressure, and δ0 is the

initial static deformation corresponding to external precompression, p0. C and β depend on the base material

and roughness topography such as asperity size, shape, and height distribution. As a result, a wide range of

β is reported in the literature based on roughness distribution [116], [117]. Theoretically, β for a contact
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between rough fractal surfaces is such that β = 1/(1 +Hc) in the interval Hc ∈ (0, 1), where Hc is an Hurst

exponent [116]. Physically, β tends to be towards unity for roughness having statistical (or non-uniform)

height distribution, whereas it tends to 0.5 for uniform roughness [115]. Further, the value of β for a rough

contact changes if the asperities undergo plastic deformation; this has been experimentally observed, but

only during the first loading cycle [113]. This research uses β corresponding to elastic deformations of rough

contacts after the first loading cycle (i.e. after hysteresis has been removed) and considers wave amplitudes

much smaller than the maximum deformation of asperities caused by the loads in the experimental work

of [113]. Therefore, the rough contacts in this study do not undergo any plastic deformation during wave

propagation and as a result, energy dissipation at the contacts from plasticity is neglected.

In a weakly nonlinear regime, where the contacts are initially precompressed and contact deformations

from waves are smaller than predeformation (∆u < δ0), the leading terms of the series expansion of Eq. (2.1)

are considered to obtain the nonlinear force-displacement relation as

p(∆u) = κ1∆u− κ2∆u
2, (2.2)

where κ1 and κ2 are linear and quadratic contact stiffness per unit area, respectively, as given by

κ1 = Cpβ0 , κ2 = 0.5C2βp2β−1
0 . (2.3)

In a strongly nonlinear regime, where contacts are initially uncompressed, the relationship of Eq. (2.1) for

compressive loads exhibits essential nonlinearity as

p(∆u) = [(1− β)C∆u]1/(1−β). (2.4)

This dissertation considers C = 6 × 1010
√
Pa/m and exponent β = 0.5, which results in a quadratic

dependence of pressure on displacement, a similar approximation made in the micromechanics model of rough

contact [114] owing to the fitting of experimentally acquired data [115]. This means the rough contact model

in this dissertation corresponds to rough surfaces with uniform height distribution of asperities. Thus, the

nonlinear force-displacement relation at the rough contacts in this research is,

For weakly nonlinear contacts [Fig. 2.2(a)]:

p(∆u) = C
√
p0∆u− C2

4
∆u2. (2.5)

For strongly nonlinear contacts [Fig. 2.2(b)]:

p(∆u) =

0, ∆u > 0,

C2∆u2

4 , ∆u ≤ 0.
(2.6)

The potential energy corresponding to weakly nonlinear Eq. (2.5) shows two distinct features - asymmetry

and anharmonicity - near the stable equilibrium point, x1 [Fig. 2.2(a)]. Asymmetry results in the generation

of DC while second harmonic frequencies are generated due to anharmonicity. The model given by Eq. (2.5)

is not valid beyond critical energy, Ecr, however, this research is focused within the weakly nonlinear regime,

i.e. below Ecr. On the other hand, Eq. (2.6) indicates that the dynamics of rough contacts is non-smooth as

contacting surfaces can collide and separate [Fig. 2.2(b)]. As a result, the dynamics of rough contacts are

strongly nonlinear (in fact, not even linearizable) when no precompression is applied. This strong nonlinearity
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Figure 2.2: Normal contact law corresponding to (a)-(b) weakly and (c) strongly nonlinear regime. (a) The
pressure-displacement relationship (solid) along with linear (dotted) and quadratic (dashed–dotted) force
components. (b) Potential energy corresponding to the pressure-displacement relationship in (a). The arrow
indicates the asymmetric potential well around the stable equilibrium point, x1, and the dotted line is a
critical energy limit at the unstable equilibrium point, x2. The energy plot is scaled up for better visualization.
(c) The pressure-displacement relationship with three contact configurations: (A) contact under compressive
load undergoing flattening of rough asperities, (B) contact under no load, and (C) contact loss. The inset in
(B) shows undeformed rough asperities and thin black lines in (C) indicate nominal surfaces.

is in addition to the nonlinear power-law interaction between rough asperities.

The nonlinear laws discussed above are obtained through a generalized formulation, which can be applied

to any values of β. However, for β ̸= 1, an alternative formulation also leads to the same nonlinear law

and draws an analogy with that of Hertzian contacts in granular crystals. In this alternate method, the

stiffness-pressure relation at a rough contact obtained experimentally can be fitted to a power law [115] such

that:

dp

du
= −Cpβ . (2.7)

To obtain a pressure-displacement relationship, integrate Eq. (2.7) within the interval 0 to p0 as∫ p0

0

1

pβ
dp = −C

∫ δ0

0

du, (2.8)

p1−β
0 = −(1− β)Cδ0 and p0 = [−(1− β)Cδ0]

1
1−β (2.9)

Eq. (2.9) is the strongly nonlinear form of the rough contact nonlinearity and is consistent with Eq. (2.4).

To deduce the above relationship to weakly nonlinear form, taking the Taylor series expansion up to the first

two terms such that,
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p(u) = [−(1− β)C(δ0 ± u)]
1

1−β , (2.10)

p(∆u) = p′(δ0)∆u+
p′′(δ0)

2!
∆u2, (2.11)

where

p′(δ0) = −C[−(1− β)Cδ0]
β

1−β , and p′′(δ0) = C2β[−(1− β)Cδ0]
2β−1
1−β . (2.12)

This effectively leads to

K1 = −C[−(1− β)Cδ0]
β

1−β , and K2 =
1

2
C2β[−(1− β)Cδ0]

2β−1
1−β , (2.13)

which informs the nonlinear dependencies of contact stiffness with predeformation.

For β = 0.5, Eq. (2.13) reduces to Eq. (2.5).

2.1.2 Tangential contact law

The Jenkins friction model [118] is considered to account for frictional effects and tangential compliance of

roughness [Fig. 2.3(a)]. This model captures stick-slip transition at the contacts and further assumes that

the compliance at real contacts is governed by the stiffness corresponding to the elastic deformation of the

micro-asperities at the contact interfaces [119] and the bulk elastic deformation at the macroscopic contact

scale[120]. Accordingly, the tangential interaction at the contacts is,

τ(t) =

τ(t−∆t) + κt∆b(t), stick,

sgn[ḃ(t)]τc, slip,
(2.14)

where τ is shear stress at the contact, b is corresponding tangential contact deformation, and ḃ (= db/dt)

is tangential velocity. t is time variable and ∆t is time step such that displacement increment, ∆b(t) =

b(t) − b(t − ∆t). κt is tangential contact stiffness per unit area and τc (= µσ0) is the friction limit at

which the contacts start to slide. The contact is under the state of normal pre-stress, σ0. The static and

kinematic coefficient of friction are treated the same, i.e. no abrupt jump in the friction force on the onset

of sliding. From Eq. (2.14), it can be seen that the contact law is history-dependent and follows different

loading-unloading paths due to contact sliding [Fig. 2.3(a)]. While an intermediate state of micro-slip

(or partial slip) exists in real contacts, no such state is assumed in this research, i.e. all asperities slide

simultaneously once the friction limit is reached.

Experiments were conducted to inform the contact properties, κt and µ, to be used as input parameters

in the tangential contact law of Eq. (2.14). Specifically, friction hysteresis loops were measured on a

high-frequency friction rig [refer to the experimental schematics of Fig. 2.3(b) and [121] for more details].

The setup consists of an electrodynamic shaker that applies a harmonic sinusoidal excitation in the tangential

direction to two contacting specimens while two laser Doppler vibrometers and a force transducer measure

relative motion between the specimens, b, and friction (or tangential) force, T , respectively. Experiments

were conducted on two aluminum (AL6061-T6511) specimens, which were roughened to an RMS surface

roughness of Rq ∼ 1.1 µm using P1200 grit sandpaper. The loading conditions for hysteresis measurements

were: N = 60 N and b = 15µm at an excitation frequency of 100 Hz at room temperature, which is commonly

used for reliable measurements on the friction rig.
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Figure 2.3: Tangential contact law. (a) Jenkins friction law. (b) Schematic of friction rig experiments to
obtain realistic hysteresis loop and contact properties of rough surfaces. Experimentally obtained (c) absolute
contact stiffness, Kt, and (d) coefficient of friction, µ, as contacting surfaces evolve. Insets in (d) highlight
wear during surface evolution and the actual area of contact (shaded black patch) during the steady-state
response.

The hysteresis loops (T − b relation) were recorded and absolute contact stiffness, Kt, was evaluated as

the slope of the stick portion of the loop and coefficient of friction as, µ = Tc/N [schematics of Fig. 2.3(b)].

These values are evaluated while the surface texture evolved from wear until a steady-state response was

reached [Figs. 2.3(c)-(d)]. The steady-state properties are listed in Table 2.1. Microscopic measurements

were also used to determine the actual contact area [shaded black patch in the inset of Fig. 2.3(d)], from

which the contact stiffness per unit area (κt = Kt/a, where a is the actual contact area) was obtained and

used as input for the friction law of Eq. (2.14) along with the coefficient of friction.

Parameters Obtained Values
Normal load, N 60 N
Actual worn-out area, a 1.2 mm2

Prestress, σ0 = N/a 50 MPa
Displacement amplitude, b 15 µm
Coefficient of friction, µ 0.77
Absolute stiffness, Kt 22 N/µm
Stiffness per unit area, κt = Kt/a 18.33e12 N/m3

Table 2.1: Friction rig experimental parameters and evaluated steady-state contact frictional properties

To ensure that the contact properties evaluated experimentally can be applied in the wave propagation

analysis, identical loading conditions and sample material was employed in the numerical model. Additionally,

the following assumptions are made:

1. The contacts are already in a steady-state condition from surface wearing, i.e. frictional properties do

not change with time as waves propagate through the contact.
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2. Both the coefficient of friction and tangential stiffness are rate independent, i.e. independent of the

frequency of excitation. This is a reasonable assumption since the coefficient of friction obtained from

quasi-static and frequency-dependent approaches differ insignificantly [122]. Further, contact stiffnesses

obtained through the quasi-spring model are frequency-independent for frequencies that correspond

to wavelengths much larger than asperity size [113]. Thus, the frictional properties of contacts with a

roughness of the orders of ∼ µm obtained at 100 Hz through friction rig can be reasonably applied to

study wave propagation up to ultrasonic frequencies (i.e. up to a few MHz).

3. Based on the parametric measurements of hysteresis loops on friction rig, it is assumed that both coeffi-

cient of friction and tangential stiffness do not (or negligibly) depend upon the tangential displacement

amplitude.

2.2 Phononic materials with rough contacts

This dissertation introduces 1D phononic materials by periodically arranging nonlinear rough contacts.

As a result, the system is a multilayered configuration with elastic layers coupled through rough contact

nonlinearity [Fig. 2.4(a)]. These layers are linear and have identical thicknesses, s. Consequently, the unit

cell of the phononic materials includes a contact and adjacent half layers [red rectangle in Fig. 2.4(a)]. While

the focus of the study is on wavelengths larger than rough asperities, the wavelengths are still of the order

of layer thickness. Thus, significant elastic deformation occurs in this system - both at the rough contacts

and within the layers. This differs from granular crystals, where elastic deformations are limited to the

contacts, and the elastic body between successive contacts is considered a rigid dimensionless point. To model
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these mechanical deformations in this dissertation, the layers are treated as a continuous material, while

the contacts are represented as nonlinear springs. The nonlinear relationship for weakly nonlinear normal

interaction is given by Eq. (2.2), whereas strongly nonlinear normal interaction is described by Eq. (2.4),

and tangential interaction is characterized by Eq. (2.14). Although the main focus is on understanding wave

propagation through semi-infinite x−directional phononic materials, the effects of finiteness are also examined

in selected cases. Various configurations of phononic materials studied in this dissertation are categorized in

Table 2.2.

Type of Nonlinearity Semi-infinite Finite Embedded Contact
Weak Nonlinearity ✓ ✓ ✓
Strong Nonlinearity ✓ - -
Hysteretic Nonlinearity - ✓ -

Table 2.2: Different configurations of continuum phononic materials investigated in this dissertation based
on geometry.

Semi-infinite phononic materials [Fig. 2.4(a)] are considered to be infinite in the +x direction, while the

other end (the left at x = 0) is treated as an excitation boundary. Both the layers and contacts are assumed

to be infinite in the y−direction. On the other hand, finite phononic materials [Fig. 2.4(b)] are introduced

such that a finite number of elastic layers are present in-between semi-infinite bulk layers, (ΓL, ΓR). The

left bulk layer, ΓL, occupies the space x < 0 while the right one, ΓR, occupies the space x > ns, where n is

the number of layers in the phononic material. The semi-infinite layers, (ΓL, ΓR), have rough surfaces at

the finite ends (x = 0 and x = ns). Thus, finite phononic material with n layers has n+ 1 contacts. Again,

the layers are assumed to be infinite in the y-direction while two different systems of contacts are studied −
infinite-length [Fig. 2.4(b)] and embedded [Fig. 2.4(c)] contacts of finite length, Lc.

The strength and type of nonlinearity of rough contacts in these phononic materials rely on external

boundary conditions (BCs) and the excitation type. When an external precompression, p0, is applied, rough

contacts do not induce contact clapping for longitudinal wave excitation with amplitudes smaller than

the pre-deformation, indicating a weakly nonlinear phononic material. Additionally, this same material

enables the propagation of shear waves due to non-zero normal stress at the contact. Therefore, externally

precompressed phononic material is studied to examine the effects of weak nonlinearity in rough contacts

and hysteretic nonlinearity from friction. On the contrary, a strongly nonlinear phononic material refers to

one with no or significantly smaller precompression compared to wave excitation. Table 2.3 classifies the

boundary conditions and wave excitation types, corresponding to their respective nonlinearity analyses.

Type of Nonlinearity External Precompression Wave Polarization
Weak Nonlinearity ✓ Longitudinal
Strong Nonlinearity - Longitudinal
Hysteretic Nonlinearity ✓ Shear

Table 2.3: Different configurations of continuum phononic materials investigated in this dissertation based
on boundary condition and excitation type.

2.3 Summary

This chapter explored the modeling of rough contacts and presented different phononic material configurations

studied in this dissertation. The analysis in this dissertation is restricted to wavelengths much larger than

20



the size of asperities at contact, while being on the order of the size of layers of phononic material. Therefore,

the contacts were treated as nonlinear springs to capture the effective behavior of the collection of asperities,

overcoming the limitation of existing and simplified analytical models. Specifically, the laws incorporated in

the analysis are -

1. In normal direction, contacts followed a power-law relationship between pressure and displacement.

The coefficient and exponents of power law are derived from experimental data obtained from contact

interfaces with uniform roughness. Under external precompression and relatively smaller wave ampli-

tudes, these contacts display weak nonlinearity as the power-law relationship can be asymptotically

reduced. However, for zero or light precompression and high wave amplitudes, the contacts exhibit

strong nonlinearity due to collision and separation of the contacting interface.

2. In tangential direction, the Jenkins friction model is used. This model accounts for the finite stiffness

of contact asperities and captures the stick-slip transition during frictional sliding. The coefficient of

friction and tangential contact stiffness is derived from the hysteresis loops measured on a friction rig.

These properties are evaluated when the contact response is steady-state.

These laws, derived from experimentally-informed contact properties, accurately depict the realistic and

physical behavior of rough contacts.

Next, the chapter presented phononic material with periodic contacts and several different configurations

studied in this dissertation. These configurations are based on geometry, boundary condition, and type of

wave excitation. Specifically, designs include semi-infinite and finite systems along with infinite-length and

embedded contacts. These configurations are developed to capture the effects of periodicity, finiteness, and

surrounding continuum. Additionally, configurations with and without precompression and for longitudinal

and shear wave excitation were considered for a thorough understanding of the nonlinear wave propagation

through the phononic material.
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Chapter 3

Modeling of wave propagation

This chapter provides an overview of modeling nonlinear wave propagation in continuum phononic material

with rough contacts. It begins with a concise review of existing approaches in the literature. Next, an

analytical model for linear dispersion analysis of unit cells is presented, followed by comprehensive details of

finite element models for wave propagation in both weakly and strongly nonlinear phononic materials. Lastly,

a hybrid model combining an analytical friction model and a finite element model for shear wave propagation

is introduced to capture the hysteresis effect resulting from frictional instability at contacts. The contents of

this chapter have been adapted from various sections of my published articles, [102], [104], [106], which were

written as part of the research for this dissertation.

3.1 Background on modeling nonlinear phononic materials

Phononic materials are commonly represented as spring-mass chains [12], which allows for a reduced-order

formulation of the wave propagation problem. Despite this simplification, the underlying physics of wave

propagation through these materials can still be studied. Additionally, phononic materials based on continuous

structural members, such as rods and beams, have facilitated the formulation of wave propagation through

them [61]. Previous studies have employed various methods, such as harmonic balance [60], multiple scales

[58], perturbation theory [57], [59], [123], and transfer matrix [61] techniques, to approximate the solution

for nonlinear wave propagation problems in periodic chains with discrete nonlinearity and homogeneous

waveguides with continuous nonlinearity. Granular crystals with contact nonlinearity have also been analyzed

using different methods [62]. However, these approaches mainly provide insights into simpler nonlinear

systems and face challenges when applied to complex configurations involving multidimensional multi-degrees

of freedom systems. Recent advancements in phononic materials, such as bistable metamaterials [77], flexible

metamaterials [65], tensegrity structures [75], and origami materials [80], have also been simplified as spring-

mass systems to facilitate the use of approximate methods mentioned above. However, there is limited

availability of methods that can simultaneously incorporate continuum systems with local nonlinearities,

especially for dynamic problems.

To address this, the present research adopts a finite element approach, which not only accommodates

complex geometries but also allows the simulation of amplitudes that are not achievable with perturbation

methods. This approach enables the analysis of phononic materials with strong and hysteretic nonlinearity.

The 1D phononic materials are modeled within a two-dimensional (2D) plane strain framework using the
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shear interactions only. (d) Finite element setup of Bloch analysis on a different form of the unit cell of (a).

commercial finite element package COMSOL Multiphysics 5.5. The layers are modeled as aluminum (Young’s

modulus = 69 GPa, Poisson’s ratio = 0.33, density = 2700 kg/m3) to align with experiments of rough contacts

[106], [113].

3.2 Analytical modeling of linear dispersion

Phononic material with zero precompression does not support the propagation of linear waves and thus is

referred to as a “sonic vacuum” [67]. However, externally compressed phononic material can support the

propagation of harmonic waves - both longitudinal and shear. In the context of longitudinal wave propagation,

the contact nonlinearity in the normal direction, as governed by Eq. (2.2), is fundamentally asymmetric in

nature with softening and hardening effects in tension and compression, respectively [Fig. 2.2(a) – solid black].

Due to this asymmetry, the effective nonlinearity may be of hardening or softening type depending upon

the competing effects in tension-compression, i.e. the dominant behavior may dictate the nature of effective

nonlinearity. Thus, increasing excitation amplitude may increase or decrease dispersion curves. Nevertheless,

the amplitude-dependent dispersion correction for weak quadratic nonlinearity is negligible [124]. Therefore,

the linear dispersion of these phononic materials is evaluated without considering the nonlinear stiffness. This

is sufficient to inform different zones of dispersion and facilitate the selection of appropriate input frequencies

for nonlinear analysis. Concerning shear wave propagation, the dispersion, and therefore the band gaps of the

phononic material are expected to depend on wave amplitude due to strong nonlinearity. Thus, the effects of

wave amplitude on shear band gaps are studied by considering linear dispersion as a reference. In that case,

the contact is assumed to be in the stick state, corresponding only to the tangential contact stiffness.

Next, the analytical model for dispersion calculation of pure longitudinal and shear waves is presented,

followed by the finite element setup as an alternate method. The unit cell of the phononic material consists

of a contact and two half layers [Fig. 2.4(a)]. However, for the simplified analytical formulation, the unit

cell can also be represented as a layer and a contact where the contact is treated as a linear spring [Fig.

3.1(a)]. The spring characteristics are defined by the linear terms of Eq. (2.2) and Eq. (2.14) for normal and

tangential interactions, respectively. To obtain dispersion relations of longitudinal waves, a Bloch analysis is

performed on the unit cell [Fig. 3.1(b)-(c)] as follows:

By applying a uniaxial strain wave equation for the layer as,

∂2u

∂t2
= c2L

∂2u

∂x2
, (3.1)

where u is the displacement, cL is the dilatational wave speed of the bulk material, and x and t are spatial

and temporal variables, respectively. The force per unit area (contact pressure) on the contact spring element
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is

p(∆u) = κ1(δ2 − δ1), (3.2)

where, δ1, δ2 are the displacements of the spring endpoints such that ∆u = δ2 − δ1. Now, applying force

continuity boundary condition per unit area at x = 0 as

(λ(L) + 2µ(L))
du

dx

∣∣∣
x=0

= κ1(δ2 − δ1), (3.3)

where λ(L), µ(L) are the Lame parameters of the bulk materials. To simulate the infinite periodic material,

the Bloch boundary condition is applied on the end faces of the unit cell as

u(x = −st) = δ2e
iqs, (3.4)

where q is the wavenumber. After solving Eqs. (3.1) to (3.4), the dispersion relation is obtained as

cos(qs) =
1

2

{
2 cos

(
ω

cL
s

)
−

[(
λ(L) + 2µ(L)

κ1

)
ω

cL

]
sin

(
ω

cL
s

)}
. (3.5)

This dispersion relation is solved for the wave vector for a given value of angular frequencies while relaxing the

wave vectors to be either real or imaginary to distinguish the propagating and evanescent waves, respectively.

Similarly, the equation for shear wave dispersion is obtained as,

cos(qs) =
1

2

{
2 cos

(
ω

cs
s

)
−

[(
G

κt

)
ω

cs

]
sin

(
ω

cs
s

)}
, (3.6)

where G is shear modulus and κt is tangential stiffness of contact.

These linear dispersions can also be evaluated using the finite element approach, where the unit cell can

be modeled as half-elastic layers with a contact-equivalent spring in between them [Fig. 3.1(d)]. By applying

periodic boundary conditions at all sides, the modes of the system can be obtained through eigenfrequency

analysis. The analytical results are validated through this method by sweeping the wavevector in the x−
direction for the first 100 frequencies. To obtain dispersion curves of 1D wave propagation, pure longitudinal

and shear wave modes are isolated by evaluating the modal mass along the x and y directions for each

frequency-wavenumber combination. For longitudinal dispersion, only combinations with non-zero modal

mass in the x-direction and zero modal mass in the y-direction are selected, while vice versa applies for shear

wave dispersion. This filtering condition considers pure modes and disregards mixed modes of the 2D system.

3.3 Numerical modeling of nonlinear wave propagation

3.3.1 Longitudinal wave propagation

3.3.1.1 Semi-infinite phononic material

Nonlinear wave propagation through semi-infinite phononic materials with periodic contacts [Fig. 2.4(a)] was

studied using a time-dependent finite element analysis at specific frequencies. Symmetry boundary conditions

are applied on the top and bottom edges of the finite element model [Fig. 3.2(a)], which ensured a perfect

impedance match for longitudinal waves at these edges (i.e. no side reflections) to best approximate an

infinite medium in the y−direction. The height of the geometry is considered the same as the wavelength
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Figure 3.2: Finite element models of nonlinear wave propagation through phononic materials with rough
contacts. Longitudinal wave propagation model for (a) semi-infinite, (b) finite, and (c) finite with embedded
contacts phononic material. The inset in (a) illustrate contact boundary conditions as nonlinear springs
decoupling adjacent layers at mesh nodes. (d) Shear wave propagation through finite phononic materials.
Excitation of (e) longitudinal waves as Gaussian-modulated tone bursts and (f) shear waves as wave packets
with a finite number of cycles of equal amplitude. Red curves in (e) and (f) denote Gaussian and rectangular
modulation of harmonic waves, respectively.

of the fundamental (input) wave to help visualize wave propagation color plots in post-processing software;

however, any finite height with symmetric boundary conditions would suffice. While a large number of

layers (a few hundred) are considered in the model, the simulation was conducted until the wave reaches the

right-most layer with a traction-free boundary condition. However, the wave propagation is analyzed within

the first few layers only, to avoid the influence of any reflections from the right-end boundary, approximating

x−directional wave propagation in an infinite phononic material. The contacts are modeled through nonlinear

thin elastic layers, which are spring-equivalent zero-thickness boundary conditions that decouple adjacent

elastic layers [inset of Fig. 3.2(a)]. These boundary conditions are in-built into COMSOL with nonlinear

spring characteristics explicitly specified as Eq. (2.2) for weakly nonlinear and Eq. (2.3) for strongly nonlinear

analysis.

3.3.1.2 Finite phononic material

Nonlinear wave propagation through finite phononic materials is also modeled [Fig. 3.2(b)], in particular,

phononic materials with n = 100 and 10. The total length of the phononic materials with 100 layers is larger

than the spatial length of the excited tone burst used in the finite element simulation, and therefore explicitly

clarifies the individual effects of nonlinearity and finiteness. The phononic material with 10 layers, which is
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smaller than the spatial length of the excited tone burst, is studied to understand the overlapping effects of

nonlinearity and finiteness, i.e. how boundary reflections interact with the incident wave inside the phononic

material. A special case of a single contact between semi-infinite layers is also studied to understand the effect

of periodic contact arrangement on wave propagation. The lengths of semi-infinite bulk layers (ΓL,ΓR) are

carefully chosen such that the reflections from the left and right boundaries of the finite element model do not

re-enter the phononic material, i.e. the model is simulated until the wave reaches the ends of the geometry.

An excitation signal from the left boundary is used as an incident wave entering the finite phononic material,

as there is no damping, diffraction, or dispersion in ΓL such that the amplitude and shape of the input signal

are retained up until the first contact in the phononic material.

3.3.1.3 Finite phononic material with embedded contacts

The finite element setup of nonlinear wave propagation through finite phononic materials with embedded

contacts of length, Lc, is the same as Section 3.3.1.2, except the height, H, is increased to avoid wave

reflections from the top and bottom boundaries [Fig. 3.2(c)]. This is because the interaction of the incident

wave with the edges of the embedded contacts generates scattered waves, which could reflect and re-enter

the phononic material obscuring the analysis of generated nonlinear amplitude. Different arrangements of

embedded contacts are also studied to explain the effect of the surrounding continuum on wave propagation.

3.3.1.4 Numerical parameters

The finite element parameters such as mesh size, time step, and type of excitation in the above phononic

material models are selected based on the type of analysis conducted and the nature of nonlinearity studied.

The mapped quad-meshing with quadratic serendipity shape function is used. The mapping generates

uniform meshing throughout the model avoiding any localized effect from sudden changes in mesh distribution.

In weakly nonlinear analysis, the maximum element size in the model is kept at least eight times smaller

than the smallest wavelength of interest [125], i.e. ∆x1 = cp/(8 × 2f), where the smallest wavelength is

defined by the second harmonic frequency, 2f (i.e. the largest frequency of interest in the simulations) and

the corresponding phase velocity, cp, of the dispersive system at 2f . The phase velocity is evaluated as the

secant of the dispersion curve of the linear phononic material at a given frequency. When 2f is in the band

gap, the minimum phase velocity of the linear dispersive system is used, which occurs at the lower band edge

frequency of the first band gap. At least four elements per layer are also ensured to capture layer deformation,

i.e. ∆x2 = s/4. In strongly nonlinear analysis, the element size in the model is determined based on the

minimum number of elements required to capture: 1) wave propagation results and 2) elastodynamics effects

of layers. To satisfy the first criteria, the element size in the model was kept eight times smaller than the

smallest wavelength of interest [102], i.e. ∆x1 = λff/8, where the smallest wavelength, λff , is defined by

the first free-free acoustic resonance of the layers, ffree−free (i.e. the largest frequency of interest in the

simulations) and the bulk phase velocity, cL. To satisfy the second criterion, at least four elements per

layer were ensured, i.e. ∆x2 = s/4. Thus the element size, ∆x, in both the model is min (∆x1,∆x2). It is

confirmed that there is a negligible increase in the accuracy of the numerical results with a further increase

in the number of elements per wavelength.

The PARDISO direct time-dependent solver with generalized alpha time stepping is implemented, and

the Courant–Friedrichs–Lewy (CFL) number of 0.2 is used to achieve convergence while solving the partial

differential equations numerically [126]. The time step, ∆t, according to CFL in the simulations is ∆t = [CFL×
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min(s/4,∆x)]/cp. Damping in the model is ignored, given the metal material and short wave propagation

distance. Further, diffraction was neglected as a plane wave is excited in these models.

A Gaussian-modulated longitudinal tone burst at a center frequency, f , is excited [Fig. 3.2(e)] from the

entire left edge of the model. This type of excitation is common in experiments at ultrasonic frequencies where

internal rough cracks have been studied [127]. Further, the modulation ensures the excitation is narrow-band,

which is useful for studying additional frequencies generated due to contact nonlinearity. The wave excitation

in the form of Gaussian modulated burst is defined as

ui(t) = U sin(2πft)Gf (t), (3.7)

where U is displacement excitation amplitude, t is time, and Gf is the Gaussian function in time domain

such that,

Gf (t) = exp

[
−
(
t− ζ

ψ

)2
]
, (3.8)

where ψ, and ζ are the Gaussian parameters controlling the length and mean of the time-domain tone burst,

respectively (i.e. controlling the number of cycles in the tone burst). In weakly nonlinear analysis the number

of cycles is crucial as it determines the band of excited frequencies, ∆f , and therefore of the nonlinearly

generated frequencies. In the strongly nonlinear regime, this governs the number of collisions of rough surfaces

(discussed later in Chapter 6).

3.3.2 Shear wave propagation

To study 1D strongly nonlinear shear wave propagation through rough contacts, a coupled analytical-finite

element model [Fig. 3.3] is employed, as adopted from [114], [128]. Specifically, the Jenkins friction law - an

analytical model with experimentally-informed properties [refer to Fig. 2.3 and Eq. (2.14)] - is externally

solved in MATLAB and linked to finite element analysis of wave propagation in commercial software

COMSOL Multiphysics. The wave propagation is analyzed as a time-dependent study. Effectively, the

boundary conditions required at the contact interfaces in a time-dependent study are obtained externally

through the friction model at each time step. To capture the effects of hysteresis, the force history is stored

and re-used at each time step to evaluate the current forces.

The finite element model is similar to the one for nonlinear longitudinal waves through finite phononic

materials (Section 3.3.1.2) but modified to carefully account for the effects of friction-induced nonlinear

responses [Figs. 3.2(d)]. Two different configurations of this system are studied: (1) with a single rough

contact and (2) with an array of n contacts spaced apart at a distance of s from each other (referred to as

phononic material). To model a 1D shear wave propagation, a two-dimensional (2D) plane strain framework

is employed by applying antisymmetry boundary conditions on the top and bottom edges of the model. These

conditions ensured a perfect impedance match for shear waves propagating in the x−direction at these edges

(i.e. no side reflections). The simulations were ended even before the transmitted and reflected waves reaches

the right and left boundaries of the model to avoid the influence of any reflections, eventually making the

waveguides (ΓL, ΓR) act as infinite in the x−direction. The contact deformation and force information is

coupled to the Jenkins friction model through MATLAB Livelink at each time step.

Again, the mapped quad-meshing with the quadratic serendipity shape function is used. The element size,

∆x, in the model is determined based on the minimum number of elements required to capture (1) nonlinear

wave propagation results and (2) elastic deformation in-between array of contacts. To satisfy the first criterion,

27



Wave Propagation Analysis using Finite Element Models

Solid and Wave 
Mechanics

Tangential Forces
(Input)

Tangential Displacement
(Output)

@ contact
@ time, t

@ contact
@ time, t

Contact Boundary Conditions using Analytical Model

Contact
Properties

Jenkins Friction Law
(Hysteretic Force-Displacement Relation)

Store values 
@ time, t

Use stored values 
as time, t - Δt

LiveLink

Friction Rig Experiments
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the element size in the model was kept eight times smaller than the smallest wavelength of interest [102], i.e.

∆x1 = λ3f/8, where the smallest wavelength, λ3f = cp/3f , is defined by the third harmonic frequency, 3f ,

and the shear phase velocity, cp, of the system. cp is the phase velocity of the shear bulk wave (cs) for the

non-dispersive system (i.e. of a single and two contacts) and taken at the band gap edge frequency for the

dispersive system (i.e. of an array of contacts), where cp(f) is minimum. The third harmonic is the strongest

higher harmonic generated from friction and can affect the amplitudes of fundamental (originally-excited)

frequencies, hence it is used as a criterion to depict the accuracy of the model to capture nonlinear frequency

conversion. To satisfy the second criterion of the element size, at least four elements between successive

contacts are considered, i.e. ∆x2 = s/4. Effectively, the element size in the model is min(∆x1,∆x2). The

solver and time step are selected based on the criteria listed in Section 3.3.1.4 but evaluated by taking into

account the mesh size required for shear wave propagation. This time step is enough to capture nonlinear

wave responses and stick-slip transition of the contacts with reasonable computational time. Further decrease

in time step changes the third harmonic amplitude and energy dissipation by < 0.1% only. No inherent

damping is assumed in the model due to the metal material and short wave propagation distance. Further,

diffraction was neglected as a plane wave is excited in the model. Overall, the only source of damping and

hysteresis in the model is the frictional behavior of the contact.

The contact interfaces are assumed to be in a state of constant normal stress, σ0, such that σ0 < 0,

before the incident shear wave strikes the interface. Shear wave packets at a frequency, f , is excited from the

entire left edge of the FE geometry. This type of excitation is common in experiments, where shear wave

interactions with internal cracks have been studied [122], [129]. The wave excitation in the form of a wave

packet [Fig. 3.2(f)] is defined as

ui(t) = U sin(2πft)χ(t), (3.9)
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where U is displacement excitation amplitude, and χ is the rectangular function in time-domain expressed as,

χ(t) =

1, n1/f ≤ t ≤ n2/f,

0, t < n1/f, t > n2/f,
(3.10)

where n1 and n2 dictate the wave packet start and end time instants such that n2 − n1 corresponds to the

number of cycles in the packet. Simulations with both a single and finite number of cycles are conducted.

