
c© 2023 Qizheng He

GEOMETRIC SET COVER AND RELATED GEOMETRIC OPTIMIZATION
PROBLEMS

BY

QIZHENG HE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Professor Timothy M. Chan, Chair
Professor Sariel Har-Peled
Professor Chandra Chekuri
Professor Pankaj K. Agarwal, Duke University

ABSTRACT

Geometric set cover is a classical problem in computational geometry, with a long history

and many applications. Given a set X of points in Rd and a set S of geometric objects, the

problem asks to find a smallest subset of objects from S that covers all points in X. In this

thesis, we study algorithms, data structures and hardness results for geometric set cover and

other related geometric optimization problems.

In the first part, we focus on static geometric set cover, where all points and objects

are given in advance. As the problem is NP-hard for many classes of geometric objects,

we are interested in designing O(1)-approximation algorithms, in particular, efficient algo-

rithms that run in near-linear time. For the unweighted problem, we present near-optimal

deterministic and randomized algorithms for 2D disks and 3D halfspaces, which are further

improved to optimal O(n log n) time in the next part. We then extend our approach to solve

the weighted problem for the same types of ranges, in also near-linear time.

In the second part, we explore geometric set cover problems in dynamic settings, allowing

insertions and deletions of both points and objects. The goal is to efficiently maintain a

set cover solution (satisfying certain quality requirement) for the dynamic problem instance.

We give a plethora of new dynamic geometric set cover data structures for various geometric

ranges in 1D, 2D and 3D, which significantly improve and extend the previous results. We

also give the first sublinear results for the weighted version of the problem.

In the third part, we investigate the fine-grained complexity of the discrete k-center prob-

lem and related (exact) geometric set cover problems when k or the size of the cover is small.

We give the first subquadratic algorithms for unweighted and weighted size-3 set cover for

rectangles in R2, and also prove conditional lower bounds for these problems in constant

dimensions.

In the fourth part, we develop approximation algorithms for another problem related to

geometric set cover, namely, enclosing points with geometric objects. We solve this problem

by adapting techniques for approximating geometric set cover.

In the last part, we inspect the FPT status of the monotone convex chain cover problem,

where the problem asks for finding the minimum number of x-monotone convex chains κ(P)

that can together cover a point set P . We show that deciding whether κ(P) ≤ k is NP-hard

and does not have a polynomial kernel, unless NP ⊆ coNP/poly.

ii

“To my parents, Shiqing and Zhiping, for their unconditional love and support.”

iii

ACKNOWLEDGMENTS

First of all, I’m grateful to be supervised by my advisor, Timothy M. Chan. As a research

supervisor, Timothy broadened my vision in research, helped to improve my writing and

presentation skills, and guided me to finish research projects that I will be proud of for

the rest of my life. As a course instructor, he not only taught me rich knowledge about

algorithms and computational geometry, but is also a great role model for showing care to

the students. Moreover, his enthusiasm and rigorous attitude towards research guided my

life.

In 2017 I visited University of Michigan, which is where my research path started. I

thank Seth Pettie and Yi-Jun Chang, who helped me to build my faith in doing research

in theoretical computer science, and determined my mind to start the journey as a Ph.D.

student.

Two other UIUC CS faculties that I would like to thank are Sariel Har-Peled and Chandra

Chekuri. Sariel taught me a lot in research, and a number of my papers benefited from our

discussion. Specifically, Chapter 6 of this thesis about monotone convex chain cover came

out of a project from his course, and another paper about change-making is inspired by a

homework problem of him. Chandra not only taught me great courses, but also provided

valuable suggestions on my research and life.

Next, I want to thank all committee members (again), for your valuable time on helping

me improving this thesis. I especially thank Pankaj K. Agarwal for being the external

committee member and providing valuable comments.

I thank my coauthors, Calvin Beideman, Pingan Cheng, Chi Han, Zhengcheng Huang,

Yakov Nekrich, Subhash Suri, Zhean Xu, Jie Xue, and Yuancheng Yu. It was an enjoyable

experience to collaborate with all of you; together we have produced amazing results.

I am glad to be a member of the UIUC theory group. Many thanks to the former and

current theory group students. They are friendly and supportive, and together we had a lot

of inspiring research discussions.

I also want to thank my roommates and friends. Maintaining an optimistic mindset was

not easy during the special time of COVID, but with their kindness and support, we were

able to overcome all the difficulties.

Lastly, I would like to express my gratitude to my parents. Thanks to their love and

support throughout all these years, this thesis is dedicated to them.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Notations . 3
1.2 Static Geometric Set Cover . 3
1.3 Dynamic Geometric Set Cover . 5
1.4 Geometric Set Cover and Discrete k-Center of Small Size 9
1.5 Enclosing Points With Geometric Objects 13
1.6 Monotone Convex Chain Cover . 16
1.7 Overview of the New Results . 20

CHAPTER 2 STATIC GEOMETRIC SET COVER 22
2.1 Our Results . 22
2.2 Preliminaries . 23
2.3 “New” MWU Algorithm . 25
2.4 Implementations of MWU . 27
2.5 Weighted 3D Halfspaces . 33
2.6 Lower Bound for Approximate 1D Intervals 38

CHAPTER 3 DYNAMIC GEOMETRIC SET COVER 40
3.1 Our Results . 40
3.2 Overview of Our Techniques . 43
3.3 Preliminaries . 46
3.4 Unweighted Squares . 48
3.5 Unweighted 3D Halfspaces . 55
3.6 Improving Static Set Cover for 3D Halfspaces 65
3.7 Unweighted Intervals . 68
3.8 Unweighted Unit Squares . 73
3.9 Improving Unweighted Squares . 83
3.10 Unweighted 2D Halfplanes . 87
3.11 Weighted Intervals . 94
3.12 Weighted Unit Squares . 103

CHAPTER 4 GEOMETRIC SET COVER AND DISCRETE K-CENTER OF
SMALL SIZE . 109
4.1 Our Results . 109
4.2 Preliminaries . 111
4.3 Subquadratic Algorithms for Size-3 Set Cover for Rectangles in R2 112
4.4 Improved Subquadratic Algorithms for Size-3 Set Cover for Rectangles in

R2 and Related Problems . 116

v

4.5 Conditional Lower Bounds for Size-3 Set Cover for Boxes 120
4.6 Other Conditional Lower Bounds for Small-Size Set Cover for Boxes and

Related Problems . 125
4.7 Conclusions . 128

CHAPTER 5 ENCLOSING POINTS WITH GEOMETRIC OBJECTS 130
5.1 Our Results . 130
5.2 Preliminaries . 131
5.3 Approximation Algorithms . 132

CHAPTER 6 MONOTONE CONVEX CHAIN COVER 140
6.1 Our Results . 140
6.2 NP-Hardness . 140
6.3 No Polynomial Kernel . 142

CHAPTER 7 CONCLUSIONS AND OPEN PROBLEMS 145
7.1 Static Geometric Set Cover . 145
7.2 Dynamic Geometric Set Cover . 145
7.3 Geometric Set Cover and Discrete k-Center of Small Size 146
7.4 Enclosing Points with Geometric Objects . 147
7.5 Monotone Convex Chain Cover . 147

REFERENCES . 149

vi

CHAPTER 1: INTRODUCTION

The main theme of this thesis is to study a geometric version of the well-known set cover

problem. In the general set cover problem, we are given a finite set X of elements and a

collection S of subsets of X, and the problem asks for finding a subset of S with minimum

size whose union is X. This problem is known to be NP-hard [124]. The well-known greedy

algorithm [96] gives a (lnn+ 1)-approximation1 in polynomial time, which is nearly the best

approximation ratio one can get, since it is proved that one cannot achieve (1 − ε) lnn-

approximation unless P 6=NP [102, 213].

The geometric version of the problem, geometric set cover, is a classical problem in com-

putational geometry, with a long history and many applications [13, 14, 46, 48, 68, 69, 71,

75, 93, 117, 177, 179, 204]. Here the elements in X are points in Rd, and the sets in S, often

called ranges, are defined by a simple class of geometric objects. For instance, the sets may

be defined by 1D intervals, disks, squares, or halfspaces. The goal is to find the smallest

subset of objects from S to cover all points in X. An example is shown in Fig. 1.1.

Problem 1.1 (Geometric set cover). Given a set X of points in Rd and a set S of geometric

objects, find the smallest subset of objects from S to cover all points in X.

Figure 1.1: An example of geometric set cover: covering points in R2 by disks. The optimal
solution is marked in red.

The geometric set cover problem is one of the most fundamental classes of geometric

optimization problems. It has many applications, e.g., it is useful for sensor networks, VLSI

design, databases and image processing. This problem has been extensively investigated

1An α-approximation algorithm is able to compute an approximate solution with size at most α times
the optimum. α is called the approximation ratio of the algorithm (α ≥ 1 for minimization problems).

1

in the computational geometry literature. Finding an exact solution is NP-hard for many

types of geometric objects, even for the simplest geometric families such as unit disks or

unit-squares in R2 [120]. Therefore we are interested in designing efficient approximation

algorithms, that is able to compute an approximate solution with size close to the optimal

solution, and ideally runs in only near-linear time.

In the geometric setting, there are often efficient approximation algorithms with better

(worst-case) performance than the general (combinatorial) set cover. Many classes of object-

s, such as squares and disks in 2D, objects with linear union complexity, and halfspaces in

3D, admit polynomial-time O(1)-approximation algorithms, by using ε-nets and linear pro-

gramming (LP) rounding or the multiplicative weight update (MWU) method [46, 89, 93].

Some classes of objects, such as disks in 2D and halfspaces in 3D, even have polynomial-time

approximation schemes (PTASes) [179] or quasi-PTASes [177], though with large polynomial

or quasi-polynomial running time.

In this thesis, we investigate different versions of the geometric set cover problem. One

distinction is unweighted vs weighted. In the weighted version of the problem, each object is

associated with a non-negative weight, and we want to find a subset of the input objects with

the minimum total weight that covers all points. The unweighted problem can be viewed as

all objects having the same weight 1.

Problem 1.2 (Weighted geometric set cover). Given a set X of points and a set S of

geometric objects, where each object s ∈ S has a non-negative weight ws. Find a subset of

objects S∗ ⊆ S with the minimum total weight
∑

s∈S∗ ws that covers all points in X.

Another distinction is static vs dynamic. In the static problem (Problem 1.1), all points

and objects are given in advance; while in the dynamic problem, both points and objects may

be dynamically inserted or deleted, and we want to dynamically maintain an approximate

solution after each update.

In addition, different geometric ranges may require different techniques to solve. In par-

ticular, we design approximation algorithms and data structures for 1D intervals, 2D unit-

squares, 2D axis-aligned squares, 2D disks, 2D halfplanes, 3D halfspaces and more, using a

number of different ideas that are tailored towards each of the particular ranges.

Finally, we will also adapt the set cover techniques to study several other problems related

to geometric set cover, such as discrete k-centers of small size k and the problem of enclosing

all points with geometric objects. We investigate the complexity of the monotone convex

chain cover problem from the Fixed-Parameter Tractability (FPT) perspective, and prove a

hardness result.

To summarize, the thesis will be organized around the following five themes:

2

• static geometric set cover,

• dynamic geometric set cover,

• exact algorithms and conditional lower bounds for set cover and discrete k-center with

small size,

• a related problem about enclosing points with geometric objects,

• the FPT status of monotone convex chain cover.

1.1 NOTATIONS

Throughout the thesis, we use n = |X| + |S| to denote the size of the problem instance

(X,S), and use opt to denote the cardinality (or total weight) of the optimal solution. All

squares, rectangles, hypercubes, and boxes are by default axis-aligned, and δ > 0, ε > 0

denote arbitrarily small positive constants. The Õ notation hides polylogarithmic factors.

We use [r] to denote the set {1, . . . , r}. We denote by A t B the disjoint union of two

multi-sets A and B.

1.2 STATIC GEOMETRIC SET COVER

Unweighted static geometric set cover. In the first part of the thesis, we study one

of the most fundamental classes of geometric optimization problems: (static) geometric set

cover (Problem 1.1). In the dual set system, the problem corresponds to geometric hitting

set, which asks for finding the smallest subset of points H ⊆ X, such that H intersects each

object in S (i.e., all objects are “hit” by the chosen set of points H).

Since the problem is NP-hard in most scenarios, attention is turned towards approximation

algorithms. Typically, approximation algorithms for static geometric set cover fall into the

following categories:

1. Simple heuristics, e.g., greedy algorithms.

2. Approaches based on solving the linear programming (LP) relaxation (i.e., fractional

set cover) and rounding the LP solution.

3. Polynomial-time approximation schemes (PTASs), e.g., via local search, shifted grid-

s/quadtrees (sometimes with dynamic programming), or separator-based divide-and-

conquer.

3

Generally, greedy algorithms achieve only logarithmic approximation factors (there are

some easy cases where they give O(1) approximation factors, e.g., hitting set for fat objects

such as disks/balls in the “continuous” setting withX = Rd [105]). The LP-based approaches

give better approximation factors in many cases, e.g., O(1) approximation for set cover and

hitting set for disks in 2D and halfspaces in 3D, set cover for objects in 2D with linear “union

complexity”, and hitting set for pseudodisks in 2D [23, 46, 93, 187, 203]. Subsequently, local-

search PTASs have been found by Mustafa and Ray [179] in some cases, including set cover

and hitting set for disks in 2D and halfspaces in 3D (earlier, PTASs were known for hitting

set only in the continuous setting for unit disks/balls [139], and for arbitrary disks/balls and

fat objects [59]).

Historically, the focus has been on obtaining good approximation factors. Here, we are

interested in obtaining approximation algorithms with good—ideally, near linear—running

time. Concerning the efficiency of known approximation algorithms:

1. Certain simple heuristics can lead to fast O(1)-approximation algorithms in some easy

cases (e.g., continuous hitting set for unit disks or unit balls by using grids), but

generally, even simple greedy algorithms may be difficult to implement in near linear

time (as they may require nontrivial dynamic geometric data structures).

2. LP-based approaches initially may not seem to be the most efficient, because of the

need to solve an LP. However, a general-purpose LP solver can be avoided. The

set-cover LP can alternatively be solved (approximately) by the multiplicative weight

update (MWU) method. In the computational geometry literature, the technique has

been called iterative reweighting, and its use in geometric set cover was explored by

Brönnimann and Goodrich [46] (one specific application appeared in an earlier work

by Clarkson [89]), although the technique was known even earlier outside of geometry.

On the other hand, the LP-rounding part corresponds to the well-known geometric

problem of constructing ε-nets, for which efficient algorithms are known [78, 176].

3. PTAS approaches generally have large polynomial running time, even when specialized

to specific approximation factors. For example, see [47] for efforts in improving the

degree of the polynomial.

In this part we design faster approximation algorithms for geometric set cover via the

LP/MWU-based approaches. There has been a series of work on speeding up MWU methods

for covering or packing LPs (e.g., see [84, 153, 215]). In geometric settings, we would like more

efficient algorithms (as generating the entire LP explicitly would already require quadratic

4

time), by somehow exploiting geometric data structures. The main previous work was by

Agarwal and Pan [14] from SoCG’14, who showed how to compute an O(1)-approximation for

set cover for 2D disks or 3D halfspaces, in O(n log4 n) randomized time. (Later in the journal

version [10], they improved the running time of their randomized algorithm to O(n log3 n).)

Agarwal and Pan actually proposed two MWU-based algorithms: The first is a simple

variant of the standard MWU algorithm of Brönnimann and Goodrich, which proceeds in

logarithmically many rounds. The second views the problem as a 2-player zero-sum game,

works quite differently (with weight updates to both points and objects), and uses random-

ization; the analysis is more complicated. Because the first algorithm requires stronger data

structures—notably, for approximate weighted range counting with dynamic changes to the

weights—Agarwal and Pan chose to implement their second algorithm instead, to get their

O(n log4 n) result for 3D halfspaces.

Weighted static geometric set cover. The weighted geometric set cover problem (Prob-

lem 1.2) has also received considerable attention: Varadarajan [204] and Chan et al. [69] used

the LP-based approach to obtain O(1)-approximation algorithms for weighted set cover for

3D halfspaces (or for objects in 2D with linear union complexity); the difficult part is in

constructing ε-nets with small weights, which they solved by the quasi-random sampling

technique. Later, Mustafa, Raman, and Ray [177] discovered a quasi-PTAS for 3D halfs-

paces by using geometric separators; the running time is very high (nlogO(1) n).

In SODA’20, Chekuri, Har-Peled, and Quanrud [82] described new randomized MWU

methods which can efficiently solve the LP corresponding to various generalizations of geo-

metric set cover, by using appropriate geometric data structures. In particular, for weighted

set cover for 3D halfspaces, they obtained a randomized O(n logO(1) n)-time algorithm to

solve the LP but with an unspecified number of logarithmic factors. They did not address

the LP-rounding part, i.e., construction of an ε-net of small weight—a direct implementation

of the quasi-uniform sampling technique would not lead to a near-linear time bound.

1.3 DYNAMIC GEOMETRIC SET COVER

Approximation algorithms for NP-hard problems and dynamic data structures are t-

wo of the major themes studied by the algorithms community. For dynamic data struc-

tures, there are many previous works, for example various dynamic graph algorithm-

s [113, 121, 140, 149, 180]. In particular, there are a lot of dynamic data structures in

computational geometry, e.g., there are results for dynamic convex hull [44], dynamic 2D

nearest neighbor [65], dynamic bichromatic closest pair and diameter [65], dynamic width

5

[58], dynamic geometric connectivity [77], dynamic largest empty circle [65], and more. On

the topic of approximation algorithms for NP-hard problems, there are works for set cover

and hitting set [14, 23, 46, 93, 178, 187], independent set [4, 5, 70, 171], Euclidean TSP [25],

and etc.

Recently, problems at the intersection of these two threads have gained much attention,

and researchers in computational geometry have also started to systematically explore such

problems. For example, two papers appeared at SoCG’20, one on dynamic geometric set

cover by Agarwal, Chang, Suri, Xiao, and Xue [10], and another on dynamic geometric inde-

pendent set by Henzinger, Neumann, and Wiese [138]. In this part of the thesis, we continue

the study by Agarwal et al. [10] and investigate dynamic data structures for approximating

the minimum set cover in natural geometric instances.

Dynamic geometric set cover. After studying approximation algorithms for the static

geometric set cover problem in the previous part, it is natural to further consider the dynamic

setting of the geometric set cover problem. Here, we want to design data structures that

support insertions and deletions of points in X as well as insertions and deletions of objects

in S, while maintaining an approximate solution.

Note that the solution may have linear size in the worst case. In the simplest version of

the problem, we may just want to output the size of the solution. More strongly, we may

want some representation of the solution itself, so that afterwards, the objects in the solution

can be reported in constant time per element when needed.

Problem 1.3 (Dynamic geometric set cover). Design a data structure that supports inser-

tions and deletions of points as well as geometric objects, while maintaining an approximate

set cover, such that the size of the maintained solution can be queried in O(1) time, and the

actual solution can be efficiently reported (ideally, the maintained solution can be reported

in constant time per element).

Recently, an exciting line of research was launched by Agarwal et al. [10] on dynamic

geometric set cover with the introduction of sublinear time data structures for fully dynamic

maintenance of approximate set covers for intervals in one dimension and unit squares in

two dimensions. They showed that for intervals in 1D, a (1 + ε)-approximation can be

maintained in O((1/ε)nδ) time per insertions and deletions of points and intervals. In 2D,

they had only one main result: a fully dynamic O(1)-approximation algorithm for unit

squares, with O(n1/2+δ) update time. This is the only previous work that achieves nontrivial

results for the fully dynamic geometric set cover problem.

6

Dynamic general set cover. In contrast to the few known results for the geometric

version, there are a number of previous works on designing approximation algorithms for

dynamic general (combinatorial) set cover. However, one distinction is they mainly focus on

the partially dynamic setting, where only the elements can be inserted or deleted:

Definition 1.1 (Dynamic general set cover). Given a set system (X,S), where the universe

X is a set of elements, and S is a collection of subsets of X. Each set S ∈ S is associated

with a weight cS > 0 (for the unweighted case, all sets in S have the same weight). The

goal is to maintain an approximate set cover solution that supports dynamic updates to the

elements. For an insertion update, a new input element x is inserted into X, and we get to

know which sets in S contain x. For a deletion update, the input element x is deleted from

X.

Bhattacharya et al. [35] initiated the study on (weighted) dynamic general set cover,

where they obtained O(f log n) amortized update time for O(f 2)-approximation, via the

primal-dual method, where f denote the maximum frequency of the elements (i.e., the

maximum number of sets containing a single element). A series of works followed. Gupta et

al. [133] designed two algorithms: one with O(f log n) amortized update time for O(log n)-

approximation (which is the first result that obtained an approximation ratio independent

of f), using greedy-like techniques; another with O(f 2) amortized update time for O(f 3)-

approximation, using a primal-dual framework. Abboud et al. [1] achieved O(f 2 log n/ε5)

amortized update time for (1 + ε)f -approximation, but their algorithm was only able to

solve the unweighted problem, and needed to assume an oblivious adversary. (The problem

formulation that they considered was slightly different: in their model, the set system (X,S)

is known and fixed, but the subset of “active” elements X̂ ⊆ X that need to be covered

dynamically changes.)

If allowing randomization, Assadi and Solomo [28] obtained O(f 2) amortized update time

for f -approximation, which is the first algorithm that achieves an approximation ratio exactly

f (instead of almost f), and is the best possible under the unique games conjecture for any

fixed f [148]. Bhattacharya et al. [36] designed a deterministic algorithm with (1 + ε)f -

approximation and O(f log(Cn)/ε2) amortized update time, where C denote the maximum

ratio among the cost of the ranges. Bhattacharya et al. [37] improved their result in the low-

frequency range, achieving O((f 2/ε3)+(f/ε2) logC) amortized update time for deterministic

(1 + ε)f -approximation, and also obtained the first worst-case result with O(f log2(Cn)/ε3)

update time for the same (1 + ε)f approximation ratio.

As a side comment, the dynamic general set cover problem has also been studied in the

online settings [133]. Here instead of optimizing the update time, the goal is to achieve

7

bounded recourse (i.e., limit the number of changes to the past decisions at each step) while

also maintaining a good competitive ratio.

The sublinear bounds for dynamic geometric set cover are in sharp contrast with the

Ω(f) update time bottleneck faced by the general set cover problem in dynamic setting [28,

35, 36, 37, 133], because in their model, to insert an element x one needs to specify all

its membership relations, which at a minimum requires updating all the sets that contain

it. (Even for the problem formulation by Abboud et al. [1], where the Ω(f) bottleneck is

less obvious since the membership relations in the set system (X,S) is fixed in advance,

they proved an Ω(nδ) lower bound for some constant δ > 0 on the approximation ratio, for

any algorithm that has update time O(f 1−ε), under SETH.) For our geometric set cover

problem, the maximum frequency f can be as large as Ω(n), so directly applying those

algorithms for dynamic general set cover will not immediately give us a sublinear update

time bound. The implicit form of sets in geometric set covering—an interval or a disk, for

instance, takes only O(1) pieces of information to add or delete—provides a natural yet

challenging problem setting in which to explore the possibility of truly sublinear (possibly

polylogarithmic) updates of both the elements and the sets.

In spite of these recent developments, the state of the art for dynamic geometric set

covering is far from satisfactory even for the simplest of the set systems: covering points on

the line by intervals or covering points in the plane by axis-aligned squares. For instance,

the best update bound for the former is O(nδ/ε) for a (1 + ε)-approximation, and for the

latter no previous result was known. More importantly, none of these schemes are able to

handle the case of weighted dynamic geometric set covers. In this thesis, we make substantial

progress on these fronts.

Remark on dynamic geometric independent set. Dynamic geometric independent

set is closely related to dynamic geometric set cover, where the problem asks to dynamically

maintain an approximate independent set solution, under insertion and deletion of geometric

objects. Opposed to the few previous results on dynamic geometric set cover, more results

were known for this related problem.

We first survey the previous works under the unweighted setting. For 1D intervals, there’s

a broad literature for obtaining (1 + ε)-approximation efficiently. Henzinger et al. [138]

presented an algorithm with Oε(1) log2 n log2N update time (where N denote the range of

the coordinates), but their method require the geometric objects have bounded size ratios.

For geometric objects with arbitrary size, Bhore et al. [38] presented the first dynamic

algorithm for 1D intervals independent set with polylogarithmic update time, namely, worst-

8

case O(logn
ε2

). Later, Compton et al. [94] improved the running time to worst-case O(logn
ε

)

for update and O(log n) for query. If no interval is fully contained in another interval (e.g.,

unit intervals), Gavruskin et al. [125] gave an exact algorithm with O(log n) update time,

based on dynamic tree.

For unit squares, Bhore et al. [39] obtained the first deterministic algorithm for dynamic

independent set with approximation factor 4 and O(1) update time. They also have a trade-

off between approximation factor 2 + 2
k

and update time O(k2 log n). For arbitrary axis-

aligned squares, Bhore et al. [38] designed an expected O(1)-approximation data structure

with O(log5 n) amortized update time. For d-dimensional hypercubes, the data structure

by Henzinger et al. [138] can maintain a (1 + ε)2d-approximation in poly(log n, logN) time.

The approach of Bhore et al. [38] also generalizes to this case, getting O(4d)-approximation

with O(2d log2d+1 n) update time. Cardinal et al. [52] achieved worst-case complexity for fat

objects in d dimension.

The weighted setting is more challenging. For weighted 1D intervals, the approach by

Henzinger et al. [138] can maintain an (1 + ε)-approximation in poly(log n, logN, logW)

time, where W denote the range of the weights. Compton et al. [94] obtained

poly(log n,logN ,logW ,1
ε
) update time, which is an exponential improvement on the query

time dependency on 1/ε.

For weighted d-dimensional hypercubes, the approach by Henzinger et al. [138] can main-

tain an O(2d)-approximation in poly(log n,logN ,logW) time. For weighted d-dimensional

hyperrectangles, they are able to obtain a slightly worse approximation ratio (1+ε) logd−1N

with poly(log n, logN, logW) update time.

1.4 GEOMETRIC SET COVER AND DISCRETE K-CENTER OF SMALL SIZE

The discrete k-center problem for small k. The Euclidean k-center problem is well-

known in computational geometry and has a long history: given a set P of n points in Rd

and a number k, we want to find k congruent balls covering S, while minimizing the radius.

Euclidean 1-center can be solved in linear time for any constant dimension d by standard

techniques for low-dimensional linear programming or LP-type problems [80, 90, 104, 169,

212]. In a celebrated paper from SoCG’96, Sharir [193] gave the first Õ(n)-time algorithm for

Euclidean 2-center in R2, which represented a significant improvement over previous near-

quadratic algorithms (the hidden logarithmic factors have since been reduced in a series of

subsequent works [55, 86, 111, 210]). The problem is more difficult in higher dimensions:

the best time bound for Euclidean 2-center in Rd is about nd (see [9, 11] for some results on

the R3 case), and Cabello et al. [50] proved a conditional lower bound, ruling out no(d)-time

9

algorithms, assuming the Exponential Time Hypothesis (ETH). We are not aware of any

work specifically addressing the Euclidean 3-center problem.

The k-center problem has also been studied under different metrics. The most popular

version after Euclidean is L∞ or rectilinear k-center : here, we want to find k congruent hy-

percubes covering P , while minimizing the side length of the hypercubes. As expected, the

rectilinear version is a little easier than the Euclidean. Sharir and Welzl in SoCG’96 [194]

showed that rectilinear 3-center problem in R2 can be solved in linear time, and that rectilin-

ear 4-center and 5-center in R2 can be solved in Õ(n) time (the logarithmic factors have been

subsequently improved by Nussbaum [181]). Katz and Nielsen’s work in SoCG’96 [145] im-

plied near-linear-time algorithms for rectilinear 2-center in any constant dimension d, while

Cabello et al. in SODA’08 [50] gave an O(n log n)-time algorithm for rectilinear 3-center in

any constant dimension d. Cabello et al. also proved a conditional lower bound for rectilinear

4-center, ruling out no(
√
d)-time algorithms under ETH.

In this part of the thesis, we focus on a natural variant of the problem called discrete

k-center, which has also received considerable attention:

Problem 1.4 (discrete k-center). Given a set P of n points in Rd and a number k, we want

to find k congruent balls covering P , while minimizing the radius, with the extra constraint

that the centers of the chosen balls are from P .2

The Euclidean discrete 1-center problem can be solved in O(n log n) time in R2 by

a straightforward application of farthest-point Voronoi diagrams; it can also be solved

in O(n log n) (randomized) time in R3 with more effort [54], and in subquadratic

Õ(n2−2/(dd/2e+1)) time for d ≥ 4 by standard range searching techniques [12, 166]. Agar-

wal, Sharir, and Welzl in SoCG’97 [17] gave the first subquadratic algorithm for Euclidean

discrete 2-center in R2, running in Õ(n4/3) time.

We can similarly investigate the rectilinear version of the discrete k-center problem, which

is potentially easier. For example, the rectilinear discrete 2-center problem can be solved in

Õ(n) time in any constant dimension d, by a straightforward application of orthogonal range

searching, as reported in several papers [33, 34, 144]. The approach does not seem to work

for the rectilinear discrete 3-center problem. Naively, rectilinear discrete 3-center can be

reduced to n instances of (some version of) rectilinear discrete 2-center, and solved in Õ(n2)

time. However, no better results have been published, leading to the following questions:

2 Some authors define the problem slightly more generally, calling it “k-supplier” [199], where the con-
straint is that the centers are from a second input set; in other words, the input consists of two sets of
points (“demand points” and “supply points”). The results of this chapter will apply to both versions of
the problem.

10

k Euclidean rectilinear Euclidean discrete rectilinear discrete

1 O(n) O(n) O(n log n) O(n)

2 Õ(n) [193] O(n) [194] Õ(n4/3) [17] Õ(n)

3 Õ(n) [194] Õ(n3/2) (new)

Table 1.1: Summary of results on k-center for small k in R2.

Question 1.1. Is there a subquadratic-time algorithm for the rectilinear discrete 3-center

problem?

Question 1.2. Are there lower bounds to show that the rectilinear discrete 3-center problem

does not have near-linear-time algorithm (and is thus strictly harder than rectilinear discrete

2-center, or rectilinear continuous 3-center)?

Similar questions may be asked about rectilinear discrete k-center for k ≥ 4. Here, the

complexity of the problem is upper-bounded by Õ(nω(bk/2c,1,dk/2e)), where ω(a, b, c) denotes

the exponent for multiplying an na×nb and an nb×nc matrix: by binary search, the problem

reduces to finding k hypercubes of a given edge length r with centers in S covering S, which

is equivalent to finding a dominating set of size k in the graph with vertex set S where an

edge pz exists iff the distance of p and z is more than r—the dominating set problem reduces

to rectangular matrix multiplication with the time bound stated, as observed by Eisenbrand

and Grandoni [110]. Note that the difference ω(bk/2c, 1, dk/2e)−k converges to 0 as k →∞
by known matrix multiplication bounds [95] (and is exactly 0 if ω = 2).

As k gets larger compared to d, a better upper bound of nO(dk1−1/d) is known for both the

continuous and discrete k-center problem under the Euclidean and rectilinear metric [15, 141,

142]. Recently, in SoCG’22, Chitnis and Saurabh [85] (extending earlier work by Marx [163]

in the R2 case) proved a nearly matching conditional lower bound for discrete k-center in Rd,

ruling out no(k
1−1/d)-time algorithms under ETH. However, these bounds do not answer our

questions concerning very small k’s. In contrast, the conditional lower bounds by Cabello

et al. [50] that we have mentioned earlier are about very small k and so are more relevant,

but are only for the continuous version of the k-center problem. (The continuous version

behaves differently from the discrete version; see Tables 1.1–1.2.)

The geometric set cover problem with small size k. The decision version of the

discrete k-center problem (deciding whether the minimum radius is at most a given value)

reduces to a geometric set cover problem: given a set P of n points and a set S of n

objects, find the smallest subset of objects in S that cover all points of P . Geometric set

11

k Euclidean rectilinear Euclidean discrete rectilinear discrete

1 O(n) O(n) Õ(n2−2/(dd/2e+1)) O(n)

2 nO(d) Õ(n) [145] Õ(nω) Õ(n)

CLB: nΩ(d) [50]

3 Õ(n) [50] Õ(nω(1,1,2)) Õ(n2)

CLB: Ω(n4/3−δ) (new)

4 nO(d) Õ(nω(2,1,2)) Õ(n3)

CLB: nΩ(
√
d) [50]

Table 1.2: Summary of results on k-center for small k in Rd for an arbitrary constant d.
(CLB stands for “conditional lower bound”.)

cover has been extensively studied in the literature, particularly from the perspective of

approximation algorithms (since for most types of geometric objects, set cover remains NP-

hard); for example, see the references in [71]. Here, we are interested in exact algorithms for

the case when the optimal size k is a small constant.

For the application to Euclidean/rectilinear k-center, the objects are congruent balls/

hypercubes, or by rescaling, unit balls/hypercubes, but other types of objects may be con-

sidered, such as arbitrary rectangles or boxes.

We can also consider the weighted version of the problem: here, given a set P of n points,

a set S of n weighted objects, and a small constant k, we want to find a subset of k objects

in S that cover all points of P , while minimizing the total weight of the chosen objects.

A “dual” problem is geometric hitting set, which in the weighted case is the following:

given a set P of n weighted points, a set S of n objects, and a small constant k, find a subset

of k points in P that hit all objects of S, while minimizing the total weight of the chosen

points. (The continuous unweighted version, where the chosen points may be anywhere,

is often called the piercing problem.) In the case of unit balls/hypercubes, hitting set is

equivalent to set cover due to self-duality.

For rectangles in R2 or boxes in Rd, size-2 geometric set cover (unweighted or weighted)

can be solved in Õ(n) time, like discrete rectilinear 2-center [33, 34, 144], by orthogonal

range searching. Analogs to Questions 1.1–1.2 may be asked for size-3 geometric set cover

for rectangles/boxes.

Surprisingly, the complexity of exact geometric set cover of small size k has not received as

much attention, but very recently in SODA’23, Chan [67] initiated the study of similar ques-

tions for geometric independent set with small size k, for example, providing subquadratic

algorithms and conditional lower bounds for size-4 independent set for boxes.

12

For larger k, hardness results by Marx and Pilipczuk [164] and Bringmann et al. [43]

ruled out no(k)-time algorithms for size-k geometric set cover for rectangles in R2 and unit

hypercubes (or orthants) in R4, and no(
√
k)-time algorithms for unit cubes (or orthants) in

R3 under ETH. But like the other fixed-parameter intractability results mentioned, these

proofs do not appear to imply any nontrivial lower bound for very small k such as k = 3.

1.5 ENCLOSING POINTS WITH GEOMETRIC OBJECTS

After studying the geometric set cover problem in the previous parts, we further consider

a problem that is closely related to geometric set cover: enclosing all points with geometric

objects (Enclosing-All-Points). The problem is defined as follows:

Problem 1.5 (Enclosing-All-Points). Given a set X of points and a set S of geometric

objects (possibly overlapping) in R2, find the smallest subset S∗ ⊆ S to enclose all points in

X. More precisely, for each point p ∈ X, any curve connecting p with infinity (+∞, 0) must

intersect at least one object in S∗.

An illustrative example is shown in Fig. 1.2. This problem turns out to be related to

geometric set cover, as we will see later.

Figure 1.2: The set of red disks enclose points A, C, D and E, but does not enclose the
point B.

We remark that the problem can also be more generally defined in higher dimensions;

however, all previous related works only study the problem in 2D (since the initial motiva-

tion is to isolate points by wireless sensors, which are 2D disks or unit disks). Designing

approximation algorithms for this problem in dimension three or higher appears to be much

harder. Therefore, in this thesis we also only focus on the 2D case.

13

We start with surveying a number of similar problems related to the Enclosing-All-

Points problem we study here.

The Points-Separation problem. Given a set S of geometric objects and a set X of

points in R2, the Points-Separation problem asks to select the minimum number of input

objects, such that all pairs of points in X are separated by the selected objects. We say a

pair of points p and q are separated by a set S∗ of objects, if any curve connecting p and q

intersect at least one object in S∗. As a comparison, our enclosing problem asks to separate

all points with a single point (+∞, 0) (the infinity), while the Points-Separation problem

asks to separate all pairs of points.

The Points-Separation problem has applications in barrier coverage with wireless sen-

sors. In real world, people use wireless sensors to guard or monitor buildings, estates,

national borders etc, and the coverage region of the wireless sensors used can usually be

modeled as unit disks or disks. If two points p and q are separated, then no intruder can get

from one point to the other without getting noticed. Our enclosing problem is also naturally

relevant to these applications, and this is one of the motivations for us to study this partic-

ular problem. Instead of covering the whole area with sensors, it is more economical to only

monitor a boundary of the buildings, while still ensuring that the interior is guarded.

This line of research about separating points with objects was initiated by Gibson et

al. [128] in ESA’11. They presented an O(1)-approximation algorithm for separating all

points when the objects are unit disks or disks, by greedily finding the cheapest subset to

separate some pair of input points, using this subset to partition the points into parts (each

part of the points is contained in a face of the arrangement of the chosen objects), and then

recursively separate in each remaining part. Their algorithm uses an O(1)-approximation

algorithm for separating two points p and q as a subroutine. They also showed that it suffices

to consider the case that no point in the input set is contained in any input disk. In an

extended version of the paper, Gibson et al. [127] explicitly showed that their approximation

factor for disks is 9 + ε.

In a later work by Cabello and Giannopoulos [49], the first polynomial time exact algorithm

with O(n3) running time is given for separating two points using arbitrary connected curves,

assuming the curves have reasonable computational properties. (An earlier version of this

paper appeared in a manuscript by Alt et al. [20], which only works for line segments.) They

utilized a concept called the “3-path-condition” [198] (see also [173, Chapter 4]), connecting

the Points-Separation problem to topology. They also showed NP-hardness of separating

several input points using unit circles or horizontal and vertical segments, via a reduction

from planar-3-SAT. In an independent work, Penninger and Vigan [184] also showed NP-

14

hardness of the problem for unit disks, by reducing from planar-multiterminal-cut.

The Obstacle-Removal problem. Given a set S of geometric objects in R2 and two

points p and q, the Obstacle-Removal problem asks to remove the minimum number of

objects in order to connect the two points. This problem is also sometimes called computing

the barrier resilience [53, 156], where a real-world application is to compute the minimum

number of sensors that need to be deactivated, so that there is a path between p and q that

does not intersect any of the active sensors. It also has applications in robotics [106, 116].

A related concept is called the thickness of the barrier, counting the minimum number of

intersections with the sensors over all paths from p to q (a path may intersect a sensor several

times). Easy to see the resilience is always a lower bound on the thickness.

The Obstacle-Removal problem was shown to be NP-hard for arbitrary line segments

[20, 21], for unit segments [200, 201], and for certain types of fat regions with bounded ply

(such as axis-aligned rectangles of aspect ratio 1 : 1+ε and 1+ε : 1) [151]. For approximation

results, Bereg and Kirkpatrick provided a 3-approximation algorithm for unit disks [32]. In

particular, they showed any (Euclidean) shortest path from s to t that intersects a fixed

number of distinct sensors, never intersects the same sensor more than three times. As a

corollary, the thickness is at most three times the resilience. On the other hand, it is not

known whether for unit disks the problem is still NP-hard.

Bandyapadhyay et al. [29] presented an O(
√
n)-approximation algorithm for pseudodisks

and rectilinear polygons. Kumar et al. [154] further designed an O(1)-approximation algo-

rithm for any well-behaved objects, such as polygons or splines. Their arguments were later

simplified by Kumar et al. [155].

FPT results. These problems were also considered in the FPT context (for backgrounds

on this topic, see Sec. 1.6). For Obstacle-Removal, Korman et al. [152] showed that

the problem is FPT for unit disks, and for similarly-sized β-fat regions with bounded ply

and constant number of pairwise boundary intersections. Eiben and Kanj generalized their

result to graphs satisfying the color-connectivity property [107, 108]. Eiben and Lokshtanov

presented an FPT algorithm with qO(q3)nO(1) running time for general connected obtacles

[109].

Kumar et al. [155] improved the running time for Obstacle-Removal to 2.3146qnO(1),

and also gave a 2O(p)nO(k)-time algorithm for Generalized Points-Separation, which

receives n objects, a set A of k points, and p pairs of points from A as input, and asks to

select the minimum number of objects to separate these pairs.

15

We remark that these seemingly similar problems may require different techniques to

design approximation algorithms; and to the best of our knowledge, our particular version

that requires enclosing all of the points (Problem 1.5) has not been studied before.

1.6 MONOTONE CONVEX CHAIN COVER

In the last part of the thesis, we turn our attention back to the geometric set cover problem,

but here we study its parameterized complexity. This is a fundamental question related to

clustering, and quite a bit of attention has been attracted in recent years [15, 43, 50, 141,

142, 163, 164].

Here we first introduce some basic definitions in parameterized complexity, to provide

some backgrounds on this topic.

Fixed-Parameter Tractability. We say a problem is Fixed-Parameter Tractable (FPT),

if there exists an algorithm with running time of the form f(k)·|x|c for some function f , where

x is a string encoding a given problem instance (n = |x| is the size of the problem), k is the

parameter, and c is a constant independent of both x and k. Typically, the goal in designing

FPT algorithms is to make both the function f(k) and the exponent c in the running time

bound as small as possible. The problems that are FPT can be solved efficiently, if the fixed

parameter k is small.

Kernelization. A kernel for a parameterized problem Q ⊆ Σ∗ × N is an algorithm A
that, given an instance (I, k) of Q, returns an equivalent instance (I ′, k′) of Q in polynomial

time such that (I, k) ∈ Q iff (I ′, k′) ∈ Q. The size of the kernel |I ′| + k′ is required to be

upper bounded by f(k) for some computable function f [97]. We say the problem Q has a

polynomial kernel, if there exists a polynomial such function f .

It is well-known that a parameterized problem is FPT if and only if it admits a kernel-

ization algorithm. For more backgrounds on FPT and kernelization, see the books about

parameterized algorithms [97, 119].

For simple geometric objects, Langerman and Morin [159] presented an FPT algorithm

framework to solve abstract geometric covering problems, with running time depending ex-

ponentially on the combinatorial dimension of the problem. This abstract setting models

a number of concrete problems, e.g., covering points in R2 by k lines, or more generally

covering points by k hyperplanes in Rd for constant dimension d. In this case, the com-

binatorial dimension is equal to the geometric dimension d, and a simple bounded search

16

tree and kernelization algorithm works [126, 131, 159, 211]. The problem can be solved in

deterministic O(kdkn) time, or randomized O(kd(k+1) + 2dkd(d+1)/2eb(d+1)/2cn log n) time.

The covering problem becomes more interesting for geometric objects with non-constant

complexity, where fewer results were known in the literature. In this part of the thesis, we

study the parameterized complexity of the problem of covering points in R2 by monotone

convex chains.

The problem is defined as follows. Let Q = (q1, . . . , qm) be a sequence of points in the

plane. The sequence Q is a convex chain, if ∀ 1 ≤ i ≤ m, qi is the i-th vertex of the convex

hull CH(Q) of Q. Furthermore, Q is an x-monotone convex chain, if ∀ 1 ≤ i ≤ m, qi is the

i-th vertex of the lower hull LH(Q) of Q (i.e., Q is a downward-convex point set, and the

x-coordinates of the points qi are monotonically increasing).

The convex cover number of a set of points P in R2, denoted as κc(P), is the minimum

number of convex chains using only points in P that together cover all points in P [22]. The

monotone convex cover number κ(P) is defined similarly, further requiring that the convex

chains would also be x-monotone. See Fig. 1.3 for an example.

(a) P has convex cover number κc(P) = 2:
P can be covered by two convex chains as
shown, and easy to verify that κc(P) > 1,
because CH(P) (P .

(b) The same point set P has monotone con-
vex cover number κ(P) = 3.

Figure 1.3: The convex cover number and monotone convex cover number of a point set P .

Our goal is to determine the monotone convex cover number of a given point set P .

Problem 1.6 (Monotone Convex Chain Cover). Given a set of points P in the plane and a

parameter k, decide whether the monotone convex cover number κ(P) of P is at most k.

Arkin et al. [22] proved that determining the convex cover number is NP-complete, and

also presented an O(log n)-approximation algorithm. In this work, we similarly prove that

computing the monotone convex chain cover number is also NP-complete.

A somewhat related problem is monotone subsequence cover, which asks for deciding

whether a permutation π can be partitioned into k monotone subsequences. If we require all

subsequences to be monotonically increasing, then the problem can be solved in polynomial

17

time by finding the longest antichain, using Dilworth’s theorem [101]. The problem becomes

NP-hard when each subsequence is allowed to be either (monotonically) increasing or de-

creasing [209]. Heggernes et al. showed that this problem is FPT, by giving an algorithm

that solves the problem in 2O(k2 log k)nO(1) time [137]. They reduced the monotone subse-

quence cover problem to the cochromatic number problem, and provided an FPT algorithm

to compute the cochromatic number on perfect graphs.

The convex cover number is also related to other mathematical concepts, such as the con-

vex partition number κp(P), which asks for the minimum number of convex chains covering

P , where the convex chains are required to be pairwise-disjoint convex hulls [22]. Computing

the convex partition number exactly is also NP-complete, and an O(log n)-approximation

algorithm is known [22]. Another related concept is the reflexivity ρ(P), which is the mini-

mum number of reflex vertices (i.e., having interior angle > π) in a simple polygonalization

of P [3, 22]. One more similar problem is to compute a planar subdivision of the input point

set P , where each bounded interior face is a convex polygon, and minimizing the number

of such convex polygon faces. Polynomial-time constant factor approximation algorithm ex-

ists [150], but the best known exact algorithm runs in nO(k) time for deciding whether this

number is at most k [118]. If we parameterize by the number of inner points k′ in P , this

problem is known to be FPT [130, 196].

Despite the extensive studies for related problems, there are only few previous works fo-

cusing on the complexity of monotone convex chain cover. A natural conjecture is that

the monotone convex chain cover problem we study here is harder than the monotone sub-

sequence cover problem, due to the additional convexity constraint (constraints on triples

instead of pairs of points). One particular open question asked by Eppstein is whether

convex chain cover is FPT [112, Open Problem 11.16], and the same question can also be

asked for monotone convex chain cover. In Chapter 6, we provide a conditional hardness

result showing that monotone convex chain cover does not have a polynomial kernel, un-

less NP ⊆ coNP/poly, taking a step towards resolving the parameterized complexity of the

problem.

Worst-case convex cover number. There are previous results on bounding the convex

cover number in the worst case. Erdős and Szekeres proved that any point set with size

n contains a convex subset with size Ω(log n) [114, 115]. This is related to the famous

happy ending problem [114], which had been recently (nearly) resolved by Suk [197]. As a

consequence, Urabe showed that κc(n) = Θ(n
logn

) [202], where κc(n) denotes the worst-case

convex cover number of a set of n points. The hidden constant in the Θ-notation is also of

interest to some researchers, see e.g., [182].

18

For the monotone convex cover number, the trivial Θ(n) bound is tight: consider the input

points forming a concave set as shown in Fig. 1.4, in this case the monotone convex cover

number and the convex cover number are far apart. In the random case and the grid case,

better bounds are known [99, 135].

Figure 1.4: A concave point set P with even size n has convex cover number κc(P) = 1
(green chain) and monotone convex cover number κ(P) = n/2 (blue chains).

Approximation algorithms. It is not hard to get a polynomial time approximation algo-

rithm for computing the convex cover number, with an O(log n)-approximation factor [22].

The idea is to use the greedy algorithm for general set cover, where in each iteration we

greedily choose the convex chain with the largest number of points in the remaining set

of points. Note that we can compute the largest convex chain in polynomial time, by dy-

namic programming [172]. This algorithm readily leads to an O(log n)-approximation for

the monotone convex cover number. An open question is whether getting constant factor

approximation is possible for either of the problems.

XP algorithm. XP (slicewise polynomial) is the class of parameterized problems that can

be solved in time of the form f(k) ·ng(k) for some functions f and g, where n denote the size

of the problem instance, and k is the parameter. If a problem is FPT, then it is also in XP.

A simple observation is the convex chain cover problem can be solved in nO(k) time, using

dynamic programming [112, Section 11.5]. The same algorithm works for monotone convex

chain cover, and for completeness we briefly redescribe it here. Suppose we want to decide

whether κ(P) ≤ k. In each state of dynamic programming, we maintain k x-monotone

convex chains (may be empty), and keep track of the last two points of each monotone

convex chain. Sort the input points according to their x-coordinates in increasing order, and

attach them one by one to the tails of the convex chains, enumerating each combination.

We can verify whether the current point can be added to a particular convex chain while

maintaining convexity, using its relative position with the stored last two points of the chain.

19

There are nO(k) states, and computing the value of each state takes polynomial time, thus

this problem is in XP. This is still the fastest algorithm known to the best of our knowledge.

1.7 OVERVIEW OF THE NEW RESULTS

In this thesis, we obtain a variety of new results on the problems that we have discussed

in Sec. 1.2–Sec. 1.6. Below is a quick overview; detailed statements of all the results can be

found at the beginning of each chapter.

In Chapter 2, we focus on static geometric set cover, where all points and objects are given

in advance. As the problem is NP-hard for many classes of geometric objects, we are in-

terested in designing O(1)-approximation algorithms, in particular, efficient algorithms that

run in near-linear time. For the unweighted problem, we present near-optimal algorithms

for disks in R2 and halfspaces in R3, in particular, O(n log3 n log log n) deterministic and

O(n log n(log log n)O(1)) randomized, which are further improved to optimal O(n log n) time

in the next chapter. We then extend our approach to solve the weighted problem for the

same types of ranges, in randomized O(n log4 n log log n) time.

In Chapter 3, we turn our attention to geometric set cover problems in dynamic settings,

allowing insertions and deletions of both points and objects. The goal is to efficiently main-

tain a set cover solution (satisfying certain quality requirement) for the dynamic problem

instance. We give a plethora of new dynamic geometric set cover data structures for various

geometric ranges, which significantly improve and extend the previous results. For example,

we substantially improve all the main results of Agarwal et al. [10] on unweighted inter-

vals in 1D (from O(nδ) to O(log3 n)) and unweighted unit squares in 2D (from O(n1/2+δ)

to 2O(
√

logn)). Our other results include axis-aligned squares, halfplanes in R2, disks in R2

and halfspaces in R3. We also give the first sublinear results for the weighted version of

the problem. The detailed time bounds of our dynamic data structures are summarized in

Table 3.1.

In Chapter 4, we investigate the fine-grained complexity of the discrete k-center problem

and related (exact) geometric set cover problems when k or the size of the cover is small.

Question 1.1 asks whether there is a subquadratic-time algorithm for the rectilinear discrete

3-center problem. We answer it in the affirmative for dimension d = 2, by presenting the

first subquadratic algorithms for unweighted and weighted size-3 set cover for rectangles

in R2. We also prove a number of conditional lower bounds for these problems in constant

dimensions, including superlinear conditional lower bounds for size-3 set cover using weighted

unit squares in R2, unweighted boxes in R3, or unit hypercubes in R4 (which is equivalent to

rectilinear discrete 3-center in R4). We also prove a near-quadratic lower bound for weighted

20

size-6 set cover for rectangles in R2.

In Chapter 5, we develop polynomial-time approximation algorithms for another problem

related to geometric set cover, namely, enclosing points with geometric objects. For example,

we get an O(α(n) log n)-approximation algorithm for enclosing all points using arbitrary line

segments in R2 (where α(n) denote the inverse Ackermann function), and an O(log n)-

approximation algorithm for enclosing all points using disks in R2. We solve this problem

by adapting techniques for approximating geometric set cover. Our algorithms also more

generally work for a colored version of the problem.

