
© 2023 Zhepei Wang

DATA-EFFICIENT APPROACHES FOR AUDIO CLASSIFICATION AND
SEPARATION

BY

ZHEPEI WANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Professor Paris Smaragdis, Chair
Professor Svetlana Lazebnik
Professor Mark Hasegawa-Johnson
Professor Minje Kim, Indiana University

ABSTRACT

Recent advances in deep learning for computational audio processing are established upon suffi-

cient annotated audio data. However, obtaining a substantial volume of high-quality annotations

from in-the-wild audio remains a significant challenge. In this thesis, we propose and analyze

data-efficient approaches for modeling audio signals to perform sound classification and separation.

First, we present neural network architectures based on multi-dimensional unrolling of recurrent

neural networks that allow the model to perform sound event detection with efficient usage of

training data. Equipped with adaptive computation, the model further learns to intelligently ad-

just the amount of computation and enables processing when only partial information is available.

Next, we propose approaches for recognizing sound classes under a time-varying distribution. We

investigate continual learning techniques to train a classifier that can efficiently learn new sound

classes without forgetting the past using generative replay. We further extend our approach to an

unsupervised learning setup, where the model progressively learns representations for an indefinite

number of sound classes with few labels presented. Last but not least, we investigate learning

with limited annotated data using semi-supervised learning. We demonstrate the effectiveness of

the proposed teacher-student framework on tasks including cross-modal audio-text representation

learning, singing voice separation, and personalized speech enhancement. To this end, our pro-

posed data-efficient algorithms for audio classification and source separation show high potential

for reducing the labor cost for collecting high-quality annotated data, improving computational

and storage efficiency, and enabling processing on memory-limited edge devices.

ii

ACKNOWLEDGMENTS

Born and raised in southern China with mild winters and having spent four years of college in

California with year-long sunshine, I could never imagine living under minus thirty degrees in the

center of Illinois. Looking retrospectively, I could remember the excitement of seeing snowfalls for

the first time in my life in the Siebel office and the days walking in inches of snow. I feel fortunate

to survive through these harsh snowstorms, tornados, and the chaotic pandemic during my five-

year journey as a Ph.D. student in Urbana-Champaign. I want to take this moment to thank my

professors, my mentors, my peers and friends, and my family members for their support and for

shaping the person I have become.

First and foremost, I would like to express my heartfelt gratitude to my advisor, Prof. Paris

Smaragdis, for having me as a student and guiding me in my research, career, and life. I constantly

felt clueless or frustrated about my research progress during the first few years, but nothing was

more reassuring than having a conversation with Paris. I’m sincerely grateful for his patience in

letting me take time to learn from trials and errors (even at the cost of me crashing the lab servers

twice a day), explore various research topics, and develop my own research interest. One of my

most precious moments in Urbana-Champaign is the tea excursions from Siebel to Green Street,

filled with discussions ranging from ML-DSP to music, sports, and food. I’ve benefited from these

conversations on how to become open-minded, communicate ideas, and interact with the audio

research community.

Also, it is my great honor to have Prof. Svetlana Lazebnik, Prof. Mark Hasegawa-Johnson,

and Prof. Minje Kim on my thesis committee. I would like to thank my committee for serving as

inspirational role models in research and advising, and for providing constructive feedback on my

thesis research.

During the course of my Ph.D., I’ve been honored to work with brilliant mentors. I would

especially like to thank Cem (now Prof. Cem Subakan) for sharing his insights, trusting in me for my

whimsical thoughts, and steering me back whenever I’m going south. I would never forget the days

we craft projects together under extreme time pressure. I would also like to thank Dr. Ritwik Giri

for our collaboration during my three internships at Amazon Web Services. Ritwik’s dedication to

audio research is inspirational, and his mentorship is indispensable for my growth as an independent

researcher. It has also been my great pleasure to interact with and learn from exceptional scientists

and pioneers in research for machine learning and digital signal processing, including Dr. Jean-

Marc Valin, Dr. Umut Isik, Dr. Karim Helwani, Dr. Masahito Togami, Dr. Michael Goodwin,

and Dr. Arvindh Krishnaswamy during the internship at AWS; Dr. Xiaolong Zhu and Dr. Shiyin

Kang during the internship at Tencent; Prof. Mirco Ravanelli during the collaboration with MILA-

Quebec; Prof. Tiago Tavares and Prof. Fabio Ayres during the collaboration with Insper.

In the meantime, I’m fortunate to develop strong friendships with a group of talented peers

iii

along this journey. I want to thank my labmates: Shrikant, Thymios, Jonah, Ryley, Anny, Kr-

ishna, Dimitris, Dean, Junkai, and Xilin, for your support and collaboration. I would miss the

whiteboard discussions after the group meetings, the around-the-world cuisines we have explored

on campus, and the barbecue and volleyball in Paris’ backyard. I’m also thankful to my friends

Kedan, Jamshed, Hao, Kaiqi, Yansong, Xin, Yiran, Minjian, and Jiajun for sharing the enjoyable

moments with me in Urbana-Champaign. It has also been a great pleasure to get to know young

and talented researchers including Turab, Wo Jae, Manos, and Devansh during my internships at

AWS.