Single-cycle pulse facilitates the demonstration of programmable functionality as it enables the excitation of

a number of pulses in sequence over a short duration of time. Single-cycle excitation also corresponds to

wide-band frequencies, which allow the study of transmission characteristics of the phononic material. In

contrast, a finite number of cycles facilitates the selection of a steady-state portion of the signal for better signal

post-processing and even ensures a narrow-band frequency excitation that can reveal additional frequencies

generated due to the contact nonlinearity. Thus, a finite number of cycles are used while illustrating the

underlying mechanics of wave-contact interactions. A smoothing window over a short time interval is applied

at the start and end of the wave packet to suppress any transient effects from the sudden wave excitation.

3.4 Summary

This chapter presented modeling of linear and nonlinear wave propagation through continuum phononic

material with rough contacts. Specifically,

1. Linear dispersion relations of both pure longitudinal and shear waves were obtained through Bloch

analysis. Both analytical and finite element approach for dispersion calculation is presented.

2. Finite element model of nonlinear longitudinal wave propagation and hybrid analytical-finite element

model of nonlinear shear wave propagation through these phononic materials is also presented.

3. To ensure accurate simulations of nonlinear phenomena, several crucial numerical parameters such as

mesh size, time step, solver type, and excitation type were carefully considered and discussed.
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Chapter 4

Weakly nonlinear wave dynamics

This chapter presents nonlinear longitudinal wave propagation through continuum phononic materials when

rough contacts are strongly precompressed (weakly nonlinear). It begins by examining wave-self interactions

and subsequently explores wave-wave interactions. In wave-self interaction, the linear dispersion and band

gaps of the material are presented first. Then, the evolution of propagating nonlinear waves is illustrated,

emphasizing the generation of zero (DC), self-demodulated low, and second harmonic frequencies for excitation

in different zones of the dispersion. The combined effects of nonlinearity, periodicity, and finiteness on wave

amplitudes are also reported. Furthermore, the impact of discrete-continuum coupling on nonlinear wave

propagation is demonstrated through the study of various arrangements of embedded contacts. Moving on to

wave-wave interaction, the chapter delves into the nonlinear effects resulting from wave mixing in phononic

materials. Finally, a contact-based phononic diode is designed as an application of wave mixing, and its

broadband nonreciprocal characteristic is presented. The contents of this chapter have been adapted from

various sections of my published articles, [102] (associated with wave-self interactions) and [103] (associated

with wave-wave interactions), which were written as part of the research for this dissertation.

4.1 Wave self-interactions

In contrast to linear materials, nonlinear materials exhibit properties where the response is not directly

proportional to the applied stimulus. Consequently, the interaction of waves with these nonlinear materials

can give rise to additional waves through nonlinear processes, known as “wave self-interactions”. A typical

feature of wave self-interaction is the generation of higher harmonics. In a material with quadratic nonlinearity,

both even and odd-order harmonics are generated while cubic nonlinearity generates odd harmonics only.

This research introduces a continuum phononic material that possesses distinct characteristics, including

local nonlinearity arising from contacts and the presence of layers between successive contacts, which create

alternative linear-nonlinear media. Therefore, the subsequent sections of this study (Section 4.2 to 4.6)

investigate the wave-self interaction within these phononic materials, and the role of these unique features on

nonlinearly generated frequencies.

A normalized precompression parameter, η, is introduced as the ratio of the linear contact stiffness, κ1, to

the stiffness per unit length of the layer, (λ(L) + 2µ(L))/s, where λ(L) and µ(L) are the Lame parameters of

the material. Consequently, η increases with precompression. This study focuses on systems where η > 1,

indicating that the layer stiffness (for layer width, s = 3.175 mm) is smaller than the contact stiffness. Such
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Ω f [MHz] ψ ζ ∆f [MHz]
0.153 0.10 2.5/f 7.5/f ± 0.04
0.384 0.25 2.5/f 7.5/f ± 0.09
0.614 0.40 5/f 15/f ± 0.08
1.228 0.80 5/f 15/f ± 0.15

Table 4.1: Gaussian parameters of the simulated tone burst. Ω is the excitation frequency normalized by the
lower edge frequency of the first band gap for η = 1.863.

a case allows for non-trivial deformation in the elastic layers and enables the examination of the effects

of discretely-generated nonlinear waves on the modes of the linearly elastic layer. It is worth noting that

the wave propagation is studied within the weakly nonlinear regime, specifically, U < δ0. Throughout this

chapter, all presented cases correspond to U/δ0 = 0.15 (i.e. U = 5 nm). Finite element analyses, as detailed

in Section 3.3.1 of Chapter 3, are performed to extract the wave displacement, u(x, t), for all times, spatially

at y = 0 and along discrete positions x, specifically at five equally-spaced locations within each layer. The

results are sampled at the same rate as the time step, ∆t, which ensures the sampling frequency is more than

twice the Nyquist frequency to avoid aliasing. The discrete fast Fourier transform (FFT) of the extracted

time signal is taken in MATLAB to study the frequency content of the signal. Table 4.1 summarizes Gaussian

parameters of the simulated tone burst. The amplitudes of nonlinearly-generated frequencies are extracted

from these FFT plots. To filter out the specific frequency components in the analysis, a Chebyshev Type-II

filter with ripple values of 10dB for the pass band and 50dB for the stop band are used.

4.2 Linear dispersion

The dispersion curves of the phononic material for precompression, η = 1.863 (i.e. p0 = 1 MPa), η = 5.892

(i.e. p0 = 10 MPa), and η = 58.92 (i.e. p0 = 1 GPa) are shown in Fig. 4.1. Non-dimensional frequency, Ω,

is obtained by normalizing frequencies by the lower edge frequency of the 1st band gap at q = π/s for η =

1.863 (i.e. f = 0.65 MHz). There exist pass bands, for example, Ω < 1 as well as band gaps, for example,

1 < Ω < 1.49 for η = 1.863. These band gaps result from Bragg scattering, which is triggered due to the

periodic arrangement of contacts. It is worth noting that granular crystals as dictated by Hertzian law exhibit

band gaps at frequencies two orders smaller than these phononic materials for the same length scale and bulk

material [71]. Further, the high-frequency end of both acoustic and optical modes of the phononic material

shifts upwards with an increase in precompression while reducing the width of the band gap. Physically, this

dependence corresponds to the variable contact area. An increase in precompression increases the overall

contact area due to the deformation of the asperities, which subsequently reduces the impedance mismatch

at the contacts and decreases the band gap width. At extreme precompression (η = 58.92), band gap

width narrows significantly. Eventually, the band gaps vanish at an infinite precompression since complete

deformation of the asperities results in perfect contact between the adjacent layers. Thus, there exists both

stress and displacement continuity across the interface and the phononic material effectively behaves as

a homogeneous continuum. These results show the filtering capability of rough contact-based phononic

materials that can be tuned through applied precompression. The zones of exact [∆q = q(2Ω)− 2q(Ω) = 0]

and approximate [∆q ̸= 0 but smaller] phase matching between the fundamental and second harmonic waves

due to the dispersive acoustic passband are also observed [Fig. 4.1(b)]. The effect of these dispersive regimes

and band gaps on nonlinear wave propagation is discussed in the following sections of the chapter.
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Figure 4.1: (a) Linear band diagrams for precompression, η = 1.863 - black, η = 5.892 - blue, and η = 58.92 -
red. (b) Zoomed view of the acoustic passband of (a) for η = 1.863. Fundamental frequency (filled markers)
and corresponding second harmonic (empty markers) show two cases: exact (square) and approximate (circle)
phase matching. The dashed line is a long-wavelength asymptote.

4.3 Wave evolution with propagation distance

In this section, how a wave packet evolves through semi-infinite and finite phononic materials is studied. This

evolution is presented for precompression, η = 1.863 and excitation frequency, Ω = 0.384 corresponding to

the acoustic passband (Fig. 4.2). One of the main characteristics observed here is an increase in the static

offset of a propagating harmonic wave.

In semi-infinite phononic materials, the static offset increases with increasing propagation distance [Fig.

4.2(a)]. This offset is generated due to the asymmetric potential [Fig. 2.2(b)] at the contact, i.e. the nonlinear

springs representing contacts have larger deformation under tension than compression for a given force. Thus,

when the propagating wave interacts with the contacts, the tensile force causes expansion (static repulsive

movement) of the contacting surfaces resulting in a positive offset in the wave [Fig. 4.2(a)]. This offset is much

smaller than δ0 and does not result in complete separation (or opening) of contacts. As the wave propagates

in the positive direction, the interaction with the next contact further increases the offset in the same way.

Thus, the asymmetry of the wave increases monotonically as it propagates through the phononic material

[Fig. 4.2(a) t1 − t2 − t3]. This asymmetry, attributed to the contact expansion, also counteracts the external

precompression and results in spatially varying contact pressure. Further, the asymmetry that locally shifts

the average position of each layer in this phononic material is reminiscent of “acoustic dilation”, i.e. constant

strain produced in a periodic chain as observed in the α-Fermi-Pasta-Ulam lattice [130]. Importantly, the

offset travels with the wave while the layers retain their initial equilibrium position.

In finite phononic materials, the wave packet evolution in terms of the static offset is more complex. The

boundaries of the phononic materials, which are also rough contacts, give rise to multiple nonlinear reflections

[Fig. 4.2(b) t1 − t3]. For example, the reflected wave from the first contact contains a negative offset [zoomed

view of Fig. 4.2(b) t1, t2] as a competing effect of the positive offset in the transmitted wave. These offsets
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Figure 4.2: Normalized wave displacements, u/U , inside (a) semi-infinite, and finite phononic materials with
(b) 100 and (c) 10 layers at three different time instants (t1 − t3 column-wise), when excitation frequency is
in the acoustic passband. Red dashed lines are the boundaries of the finite phononic materials while the
x−labels correspond to the contact indices. Zoomed images of the blue rectangles are shown below the plots.
The effect of finiteness and nonlinearity on the wave packet can be seen through the generation of reflected
waves (indicated by horizontal arrows), static offset (indicated by vertical arrows), and long-wavelength
spatial wave (solid red line). Note: the horizontal axis scales of semi-infinite layers (ΓL, ΓR) and phononic
materials are different in (b) and (c) to visualize the entire finite phononic material.

can be considered as a spatially-dependent long-wavelength component [solid red line in Fig. 4.2(a)-(b), a

feature of nonlinear wave propagation useful to estimate the contact power-law via inverse problem [131].

Further, the layers do not retain their original equilibrium position once the wave propagates through them

[zoomed view of Fig. 4.2(b) t1 – note the negative displacement inside the phononic material]. This effect of

wave interactions with the finite boundaries of the phononic material can be understood in the following way:

The right boundary of the left semi-infinite bulk layer, ΓL, (i.e. x = 0) moved to the left (i.e. at x < 0) due
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to the negative offset formed by the backward propagating reflected wave. This creates a gap between the

semi-infinite layer, ΓL, and the first layer of the phononic material. When the propagating wave interacts

with the second contact, the contact expansion pushes the first layer towards the semi-infinite layer, ΓL.

As a result, the first layer settles to an equilibrium position that is different from its original position, and

specifically in the negative x−direction. This re-positioning happens successively for each layer [shown in

zoomed views of Fig. 4.2(b) t1] as the wave propagates. At the same time, the positive offset of the forward

propagating wave increases as discussed in the previous paragraph. A complementary case happens at the

interface between the phononic material and semi-infinite bulk layer ΓR (i.e. at x = ns with n = 100),

where the generated reflection travels back into the phononic material leaving behind a positive offset [Fig.

4.2(b) t3]. Multiple wave interactions happen within and at the ends of the phononic material until the

energy completely travels out of the phononic material, however, the effects of later reflections and offsets are

smaller. Waves propagating through both semi-infinite layers, ΓL, ΓR, remain unchanged due to the absence

of nonlinearity in these layers. A similar case would happen in phononic material with 10 layers; however,

the effect of finiteness and nonlinearity cannot be easily separated since the length of the phononic material

is smaller than the excited signal [Fig. 4.2(c)]. These effects are explained in terms of nonlinear interactions

of low-frequency components in the following sections. Apart from static offsets, propagated wave exhibits

two effects – 1) a wider envelope due to dispersion, and 2) reduced oscillation amplitude as a portion of the

input energy traveled back with the reflected wave. However, these two effects are not visible due to weaker

dispersion around Ω = 0.384 [Fig. 4.1(a)] and relatively smaller reflections.

4.4 Nonlinearly-generated frequencies in passbands

In addition to evolving waveform, the contact nonlinearity also give rise to new frequencies, specifically, DC,

low frequencies in the vicinity of DC, and a second harmonic. This section presents how the amplitudes

of these nonlinearly-generated frequencies depend on propagation distance when they are in the acoustic

passband. Key effects from the elastic layers in combination with the discrete nonlinear contacts are elucidated.

Further, the role of dispersion on energy transfer between fundamental and second harmonic frequency is

also illustrated.

4.4.1 Zero frequency generation

Fig. 4.3 shows the dependence of the DC spectral amplitude, A0, normalized by the excitation spectral

amplitude, AE , on propagation distance for semi-infinite and finite phononic materials at an excitation

frequency, Ω = 0.384 and normalized precompression, η = 1.863.

4.4.1.1 Semi-infinite phononic materials

For semi-infinite phononic material, A0 depends linearly on the propagation distance [Fig. 4.3(a)]. This

dependence corresponds to the monotonic increase in wave asymmetry (or offset) with propagation distance

as discussed in Section 4.3. A similar A0 dependence is observed in granular crystals with weak quadratic

nonlinearity [73], however, the incorporation of the continuum between the contacts in these phononic

materials drives an additional dependence of A0 locally, i.e. within the layers. A0 decreases gradually inside

each layer and then increases again at the next contact [insets of Fig. 4.3(a)]. Such competing effects on A0

can be attributed to the compressive deformation of the layers due to contact expansion. This local elastic
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Figure 4.3: Dependence of normalized A0 on the propagation distance in (a) semi-infinite, and finite phononic
materials with (b) 100 and (d) 10 (black), 15(blue), 20(red) layers when excitation frequency is in the
acoustic passband. x−labels correspond to the contact indices. Insets are zoomed views of blue rectangles
indicating the variation of A0 within layers. Phase (b) and (d) are evaluated at zero frequency. (c) Normalized
time-domain wave displacements at representative locations, P1 and P2, as shown in (b).

effect is not seen in other phononic materials that assume discrete masses and nonlinear springs, such as

granular crystals.

4.4.1.2 Finite phononic materials

The dependence of A0 on the propagation distance is significantly different for finite phononic materials, as

A0 is maximum at the boundaries of the phononic material [Figs. 4.3(b)-(d)]. This dependence, along with a

phase difference of π rad, is equivalent to the linear dependence of A0 for semi-infinite phononic materials

[Fig. 4.3(a)]; however, A0 takes different value at the first contact i.e. A0 is negative (since the phase is π

rad) for finite phononic materials while A0 = 0 for the semi-infinite phononic materials. We note that A0

for finite phononic materials is a combined effect of the static offsets of the propagating and reflected waves

(as discussed in Section 4.3). To explain this, Fig. 4.3(c) shows the time-signals of the two representative

locations (P1 − P2) of the zones A0 < 0 and A0 > 0 of Fig. 4.3(b), respectively. For the first half of the

phononic material, the negative offset generated by the reflected wave dominates the positive offset of the
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propagating wave resulting in A0 < 0 [P1 time signal in Fig. 4.3(c)]. However, a monotonic increase in the

positive offset with propagation distance eventually dominates in the second half, thus A0 > 0 [P2 time signal

in Fig. 4.3(c)]. A0 is consistently maximum at the ends and minimum at the center of the phononic materials

irrespective of the number of contacts [Fig. 4.3(d)]. As expected, A0 remains constant outside the phononic

material [i.e. inside ΓL,ΓR in Figs. 4.3(b) and (d)] due to the absence of nonlinearity in the semi-infinite

layers. Interestingly, unlike the semi-infinite phononic material, A0 is constant within the layers of the finite

phononic materials [insets of Fig. 4.3(b)]. This indicates that the layers do not experience compressive

deformation, because they re-position themselves to account for the contact expansions.

4.4.2 Self-demodulated low-frequency generation
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Figure 4.4: Dependence of low-frequency components on the propagation distance in (a) semi-infinite, and
finite phononic material with (b) 100 and (c) 10 layers for excitation in the acoustic passband. Top row:
normalized time-domain wave displacements recorded at 3 different locations in semi-infinite phononic
materials and near the 1st (black), center (blue), and last (red) contacts for finite phononic materials. Middle
row: low-frequency filtered normalized time-domain signal with only long-wavelength components. Bottom
row: FFT of the filtered signal.

An energy transfer from the fundamental wave to very low frequencies in the vicinity of the DC component

is also observed in these phononic materials. This energy transfer is due to the wave self-demodulation

effect [132], [133], which is a nonlinear wave mixing between the neighboring frequencies of the narrow yet

finite-band (∆f) frequency excitation in the simulations. Due to the proximity of the waves within the

excited bandwidth, their mixing generates difference-frequency components at very low frequencies. The

propagation of these low-frequency components is analyzed by separating them from the main wave using a

low-pass Chebyshev filter (Fig. 4.4). Similar to A0, this low-frequency amplitude increases monotonically

with propagation distance within the semi-infinite phononic materials [Fig. 4.4(a)], highlighting continuous

energy transfer to low-frequencies. In the case of finite phononic materials, the recorded signal also contains a

36



reflection from the x = ns boundary of the phononic material, which are the small (secondary) wave packets

in Fig. 4.4(b) – top row. Even these reflected waves from the finite boundaries of the phononic material

contain low-frequency components, which are the small (secondary) negative humps in Fig. 4.4(b) - middle

row. Interestingly, for phononic material with 10 layers, reflected low-frequency components interact with

the propagating low-frequency components inside the phononic material [Fig. 4.4(c) – solid blue line]. This

interaction results in a low-frequency component that dominates A0 at certain locations inside the finite

phononic material. Recall that the larger spatial width of the wave packet relative to the overall size of the

phononic material [Fig. 4.3(c)] enables this interaction that is otherwise absent in the phononic material with

100 layers. This highlights that the wave interaction inside finite phononic materials also depends upon the

relative spatial size of the phononic material and excitation signal. These observations will be significant in

interpreting experimental wave propagation where finite-band frequency excitation is commonly employed.

4.4.3 Second harmonic generation

To study the second harmonic generation (SHG) and its amplitude dependence on propagation distance, two

excitation frequencies, Ω = 0.153 and Ω = 0.384, with normalized precompression, η = 1.863, are investigated.

In both of these cases, the fundamental, as well as the second harmonic waves, are in the acoustic passband

since Ω < 1 and 2Ω < 1 [Fig. 4.1(a)], however, Ω = 0.153 is associated with the exact phase matching while

Ω = 0.384 is an approximate phase match case [Fig. 4.1(b)].

4.4.3.1 Semi-infinite phononic materials

Figs. 4.5(a) and 4.5(b) shows the dependence of the normalized fundamental (A1) and second harmonic

(A2) wave amplitudes on the propagation distance for the semi-infinite phononic material. For Ω = 0.153

(exact phase matching), a continuous increase in A2 with propagation distance is observed [Fig. 4.5(a)]. This

is an effect of internal resonance (or constructive interference) between the SHG at each contact and the

propagating second harmonic wave from prior contacts due to equal phase velocities of the fundamental and

second harmonic waves. As a result, there is a continuous energy transfer to the second harmonic frequency.

Note that the drop in fundamental amplitude is relatively small due to the weak nonlinearity in the model.

For Ω = 0.384 (approximate phase matching), there is a distance-dependent beating of A2 [Fig. 4.5(b)], due

to a phase mismatch between fundamental and second harmonic frequency. Since Vp(Ω) ̸= Vp(2Ω) [refer

Fig. 4.1(b)], the SHG at a contact occurs from the fundamental wave that is propagating with a velocity of

Vp(Ω), however, that generated second harmonic wave then travels to the next contact at Vp(2Ω). As a result,

the forward propagating second harmonic wave interacts with discretely generated second harmonic wave

efficiently, but only up to a certain distance. The continuous change in the relative phase between generated

and propagating second harmonic waves eventually results in destructive interference and thus a beating of

second harmonic frequency.

Interestingly, both A1 and A2 are higher inside the layers and gradually drop near the contacts [insets

of Figs. 4.5(a) and (b)], possibly a case of wave interference inside the layers. Note that the amplitude

variations within layers are higher compared to the amplitude variations across the contacts. This indicates

that the elastic deformations of the layers influence the nonlinear waves generated at the contacts, even

though the layers themselves do not contain nonlinearities. Such spatial variations in the nonlinear amplitude

have not been observed in other nonlinear phononic materials where only discrete masses are considered,

such as granular crystals, e.g. [134].
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Figure 4.5: Dependence of normalized A1 and A2 on propagation distance in semi-infinite phononic material
for excitation frequency (a) Ω = 0.153 – exact phase match and (b) Ω = 0.384 – approximate phase match
condition. Both the excitation and second harmonic frequencies are in the acoustic passband. The x−labels
correspond to the contact indices. Insets are zoomed views of blue rectangles showing amplitude variation
within layers.

Importantly, these phononic materials can tune the second harmonic amplitude as well as the location

where they are maximum or minimum through applied precompression. As discussed, the distance-dependent

beating of A2 is a combined effect of the nonlinear interaction and dispersive nature between the fundamental

and second harmonic frequency. Since the dispersion of these phononic materials depends on applied

precompression, the beating periods, 2π/∆q of the second harmonic wave can be modulated by controlling the

condition of phase matching between the fundamental and second harmonic waves (Fig. 4.6). For example,

for precompression, η = 1.863, A2 beating is observed in the 108th, 216th, . . . layers whereas, for η = 2.635,

the beating is in the 168th, 336th, . . . layers for Ω = 0.384.

4.4.3.2 Finite phononic materials

For finite phononic material with 10 layers, normalized A1 and A2 are related to mode shapes of the phononic

material at corresponding frequencies (Fig. 4.7). The dependence of A1 on propagation distance reveals the

structural mode of the finite phononic material at Ω. The dependence of A2 on propagation distance reveals

the combined effect of SHG from the contact nonlinearity plus the structural mode of the finite phononic

material at 2Ω. Since this finite phononic material is small compared to the beating length, i.e. ∆qL≪ 2π,

where L (= ns) is the length of the finite phononic material, there is a cumulative increase in A2 even for

the case of approximate phase matching. Unlike granular crystals, A1 and A2 also depend on the individual

modes of the layers; note this effect is more visible at higher frequencies, e.g. at Ω = 0.384 [Fig. 4.7(b)].

The elastic deformation of the layers becomes significant when the wavelength is comparable to the layer
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– solid black, η = 2.635 - dashed blue, and η = 5.893 – solid blue for fundamental frequency Ω = 0.384.
X−labels are layer indices.

thickness. As a result, we observe noticeable amplitude variation when a discretely generated wave propagates

through the continuum for Ω = 0.384. This further confirms the significance of the continuum between

successive contacts at frequencies close to the modal frequencies of individual layers. The dependence of A2

on propagation distance within the finite phononic material with 100 layers (not shown) is a combination of

modal behavior and beating.

4.5 Nonlinearly-generated frequencies in band gaps

With an understanding of DC, low, and second harmonic frequency generation and their propagation in the

acoustic passband, this section presents their characteristics for two other cases: (1) when the fundamental

frequency is in the pass band but the second harmonic in the band gap, i.e. Ω = 0.614 and (2) when both

fundamental and second harmonic frequencies are in the band gap, i.e. Ω = 1.228. Semi-infinite and 10-layer

finite phononic material with normalized precompression, η = 1.863 is considered.

4.5.1 Semi-infinite phononic materials

For, Ω = 0.614 (i.e. Ω in passband but 2Ω in the band gap), the fundamental wave propagates through the

phononic material. Thus, it interacts with contacts and generates A0 that depends linearly on propagation

distance [Fig. 4.8(a)]. This indicates that A0 generation primarily depends upon the fundamental wave

propagation and its interaction with contacts. Interestingly, the dependence of A2 on propagation distance is

different from that of the exact or approximate phase match condition: there is neither a linear increase nor

beating of the second harmonic wave, rather, A2 increases only in the first few unit cells and then remains

constant [Fig. 4.8(a)]. This is because the second harmonic frequency is in the band gap. The fundamental

wave interacts with each contact, generating a second harmonic wave; however, these nonlinear waves are

blocked from propagating beyond the unit cell as they lie in the band gap. Remarkably, the second harmonic

amplitude in these phononic materials is maximum inside the first few layers and gradually decreases to a

constant mean value, unlike granular crystals where A2 is reported to increase to a value and then remain

constant [73]. This difference in A2 characteristics is because the phononic material here contains continuum

elastic layers between the discrete nonlinear contacts. For Ω = 1.228 (i.e. both Ω and 2Ω in band gaps),

there exist only evanescent waves, causing energy localization within the first few unit cells of the phononic
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Figure 4.7: Dependence of normalized A1 and A2 on propagation distance in a finite phononic material
with 10 layers for excitation frequency (a) Ω = 0.153 – exact phase-match and (b) Ω = 0.384 – approximate
phase-match condition, and normalized precompression, η = 1.863. X−labels indicate contact indices.

material [Fig. 4.8(b)]. These localized fundamental waves still generate A0 that causes static deformation

through the phononic material. This result shows that these phononic materials with dynamic excitations in

the band gap can still experience static deformation. Note that there is no further generation of A0 at later

contacts due to the decayed fundamental wave.

Similar to A0, low-frequency generation depends upon the propagation and interaction of the fundamental

wave. Thus, the low-frequency component increases monotonically with propagation distance for Ω = 0.614

[Fig. 4.8(c)]. However, for Ω = 1.228, the self-demodulation effect and therefore low-frequency generation

occurs only in the first few contacts. This low frequency can still propagate through the phononic material

as it lies in the pass band [Fig. 4.8(d)]. No further generation (or monotonic increase in amplitude) of

low-frequency components is seen due to the decayed fundamental wave.

4.5.2 Finite phononic materials

For Ω = 0.614 (i.e. Ω in pass band but 2Ω in band gap), A0 is generated at all contacts due to the propagating

fundamental wave. Its dependence on propagation distance is similar to the case when both the fundamental

and the second harmonic waves are in pass bands: A0 is maximum at finite ends [Fig. 4.9(a)]. On the

contrary, A2 remains trapped in the unit cell, and no cumulative increase with propagation distance is

observed. However, energy propagation through the phononic material at 2Ω (which is in band gap) is still

possible up to a certain extent due to the propagation of the second harmonic waves generated at the last few

contacts. For Ω = 1.228 (i.e. both Ω and 2Ω in band gaps), neither the fundamental nor second harmonic

waves propagate, but A0, generated at the first few contacts, causes deformation throughout the phononic
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Figure 4.8: Dependence of normalized A1, A0, and A2 on propagation distance in semi-infinite phononic
material when (a) Ω in pass band but 2Ω in band gap and (b) both Ω and 2Ω in the band gap. X−labels
indicate contact indices. Results are shown only up to the first 25 contacts. Dependence of low-frequency
components on the propagation distance in semi-infinite phononic material for (c) Ω in pass band but 2Ω in
band gap and (d) both Ω and 2Ω in the band gap. Top row: normalized time-domain wave displacements
recorded at 3 different locations in semi-infinite phononic material. Middle row: low-frequency filtered
normalized time-domain signal with only long-wavelength components. Bottom row: FFT of the filtered
signal.

material [Fig. 4.9(b)]. Further, A0 is maximum when the fundamental wave has fully decayed, unlike previous

cases where A0 is maximum at finite boundaries of the phononic material. Interestingly, the dependence of

A0 on propagation distance is similar for both semi-infinite and finite phononic materials only when both

Ω and 2Ω are in the band gap [Figs. 4.8(b) and 4.9(b)]. This is because the right-side finite boundaries

are trivial for finite phononic material when the wave is in a band gap. Thus, the finite phononic material

effectively behaves similarly to that of semi-infinite phononic material.

Similar to the case when Ω < 1 and 2Ω < 1, the interaction between propagating and reflected nonlinear

waves results in low-frequency components higher than A0 at certain locations inside phononic materials, even

for the case of Ω = 0.614 [Fig. 4.9(c) – solid blue]. However, for the same locations, such interaction does not

exist when the fundamental wave is in the band gap as it can not propagate through the phononic material,

and therefore no reflected wave exists [Fig. 4.9(d) – solid blue]. More interestingly, we observe that the

locations inside the first few layers [e.g. solid black in Fig. 4.9(d)] show a dominant low-frequency component,

probably a result of the nonlinear interactions of the trapped fundamental and generated low-frequency waves.

The generated low-frequency wave propagates through the phononic material as it lies in the pass band. This

nonlinear frequency down-conversion in these phononic materials enables energy transmission from band gap

frequencies at low amplitudes; such transmission is typically not possible in linear material, and only possible

in nonlinear material at high amplitudes due to supratransmission [78].
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Figure 4.9: Dependence of normalized A1, A0, and A2 on propagation distance in a finite phononic material
with 10-layers when (a) Ω in passband but 2Ω in band gap and (b) both Ω and 2Ω in band gap. X−labels
indicate contact indices. Dependence of low-frequency components on the propagation distance in finite
phononic material for (c) Ω in passband but 2Ω in band gap and (d) both Ω and 2Ω in band gap. Top
row: normalized time-domain wave displacements recorded near the 1st (black), center (blue), and last
(red) contacts. Middle row: low-frequency filtered normalized time-domain signal with only long-wavelength
components. Bottom row: FFT of the filtered signal.

4.6 Wave propagation through embedded contacts

The nonlinear phononic materials discussed so far assumed infinite-length contacts within the model. Such

an arrangement couples adjacent layers solely through contact-equivalent stiffness, resulting in uniform

deformation along the contact length. However, finite-sized contacts (or those embedded in a continuum) are

anticipated to exhibit spatially varying deformation. In particular, the elastic media would be decoupled at

the center of the contact interfaces but merged at the contact endpoints. Consequently, the separation of

contact interfaces would encounter resistance not only from contact tensile forces but also from compressive

forces exerted by the surrounding continuum. As a result, the deformation of the contacts and the nonlinear

wave responses emerging from them are expected to differ from infinite-length contacts. Consequently,

embedded contacts would allow additional design parameters in the form of their spatial arrangement within

an elastic media while retaining the capability to generate additional frequency components from the discrete

nonlinearity. This section explains how embedded contacts couple with the neighboring elastic continuum by

exploring the dependence of nonlinearly-generated A0 and A2 on different representative arrangements of

embedded contacts.

4.6.1 Phononic materials with different contact arrangements

While there are many conceivable arrangements of embedded contacts, the goal here is to (1) demonstrate

the local coupling of contacts with surrounding elastic media and (2) understand how the spatial distribution

of contacts influences the global nonlinear response of the material. Thus, selected but representative

configurations of embedded contacts, limited to 1D periodicity, are studied. Fig. 4.10(a) shows the studied
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schematics in (a). Insets are zoomed views of fundamental amplitude. (c) Infinite-length vs embedded contact
deformation under tensile force illustrates the effect of the neighboring continuum. Contact deformations are
evaluated as the spring extension and normalized by the deformation of infinite-length contacts.

finite phononic materials with 11 contacts arranged in different configurations. The phononic material with

infinite-length contacts is defined as system “A”, while systems “B-E” contain embedded contacts. Note that

system A corresponds to all cases explored thus far. The total length of the embedded contacts, Lc, at any

given spatial location, x, as well as the periodicity constant, s, are kept the same for all embedded contact

configurations (systems “B-E”). So, the only difference among systems B-E is the spatial arrangement of

contacts. System B corresponds to a single horizontal array of periodic contacts, each with length Lc, while

system C has two parallel periodic arrays, where the length of each contact is h = Lc/2. In systems D and E,

the contacts are arranged in a staggered pattern of alternating one- and two-array contacts, such that they

are a combination of systems B and C. It is worth noting that the total number of contacts with individual

lengths, Lc, in systems D and E are 6 and 5, respectively. It is assumed that the contact length does not

grow as waves propagate through them. By investigating these configurations, insights can be gained into the

role of separating contacts into multiple arrays and the proximity of contacts on nonlinear wave propagation.

While the global symmetry of contact arrangements is preserved in this study, asymmetric arrangements are

expected to support additional nonlinear behavior of nonreciprocity.

A precompression of η = 1.863 and excitation frequency Ω = 0.384 is considered, such that both the

fundamental and second harmonic waves are in the pass bands for all the systems. Although systems A-E

have different dispersions, the phase mismatch between the fundamental and second harmonic waves for these

systems is trivial since only short propagation distances are probed, meaning the generated and propagating

second harmonic waves interact constructively in all simulations. The embedded contact length is Lc = λ/6,

where λ is the wavelength at the excitation frequency, Ω, in system A, i.e. the wavelengths of the fundamental

and second harmonic waves are both larger than the contact length, Lc. This condition is true for all other

systems as well since their phase velocity at Ω is larger than that of system A. Note that A1/AE < 1 for

system A but A1/AE > 1 for system B-E [see insets of Fig. 4.10(b)]. For system A, energy transfer from

the fundamental to the second harmonic frequency results in A1/AE < 1. However, for systems B-E, in

addition to the energy transfer, scattered waves from the edges of the embedded contacts interfere with the
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propagating fundamental wave and increase its amplitude.