In Chapter 6, we inspect the FPT status of the monotone convex chain cover problem,

where the problem asks for finding the minimum number of x-monotone convex chains κ(P)

that can together cover a point set P . We show that deciding whether κ(P) ≤ k is NP-hard

and does not have a polynomial kernel, unless NP ⊆ coNP/poly.

At the end of the thesis (Chapter 7), we summarize with a number of open questions to

be further explored.

Paper Chapter
Timothy M. Chan and Qizheng He. Faster approximation algorithms for geometric set cover.
Proceedings of the 36th Annual Symposium on Computational Geometry (SoCG), vol. 164.
pages 27:1–27:14, 2020. [71]

Chapter 2

Timothy M. Chan and Qizheng He. More dynamic data structures for geometric set cover
with sublinear update time. Journal of Computational Geometry (JoCG), 2022. Originally
appeared at SoCG’21. [72]

Chapter 3
(3.4–3.6)

Timothy M. Chan, Qizheng He, Subhash Suri, and Jie Xue. Dynamic geometric set cover,
revisited. Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3496–3528, 2022. [73]

Chapter 3
(3.7–3.12)

Timothy M. Chan, Qizheng He, and Yuancheng Yu. On the fine-grained complexity of
small-size geometric set cover and discrete k-center for small k. Proceedings of the 50th
International Colloquium on Automata, Languages, and Programming (ICALP), vol. 261.
pages 34:1–34:19, 2023. [74]

Chapter 4

Qizheng He. On the FPT status of monotone convex chain cover. Proceedings of the 35th
Canadian Conference on Computational Geometry (CCCG), pages 307–312, 2023. [136]

Chapter 6

Table 1.3: The papers included and their location within this thesis.

The results of this thesis have appeared in five published papers: see Table 1.3 for the

citations.

21

CHAPTER 2: STATIC GEOMETRIC SET COVER

In this chapter, we study the static geometric set cover problem: given a set X of points

in Rd and a set S of geometric objects, find the smallest subset of objects from S to cover all

points in X. We are interested in designing O(1)-approximation algorithms, in particular,

efficient algorithms that run in near-linear time.

2.1 OUR RESULTS

We improve the running times of O(1)-approximation algorithms for the set cover problem

in geometric settings, specifically, covering points by disks in the plane, or covering points

by halfspaces in three dimensions. Our results are as follows:

• In the unweighted case, Agarwal and Pan [SoCG’14] gave a randomized O(n log4 n)-

time, O(1)-approximation algorithm, by using variants of the multiplicative weight

update (MWU) method combined with geometric data structures. We simplify the

data structure requirement in one of their methods, and obtain a new deterministic

O(n log3 n log log n)-time, O(1)-approximation algorithm for set cover for 2D disks and

3D halfspaces (Theorem 2.1), which besides eliminating randomization is also a little

faster than Agarwal and Pan’s.

• With further new ideas, we obtain a still faster randomized near-linear time O(1)-

approximation algorithm for set cover for 2D disks and 3D halfspaces (Theorem 2.2).

Its running time isO(n log n(log log n)O(1)), which is essentially optimal3 ignoring minor

log log n factors.

• For the weighted problem, we also give a randomized O(n log4 n log log n)-time, O(1)-

approximation algorithm, by simple modifications to the MWU method and the quasi-

uniform sampling technique (Theorem 2.3).

Although generally shaving logarithmic factors may not be the most important endeavor,

the problem is fundamental enough that we feel it’s worthwhile to find the most efficient

algorithm possible.

3Even for 1D intervals, just deciding whether a set cover solution exists requires Ω(n log n) time in the
algebraic decision-tree model, by Ben-Or’s technique [30].

22

Techniques. Our approach interestingly is to go back to Agarwal and Pan’s first MWU

algorithm. We show that with one simple modification, the data structure requirement can

actually be relaxed: namely, for the approximate counting structure, there is no need for

weights, and the only update operation is insertion. By standard techniques, insertion-only

data structures reduce to static data structures. This simple idea immediately yields our

deterministic result. (Before, Bus et al. [48] also aimed to find variants of Agarwal and Pan’s

first algorithm with simpler data structures, but they did not achieve improved theoretical

time bounds.) Our best randomized result requires a more sophisticated combination of sev-

eral additional ideas. In particular, we incorporate random sampling in the MWU algorithm,

and extensively use shallow cuttings, in both primal and dual space.

For the weighted problem, we observe that a simple direct modification of the standard

MWU algorithm of Brönnimann and Goodrich, or Agarwal and Pan’s first algorithm, can

also solve the LP for weighted geometric set cover, with arguably simpler data structures

than Chekuri et al.’s [82]. Secondly, we observe that an ε-net of small weight can be con-

structed in near-linear time, by using quasi-uniform sampling more carefully. This leads to a

randomized O(n log4 n log log n)-time, O(1)-approximation algorithm for weighted set cover

for 3D halfspaces (and thus for 2D disks).

Remark. We have stated our results for set cover for 3D halfspaces. This case is arguably

the most central. It is equivalent to hitting set for 3D halfspaces, by duality, and also

includes set cover and hitting set for 2D disks as special cases, by the standard lifting

transformation. The case of 3D dominance ranges is another special case, by a known

transformation [76, 183] (although for the dominance case, word-RAM techniques can speed

up the algorithms further). The ideas here are likely useful also in the other cases considered

in Agarwal and Pan’s paper (e.g., hitting set for rectangles, set cover for fat triangles, etc.),

but in the interest of keeping this chapter focused, we will not discuss these implications.

2.2 PRELIMINARIES

ε-nets. Let X be a set of points and S be a set of objects. For a point p, its depth in S

refers to the number of objects in S containing p. A point p is said to be ε-light in S, if it

has depth ≤ ε|S| in S; otherwise it is ε-heavy. A subset of objects T ⊆ S is an ε-net of S if

T covers all points that are ε-heavy in S.

It is known that there exists an ε-net with size O(1
ε
) for any set of halfspaces in 3D or disks

in 2D [168] (or more generally for objects in the plane with linear union complexity [93]).

23

2.2.1 The basic MWU algorithm

We first review the standard multiplicative weight4 update (MWU) algorithm for geomet-

ric set cover, as described by Brönnimann and Goodrich [46] (which generalizes an earlier

algorithm by Clarkson [89], and is also well known outside of computational geometry).

Let X be the set of input points and S be the set of input objects, with n = |X|+ |S|. Let

opt denote the size of the minimum set cover. We assume that a value t = Θ(opt) is known;

this assumption will be removed later by a binary search for t. In the following pseudocode,

we work with a multiset Ŝ; in measuring size or counting depth, we include multiplicities

(e.g., |Ŝ| is the sum of the multiplicities of all its elements).

1: Guess a value t ∈ [opt, 2 opt] and set ε = 1
2t

.

2: Define a multiset Ŝ where each object i in S initially has multiplicity mi = 1.

3: while we can find a point p ∈ X which is ε-light in Ŝ do

4: for each object i containing p do . call lines 4–5 a multiplicity-doubling step

5: Double its multiplicity mi.

6: Return an ε-net of the multiset Ŝ.

Figure 2.1: MWU (unoptimized version) for set cover.

Since at the end all points in X are ε-heavy in Ŝ, the returned subset is a valid set cover

of X. For halfspaces in 3D or disks in 2D, its size is O(1
ε
) = O(t) = O(opt).

A standard analysis shows that the algorithm always terminates after O(t log n
t
)

multiplicity-doubling steps. We include a quick proof: Each multiplicity-doubling step in-

creases |Ŝ| by a factor of at most 1 + ε, due to the ε-lightness of p. Thus, after z doubling

steps, |Ŝ| ≤ n(1 + ε)z ≤ neεz = nez/(2t). On the other hand, consider a set cover T ∗ of size

t. In each multiplicity-doubling step, at least one of the objects in T ∗ has its multiplicity

doubled. So, after z multiplicity-doubling steps, the total multiplicity in T ∗ is at least t2z/t.

We conclude that t2z/t ≤ |Ŝ| ≤ nez/(2t), implying that z = O(t log n
t
).

2.2.2 Agarwal and Pan’s (first) MWU algorithm

Next, we review Agarwal and Pan’s first variant of the MWU algorithm [14]. One issue

in implementing the original algorithm lies in the test in line 3: searching for one light point

4 In our algorithm description, we prefer to use the term “multiplicity” instead of “weight”, to avoid
confusion with the weighted set cover problem later.

24

by scanning all points in X from scratch every time seems inefficient. In Agarwal and Pan’s

refined approach, we proceed in a small number of rounds, where in each round, we examine

the points in X in a fixed order and test for lightness in that order.

1: Guess a value t ∈ [opt, 2 opt] and set ε = 1
2t

.

2: Define a multiset Ŝ where each object i in S initially has multiplicity mi = 1.

3: loop . call this the start of a new round

4: for each point p ∈ X in any fixed order do

5: while p is ε-light in Ŝ do

6: for each object i containing p do . call lines 6–7 a multiplicity-doubling step

7: Double its multiplicity mi.

8: if the number of multiplicity-doubling steps in this round exceeds t then

9: Go to line 3 and start a new round.

10: Terminate and return an ε
2
-net of the multiset Ŝ.

11: end loop

Figure 2.2: Refined MWU for set cover.

To justify correctness, observe that since each round performs at most t multiplicity-

doubling steps, |Ŝ| increases by a factor of at most (1 + ε)t ≤ eεt ≤ e1/2 < 2. Thus, a point

p that is checked to be ε-heavy in Ŝ at any moment during the round will remain ε
2
-heavy

in Ŝ at the end of the round.

Since all but the last round performs t multiplicity-doubling steps and we have already

shown that the total number of such steps is O(t log n
t
), the number of rounds is O(log n

t
).

2.3 “NEW” MWU ALGORITHM

Agarwal and Pan’s algorithm still requires an efficient data structure to test whether

a given point is light, and the data structure needs to support dynamic changes to the

multiplicities. We propose a new variant that requires simpler data structures.

Our new algorithm is almost identical to Agarwal and Pan’s, but with just one very simple

change! Namely, after line 3, at the beginning of each round, we add the following line, to

readjust all multiplicities:

25

3.5: for each object i, reset its multiplicity mi ← dmi
10n

|Ŝ| e.

Figure 2.3: Readjusting all multiplicities at the beginning of each round.

To analyze the new algorithm, consider modifying the multiplicity mi instead to dmi
10n

|Ŝ| e ·
|Ŝ|
10n

. The algorithm behaves identically (since the multiplicities are identical except for a

common rescaling factor), but is more convenient to analyze. In this version, multiplicities

are nondecreasing over time (though they may be non-integers). After the modified line 3.5,

the new |Ŝ| is at most
∑

i

(
mi

10n

|Ŝ| + 1
)
· |Ŝ|

10n
≤ 11n · |Ŝ|

10n
= 1.1|Ŝ|. If the algorithm makes

z multiplicity-doubling steps, then it performs line 3.5 at most z/t times and we now have

|Ŝ| ≤ n(1 + ε)z · 1.1z/t ≤ nez/(2t) · 1.1z/t. This is still sufficient to imply that z = O(t log n
t
),

and so the number of rounds remains O(log n
t
).

Now, let’s go back to line 3.5 as written. The advantage of this multiplicity readjustment

step is that it decreases |Ŝ| to
∑

i

(
mi

10n

|Ŝ| + 1
)

= O(n). At the end of the round, |Ŝ| increases

by a factor of at most (1 + ε)t < 2 and so remains O(n). Thus, in line 7, instead of doubling

the multiplicity of an object, we can just repeatedly increment the multiplicity (i.e., insert

one copy of an object) to reach the desired value. The total number of increments per round

is O(n).

Note that in testing for ε-lightness in line 5, a constant-factor approximation of the depth

is sufficient, with appropriate adjustments of constants in the algorithm. Also, although the

algorithm as described may test the same point p for lightness several times in a round,

this can be easily avoided: we just keep track of the increase D in the depth of the current

point p; the new depth of p can be 2-approximated by the maximum of the old depth and

D.

To summarize, an efficient implementation of each round of the new algorithm requires

solving the following geometric data structure problems (Report for line 6, and Approx-

Count-Decision for line 5):

Problem Report: Design a data structure to store a static set S of size O(n) so that

given a query point p ∈ X, we can report all objects in S containing the query point

p. Here, the output size of a query is guaranteed to be at most O(k) where k := n
t

(since ε-lightness of p implies that its depth is at most ε|Ŝ| = Θ(n
t
) even including

multiplicities).

Problem Approx-Count-Decision: Design a data structure to store a multiset Ŝ of size

O(n) so that given a query point p ∈ X, we can either declare that the number of

26

objects in Ŝ containing p is less than a fixed threshold value k, or that the number

is more than k
c
, for some constant c > 1. Here, the threshold again is k := n

t
(since

ε|Ŝ| = Θ(n
t
)). The data structure should support the following type of updates: insert

one copy of an object to Ŝ. (Deletions are not required.) Each point in X is queried

once.

To bound the cost of the algorithm:

• Let Treport denote the total time for O(t) queries in Problem Report.

• Let Tcount denote the total time for O(n) queries and O(n) insertions in Problem

Approx-Count-Decision. (Note that the initialization of Ŝ at the beginning of the

round can be done by O(n) insertions.)

• Let Tnet denote the time for computing an ε-net of size O(1
ε
) for a given multiset Ŝ of

size O(n).

The total running time over all O(log n
t
) rounds is

O
(
(Treport + Tcount) log n

t
+ Tnet

)
. (2.1)

2.4 IMPLEMENTATIONS OF MWU

In this section, we describe specific implementations of our MWU algorithm when the

objects are halfspaces in 3D (which include disks in 2D as a special case by the standard

lifting transformation). We first consider deterministic algorithms.

2.4.1 Deterministic version

Shallow cuttings. We begin by reviewing an important tool that we will use several times

later. For a set of n planes in R3, a k-shallow ε-cutting is a collection of interior-disjoint

polyhedral cells, such that each cell intersects at most εn planes, and the union of the cells

cover all points of level at most k (the level of a point refers to the number of planes below

it). The list of all planes intersecting a cell ∆ is called the conflict list of ∆. Matoušek [166]

proved the existence of a k-shallow (ck
n

)-cutting with O(n
k
) cells for any constant c. Chan and

Tsakalidis [78] gave an O(n log n
k
)-time deterministic algorithm to construct such a cutting,

along with all its conflict lists (an earlier randomized algorithm was given by Ramos [190]).

If c is sufficiently large, the cells may be made “downward”, i.e., they all contain (0, 0,−∞).

27

Constructing ε-nets. The best known deterministic algorithm for constructing ε-nets

for 3D halfspaces is by Chan and Tsakalidis [78] and runs in Tnet = O(n log 1
ε
) = O(n log n)

time.

The result follows directly from their shallow cutting algorithm (using a simple argument of

Matoušek [166]): Without loss of generality, assume that all halfspaces are upper halfspaces,

so depth corresponds to level with respect to the bounding planes (we can compute a net for

lower halfspaces separately and take the union, with readjustment of ε by a factor of 2). We

construct an (εn)-shallow ε
2
-cutting with O(1

ε
) cells, and for each cell, add a plane completely

below the cell (if it exists) to the net. To see correctness, for a point p with level εn, consider

the cell ∆ containing p; at least εn− εn
2
> 0 planes are completely below ∆, and so the net

contains at least one plane below p.

Solving Problem Report. This problem corresponds to 3D halfspace range reporting in

dual space, and by known data structures [7, 56, 78], the total time to answer O(t) queries

is Treport = O(t · (log n+ k)) = O(t log n+n), assuming an initial preprocessing of O(n log n)

time (which is done only once).

This result also follows directly from shallow cuttings (since space is not our concern,

the solution is much simplified): Without loss of generality, assume that all halfspaces are

upper halfspaces. We construct a k-shallow O(k
n
)-cutting with O(n

k
) downward cells. Given

a query point p ∈ X, we find the cell containing p, which can be done in O(log n) time by

planar point location; we then do a linear search over its conflict list, which has size O(k).

Note that the point location operations can be actually be done during preprocessing in

O(n log n) time since X is known in advance. This lowers the time bound for O(t) queries

to Treport = O(tk) = O(n).

Solving Problem Approx-Count-Decision. This problem corresponds to the decision

version of 3D halfspace approximate range counting in dual space, and several deterministic

and randomized data structures have already been given in the static case [6, 8], achieving

O(log n) query time and O(n log n) preprocessing time.

This result also follows directly from shallow cuttings: Without loss of generality, assume

that all halfspaces are upper halfspaces. We construct a n
bi

-shallow O(1
bi

)-cutting with O(bi)

downward cells for every i = 1, . . . , logb n for some constant b. Chan and Tsakalidis’s algo-

rithm can actually construct all O(log n) such cuttings in O(n log n) total time. With these

cuttings, we can compute an O(1)-approximation to the depth/level of a query point p by

simply finding the largest i such that p is contained in a cell of the n
bi

-shallow cutting (the

level of p would then be O(n
bi

) and at least n
bi+1). In Chan and Tsakalidis’s construction,

28

each cell in one cutting intersects O(1) cells in the next cutting, and so we can locate the

cells containing p in O(1) time per i, for a total of O(log n) time.

To solve Problem Approx-Count-Decision, we still need to support insertion. Al-

though the approximate decision problem is not decomposable, the above solution solves

the approximate counting problem, which is decomposable, so we can apply the standard

logarithmic method [31] to transform the static data structure into a semi-dynamic, insertion-

only data structure. The transformation causes a logarithmic factor increase, yielding in our

case O(log2 n) query time and O(log2 n) insertion time. Thus, the total time for O(n) queries

and insertions is Tcount = O(n log2 n).

Conclusion. By (2.1), the complete algorithm has running time O((Treport +Tcount) log n
t
+

Tnet) = O((n+ n log2 n) log n
t

+ n log n) = O(n log3 n).

One final issue remains: we have assumed that a value t ∈ [opt, 2 opt] is given. In general,

either the algorithm produces a solution of size O(t), or (if it fails to complete within O(log n
t
)

rounds) the algorithm may conclude that opt > t. We can thus find an O(1)-approximation

to opt by a binary search over t among the O(log n) possible powers of 2, with O(log log n)

calls to the algorithm. The final time bound is O(n log3 n log log n).

Theorem 2.1. Given a set X of points and a set S of halfspaces in R3, where |X|+ |S| = n,

there exists an algorithm that can find a subset of halfspaces from S covering all points in

X, of size within O(1) factor of the minimum, in deterministic O(n log3 n log log n) time.

2.4.2 Randomized version 1

We now describe a better solution to Problem Approx-Count-Decision, by using ran-

domization and the fact that all query points (namely, X) are given in advance.

Reducing the number of insertions in Problem Approx-Count-Decision. In solv-

ing Problem Approx-Count-Decision, one simple way to speed up insertions is to work

with a random sample R of Ŝ. When we insert an object to Ŝ, we independently decide to

insert it to the sample R with probability ρ := c0 logn
k

, or ignore it with probability 1− ρ, for

a sufficiently large constant c0. (Different copies of an object are treated as different objects

here.) It suffices to solve the problem for the sample R with the new threshold around ρk.

To justify correctness, consider a fixed query point p ∈ X. Let x1, x2, . . . be the sequence

of objects in Ŝ that contain p, in the order in which they are inserted (extend the sequence

arbitrarily to make its length greater than k). Let yi = 1 if object xi is chosen to be in the

29

sample R, or 0 otherwise. Note that the xi’s may not be independent (since the object we

insert could depend on random choices made before); however, the yi’s are independent. By

the Chernoff bound,
∑k/c

i=1 yi ≤
(1+δ)ρk

c
and

∑k
i=1 yi ≥ (1−δ)ρk with probability 1−e−Ω(ρk) =

1− n−Ω(c0) for any fixed constant δ > 0. Thus, with high probability (w.h.p.), at any time,

if the number of objects in R containing p is more than (1+δ)ρk
c

, then the number of objects

in Ŝ containing p is more than k
c
; if the former number is less than (1− δ)ρk, then the later

number is less than k. Since there are O(n) possible query points, all queries are correct

with high probability.

By this strategy, the number of insertions is reduced to O(ρn) = O(n
k

log n) = O(t log n)

with high probability.

Preprocessing step. Next we use a known preprocessing step to ensure that each object

contains at most n
t

points, in the case of 3D halfspaces. This subproblem was addressed

in Agarwal and Pan’s paper [14] (where it was called “(P5)”—curiously, they used it to

implement their second algorithm but not their first MWU-based algorithm.) We state a

better running time:

Lemma 2.1. In O(n log t) time, we can find a subset T0 ⊆ S of O(t) halfspaces, such that

after removing all points in X covered by T0, each halfspace of S contains at most n
t

points.

Proof. We may assume that all halfspaces are upper halfspaces. We work in dual space,

where S is now a set of points and X is a set of planes. The goal is to find a subset T0 ⊆ S

of O(t) points such that after removing all planes of X that are below some points of T0,

each point of S has depth/level at most n
t
.

We proceed in rounds. Let b be a constant. In the i-th round, assume that all points of

S have level ≤ n
bi

. Compute a n
bi

-shallow 1
bi+1 -cutting with O(bi) cells. In each cell, add an

arbitrary point of S (if exists) to the set T0. In total O(bi) points are added. Remove all

planes that are below these added points from X.

Consider a point p of S. Let ∆ be the cell containing p, and let q be the point in ∆

that was added to T0. Any plane that is below p but not removed (and thus above q) must

intersect ∆, so there can be at most n
bi+1 such planes. Thus, after the round, the level of p

is at most n
bi+1 . We terminate when bi reaches t. The total size of T0 is O(

∑logb t
i=1 bi) = O(t).

Naively computing each shallow cutting from scratch by Chan and Tsakalidis’s algorithm

would require O(n log n·log n) = O(n log2 n) total time. But Chan and Tsakalidis’s approach

can compute multiple shallow cuttings more quickly: given a n
bi

-shallow cutting along with

its conflict lists, we can compute the next n
bi+1 -shallow cutting along with its conflict lists

in O(n+ bi log bi) time. However, in our application, before computing the next cutting, we

30

also remove some of the input planes. Fortunately, this type of scenario has been examined

in a recent paper by Chan [66], who shows that the approach still works, provided that the

next cutting is relaxed to cover only points covered by the previous cutting (see Lemma 8

in his paper); this is sufficient in our application. In our application, we also need to locate

the cell containing each point of S. This can still be done in O(n) time given the locations

in the previous cutting. Thus, the total time is O(
∑logb t

i=1 (n+ bi log bi)) = O(n log t). QED.

At the end, we add T0 back to the solution, which still has O(t) total size.

Solving Problem Approx-Count-Decision. We now propose a very simple approach

to solve Problem Approx-Count-Decision: just explicitly maintain the depth of all points

in X. Each query then trivially takes O(1) time. When inserting an object, we find all points

contained in the object and increment their depths.

Due to the above preprocessing step, the number of points contained in the object is

O(n
t
). For the case of 3D halfspaces, we can find these points by halfspace range reporting;

as explained before for Problem Report, this can be done in O(n
t
) time by using shallow

cuttings, after an initial preprocessing in O(n log n) time. Thus, each insertion takes O(n
t
)

time. Since the number of insertions has been reduced to O(t log n) by sampling, the total

time for Problem Approx-Count-Decision is Tcount = O((t log n) · n
t
) = O(n log n).

Conclusion. By (2.1), the complete randomized algorithm has running time O((Treport +

Tcount) log n
t

+ Tnet) = O((n+ n log n) log n
t

+ n log n) = O(n log n log n
t
) = O(n log2 n) (even

including the O(n log n)-time preprocessing step). Including the binary search for t, the time

bound is O(n log2 n log log n).

2.4.3 Randomized version 2

Finally, we combine the ideas from both the deterministic and randomized implementa-

tions, to get our fastest randomized algorithm for 3D halfspaces.

Solving Problem Approx-Count-Decision. We may assume that all halfspaces are

upper halfspaces. We work in dual space, where Ŝ is now a multiset of points and X is

a set of planes. In a query, we want to approximately count the number of points in Ŝ

that are above a query plane in X. By the sampling reduction from Section 2.4.2, we may

assume that the number of insertions to Ŝ is O(t log n). By the preprocessing step from

Section 2.4.2, we may assume that all points in Ŝ have level at most n
t
.

31

Compute a n
t
-shallow O(1

t
)-cutting with O(t) downward cells, along with its conflict lists.

For each point p ∈ R, locate the cell containing p. All this can be done during a (one-time)

preprocessing in O(n log n) time.

For each cell ∆, we maintain Ŝ ∩ ∆ in a semi-dynamic data structure for 3D approxi-

mate halfspace range counting. As described in Section 2.4.1, we get O(log2 n∆) query and

insertion time, where n∆ = |Ŝ ∩∆|.
In an insertion of a point p to Ŝ, we look up the cell ∆ containing p and insert the point

to the approximate counting structure in ∆.

In a query for a plane h ∈ X, we look up the cells ∆ whose conflict lists contain h, answer

approximate counting queries in these cells, and sum the answers.

We bound the total time for all insertions and queries. For each cell ∆, the number of

insertions in its approximate counting structure is n∆ and the number of queries is O(n
t
)

(since each plane h ∈ X is queried once). The total time is

O

(∑
∆

(n
t

+ n∆

)
log2 n∆

)
. (2.2)

Since there are O(t) terms and
∑

∆ n∆ = O(t log n), we have n∆ = O(log n) “on average”;

applying Jensen’s inequality to the first term, we can bound the sum by O(n log2 log n +

t log3 n). Thus, Tcount = O(n log2 log n+ t log3 n).

Conclusion. By (2.1), the complete randomized algorithm has running time O((Treport +

Tcount) log n
t

+ Tnet) = O((n + n log2 log n + t log3 n) log n
t

+ n log n) = O(n log n log2 log n +

t log4 n). If t ≤ n/ log3 n, the first term dominates. On the other hand, if t > n/ log3 n,

our earlier randomized algorithm has running time O(n log n log n
t
) = O(n log n log log n). In

any case, the time bound is at most O(n log n log2 log n). Including the binary search for t,

the time bound is O(n log n log3 log n).

Theorem 2.2. Given a set X of points and a set S of halfspaces in R3, where |X|+ |S| = n,

there exists an algorithm that can find a subset of halfspaces from S covering all points in

X, of size within O(1) factor of the minimum, in O(n log n log3 log n) time by a randomized

Monte-Carlo algorithm with error probability O(n−c0) for any constant c0 > 0.

Remark. The number of the log log n factors is improvable with still more effort, but we

feel it is of minor significance; plus, removing all of the log log n factors doesn’t seem to be

easy using the current methods. In the next chapter, we solve this problem from a very

different perspective, showing that ideas from dynamic geometric set cover are surprisingly

32

useful to get an optimal result with running time O(n log n) for the static problem. See

Theorem 3.3 in Sec. 3.6.

2.5 WEIGHTED 3D HALFSPACES

In this final section, we consider the weighted set cover problem. We define ε-lightness

and ε-nets as before, ignoring the weights. It is known that there exists an ε-net of S with

total weight O(1
ε
· w(S)
|S|), for any set of 3D halfspaces or 2D disks (or objects in 2D with linear

union complexity) [69]. Here, the weight w(S) of a set S refers to the sum of the weights of

the objects in S.

2.5.1 MWU algorithm in the weighted case

Let X be the set of input points and S be the set of weighted input objects, where object

i has weight wi, with n = |X|+ |S|. Let opt be the weight of the minimum-weight set cover.

We assume that a value t ∈ [opt, 2 opt] is given; this assumption can be removed by a binary

search for t.

We may delete objects with weights > t. We may automatically include all objects with

weights < 1
n
t in the solution, and delete them and all points covered by them, since the total

weight of the solution increases by only O(n · 1
n
t) = O(t). Thus, all remaining objects have

weights in [1
n
t, t]. By rescaling, we may now assume that all objects have weights in [1, n]

and that t = Θ(n).

In the following, for a multiset Ŝ where object i has multiplicity mi, the weight of the

multiset is defined as w(Ŝ) =
∑

imiwi.

We describe a simple variant of the basic MWU algorithm to solve the weighted set cover

problem. (A more general, randomized MWU algorithm for geometric set cover was given

recently by Chekuri, Har-Peled, and Quanrud [82], but our algorithm is simpler to describe

and analyze.) The key innovation is to replace doubling with multiplication by a factor

1 + 1
wi

, where wi is the weight of the concerned object i. (Note that multiplicities may now

be non-integers.)

33

1: Guess a value t ∈ [opt, 2 opt].

2: Define a multiset Ŝ where each object i in S initially has multiplicity mi = 1.

3: repeat

4: Find a point p which is ε-light in Ŝ with ε = 1
2t
· w(Ŝ)

|Ŝ| .

5: for each object i containing p do . call lines 5–6 a “multiplicity-increasing step”

6: Multiply its multiplicity mi by 1 + 1
wi

.

7: until all points are ε-heavy in Ŝ.

8: Return an ε-net of the multiset Ŝ.

Figure 2.4: MWU for weighted set cover.

Since at the end all points are ε-heavy in Ŝ, the returned subset is a valid set cover of X.

For halfspaces in 3D or disks in 2D, its weight is O(1
ε
· w(Ŝ)

|Ŝ|) = O(opt).

We now prove that the algorithm terminates in O(t log n) = O(n log n) multiplicity-

increasing steps.

In each multiplicity-increasing step, w(Ŝ) increases by∑
object i containing p

mi · 1
wi
· wi =

∑
object i containing p

mi ≤ w(Ŝ)
2t
, (2.3)

i.e., w(Ŝ) increases by a factor of at most 1 + 1
2t

. Initially, w(Ŝ) ≤ n2. Thus, after z

multiplicity-increasing steps, w(Ŝ) ≤ n2(1 + 1
2t

)z ≤ n2ez/(2t).

On the other hand, consider the optimal set cover T ∗. Suppose that object i has its

multiplicity increased zi times. In each multiplicity-increasing step, at least one object in

T ∗ has its multiplicity increased. So, after z multiplicity-increasing steps,
∑

i∈T ∗ zi ≥ z and∑
i∈T ∗ wi ≤ t. In particular, zi/wi ≥ z/t for some i ∈ T ∗. Therefore, w(Ŝ) ≥ (1 + 1

wi
)ziwi ≥

(1 + 1
wi

)zi ≥ 2zi/wi ≥ 2z/t (since wi ≥ 1). We conclude that 2z/t ≤ w(Ŝ) ≤ n2ez/(2t), implying

that z = O(t log n).

Similar to Agarwal and Pan’s first MWU algorithm, we can also divide the multiplicity-

increasing steps into rounds, with each round performing up to t multiplicity-increasing

steps. Within each round, the total weight w(Ŝ) increases by at most (1 + 1
2t

)t = O(1). Also

if |Ŝ| increases by a constant factor, we immediately start a new round: because |Ŝ| ≤ w(Ŝ)

and w(Ŝ) may be doubled at most O(log n) times, this case can happen at most O(log n)

times. This ensures that if a point is checked to be ε-heavy at any moment during a round,

it will remain Ω(ε)-heavy at the end of the round. There are only O(log n) rounds.

34

Additional ideas are needed to speed up implementation (in particular, our modified MWU

algorithm with multiplicity-readjustment steps does not work as well now). First, we work

with an approximation m̃i to the multiplicity mi of each object i. By rounding, we may

assume all weights wi are powers of 2. In the original algorithm, mi = (1 + 1
wi

)zi , where zi is

the number of points p ∈ Z that are contained in object i, and Z be the multiset consisting

of all points p that have undergone multiplicity-increasing steps so far. Note that since the

total multiplicity is nO(1), we have zi = O(wi log n). Let Y (wi) be a random sample of Z

where each point p ∈ Z is included independently with probability log2 n
wi

(if wi = O(log2 n),

we can just set Y (wi) = Z). Let yi be the number of points p ∈ Y (wi) that are contained in

object i. By the Chernoff bound, since log2 n
wi

zi = O(log3 n), we have |yi− log2 n
wi

zi| ≤ O(log2 n)

with high probability. By letting m̃i = (1+ 1
wi

)yiwi/ log2 n, it follows that m̃i and mi are within

a factor of O(1) of each other, with high probability, at all times, for all i. Thus, our earlier

analysis still holds when working with m̃i instead of mi. Since zi = O(wi log n), we have

yi = O(log3 n) with high probability. So, the total number of increments to all yi and updates

to all m̃i is O(n log3 n). In lines 5–6, we flip a biased coin to decide whether p should be

placed in the sample Y (2j) (with probability log2 n
2j

) for each j, and if so, we use halfspace

range reporting in the dual to find all objects i of weight 2j containing p, and increment yi

and update m̃i. Over all O(n log n) executions of lines 5–6 and all O(log n) indices j, the

cost of these halfspace range reporting queries is O(n log n · log n · log n) plus the output size.

As the total output size for the queries is O(n log3 n), the total cost is O(n log3 n).

We also need to redesign a data structure for lightness testing subject to multiplicity

updates: For each j, we maintain a subset S(j) containing all objects i with multiplicity

at least 2j, in a data structure to support approximate depth (without multiplicity). The

depth of a point p in Ŝ can be O(1)-approximated by
∑

j 2j · (depth of p in S(j)). Each

subset S(j) undergoes insertion only, and the logarithmic method can be applied to each

S(j). Since |Ŝ| ≤ w(Ŝ) ≤ nO(1), there are O(log n) values of j. This slows down lightness

testing by a logarithmic factor, and so in the case of 3D halfspaces, the overall time bound

is O(n log4 n log log n), excluding the ε-net construction time.

2.5.2 Speeding up quasi-uniform sampling

Finally, we show how to efficiently construct an ε-net of the desired weight for 3D halfs-

paces. We will take advantage of the fact that we need ε-nets only in the discrete setting,

with respect to a given set X of O(n) points. Without loss of generality, assume that all

halfspaces are upper halfspaces.

We begin by sketching (one interpretation of) the quasi-random sampling algorithm of

35

Varadarajan [204] and Chan et al. [69]:

1: Let k = ε|S|.
2: repeat

3: Remove all points p ∈ X with depth in S less than k.

4: Move each point p ∈ X downward so that its depth in S is Θ(k).

5: Pick a random sample R ⊆ S of size |S|/2 + h for some appropriate choice of h.

6: Let S ′ = S.

7: repeat

8: Find an object i ∈ S ′ containing the fewest number of non-equivalent points in X.

9: if object i contains a bad point then add object i to the output.

10: Remove object i from S ′.

11: until S ′ is empty.

12: Set S ← R and k ← k/2.

13: until k is below a constant.

14: Add S to the output.

Figure 2.5: Algorithm for quasi-random sampling.

In line 4, we use the property that the objects are upper halfspaces. In line 8, two points

p and q of X are considered equivalent iff the subset of objects from S ′ containing p is the

same as the corresponding subset for q. In line 9, a point p is said to be bad iff its depth in

S ′ is equal to k and its depth in R ∩ S ′ is less than k/2.

With appropriate choices of parameters, in the case of 3D halfspaces, Chan et al. [69]

showed that the output is an ε-net, with the property that each object of S is in the output

with probability O(1
ε|S|) (these events are not independent, so the output is only a “quasi-

uniform” sample). This property immediately implies that the output has expected weight

O(1
ε
· w(S)
|S|). We will not redescribe the proof here, as our interest lies in the running time.

Consider one iteration of the outer repeat loop. For the very first iteration, lines 3–4 can

be done by answering |X| halfspace range reporting queries in the dual (reporting up to O(k)

objects containing each query point p ∈ X), which takes O(|S| log |S|+ |X|k) total time by

using shallow cuttings (as described in Section 2.4.1). As a result, we also obtain a list of

the objects containing each point; these lists have total size O(|X|k). In each subsequent

iteration, lines 3–4 take only O(|X|k) time by scanning through these lists and selecting the

k lowest bounding planes per list.

36

For each point p, we maintain its depth in S ′ and its depth in R ∩ S ′. Whenever an

object is removed from S ′, we examine all points in the object, and if necessary, decrement

these depth values; this takes O(|X|k) total time (since there are O(|X|k) object-point

containment pairs). Then line 9 can be done by scanning through all points in the object;

again, this takes O(|X|k) total time.

Line 8 requires more care, as we need to keep track of equivalence classes of points. One

way is to use hashing or fingerprinting [174]: for example, map each point p to(∑
object i∈S′ containing p

xi

)
mod u (2.4)

for a random x ∈ [u] and a fixed prime u ∈ Θ(nc), where c is a sufficiently large constant.

Then two points are equivalent iff they are hashed to the same value, with high probabil-

ity. When we remove an object i from S ′, we examine all points contained in the object,

recompute the hash values of these points (which takes O(1) time each, given a table con-

taining xi mod u), and whenever we find two equivalent points with the same hash values,

we remove one of them. This takes O(|X|k) total time (since there are O(|X|k) object-point

containment pairs). To implement line 8, for each object, we maintain a count of the num-

ber of points it contains. Whenever we remove a point, we decrement the counts of objects

containing it; again, this takes O(|X|k) total time. The minimum count can be maintained

in O(1) time per operation without a heap, since the only update operations are decrements

(for example, we can place objects in buckets indexed by their counts, and move an object

from one bucket to another whenever we decrement).

To summarize, the first iteration of the outer repeat loop takes O(|S| log |S|+ |X|k) time,

and each subsequent iteration takes O(|X|k) time. Since k is halved in each iteration, the

total time over all iterations is O(|S| log |S|+ |X|k0) where k0 = ε|S|.
In our application, we need to compute an ε-net of a multiset Ŝ. Since the initial halfspace

range reporting subproblem can be solved on the set S without multiplicities, the running

time is still O(|S| log |S|+ |X|k0) but with k0 = ε|Ŝ|.
For |X|, |S| = O(n), the time bound is O(n log n+nk0), which is still too large. To reduce

the running time, we use one additional simple idea: take a random sample R ⊆ Ŝ of size
c
ε

log n for a sufficiently large constant c. Then E[w(R)] = O(w(Ŝ)

ε|Ŝ| log n). For a fixed point

p of depth ≥ ε|Ŝ| in Ŝ, the depth of p in R is Ω(ε|R|) = Ω(log n) with high probability,

by the Chernoff bound. We then compute a Θ(ε)-net of R, which gives us an ε-net of

Ŝ, with expected weight O(1
ε
· E[w(R)]
|R|) = O(1

ε
· w(Ŝ)

|Ŝ|). The net for R is easier to compute,

since k0 is reduced to ε|R| = O(log n). The final running time for the ε-net construction is

37

O(|S| log |S|+ nk0) = O(n log n).

We can verify that the net’s weight bound holds (and that all points of X are covered),

and if not, repeat the algorithm for O(1) expected number of trials.

We conclude:

Theorem 2.3. Given a set X of points and a set S of weighted halfspaces in R3, where

|X|+ |S| = n, there exists an algorithm that can find a subset of halfspaces from S covering

all points in X, of total weight within O(1) factor of the minimum, in O(n log4 n log log n)

expected time by a randomized Las Vegas algorithm.

2.6 LOWER BOUND FOR APPROXIMATE 1D INTERVALS

Our O(n log n) running time for static geometric set cover (Theorem 3.3) is tight, because

deciding whether a feasible set cover exists requires Ω(n log n) time even for 1D intervals,

which is not difficult to prove by standard techniques in the algebraic decision-tree model [30].

But under the promise that the union of the sets cover all the points, it is not immediately

obvious that finding an approximate solution also requires Ω(n log n) time. Surprisingly, to

the best of our knowledge, this problem has not been addressed in prior literature.

In this part, we prove a matching Ω(n log n) lower bound in the comparison model, for

any Las Vegas algorithm that computes an O(1)-approximate set cover for 1D intervals. The

idea is based on an adversary argument for approximating the number of distinct elements,

which is inspired by a lower bound proof from Chan [61].

Lemma 2.2. Any Las Vegas algorithm that can compute an α-approximate solution for the

number of distinct elements in a set X of n real numbers requires Ω(n log n) time in the

comparison model, for any constant α ≥ 1.

Proof. The idea is to let the adversary maintain a candidate interval Ii = (`i, ri) for the i-th

number xi ∈ X (1 ≤ i ≤ n), where one can set the actual value of xi to be anywhere in the

interval Ii, without violating any of the previous comparison results that the algorithm has

already performed.

To maintain the candidate intervals, suppose the algorithm performs a new comparison

that compares the i-th element xi with the j-th element xj (w.l.o.g. assume i < j). Let

mi = (`i + ri)/2 (resp. mj = (`j + rj)/2) denote the middle point of Ii (resp. Ij). If

mi ≤ mj, then return “xi < xj” as the comparison result, update Ii to be (`i,mi), and

update Ij to be (mj, rj). It is easy to verify that any number in Ii is strictly less than any

number in Ij. Otherwise if mi > mj, then return “xi > xj”, update Ii to be (mi, ri), and

update Ij to be (`j,mj).

38

We say a candidate interval Ii has depth d, if the element xi has been compared d times.

If Ii has depth d, then it must have the form Ii = (k
2d
, k+1

2d
) for some integer 0 ≤ k ≤ 2d− 1.

Suppose the adversary only performs at most δ · n log n comparisons. Then there are at

most δ
d0
· n candidate intervals that have depth ≥ d0 log n, where d0 is a parameter to be set

later. For the rest of the candidate intervals that have depth < d0 log n, there are only at

most
∑d0−1

i=0 2i logn ≤ nd0 distinct types.

It is possible to assign a value for each number within their candidate intervals, such

that all numbers are distinct. In this case, the number of distinct elements in X is n. On

the other hand, if we assign the same value for all numbers that have the same candidate

interval, then there are only at most nd0 + δ
d0
· n distinct numbers in X. The algorithm

cannot distinguish between these two cases, and since Las Vegas algorithms cannot make

any mistakes, it must have approximation factor ≥ n
nd0+ δ

d0
·n .

For any constant α > 1, we can set δ = 1
4α

and d0 = 1
2
, such that the approximation

factor of any Las Vegas algorithm that performs only at most δ · n log n comparisons has

approximation factor at least n
nd0+ δ

d0
·n ≥ α. QED.

As a corollary, we obtain the following lower bound for approximating static set cover for

1D intervals: notice that the problem of α-approximating the number of distinct elements

reduces to computing an α-approximate static set cover for 1D intervals. Given a distinct

elements instance X, create a static 1D intervals set cover instance (X ′, S ′) as follows: for

each number x ∈ X, create a point x in X ′, and create an interval [x− δ, x + δ] in S ′ for a

sufficiently small δ > 0, such that the interval only covers the points in X ′ that equals to

x. One can verify that the number of distinct elements in X equals to the optimal set cover

solution for (X ′, S ′).

Theorem 2.4. Any Las Vegas algorithm that can compute an α-approximate set cover

solution for a set X of points and a set S of intervals in R (where |X| + |S| = n) requires

Ω(n log n) time in the comparison model, for any constant α ≥ 1.

As a special case, this lower bound holds for any deterministic algorithms. It also readily

holds for static set cover for disks in R2 (and halfspaces in R3), by replacing each interval

[`, r] in S with a disk that has that interval as its diameter.

39

CHAPTER 3: DYNAMIC GEOMETRIC SET COVER

After designing approximation algorithms for static geometric set cover in the previous

chapter, we now turn our attention to the dynamic geometric set cover problem, which asks

for maintaining an approximate set cover solution while allowing insertions and deletions of

both points and geometric objects.

3.1 OUR RESULTS

In this chapter, we give a plethora of new fully dynamic geometric set cover data structures

in 1D, 2D and 3D, as summarized in Table 3.1, which substantially improve all the main

results of Agarwal et al. [10] on unweighted intervals in 1D and unweighted unit squares in

2D, and also extend the previous results to more types of geometric ranges. In particular,

our results include the following5:

1. For unweighted arbitrary squares in 2D, We present the first dynamic data structure

that can maintain an O(1)-approximation in sublinear update time. More precisely,

we obtain O(n2/3+δ) update time (with Monte Carlo randomization). Previously, a

dynamic geometric set cover data structure with sublinear update time was known

only for unit squares by Agarwal, Chang, Suri, Xiao, and Xue [SoCG’20]. Compared

to the unit square case, the arbitrary square case is more challenging. (The unit

square case reduces to the case of dominance ranges, i.e., quadrants, via a standard

grid approach; since the union of such ranges forms a “staircase” sequence of vertices,

the problem is in some sense “1.5-dimensional”. In contrast, the arbitrary square

problem requires truly “2-dimensional” ideas.) See Theorem 3.1.

Using more ideas, our update time is further improved to O(n1/2+δ), matching the

previous update time by Agarwal et al. for unit squares. See Theorem 3.6.

2. For 3D halfspaces, we obtain a dynamic data structure with O(n12/13+δ) ≤ O(n0.924)

randomized update time. Our result here is slightly weaker: it only finds the size of

an O(1)-approximate solution (which could be good enough in some applications). If

a solution itself is required, we can still get sublinear update time as long as opt is

sublinear (below n1−δ). This assumption seems reasonable, since sublinear reporting

time is not possible otherwise. (However, we currently do not know how to obtain a

5Throughout this chapter, all the update bounds are amortized.

40

Ranges Approx.
Previous
update time

New
update time

Notes

Unweighted 1D intervals 1 + ε nδ [10] log3 n Theorem 3.4 [73]

Unweighted 2D unit squares O(1) n1/2+δ [10] 2O(
√

logn) Theorem 3.5 [73]

Unweighted 2D arbitrary
squares

O(1) none
n2/3+δ (?)
n1/2+δ (?)

Theorem 3.1 [72]
Theorem 3.6 [73]

Unweighted 2D halfplanes O(1) none n17/23+δ (?) Theorem 3.8 [73]
Unweighted 2D disks
& 3D halfspaces

O(1) none n12/13+δ (?, †) Theorem 3.2 [72]

Weighted 1D intervals 3 + ε none 2O(
√

logn log logn) Theorem 3.9 [73]
Weighted 2D unit squares O(1) none nδ Theorem 3.10 [73]

Table 3.1: Summary of previous and our new data structures for approximate dynamic
geometric set cover. Here, hidden constant factors in the approximation factors and update
bounds may depend on ε and δ. All the updated bounds are amortized. In the entries
marked (?), the results are randomized. In the entry marked (†), the algorithm can only
return the size of the solution, not the solution itself.

stronger time bound of the form O(nα + opt) with α < 1 to report a solution for 3D

halfspaces.) See Theorem 3.2.

The 3D halfspaces case is fundamental, as set cover for 2D disks reduces to set cover

for 3D halfspaces by the standard lifting transformation [100]. Also, by duality, hitting

set for 3D halfspaces is equivalent to set cover for 3D halfspaces, and hitting set for

2D disks reduces to set cover for 3D halfspaces as well.

As a byproduct, our techniques for dynamic set cover also yield an optimal randomized

O(n log n)-time algorithm for static set cover for 2D disks and 3D halfspaces, improving

our earlier O(n log n(log log n)O(1)) result in Chapter 2. See Theorem 3.3.

3. For unweighted intervals in 1D, we obtain the first dynamic data structure with poly-

logarithmic update time and constant approximation factor. We achieve 1 + ε ap-

proximation with O(log3 n/ε) update time, which improves Agarwal et al.’s previous

update bound of O(nδ/ε). (The dynamic hitting set data structure for 1D intervals

in [10] does have polylogarithmic update time but not the set cover data structure.)

See Theorem 3.4.

4. For unweighted unit squares in 2D, we obtain the first dynamic data structure with no(1)

update time and constant approximation factor. The precise update bound is 2O(
√

logn),

which significantly improves Agarwal et al.’s previous update bound of O(n1/2+δ). See

Theorem 3.5.

41

5. For unweighted halfplanes in 2D, we obtain the first dynamic data structure with

sublinear update time and constant approximation factor that can efficiently report

an approximate solution (in time linear in the solution size). The (randomized) up-

date bound is O(n17/23+δ) = o(n0.74). Although our previous solution in Sec. 3.5 can

more generally handle halfspaces in 3D, it has a larger (randomized) update bound

of O(n12/13+δ) and can only output the size of an approximate solution. (Specializing

that solution to halfplanes in 2D can lower the update time a bit, but it would still be

worse than the new bound.) See Theorem 3.8.

Note that although for the static problem, PTASs were known for unweighted arbitrary

squares and disks in 2D [179] (and exact polynomial-time algorithms were known for half-

planes in 2D [134]), the running times of these static algorithms are superquadratic. Thus,

for any of the 2D problems above, constant approximation factor is the best one could hope

for under the current state of the art if the goal is sublinear update time.

A second significant contribution of this chapter is to extend the dynamic set cover da-

ta structures to weighted instances, thus providing the first nontrivial results for dynamic

weighted geometric set cover. (Although there were previous results on weighted indepen-

dent set for 1D intervals and other ranges by Henzinger, Neumann, and Wiese [138], and

Compton et al. [94], no results on dynamic weighted geometric set cover were known even

in 1D. This is in spite of the considerable work on static weighted geometric set cover

[69, 117, 134, 177, 204].) In particular, we present the following results:

6. For weighted intervals in 1D, we obtain a dynamic data structure with no(1) update

time and constant approximation factor. The precise update bound is 2O(
√

logn log logn)

and the approximation factor is 3 + o(1). See Theorem 3.9.

7. For weighted unit squares in 2D, we also obtain a dynamic data structure with O(nδ)

update time and constant approximation factor (where the constant depends on δ and

weights are assumed to be polynomially bounded integers). Even when compared to

Agarwal et al.’s unweighted O(n1/2+δ) result [10], our result is a substantial improve-

ment, besides being more general. See Theorem 3.10.

For the cases of (unweighted or weighted) unit squares in 2D and unweighted halfplanes

in 2D, the same results hold for the hitting set problem—given a set of points and a set

of ranges, find the smallest (or minimum weight) subset of points that hit all the given

ranges—because hitting set is equivalent to set cover for these types of ranges by duality.

42

3.2 OVERVIEW OF OUR TECHNIQUES

We give seven different methods to achieve these results. Many of these methods require

significant new ideas that go beyond minor modifications of previous techniques:

1. For unweighted 2D arbitrary squares, our algorithms are obtained by handling two

cases differently: when opt is small and when opt is large. Intuitively, the small opt

case is easier since we are generating fewer objects, but the large opt case also seems

potentially easier since we can tolerate a larger additive error when targeting an O(1)-

factor approximation—so, we are in a “win-win” situation. For our algorithms for

3D halfspaces, we even find it necessary to handle an intermediate case when opt is

medium (achieving sublinear time for sublinear opt).

Our algorithms for the small opt case are based on the previous static MWU algo-

rithms [14, 46, 71] (also see Chapter 2). The adaptation of these static algorithms is

not straightforward, and requires using various known techniques in new ways ((≤ k)-

levels in arrangements, for our 2D squares algorithm in Section 3.4.1, and “augmented”

partition trees, for our 3D halfspaces algorithm in Section 3.5.1). The medium case

for 3D halfspaces (in Section 3.5.2) is technically even more challenging (where we use

“shallow” partition trees and other ideas).

Our algorithm for squares in the large opt case (in Section 3.4.2) is different (not based

on MWU), and interestingly uses quadtrees in a non-obvious way. For 3D halfspaces,

our algorithm in the large opt case (in Section 3.5.3) can compute only the value of an

approximate solution, and is based on random sampling. However, the obvious way

to use a random sample (just solving the problem on a random subset of points and

objects) does not work. We use sampling in a nontrivial way, combining geometric

cuttings with planar graph separators.