My passion for computational audio research originates from my college days at Harvey Mudd.

I’m sincerely grateful to Prof. TJ Tsai for offering me the opportunity for my first-ever hands-

on experience in audio and deep learning research and for helping me develop disciplined and

systematic research habits. I’d like to thank Prof. Ran Libeskind-Hadas, Prof. Zachary Dodds,

and Prof. Yekaterina Kharitonova for their guidance. I’d also like to express my gratefulness

towards my piano instructor, Prof. Hao Huang from Scripps College, not only for the tips on piano

performance but also for the invaluable advice on learning to focus, developing the mentality for

combatting hardships, and recognizing my own values.

During this unforgettable journey, I feel incredibly lucky to be accompanied by a group of long-

lasting friends: Jacky, Kevin, James, Jackson, and Wending from Shenzhen Foreign Languages

School; our 8F-gang (Andrew, Lincoln, and Tom), Kevin, Annie, and Xiwen from Shenzhen Middle

School; Tony, Cam, Michael, Spencer, Jamie, and Cleo from the Claremont Colleges.

I’m sincerely grateful to Tony and Jackson for their genuine support during my toughest moments

and for patiently listening to my concerns over the years. I’m deeply thankful to Anna for the

companionship and for allowing me to open up about my vulnerabilities.

Last but not least, I’d reserve my utmost gratitude towards my mom, dad, and my grandparents

for their unconditional support for me pursuing a Ph.D., for being my best role models of integrity

and diligence, and for their boundless love throughout my 27 years of life. I owe my achievements

today entirely to you.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Structure of the Thesis . 1
1.2 Challenges for Data-Driven Audio Processing Tasks 2

CHAPTER 2 BACKGROUND . 5
2.1 Audio Classification Tasks . 5
2.2 Audio Source Separation . 7
2.3 Self-Supervised Learning . 10
2.4 Semi-Supervised Learning . 12
2.5 Continual Learning . 13

CHAPTER 3 ARCHITECTURE DESIGN FOR SOUND EVENT DETECTION 16
3.1 Multi-Channel Speech Detection with Multi-View Networks 16
3.2 Sound Event Detection with Adaptive Frequency Selection 25

CHAPTER 4 CONTINUAL LEARNING FOR SOUND CLASSIFICATION 35
4.1 Continual Learning of New Sound Classes with Generative Replay 35
4.2 Learning Representations for New Sound Classes With Continual Self-Supervised

Learning . 45

CHAPTER 5 SEMI-SUPERVISED SOUND CLASSIFICATION AND SEPARATION . . . 56
5.1 Semi-Supervised Improvement for Audio-Text Cross-Modal Representations 57
5.2 Semi-Supervised Singing Voice Separation with Noisy Self-Training 67
5.3 Semi-Supervised Time-Domain Personalized Speech Enhancement 76

CHAPTER 6 CONCLUSION . 86
6.1 Summary of Contributions . 86
6.2 Future Directions . 87
6.3 Broader Impact . 88

REFERENCES . 90

v

CHAPTER 1: INTRODUCTION

With the recent breakthroughs in computational hardware and the rising amount of data collec-

tion, deep learning has made a revolutionary impact on machine perception. Despite the extensive

studies conducted on deep neural networks (DNNs) for computer vision [1, 2, 3] and natural lan-

guage processing tasks [4, 5, 6, 7] over the past decade, the application of deep learning to audio

processing tasks still remains a complex problem. One of the primary obstacles for audio pro-

cessing tasks is the high dimensionality: for instance, a 10-second cellphone recording of a live

concert may require an 80000-dimensional vector representation under a sampling rate of 8 kHz.

Since audio signals are time series, another challenge for modeling audio is to learn the temporal

dependency. Cues of auditory events may extend for several seconds or even minutes, which raises

concerns for the model’s ability and efficiency to capture long-term dependencies for analyzing

sound scenes. Additionally, the learning process can be complicated with the overlapping of differ-

ent sound events and the interference with ambient noise. This increases the difficulty to obtain

high-quality annotations and necessitates further processing to separate individual sound events.

To overcome these difficulties, DNNs have significantly boosted the performance in a variety of

audio processing tasks, including sound event detection [8, 9, 10, 11, 12], acoustic scene classification

[13, 14], environmental sound classification [15, 16, 17], music genre classification [18, 19], speech

emotion recognition [20, 21], keyword spotting [22], speaker verification [23], speech enhancement

[24, 25] and separation [26, 27]. Despite the noticeable improvement, these computational models

require a massive amount of annotated data to train, but obtaining large-scale labeled audio data

with high quality and volume requires strenuous effort. To overcome the obstacles to data collection,

training with efficient data usage has become an increasingly relevant problem for deep-learning-

based audio applications. The primary goal of this thesis is to propose data-efficient algorithms for

learning sound classifiers and separators.