4.6.2 Dependence of nonlinear wave propagation on contact arrangement

Fig. 4.10(b) shows the FFT of the transmitted wave signal for systems A-E. Comparing first the case

of infinite-length (system A) to embedded contacts (system B), there is clearly a smaller A0 and A2 for

the phononic material with embedded contacts. This can be understood by considering the deformation

along the length of a single contact in system A vs. system B. Unlike the infinite-length contacts where

the layers are coupled purely through nonlinear elements, the embedded contacts are surrounded by an

elastic continuum. This neighboring elastic material prevents the embedded contacts from expanding and

restricts the deformation close to the edges of the contact. As a result, the deformation along the length

of an embedded contact is reduced compared to an infinite-length contact [Fig. 4.10(c) – red and black].

The results indicate that this smaller contact deformation is the cause of the reduced amplitudes of the

nonlinearly-generated waves. As Lc increases, the nonlinear response of system B approaches that of system

A’s [Fig. 4.11(b)], as the effect of contact edges on overall contact deformation becomes less significant [Fig.

4.11(a)].
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Figure 4.11: Response of system B for increasing contact length. (a) Contact deformation under tensile force.
Contact deformations are evaluated as the spring extension and normalized by the maximum deformation. (b)
Zoomed views of normalized FFT of transmitted nonlinear waves. Inset is zoomed view of the fundamental
amplitude. The lines in the plots correspond to the boundary style of the system schematics shown above the
plots. Arrows indicate the direction of increasing contact length.

Results also show that A0 and A2 depend on the arrangement of the embedded contacts (systems B-E)

[Fig. 4.10(b)]. This is despite the fact that the total contact length at a given x-position in all systems

is the same. The influence of the single vs. double array of contacts on nonlinear wave propagation can

be understood as follows: the longer contacts in system B deform more compared to the shorter contacts
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in system C [Fig. 4.10(c) – black and blue], due to the influence of the surrounding elastic continua. The

coupling between the elastic media on either side of the contact reduces from the contact edges to the

center. This is because the surrounding elastic media merge into each other at the contact edges but they

are separated through contact-equivalent springs away from the contact edges. As a result, longer contacts

(system B) exhibit weaker coupling, i.e. they exhibit weaker resistance to expansion under tensile force,

resulting in higher deformation; and vice versa for shorter contacts (system C). Subsequently, A0 and A2

are larger in system B compared to system C. The amplitudes of the DC and second harmonic waves in the

staggered patterns (systems D and E) can be understood similarly. Fig. 4.10(b) shows that A0 and A2 in

systems D and E are higher than system C, yet lower than system B. This is because the combination of

the longer and shorter contacts in continua shows deformation that is smaller than a single array of longer

contacts but higher than a double array of shorter contacts. Further, the number of continuous contacts

with length Lc in the staggered pattern determines whether the response of the system will be skewed more

towards system B or system C. For example, system D with 6 continuous contacts has nonlinear amplitudes

much closer to system B than system E.

To further clarify the dependence of the nonlinear amplitudes on embedded contact arrangement, the

average deformation of all contacts, δ̄, in a given arrangement, is compared to A0 and A2. Fig. 4.12(a) shows

the deformation profile for each contact in system B and its corresponding δ̄, as an example. The contact

deformation for each arrangement is obtained by imposing a uniaxial tensile force on the phononic material,

and δ̄ is evaluated as the average deformation of all contacts. Fig. 4.12(b) shows there may be a quadratic

dependence of both A0 and A2 on δ̄ for systems A-E, however further studies are needed to confirm this.

This is particularly interesting since it suggests that the nonlinear wave amplitudes can be informed by the

deformation profiles of a given contact arrangement. Further analysis of other arrangements is needed to

fully understand this dependence and its applicability.

Finally, the simulation results are compared to recent analytical wave propagation models to further

clarify the dependence of the nonlinear response of these phononic materials on dispersion and contact

deformation. For example, Biwa et al. [115] introduced a contact model for wave propagation through a

single rough contact, which predicts that the transmitted A0 and A2 depends on parameters such as the

excitation amplitude (AE), frequency (ω), contact stiffness (κ1, κ2), material density (ρ), and phase velocity

(cp) by:

A0 =
κ2A

2
E

κ1[1 +
4κ2

1

ρ2c2pω
2 ]

(4.1)

A0 =
κ2A

2
E

ρcpω[1 +
4κ2

1

ρ2c2pω
2 ]

√
1 +

κ2
1

ρ2c2pω
2

(4.2)

To apply these relations to systems A and B, all parameters would be the same except the phase velocity,

due to the differences in their dispersion relation. Note that this model is only for a single contact whereas

the phononic material system has periodic contacts, but it is conceivable that the dependence of A0 and A2

on phase velocity could be similar. For the frequency probed in this work, Ω = 0.384, the phase velocity of

system B is higher than that of system A. As a result, Eqs. (4.1) and (4.2) predicts A0 and A2 of system B to

be higher than system A, whereas simulation results show the opposite [Fig. 4.10(b) – red and black]. Clearly,

this model does not predict the response of phononic material with embedded contacts, indicating that the

observed nonlinear response is an effect of dispersion, periodic nonlinearity, or contact deformation. This
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Figure 4.12: (a) System B contact deformation profiles under uniaxial tensile force. Black dots are the
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model may predict nonlinear amplitudes of system A if combined with a dynamic homogenization method

that represents the periodic contacts of these systems as a single contact with effective contact stiffness.

Alternatively, an analytical model of wave propagation through multiple nonlinear interfaces proposed

in [135] can be considered. In addition to the parameters in Eqs. (4.1) and (4.2), this model also considers

superimposed reflections and transmissions of nonlinear waves at each successive interface, as given by Eq.

(53) in [135]. Thus, this model does capture the dispersion and periodic discrete nonlinearity of these systems,

but it does not capture the effects of contact deformation specific to the embedded contact systems (systems

B-E). This analytical model predicts a 28% increase in A2 from system A to B, however, the FE model

predicts an 80% decrease of A2 from system A to B. This sharp contrast in the nonlinear response indicates

that the effect of neighboring elastic media on contact deformation, the only aspect of embedded contact

systems not considered in the recent analytical model, has a much more significant effect on the nonlinear

response than dispersion, at least for the frequencies and systems considered here.

In summary, the results indicate that the surrounding continuum of embedded contacts significantly

influences the nonlinear wave propagation, altering the response of the contacts. Consequently, phononic

materials featuring embedded contacts demonstrate the ability to manipulate the overall nonlinear wave

response of the material by employing a spatial distribution of local nonlinearity within a continuum.
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4.7 Wave-wave interactions

The presence of nonlinearity within the material causes another interesting wave signature, which is the mixing

of two (or more) waves of different frequencies, also known as “wave-wave interactions”. This mixing causes

the generation of new waves whose frequencies correspond to the sum or difference between the frequencies of

the original propagating waves. This enables control of the frequencies of the generated waves by selecting the

frequencies of the mixing waves. This is particularly explored for defect detection in nondestructive evaluation

of structural components [126], [136]. In this section, the effects of wave-wave interaction in phononic material

with contacts are studied, which are then leveraged to design a phononic diode for broad-band nonreciprocal

wave propagation in Section 4.8.

Similar to wave self-interaction studies, a phononic material with periodic rough contacts is studied [Fig.

4.13(a)]. Dispersion results for p0 = 1 MPa (i.e. η = 1.863, where η = κ1/[(λ
(L) + 2µ(L))/s]), as an example

are presented [Fig. 4.13(b)]. To study how nonlinearity causes waves at distinct frequencies to mix in this

phononic material, finite element simulations of nonlinear wave propagation are conducted as presented in

Chapter 3, but using an excitation that is the sum of two equal-amplitude Gaussian pulses, each at a different

frequency - probe (Ω1) and pump (Ω2). The wave excitation, ui(t), is:

ui(t) = UGf (t)[sin(2πf1t) + sin(2πf2t)], (4.3)

where U is the excitation amplitude, f1 and f2 are the absolute probe and pump frequencies, and Gf (t)

is the Gaussian function. To simulate such wave mixing, relevant numerical parameters were carefully

modified. For example, mesh size was determined based on the largest second harmonic frequency (smallest

wavelength), and Gaussian function parameters were adjusted to excite frequencies with bandwidth enough

to avoid overlapping with adjacent nonlinearly generated frequencies. When input frequencies are in the pass

band (Ω1 < 1,Ω2 < 1), energy is transferred to additional frequencies [Fig. 4.13(c)] from nonlinear wave

mixing, specifically to (1) second harmonics of each input frequency (2Ω1, 2Ω2), (2) DC and self-demodulated

frequency (Ω ∼ 0), and (3) sum (Ω+ = Ω1 +Ω2) and difference (Ω− = |Ω1 −Ω2|) frequencies. Similar to wave

self-interactions, the DC component is generated in the system’s response due to the quadratic nonlinearity

of rough contacts [refer to Section 4.4.1]. This component physically corresponds to the gap opening (i.e.

separation of contacting surfaces) at the contacts; however, due to weak nonlinearity, the contacts do not

open completely [102]. This is because the wave displacements are smaller than the predeformation caused

by external precompression, and the generated DC component itself is an order of magnitude smaller than

the wave displacement within a weakly nonlinear regime.

When both Ω1 and Ω2 are in the band gap, for example, Ω1 = 1.15 (f = 0.75 MHz) and Ω2 = 1.30

(f = 0.85 MHz), the nonlinearity-induced waves are still generated. However, this generation ceases after the

first few unit cells as the amplitude of the excitation decays - the amplitudes at the nonlinearly-generated

frequencies stop increasing beyond layer indices ∼ 5, when A(Ω1) and A(Ω2) are almost zero [Fig. 4.13(d)].

The corresponding harmonics (2Ω1 = 2.30 and 2Ω2 = 2.60) as well as the sum frequency (Ω+ = 2.45) are also

within the band gap, and therefore their amplitudes decay exponentially after initial generation [Fig. 4.13(d)].

Only the difference frequency is in the pass band (Ω− = 0.15, i.e. < 1). Unlike other frequency waves, the

amplitude of the difference-frequency wave remains constant with propagation distance [Fig. 4.13(d)]. This

is because no further Ω− is generated once excitation frequencies have decayed and the Ω− generated near

the excitation boundary propagates through the phononic materials. This specific case, where the input

frequencies, their harmonics, and sum-frequencies are in the band gaps, is used to demonstrate nonreciprocal
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wave propagation. However, other possible scenarios are also discussed later.

4.8 Leveraging wave-mixing for nonreciprocal wave propagation

4.8.1 Nonreciprocity: State-of-the-art research

Wave propagation in conventional materials is inherently reciprocal between two points due to time-reversal

symmetry. This means the wave transmission is identical if the source and receiver of the wave are interchanged.

However, breaking this reciprocity holds the potential for novel applications since nonreciprocity can avoid

backscattering, wave interference from reflection, and even enable direction-dependent responses. This has

inspired extensive research in recent years to design materials supporting nonreciprocal wave propagation [66].

These materials, often termed as “diodes” [137], have been used in sound isolation [138], [139], lithotripsy

[140], and for designing advanced acoustic devices such as switches and rectifiers [141].

Nonreciprocal acoustic devices were initially designed using an external energy source [138] and recently,

through periodic media [141]–[145]. Periodic media exhibit exceptional wave propagation properties such

as band gaps [12], [19], anomalous polarization [16], [17], topological insulators [146] and many more [12],

[147] by virtue of their engineered architecture. Recent studies further incorporated spatiotemporal property

modulation [142]–[144] and nonlinearity [44], [141], [145] to enable nonreciprocal wave propagation through

them. Specifically, nonlinearity allows passive and amplitude-dependent control over nonreciprocal response

of the system [145]. Moreover, nonlinearity supports nonlinear signatures such as second harmonic generation

(SHG) [148], [149], self-demodulation [133], frequency shift [150], [151], and supratransmission [152], all of

which have been explored to design phononic diodes made of non-linear and linear media [44], [148]–[152].

Despite these unique mechanisms, the frequency of the nonreciprocal waves is not generally tunable. For

example, the acoustic diode can enable energy propagation along one direction but only at a second harmonic

frequency (i.e. only above the excitation frequency) in Liang et al. [148], [149] and at a self-demodulated

frequency (i.e. only below the excitation frequency) in Devaux et al. [133]. Diode of Zhou et al. [150] and

Kulkarni and Manimala [151] can allow one-way energy propagation but only in the narrow regions where

frequency shifts are observed, limiting the frequency of operation for nonreciprocity. Further, diodes based

on supratransmission enable nonreciprocal waves within band gap frequency ranges only [152].

To enable broadband nonreciprocal wave transport, phononic materials with unique but highly complex

configurations have been presented. Fang et al. [153] and Zhang et al. [154] exploited strong nonlinearity to

achieve broadband nonreciprocal frequencies. Specifically, Fang et al. [153] studied one-dimensional (1D)

triangle-shaped asymmetric unit cell topology along with strong nonlinearity to enable nonreciprocal wave

behavior. Zhang et al. [154] studied a two-dimensional granular channel composed of a main homogeneous

lattice with several pairs of side granules such that side granules are in contact with the main lattice only

on one side while there exists a clearance on the other side. Such topological asymmetry, combined with

Hertzian contact nonlinearity between granules, enabled nonreciprocal wave propagation in this system. Some

other studies have presented compact (thinner) nonreciprocal devices with a relatively broadband range

of nonreciprocal frequencies [155], [156]. Zhai et al. [155] designed diodes based on an active linear Willis

material. However, the functionality of their device is valid within a small wave amplitude regime only due

to the linearity assumption. Popa and Cummer [156] designed metamaterial with an attached electronic

circuit such that the nonlinearity is generated by the electronics and not by the physical structure. Thus,

their compact devices could be prone to extensive heating and mechanical deformation under strong and
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Figure 4.13: Nonlinear wave mixing in phononic material. (a) Phononic material with periodic rough
contacts precompressed externally, and the corresponding model. (b) Linear dispersion showing propagating
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nonlinearly-generated frequency waves on propagation distance when only the difference-frequency wave is in
the pass band. Propagation distance is marked as layer indices from the excitation boundary.
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prolonged mechanical vibrations.

4.8.2 Objective: Wave-mixing for nonreciprocity

Wave mixing in elastic nonlinear media along with harmonic generation was recently used to demonstrate

proof of concept of a frequency-preserved diode [157]. This diode only allows unidirectional energy propagation

and works for specific input frequencies by virtue of its design principle for frequency preservation. Wave

mixing, however, has only been explored in nonlinear phononic media and for mechanical wave propagation

control in a limited capacity: Li et al. [158] developed acoustic switches and logic elements using wave mixing

in granular media, and recently Zhang et al. [159] explored mixing-induced mode conversion in granular

crystals with coupled motions. In this dissertation, wave mixing of double-frequency (pump and probe) waves

in nonlinear phononic materials is exploited to design a diode that can control the frequency, mode, and

direction of energy propagation of the broadband nonreciprocal waves.

This concept is demonstrated by proposing a phononic diode based on the concept of global asymmetry

of the system as adopted from Liang et al.’s acoustic diode [148], [149], but combined with the extrinsic

nonlinearity in the form of rough contacts, and dispersive nature from their periodic arrangement. Nonlinear

wave mixing of double-frequency (pump and probe) input waves and band gaps of the phononic material

are exploited together to enable nonreciprocal wave propagation. A wave whose frequency is controlled to

achieve tunability is referred to as a “pump” wave while the other input wave as a “probe”. By controlling

the frequency of the “pump” wave, the manipulation of the dispersion branch associated with the wave that

exhibits nonreciprocal behavior is demonstrated. Results show that nonreciprocity can occur at lower or

higher frequencies than the excitation, overcoming the limitations of the existing literature [133], [148]–[152].

Further, the flexibility of the diode to allow either one-way (unidirectional) or two-way (bidirectional [160])

energy propagation through a suitable selection of pairs of frequencies is highlighted. Finally, the contact

nonlinearity in these diodes also offers an opportunity for in-situ tuning of wave propagation via external

precompression.

The proposed diode also addresses an open question in the field of how to achieve nonreciprocity over

broadband frequencies using a simpler diode design. As discussed, the diode is based on contact nonlinearity,

which stems from the roughness on contacting surface. Thus, it could offer an excellent platform to tune contact

response through surface texture while at the same time simplifying the overall design of the nonreciprocal

device without needing any external electronic device. Due to pure mechanical construction, these diodes

built on phononic material with contacts could also be useful even in harsh and extreme environments.

4.8.3 Concept of phononic diode

To enable nonreciprocal wave propagation using nonlinear wave mixing, a phononic diode is designed by

assembling two sets of rough contact-based phononic materials in series (Fig. 4.14) - one with large and the

other with small asperities. Note that the nonlinearity of rough contacts arises from the nonlinear mechanical

deformation of asperities. For a given amplitude, small asperities undergo nonlinear deformation (large

strain) such that both κ1 and κ2 exist, while large asperities undergo small strain exhibiting only κ1. Further,

the linearized dispersion of both phononic materials is the same. Two propagation directions are studied

for the case when input waves are in band gaps: (1) from linear to nonlinear phononic material (forward)

and (2) from nonlinear to linear phononic material (backward). In forward propagation, input waves do not

propagate through the linear phononic material as they fall in band gaps. However, for backward propagation,
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input waves mix nonlinearly and generate a difference-frequency wave within a pass band. Thus, energy

propagates only in the backward direction but not in the forward, enabling unidirectional nonreciprocal wave

propagation.

4.8.4 Numerical demonstration of diode functionality

Numerical demonstrations are carried out to confirm the concept of wave mixing-based diode, and illustrate

how to tune the frequency and mode of nonreciprocal wave propagation by controlling the pump frequency

while keeping the probe frequency the same. Two representative cases are discussed - first, when both the

pump and probe frequencies are in the same band gap [Figs. 4.15(a) and 4.15(b)] and second, when they

are in different band gaps [Figs. 4.15(c) and 4.15(d)]. For both cases, input waves do not propagate in the

forward direction and no additional frequencies are generated due to the lack of nonlinearity [Figs. 4.15(b)

and 4.15(d)]. For backward propagation, the input waves are again trapped within the first few unit cells,

however, they do generate additional waves in the first few unit cells from their self-interactions [as discussed

in Section 4.5] and nonlinear mixing. Importantly, the generated difference-frequency wave propagates into

the linear phononic material [Figs. 4.15(b) and 4.15(d)], demonstrating nonreciprocal propagation. When the

pump frequency is in the first band gap [Fig. 4.15(a)], the difference-frequency component lies in the acoustic

band and nonreciprocity is achieved at a frequency lower than the probe frequency [Fig. 4.15(b)]. In contrast,

when the pump frequency is in the second band gap [Fig. 4.15(c)], the difference-frequency component lies in
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the optical band and nonreciprocity is achieved at a frequency higher than the probe frequency [Fig. 4.15(d)].

Clearly, the frequency at which nonreciprocal energy propagates can be controlled, and it is even possible

to enable mode hopping [161] of nonreciprocal waves between the acoustic and optical modes [Fig. 4.15]

by controlling the pump frequency yet without altering the probe frequency. This is particularly useful

in multi-dimensional diodes, where tuning the mode of the nonreciprocal waves can open applications of

mode-converted diodes.
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Figure 4.15: Nonreciprocal wave propagation due to nonlinear wave mixing, when the pump frequency is in
[(a) and (b)] the same and [(c) and (d)] different band gaps as that of probe frequency. (a) and (c) Dispersion
of the phononic material. (b) and (d) Frequency-space-amplitude of the waves propagating through the diode
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For simplicity, pairs of input frequencies for which only the difference frequency is in a pass band were

illustrated. However, a wide range of frequencies can be paired to achieve nonreciprocal wave propagation in

this diode [Fig. 4.16(a)]. Particularly, the diode can allow nonreciprocal wave propagation (which can cause

unidirectional or bidirectional energy propagation), fully reciprocal wave propagation, or no propagation

at all, by carefully selecting pump and probe frequencies. For the diode to support unidirectional energy

propagation, the required conditions are - (1) both pump and probe frequencies are in band gaps and (2) at

least one of the nonlinearly-generated frequencies is in a pass band. While two such representative cases were

discussed [Fig. 4.15], many other frequencies can also support such behavior [Fig. 4.16(a) - yellow]. For the

diode to support bidirectional energy propagation but still exhibit nonreciprocity, the required conditions are

- (1) one of the input frequencies should be in a pass band while the other is in a band gap and (2) at least

one of the frequencies out of Ω+, Ω− and second harmonic (of the input frequency that is in a band gap) is

in a pass band [Fig. 4.16(a) - blue]. For these conditions, forward propagation enables harmonic generation
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only while backward propagation causes both harmonic generation and wave mixing, enabling nonreciprocity.

For certain cases, the transmitted wave in the forward and backward directions contains the same frequencies

but different energy. These cases correspond to (1) when one of the input frequencies is in the pass band,

while the other input frequency and all nonlinearly-generated frequencies are in band gaps, and (2) when

one of the input frequencies and corresponding harmonic is in pass band while all other frequencies in band

gaps. However, these cases are considered fully reciprocal as their energy difference is negligible due to weak

nonlinearity. Moreover, the diode will be fully reciprocal if both the input waves are in pass bands [Fig.

4.16(a) - green], irrespective of dispersion zones in which nonlinearly-generated frequencies lie. This is because

the generation and propagation of additional frequencies will be the same in either direction. Finally, there

are frequency ranges over which the input and nonlinearly-generated frequencies, all fall within band gaps.

This eventually prohibits energy propagation in either direction [Fig. 4.16(a) - red].
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Figure 4.16: Tunability of nonreciprocal waves through (a) frequency pairing and (b)-(c) precompression. (a)
The nature of wave propagation through the diode - reciprocal (green), unidirectional nonreciprocal (yellow),
bidirectional nonreciprocal (blue), and no propagation at all (red) at Ω1, and Ω2 pairs for η = 1.863. Plot is
discretized in 200 X 200 points. Dashed lines and arrows are band gap edges and widths, respectively. (b)-(c)
Switching the nature of wave propagation in diode through precompression for a pair of pump and probe
frequencies, when both waves are in the (b) same and (c) different band gaps. Gray regions are band gaps.
Dash-dotted and dotted lines are input and nonlinearly-generated frequencies, respectively. Colored arrows
indicate precompression ranges and the corresponding nature of wave propagation.

Further, the state of energy propagation (reciprocal, unidirectional, and bidirectional nonreciprocal)

through the diode can be switched via external precompression, without changing the input frequencies

[Figs. 4.16(b) and (c)]. Such tunability is possible since the dispersion of the phononic material depends

upon the precompression (Eq. 3.5). Therefore, the input frequencies can be forced to fall in the band gaps,

pass bands, or one each in a pass band and band gap, simply by changing the precompression. For example:

For Ω1 = 1.15 and Ω2 = 1.30, both pump and probe frequencies are inside the 1st band gap for η = 1.863

[Fig. 4.16(b)], and Ω− is in the pass band. Thus, the diode supports unidirectional nonreciprocal waves [Fig.

4.16(b)]. As precompression increases, the band gap narrows. Eventually, Ω1 comes out of the band gap and

lies in the acoustic pass band for η = 3.29 (p0 ∼ 3.1 MPa). Now, the diode supports bidirectional energy
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propagation, which is still nonreciprocal due to different frequency content in the forward and backward

directions. A further increase in precompression to η = 7.08 (p0 ∼ 14.4 MPa) causes Ω2 to also fall in the

acoustic pass band. Thus, for η ≥ 7.08, waves propagate reciprocally, causing the system to no longer operate

as a diode. Similar tunability can be seen when input frequencies are in different band gaps (Ω1 = 1.15,

Ω2 = 2.85) [Fig. 4.16(c)]. The system supports unidirectional nonreciprocity for η < 3.29, which switches to

bidirectional nonreciprocity at η = 3.29, when Ω1 comes outside the band gap. These results depict a unique

feature of the proposed diode to achieve tunable nonreciprocity without altering the input frequencies.

While nonreciprocity in this diode can be enabled by pairing a range of input frequencies (Fig. 4.16),

the nonreciprocity itself can be achieved over a wide range of frequencies (Fig. 4.17). In fact, the resulting

nonreciprocal frequencies in this diode can be two times, the sum, or difference of input frequencies [Fig.

4.17(a)], overcoming the limitations of existing diodes [133], [148]–[152]. For example, diodes exploiting SHG

can enable nonreciprocity for frequencies where input frequency is in band gap but the second harmonic in

pass band [148], [149], which restricts the range of frequencies for nonreciprocity [refer 2Ω in Fig. 4.17(a)].

On the other hand, the complexities associated with nonlinear wave mixing in this diode provide additional

opportunities to enable nonreciprocal waves at (1) frequencies higher [Fig. 4.17(b)] or lower [Fig. 4.17(c)]

than the input frequency, and (2) more than one frequency (for example, 1 < Ω1 < 1.48 and 0.5 < Ω2 < 0.62

support nonreciprocity at both Ω+ and Ω−). All these results shed light on the flexibility of this diode to

achieve robust control over nonreciprocal wave propagation.

4.9 Summary

In this chapter, weakly nonlinear results of continuum phononic material with rough contacts are presented.

Both wave self-interaction, which is an interaction of propagating narrow band frequency wave with contact

nonlinearity, and wave-wave interaction, which is an interaction of two waves of distinct narrow band

frequencies at contact nonlinearity are studied.

Wave self-interaction gave rise to DC component, low-frequency wave in the vicinity of DC, and second

harmonic wave due to quadratic nonlinearity of contacts. The effects of dispersion, finiteness, and surrounding

continuum on wave propagation are studied. Noteworthy observations are:
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1. The treatment of elastic layers as continua changes the response of the nonlinearly-generated waves, e.g.

they locally reduce the DC component and cause variations in second harmonic amplitudes inside the

layers, even though the layers are linear.

2. Second harmonic amplitude exhibit spatial beating due to phase mismatch between fundamental

and second harmonic wave. Thus, second harmonic amplitudes and the spatial location where they

are maximum or minimum can be controlled through external precompression. This is because

precompression changes the dispersion relation and thus the phase mismatch between the fundamental

and second harmonic waves.

3. Deformation of contact asperities under external precompression leads to tunable band gaps.

4. The interplay between periodicity, nonlinearity, and finiteness causes the DC amplitude to be maximum

at the finite boundaries of the phononic materials, and the second harmonic amplitude depends on the

individual mode of elastic layers.

5. The finite bandwidth of the wave excitation causes energy transfer to low frequencies at the contacts via

nonlinear self-demodulation effects. The low frequencies generated at each contact interact nonlinearly

with those reflected from finite boundaries of the phononic materials.

6. The coupling between the contact and surrounding continuum changes the nonlinear contact response;

DC and second harmonic wave amplitudes depend on the arrangement of embedded contacts in a

continuum.

Wave-wave interactions generate new frequencies as sums or differences of the propagating frequencies.

This phenomenon is utilized in phononic materials, combining wave-mixing with band gaps for achieving

broadband nonreciprocity. A phononic diode based on the global asymmetry, local nonlinearity, and periodicity

of precompressed rough contacts was designed. Numerical demonstration confirmed nonreciprocal wave

propagation upon excitation of a frequency pair. The primary features observed in the wave propagation

were:

1. The frequency and propagating mode of nonreciprocal waves can be tuned through an appropriate

selection of a pair of input frequencies, surpassing the limitation of existing diodes.

2. Wave propagation can be switched to support either reciprocity or nonreciprocity, and can allow

unidirectional, bidirectional, or no propagation of energy at all.

3. The presence of contact nonlinearity further allows in situ control of energy propagation through

precompression.
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Chapter 5

Strongly nonlinear wave dynamics

This chapter presents nonlinear longitudinal wave propagation through continuum phononic materials with

rough contacts under zero external precompression (strongly nonlinear). The strong nonlinearity arises from

the nonlinear mechanical deformation of contact asperities under compressive loads as well as their inability

to support tensile loads. The chapter begins with a concise literature review of solitary waves in strongly

nonlinear phononic media, followed by a detailed investigation of novel wave responses observed in continuum

phononic materials with rough contacts. These include acoustic resonances of layers, propagation of distinctive

solitary waves with their unique characteristics, and collision dynamics. Additionally, it examines the influence

of physical constraints, such as light precompression, disorder, and finite lateral size on wave transformation

within the ideal system. The contents of this chapter have been adapted from various sections of my published

article, [104] (associated with zero precompression) and conference proceeding, [105] (associated with light

precompression), which were written as part of the research for this dissertation.

5.1 Background: Strong nonlinearity and solitary waves

One of the revolutionary strongly nonlinear behaviors studied in periodic media is the propagation of solitons

or solitary waves [162], which are localized traveling waves, meaning they have a spatially localized (or

compact) profile that travels through the system. Following John Scott Russell’s observation of shallow-water

waves [163] that maintained their shape and speed for a very long distance, characteristics of solitary waves

have been extensively studied across various domains of science [67], [164]–[166]. Solitary waves form as a

result of the delicate interplay between nonlinearity and dispersion. In materials with nonlinearity, waves of

greater amplitude propagate faster. Consequently, the peak value of a wave pulse tends to surpass lower

values, leading to a steepening and eventual breakage of the pulses. Conversely, dispersion in the material

causes a localized distribution to disperse or spread out. Hence, a solitary wave emerges when the nonlinear

steepening is counterbalanced by the dispersive spreading, resulting in a localized disturbance that propagates

without distortion. Recent progress in realizing these waves in phononic materials has led to numerous

applications such as diodes [167], sound bullets [168], impact mitigators [169], robotic motion [170], and

sensors [171]. Solitary waves have been studied in granular crystals [62], [67], [70], [162], [172], tensegrity

structures [75], [76], bistable [173], and soft architecture [79], [167], [170], all of which were assumed as

lumped-mass periodic systems, i.e. discrete nonlinearity connecting discrete particle masses. A few studies

have explored the propagation of solitary waves in bilayered phononic media with material [174] or geometric
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[175] nonlinearity. Yet, it is an open question whether solitary waves exist in a continuum with periodic and

discrete nonlinearity.

Moreover, the system architecture itself governs the nature of solitary waves that propagate through it.

For example, phononic media supporting single-polarization forms scalar [162] solitary waves whereas media

with coupled polarization support propagation of vector [79], [167], [174] solitary waves. A couple of other

studies on nonlinear phononic materials have reported the formation and propagation of nanopteron [176]

and stegotons [177]. These two solitary-like localized traveling waves arise from a unique interplay of the

underlying periodic system and nonlinearity, and exhibit different characteristics than classical solitons. For

example, nanopteron are solitary waves on top of small oscillations as observed in stacked woodpile structures

with Hertzian contact nonlinearity [176] whereas stegotons are solitary waves with a roof-type (or stepwise)

profile as reported in bilayered media with exponential material nonlinearity [177]. Clearly, the complex

nonlinear wave dynamics is an effect of how nonlinearity is embedded and interacts with the underlying

phononic system.

5.2 Objective: The role of continuum and strong discrete nonlin-

earity

In this part of the dissertation, the wave dynamics of a layered phononic material where the linear continua

(or layers) are nonlinearly coupled are analyzed. The focus of the study is to understand the role of strongly

nonlinear coupling on the elastodynamic behavior of linear layers and the existence and propagation of

localized traveling waves in such media. Additionally, how energy is distributed and exchanged within this

architecture, where nonlinearity exists only at discrete locations separated by linear continua, is studied.

Such understanding is crucial for these materials to be used for controlling the propagation of mechanical

wave energy.

The uncompressed contacts, considered in this study, exhibit strong nonlinearity stemming from their

inability to support tensile loads. This is in addition to nonlinear contact response under compressive loads

arising from nonlinear mechanical deformation of roughness. The evolution of propagating waves, excited in

the form of Gaussian tone burst at frequencies in the same order as the modal frequencies of individual layers,

is studied using time-domain finite element (FE) simulations. Particularly, the elastodynamics effects arising

from the nonlinearly-coupled layers are illustrated and the existence and properties of localized traveling

waves in such phononic materials are investigated. The main objective is to report novel nonlinear wave

phenomena of energy transfer through acoustic resonances and the emergence of stegotons in continuum

phononic materials with discrete contact nonlinearity, and present some insights through extensive numerical

simulations.

A non-dimensional frequency, Ω, is introduced in this chapter and it is defined as the ratio of the excitation

frequency, f , to the first fixed-free resonance frequency of layers, ffixed−free. All the numerical simulations

presented correspond to Ω = 0.52 (f = 0.25 MHz and ffixed−free = 0.484 MHz), unless explicitly specified.

This particular frequency is chosen for simulation as it captures the elastic deformation of the layers (and

therefore elastodynamic response of the layers due to the strong nonlinearity of contacts) within a reasonable

computational cost. All the simulations were conducted with ζ = 12.5/f , ψ = 2.5/f of Eq. (3.8) and at

excitation amplitude, U = 5 nm, corresponding to strain, ϵ, of 1.25× 10−6 in layers of width, s = 3.175 mm,

unless explicitly specified.
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Figure 5.1: Contact clapping under wave excitation. (a) Schematic demonstration of contact collision and
separation under the first wave cycle of the Gaussian tone burst of (b). Black markers show specific instants
of the wave cycle and corresponding contact conditions (a1-a6). Dashed lines are the initial interface location.
The red marker in (b) is the maximum amplitude of the tone burst. (c) Displacement-time profile of the
contact surface of layer 2 (black) and spring deformation of the rough contact between layers 1 and 2
(light blue). The last instance of clapping is associated with the maximum amplitude of the tone burst.
Displacement profile, U , is normalized by the excitation displacement amplitude, U . (d) Spatiotemporal plot
of the contact pressure, and (e) temporal plot of the contact pressure at the first rough contact. Contact
pressure is normalized by the uniaxial modulus of the layer material, where λ(L) and µ(L) are the material
Lame parameters.

5.3 Energy transfer through layer resonances

The interaction of the excited wave with rough contacts results in clapping (or breathing), which is a collision

and separation of contacting rough surfaces. This section first explains the mechanics of such collision and

separation and then the complex wave dynamics of resonance activation from it.