2. We further improve the update time for unweighted 2D arbitrary squares. In our

previous method, the small opt algorithm was obtained by modifying a known stat-

ic approximation algorithm based on multiplicative weight updates [14, 46, 71, 89],

and achieved Õ(opt2) update time. The large opt algorithm employed quadtrees and

achieved Õ(n1/2+δ+n/opt) update time. Combining the two algorithms yielded Õ(n2/3)

update time, as the critical case occurs when opt is near n1/3. We modify the large opt

algorithm by incorporating some extra technical ideas (treating so-called “light” vs.

“heavy” canonical rectangles differently, and carefully tuning parameters); this allows

us to improve the update time to O(n1/2+δ) uniformly for all opt, pushing the approach

to its natural limit.

43

3. For unweighted 1D intervals, Agarwal et al. [10] obtained their result withO(nδ) update

time by a “bootstrapping” approach, but extra factors accumulate in each round of

bootstrapping. To obtain polylogarithmic update time, we refine their approach with

a better recursion, whose analysis distinguishes between “one-sided” and “two-sided”

intervals.

4. For unweighted 2D unit squares, it suffices to solve the problem for quadrants (i.e.,

2-sided orthogonal ranges) due to a standard reduction. We adopt an interesting geo-

metric divide-and-conquer approach (different from more common approaches like k-d

trees or segment trees). Roughly, we form an r×r nonuniform grid, where each colum-

n/row has O(n/r) points, and recursively build data structures for each grid cell and

for each grid column and each grid row. Agarwal et al.’s previous data structure [10]

also used an r × r grid but did not use recursion per column or row; the boundary of

a quadrant intersects O(r) out of the r2 grid cells and so updating a quadrant causes

O(r) recursive calls, eventually leading to O(n1/2+δ) update time. With our new ideas,

updating a quadrant requires recursive calls in only O(1) grid columns/rows and grid

cells, leading to no(1) update time.

5. For unweighted 2D halfplanes, we handle the small opt case by adapting our previous

method for unweighted 3D halfspaces in Sec. 3.5, but we present a new method for the

large opt case. We propose a geometric divide-and-conquer approach based on the well-

known Partition Theorem of Matoušek [165]. The Partition Theorem was originally

formulated for the design of range searching data structures, but its applicability to

decompose geometric set cover instances is less apparent. The key to the approximation

factor analysis is a simple observation that the boundary of the union of the halfplanes

in the optimal solution is a convex chain with O(opt) edges, and so in a partition of

the plane into b disjoint cells, the number of intersecting pairs of edges and cells is

O(opt + b).

For weighted dynamic geometric set cover, none of the previous approaches generalizes.

Essentially all previous approaches for the unweighted setting make use of the dichotomy of

small vs. large opt: in the small opt case, we can generate a solution quickly from scratch; on

the other hand, in the large opt case, we can tolerate a large additive error (in particular, this

enables divide-and-conquer with a large number of parts). However, all this breaks down in

the weighted setting because the cardinality of the optimal solution is no longer related to

its value. A different way to bound approximation factors is required.

6. For weighted 1D intervals, our key new idea is to incorporate dynamic programming

44

(DP) into the divide-and-conquer. In addition, we use a common trick of grouping

weights by powers of a constant, so that the number of distinct weight groups is

logarithmic.

7. For weighted 2D unit squares, we again use a geometric divide-and-conquer based on

the r × r grid, but the recursion gets even more interesting as we incorporate DP.

(We also group weights by powers of a constant.) To keep the approximation factor

O(1), the number of levels of recursion needs to be O(1), but we can still achieve O(nδ)

update time.

Application to static geometric set cover. Although we did not intend to revisit the

static problem, our techniques for dynamic 3D halfspaces set cover in Sec. 3.5 can lead

to a randomized O(1)-approximation algorithm for set cover for 3D halfspaces running in

O(n log n) time, which completely eliminates the extra log log n factors in the result of our

previous paper [71] in Chapter 2 and is optimal (in comparison-based models)! This bonus

result is interesting in its own right, and is described in Section 3.6.

Remarks. In some of our algorithms, notably the small opt algorithms for squares and

3D halfspaces (in Sections 3.4.1 and 3.5.1) and the large opt algorithm for 3D halfspaces

(in Section 3.5.3), the data structure part is “minimal”: we just assume that points and

objects are stored separately in standard range searching data structures. We describe

sublinear-time algorithms to compute a solution from scratch, using range searching as

oracles. Dynamization becomes trivial, since range searching data structures typically are

already known to support insertions and deletions. This type of approach also easily enables

other operations, such as answering “range-restricted” queries: e.g., given a query orthogonal

range, compute a set cover solution for the subset of all points inside the range (since a range

searching structure for the subset can be implicitly derived from a range searching structure

for the entire point set).

The topic of sublinear-time algorithms has received considerable attention in the algo-

rithms community, due to applications to big data (where we want to solve problems without

examining the entire input). A similar model of sublinear-time algorithms where the input

is augmented with range searching data structures was proposed by Czumaj et al. [98], who

presented results on approximating the weight of the Euclidean minimum spanning tree in

any constant dimension under this model.

Our results in Sec. 3.4, 3.9, 3.5 and 3.10 are randomized in the Monte Carlo sense: the

computed solution may not always be correct, but it is correct with high probability, i.e.,

45

probability at least 1−1/nc for an arbitrarily large constant c. The error probability bounds

hold even when the user has knowledge of the random choices made by the algorithms.

(We do not assume an “oblivious adversary”; in fact, the algorithms make a new set of

random choices each time it computes a solution, and the data structures themselves are

not randomized.)

The update times are better than stated in many cases, notably, when opt is small or when

opt is large. More precise opt-sensitive bounds are given in lemmas and theorems throughout

the chapter. (The O(n2/3+δ), O(n1/2+δ), O(n12/13+δ) and O(n17/23+δ) bounds are obtained

by “balancing” two or more of these opt-sensitive bounds.)

We have assumed that we are required to compute a solution after every update. In some

(but not all) cases, the actual update cost is smaller than the cost of computing a solution (so

this would give better results if we need the solution only after performing several updates).

3.3 PRELIMINARIES

3.3.1 Notations

For dynamic geometric set cover, in a size query, we want to output an approximation

to the size opt. In a membership query, we want to determine whether a given object is in

the approximate solution maintained by the data structure. In a reporting query, we want

to report all elements in the approximate solution (in time sensitive to the output size). As

in the previous work [10, 72], in all of our results, the set cover solution we maintain is a

multi-set of ranges (i.e., each range may have multiple duplicates).

3.3.2 Review of an MWU algorithm

To keep this chapter self-contained, we briefly review the static approximation algorithm

for geometric set cover, based on the multiplicative weight update (MWU) method. Some of

our dynamic algorithms will be built upon this algorithm.

Specifically, we consider our randomized algorithm in Chapter 2, which is a variant of a

standard algorithm by Brönnimann and Goodrich [46] or Clarkson [89] (see also Agarwal

and Pan [14]). Below, c0 is a sufficiently large constant. The depth of a point p in a set S of

objects is the number of objects of S containing p. A subset of objects T ⊆ S is called an

ε-net of S if all points with depth ≥ ε|S| in S are covered by T . The size |Ŝ| of a multiset

Ŝ refers to the sum of the multiplicities of its elements
∑

i∈Smi.

46

1: Guess a value t ∈ [opt, 2 opt].

2: Define a multiset Ŝ where each object i in S initially has multiplicity mi = 1.

3: while true do . call this the start of a new round

4: Fix ρ := c0t logn

|Ŝ| and take a random sample R of Ŝ with sampling probability ρ.

5: while there exists a point p ∈ X with depth in R at most c0
4

log n do

6: for each object i containing p do . call lines 6–8 a multiplicity-doubling step

7: Double its multiplicity mi, i.e., insert mi new copies of object i into Ŝ.

8: For each copy, independently decide to insert it into R with probability ρ.

9: if the number of multiplicity-doubling steps in this round exceeds t then

10: Go to the next iteration of the outer while loop (line 3) and start a new round.

11: Terminate and return a 1
8t

-net of R.

Figure 3.1: MWU for set cover on (X,S).

The correctness of the algorithm follows from the following observations, where were known

in the previous works:

Claim 3.1. Assume that the guess t is at least opt.

(a) If a point p exists in line 5, then the depth of p in Ŝ is at most 1
2t
|Ŝ| w.h.p.

(b) The algorithm terminates in O(log n
t
) rounds and O(t log n

t
) multiplicity-doubling steps

w.h.p. Furthermore, |Ŝ| ≤ nO(1) at all times w.h.p.

(c) Any 1
8t

-net of R in line 11 is a set cover of X w.h.p.

Proof.

(a) The depth of p in R is at most c0
4

log n ≤ 1
4t
ρ|Ŝ| (note that |Ŝ| can only increase during

a round). It follows that the depth of p in Ŝ is at most 1
2t
|Ŝ| w.h.p. by a Chernoff

bound, as shown in [71, Section 4.2].

(b) This part follows from standard analysis of the MWU method [14, 46, 71], which we

include for the sake of completeness: Each multiplicity-doubling step increases |Ŝ| by a

factor of at most 1+ 1
2t

, since line 5 guarantees the depth of p in Ŝ is at most 1
2t
|Ŝ| w.h.p.

by (a). Thus, after z multiplicity-doubling steps, we have |Ŝ| ≤ n(1 + 1
2t

)z ≤ nez/(2t).

On the other hand, consider a set cover T ∗ of size t ≥ opt. In each multiplicity-doubling

47

step, at least one of the objects in T ∗ that contain p has its multiplicity doubled. So,

after z multiplicity-doubling steps, the total multiplicity in T ∗ is at least t2z/t. We

conclude that t2z/t ≤ |Ŝ| ≤ nez/(2t), implying that z = O(t log n
t
). Furthermore, |Ŝ|

increases by at most a factor of (1 + 1
2t

)t ≤ 2 in each round w.h.p.; in particular, |Ŝ| is
bounded by nO(1) at the end of O(log n

t
) rounds.

(c) When the algorithm reaches line 11, the depth in R of all points of X is at least
c0
4

log n ≥ |R|
8t

w.h.p. (by a Chernoff bound, since the expected size of R is c0t log n),

and so X will be covered by a 1
8t

-net of R.

QED.

For objects that are axis-aligned squares in 2D, disks in 2D, or halfspaces in 3D, ε-nets of

size O(1
ε
) exist, and thus the above algorithm yields a set cover of size O(t), i.e., a constant-

factor approximation, assuming that the guess t is indeed between opt and 2 opt. By known

algorithms (e.g., [78]), the net for R in line 11 can be constructed in Õ(|R|) = Õ(t) time.

Remarks. In the original version of MWU, the “lightness” condition in line 5 was whether

the depth of p in Ŝ is at most O(1
t
|Ŝ|). In the above randomized version, lightness is tested

with respect to the sample R instead, which is computationally easier to work with. Also,

in the original version, in the end the algorithm returns a Θ(1
t
)-net of the multiset Ŝ. In the

above version, a net of R is returned instead, which is again easier to compute.

Several modifications to the MWU method have been explored in previous work. For

example, in the first algorithm of Agarwal and Pan [14], each round examines all points of

X in a fixed order and test for lightness of the points one by one (based on the observation

that a point found to have large depth will still have large depth by the end of the round).

In the previous chapter, we have also added a step at the beginning of each round, where

the multiplicities are rescaled and rounded, so as to keep |Ŝ| bounded by O(n). These

modifications led to a number of different static implementations running in Õ(n) time.

3.4 UNWEIGHTED SQUARES

Our first result for dynamic set cover is for axis-aligned squares. Previously, a sublinear

time algorithm for dynamic set cover was known only for unit squares [10]. Our method will

be divided into two cases: when opt is small and when opt is large. Let t be a guess on opt.

We will maintain our data structure for each possible t = 2i in parallel. When the guess is

wrong, our algorithm will be able to tell whether t is approximately smaller or larger than

48

opt w.h.p. In the end we take the one with minimum size among all returned solutions. The

update time will increase only by a factor of O(log n).

3.4.1 Algorithm for small opt

Our algorithm for the small opt case will be based on the randomized MWU algorithm

described in Alg. 3.1 of Section 3.3.2. The key is to realize that this algorithm can actually

be implemented to run in sublinear time, assuming that the points and the objects have

been preprocessed in standard range searching data structures. Since these structures are

dynamizable, we can just re-run the MWU algorithm from scratch after every update.

Data structures. Our data structures are simple. We store the point set X in the stan-

dard 2D range tree [100]. For each square s with center (x, y) and side length 2z, map s

to a point s↑ = (x, y, x − y, x + y, x − z, x + z, y − z, y + z) in 8D. We also store the lifted

point set S↑ = {s↑ : s ∈ S} in an 8D range tree [12, 100]. Range trees support insertions

and deletions in X and S in polylogarithmic (amortized) time.

Computing a solution. We now show how to compute an O(1)-approximate solution in

sublinear time when opt is small by running Algorithm 3.1 using the above data structures.

At first glance, linear time seems unavoidable: (i) the obvious way to find low-depth points in

line 5 is to scan through all points of X in each round (as was done in previous algorithms [14,

71]), and (ii) explicitly maintaining the multiplicities of all points would also require linear

time.

To overcome these obstacles, we observe that (i) we can use data structures to find the

next low-depth point p without testing each point one by one (recall that there are only Õ(t)

multiplicity-doubling steps), and (ii) multiplicities do not need to be maintained explicitly, so

long as in line 8 we can generate a multiplicity-weighted random sample among the objects

containing a given point p efficiently (recall that the sample R has only Õ(t) size). The

subproblem in (ii) is a weighted range sampling problem, which is nontrivial when weights

are implicitly represented.

Finding a low-depth point. Let b := c0
2

log n. Each time we want to find a low-depth

point in line 5, we compute (from scratch) L≤b(R), the (≤ b)-level of R, i.e., the collection of

all cells in the arrangement of the squares of depth at most b. It is known [192] that L≤b(R)

has O(|R|b) combinatorial complexity and can be constructed in Õ(|R|b) time, which is Õ(t)

(since |R| = Õ(t) and b = Õ(1)). Each cell γ in L≤b(R) is a rectilinear polygon, and can

49

be decomposed into O(|γ|) rectangular subcells. The total number of subcells remains Õ(t).

To find a point p of X that has depth in R at most b, we simply examine each rectangular

subcell of L≤b(R), and perform an orthogonal range query to test if the subcell contains a

point of X. All this takes Õ(t) time.

As there are Õ(t) multiplicity-doubling steps, the total cost is Õ(t2).

Figure 3.2: The 1-level (all cells of depth exactly 1) in an arrangement of squares.

Weighted range sampling. For each square s with center (x, y) and side length 2z, define

its dual point s∗ to be (x, y, z) in 3D. For each point p = (px, py), define its dual region p∗

to be {(x, y, z) : z ≥ max{|x− px|, |y− py|}} in 3D. Then a point p is in the square s iff the

point s∗ is in the region p∗.

Let Q be the set of all points p for which we have performed multiplicity-doubling steps

thus far. Note that |Q| = Õ(t), because there are only at most O(t log n
t
) multiplicity-

doubling steps. Let b′ = c′0 log n for a sufficiently large constant c′0. Each time we perform

a multiplicity-doubling step, we compute (from scratch) L≤b′(Q∗), the (≤ b′)-level of the

dual regions Q∗ = {p∗ : p ∈ Q}. This structure corresponds to planar order-(≤ b′) L∞

Voronoi diagrams. By known results [57, 162, 192], L≤b′(Q∗) has O(|Q|(b′)2) combinatorial

complexity and can be constructed in Õ(|Q|(b′)2) time, which is Õ(t) (since |Q| = Õ(t)

and b′ = Õ(1)). Each cell γ of L≤b′(Q∗) is a polyhedron, which is a region sandwiched

between a lower envelope γ+ and an upper envelope γ− of surfaces of the form z = max{|x−
c|, |y− c′|}; note that the upper envelope γ− has constant complexity. By taking the vertical

decomposition of γ+, we can divide each cell γ into O(|γ|) subcells, where each subcell has

constant complexity, and its faces are contained in planes of only 8 possible orientations,

namely, planes of the form x = c, y = c, y = ±x+ c, z = ±x+ c, or z = ±y + c. The total

number of subcells remains Õ(t).

The multiplicity of a square s ∈ S is equal to 2depth of s∗ in Q∗ (since each p∗ in Q∗ containing

s∗ causes the multiplicity of s to double). In particular, since multiplicities are bounded by

50

nO(1), the depth (i.e., level) of s∗ must be logarithmically bounded. So, each s∗ is covered

by L≤b′(Q∗), and the multiplicity of s is determined by the cell of L≤b′(Q∗) containing the

point s∗ (since points in the same cell have the same depth).

To generate a multiplicity-weighted sample of the squares containing p for line 8, after p

has been inserted to Q, we examine all subcells of L≤b′(Q∗) that are contained in p∗. These

subcells contain the dual points of all squares containing p. For each such subcell γ, we

identify the squares s ∈ S for which s∗ ∈ γ. This reduces to an orthogonal range query in

the 8D point set S↑, and the answer can be expressed as a disjoint union of Õ(1) canonical

subsets in the range tree [12, 100]. Knowing the sizes and multiplicities of these canonical

subsets for all such Õ(t) cells, we can then generate the weighted sample in time Õ(t) plus

the size of the sample: define the weight of a canonical subset to be the total weight of all

dual points contained in it. To sample a square containing p, just first sample a canonical

subset according to the weights, then sample a dual point within the canonical subset in O(1)

time (since in the range tree, we keep a list of the dual points contained in each canonical

subset).

Hence, the total cost of all Õ(t) multiplicity-doubling steps is Õ(t2).

In addition, we need to generate a new weighted sample R (with a new sampling prob-

ability ρ) in line 4 at the beginning of each round, which can be done similarly as above:

the multiplicity of each square s in S is determined by the subcell of L≤b′(Q∗) containing it,

and each subcell of L≤b′(Q∗) maps to Õ(1) canonical subsets, for a total of Õ(t) canonical

subsets. To sample a square in R, first sample a canonical subset according to the weights

and then sample a dual point within the canonical subset. This takes Õ(t) time plus the size

of the sample R (which is Õ(t)), for each of the O(log n) rounds. As mentioned, the final

net computation in line 11 takes Õ(t) time. We have thus obtained:

Lemma 3.1. There exists a data structure for the dynamic set cover problem for a set X

of points and a set S of axis-aligned squares in R2 (where |X|+ |S| = O(n)), that supports

insertions and deletions in Õ(1) time and can find an O(1)-approximate solution w.h.p. to

the set cover problem in Õ(opt2) amortized time.

3.4.2 Algorithm for large opt

To complement our solution for the small opt case, we now show that the problem also gets

easier when opt is large, mainly because we can afford a large additive error. We describe a

different, self-contained algorithm for this case (not based on modifying MWU), interestingly

by using quadtrees in a novel way.

51

To allow for both multiplicative and additive error, we use the term (α, β)-approximation

to refer to a solution with cost at most α opt + β.

For simplicity, we assume that all coordinates are integers bounded by U = poly(n). At

the end, we will comment on how to remove this assumption.

In the standard quadtree, we start with a bounding square cell and recursively divide a

square cell into four square subcells. We define the size of a cell Γ to be the number of vertices

in Γ among the squares of S, plus the number of points of X in Γ. We stop subdividing

when a leaf cell has size at most b, where b is a parameter to be set later. This yields a

subdivision into O(n
b
) cells per level, and O(n

b
logU) cells in total. An example is shown

in Fig. 3.3. The quadtree decomposition can be easily made dynamic under insertions and

deletions of points and squares.

5 5 10 15

18

16

14

12

10

8

6

4

2

2

4

6

8

10

Figure 3.3: Example of a quadtree decomposition.

For each leaf cell Γ, a square in S intersecting Γ is called short if at least one of its vertices

is in the cell, and long otherwise, as shown in Fig. 3.4. Note that a long square can have at

most one side crossing the cell, because the quadtree cell Γ is also a square. The union of

the long squares within the cell is defined by at most 4 long squares—call these the maximal

long squares. (If there is a square containing Γ, we can designate one such square as the

maximal long square.) For each leaf cell Γ, it suffices to approximate the optimal set cover

for the input points in X ∩ Γ using only the short squares plus the at most 4 maximal long

squares in Γ. By charging each square in the optimal solution to the cells containing its

4 vertices (i.e., the square is short in these cells), we see that the sum of the sizes of the

optimal covers in the leaf cells is at most 4 opt +O(n
b

logU): let optΓ denote the size of the

optimal solution in cell Γ, and opt′Γ denote the size of the optimal solution that uses only

short squares to cover the complement of the union of the maximal long squares in Γ; then

52

we have ∑
Γ

optΓ ≤
∑

Γ

(opt′Γ + 4) ≤
∑

Γ

opt′Γ + 4 · (# of leaf cells)

≤ 4 · opt +O(n
b

logU),

(3.1)

which is indeed an O(1)-approximation if we choose b ≥ n logn
opt

.

Figure 3.4: Short square (left) and long square (right). The quadtree cell is shaded.

Note that the complement of the union of the at most 4 maximal long squares in a cell

Γ is a rectangle rΓ. We will store the short squares in the cell Γ in a data structure SΓ to

answer the following type of query:

Given any query rectangle r, compute an O(1)-approximation to the optimal set

cover for the points in X ∩ r using only the short squares.

Assuming the availability of such data structures SΓ, we can solve the dynamic set cover

problem as follows:

• An insertion/deletion of a square s in S requires updating 4 of these data structures

SΓ for the leaf cells Γ containing the 4 vertices of s, and also updating the maximal

long squares for all leaf cells in Õ(n
b
) time.

• An insertion/deletion of a point p in X requires updating one data structure SΓ for

the leaf cell Γ containing p.

• Whenever we want to compute a set cover solution, we examine all Õ(n
b
) cells Γ and

query the data structure SΓ for rΓ, and return the union of the answers.

First implementation of SΓ. A simple way to implement the data structure SΓ is as

follows: in an update, we just recompute an approximate solution from scratch for every

possible query rectangle in Γ. Since there are only O(b4) combinatorially different query

rectangles, and static approximate set cover on O(b) squares and points takes Õ(b) time [14,

71], the update time is Õ(b5), and the query time is trivially O(1).

As a result, the cost of insertion/deletion in the overall method is Õ(b5 + n
b
).

53

Improved implementation for SΓ. We further improve the update time for the data

structure SΓ. Instead of recomputing solutions for all O(b4) rectangles, the idea is to recom-

pute solutions for a smaller number of “canonical rectangles”. More precisely, by using a 2D

range tree [12, 100] for the O(b) points in X ∩Γ, with branching factor a in each dimension,

we can form a set of canonical rectangles with total size O(aO(1)b(loga b)
2), such that every

query rectangle can be decomposed into O((loga b)
2) canonical rectangles, ignoring portions

that are empty of points. We set a := bδ for an arbitrarily small constant δ > 0.

For any rectangle r, call a square s intersecting it short if at least one of its vertices is

in r, and long otherwise (similar to before). We prove that for each canonical rectangle r

with size bi, to find an optimal set cover for r, it suffices to consider only O(bi) candidate

long squares among all long squares with respect to r: first consider the long squares that

cut across r vertically. When we vertically project the points in r onto the x-axis, such long

square covers a 1D interval on the x-axis (notice that now r is a rectangle rather than a

square, so a long square may possibly have two edges that cut across r). So we can view the

problem as a 1D interval set cover instance. Sort the projected points p1, . . . , pk (k ≤ bi) in

increasing order. If in the optimal solution we pick a long square that projects to an interval

[l0, r0] where l0 ∈ [pi, pi+1), then we can instead greedily pick the projected interval with left

endpoint in [pi, pi+1) and has the largest right endpoint. Thus we only need to consider O(bi)

such “maximal” intervals as candidates. A similar statement holds for the long squares that

cut across r horizontally.

These “maximal” long squares can be found in Õ(bi) time by standard orthogonal range

searching. We can thus approximate the optimal set cover for the points in the canonical

rectangle r, using the O(bi) short squares and maximal long squares with respect to r, in

Õ(bi) time by known static set cover algorithms [14, 71]. The total time over all canonical

rectangles is Õ(aO(1)b(loga b)
2) = Õ(b1+O(δ)).

Given a query rectangle, we can decompose it into O((loga b)
2) = O(1) canonical rectangles

and return the union of the optimal solutions in the canonical rectangles, which is an O(1)-

approximation (more precisely, an O(δ−2)-approximation).

As a result, the cost of insertion/deletion in the overall method is Õ(b1+O(δ) + n
b
).

Removing the dependency on U . When U may be large, we can reduce the tree depth

from O(logU) to O(log n) by replacing the quadtree with the BBD tree of Arya et al. [27].

Each cell in the BBD tree is the set difference of two quadtree squares, one contained in the

other. The size of each child cell is at most a fraction of the size of the parent cell. As before,

we stop subdividing when a leaf cell has size at most b. Since any such leaf cell has size

Θ(b) now, the number of leaf cells is O(n
b
). The BBD tree can be maintained dynamically

54

in polylogarithmic amortized time (for example, by periodically rebuilding when subtrees

become unbalanced). Since a leaf cell Γ is the difference of two quadtree squares, it is not

difficult to see that the number of maximal long squares in Γ remains O(1). So, our previous

analysis remains valid.

Lemma 3.2. Given a parameter b, there exists a data structure for the dynamic set cover

problem for a set X of points and a set S of axis-aligned squares in R2 (where |X| + |S| =
O(n)), that maintains an (O(1), O(n

b
))-approximate solution with Õ(b1+O(δ) + n

b
) amortized

insertion and deletion time.

Combining the algorithms. When opt ≤ n1/3, we use the algorithm for small opt; the

running time is Õ(opt2) ≤ Õ(n2/3). When opt > n1/3, we use the algorithm for large opt

with b = n2/3, so that an (O(1), O(n
b
))-approximation is indeed an O(1)-approximation; the

running time is Õ(b1+O(δ) + n
b
) = O(n2/3+O(δ)).

Reporting the solution. For the small opt algorithm, the final ε-net after MWU already

gives the actual solution. For the large opt algorithm, the actual solution can be reported

by taking the union of all solutions in the leaf cells of the quadtree (each of them consists of

at most 4 maximal long squares and the solution in the complement region). So a reporting

query takes Õ(opt) time.

Theorem 3.1. There exists a data structure for the dynamic set cover problem for a set X

of points and a set S of axis-aligned squares in R2 (where |X|+ |S| = O(n)), that maintains

an O(1)-approximate solution w.h.p. with O(n2/3+δ) amortized insertion and deletion time

for any constant δ > 0. The actual solution can be reported in Õ(opt) time.

The case of fat rectangles (where the ratio of the side lengths is bounded by a constant) can

be reduced to squares, since such rectangles can be replaced by O(1) squares (increasing the

approximation factor by only O(1)). Our approach can be modified to work more generally

for homothets of a fixed fat convex polygon with a constant number of vertices.

3.5 UNWEIGHTED 3D HALFSPACES

In this section, we study dynamic geometric set cover for the more challenging case of

3D halfspaces. Using the standard lifting transformation [100], we can transform 2D disks

to 3D upper halfspaces. For simplicity, we assume that all halfspaces are upper halfspaces;

Section 3.5.4 discusses how to modify our algorithms when there are both upper and lower

halfspaces. Our method will be divided into three cases: small, medium, and large opt.

55

3.5.1 Algorithm for small opt

Similar to the small opt algorithm for squares in Section 3.4.1, we describe a small opt al-

gorithm for halfspaces based on the randomized MWU algorithm in Section 3.3.2. Although

our earlier approach using levels in arrangements could be generalized, we describe a better

approach based on augmenting partition trees with counters.

Data structures. We store the 3D point set X in Matoušek’s partition tree [165]: The

tree has height O(log n) and degree r for a sufficiently large constant r. Each node v stores

a simplicial cell Γv and a “canonical subset” Xv ⊂ Γv, where Xv = X at the root v, and Γv

is contained in Γparent(v), Xv is the disjoint union of Xv′ over all children v′ or v, and Xv has

constant size at each leaf v. Furthermore, any halfspace crosses O(n2/3+δ) cells of the tree

for any arbitrarily small constant δ > 0 (depending on r). Here a halfspace h crosses a cell

Γ iff the boundary of h intersects Γ.

For each upper halfspace h, let h∗ denote its dual point; for each point p, let p∗ denote its

dual upper halfspace. (The dual point of a halfspace z ≥ ax+ by − c is defined as the point

(a, b, c), and the dual upper halfspace of a point is defined vice versa, so that p is in h iff h∗

is in p∗ [100].)

We also store the 3D dual point set S∗ = {h∗ : h ∈ S} in Matoušek’s partition tree. Each

node v stores a cell Γv and a canonical subset S∗v ⊂ Γv like above.

Matoušek’s partition trees can be built in Õ(n) time and support insertions and deletions

in X and S in polylogarithmic time. (In the static case, there are slightly improved partition

trees reducing the nδ factor in the crossing number bound [63, 165, 167], but these will not

be important to us.)

Computing a solution. We now show how to compute an O(1)-approximate solution in

sublinear time when opt is small by running Algorithm 3.1 using the above data structures.

As in Section 3.4.1, the main subproblems are (i) finding a low-depth point with respect to

R, and (ii) weighted range sampling, where the weights are the multiplicities (which are not

explicitly stored).

Finding a low-depth point. We maintain two values at each node v of the partition tree

of X:

• cv is the number of halfspaces of R containing Γv but not containing Γparent(v).

• dv is the minimum depth among all points in Xv with respect to the halfspaces of R

crossing Γv.

56

The overall minimum depth with respect to R is given by the value dv at the root v. When-

ever we insert a halfspace h to R, for each of the O(n2/3+δ) cells Γv crossed by h, we update

the counters cv′ for the children v′ of the node v; afterwards, we update the value dv bottom-

up according to the formula dv = minchild v′ of v(dv′ + cv′), i.e., we first recursively update dv′

for all affected children v′, and then update dv using the formula. Thus, all values can be

maintained in O(n2/3+δ) time per insertion to R.

As there are Õ(t) insertions to R, the total cost is Õ(tn2/3+δ). This cost covers the resetting

of counters at every round.

(We remark that the idea of augmenting nodes of partition trees with counters appeared

before in at least one prior work on dynamic geometric data structures by Chan [60, Theo-

rem 4.1].)

Weighted range sampling. Let Q be the set of all points p for which we have performed

multiplicity-doubling steps thus far. Note that |Q| = Õ(t). The multiplicity of a halfspace

h ∈ S is 2depth of h∗ in Q∗ . To implicitly represent the multiplicities and their sum, we maintain

two values at each node v of the partition tree for S∗:

• cv is the number of dual halfspaces of Q∗ containing Γv but not containing Γparent(v).

• mv is the sum of 2depth of h∗ among the halfspaces of Q∗ crossing Γv over all h∗ ∈ S∗v .

Whenever we insert a point p to Q, for each of the O(n2/3+δ) cells Γv crossed by the dual

halfspace p∗, we update the counters cv′ for the children v′ of the nodes v; we also update

the value mv bottom-up according to the formula mv =
∑

child v′ of v 2cv′mv′ . Thus, all values

can be maintained in O(n2/3+δ) time per insertion to Q.

To generate a weighted sample of the halfspaces of S containing p for line 8, we find all

O(n2/3+δ) cells Γv crossed by the dual halfspace p∗, and consider the canonical subsets S∗v′

for the children v′ of v with Γv′ contained in p∗. We can then sample from these canonical

subsets, weighted by mv′2
∑
u cu , where the sum is over all ancestors u of v′. All this takes

time O(n2/3+δ) plus the size of the sample.

Hence, the total cost of all Õ(t) multiplicity-doubling steps is Õ(tn2/3+δ).

Lemma 3.3. There exists a data structure for the dynamic set cover problem for a set X

of points and a set S of upper halfspaces in R3 (where |X| + |S| = O(n)), that supports

insertions and deletions in Õ(1) time and can find an O(1)-approximate solution w.h.p. in

Õ(opt · n2/3+δ) time.

57

3.5.2 Algorithm for medium opt

The preceding algorithm works well only when opt is smaller than about n1/3. We show

that a more involved algorithm, also based on MWU, can achieve sublinear time even when

opt approaches n1−δ. The basic approach is to use shallow versions of the partition trees [166].

Data structures. We begin with a lemma that was used before in some of the previous

static algorithms by Agarwal and Pan [14] and ours [71]. With this lemma, we can effectively

make every input halfspace shallow, i.e., contain at most Õ(n
t
) points. The extra condition in

the second sentence of the lemma below is new, and is needed in order to make dynamization

possible later (difficulty arises when halfspaces in T0 get deleted). Because of this extra

condition, we describe a construction which is different from the previous algorithms [14, 71].

Lemma 3.4. Given a set X0 of n points, a set S0 of n halfspaces in 3D and a parameter t,

we can construct a subset of halfspaces T0 ⊆ S0 of size O(t), and a subset of points A0 ⊆ X0,

such that (i) each point in A0 is covered by T0, and (ii) each halfspace of S0 − T0 contains

Õ(n
t
) points of X0 − A0.

Furthermore, we can decompose A0 =
⋃
h∈T0

Ah, where Ah has size O(n
t
) for each h ∈ T0,

such that each point in Ah is covered by h. The construction takes Õ(n) time.

Proof. We use a simple “greedy” approach: We examine each halfspace h ∈ S in an arbitrary

order, and test whether h contains more than n
t

points of X0. If so, we add h to T0, pick

some n
t

(but not more) points in X0 ∩ h to add to Ah, and delete Ah from X0. Clearly, the

number of halfspaces added to T0 is O(t).

To bound the construction time, we maintain X0 in Chan’s dynamic 3D halfspace range

reporting structure with polylogarithmic amortized update time [62]. The cost of all deletions

is Õ(n). Testing each halfspace h requires a halfspace range counting query, but for the above

purposes, it suffices to use an approximate count, with Õ(1) approximation factor. Given a

query halfspace h containing k points, in Õ(1) time, one can find O(log n) lists of size O(k)

from Chan’s data structure [62], so that the k points inside h are contained in the union of

these lists (this consequence of Chan’s data structure was explicitly stated in Theorem 3.1

of [64] in the 2D case, and Chan’s data structure [62] works in 3D). The sum of the sizes of

these lists is O(k log n) and Ω(k), yielding an O(log n)-approximation of the count. QED.

We divide the update sequence into phases of g updates each, for a parameter g � t. Our

data structure will be rebuilt periodically, after each phase. Let X0 and S0 be X and S at

the beginning of the current phase. Let XI and SI be the current set of points and the set of

halfspaces that have been inserted to X and S in the current phase. Let XD and SD be the

58

current set of points and the set of halfspaces deleted from X and S in the current phase.

At the start of each phase, we apply Lemma 3.4.

We store the 3D point set X0 −A0 in a partition tree, like before. However, we will need

a bound on the crossing number that is sensitive to shallowness: namely,

• any halfspace containing Õ(n
t
) points of X0 − A0 crosses at most O((n

t
)2/3+O(δ)) cells

of the tree;

• any other halfspace crosses at most O(t · (n
t
)2/3+δ) cells.

This follows by combining Matoušek’s shallow version of the partition tree [166] with the

original version of the partition tree: using the shallow version of the partition tree, with O(t)

leaf cells containing O(n
t
) points each, any halfspace that contains Õ(n

t
) points is known to

cross at most O(nδ) leaf cells [166]. For each leaf cell with O(n
t
) points, we build the original

partition tree [165], which has crossing number bound O((n
t
)2/3+δ).

In addition, we maintain the following counter at each node v of the partition tree:

• c#
v is the number of halfspaces of T0∪SI−SD containing Γv but not containing Γparent(v).

In the beginning of a phase, we can compute each count c#
v by O(1) 3D simplex range

counting query on the dual points of T ∗0 (since halfspaces containing a simplex and not

containing another simplex dualize to points in a polyhedral region of constant size); by

known results [12, 165], O(n) such queries on O(t) points in 3D take Õ(n + (nt)3/4) time.

The amortized cost is Õ(n+(nt)3/4

g
).

Afterwards, during each insertion/deletion of a halfspace in S, we increment/decrement

the counters at O(t ·(n
t
)2/3+δ) nodes of the tree (note that the halfspace may not be shallow).

Thus, each update in S costs O(t1/3n2/3+δ) time.

We also store the 3D dual point set (S0 − T0 − SD)∗ in a partition tree, again with

O((n
t
)2/3+O(δ)) crossing number bound with respect to halfspaces containing Õ(n

t
) points.

Such a partition tree supports deletions in polylogarithmic time.

Computing a solution. We now show how to compute an O(1)-approximate solution in

sublinear time when opt is sublinear using the above data structures. We first take a new

unweighted random sample Rextra ⊂ S0−T0−SD of size t. We include Rextra∪T0∪SI−SD in

the solution. Since this set has size O(t+ g) = O(t), this increases the approximation factor

only by O(1). Let E =
⋃
h∈T0∩SD Ah∪XI−XD, which has O(gn

t
) points. It remains to cover

the points in (X0−A0−XD)∪E, excluding those already covered by Rextra ∪ T0 ∪SI −SD,

using halfspaces in S0 − T0 − SD. We will do so by running Algorithm 3.1 on these points

59

and halfspaces using the above data structures. As before, the main subproblems are (i)

finding a low-depth point, and (ii) weighted range sampling.

Finding a low-depth point. We can find the minimum depth of the points of X0−A0−
XD (with respect to R) as in the small opt algorithm, by using counters in the partition tree

for X0 − A0.

Since any halfspace in S0 − T0 − SD contains at most Õ(n
t
) points of X0 − A0 − XD by

Lemma 3.4, the cost per insertion to R is reduced from O(n2/3+δ) to O((n
t
)2/3+O(δ)). The

total cost over all Õ(t) insertions to R is O(t(n
t
)2/3+O(δ)) = O(t1/3n2/3+O(δ)).

Because we have initially included Rextra ∪ T0 ∪ SI − SD in the solution, we should be

excluding points already covered by Rextra ∪ T0 ∪ SI − SD when running Algorithm 3.1. To

fix this, we add c0 log n copies of Rextra ∪ T0 ∪ SI − SD to R at the beginning of each round.

This way, points covered by Rextra ∪ T0 ∪ SI − SD would not be picked as low-depth points.

Adding these copies of T0 ∪ SI − SD requires no extra effort, since we can initialize cv with

the already computed c#
v value, times c0 log n, for all nodes v encountered. The copies of the

Õ(t) halfspaces of Rextra can be inserted one by one, in Õ((n
t
)2/3+O(δ)) time each, as above.

The extra cost for these Õ(t) insertions to R is bounded as above.

Also, because points in XD are supposed to be deleted, we should be excluding the deleted

points in XD when defining the minimum depth values dv. When we delete a point from X,

we can update the dv values along a path bottom-up in Õ(1) time.

We can find low-depth points of E (with respect to R) more naively, by examining the

points of E, excluding those covered by Rextra∪T0∪SI−SD, and testing them one by one in

each round (like in Agarwal and Pan’s algorithm [14]). In line 5, it suffices to use an O(1)-

approximation to the depth (after adjusting constants in the pseudocode), and as noted in

our previous paper [71], we can apply known data structures for 3D halfspace approximate

range counting [6] for the dual points R∗; queries and insertions to R take polylogarithmic

time. A point that has been found to have depth larger than the threshold will remain

having large depth during a round. The total cost over all rounds is Õ(|E|) = Õ(gn
t

).

Weighted range sampling. During a multiplicity-doubling step for a point p, we can

generate a multiplicity-weighted sample from the halfspaces containing p in the same way

as in the small opt algorithm, by using counters in the partition tree for (S0 − T0 − SD)∗.

Observe that p has depth in S0 − T0 − SD at most O(n
t

log n) w.h.p., because otherwise,

p would be covered by the random sample Rextra and would have been excluded (in other

words, a random sample Rextra of size t is a Θ(logn
t

)-net w.h.p.). Since the dual halfspace

p∗ contains at most Õ(n
t
) points of S∗, the cost per multiplicity-doubling step is reduced

60

from Õ(n2/3+δ) to Õ((n
t
)2/3+O(δ)). The total cost over all Õ(t) multiplicity-doubling steps is

Õ(t1/3n2/3+O(δ)).

In conclusion, the total time for running MWU is Õ(gn
t

+ t1/3n2/3+O(δ)). To balance this

computation cost with the Õ(n+(nt)3/4

g
) update cost, we set g = t7/8

n1/8 +
√
t and get a bound

of Õ(n
7/8

t1/8
+ n√

t
+ t1/3n2/3+O(δ)).

Lemma 3.5. There exists a data structure for the dynamic set cover problem for a set X

of points and a set S of upper halfspaces in R3 (where |X| + |S| = O(n)), that maintains

an O(1)-approximate solution w.h.p. with Õ(n7/8

opt1/8
+ n√

opt
+opt1/3n2/3+δ) amortized insertion

and deletion time for any constant δ > 0.

3.5.3 Algorithm for large opt

Lastly, we give an algorithm for the large opt case, which is very different from the al-

gorithms in the previous subsections (and not based on modifying MWU). Here, we can

only compute the size of the approximate set cover, not the cover itself. Like before, we will

show that the problem gets easier for large opt, because we can afford a large additive error.

The idea is to decompose the problem into subproblems via geometric sampling and planar

separators, and then approximate the sum of the subproblems’ answers by sampling again.

Data structures. We just store the dual point set S∗ in a known 3D halfspace range

reporting structure. The data structure by Chan [62] supports queries in O((log n+k) log n)

time for output size k, and insertions and deletions in S in polylogarithmic amortized time.

We store the xy-projection of the point set X in a known 2D triangle range searching

structure [165] that supports queries in O(n
1/2+δ

z1/2 + k) time for output size k, and insertions

and deletions in X in Õ(z) time for a given trade-off parameter z ∈ [1, n].

Approximating the optimal value. Let b and g be parameters to be set later. Take

a random sample R of the halfspaces S with size n
b
. Imagine that R is included in the

solution. The remaining uncovered space is the complement of the union of R, which is a 3D

convex polyhedron. There are O(|R|) = O(n
b
) cells in the vertical decomposition VD(R) of

this polyhedron (formed by triangulating each face and drawing a vertical wall at each edge

of the triangulation). Each cell is crossed by O(b log n) halfspaces w.h.p., by the standard

Clarkson–Shor technique on geometric sampling [87, 88, 91, 175]. The decomposition VD(R)

can be constructed in Õ(n
b
) time.

61

Our key idea is to use planar graph separators to divide into smaller subproblems. The

following is a multi-cluster version of the standard planar separator theorem [161] (sometimes

known as “r-divisions” [122]):

Lemma 3.6 (Planar Separator Theorem, Multi-Cluster Version). Given a planar graph

G = (V,E) with n vertices, and a parameter g, we can partition V into n
g

subsets V1, · · · , Vn/g
of size O(g) each, and an extra “boundary set” B of size O(n√

g
), such that no two vertices

from different subsets Vi and Vj are adjacent. The partition can be constructed in Õ(n)

time.

(We remark that the general idea of combining cuttings/geometric sampling with planar

graph separators appeared in some geometric approximation algorithms before, e.g., [4].)

We apply Lemma 3.6 to the dual graph of VD(R) (which has size O(n
b
)), yielding

O((n/b)/g) “clusters” of O(g) cells each, and a set B of O((n/b)/
√
g) “boundary cells”,

in Õ(n
b
) time.

Let SB be the subset of all halfspaces of S that cross boundary cells of B. Note that

|SB| = O((n/b)/
√
g · b log n) = Õ(n√

g
) w.h.p.

For each cluster γ, let Xγ denote the subset of all points of X whose xy-projections lie in

the xy-projection of the cells of γ, and let Sγ denote the subset of all halfspaces of S that

cross the cells of γ. Note that |Sγ| = O(g · b log n) = Õ(bg) w.h.p. Let optγ denote the

optimal value for the set cover problem for the halfspaces of Sγ and the points of Xγ not

covered by R ∪ SB.

Claim 3.2.
∑

γ optγ approximates opt with additive error Õ(n
b

+ n√
g
) w.h.p.

Proof. A feasible solution can be formed by taking the union of the solutions corresponding

to optγ, together with R (to cover points not covered by VD(R)) and SB (to cover points

inside boundary cells). As |R| = n
b

and |SB| = Õ(n√
g
) w.h.p., this proves that opt ≤∑

γ optγ + Õ(n
b

+ n√
g
).

In the other direction, observe that if a halfspace h crosses two different clusters γi and γj,

it must also cross some boundary cell in X by convexity: pick points p ∈ h∩γi and q ∈ h∩γj;
then the line segment pq must hit the wall of some boundary cell. So, after removing R∪SB
from the global optimal solution, we get disjoint local solutions in the clusters. This proves

that opt ≥
∑

γ optγ. QED.

We use the following known fact about approximating a sum via random sampling (which

is of course a standard trick):

62

Lemma 3.7. Suppose a1 + · · · + am = T where ai ∈ [0, U]. Take a random subset R

of r = (c0/ε2)mU logn
T

elements from a1, . . . , am, for a sufficiently large constant c0. Then∑
ai∈R ai ·

m
r

is a (1 + ε)-approximation to T w.h.p.

Proof. By rescaling the ai’s and T by a factor U , we may assume that U = 1. Define

a random variable Yi, which is the i-th sampled element that we include in R. Let Y =∑
1≤i≤r Yi. Then µ , E[Y] = r · 1

m
·
∑

i ai = (c0/ε
2) log n. The result follows from the

standard Chernoff bound on the Yi’s:

Pr

[∣∣∣∣∣∑
ai∈R

ai ·m/r − T

∣∣∣∣∣ > εT

]
= Pr[|Y − µ| > εµ] ≤ 2e−ε

2µ/4 ≤ 2n−c0/4. (3.2)

QED.

By applying the above lemma with m = (n/b)/g, T = Θ(t), and U = Õ(bg) (assuming

opt is finite), we can O(1)-approximate opt by summing optγ over a random sample of

r = Õ(mU
T

) = Õ(n
t
) clusters γ.

We can generate the set SB by finding the halfspaces of S that contain the O((n/b)/
√
g)

vertices of the cells in B—this corresponds to O((n/b)/
√
g) halfspace range reporting queries

for the dual 3D point set S∗, each with output size Õ(b) w.h.p. and each taking Õ(b) time [62].

Thus, SB can be found in Õ(n√
g
) time. We compute the union of R ∪ SB, which is the

complement of an intersection of halfspaces, by the dual of 3D convex hull algorithm [100].

This takes Õ(n
b

+ n√
g
) time.

For each chosen cluster γ, we can generate Sγ similarly by O(g) halfspace range reporting

queries for S∗, each with output size Õ(b) w.h.p. Thus, Sγ can be found in Õ(bg) time.

We can generate Xγ by performing O(g) triangle range reporting queries for the 2D xy-

projection of the point set X. Thus, Xγ can be found in Õ(g n
1/2+δ

z1/2 + |Xγ|) time. We filter

points of Xγ covered by R ∪ SB, by performing |Xγ| planar point location queries [100]

in the xy-projection of the boundary of the union of R ∪ SB. This takes Õ(|Xγ|) time.

We can then compute an O(1)-approximation to optγ by running a known static set cover

algorithm [14, 71] in Õ(bg + |Xγ|) time.

The expected sum of Xγ over all chosen clusters γ is O(n · r
m

) = O(rbg). The total

expected time over r clusters is Õ(rbg + rg n
1/2+δ

z1/2) = Õ(bgn
t

+ gn3/2+δ

tz1/2). The overall expected

running time is Õ(n
b

+ n√
g

+ bgn
t

+ gn3/2+δ

tz1/2), and we obtain an (O(1), Õ(n
b

+ n√
g
))-approximation.

(The expected bound can be converted to worst-case by placing a time limit and re-running

logarithmically many times.) Choosing g = b2 yields the following result:

Lemma 3.8. Given parameters b and z ∈ [1, n] and any constant ε > 0, there exists a

63

data structure for the dynamic set cover problem for a set X of points and a set S of

upper halfspaces in R3 (where |X| + |S| = O(n)), that supports insertions and deletions

in Õ(z) amortized time and can find the value of an (O(1), Õ(n
b
))-approximation w.h.p. in

Õ(n
b

+ b3n
opt

+ b2n3/2+δ

opt·z1/2) time for any constant δ > 0.

A minor technicality is that when applying Lemma 3.7, we have assumed that the optimal

value is finite. The problem of checking whether a solution exists, i.e., whether a point set

is covered by a set of halfspaces (or more generally, maintaining the lowest-depth point),

subject to insertions and deletions of points and halfspaces, has already been solved before

by Chan [60, Theorem 4.1], who gave a fully dynamic algorithm with Õ(n2/3) time per

operation (based on augmenting partition trees with counters, similar to what we have done

here).

Combining the algorithms. Finally, we combine all three algorithms:

1. When opt ≤ n2/9, we use the algorithm for small opt; the running time is Õ(opt ·
n2/3+δ) ≤ Õ(n8/9+δ).

2. When n2/9 < opt ≤ n10/13, we use the algorithm for medium opt; the running time is

Õ(n7/8

opt1/8
+ n√

opt
+ opt1/3n2/3+O(δ)) ≤ O(n12/13+O(δ)).

3. When opt > n10/13, we use the algorithm for large opt with b = Θ̃(n3/13) and z = n7/13,

so that an (O(1), Õ(n
b
))-approximation is indeed an O(1)-approximation; the running

time is Õ(n
b

+ b3n
opt

+ b2n3/2+δ

opt·z1/2) ≤ O(n12/13+O(δ)).

Lemma 3.9. There exists a data structure for the dynamic set cover problem for a set X

of points and a set S of upper halfspaces in R3 (where |X| + |S| = O(n)), that maintains

the value of an O(1)-approximate solution w.h.p. with O(n12/13+δ) amortized insertion and

deletion time for any constant δ > 0.

3.5.4 Upper and lower halfspaces

Small and medium opt. It is straightforward to modify the small and medium opt

algorithms in Sections 3.5.1 and 3.5.2 to handle the case when there are both upper and

lower halfspaces in S. For weighted range sampling, we can handle the upper halfspaces and

the lower halfspaces separately; for example, we build the partition tree for the dual points

of S separately for the upper and the lower halfspaces. To find low-depth points, we use just

one partition tree for the points of X, where depth is defined relatively to the combined set

of upper and lower halfspaces.

64

Large opt. In the large opt algorithm, we can no longer use the vertical decomposition.

Instead, we pick a point p0 inside the polyhedron and consider a “star” triangulation of the

polyhedron where all tetrahedra have p0 as a vertex. Because we can no longer use xy-

projections, naively we would need to replace 2D triangle range searching with 3D simplex

range searching, which would increase the update time slightly.

If p0 is fixed, we can replace the orthogonal xy-projection with a perspective projection

with respect to p0, and we can still use 2D triangle range searching. We describe a way to

find a point p0 that stays fixed for a number of updates. (Note that p0 need not be in X.)

Specifically, we divide the update sequence into phases with n
b

updates each. At the

beginning of each phase, we set p0 to be a point of minimum depth with respect to S,

among all points in R3; an O(1)-approximation is fine and can be found in Õ(n) randomized

time [6, 24].

If p0 has depth at least 2n
b

at the beginning of the phase, the minimum depth is at least
n
b

during the entire phase, and a (1
b
)-net of size Õ(b) is a set cover and can be generated by

random sampling; trivially, this gives an (O(1), Õ(n
b
))-approximation, assuming b ≤

√
n.

Otherwise, p0 has depth O(n
b
) during the entire phase. In the large opt algorithm, we let Z0

be the set of O(n
b
) halfspaces containing p0 (which can be found by halfspace range reporting

in the dual), include Z0 in the solution, and remove Z0 from S before taking the random

sample R. As a result, the complement of the union of R indeed contains p0. The rest of the

algorithm is similar, using a perspective projection from p0 instead of xy-projection. (Points

covered by Z0 should be excluded, and we can do so by adding Z0 to SB.) The additive

error increases by O(n
b
), and so is asymptotically unchanged.