1.1 STRUCTURE OF THE THESIS

In Chapter 1, we discuss the major challenges in data-driven audio processing tasks, including

coverage of training data, completeness of information, data annotations, and time-varying distri-

bution of data. Next, in Chapter 3, we propose two designs for neural network architectures that

can deal with data constraints for sound event detection tasks. Then, in Chapter 4, we discuss

continual learning algorithms for sound classification, where the model incrementally incorporates

knowledge of sound events from new classes. Next, we present semi-supervised learning algorithms

that effectively make use of unannotated data for sound classification and source separation tasks

in Chapter 5. Finally, we conclude this thesis and discuss future directions and social impact in

Chapter 6.

1

1.2 CHALLENGES FOR DATA-DRIVEN AUDIO PROCESSING TASKS

1.2.1 Limited Coverage of Training Data

The first problem we would want to resolve is the limited coverage of the training set. Even if

large quantities of data samples are available, it is hard to obtain a comprehensive training set that

can enclose possible real-world test cases, and hence the model that fails to generalize may overfit

the distribution of the training data. Such concerns may arise in a multichannel audio classification

task in a setting of the Internet of Things (IoT), where each channel corresponds to a single device

with a microphone and the number of channels or devices at test time is unknown prior to inference.

It is infeasible to collect a set of training recordings that covers all numbers of channels during test

time; as a result, the model’s test-time performance may degrade due to this shift in the number

of channels between training and test time. To mitigate this issue, we introduce the Multi-View

Network (MVN) [28, 29] (see Section 3.1) that can generalize to an unseen number of channels.

By unrolling across the channel dimension, we leverage the property of recurrent neural networks

(RNNs) to handle input sequences with an arbitrary number of channels, thereby making it possible

to predict input with a different number of channels than training data.

1.2.2 Missing Information

The second challenge that audio classifiers may encounter is making predictions with partially

missing information. Most classifiers are trained using spectrograms with a fixed number of bands

as input; during inference, however, part of the frequency sub-bands might be unavailable to the

model. For instance, test audio may be recorded from a device with limited bandwidth, hence bands

with high-frequency components cannot be used for predictions. Additionally, data corruption may

occur during the transmission or storage of the data, and the number of bands accessible to the

model may vary across time frames. Nevertheless, for a variety of sound classes, the energy does

not distribute evenly across frequencies, and hence it might be redundant to process all available

sub-bands to predict the event classes. It is therefore desirable to train a classifier that intelligently

determines the number of frequency sub-bands to consume and maintains a robust performance

under a varying number of input sub-bands. We propose an adaptive frequency selection algorithm

named HIDACT [30] (see Section 3.2), which extends the MVN with components for adjustable

computation. Models learned with HIDACT are able to alter the number of sub-bands to process

based on characteristics of input sound types without processing all frequency bands. It not only

improves the robustness of the system under a mismatched number of frequency sub-bands between

training and inference but also enhances computational efficiency.

2

1.2.3 Unavailable Data From the Past

Another common challenge that hinders model training in practice is that not all data samples

can be collected at once. New data samples may arrive continually over time after the model is

trained on an initial dataset. It is time and resource-consuming to retrain the model with new and

old data combined. The problem becomes even more complicated when past data is not available

for training due to damage to the hardware, limited storage capacity, or privacy regulations [31].

If updating the model’s weights with new data naively, however, the model’s performance is likely

to deteriorate on the previous data, a phenomenon known as catastrophic forgetting [32]. To learn

the model on a sequence of datasets or tasks with continuous shifts in distribution, a plethora of

continual learning approaches have been studied [33, 34, 35, 36, 37, 38].

While these methods have been widely applied to image classification, we introduce continual

learning to the audio domain in Chapter 4, which is a challenging task to model time-series input

data in contrast to static data as images. In particular, in Section 4.1, we propose in [39] a

generative replay framework to learn new sound classes while retaining knowledge of classes the

model has previously seen. We train and update a generative network in parallel to the classifier

with the same data stream, and use the generator to create a replay buffer without storing actual

data from the past.

1.2.4 Data Without Annotations

Last but not least, we also study approaches to deal with audio data without annotations. For

audio classification tasks, annotations refer to the labeling of individual sound events presented in

the audio clip (for event detection tasks, the onsets and offsets of each event are also required); for

separation tasks, the reference groundtruths are isolated tracks of each sound source. In general, it

requires considerable human efforts to identify the sound events in each clip or to obtain the noise-

free reference source tracks from mixtures; meanwhile, as audio data are unceasingly produced in

the wild, sound clips without annotations are relatively easy to obtain.