5.3.1 Wave-induced contact clapping

Consider a wave cycle propagating from layer 1 to layer 2 [Fig. 5.1(a)] such that layer 1 is the first layer

of the phononic material in the direction of excitation. The rough contact between these layers is at an

uncompressed initial condition, thus, the deformation, ∆u, of the nonlinear spring representing the contact is

initially zero [Fig. 5.1(a1)]. A collision occurs at the contact when the spring deformation is less than zero;

otherwise, contact separation will take place. As a result, only a fraction of a full-wave cycle is transmitted

across the contact [Fig. 5.1(a)]. This fraction of the cycle consists of a portion of the compressive part of

the wave cycle [Figs. 5.1(a2) and 5.1(a3)]. This can be explained as follows - when the displacement of the

wave cycle increases from 0 to its peak amplitude, the rough surface of layer 1 is forced to move toward the
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rough surface of layer 2 causing the contact spring to deform and transmit the forces across the contact

[Fig. 5.1(a2)]. At the same time, layer 2 deforms under the action of transmitted force causing the rough

surface at the contact to move to the right. During the next part of the wave cycle from its peak amplitude

to 0, the rough surface of layer 1 retracts, releasing the spring deformation. The forces are still transferred

across the contact during this stage until the rough surface of layer 1 retracts to position δ to account for the

deformation of layer 2 [Fig. 5.1(a3)]. At this instant, the spring is back to the uncompressed state. As the

cycle progresses, the lack of tensile force at the contact results in a contact loss (∆u > 0), and the rough

surface of layer 2 cannot be pulled back [Fig. 5.1(a4)]. It should be noted that the wave transmitted across

the contact now propagates through layer 2 and thus moves the right boundary (or surface) of layer 2 further

toward the right. As expected, the tensile part of the wave cycle further increases the gap between the two

rough surfaces at the contact [Fig. 5.1(a5)]. At the end of the cycle, layer 1 stays at the original position

whereas layer 2 has moved to the right from its original position [Fig. 5.1(a6)].

This same clapping-separation behavior is repeated with each cycle of the tone burst until the tone burst

reaches its maximum amplitude [red marker in Fig. 5.1(b)]. Note that the strongly nonlinear behavior of

contact causes a change in the position of subsequent layers [for example, layer 2, see Fig. 5.1(c) - black

line]. Also, recall that due to the Gaussian profile, the amplitudes of the later cycles of the tone burst are

larger than the previous ones – refer to the Gaussian tone burst in Fig. 5.1(b). Thus, wave cycles of the tone

burst can cause clapping as long as their amplitudes are larger than the gap between the contacting surfaces

generated from the previous cycles [compare black and light blue lines of Fig. 5.1(c)]. Wave cycles beyond the

maximum amplitude of the tone burst do not result in clapping, as they do not cause the rough surfaces to

come in contact [wave cycles beyond the red marker in Fig. 5.1(c)]. This contact loss remains in place at all

times due to the lack of external precompression and the system’s inability to support any tensile forces [Figs.

5.1(d) and 5.1(e)]. The forces transmitted across the contact during tone burst interaction propagate through

the phononic material and subsequently cause the separation of surfaces at each contact [Fig. 5.1(d)].

5.3.2 Emergence of acoustic resonances

Interestingly, the normalized displacement profile, U , inside the first layer of the phononic material shows a

harmonic response for all times after tone burst excitation [inset of Fig. 5.2(a)]. Similar observations are

made in layer 2 [inset of Fig. 5.2(b)] and so on. The wavelet transform reveals that the frequency content of

these harmonic responses is different from the tone burst excitation frequency of Ω = 0.52. The frequency

spectrum shows that these oscillations, in fact, correspond to the acoustic resonances of the corresponding

layers. Layer 1 exhibits the first acoustic resonance under fixed-free BC. This is because the tone burst

interaction with the rough contact causes a separation between surfaces of layer 1 and layer 2 (as illustrated

in Fig. 5.1), which ultimately creates a free BC on the right side of layer 1, and the excitation boundary is

held fixed in its original position after the excitation (a physical BC as seen in the experiments [178]). These

BCs of the layer activate acoustic resonances given by jcL/4s, where j is the order of resonance i.e. first,

third, fifth, and so on. Thus, a fraction of the excited energy is now localized in layer 1 at its resonance

frequencies. Higher-order resonances of this layer also exist but their amplitudes are much smaller than the

first resonance. On the other hand, layer 2 experiences free BCs on either side because of loss of contact due

to wave interaction with corresponding rough contacts. This results in acoustic resonances of layer 2 as given

by jcL/2s. Owing to free-free resonance, the center point inside layer 2 is a node while boundary points are

antinodes [Fig. 5.2(d)]. Thus, wave responses shown in Fig. 5.2(b) are from a point close to the boundary in

layer 2. Due to the separation of surfaces at each contact as the wave propagate [Fig. 5.2(d)], the later layers
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Figure 5.2: Energy transfer through activated layer resonances due to strong contact nonlinearity. Dynamic
response of (a) layer 1 and (b) layer 2. The response is extracted at the center point for layer 1 and near the
contact boundary for layer 2. Time-domain normalized displacement (top), corresponding wavelet transform
(middle) and 2D FFT of the entire time-domain signal (bottom) are plotted for both points. Insets are
zoomed views of dashed rectangles indicating resonant oscillations. Wavelet amplitudes are normalized by
their maximum amplitude whereas 2D FFT amplitudes are normalized by FFT amplitude of the excitation
signal, AE . Normalized modal deformations of (c) layer 1 and (d) layer 2 under fixed-free and free-free
acoustic resonances, respectively. The deformations are plotted for 3 different time instants during resonant
oscillations.

also oscillate in a free-free resonance [discussed in terms of energy-frequency dependence later in Fig. 5.3(c)],

however, their amplitudes are very small due to relatively weaker excitation energy at later contacts.

This indicates that the combined effects of strong nonlinearity, continuum layers, and dynamic excitations

result in the nonlinear energy transfer between frequencies. While many other nonlinear energy transfer

mechanisms have been reported, such as sub- [179] and super- [102], [180] harmonics generation, self-

demodulation [102], [132], and nonlinear wave mixing [103], [158], the mechanism in continuum phononic

materials with contacts is different in that it is fundamentally based on activating acoustic resonances of

elastic elements (for example, layers in this case). This behavior has been not reported so far, as studies of

unconsolidated phononic media were focused at frequencies much lower than modal frequencies of individual
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elastic elements (for example, particles in granular crystals [62], [162]). At such low frequencies, elastic media

between contacts has been considered as point masses. As a result, there exists a lack of coupling between

these masses after contact loss, and no resonances are activated. While granular metamaterials [181] and

woodpile structures [176] have shown spectral energy transfer through resonances, the mechanism is based on

local resonances. These studies considered lumped-mass elements, where resonators are only coupled directly

to an oscillator at each site. On the other hand, the system studied in this dissertation is not set up as a

locally resonant system, in fact, the layers are coupled and modeled as continua. As a result, the resonances

observed inside the phononic material correspond to the acoustic resonances of these layers. Further, these

acoustic resonances capture the physical deformation of the layers in the form of modes of finite bodies [Figs.

5.2(c) and 5.2(d)] and can also capture higher-order resonances of the layers for high-frequency excitations.
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Figure 5.3: Energy distribution within the phononic material due to layer acoustic resonances. Dependence of
the energies trapped in (a) layer 1 (E1) due to fixed-free resonance (fr1) and (b) layer 2 (E2) due to free-free
resonance (fr2) on excitation frequency, f . Vertical dashed lines correspond to when the excitation frequency
is a fraction multiple of resonances. (c) Energy stored in the resonances of subsequent layers (Ei), where i
indicates layer index from the excitation boundary. (d) Resonance energy distribution in the first 10 layers of
the phononic material for different excitation frequencies. The colorbar indicates energy inside the layers
normalized by the total energy in the system.

Further, the distribution and dependencies of the energies (normalized by the total energy, ET ) trapped

in these layers due to their resonances on the excitation frequency, f , is evaluated (Fig. 5.3). Parametric

numerical simulations were conducted by sweeping excitation frequencies from far away from the layer

resonances to the layer resonance frequencies. As the excitation frequency approaches the resonance of layer 1,

fr1, almost all the energy of the system is stored in layer 1 [Fig. 5.3(a) as f/fr1 → 1]. Interestingly, even when

the excitation frequency is a fraction multiple of resonance frequency (f/fr1 = 1/5, 1/4, 1/3, 1/2), a significant

portion of the total energy is stored in layer 1. This is because of higher harmonic responses arising from

the nonlinear rough contact. As the wave interacts with the quadratically nonlinear rough contacts, higher

harmonics are generated at the contact, which activates the resonances of layer 1. Layer 1 stores more energy
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when lower-order harmonics, such as the second (for f/fr1 = 1/2) and third (for f/fr1 = 1/3), of the excitation

frequency fall close to the resonance, compared to other higher-order harmonics (for f/fr1 = 1/4, 1/5). As

expected, the energy stored in layer 2 also increases as the excitation frequency approaches the resonance

of layer 2 [Fig. 5.3(b) as f/fr2 → 1]. Similarly, fractional multiples of the excitation frequency contribute

to activating the resonance of layer 2. Since harmonics with increasing order are associated with reduced

amplitudes, the energies stored in layer resonances are increasingly weaker from harmonics with increasing

order. For example, the free-free resonances of layer 2 activated for f/fr2 ∼ 0.125 [left-most peak in Fig.

5.3(b)] are much weaker than for other fractional frequencies; particularly, the energy in the layer resonance for

f/fr2 ∼ 0.125 is almost three orders of magnitude smaller than the total energy. As the excitation frequency

decreases further (f/fr2 → 0), corresponding higher-order harmonics become significantly less effective in

exciting the free-free resonances of layer 2. At excitation frequency f/fr2 ∼ 0.7, the generated third harmonic

is close to the 2nd order free-free resonance of the layer (2fr2). Thus, layer 2 stores more energy at this

excitation frequency and shows a local maximum. The energy stored in layer 2 for an excitation frequency

of f/fr2 = 0.5 is much smaller compared to other adjacent fractional frequencies. This is contradictory to

the dependence of layer 1 energy on excitation frequency. This difference in the energy dependence of these

two layers can be attributed to the relation between their resonance frequencies. Recall that the resonant

frequency of layer 2, fr2, is twice the resonant frequency of layer 1, fr1. Thus, most of the total energy is

localized in layer 1 when f = fr1 = 0.5fr2, leaving only a small amount of energy in layer 2.

The energy dependence of the subsequent layers (i = 3, 4, ...) on excitation frequency is identical to layer

2 as all these layers oscillate under free-free resonance [Fig. 5.3(c)]. However, energy stored in these layers

gradually reduces away from the excitation boundary [Fig. 5.3(d)]. While the reduction in stored energy

with propagation distance is also frequency-dependent, energy localization primarily happens in the first few

layers (i < 6) only [Fig. 5.3(d)]. Clearly, a portion of the wave energy is localized in each of these layers as a

wave propagates through them. Specifically, for frequencies that significantly contribute to activating the

resonances of these layers. In other words, wave energy at these frequencies sharply reduces as it propagates.

Therefore, wave interactions with subsequent contacts do not excite the resonances of the subsequent layers as

effectively as previous layers. This can be seen through a monotonic reduction in the energy stored in layers

with layer indices [Fig. 5.3(d)]. This is the reason for the reduction in the resonant oscillations of the later

layers. The remaining portion of the total energy, which is not stored in these layers, propagates through the

phononic material (discussed in Section 5.4). Remarkably, the percentage of total energy propagating through

the material is frequency-dependent [Fig. 5.3(d)]. For example, the energy localized near the excitation

boundary for f/fr1 ∼ 0.5 and f/fr1 ∼ 1 is almost same as the total energy, whereas for f/fr1 < 0.25,

0.33 < f/fr1 < 0.5, and 0.5 < f/fr1 < 0.6, only a small portion of the energy is localized and the remaining

energy propagates through the material. Clearly, the elastic media between nonlinear contacts contributes to

complex dynamics due to the overlapping effects of harmonic responses of contacts and resonances of layers.

The energy dependencies presented here further inform that the proposed phononic material can be used for

both acoustic attenuation and signal propagation by carefully selecting the excitation frequency with respect

to layer acoustic resonances.

5.4 Propagation of localized traveling waves

An interplay between nonlinearity and dispersion gives rise to solitary waves in periodic media [62], [162].

A study of such waves in layered media with exponential material nonlinearity revealed a new type of
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solitary-like wave [177]. Unlike classical solitons, this new wave exhibited a roof- or ridge-type spatial profile

and thus was named a “stegoton”. This wave, however, satisfied the other properties of solitons, which are

propagation at a constant speed, and speeds being proportional to the wave amplitude. Later, stegotons were

observed mathematically in the context of hyperbolic partial differential equations with spatially varying

coefficients [182] and in a spring dimer configuration of Fermi-Pasta-Ulam-Tsingou lattices [183]. Still, it is

not well understood what role nonlinearity plays in the propagation characteristics of stegotons. Moreover,

stegotons have not been reported in a phononic system with physically-motivated nonlinearity, such as

contact nonlinearity. In the phononic materials studied here, the combined effects of strong nonlinearity of

rough contacts, dispersion from their periodic arrangement, and the presence of elastic layers, give rise to

the propagation of stegotons. In this section, these waves and their characteristics in rough contact-based

phononic materials are reported.

5.4.1 Formation of stegotons

For a tone burst at excitation frequency, Ω = 0.52, trains of stegotons are observed [Fig. 5.4(a)]. Such trains

are generated because of two simultaneous effects: 1) multiple collisions of contacting rough surfaces due

to multiple wave cycles in the tone burst excitation, and 2) layer internal reflections (such as seen in the

dynamics of an impact of a striker on a Hopkinson bar [184]). Three dominant stegotons observed in the

simulations are a result of three strong collisions of rough surfaces during the tone burst interaction with the

first rough contact [Figs. 5.1(c) and 5.1(e)]. The loss of contact after these collisions results in a gap between

the layers preventing any further collision from the later cycles of the tone burst [Fig. 5.1(c)]. Additional

stegotons due to other weaker collisions from tone burst cycles and internal layer reflections are also generated

but their amplitudes are relatively negligible (two orders smaller).

The stegotons in these phononic materials are localized traveling waves yet due to the continuum between

successive nonlinear contacts, they show a stepwise wave profile [Fig. 5.4(a)] that is different from the

continuous shape of classical solitons. This is because displacements are discontinuous across the contact

causing steps in the spatial profile, whereas displacements inside layers vary smoothly due to layer deformation.

This stepwise profile that consists of both jumps and continuous variation has not been seen in solitary waves

in granular crystals, as these systems have thus far been modeled as spring-mass chains. Further, the stegoton

spatial profiles continuously change while propagating through a collection of 3 layers, as can be seen at two

representative time instants [Fig. 5.4(a)]. Note that the stegotons are propagating through the same 3 layers

at both of these time instants. At t1, the leading part of the stegoton (between 44th and 45th contact) is

lower compared to the trailing part (between 42nd and 43rd contact) [Fig. 5.4(a1)]. The opposite is the case

at t1 + 20∆t [Fig. 5.4(a2)]. The same change in profile is repeated as the wave propagates to the next layers.

Clearly, two simultaneous effects are happening inside the phononic material – 1) macroscopic dynamics of

phononic material and 2) localized dynamics within the layers. Macroscopic dynamics means the dispersion

from periodicity that counteracts that of the contact nonlinearity, which gives rise to the propagation of

compact waves. This is similar to the mechanics of the formation of solitary waves in, e.g., nonlinear granular

media. As a result, stegotons propagate with a constant spatial profile between layers despite exhibiting

changing profiles within a collection of 3 layers. Additionally, the local dynamics of the continuum layers

cause elastic deformations [Inset of Fig. 5.4(a1)]. These localized effects have typically not been considered in

nonlinear granular media, where masses are modeled as point masses. In that case, the displacement profile

across the particles is constant, and no local effects are seen [62], [162].
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Figure 5.4: Propagation of stegotons. (a) Formation of stegoton trains under tone burst excitation. Results
at two different time instants, when stegotons are within the same layers, are shown indicating changing
spatial profile of stegotons within these layers. Magnified views of the stegotons in dashed rectangles are to
the right (a1-a2). Layer width is marked through blue arrows. Inset of a1 shows stegoton amplitude variation
inside a layer between 43rd and 44th contacts. Arrows indicate wave propagation direction. Propagation
distance is marked in terms of contact indices. (b) Stegoton amplitude dependence on propagation distance.
The three plots correspond to the three stegotons of (a) with amplitudes evaluated at the center point in
each layer. Insets show amplitudes evaluated at multiple locations inside each layer, in the neighborhood
of the 25th contact (dashed rectangles), highlighting their local variation. The amplitudes are extracted
from the temporal wave profile for each spatial point. Results are shown for the first 50 contacts only. (c)
Spatiotemporal amplitude plot showing constant propagation speed of the generated stegotons. The temporal
profile of the stegotons on the right corresponds to a location near the 50th contact (dashed vertical line).

5.4.2 Characteristic features of stegotons

The spatial width of the stegotons in this phononic material is equal to 3 layers [Fig. 5.4(a)]. This is in

contrast to the spatial width of solitary waves arising due to Hertzian contact nonlinearity, which is equal

to 5 particle diameters [162], and due to exponentially nonlinear bilayer media, which is equal to 10 layers

[177]. As demonstrated in [185], the width of a solitary wave in granular crystal in terms of the particle
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Figure 5.5: Dependence of the energies carried by stegotons, ES , on the excitation frequency, f . Vertical
dashed lines correspond to when the excitation frequency is a fraction multiple of layer resonances.

size depends upon the coefficient resulting from the power-law of contact nonlinearity. Solitary wave width

narrows as the exponent of power-law nonlinearity increases. Based on this theory, it can be determined that

the rough contact nonlinearity between elastic layers generates more compact localized waves compared to

other forms of nonlinearities explored thus far.

The amplitudes of the stegotons, in terms of particle velocity, v, normalized by Uω, (where ω is angular

excitation frequency such that ω = 2πf , and U is the excitation displacement amplitude), varies within the

layer [insets of Fig. 5.4(b)] yet remains constant with propagation distance for a given point inside each layer.

Note that the amplitudes shown in Fig. 5.4(b) are evaluated at the center point inside each layer, whereas

amplitudes in the insets are evaluated at 5 locations inside each layer. Interestingly, these waves propagate

at a constant speed when traced at a particular point [e.g. center point in Fig. 5.4(c)] in each layer. The

temporal profile highlights that the temporal width of these localized traveling waves is inversely proportional

to their amplitude [Fig. 5.4(c)].

Next, the energy carried by these stegotons (normalized by the total energy, ET ) as a function of excitation

frequency, f , is analyzed (Fig. 5.5). The plotted energies, ES , are of all the stegotons such that ES =
∑k

1 ESk,

where k is the number of stegotons generated in the phononic material. There exist certain frequencies for

which stegotons carry very low energy (two orders smaller than the total energy), for example, f/fr1 ∼ 1.

This is because most of the total energy at these excitation frequencies is localized in layer 1 (refer Fig. 5.3).

Similarly, when the excitation frequency is a fraction multiple of the layer resonances, there exists a drop in

the energy carried by the stegotons (refer to the dashed vertical lines in Fig. 5.5). For all other frequencies,

stegotons carry a large portion of the energy through the phononic material. This characteristic demonstrates

possible applications of this phononic material from filtering to signal propagation. This is because only a

small amount of energy propagates through the material for certain frequencies (specifically for f/fr1 ∼ 1)

while for others, excited wave energy can travel through the material.

The dependence of stegoton propagation speed (c) on stegoton amplitude (v) [Fig. 5.6(a)], and on the

contact pressure between layers (p) is further evaluated [Fig. 5.6(b)]. These relationships are determined

at the excitation frequency of Ω = 0.52. A long tone burst (ζ = 50/f and σ = 10/f) was used to generate

multiple stegotons to find both the c− v and c− p relation. Stegoton amplitudes are evaluated at the center
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point in the 50th layer and the speed is determined through propagation time delay between two points

separated by a distance equal to five layers. The dependence of the speed of stegotons on their amplitudes

is found to be a power-law relation with an exponent equal to ∼ 1/3 [Fig. 5.6(a)]. The dependence of the

speed of stegotons on the contact pressure follows a power-law relation with an exponent equal to ∼ 1/4 [Fig.

5.6(b)].

It is interesting to compare these results to those of stegotons and solitary waves studied in prior work.

For example, the dependence of the speed of stegotons on their amplitudes was found to be linear in a bilayer

material with exponential nonlinearity [177]. These differences in dependencies potentially arise from the

differences in the phononic materials of [177] and in this work, which are the form and type of nonlinearity

(material vs contact), nature of nonlinearity (exponential vs quadratic), type of excitation (pulse vs tone

burst), and impedance mismatch at the interfaces. In the case of Hertzian contact nonlinearity, the solitary

wave speed has a power-law dependence on its amplitude with an exponent equal to 1/5 and on contact

force between particles with an exponent equal to 1/6 [162]. Clearly, the phononic material with rough

contact nonlinearity shows a stronger relationship between 1) the speed and amplitude of the stegotons, and

2) the speed of stegotons and contact pressure, compared to Hertzian contact. This suggests that localized

traveling waves of equal amplitudes will propagate faster in continuum phononic material with rough contact

nonlinearity compared to granular crystal with Hertzian contact nonlinearity.

Further, the wave speed of stegotons can be tuned through system parameters, such as excitation amplitude,

frequency, and layer thickness. As discussed in Fig. 5.6(a), the stegoton speed is proportional to its amplitude.

Thus, the speed of stegotons can be tuned by controlling the amplitude of the generated stegotons. This can

be achieved by changing the excitation amplitude - a larger excitation amplitude causes stronger collisions at

the rough contacts forming stegotons with higher amplitudes, and vice versa. Similarly, as discussed in Fig.

5.5, the amount of energy carried by the stegotons depends upon the frequency of excitation. In other words,

the properties of stegoton propagation (i.e. their amplitude and wave speed) can be changed by changing the

excitation frequency. The speed of stegotons also depends upon the layer thickness. The speed-amplitude

relation of stegotons for different layer thicknesses is evaluated by following the method of Fig. 5.6(a). For

all the simulated cases, excitation frequency was appropriately selected to account for the change in layer

resonance frequencies, i.e. to keep normalized frequency (Ω = 0.52) the same. Increasing the layer thickness in

phononic material increases the wave speed of the stegotons for a given amplitude, however, the relationship
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Figure 5.7: Stegoton tunability. (a) Stegoton wave speed dependence on its amplitude for different layer
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amplitude relation when contact power-law exponent is 4 (i.e. β = 0.75). (c) Snapshots of propagation of
stegotons in (b) for two different time instants t1 and t2.

between the speed and amplitude remains unchanged [Fig. 5.7(a)]. This is likely because the relationship is

governed by contact law, which depends only on the contacts and not the layer thickness. However, changing

the layer thickness changes the overall dispersion and thus affects the speed of the stegotons. Finally, stegotons

are generated from the counterbalance between nonlinearity and dispersion, hence, their speed-amplitude

relation would depend upon the exponent of rough contact law. Rough contacts with different power-law

exponents are achievable through different roughness topographies between contacting layers [115]–[117].

Therefore, stegoton properties can be potentially tuned through appropriate roughness selection as well. To

briefly validate this, a phononic material with a larger exponent, specifically, contact power law exponent of 4

(corresponding to β = 0.75) is considered. The coefficient of proportionality is modified through the trial

and error method to ensure the convergence of the problem. By following the method of Fig. 5.6(a), the

obtained speed-amplitude relation for this increased exponent is 0.59, i.e. ∼ 0.6 [Fig. 5.7(b)], which confirms

that increasing the exponent of the power law increases the speed-amplitude relation. Further, the snapshots

of stegoton propagation for this increased exponent case [Fig. 5.7(c)] highlights that the spatial width of

the stegotons is 2 layers, which is more compact than the width observed when the power-law exponent is

2, which is 3 layers [refer to Fig. 5.4(a)]. This is consistent with the trend that increasing the power-law

exponent reduces the spatial width of the localized traveling waves.
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5.4.3 Collision dynamics of stegotons

Studies of collision dynamics of solitary waves formed in granular crystals have shown that these waves escape

frontal collision, however, they generate additional weaker solitary waves [186], [187]. This is because the

collision process releases some energy, owing to the squeezing of solitary waves during a collision, which

eventually contributes to the generation of secondary solitary waves [186]. Surprisingly, the collision of

stegotons in layered material with exponential nonlinearity did not result in the generation of additional waves

[177]. In contrast, the collision of counter-propagating stegotons of equal amplitude in phononic materials

with rough contacts generates a train of secondary stegotons, as shown in this section.

To study collision dynamics, a tone burst (ζ = 2.5/f and ψ = 0.5/f) is excited from each end of the

phononic material at frequency Ω = 0.52 such that the excited signal results in a single dominant stegoton

propagating from both ends towards each other. Two cases of phononic material are studied - with odd

(n = 101) and even (n = 100) numbers of layers. In the case of an odd number of layers [Fig. 5.8(a)], the

collision takes place inside the elastic layer at the center (i = 51) of the phononic material. Upon collision,

the formation of secondary stegotons is observed with an amplitude (and therefore speed) much (two orders)

smaller than primary stegotons [Figs. 5.8(a) and 5.8(b)]. In the case of an even number of layers (i = 100)

[Fig. 5.8(c)], the collision takes place at a rough contact (between i = 50 and i = 51). Generation of

secondary stegotons is observed in this case as well, however, the amplitudes of these generated stegotons are

significantly higher than the secondary stegotons from the collision inside the layer [Figs. 5.8(b) and 5.8(d)].

In both cases, a phase shift in propagating stegotons post-collision is observed [Figs. 5.8(e) - results shown

for an even number of layers case only] - an observation consistent with the collision dynamics of solitary

waves in granular crystals [187]. The dependence of the amplitudes of secondary stegotons on the amplitudes

of primary stegotons in both collision cases is further evaluated [Fig. 5.8(f)]. There is an order of magnitude

difference between the amplitudes of secondary stegotons generated at contact and within a layer.

To understand the role of the number of layers on the generation of secondary stegotons, the displacements

and energies of the layers at and in the vicinity of collision are studied. When the collision of stegotons

takes place inside a layer, the layer does not move before, during, or after the collision [Fig. 5.9(a) - refer ic].

On the other hand, adjacent layers first move towards the center layer and then away from it post-collision,

resulting in a contact loss [Fig. 5.9(a) - refer ic−1 and ic+1]. This is because the stegoton propagating from

left to right forces the layer ic−1 to initially move to the right, which eventually ceases due to the stegoton

propagating in the opposite direction. This backward (right to left) propagating stegoton, when coming

through the collision, forces the same layer to move to the left. The reverse is the case for the layer ic+1.

Despite these surrounding motions, the center layer is always at rest. As a result, the total kinetic energy in

the center layer (ic = 51) is ∼ 0 unlike adjacent layers [ic−1 = 50 and ic+1 = 52], refer to Fig. 5.9(c). However,

there exists a non-zero potential energy inside the center layer, which is significantly larger than the potential

energy in other layers [Fig. 5.9(c) - red lines]. This excess potential energy is a result of the squeezing of

the stegotons, equivalent to the squeezing of solitary waves in granular crystals [186], during the collision.

This squeezing can be physically understood as follows - when two identical stegotons propagating towards

each other collide, the layers that came in contact due to leading fronts of the stegotons start to move in the

reverse direction due to repelling forces. At the same time, the trailing fronts of the stegotons are moving in

the direction of the wave propagation, eventually causing them to squeeze. Note that stegotons have a spatial

width of 3 layers and therefore the trailing front is not affected by the dynamics of the leading front for a

certain duration of time, allowing such squeezing. The potential energy released from this dynamics, however,

is temporarily transferred to the center layer during the collision [Fig. 5.9(c)] and thus only generate weaker
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Figure 5.8: Collision dynamics of stegotons. Spatiotemporal amplitude plot of stegotons when the collision
happens (a) inside a layer (for an odd number of layers) and (c) at a rough contact (for an even number
of layers). (b) and (d) are snapshots of (a) and (c), respectively, at a time equal to 175 µs [dashed yellow
line in (a)-(c)]. Arrows indicate the direction of propagation with longer and shorter arrows correspond
to primary and collision-induced secondary stegotons, respectively. Insets in (b)-(d) are zoomed views of
dashed rectangles. Propagation distances are in terms of contact indices. (e) Phase shift due to the collision
of stegotons. Stegotons are recorded inside the 80th layer in the system with n = 100 when a stegoton is
excited from each end (solid) and left end only (dashed). Inset is a zoomed view of the overlapped stegotons.
(f) Dependence of the amplitudes of secondary stegotons, v2, on primary stegotons, v1 when the collision
happens at a rough contact (squares) and inside a layer (circles).

69



(a) (b)

80 100 120 140
0

0.5

1

80 100 120 140
0

0.5

1

80 100 120 140
0

0.5

1

80 100 120 140
0

0.5

1

80 100 120 140
0

0.5

1

Time [μs]

E

i = 40

i = 62

= 50ic-1

ic = 51

ic+1 = 52

100 120 140 160 180
-1

-0.5

0

0.5

1

U

i +
i -

Time [μs]

80 100 120 140
0

0.5

1

80 100 120 140
0

0.5

1

80 100 120 140
0

0.5

1

80 100 120 140
0

0.5

1

80 100 120 140
0

0.5

1

80 100 120 140
0

0.5

1

Time [μs]

E

i = 40

i = 61

i- = 50

i+= 51

i = 49

i = 52

(d)(c)

100 120 140 160 180
-1

-0.5

0

0.5

1

U

ic
ic+1

ic-1

Time [μs]
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secondary stegotons [Figs. 5.9(a) and 5.8(b)]. As stegotons propagate through the collision, they regain their

kinetic energy [Fig. 5.9(c) - refer i = 40 and i = 62]. This can also be confirmed by the fact that the kinetic

energy in the stegotons post-collision is only ∼ 0.005% smaller than the pre-collision ones.

When stegotons collide at a contact, both the layers adjacent to the contact (i− and i+) change their

position causing separation of contacting surfaces post-collision [Fig. 5.9(b)]. This can be understood in the

same way as the motion of the adjacent layers in an odd number of layers. The squeezing of the stegotons in

this case also releases potential energy [Fig. 5.9(d)], which cannot be stored at an interface and needs to

be released. The phononic material considered here can only support localized traveling waves, hence, the

energy is released in the form of (secondary) stegotons [Figs. 5.8(c) and 5.8(d)]. It is observed that some of

this potential energy is temporarily stored in the adjacent layers [Fig. 5.9(d) - refer i = 50 and i = 51]. The

energy in the layers in the vicinity of the collision also shows an evolving difference pre- and post-collision

[Fig. 5.9(d) - refer i = 49 and i = 52], which is likely because of the overlapping effects of the leading and

trailing fronts of the forward and backward propagating stegotons. Eventually, the stegotons attain a stable

energy [Fig. 5.9(d) - refer i = 40 and i = 61]. Specifically, we observe that the energy in the stegotons

post-collision is 0.4% smaller than pre-collision, indicating a stronger percentage of energy being utilized

during the collision for the generation of secondary stegotons, compared to the case with an odd number

of layers. In the absence of contact nonlinearity, it is possible that the energy imbalances upon collision in

the system of [177] were stored inside the layers and thus no secondary stegotons were seen. Clearly, the

dynamics of stegotons in phononic materials with rough contacts not only depend on the contact nonlinearity

and elastic layers, but they also depend on the finite dimensions of the phononic material that can result in

complex collision dynamics.

5.5 Physical constraints: Effects of light external precompression

While zero precompression exhibits interesting wave dynamics, such phononic material is an ideal system. From

a physical perspective, a light precompression needs to be applied for interfaces to stay in contact. Interestingly,

such a system still exhibits strong nonlinearity if the wave amplitude is larger than predeformation. This

condition still leads to contact separation and collision, ensuring contact clapping. In the previous section,

nonlinear responses of uncompressed systems were discussed. These responses include the propagation of

stegotons and activation of layer resonances. In this section, how these responses are affected when light

precompression is applied is studied. Further, light precompression may in fact support additional nonlinear

responses not possible with uncompressed or strongly compressed media. Overall, two key questions are

explored: (1) the changes in reported nonlinear responses of these phononic media (acoustic resonances,

stegotons, and harmonic generation) when non-zero precompression and high amplitude excitation are

involved, and (2) the coexistence of strongly and weakly nonlinear wave responses.

In this study, the numerical simulations are conducted in two stages: first, the model solves the static

problem of external precompression to determine the deformed state of the phononic material and prede-

formation in the springs. Then, a wave propagation study as explained in Chapter 3 is conducted. The

output of the static analysis is considered as the initial conditions for the wave propagation problem. A

longitudinal wave pulse [wave schematic in Fig. 5.10(a)] of amplitude, U , and center frequency, f , with a

Gaussian modulation (parameters, ζ = 2/f , ψ = 0.5/f for Eq. 3.8 was excited. Note that the maximum

displacement of the input pulse [max(| +u |, | −u |)] is smaller than excitation amplitude, U , due to Gaussian

modulation yet larger than predeformation to cause contact clapping (i.e. U > |u| > δ0). This specific wave
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profile corresponds to the typical response of a broadband ultrasonic contact transducer. Importantly, using

a single cycle input simplifies the nonlinear study and enables isolating the effects from light precompression.

This would not have been achievable with an excitation comprising numerous cycles as investigated in the

previous section.