The data structures have preprocessing time Õ(nz). Since we rebuild after every n
b

updates, the amortized update cost is Õ(bz). In our application with b = Θ̃(n3/13) and

z = n7/13, this cost does not dominate.

To summarize, Lemma 3.9 holds even when there are both upper and lower halfspaces.

Theorem 3.2. There exists a data structure for the dynamic set cover problem for a set X

of points and a set S of halfspaces in R3 (where |X|+ |S| = O(n)), that maintains the value

of an O(1)-approximate solution w.h.p. with O(n12/13+δ) amortized insertion and deletion

time for any constant δ > 0.

3.6 IMPROVING STATIC SET COVER FOR 3D HALFSPACES

In this section, we show how the techniques we have developed for the dynamic geometric

set cover problem can lead to a randomized algorithm for static set cover for 3D halfspaces

65

running in O(n log n) time, which improves our previous O(n log n(log log n)O(1)) randomized

algorithm [71], and is optimal (matching our lower bound result in Theorem 2.4). The new

algorithm combines the medium opt algorithm in Section 3.5.2 and the large opt algorithm

in Section 3.5.3.

Let N be a fixed parameter used to control the error probability.

Case 1: opt ≤ n5/6+δ. Here, we modify the medium opt algorithm in Section 3.5.2. We

first guess a value t′ ∈ [opt/nδ, opt]; a constant (O(1/δ)) number of guesses suffices. The

preprocessing algorithm will use this parameter t′.

In the static setting, our old version of Lemma 3.4 for constructing T0 suffices and takes

O(n log n) time [71]. Specifically, we construct a set T0 ⊆ S of O(t′) halfspaces so that after

removing the points covered by T0, every halfspace of S contains at most O(n
t′

) points. Since

we are in the static setting, we can explicitly remove the points covered by T0. The shallow

versions of the partition trees [166] can be preprocessed in O(n log n) time. Parts of the

algorithm can be simplified: there is no need to divide into phases, and no need for the extra

counters c#
v and the extra point set E during the MWU algorithm. The MWU algorithm

then runs in Õ(t · (n
t′

)2/3+O(δ)) = Õ(t1/3n2/3+O(δ)) = O(n17/18+O(δ)) time. As we need to run

the MWU algorithm for all guesses t that are powers of 2 (up to n5/6+δ), the running time of

the MWU algorithm increases by a logarithmic factor but remains O(n17/18+O(δ)), excluding

preprocessing.

To bound the error probability by O(1
N

), we can re-run the MWU algorithm O(logN)

times. The total running time including preprocessing is O(n log n+ n17/18+O(δ) logN).

Case 2: opt > n5/6+δ. Here, we modify the large opt algorithm in Section 3.5.3. In the

static setting, there is no need for the halfspace range reporting and triangle range searching

structures. We first generate the conflict lists of the cells (the lists of halfspaces crossing the

cells) in VD(R) in O(n log n) expected time [91]. We verify that indeed every conflict list

has size O(b log n); if not, we restart, with O(1) expected number of trials till success. For

each point p ∈ X, we locate the cell in VD(R) which contains p in the xy-projection, by

planar point location in O(n log n) time [100].

We refine VD(R) before applying the planar separator theorem: for each cell in VD(R),

we subdivide into subcells each containing at most b points of X in the xy-projection. The

number of extra cuts is O(n
b
), and so the new decomposition still has O(n

b
) cells.

(As noted before, when there are both upper and lower halfspaces, we replace the verti-

cal decomposition with a “star” triangulation and replace orthogonal xy-projection with a

perspective projection.)

66

The original large opt algorithm takes a random sample of the clusters to approximate

the value of the optimal solution. To compute an actual solution, we instead use recursion

in every cluster.

Recall that the number of clusters is O(n/(bg)). For each cluster γ, the number of half-

spaces in Sγ is Õ(bg), and the number of points in Xγ is also Õ(bg), because of the above

refinement of VD(R). Recall that after removing halfspaces in SB, the Sγ’s become dis-

joint; and after removing points covered by R ∪ SB, the sum of the optimal values in the

subproblems optγ is upper-bounded by opt.

We set b = n1/6 and g = n1/3 so that the additive error is Õ(n
b

+ n√
g
) = Õ(n5/6) ≤

O(opt/ log n).

Analysis. The worst-case expected running time of the overall algorithm for input size n

satisfies the recurrence T (n) ≤
∑

i T (ni) +O(n log n+ n17/18+O(δ) logN), for some ni’s with∑
i ni ≤ n and maxi ni = Õ(

√
n). This recurrence solves to T (n) = O(n log n + n logN).

(The reason is that log n forms a geometric progression as we descend downward in the

recursion tree, and the total instance sizes at each level is bounded by n.)

Let E(n, x) be the worst-case additive error of the computed solution for an input of size n

and optimal value x. In Case 1, the additive error is O(x). In general, we have the recurrence

E(n, x) ≤ max{O(x),
∑

iE(ni, xi) + O(x
logn

)}, for some ni’s and xi’s with
∑

i ni ≤ n, and

maxi ni = Õ(
√
n), and

∑
i xi ≤ x. This recurrence solves to E(n, x) = O(x). (The reason

is that 1
logn

forms a geometric progression as we descend downward in the recursion tree.)

Thus, the algorithm yields an O(1)-approximation.

The total error probability over the entire recursion is bounded by O(n
N

). We set N = nc

for the global input size n and an arbitrarily large constant c.

Theorem 3.3. Given a set X of points and a set S of halfspaces in R3, where |X|+ |S| = n,

there exists a randomized O(1)-approximation algorithm for finding the minimum subset of

halfspaces from S to cover all points in X, which runs in O(n log n) expected time and is

correct w.h.p.

It is possible to modify the analysis to get O(n log n) worst-case time instead of expected.

In Case 2, the conflict lists have size O(b log n) w.h.p. and the construction time is actually

O(n log n) w.h.p., at the root of the recursion. In subsequent levels of the recursion, we can

apply a Chernoff bound to get a high-probability bound on the total running time.

67

3.7 UNWEIGHTED INTERVALS

Let (X, I) be a dynamic (unweighted) interval set cover instance where X is the set of

points in R and I is the set of intervals, and let ε > 0 denote the approximation factor. Our

goal is to design a data structure D that maintains a (1 + ε)-approximate set cover solution

for the current instance (X, I) and supports the desired queries (i.e., size, membership, and

reporting queries) to the solution. Without loss of generality, we may assume that the point

range of (X, I) is [0, 1], i.e., the points in X are always in the range [0, 1].

Let r and α < 1 be parameters to be determined. Consider the initial instance (X, I)

and let n = |X|+ |I|. We partition the range [0, 1] into r connected portions (i.e., intervals)

J1, . . . , Jr such that each portion Ji contains O(n/r) points in X and O(n/r) endpoints of

intervals in I. Define Xi = X ∩ Ji and Ii = {I ∈ I : I ∩ Ji 6= ∅ and Ji * I}. When the

instance (X, I) changes, the portions J1, . . . , Jr remain unchanged while the Xi’s and Ii’s will

change along with X and I. Thus, we can view each (Xi, Ii) as a dynamic interval set cover

instance with point range Ji. We then recursively build a dynamic interval set cover data

structure Di which maintains a (1+ ε̃)-approximate set cover solution for (Xi, Ii), where ε̃ =

αε. We call (X1, I1), . . . , (Xr, Ir) sub-instances and call D1, . . . ,Dr sub-structures. Besides

the recursively built sub-structures, we also need three simple support data structures. The

first one is the data structure A in the following lemma that can help to compute an optimal

interval set cover in output-sensitive time.

Lemma 3.10 ([10]). One can store a dynamic (unweighted) interval set cover instance

(X, I) in a data structure A with O(n log n) construction time and O(log n) update time,

such that at any point, an optimal solution for (X, I) can be computed in O(opt · log n) time

with the access to A.

The second one is a dynamic data structure B built on I which can report, for a given

query interval J , an interval I ∈ I that contains J (if such an interval exists); as shown in

[10], there exists such a data structure with O(log n) update time, O(log n) query time, and

O(n log n) construction time. The third one is a (static) data structure L which can report,

for a given query point q ∈ R, the portion Ji that contains q; for this one, we can simply use

a binary search tree built on J1, . . . , Jr which has O(log r) query time. Our data structure

D simply consists of the sub-structures D1, . . . ,Dr and the support data structures.

It is easy to construct D in O(n log2 n) time. To see this, we define |(X, I)| as the total

number of points in X and endpoints of intervals in I that are contained in the point

range [0, 1] of (X, I). We have |(X, I)| ≤
∑r

i=1 |(Xi, Ii)| and |(Xi, Ii)| ≤ |(X, I)|/2 for

all i ∈ [r] (as r is sufficiently large). Now let C(m) denote the time for constructing the

68

data structure on an instance (X, I) with |(X, I)| = m. We then have the recurrence

C(m) =
∑r

i=1C(mi) + O(m logm), where m ≤
∑r

i=1mi and mi ≤ m/2 for all i ∈ [r]. This

recurrence solves to C(m) = O(m log2m). Since |(X, I)| = O(n), D can be constructed in

O(n log2 n) time, i.e., in Õ(n) time.

Updating the sub-structures and reconstruction. Whenever the instance (X, I)

changes due to an insertion/deletion on X or I, we first update the support data struc-

tures. After that, we recursively update the sub-structures Di for i ∈ [r] that (Xi, Ii)
changes. An insertion/deletion on X only changes one Xi, and an insertion/deletion on I
changes at most two Ii’s (because an interval has two endpoints). Also, we observe that if

the inserted/deleted interval I is “one-sided” in the sense that one endpoint of I is outside

the point range [0, 1], then that insertion/deletion only changes one Ii. This observation is

critical in the analysis of our data structure.

Besides the update, our data structure D will be periodically reconstructed. Specifically,

the (i+1)-th reconstruction happens after processing ni/r updates from the i-th reconstruc-

tion, where ni denotes the size of (X, I) at the point of the i-th reconstruction. (The 0-th

reconstruction is just the initial construction of D.)

Constructing a solution. We now describe how to construct an approximately optimal

set cover Iappx for the current (X, I) using our data structure D. Denote by opt the size of

an optimal set cover for the current (X, I); we define opt =∞ if (X, I) does not have a set

cover. Set δ = min{n, c · (r + εr)/(ε − αε)} for a sufficiently large constant c. If opt ≤ δ,

then we are able to use the algorithm of Lemma 3.10 to compute an optimal set cover for

(X, I) in O(δ · log n) time (with the help of the support data structure A). Therefore, we

simulate that algorithm within that amount of time. If the algorithm successfully computes

a solution, we use it as our Iappx. Otherwise, we construct Iappx as follows. For each i ∈ [r],

if Ji can be covered by an interval I ∈ I, we define I∗i = {I}, otherwise let I∗i be the (1+ ε̃)-

approximate solution for (Xi, Ii) maintained in the sub-structure Di. (If for some i ∈ [r],

Ji cannot be covered by any interval in I and the sub-structure Di tells us that the current

(Xi, Ii) does not have a set cover, then we immediately decide that the current (X, I) has

no feasible set cover.) Then we define Iappx =
⊔r
i=1 I∗i , which is clearly a set cover of (X, I).

Note that for each i ∈ [r], we can find in O(log n) time an interval I ∈ I that covers Ji using

the support data structure B (if such an interval exists).

Answering queries to the solution. We show how to store the solution Iappx properly

so that the desired queries for Iappx can be answered efficiently. If Iappx is computed by the

69

algorithm of Lemma 3.10, then the size of Iappx is at most δ and we have all elements of

Iappx in hand. In this case, we simply build a binary search tree on Iappx which can answer

the desired queries with the required time costs. On the other hand, if Iappx is defined as

Iappx =
⊔r
i=1 I∗i , the size of Iappx can be large and we are not able to retrieve all elements of

Iappx. However, in this case, each I∗i either consists of a single interval that covers Ji or is

the solution maintained in the sub-structure Di.
To support the size query, we only need to compute |I∗i | (which can be done by recursively

making size queries to the sub-structures) and calculate |Iappx| =
∑r

i=1 |I∗|; we then simply

store this quantity so that a size query can be answered in O(1) time. To support membership

queries, we compute an index set P ⊆ [r] consisting of the indices i ∈ [r] such that I∗i consists

of a single interval covering Ji. Then we collect all intervals in the I∗i ’s for i ∈ P , the number

of which is at most r. We store these intervals in a binary search tree T which can answer

membership queries in O(log r) time. To answer a membership query I ∈ I, we first check

if I is stored in T . After that, we find the (up to) two instances Ii’s that contains I, and

make membership queries to the sub-structures Di to check whether I ∈ I∗i (if i ∈ [r]\P).

Finally, to answer the reporting query, we first report the intervals stored in T and then for

every i ∈ [r]\P , we make recursively a reporting query to Di, which reports the intervals in

I∗i .

Now we analyze the query time. If the solution Iappx is computed by the algorithm of

Lemma 3.10, then it is stored in a binary search tree and we can answer a size query, a

membership query, and a reporting query in O(1) time, O(log |Iappx|) time, and O(|Iappx|)
time, respectively. So it suffices to consider the case where we construct the solution as

Iappx =
⊔r
i=1 I∗i . In this case, answering a size query still takes O(1), because we explicitly

compute |Iappx|.
To analyze the time cost for a membership query, we need to distinguish one-sided and

two-sided queries. We use Q1(n) and Q2(n) to denote the time cost for a one-sided mem-

bership query (i.e., one endpoint of the query interval is outside the point range) and a

two-sided membership query (i.e., both endpoints of the query interval are inside the point

range), respectively, when the size of the current instance is n. Then for Q1(n), we have the

recurrence

Q1(n) ≤ Q1(O(n/r)) +O(log r), (3.3)

which solves to Q1(n) = O(log n), as we only need to recursively query on one Di (which is

again a one-sided query). For Q2(n), we have the recurrence

Q2(n) ≤ max{Q2(O(n/r)), 2Q1(O(n/r))}+O(log r), (3.4)

70

which also solves to Q2(n) = O(log n), as we may need to have a recursive two-sided query

on one Di or have recursive one-sided queries on two Di’s. Therefore, a membership query

can be answered in O(log n) time.

Finally, to answer a reporting query, we first report the intervals stored in T and recursively

query the data structures Di for all i ∈ [r]\P such that I∗i 6= ∅. Thus, in the recursion tree,

the number of leaves is bounded by |Iappx| since at each leaf node we need to report at

least one element. A naive analysis shows the overall time cost for a reporting query is

O(|Iappx| · log n), because the height of the recursion tree is O(logr n), and at each node of

the recursion tree, the work can be done in O(log r) time plus O(1) per outputted element.

For a more careful analysis, our approximation factor analysis in the next paragraph shows

that at each node of the recursion tree, we can allow an additive error of O(r), while keeping

the overall approximation factor 1 + ε. So consider adding a “virtual leaf” below each

internal node of the recursion tree, which simply outputs a virtual interval in the approximate

solution. In this way, the total number of leaves is still bounded by (1 + ε) · |Iappx|, but now

each internal node has degree at least 2, so the total number of nodes is only O(|Iappx|). As

a result, we conclude the reporting query takes O(|Iappx|) time.

Correctness. First, we observe that D makes a no-solution decision iff the current instance

(X, I) has no set cover. Indeed, if we make a no-solution decision, then Ji is not covered

by any interval in I and the sub-instance (Xi, Ii) has no set cover for some i ∈ [r]; in this

case, (X, I) has no set cover because the points in Xi can only be covered by the intervals

in Ii or by an interval that covers Ji. On the other hand, if we do not make a no-solution

decision, then the set Iappx we construct is a feasible solution for (X, I).

Now it suffices to show that the solution Iappx is a (1 + ε)-approximation of an optimal

set cover for (X, I). Let Iopt be an optimal set cover for (X, I). We have to show |Iappx| ≤
(1 + ε) · |Iopt|. If Iappx is computed by the algorithm of Lemma 3.10, then |Iappx| = |Iopt|.
Otherwise, we know that |Iopt| > δ, which implies |Iopt| > c·(r+εr)/(ε−αε) for a sufficiently

large constant c, because we cannot have |Iopt| > n. In this case, we show the following.

Fact 3.1. |Iappx| ≤ (1 + ε̃) · |Iopt|+O(r).

Proof. For i ∈ [r], let opti be the size of an optimal set cover of (Xi, Ii) if I∗i is the solution

of (Xi, Ii) maintained by Di, and let opti = 1 otherwise. Then for all i ∈ [r], we have

|I∗i | ≤ (1 + ε̃) · opti. Since |Iappx| =
∑r

i=1 |I∗i |, we have |Iappx| ≤ (1 + ε̃) ·
∑r

i=1 opti. It

suffices to show that
∑r

i=1 opti = |Iopt| + O(r). Let ni be the number of intervals in Iopt

that are contained in Ji for i ∈ [r]. Clearly, |Iopt| ≥
∑r

i=1 ni. We claim that opti ≤ ni + 2,

which implies
∑r

i=1 opti = |Iopt| + O(r). If Ji can be covered by some interval in I, then

71

opti = 1 ≤ ni + 2. Otherwise, we take all ni intervals in Iopt that are contained in Ji and

the (at most) two intervals in Iopt with one endpoint in Ji which have maximal intersections

with Ji (i.e., the interval containing the left end of Ji with the rightmost right endpoint and

the interval containing the right end of Ji with the leftmost left endpoint). These ni + 2

intervals form a set cover of (Xi, Ii) and thus opti ≤ ni + 2. QED.

Using the above observation and the fact |Iopt| > c · (r+ εr)/(ε− αε) = c · (r+ εr)/(ε− ε̃),
we conclude that |Iappx| ≤ (1 + ε) · |Iopt|.

Update time. To analyze the update time of our data structure D, it suffices to consider

the first period (including the first reconstruction). The first period consists of n0/r opera-

tions, where n0 is the size of the initial (X, I). The size of (X, I) during the first period is

always in between (1 − 1/r)n0 and (1 + 1/r)n0 and is hence Θ(n0), since r is a sufficiently

large constant. We first observe that, excluding the recursive updates for the sub-structures,

each update of D takes O(r log n/(ε − αε) + r log2 n) (amortized) time, where n is the size

of the current instance (X, I). Updating the support data structures takes O(log n) time.

When constructing the solution Iappx, we need to simulate the algorithm of Lemma 3.10

within O(δ · log n) time, i.e., O(r log n/(ε − αε)) time. The time for storing the solution

Iappx is also bounded by O(r log n/(ε− αε)), because we only need to explicitly store Iappx

when it is computed by the algorithm of Lemma 3.10, in which case its size is at most

δ = O(r/(ε−αε)). Finally, the reconstruction takes O(r log2 n) amortized time, because the

time cost of the (first) reconstruction is O(n1 log2 n1) = O(n0 log2 n0) and the first period

consists of n0/r operations.

Next, we consider the recursive updates for the sub-structures. The depth of the recursion

is O(logr n). If we set α = 1 − 1/ logr n, the approximation parameter is Θ(ε) in any level

of the recurrence. We distinguish three types of updates according to the current operation.

The first type is caused by an insertion/deletion of a point in X (we call it point update).

The second type is caused by an insertion/deletion of an interval in I whose one endpoint

is outside the point range [0, 1] of (X, I) (we call it one-sided interval update). The third

type is caused by an insertion/deletion of an interval in I whose both endpoints are inside

the point range (we call it two-sided interval update).

In a point update, we only need to recursively update one sub-structure (which is again

a point update), because an insertion/deletion on X only changes one Xi. Similarly, in

a one-sided interval update, we only need to do a recursive one-sided interval update on

one sub-structure, because the inserted/deleted interval belongs to one Ii. Finally, in a

two-sided interval update, we may need to do a recursive two-sided interval update on one

72

sub-structure (when the two endpoints of the inserted/deleted interval belong to the same

range Ji), or two recursive one-sided interval updates on two sub-structures (when the two

endpoints belong to different Ji’s).

Let U(n), U1(n), U2(n) denote the time costs of a point update, a one-sided interval

update, and a two-sided interval update, respectively, when the size of the current instance

is n. Then for U(n), we have the recurrence

U(n) ≤ U(O(n/r)) +O(r log2 n/ε), (3.5)

which solves to U(n) = O(r logr n log2 n/ε). Similarly, for U1(n), we have the same recur-

rence, solving to U1(n) = O(r logr n log2 n/ε). Finally, the recurrence for U2(n) is

U2(n) ≤ max{U2(O(n/r)), 2U1(O(n/r))}+O(r log2 n/ε)

= max{U2(O(n/r)), O(r logr n log2 n/ε)}+O(r log2 n/ε).
(3.6)

A simple induction argument shows that U2(n) = O(r logr n log2 n/ε). Setting r to be a

sufficiently large constant, our data structure D can be updated in O(log3 n/ε) amortized

time.

Theorem 3.4. There exists a dynamic data structure for (1 + ε)-approximate unweighted

interval set cover with O(log3 n/ε) amortized update time and O(n log2 n) construction time,

which can answer size, membership, and reporting queries in O(1), O(log n), and O(opt)

time, respectively, where n is the size of the instance and opt is the size of the optimal

solution.

3.8 UNWEIGHTED UNIT SQUARES

It was shown in [10] that dynamic unit-square set cover can be reduced to dynamic quad-

rant set cover. Specifically, dynamic unit-square set cover can be solved with the same

update time as dynamic quadrant set cover, by losing only a constant factor on the ap-

proximation ratio. Therefore, it suffices to consider dynamic quadrant set cover. Note that

the problem is still challenging, as we need to simultaneously deal with all four types of

quadrants.

Similar to interval set cover, quadrant set cover also admits an output-sensitive algorithm:

Lemma 3.11 ([10]). One can store a dynamic (unweighted) quadrant set cover instance

(X,Q) in a data structure A with Õ(n) construction time and Õ(1) update time such that

73

at any point, a constant-factor approximate solution for (X,Q) can be computed in Õ(opt)

time with the access to A.

Let (X,Q) be a dynamic (unweighted) quadrant set cover instance where X is the set of

points in R2 and Q is the set of quadrants. Suppose µ = O(1) is the approximation factor

of the algorithm of Lemma 3.11. Our goal is to design a data structure D that maintains

a (µ + ε)-approximate set cover solution for the current instance (X,Q) and supports the

desired queries to the solution, for a given parameter ε > 0. Without loss of generality,

we may assume that the point range of (X,Q) is [0, 1]2, i.e., the points in X are always

in the range [0, 1]2. We say a quadrant in Q is trivial (resp., nontrivial) if its vertex is

outside (resp., inside) the point range [0, 1]2. Note that a trivial quadrant is “equivalent” to

a horizontal/vertical halfplane in terms of the coverage in [0, 1]2.

Let r and α < 1 be parameters to be determined. Consider the initial instance (X,Q)

and let n = |X|+ |Q|. We partition the point range [0, 1]2 into r× r rectangular cells using

r − 1 horizontal lines and r − 1 vertical lines such that each row (resp., column) of r cells

contains O(n/r) points in X and O(n/r) vertices of the quadrants in Q. Let �i,j be the

cell in the i-th row and j-th column for (i, j) ∈ [r]2. We denote by Ri the i-th row (i.e.,

Ri =
⋃r
j=1�i,j) for i ∈ [r] and by Cj the j-th column (i.e., Cj =

⋃r
i=1�i,j) for j ∈ [r]. Define

Xi,j = X ∩�i,j, Xi,• = X ∩Ri, and X•,j = X ∩ Cj, for i, j ∈ [r].

Next, we decompose Q into small subsets as follows. We say a quadrant Q left intersects

a rectangle R if R * Q and Q contains the left boundary of R. Among a set of quadrants

that left intersect a rectangle R, the maximal one refers to the quadrant whose vertex is the

rightmost, or equivalently, whose intersection with R is maximal. Similarly, we can define

the notions of “right intersect”, “top intersect”, and “bottom intersect”. For i, j ∈ [r], we

define Qi,j ⊆ Q be the subset consisting of all nontrivial quadrants whose vertices lie in �i,j
and the (up to) four nontrivial maximal quadrants that left, right, top, bottom intersect �i,j;

we call the latter the four special quadrants in Qi,j. Similarly, for i ∈ [r] (resp., j ∈ [r]), we

define Qi,• ⊆ Q (resp., Q•,j ⊆ Q) be the subset consisting of all nontrivial quadrants whose

vertices lie in Ri (resp., Cj) and the four nontrivial maximal quadrants that left, right, top,

bottom intersect Ri (resp., Cj); we call the latter the four special quadrants in Qi,• (resp.,

Q•,j).
When the instance (X,Q) changes, the cells �i,j (as well as the rows Ri and columns Cj)

remain unchanged while the sets Xi,j, Xi,•, X•,j (resp., Qi,j, Qi,•, Q•,j) will change along with

X (resp., Q). We view each (Xi,j,Qi,j) as a dynamic quadrant set cover instance with point

range �i,j, and recursively build a sub-structure Di,j that maintains a (µ + ε̃)-approximate

set cover solution for (Xi,j,Qi,j), where ε̃ = αε. Similarly, we view each (Xi,•,Qi,•) (resp.,

74

(X•,j,Q•,j)) as a dynamic quadrant set cover instance with point range Ri (resp., Cj), and

recursively build a sub-structure Di,• (resp., D•,j) that maintains a (µ+ ε̃)-approximate set

cover solution for (Xi,•,Qi,•) (resp., (X•,j,Q•,j)). For convenience, we call (Xi,j,Qi,j) the cell

sub-instances, (Xi,•,Qi,•) the row sub-instances, and (X•,j,Q•,j) the column sub-instances.

Besides the data structures recursively built on the sub-instances, we also need some simple

support data structures. The first one is the data structure A required for the output-

sensitive algorithm for quadrant set cover (Lemma 3.11). The second one is a dynamic

data structure B built on Q, which can report, for a given query rectangle R, the maximal

quadrant in Q that left/right/top/bottom intersects R. The third one is a dynamic data

structure C built on Q, which can report, for a given query rectangle R, a quadrant in Q
that contains R (if such a quadrant exists). The fourth one is a plane point-location data

structure L, which can report, for a given query point q ∈ [0, 1]2, the cell �i,j that contains

q. As shown in [10], all these support data structures can be built in Õ(n) time and updated

in Õ(1) time.

Our data structure D consists of the recursively built sub-structures Di,j, Di,•, D•,j and

the support data structures A, B, C, L. It is easy to construct D in Õ(2O(logr n) · n) time.

To see this, notice that the size of each sub-instance is of size O(n/r). Also, the total size of

all (row, column, cell) sub-instances is bounded by O(n). Therefore, if we denote by C (n)

the construction time of the data structure when the size of the instance is n, we have the

recurrence

C (n) =
r∑
i=1

r∑
j=1

C (ni,j) +
r∑
i=1

C (ni,•) +
r∑
j=1

C (n•,j) + Õ(n) (3.7)

for some ni,j, ni,•, n•,j satisfying
∑r

i=1

∑r
j=1 ni,j +

∑r
i=1 ni,• +

∑r
j=1 n•,j = O(n) and ni,j =

O(n/r), ni,• = O(n/r), n•,j = O(n/r) for all i, j ∈ [r]. The total size of the data struc-

tures grows by a constant factor at each level, and the recursion depth is O(logr n), so the

recurrence solves to C (n) = Õ(2O(logr n) · n).

Update of the sub-structures and reconstruction. Whenever the instance (X,Q)

changes due to an insertion/deletion on X or Q, we first update the support data struc-

tures. After that, we recursively update the sub-structures Di,j, Di,•, D•,j for which the

underlying sub-instances change. Observe that an insertion/deletion on X only changes one

Xi,j, one Xi,•, and one X•,j (so at most three sub-instances). An insertion/deletion of a triv-

ial quadrant does not change any sub-instances, while an insertion/deletion of a nontrivial

quadrant changes at most O(r) sub-instances (see Fig. 3.5).

Besides the update, our data structure D will be periodically reconstructed. Specifically,

the (i+1)-th reconstruction happens after processing ni/r updates from the i-th reconstruc-

75

tion, where ni denotes the size of (X,Q) at the point of the i-th reconstruction. (The 0-th

reconstruction is just the initial construction of D.)

Figure 3.5: Updating a quadrant q recursively causes O(1) nontrivial updates (within the
cell, the row and the column containing the vertex of q), and O(r) trivial updates (within
the cells that the two edges of q cross).

Constructing a solution. We now describe how to construct an approximately optimal

set cover Qappx for the current (X,Q) using our data structure D. Denote by opt the size

of an optimal set cover for the current (X,Q); we define opt =∞ if (X,Q) does not have a

set cover. Set δ = min{n, c(r2 + εr2)/(ε − αε)}, where c is a sufficiently large constant. If

opt ≤ δ, then we are able to use the algorithm of Lemma 3.11 to compute a µ-approximate

set cover solution for (X,Q) in Õ(δ) time. Therefore, we simulate that algorithm within

that amount of time. If the algorithm successfully computes a solution, we use it as our

Qappx. Otherwise, we know that opt > δ. In this case, we construct Qappx by combining the

solutions maintained by the sub-structures as follows.

Consider the trivial quadrants in Q. There are (up to) four maximal trivial quadrants that

left, right, top, bottom intersect the point range [0, 1]2, which we denote by Q←, Q→, Q↑, Q↓,

respectively. Let i− ∈ [r] (resp., j− ∈ [r]) be the smallest index such that Ri− * Q↑ (resp.,

Cj− * Q←), and i+ ∈ [r] (resp., j+ ∈ [r]) be the largest index such that Ri+ * Q↓ (resp.,

Cj+ * Q→). Note that i− ≤ i+, because otherwise X ⊆ [0, 1]2 ⊆ Q↑ ∪Q↓ and thus opt ≤ 2

(which contradicts with the fact opt > δ). For the same reason, j− ≤ j+. We include

Q←, Q→, Q↑, Q↓ in our solution Qappx. By doing this, all points in Ri (resp., Cj) for i < i−

or i > i+ (resp., j < j− or j > j+) are covered. The remaining task is to cover the points

in the complement A of Q← ∪ Q→ ∪ Q↑ ∪ Q↓ in [0, 1]2; these points lie in the cells �i,j for

i− ≤ i ≤ i+ and j− ≤ j ≤ j+.

76

[0, 1]2

A

L↑

L↓

L← L→

Figure 3.6: The rectangular annulus (the grey area) are partitioned into four rectangles.

We cover the points in A using two collections of quadrants. The first collection covers all

points in the cells �i,j contained in A, i.e., the cells �i,j for i− < i < i+ and j− < j < j+.

Specifically, if the cell �i,j can be covered by a single quadrant Q ∈ Q, we define Q∗i,j = {Q},
otherwise we define Q∗i,j ⊆ Qi,j as the (µ + ε̃)-approximate set cover solution for the sub-

instance (Xi,j,Qi,j) maintained by Di,j. (If there exists a cell �i,j for i− < i < i+ and

j− < j < j+ that is not covered by any single quadrant Q ∈ Q and the sub-structure Di,j
tells us that the sub-instance (Xi,j,Qi,j) has no solution, then we make a no-solution decision

for (X,Q).) We include in our solution Qappx all quadrants in
⋃i+−1
i=i−+1

⋃j+−1
j=j−+1Q∗i,j, which

cover the points in �i,j for i− < i < i+ and j− < j < j+.

Now the only points uncovered are those lie in the rectangular annulus, which is the

complement of the union of the cells �i,j ⊆ A in A (see Figure 3.6). We partition this

rectangular annulus into four rectangles L↑, L↓, L←, L→ (again see Figure 3.6), which are

contained in Ri− , Ri+ , Cj− , Cj+ , respectively. We obtain a set cover for the points in each

of L↑, L↓, L←, L→ using the corresponding row/column sub-structure as follows. Consider

L↑. We temporarily insert the three virtual quadrants Q↑, Q←, Q→ to the sub-instance

(Xi−,•,Qi−,•) (these quadrants will be deleted afterwards) and update the sub-structure

Di−,• so that Di−,• now maintains a solution for (Xi−,•,Qi−,•∪{Q↑, Q←, Q→}). This solution

covers all points in Xi−,•. We then remove the quadrants Q↑, Q←, Q→ from the solution (if

any of them are used), and the set Q∗↑ of the remaining quadrants should cover all points in

L↑. In a similar way, we can construct sets Q∗↓,Q∗←,Q∗→ that cover the points in L↓, L←, L→,

respectively, by using the sub-structures Di+,•,D•,j− ,D•,j+ . (If any of those sub-structures

tells us the corresponding sub-instance has no solution, then we make a no-solution decision

for (X,Q).) We include in Qappx all quadrants in Q∗ = Q∗↑∪Q∗↓∪Q∗←∪Q∗→. This completes

the construction of Qappx.

77

To summarize, we define

Qappx = {Q↑, Q↓, Q←, Q→} t Q∗ t

 ⊔
(i,j)∈P

Q∗i,j

 , (3.8)

where P = {(i, j) : i− < i < i+, j− < j < j+}. From the construction, it is easy to verify

that Qappx is a set cover for (X,Q).

Answering queries to the solution. We show how to store the solution Qappx properly

so that the desired queries for Qappx can be answered efficiently. If Qappx is computed using

the output-sensitive algorithm of Lemma 3.11, then |Qappx| ≤ δ and we have all elements of

Qappx. In this case, we simply build a binary search tree on Qappx, which can answer the

desired queries with the required time costs. On the other hand, if Qappx is defined using

Equation 3.8, we cannot compute Qappx explicitly. Instead, we simply compute the size of

Qappx. We have |Qappx| = 4 + |Q∗|+
∑

(i,j)∈P |Q∗i,j|, where |Q∗| and |Q∗i,j| can be obtained by

querying the sub-structures Di−,•,Di+,•,D•,j− ,D•,j+ and Di,j’s. By storing |Qappx|, we can

answer the size query in O(1) time.

In order to answer membership queries, we need some extra work. The main difficulty

is that one quadrant Q ∈ Q∗ may belong to many Q∗i,j’s, but we cannot afford recursively

querying all sub-structures Di,j. To overcome this difficulty, the idea is to store the special

quadrants inQ∗i,j’s separately. Recall thatQi,j consists of all nontrivial quadrants inQ whose

vertices are in �i,j and four special quadrants Q
�i,j
← , Q

�i,j
→ , Q

�i,j
↑ , Q

�i,j
↓ . We collect all special

quadrants in Q∗i,j for (i, j) ∈ P , the number of which is at most 4|P | = O(r2). We then store

these special quadrants in a binary search tree T which can support membership queries. To

answer a membership query Q ∈ Q, we first compute its multiplicity in {Q↑, Q↓, Q←, Q→}
in O(1) time. Then it suffices to compute the multiplicity of Q in Q∗ t

⊔
(i,j)∈P Q∗i,j. Note

that although there can be many parts among Q∗↑, Q∗↓, Q∗←, Q∗→, or Q∗i,j’s that contain

Q, all of them contain Q as a special quadrant except the one corresponding to the region

that contains the vertex of Q. So we only need to query T to obtain the multiplicity of Q

contained in Q∗i,j’s as a special quadrant, similarly use orthogonal range searching to check

whether Q is contained in L↑, L↓, L←, or L→ as a special quadrant in O(log n) time, and

then perform a single recursive query in the sub-structure Di−,•,Di+,•,D•,j− ,D•,j+ or Di,j for

the part that contains the vertex of Q.

Handling reporting queries is easy and is similar to that for dynamic interval set cover

presented in Section 3.7. We first report the four quadrants Q↑, Q↓, Q←, Q→, and then report

the quadrants in Q∗ and Q∗i,j’s by recursively querying the sub-structures which maintain

78

nonempty solutions.

Now we analyze the query time. If the solution Qappx is computed by the algorithm of

Lemma 3.11, then it is stored in a binary search tree and we can answer a size query, a

membership query, and a reporting query in O(1) time, O(log |Qappx|) time, and O(|Qappx|)
time, respectively. So it suffices to consider the case where we construct Qappx using E-

quation 3.8. In this case, answering a size query still takes O(1), because we explicitly

compute |Qappx|. To answer a membership query Q ∈ Q, we need to do a single recursive

query on one sub-structure (the rectangle among L↑, L↓, L←, L→ or the cell �i,j containing

the vertex of Q can be found in O(log r) time using the point location data structure L).

Besides, we need to query the binary search tree T or the orthogonal range searching struc-

ture that checks special quadrants, which takes O(log n) time. All the other work takes

O(1) time. Note that the instances maintained in the sub-structures Di,•,D•,j,Di,j have

size O(n/r). So if we use Qm(n) to denote the time cost for a membership query when the

size of the instance is n, we have the recurrence Qm(n) = Qm(O(n/r)) + O(log n), which

solves to Qm(n) = O(logr n · log n). Finally, to answer a reporting query, we first report

the elements of {Q↑, Q↓, Q←, Q→} and recursively query the relevant sub-structures which

maintain nonempty solutions. Thus, in the recursion tree, the number of leaves is bounded

by |Qappx| since at each leaf node we need to report at least one element. Since the height of

the recursion tree is O(logr n) and at each node of the recursion tree the work can be done

in O(1) time, the overall time cost for a reporting query is O(|Qappx| · logr n).

Correctness. First, we show that D makes a no-solution decision iff the current instance

(X,Q) does not have a feasible set cover. The “if” part is clear because the set Qappx

we construct is always a set cover for (X,Q). To see the “only if” part, we notice there

are two cases that D can make a no-solution decision. The first case is when the sub-

instance (Xi,j,Qi,j) has no set cover for some cell �i,j for i− < i < i+ and j− < j <

j+ that is not covered by any single quadrant Q ∈ Q. In this case, there is some point

a ∈ Xi,j that cannot be covered by any quadrant in Qi,j. Note that Qi,j contains all

nontrivial quadrants in Q which partially intersect �i,j and the intersection is maximal

(among all quadrants in Q that partially intersect �i,j). Therefore, a cannot be covered by

any nontrivial quadrant in Q which partially intersects �i,j (and all nontrivial quadrants in

Q intersecting �i,j must intersect �i,j partially). Also, a cannot be covered by any trivial

quadrant in Q because a ∈ �i,j ⊆ A. So the no-solution decision made here is correct.

The second case is when constructing Q∗. It is easy to see that if any of the sub-structures

Di−,•,Di+,•,D•,j− ,D•,j+ reports “no solution”, then (X,Q) has no set cover. For example, if

Di−,• reports “no solution”, then the points in Xi−,• cannot be covered by the quadrants in

79

Qi−,• ∪ {Q↑, Q←, Q→} and thus the points in L↑ cannot be covered by the quadrants in Q.

Therefore, the no-solution decision made here is correct.

Now it suffices to show Qappx is a (µ + ε)-approximate solution for (X,Q). If Qappx

is constructed by the algorithm of Lemma 3.11, then it is a µ-approximate solution. So

suppose Qappx is constructed using Equation 3.8. Let opt be the size of an optimal set cover

for (X,Q). Our key observation is the following.

Lemma 3.12. |Qappx| ≤ (µ+ ε̃) · opt +O(r2).

Proof. Let Qopt be an optimal set cover of (X,Q). Define n↑, n↓, n←, n→ as the number

of quadrants in Qopt whose vertices are in L↑, L↓, L←, L→, respectively. Also, define ni,j

as the number of quadrants in Qopt whose vertices are in �i,j. We have opt = |Qopt| ≥
n↑ + n↓ + n← + n→ +

∑i+

i=i−
∑j+

j=j− ni,j. On the other hand, by Equation 3.8, we have

|Qappx| = 4 + |Q∗|+
i+∑
i=i−

j+∑
j=j−

|Q∗i,j|

= 4 + |Q∗↑|+ |Q∗↓|+ |Q∗←|+ |Q∗→|+
i+∑
i=i−

j+∑
j=j−

|Q∗i,j|.

(3.9)

We show that |Q∗↑| ≤ (µ+ ε̃) · (n↑ + 7), |Q∗↓| ≤ (µ+ ε̃) · (n↓ + 7), |Q∗←| ≤ (µ+ ε̃) · (n← + 7),

|Q∗→| ≤ (µ+ ε̃) · (n→ + 7), and |Q∗i,j| ≤ (µ+ ε̃) · (ni,j + 4) for i− < i < i+ and j− < j < j+,

which implies the inequality in the lemma. All these inequalities are proved similarly, so

we only show |Q∗↑| ≤ (µ + ε̃) · (n↑ + 7) here. Recall that Q∗↑ is the solution maintained

by Di−,• for (Xi−,•,Qi−,• ∪ {Q↑, Q←, Q→}), excluding the quadrants Q↑, Q←, Q→. Now we

create a set of at most n↑ + 7 quadrants in Qi−,• ∪ {Q↑, Q←, Q→}, which consists of all

quadrants in Qopt whose vertices are in L↑, the (up to) four maximal nontrivial quadrants

in Q that top, bottom, left, right intersect Ri− , and the three quadrants Q↑, Q←, Q→. These

n↑ + 7 quadrants cover all points in Xi−,•, because Qopt is a set cover of (X,Q). Since

Di−,• maintains a (µ + ε)-approximate solution for (Xi−,•,Qi−,• ∪ {Q↑, Q←, Q→}), we have

|Q∗↑| ≤ (µ+ ε̃) · (n↑ + 7). QED.

Recall that we construct Qappx using Equation 3.8 only when opt ≥ δ ≥ c(r2 +εr2)/(ε−αε).
By the above lemma and the fact that c is sufficiently large, we have

|Qappx| − (µ+ ε̃) · opt ≤ c′ · r2 ≤ (ε− αε)opt = (ε− ε̃)opt, (3.10)

which implies |Qappx| ≤ (µ+ ε) · opt.

80

Update time. To analyze the update time of our data structure D, it suffices to con-

sider the first period (including the first reconstruction). The first period consists of n0/r

operations, where n0 is the size of the initial (X,Q). The size of (X,Q) during the first

period is always in between (1− 1/r)n0 and (1 + 1/r)n0 and is hence Θ(n0) (later we shall

choose a super-constant r). We first observe that, excluding the recursive updates for the

sub-structures, each update of D takes Õ(r2/(ε−αε)) (amortized) time. Updating the sup-

port data structures can be done in Õ(1) time. When constructing the solution Qappx, we

need to simulate the algorithm of Lemma 3.11 within Õ(δ) = Õ(r2/(ε− αε)) time. If Qappx

is defined using Equation 3.8, we need to do some extra work. First, we need to obtain the

quadrants Q↑, Q↓, Q←, Q→, which can be done in Õ(1) time using the support data structure

B. Then we need to compute |Q∗|, which involves O(1) size queries to the sub-structures

Di−,•,Di+,•,D•,j− ,D•,j+ and hence takes O(1) time. Finally, we need to compute |Q∗i,j| and

retrieve the special quadrants in Q∗i,j for all (i, j) ∈ P (and build the query structure for

these special quadrants). Checking whether a cell �i,j is coverable can be done in Õ(1) time

using the support data structure C. After knowing whether each cell is coverable, computing

|Q∗i,j| and retrieving the special quadrants can be done via O(r2) size and orthogonal range

searching queries to the sub-structures Di,j, which takes Õ(r2) time.

The reconstruction of D takes Õ(2O(logr n) · r) amortized time, because the time cost of the

(first) reconstruction is Õ(2O(logr n1) ·n1), i.e., Õ(2O(logr n0) ·n0), while the first period consists

of O(n0/r) operations.

Next, we consider the recursive updates of the sub-structures. Similar to the analysis

of our dynamic interval set cover data structure, we distinguish three types of updates

according to the current operation. The first type is point update, which is caused by the

insertion/deletion of a point in X. The second type is trivial quadrant update (or trivial

update for short), which is caused by the insertion/deletion of a trivial quadrant in Q (recall

that a quadrant is trivial if its vertex is outside the point range [0, 1]2 of (X,Q)). The third

type is nontrivial quadrant update (or nontrivial update for short), which is caused by the

insertion/deletion of a nontrivial quadrant in Q.

We first consider the recursive updates required for all three types of updates. Recall that

when constructing the solution Qappx using Equation 3.8, we need to temporarily insert some

virtual quadrants to Qi−,•,Qi+,•,Q•,j− ,Q•,j+ (and delete them afterwards). This involves

a constant number of recursive updates, which are all trivial updates because the virtual

quadrants inserted are all trivial. Besides these recursive updates, a point update requires

three recursive (point) updates, because the insertion/deletion of a point in X changes one

cell sub-instance, one row sub-instance, and one column sub-instance. A trivial update does

not require any other recursive updates, because the insertion/deletion of trivial quadrant

81

in Q does not change any sub-instance.

Finally, we consider a nontrivial update, where our algorithm is more involved. Let Q be

the nontrivial quadrant inserted/deleted and suppose the vertex of Q is contained in the cell

�i,j. Then we may need to update the cell sub-structures Di,1, . . . ,Di,r and D1,j, . . . ,Dr,j, in

which the update of Di,j is a nontrivial update and the others are all trivial updates since

the vertex of Q is outside the point ranges of all cell sub-instances except (Xi,j,Qi,j). Also,

we need to update the row (resp., column) sub-structures, in which the update of Di,• (resp.,

D•,j) are nontrivial updates and the others are all trivial updates.

To summarize, a point update requires O(1) recursive point updates and O(1) recursive

trivial updates, a trivial update requires O(1) recursive trivial updates, and a nontrivial

update requires O(1) recursive nontrivial updates and O(r) recursive trivial updates (as

shown in Fig. 3.5).

The depth of the recursion is O(logr n). If we set α = 1 − 1/ logr n, the approximation

factor parameter is Θ(ε) in any level of the recurrence. Let U(n), U1(n), U2(n) denote the

time costs of a point update, a trivial update, and a nontrivial update, respectively, when

the size of the current instance is n. Then we have the recurrences

U(n) = O(1) · U(O(n/r)) +O(1) · U1(O(n/r)) + Õ(r2/ε),

U1(n) = O(1) · U1(O(n/r)) + Õ(r2/ε),

U2(n) = O(1) · U2(O(n/r)) +O(r) · U1(O(n/r)) + Õ(r2/ε).

(3.11)

The recurrence for U1(n) solves to U1(n) = Õ((r2/ε) · 2O(logr n)). Based on this, we further

solve the recurrences for U(n) and U2(n), and obtain U(n) = Õ((r2/ε)·2O(logr n)) and U2(n) =

Õ((r3/ε) ·2O(logr n)). Setting r = 2O(
√

logn), the amortized update time of D is then Õ((r3/ε) ·
2O(logr n)) = 2O(

√
logn).

The time cost of a membership query is O(logr n · log n) = O(log3/2 n), while the time cost

of a reporting query is O(|Qappx| · logr n) = O(|Qappx| ·
√

log n) = O(opt
√

log n). Also, the

construction time is Õ(2O(logr n) · n) = 2O(
√

logn) · n. We conclude the following.

Theorem 3.5. There exists a dynamic data structure for O(1)-approximate unweighted

unit-square set cover with 2O(
√

logn) amortized update time and 2O(
√

logn) · n construction

time, which can answer size, membership, and reporting queries in O(1), O(log3/2 n), and

O(opt
√

log n) time, respectively, where n is the size of the instance and opt is the size of the

optimal solution.

82

3.9 IMPROVING UNWEIGHTED SQUARES

In this section, we present a more efficient data structure for O(1)-approximate dynamic

square set cover, improving our previous near-O(n2/3)-time result in Sec. 3.4.

Let (X,S) be a dynamic (unweighted) square set cover instance where X is the set of

points in R2 and S is the set of squares. Let n = |X|+ |S| denote the total number of points

and squares.

3.9.1 Algorithm for small opt

Based on the randomized multiplicative weight update (MWU) method [14, 46, 89], we

have provided an O(1)-approximation algorithm with Õ(opt2) query time and Õ(1) update

time in Lemma 3.1, assuming the points and objects have been preprocessed in standard

range searching data structures. When opt is small, this algorithm runs in sublinear time.

We will use this algorithm as a subroutine later.

3.9.2 Algorithm for large opt

When opt is large, we can afford a larger additive error. Our previous approach in Sec. 3.4

utilized this observation and used a quadtree to partition the problem into subproblems,

paying O(1) additive error per subproblem when combining the solutions. We refine that

approach and further improve the update time to near O(n1/2).

Previous data structures. Our data structure is based on the previous data structure

in Sec. 3.4, so we will first briefly redescribe that approach, and then introduce our new

ideas. For simplicity, assume all coordinates are integers bounded by U = poly(n). This

assumption can be removed, namely by using the BBD tree as we have explained in Sec. 3.4.

We also assume an O(1)-approximation t of opt is known, by running our algorithm for

all possible guesses t = 2i in parallel (our algorithm is able to detect whether the guess is

wrong).

The key idea in our previous method is to construct a standard quadtree, starting with

a bounding square cell and recursively divide into four square cells. We stop subdividing

when a leaf cell Γ has size at most b, for a parameter b to be set later, where the size of Γ

is defined as the total number of points in X and vertices of squares in S that are inside Γ.

This yields O(n
b
) cells per level, and thus O(n

b
logU) cells in total.

Since the quadtree cells are also squares, there are only two types of intersections between

83

a quadtree cell Γ and an input square in S. Call a square s short in the cell Γ, if at least

one of its vertices is in Γ, otherwise long, as shown in Fig. 3.4. A key observation is that it

suffices to keep (at most) 4 “maximal” long squares in each cell, since their union covers the

union of all long squares of the cell. We use MΓ to denote the set of maximal long squares

in the cell Γ.

Now we only need to maintain a data structure DΓ for each leaf cell Γ, that supports the

following type of query:

Given any query rectangle r in Γ, compute an O(1)-approximate set cover solu-

tion for the points in X ∩ r, using only the short squares in Γ.

To compute an approximate set cover solution for Γ, it suffices to first include the 4 maximal

long squares MΓ of Γ in the approximate solution (thus paying O(1) additive error), and

then query for an O(1)-approximate solution SappxΓ
in the complement region �Γ of MΓ,

which is a rectangle as shown in Figure 3.7, using only the short squares. DΓ is implemented

using 2D range trees [12, 100] with branching factor a = bδ built on the points within Γ,

where δ is a sufficiently small constant. In this way, we form a set of canonical rectangles

with total size O(aO(1)b(loga b)
2) = O(b1+O(δ)), such that any query rectangle in the cell Γ

can be decomposed into O((loga b)
2) = (1

δ
)O(1) = O(1) canonical rectangles. Then SappxΓ

is obtained by taking the union of the O(1)-approximate solutions in the O(1) canonical

rectangles that �Γ decomposes to, and doing this only loses a constant factor.

Figure 3.7: The complement region of the (at most) 4 maximal long squares of a cell.

The global approximate solution Sappx is formed by taking the union of the approximate

solutions in each leaf cell Γ, which is SappxΓ
plus the at most 4 maximal long squares of Γ,

i.e., we let Sappx =
⊔

Γ(SappxΓ
tMΓ).

To analyze the approximation factor, let SoptΓ contain the squares in the optimal solution

that are short in the cell Γ. We have
∑

Γ |SoptΓ| ≤ 4 · opt, since an input square is short in

84

at most 4 leaf cells containing its 4 vertices. The size of our approximate solution Sappx can

be upper-bounded as follows:

|Sappx| ≤
∑

Γ

(
|SappxΓ

|+ |MΓ|
)
≤
∑

Γ

(
O
(
|SoptΓ |

)
+ 4
)
≤ O(opt) + Õ

(n
b

)
. (3.12)

As long as we set b = Ω̃(n
opt

), this is an O(1)-approximation.