Without reliance on annotations, self-supervised learning (SSL) methods have shown huge po-

tential to learn low-dimensional representations that can generalize well to downstream tasks. The

representations are learned via pretext tasks such as colorization [40], surrogate class prediction

[41], masked token prediction [42, 43, 44], and instance discrimination [45, 46, 47]. While a ma-

jority of these recent advancements are made in computer vision or natural language processing,

there are also a few successful applications of SSL methods in audio processing [48, 49, 50, 51, 52].

Additionally, these SSL approaches require a substantial amount of data to train, but it is not

always realistic to train the models with all data at once. Considering this limitation, we propose

an SSL framework [53] to learn audio representations in the context of continual learning in Section

4.2.

Besides self-supervised learning, semi-supervised learning is an effective alternative for handling

data without annotations. In semi-supervised learning, the model is trained with some level of

3

supervision, where a portion of the training data comes with annotations and the rest does not [54].

Since unlabeled data is much easier to obtain, the scale of the unlabeled data is usually significantly

larger than labeled ones in the majority of the prior studies in semi-supervised learning. While

semi-supervised learning has been investigated for image [55, 56, 57] and natural language [58]

tasks, it also gains popularity for audio applications such as sound event classification [59, 60] and

automatic speech recognition [61]. In Chapter 5, we focus on semi-supervised learning for handling

the data bottleneck for audio-text cross-modal representation learning [62] (Section 5.1), singing

voice separation [63] (Section 5.2), and target speaker extraction [64] (Section 5.3).

4

CHAPTER 2: BACKGROUND

In this section, we introduce the background for audio classification and separation tasks and

methods as well as the machine learning frameworks that serve as the foundation of the thesis.

2.1 AUDIO CLASSIFICATION TASKS

2.1.1 Audio Tagging

As shown in Figure 2.1 (Left), given an audio signal, we define audio tagging as the task of

assigning the entire clip with a label. This task can be formulated as a multi-class classification

problem y = f(x), where x ∈ RT is the recording signal represented as a vector, f is the classifier

model, and y ∈ RC is the model’s output indicating the likelihood of belonging to each of the C

possible classes. Acoustic scene classification (ASC) [65] is one of the most popular applications

of audio tagging, where the goal is to identify the background environment in which the recording

is produced. Environmental sound classification (ESC) [66] is another emerging topic to recognize

natural, urban, or daily sound classes from the recording. Besides identifying environmental sound,

audio tagging is widely involved in speech processing tasks such as speaker identification [23] and

emotion recognition [20, 21], and it is also applied to analyze music signals by categorizing musical

genres [18, 19]. While a multitude of these aforementioned tasks assumes a single label for each

clip, audio tagging can also be formulated as a multi-label classification where the input signal

is associated with one or more labels. For instance, in-the-wild recordings are likely to contain

multiple sound classes simultaneously, and a single speech clip can be characterized by more than

one emotion. Under these scenarios, the classifier has to identify all relevant output classes.

2.1.2 Sound Event Detection

In addition to identifying the sound classes, sound event detection (SED) also determines the

temporal boundary of the individual events. In contrast to audio tagging where a single output is

made for the entire input sequence, SED systems predict the step-wise probabilities of the event

classes at each time frame, as depicted in Figure 2.1 (Right). This task can be expressed in the form

of y = f(x), where x ∈ RT is the input with T frames, y = [y1,y2, . . .yT]
⊤ is the frame-wise output,

and each output yt ∈ RC , t = 1, 2, . . . , T is the estimated probability for each of the C classes.

Depending on applications, SED systems can be further divided into monophonic or polyphonic,

where the former assumes no overlapping events and the latter allows the presence of simultaneously

occurring sound classes, which applies to more realistic scenarios. SED is broadly applicable in

multiple settings, such as recognizing environmental or domestic events in smart home systems or

wearable devices, determining anomalies of machines in factories, and identifying speakers’ activity

5

Prediction: "dog barking"

Classifier Detector

Time

Figure 2.1: (Left) Audio tagging: The model makes one prediction for the entire input. (Right)
Sound event detection: The model makes frame-wise prediction for the presence of event class.

in meeting scenarios. Furthermore, SED classifiers carry information that can benefit other audio

processing tasks, such as speech enhancement [25, 67] and singing voice separation [63].

2.1.3 Methods for Audio Classification

Traditional approaches for sound classification tasks involve a two-step pipeline. In the first

step, audio features are extracted from the time domain signal. Some popular representations

of audio features include the magnitude spectrogram of Short-time Fourier Transform (STFT)

and Mel-frequency cepstral coefficients (MFCCs). Additional feature transformation is optionally

applied to reduce the dimensionality of the features with algorithms such as principal component

analysis (PCA), independent component analysis (ICA), or latent Dirichlet allocation (LDA). The

second step is to learn a classification model using the extracted features as input. The choice

of classifier can be generative models including hidden Markov model (HMM) [68] and Gaussian

Mixture Models (GMM) [69], or discriminative models such as support vector machine (SVM)

[70, 71], k-nearest neighbor (KNN) [72] and multilayer perceptron (MLP) [73].