5.5.1 Nonlinear wave disintegration

In this section, the evolution of the input wave profile in the phononic material with light external precom-

pression and high amplitude excitation is studied. Specifically, an example case of u/δ0 ≈ 1.2 (U = 5 nm

and p0 = 10 kPa), which activates strong nonlinearity as well as facilitates the study of the effect of external

compression is presented. Here, a non-dimensional frequency, Ω, is introduced such that the frequencies

are normalized by the lower-edge frequency of the first band gap of the linearized phononic media for the

applied p0 (i.e. band gap starts at Ω = 1 or f = 0.258 MHz). Two representative cases of input pulse are

studied: (1) with center frequency in pass band (Ω = 0.5 or f = 0.129 MHz) and (2) with center frequency

at band edge (Ω = 1 or f = 0.258 MHz). The first pulse, consisting of a wide band of frequencies within

0 < ∆Ω < 1, was excited to analyze nonlinear wave propagation in a highly dispersive frequency regime of

the linearized phononic media. On the other hand, the second pulse, consisting of a wide band of frequencies

within 0 < ∆Ω < 2.5, was excited to analyze the effect of band gaps on nonlinear wave propagation.

The wave profile changes as the wave propagates through the phononic material [Fig. 5.10(a)]. Particularly,

the input pulse that originally consists of both compression and extension displacement, gradually transforms

to a profile that is predominantly in compression only [compare wave profile in layer 1 vs in layer 20 in

Fig. 5.10(a)]. As the wave propagates, the tensile portion of the pulse vanishes with each layer [note a

gradual reduction in negative displacements from layer 2 to 20 in Fig. 5.10(a)]. Moreover, the transmitted

compressional part is followed by small-amplitude oscillatory waves. In fact, the Gaussian input pulse

eventually evolves into a waveform that contains three distinct features: (1) a steep increase in profile at the

wave front, followed by (2) a gradual amplitude reduction, and (3) an oscillatory tail. This transformation

can be understood as follows: The profile of the pulse transmitted across a contact is a combined effect

of contact nonlinearity and weak compression. The contacts transmit all compressive forces, whereas only

tensile forces that are just enough to counteract the light precompression are transmitted. As a result, once

tensile forces exceed precompression, contact loss occurs. Therefore, the only harmonic waves supported

inside the phononic material are those that contain small amplitude displacements.

This wave evolution also causes energy transfer within the spectral domain, encompassing both strongly

and weakly nonlinear effects in the phononic material. Specifically, layer 1 resonates at a frequency, Ω = 2

[note resonant oscillations in Fig. 5.10(a) and a spectral peak in Fig. 5.10(b) for layer 1]. This resonance

corresponds to the mode of the layer under the fixed-forced BC. Note that layer 1 is held fixed at the

left end by virtue of the excitation profile whereas the right end is a rough contact. This mode is at a

frequency slightly higher compared to the first fixed-free mode of the layer, i.e. acoustic resonance given

by Ωr = 1.876 (Ωr = cL/4s). This is because, unlike the uncompressed system, the lightly compressed

system experiences a non-zero spring force at the contact end, which pushes the mode of the layer to a

higher frequency. Surprisingly, layer 2 also displays a spectral peak at the same frequency [refer to inset

in Fig. 5.10(b) for layer 2]. In an uncompressed system, the second layer resonates at a frequency twice

that of layer 1 [104], as it loses contact with adjacent layers after wave interaction. However, in the current

system, both layers (1 and 2) remain in contact due to external precompression, a state unachievable in an

uncompressed system. Consequently, a portion of the resonant energy from layer 1 is possibly transmitted
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Figure 5.10: Evolution of input pulse with center frequency at Ω = 0.5. (a) Displacement-time profile and
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displacements, u, are normalized by pulse excitation amplitude, U , and spectral amplitudes are normalized by
spectral excitation amplitude, AE . The signals are recorded at the center point in the corresponding layers
and the layer indices are numbered from the excitation boundary. Red dashed lines are band gap edges.

to layer 2, resulting in a spectral peak at Ω = 2. In subsequent layers, second harmonics are generated, i.e.

Ω = 1 [refer to the spectral peak at Fig. 5.10(b) for layer 5] - a feature typical of weakly nonlinear systems.

These harmonics, however, lie on the band gap edge and beyond, prohibiting their propagation and causing

their spectral amplitude to diminish in later layers (e.g., layers 10 and 20). Frequencies within the pass

band propagate while those close to the band gap edge propagate at extremely slow speed. Eventually, the

propagating frequency components consist primarily of low frequencies close to 0 Hz, forming a localized

traveling wave.

One can think of the transformation of the input wave profile and its frequency content as a “disintegration”
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of the input pulse. Here, disintegration is referred to as a transformation of the input pulse into (1) leading

pulses of compressive nature, (2) transitioning zone of a rarefaction nature, and (3) tails of decaying amplitudes

of harmonic nature. This can be seen in terms of the spatial distribution of frequency content [Fig. 5.11(a)]

and temporal dependence of particle velocity [Figs. 5.11(b) and (c)]. Despite exciting energy in the system

around Ω = 0.5, the energy content within phononic material spreads spatially due to dispersion while some

remains trapped in the form of layer resonances [Fig. 5.11(a)]. The oscillations correspond to frequencies near

the band edge that propagate at a much slower speed. The leading pulse propagates faster than the oscillatory

tails and thus overtakes them, causing disintegration, which is clearly visible away from the excitation

boundary. The pulse and oscillatory wave profiles are linked through a rarefaction front [Fig. 5.11(c)]. As a

result, the duration over which a rarefaction wave exists in a layer increases with propagation distance [Fig.

5.11(b)]. This shows that phononic material with contact nonlinearity can support rarefaction waves given

non-zero external precompression. Interestingly, similar wave disintegration has been reported in nonlinear

metamaterials but with softening-type nonlinearity, i.e. where the exponent of power-law nonlinearity is < 1

[76], [80]. Specifically, these studies reported that an excited compression pulse transforms into a leading

rarefaction pulse in tensegrity [76] and origami metamaterials [80].

A similar wave disintegration occurs even in the case when the center frequency of the excited pulse is at

the linearized band gap edge, i.e. Ω = 1 (Fig. 5.12). Importantly, the frequencies Ω > 1 do not propagate

through the phononic material, indicating that the band gap exists at these frequencies in this strongly

nonlinear regime. In this case, oscillatory tails consist of frequencies within the pass band only. Since the
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excitation frequency is closer to the resonance frequency of layer 1, there are stronger resonant oscillations of

layer 1 compared to when the excitation center frequency is Ω = 0.5 [Compare oscillations at layer index = 1

in Fig. 5.11(b) and Fig. 5.12(b)].

The leading compression pulses in these phononic materials are in fact localized traveling waves that

propagate with constant speed and amplitude. Due to the hybrid nature of the phononic material, which

is continua connected through discrete nonlinearity, these compression pulses are in the form of stegotons

showing a step-wise spatial profile [104]. Due to light precompression, the material support two additional

types of waves: rarefaction and oscillatory waves.
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Figure 5.12: (a) Spatio-spectral and (b) spatiotemporal plots of nonlinear wave propagation for excitation
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pulse is between the 1st and 10th layers (left) and between the 40th and 50th layers (right). Dashed yellow
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5.5.2 Tunability of compression pulses

In this section, the dependence of these nonlinear waves on external precompression is characterized. Specifi-

cally, how light precompression can be used to tune and control the leading compression pulses is discussed,

which offers greater flexibility and feasibility in utilizing these phononic materials for engineering applications.

For the same input amplitude, the amplitude of the generated compression pulse can be controlled

through external precompression. Particularly, the amplitude of these pulses increases with an increase in

precompression [Fig. 5.13(a)]. This contradicts the expectation that increasing precompression should result

in a decrease in the ratio between predeformation and wave amplitude (δ0/u), leading to weaker nonlinearity

and relatively less momentum transfer across the contacts. Consequently, it would be anticipated that

increasing precompression would yield compression pulses with diminishing amplitudes. However, keeping
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Figure 5.13: Tunability of nonlinear waves through precompression. (a) Disintegrated wave profile inside the
150th layer for three different precompressions: δ0/u = 0.46 (p0 = 3 kPa), δ0/u = 0.59 (p0 = 5 kPa), and
δ0/u = 0.82 (p0 = 10 kPa). Dependence of pulse (b) amplitude and (c) wave speed on precompression. Red
dashed line is the precompression threshold below which contact clapping occurs.

the same excitation displacement amplitude in the analysis requires larger external work to be done on the

system for larger precompressions. This is due to the dynamic excitation having to overcome the stronger

contact forces resulting from increased precompressions. Overall, increasing precompression draws more

input energy for the same excitation frequency and amplitude, which subsequently generates compression

pulses with larger amplitudes. Moreover, the rarefaction and harmonic wave amplitudes also increase with

compression pulse amplitudes. In other words, stronger precompression supports tensile waves of high

amplitudes. These observations lead to the conclusion that lightly compressed systems exhibit nonlinear

wave responses that combine features of uncompressed and strongly compressed systems, offering control over

these responses. Specifically, the high amplitude portion of the excitation contributes to strongly nonlinear

responses (i.e., compression pulses of stegoton-type) similar to those observed in the uncompressed system,

while low amplitudes contribute to weakly nonlinear responses (i.e., frequency filtering and harmonic waves)

resembling those in strongly compressed systems. Nonetheless, the transition zone from compression pulse

to harmonic oscillations is only observed in weakly compressed systems. As waves propagate, compression

pulses separate from the rarefaction waves. It is worth noting that the time delay between the compression

pulse and rarefaction front can also be controlled through precompression [Fig. 5.13(a)].

As discussed, the compression pulses are in fact solitary waves as these pulses propagate with constant

speed and amplitude. How the amplitude and speed of these pulses depend on precompression is discussed

next and the threshold value of precompression that can still generate these strongly nonlinear responses is

informed. Interestingly, the compression pulses are generated even for the cases where contact clapping is

restricted, i.e. when predeformation is larger than the excitation amplitude (δ0/u > 1) [Fig. 5.13(b)]. Despite

the lack of clapping, this regime is not necessarily weakly nonlinear since excitation amplitudes are not small
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enough. Note that there exists quadratic nonlinearity between contact force and displacement due to the

deformation of rough asperities. This nonlinearity is possibly sufficient to counterbalance the dispersion to

form compression pulses. Further, the amplitude of generated pulses decreases beyond δ0/u > 1 - a threshold

beyond which no clapping is possible. The change in amplitude of compression pulses is less sensitive to

δ0/u > 1 compared to δ0/u < 1 [note the change in pulse amplitude dependence on precompression before

and after the red dashed line in Fig. 5.13(b)]. The maximum amplitude of the compression pulse is attained

at δ0/u = 1. This is the threshold where clapping is possible and energy added to the system is more than

the energy added for δ0/u < 1. These observations indicate that the characteristics of the generated pulses

undergo a transformation when the type of nonlinearity at the contact changes.

Contrary, the wave speed of the compression pulses, c, (normalized by bulk wave dilatational wave speed,

cL) increases monotonically with precompression [Fig. 5.13(c)]. This is consistent with Fig. 5.13(b) for

δ0/u < 1 since the amplitude and speed of these waves are proportional to each other. Another observation

is that the wave speed changes dramatically for low precompression and depends linearly on precompression

at larger values. For δ0/u > 1, wave speed increases despite a decrease in amplitude. This indicates that the

pulses generated beyond δ0/u > 1 have a different speed-amplitude relationship than solitary waves generated

from contact clapping.

As expected, the fraction of energy carried by the compression pulses as a function of total energy in

the system decreases with an increase in precompression (Fig. 5.14). In fact, the energy carried by the

pulses is almost negligible (two orders smaller) for precompressions u/δ0 > 1.5. This indicates the region of

precompression where the phononic material behavior potentially changes into a weakly compressed system.

5.6 Physical constraints: Effects of disorder

A fundamental feature of phononic media is their periodic architecture. The proposed continuum phononic

materials in this research demonstrate periodicity through the arrangement of rough contacts, with each

contact possessing identical properties. Particularly, all these contacts follow a specific nonlinear power

law relation, which governs the discussed nonlinear wave responses. However, achieving perfect periodicity

in a practical system is nearly impossible. In other words, real phononic material exhibit disorder, which

refers to the presence of irregularities or variations. These irregularities can arise due to imperfections in
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the manufacturing process, inherent material heterogeneities, or external perturbations. In the context of

continuum phononic material with rough contacts, the disorder can manifest as variations in layer size,

shape, material properties, or contact interactions. Among these factors, contact interactions are the most

likely sources of disorder due to the complex challenges associated with fabricating and aligning contacts

with microscale asperities. This section explores how contact disorder impacts the propagation of stegotons

through these phononic materials.

Granular crystals with disorders have been studied extensively over the years. Introducing defects or

impurities within these materials has been proposed as an approach to enhance the dynamics of the material.

This enhancement can be achieved by incorporating either light [188]–[190] or heavy [190] masses, placed

either internally or at the ends [141], or by directly exciting defects [141]. These defects have led to intriguing

wave responses in granular media, including energy trapping [188], long-lived nonlinear localized modes

[189], bifurcations, and antisymmetric modes [141], [189], as well as wave fragmentation [190]. In contrast to

single-site defects, random disorders have also been investigated, encompassing random variations in mass

distribution, density, material properties, particle size, and power exponent [191]–[193]. These studies have

demonstrated that solitary waves can still propagate through disordered granular media, albeit with reduced

amplitude or energy due to energy loss during reflections at each bead/contact caused by property differences

[191], [192].

To study how disorder from contact nonlinearity affects stegoton propagation in continuum-layered media

studied in Section 5.4, two different types of disorders are considered: uniform and random. The uniform

disorder is applied to a portion of the phononic material of n = 200 which allows the study of the effect of

disorder on stegotons generated in an ideal system. The uniform disorder of the exponent, β, of contact

power-law is defined as,

β(i) =


β0, 1 ≤ i ≤ 50,

β0(1 + rϵ), 50 < i < 150,

β0 ± ϵ, 150 ≤ i ≤ 200,

(5.1)

where i is the contact index from the excitation boundary, β0 is ideal contact-law exponent, ϵ is the degree of

disorder, and r takes values from 0 to ±1 in the interval 50 < i < 150. +r correspond to gradual increasing

exponent of contact nonlinearity and vice versa for −r [Fig. 5.15(a)-(b)]. On the other hand, random disorder

over the entire phononic material of n = 100 informs the effect of disorder on both the generation and

propagation of stegoton. The random disorder of the exponent, β, of contact power-law is defined as,

β(i) = β0(1 + ϵri), 1 ≤ i ≤ 100, (5.2)

where ri contains normally distributed values with mean = 0 and standard deviation = 1/3 such that the

mean value of βi is the same for both ideal and disordered systems.

A tone burst (ζ = 2.5/f and ψ = 0.5/f) is excited at frequency Ω = 0.52 (f = 0.25 MHz) such that the

excited signal would result in a single dominant stegoton propagating in an ideal in the phononic material.

In the case of uniform disorder with ϵ = 10% (Fig. 5.15), stegotons generated in an ordered section of the

phononic material propagate through the disordered system [see black lines in the bottom plots of Figs.

5.15(c) and 5.15(d)]. However, their amplitude and speed experience a slight attenuation [red and black

curves in the bottom plots of Figs. 5.15(c) and 5.15(d) do not overlap]. Moreover, at the interface between

the ordered and disordered systems, stegotons are reflected, leading to the backward propagation of a portion

of energy [negative humps in the inset of Figs. 5.15(c) and 5.15(d)]. Inside the disordered section, oscillatory
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Figure 5.15: Stegoton propagation through phononic material with a uniform disorder of contact nonlinearity.
Gradual (a) increasing and (b) decreasing disorder of the power-law exponent of contact nonlinearity. Disorder
exists in the middle 100 layers of the phononic material. (c) and (d) are the temporal profiles of waves
propagating through systems (a) and(b), respectively. These profiles are recorded inside the 50th layer (top)
and 60th layer (bottom). Red and black lines correspond to fully ordered and disordered [as shown in (a)-(b)]
phononic materials, respectively. Insets are zoomed views of dashed blue rectangles. v0 is the amplitude of
stegoton in an ordered phononic material.

trails are also observed due to wave reflections at each interface, as the contact properties are not strictly

periodic.

In the case of random disorder (Fig. 5.16), stegoton propagation through the phononic material is highly

sensitive to the disorder in contact nonlinearity. When the coefficient of variation (COV) is 1.5%, stegotons

are generated and propagate through the material. However, their amplitude is smaller compared to the

ordered system, resulting in slower propagation. This reduction in amplitude is caused by the fragmentation

of energy into smaller oscillations left behind due to wave reflections at each contact, caused by the disordered

contact nonlinearity. With propagation, oscillations increase while stegotons decay in amplitude. As the
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degree of disorder increases (for example, with COV = 3%), stegotons cannot be formed in the disordered

system. This indicates that stricter criteria for the variation in contact nonlinearity exponent are necessary

to sustain stegotons in a continuum phononic material with rough contacts.

Overall, the presence of disorder often leads to the scattering, energy localization/trapping, or attenuation

of stegotons. The degree of disorder determines the extent of these effects, with stronger disorders causing

more pronounced changes in wave behavior. Moreover, the disorder can induce the formation of complex

wave patterns, including decaying stegotons, slower energy travel, and wave scattering, which are absent in

ordered systems.

5.7 Physical constraints: Effects of finite lateral size

The phononic material studied so far correspond to the uniaxial strain case, where each layer is assumed to

be infinite in y−direction. This effectively generates only one-directional strain (in the x− direction) in the

system. While it is feasible to practically achieve such a phononic material when the material cross-section is

much larger than the probed wavelength and wavefront, other scenarios with finite lateral dimensions are

expected to introduce additional effects on stegoton propagation. Here, a brief numerical analysis is conducted

to report what are the effects of finite lateral dimension on energy propagation and whether stegotons are

still observed in such a system.

Numerical analysis is conducted on the same phononic material discussed in this chapter with only one

difference: the top and bottom boundaries are left free instead of applying symmetry boundary conditions

[refer to the insets in Figs. 5.17(a) and 5.17(b)]. This configuration simulates the effects of finite size on

wave propagation within the phononic material, not limiting strains to one direction. The results reveal that

waves are reflected away from the finite boundaries into the phononic material, creating scattered waves that

manifest as trailing oscillations [Fig. 5.17(b) - top and bottom plots]. Despite these spurious waves, a localized
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wave in the form of stegotons is still supported in the material. However, as energy is dispersed and reflected

by the scattered waves, the amplitude of the localized wave gradually diminishes with increasing propagation

distance [Fig. 5.17(b) - bottom plot]. There seems to be a threshold beyond which the amplitude change is

saturating, which probably is an effect of phononic material effectively behaving as a 1D system. In contrast,

the ideal uniaxial strain case exhibits no scattering or decay in amplitude [Fig. 5.17(a)]. These findings

demonstrate that even in physically realized phononic materials with finite lateral dimensions, stegoton-like

localized waves can be sustained, and their amplitude variation can be characterized by measuring amplitudes

at various locations within the material.

5.8 Summary

In this chapter, strongly nonlinear dynamics of continuum phononic material with rough contacts is studied.

The strong nonlinearity stems from the inability of these contact to support tensile loads under zero

precompression. A noteworthy aspect of this setup is the local presence of strong nonlinearities, which are

interconnected through linear elastic media. The chapter explored the behavior of wave propagation in this

intricate configuration, specifically emphasizing the occurrence and properties of localized traveling waves
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associated with contact clapping. The studies yield significant insights, including:

1. Wave-contact interactions generate stegotons, which are localized traveling waves categorized as solitary

waves. These stegotons effectively transport wave energy without experiencing dispersion, maintaining a

constant speed and amplitude as they propagate. Particularly notable is the spatial characteristic of these

waves, exhibiting a roof-like or stepwise profile owing to the periodic configuration of continua-discrete

nonlinearity in the phononic material.

2. Wave-contact interactions additionally induce acoustic resonances within the layers. These layer

resonances allow spectral energy transfer and localization near the excitation boundary. The amount of

energy transmitted through the phononic material relies on the proximity of the excitation frequency

to the acoustic resonances of the layers. When the input frequencies align with the layer resonances,

a considerable amount of energy becomes trapped within these layers. Consequently, stegotons carry

significantly lower energy, resulting in a wave attenuation reminiscent of a band-gap effect.

3. Due to a higher exponent of the power-law of rough contact nonlinearity (where exponent = 2),

stegotons show a much stronger interrelationship between amplitude, speed, and contact pressure

compared to solitary waves in granular crystals (where exponent = 3/2). Further, results show that the

speed-amplitude relationship exponent is independent of the layer thickness and is likely governed by

the contact power law only.

4. When stegotons collide, it leads to the formation of secondary stegotons. Notably, the amplitudes

of these secondary waves are one order greater when the collision occurs at a contact, as opposed to

collisions within a layer.

5. Stegotons emerge and propagate within the phononic material, even when subject to physical constraints

such as light precompression, disorder, and finite lateral dimensions. However, the characteristics

of these stegotons differ from those in an ideal system. Due to finite lateral dimensions, stegotons

exhibit attenuation-like characteristics, i.e. reducing amplitudes with propagation distance, due to

interference from scattered waves. Moreover, as the degree of disorder of the exponent of contact

nonlinearity increases, the material ceases to support stegotons. These physical limitations also give

rise to various additional wave phenomena, such as wave disintegration. Wave disintegration refers to

the transformation of an input pulse into localized compression pulses, a rarefaction transition zone,

and oscillatory trails. The disorder-induced effects encompass energy trapping, wave attenuation, and

fragmentation of stegotons.
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Chapter 6

Hysteretic nonlinear wave dynamics

This chapter investigates the nonlinear shear wave propagation through continuum phononic materials with

externally precompressed rough contacts. In contrast to previous chapters, the focus here is on the tangential

interactions of the contacts, specifically wave-induced frictional instability. It begins by highlighting the

limited research on exploiting hysteretic nonlinearity in phononic media, with only a few anecdotal studies

available. Subsequently, the effect of hysteresis on wave propagation through a single contact is studied,

followed by an analysis of a periodic contact system. Two key results are observed: eigenstrain generation

and energy dissipation. The chapter then demonstrates acoustically-governed mechanical programmability by

exploiting eigenstrains and passive, wide-band attenuation from frictional dissipation. Some of the sections of

this chapter have been adapted from my published article, [106], which was written as part of the research

for this dissertation.

6.1 Knowledge gap: Hysteretic nonlinearity in phononic materials

As discussed in Chapter 1, phononic materials have been predominantly studied in the linear regime [12].

Recent studies have shown that nonlinearity yields unprecedented wave responses such as solitary waves [67],

discrete breathers [71], amplitude-dependent band gaps [59], [179], energy transfer between frequencies/modes

[179], among others, as detailed in a review by Patil and Matlack [44]. Yet, the focus so far has been on

the propagation of longitudinal waves and nonlinear mechanisms, either weakly or strongly, that govern

these wave responses. On the other hand, shear waves have received very less attention despite being the

fundamental type of wave supported by solid materials. It remains an open question of how shear waves evolve

in the presence of nonlinearities in phononic materials. Addressing this question is of foundational significance

and could open opportunities for developing novel acoustic devices with advanced functionalities, such as

mechanical programmability, surface reconfigurability, and passive wave attenuation, simply by employing

shear waves.

Furthermore, the types of nonlinearities explored in phononic materials are thus far largely limited to

reversible nonlinear laws, where nonlinear forces (or stresses) depend only on the current displacements (or

strains). Such memory-independent nonlinearity typically stems from material constitutive laws under elastic

limit [179], finite strains [61], and normal contact laws [67]. On the other hand, hysteretic (or irreversible)

nonlinearity, where current forces also depend on their history, offers the potential to obtain nonlinear wave

responses typically not possible with reversible nonlinearity. Although the effects of hysteresis on wave
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propagation have been considered, either through viscous damping [194]–[197] or elastic-plastic law [198],

there still exists a lack of knowledge of how wave interacts when nonlinearity itself is memory-dependent.

Such knowledge could provide a new platform to control wave-energy propagation in materials by introducing

hysteretic nonlinearity and intentionally programming loading history.

One of the physical sources of hysteretic nonlinearity is friction between contacting surfaces. Coulomb’s

law, which is postulated to model friction between two surfaces with a coefficient of friction (µ), dictates

the existence of two physical states of contact - stick (T < µN , where T and N are tangential and normal

forces acting at the contact, respectively) and slip (T = µN). As a result, applied forces trigger hysteresis

that physically correspond to surface wearing [199] and heat generation [200] at the contact. Consequently,

friction between surfaces is widely researched in tribology [199], nonlinear dynamics [201], structural health

monitoring [202], and nondestructive evaluation [122], [129], [203]. It has been traditionally studied to

control its effects and increase component life [201], but it is now being explored as a tool to enable soft

robotic devices that latch onto objects [204] and design mechanical metamaterials that absorb energy under

quasi-static loading [205], [206]. However, it is yet to be explored how friction can be utilized to control wave

propagation and enable smart functionalities.

Despite extensive studies on phononic materials with contacts (or interfaces), the effects of friction have

been studied only in a limited capacity. Granular crystals have majorly focused on normal contact interaction

only, i.e. Hertzian law [62]. A few of those studies analyzed torsional (or rotational) and transverse waves

but modeled the tangential interactions through Hertz-Mindlin theory, which assumes no sliding at the

contacts [134], [159], [207]. Only a few studies have incorporated friction to study dissipation [194], [208]

and hysteretic torsional coupling [209] in granular crystals. Recently, an array of frictional disks [210] and

an acoustic metamaterial with internal frictional contacts [211] have been studied to report the transition

from static to dynamic friction [210] and low-frequency attenuation bands [211], respectively. These limited

studies demonstrate the potential of the hysteretic nonlinearity of friction in enriching the wave dynamics of

phononic materials.

Overall, there is a noticeable lack of emphasis on shear waves in nonlinear phononic materials, and

limited studies have been conducted to comprehend the impact of hysteretic nonlinearity. In most cases,

the exploration of contact friction in phononic materials remains uncharted territory. Consequently, further

research is required to address these knowledge gaps and examine the influence of shear waves and hysteretic

nonlinearity, particularly in relation to friction, within the realm of phononic materials. Such research possesses

the potential to propel the advancement of acoustic devices and materials with enhanced functionalities.

6.2 Objective: Responses from shear wave-induced contact friction

To address the knowledge gap in the field, this chapter continues the investigation of continuum phononic

materials but shifts the focus to shear wave propagation and tangential interaction at the contact. Par-

ticularly, the aim is to (1) illustrate nonlinear shear wave responses arising from hysteretic nonlinearity of

frictional contact and (2) harness these responses to enable advanced acoustic/mechanical functionalities with

programmable and adaptable characteristics. To this end, shear wave propagation through rough contacts

with single and array configurations, which are externally precompressed is studied (refer to Section 2.2).

The frictional instability of the contacts gives rise to strong nonlinearity within the system. To solve this

problem, an interactive numerical framework that couples a finite element model solving 1D wave motion and

an analytical model with contact friction law is employed (refer to Section 3.3.2). Specifically, the Jenkins
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friction model with experimentally-obtained properties at the contacts is considered. First, how contact

instability gives rise to amplitude-dependent eigenstrains is discussed, and then programmable functions

are illustrated by extending the analysis to complex configurations with multiple contacts. Finally, wave

transmission through finite phononic material is studied to report the combined effects of periodicity and

hysteretic nonlinearity.

For a general understanding of the nonlinear responses, two normalized parameters are defined:

1. ξ = τi/µσ0 is the normalized excitation, where τi is the maximum incident shear stress generated by

the excitation wave. Accordingly, ξ increases with increasing excitation amplitude. Note that ξ < 1

corresponds to contact always being in the stick regime (linear case) as τi < µσ0, whereas ξ > 1

corresponds to the nonlinear case where contacts switch between the stick and slip zones. All the

simulations presented herein correspond to external precompression, σ0 = 50 MPa, unless explicitly

specified.

2. Λ = λ/s is the normalized wavelength, where λ is the wavelength in the bulk aluminum at excitation

frequency, f (i.e. λ = cs/f , where cs is shear wave speed). This work focuses on two wavelength

regimes - long-wavelength (or low frequency), i.e. λ≫ s, and short-wavelength (or high frequency), i.e.

λ ∼ s. The long-wavelength regime is used to illustrate programmable functionality from an array of

contacts as this condition allows us to reduce the lag between the wavefront and trailing reflections.

On the other hand, the short-wavelength regime captures the Bragg-scattering effects and thus, is

used to analyze attenuation zones and band gap frequencies of the phononic material. Note that the

studied wavelengths are still much larger than the asperity size to ensure the validity of the quasi-spring

modeling of the contacts.

6.3 Eigenstrain generation from wave-induced friction

In this section, shear wave propagation through a single rough contact [Fig. 3.2(d) with n = 0] is studied,

and the emergence of eigenstrains within the system is presented. A shear wave consisting of 15 cycles of

amplitude ξ = 2.76 (U = 4 µm), at a frequency of 0.5 MHz, was excited. The shear wave interaction with the

contact fundamentally affects wave transmission and causes distortion of waveform [Figs. 6.1(a)-(b)]. This is

because when the excited wave interacts with a contact, it partially reflects and transmits due to the acoustic

impedance. If the wave amplitude exceeds the friction limit, then the contact surfaces slide. This limits the

maximum tangential force that can be transmitted and leads to the stress amplitude being clipped at τc [Fig.

6.1(a)]. Such clipping effectively generates odd-order harmonics of the input frequency, as previously reported

in the nondestructive evaluation of microcracks [122], [129], [203].

Interestingly, the wave interaction with the contact also causes a total tangential static deformation, ∆,

at the end of the wave propagation. Note the transmitted wave measured in the ΓR waveguide [black in

Fig. 6.1(b)] corresponds to u/U = 0 before wave-contact interaction and now at an offset u/U > 0 (i.e.

∆T ̸= 0). The same offset is created in the reflected wave (∆R) in ΓL waveguide but with the opposite sign

(results not shown). This offset physically corresponds to the change in the relative position of the contact

interface, and therefore of the elastic media that the wave occupies [Fig. 6.1(c)]. The system where both

ΓL and ΓR were aligned before wave-contact interaction are now offset by ∆ = ∥∆R∥+ ∥∆T ∥. This effect
is analogous to the permanent static deformation (or residual strain) of an elastic-perfectly plastic body

under cyclic loading. In fact, the physical mechanisms of these two phenomena are indeed the same. They
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Figure 6.1: Wave evolution through a rough contact. Wave profile for ξ = 2.76, as an example, in terms of
normalized shear (a) stress, τ , and (b) displacement, u, for the incident (gray) and transmitted (black) waves.
Time on the x-axis is adjusted to overlap both waves for comparison. (c) Schematics with amplified deformation
illustrating the emergence of shear-polarized eigenstrains, ∆, after wave-contact interaction. Dashed rectangles
indicate the reflected and transmitted waves in the waveguides carrying the static deformations with them.
(c)-(e) Hysteresis loops during wave-contact interaction. Top row - contact deformation (black) and stresses
(gray), and bottom row - accumulative hysteresis loops for the (c) first, (d) subsequent, and (e) last cycle
of contact deformation. Markers indicate transition points of the hysteresis loops and their instances are
depicted as dashed lines with labels in the time domain. Red color indicates the start and end state of each
hysteresis loop.

both are due to the hysteretic response and cause a change in the equilibrium state of the system at the

end of loading. Further, the system attains a stress-free state at the end of wave propagation despite the

presence of the static deformation [correlate the stresses in Fig. 6.1(a) with displacements in Fig. 6.1(b) for

t > 35µs]. Previously, Qu et al. [212] have discussed that acoustic-radiation-induced strains in nonlinear

material produce no stresses and can be viewed as eigenstrains. Similarly, shear deformations generated by

wave-contact interaction are observed in this study, but without shear stresses. Therefore, these deformations

are referred to as “shear-polarized eigenstrains”. While eigenstrains can also be generated in non-hysteretic

systems with even-order nonlinearities, for example, materials with quadratic nonlinearity [212]–[215], they

are only enabled by longitudinal waves. This is because shear wave self-interaction is not supported in

isotropic nonlinear material [216], [217]. Thus, the interaction of shear waves with a frictional contact causes

the unique response of a shear-polarized eigenstrain.

The role of hysteretic nonlinearity in generating eigenstrains can be clearly understood through hysteresis
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loops between contact forces and deformations. These loops occur when wave cycles transition contact

between the stick and slip state, and evolve as subsequent wave cycles propagate through the contact [Fig.

6.1(d)-(f)]. The loop starts at the stress-free (τ/τc = 0) and undeformed (b/U = 0) condition (i.e. state A)

during the first cycle of contact deformation [Fig. 6.1(d)]. Initially, elastic deformations of rough asperities

transmit forces as dictated by the contact stiffness, κt, until the friction limit is reached (i.e. state B). Further

deformation from the wave causes contact sliding while the force remains constant (path B − C). Note, the

sliding of the contact in the positive y-direction is referred to as “up” sliding (i.e. τ̇ = 0 and ḃ > 0). Once the

maximum contact displacement is reached (state C), the contact starts deforming in the reverse direction

owing to the oscillatory nature of the wave. Since the contact forces at each instant depend on their previous

values, the contact response now takes a different path (path C −D − E). During this reverse motion, the

contact first recovers the elastic deformation that occurred during the path A−B and then starts deforming

asperities in the negative direction (path D − E). Eventually, when the friction limit is reached, the contact

starts sliding in the other direction (path E − F ), which is “down” sliding (i.e. τ̇ = 0 and ḃ < 0). Due to

oscillatory excitation, the contact returns to its initial configuration of b = 0 (i.e. point I) at the end of

the one full cycle but with stress, τc. This is because the second cycle of the wave packet now initiates its

interaction with the contact even before the system attains its original stress-free state. Effectively, the first

cycle contributes to changing the state of the system by undergoing different sliding in the up (path B − C)

and down (path E − F ) directions. Note that during the path E − F , the contact first has to work against

the up-sliding (B − C) to reach the initial configuration and then create additional sliding in the opposite

direction. However, the last path H − I does not fully recover the sliding that occurred in the down direction,

ultimately changing the equilibrium state of the system.