New approach. Now we describe the parts that we will change. In our previous algorithm,

an O(1)-approximate solution within each canonical rectangle in each cell is maintained,

using the static O(1)-approximate set cover algorithm with near-linear running time [14, 71].

Our previous observation was that for a canonical rectangle r with size bi, although there may

exist a lot of squares that cut across r, it suffices to keep only O(bi) “maximal” long squares

with respect to r among them, which can be found in Õ(bi) time using range searching. So

the running time for the static algorithm is Õ(bi).

To further improve the update time, our new idea is to classify the canonical rectangles

into two categories, based on their sizes. Call a canonical rectangle heavy, if its size exceeds

g, otherwise light, where g is a parameter to be set later.

For each heavy canonical rectangle r with size g′ ≥ g, we maintain another level of

subquadtree, using the previous algorithm as stated before, which subdivides it into Õ(λ)

subcells each with size O(g
′

λ
), where λ is a parameter to be set later. For each subcell Λ

in the subquadtree, maintain the set MΛ of the at most 4 maximal long squares, and an

O(1)-approximate set cover solution SappxΛ
for the complement region.

For the light canonical rectangles, we don’t maintain the approximate solution, but rather

choose to compute it from scratch during the query.

For each cell Γ, the data structure DΓ can be constructed in O(b1+O(δ)) time, since the

total size of the heavy canonical rectangles in the cell is at most O(b1+O(δ)), and the static

approximate set cover algorithm runs in near-linear time.

Update. When we insert or delete a square s, for each leaf cell Γ that contains a vertex

of s, we update the subquadtree for each heavy canonical rectangle in Γ. For a heavy

canonical rectangle with size g′ ≥ g, this takes O((λ + g′

λ
) · g′O(δ)) time (as analyzed in the

previous paper). Summing over all heavy canonical rectangles, the total time is at most

O((λ · b
g

+ b
λ
) · bO(δ)), as the total size of the (heavy) canonical rectangles is bounded by

O(b1+O(δ)). We also update the set of maximal long squaresMΓ for each leaf cell Γ, in Õ(n
b
)

time.

85

When we insert or delete a point p, we update the data structure DΓ for the leaf cell Γ

containing p. For each canonical rectangle r in Γ that contains p, we may need to update

O(1) maximal long squares that cut across r, which takes O((λ + b
λ
) · bO(δ)) time for the

heavy ones, and O(bO(δ)) time for the light ones.

Query. When we perform a query, we need to compute the approximate solution SappxΓ

in the complement region �Γ of the maximal long squares for each cell Γ. The region �Γ

can be decomposed into O(1) canonical rectangles. For each light canonical rectangle r,

let opti denote the size of the optimal solution, we compute an O(1)-approximate solution

from scratch, using either the small opt algorithm as described earlier in Sec. 3.4.1 in Õ(opt2i)

time, or the static algorithm [14, 71] in Õ(g) time (since the size of r is at most g), whichever

is faster (by running them in parallel). For each heavy canonical rectangle, the size of the

precomputed approximate solution (which is implicitly represented by the subquadtree) can

be retrieved in O(1) time, but it has additive error O(λ). So if the result is O(λ), we need

to recompute an O(1)-approximate solution from scratch, using the small opt algorithm in

Õ(opt2i) time, which is bounded by Õ(opti · λ) since opti = O(λ).

The total query time is

Õ

(∑
i

min{opt2i , g}+
∑
i

opti · λ+
n

b

)
, (3.13)

which is at most Õ(opt · √g + opt · λ+ n
b
), since

∑
i opti = opt.

To balance the query and update times, when opt ≤
√
n, set b = n

opt
, g = n

opt2
and λ =

√
n

opt

(note that the requirements b ≥ g ≥ λ ≥ 1 and b = Ω̃(n
opt

) are satisfied); both the query and

update time are O(n1/2+δ)—interesting, we get the same bound uniformly for all the terms.

When opt >
√
n, our previous algorithm already obtains O(n1/2+δ) query and update time,

by setting b =
√
n.

The actual solution Sappx can be reported by taking the union of all solutions in the leaf

cells of the quadtree, which takes Õ(opt) time.

Theorem 3.6. There exists a dynamic data structure for O(1)-approximate unweighted

square set cover with O(n1/2+δ) query and update time and O(n1+δ) construction time w.h.p.,

for any constant δ > 0, where n is the size of the instance.

86

3.10 UNWEIGHTED 2D HALFPLANES

In this section, we present a data structure for O(1)-approximate dynamic 2D halfplane

set cover. Previously in Sec 3.5, we have provided a dynamic set cover structure for 3D

halfspaces with O(n12/13+δ) update time, which clearly also holds for 2D halfplanes, but

that scheme is unable to actually find a set cover—it only reports its size. This is because

our previous idea for the “large opt” case is based on estimating the size of the solution by

summing over a small random sample of the terms. Here we not only improve the update

time, but can also find the approximate set cover solution.

Let (X,H) be a dynamic (unweighted) 2D halfplanes set cover instance where X is a set

of points in R2 and H is a set of halfplanes, with m = |X| and n = |H|. We use N = n+m

to denote the global upper bound on the instance size.

3.10.1 Algorithm for small opt

We first note that there is an algorithm that is efficient when opt is small, which will be

used later as a subroutine. The idea is to modify the small opt algorithm for squares in

Sec. 3.4.1, which is based on an efficient implementation of the randomized multiplicative

weight update (MWU) method [14, 46, 71, 89], using (≤ b)-levels and various geometric data

structures. Here we note the changes that we make in order to work for 2D halfplanes.

To efficiently implement the MWU algorithm on (X,H) as shown in Alg. 3.1, we need to

solve two subproblems: 1) finding a low-depth point p, and 2) weighted range sampling.

Finding a low-depth point. Let b := c0
2

log(n + m) where c0 is a sufficiently large

constant. To find a low-depth point in line 5, we compute (from scratch) the (≤ b)-level

L≤b(R) of R, which is the collection of all cells in the arrangement of the halfplanes in R of

depth at most b. It is known that L≤b(R) has O(|R|b) cells (after triangulation) and can be

constructed in Õ(|R|b) time [92], which is Õ(t).

To find a point p ∈ X with depth in R at most b, we perform a triangle range query for

each (triangulated) cell of L≤b(R), to test if the cell contains a point p ∈ X. It is known that

we can construct a 2D triangle range searching structure D̃ [165] on the point set X, with

O(m
1/2+δ

z1/2) query time for emptiness/counting/sampling and Õ(z) insertion/deletion time, for

a given trade-off parameter z ∈ [1,m]. As there are Õ(t) multiplicity-doubling steps, the

total cost is Õ(t2 · m1/2+δ

z1/2).

87

Weighted range sampling. The algorithm is similar to the previous part, but this time

we work in the dual. We use h∗ to denote the dual point of a halfplane h, and p∗ denote the

dual halfplane of a point p.

Let Q be the set of all points p for which we have performed multiplicity-doubling steps

thus far. Note that |Q| = Õ(t). Each time we perform a multiplicity-doubling step, we

compute (from scratch) the (≤ b)-level L≤b(Q∗). The multiplicity of a halfplane h ∈ H is

equal to 2depth of h∗ in Q∗ , and all dual points h∗ in a cell of L≤b(Q∗) share the same multiplicity.

It is known that the multiplicities are bounded by (n + m)O(1), so each h∗ is covered by

L≤b(Q∗).
To generate a multiplicity-weighted sample of the halfplanes containing p for line 8, after

p has been inserted to Q, we examine all cells of L≤b(Q∗) contained in p∗. For each such cell

γ, we use triangle range counting to compute its size, using a 2D triangle range searching

structure D̃∗ built on the dual point set H∗ as described before. Knowing the sizes and

multiplicities for all such Õ(t) cells, we can then generate the weighted sample in time

O(n
1/2+δ

z1/2) times the size of the sample, again using the data structure D̃∗. The random

sample R in line 4 with size Õ(t) is generated similarly.

As we perform Õ(t2) triangle range counting queries, and the total size of the samples is

Õ(t), the total cost is Õ(t2 · n1/2+δ

z1/2 + t · n1/2+δ

z1/2) = Õ(t2 · n1/2+δ

z1/2).

Lemma 3.13. There exists a data structure for the dynamic set cover problem for O(m)

points and O(n) 2D halfplanes that supports updates in Õ(z) time and can find an O(1)-

approximate solution w.h.p. in Õ(opt2 · (n+m)1/2+δ

z1/2) time, for any constant δ > 0 and trade-off

parameter z ∈ [1, n+m]. The data structure can be constructed in Õ((n+m) · z) time.

Alternative algorithm. As an alternative to implement the small opt algorithm, we can

also slightly modify the small opt algorithm in Sec. 3.5.1 for halfspaces in 3D (which uses

partition trees), and obtain an algorithm for 2D halfplanes. The only difference is that we

use partition trees in 2D instead of 3D.

Lemma 3.14. There exists a data structure for the dynamic set cover problem for O(m)

points and O(n) 2D halfplanes that supports updates in Õ(1) time and can find an O(1)-

approximate solution w.h.p. in Õ(opt · (n+m)1/2+δ) time, for any constant δ > 0. The data

structure can be constructed in Õ(n+m) time.

88

3.10.2 Main algorithm

Here we first present a solution that only supports halfplane insertions and deletions as

well as point deletions; the ways to support point insertions are more technical, and will be

explained in the last part.

Data structures. To construct the data structure, our idea is to recursively apply Ma-

toušek’s Partition Theorem [165] as stated below, and decompose the problem into subprob-

lems.

Theorem 3.7 (Matoušek’s Partition Theorem). Given a set X of m points in R2, for any

positive integer b ≤ m, we can partition X into b subsets Xi each with size O(m
b

) and find b

disjoint triangular cells ∆i ⊃ Xi, where each cell is a triangle, such that any halfplane crosses

(i.e., the boundary intersects) O(
√
b) cells. The partition can be constructed in O(m1+δ)

time.

The original version of Matoušek’s theorem does not guarantee disjointness of cells, but a

later version by Chan [63] does.

Intuitively, with subproblems defined with this partition, any inserted/deleted halfplane

h only affects a small fraction of the subproblems. More precisely, we use Theorem 3.7 to

partition the set of points X into b disjoint cells ∆1, . . . ,∆b, each containing a subset Xi

of O(m
b

) points, where b is a parameter to be set later. Any halfplane h will cross O(
√
b)

cells, so each cell is crossed by O(n·
√
b

b
) = O(n√

b
) halfplanes in H on average. Call a cell

good if it crosses ≤ g · n√
b

halfplanes in H (for a sufficiently large constant g), otherwise

bad. The halfplanes in H cross O(n ·
√
b) cells in total, so the total number of bad cells is

O(n
√
b

gn/
√
b
) = O(b

g
).

We construct the standard range searching data structures D̃ and D̃∗ required by the

small opt algorithm in Section 3.10.1 on the problem instance (X,H) in Õ((n+m) · z) time,

and maintain an (implicit) O(1)-approximate solution Happx for (X,H). For each good cell

∆i, let Hi be the set of halfplanes crossing ∆i, we recursively construct a data structure

Di for the subproblem (Xi,Hi). If there exists a halfplane that completely contains ∆i,

then record any one of them. We also construct a data structure Dbad for the subproblem

(Xbad,H) where Xbad =
⋃
i: cell i badXi, which contains all points in the union of the bad

cells. In the worst case, the union of bad cells may cross all halfplanes in H, so the number

of halfplanes in the subproblem will not necessarily decrease. However the total number of

points decreases by a constant fraction, since |Xbad| =
∑

i: cell i bad |Xi| ≤ O(b
g
· m
b

) = O(m
g

).

89

The construction time satisfies the recurrence

T (m,n) = b · T
(
O
(m
b

)
,
gn√
b

)
+ T

(
O

(
m

g

)
, n

)
+ Õ(m+ nb) + Õ((n+m) · z). (3.14)

Set b = N δ0 where δ0 > 0 is a sufficiently small constant, and set z = (n + m)1/3 to later

balance the terms in the update time. For simplicity of analysis we assume that initially

we have m ≤ n, and then this condition holds for all subproblems as we recurse. The

running time is dominated by the costs at the lowest level, so the recurrence solves to

T (m,n) = Õ(m · (n√
m

)4/3) = O(m1/3n4/3 ·NO(δ)).

Update. When we insert or delete a halfplane h, we recurse in the O(
√
b) good cells

∆1, . . . ,∆τ crossed by h, in order to recompute the approximate solutions Happx(Xi) for

1 ≤ i ≤ τ . We also recurse in the subproblem (Xbad,H) containing the union of bad cells,

and recompute the approximate solution Happx(Xbad). We update the range searching data

structure D̃∗ required by the small opt algorithm, using Õ(z) time.

To reconstruct the approximate solution Happx we proceed as follows. If opt , |Hopt| ≤
c2 ·b logN for a sufficiently large constant c2, we use the Õ(opt2 · (n+m)1/2+δ

z1/2) time algorithm for

small opt (Lemma 3.13) to recomputeHappx from scratch. The condition opt
?

≤ c2·b logN can

be tested by the small opt algorithm itself. Otherwise opt > c2 · b logN , and we can afford

a larger additive error, so we return the union of the O(1)-approximate solutions for the

good cells Xi and the union of the bad cells Xbad, i.e., let Happx =
⊔
i: cell i goodHappx(Xi) t

Happx(Xbad), which is stored implicitly. (One special case is when there exists a halfplane h

that contains the cell ∆i, we include h instead of Happx(Xi) in the solution Happx.)

We rebuild the entire data structure after every g · n√
b

halfplane updates, so that good cells

will not become bad. The amortized cost per update is T (m,n)

gn/
√
b

+ Õ(b2 · (n+m)1/2+δ

z1/2) + Õ(z) =

O(m1/3n1/3 ·NO(δ)).

When we delete a point p, if p is contained in a good cell ∆i, we recurse in the subprob-

lem within ∆i in order to recompute the approximate solution Happx(Xi). Otherwise p is

contained in a bad cell, so we recurse in the subproblem (Xbad,H) and recompute the ap-

proximate solution Happx(Xbad). Then we recompute Happx, using the procedure described

above. We update the range searching data structure D̃ required by the small opt algorithm,

using Õ(z) time.

Let U(m,n) denote the update time for an instance with m points and n halfplanes. Since

90

point deletions are easier, we mainly focus on halfplane updates. It satisfies the recurrence

U (m,n) = O
(√

b
)
· U
(
O
(m
b

)
,
gn√
b

)
+ U

(
O

(
m

g

)
, n

)
+O

(
m1/3n1/3 ·NO(δ)

)
, (3.15)

which solves to U(m,n) = O(m1/3n1/3 ·NO(δ)).

Figure 3.8: The boundary of the optimal solution must form a convex chain (see left).
For simplicity we only include the upper halfplanes; the lower halfplanes are similar. Each
triangular cell of the partition only intersects the convex chain O(1) times (see right).

Approximation factor analysis. The key observation here is that the boundary of the

optimal solution Hopt for (X,H) must form a convex chain, as shown in Figure 3.8. As

each cell is a triangle, it can only intersect the optimal convex chain O(1) times, thus the

b disjoint cells ∆1, . . . ,∆b will partition Hopt into O(b) disjoint pieces. (Unfortunately, such

nice property does not hold in 3D.) If we take the union of the optimal solutions in all the

cells, the additive error is at most O(b), i.e., we have∑
1≤i≤b

|Hopt(Xi)| ≤
∑

1≤i≤b

(|Hopt ∩∆i|+O(1)) ≤ |Hopt|+O(b). (3.16)

Similarly, we have ∑
i: cell i good

|Hopt(Xi)|+ |Hopt(Xbad)| ≤ |Hopt|+ c1b (3.17)

for some constant c1.

Let c0 denote the constant multiplicative error factor guaranteed by the small opt algo-

rithm. Suppose that for some constant multiplicative error factor c ≥ max{c0, c1}, we have

|Happx(Xi)| ≤ c · |Hopt(Xi)| for all good cells i, and also |Happx(Xbad)| ≤ c · |Hopt(Xbad)|.
Then if opt > c2 · b logN , we set Happx to be the union of the approximate solutions in the

91

subproblems, and obtain

|Happx| ≤
∑

i: cell i good

|Happx(Xi)|+ |Happx(Xbad)| (3.18)

≤ c ·

(∑
i: cell i good

|Hopt(Xi)|+ |Hopt(Xbad)|

)
(3.19)

≤ c · (|Hopt|+ c1b) (3.20)

≤
(

1 + 1
logN

)
· c · |Hopt|. (3.21)

Otherwise we will use the small opt algorithm to compute Happx from scratch, which guar-

antees that |Happx| ≤ c0 · |Hopt|.
The recursion depth of the data structure is O(loggN) = O(logN). The multiplicative

error factor multiplies by a factor of at most 1+ 1
logN

at each level, so the global multiplicative

error is c · (1 + 1
logN

)O(logN) = O(1).

Reporting the actual solution. If the O(1)-approximate set cover solution Happx is

explicitly stored (i.e., computed by the small opt algorithm), then we can directly report the

solution in O(opt) time. Otherwise Happx is implicitly stored as the union of the approximate

solutions in the subproblems, and we recursively report the approximate solutions Happx(Xi)

for each good cell i, as well as Happx(Xbad) for the bad cells.

The number of leaf nodes of the recursion tree is bounded by |Happx|, since at each leaf node

we need to report at least one element. Each internal node of the recursion tree has degree

at least 2, so the total number of nodes is also bounded by O(|Happx|). The additional work

at each node of the recursion tree is O(1), therefore the overall running time is proportional

to the output size, i.e., O(|Happx|) = O(opt).

Lemma 3.15. There exists a data structure for O(1)-approximate dynamic 2D halfplane set

cover that supports halfplane insertion/deletions and point deletions in amortized O(n2/3+δ)

time w.h.p. for any constant δ > 0, and can answer size and reporting queries in O(1) and

O(opt) time, respectively, where n is the size of the instance.

Point insertions. The issue with point insertions is we need to rebuild the whole structure

every O(m
b

) point insertions to ensure the cell sizes are bounded by O(m
b

), which is costly

when m is too small. We resolve this issue by reducing the fully dynamic problem to partially

dynamic, using the logarithmic method [31] but with a larger base N δ and a non-trivial base

case, and finally obtain sublinear update time for all four types of updates.

92

Specifically, we use the logarithmic method to partition the set of points X into O(1
δ
)

subsets Xi, where the i-th subset contains mi ∈ [N
(Nδ)i+1 ,

N
(Nδ)i

) points (i = 0, . . . , f) for some

f = O(1
δ
), for a sufficiently small constant δ. We build a partially dynamic data structure

Di that supports halfplane insertion/deletions and point deletions, on the instance (Xi,H);

an exception is the last data structure Df , which will be fully dynamic. We obtain the

global approximate set cover solution by taking the union of the approximate solutions for

each of the subproblems, losing only a constant approximation factor since there are only

O(1
δ
) = O(1) subproblems. The logarithmic method guarantees that the subset Xi is rebuilt

only after every Θ(mi
Nδ) point insertions.

To implement the fully dynamic data structure Df , we use the small opt algorithm (Lem-

ma 3.13), with Õ(m2
f ·
√

n
z

+ z) = Õ(m
4/3
f n1/3) update time, by setting z = m

4/3
f n1/3 (here

and in the following we ignore the NO(δ) factors by a slight abuse of the Õ notation).

To implement the partially dynamic data structure Di (i < f) for the subproblem (Xi,H),

we suggest two different methods depending on the size mi.

For mf < mi ≤ n2/3, we modify our partially dynamic solution which we introduced

earlier. In particular, at each node of the recursion tree we build the data structure required

by the second small opt algorithm (Lemma 3.14), instead of the first small opt algorithm.

Another change is that we stop recursing when the current number of halfplanes n′ becomes

at most n√
Bi

(which also ensures the the current number of points m′ ≤ m
Bi

), for a parameter

Bi to be set later. Following a similar analysis, we obtain update time Õ(
√
Bi · mBi ·

√
n√
Bi

) =

Õ(m
√
n

B
3/4
i

) (the cost is dominated by the lowest level) and construction time Õ(Bi · n√
Bi

) =

Õ(n
√
Bi). Recall that the whole data structure needs to be rebuilt after every Θ(mi

Nδ) point

insertions. By setting Bi =
m

8/5
i

n2/5 + 1 (verify that 1 ≤ Bi ≤ mi), the amortized update time

is Õ(m
√
n

B
3/4
i

+ n
√
Bi

mi
) = Õ(n

4/5

m
1/5
f

+ n
mf

).

For mi > n2/3, we use our partially dynamic solution, but this time using a common

parameter zi in the small opt algorithms at all nodes of the recursion tree. The construction

time becomes T (m′, n′) = Õ(m′ · n√
m′
·zi), and the update time becomes U(m′, n′) = Õ(

√
m′ ·√

n′/
√
m′

zi
+ zi +

√
m′ · zi). Adding the amortized cost for rebuilding (after every Θ(mi

Nδ) point

insertions), the amortized update time is Õ(T (mi,n)
mi

+U(mi, n)) = Õ(
m

1/4
i n1/2

√
zi

+(
√
mi+

n√
mi

) ·

zi), which is Õ(n2/3) by setting zi =
m

1/2
i

n1/3 ≥ 1.

Finally setting mf near n7/23 (up to N δ factors) to balance the Õ(m
4/3
f n1/3) and Õ(n

4/5

m
1/5
f

+

n
mf

) terms, we obtain amortized update time O(n17/23+O(δ)).

Theorem 3.8. There exists a data structure for O(1)-approximate dynamic 2D halfplane

93

set cover with amortized O(n17/23+δ) update time w.h.p. for any constant δ > 0, and can

answer size and reporting queries in O(1) and O(opt) time, respectively, where n is the size

of the instance.

The exponent 17/23 < 0.74 is likely further improvable with more work. The main message

is that sublinear update time is achievable for the fully dynamic problem while supporting

efficient reporting queries.

3.11 WEIGHTED INTERVALS

In this section, we present the first dynamic data structure with sublinear update time

and constant factor approximation for weighted interval set cover.

Let (X, I) be a dynamic weighted interval set cover instance where X is the set of points

in R and I is the set of weighted intervals. For each interval I ∈ I, we use w(I) ≥ 0 to

denote the weight of I. Without loss of generality, we may assume that the point range of

(X, I) is [0, 1], i.e., the points in X are always in the range [0, 1]. We say an interval I ∈ I
is two-sided if both of the endpoints of I lie in the interior of the point range [0, 1], and

one-sided if at least one endpoint of I is outside [0, 1].

We first observe that the approach we used for unweighted dynamic interval set cover

(Section 3.7) can be easily extended to the weighted case to obtain an nO(1)-approximation.

Recall that in Section 3.7, we partitioned [0, 1] into r connected portions J1, . . . , Jr, each of

which contains O(n/r) points in X and O(n/r) endpoints of intervals in I. Then we defined

Xi = X∩Ji and Ii = {I ∈ I : I∩Ji 6= ∅ and Ji * I}. Each (Xi, Ii) was viewed as a dynamic

interval set cover instance (called a sub-instance) with point range Ji, and we recursively

built a sub-structure Di for (Xi, Ii). In Section 3.7, we construct an approximate set cover

Iappx for (X, I) by distinguishing two cases: when the optimum is small, we compute Iappx

using the output-sensitive algorithm of Lemma 3.10; when the optimum is large, Iappx is

constructed by (essentially) taking the union of the solution maintained in the Di’s. The

output-sensitive algorithm of Lemma 3.10, unfortunately, does not work for the weighted

case. Therefore, here we always construct Iappx in a way similar to that used for the large-

optimum case. Specifically, for each Ji, we find a minimum-weight interval I ∈ I such that

Ji ⊆ I (if it exists) and let wi be the cost of the set cover of (Xi, Ii) maintained by Di. If

wi ≤ w(I), we define I∗i as the set cover of (Xi, Ii) maintained by Di, otherwise we define

I∗i = {I}. We then define Iappx =
⊔r
i=1 I∗i . We observe the following fact.

Fact 3.2. If each sub-structure Di maintains a t-approximate set cover of the sub-instance

(Xi, Ii), then Iappx is an rt-approximate set cover of the instance (X, I).

94

Proof. For i ∈ [r], let opti denote the cost of an optimal set cover of (Xi, I). Clearly,

opti ≤ opt for all i ∈ [r] and thus
∑r

i=1 opti ≤ r · opt. We then show that cost(I∗i) ≤ t · opti,
which implies that cost(Iappx) =

∑r
i=1 cost(I∗i) ≤ rt · opt. If an optimal set cover of (Xi, I)

consists of a single interval in I that covers Ji, then we have cost(I∗i) = opti. Otherwise, an

optimal set cover of (Xi, I) is a set cover of (Xi, Ii), and hence cost(I∗i) ≤ t · opti. QED.

The above fact shows that the approximation ratio of our data structure satisfies the

recurrence A(n) = r · A(O(n/r)), which solves to A(n) = nO(1). Furthermore, as analyzed

in Section 3.7, the data structure can be updated in Õ(r) amortized time. Setting r to be

a constant, we get an nO(1)-approximation data structure for dynamic weighted interval set

cover with Õ(1) amortized update time. In particular, we can maintain an estimation opt∼

of the optimum opt of (X, I) in Õ(1) amortized update time, which satisfies opt ≤ opt∼ ≤
nO(1)opt. With this observation, we now discuss our (3 + ε)-approximation data structure.

Since our data structure here is somehow involved (compared to the unweighted one in

Section 3.7), we shall first (informally) describe the underlying basic ideas, then present the

formal definitions and analysis.

3.11.1 Main ideas

The main reason why the data structure in Section 3.7 only achieves an nO(1)-

approximation is that it decomposes the entire problem into r sub-problems and combines

the solutions of the sub-problems in a trivial way. However, these sub-problems are not

independent: one interval in I can be used in all of the r sub-problems in the worst case. As

such, each level of the recursion can possibly increase the approximation ratio by a factor

of r. In order to handle this issue, our first key idea is to combine the solutions of the

sub-problems using dynamic programming. To see why DP is helpful, let us assume at this

point that each sub-structure Di maintains an optimal solution for the sub-instance (Xi, Ii).
Under this assumption, we show how DP can be applied to obtain a 3-approximate solution

for the instance (X, I).

Let x1, . . . , xr+1 be the endpoints of J1, . . . , Jr sorted from left to right (so the endpoints

of Ji are xi and xi+1). Consider an interval I ∈ I. If I contains at least one point in

{x1, . . . , xr+1}, we “chop” I into at most three pieces as follows. Let i− (resp., i+) be the

smallest (resp., largest) index such that xi− ∈ I (resp., xi+ ∈ I). Then xi− and xi+ partition

I into three pieces: the left piece (the part to the left of xi−), the middle piece (the part in

between xi− and xi+), and the right piece (the part to the right of xi+). We give each piece

a weight equal to w(I). Let I ′ be the resulting set of intervals after chopping the intervals

95

in I, i.e., I ′ consists of all pieces of the chopped intervals in I and all unchopped intervals

in I. It is clear that the optimum of the instance (X, I ′) is within [opt, 3opt], where opt is

the optimum of (X, I).

Now we observe a good property of the interval set I ′: each interval in I ′ is either contained

in Ji for some i ∈ [r] (e.g., the unchopped intervals and the left/right pieces) or is equal to

[xi− , xi+] for some i−, i+ ∈ [r + 1] (e.g., the middle pieces); we call the intervals of the first

type short intervals and those of the second type long intervals. Let I ′long ⊆ I ′ be the set

of long intervals and I ′i ⊆ I ′ be the set of short intervals contained in Ji. Then in any set

cover of (X, I ′), for each i ∈ [r], either Ji is covered by a long interval or the points in Xi are

covered by short intervals in I ′i. Furthermore, in an optimal set cover of (X, I ′), if the points

in Xi are covered by short intervals in I ′i, then those short intervals must be an optimal set

cover of (Xi, I ′i). Note that the instance (Xi, I ′i) is in fact equivalent to the sub-instance

(Xi, Ii), because I ′i = {I ∩ Ji : I ∈ Ii} (where the weight of I ∩ Ji is equal to the weight of

I) and the points in Xi are all contained in Ji. Thus, by assumption, an optimal set cover

of (Xi, I ′i) is already maintained in the sub-structure Di.
Based on this observation, we can use DP to compute an optimal set cover of (X, I ′) as

follows. For a long interval I = [xi− , xi+] ∈ I ′long, we write π(I) = i− − 1. For each i from

1 to r, we compute an optimal set cover for (
⋃i
j=1 Xj, I ′). To this end, we consider how

the points in Xi are covered. Clearly, we can cover the points in Xi using a long interval

I ∈ I ′long satisfying Ji ⊆ I. In this case, the best solution is the union of {I} and an optimal

set cover of (
⋃π(I)
j=1 Xj, I ′) which has already been computed as π(I) < i. Alternatively, we

can cover the points in Xi using the short intervals in I ′i. In this case, the best solution is the

union of an optimal set cover for (
⋃i−1
j=1 Xj, I ′) and an optimal set cover for (Xi, I ′i), where

the former has already been computed and the latter is maintained in the sub-structure Di.
We try all these possibilities and take the best solution found, which is an optimal set cover

for (
⋃i
j=1Xj, I ′). When the DP procedure completes, we get an optimal set cover of (X, I ′),

which in turn gives us a 3-approximation of an optimal set cover of (X, I).

Although the above approach seems promising, there are two issues we need to resolve.

First, the above DP procedure takes O(r · |I ′long|) time, but |I ′long| = Ω(n) in the worst

case. This issue can be easily handled by observing that there are only O(r2) different

intervals in I ′long. Indeed, every interval in I ′long is equal to [xi− , xi+] for some i−, i+ ∈ [r+1].

Among a set of identical intervals in I ′long, only the one with the minimum weight is useful.

Therefore, we only need to keep O(r2) minimum-weight intervals in I ′long. Furthermore,

these minimum-weight intervals can be computed in Õ(r2) time using a range-min data

structure without computing I ′long. Specifically, we identify each interval I = [a, b] ∈ I with

a weighted point (a, b) ∈ R2 with weight w(I). The minimum-weight [xi− , xi+] in I ′long is

96

just the middle piece of the minimum-weight interval whose left endpoint lies in Ji−−1 and

right point lies in Ji++1, which corresponds to the minimum-weight point in the rectangular

range [xi−−1, xi−] × [xi+ , xi++1]. Thus, if we maintain the corresponding weighted points of

the intervals in I in a dynamic 2D range-min data structure, the minimum-weight intervals

in I ′long can be computed in Õ(r2) time and the DP procedure can be done in Õ(r3) time.

The second issue is more serious. We assumed that each sub-structure Di maintains an

optimal solution for the sub-instance (Xi, Ii). Clearly, this is not the case, as the sub-

structures are recursively built and hence can only maintain approximate solutions for the

sub-instances. In this case, the approximation ratio may increase by a constant factor at

each level of the recursion: an interval in I is chopped into three pieces and its left/right

pieces can be further chopped by the sub-structures in lower levels. To handle this issue, we

need to prevent the sub-structures from chopping the intervals that are already chopped in

higher levels of the recursion. A key observation is the following: if an interval is chopped in

the current level, then its left/right pieces are both one-sided intervals in the sub-instances.

Therefore, if we only chop the two-sided intervals, we should be able to avoid the issue that

an interval is chopped more than once. However, this strategy brings us a new difficulty,

i.e., handling the one-sided intervals when constructing the set cover.

We overcome this difficulty as follows. We call a one-sided interval in I left (resp., right)

one-sided interval if it covers the left (resp., right) end of the point range [0, 1]. First,

observe that we need at most one left one-sided interval and one right one-sided interval

in our solution, simply because the coverage of the left (resp., right) one-sided intervals

is nested and thus only the rightmost (resp., leftmost) one in the solution is useful. So a

näıve idea is to enumerate the left/right one-sided interval used in our solution. (Clearly, we

cannot afford to do this because there might be Ω(n) one-sided intervals. But at this point

let us ignore the issue about running time – we will take care of it later.)

If L ∈ I and R ∈ I are the left and right one-sided intervals in our solution, then the

remaining task is to cover the points in X\(L∪R). It turns out that we can still apply the DP

approach above to compute a set cover for the points in X\(L∪R) using the intervals in I ′.
To see this, suppose the right endpoint of L lies in Ji− and the left endpoint of R lies in Ji+ .

Then the points to be covered are those lying in the portions Ji−\L, Ji−+1, . . . , Ji+−1, Ji+\R.

Same as before, in a set cover of (X\(L ∪ R), I ′), for each portion Ji where i− < i < i+,

either Ji itself is covered by a long interval in I ′long, or the points in Xi are covered by

short intervals in I ′i; in the latter case we can use the solution of (Xi, Ii) maintained in

the sub-structure Di. The only difference occurs in the portions Ji−\L and Ji+\R. We can

either cover Ji− (resp., Ji+) using a long interval in I ′long or cover the points in Xi−\L (resp.,

Xi+\R) using short intervals in I ′i− (resp., I ′i+). However, we do not have a good set cover

97

for (Xi−\L, I ′i−) (resp., (Xi+\R, I ′i+)) in hand: the solution maintained in the sub-structure

Di− (resp., Di+) is for covering all points in Xi− (resp., Xi+) and hence might be much more

expensive than an optimal solution of (Xi−\L, I ′i−) (resp., (Xi+\R, I ′i+)). We resolve this by

temporarily inserting the interval L (resp., R) with weight 0 to I ′i− (resp., I ′i+) and update

the sub-structure Di− (resp., Di+). Note that with the weight-0 interval L (resp., R), the

points in Xi− ∩L (resp., Xi+ ∩R) can be covered “for free” and thus the solution maintained

in Di− (resp., Di+) should be a good set cover of (Xi−\L, I ′i−) (resp., (Xi+\R, I ′i+)). Once

we have the set covers for the points in Ji−\L, Ji−+1, . . . , Ji+−1, Ji+\R using short intervals,

we can use the same DP as above to compute a set cover of (X\(L∪R), I ′), which together

with L and R gives us a set cover solution of (X, I).

One can verify that if the sub-structures D1, . . . ,Dr are recursively built, then the set

cover we obtain is a 3-approximate solution of (X, I), essentially because when an interval is

chopped (into up to three pieces) in the current level, its left/right pieces become one-sided

intervals in the next level of recursion and can no longer cause any error.

Next, we discuss how to avoid enumerating all the left/right one-sided intervals. The key

idea is that if we have a set of left (resp., right) one-sided intervals whose weights are similar,

say in a range [w, (1+ε)w], then we can simply keep the one that has the maximum coverage,

i.e., the rightmost (resp., leftmost) one, and discard the others. Indeed, instead of using a

left/right one-sided interval we discard, we can always use the one we keep, which increases

the total weight by only at most εw. Using the estimation opt∼ of the optimum, we can

actually classify the one-sided intervals in I into Õ(1/ε) groups, where the intervals in each

group have similar weights. In each group, we only keep the interval with the maximum

coverage. In this way, we obtain a set of Õ(1/ε) candidate one-sided intervals, and we only

need to enumerate these candidate intervals, which can be done much more efficiently.

3.11.2 The data structure

Now we are ready to formally present our data structure and analysis. Let ε > 0 be the

approximation factor. Our goal is to design a data structure D that maintains a (3 + ε)-

approximate set cover solution for the dynamic weighted interval set cover instance (X, I)

and supports the size, membership, and reporting queries to the solution.

Let J1, . . . , Jr, X1, . . . , Xr, and I1, . . . , Ir be as defined in Section 3.7. For each i ∈ [r], we

recursively build a sub-structure Di on the sub-instance (Xi, Ii) with approximation factor

ε̃ = αε for some parameter α < 1. Next, we compute two sets L and R of one-sided

intervals in I as follows. Recall that we have the estimation opt∼ satisfying opt ≤ opt∼ ≤
nO(1)opt. Set opt− = (ε/4) · opt∼/nc for a sufficiently large constant c so that we have

98

opt− ≤ ((ε− αε)/4) · opt, assuming α = Ω(1) (which is the case when we choose α). Define

δ0 = 0 and δi = opt− · (1 + ε̃/2)i−1 for i ≥ 1. Let m be the smallest number such that

δm ≥ (3 + ε)opt∼. Note that m = Õ(1
ε̃

log 1
ε̃
).

For i ∈ [m], let Li ∈ I be the left one-sided interval with the rightmost right endpoint

satisfying w(Li) ∈ [δi−1, δi]. Then we define L = {L1, . . . , Lm}. Similarly, let Ri ∈ I be the

right one-sided interval with the leftmost left endpoint satisfying w(Ri) ∈ [δi−1, δi], and define

R = {R1, . . . , Rm}. The sets L and R can be computed in Õ(m) time using a (dynamic)

2D range-max/range-min data structure. Indeed, if we map each interval I = [a, b] ∈ I
into the point (a, w(I)) ∈ R2 with weight b, then the interval Li just corresponds to the

maximum-weight point in the range (−∞, 0]× [δi−1, δi].

Besides L andR, we need another set Ilong ⊆ I defined as follows. Recall that x1, . . . , xr+1

are the endpoints of J1, . . . , Jr sorted from left to right. For an interval I ∈ I that contains

at least one point in {x1, . . . , xr+1}, its middle piece refers to the interval [xi− , xi+] where xi−

(resp., xi+) is the leftmost (resp., rightmost) point in {x1, . . . , xr+1} that is contained in I.

For every i−, i+ ∈ [r + 1] where i− < i+, we include in Ilong the minimum-weight interval in

I whose middle piece is [xi− , xi+]. Note that |Ilong| = O(r2). Also, we can compute Ilong in

Õ(r2) time using a (dynamic) 2D range-min data structure. Indeed, if we map each interval

I = [a, b] ∈ I into the point (a, b) ∈ R2 with weight w(I), then the minimum-weight interval

in I whose middle piece is [xi− , xi+] just corresponds to the minimum-weight point in the

range [xi−−1, xi−]× [xi+ , xi++1].

Update of the sub-structures and reconstruction. Whenever the instance (X, I)

changes, we need to update the sub-structures for which the underlying sub-instances change.

An insertion/deletion on X or I can change at most two sub-instances. We also need to

re-compute the sets L, R, and Ilong.

As before, our data structure will be periodically reconstructed. Specifically, the (i+1)-th

reconstruction happens after processing ni/r updates from the i-th reconstruction, where ni

denotes the size of (X, I) at the point of the i-th reconstruction. (The 0-th reconstruction

is just the initial construction of D.)

Constructing a solution. For each pair (L,R) where L ∈ L and R ∈ R, we construct a

set cover I∗(L,R) of (X, I) that includes L and R as follows. Suppose the right (resp., left)

endpoint of L (resp., R) lies in Ji− (resp., Ji+). If i− > i+, we simply let I∗(L,R) = {L,R}.
If i− = i+, we temporarily insert the intervals L and R with weight 0 to the sub-instance

(Xi, Ii) where i = i− = i+ and let I∗i be the set cover of (Xi, Ii ∪ {L,R}) maintained

by Di excluding the weight-0 intervals L and R. We then define I∗(L,R) = {L,R} ∪ I∗i .

99

Now assume i− < i+. We temporarily insert the interval L (resp., R) with weight 0 to

the sub-instance (Xi− , Ii−) (resp., (Xi+ , Ii+)) and let I∗i− (resp., I∗i+) be the set cover of

(Xi− , Ii− ∪ {L}) (resp., (Xi+ , Ii+ ∪ {R})) maintained by Di− (resp., Di+) excluding the

weight-0 interval L (resp., R).

For i− < i < i+, let I∗i be the set cover of (Xi, Ii) maintained by Di. We construct

I∗(L,R) using the DP procedure described before. Let OPT[0, . . . , i+], I∗long[0, . . . , i+], and

P [0, . . . , i+] be three tables to be computed. Set OPT[i] = 0, I∗long[i] = ∅, and P [i] = ∅ for

all i < i−. For each i from i− to i+, we fill out the entries OPT[i], I∗long[i], P [i] as follows. We

find the interval I ∈ Ilong satisfying Ji ⊆ I that minimizes OPT[π(I)]+w(I) where π(I) ∈ [r]

is the index such that the left endpoint of the middle piece of I is xπ(I)+1 (or equivalently,

the left endpoint of I contains in Jπ(I)). If OPT[π(I)] +w(I) ≤ OPT[i− 1] + cost(I∗i), then

let OPT[i] = OPT[π(I)] + w(I), I∗long[i] = I∗long[π(I)] ∪ {I}, and P [i] = P [π(I)]. Otherwise,

let OPT[i] = OPT[i − 1] + cost(I∗i), I∗long[i] = I∗long[i − 1], and P [i] = P [i − 1] ∪ {i}. Then

we define I∗(L,R) = {L,R} t I∗long t (
⊔
i∈P I∗i) where I∗long = I∗long[i+] and P = P [i+]. It is

clear that the cost of I∗(L,R) is equal to w(L) + w(R) + OPT[i+]. Also, as one can easily

verify, the DP procedure guarantees the following property of I∗(L,R).

Fact 3.3. Let P ⊆ {i−, . . . , i+} and I ′ ⊆ I such that for any i ∈ {i−, . . . , i+}\P , Ji ⊆ I for

some I ∈ I ′. Then cost(I∗(L,R)) ≤ w(L) + w(R) + cost(I ′) +
∑

i∈P cost(I∗i).

We construct I∗(L,R) for all L ∈ L and R ∈ R. (Clearly, we cannot afford to construct

I∗(L,R) explicitly as the size of I∗(L,R) can be large. So what we do is to only compute

the DP tables, which implicitly represents I∗(L,R).) Finally, among all I∗(L,R), we take

the one of the smallest cost as the set cover solution Iappx for (X, I).

Answering queries to the solution. The way to store the approximate solution Iappx for

answering queries is essentially the same as the unweighted case in Section 3.7. We explicitly

calculate and store the cost of Iappx, and the membership and reporting queries are handled

by recursively querying the sub-structures. By the same analysis as in Section 3.7, we can

answer the size, membership, and reporting queries in O(1), O(log n), and O(|Iappx| log n)

time, respectively (for reporting queries, we are using the naive analysis here).

Correctness. It is easy to see that Iappx is a set cover of (X, I). In order to show

w(Iappx) ≤ (3 + ε) · opt, we introduce a new approximation criterion called (c1, c2)-

approximation. We define the (c1, c2)-cost of a set cover I∗ of (X, I) as the total weight

of the one-sided intervals in I∗ times c1, plus the total weight of the two-sided intervals in I∗

times c2. We say a set cover of (X, I) is a (c1, c2)-approximate solution if its (normal) cost is

100

smaller than or equal to the (c1, c2)-cost of any set cover of (X, I). We shall show that Iappx

is a (1 + ε
2
, 3 + ε)-approximate solution for (X, I), which implies w(Iappx) ≤ (3 + ε) · opt.

By induction, we can assume that each sub-structure maintains a (1+ ε̃
2
, 3+ε̃)-approximate

solution for (Xi, Ii). Consider a set cover Iopt of (X, I) with minimum (1 + ε
2
, 3 + ε)-cost.

Note that the (1 + ε
2
, 3 + ε)-cost of Iopt is at most (3 + ε) · opt, and hence the (normal) cost

is at most (3 + ε) · opt. Let L and R be the left and right one-sided intervals used in I∗.
We have w(L) ≤ (3 + ε) · opt ≤ δm, and thus w(L) ∈ [δu−1, δu] for some u ∈ [m]. Similarly,

w(R) ∈ [δv−1, δv] for some v ∈ [m]. By construction, we have L ∩ [0, 1] ⊆ Lu ∩ [0, 1] and

R ∩ [0, 1] ⊆ Rv ∩ [0, 1]. Thus, I ′opt = (Iopt\{L,R}) ∪ {Lu, Rv} is also a set cover of (X, I).

Furthermore, we notice the following.

Fact 3.4. The (1, 3 + ε̃)-cost of I ′opt is at most the (1 + ε
2
, 3 + ε)-cost of Iopt.

Proof. The (1, 3+ε̃)-cost of I ′opt is equal to w(Lu)+w(Rv)+(3+ε̃)·cost(Iopt\{L,R}). Clearly,

(3 + ε̃) · cost(Iopt\{L,R}) is the (0, 3 + ε̃)-cost of Iopt. We shall show that w(Lu) + w(Rv)

is at most the (1 + ε
2
, (ε− αε)/2)-cost of Iopt, which implies the claim in the fact. We have

w(Lu) ≤ (1 + ε̃/2) · w(L) + δ1 ≤ (1 + ε̃/2) · w(L) + ((ε− αε)/4) · opt, (3.22)

and similarly w(Rv) ≤ (1+ε̃/2)·w(R)+((ε−αε)/4)·opt. It follows that w(Lu)+w(Rv) ≤ (1+

ε̃/2)·(w(L)+w(R))+((ε−αε)/2)·opt. Note that ((ε−αε)/2)·opt ≤ ((ε−αε)/2)·cost(Iopt) and

((ε−αε)/2)·cost(Iopt) is the ((ε−αε)/2, (ε−αε)/2)-cost of Iopt. Also, (1+ε̃/2)·(w(L)+w(R))

is at most the (1+ ε̃
2
, 0)-cost of Iopt. Thus, w(Lu)+w(Rv) is at most the (1+ ε

2
, (ε−αε)/2)-cost

of Iopt. QED.

Now it suffices to show that cost(I∗(Lu, Rv)) is at most the (1, 3+ ε̃)-cost of I ′opt. Suppose

the right (resp., left) endpoint of Lu (resp., Rv) lies in Ji− (resp., Ji+). If i− > i+, then

I∗(Lu, Rv) = {Lu, Rv} and hence cost(I∗(Lu, Rv)) is at most the (1, 0)-cost of I ′opt. The

remaining cases are i− < i+ and i− = i+. Here we only analyze the case i− < i+, because

the other case i− = i+ is similar and simpler. Recall that when computing I∗(Lu, Rv), we

temporarily inserted the interval Lu (resp., Rv) with weight 0 to the sub-instance (Xi− , Ii−)

(resp., (Xi+ , Ii+)) and let I∗i− (resp., I∗i+) be the set cover of (Xi− , Ii−∪{L}) (resp., (Xi+ , Ii+∪
{R})) maintained by Di− (resp., Di+) excluding the weight-0 interval L (resp., R). Also, for

i− < i < i+, we let I∗i be the set cover of (Xi, Ii) maintained by Di. Let P ⊆ {i−, . . . , i+}
consist of all indices i such that Ji * I for all I ∈ I ′opt and I ′ ⊆ I ′opt consist of all intervals

that contain at least one point in {x1, . . . , xr+1}. Now let us define another set cover I ′′opt =

{Lu, Rv} t I ′ t (
⊔
i∈P I∗i). Note that the sets P and I ′ satisfy the condition in Fact 3.3.

101

Thus, by applying Fact 3.3, we have

cost(I∗(Lu, Rv)) ≤ w(Lu) + w(Rv) + cost(I ′) +
∑
i∈P

cost(I∗i) = cost(I ′′opt). (3.23)

With the above inequality, it suffices to show that cost(I ′′opt) is at most the (1, 3 + ε̃)-cost

of I ′opt. Equivalently, we show that cost(I ′) +
∑

i∈P cost(I∗i) is at most the (0, 3 + ε̃)-cost of

I ′opt\{Lu, Rv}.
Let I ′i = I ′opt ∩ Ii for all i ∈ P . Note that I ′i is a set cover of (Xi, Ii) for i ∈ P\{i−, i+}.

By assumption, cost(I∗i) is at most the (1 + ε̃/2, 3 + ε̃)-cost of I ′i for i ∈ P\{i−, i+}. Also,

it is easy to see that if i− ∈ P (resp., i+ ∈ P), then cost(I∗i−) (resp., cost(I∗i+)) is at

most the (1 + ε̃/2, 3 + ε̃)-cost of I ′i− (resp., I ′i+), because I ′i− ∪ L (resp., I ′i+ ∪ R) is a set

cover of (Xi− , Ii− ∪ {L}) (resp., (Xi+ , Ii+ ∪ {R})) of the same cost as I ′i− (resp., I ′i+) when

w(L) = 0 (resp., w(R) = 0). Let costi be the (1 + ε̃/2, 3 + ε̃)-cost of I ′i for i ∈ P . By the

above observation, we have
∑

i∈P cost(I∗i) ≤
∑

i∈P costi. Each interval in I ′ belongs to (at

most) two sub-instances as one-sided intervals, so its weight is counted in
∑

i∈P costi with

a multiplier at most 2 · (1 + ε̃/2) = 2 + ε̃. Each interval in I ′opt\(I ′ ∪ {Lu, Rv}) belongs

to one sub-instance, so its weight is counted in
∑

i∈P costi with a multiplier at most 3 + ε̃.

As a result, the weight of each interval in I ′opt\{Lu, Rv} is counted in cost(I ′) +
∑

i∈P costi

with a multiplier at most 3 + ε̃. Because cost(I ′) +
∑

i∈P cost(I∗i) ≤ cost(I ′) +
∑

i∈P costi,

we know that cost(I ′) +
∑

i∈P cost(I∗i) is at most the (0, 3 + ε̃)-cost of I ′opt\{Lu, Rv}. It

follows that cost(I ′′opt) is at most the (1, 3 + ε̃)-cost of I ′opt, which in turn implies Iappx is a

(1 + ε
2
, 3 + ε)-approximate solution of (X, I).

Update time. We first observe that, except recursively updating the sub-structures, the

(amortized) time cost of all the other work is Õ(r3m2). Specifically, computing the sets

L and R can be done in Õ(m) time and computing Ilong takes Õ(r2) time. Using DP

to compute each I∗(L,R) can be done in O(r3) time, and hence constructing Iappx takes

O(r3m2) time. Storing Iappx for answering the queries can be done in Õ(r) time. The

reconstruction of the data structure takes Õ(r) amortized time. Next, we consider the

recursive updates of the sub-structures. The depth of the recursion is O(logr n). If we set

α = 1 − 1/ logr n, the approximation factor is Θ(ε) in any level of the recursion. When

inserting/deleting a point or a interval, we need to update at most two sub-structures whose

underlying sub-instances change. Besides, when computing I∗(L,R), we need to temporarily

insert L and R with weight 0 to two sub-instances (and delete them afterwards), which

involves a constant number of recursive updates. So the total number of recursive updates

is O(m2) = Õ((1
ε̃

log 1
ε̃
)2) = Õ((1

ε
log 1

ε
)2).

102

Therefore, if we use U(n) to denote the update time when the instance size is n, we have

the recurrence

U(n) = Õ

((
1

ε
log

1

ε

)2
)
· U(O(n/r)) + Õ

(
r3 ·

(
1

ε
log

1

ε

)2
)
, (3.24)

which solves to U(n) = (log n · 1
ε

log 1
ε
)O(logr n) · r3. By setting r = 2

√
logn log logn+

√
logn log(1/ε),

we have U(n) = 2
O
(√

logn log logn+
√

logn log(1/ε)
)
.

Theorem 3.9. There exists a dynamic data structure for (3 + ε)-approximate weighted

interval set cover with 2
O
(√

logn log logn+
√

logn log(1/ε)
)

amortized update time and Õ(n) con-

struction time, which can answer size, membership, and reporting queries in O(1), O(log n),

and O(k log n) time, respectively, where n is the size of the instance and k is the size of the

maintained solution.

3.12 WEIGHTED UNIT SQUARES

In this section, we present the first sublinear result for dynamic weighted unit-square set

cover, which gets O(1)-approximation. It suffices to consider dynamic weighted quadrant

set cover, since the reduction from dynamic unit-square set cover to dynamic quadrant set

cover [10] still works in the weighted case.

Let (X,Q) be a dynamic weighted quadrant set cover instance where X is the set of points

in R2 and Q is the set of weighted quadrants, and let n = |X|+ |Q| denote the instance size.