With the recent advances in deep learning, neural networks have obtained significant perfor-

mance gains and outperformed traditional approaches in audio classification tasks. With successful

application in image classification, convolutional neural networks (CNNs) are adopted to classify

audio input. In [66, 74, 75], the spectrogram representation of the audio signal is treated as an

image, and the input is processed by a sequence of two-dimensional convolutional layers before

predicting the class label. The strong representation power of CNNs also enables end-to-end learn-

ing in which a single model performs feature extraction as well as classification using time domain

signal as input [15, 76]. Instead of being manually designed, the features are learned jointly with

the classification model and are optimized for specific tasks.

6

Different from image applications, the temporal structure of audio may provide cues for audio

classification. Recurrent neural networks (RNNs) are proposed to model temporal dependency

and capture the longer context in sequential input. Promising results of applying RNNs in speech

activity detection are shown in [77, 78]. Recurrent layers are also used on top of the convolutional

layers and show enhanced performance on urban sound classification [8, 12, 79, 80] and rare event

detection [81]. Attention mechanism [6] is proposed as an alternative to RNNs for capturing

temporal information and focusing on semantically relevant time frames in environmental sound

classification [82], and it is shown to be effective when applied jointly with CNN and RNN layers

[83].

2.2 AUDIO SOURCE SEPARATION

2.2.1 Audio Source Separation Tasks

Real-world audio signal often contains multiple events that potentially overlap with each other.

In order to better analyze the signal, audio source separation is the task of isolating individual

sound components from the mixture of sound sources. This problem can be formulated as

x(t) =
C∑
k=1

sk(t), (2.1)

where x(t) is the input mixture, sk(t) denotes the source signal, and C is the number of sources.

We would like to estimate each individual source component ŝk(t) ≈ sk(t).

Depending on the nature of the source signals, audio source separation involves several domain-

specific applications including but not limited to speech separation [84] (where the mixture only

contains speech signals from multiple speakers), music separation [85] (where the input consists

of musical instruments or singing voice), and universal source separation [86] (where any environ-

mental event class may present in the mixture). Audio source separation can also be categorized

according to the number of input channels. In multi-channel source separation, the input signal

is collected from a microphone array, and the spatial cues from different channels can be used to

infer the individual sources [87]. In single-channel (monaural) source separation, only one input

channel is provided and we need to extract one or more sources from this single-channel input

mixture. This task is challenging in that it requires solving an underdetermined system with only

one equation and multiple unknowns. For the scope of this thesis, we focus on single-channel audio

source separation tasks.

Speech enhancement [88] is a special case of audio source separation, where instead of separating

all the sources, the goal is to extract only the speech and to suppress the noise. In this setting, we

7

are given a reverberant noisy mixture x(t) as

x(t) = s(t)⊛ h(t) + n(t), (2.2)

where s(t) denotes the clean speech signal, h(t) is the impulse response, ⊛ refers to the convolution

operation, and n(t) represents the ambience noise. The goal of speech enhancement is to estimate

the speech signal ŝ(t) ≈ s(t) with an enhancement model. While A majority of studies on speech

enhancement focus on a single-talker scenario, real-world recordings often involve conversations

with more than one speaker, and the utterances potentially overlap. In this multi-talker scenario,

the task of personalized speech enhancement (target speaker extraction) [89] becomes relevant

when we are interested in tracking speech from only one of the speakers and treating the others

as interference. The speech signal can be written as s(t) = sp(t) + si(t), where sp(t) is the speech

signal from the primary or target speaker, and si(t) is the signal from all interference speakers.

To this end, the goal of personalized speech enhancement is to recover the target speech sp(t)

from the input mixture and to suppress both the interference speech and background noise. By

cleaning up the speech from the noisy mixture, speech enhancement can aid the processing of

downstream applications such as automatic speech recognition (ASR), speaker identification, and

speaker diarization.

2.2.2 Methods for Audio Source Separation

Encoder Decoder

Mixture

Separator
Latent Representation

Output

Figure 2.2: Masking-based separation framework based on deep learning. The encoder transforms
the time-domain mixture signal to the latent representation, and the decoder converts it back to
the waveform. Both modules can be predefined (e.g., STFT or inverse STFT) or learned (e.g.,
with one-dimensional kernels for convolution). The separator module estimates the mask for each
of the C sources, which is applied to the latent representation of the mixture with element-wise
multiplication.

Traditional approaches for source separation are based on generative models, including non-

negative matrix factorization (NMF) [90, 91], independent component analysis (ICA) [92, 93], and

hidden Markov model (HMM) [94, 95]. Under the maximum likelihood estimation (MLE) frame-

work, these methods do not require clean reference signal for training, and the learned models are

interpretable; however, they suffer from assumptions that impose limitations on the data distribu-

tion as well as the lack of tractable solutions.