Unlike the first cycle, the subsequent cycles [Fig. 6.1(e)] use the final state of the first cycle (state I) as

the initial state and follow a hysteresis loop I − C ′ −D′ − E′ − F ′ −G′ −H ′ − I ′, where the prime denotes

transition points in the subsequent cycles. Therefore, the sliding in both directions (up and down) is the

same for the later cycles (H ′C ′ = E′F ′). Finally, the instant beyond which the contact does not transition

between stick-slip regimes governs the final state of the system. For example, state Bf is the instant of the

final cycle of the contact deformation beyond which contact deformation oscillates with small amplitudes only,

i.e. within the stick regime [Fig. 6.1(f)]. This state returns to its stress-free state (state Df ) by recovering

the elastic deformation at the contact (path Bf − Cf −Df ), resulting in a shear-polarized eigenstrain, ∆.

The generation of eigenstrain is also amplitude-dependent [Fig. 6.2(a)]. The eigenstrain is zero when

ξ < 1 (i.e. contact stays in the stick regime) and non-zero for ξ > 1 (i.e. when contacts undergo stick-slip

transition) with a maximum eigenstrain for a specific excitation amplitude of ξ = 1.58. To get insights into

how excitation amplitude governs eigenstrain generation, two representative cases of hysteresis loops are

presented [Fig. 6.2(b)]. These loops highlight that despite the same initial condition [green marker], the last

instant of contact sliding [blue marker] is much closer to the first instant of contact sliding [black marker]

for ξ = 4 than ξ = 1.95. These differences are due to the different amount of hysteresis that occurs at the

contact for a given excitation amplitude. For ξ = 4, the amount of sliding in both the “up” and “down”

directions during the first cycle are relatively closer compared to that of ξ = 1.95 for the same friction limit.

Consequently, the static offset at the end of the last sliding is smaller for ξ = 4 and therefore corresponding

eigenstrain.
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Figure 6.2: Amplitude-dependent eigenstrain generation. (a) Normalized eigenstrains for different excitation
amplitudes when µ = 0.77 (circle) - as obtained through experiments and µ = 0.5 (cross) - as an alternate
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Contact deformations are normalized by the maximum deformation before the first sliding (b∗) such that
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corresponding to the start, first sliding, last sliding, and end states of the system, respectively.

6.4 Leveraging eigenstrains for acoustically-programmable responses

Next, the analysis is extended to two and four contacts, and those with gradients in their coefficients of

friction. The generation of eigenstrains in these systems is exploited to enable advanced mechanical functions

that are controlled by acoustic pulses through the system. Particularly, acoustically-programmable responses

of a mechanical switch, precision position control, and surface reconfigurability are demonstrated.

First, the focus is on the generation of eigenstrains in a configuration with two rough contacts separated

by a distance, s, referred to as a “layer” hereafter. To illustrate the system behavior, a single-cycle incident

shear pulse with an amplitude ξ = 2.76 (U = 4 µm) at f = 0.5 MHz is simulated. To reduce the number

of trailing reflections between the contacts, s is defined as approximately 6 times smaller than the incident

wavelength (i.e., Λ = 6.2 or s = 1 mm). This enables a smaller delay in the programmed output relative to

the wave input. While the magnitude of eigenstrain depends on the input wave frequency and amplitude,

and the relation between λ and s, the qualitative nonlinear response of the system remains the same.

The wave-induced contact sliding generates eigenstrains in the semi-infinite waveguides, ΓL and ΓR, as

well as in the layer [Fig. 6.3(a)]. These eigenstrains have different relative values and directions. The sign of

the eigenstrains in the transmitted wave depends on the direction of the first contact sliding, which, in this

simulated case, occurs in the positive (up) direction. Consequently, the transmitted wave across the first (left)

contact contains a positive eigenstrain [red in Fig. 6.3(a)], which moves the layer up as the wave propagates

through it. The reflected wave carries a negative eigenstrain [black in Fig. 6.3(a)] to balance out the effects

in the transmitted wave, causing ΓL to deform downward. As the transmitted wave propagates through the

second (right) contact, the eigenstrain carried with it deforms the waveguide ΓR upward as well. Since the

amplitude of the wave transmitted across the first contact is capped to the friction limit, it prevents sliding

at the second contact [Fig. 6.3(b)]. Accordingly, the relative eigenstrain between the layer and ΓR is zero,

while the relative eigenstrain between the layer and ΓL is ∆.

To enable programmable functionalities, the generation of eigenstrains is isolated to the layer and the

eigenstrains in the semi-infinite waveguides are canceled out by exciting identical wave pulses from both ends of

the system [Fig. 6.3(c)]. The pulse propagating left-to-right generates a positive deformation in the transmitted

wave, causing ΓR to move up, and the wave propagating right-to-left generates a negative deformation in the

reflected wave, causing ΓR to move down. These deformations cancel each other, maintaining the initial state
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Figure 6.3: Generation of eigenstrains in a dual-contact system for (a)-(b) uni-directional and (c)-(d) bi-
directional pulse excitation. (a) and (c) are wave displacements recorded in reflected (black), transmitted
(blue) waveguides, and inside the layer (red), whereas (b) and (d) are corresponding contact deformations.
Schematics with amplified deformations show system reconfiguration from its initial state.

of ΓR. The same dynamics occur in ΓL waveguide [Fig. 6.3(c)].

However, the eigenstrain remains in the layer when waves are excited from both ends, resulting in an

amplified effect [compare red curves in Figs. 6.3(a) and (c)]. This is due to three simultaneous effects: (1)

sliding of both contacts [Fig. 6.3(d)], (2) a change in the boundary conditions of the contacts, and (3)

subsequent interactions of the reflected and transmitted waves. When waves propagate from each direction,

they cause the sliding of the first contact in their path once they exceed the friction limit, and the wave

transmitted through the first contact interferes with the wave propagating backward as it approaches the

second contact. This wave mixing inside the layer changes the overall dynamics at the contact, leading to a

non-zero eigenstrain in the layer. This demonstrates that acoustic pulses can control the position of the layer

without affecting the state of the end waveguides.

6.4.1 Mechanical switch

The idea of controlling the offset of the layer from two-sided wave excitation is leveraged to enable a mechanical

switch function by programming the input pulses and their phases. Since the phase of the pulses dictates the

direction of contact sliding and therefore the eigenstrain, it is possible to control whether the layer shifts up

or down using the input pulse phase. The versatility of this system is further highlighted by controlling the

instances of pulse generation, which allow varying the duration of the specific state of the mechanical switch.

This functionality is numerically demonstrated by exciting a sequence of four single-cycle pulses with

programmed phases [Fig. 6.4(a)]. Overall, the approach is to excite a pulse to change the switch’s state and

use subsequent pulses with the same amplitude but opposite phases to reverse the change. The first pulses

89



ΓL ΓR

ΓL ΓR

ΓL ΓR

ΓL ΓR

ΓL ΓR

OFF

(a)

Switch State
ON OFF

T
im

e
[μ

s]

Amplitude

tON

tOFF

C1

ON

OFF

C2

Neutral

Neutral

200

Programmed Input

T
im

e 
[μ

s]

ΓL ΓR

0U

ON

Programmed Output

C1 C2

Neutral

200

(b)

ΓL ΓR

Layer Position

T
im

e 
[μ

s]

T
im

e 
[μ

s]
ΔΔΔ

Amplitude

Programmed Input Programmed Output

+ve _ve

ΓL ΓR

ΓL ΓR

ΓL ΓR

ΓL ΓR

ΓL ΓR

Δ

-Δ

3Δ

-3Δ

ΓL ΓR

s

ΓL ΓR

s

0U -U

-U

Figure 6.4: Leveraging friction-induced eigenstrains for programmable (a) mechanical switch and (b) precision
position control functionalities. Each subplot contains programmed temporal patterns of input and output.
Inputs are acoustic pulses with programmed amplitudes, where positive and negative values correspond to 0◦

and 180◦ phases, respectively while outputs are (a) switch states and (b) physical positions of the layer. System
schematics with amplified deformations are also shown for representative time instants. Numerically-obtained
spatiotemporal plots are shown for the region in the vicinity of two contacts, denoted by C1 and C2. The
sets of parallel arrows show input pulses propagating toward the contacts.

with phase 0◦ move the layer to the up (ON) position as contacts slides in the positive direction generating a

positive eigenstrain. The second and third pulses with a phase of 180◦ return the layer to the initial (Neutral)

position and move it further down in the opposite direction, respectively. The switch is now in its OFF state.

The final pulses with a phase 0◦ bring the layer back to its original state. This is an instantaneous activation

as eigenstrain is generated in the layer as soon as the wave interacts with the contacts, and is potentially

advantageous in reducing the time lag between actuation and response. Additionally, the switch is remotely

tailored using shear waves, which makes it useful in extreme environments where electronic switches often

malfunction. By controlling the time gap between pulses, the duration of a specific state of the switch can

also be adjusted, providing more versatile control [note tOFF > tON in Fig. 6.4(a)].
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6.4.2 Precision position control

By programming a sequence of pulses, it is possible to generate eigenstrains in series and precisely control

the position of the layer by incrementally increasing or decreasing the eigenstrains. This is numerically

demonstrated by exciting two groups of pulses of the same amplitude, where pulses within the same group

have the same phase but are opposite that of the other group. [Fig. 6.4(b)]. The first group of pulses with 0◦

phases generates eigenstrain in the positive direction, causing the layer to increase its position incrementally

(∆), where ∆ depends on the pulse amplitude. When the second group of pulses of 180◦ phases is excited,

these pulses counteract the effects of the previous group of pulses and return the layer to its initial state.

Note that the generated static deformation is of the order of input wave amplitude, which for the simulated

case is of the order of micrometers. Therefore, despite the permanent reconfiguration, the contact area does

not change considerably. Thus, we assume that the acoustic impedance at the contacts does not change for

the subsequent pulses.

6.4.3 Surface reconfigurability

This section demonstrates how shear-polarized eigenstrains can serve as a platform for programmable surface

reconfigurability. Surface reconfigurability, or morphing, has applications in soft robotics and fluid-structure

interactions. Examples include designing soft robots capable of gripping arbitrary-shaped objects and tuning

the aerodynamic response by modulating turbulent drag. Here, a more complex system consisting of an array

of four contacts with a gradient in their coefficient of friction is explored. How this gradient in µ allows

control over the position of an arbitrary layer between successive contacts is illustrated, highlighting the

potential for precise surface manipulation.

A system with four contacts (or three layers) is considered [schematic of Fig. 6.5(a)]. This configuration

is chosen to show how the position of the inner layer (I), which is not directly accessible from either side, can

be controlled by programming the input pulses. To do so, The gradient of frictional properties is leveraged

by setting the coefficient of friction at the outermost contacts (µO) smaller than the one at the innermost

contacts (µI), i.e. µO < µI . More specifically, µO = 2/3µI is considered as a test case. The gradient is

expected to cause different responses at the inner and outer contacts, and therefore different eigenstrains

at the inner (I) and outer (O) layers. Further, note that the wave interaction with an array of contacts

results in multiple reflections and transmissions at each contact. All these waves interfere with each other

and depending upon their phase difference, the effective contact deformation is either amplified or truncated.

Therefore, the eigenstrains generated in these layers are studied first for different excitation amplitudes [Fig.

6.5(a)].

For the studied range of amplitudes, U/Umax = 0.125 to 1 (i.e. U = 1 µm to 8 µm), an increasing

excitation amplitude increases the eigenstrains of both inner and outer layers [square and circle markers in

Fig. 6.5(a), respectively]. As expected, larger eigenstrains are generated in the outer layers (∆O) compared to

the inner layer (∆I) under the same excitation. This is because of the lower stick limit of the outer contacts,

which results in a stronger hysteresis response. More importantly, the difference between their eigenstrains

(∆O −∆I) also grows with excitation amplitude [cross markers in Fig. 6.5(a)]. At low amplitude, sliding

occurs only at the outer contacts, resulting in zero relative eigenstrain between the inner and outer layers.

However, as wave amplitude is increased, the friction limit of inner contact is also exceeded, causing sliding

at both inner and outer contacts but of different magnitudes. This results in non-zero relative eigenstrains

between the inner and outer layers. By taking advantage of this difference in their static deformation, only
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Figure 6.5: Leveraging friction-induced eigenstrains for programmable surface reconfigurability in a four-
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inner (∆I) layers, and their relative difference (∆O −∆I) for different excitation amplitudes. The plot is
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propagating toward the contacts. (c) Inner contact deformation (bI) for two different programmed inputs,
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U3 is different but corresponds to ∆O −∆I = 0. (d) Low-pass filtered response of (c) illustrating eigenstrains.
Dashed lines indicate approximate time instances when input pulses interact with the inner contacts.

the inner layer can be shifted while keeping the outer layers aligned with the semi-infinite waveguides. The

principle here is to (1) first excite a pulse with an amplitude high enough to cause sliding at all contacts, and

(2) then excite relatively low amplitude pulses with opposite phases in at least two steps to bring back the

outer layers to their initial state. Due to varying differences between the relative eigenstrains for different

excitation amplitudes, the inner layer is expected to be at an offset with the entire system despite outer

layers returning to their original position.

To demonstrate this approach, numerical simulations are conducted on an array of four contacts with

programmed input pulses of varying amplitudes (U1, U2, U3) and phases (180◦, 0◦, 0◦) [Fig. 6.5(b)]. The

amplitudes were selected based on two conditions: (1) the eigenstrains generated in the outer layers by the

first pulses (U1) should be equal to the total strains generated by the second (U2) and third (U3) pulses,

i.e., ∆
(1)
O = ∆

(2)
O +∆

(3)
O , where the superscripts denote the pulse indices, and (2) the relative eigenstrain
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between the inner and outer layers for U1 should be greater than the total relative eigenstrain for U2 and U3,

i.e., |∆O −∆I |(1) > |∆O −∆I |(2) + |∆O −∆I |(3). The required pulse amplitudes for numerical simulations

are obtained by best-fitting the data points of Fig. 6.5(a) such that U1/Umax = 1 (i.e. U1 = 8 µm),

U2/Umax = 0.3125 (i.e. U2 = 2.5 µm), and U3/Umax = 0.2 (i.e. U3 = 1.583 µm). The outcome of the

simulation confirms that only the inner layer is shifted with respect to the rest of the system after wave

propagation, as seen in the system configuration at t > 140µs in Fig. 6.5(b).

Additionally, the magnitude of the offset of the inner layer can also be controlled by programming the

amplitudes of the subsequent pulses only [Figs. 6.5(c)-(d)]. Two cases are presented, where U1 is the same,

i.e. U1/Umax = 1 (or U1 = 8 µm), but U2 is selected such that it causes sliding either at the outer contacts

only [black where U2/Umax = 0.3125 (i.e. U2 = 2.5 µm)] or at both inner and outer contacts [blue where

U2/Umax = 0.5 (i.e. U2 = 4 µm)]. The temporal deformation patterns of inner contacts reveal that the

eigenstrain generated from U1 is reduced only when U2 can cause sliding at inner contacts as well [blue

in Figs. 6.5(c)-(d)]. While U3 is different for these two cases [U3/Umax = 0.2 (i.e. U3 = 1.583 µm) for

black and U3/Umax = 0.15 (i.e. U3 = 1.181 µm) for blue], it generates no strain in the inner layer as it

corresponds to sliding of outer contacts only. Hence, the final offset of the inner layer differs for both cases.

This demonstration illustrates the potential of contact-based materials and friction-induced eigenstrains to

achieve a variety of remotely-actuated surface reconfigurations by selecting appropriate combinations of input

pulse amplitudes and phases. For example, fluid flow along the surface of an object can be obstructed or

altered by protruding a part of the surface in its flow path or reconfiguring the surface to an optimized profile.

Further, this could be used to deploy or modify the spacing of riblets [218], [219], which have been shown

to reduce turbulent drag by resisting cross-flow and displacing vortices away from the wall of wall-bounded

aerodynamic flows, or deploy surface textures that have been shown to delay separation [220].

6.5 Passive and wide band wave attenuation

In this section, the focus is on the canonical properties of phononic materials - “band gaps”. Recall from

Section 1.2 that band gaps are the range of frequencies for which phononic materials do not support any

propagating modes [12]. As a result, wave transmission in the band gaps is significantly lower, hence

referred to as “attenuation zones”. These band gaps and therefore the attenuation zones are formed by

Bragg-scattering and their width is typically narrow as it depends on the periodicity constant and unit cell

properties. Therefore, several other mechanisms such as externally attached linear viscoelastic dampers [221],

[222], inertial amplification [15], and Bridging-coupling [223] have been proposed to widen these zones, and

several other external stimuli have been used to tune these zones in situ [26]. Here, how the hysteretic

nonlinearity of frictional contacts serves as a passive mechanism to widen the attenuation zone of finite

phononic materials is investigated. Specifically, the role of amplitude-dependent energy dissipation and wave

coefficients in widening the attenuation zones is illustrated. The effectiveness of the periodic arrangement of

contacts in reducing wave transmission is also characterized.

Linearized band gaps of the pure shear wave propagation through the phononic material are evaluated

using Eq. (3.6). A normalized frequency parameter is defined such that, Ω = f/fBragg, where fBragg is the

Bragg scattering frequency of the bulk aluminum unit cell of length, s = 3 mm, (i.e. fBragg = cs/2s = 0.5167

MHz). Specifically, the focus is on the two lowest band gaps of the system (Band Gap 1: 0.7 ≤ Ω ≤ 1 and

Band Gap 2: 1.47 ≤ Ω ≤ 2).

Transmission characteristics of a phononic material with 3 unit cells (i.e. 4 contacts) are numerically
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Figure 6.6: Passive wave attenuation through phononic material due to hysteretic nonlinearity of frictional
contacts. (a) Linear dispersion of shear waves. Schematic is the unit cell of the phononic material. (b)
Transmission, T (Ω) and (c) attenuation zone width of finite phononic material for different excitation
amplitudes, ξ. Shaded regions are linear band gaps. Transmission curves plotted for different ξ values
are shown by filled markers with corresponding colors in (c). The hatched regions correspond to filtered
frequencies in post-processing. Hollow markers in (c) are the center frequencies of the attenuation zones and
bars represent zone width. The width is evaluated at the 50% drop in transmission [dashed vertical line in
(b)]. Amplitude-dependent (d) energy distribution and (e) the ratio of the dissipated to reflected energy in
the phononic material.

evaluated. The three-unit cell system can capture the effects of periodicity-induced dispersion along with

strongly nonlinear effects with reasonable computational cost. The transmission, T (Ω), is defined as the

ratio of the amplitudes of the transmitted wave (in the ΓR waveguide) to the incident wave in the frequency

domain. A Gaussian modulation [102] with ζ = 2/f and ψ = 0.5/f is applied to the input wave packet

of Eq. (3.9) of center frequency, Ω = 1.16 (i.e. f = 0.6 MHz) to only excite the frequencies of interest

(i.e. 0 ≤ Ω ≤ 2.33). The static offsets (or eigenstrains) generated in the transmitted wave from frictional

nonlinearity introduce leakage in the frequency spectrum. To avoid this, a high pass Chebyshev Type-II filter

(with ripple values of 10 dB for the pass band and 50 dB for the stop band) at Ω = 0.05 is applied before
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taking FFT. Thus, the transmission plots in Fig. 6.6(b) are hatched out for the range 0 ≤ Ω ≤ 0.05. For

low-amplitude linear waves (ξ < 1), the transmission curves are amplitude-independent while the attenuation

zones correlated well with the predicted linear band gaps of the system [note, yellow and black curves overlap

each other in Fig. 6.6(b)]. Further increase in excitation amplitude results in the widening of the attenuation

zones. Specifically, two effects are seen: (1) the transmission ratio in the band gap further reduces, and (2)

propagating modes of the system are suppressed. In fact, the entire 1st optical branch (1 ≤ Ω ≤ 1.47), and

the boundary modes of the acoustic (as Ω → 0.7) and 2nd optical branch (as Ω → 2) that are close to band

gap edges are also suppressed. The sharp increase in the transmission curve in the vicinity of Ω = 0.05 is a

result of the generation of DC and self-modulated frequency [102] in the presence of nonlinearity.

As excitation amplitude is further increased, the two attenuation zones eventually merge [Fig. 6.6(c)].

This results in a wide band attenuation region compared to the attenuation capacity of the underlying linear

system. This characteristic of passively widening the attenuation zones with increasing excitation amplitude

of the periodic frictional contacts highlights an effect equivalent to adding a nonlinear metadamping to the

system. Thus, the frequencies that were originally carrying mechanical energy across the linear material,

now, can not support energy travel. We further highlight that, in addition to widening the zone, the zone

boundaries themselves have reduced to low-frequency values compared to the linear attenuation zone. This

demonstrates the ability of frictional contacts to mitigate damaging low-frequency vibrations without requiring

unit cells with large sizes.

To further understand the underlying mechanism behind the widening of the attenuation zones, energy

distribution, as a fraction of input energy, in the phononic material is evaluated [Figs. 6.6(d) and (e)]. The

energies are evaluated after all the internal reflections come out of the phononic material. This is confirmed by

evaluating the energies in all the layers in between the contacts (EL), which are ∼ 0 for all ξ [refer to diamond

markers in Fig. 6.6(d)]. As ξ → ∞, % dissipated energy (ED) reduces after reaching a peak, whereas, %

reflected energy (ER) drastically increases. The attenuation zone, on the other hand, monotonically widens

as ξ → ∞ [Fig. 6.6(c)]. This highlights that the two friction-induced nonlinear effects - (1) amplitude-

dependent energy dissipation and (2) amplitude-dependent reflection, together, govern the attenuation zone

widening. Interestingly, the competition between these two effects results in dissipation-dominated and

reflection-dominated regimes as a function of ξ [Fig. 6.6(e)]. As ξ increases beyond 1, the energy dissipation

increases at a rate larger than the change in reflected energy. This indicates that as energy is added into

the system, in the form of increased amplitudes, a larger portion of the energy is used in contact sliding.

Thus, the widening of the attenuation zones for 1 ≤ ξ ≤ 3.8 is primarily caused by contact friction. On the

contrary, reflected energy increases rapidly compared to dissipation for ξ > 3.8. Since energy dissipation has

now reached a cap, any added energy is now reflected from the interface between the left waveguide, ΓL, and

effective phononic material. Thus, reflection is the primary reason for increasing the attenuation zone for

ξ > 3.8.

Finally, the role of the periodic arrangement of rough contacts in reducing mechanical energy propagation

is explained. As the input wave energy propagates through the material with an array of contacts, it is

primarily dissipated at the first contact, i.e. the contact with which the propagating wave interacts first [Fig.

6.7(a)]. Since the first contact restricts the transfer of forces beyond the stick limit, the wave transmitted

across the first contact propagates forward with an amplitude equal to the stick limit. When this transmitted

wave interacts with the subsequent contacts, it is incapable of causing further sliding. Thus, the total

contribution of later contacts in energy dissipation from the incident wave is zero. However, note that

despite the low amplitudes of the waves, the tangential forces generated at the later contacts depend on the
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interference of the forward propagating waves and reflected waves from each contact. This complex wave

dynamics, enabled by the periodic arrangement, cause later contacts to undergo a limited amount of sliding

resulting in non-zero but relatively much smaller energy dissipation.

More importantly, the later contacts enable phononic effects by causing multiple reflections and transmis-

sion, and their destructive interference (or Bragg scattering). Thus, the energy transmitted in the case of

periodic contact is considerably smaller compared to a single rough contact for the same excitation amplitudes

[note that EP
T /E

s
T < 1 in Fig. 6.7(b)]. For ξ < 1, the energy transmitted across the contacts depends only on

the acoustic impedance at the contact. Thus, the only mechanism to suppress the propagation of energy

is through Bragg-scattering, caused by the periodic arrangement of contacts. This eventually reduces the

energy transmission by about 35%, which is amplitude-independent. For ξ > 1, contact sliding and phononic

effects both contribute to reducing energy propagation in the phononic material. As a result, the effectiveness

in reducing energy propagation increases for phononic material compared to single rough contact (note the

drop in EP
T /E

s
T up to 0.6 for ξ = 2.7). With a further increase in excitation amplitude, sliding becomes

more prominent and the effect of the phononic process in suppressing wave propagation is overshadowed

by the energy loss in dissipation. This is clear when the dissipation at the contact is maximum (ξ = 5.8),

and the difference between energy transmitted for the single and periodic case is the minimum. As ξ → ∞,

the energy dissipation saturates, and the contribution of the phononic effects on reducing wave propagation

again increases (note the gradual drop in EP
T /E

s
T as ξ → ∞). This effect can be attributed to the stronger

reflection at the interface between the waveguide (ΓL) and phononic material compared to the reflection

from a single contact. This is because there exists a significant difference in the acoustic properties of the

waveguide and effective phononic material, unlike the impedance mismatch in the single contact system.

Overall, these results illustrate that frictional contact is a passive mechanism to control wave transmission

through phononic materials. In fact, the periodic arrangement of the contacts couples the phononic and

hysteretic effects to enhance the typical properties of linear periodic media. Particularly, the propagation of

mechanical energy can be mitigated significantly over a wide range of frequencies, without employing any

additional mechanisms or increasing the unit cell size.
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6.6 Summary

In this chapter, strongly nonlinear shear wave propagation through single and arrays of rough contacts with

friction is studied. Specifically, how shear waves drive the frictional instability at the contacts and give rise

to memory-dependent (hysteretic) nonlinear responses are explained, which has remained an unexplored

territory in the field of phononic materials. These responses are then harnessed to demonstrate advanced

wave control and the ability to enable smart mechanical functionalities. The key findings and demonstrations

of wave control are as follows:

1. Wave-induced friction at contact generates shear-polarized eigenstrains, which are residual strains in the

stress-free system. Physically, the eigenstrains correspond to the repositioning of the initially aligned

contact interfaces (and therefore the waveguides) so that there exists an offset between them.

2. Eigenstrain generation can be isolated only to a certain section of the system, particularly between

successive contacts, by exciting identical wave pulses from both sides simultaneously. These pulses

negate each other’s effects in the end waveguides but not in the layers between contacts.

3. Nonlinearly-generated eigenstrains were utilized to demonstrate acoustically-controlled smart mechanical

functionalities, including a mechanical switch, precision position control, and surface reconfigurability.

4. Furthermore, wave-induced contact sliding results in energy dissipation. The underlying physics of

how this amplitude-dependent energy dissipation passively widens the attenuation zones of finite

contact-based phononic materials is explained. The optical band of the phononic material is suppressed

from the combined effect of energy dissipation at the contact and energy reflection at the first interface,

which eventually merges two band gaps and results in a wide band attenuation zone.
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Chapter 7

Preliminary ultrasonic experiments

This chapter presents experimental investigations of ultrasonic wave propagation through rough contacts. It

begins with the acoustic characterization of bulk materials through underwater acoustic measurements. This

provides information on the wave speed and frequency-dependent attenuation coefficient, which are essential

for the precise analysis of ultrasonic wave propagation. Subsequently, the longitudinal and shear ultrasonic

wave propagation through single rough contacts is examined. The measurements indicate nonlinear behaviors

at the contacts and offer insights into challenges, potential solutions, and guidelines for future research. These

experimental setups and preliminary measurements lay the groundwork for realizing continuum phononic

materials with contacts and validating their nonlinear wave responses.

7.1 Acoustic characterization of bulk material

Wave propagation through bulk materials can be described through their acoustic properties, namely wave

speed, and attenuation. Wave speed refers to the velocity at which a wave travels through a medium,

whereas attenuation refers to the reduction in the amplitude or intensity of a wave as it propagates through

a medium [224]. Attenuation typically occurs due to one or combinations of - (1) diffraction or spreading

of an excited wave from a finite-width source (e.g. transducer), (2) scattering from (wave interaction with)

grains, dislocations, inclusions, and pores, and (3) damping/absorption/dissipation from crystalline defects,

dislocation motion, grain boundary sliding, elastothermodynamic, friction, and magnetoelastic effects. Due

to these inherent mechanisms, wave attenuation is often unavoidable, even in bulk materials that seem

homogeneous at the macroscale. Moreover, the wave speed and attenuation of the material often exhibit

frequency dependence, particularly at ultrasonic frequencies. At these frequencies, the wavelengths are small

enough to be influenced by the material microstructure and defects, which cause wave scattering and hence

frequency-dependent acoustic response.

Wave speed and attenuation have traditionally been employed in nondestructive evaluation to predict the

state of material and damage [225]–[227]. Typically, materials with higher modulus exhibit greater wave speed,

while increased attenuation is indicative of more damage or the presence of microcracks and dislocations

[225]–[227]. In general, attenuation tends to rise with frequency [228], [229]. Consequently, meticulous

consideration of these acoustic properties is necessary to experimentally observe the nonlinear wave responses

of the proposed continuum phononic material. This is due to the fact that weakly nonlinear phenomena, such

as DC and harmonic generation, as well as strongly nonlinear effects, such as variations in stegoton amplitude
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within a layer, are at least an order smaller than the input amplitude. By accounting for variations in

attenuation and wave speed arising from manufacturing, defects, and handling, it becomes possible to isolate

and investigate the effects of nonlinear phenomena induced by rough contacts. In this dissertation, aluminum

was chosen as the base material for the phononic material under investigation. Although the attenuation

coefficient of aluminum alloys is relatively small compared to other metals [224] and non-metals [228], [229],

it should be noted that the absolute amplitudes of waves generated by ultrasonic transducers in metallic

materials are on the order of nanometers. Therefore, even the smaller attenuation coefficients can play a

significant role when wave propagation is studied over longer propagation distances, as expected in a periodic

contact phononic material. Further, the effects of attenuation and variation in wave speed can not be ignored

while working with other metals and non-metals. Thus, accurate measurement of responses necessitates the

consideration of the frequency-dependent acoustic properties of the parent material. Additionally, additive

manufacturing can be employed to produce controlled roughness at contacts for the physical realization of

these phononic materials. However, the acoustic properties of additively manufactured materials cannot be

assumed and must be evaluated through nondestructive means. In this section, ultrasonic measurements in

an immersion tank are conducted to evaluate wave speed and attenuation. While aluminum samples are used,

the experimental framework is presented so that it can be carefully applied to complex materials as well.

7.1.1 Ultrasonic pulse-echo immersion measurements

To characterize the acoustic properties of the material, ultrasonic pulse-echo measurements were conducted

in an immersion tank. This method involves capturing multiple echoes from the sample. The estimation of

wave speed relies on analyzing the time intervals between different echoes, while variations in echo amplitudes

provide information about the attenuation coefficient. Immersion methods offer enhanced reliability due to

the consistent coupling between the transducer and sample facilitated by the presence of water (or fluid, in

general). In contrast, contact-based measurements often encounter difficulties in reproducing a consistent

interface between the sample and transducer. Consequently, the complexities and errors associated with

calculating and correcting the reflection coefficient [228] at the transducer-sample interface can be avoided.

7.1.1.1 Sample preparation

Three samples in the form of rectangular blocks of 10 mm X 40 mm X 40 mm were machined from an extruded

square bar of aluminum alloy 6061-T6511 (vendor: OnlineMetals). This particular shape was selected for

its ease of fabrication and mounting. However, it is worth noting that other shapes can also be utilized, as

wave speed and attenuation are intrinsic material properties that are not dependent on sample shape. All the

surfaces of the samples were surface finished using a milling process leading to an average roughness value ∼
0.25 µm. This level of smoothness ensures that unwanted scattering from the sample surface is minimized.

The thickness of the sample (Ls = 10 mm) is chosen such that echoes from the rear end of the sample do

not overlap the incident pulse at the probed frequencies. A sample size with a side length four times larger

than the thickness was selected to mitigate any effects of side reflections on the pulse-echo measurements.

Moreover, the chosen side length exceeds the transducer size based on diffraction calculations discussed in

the subsequent section, ensuring maximum beam intensity focusing on the sample.
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Figure 7.1: Ultrasonic pulse-echo immersion measurements for acoustic characterization of aluminum.
Experimental (a) schematic and (b) physical setup. Inset in (b) illustrates the beam spreading from the
transducer toward the sample. (c) Typical recorded time signal with the surface (S0), first back-wall (S1),
and second (S2) back-wall echoes. Estimated (d) wave speed and (e) attenuation coefficient of aluminum
over the transducer bandwidth. Solid lines and shaded stripes are mean values and standard deviations,
respectively.

7.1.1.2 Experimental setup and parameters

Fig. 7.1 shows the experimental schematic [Fig. 7.1(a)] and the actual setup [Fig. 7.1(b)] of the ultrasonic

pulse-echo immersion measurement. The tank was filled with water that has been purified using a portable

filter, and the water level was kept consistent throughout all measurements. To hold the immersion transducer

in water, a spindle with a transducer seat at its end was employed. This spindle was attached to railings that

facilitate the positioning of the transducer inside the tank. The sample was rested on two blocks, aligned

with the transducer axis, and their parallel alignment was ensured using a spirit level during the experiment.

The measurements were conducted in a vertical orientation to simplify alignment. The specific distances

highlighted in the setup serve the following purposes: (1) preventing double reflections of the first surface

echo from interfering with other reflections, (2) avoiding interference between reflections from the bottom

surface of the tank and the first and second back wall reflections, and (3) eliminating any impact of reflections

from the tank walls on the measurement.

For frequencies < 10 MHz, the contact properties of microns-scale roughness do not exhibit frequency

dependence, and the quasi-spring model assumption is applicable [113]. As a result, ultrasonic measurements

involving rough contacts (Sections 7.2 and 7.3 ) were conducted at frequencies < 3 MHz. Therefore, the

acoustic properties of the material were also evaluated within these frequency ranges. Particularly, pulse-echo

measurements were conducted using an immersion transducer with a center frequency of 2.25 MHz (Olympus,

V323) and a bandwidth range of 1.48-2.86 MHz.