We use w(q) to denote the weight of a quadrant q, and w(Q) for the total weight of a set Q
of quadrants. W.l.o.g., assume the points in X lie in the point range [0, 1]2. For simplicity,

we assume the weights are positive integers bounded by U = poly(n).

Our idea is based on our unweighted solution for quadrant set cover as explained in Sec. 3.8,

which recursively solve for smaller sub-instances and properly combine them to obtain the

global solution. In particular, we will again partition the space into r × r rectangular grid

cells. However, our previous solution relies on an output-sensitive algorithm (Lemma 3.11),

but such algorithm is not known in the weighted case. Therefore, we will introduce some

new ideas.

Data structures. We construct a data structure D that supports a more powerful type

of query:

103

Given a query rectangle t, compute an O(1)-approximate weighted set cover for

the points in X ∩ t, using the quadrants in Q.

For a quadrant q ∈ Q intersecting a rectangular range Γ, we say it is trivial (resp.,

nontrivial) with respect to Γ if the vertex of q is outside (resp., inside) Γ. Similar to the

observation in the unweighted case, our idea is that it suffices to only keep a small subset of

the trivial quadrants. In particular, among all trivial quadrants with weights ∈ [1, 2i), there

are (at most) four maximal quadrants in Γ, which we denote as MΓ,i. (In the special case

that there exist quadrants with weight in [1, 2i) that completely contain Γ,MΓ,i will contain

any one among them.) We store M[0,1]2,i for i = 1, . . . , logU , and only keep the nontrivial

quadrants with respect to [0, 1]2 in Q. The intuition is suppose among all trivial quadrants

in the optimal solution Qopt for Γ, the maximum weight is w, then for an O(1)-approximate

solution we can just include MΓ,dlogwe, and then compute an O(1)-approximate solution in

the complement region, using only the nontrivial quadrants. The union of the quadrants in

MΓ,dlogwe will contain the union of all trivial quadrants in Qopt.

To build the data structure D, we partition the space into r × r (nonuniform) grid cells

using r−1 horizontal/vertical lines, such that each row (resp., column) has size O(n
r
), where

the size of a range Γ is defined as the total number of points in X and vertices of quadrants

in Q inside Γ. Let �i,j be the cell in the i-th row and j-th column for (i, j) ∈ [r]2. We

define sub-instances for the rows/columns of the partition. In particular, let Ri =
⋃r
j=1�i,j

denote the i-th row and Cj =
⋃r
i=1�i,j denote the j-th column of the partition. Create a

sub-instance (Xi,•,Qi,•) for each row i, where Xi,• = X ∩ Ri contains all points in the row,

and Qi,• contains all quadrants that are nontrivial with respect to the row. Similarly, create

a sub-instance (X•,j,Q•,j) for each column j. Recursively construct the data structures Di,•
for each of the r rows, and similarly D•,j for each of the r columns. Also store the sets of

maximal quadrants MRi,k and MCj ,k in the rows and columns, for k = 1, . . . , logU .

Let �i,j,k,l =
⋃k
i′=i

⋃l
j′=j �i′,j′ denote the grid-aligned rectangular region from row i to

k and from column j to l. For each of these O(r4) grid-aligned rectangles �i,j,k,l, we also

maintain an (implicit) O(1)-approximate set cover solution Qappx(�i,j,k,l) within it, so that

its weight w(Qappx(�i,j,k,l)) can be retrieved in O(1) time.

Dynamic programming. In the following, we show that given the substructures D•,j for

the columns that support rectangular ranged queries, we can efficiently compute an O(1)-

approximate solution Qappx(�i,j,k,l) for each of the O(r4) grid-aligned rectangles �i,j,k,l, using

dynamic programming.

Consider any grid-aligned rectangle �i,j,k,l. Any set cover solution Qsol(�i,j,k,l) can be

104

Figure 3.9: Decomposing a quadrant set cover solution into four subsets, based on the four
directions of the quadrants. The boundary of the union of each of these subsets forms an
orthogonal staircase curve.

decomposed into four subsets QNW
sol ,QSW

sol ,QNE
sol ,QSE

sol , based on the four directions of the

quadrants (northwest/southwest/northeast/southeast). The boundary of the union of each

of these subsets forms an orthogonal staircase curve (as shown in Figure 3.9), which we

denote as UNW
sol , U

SW
sol , U

NE
sol , U

SE
sol , respectively.

Let `0, . . . , `r denote the r+ 1 vertical lines that define the grid (including the boundary),

and obtain vertical line `−i by slightly shifting `i to the left. We use f [i0][q↖][q↙][q↗][q↘] to

denote the weight of an O(1)-approximate set cover Qappx that covers all points in �i,j,k,l and

to the left of `i0 , such that when we decompose Qappx into four orthogonal staircase curves

UNW
appx, U

SW
appx, U

NE
appx, U

SE
appx, `−i0 intersects them at quadrants q↖ , q↙ , q↗ , q↘ , respectively. (For

the special case that `′i0 does not intersect UNW
appx, we let q↖ to be a special “null” element.

Similarly for q↙ , q↗ , q↘ .)

We decompose each quadrant q ∈ Q into two parts: if q has direction west (resp., east),

the long part is aligned with the rightmost (resp., leftmost) vertical grid line that intersects

q, and the short part covers the remaining space, which is fully contained in a column (i.e.,

nontrivial with respect to the column). In this way, each quadrant is duplicated twice, so

the approximation factor will multiply by at most 2.

For each vertical grid line `i, among all long quadrants aligned with `i, it suffices to

keep the lowest (resp., highest) quadrant with direction north (resp., south) with weight

∈ [2k, 2k+1), for each k = 1, . . . , logU . We keep O(r logU) long quadrants in total. The

approximation factor will only multiply by a constant.

To compute f [i0][q′
↖

][q′
↙

][q′
↗

][q′
↘

] (corresponding to the set cover solution Q′appx) where the

105

quadrants q′
↖
, q′
↙
, q′
↗
, q′
↘

are long (it suffices to only consider the long quadrants after the

decomposition, since `i0 is a grid line), we guess that the four orthogonal staircase curves

U ′NW
appx , U

′SW
appx, U

′NE
appx, U

′SE
appx corresponding to Q′appx intersect `−i0−1 at the four long quadrants

q↖ , q↙ , q↗ , q↘ . The set cover solutionQappx corresponding to f [i0−1][q↖][q↙][q↗][q↘] already

covers all points to the left of the vertical line `i0−1, so to obtain Q′appx, we only need to

cover the points between the two grid lines `i0−1 and `i0 . In particular, the region within

�i,j,k,l and between the vertical lines `i0−1 and `i0 that is not covered by the long quadrants

q′
↖
, q′
↙
, q′
↗
, q′
↘

is a rectangle t′, and we need to cover t′ using the short quadrants in column

i0.

In other words, f [i0][q′
↖

][q′
↙

][q′
↗

][q′
↘

] can be computed by the formula

f [i0][q′
↖

][q′
↙

][q′
↗

][q′
↘

] = min
q↖ ,q↙ ,q↗ ,q↘

(
f [i0 − 1][q↖][q↙][q↗][q↘] + w(Qappx(t′))

+
∑

d∈{↖,↙,↗,↘}

I[q′d 6= qd] · w(q′d)
)
. (3.25)

The weight of an O(1)-approximate set cover solution Qappx(t′) for the rectangle t′ can be

obtained by querying the column substructure D•,i0 . The final solution is the one with

minimum weight among f [r][q↖][q↙][q↗][q↘] for all possible long quadrants q↖ , q↙ , q↗ , q↘ .

We maintain pointers during the dynamic programming process about how the minimum

weight is obtained, so that the actual solution can be easily recovered.

To compute the solution for each grid-aligned rectangle �i,j,k,l we need to perform

(r logU)O(1) queries, since there are only O(r logU) choices for each of the long quadrants

q′
↖
, q′
↙
, q′
↗
, q′
↘

. There are O(r4) such grid-aligned rectangles, so the total running time is

(r logU)O(1) ·Q(O(n
r
)), which is Õ(rO(1)) by our analysis of the query time Q(n) later.

Construction time. Let T (n) denote the construction time for the data structure D when

the size of the current instance is n. The construction time satisfies the recurrence

T (n) =
2r∑
i=1

T (ni) + Õ(n) + Õ(rO(1)), (3.26)

where ni = O(n
r
) is the instance size of a row/column. We have

∑2r
i=1 ni ≤ 2n, because

each point (resp., quadrant) is copied twice in the row and the column containing that point

(resp., the vertex of that quadrant).

Set r = N δ, where N is the global upper bound on the instance size, and δ > 0 is an

arbitrarily small constant. The recursion depth is O(logr n) = O(1), so the recurrence solves

106

to T (n) = Õ(n · rO(1)) = Õ(n ·NO(δ)).

Query. Given a query rectangle t, we first guess that the maximum weight among all trivial

quadrants with respect to [0, 1]2 used in the optimal solution Qopt(t) is within [2k−1, 2k), and

include M[0,1]2,k in the approximate solution Qappx(t). Let t′ denote the complement region

of the union of quadrants inM[0,1]2,k, it suffices to query for the rectangular region t0 = t∩t′.
There are O(logU) possible choices for k = 1, . . . , logU , so we need to perform O(logU)

queries and then take the minimum among the results.

The query rectangle t0 can be decomposed into a grid-aligned rectangle �i,j,k,l and at

most four rectangles L←, L→, L↑, L↓ each contained within a row/column, as shown in Fig-

ure 3.6. To compute the approximate set cover Qappx(t0), it suffices to take the union of the

approximate solutions within �i,j,k,l and L←, L→, L↑, L↓, i.e., let

Qappx(t0) = Qappx(�i,j,k,l) ∪Qappx(L←) ∪Qappx(L→) ∪Qappx(L↑) ∪Qappx(L↓). (3.27)

The approximation factor will only grow by a factor of 5.

Qappx(�i,j,k,l) has already been maintained, so we can retrieve its weight in O(1) time. To

compute Qappx(L↑) (and similarly for L↓, L←, L→), we perform a query on the rectangle L↑

using the substructure Di−1,• for row i− 1, since the rectangle L↑ is contained in row i− 1.

In this way, for each guess of k, we need to recursively perform four queries.

Let Q(n) denote the query time for instance size n. It satisfies the recurrence

Q(n) = O(logU) ·
(

4 ·Q
(
O
(n
r

))
+O(1)

)
. (3.28)

The recursion depth is O(logr n) = O(1
δ
) = O(1), so we have Q(n) = O(logU)O(1

δ
) =

logO(1) n. The approximation factor grows by a constant factor at each level, so the overall

approximation factor is O(1)O(1
δ

) = O(1).

Update. When we insert/delete a quadrant q, recursively update the substructures Di∗,•
and D•,j∗ for the i∗-th row and j∗-th column that contain the vertex of q. Update the

sets of maximal quadrants MRi,k and MCj ,k in the rows and columns, for i, j ∈ [r] and

k = 1, . . . , logU . Recompute the O(1)-approximate set cover solutions Qappx(�i,j,k,l) for

each of the O(r4) grid-aligned rectangles �i,j,k,l, using dynamic programming in (r logU)O(1) ·
Q(O(n

r
)) time.

When we insert/delete a point p, recursively update the substructures Di∗,• and D•,j∗ for

the i∗-th row and j∗-th column that contain p, and also recompute Qappx(�i,j,k,l) for each of

107

the O(r4) grid-aligned rectangles �i,j,k,l.

We reconstruct the entire data structure after every n
r

updates, so that the row and column

sizes are always bounded by O(n
r
). The amortized cost per update is T (n)

n/r
= Õ(rO(1)).

Let U (n) denote the update time for instance size n. It satisfies the recurrence

U (n) = 2U
(
O
(n
r

))
+ (r logU)O(1) ·Q

(
O
(n
r

))
+ Õ(rO(1)), (3.29)

which solves to U (n) = nO(δ) ·NO(δ) = NO(δ).

Theorem 3.10. There exists a dynamic data structure for O(1)-approximate weighted unit-

square set cover with O(nδ) amortized update time and Õ(n1+δ) construction time, for any

constant δ > 0 (assuming polynomially bounded integer weights), where n is the size of the

instance.

Remark. It is possible to remove the assumption of polynomially bounded weights with

more work. One way is to directly modify the recursive query algorithm, as we now briefly

sketch:

First, we solve the approximate decision problem, of deciding whether the optimal value is

approximately less than a given value W0. To this end, it suffices to consider O(log n) choices

for k instead of O(logU) (namely, k = dlog W0

cn
e, . . . , dlogW0e for a large constant c), since

replacing a quadrant with weight less than W0

cn
with another one weight less than W0

cn
causes

only additive error O(W0

cn
), which is tolerable even when summing over all O(n) quadrants.

(We don’t explicitly store the maximal quadrants in MΓ,i for all i = 1, . . . , logU , but can

generate them on demand by orthogonal range searching.)

Having solved the approximate decision problem, we can next obtain an O(n)-

approximation of the optimal value, by binary search on the quadrant weights (since the

total weight in the optimal solution is within an O(n) factor of the maximum quadrant

weight in the optimal solution); this requires O(log n) calls to the decision oracle. Knowing

an O(n)-approximation, we can finally obtain an O(1)-approximation, by another binary

search; this requires O(log log n) additional calls to the decision oracle. Thus, we get the

same recurrence as Equation 3.28, but with logU replaced by logO(1) n. We still obtain O(nδ)

update time in the end.

108

CHAPTER 4: GEOMETRIC SET COVER AND DISCRETE K-CENTER OF
SMALL SIZE

In this chapter, we study the fine-grained complexity of the discrete k-center problem and

related (exact) geometric set cover problems when k or the size of the cover is small.

4.1 OUR RESULTS

We obtain a plethora of new algorithms and conditional lower bounds on size-k geometric

set cover for k = 3 or 6, as well as the related rectilinear discrete 3-center problem:

• We give the first subquadratic algorithm for rectilinear discrete 3-center in 2D, running

in Õ(n3/2) time (Theorem 4.5).

• We prove a lower bound of Ω(n4/3−δ) for rectilinear discrete 3-center in 4D, for any

constant δ > 0, under a standard hypothesis about triangle detection in sparse graphs

(Theorem 4.8 and Corollary 4.2).

• Given n points and n weighted axis-aligned unit squares in 2D, we give the first sub-

quadratic algorithm for finding a minimum-weight cover of the points by 3 unit squares,

running in Õ(n8/5) time (Theorem 4.4). We also prove a lower bound of Ω(n3/2−δ) for

the same problem in 2D, under the well-known APSP Hypothesis (Theorem 4.6).

For weighted arbitrary axis-aligned rectangles in 2D, our upper bound is Õ(n7/4) (The-

orem 4.3).

• We investigate the smallest k for which we can obtain a near-quadratic lower bound

for weighted size-k set cover, and prove such a result for k = 6 assuming the Weighted

4-Clique Hypothesis (Theorem 4.9).

Table 4.1 summarizes our results for size-3 geometric set cover in R2.

New algorithms. We present the first subquadratic algorithms for rectilinear discrete

3-center in R2, and more generally, for (unweighted and weighted) geometric size-3 set cover

for unit squares, as well as arbitrary rectangles in R2. More precisely, the time bounds of

our algorithms are:

• Õ(n3/2) for rectilinear discrete 3-center in R2 and unweighted size-3 set cover for unit

squares in R2;

109

objects unweighted weighted

unit squares Õ(n3/2) (new) Õ(n8/5) (new)

CLB: Ω(n3/2−δ) (new)

rectangles Õ(n5/3) (new) Õ(n7/4) (new)

CLB: Ω(n3/2−δ) (new)

Table 4.1: Summary of our results on size-3 geometric set cover in R2.

• Õ(n8/5) for weighted size-3 set cover for unit squares in R2;

• Õ(n5/3) for unweighted size-3 set cover for rectangles in R2;

• Õ(n7/4) for weighted size-3 set cover for rectangles in R2.

New conditional lower bounds. We also prove the first nontrivial conditional lower

bounds on the time complexity of rectilinear discrete 3-center and related size-3 geometric

set cover problems. More precisely, our lower bounds are:

• Ω(n3/2−δ) for weighted size-3 set cover (or hitting set) for unit squares in R2, assuming

the APSP Hypothesis;

• Ω(n4/3−δ) for unweighted size-3 set cover for boxes in R3, assuming the Sparse Triangle

Hypothesis;

• Ω(n4/3−δ) for rectilinear discrete 3-center in R4 and unweighted size-3 set cover (or

hitting set) for unit hypercubes in R4, assuming the Sparse Triangle Hypothesis.

The lower bound in the first bullet is particularly attractive, since it implies that con-

ditionally, our Õ(n8/5)-time algorithm for weighted size-3 set cover for unit squares in R2

is within a small factor (near n0.1) from optimal, and that our Õ(n7/4)-time algorithm for

weighted size-3 set cover for rectangles in R2 is within a factor near n0.25 from optimal.

The second bullet answers Question 1.2, implying that rectilinear discrete 3-center is strict-

ly harder than rectilinear discrete 2-center and rectilinear (continuous) 3-center, at least

when the dimension is 4 or higher. (In contrast, rectilinear (continuous) 4-center is strictly

harder than rectilinear discrete 4-center for sufficiently large constant dimensions [50]; see

Table 1.2.)

110

Techniques. Traditionally, in computational geometry, subquadratic algorithms with “in-

termediate” exponents between 1 and 2 tend to arise from the use of nonorthogonal range

searching [12] (Agarwal, Sharir, and Welzl’s Õ(n4/3)-time algorithm for Euclidean discrete

2-center in R2 [17] being one such example). Our subquadratic algorithms for rectilinear

discrete 3-center in R2 and related set-cover problems, which are about “orthogonal” or

axis-aligned objects, are different. A natural first step is to use a g × g grid to divide into

cases, for some carefully chosen parameter g. Indeed, a grid-based approach was used in

some recent subquadratic algorithms by Chan [67] for size-4 independent set for boxes in

any constant dimension, and size-5 independent set for rectangles in R2 (with running time

Õ(n3/2) and Õ(n4/3) respectively). However, discrete 3-center or rectangle set cover is much

more challenging than independent set (for one thing, the 3 rectangles in the solution may

intersect each other). To make the grid approach work, we need new original ideas (notably,

a sophisticated argument to assign grid cells to rectangles, which is tailored to the 2D case).

Still, the entire algorithm description fits in under 3 pages.

Our conditional lower bounds for rectilinear discrete 3-center and the corresponding set

cover problem for unit hypercubes are proved by reduction from unweighted or weighted

triangle finding in graphs. It turns out there is a simple reduction in R2 by exploiting

weights. However, lower bounds in the unweighted case (and thus the original rectilinear

discrete 3-center problem) are much trickier. We are able to design a clever, simple reduction

in R6 by hand, but reducing the dimension down to 4 is far from obvious and we end up

employing a computer-assisted search, interestingly. The final construction is still simple,

and so is easy to verify by hand.

4.2 PRELIMINARIES

On hypotheses from fine-grained complexity. Let us briefly state the hypotheses that

will be used in this section for proving various conditional lower bounds.

• The APSP Hypothesis is among the three most popular hypotheses in fine-grained

complexity [205] (the other two being the 3SUM Hypothesis and the Strong Expo-

nential Time Hypothesis): it asserts that there is no O(n3−δ)-time algorithm for the

all-pairs shortest paths problem for an arbitrary weighted graph with n vertices (and

O(log n)-bit integer weights). This hypothesis has been used extensively in the algo-

rithms literature (but less often in computational geometry).

• The Sparse Triangle Hypothesis asserts that there is no O(m4/3−δ)-time algorithm for

detecting a triangle (i.e., a 3-cycle) in a sparse unweighted graph with m edges. The

111

current best upper bound for triangle detection, from a 3-decade-old paper by Alon,

Yuster, and Zwick [19], is Õ(m2ω/(ω+1)), which is Õ(m4/3) if ω = 2. (In fact, a stronger

version of the hypothesis asserts that there is no O(m2ω/(ω+1)−δ)-time algorithm.) As

supporting evidence, it is known that certain “listing” or “all-edges” variants of the tri-

angle detection problem have an O(m4/3−δ) lower bound, under the 3SUM Hypothesis

or the APSP Hypothesis [79, 186, 207]. See [2, 143] for more discussion on the Sparse

Triangle Hypothesis, and [67] for a recent application in computational geometry.

• The Hyperclique Hypothesis asserts that there is no O(nk−δ)-time algorithm for de-

tecting a size-k hyperclique in an `-uniform hypergraph with n vertices, for any fixed

k > ` ≥ 3. See [160] for discussion on this hypothesis, and [42, 67, 158] for some recent

applications in computational geometry, including Künnemann’s breakthrough result

on conditional lower bounds for Klee’s measure problem [158].

4.3 SUBQUADRATIC ALGORITHMS FOR SIZE-3 SET COVER FOR RECTANGLES
IN R2

In this section, we describe the most basic version of our subquadratic algorithm to solve

the size-3 geometric set cover problem for weighted rectangles in R2 (an example of the

unweighted problem is shown in Fig. 4.1). The running time is Õ(n16/9). Refinements of

the algorithm will be described in Sec. 4.4, where we will improve the time bound further

to Õ(n7/4), or even better for the unweighted case and unit square case. The rectilinear

discrete 3-center problem in R2 reduces to the unweighted unit square case by standard

techniques [54, 123] (see Sec. 4.4).

We begin with a lemma giving a useful geometric data structure:

Lemma 4.1. For a set P of n points and a set R of n weighted rectangles in R2, we can

build a data structure in Õ(n) time and space, to support the following kind of queries:

given a pair of rectangles r1, r2 ∈ R, we can find a minimum-weight rectangle r3 ∈ R (if it

exists) such that P is covered by r1 ∪ r2 ∪ r3, in Õ(1) time.

Proof. By orthogonal range searching [12, 100] on P , we can find the minimum/maximum

x- and y-values among the points of P in the complement of r1 ∪ r2 in Õ(1) time (since the

complement can be expressed as a union of O(1) orthogonal ranges). As a result, we obtain

the minimum bounding box b enclosing P \ (r1 ∪ r2). To finish, we find a minimum-weight

rectangle in R enclosing b; this is a “rectangle enclosure” query on R and can be solved in

Õ(1) time, since it also reduces to orthogonal range searching (the rectangle [x−, x+]×[y−, y+]

112

Figure 4.1: An example of size-3 geometric set cover: deciding whether the input points can
be covered by three squares. The optimal solution is marked in red.

encloses the rectangle [ξ−, ξ+] × [η−, η+] in R2 iff the point (x−, x+, y−, y+) lies in the box

(−∞, ξ−]× [ξ+,∞)× (−∞, η−]× [η+,∞) in R4). QED.

Theorem 4.1. Given a set P of n points and a set R of n weighted rectangles in R2, we

can find 3 rectangles r∗1, r
∗
2, r
∗
3 ∈ R of minimum total weight (if they exist), such that P is

covered by r∗1 ∪ r∗2 ∪ r∗3, in Õ(n16/9) time.

Proof. Let B0 be the minimum bounding box enclosing P (which touches 4 points). If a

rectangle of R has an edge outside of B0, we can eliminate that edge by extending the

rectangle, making it unbounded.

Let g be a parameter to be determined later. Form a g×g (non-uniform) grid, where each

column/row contains O(n/g) rectangle vertices.

Step 1. For each pair of rectangles r1, r2 ∈ R that have vertical edges in a common column

or horizontal edges in a common row, we query the data structure in Lemma 4.1 to find

a minimum-weight rectangle r3 ∈ R (if exists) such that P ⊂ r1 ∪ r2 ∪ r3, and add the

triple r1r2r3 to a list L. The number of queried pairs r1r2 is O(g · (n/g)2) = O(n2/g),

and so this step takes Õ(n2/g) total time.

Step 2. For each rectangle r1 ∈ R and each of its horizontal (resp. vertical) edges e1,

define γ−(e1) and γ+(e1) to be the leftmost and rightmost (resp. bottommost and

topmost) grid cell that intersects e1 and contains a point of P not covered by r1. We

can naively find γ−(e1) and γ+(e1) by enumerating the O(g) grid cells intersecting e1

and performing O(g) orthogonal range queries; this takes Õ(gn) total time. For each

rectangle r2 ∈ R that has an edge intersecting γ−(e1) or γ+(e1), we query the data

113

A1

A1/2A1/2 A2

C1/2

A2/3

C3

B2

B3C2/3

A1 A1 A1

A1 A1 A1 A1

A1 A1 A1 A1

A1 A1 A2 A2

A3 A3 A3

B1

B1

C1

B1 A2 A2 A2 A2 A2

A3 A3

A2/3 A3 A3

A2/3 A3 A3

A2/3 A3 A3

A2 A2 A2 A2 A2

A2 A2 A2 A2 A2

A2 A2 A2 A2 A2

A2 A2 A2 A2 A2

A2 A2 A2 A2 A2

A2

A2

A2 B2

B2

B2

B2

B2

B2

B2

B3

r∗2

r∗3

r∗1

B3 B3 B3

Figure 4.2: Proof of Theorem 4.1: grid cells in Step 3. The letter in a cell indicates its
type (A, B, or C), and the number (or numbers) in a cell indicates the index (or indices)
j ∈ {1, 2, 3} of the rectangle r∗j that the cell is assigned to.

structure in Lemma 4.1 to find a minimum-weight rectangle r3 ∈ R (if exists) such that

P ⊂ r1 ∪ r2 ∪ r3, and add the triple r1r2r3 to the list L. The total number of queried

pairs r1r2 is O(n · n/g) = O(n2/g), and so this step again takes Õ(n2/g) total time.

(This entire Step 2, and the definition of γ−(·) and γ+(·), might appear mysterious at

first, but their significance will be revealed later in Step 3.)

Step 3. We guess the column containing each of the vertical edges of r∗1, r
∗
2, r
∗
3 and the row

containing each of the horizontal edges of r∗1, r
∗
2, r
∗
3; there are at most 12 edges and so

O(g12) choices. Actually, 4 of the 12 edges are eliminated after extension, and so the

number of choices can be lowered to O(g8).

After guessing, we know which grid cells are completely inside r∗1, r
∗
2, r
∗
3 and which

grid cells intersect which edges of r∗1, r
∗
2, r
∗
3. We may assume that the vertical edges

from different rectangles in {r∗1, r∗2, r∗3} are in different columns, and the horizontal

edges from different rectangles in {r∗1, r∗2, r∗3} are in different rows: if not, r∗1r
∗
2r
∗
3 would

have already been found in Step 1. In particular, we know combinatorially what the

arrangement of r∗1, r
∗
2, r
∗
3 looks like, even though we do not know the precise coordinates

and identities of r∗1, r
∗
2, r
∗
3.

We classify each grid cell γ into the following types (see Figure 4.2):

• Type A: γ is completely contained in some r∗j (j ∈ {1, 2, 3}). Here, we assign γ

to each such r∗j .

114

• Type B: γ is not of type A, and intersects an edge of exactly one rectangle r∗j .

We assign γ to this r∗j . Observe that points in P ∩ γ can only be covered by r∗j .

• Type C: γ is not of type A, and intersects edges from two different rectangles

in {r∗1, r∗2, r∗3}. W.l.o.g., suppose that γ intersects a horizontal edge e∗1 of r∗1 and

a vertical edge e∗2 of r∗2; note that the intersection point v∗ = e∗1 ∩ e∗2 lies on the

boundary of the union r∗1 ∪ r∗2 ∪ r∗3 (because γ is not of type A). By examining

the arrangement of {r∗1, r∗2, r∗3}, we know that at least one of the following is true:

(i) we can walk horizontally from v∗ to an endpoint of e∗1 (or a point at infinity)

while staying on the boundary of r∗1 ∪ r∗2 ∪ r∗3, or (ii) we can walk vertically from

v∗ to an endpoint of e∗2 (or a point at infinity) while staying on the boundary of

r∗1 ∪ r∗2 ∪ r∗3.

If (i) is true, we assign γ to r∗1. Observe that if there is a point in P ∩ γ not

covered by r∗1 (and if the guesses are correct), then γ must be equal to γ−(e∗1)

or γ+(e∗1) (as defined in Step 2), and so r∗1r
∗
2r
∗
3 would have already been found

in Step 2. This is because except for γ, the grid cells encountered while walking

from v∗ to that endpoint of e∗1 can intersect only r∗1 and so points in those cells

can only be covered by r∗1.

If (ii) is true, we assign γ to r∗2 for a similar reason.

Note that there are at most O(1) grid cells γ of type C; and the grid cells γ of type B

form O(1) contiguous blocks. Let ρj be the union of all grid cells assigned to r∗j . Then

ρj is a rectilinear polygon of O(1) complexity. We compute the minimum/maximum x-

and y-values of the points in P ∩ ρj, by orthogonal range searching in Õ(1) time. As a

result, we obtain the minimum bounding box bj enclosing P ∩ρj. We find a minimum-

weight rectangle rj ∈ R enclosing bj, by a rectangle enclosure query (reducible to

orthogonal range searching, as before). If P \ (r1∪ r2∪ r3) = ∅ (testable by orthogonal

range searching), we add the triple r1r2r3 (which should coincide with r∗1r
∗
2r
∗
3, if it has

not been found earlier and if the guesses are correct) to L. The total time over all

guesses is Õ(g8).

At the end, we return a minimum-weight triple in L. The overall running time is Õ(g8 +

n2/g + gn). Setting g = n2/9 yields the theorem. QED.

115

4.4 IMPROVED SUBQUADRATIC ALGORITHMS FOR SIZE-3 SET COVER FOR
RECTANGLES IN R2 AND RELATED PROBLEMS

Continuing Section 4.3, we describe refinements of our basic subquadratic algorithm to

obtain improved time bounds in different cases.

4.4.1 Improvement for unweighted rectangles

Lemma 4.2. Given a set S of points in a grid {1, . . . , g}d, the number of maximal points

(i.e., points in S that are not strictly dominated by any other point in S) is O(gd−1).

Proof. Along each “diagonal” line of the form {(t, c1 + t, . . . , cd−1 + t) : t ∈ R}, there can be

at most one point of S. The grid can be covered by O(gd−1) such lines. QED.

Theorem 4.2. The running time in Theorem 4.1 can be improved to Õ(n5/3) if the rectangles

in R are unweighted.

Proof. In the unweighted case, it suffices to keep only the rectangles that are maximal, i.e.,

not strictly contained in other rectangles. (We can test whether a rectangle is maximal in

Õ(1) time by a rectangle enclosure query, reducible to orthogonal range searching.) We run

the algorithm in the proof of Theorem 4.1.

For a p-sided rectangle r∗j (with p ∈ {1, . . . , 4}), the number of choices for the column-

s/rows containing the vertical/horizontal edges of r∗j is now O(gp−1) instead of O(gp) by

Lemma 4.2, because the p-tuples of such column/row indices correspond to maximal points

of a subset of {1, . . . , g}p, by mapping p-sided rectangles to p-dimensional points.

This way, the number of guesses for the 3 rectangles r∗1, r
∗
2, r
∗
3 can be further lowered from

O(g8) to O(g5), and the overall running time becomes Õ(g5 + n2/g + gn). Setting g = n1/3

yields the theorem. QED.

4.4.2 Improvement for weighted rectangles

Theorem 4.3. The running time in Theorem 4.1 can be improved to Õ(n7/4) for weighted

rectangles.

Proof. We follow Steps 1–2 of the proof of Theorem 4.1 but will modify Step 3.

• Case I: Two of the rectangles in {r∗1, r∗2, r∗3} are disjoint.

W.lo.g., say that these two rectangles are r∗2 and r∗3, and they are vertically separated,

with r∗2 to the left. We guess the identity of r∗1; there are O(n) choices. We guess a

116

r∗3
r∗2

r∗3

r∗2

r∗3 r∗2

r∗1 r∗1

r∗2

r∗3

r∗1 r∗1

Figure 4.3: Proof of Theorem 4.3: subcases of Case III, when there are no hidden edges.

grid vertical line `∗ separating r∗1 and r∗2; there are O(g) choices. (If a grid separating

line does not exist, the answer would have been found in Step 1.) We find the min-

imum bounding box b2 enclosing all points of P \ r∗1 to the left of `∗ by orthogonal

range searching, and then find a minimum-weight rectangle r2 ∈ R enclosing b2, by a

rectangle enclosure query. We then query the data structure in Lemma 4.1 to find a

minimum-weight rectangle r3 ∈ R (if exists) such that P ⊂ r∗1 ∪ r2 ∪ r3, and add the

triple r∗1r2r3 to the list L. The total number of queries is O(gn), and so this case takes

Õ(gn) time.

• Case II: r∗1, r
∗
2, r
∗
3 have at most 7 edges in total, or have 8 edges but at least one of

the edges is hidden, i.e., does not appear in the boundary of the union r∗1 ∪ r∗2 ∪ r∗3.

W.l.o.g., say that this hidden edge is e∗3, defined by r∗3. We follow our earlier approach

in Step 3, except that we need not guess the column/row containing e∗3; the number

of guesses is thus lowered from O(g8) to O(g7). We know the grid cells of types

A, B, and C that are assigned to r∗1 and r∗2 (though not necessarily r∗3), and so we

can compute the candidate rectangles r1 and r2 as before. We then query the data

structure in Lemma 4.1 to find a minimum-weight rectangle r3 ∈ R (if exists) such

that P ⊂ r1 ∪ r2 ∪ r3, and add the triple r1r2r3 to the list L. The total number of

queries is O(g7), and so this case takes Õ(g7) time.

• Case III: r∗1, r
∗
2, r
∗
3 have a common intersection, and have 8 edges in total, none of

which are hidden.

Some rectangle, say, r∗1, must have at most 2 edges (i.e., defined either by a vertical and

a horizontal ray, or by two parallel lines). By enumerating all scenarios, we see that

only 4 main subcases remain, as shown in Figure 4.3 (all other subcases are symmetric).

In each of these subcases, one of the rectangles, say, r∗3, has at most one edge touching

∂r∗1 \ (r∗2 ∪ r∗3). Denote this edge by e∗3 (if exists).

We guess the identity of r∗2; there are O(n) choices. Once r∗2 is known, we add the

vertical and horizontal lines through the edges of r∗2 to the grid. We guess the row/col-

117

r∗2

r∗3

r∗1
r∗2

r∗3

r∗1

Figure 4.4: Proof of Theorem 4.4: Case II (left) and Case III (right).

umn containing each of r∗1’s horizontal/vertical edges and the row/column containing

r∗3’s horizontal/vertical edge e∗3 (if exists); there are O(g3) such choices. We then have

enough information to determine the grid cells of types A, B, and C that are assigned

to r∗1 (though not necessarily r∗3). So we can compute the candidate rectangle r1 as

before. We then query the data structure in Lemma 4.1 to find a minimum-weight

rectangle r3 ∈ R (if exists) such that P ⊂ r1 ∪ r∗2 ∪ r3, and add the triple r1r
∗
2r3 to the

list L. The total number of queries is O(g3n), and so this case takes Õ(g3n) time.

We do not know which case is true beforehand, but can try the algorithms for all cases

and return the best triple in L. The overall running time is Õ(g7 + g3n + n2/g). Setting

g = n1/4 yields the theorem. QED.

4.4.3 Improvement for weighted unit squares

Theorem 4.4. The running time in Theorem 4.1 can be improved to Õ(n8/5) if the rectangles

in R are weighted unit squares.

Proof. We follow the approach in the proof of Theorem 4.1, but will modify Step 3. W.l.o.g.,

assume that r∗1, r
∗
2, r
∗
3 have centers ordered from left to right. For unit squares, there are 3

possible cases (up to symmetry):

• Case I: Two of the squares in {r∗1, r∗2, r∗3} are disjoint.

As in the proof of Theorem 4.3, this case can be handled in Õ(gn) time.

• Case II: r∗1, r
∗
2, r
∗
3 have a common intersection, and r∗1 has a lower center than r∗2,

which has a lower center than r∗3. (See Figure 4.4 (left).)

We guess the identity of r∗2; there are O(n) choices. Let r̂∗2 denote the region of all

points below and left of the top-right vertex of r∗2. Notice that r∗1 \r∗2 is contained in r̂∗2,

while r∗3 \ r∗2 is outside r̂∗2. We find the minimum bounding box b1 enclosing P ∩ r̂∗2 \ r∗2,

118

by orthogonal range searching, and find a minimum-weight square r1 ∈ R enclosing

b1 by a rectangle enclosure query. We then query the data structure in Lemma 4.1 to

find a minimum-weight square r3 ∈ R (if exists) such that P ⊂ r1 ∪ r∗2 ∪ r3, and add

the triple r1r
∗
2r3 to the list L. The total number of queries is O(n), and so this case

takes Õ(n) time.

• Case III: r∗1, r
∗
2, r
∗
3 have a common intersection, and r∗1 has a lower center than r∗3,

which has a lower center than r∗2. (See Figure 4.4 (right).)

After extending the squares to unbounded rectangles, r∗1 has 2 edges, and r∗2 and r∗3

have 3 edges each.

We guess the column/row containing the vertical/horizontal edge of r∗1, and the

columns containing the two vertical edges of r∗2, and the rows containing the two

horizontal edges of r∗3; there are O(g6) choices. We need not guess the bottom hori-

zontal edge of r∗2 and the left vertical edge of r∗3, as these two edges are hidden. We

can assign grid cells of types B and C as before without knowing the hidden edges.

For type A, each grid cell completely contained in r∗1 can be assigned to r∗1; each grid

cell that is strictly between the columns containing the two vertical edges of r∗2 and

is on or above the row containing the top horizontal edge of r∗1 can be assigned to r∗2;

each grid cell that is strictly between the rows containing the two horizontal edges of

r∗3 and is on or to the right of the column containing the right vertical edge of r∗1 can

be assigned to r∗3. The rest of the algorithm is the same.

Observe that the number of possible pairs of columns containing two vertical edges of

r∗2 at unit distance is actually O(g) instead of O(g2) (to see this, imagine sweeping the

grid by two vertical lines at unit distance apart, creating O(g) events). Similarly, the

number of possible pairs of rows containing two horizontal edges of r∗3 at unit distance

is O(g). With these observations, the number of guesses is further lowered to O(g4).

The overall running time is Õ(g4+gn+n2/g). Setting g = n2/5 yields the theorem. QED.

4.4.4 Improvement for unweighted unit squares and rectilinear discrete 3-center in R2

Theorem 4.5. The running time in Theorem 4.1 can be improved to Õ(n3/2) if the rectangles

in R are unweighted unit squares.

Proof. In the unweighted case, it suffices to keep only the rectangles that are maximal (as

in the proof of Theorem 4.2). We run the algorithm in the proof of Theorem 4.4.

119

In Case III, the number of guesses for the column/row containing the vertical/horizontal

edge of r∗1 is now O(g) instead of O(g2) by Lemma 4.2. The overall running time becomes

Õ(g3 + gn+ n2/g). Setting g =
√
n yields the theorem. QED.

Corollary 4.1. Given a set P of n points in R2, we can solve the rectilinear discrete 3-center

problem in Õ(n3/2) time.

Proof. The decision problem—deciding whether the optimal radius is at most a given val-

ue r—amounts to finding 3 squares covering P , among n squares with centers at P and

side length 2r. The decision problem can thus be solved in Õ(n3/2) time by Theorem 4.2

(after rescaling to make the side length unit). We can then solve the original optimization

problem by Frederickson and Johnson’s technique [123], with an extra logarithmic factor (or

alternatively by Chan’s randomized technique [54], without the logarithmic factor). QED.

4.5 CONDITIONAL LOWER BOUNDS FOR SIZE-3 SET COVER FOR BOXES

In this section, we prove conditional lower bounds for size-3 set cover for boxes in certain

dimensions (rectilinear discrete 3-center is related to size-3 set cover for unit hypercubes).

We begin with the weighted version, which is more straightforward and has a simple proof,

and serves as a good warm-up to the more challenging, unweighted version later.

4.5.1 Weighted size-3 set cover for unit squares in R2

An orthant (also called a dominance range) refers to a d-sided box in Rd which is un-

bounded along each of the d dimensions. (Note that orthants may be oriented in 2d ways.)

To obtain a lower bound for the unit square or unit hypercube case, it suffices to obtain a

lower bound for the orthant case, since we can just replace each orthant with a hypercube

with a sufficiently large side length M , and then rescale by a 1/M factor.

Theorem 4.6. Given a set P of n points and a set R of n weighted orthants in R2, finding 3

orthants in R of minimum total weight that cover P requires Ω(n3/2−δ) time for any constant

δ > 0, assuming the APSP Hypothesis.

Proof. The APSP Hypothesis is known to be equivalent [206] to the hypothesis that finding

a minimum-weight triangle in a weighted graph with n vertices requires Ω(n3−δ) time for

any constant δ > 0. We will reduce the minimum-weight triangle problem on a graph

with n vertices and m edges (m ∈ [n, n2]) to the weighted size-3 set cover problem for

O(m) points and orthants in R2. Thus, if there is an O(m3/2−δ)-time algorithm for the

120

R
(3)
x3x

′
1 R

(2)
x2x

′
3

R
(1)
x1x

′
2

Figure 4.5: Reduction from the minimum-weight triangle problem to weighted size-3 set
cover for orthants in R2.

latter problem, there would be an algorithm for the former problem with running time

O(m3/2−δ) ≤ O(n3−2δ), refuting the hypothesis.

Let G = (V,E) be the given weighted graph with n vertices and m edges. Without loss

of generality, assume that all edge weights are in [0, 0.1], and that V ⊂ [0, 0.1], i.e., vertices

are labelled by numbers that are rescaled to lie in [0, 0.1]. Assume that 0 ∈ V and 0.1 ∈ V .

The reduction. For each vertex t ∈ V , we create three points (t, 1+t), (2, t), and (1+t,−1)

(call them of type 1, 2, and 3, respectively).

Create the following orthants in R2:

∀x1x
′
2 ∈ E : R

(1)

x1x′2
= (−∞, 1 + x′2) × (−∞, 1 + x1] (type 1)

∀x2x
′
3 ∈ E : R

(2)

x2x′3
= [1 + x2,∞) × (−∞, x′3) (type 2)

∀x3x
′
1 ∈ E : R

(3)

x3x′1
= (x′1,∞) × [x3,∞) (type 3)

(4.1)

The weight of each orthant is set to be the number of points it covers plus the weight of the

edge it represents. The total number of points and orthants is O(n) and O(m) respectively.

The reduction is illustrated in Figure 4.5.

Correctness. We prove that the minimum-weight triangle in G has weight w (where

w ∈ [0, 0.3]) iff the optimal weighted size-3 set cover has weight 3n+ w.

Any feasible solution (if exists) must use an orthant of each type, since the point (0, 1)

of type 1 (resp. the point (2, 0.1) of type 2, and the point (1.1,−1) of type 3) can only

be covered by an orthant of type 1 (resp. 3 and 2). So, the three orthants in the optimal

solution must be of the form R
(1)

x1x′2
, R

(2)

x2x′3
and R

(3)

x3x′1
for some x1x

′
2, x2x

′
3, x3x

′
1 ∈ E.

121

If x1 < x′1, some point (of type 1) would be uncovered; on the other hand, if x1 > x′1,

some point (of type 1) would be covered twice, and the total weight would then be at least

3n + 1. Thus, x1 = x′1. Similarly, x2 = x′2 and x3 = x′3. So, x1x2x3 forms a triangle in G.

We conclude that the minimum-weight solution R
(1)
x1x2 , R

(2)
x2x3 and R

(3)
x3x1 correspond to the

minimum-weight triangle x1x2x3 in G. QED.

4.5.2 Unweighted size-3 set cover for boxes in R3

Our preceding reduction uses weights to ensure equalities of two variables representing

vertices. For the unweighted case, this does not work. We propose a different way to force

equalities, by using an extra dimension and extra sides (i.e., using boxes instead of orthants),

with some carefully chosen coordinate values.

Theorem 4.7. Given a set P of n points and a set R of n unweighted axis-aligned boxes in

R3, deciding whether there exist 3 boxes in R that cover P requires Ω(n4/3−δ) time for any

constant δ > 0, assuming the Sparse Triangle Hypothesis.

Proof. We will reduce the triangle detection problem on a graph with m edges to the un-

weighted size-3 set cover problem for O(m) points and boxes in R3. Thus, if there is an

O(m4/3−δ)-time algorithm for the latter problem, there would be an algorithm for the for-

mer problem with running time O(m4/3−δ), refuting the hypothesis.

Let G = (V,E) be the given unweighted sparse graph with n vertices and m edges (n ≤ m).

Without loss of generality, assume that V ⊂ [0, 0.1], and 0 ∈ V and 0.1 ∈ V .

The reduction. For each vertex t ∈ V , create six points

(−1 + t, 0, 2 + t) (type 1)

(1 + t, 0, −2 + t) (type 2)

(2 + t, −1 + t, 0) (type 3)

(−2 + t, 1 + t, 0) (type 4)

(0, 2 + t, −1 + t) (type 5)

(0, −2 + t, 1 + t) (type 6)

122

Create the following boxes in R3:

∀x1x
′
2 ∈ E : R

(1)

x1x′2
= (−1 + x1, 1 + x1) × [−2 + x′2, 2 + x′2] × R

∀x2x
′
3 ∈ E : R

(2)

x2x′3
= [−2 + x′3, 2 + x′3] × R × (−1 + x2, 1 + x2)

∀x3x
′
1 ∈ E : R

(3)

x3x′1
= R × (−1 + x3, 1 + x3) × [−2 + x′1, 2 + x′1]

(4.2)

(call them of type 1, 2, and 3, respectively).

Correctness. We prove that a size-3 set cover exists iff a triangle exists in G.

Any feasible solution (if exists) must use a box of each type, since the point (−1, 0, 2) of

type 1 (resp. the point (2,−1, 0) of type 3, and the point (0, 2,−1) of type 5) can only be

covered by a box of type 3 (resp. 2 and 1). So, the three boxes in a feasible solution must

be of the form R
(1)

x1x′2
, R

(2)

x2x′3
and R

(3)

x3x′1
for some x1x

′
2, x2x

′
3, x3x

′
1 ∈ E.

Consider points of type 1 with the form (−1 + t, 0, 2 + t). The box R
(2)

x2x′3
cannot cover any

of them due to the third dimension. The box R
(1)

x1x′2
covers all such points corresponding to

t > x1, and the box R
(3)

x3x′1
covers all such points corresponding to t ≤ x′1. So, all points of

type 1 are covered iff x1 ≤ x′1. Similarly, all points of type 2 are covered iff x′1 ≤ x1. Thus,

all points of type 1–2 are covered iff x1 = x′1. By a symmetric argument, all points of type

3–4 are covered iff x3 = x′3; and all points of type 5–6 are covered iff x2 = x′2. We conclude

that a feasible solution exists iff a triangle x1x2x3 exists in G. QED.

We remark that the boxes above can be made fat, with side lengths between 1 and a

constant (by replacing R with an interval of a sufficiently large constant length).

4.5.3 Unweighted size-3 set cover for unit hypercubes in R4

Our preceding lower bound for unweighted size-3 set cover for boxes in R3 immediately

implies a lower bound for orthants (and thus unit hypercubes) in R6, since the point (x, y, z)

is covered by the box [a−, a+]× [b−, b+]× [c−, c+] in R3 iff the point (x, x, y, y, z, z) is covered

by the orthant [a−,∞)× (−∞, a+]× [b−,∞)× (−∞, b+]× [c−,∞)× (−∞, c+] in R6.

A question remains: can the dimension 6 be lowered? Intuitively, there seems to be some

wastage in the above construction: there are several 0’s in the coordinates of the points, and

several R’s in the definition of the boxes, and these get doubled after the transformation to

6 dimensions. However, it isn’t clear how to rearrange coordinates to eliminate this wastage:

we would have to give up this nice symmetry of our construction, and there are too many

combinations to try. We ended up writing a computer program to exhaustively try all these

123

different combinations, and eventually find a construction that lowers the dimension to 4!

Once it is found, correctness is straightforward to check, as one can see in the proof below.

Theorem 4.8. Given a set P of n points and a set R of n unweighted orthants in R4,

deciding whether there exists a size-3 set cover requires Ω(n4/3−δ) time for any constant

δ > 0, assuming the Sparse Triangle Hypothesis.

Proof. We will reduce the triangle detection problem on a graph with m edges to the un-

weighted size-3 set cover problem for O(m) points and orthants in R4.

Let G = (V,E) be the given unweighted graph with n vertices and m edges (n ≤ m).

Without loss of generality, assume that V ⊂ [0, 0.1], and 0 ∈ V and 0.1 ∈ V .

The reduction. For each vertex t ∈ V , create six points

(0 + t, 2 + t, −0.5, −0.5) (type 1)

(2− t, 0− t, −0.5, −0.5) (type 2)

(1− t, 0.5, 1 + t, 1.5) (type 3)

(0.5, 1 + t, 0.5, 2− t) (type 4)

(−0.5, −0.5, 2− t, 0− t) (type 5)

(−0.5, −0.5, 0 + t, 1 + t) (type 6)

Create the following orthants in R4:

∀x1x
′
2 ∈ E : R

(1)

x1x′2
= [0 + x1,+∞) × [0− x1,+∞) × (−∞, 1 + x′2) × (−∞, 2− x′2)

∀x2x
′
3 ∈ E : R

(2)

x2x′3
= (−∞, 1− x2] × (−∞, 1 + x2] × (0 + x′3,+∞) × (0− x′3,+∞)

∀x3x
′
1 ∈ E : R

(3)

x3x′1
= (−∞, 2− x′1) × (−∞, 2 + x′1) × (−∞, 2− x3] × (−∞, 1 + x3]

(4.3)

(call them of type 1, 2, and 3, respectively).

Correctness. We prove that a size-3 set cover exists iff a triangle exists in G.

Any feasible solution (if exists) must use an orthant of each type, as one can easily check

(like before). So, the three orthants in a feasible solution must be of the form R
(1)

x1x′2
, R

(2)

x2x′3

and R
(3)

x3x′1
for some x1x

′
2, x2x

′
3, x3x

′
1 ∈ E.

Consider points of type 1 with the form (0 + t, 2 + t,−0.5,−0.5). The orthant R
(2)

x2x′3

cannot cover any of them due to the third dimension. The orthant R
(1)

x1x′2
covers all such

points corresponding to t ≥ x1, and the orthant R
(3)

x3x′1
covers all such points corresponding

to t < x′1. So, all points of type 1 are covered iff x1 ≤ x′1. By similar arguments, it can be

124

checked that all points of type 2 are covered iff x1 ≥ x′1; all points of type 3 are covered

iff x2 ≤ x′2; all points of type 4 are covered iff x2 ≥ x′2; all points of type 5 are covered iff

x3 ≤ x′3; all points of type 6 are covered iff x3 ≥ x′3. We conclude that a feasible solution

exists iff a triangle x1x2x3 exists in G. QED.

In the computer search, we basically tried different choices of points with coordinate values

of the form c ± t or c for some constant c, and orthants defined by intervals of the form

[c± xj,+∞) or (−∞, c± xj] (closed or open) for some variable xj (or x′j). The constraints

are not exactly easy to write down, but are self-evident as we simulate the correctness proof

above. Naively, the number of cases is in the order of 1014, but can be drastically reduced to

about 107 with some optimization and careful pruning of the search space. The C++ code

is not long (under 150 lines) and, after incorporating pruning, runs in under a second.

It is now straightforward to modify the above lower bound proof for unweighted orthants

(or unit hypercubes) in R4 to the rectilinear discrete 3-center problem in R4; see Sec. 4.6.1.

In Sec. 4.6.2, we also prove a higher conditional lower bound for weighted size-6 set cover

for rectangles in R2.