With strong expressive power, neural-based source separation algorithms have surpassed tradi-

8

tional approaches on various source separation benchmarks. While unsupervised source separation

using deep learning has garnered recent attention [87, 96, 97], the majority of neural-based source

separation methods still follow the supervised learning framework, where the reference signals of

the isolated sound sources are provided to the model. Instead of directly estimating the source com-

ponents, the mainstream approach is to map the mixture signal into a latent space and compute a

mask for each source with the neural network that can be applied to the latent representation. This

masking-based separation framework usually contains three modules: the encoder fe, the separator

fs, and the decoder fd. The separation pipeline can be formulated as follows:

1. For the input mixture x ∈ RT , compute the latent representation using the encoder, H =

fe(x) ∈ RF×L, where F is the feature dimension and L is the temporal dimension;

2. For each source k, estimate the mask Mk = fs(H)k ∈ RF×L, and obtain the estimated latent

representation Ŝk = Mk ⊙H, where ⊙ denotes element-wise multiplication;

3. Convert Ŝk back to the time-domain signal with the decoder to obtain the estimated source

ŝk = fd(Ŝk).

This procedure is illustrated in Figure 2.2.

Depending on the latent representation, these neural-based separation algorithms can be cat-

egorized as time-frequency (STFT) domain methods and time-domain (waveform) methods. For

time-frequency domain methods, the encoder fe and the decoder fd are fixed to be the STFT and

the inverse STFT transforms, respectively. The estimated masks hence represent the gain ratio for

each time-frequency bin. The masks can be multiplied with the magnitude STFT spectrogram in

conjunction with the mixture’s phase [98], or they can be applied to the complex spectrogram with

the phase-aware pipeline [99, 100]. The separator architecture can be based on fully-connected

(FC) layers [99], convolutional layers [98, 101], or recurrent layers [102, 103].

For time-domain methods, instead of using a fixed latent representation, the encoder and the

decoder are learned. A common design for the encoder module [26, 27, 104, 105] is by applying a

one-dimensional convolution followed by a non-linearity transfer function, with

H = fe(x) = ReLU(Conv1D(x)), (2.3)

where ReLU denotes the rectified linear unit and applies element-wise to the output of the con-

volution with ReLU(x) = x · 1[x ≥ 0]. To mirror the encoder, the decoder is a one-dimensional

transposed convolutional layer:

ŝk = fd(Ŝk) = ConvTr1D(Ŝk). (2.4)

There are a variety of choices for the separator architecture. The separator module of ConvTas-

Net [26] is based on stacks of convolutional blocks, which consist of one-dimensional convolution,

non-linearity, and normalization; residual connections are applied to allow the gradients to flow

9

more directly through the network. The SuDoRM-RF [27] applies temporal downsampling and

upsampling to rearrange the convolutional blocks into a U-shape architecture to enable informa-

tion extraction at multiple resolutions for more efficient processing. The dual-path RNN [104] uses

RNN layers to alternate the inter- and intra-chunk processing for improved modeling of both local

and global dependency. The Sepformer [105] replaces the RNN layers with Transformer blocks [7]

to obtain performance gain.

When the reference signal is available, the model training can be performed by comparing the

estimated sources with the reference. For time-frequency domain methods, norm-based loss (l1 or

l2) can be applied to the Fourier domain output. For time-domain approaches, the (negative) scale-

invariant signal-to-distortion ratio (SI-SDR) [106] has been empirically shown to be an effective

objective function, which is defined as follows:

LSI-SDR(ŝk, sk) = −10 log10
∥ ŝ⊤k sk
∥sk∥2

sk∥2

∥ ŝ⊤k sk
∥sk∥2

sk − ŝk∥2
, (2.5)

where sk, ŝk ∈ RT are the reference and estimated signals, respectively.

When the ordering of the sources is meaningful (e.g, for personalized speech enhancement, musi-

cal source separation with known instruments), the model can be trained by directly minimizing the

loss between each estimated signal and its corresponding reference and average across all sources:

Lorder(ŝ, s) =
1

C

C∑
k=1

L(ŝk, sk), (2.6)

where s, ŝ ∈ RC×T contain C reference and predicted sources and L is the signal-level loss such as

the norm-based loss or SI-SDR. For tasks in which the ordering of the sources can be arbitrary (e.g,

speech separation, universal sound separation), we need to consider all possible permutations of

the sources during loss computation. The permutation-invariant training (PIT) [107] is proposed

to address this challenge of permutation ambiguity, where the overall loss function is defined as

LPIT(ŝ, s) =
1

C
min
π∈Π

C∑
k=1

L(ŝπk , sk), (2.7)

where Π is the set of all possible permutations of the C sources.

2.3 SELF-SUPERVISED LEARNING

Traditional supervised learning methods require a massive amount of labeled data to train.