100



The distance between the sample and transducer (Lw) was carefully selected by considering the effects

of near-field fluctuations and beam spread at a far-field [refer to the inset of Fig. 7.1(b)]. In the near-field

regime, the wavefront generated by the transducer is not fully developed, leading to distortion and uneven

distribution of acoustic energy. It is advised that the measurement should be done outside the near-field

regime. A near-field distance, N1, is given by,

N1 =
D2

4λ
, (7.1)

where, D is transducer diameter and λ is the wavelength of excited frequency in water, all in meters. While

the wave speed in water can be evaluated from the measured signals, it is assumed to be 1500 m/s for

simplicity. The beam spread, N2, is calculated as

N2 = 2Lw

{
tan

[
sin−1

(
Kcw
Df

)]}
, (7.2)

where, Lw is the distance between the transducer face and the sample front wall. K is the constant beam

divergence factor which was taken as 0.56 for 6dB. cw and f are wave speed in water and frequency of

excitation, respectively. Distance, Lw, in the experimental setup was selected as 85 mm, which is larger

than N1 and results in N2 smaller than the side length of the sample, for the used transducer. This way the

concentration of the excited transducer beam on the sample was ensured.

7.1.1.3 Measurement and post-processing

First, the density of the material was evaluated through Archimedes’s method where sample weights were

measured both in the air and in water such that

ρ =
W |Air

W |Air −W |Water
ρ|Water, (7.3)

where, W is weight of the sample in respective medium and ρ is density. The mean value of measured density

is 2708.25 kg/m3.

Ultrasonic measurements were performed in a pulse-echo mode such that the same transducer was used

for sending and receiving the signal [Fig. 7.1(a)]. A pulse was emitted into the water, which reflects from the

water-sample interface generating a surface echo (S0). Subsequently, the first (S1) and second (S2) back-wall

reflections arise and were captured by the transducer. The pulse was generated using a pulser/receiver (JSR

Ultrasonics, DPR300, 475V, 50MHz Bandwidth) and recorded using an oscilloscope (Tektronix MSO44).

Both pulser and oscilloscope were set at 50Ω terminal load and therefore BNC connection cables of grade

58U were used. The pulse was characterized by the following settings: gain = 30 dB, low Pass Filter = 10

MHz, pulse amplitude = 325V, damping = 5, and pulse energy = high Z4. A representative recorded signal

(averaged over 256 points, bandwidth limit = 350 MHz, and sampling rate = 3.125 Gs/s) with corresponding

reflections is shown in Fig. 7.1(c). To ensure comprehensive data collection, three different measurements were

conducted, with each measurement involving three additional sets of measurements. This approach involved

removing and remounting the sample in the tank before each set, resulting in a total of nine measurements.

As mentioned earlier, wave speed may exhibit frequency dependence as a result of scattering from

the material’s microstructure and defects if the probed wavelengths are small enough to be influenced by

them. Therefore, to estimate the phase velocity of the waves propagating through the sample at the probed
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frequencies (1.48-2.86 MHz), the phase shift of the propagating frequencies is considered. The phase velocity

is then estimated using the following equation:

cp(f) =
2Ls

∆t+ ∆ϕ(f)
2π

, (7.4)

where Ls is sample thickness, ∆t is the time difference between the two echoes (first and second back wall),

and ∆ϕ is the phase difference between propagating frequencies of the pulse.

The attenuation coefficient, α, is evaluated as [228]–[230],

α =
1

2Ls

{
ln

∣∣∣∣S1(f)

S2(f)

∣∣∣∣− ln

∣∣∣∣DL(f, 2Lw + 2Ls)

DL(f, 2Lw + 4Ls)

∣∣∣∣+ ln(|Rws|2)
}
, (7.5)

where S1 and S2 are first and second back-wall reflections respectively, Rws is reflection coefficient at

sample-water interface such that, Rws = Zw−Zs

Zw+Zs
, where Z = ρc is acoustic impedance with subscript w and s

correspond to water and sample material, respectively. The density of water is considered as 1000 kg/m3.

DL in Eq. 7.5 is a Lommel diffraction correction valid for
√
qD ≫ 1 and given by [229], [231],

|DL(f, z)| =

{[
cos

2π

Π(f, z)
− J0

(
2π

Π(f, z)

)]2
+

[
sin

2π

Π(f, z)
− J1

(
2π

Π(f, z)

)]2} 1
2

, (7.6)

where J0 and J1 are Bessel functions and Π = λz
D2 . In these experiments, for the selected transducer (D = 6.35

mm and f = 2.25 MHz),
√
qwa = 7.73 ≫ 1 and

√
qsa = 3.76 ≫ 1. This ensures the validity of Eq. (7.6).

Further, Π = 4.3 > 3 confirms that the calculations are conducted outside the fluctuation zone of the Lommel

diffraction correction.

7.1.2 Estimated phase velocity and attenuation

Fig. 7.1(d) shows obtained phase velocities and their relationship with frequency. The measured values

of the phase velocity are comparable to the known standard value (6400 m/s [232]) for wave speed in

aluminum. However, there is a slight difference, indicating possible variations in material alloy composition

and manufacturing effects. The measured phase velocity is consistently slightly smaller than the standard

value. Furthermore, the experimental data reveals that the phase velocity only marginally decreases as the

frequency increases. Over a frequency range of 1.5 MHz, the reduction in phase velocity is approximately

0.4% only. This means wave propagation speed within the aluminum material is frequency-independent for

the probed frequencies. Thus, an average value of wave speed over these frequencies is obtained (6375 m/s)

and used for further calculations. The variability in the experimental measurements and across trials is less

than 0.1%, indicating good consistency and reproducibility of the results.

Fig. 7.1(e) shows the wave attenuation coefficient and its dependence on frequency. The attenuation

coefficient represents the rate at which the wave amplitude decreases as it propagates through the material.

Based on the obtained data, the experiment indicates an almost negligible or even negative wave attenuation

coefficient for frequencies below 1.5 MHz. This means that at these frequencies, the wave amplitude does

not change significantly during propagation, or at least not enough to be captured by the sensitivity of the

experimental setup. As the frequency increases, the attenuation coefficient starts to increase as well. At 2.86

MHz, it reaches a maximum value of ∼6 Np/m. This measured range of coefficients aligns with the literature

values reported for different aluminum alloys using various measurement techniques [224], [233]. Moreover,
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the standard deviation is very small, indicating the reliability and precision of the experimental setup.

The acquired acoustic properties of aluminum are utilized in the subsequent experiments to ensure precise

measurement and estimation of the contact response. To physically realize the phononic materials discussed

in this study, it becomes necessary to fabricate contacts with controlled roughness in order to reduce disorder.

However, it is important to note that 3D printed materials often exhibit inherent microstructural defects or

features, such as soft phases, porosities, and loosely jointed interfaces or powders, which depend on the specific

fabrication method employed. Consequently, the acoustic properties of these materials can significantly

deviate from those of their parent material. In such cases, the developed experimental setup can be utilized

to assess the acoustic properties of these complex and intricate materials.

7.2 Longitudinal wave propagation through rough contact

The traditional method for investigating the nonlinear response of rough contacts involves analyzing load-

deformation data obtained from two contacting bodies [234]. However, this approach is susceptible to errors

due to the significantly smaller interfacial deformation compared to bulk deformations [235]. An alternative

method that overcomes these limitations is the use of ultrasonic techniques for characterizing rough contacts

[113], [236], [237]. The key advantage of the ultrasonic method is that the signal reflected from the interface

can be separated in time from those originating from the boundaries of the bulk material. As a result, the

accuracy of the measurement remains unaffected by the bulk deformations or specimen dimensions. Both

linear and nonlinear ultrasound approaches have been employed for contact characterization. In the linear

approach, the contact is treated as a linear spring, and the measured reflection or transmission is directly

correlated with the spring stiffness using analytical methods. Thus, this method is primarily suitable for

strongly compressed rough contacts [113], [236], [237] only. On the other hand, the nonlinear approach utilizes

either the second harmonic [238] or wave mixing [136] to quantify the linear and nonlinear stiffness, limited

to quadratic order. However, these studies have primarily focused on weakly nonlinear regimes, where the

precompression exceeds the wave amplitudes. It is important to note that the behavior of rough asperities

under light precompression, particularly when predeformations are smaller than wave amplitudes, is expected

to exhibit distinct characteristics (namely coefficient and exponent of power-law) compared to what has been

previously reported.

This section focuses on longitudinal wave propagation through rough contact. For the future realization

of phononic material with rough contacts, this study establishes an initial experimental framework, including

an ultrasonic setup that potentially informs nonlinear behavior at rough contact through wave measurements.

First, linear wave propagation is employed to characterize contact nonlinearity as a means to develop and

validate an in-house ultrasonic setup. The method relies on measuring the transmission and reflection

coefficients at a rough contact. These coefficients are determined by measuring the incident and transmitted

waves through contact. The contact is then treated as a linear spring with stiffness analytically formulated as

a function of wave coefficients [239], [240]. However, the nonlinearity of the contact is captured when the

coefficients are measured for different external precompressions. Effectively, contact stiffness evaluated from

these coefficients exhibits a nonlinear dependence on precompression that inform the power-law relationship

at the contact. While these contact laws may be used for weakly nonlinear studies, the limitation of this

method for characterizing contact responses for light precompression is also discussed. Finally, a hybrid

numerical-experimental approach for contact characterization in a strongly nonlinear regime is proposed as

future work. This approach may provide insights into the stegoton properties based on the strongly nonlinear
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responses of the contact.

7.2.1 Contact characterization using linear ultrasonic waves

7.2.1.1 Sample preparation

Four samples in the form of rectangular blocks of 20 mm X 30 mm X 30 mm were machined from an extruded

square bar of aluminum alloy 6061-T6511 (vendor: OnlineMetals). This particular shape was selected for

its ease of fabrication and mounting. To ensure better and consistent alignment, all surfaces of the samples

underwent surface finishing using a milling process. The thickness of the sample (Ls = 20 mm) is chosen such

that reflections from the contact surface of the sample do not overlap the incident wave at probed frequencies.

A larger side length was chosen to avoid side reflection affecting measurements. Additionally, the side length

is larger than the transducer size, as per the diffraction calculation presented in the section 7.1.1.2, to ensure

the focusing of most of the excited energy on the sample.

7.2.1.2 Roughness generation and measurement

Wave propagation is studied in the thickness (Ls) direction of the sample. To prepare the samples for

experimentation, one surface of each sample, perpendicular to the thickness direction, was manually polished

using sandpapers of varying grits. Initially, P240 sandpaper (Buehler, CarbiMet) was used, which provides

the roughest abrasion, followed by P400. The polishing process was continued until the surfaces exhibited a

lack of specific directionality in roughness, and any prominent patches, grooves, or cracks were no longer

visible. Subsequently, these polished surfaces were thoroughly cleaned using a compressed air gun, gently

washed under water, and finally treated with Isopropyl alcohol (IPA) to eliminate any remaining dirt, loose

particles, or microscale stains that may persist after the polishing stage. These meticulously polished surfaces

served as the rough contacts in the experimental setup.

To accurately assess and ensure uniform roughness on the mating surfaces, optical imaging was employed

for quantifying the rough surfaces. In comparison to traditional stylus profilometers, optical profilers offer

superior resolution, contrast, and provide areal measurements. Consequently, roughness measurements become

less susceptible to directional surface features. Furthermore, optical profilers enable the generation of 3D

images, facilitating a comprehensive understanding and visualization of surface texture. These instruments

operate as non-contact and non-destructive tools, ensuring that the sample surface remains unaltered and

free from marks, which is crucial for preserving the integrity of rough surfaces. In this study, a 3D laser

scanning confocal microscope (Keyence, VK-X1000) was utilized due to its exceptional resolution of 20 nm in

the vertical direction and focus variation ranging from 1-10 micrometers. A 20x objective lens was employed,

and roughness values were measured at five different locations on each surface. The field of view for each

measurement was set at 0.5 mm X 0.7 mm. Since the nonlinearity of rough contacts at the frequency of

interest (∼ 1.7 MHz) is associated with the mesoscale response (given that λ > δ), the field of view was

selected to be approximately 100 times larger than typical rough features (a few microns). Additionally, the

wavelength of the frequencies of interest was around seven times larger than the field of view, ensuring the

experimental validity within an effective spring model of contact for subsequent post-processing. The mean

and variation of the measurements at all five sites were then evaluated and reported as quantitative mesoscale

parameters representing the surface roughness.
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Figure 7.2: Ultrasonic characterization of rough contact. Experimental (a) schematic and (b)-(c) physical
setup. Inset in (b) shows transducer-sample coupling through Salol. (c) Zoomed view of the yellow dashed
rectangle in (b). Typical recorded time signal of (d) incident and (e) transmitted wave. Inset schematic show
the corresponding experimental setup and shaded regions are the main wave packets used for postprocessing.

7.2.1.3 Experimental setup

Fig. 7.2 shows the experimental schematic [Fig. 7.2(a)] and the actual setup [Fig. 7.2(b)] of the ultrasonic

wave propagation through a rough contact. Two aluminum blocks were mounted on a manually operated

pressure vice (Kurt DX6) to form a rough contact such that the polished surfaces face each other [Fig.

7.2(c)]. The vice was mounted on an optical table to isolate ground vibrations and mounting fixtures were

meticulously designed to ensure precise alignment of the two blocks. An ultrasonic contact transducer

(ndtXducer, CMP01.54) with a nominal frequency of 1.7 MHz, narrow bandwidth of 1.5-1.9 MHz, and a piezo

element diameter of 0.25” was attached to the left surface of the left sample using a thermal adhesive – Phenyl

Salicylate (salol). This particular thermal adhesive, salol, ensured a robust and consistent coupling between

the transducer and the sample, eliminating variations during measurements. Salol is available in powder form,

with a melting temperature of 45°C and solidification occurring at room temperature. Consequently, the
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transducer can be easily attached to and detached from the sample using a low-capacity heat gun, without

compromising the integrity of the adhesive bond. Solidifying within the operating temperature limit of the

transducer (60◦C), salol did not cause any damage to the transducer. The second sample was in contact with

the load cell (Transducer Techniques, THC-5K-T), which measured the force applied to the samples. The low

voltage signals of the load cell were amplified through a power amplifier (FUTEK IAA100). Fixtures were

designed carefully to ensure that the pressure exerted by the vice was transmitted solely to the sample blocks

and load cell.

7.2.1.4 Measurement and postprocessing

A high-power ultrasonic measurement system (RITEC RAM-5000) was used to excite a wave. To compensate

for the lower conversion efficiency of the transducer and potential energy loss at the contact, a high-power

exciter was utilized, enabling a higher energy input into the system. The output port of RITEC system was

terminated with a 50Ω load to reduce fluctuation in the input signal. The wave consisted of 3 cycles at a

frequency of 1.7 MHz, with an output level set at 50% of the full-scale power of the RITEC system. The length

of the signal was carefully chosen to ensure it could be effectively separated from the reflected and transmitted

waves, while still providing enough cycles for accurate data processing in the frequency domain. The power

level was limited to 50% to prevent any potential damage to the transducer. During the experimentation, it

was observed that the signal exhibited a slight variation in peak amplitude of approximately 0.5% over a

period of 3 hours. This variation could potentially be attributed to thermal fluctuations in the electronics.

The wave was detected using a Doppler vibrometer (Polytec, OFV505) equipped with a velocity decoder

(VD09) at 200mm/s/V range. To facilitate the laser beam projection onto the sample’s surface, a hollow

cylinder load cell was employed. The vibrometer signals were then transferred to an oscilloscope (Tektronix

MSO44) with the termination of 1MΩ for maximum voltage transfer.

First, wave incident to the rough contact was measured. To do this, only the left sample was mounted on

the vice, and the laser beam was focused on the right (polished) surface of the sample. The measured signal

was used as an incident wave [SA(t)] to calculate wave coefficients. Then, the second sample was loaded on

the vice, and the wave was measured on the right surface of the second sample [SB(t)]. The measured signal

was corrected for attenuation and diffraction in the right sample and used as a signal transmitted through the

contact. Typical recorded signals of the incident and transmitted waves (averaged over 256 points, bandwidth

limit = 350 MHz, and sampling rate = 3.125 Gs/s) are shown in Figs. 7.2(d) and 7.2(e), respectively.

These time signals were transformed into the frequency domain by taking an FFT. A Hanning window

was used over the main wave packet to isolate other reflections in processing the data. Then, the transmission

coefficient, T (f), was evaluated in the frequency domain as,

T (f) =
SB(f)

SA(f)

1

2DL(f, z)αc(f, z)
, (7.7)

where DL(f, z) is diffraction correction as given by Eq. (7.6) and αc is attenuation correction as given

by αc = e[−(αz−ikz)] with z = Ls. The measurements were repeated for multiple loading and unloading

precompression. The reflection coefficients were evaluated as R(f) = 1− T (f).

To evaluate the contact properties, the contact is treated as a linear spring with stiffness, KN . An analytical

expression of KN as a function of R is obtained essentially on similar lines as [239], [240]. Considering a 1D
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wave propagation through the contact and force continuity at the contact interface leads to,

σ(X−, t) = σ(X+, t) = Fs, (7.8)

where X− and X+ are the contact interfaces in spatial coordinate x and Fs is contact spring force. This can

be further rewritten in terms of material and contact properties as,

E
∂u(X−, t)

∂x
= E

∂u(X+, t)

∂x
= KN [u(X+, t)− u(X−, t)]. (7.9)

It is worth noting that the stresses in bulk material depend on the derivative of displacement whereas

contact forces depend directly on displacement, which eventually leads to frequency-dependent relation

between stiffness and wave coefficients. However, recall that due to the underlying modeling of contact as a

quasi-spring, the contact stiffness itself is frequency independent.

Considering wave propagating of a function, Φ, leads to: ui = Φ, ur = R(ω)Φ, and ut = T (ω)Φ, where i,

r, and t denotes incident, reflected and transmitted waves. Replacing these waves in Eq. (7.9) results in,

iωρc[R(ω)− 1]Φ = −iωρcT (ω)Φ = KN [T (ω)−R(ω)− 1]Φ. (7.10)

Effectively, the contact stiffness as a function of the reflection coefficient is:

KN =
ωρc

2

√
1

[R(ω)]2
− 1. (7.11)

Note that by definition, the contact stiffness, KN , must be frequency independent, which informs that the

reflection coefficient, R(ω), and frequency, ω, in Eq. (7.11) should counterbalance each other.

7.2.2 Estimated contact characteristic

As discussed, one surface of each of the four samples was polished. This allowed for the examination of two

rough contacts formed by pairing samples 1 and 2 and samples 3 and 4 (Fig. 7.3). To assess the roughness, the

polished surfaces were measured both before and after applying precompression using an optical microscope

[example results of sample 1 polished surface is shown in Fig. 7.3(a)]. The maximum peak and valley of

the rough features are found to be approximately from 4 - 5 µm. The results indicate that the average

roughness is uniform across the measured locations for each surface [Figs. 7.3(b) and 7.3(c)]. Additionally,

the roughness values exhibit remarkable consistency, ranging from 0.46-0.49 µm indicating a coefficient of

variation of merely 0.04. Moreover, these roughness values are higher than 0.3 µm - expected of machined

samples. This indicates that the polishing procedure rendered the surfaces rougher. Interestingly, despite

manual polishing, the roughness is found to be isotropic. When considering the effect of precompression on

the surface roughness, minimal changes are observed across all samples [compare blue vs black data points

in Figs. 7.3(b) and 7.3(c)]. While the roughness values remained relatively stable, it is worth noting that

sample 3 exhibits a larger spread in roughness values at different locations after precompression. While

further measurements are required, specifically on other statistics such as peaks and valleys, these results

indicate that the precompression values used in the measurements did not significantly alter the average

surface roughness.

Wave propagation was measured and contact stiffness was estimated for three loading-unloading cycles
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Figure 7.3: Estimated contact characteristics from ultrasonic measurements. (a) Sample 1 polished surface and
corresponding surface texture. An optical microscope image and colormap with roughness height distribution
of the region (red rectangle) of the surface are also shown. Average roughness of (b) sample 1-2 and (c)
sample 3-4 before (black) and after (blue) precompression is applied. The measurement is done at five
different approximate locations on the surfaces: Center, Lower-left (LL), Upper-left (UL), Upper-right (UR),
and Lower-right (LR). Markers and error bars in the right plot show the mean and variation among these
locations, respectively. Estimated KN − p0 nonlinear relationship for (d) sample 1-2 and (e) sample 3-4.
Colored patches show different trends.

of external precompression [Figs. 7.3(d) and 7.3(e)]. Measurements were taken for each incremental load,

while none were done during unloading due to a lack of control over decreasing precompression values in

the manually-operated vice. The results for samples 1 and 2 pairings [Fig. 7.3(d)] consistently demonstrate

an increasing and nonlinear trend of stiffness with precompression. This behavior can be attributed to the

deformation of rough asperities. As the precompression is increased, the increasing deformation of asperities
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leads to an increase in the contact area, and therefore contact stiffness. The maximum load applied for each

loading cycle was the same, resulting in a hysteresis but only during the first loading cycle. This indicates

plastic deformation of asperities occurred only during the first cycle. Although this plastic deformation may

not be evident in the average roughness measurements [Fig. 7.3(b)], it is possible that plastic deformation

mainly occurred at asperities with peak roughness values. The lower percentage of roughness peaks on the

surfaces possibly did not affect the overall average roughness value. No additional plastic deformation was

observed during the subsequent 2nd and 3rd loading cycles, as evidenced by their overlapping nature. The

data points from these subsequent loading cycles were fitted with a power law relation, yielding an exponent

of 0.5, which has been proposed to be associated with asperities with a uniform height distribution [115]. This

hypothesis is further supported by the roughness measurement, which indicates that the average roughness

on these samples is in fact uniform. Interestingly, for the precompression, 7 MPa< p0 <11 MPa (yellow

shaded region), no hysteresis is seen between the 3 loadings, and the slope of the KN − p0 seems to have

shifted. This behavior is more clearly seen for samples 3-4 pairing discussed next.

An additional set of samples (pairs of samples 3 and 4) was subjected to the same ultrasonic measurements

[Fig. 7.3(e)]. Similar to the previous set of measurements, an increasing and nonlinear trend of contact

stiffness with precompression is observed. However, two distinct trends have emerged based on the magnitude

of precompression: for low precompression (green shaded region), the slope of the contact stiffness is relatively

smaller, while for higher precompression (yellow shaded region), the slope becomes steeper. In the steeper

portion of the contact stiffness (higher precompression values), no hysteresis is observed. All the loading cycles

overlap, suggesting minimal plastic deformation. In the low precompression zone, the first loading differs

slightly from the second and third loading. This difference could be attributed to the plastic deformation of

rough asperities. These asperities, likely to be sharp or spike-like, experienced stress concentration for low

precompression and underwent plastic deformation during the first loading cycle. This effect is expected to

be pronounced in the low precompression zone, where the contact area is relatively smaller. However, lack

of hysteresis at high precompression could be a result of a larger contact area, where deformation of sharp

asperities does not contribute significantly. The fact that average roughness is fairly constant before and after

precompression [Fig. 7.3(c)] support these results with a lack of noticeable hysteresis. Further experiments,

at much higher precompression may be conducted to induce a stronger plastic deformation and validate the

hypothesis outlined here.

The results also show an intermediate precompression zone (blue-shaded region), where contact stiffness

remains relatively unchanged. This suggests that precompression applied within this range may not be

effectively transmitted to the actual contact area probed by the propagating wave. The shift in the trend

around 6 MPa may be attributed to the alignment of asperities and/or the interaction between neighboring

asperities. It is plausible that at relatively higher precompression levels, the lateral deformation of asperities

encounters increased resistance from surrounding asperities. This resistance could lead to a sudden rise in

contact stiffness. Notably, the power-law fitting of data points at high precompression yields an exponent of

less than 1, resulting in a force-displacement relationship with a softening nonlinearity. Although further

experiments are required to validate this relationship, it is conceivable that rough contacts exhibit both

hardening and softening nonlinearities within different precompression ranges.

7.2.3 Contact characterization in the strongly nonlinear regime

The current method employed for contact characterization assumes that the frequency content of the

wave remains unchanged during its interaction with the contact. This assumption holds true for highly
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Figure 7.4: Contact characterization in a strongly nonlinear regime. Transmitted wave obtained from (a)
numerical simulations and (b) experiments for strongly nonlinear (left and center) and weakly nonlinear
regimes (right). Arrows indicate asymmetry in the wave profile. The Red dashed line indicates a long-
wavelength component generated from contact nonlinearity. (c) Proposed hybrid experimental-numerical
approach to characterize contact law in the strongly nonlinear regime.

precompressed systems and even weakly nonlinear cases where the amplitudes of generated higher harmonics

are two orders of magnitude smaller than the fundamental wave. Therefore, any drop in the amplitude of the

transmitted wave is attributed to the reflection at the contact, indicating an increased reflection coefficient.

However, for lightly compressed contacts, where wave amplitudes are larger than the predeformation, contact

clapping takes place and much stronger harmonics are generated [241]. In addition to that, asymmetric

nonlinearity also generates low-frequency components. As a result, a portion of energy from the fundamental

waves is transferred to other frequencies within the transmitted wave, instead of being solely reflected from

the contact. These prominent nonlinear effects involving frequency conversion from wave-contact interaction

lead to incorrect contact properties if the measured signals are post-processed using linear wave theory. In

this section, the limitation of the approach presented in the previous section is elaborated and a hybrid

method consisting of numerical-experimental parts is proposed for characterizing contact nonlinearity in the

strongly nonlinear regime.

A prominent feature of strongly nonlinear wave-contact interaction in time domain signals is asymmetry.

Due to contact clapping, wave transmission across contact is restricted when the contact surfaces separate.

This generates asymmetry in the transmitted wave profile. Wave propagation through a single rough contact is

simulated using finite element analysis as discussed in Chapter 3 for contact clapping. When wave amplitude

is larger than predeformation, the displacement profile of the transmitted wave is asymmetric with a strong

long-wavelength component [Fig. 7.4(a)]. As precompression is increased for the same wave amplitude, the

asymmetry reduces and the wave becomes relatively more symmetric [compare wave for u > δ0 with u < δ0

110



in Fig. 7.4(a)]. The measured signals in the experiments of the previous section show the same behavior

[Fig. 7.4(b)]: significant asymmetry at low precompression, which reduces as precompression is increased, i.e.

when contact clapping is restricted. Clearly, nonlinear effects are substantial for low precompression, and an

analytical model relating reflection coefficient and contact stiffness based on linear wave propagation is not

applicable. While wave propagation through weakly nonlinear rough contacts has been studied analytically,

the closed-form equations obtained through perturbation analysis are valid for low-amplitude waves only.

Thus, these models can not be used to obtain contact characteristics under clapping behavior.

Alternatively, a hybrid experimental-numerical approach can be employed to determine the contact

power-law relationship in the strongly nonlinear regime [Fig. 7.4(c)]. This approach involves estimating

approximate contact law parameters and iteratively adjusting these parameters in finite element simulations

to match experimentally obtained data. Specifically, the approach begins with the experimental acquisition

of a transmission-precompression (T − p0) relationship, as discussed in the previous section. This relation

can then be nonlinearly fitted with the analytical model [115] of weakly nonlinear wave propagation, yielding

potential values for the power-law exponent and proportionality constant. These estimated parameters can

be subsequently utilized in the contact law within finite element simulations. Through iterative modification,

the contact law parameters are adjusted to ensure that the transmission coefficient obtained from numerical

analysis aligns with the experimental data across all precompression levels. This iterative process can be

facilitated by developing a comprehensive understanding of the relationships between contact law parameters

and transmission characteristics. Alternatively, advanced techniques like optimization and machine learning

may be employed to expedite this method. This hybrid approach offers numerous benefits: Firstly, it does

not rely on linear wave propagation. Secondly, it uses fundamental wave measurements instead of harmonics,

which are often sensitive and prone to errors unless carefully measured. Finally, it enables the determination

of contact properties within the strongly nonlinear regime, where analytical solutions are unavailable, and

contact characterization remains an ongoing exploration.

7.3 Shear wave propagation through rough contact

This section focuses on ultrasonic wave propagation of shear polarization through rough contact. The

objective of this study is to establish an initial experimental framework for realizing shear wave responses

in phononic materials with rough contact. Preliminary studies suggest wave-induced friction at contact

generates eigenstrains and results in energy dissipation, both of which may be captured experimentally.

7.3.1 Eigenstrain generation

Acoustic-radiation-induced strains, also known as eigenstrains, have been experimentally measured in materials

with quadratic nonlinearity in their constitutive law, particularly for longitudinal waves. These strains have

been looked at as static (or low-frequency) displacements in wave profiles. The first experimental measurements

of these strains were conducted on samples of single-crystal silicon and vitreous silica [213]. It was observed

that ultrasonic tone bursts generate static displacement pulses having the shape of a right-angled triangle.

This shape was obtained by isolating the low frequencies of the measured signals using a low-pass filter.

However, later studies highlighted the influence of detector bandwidth on the triangular shape [214], [215].

Jacob et al. [214] conducted careful experiments using an optical probe to measure the wave profile for

different bandwidths. Their study revealed that the quasistatic displacement pulse, obtained by filtering the

signal with a low-pass filter, exhibited a flat-top shape with an amplitude independent of the tone burst
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duration. Similar experiments conducted by Narasimha et al. [242] confirmed the flat-top shape of the

detected quasistatic pulse, with its amplitude remaining unaffected by the duration of the tone burst. While

these studies confirm the generation and presence of eigenstrains from longitudinal wave propagation, shear

wave-induced eigenstrains are yet to be experimentally captured. A preliminary experimental framework has

been developed here that possibly indicates the presence of friction-governed eigenstrains.

Finite element simulations were conducted to inform appropriate sample dimensions and experimental

parameters for experimental validation of eigenstrain generation. To simulate 1D shear wave propagation and

isolate scattering waves reaching the contact, samples with varying cross-sections were designed [Fig. 7.5(a)].

The main sources of scattered waves are typically the (1) edges of the transducer and (2) side boundaries of

the samples. Enlarging the end sections of waveguides (h1 > h0 and h2) minimize the interference of scattered

waves from transducer edges and side boundaries with the main signal by the time measurements were

done. Conversely, having a smaller cross-section (h2) for the waveguide compared to the transducer element

diameter (h0) facilitates the replication of 1D wave propagation through the waveguide. The numerical results

of high-amplitude shear wave propagation at 1 MHz frequency confirm the generation of eigenstrain even in a

waveguide with finite lateral dimensions [Fig. 7.5(b)]. Note that the static displacements are generated in the

waveguide only after t = 15µs, i.e., when the wave interacts with contact and triggers sliding. This static

displacement is seen only when the wave amplitude is larger enough to cause sliding [Compare black vs red

lines in time signal of Fig. 7.5(b)].

Two samples of the aforementioned geometry of dimensions H = 40 mm, L = Lw = H, and Hw = λ

were machined from an extruded square bar of aluminum alloy 6061-T6511 (vendor: OnlineMetals). These

dimensions were carefully selected to minimize the impact of scattered waves, as previously discussed, and

to prevent overlap between the main pulse and reflections from contacts at the chosen frequency of 1 MHz.

The selection of this specific frequency enables working with sample sizes that are small enough to simulate

1D wave propagation while still being feasible to fabricate using conventional machining. Additionally,

waveguide thickness similar to the wavelength approximates 1D wave propagation as informed by finite

element simulations. The thickness is also four times smaller than the transducer, which approximates plane

wave propagation through the waveguide, i.e. finite size effects in the lateral direction can be reduced. The

cross-section of the sample is rectangular, simplifying fabrication and alignment processes and facilitating

laser beam focusing on the surface. All the surfaces of the samples were surface finished using a milling

process. No additional polishing at contact was done. The attenuation and diffraction effects and calculations

were omitted for simplicity. However, incorporating these effects would facilitate a more accurate analysis.

The experimental schematic [Fig. 7.5(c)] and the actual setup [Fig. 7.5(d)] of the shear wave propagation

through a rough contact is as follows: Two samples were mounted on a manually operated pressure vice

(Kurt DX6) to form a rough contact [Fig. 7.5(d)]. The vice was securely mounted on an optical table to

isolate ground vibrations and mounting fixtures were carefully designed to align the two blocks. An ultrasonic

shear-polarized contact transducer (Olympus, V153-RM) of nominal frequency of 1 MHz, broad bandwidth of

0.5-1.5 MHz, and piezo element diameter of 0.25” was attached to the left surface of the left sample using a

thermal adhesive – Phenyl Salicylate (salol). The polarization direction of the transducer was in the vertical

direction, i.e. perpendicular to the waveguide axis. The second sample was in contact with the load cell

(Transducer Techniques, THC-5K-T) which measured the force applied to the samples. The low voltage

signals of the load cell were amplified through a power amplifier (FUTEK IAA100).

A pulse was generated using a pulser/receiver (JSR Ultrasonics, DPR300, 475V, 50MHz Bandwidth) with

the settings of gain = 70 dB, low Pass Filter = 5 MHz, pulse amplitude = 475V, damping = 1, and pulse
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Figure 7.5: Measurement of shear-polarized eigenstrain from wave-induced frictional sliding. (a) Geometry of
samples with a rough contact at the center. (b) Numerical results of high-amplitude shear wave propagation
through (a) when excited from the left end. Spatiotemporal plots of wave displacements indicate static
offset generation when the wave interacts with contact. Arrows indicate wave propagation directions. The
time domain signal of the transmitted wave indicates eigenstrain generation only when contact sliding is
activated. Experimental (c) schematic and (d) actual setup. (e) Two different measurements for the same
samples. Displacement amplitudes of transmitted waves for different precompressions (colors) show static
offset for low precompression only (dashed ellipse). Arrows indicate changing trend of signals with increasing
precompression.

energy = low Z4. This setting represents the maximum limit of the pulser, enabling the generation of a pulse

with the highest attainable wave amplitude. The wave transmitted through the contact was detected using

a Doppler vibrometer (Polytec, OFV505) using a displacement decoder (DD300) at 50 nm/V range. The
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vibrometer was positioned such that the laser was aligned parallel to the transducer’s polarization direction,

allowing for accurate detection of wave-particle displacement. The vibrometer signals were then transferred

to an oscilloscope (Tektronix MSO44) with the termination of 1MΩ. The signals were averaged over 256

points, with a bandwidth limit = 350 MHz, and a sampling rate = 3.125 Gs/s.