4.6 OTHER CONDITIONAL LOWER BOUNDS FOR SMALL-SIZE SET COVER FOR
BOXES AND RELATED PROBLEMS

Continuing Section 4.5, we prove a few more conditional lower bounds for set cover related

problems.

4.6.1 Rectilinear discrete 3-center in R4

It is easy to modify our conditional lower bound proof for size-3 set cover for orthants in

R4 (Theorem 4.8) to obtain a lower bound for the rectilinear discrete 3-center problem in

R4.

First recall that a lower bound for orthants in R4 automatically implies a lower bound for

unit hypercubes in R4. In our construction, we can replace each orthant with a hypercube

of side length 10 (i.e., L∞-radius 5), keeping the corner vertex the same, and then rescale.

For rectilinear discrete 3-center in R4, the new point set consists of the constructed points

and the centers of the constructed hypercubes of side length 10 (before rescaling), together

with three auxiliary points:

(9.5, 9.5,−8.5,−7.5), (−8.5,−8.5, 9.5, 9.5), (−7.5,−7.5,−7.5,−8.5).

125

The purpose of the auxiliary points is to force the 3 centers in the solution to be from the

centers of the constructed hypercubes.

Corollary 4.2. For any constant δ > 0, there is no O(n4/3−δ)-time algorithm for rectilinear

discrete 3-center in R4, assuming the Sparse Triangle Hypothesis.

4.6.2 Weighted size-6 set cover for rectangles in R2

In Section 4.5, we have obtained a superlinear conditional lower bound for weighted size-3

set cover for rectangles in R2. Another direction is to investigate the smallest k for which

we can obtain a near-quadratic lower bound for weighted size-k set cover. We prove such a

result for k = 6.

For a fixed ` ≥ 3, the Weighted `-Clique Hypothesis [205] asserts that there is no O(n`−δ)

time algorithm for finding an `-clique of minimum total edge weight in an n-vertex graph

with O(log n)-bit integer weights.

Theorem 4.9. Given a set P of n points and a set R of n weighted rectangles in R2, any

algorithm for computing the minimum weight size-6 set cover requires Ω(n2−δ) time for any

constant δ > 0, assuming the Weighted 4-Clique Hypothesis.

Proof. We will reduce the minimum-weight 4-clique problem on a graph with n vertices and

m edges (m ∈ [n, n2]) to the weighted size-6 set cover problem for O(m) points and rectangles

in R2. Thus, if there is an O(m2−δ)-time algorithm for the latter problem, there would be

an algorithm for the former problem with running time O(m2−δ) ≤ O(n4−2δ), refuting the

hypothesis.

Let G = (V,E) be the given weighted graph with n vertices and m edges. Without loss of

generality, assume that all edge weights are in [0, 0.1], and that V ⊂ [0, 0.1]. Assume that

0 ∈ V and 0.1 ∈ V .

126

x1x
′
2

x4x
′
1

x2x
′
3

x3x
′
4

x′′2x
′′
4

x′′1x
′′
3

Figure 4.6: Reduction from the minimum-weight 4-clique problem to weighted size-6 set
cover for rectangles in R2.

The reduction. For each vertex t ∈ V , create 8 points

(0, 2− t) (type 1)

(t, 0) (type 2)

(2, t) (type 3)

(2− t, 2) (type 4)

(1, t) (type 5)

(1, 2− t) (type 6)

(t, 1) (type 7)

(2− t, 1) (type 8)

Create the following rectangles in R2:

∀x1x
′
2 ∈ E : R

(1)

x1x′2
= [0, x′2) × [0, 2− x1] (type 1)

∀x2x
′
3 ∈ E : R

(2)

x2x′3
= [x2, 2] × [0, x′3) (type 2)

∀x3x
′
4 ∈ E : R

(3)

x3x′4
= (2− x′4, 2] × [x3, 2] (type 3)

∀x4x
′
1 ∈ E : R

(4)

x4x′1
= [0, 2− x4] × (2− x′1, 2] (type 4)

∀x′′1x′′3 ∈ E : R
(5)

x′′1x
′′
3

= [1, 1.1] × [x′′3, 2− x′′1] (type 5)

∀x′′2x′′4 ∈ E : R
(6)

x′′2x
′′
4

= [x′′2, 2− x′′4] × [1, 1.1] (type 6)

(4.4)

The weight of each rectangle is set to be the number of points it covers plus the weight of the

edge it represents. The total number of points and rectangles is O(n) and O(m) respectively.

The reduction is illustrated in Figure 4.6.

127

Correctness. We prove that the minimum-weight 4-clique in G has weight w (where

w ∈ [0, 0.6]) iff the optimal weighted size-6 set cover has weight 8n+ w.

Any feasible solution (if exists) must use a rectangle of each type, since the point (0, 1.9)

of type 1 (resp. the point (0.1, 0) of type 2, the point (2, 0.1) of type 3, the point (1.9, 2) of

type 4, the point (1, 0.1) of type 5, and the point (0.1, 1) of type 7) can only be covered by a

rectangle of type 1 (resp. 2, 3, 4, 5 and 6). So the six rectangles in a feasible solution must

be of the form R
(1)

x1x′2
, R

(2)

x2x′3
, R

(3)

x3x′4
, R

(4)

x4x′1
, R

(5)

x′′1x
′′
3

and R
(6)

x′′2x
′′
4

for some x1x
′
2, x2x

′
3, x3x

′
4, x4x

′
1,

x′′1x
′′
3, x′′2x

′′
4 ∈ E.

If x1 > x′1, some point (of type 1) would be uncovered; on the other hand, if x1 < x′1,

some point (of type 1) would be covered twice, and the total weight would then be at least

8n + 1. Thus, x1 = x′1. Similarly, x′1 = x′′1, x2 = x′2 = x′′2, x3 = x′3 = x′′3, and x4 = x′4 = x′′4.

So, x1x2x3x4 forms a 4-clique in G. We conclude that the minimum-weight solution R
(1)
x1x2 ,

R
(2)
x2x3 , R

(3)
x3x4 , R

(4)
x4x1 , R

(5)
x1x3 and R

(6)
x2x4 correspond to the minimum-weight 4-clique x1x2x3x4

in G. QED.

4.7 CONCLUSIONS

In this chapter, we have obtained a plethora of nontrivial new results on a fundamental

class of problems in computational geometry related to discrete k-center and size-k geometric

set cover for small values of k. (See Tables 1.1–4.1.) In particular, we have one result where

the upper bounds and conditional lower bounds are close: for weighted size-3 set cover

for rectangles in R2, we have given the first subquadratic Õ(n7/4)-time algorithm, and an

Ω(n3/2−δ) lower bound under the APSP Hypothesis.

For all of our results, we have managed to find simple proofs (each with 1–3 pages). We

view the simplicity and accessibility of our proofs as an asset—they would make good exam-

ples illustrating fine-grained complexity techniques in computational geometry. Generally

speaking, there has been considerable development on fine-grained complexity in the broader

algorithms community over the last decade [205], but to a lesser extent in computational

geometry. A broader goal of this chapter is to encourage more work at the intersection of

these two areas. We should emphasize that while our conditional lower bound proofs may

appear simple in hindsight, they are not necessarily easy to come up with; for example, see

one of our proofs that require computer-assisted search (Theorem 4.8).

Additional remarks. For “combinatorial” algorithms (i.e., algorithms that avoid fast

matrix multiplication or algebraic techniques), some of our conditional lower bounds can

be improved. For example, our near-n4/3 lower bounds on unweighted size-3 set cover for

128

boxes in R3 and rectilinear discrete 3-center in R4 (Theorems 4.7–4.8 and Corollary 4.2) can

be increased to near-n3/2, under the Combinatorial BMM Hypothesis [205] (which asserts

that Boolean matrix multiplication of two n × n matrices requires Ω(n3−δ) time for com-

binatorial algorithms). These follow from the same reductions, because the Combinatorial

BMM Hypothesis is equivalent [206] to the hypothesis that triangle detection in a graph

with n vertices requires Ω(n3−δ) time for combinatorial algorithms. Note that although the

notion of “combinatorial” algorithms is vague, all our algorithms in Sec. 4.3 and Sec. 4.4 are

combinatorial. (However, the best combinatorial algorithm we are aware of for Euclidean

discrete 2-center in higher dimensions are slower than the best noncombinatorial algorithm,

and has time bound near n3−1/O(d) using range searching techniques.)

It is interesting to compare our conditional lower bound proofs with the known hardness

proofs by Marx [163] and Chitnis and Saurabh [85] on fixed-parameter intractibility with

respect to the parameter k. These were also obtained by reduction from k′-clique for some

function relating k and k′. Thus, in principle, by setting k′ = 3, they should yield superlinear

lower bounds for discrete k-center (and related unweighted set cover problems) for some

specific constant k, but this value of k is probably large (much larger than 3). On the other

hand, Cabello et al.’s proofs of fixed-parameter intractibility with respect to d [50] also

produced reductions from k′-clique to Euclidean 2-center and rectilinear 4-center, but the

continuous problems are different from the discrete problems. (Still, Cabello et al.’s proofs

appeared to use some similar tricks, though ours are simpler.)

One of our initial reasons for studying the fine-grained complexity of small-size geometric

set cover is to prove hardness of approximation for fast approximation algorithms for geo-

metric set cover. For example, Theorem 4.7 (with its subsequent remark) implies that no

Õ(n)-time approximation algorithm for set cover for fat boxes in R3 with side lengths Θ(1)

can achieve approximation factor strictly smaller than 4/3 (otherwise, it would be able to

decide whether the optimal size is 3 or at least 4). For such fat boxes, near-linear-time ap-

proximation algorithms with some (large) constant approximation factor follow from known

techniques [14, 71] (since fat boxes of similar sizes in R3 have linear union complexity); see

Chapter 3.

129

CHAPTER 5: ENCLOSING POINTS WITH GEOMETRIC OBJECTS

In this chapter, we develop approximation algorithms for the problem of enclosing all

points with geometric objects (Enclosing-All-Points), which is related to geometric set

cover. We solve this problem by adapting techniques for approximating geometric set cover.

A generalized colored enclosing problem. To solve the Enclosing-All-Points

problem (Problem 1.5), we design a polynomial-time approximation algorithm that in fact

works for a generalized version of it, where each input object has a color. The goal is to

ensure that each point is enclosed by a subset of the chosen objects with the same color.

The colored version of the Enclosing-All-Points problem is formally defined as follows:

Problem 5.1 (Enclosing-All-Points-Colored). Given a set X of points and a set S

of colored geometric objects (possibly overlapping) in R2, find the smallest subset S∗ ⊆ S to

enclose all points in X. More precisely, for each point p ∈ X, there exists a subset S∗cp ⊆ S∗

of objects with the same color cp that encloses p, i.e., any curve connecting p with infinity

(+∞, 0) must intersect at least one object in S∗ with color cp.

The previous (uncolored) Enclosing-All-Points problem (Problem 1.5) can be viewed

as a special case of the above Enclosing-All-Points-Colored problem (Problem 5.1),

since in the colored version, we can let all input objects have the same color.

Hardness. It is easy to see that geometric set cover is also a special case of the above

colored enclosing problem, by assigning a unique color for each object in Problem 5.1. In

this way, if in the colored enclosing problem a point p ∈ X is enclosed by objects with the

same color cp, then in the set cover problem, p must be covered by the unique object with

color cp. Therefore, Problem 5.1 is NP-hard for a wide range of geometric objects, e.g., unit

disks or unit squares, because of the known hardness results for geometric set cover [120].

5.1 OUR RESULTS

For enclosing all points with colored geometric objects (Problem 5.1), we obtain the fol-

lowing results:

• A polynomial-time O(α(n) log n)-approximation algorithm for enclosing all points in

R2 using colored arbitrary line segments (Theorem 5.1).

130

• A polynomial-time O(log n)-approximation algorithm for enclosing all points in R2

using colored disks (Theorem 5.2).

• More generally, our results hold for curves that pairwise intersect only at most s = O(1)

times, achieving O(λs+2(n)
n

log n)-approximation (Theorem 5.3).

We remark that in particular, these results hold for the original (uncolored) Enclosing-

All-Points problem as a special case. To the best of our knowledge, no polynomial-time

approximation algorithms were known for these problems before our work.

5.2 PRELIMINARIES

Union complexity of geometric objects. For a type of geometric objects, its union

complexity is defined as the combinatorial complexity of the boundary of the union of n such

objects. It is known that disks have linear union complexity [146].

For our applications, it suffices to look at the combinatorial complexity of the outer face

in the arrangement of the objects, which is upper-bounded by the union complexity of the

objects. Therefore for disks, this complexity is still O(n). Pollack et al. [185] proved that

for n arbitrary line segments in R2, the complexity of the outer face in the arrangement

is bounded by O(nα(n)) (by Davenport-Schinzel sequences), where α(n) denote the inverse

Ackermann function.

More generally, for curves that pairwise intersect only at most s = O(1) times, a sim-

ilar bound holds: the combinatorial complexity of the outer face in the arrangement is

O(λs+2(n)), where the function λs(n) = nα(n)O(α(n)s−3) is the maximum length of an (n, s)

Davenport-Schinzel sequence [16, 132]. For any constant s, λs(n) is almost linear in n.

Point-in-polygon check. Given a point q and a polygon P , the point-in-polygon problem

asks whether q lies inside, outside, or on the boundary of P . A standard method for solving

this problem is to use the ray-casting algorithm [195]: cast a ray ~r starting from q and

going in any fixed direction, if ~r intersects P an even number of times, then q is outside P ;

otherwise if ~r intersects P an odd number of times, then q is inside P . (For our applications,

we consider the points on the boundary of P as inside P .)

Another method for point-in-polygon check is by computing the winding number of q

with respect to P , denote as wind(q, P). The idea is to modify the ray-casting algorithm

as follows: first orient the edges of P in counter-clockwise direction. Initialize a counter cq

with value 0. Cast a ray ~rq starting from q and going in any fixed direction, for each edge

~e of P intersecting ~rq, if ~e crosses ~rq in counter-clockwise direction, then increase cq by 1;

131

otherwise if ~e crosses ~rq in clockwise direction, decrease cq by 1. In the end, q is inside P iff

the counter cq is nonzero. In particular, when P is a simple polygon, q is inside P iff cq = 1.

Intuitively, if q is outside P , then the weighted crossings between the ray ~rq and the polygon

P will cancel each other. An example for this process is shown in Fig. 5.1.

q1

q2

−1 +1+1 cq1 = 1

cq2 = 0−1 +1 −1 +1

~rq1

~rq2

P

Figure 5.1: The winding number of points with respect to a (simple) polygon P . The point
q1 has winding number cq1 = 1, and is inside P ; the point q2 has winding number cq2 = 0,
and is outside P .

5.3 APPROXIMATION ALGORITHMS

Here we present approximation algorithms for enclosing points with colored geometric

objects. Our approach works for disks, arbitrary line segments, and more generally curves

that pairwise intersect O(1) times. In the following, we explain our approach in terms of

line segments as an example.

A common technique for designing approximation algorithms for set cover related prob-

lems is to use LP rounding. The idea is to first design and solve an LP relaxation (i.e.,

getting a fractional solution), and then round the LP solution to get an integral solution.

Our algorithm follows this line of approach, which requires nontrivial geometric insights for

designing and rounding the LP, as we will show.

Forming the LP relaxation. We first formalize an LP relaxation of the colored enclosing

problem. Intuitively, the idea is as follows: a point q is enclosed by a set of line segments Sc

of color c, iff the outer boundary of these line segments enclose q. So it suffices to specify the

outer boundary Bc of the union of line segments with color c that we select in the solution.

Bc is a set of disjoint simple polygons (as shown in Fig. 5.2), which can also be viewed as

a set of cycles on a graph Gc: the vertices of Gc are intersection points between two line

segments in Sc, and the edges of Gc are subsegments between a pair of vertices in Gc that lie

132

on the same segment in Sc. To get a fractional solution, our goal is to select a set of colored

fractional cycles on Gc to enclose all points. We can form the constraints for each color class

c separately.

Figure 5.2: The outer boundary Bc of the union of line segments with color c is a set of
disjoint simple polygons (shown in red).

We now formally describe our LP. We start with specifying the variables in the LP. For each

color class c, let Sc denote the set of the input line segments with color c. The arrangement

of Sc can be viewed as a planar graph Arrc, which has O(|Sc|2) vertices and edges. Each

vertex in Arrc is an intersection point of two line segments in Sc. We then create a new

graph Gc, using the same set of vertices as Arrc. For each line segment ` ∈ Sc, let V (`)

denote the set of all vertices in Gc that lie on `. For each pair of points u, v ∈ V (`), create a

variable x
(`)
uv where 0 ≤ x

(`)
uv ≤ 1, indicating the directed subsegment uv of ` (with direction

from u to v) is selected x
(`)
uv times in the fractional solution. We call x

(`)
uv the weight of the

subsegment uv. Also create a directed edge e
(`)
uv from u to v in Gc.

We emphasize that we need to create two variables (and respectively, two directed edges in

Gc) for each undirected subsegment uv, because to ensure all points are enclosed according

to the winding number constraints to be defined later, we need to know whether uv appears

on the boundary of the solution in clockwise or counter-clockwise order.

We next present the formulas for the constraints of our LP. There are two types of con-

straints that need to be handled:

1. Flow constraints. To ensure that the solution to the LP is a set of colored fractional

cycles, we design the flow constraints as follows:

For each color c, and for each vertex u of Gc, we create the constraint∑
v,`: e

(`)
uv∈E(Gc)

x(`)
uv =

∑
v,`: e

(`)
vu∈E(Gc)

x(`)
vu . (5.1)

The solution to the LP with respect to each color c is a circulation on Gc. Using standard

133

techniques, this circulation can be decompose into O(
∑

c |E(Gc)|) = O(
∑

c |Sc|2) = O(n2)

fractional cycles in polynomial time: repeatedly select the smallest variable x
(`)
uv that is

strictly positive, find a path Pvu from v to u on Gc using only edges with strictly positive

values (such path always exists, and the value of each edge on the path is at least x
(`)
uv),

and subtract the fractionally weighted cycle C formed by combining e
(`)
uv and Pvu from the

solution. The fractional cycle C has weight wC = x
(`)
uv . Each round sets the value of at least

one variable x
(`)
uv to 0, so the process will terminate in O(|E(Gc)|) steps. Each cycle on Gc

corresponds to a monochromatic polygon with color c, so the LP solution can be decomposed

into O(n2) fractionally weighted monochromatic polygons. We remark that these polygons

are not necessarily simple.

2. Winding number constraints. To ensure that each point in X is enclosed by the outer

boundary of the union of the chosen subsegments, the idea is to constrain their winding

number. After orienting each (unknown) simple polygon on the outer boundary of the

optimal solution S∗ in counter-clockwise order, the winding number of each point q ∈ X is

exactly 1. So it suffices to ensure a similar inequality when we form the constraints for the

fractional solution to the LP.

For each point q ∈ X, let ~rq be an arbitrary ray starting from q. Inspired by the winding-

number algorithm, we add the following constraint to ensure the winding number of q with

respect to the LP solution that we selected is at least 1:∑
c,`,u,v: e

(`)
uv crosses ~rq in counter-clockwise order

x(`)
uv −

∑
c,`,u,v: e

(`)
uv crosses ~rq in clockwise order

x(`)
uv ≥ 1, ∀q ∈ X.

(5.2)

The (weighted) winding number of q equals to the total weight of the edges that cross the

ray ~rq in counter-clockwise direction, minus the total weight of the edges that cross the ray

~rq in clockwise direction.

We remark that we require the winding number of each point to be at least 1 instead

of exactly 1, since in the LP solution, each polygon may not be simple, which means the

winding numbers can be greater than 1.

The winding number constraints together with the flow constraints ensure that each point

is enclosed by the fractional cycles in the LP solution. Namely, for each point p ∈ X, we

have ∑
cycle C

wC · wind(q, C) ≥ 1. (5.3)

The objective function is to minimize the total weight of the (fractionally) selected sub-

134

segments:

opt = min
∑

c,`,u,v: e
(`)
uv∈E(Gc)

x(`)
uv . (5.4)

Rounding the LP. After solving the LP to compute the optimal fractional solution in

polynomial time, we represent the LP solution as a set of fractionally weighted monochromat-

ic cycles on the disjoint union of graphs Gc, then rounding the fractional solution to obtain

an integral solution. This is a standard technique that is commonly used for approximating

set cover solutions [208].

Here we provide a simple self-contained description, which is by using randomized round-

ing [189]. Namely, for each cycle C of weight wC, we randomly and independently select it

with probability min{10wC log n, 1}. Here selecting a cycle means selecting all subsegments

contained as edges on that cycle, and if a subsegment e
(`)
uv of an input line segment ` is

selected, then the whole segment ` is included in our integral solution. Note that a line

segment ` may be included because of multiple subsegments of it are selected during the

rounding process; although it suffices to include ` just once, in the analysis below, we treat

as if ` would be included multiple times. We show that this will not affect the approximation

factor by much, because the combinatorial complexity of the outer boundary of the objects

we consider is close to linear.

Our goal is to ensure all points q ∈ X have winding number ≥ 1 w.h.p. after the rounding

process, which implies that they are enclosed by the integral solution, but a technical issue

arises for cycles that are not simple: they may wind around a point multiple times, resulting

in a large positive winding number for the point. In this case, even giving a small weight to

the cycle can still ensure the (weighted) winding number of that point is at least 1 in the

fractional solution to the LP, but that means the cycle will only be selected with a small

probability during the rounding process (selecting the cycle with a larger probability would

be too costly).

To handle the above issue, the idea is to unwind the non-simple cycles first before rounding,

i.e., decompose them into a set of simple cycles, and then randomly select each simple cycle

independently. This ensures that each cycle C in the fractional solution contributes at most

once to the winding number of any point q.

To unwind the non-simple cycles, we repeatedly choose a self-intersection point v of the

cycle C. Suppose v is the intersection point of a pair of crossing edges u1v1 and u2v2 of C. We

create a new vertex at v, subdivide the edge u1v1 into two edges u1v and vv1, and similarly

subdivide u2v2 into two edges u2v and vv2. In this way, we decompose the cycle C into two

cycles C1 and C2 by splitting at v. The total length of the cycles increases by 2, since the

135

two crossing edges are split into four edges. Recursively subdivide the cycles C1 and C2 if

they are not simple. An example for the unwinding process is shown in Fig. 5.3.

u1

u2

v1
v2

v C2C1

C

w1

w2

Figure 5.3: During the unwinding process, the non-simple cycle C = u1v1w2u2v2w1 with
length 6 is decomposed into two simple cycles C1 = vv2w1u1 and C2 = vv1w2u2 each with
length 4.

To upper bound the approximation ratio, we show that it only loses a constant approxima-

tion factor at the step of decomposing non-simple cycles into simple cycles. Let f(n) denote

the maximum total number of edges that a non-simple cycle of length n can decompose into.

f(n) satisfies the recurrence

f(n) ≤ max
3≤n1≤n−1

(f(n1) + f(n− n1 + 2)) , (5.5)

since a simple cycle formed by line segments would have length at least 3. The edge case is

f(n) = n for n ≤ 3. Solving the recurrence, we get f(n) ≤ 3n− 6 = O(n).

After decomposing the cycles into simple cycles, it still holds that for each point q ∈ X,∑
cycle C

wC · wind(q, C) (5.6)

=
∑

simple cycle C

wC · wind(q, C) (5.7)

=
∑

simple counter-clockwise cycle C: C encloses q

wC −
∑

simple clockwise cycle C: C encloses q

wC (5.8)

≥ 1. (5.9)

We can ignore the simple cycles that appear in clockwise order, because they only contribute

negatively to the winding number constraints. If we only consider the counter-clockwise

136

cycles, it still holds that ∑
simple counter-clockwise cycle C: C encloses q

wC ≥ 1. (5.10)

Now we analyze the probability of failure. After the rounding process, for any q ∈ X,

Pr[q is not enclosed] (5.11)

=
∏

simple counter-clockwise cycle C: C encloses q

Pr[C is not selected] (5.12)

=
∏

simple counter-clockwise cycle C: C encloses q

(1−min{10wC log n, 1}) (5.13)

≤ lim
k→∞

(
1− 10 log n

k

)k
(5.14)

≤ e−10 logn ≤ 1

n10
. (5.15)

By union bound, the probability of existing any point q ∈ X that is not enclosed is at most

Pr[∃q ∈ X, q is not enclosed] ≤ n · 1

n10
≤ 1

n9
. (5.16)

Therefore, the rounding process succeeds w.h.p. We remark that the approach can be

derandomized, by the standard method of conditional probabilities [188].

Analyzing the approximation ratio. It is easy to see that the optimal solution S∗

corresponds to a feasible solution to the LP: if for each color class c, set the variables cor-

responding to the directed subsegments on the outer boundary (ordered counter-clockwise)

of the line segments S∗c with color c in the optimal solution to be 1, and let all other vari-

ables being 0, we will obtain a feasible solution to the LP. From the known combinatorial

complexity of the outer face in the arrangement of line segments, the outer boundary of S∗c

can be decomposed into O(|S∗c | · α(|S∗c |)) subsegments. Therefore the optimal LP solution

satisfies

opt ≤ O

(∑
c

|S∗c | · α(|S∗c |)

)
≤ O (|S∗| · α(|S∗|)) . (5.17)

As we have shown before, after the unwinding step, the total weight of edges among

all cycles only increases by a constant factor, which is still O(opt). So after performing

randomized rounding on the unwound fractional solution, the expected size of the obtained

137

integral solution is at most ∑
simple counter-clockwise cycle C

10wC log n ·O (|C|) (5.18)

= 10 log n ·
∑

simple counter-clockwise cycle C

∑
`,u,v: e

(`)
uv∈C

wC (5.19)

= O(log n) ·
∑
`,u,v

∑
simple counter-clockwise cycle C: C3e(`)uv

wC (5.20)

≤ O(log n) ·
∑
`,u,v

∑
cycle C: C3e(`)uv

wC (5.21)

≤ O(log n) ·
∑
`,u,v

x(`)
uv (5.22)

≤ O(opt log n) (5.23)

≤ O (|S∗| · α(|S∗|) log n) . (5.24)

In summary, the problem of enclosing points by geometric objects can be viewed as se-

lecting the smallest subset of objects to cover all curves connecting a point q with infinity

(i.e., a set cover problem). The difficulty is there are infinitely many such curves, so directly

applying the known set cover results does not give us a good approximation. Using the

winding number idea, we transform the problem into covering each of a finite number of

rays with a finite number of possible boundary curves of the input objects, so that we can

apply the set cover approximation techniques.

Using the above algorithm, we obtain the following approximation result for enclosing all

points in R2 using (colored) line segments:

Theorem 5.1. Given a set X of points and a set S of colored arbitrary line segments in R2,

where |X|+ |S| = n, there exists a polynomial-time O(α(n) log n)-approximation algorithm

for enclosing all points in X using the smallest subset of objects in S.

Disks and more general types of curves. The technique we described above can be

modified to work for more general types of curves with minor changes. For curves that

pairwise intersect only s = O(1) times, one technical issue is during unwinding, a simple

cycle may only have length 2. If we decompose a cycle C into a cycle C1 with length 2

and another cycle C2, then the length of C2 is the same as C, therefore not getting a good

recurrence for the maximum total size f(n) of the simple cycles that we decompose into.

138

To fix this issue, we first try to unwind at a self-intersection point v of C, such that the two

subcycles have length strictly less than |C|. If such point exists, then our previous analysis

for the recurrence of f(n) still works. Otherwise if there are no such points, then it means

only pairs of consecutive edges on the cycle C can intersect. In this case, there are only at

most s · |C| self-intersections on C, so we can decompose C into O(s|C|) subcycles, increasing

the total number of edges by only a factor of O(s) = O(1).

Since it is known that the outer boundary for disks has complexity O(n), we get the

following result for disks:

Theorem 5.2. Given a setX of points and a set S of colored disks in R2, where |X|+|S| = n,

there exists a polynomial-time O(log n)-approximation algorithm for enclosing all points in

X using the smallest subset of objects in S.

More generally, for curves that pairwise intersect at most s times, it is known that the

combinatorial complexity of the outer face in the arrangement is bounded by O(λs+2(n)) [16,

132] as mentioned earlier in Sec. 5.2. So our approximation algorithm yields the following

result:

Theorem 5.3. Given a set X of points and a set S of colored curves that pairwise inter-

sect at most s = O(1) times in R2, where |X| + |S| = n, there exists a polynomial-time

O(λs+2(n)
n

log n)-approximation algorithm for enclosing all points in X using the smallest

subset of objects in S.

139

CHAPTER 6: MONOTONE CONVEX CHAIN COVER

In this chapter, we inspect the FPT status of the monotone convex chain cover problem

(Problem 1.6), which asks for finding the minimum number of x-monotone convex chains

κ(P) that can together cover a given point set P . One open question is whether this problem

or the related convex chain cover problem is FPT [112, Open Problem 11.16]. Here we show

that this problem is not likely to have a polynomial kernel, taking a step towards resolving

the parameterized complexity of the problem.

6.1 OUR RESULTS

We obtain two hardness results on the monotone convex chain cover problem:

• We show that computing the monotone convex cover number κ(P) for a set of points

P in R2 is NP-hard (Theorem 6.1).

• Furthermore, we show the problem of deciding whether κ(P) ≤ k does not have a

polynomial kernel, unless NP ⊆ coNP/poly (Theorem 6.2).

6.2 NP-HARDNESS

We first show that the monotone convex chain cover problem is NP-hard, which serves as

a building block for proving nonexistence of polynomial kernels later.

It is known that computing the convex cover number κc(P) for a given point set P is

NP-hard, as shown by Arkin et al. [22] (which turns out to be inspired by the hardness proof

for Angular Metric TSP by Aggarwal et al. [18]). Since convex chain cover and monotone

convex chain cover are closely related, by slightly modifying their proof, we are able to prove

a similar hardness result for monotone convex chain cover.

Theorem 6.1. Given a set of points P in the plane and an integer k, it is NP-hard to decide

whether the monotone convex cover number κ(P) of P is at most k.

We first sketch the argument of Arkin et al.’s NP-hardness proof, then highlight the

modifications we made for proving NP-hardness for monotone convex chain cover.

Proof. Arkin et al.’s NP-hardness proof for convex cover number is via a reduction from the

1-in-3 SAT problem, i.e., deciding whether there exists a satisfying assignment of the given

3-SAT formula, such that exactly one literal in each clause is true. The 1-in-3 SAT problem

140

x1

xn

x2

Figure 6.1: The point set PI we create for a 1-in-3 SAT instance I for reducing to the
monotone convex chain cover problem. Each red curve illustrates a gadget that we create,
which is an x-monotone convex chain with sufficiently large size. Two red curves are paired
together to form a “staple” gadget. The pivot points for the clause (x1 ∨ x2 ∨ xn) are shown
in green.

is known to be NP-hard [191]. In their reduction, for each variable xi they created a pair

of rows: if the upper row is covered by a single chain, then the variable xi is assigned to

be “true”, otherwise “false”. For each clause cj in the formula, they created three columns,

where each column corresponds to a variable in the clause (so each clause is represented using

a 2 × 3 grid). Then they added “pivot” points (the green points illustrated in Fig. 6.1) to

encode the variable-clause incidence information: if xi (resp., xi) appears in cj, then create

a point at the intersection of xi’s “true” (resp., “false”) row and the column representing

xi in cj, and for the other two columns in cj, add a point at their intersection with xi’s

“false” (resp., “true”) row. Finally, they added “staple” gadgets to the rows and columns

each containing sufficiently many points which are in convex position, one staple for each

variable and two staples for each clause. Each horizontal staple can cover a row (and only

that), and each vertical staple can cover a column (and only that). The aim is to use those

gadgets as convex chains to cover all the “pivot” points. They proved that the 1-in-3 SAT

instance I is satisfiable iff κc(PI) ≤ n+ 2m, where n is the number of variables and m is the

number of clauses.

Our modifications for monotone convex chain cover are as follows. Here one can only use

x-monotone convex chains to cover the points, therefore one needs to replace each “staple”

gadget with a pair of x-monotone convex chains (the red curves illustrated in Fig. 6.1),

each is slightly perturbed from a straight line segment and contains Ω(n4) points, which is

sufficiently large to ensure each pair of such monotone convex chains will be selected as a

whole. As before, each “staple” can be linked as a single x-monotone convex chain that

141

is able to cover all the pivot points in one row or one column, but cannot cover any other

pivot point. We carefully set the positions and the slopes of the monotone convex chains to

ensure each pair of convex chains that is created will be contained in a single x-monotone

convex chain in the optimal solution. One need to also slightly rotate the whole point set

PI counterclockwise by a sufficiently small angle, in order to ensure x-monotonicity of the

(nearly vertical) chains that we want to appear in the optimal solution. An example of

our modified reduction construction is shown in Fig. 6.1. The rest of the correctness proof

follows from Arkin et al.’s work. QED.

Remark. Intuitively, the monotone convex chain cover problem is hard to solve, since it

is known that covering points by lines is NP-hard [103, 170] and even APX-hard [45, 157],

and monotone convex chains are more complicated geometric objects than lines. However,

we are not aware of a direct reduction between these two problems.

6.3 NO POLYNOMIAL KERNEL

Next, we show that the monotone convex chain cover problem does not have a polynomial

sized kernel, unless NP ⊆ coNP/poly, which is believed to be unlikely, as it will imply that

the polynomial hierarchy collapses [51, 214]. For more discussions on this assumption, see

the book on complexity theory by Arora and Barak [26]. For basic definitions related to

FPT and kernels, see Sec. 1.6.

Composing problem instances. The key observation is that given t point sets P1, . . . , Pt,

we can create a new point set P̂ , such that its monotone convex cover number κ(P̂) ≤ k iff

κ(Pi) ≤ k for all 1 ≤ i ≤ t.

The detailed construction is as follows. Note that convexity is preserved under affine

transformations, in particular, translation, rotation and scaling. The idea is to apply an

affine transformation on each point set Pi to get a new point set P̂i, and let P̂ be the

disjoint union of all P̂i’s. We first scale each point set Pi to ensure that P̂i is contained

in an axis-aligned bounding box which is thin. In particular, after applying appropriate

horizontal and vertical scaling, we can w.l.o.g. assume the width of the bounding box is 1,

and the absolute value of the slope between each pair of points in P̂i is bounded by ε, where

ε = ε(t) is a sufficiently small value depending only on t. As a consequence, the height of

the bounding box is bounded by 2ε. Next, we rotate the bounding box of P̂i by i
t

radians

counterclockwise, and finally translate the bounding box to let its lower left corner lie on

coordinate (
∑2i−3

j=0 cos j
2t
,
∑2i−3

j=0 sin j
2t

), specifically (0, 0) for P̂1. See Fig. 6.2 for an example.

142

^

^

^

P2

P1

P3

Figure 6.2: The point set P̂ created from composing P1, P2 and P3. Each transformed point
set P̂i is contained in a bounding box shown in blue.

The above construction ensures that an x-monotone convex chain in Pi is still an x-

monotone convex chain in P̂ after applying the corresponding affine transformation. More-

over, for any pair i < j, we can concatenate any x-monotone convex chain in P̂i with any

other x-monotone convex chain in P̂j, to get a single x-monotone convex chain in P̂ after

the transformation. Therefore κ(P̂i ∪ P̂j) ≤ max{κ(P̂i), κ(P̂j)} by greedily concatenating

the chains in P̂i with the chains in P̂j. On the other hand, clearly κ(P̂i) ≤ κ(P̂i ∪ P̂j) as

P̂i ⊆ P̂i ∪ P̂j, and similarly κ(P̂j) ≤ κ(P̂i ∪ P̂j). Thus, κ(P̂i ∪ P̂j) = max{κ(P̂i), κ(P̂j)}.
As a result, P̂ can be covered by at most k x-monotone convex chains if and only if each

part Pi can be covered by at most k x-monotone convex chains.

AND-composition. The above seemingly simple construction implies we can compose

multiple instances of monotone convex chain cover into a single instance, where the answer

for the combined instance equals to the Boolean AND of the answers for those instances. The

next step is to use the framework of Bodlaender et al. [40, 41] to prove that the monotone

convex chain cover problem does not have a polynomial kernel, unless NP ⊆ coNP/poly. To

begin with, we introduce the concept of AND-composition.

Definition 6.1 (AND-composition [40]). Let L ⊆ Σ∗ × N be a parameterized problem.

An AND-composition algorithm for L is an algorithm that takes as input a sequence

((x1, k), . . . , (xt, k)) where (xi, k) ∈ Σ∗ × N+ ∀ 1 ≤ i ≤ t, runs in time polynomial in∑t
i=1 |xi|+ k, and outputs (y, k′) ∈ Σ∗ × N+ such that:

(a) (y, k′) ∈ L iff (xi, k) ∈ L ∀ 1 ≤ i ≤ t, and

(b) k′ = poly(k).

We claim that our above construction gives an AND-composition algorithm for the pa-

rameterized language of the monotone convex chain cover problem. One can encode a point

143

set P containing n points using poly(n) bits, because one only need the information about

the rank of the x-coordinates of the points, and the convexity of each triple of points. Name-

ly, the input can be encoded using O(n3) bits. Using our construction, in time polynomial

in the total size of the problem instances, t problem instances each with parameter k can

be combined into a single instance with parameter k′ = k. It is easy to verify that the

requirements within the definition of AND-composition are met.

Bodlaender et al. [40] showed that if an AND-compositional parameterized language L

has a polynomial kernel, and if its unparameterized version L̃ is NP-complete, then NP ⊆
coNP/poly. Combining our AND-composition construction in this section with the NP-

hardness result in Sec. 6.2 (Theorem 6.1), we obtain the following theorem:

Theorem 6.2. The monotone convex chain cover problem parameterized by k does not

admit a polynomial kernel, unless NP ⊆ coNP/poly.

We remark that natural problems which are known to admit AND-compositions are rare

(apart from the ones about computing certain graph parameters, e.g., the treewidth, where

simply taking the disjoint union of the graphs yields an AND-composition) [97]. Our work

explores the geometry of monotone convex chain cover, in order to compose the problem

instances.

144

CHAPTER 7: CONCLUSIONS AND OPEN PROBLEMS

We conclude this thesis with a number of open problems from each chapter.

7.1 STATIC GEOMETRIC SET COVER

For unweighted geometric set cover, it would be interesting to see whether our approach

can be extended for more types of geometric ranges. For weighted geometric set cover, a

remaining open problem is to find efficient deterministic algorithms. The MWU part in our

algorithm is deterministic, but the ε-net construction is not. Chan et al. [69] noted that

the quasi-uniform sampling technique can be derandomized via the method of conditional

probabilities, but the running time is high.

Open Problem 7.1. Is there a deterministic algorithm for weighted geometric set cover for

halfspaces in 3D that runs in near-linear time?

Another direction is to see whether our ideas will be useful for solving the more gener-

al geometric set multicover problem, where each given point p is required to be covered

d(p) times. There are O(log opt)-approximation for set systems of bounded VC-dimension,

and O(1)-approximation for 3D halfspaces [81]. The result by Chekuri and Quanrud [83]

for solving the underlying LP relaxations requires efficient range searching data structures.

Later, Chekuri, Har-Peled and Quanrud [82] gave an O(nm) time approximation algorithm

for solving the LP for set multicover for disks in R2.

7.2 DYNAMIC GEOMETRIC SET COVER

In Chapter 3, we have described improved dynamic approximation data structures for

various versions of the geometric set cover problem, and in particular, achieving very low

(polylogarithmic or no(1)) update time for 1D intervals and 2D unit squares, in both the

unweighted and weighted settings. Besides obtaining further improvements of our update

time bounds, there are a number of interesting directions to explore for future work:

• We have given sublinear results for unweighted 2D halfplanes with regards to reporting

queries, but could similar results be obtained for unweighted 3D halfspaces and 2D

disks, that can handle reporting queries in Õ(opt) time? Our current method in Sec. 3.5

can only handle size queries.

145

• Are there data structures with sublinear update time for the dynamic hitting set

problem for ranges such as 2D arbitrary squares? We can use duality to reduce hitting

set to set cover in the unit square case, but not in the arbitrary square case (not even

for “nearly unit” squares with side lengths in [1, 1 + ε]).

• Are there data structures with sublinear update time for 2D arbitrary rectangles

with polylogarithmic approximation factor? (Demanding constant approximation

factor would be unreasonable, because of the lack of known efficient static O(1)-

approximation algorithms, but there are static O(log n)-approximation algorithms with

near-linear running time for 2D rectangles [14].)

In a subsequent work in SoCG’23, Khan et al. [147] partly answered this question, by

providing an (logm)O(d)-approximation algorithm with (logm)O(d) worst-case update

time, but only for the special case where only the points can be inserted or deleted.

• In view of the recent developments in fine-grained complexity and reductions [205],

could one prove nΩ(1) conditional lower bounds on the update time for dynamic ap-

proximate geometric set cover, e.g., for arbitrary squares or other ranges, based on the

conjectured hardness of standard problems such as 3SUM, all-pairs shortest paths, or

orthogonal vectors?

• More generally, can we get more dynamic approximation results for other NP-hard

geometric optimization problems?

7.3 GEOMETRIC SET COVER AND DISCRETE K-CENTER OF SMALL SIZE

In Chapter 4, we have provided a number of new algorithms and conditional hardness

results for rectilinear discrete k-center and the geometric set cover problem of small size k.

As many versions of the problems studied here still do not have matching upper and lower

bounds, our work raises many interesting open questions. For example:

• Is it possible to make our subquadratic algorithm for rectilinear discrete 3-center in

R2 work in dimension 3 or higher?

• Is it possible to make our conditional lower bound proof for rectilinear discrete 3-center

in R4 work in dimension 2 or 3?

We should remark that some of these questions could be quite difficult. In fine-grained

complexity, there are many examples of basic problems that still do not have tight condi-

tional lower bounds (to mention one well-known geometric example, Künnemann’s recent

146

FOCS’22 paper [158] has finally obtained a near-optimal conditional lower bound for Klee’s

measure problem in R3, which was later extended in SoCG’23 [129], but tight lower bounds

in dimension 4 and higher are still not known for non-combinatorial algorithms). Still, we

hope that our work would inspire more progress in both upper and lower bounds for this

rich class of problems.

7.4 ENCLOSING POINTS WITH GEOMETRIC OBJECTS

Although many problems related to the enclosing problem have been proved to be NP-

hard, the hardness status of the particular (uncolored) version Enclosing-All-Points

that we study here is still unknown. To complement our approximation results, it would be

nice to prove that this problem is NP-hard (if that’s true).

Open Problem 7.2. Is the Enclosing-All-Points problem NP-hard, e.g., when the

objects are disks or arbitrary line segments in R2?

For future work on this topic, it would be interesting to see whether our ideas can be

extended to other geometric objects, and whether the approximation factor of our algorithms

can be further improved, e.g., to near-constant. More generally, can our ideas be applied to

solve other similar geometric optimization problems?

7.5 MONOTONE CONVEX CHAIN COVER

For the last part of the thesis about the FPT status of monotone convex chain cover, we

conclude with a number of open problems to explore for future work:

• Our results exclude the existence of a polynomial kernel for monotone convex chain

cover, unless NP ⊆ coNP/poly. But whether this problem is FPT remains open: it

is still possible that the problem has a super-polynomial sized kernel. Currently, the

best known algorithm for this problem runs in nO(k) time.

• Since monotone convex chain cover and convex chain cover seem to be closely relat-

ed, it would be interesting to see whether we can prove similar kernelization hardness

results for convex chain cover as well. Our current technique does not obviously gener-

alize, because in our construction for AND-composition, x-monotonicity is crucial for

combining multiple monotone convex chains into a single one.

Another direction is to directly relate the hardness between monotone convex/concave

chain cover and convex chain cover, if that’s possible.

147

• Since a large portion of this thesis is focused on designing approximation algorithms,

the same direction can also be studied on (monotone) convex chain cover. The current

best polynomial-time approximation algorithms for convex chain cover and monotone

convex chain cover only achieve O(log n)-approximation, via a simple greedy approach.

It is not known whether polynomial-time constant factor approximation algorithms

exist for these two problems, or whether these problems are APX-hard.

148

REFERENCES

[1] Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and
Barna Saha. Dynamic set cover: improved algorithms and lower bounds. In Proceedings
of the 51st Annual ACM Symposium on Theory of Computing (STOC), pages 114–125,
2019. doi:10.1145/3313276.3316376.

[2] Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. Hardness of approxima-
tion in P via short cycle removal: Cycle detection, distance oracles, and beyond. In
Proceedings of the 54th Annual ACM Symposium on Theory of Computing (STOC),
pages 1487–1500, 2022. doi:10.1145/3519935.3520066.

[3] Eyal Ackerman, Oswin Aichholzer, and Balázs Keszegh. Improved upper bounds on
the reflexivity of point sets. Comput. Geom., 42(3):241–249, 2009. doi:10.1016/j.

comgeo.2008.05.004.

[4] Anna Adamaszek, Sariel Har-Peled, and Andreas Wiese. Approximation schemes for
independent set and sparse subsets of polygons. Journal of the ACM, 66(4):29:1–29:40,
2019. doi:10.1145/3326122.

[5] Anna Adamaszek and Andreas Wiese. Approximation schemes for maximum weight
independent set of rectangles. In Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 400–409. IEEE Computer Society,
2013. doi:10.1109/FOCS.2013.50.

[6] Peyman Afshani and Timothy M. Chan. On approximate range counting and
depth. Discrete & Computational Geometry, 42(1):3–21, 2009. doi:10.1007/

s00454-009-9177-z.

[7] Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three
dimensions. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 180–186. SIAM, 2009. doi:10.1137/1.9781611973068.

21.

[8] Peyman Afshani, Chris Hamilton, and Norbert Zeh. A general approach for cache-
oblivious range reporting and approximate range counting. Computational Geometry,
43(8):700–712, 2010.

[9] Pankaj K. Agarwal, Rinat Ben Avraham, and Micha Sharir. The 2-center problem
in three dimensions. Comput. Geom., 46(6):734–746, 2013. Preliminary version in
SoCG’10. doi:10.1016/j.comgeo.2012.11.005.

[10] Pankaj K. Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue. Dy-
namic geometric set cover and hitting set. ACM Trans. Algorithms, 18(4):40:1–40:37,
2022. Preliminary version in SoCG’20 (https://doi.org/10.4230/LIPIcs.SoCG.
2020.2). doi:10.1145/3551639.

149

http://dx.doi.org/10.1145/3313276.3316376
http://dx.doi.org/10.1145/3519935.3520066
http://dx.doi.org/10.1016/j.comgeo.2008.05.004
http://dx.doi.org/10.1016/j.comgeo.2008.05.004
http://dx.doi.org/10.1145/3326122
http://dx.doi.org/10.1109/FOCS.2013.50
http://dx.doi.org/10.1007/s00454-009-9177-z
http://dx.doi.org/10.1007/s00454-009-9177-z
http://dx.doi.org/10.1137/1.9781611973068.21
http://dx.doi.org/10.1137/1.9781611973068.21
http://dx.doi.org/10.1016/j.comgeo.2012.11.005
https://doi.org/10.4230/LIPIcs.SoCG.2020.2
https://doi.org/10.4230/LIPIcs.SoCG.2020.2
http://dx.doi.org/10.1145/3551639

[11] Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of shallow
levels in 3-dimensional arrangements and its applications. SIAM Journal on Comput-
ing, 29(3):912–953, 1999. doi:10.1137/S0097539795295936.

[12] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives.
In Advances in Discrete and Computational Geometry, pages 1–56. AMS Press, 1999.
URL: http://jeffe.cs.illinois.edu/pubs/survey.html.

[13] Pankaj K. Agarwal, Esther Ezra, and Micha Sharir. Near-linear approximation algo-
rithms for geometric hitting sets. Algorithmica, 63(1-2):1–25, 2012.

[14] Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets
and set covers. Discrete & Computational Geometry, 63(2):460–482, 2020. Preliminary
version in SoCG’14. doi:10.1007/s00454-019-00099-6.

[15] Pankaj K. Agarwal and Cecilia Magdalena Procopiuc. Exact and approxima-
tion algorithms for clustering. Algorithmica, 33(2):201–226, 2002. doi:10.1007/

s00453-001-0110-y.

[16] Pankaj K. Agarwal and Micha Sharir. Davenport-Schinzel sequences and their geomet-
ric applications. In Handbook of Computational Geometry, pages 1–47. North Holland
/ Elsevier, 2000. doi:10.1016/b978-044482537-7/50002-4.

[17] Pankaj K Agarwal, Micha Sharir, and Emo Welzl. The discrete 2-center problem.
Discrete & Computational Geometry, 20(3):287–305, 1998. Preliminary version in
SoCG’97.

[18] Alok Aggarwal, Don Coppersmith, Sanjeev Khanna, Rajeev Motwani, and Baruch
Schieber. The angular-metric traveling salesman problem. SIAM Journal on Comput-
ing, 29(3):697–711, 2000.

[19] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

[20] Helmut Alt, Sergio Cabello, Panos Giannopoulos, and Christian Knauer. Minimum
cell connection and separation in line segment arrangements. CoRR, abs/1104.4618,
2011. arXiv:1104.4618.

[21] Helmut Alt, Sergio Cabello, Panos Giannopoulos, and Christian Knauer. On some
connection problems in straight-line segment arrangements. Proceedings of the 27th
European Workshop on Computational Geometry (EuroCG), pages 27–30, 2011.

[22] Esther M. Arkin, Sándor P. Fekete, Ferran Hurtado, Joseph S. B. Mitchell, Marc
Noy, Vera Sacristán, and Saurabh Sethia. On the reflexivity of point sets. Discrete
& Computational Geometry, pages 139–156, 2003. Preliminary version in WADS’01.
Extended version at arXiv:cs/0210003. URL: https://arxiv.org/pdf/cs/0210003.
pdf.

150

http://dx.doi.org/10.1137/S0097539795295936
http://jeffe.cs.illinois.edu/pubs/survey.html
http://dx.doi.org/10.1007/s00454-019-00099-6
http://dx.doi.org/10.1007/s00453-001-0110-y
http://dx.doi.org/10.1007/s00453-001-0110-y
http://dx.doi.org/10.1016/b978-044482537-7/50002-4
http://dx.doi.org/10.1007/BF02523189
http://arxiv.org/abs/1104.4618
https://arxiv.org/pdf/cs/0210003.pdf
https://arxiv.org/pdf/cs/0210003.pdf

[23] Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel
rectangles and boxes. SIAM Journal on Computing, 39(7):3248–3282, 2010. doi:

10.1137/090762968.

[24] Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems.
SIAM Journal on Computing, 38(3):899–921, 2008. doi:10.1137/060669474.

[25] Sanjeev Arora. Polynomial time approximation schemes for euclidean TSP and other
geometric problems. In Proceedings of the 37th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 2–11. IEEE Computer Society, 1996.
doi:10.1109/SFCS.1996.548458.

[26] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009. URL: http://www.cambridge.org/catalogue/
catalogue.asp?isbn=9780521424264.

[27] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y.
Wu. An optimal algorithm for approximate nearest neighbor searching in fixed dimen-
sions. Journal of the ACM, 45(6):891–923, 1998. doi:10.1145/293347.293348.

[28] Sepehr Assadi and Shay Solomon. Fully dynamic set cover via hypergraph maximal
matching: An optimal approximation through a local approach. In Proceedings of the
29th Annual European Symposium on Algorithms (ESA), volume 204 of LIPIcs, pages
8:1–8:18, 2021. doi:10.4230/LIPIcs.ESA.2021.8.