Additionally, representations learned from supervised frameworks often suffer from generalization

errors. Compared to traditional supervised learning, self-supervised learning (SSL) approaches do

not rely on annotations of data, and the learned representations are more robust and generalize

10

Embedding Space

Encoder

Figure 2.3: Similarity-based self-supervised learning. Similar input samples (e.g., dog barking)
should lie close to each other in the learned latent space and apart from the embeddings of less
relevant input (e.g., guitar).

better.

An SSL approach contains two major components: pretext tasks and learning objectives. The

commonality of these pretext tasks is that pseudo labels can be generated from the input data itself,

such as image inpainting [108], colorization [40], masked language modeling [42], and instance dis-

crimination [46]. Based on the learning objective, SSL approaches can be classified as generative or

discriminative frameworks. Generative models, such as Generative Adversarial Networks (GANs)

[109] and Variational Autoencoders (VAEs) [110], aim to learn the distribution of the data itself,

and the primary goal is to recover partial or full data distribution with the learned models. Dis-

criminative approaches, on the other hand, estimate the decision boundary of the discrete pseudo

labels for the pretext tasks.

Recently, similarity-based self-supervised learning [45, 46, 47] is becoming increasingly popular.

Instead of training an end-to-end model (i.e., a model that directly predicts the label from the

given input), an encoder network is trained to produce embeddings that are close to each other in

the latent space for similar input, thereby capturing the semantics of similar instances. As shown

in the example in Figure 2.3, the embeddings of two instances of the dog barking should lie much

closer to each other than the embedding of the sound of the guitar. These pre-trained embeddings

can be applied directly or fine-tuned with an output network on downstream tasks with few labeled

data. The positive pairs (similar input samples) are obtained by applying data augmentations on

the same input. This group of methods, however, tends to suffer from representation collapse,

where the learned embeddings are nearly constant regardless of the input. To combat this issue,

a straightforward method is to incorporate negative samples during training, introducing a dis-

criminative pretext task of identifying the positive pair from the negative ones. For each sample

in a batch of size N , SimCLR [46] augments this sample with random perturbations to obtain its

positive pair, while the rest 2(N − 1) samples from the same batch serve as negative pairs. On

the other hand, MoCo [45, 111] samples negative pairs from a memory buffer of embeddings from

the previous batches. The loss function for each positive pair of embeddings zi, zj ∈ RD is the

11

normalized temperature-scaled cross-entropy loss (NT-Xent) [112]:

LNT-Xent(zi, zj) = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸= i] exp(sim(zi, zk)/τ)
, (2.8)

where τ denotes the temperature parameter, and sim(zi, zj) =
z⊤i zj

∥zi∥∥zj∥ is the cosine similarity.

While these approaches show promising results for several image benchmarks, they usually require

large batch sizes for improved performances and therefore impose high requirements on memory. To

enable memory-efficient training, Barlow Twins [113] introduces a redundancy loss by minimizing

the correlation between different dimensions of the learned embeddings, which yields comparable

performance to the aforementioned methods with significantly lower batch sizes. Alternatively,

there are several approaches that can bypass sampling negative pairs while avoiding representation

collapse. For instance, SwAV [47] performs clustering on the embeddings and enforces consistency

of cluster assignments between positive input pairs. BYOL [114] and SimSiam [115] empirically

shows that it is viable to learn non-trivial representations by minimizing the distance between

positive pairs using the stop-gradient operation without having negative examples.

2.4 SEMI-SUPERVISED LEARNING

An alternative solution to make use of unannotated data is via semi-supervised learning, which

is midway between supervised and unsupervised learning. As defined in [54], in semi-supervised

learning setup, the training data D consists of a small supervised portion Ds = {(xi, yi)}Ni=1 with

N input-label pairs and a large unsupervised portion Du = {xj}Mj=1 containing M input without

annotation, where N ≪M .

While the limited labeled data Ds can be leveraged under the conventional supervised training

framework, there are two major schools of methods for exploiting the massive amount of unlabeled

data [116]. The first approach is consistency regularization [55], which introduces a separate learn-

ing task for Du. It assumes that the model should produce similar output for the same input under

reasonable perturbations. This concept is closely related to the similarity-based self-supervised

learning, but instead of having a pretext task for classifying positive and negative examples, the

learning is achieved with a loss term that minimizes the differences between the output of the

original and perturbed input.

The second group of methods is based on bootstrapping [117], where a pre-trained model is used

to assign pseudo-labels for Du to provide additional input-label pairs for training. One such method

is the self-training [57] depicted in Figure 2.4. The pipeline of self-training can be summarized as

follows: The first step is to train a teacher model f (0)

which repeats the procedure of

1. Train a teacher model f (0) using the labeled dataset Ds;

2. Assign pseudo-labels for data from Du with f0; denote the output dataset as D(1)
u ;

12

3. Training a student model f (1) using both Ds and D(1)
u ;

4. Optionally, making f (1) the new teacher model, and repeating steps 2 and 3.

To summarize, consistency regularization introduces an unsupervised learning task for the unlabeled

data, whereas bootstrapping provides labels to the unlabeled data so that it can fit under the

conventional supervised learning framework.