Two measurements were conducted on the same samples, which involved disassembling and reassembling

the setup to ensure repeatability [Fig. 7.5(e)]. Throughout both measurements, the same input wave amplitude

was maintained as the precompression was gradually increased. Measurements show that transmitted waves

obtained for low precompression cases in both measurements exhibit a persistent offset in wave amplitude for

an extended period after the main wave pulse [refer to both black and red curves in Fig. 7.5(e)]. Interestingly,

as the precompression is increased, this negative offset gradually diminishes [refer to the upward arrow in

Fig. 7.5(e)], eventually disappearing entirely. It is expected that higher levels of precompression prevent

sliding and hence the generation of eigenstrains. Therefore, the static offsets seen in the low-precompression

cases, similar to numerical simulations [time signals in Fig. 7.5(b)], are suggestive of eigenstrains. This

qualitative behavior of the signals, wherein the negative offset vanishes with increasing precompression, is

consistent across both measurements. However, it should be noted that the exact onset of precompression

required to eliminate the offset differs between the two measurements. For example, a static offset is seen for

p0 = 4 MPa or lower in measurement Set 1 but for Set 2 it is seen for p0 < 2.5 MPa. Several factors could

contribute to this difference, including variations in pairs of asperities in contact, potential measurement

inaccuracies in probing the same location using a vibrometer, and the evolving nature of contacts under

applied precompression. Additionally, the results reveal a shift in the signal in the time domain. While the

positive peaks of the pulses were consistently measured at ∼ 14µs, the negative peaks show a significant

shift with an increase in precompression [refer to the downward arrow in Fig. 7.5(e)]. For instance, the

maximum shift observed in the valley point (negative peak) between the lowest and highest precompression

levels studied is approximately 2µs. The exact mechanism causing this shift in the time domain is unclear, as

such a substantial time shift cannot be solely attributed to asperity and bulk deformation. However, it is

reasonable to hypothesize that scattered waves may play a role and need to be studied further.

7.3.2 Energy dissipation

This section presents experimental work on another feature of wave-induced frictional sliding, namely the

dissipation of energy (Fig. 7.6). The experimental setup, sample configuration, and measurement procedure

remain the same as described in the section 7.3.1, except RITEC is used for input excitation control [Fig.

7.6(a)]. The RITEC system enables the excitation of a wave packet consisting of a finite number of cycles.

In this case, 10 cycles were excited, of which 5 cycles in the approximate steady-state region were used for

converting the time domain data into the frequency domain and obtaining transmission across the contact.

The measurements were conducted for different combinations of wave amplitude (Ritec power level from 10%

to 40%) and precompression, while the frequency of excitation (1 MHz) is kept the same. It is anticipated

that at low precompression and high wave amplitude, a stronger nonlinear effect of frictional sliding and,

consequently, higher energy dissipation will be observed. Conversely, for high precompression and low

amplitude, the nonlinear effects of frictional sliding and energy dissipation are expected to be less pronounced.

The wave is detected using a Doppler vibrometer (Polytec, OFV505) equipped with a velocity decoder (VD09)

at 200mm/s/V range. Both, incident waves entering the contact and transmitted waves through the contacts

were measured using the vibrometer. Fig. 7.6(b) shows a typical incident and transmitted signal (averaged

over 256 points, bandwidth limit = 350 MHz, and sampling rate = 3.125 Gs/s) and corresponding FFT.
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Figure 7.6: Measurement of energy dissipation from wave-induced frictional sliding. (a) Experimental
schematics. (b) Typical incident (left) and transmitted (right) time domain signal. These signals were
probed on the sample surfaces as denoted by block dots in (a). A nearly steady-state portion of the signal,
denoted by two red dots, is considered to convert to the frequency domain. Peak amplitudes of FFT plots at
fundamental frequency were used to evaluate transmission. (c) Transmission for different precompression
and wave amplitudes. Wave amplitudes are denoted in terms of % of RITEC power level. Marker colors
correspond to precompression values. (d) Relative attenuation as a function of precompression.

Wave transmission through contact is evaluated as the ratio of FFT amplitudes of the transmitted wave to

the incident wave at the fundamental frequency. These transmission values are normalized by the transmission

at the lowest wave amplitude (10% power level). The results show a clear trend: for low precompression,

an increase in wave amplitude leads to a reduction in transmission [refer to black markers in Fig. 7.6(c)].

This reduction in transmission can be attributed to energy loss at the contact interface from sliding, which is

expected to increase with increasing wave amplitudes. As precompression is increased, the friction limit of the

contacts is also increased. Therefore, the frictional sliding and energy dissipation are restricted up to a certain

extent. This causes only a small gradual drop in transmission for the same range of wave amplitudes [refer to

red, green, and blue markers in Fig. 7.6(c)]. When precompression is increased further, the transmission does

not change substantially as wave amplitudes are increased [refer to cyan and yellow markers in Fig. 7.6(c)],

suggesting that the contacts are in a stick state (linear case) and the response becomes amplitude-independent.

To better visualize these results, the drop in transmission, referred to as attenuation, is plotted as a function
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of precompression [Fig. 7.6(d)]. The relative attenuation is evaluated as the difference between transmission

at different input power levels. For the lowest precompression, relative attenuation increases with an increase

in wave amplitude. This suggests that increasing wave input results in more contact sliding and hence a

reduction in the transmitted wave. As precompression is increased, the difference in relative attenuation

reduces. Eventually, for the highest precompression applied, the relative attenuation is almost the same for

all wave amplitudes tested and is close to zero. This suggests that at this precompression contact was in a

fully stick state and transmission is essentially amplitude-independent. Since the change in transmission,

even for the lowest precompression, is only up to 4%, the variation and repeatability of these experiments

need to be verified in future studies.

7.4 Troubleshooting ultrasonic experiments and guidelines for

future experimentations

While ultrasonic setups have been developed and preliminary measurements show promising results, these

experiments suffer from a lack of repeatability. Consequently, extensive investigations have been conducted

and a range of potential factors that impact the precision of the measurements have been identified. Focused

attention on these factors is warranted in forthcoming studies. Therefore, this section provides a concise

overview of some of the significant challenges/issues and proposes prospective solutions to effectively mitigate

these concerns.

1. Lack of uniform contact : Fig. 7.7(a) displays images obtained from a pressure film placed between the

two samples. It is observed that at low precompression, the real contact area does not occur at the

central part of the samples (i.e. area aligned to the transducer face). Even for large precompressions,

the real contact area is skewed to one side of the apparent area. This occurrence is likely due to surface

irregularities resulting from machining or manual polishing. Three potential improvements can be done

to address this issue: (1) Controlled roughness generation through micro grooving, micro dimples, and

microchannels instead of using sandblasting and manual polishing, (2) Reducing the contact area on

one of the mating samples, limiting contact to a region smaller than the diameter of the transducer

element, and (3) modifying end fixtures to incorporate spherical joints (gimbal fixtures) in contact with

samples, which allow contact surfaces to parallelize themselves by unconstraining degrees of freedom.

Additionally, surface inclination and long-wavelength components of surface waviness can be measured

immediately after sample fabrication, which can serve as a checkpoint. Advanced surface treatment

methods such as chemical itching, Laser ablation, and electroplating may also be explored to assess the

control over fabricated roughness parameters.

2. Variation between measurements: For consistent and reliable qualitative measurements, it is necessary

to ensure that most of the asperities in contact are reproduced for every new measurement on the

same sample. However, achieving this may be challenging if the roughness of other interfaces and

clearances between mating parts of the setup are comparable. In the current setup, four interfaces exist

in addition to the rough contact to be tested [Fig. 7.7(b)]: (1) Left vice plate and transducer seat, (2)

transducer seat and left sample, (3) right sample and load cell, and (4) load cell and right vice plate.

These interfaces have their own tolerances and surface textures, both typically on the micron scale,

which might introduce variations in the setup. Additionally, the mounting fixtures used to align the

samples in the direction perpendicular to the page themselves have manufacturing tolerances of the
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Figure 7.7: Troubleshooting ultrasonic experiments with rough contacts. (a) Pressure films at contact for
difference precompression indicating non-uniform real contacts. Rectangular and circular borders are apparent
contact and transducer element area, respectively. (b) The number of interfaces in the experimental setup
apart from the rough contact to be tested. (c) Extremely weak measured signal (of the order of scattering) of
the transmitted wave for low precompressions. (d) Actual setup and corresponding finite element setup to
simulate mixed boundary conditions. Total wave displacements at three different time instants indicate the
scattering of waves from the edges of sample-load cell contact. Transmitted waves obtained (e) numerically
and (f) experimentally clearly highlight the interference of scattered waves with the main wave at the probed
location. Black dots in the insets of (f) are the probed locations of measurement.

orders of a few micrometers. One approach to minimize measurement variations is to reduce the number

of interfaces in the setup to only the rough contact between the samples under investigation. This can

be achieved by redesigning the fixtures as a unified assembly instead of separate parts. In fact, even the

samples could be integrated with the end fixtures to minimize the number of interfaces in the setup.

Alternatively, if the contact being studied is designed with larger-sized asperities (at least an order

larger than those of other interfaces and manufacturing tolerances), this issue may be circumvented.

3. High impedance mismatch at low precompression: For low precompressions, the real contact area is

significantly small [Fig. 7.7(a)] resulting in a very high impedance mismatch at the contact interface.

As a result, only a small amount of energy is transmitted across the contact leading to an extremely

lower signal-to-noise ratio [Black signal in Fig. 7.7(c)]. This is even more problematic for ultrasonic

frequencies, where wave attenuates with propagation distance and the ultrasonic transducers themselves

have a very low conversion efficiency. These issues can be addressed by reducing the frequency of

excitation. Low frequencies can be generated more efficiently and can penetrate material with low

energy loss. Such low frequencies may be excited using piezoelectric patches, low-frequency transducers,

or high-frequency vibration shakers.

4. Interference from scattered waves: The transmitted signals measured on the end surface of the right
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sample are influenced by scattered waves, as evident in both simulated and measured signals [Figs.

7.7(d)-(f)]. This interference arises from scattered waves generated due to a mixed boundary condition

on the surface where the transmitted wave is measured. In the physical setup [Fig. 7.7(d)], the right

surface of the right sample is in contact with the load cell. This generates a mixed boundary condition

on the sample surface: (1) the annular region in contact with the load cell experiences displacement

boundary conditions (x = 0) whereas (2) the inside region is stress-free (σ = 0). Thus, the boundary of

the load cell edges generates scattered waves [note the scattering in the wave propagation plots at t2

and t3 in Fig. 7.7(d)]. These scattered waves interfere with the signal measured at the center of the

surface, which can be seen in both numerical simulations [Figs. 7.7(e)] and experiments [Figs. 7.7(f)].

Increasing the number of cycles in a wave packet exacerbates the scattering interference, impeding

accurate analysis of wave propagation. To mitigate this issue, one potential solution is to reduce the

wavelength, although it contradicts the need for increased energy input. Alternatively, appropriate

fixtures can be designed to ensure that most of the sample surface remains free while forces are still

transmitted through the load cell and sample end boundaries.

7.5 Summary

This chapter presented experimental work on ultrasonic wave propagation through a single rough contact.

The experiments performed include: (1) Immersion pulse-echo measurements for acoustic characterization of

aluminum material, (2) Longitudinal ultrasonic wave propagation through rough contact for characterizing

contact nonlinearity, and (3) Shear ultrasonic wave propagation through rough contact to observe nonlinear

effects of eigenstrain generation and friction dissipation. Key results and insights from these measurements

are -

1. Acoustic characterization of aluminum revealed wave speed and frequency-dependent attenuation

coefficient. This experiment can also be used to characterize the acoustic properties of additively

manufactured materials, paving the way for utilizing 3D printing to generate controlled roughness.

2. Uniform roughness can be generated through manual polishing. Using P400 sandpaper results in average

surface roughness of ∼ 0.45 µm for aluminum samples. The average roughness of the contact surface

remains unchanged after applying multiple loading-unloading cycles within the studied precompression

range.

3. Measurements of longitudinal ultrasonic waves can capture contact nonlinearity in the normal direction.

Contact response indicates hysteresis only during the first loading cycle, indicating plastic deformation

occurs solely during the initial loading. The contact stiffness-precompression relationship changes from

low to high precompression but the underlying cause behind this shift is unclear. This suggests that the

contact power-law obtained at higher precompression [115] may not be applicable at low precompression

values. Consequently, a hybrid experimental-numerical method is proposed as an alternative to the

erroneous linear wave propagation-based approach for contact characterization in the strongly nonlinear

regime.

4. For low precompression, shear waves exhibit a static offset that diminishes with higher precompression,

indicating the generation of eigenstrains. Additionally, the shear pulses shift in time as precompression

is increased. At low precompression, increasing wave amplitudes reduce the transmission of shear waves
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through contact, implying energy loss from contact sliding. In contrast, at high precompression, wave

transmission remains fairly amplitude-independent.

5. These preliminary experiments offer valuable insights while also presenting opportunities for improvement.

Some areas requiring attention include achieving uniform contact, increasing energy transfer across the

contact, ensuring consistent results for identical sample sets and experimental parameters, as well as

minimizing the presence of scattered waves. By addressing these aspects, future studies can enhance

the overall quality and reliability of the findings.

Overall, the developed experimental framework represents significant progress toward physically realizing

continuum phononic materials with contact nonlinearity, as explored in this dissertation.
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Chapter 8

Conclusion

This concluding chapter provides a concise summary of the research covered in preceding chapters, encom-

passing phononic material designs, methodologies employed, and key findings. Drawing upon this research,

potential directions for future investigations are also proposed. Moreover, it emphasizes the contribution of

this dissertation to the scientific community and its impact on advancing the engineering field, in general.

8.1 Summary

This dissertation is focused on mechanical wave propagation and the development of tailored materials for

wave control. The research is motivated by the pervasive existence of waves and their fundamental significance

in technological advancements and environmental challenges. The dissertation particularly exploited nonlinear

phononic materials due to their ability to exhibit unprecedented wave characteristics. The primary question

studied is how waves propagate in continuum phononic materials with discrete (or local) nonlinearities, as

recent research predominantly examined either discrete nonlinearity in the form of spring-mass chains or

continuous nonlinearities in continuous periodic materials.

The primary aim is to understand the role of the continuum and the distribution of discrete nonlinearities

in governing energy propagation. Taking inspiration from geomaterials, the research investigated 1D nonlinear

continuum phononic materials that incorporate microcracks (or rough contacts) - a geomaterial microstructure

- as discrete nonlinearities. Two key factors are examined: (1) the influence of the periodic arrangement

of rough contacts on wave propagation and (2) the role of local contact nonlinearity between successive

continuum layers in shaping nonlinear wave responses. The analysis is restricted to cases where wavelengths

are much larger than the size of asperities at contact, but on the same order as the width of layers of phononic

material. Therefore, the contacts are treated as nonlinear springs that are independent of frequency.

To analyze nonlinear wave propagation, finite element models were employed, considering various levels of

contact nonlinearity ranging from weak to strong, including friction. Nonlinear laws at contacts are informed

through experimental contact characterization. Nonlinearity at the contacts arises from three sources: (1)

Large deformation of asperities (unevenness on contacting surfaces) under compressive loads, (2) the inability

of externally uncompressed contacts to support tensile loads, and (3) frictional sliding of the surfaces under

tangential loads. The normal interaction of contacts is modeled using a power-law relationship between

contact pressure and displacement, with a power exponent of 2, while tangential interaction is modeled

using Jenkins friction law. Various configurations are studied, including systems with single and periodic
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contacts, semi-infinite and finite phononic materials, and contacts with infinite-length and embedded nature.

Furthermore, configurations with and without precompression are examined, along with longitudinal and

shear wave excitations, to gain a comprehensive understanding of nonlinear wave propagation through these

phononic materials. Weak nonlinearity is obtained when precompression is applied, whereas contacts exhibit

strong nonlinearity in the absence of precompression. Under shear wave propagation, contacts demonstrate

frictional instability, resulting in a hysteresis response. Through a careful examination of wave evolution

within the material, the research has uncovered the underlying physics behind the emergence of novel nonlinear

responses. Noteworthy wave responses and insights about them are as follows:

1. In weakly nonlinear systems [102], [103], two nonlinear phenomena are studied: wave self-interactions

and wave-wave interactions. Wave self-interactions give rise to the DC component, self-demodulated

low frequency in the vicinity of the DC component, and second harmonics. The amplitude of these

nonlinearly-generated frequencies depends on the dispersion zone in which they fall. Moreover, the

relative phase between the second harmonic and fundamental wave determines how the second harmonic

amplitude depends on propagation distance, resulting in either continuous increase or spatial beating.

The treatment of elastic layers as continua changes the response of the nonlinearly-generated waves,

e.g. they locally reduce the DC component and cause variations in second harmonic amplitudes inside

the layers, even though the layers are linear. The nonlinear responses of the phononic material can

be tuned through external precompression as dispersion is a function of applied precompression. The

study of embedded contacts reveals that the coupling between the contact and surrounding continuum

changes the nonlinear contact response. Thus, DC and second harmonic wave amplitudes depend on

the arrangement of embedded contacts in a continuum. Wave-wave interactions generate the sum

and difference frequencies of the propagating frequencies, complementing the capabilities of wave self-

interactions. This wave mixing phenomenon is combined with band gaps of phononic materials to achieve

broadband and tunable nonreciprocity. A phononic diode is designed based on the global asymmetry,

local nonlinearity, and periodicity of precompressed rough contacts. Numerical demonstration confirmed

nonreciprocal wave propagation upon excitation of a frequency pair. The uniqueness of this diode lies in

its ability to tune the frequency and propagating mode of nonreciprocal waves through an appropriate

selection of input frequencies, surpassing the limitations of existing diodes. Further, wave propagation

can be switched to support reciprocity or nonreciprocity, allowing unidirectional, bidirectional, or no

propagation of energy at all. Finally, the presence of rough contacts also enables in-situ control of

energy propagation through precompression.

2. In strongly nonlinear systems [104], [105], the occurrence and properties of localized traveling waves

associated with contact clapping (separation and collision of contacting surfaces) are explored. Contact

clapping, dispersion, and discrete-continuum architecture, together, give rise to stegotons, which are

localized traveling waves categorized as solitary waves. Notably, stegotons exhibit distinct spatial

characteristics, displaying a roof-like or stepwise profile due to the periodic configuration of continua-

discrete nonlinearity present in the phononic material. Additionally, wave-contact interactions induce

acoustic resonances within the layers, allowing for spectral energy transfer and localization near the

excitation boundary. Thus, energy transmission through the phononic material relies on the proximity

of the excitation frequency to the acoustic resonances of the layers. When the input frequencies align

with the layer resonances, a considerable amount of energy is trapped within these layers. Consequently,

stegotons carry significantly lower energy, resulting in a wave attenuation reminiscent of band gaps
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in linear periodic media. Owing to rough contact nonlinearity with a power exponent of 2, stegotons

show a much stronger dependence of speed on amplitude and contact pressure compared to solitary

waves in granular crystals. When stegotons collide, secondary stegotons are formed. Notably, the

amplitudes of these secondary waves are one order of magnitude greater when the collision occurs at a

contact compared to collisions within a layer. Stegotons can emerge and propagate within the phononic

material, even when subjected to physical constraints such as light precompression, disorder, and finite

lateral dimensions. However, the characteristics of these stegotons differ from those in an ideal system,

as they exhibit attenuation-like properties and tend to disintegrate over time.

3. In hysteretic nonlinear systems [106], how frictional instability at the contacts changes shear wave

propagation is studied, which has remained an unexplored territory in the field of phononic materials.

Wave-induced friction at contact generates shear-polarized eigenstrains, which are residual strains in the

stress-free system. Physically, these eigenstrains represent the repositioning of initially aligned contact

interfaces (and thus waveguides), resulting in an offset between them. By selectively inducing eigenstrain

generation in a specific section of the system through two-way excitation, the capability to achieve smart

mechanical functionalities is demonstrated. This includes acoustically-controlled features such as a

mechanical switch, precision position control, and surface reconfigurability. Furthermore, wave-induced

contact sliding results in energy dissipation. The underlying physics of how this amplitude-dependent

energy dissipation passively widens the attenuation zones of finite contact-based phononic materials is

explained. Results show that the optical band of the phononic material is suppressed by the combined

effect of energy dissipation at the contact and energy reflection at the first interface. As a result, the

two band gaps merge and exhibit a wide band attenuation zone.

In addition to numerical analysis, the dissertation performed pilot experimental studies on ultrasonic wave

propagation as follows: (1) Immersion pulse-echo measurements were conducted for acoustic characterization

of aluminum material. The results revealed wave speed and frequency-dependent attenuation coefficients.

This experimental framework holds implications for the acoustic characterization of complex multiscale

materials achieved through additive manufacturing for the future realization of precisely designed phononic

materials. (2) Longitudinal ultrasonic wave propagation through a single rough contact was measured for

characterizing contact nonlinearity. This experiment informed the nonlinear relationships between contact

pressure and displacement at contact. It also highlighted the limitations of existing approaches and outlined

a proposed approach to characterize contacts in the strongly nonlinear regime. (3) Shear ultrasonic wave

propagation through a single rough contact was measured to observe the nonlinear effects of eigenstrain

generation and friction dissipation. While these preliminary experiments offered valuable insights, they also

revealed areas that require attention and improvement. These areas include improving control over surface

texture, ensuring uniform contact area, increasing energy transfer across contacts, achieving consistent results

for identical sample sets and experimental parameters, as well as minimizing the scattering of waves. By

addressing these aspects, future studies can enhance the overall quality and reliability of the findings. Overall,

the developed experimental framework represents significant progress toward physically realizing continuum

phononic materials with contact nonlinearity.

The research presented in this dissertation has resulted in 5 journal publications, 1 conference proceeding,

1 web editorial, and 5 conference presentations. The details of these scholarly outputs are listed below:
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Nonlinear
Study

Journal Articles Proceedings/Editorials Presentations

Weak Self-interactions [102] Self-interactions [243] Self-interactions [244]
(Numerical) Phononic diode [103] - -
Strong Stegotons [104] - Stegotons [245]
(Numerical) - Wave disintegration [105] Wave disintegration [105]
Hysteretic Eigenstrains [106] - Eigenstrains [246]
(Numerical)
Experiments - - Contact Characterization [247]
- Review article [44] - -

Table 8.1: Scholarly research output

8.2 Outlook: future research directions

Despite the comprehensive investigations and understanding of complex wave phenomena, the current

work relies on several assumptions, includes reduced-order models, and is limited to relatively simplified

configurations. Further, numerous aspects of the intricate problem of wave propagation through periodic

local nonlinearity remain unexplored and require further understanding. These unanswered aspects act as

catalysts for promising future research. Here are some noteworthy avenues to explore:

8.2.1 Exploring stegoton characteristics

This study revealed stegotons - a special type of localized traveling wave that belongs to the family of

solitary waves. However, further exploration of stegotons is necessary to gain a better understanding of

their characteristics and their dependence on various system parameters. Unanswered questions remain,

such as the speed-amplitude relationship of stegotons with frequency excitations and their convergence into

solitary waves under low-frequency excitations. Since layer deformations are negligible at low frequencies

and can be treated as rigid bodies, it would be intriguing to explore the relationship between solitary waves

in granular crystals with Hertzian contacts and stegotons in layered media with rough contacts. The study

also found that stegoton amplitudes vary within a layer while remaining constant as they propagate when

observed at a fixed location. Investigating the correlation between this variation and mean amplitude for

different excitation frequencies can illuminate the influence of layer deformation and mode on propagation

properties. Further, examining how different contact laws resulting from varying asperity height distributions

affect stegotons can inform the design of surface textures for a wide range of propagation properties. Finally,

the phononic material studied here assumed perfect periodicity. However, studying the role of disorder and

uncertainties in layer material, thickness and, specifically, in the contact law, on stegotons propagation could

pave the way toward their practical realization.

8.2.2 Wavelengths comparable to asperities

Expanding the current study to investigate wave-contact interactions at wavelengths that are of the same

order as the size of asperities (λ ∼ δ) is another potential future research direction. Currently, the research

focuses on wavelengths much larger than the asperity size (λ≫ δ), where the contact properties are frequency-

independent and can be formulated using a quasi-spring model. Additionally, the interfacial mass (or inertia)

can be neglected due to their small magnitudes under these conditions. However, when the wavelength

approaches the scale of the asperities, these assumptions and modeling approaches break. In such cases, the
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contact properties are expected to be frequency-dependent, and the inertial mass could have a significant

influence [248]. For example, Thomas et al. [249] reported that the contact response at high frequencies

is dependent on the size, shape, and distribution of the scatterers (asperities). This gives rise to several

intriguing questions that could shape future research scope: How can rough contacts be characterized when

the wavelength and asperities are of the same order? What is the nature of the frequency-dependent contact

response? How can this nonlinear response be accurately modeled using analytical or numerical methods?

Furthermore, exploring the effect of frequency dependence on the observed nonlinear wave responses in

phononic materials, such as on stegotons and eigenstrain generation, would be of great interest. Addressing

these questions represents an exciting research direction for the future, as it holds the potential to enhance

our understanding of contact behavior and wave-contact interactions at scales that have not been studied

before.

8.2.3 Architected rough contacts

Another potential future research direction builds upon the current study, which is focused on a 1D phononic

material with a relatively simple periodic arrangement. The arrangement involved contacts that were

periodically placed perpendicular to the direction of wave propagation. While this system facilitated a

fundamental understanding of wave propagation in such materials, it resulted in the decoupling of normal

and tangential interactions at the contacts. However, exploring configurations where these interactions are

coupled presents new opportunities for novel wave responses. Such coupling could be achieved by exciting

a wave at an angle to contact interfaces. The current research has already developed and implemented

numerical models that account for both normal and tangential interactions at the contact, which could

serve as a platform to explore the coupling effects. Such configurations hold the potential for intriguing

wave responses, including the generation of higher harmonics with different polarizations [180], nonlinear

mode conversion [180], and mode hopping [74]. Moreover, previous studies on complex lattice materials

have demonstrated that geometric architecture profoundly influences propagation properties [16], [17]. For

instance, auxetic lattices exhibit faster shear wave propagation compared to longitudinal waves, which is not

feasible in conventional materials [16], [17]. Therefore, an exciting research direction would involve combining

the features of contact nonlinearity and geometric architecture. By exploring such material configurations,

it may be possible to generate harmonics with speeds that can be adjusted to be higher or lower than the

fundamental waves that generate them.

8.2.4 Frictional mechanisms at play

The current study of incorporating friction into the phononic material is based on certain assumptions.

Specifically, the study assumed rate independence, the absence of adhesion and partial slip, and a steady-state

contact response. While these assumptions may hold true under specific conditions, moving beyond them

actually present new opportunities to gain a deeper understanding of how realistic frictional mechanisms

affect wave propagation. There are several intriguing questions to address: how does the wave propagation

response evolve as contact surfaces undergo wear? What role does contact adhesion play in shaping the wave

profile, particularly in the context of soft materials and their contact clapping? How eigenstrain generation

and energy dissipation is influenced when partial slip is incorporated into the current model? Finally, how

significant is the frequency of the wave when the contact response exhibits rate dependence? Additionally,

the current study employed the Jenkins friction model to capture stick-slip transition at contact. However,
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there are several other frictional models proposed in the community that imitate other physical phenomena

that occur at contacts, for example, Coulomb’s friction model with Stribeck effect [250], the Bouc–Wen model

of hysteresis [251], among others [252]. Recently, comprehensive graphical methods - Methods of Memory

Diagrams [114], [128] - have also been developed that can capture the evolution of contact state under both

normal and tangential transient loading including partial slip. Investigating how these alternative models

affect wave propagation could inform designing contact-based phononic materials for targeted applications.

8.2.5 Surface-interactions at small-scales

The contacting surfaces are idealized in this work such that the surfaces themselves do not have any

wavelength. However, microcracks in geomaterials are in fact fractal, i.e. they have repeating profiles at

multiple length scales. Therefore, future studies could investigate controllable fractal geometries and enhance

our understanding of wave-contact interactions. Further, scaling down the asperities may involve additional

physical phenomena not considered in this study. Notably, at the nanoscale, van der Waals forces [253], [254]

become more dominant, leading to stronger adhesive forces between surface asperities. These forces can result

in increased adhesion and stiction between surfaces, affecting friction behavior. As asperity sizes decrease,

the ratio of surface area to volume also increases significantly. This may lead to changes in surface energy

and wettability, affecting the contact angle and capillary forces, which is another source that could influence

friction and adhesion. Further, the contact area between asperities becomes smaller at nanoscales, leading to

higher contact pressures. This may cause elastic and plastic deformations as waves propagate through the

contacts. Finally, thermal fluctuations and temperature-induced changes in material properties become more

significant at the nanoscale. This could influence the effective stiffness of the surfaces and therefore the wave

propagation responses. Thus, exploring these distinctive surface interactions on a small scale holds promise

for enriching our insights into the feasibility of miniaturizing these phononic materials.

8.2.6 Experimental validation

The current study primarily utilized numerical analysis to investigate the properties of continuum phononic

materials with rough contacts. The next logical step in this research is to experimentally validate the reported

phenomena. Preliminary measurements have already demonstrated promising results, laying the foundation

for further experiments. While there are challenges in physically realizing the studied phononic materials, as

discussed in chapter 7, it may be possible to sidestep these obstacles by up-scaling the asperities at the contact

and reducing the frequencies to be probed. The nonlinear wave responses presented in this research rely on the

local contact nonlinearity between adjacent elastic media. The size and scale of the roughness only determine

the frequencies for which the obtained results are valid. Therefore, a potential research direction could involve

conducting experimental investigations with large-scale and controlled asperities (for example, spherical

asperities of equal radii [109] or hierarchical asperities such as small spherical bumps on large spherical

curvature [109]) to explore and validate results presented in this dissertation on a broader scale. Moreover,

the numerical models did not account for the plastic deformation of asperities or frictional sliding of adjacent

asperities under longitudinal wave excitation. These physical effects are expected to cause energy dissipation

at the contact, leading to wave amplitude attenuation [194]. However, by experimentally measuring wave

amplitudes, these effects could be captured and used to develop empirical relations of dissipation at contacts,

enhancing the predictive capability of numerical models.
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8.2.7 Expanding sources of local nonlinearity

The core objective of this research is to understand the role of local or discrete contact nonlinearity in a

continuum and its impact on wave propagation. While the current research employed microcrack-inspired

rough contacts as a representative example, there are several other physical sources that can be explored to

expand the available space of local nonlinearities. Geomaterials, for instance, possess porosities filled with

fluids [96], interfaces between soft and hard phases [97], and delaminations [255], each expected to potentially

exhibit distinct nonlinear characteristics. By incorporating these nonlinear sources in the research framework

developed in this dissertation, it could be possible to uncover new properties and opportunities for controlling

wave propagation.

8.3 Significance and impact

This dissertation makes valuable contributions to the scientific community in three distinct categories. Firstly,

it develops fundamental knowledge of wave propagation through phononic materials that uniquely incorporate

discrete nonlinearities. Secondly, it integrates concepts and research themes from different subdomains of the

mechanics community. Lastly, it showcases the potential of the designed phononic materials for advanced

engineering applications.

1. Fundamental knowledge: This research makes significant contributions to the field of wave mechanics

by enhancing our understanding of mechanical wave propagation through a continuum with periodic

and discrete nonlinearity. Additionally, it demonstrated the manipulation of global wave responses

through local nonlinearity, offering a unique platform for designing phononic materials. The research

further advances state-of-the-art knowledge by reporting a new type of solitary wave (stegotons) and

friction-induced shear-polarized eigenstrain, unraveling the underlying physics behind these phenomena.

Finally, this research pioneers the concept of utilizing hysteretic nonlinearity for wave control and

programmable functionality, addressing an untapped area within the field.

2. Interconnecting subfields: While rough contacts are known to exhibit nonlinear properties in nonde-

structive evaluation, their application for wave control remained unexplored until now. By connecting

the two distinct fields of wave mechanics – nondestructive evaluation and phononic media, this research

not only filled a crucial gap but also broadened the horizons of both disciplines. Furthermore, it

sets the foundation for further exploration of various microstructural features found in geomaterials,

which can serve as additional sources of inspiration for designing phononic materials, extending beyond

the realm of bio-inspiration. Additionally, the introduction of hysteretic nonlinearity in this study

establishes a connection between tribology and phononic materials. Overall, this research demonstrates

how interdisciplinary research contributes to the advancement of wave control techniques.

3. Towards applications : The findings of this research have implications for various engineering applications,

encompassing vibration mitigation, energy harvesting, signal processing, nondestructive evaluation,

and fluid-structure interaction. These phononic materials, characterized by their periodicity, possess

band gaps (or attenuation zones) that are also dependent on both amplitude and precompression due

to contact nonlinearities. Consequently, these materials offer both active and passive adaptability,

rendering them suitable for vibration mitigation even in fluctuating environments. Notably, unlike

soft metamaterials, the developed phononic materials can be integrated into load-bearing components,
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making them valuable for structural applications. The strong nonlinearity of contact clapping gives rise

to layer resonances, which effectively localize energy near the excitation boundary. This property can

be harnessed for impact mitigation, energy absorption, and harvesting purposes. Moreover, stegotons,

characterized by their ability to transfer signals over long distances without dispersion in conservative

material, hold promise for the development of advanced sensors and energy propagators. Eigenstrains

emerge as a potential tool for crack detection, while contact-based programmable switches can be

employed in the design of acoustic sensors and actuators. Controlling the position of periodic layers

via waves may be used for remote tuning of the surface topology of aerodynamic objects such as

turbine blades, riblets, and airfoils in extreme and inaccessible environments. Overall, the novel wave

responses of these phononic materials and unprecedented control capabilities hold immense potential

for technological innovation in the field of acoustics.
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