[29] Sayan Bandyapadhyay, Neeraj Kumar, Subhash Suri, and Kasturi R. Varadarajan. Im-
proved approximation bounds for the minimum constraint removal problem. Comput.
Geom., 90:101650, 2020. doi:10.1016/j.comgeo.2020.101650.

[30] Michael Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the
15th Annual ACM Symposium on Theory of Computing (STOC), pages 80–86, 1983.
doi:10.1145/800061.808735.

[31] Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: Static-to-
dynamic transformation. Journal of Algorithms, 1(4):301–358, 1980.

[32] Sergey Bereg and David G. Kirkpatrick. Approximating barrier resilience in wireless
sensor networks. In Algorithmic Aspects of Wireless Sensor Networks, 5th International
Workshop (ALGOSENSORS), volume 5804 of Lecture Notes in Computer Science,
pages 29–40. Springer, 2009. doi:10.1007/978-3-642-05434-1_5.

[33] Sergei Bespamyatnikh and David G. Kirkpatrick. Rectilinear 2-center problems. In
Proceedings of the 11th Canadian Conference on Computational Geometry (CCCG),
1999. URL: http://www.cccg.ca/proceedings/1999/fp55.pdf.

[34] Sergei Bespamyatnikh and Michael Segal. Rectilinear static and dynamic discrete
2-center problems. In Proceedings of the 6th Workshop on Algorithms and Data Struc-
tures (WADS), pages 276–287, 1999. doi:10.1007/3-540-48447-7_28.

151

http://dx.doi.org/10.1137/090762968
http://dx.doi.org/10.1137/090762968
http://dx.doi.org/10.1137/060669474
http://dx.doi.org/10.1109/SFCS.1996.548458
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://dx.doi.org/10.1145/293347.293348
http://dx.doi.org/10.4230/LIPIcs.ESA.2021.8
http://dx.doi.org/10.1016/j.comgeo.2020.101650
http://dx.doi.org/10.1145/800061.808735
http://dx.doi.org/10.1007/978-3-642-05434-1_5
http://www.cccg.ca/proceedings/1999/fp55.pdf
http://dx.doi.org/10.1007/3-540-48447-7_28

[35] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Design of dy-
namic algorithms via primal-dual method. In Proceedings of the 42nd International
Colloquium on Automata, Languages, and Programming (ICALP), volume 9134 of
Lecture Notes in Computer Science, pages 206–218. Springer, 2015. doi:10.1007/

978-3-662-47672-7_17.

[36] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. A new deterministic
algorithm for dynamic set cover. In Proceedings of the 60th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 406–423. IEEE Computer Society,
2019. doi:10.1109/FOCS.2019.00033.

[37] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Xiaowei Wu. Dy-
namic set cover: Improved amortized and worst-case update time. In Proceedings
of the 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2537–2549, 2021. doi:10.1137/1.9781611976465.150.

[38] Sujoy Bhore, Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Dynamic geo-
metric independent set. CoRR, abs/2007.08643, 2020. arXiv:2007.08643.

[39] Sujoy Bhore, Guangping Li, and Martin Nöllenburg. An algorithmic study of fully
dynamic independent sets for map labeling. ACM J. Exp. Algorithmics, 27:1.8:1–
1.8:36, 2022. Preliminary version in ESA’20. doi:10.1145/3514240.

[40] Hans L Bodlaender, Rodney G Downey, Michael R Fellows, and Danny Hermelin. On
problems without polynomial kernels. In Proceedings of the 35th International Collo-
quium on Automata, Languages, and Programming (ICALP), pages 563–574, 2008.

[41] Hans L Bodlaender, Bart MP Jansen, and Stefan Kratsch. Kernelization lower bounds
by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277–305, 2014.

[42] Karl Bringmann, Sándor Kisfaludi-Bak, Marvin Künnemann, André Nusser, and Zahra
Parsaeian. Towards sub-quadratic diameter computation in geometric intersection
graphs. In Proceedings of the 38th Symposium on Computational Geometry (SoCG),
pages 21:1–21:16, 2022. doi:10.4230/LIPIcs.SoCG.2022.21.

[43] Karl Bringmann, Sándor Kisfaludi-Bak, Michal Pilipczuk, and Erik Jan van Leeuwen.
On geometric set cover for orthants. In Proceedings of the 27th Annual European
Symposium on Algorithms (ESA), pages 26:1–26:18, 2019. doi:10.4230/LIPIcs.ESA
.2019.26.

[44] Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In Proceedings
of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 617–626. IEEE Computer Society, 2002. doi:10.1109/SFCS.2002.1181985.

[45] Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Guarding lines and 2-link poly-
gons is APX-hard. In Proceedings of the 13th Canadian Conference on Computational
Geometry (CCCG), pages 45–48, 2001. URL: http://www.cccg.ca/proceedings/
2001/mikael-2351.ps.gz.

152

http://dx.doi.org/10.1007/978-3-662-47672-7_17
http://dx.doi.org/10.1007/978-3-662-47672-7_17
http://dx.doi.org/10.1109/FOCS.2019.00033
http://dx.doi.org/10.1137/1.9781611976465.150
http://arxiv.org/abs/2007.08643
http://dx.doi.org/10.1145/3514240
http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.21
http://dx.doi.org/10.4230/LIPIcs.ESA.2019.26
http://dx.doi.org/10.4230/LIPIcs.ESA.2019.26
http://dx.doi.org/10.1109/SFCS.2002.1181985
http://www.cccg.ca/proceedings/2001/mikael-2351.ps.gz
http://www.cccg.ca/proceedings/2001/mikael-2351.ps.gz

[46] Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite
VC-dimension. Discrete & Computational Geometry, 14(4):463–479, 1995.

[47] Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray. Limits of local
search: Quality and efficiency. Discrete & Computational Geometry, 57(3):607–624,
2017. doi:10.1007/s00454-016-9819-x.

[48] Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. Practical and efficient algorithms
for the geometric hitting set problem. Discrete Applied Mathematics, 240:25–32, 2018.

[49] Sergio Cabello and Panos Giannopoulos. The complexity of separating points in the
plane. Algorithmica, 74(2):643–663, 2016. doi:10.1007/s00453-014-9965-6.

[50] Sergio Cabello, Panos Giannopoulos, Christian Knauer, Dániel Marx, and Günter
Rote. Geometric clustering: Fixed-parameter tractability and lower bounds with re-
spect to the dimension. ACM Trans. Algorithms, 7(4):43:1–43:27, 2011. Preliminary
version in SODA’08. doi:10.1145/2000807.2000811.

[51] Jin-yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori Ogi-
hara. Competing provers yield improved Karp-Lipton collapse results. Inf. Comput.,
198(1):1–23, 2005. doi:10.1016/j.ic.2005.01.002.

[52] Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Worst-case efficient dynamic
geometric independent set. In Proceedings of the 29th Annual European Symposium
on Algorithms (ESA), volume 204 of LIPIcs, pages 25:1–25:15, 2021. doi:10.4230/

LIPIcs.ESA.2021.25.

[53] David Yu Cheng Chan and David G. Kirkpatrick. Approximating barrier resilience for
arrangements of non-identical disk sensors. In Algorithms for Sensor Systems, 8th In-
ternational Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks
and Autonomous Mobile Entities (ALGOSENSORS), volume 7718 of Lecture Notes in
Computer Science, pages 42–53. Springer, 2012. doi:10.1007/978-3-642-36092-3\

_6.

[54] Timothy M. Chan. Geometric applications of a randomized optimization technique.
Discrete & Computational Geometry, 22(4):547–567, 1999. doi:10.1007/PL00009478.

[55] Timothy M. Chan. More planar two-center algorithms. Computational Geometry,
13(3):189–198, 1999.

[56] Timothy M. Chan. Random sampling, halfspace range reporting, and construction of
(≤ k)-levels in three dimensions. SIAM Journal on Computing, 30(2):561–575, 2000.
doi:10.1137/S0097539798349188.

[57] Timothy M. Chan. Random sampling, halfspace range reporting, and construction of
(≤ k)-levels in three dimensions. SIAM Journal on Computing, 30(2):561–575, 2000.
doi:10.1137/S0097539798349188.

153

http://dx.doi.org/10.1007/s00454-016-9819-x
http://dx.doi.org/10.1007/s00453-014-9965-6
http://dx.doi.org/10.1145/2000807.2000811
http://dx.doi.org/10.1016/j.ic.2005.01.002
http://dx.doi.org/10.4230/LIPIcs.ESA.2021.25
http://dx.doi.org/10.4230/LIPIcs.ESA.2021.25
http://dx.doi.org/10.1007/978-3-642-36092-3_6
http://dx.doi.org/10.1007/978-3-642-36092-3_6
http://dx.doi.org/10.1007/PL00009478
http://dx.doi.org/10.1137/S0097539798349188
http://dx.doi.org/10.1137/S0097539798349188

[58] Timothy M. Chan. A fully dynamic algorithm for planar width. Discrete & Compu-
tational Geometry, 30(1):17–24, 2003. doi:10.1007/s00454-003-2923-8.

[59] Timothy M. Chan. Polynomial-time approximation schemes for packing and pierc-
ing fat objects. Journal of Algorithms, 46(2):178–189, 2003. doi:10.1016/

S0196-6774(02)00294-8.

[60] Timothy M. Chan. Semi-online maintenance of geometric optima and measures. SIAM
Journal on Computing, 32(3):700–716, 2003. doi:10.1137/S0097539702404389.

[61] Timothy M. Chan. Comparison-based time-space lower bounds for selection. ACM
Trans. Algorithms, 6(2):26:1–26:16, 2010. Preliminary version in SODA’09. doi:

10.1145/1721837.1721842.

[62] Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest
neighbor queries. Journal of the ACM, 57(3):16:1–16:15, 2010. doi:10.1145/1706591.
1706596.

[63] Timothy M. Chan. Optimal partition trees. Discrete & Computational Ge-
ometry, 47(4):661–690, 2012. Preliminary version in SoCG’10. doi:10.1007/

s00454-012-9410-z.

[64] Timothy M. Chan. Three problems about dynamic convex hulls. Internation-
al Journal of Computational Geometry & Applications, 22(4):341–364, 2012. doi:

10.1142/S0218195912600096.

[65] Timothy M. Chan. Dynamic geometric data structures via shallow cuttings.
Discrete & Computational Geometry, 64(4):1235–1252, 2020. doi:10.1007/

s00454-020-00229-5.

[66] Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. Discrete
& Computational Geometry, 64(4):1235–1252, 2020. Preliminary version in SoCG’19.
doi:10.1007/s00454-020-00229-5.

[67] Timothy M. Chan. Finding triangles and other small subgraphs in geometric intersec-
tion graphs. In Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1777–1805. SIAM, 2023. doi:10.1137/1.9781611977554.
ch68.

[68] Timothy M. Chan and Elyot Grant. Exact algorithms and APX-hardness results
for geometric packing and covering problems. Comput. Geom., 47(2):112–124, 2014.
doi:10.1016/j.comgeo.2012.04.001.

[69] Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted
capacitated, priority, and geometric set cover via improved quasi-uniform sampling.
In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1576–1585. SIAM, 2012. doi:10.1137/1.9781611973099.125.

154

http://dx.doi.org/10.1007/s00454-003-2923-8
http://dx.doi.org/10.1016/S0196-6774(02)00294-8
http://dx.doi.org/10.1016/S0196-6774(02)00294-8
http://dx.doi.org/10.1137/S0097539702404389
http://dx.doi.org/10.1145/1721837.1721842
http://dx.doi.org/10.1145/1721837.1721842
http://dx.doi.org/10.1145/1706591.1706596
http://dx.doi.org/10.1145/1706591.1706596
http://dx.doi.org/10.1007/s00454-012-9410-z
http://dx.doi.org/10.1007/s00454-012-9410-z
http://dx.doi.org/10.1142/S0218195912600096
http://dx.doi.org/10.1142/S0218195912600096
http://dx.doi.org/10.1007/s00454-020-00229-5
http://dx.doi.org/10.1007/s00454-020-00229-5
http://dx.doi.org/10.1007/s00454-020-00229-5
http://dx.doi.org/10.1137/1.9781611977554.ch68
http://dx.doi.org/10.1137/1.9781611977554.ch68
http://dx.doi.org/10.1016/j.comgeo.2012.04.001
http://dx.doi.org/10.1137/1.9781611973099.125

[70] Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum
independent set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392,
2012. doi:10.1007/s00454-012-9417-5.

[71] Timothy M. Chan and Qizheng He. Faster approximation algorithms for geometric
set cover. In Proceedings of the 36th Symposium on Computational Geometry (SoCG),
volume 164, pages 27:1–27:14, 2020. doi:10.4230/LIPIcs.SoCG.2020.27.

[72] Timothy M. Chan and Qizheng He. More dynamic data structures for geometric
set cover with sublinear update time. Journal of Computational Geometry (JoCG),
2022. Preliminary version in SoCG’21 (https://doi.org/10.4230/LIPIcs.SoCG.
2021.25). URL: https://jocg.org/index.php/jocg/article/view/4021/3145.

[73] Timothy M. Chan, Qizheng He, Subhash Suri, and Jie Xue. Dynamic geometric set
cover, revisited. In Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 3496–3528. SIAM, 2022. doi:10.1137/1.9781611977073.
139.

[74] Timothy M. Chan, Qizheng He, and Yuancheng Yu. On the fine-grained complexity of
small-size geometric set cover and discrete k-center for small k. In Proceedings of the
50th International Colloquium on Automata, Languages, and Programming (ICALP),
volume 261 of LIPIcs, pages 34:1–34:19, 2023. doi:10.4230/LIPIcs.ICALP.2023.34.

[75] Timothy M. Chan and Nan Hu. Geometric red-blue set cover for unit squares and re-
lated problems. Comput. Geom., 48(5):380–385, 2015. doi:10.1016/j.comgeo.2014.
12.005.

[76] Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range
searching on the RAM, revisited. In Proceedings of the 27th Symposium on Computa-
tional Geometry (SoCG), pages 1–10. ACM, 2011. doi:10.1145/1998196.1998198.

[77] Timothy M. Chan, Mihai Pătraşcu, and Liam Roditty. Dynamic connectivity: Con-
necting to networks and geometry. SIAM Journal on Computing, 40(2):333–349, 2011.
doi:10.1137/090751670.

[78] Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for
2-d and 3-d shallow cuttings. Discrete & Computational Geometry, 56(4):866–881,
2016. Preliminary version in SoCG’15. doi:10.1007/s00454-016-9784-4.

[79] Timothy M. Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Hardness for tri-
angle problems under even more believable hypotheses: Reductions from Real APSP,
Real 3SUM, and OV. In Proceedings of the 54th Annual ACM Symposium on Theory
of Computing (STOC), pages 1501–1514, 2022. doi:10.1145/3519935.3520032.

[80] Bernard Chazelle and Jirı Matoušek. On linear-time deterministic algorithms for op-
timization problems in fixed dimension. Journal of Algorithms, 21(3):579–597, 1996.

155

http://dx.doi.org/10.1007/s00454-012-9417-5
http://dx.doi.org/10.4230/LIPIcs.SoCG.2020.27
https://doi.org/10.4230/LIPIcs.SoCG.2021.25
https://doi.org/10.4230/LIPIcs.SoCG.2021.25
https://jocg.org/index.php/jocg/article/view/4021/3145
http://dx.doi.org/10.1137/1.9781611977073.139
http://dx.doi.org/10.1137/1.9781611977073.139
http://dx.doi.org/10.4230/LIPIcs.ICALP.2023.34
http://dx.doi.org/10.1016/j.comgeo.2014.12.005
http://dx.doi.org/10.1016/j.comgeo.2014.12.005
http://dx.doi.org/10.1145/1998196.1998198
http://dx.doi.org/10.1137/090751670
http://dx.doi.org/10.1007/s00454-016-9784-4
http://dx.doi.org/10.1145/3519935.3520032

[81] Chandra Chekuri, Kenneth L. Clarkson, and Sariel Har-Peled. On the set multicover
problem in geometric settings. ACM Trans. Algorithms, 9(1):9:1–9:17, 2012. Prelimi-
nary version in SoCG’09. doi:10.1145/2390176.2390185.

[82] Chandra Chekuri, Sariel Har-Peled, and Kent Quanrud. Fast LP-based approximations
for geometric packing and covering problems. In Proceedings of the 31st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1019–1038. SIAM, 2020.
doi:10.1137/1.9781611975994.62.

[83] Chandra Chekuri and Kent Quanrud. Near-linear time approximation schemes for
some implicit fractional packing problems. In Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 801–820. SIAM, 2017. doi:
10.1137/1.9781611974782.51.

[84] Chandra Chekuri and Kent Quanrud. Randomized MWU for positive LPs. In Pro-
ceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 358–377. SIAM, 2018. doi:10.1137/1.9781611975031.25.

[85] Rajesh Chitnis and Nitin Saurabh. Tight lower bounds for approximate & exact
k-center in Rd. In Proceedings of the 38th Symposium on Computational Geometry
(SoCG), pages 28:1–28:15, 2022. doi:10.4230/LIPIcs.SoCG.2022.28.

[86] Jongmin Choi and Hee-Kap Ahn. Efficient planar two-center algorithms. Comput.
Geom., 97:101768, 2021. doi:10.1016/j.comgeo.2021.101768.

[87] Kenneth L. Clarkson. New applications of random sampling in computational geome-
try. Discrete & Computational Geometry, 2:195–222, 1987. doi:10.1007/BF02187879.

[88] Kenneth L. Clarkson. A randomized algorithm for closest-point queries. SIAM Journal
on Computing, 17(4):830–847, 1988. doi:10.1137/0217052.

[89] Kenneth L. Clarkson. Algorithms for polytope covering and approximation. In Proceed-
ings of the 3rd Workshop on Algorithms and Data Structures (WADS), pages 246–252,
1993.

[90] Kenneth L. Clarkson. Las Vegas algorithms for linear and integer programming when
the dimension is small. Journal of the ACM, 42(2):488–499, 1995.

[91] Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in com-
putational geometry, II. Discrete & Computational Geometry, 4:387–421, 1989.
doi:10.1007/BF02187740.

[92] Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in compu-
tational geometry, II. Discrete & Computational Geometry, 4(5):387–421, 1989.

[93] Kenneth L. Clarkson and Kasturi Varadarajan. Improved approximation algorithms
for geometric set cover. Discrete & Computational Geometry, 37(1):43–58, 2007.

156

http://dx.doi.org/10.1145/2390176.2390185
http://dx.doi.org/10.1137/1.9781611975994.62
http://dx.doi.org/10.1137/1.9781611974782.51
http://dx.doi.org/10.1137/1.9781611974782.51
http://dx.doi.org/10.1137/1.9781611975031.25
http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.28
http://dx.doi.org/10.1016/j.comgeo.2021.101768
http://dx.doi.org/10.1007/BF02187879
http://dx.doi.org/10.1137/0217052
http://dx.doi.org/10.1007/BF02187740

[94] Spencer Compton, Slobodan Mitrovic, and Ronitt Rubinfeld. New partitioning tech-
niques and faster algorithms for approximate interval scheduling. In Proceedings of the
50th International Colloquium on Automata, Languages, and Programming (ICALP),
volume 261 of LIPIcs, pages 45:1–45:16, 2023. doi:10.4230/LIPIcs.ICALP.2023.45.

[95] Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM Journal on
Computing, 11(3):467–471, 1982. doi:10.1137/0211037.

[96] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, 3rd Edition. The MIT Press, 2009. URL: http://mitpress
.mit.edu/books/introduction-algorithms.

[97] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015. doi:10.1007/978-3-319-21275-3.

[98] Artur Czumaj, Funda Ergün, Lance Fortnow, Avner Magen, Ilan Newman, Ronitt
Rubinfeld, and Christian Sohler. Approximating the weight of the Euclidean minimum
spanning tree in sublinear time. SIAM Journal on Computing, 35(1):91–109, 2005.
doi:10.1137/S0097539703435297.

[99] Ketan Dalal. Counting the onion. Random Structures & Algorithms, 24(2):155–165,
2004.

[100] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Com-
putational Geometry: Algorithms and Applications. Springer, 3rd edition, 2008. URL:
https://www.worldcat.org/title/227584184.

[101] Robert P Dilworth. A decomposition theorem for partially ordered sets. Annals of
Mathematics, 51:161–166, 1950.

[102] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings
of the 46th Annual ACM Symposium on Theory of Computing (STOC), pages 624–633.
ACM, 2014. doi:10.1145/2591796.2591884.

[103] Adrian Dumitrescu and Minghui Jiang. On the approximability of covering points by
lines and related problems. Comput. Geom., 48(9):703–717, 2015. doi:10.1016/j.co
mgeo.2015.06.006.

[104] Martin E. Dyer. On a multidimensional search technique and its application to the
Euclidean one-centre problem. SIAM Journal on Computing, 15(3):725–738, 1986.

[105] Alon Efrat, Matthew J. Katz, Frank Nielsen, and Micha Sharir. Dynamic data struc-
tures for fat objects and their applications. Computational Geometry, 15(4):215–227,
2000. doi:10.1016/S0925-7721(99)00059-0.

157

http://dx.doi.org/10.4230/LIPIcs.ICALP.2023.45
http://dx.doi.org/10.1137/0211037
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1137/S0097539703435297
https://www.worldcat.org/title/227584184
http://dx.doi.org/10.1145/2591796.2591884
http://dx.doi.org/10.1016/j.comgeo.2015.06.006
http://dx.doi.org/10.1016/j.comgeo.2015.06.006
http://dx.doi.org/10.1016/S0925-7721(99)00059-0

[106] Eduard Eiben, Jonathan Gemmell, Iyad A. Kanj, and Andrew Youngdahl. Improved
results for minimum constraint removal. In Proceedings of the 32nd AAAI Conference
on Artificial Intelligence, pages 6477–6484. AAAI Press, 2018. URL: https://www.aa
ai.org/ocs/index.php/AAAI/AAAI18/paper/view/16615.

[107] Eduard Eiben and Iyad Kanj. A colored path problem and its applications. ACM
Trans. Algorithms, 16(4):47:1–47:48, 2020. doi:10.1145/3396573.

[108] Eduard Eiben and Iyad A. Kanj. How to navigate through obstacles? In Proceedings
of the 45th International Colloquium on Automata, Languages, and Programming (I-
CALP), volume 107 of LIPIcs, pages 48:1–48:13, 2018. doi:10.4230/LIPIcs.ICALP

.2018.48.

[109] Eduard Eiben and Daniel Lokshtanov. Removing connected obstacles in the plane
is FPT. In Proceedings of the 36th Symposium on Computational Geometry (SoCG),
volume 164 of LIPIcs, pages 39:1–39:14, 2020. doi:10.4230/LIPIcs.SoCG.2020.39.

[110] Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter
clique and dominating set. Theor. Comput. Sci., 326(1-3):57–67, 2004. doi:10.1016/
j.tcs.2004.05.009.

[111] David Eppstein. Faster construction of planar two-centers. In Proceedings of the 8th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 131–138, 1997.
URL: https://dl.acm.org/doi/10.5555/314161.314198.

[112] David Eppstein. Forbidden configurations in discrete geometry. Cambridge University
Press, 2018.

[113] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsifica-
tion - a technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696,
1997. Preliminary version in FOCS’92. doi:10.1145/265910.265914.

[114] Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio
mathematica, 2:463–470, 1935.

[115] Paul Erdős and George Szekeres. On some extremum problems in elementary geometry.
In Annales Univ. Sci. Budapest, pages 3–4, 1960.

[116] Lawrence H. Erickson and Steven M. LaValle. A simple, but NP-hard, motion planning
problem. In Proceedings of the 27th AAAI Conference on Artificial Intelligence. AAAI
Press, 2013. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/vi

ew/6280.

[117] Thomas Erlebach and Erik Jan van Leeuwen. PTAS for weighted set cover on
unit squares. In Proceedings of 13th International Workshop on Approximation,
Randomization, and Combinatorial Optimization (APPROX), pages 166–177, 2010.
doi:10.1007/978-3-642-15369-3_13.

158

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16615
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16615
http://dx.doi.org/10.1145/3396573
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.48
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.48
http://dx.doi.org/10.4230/LIPIcs.SoCG.2020.39
http://dx.doi.org/10.1016/j.tcs.2004.05.009
http://dx.doi.org/10.1016/j.tcs.2004.05.009
https://dl.acm.org/doi/10.5555/314161.314198
http://dx.doi.org/10.1145/265910.265914
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6280
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6280
http://dx.doi.org/10.1007/978-3-642-15369-3_13

[118] Thomas Fevens, Henk Meijer, and David Rappaport. Minimum convex partition of a
constrained point set. Discrete Applied Mathematics, 109(1-2):95–107, 2001.

[119] Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019.

[120] Robert J. Fowler, Mike Paterson, and Steven L. Tanimoto. Optimal packing and
covering in the plane are NP-complete. Information Processing Letters, 12(3):133–
137, 1981. doi:10.1016/0020-0190(81)90111-3.

[121] Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees,
with applications. SIAM Journal on Computing, 14(4):781–798, 1985. Preliminary
version in STOC’83. doi:10.1137/0214055.

[122] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with appli-
cations. SIAM Journal on Computing, 16(6):1004–1022, 1987.

[123] Greg N. Frederickson and Donald B. Johnson. The complexity of selection and ranking
in X + Y and matrices with sorted columns. J. Comput. Syst. Sci., 24(2):197–208,
1982. doi:10.1016/0022-0000(82)90048-4.

[124] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[125] Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dy-
namic algorithms for monotonic interval scheduling problem. Theor. Comput. Sci.,
562:227–242, 2015. doi:10.1016/j.tcs.2014.09.046.

[126] Panos Giannopoulos, Christian Knauer, and Sue Whitesides. Parameterized complex-
ity of geometric problems. The Computer Journal, 51(3):372–384, 2008.

[127] Matt Gibson, Gaurav Kanade, Rainer Penninger, Kasturi R. Varadarajan, and Ivo
Vigan. On isolating points using unit disks. J. Comput. Geom., 7(1):540–557, 2016.
doi:10.20382/jocg.v7i1a22.

[128] Matt Gibson, Gaurav Kanade, and Kasturi R. Varadarajan. On isolating points using
disks. In Proceedings of the 19th Annual European Symposium on Algorithms (ESA),
volume 6942, pages 61–69. Springer, 2011. doi:10.1007/978-3-642-23719-5_6.

[129] Egor Gorbachev and Marvin Künnemann. Combinatorial designs meet hypercliques:
Higher lower bounds for Klee’s measure problem and related problems in dimensions
d ≥ 4. In Proceedings of the 39th Symposium on Computational Geometry (SoCG),
volume 258 of LIPIcs, pages 36:1–36:14, 2023. doi:10.4230/LIPIcs.SoCG.2023.36.

[130] Magdalene Grantson and Christos Levcopoulos. A fixed parameter algorithm for the
minimum number convex partition problem. In Discrete and Computational Geometry,
Japanese Conference (JCDCG), Revised Selected Papers, volume 3742 of Lecture Notes
in Computer Science, pages 83–94, 2004. doi:10.1007/11589440_9.

159

http://dx.doi.org/10.1016/0020-0190(81)90111-3
http://dx.doi.org/10.1137/0214055
http://dx.doi.org/10.1016/0022-0000(82)90048-4
http://dx.doi.org/10.1016/j.tcs.2014.09.046
http://dx.doi.org/10.20382/jocg.v7i1a22
http://dx.doi.org/10.1007/978-3-642-23719-5_6
http://dx.doi.org/10.4230/LIPIcs.SoCG.2023.36
http://dx.doi.org/10.1007/11589440_9

[131] Magdalene Grantson and Christos Levcopoulos. Covering a set of points with a
minimum number of lines. In Algorithms and Complexity, 6th Italian Conference
(CIAC), volume 3998 of Lecture Notes in Computer Science, pages 6–17, 2006.
doi:10.1007/11758471_4.

[132] Leonidas J. Guibas, Micha Sharir, and Shmuel Sifrony. On the general motion-planning
problem with two degrees of freedom. Discret. Comput. Geom., 4:491–521, 1989.
Preliminary version in SoCG’88. doi:10.1007/BF02187744.

[133] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi.
Online and dynamic algorithms for set cover. In Proceedings of the 49th Annual ACM
Symposium on Theory of Computing (STOC), pages 537–550, 2017. doi:10.1145/

3055399.3055493.

[134] Sariel Har-Peled and Mira Lee. Weighted geometric set cover problems revisited. J.
Comput. Geom., 3(1):65–85, 2012. doi:10.20382/jocg.v3i1a4.

[135] Sariel Har-Peled and Bernard Lidicky. Peeling the grid. SIAM Journal on Discrete
Mathematics, 27(2):650–655, 2013.

[136] Qizheng He. On the FPT status of monotone convex chain cover. In Proceedings of
the 35th Canadian Conference on Computational Geometry (CCCG), pages 307–312,
2023.

[137] Pinar Heggernes, Dieter Kratsch, Daniel Lokshtanov, Venkatesh Raman, and Saket
Saurabh. Fixed-parameter algorithms for cochromatic number and disjoint rectangle
stabbing via iterative localization. Information and Computation, 231:109–116, 2013.

[138] Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic approximate max-
imum independent set of intervals, hypercubes and hyperrectangles. In Proceedings
of the 36th Symposium on Computational Geometry (SoCG), pages 51:1–51:14, 2020.
doi:10.4230/LIPIcs.SoCG.2020.51.

[139] Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and
packing problems in image processing and VLSI. Journal of the ACM (JACM),
32(1):130–136, 1985. doi:10.1145/2455.214106.

[140] Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup.
Fully dynamic connectivity in O(log n(log log n)2) amortized expected time. Theoret-
iCS, 2, 2023. Preliminary version in SODA’17. doi:10.46298/theoretics.23.6.

[141] R. Z. Hwang, R. C. Chang, and Richard C. T. Lee. The searching over separators strat-
egy to solve some NP-hard problems in subexponential time. Algorithmica, 9(4):398–
423, 1993. doi:10.1007/BF01228511.

[142] R. Z. Hwang, Richard C. T. Lee, and R. C. Chang. The slab dividing approach to
solve the Euclidean p-center problem. Algorithmica, 9(1):1–22, 1993. doi:10.1007/

BF01185335.

160

http://dx.doi.org/10.1007/11758471_4
http://dx.doi.org/10.1007/BF02187744
http://dx.doi.org/10.1145/3055399.3055493
http://dx.doi.org/10.1145/3055399.3055493
http://dx.doi.org/10.20382/jocg.v3i1a4
http://dx.doi.org/10.4230/LIPIcs.SoCG.2020.51
http://dx.doi.org/10.1145/2455.214106
http://dx.doi.org/10.46298/theoretics.23.6
http://dx.doi.org/10.1007/BF01228511
http://dx.doi.org/10.1007/BF01185335
http://dx.doi.org/10.1007/BF01185335

[143] Ce Jin and Yinzhan Xu. Removing additive structure in 3SUM-based reductions. In
Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC),
pages 405–418. ACM, 2023. doi:10.1145/3564246.3585157.

[144] Matthew J. Katz, Klara Kedem, and Michael Segal. Discrete rectilinear 2-center prob-
lems. Comput. Geom., 15(4):203–214, 2000. doi:10.1016/S0925-7721(99)00052-8.

[145] Matthew J. Katz and Frank Nielsen. On piercing sets of objects. In Proceedings
of the 12th Symposium on Computational Geometry (SoCG), pages 113–121, 1996.
doi:10.1145/237218.237253.

[146] Klara Kedem, Ron Livne, János Pach, and Micha Sharir. On the union of jordan
regions and collision-free translational motion amidst polygonal obstacles. Discrete &
Computational Geometry, 1:59–70, 1986. doi:10.1007/BF02187683.

[147] Arindam Khan, Aditya Lonkar, Saladi Rahul, Aditya Subramanian, and Andreas
Wiese. Online and dynamic algorithms for geometric set cover and hitting set. In
Proceedings of the 39th Symposium on Computational Geometry (SoCG), volume 258
of LIPIcs, pages 46:1–46:17, 2023. doi:10.4230/LIPIcs.SoCG.2023.46.

[148] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within
2-ε. J. Comput. Syst. Sci., 74(3):335–349, 2008. Preliminary version in CCC’03.
doi:10.1016/j.jcss.2007.06.019.

[149] Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 81–91. IEEE Computer Society,
1999. doi:10.1109/SFFCS.1999.814580.

[150] Christian Knauer and Andreas Spillner. Approximation algorithms for the mini-
mum convex partition problem. In 10th Scandinavian Workshop on Algorithm Theory
(SWAT), volume 4059 of Lecture Notes in Computer Science, pages 232–241, 2006.
doi:10.1007/11785293_23.

[151] Matias Korman, Maarten Löffler, Rodrigo I. Silveira, and Darren Strash. On the
complexity of barrier resilience for fat regions. In Algorithms for Sensor Systems - 9th
International Symposium on Algorithms and Experiments for Sensor Systems, Wireless
Networks and Distributed Robotics (ALGOSENSORS), volume 8243 of Lecture Notes
in Computer Science, pages 201–216, 2013. doi:10.1007/978-3-642-45346-5_15.

[152] Matias Korman, Maarten Löffler, Rodrigo I. Silveira, and Darren Strash. On the
complexity of barrier resilience for fat regions and bounded ply. Comput. Geom.,
72:34–51, 2018. doi:10.1016/j.comgeo.2018.02.006.

[153] Christos Koufogiannakis and Neal E. Young. A nearly linear-time PTAS for explicit
fractional packing and covering linear programs. Algorithmica, 70(4):648–674, 2014.
doi:10.1007/s00453-013-9771-6.

161

http://dx.doi.org/10.1145/3564246.3585157
http://dx.doi.org/10.1016/S0925-7721(99)00052-8
http://dx.doi.org/10.1145/237218.237253
http://dx.doi.org/10.1007/BF02187683
http://dx.doi.org/10.4230/LIPIcs.SoCG.2023.46
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1007/11785293_23
http://dx.doi.org/10.1007/978-3-642-45346-5_15
http://dx.doi.org/10.1016/j.comgeo.2018.02.006
http://dx.doi.org/10.1007/s00453-013-9771-6

[154] Neeraj Kumar, Daniel Lokshtanov, Saket Saurabh, and Subhash Suri. A constant
factor approximation for navigating through connected obstacles in the plane. In Pro-
ceedings of the 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 822–839. SIAM, 2021. doi:10.1137/1.9781611976465.52.

[155] Neeraj Kumar, Daniel Lokshtanov, Saket Saurabh, Subhash Suri, and Jie Xue. Point
separation and obstacle removal by finding and hitting odd cycles. In Proceedings
of the 38th Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs,
pages 52:1–52:14, 2022. doi:10.4230/LIPIcs.SoCG.2022.52.

[156] Santosh Kumar, Ten-Hwang Lai, and Anish Arora. Barrier coverage with wireless
sensors. Wirel. Networks, 13(6):817–834, 2007. doi:10.1007/s11276-006-9856-0.

[157] V. S. Anil Kumar, Sunil Arya, and H. Ramesh. Hardness of set cover with intersection
1. In Proceedings of the 27th International Colloquium on Automata, Languages, and
Programming (ICALP), volume 1853 of Lecture Notes in Computer Science, pages
624–635. Springer, 2000. doi:10.1007/3-540-45022-X_53.

[158] Marvin Künnemann. A tight (non-combinatorial) conditional lower bound for Klee’s
measure problem in 3D. In Proceedings of the 63rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 555–566. IEEE, 2022. doi:10.1109/
FOCS54457.2022.00059.

[159] Stefan Langerman and Pat Morin. Covering things with things. In Proceedings of the
10th Annual European Symposium on Algorithms (ESA), pages 662–674, 2002.

[160] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness
for shortest cycles and paths in sparse graphs. In Proceedings of the 29th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1236–1252, 2018. doi:
10.1137/1.9781611975031.80.

[161] Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator theo-
rem. SIAM Journal on Computing, 9(3):615–627, 1980. doi:10.1137/0209046.

[162] Chih-Hung Liu, Evanthia Papadopoulou, and D. T. Lee. An output-sensitive approach
for the L1/L∞ k-nearest-neighbor Voronoi diagram. In Proceedings of the 19th Annual
European Symposium on Algorithms (ESA), volume 6942 of Lecture Notes in Computer
Science, pages 70–81. Springer, 2011. doi:10.1007/978-3-642-23719-5_7.

[163] Dániel Marx. Efficient approximation schemes for geometric problems? In Proceedings
of the 13th Annual European Symposium of Algorithms (ESA), pages 448–459, 2005.
doi:10.1007/11561071_41.

[164] Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar
facility location problems using Voronoi diagrams. In Proceedings of the 23rd Annu-
al European Symposium on Algorithms (ESA), pages 865–877, 2015. doi:10.1007/

978-3-662-48350-3_72.

162

http://dx.doi.org/10.1137/1.9781611976465.52
http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.52
http://dx.doi.org/10.1007/s11276-006-9856-0
http://dx.doi.org/10.1007/3-540-45022-X_53
http://dx.doi.org/10.1109/FOCS54457.2022.00059
http://dx.doi.org/10.1109/FOCS54457.2022.00059
http://dx.doi.org/10.1137/1.9781611975031.80
http://dx.doi.org/10.1137/1.9781611975031.80
http://dx.doi.org/10.1137/0209046
http://dx.doi.org/10.1007/978-3-642-23719-5_7
http://dx.doi.org/10.1007/11561071_41
http://dx.doi.org/10.1007/978-3-662-48350-3_72
http://dx.doi.org/10.1007/978-3-662-48350-3_72

[165] Jǐŕı Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8(3):315–
334, 1992.

[166] Jǐŕı Matoušek. Reporting points in halfspaces. Computational Geometry, 2:169–186,
1992. doi:10.1016/0925-7721(92)90006-E.

[167] Jǐŕı Matoušek. Range searching with efficient hierarchical cutting. Discrete & Com-
putational Geometry, 10:157–182, 1993. doi:10.1007/BF02573972.

[168] Jiŕı Matoušek, Raimund Seidel, and Emo Welzl. How to net a lot with little: Small
ε-nets for disks and halfspaces. In Proceedings of the 6th Symposium on Computational
Geometry (SoCG), pages 16–22. ACM, 1990. doi:10.1145/98524.98530.

[169] Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related
problems. SIAM Journal on Computing, 12(4):759–776, 1983.

[170] Nimrod Megiddo and Arie Tamir. On the complexity of locating linear facilities in the
plane. Oper. Res. Lett., 1(5):194–197, 1982. doi:10.1016/0167-6377(82)90039-6.

[171] Joseph S. B. Mitchell. Approximating maximum independent set for rectangles in
the plane. In Proceedings of the 62nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 339–350. IEEE, 2021. doi:10.1109/FOCS52979.

2021.00042.

[172] Joseph SB Mitchell, Günter Rote, Gopalakrishnan Sundaram, and Gerhard J Woeg-
inger. Counting convex polygons in planar point sets. Inf. Process. Lett., 56(1):45–49,
1995.

[173] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins series
in the mathematical sciences. Johns Hopkins University Press, 2001. URL: https:
//www.press.jhu.edu/books/title/1675/graphs-surfaces.

[174] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995.

[175] Ketan Mulmuley. Computational Geometry: An Introduction through Randomized
Algorithms. Prentice Hall, 1994.

[176] Nabil H. Mustafa. Computing optimal epsilon-nets is as easy as finding an unhit set.
In Proceedings of the 46th International Colloquium on Automata, Languages, and
Programming (ICALP), pages 87:1–87:12, 2019. doi:10.4230/LIPIcs.ICALP.2019.

87.

[177] Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Quasi-polynomial time approxi-
mation scheme for weighted geometric set cover on pseudodisks and halfspaces. SIAM
Journal on Computing, 44(6):1650–1669, 2015. doi:10.1137/14099317X.

163

http://dx.doi.org/10.1016/0925-7721(92)90006-E
http://dx.doi.org/10.1007/BF02573972
http://dx.doi.org/10.1145/98524.98530
http://dx.doi.org/10.1016/0167-6377(82)90039-6
http://dx.doi.org/10.1109/FOCS52979.2021.00042
http://dx.doi.org/10.1109/FOCS52979.2021.00042
https://www.press.jhu.edu/books/title/1675/graphs-surfaces
https://www.press.jhu.edu/books/title/1675/graphs-surfaces
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.87
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.87
http://dx.doi.org/10.1137/14099317X

[178] Nabil H. Mustafa and Saurabh Ray. PTAS for geometric hitting set problems via local
search. In Proceedings of the 25th Symposium on Computational Geometry (SoCG),
pages 17–22. ACM, 2009. doi:10.1145/1542362.1542367.

[179] Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set prob-
lems. Discrete & Computational Geometry, 44(4):883–895, 2010. doi:10.1007/

s00454-010-9285-9.

[180] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic
minimum spanning forest with subpolynomial worst-case update time. In Proceedings
of the 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 950–961. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.92.

[181] Doron Nussbaum. Rectilinear p-piercing problems. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation (ISSAC), pages 316–323, 1997.
doi:10.1145/258726.258828.

[182] J Pach. Discrete and computational geometry, 19. Special issue dedicated to Paul
Erdös, 1998.

[183] János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-nets. In
Proceedings of the 27th Symposium on Computational Geometry (SoCG), pages 458–
463, 2011. doi:10.1145/1998196.1998271.

[184] Rainer Penninger and Ivo Vigan. Point set isolation using unit disks is NP-complete.
CoRR, abs/1303.2779, 2013. arXiv:1303.2779.

[185] Ricky Pollack, Micha Sharir, and Shmuel Sifrony. Separating two simple polygons
by a sequence of translations. Discrete & Computational Geometry, 3:123–136, 1988.
doi:10.1007/BF02187902.

[186] Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proceed-
ings of the 42nd Annual ACM Symposium on Theory of Computing (STOC), pages
603–610, 2010. doi:10.1145/1806689.1806772.

[187] Evangelia Pyrga and Saurabh Ray. New existence proofs for ε-nets. In Proceedings
of the 24th Symposium on Computational Geometry (SoCG), pages 199–207, 2008.
doi:10.1145/1377676.1377708.

[188] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approx-
imating packing integer programs. J. Comput. Syst. Sci., 37(2):130–143, 1988. Pre-
liminary version in FOCS’86. doi:10.1016/0022-0000(88)90003-7.

[189] Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: a technique
for provably good algorithms and algorithmic proofs. Comb., 7(4):365–374, 1987.
doi:10.1007/BF02579324.

164

http://dx.doi.org/10.1145/1542362.1542367
http://dx.doi.org/10.1007/s00454-010-9285-9
http://dx.doi.org/10.1007/s00454-010-9285-9
http://dx.doi.org/10.1109/FOCS.2017.92
http://dx.doi.org/10.1145/258726.258828
http://dx.doi.org/10.1145/1998196.1998271
http://arxiv.org/abs/1303.2779
http://dx.doi.org/10.1007/BF02187902
http://dx.doi.org/10.1145/1806689.1806772
http://dx.doi.org/10.1145/1377676.1377708
http://dx.doi.org/10.1016/0022-0000(88)90003-7
http://dx.doi.org/10.1007/BF02579324

[190] Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In
Proceedings of the 15th Symposium on Computational Geometry (SoCG), pages 390–
399. ACM, 1999. doi:10.1145/304893.304993.

[191] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of
the 10th Annual ACM Symposium on Theory of Computing (STOC), pages 216–226.
ACM, 1978. doi:10.1145/800133.804350.

[192] Micha Sharir. On k-sets in arrangement of curves and surfaces. Discrete & Computa-
tional Geometry, 6:593–613, 1991. doi:10.1007/BF02574706.

[193] Micha Sharir. A near-linear algorithm for the planar 2-center problem. Discrete &
Computational Geometry, 18(2):125–134, 1997. Preliminary version in SoCG’96.

[194] Micha Sharir and Emo Welzl. Rectilinear and polygonal p-piercing and p-center prob-
lems. In Proceedings of the 12th Symposium on Computational Geometry (SoCG),
pages 122–132, 1996. doi:10.1145/237218.237255.

[195] M. Shimrat. Algorithm 112: Position of point relative to polygon. Commun. ACM,
5(8):434, 1962. doi:10.1145/368637.368653.

[196] Andreas Spillner. Optimal convex partitions of point sets with few inner points. In
Proceedings of the 17th Canadian Conference on Computational Geometry (CCCG),
pages 39–42, 2005.

[197] Andrew Suk. On the Erdős-Szekeres convex polygon problem. Journal of the American
Mathematical Society, 30(4):1047–1053, 2017.

[198] Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. J.
Comb. Theory, Ser. B, 48(2):155–177, 1990. doi:10.1016/0095-8956(90)90115-G.

[199] Constantine Toregas, Ralph Swain, Charles S. ReVelle, and Lawrence Bergman. The
location of emergency service facilities. Operations Research, 19(6):1363–1373, 1971.
doi:10.1287/opre.19.6.1363.

[200] Kuan-Chieh Robert Tseng. Resilience of wireless sensor networks. PhD thesis, Uni-
versity of British Columbia, 2011.

[201] Kuan-Chieh Robert Tseng and David G. Kirkpatrick. On barrier resilience of sen-
sor networks. In Algorithms for Sensor Systems - 7th International Symposium on
Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile
Entities (ALGOSENSORS), volume 7111 of Lecture Notes in Computer Science, pages
130–144. Springer, 2011. doi:10.1007/978-3-642-28209-6_11.

[202] Masatsugu Urabe. On a partition of point sets into convex polygons. In Proceedings
of the 9th Canadian Conference on Computational Geometry (CCCG), 1997.

165

http://dx.doi.org/10.1145/304893.304993
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.1007/BF02574706
http://dx.doi.org/10.1145/237218.237255
http://dx.doi.org/10.1145/368637.368653
http://dx.doi.org/10.1016/0095-8956(90)90115-G
http://dx.doi.org/10.1287/opre.19.6.1363
http://dx.doi.org/10.1007/978-3-642-28209-6_11

[203] Kasturi R. Varadarajan. Epsilon nets and union complexity. In Proceedings of the 25th
Symposium on Computational Geometry (SoCG), pages 11–16, 2009. doi:10.1145/

1542362.1542366.

[204] Kasturi R. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In
Proceedings of the 42nd Annual ACM Symposium on Theory of Computing (STOC),
pages 641–648. ACM, 2010. doi:10.1145/1806689.1806777.

[205] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and com-
plexity. In Proceedings of the ICM, volume 3, pages 3431–3472. World Scientific, 2018.
URL: https://people.csail.mit.edu/virgi/eccentri.pdf.

[206] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between
path, matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018. Preliminary
version in FOCS’10. doi:10.1145/3186893.

[207] Virginia Vassilevska Williams and Yinzhan Xu. Monochromatic triangles, triangle
listing and APSP. In Proceedings of the 61st Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 786–797, 2020. doi:10.1109/FOCS46700.2020.

00078.

[208] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001. URL: http://www.spri
nger.com/computer/theoretical+computer+science/book/978-3-540-65367-7.

[209] Klaus W. Wagner. Monotonic coverings of finite sets. J. Inf. Process. Cybern.,
20(12):633–639, 1984.

[210] Haitao Wang. On the planar two-center problem and circular hulls. Discrete &
Computational Geometry, 68(4):1175–1226, 2022. Preliminary version in SoCG’20.
doi:10.1007/s00454-021-00358-5.

[211] Jianxin Wang, Wenjun Li, and Jianer Chen. A parameterized algorithm for the
hyperplane-cover problem. Theor. Comput. Sci., 411(44-46):4005–4009, 2010. doi:

10.1016/j.tcs.2010.08.012.

[212] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In New Results and New
Trends in Computer Science, pages 359–370. Springer, 1991.

[213] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. URL: http://www.cambridge.org/de/knowledge
/isbn/item5759340/?site_locale=de_DE.

[214] Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes.
Theor. Comput. Sci., 26:287–300, 1983. doi:10.1016/0304-3975(83)90020-8.

[215] Neal E. Young. Sequential and parallel algorithms for mixed packing and covering.
In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 538–546, 2001. doi:10.1109/SFCS.2001.959930.

166

http://dx.doi.org/10.1145/1542362.1542366
http://dx.doi.org/10.1145/1542362.1542366
http://dx.doi.org/10.1145/1806689.1806777
https://people.csail.mit.edu/virgi/eccentri.pdf
http://dx.doi.org/10.1145/3186893
http://dx.doi.org/10.1109/FOCS46700.2020.00078
http://dx.doi.org/10.1109/FOCS46700.2020.00078
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://dx.doi.org/10.1007/s00454-021-00358-5
http://dx.doi.org/10.1016/j.tcs.2010.08.012
http://dx.doi.org/10.1016/j.tcs.2010.08.012
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://dx.doi.org/10.1016/0304-3975(83)90020-8
http://dx.doi.org/10.1109/SFCS.2001.959930

	CHAPTER 1 INTRODUCTION
	Notations
	Static Geometric Set Cover
	Dynamic Geometric Set Cover
	Geometric Set Cover and Discrete k-Center of Small Size
	Enclosing Points With Geometric Objects
	Monotone Convex Chain Cover
	Overview of the New Results

	CHAPTER 2 STATIC GEOMETRIC SET COVER
	Our Results
	Preliminaries
	The basic MWU algorithm
	Agarwal and Pan's (first) MWU algorithm

	``New'' MWU Algorithm
	Implementations of MWU
	Deterministic version
	Randomized version 1
	Randomized version 2

	Weighted 3D Halfspaces
	MWU algorithm in the weighted case
	Speeding up quasi-uniform sampling

	Lower Bound for Approximate 1D Intervals

	CHAPTER 3 DYNAMIC GEOMETRIC SET COVER
	Our Results
	Overview of Our Techniques
	Preliminaries
	Notations
	Review of an MWU algorithm

	Unweighted Squares
	Algorithm for small opt
	Algorithm for large opt

	Unweighted 3D Halfspaces
	Algorithm for small opt
	Algorithm for medium opt
	Algorithm for large opt
	Upper and lower halfspaces

	Improving Static Set Cover for 3D Halfspaces
	Unweighted Intervals
	Unweighted Unit Squares
	Improving Unweighted Squares
	Algorithm for small opt
	Algorithm for large opt

	Unweighted 2D Halfplanes
	Algorithm for small opt
	Main algorithm

	Weighted Intervals
	Main ideas
	The data structure

	Weighted Unit Squares

	CHAPTER 4 GEOMETRIC SET COVER AND DISCRETE K-CENTER OF SMALL SIZE
	Our Results
	Preliminaries
	Subquadratic Algorithms for Size-3 Set Cover for Rectangles in R2
	Improved Subquadratic Algorithms for Size-3 Set Cover for Rectangles in R2 and Related Problems
	Improvement for unweighted rectangles
	Improvement for weighted rectangles
	Improvement for weighted unit squares
	Improvement for unweighted unit squares and rectilinear discrete 3-center in R2

	Conditional Lower Bounds for Size-3 Set Cover for Boxes
	Weighted size-3 set cover for unit squares in R2
	Unweighted size-3 set cover for boxes in R3
	Unweighted size-3 set cover for unit hypercubes in R4

	Other Conditional Lower Bounds for Small-Size Set Cover for Boxes and Related Problems
	Rectilinear discrete 3-center in R4
	Weighted size-6 set cover for rectangles in R2

	Conclusions

	CHAPTER 5 ENCLOSING POINTS WITH GEOMETRIC OBJECTS
	Our Results
	Preliminaries
	Approximation Algorithms

	CHAPTER 6 MONOTONE CONVEX CHAIN COVER
	Our Results
	NP-Hardness
	No Polynomial Kernel

	CHAPTER 7 CONCLUSIONS AND OPEN PROBLEMS
	Static Geometric Set Cover
	Dynamic Geometric Set Cover
	Geometric Set Cover and Discrete k-Center of Small Size
	Enclosing Points with Geometric Objects
	Monotone Convex Chain Cover

	REFERENCES