Labeled
Dataset

Teacher Model Unlabeled
Dataset

Student Model

Pseudo-labeled
Dataset

Figure 2.4: Self-training with bootstrapping. Paths with solid black lines indicate the data is used
for training the network. The path with solid blue lines stands for the process of assigning pseudo-
labels with the teacher model after being trained with labeled data. The black dashed line refers
to the step where the student model becomes the new teacher in the next iteration.

2.5 CONTINUAL LEARNING

...

...

...

Model

Data

Task

Figure 2.5: Pipeline of continual learning. Given a sequence of T tasks, the model ft(1 ≤ t ≤
T) is sequentially updated on the tasks T1, . . . , TT with the associated datasets D1, . . . ,DT that
potentially come from different distributions.

Besides requiring labeled data for training, supervised training also assumes that data samples

are independent and identically distributed (IID). Conventionally, this is achieved by sampling

batches of data from a large fixed dataset for each optimization step, and the process repeats

until the model converges. In practice, however, it might not be reasonable to assume that the

full dataset is available at once. Instead, the dataset is not necessarily stationary, as new data

samples may arrive throughout the model training. As illustrated in Figure 2.5, continual learning

13

(CL), or incremental learning, describes the procedure in which the model is trained on a sequence

of tasks T1, T2, . . . , TT and the model’s weights are continually updated. Each of these tasks is

associated with its own dataset, D1,D2, . . . ,DT , and these datasets are not necessarily drawn from

an identical distribution. The model is trained on these datasets one at a time with limited access

to past or future data. At the end of task t, the model ft should not only capture information from

the current dataset Dt, but also maintain good performance on all previous tasks, D1, . . . ,Dt−1, in

which it has been trained on. For supervised classification tasks, the dataset Dt comes with pairs

of input and labels {(xi, yi)}nt
i=1, (xi, yi) ∈ RD × Yt, where Yt is the set of class labels in Dt.

Depending on whether the task identity is provided at inference, task-aware and task-agnostic

CL are introduced in [118]. In general, task-aware CL requires the task label as a conditioning input

and involves separate prediction heads for each task, whereas task-agnostic CL shares the prediction

network without information on task identity. Task-agnostic CL could be further categorized as

domain-incremental and class-incremental settings. For any two distinct tasks Ti, Tj , i ̸= j, under

the setting of domain-incremental learning, the associated datasets Di,Dj do not share any data in

common (i.e., Dt∩Dt′ = ∅), and Dt,Dt′ are drawn from distinct distributions. In class-incremental

learning, each task is associated with a distinct set of class labels, where Yt ∩ Yt′ = ∅ for t ̸= t′.

Learning models that can capture new information while preserving prior knowledge under con-

tinual learning settings is a challenging task. A seemingly straightforward solution is to finetune

or retrain the model from scratch with both old and new data; however, such approaches are not

always feasible due to the lack of access to old data samples or the prohibitive cost of time and

computational resources. On the other extreme of the spectrum, naively training on a sequence of

datasets is also a suboptimal solution: this method would result in catastrophic forgetting [32], a

phenomenon where the performance on previous tasks is impaired as the model gets trained pro-

gressively on new tasks. A plethora of continual learning (CL) approaches have been proposed to

learn new tasks efficiently while retaining the performance of prior tasks without having full access

to the previous datasets. These CL methods can be divided into regularization-based, model-based,

and replay-based approaches.

When the model is trained on the new task, regularization-based methods encourage the model

to behave similarly to its previous snapshot. These methods usually require storing a copy of

a model at the end of each task. This is achieved in EWC [33]by penalizing changes of certain

parameters that are important to previous tasks. In the learning without forgetting (LwF) [34], the

network’s outputs are encouraged to match the outputs from the model obtained at previous tasks

using a distillation loss. With regularization, models are able to reduce the effects of catastrophic

forgetting without revisiting any data from the past. Nevertheless, regularization-based methods

still suffer from forgetting when trained with a large number of tasks.

Model-based approaches assign task-specific parameters for each additional task. The PackNet

[37] leverages network pruning, identifying weights important to previous tasks while freeing up

the rest for the learning of new data. The Piggyback [38] extends the PackNet by jointly learning

task-specific masks that can be applied on a shared backbone network, enabling the processing of

14

multiple sequentially learned tasks on a single network. Both Progressive Neural Network [119] and

Expert Gate [120] replicate the backbone network for each additional task, while lateral connections

between networks are used in the former and a gating mechanism is used to select task-specific

for the latter. While avoiding forgetting without relying on storing data, these approaches usu-

ally involve storage overhead for saving weights of the task-specific parameters, and the overhead

increases linearly with the number of tasks.

Replay-based methods require retaining data from the past, and they usually achieve superior

performance to replay-free approaches. At the end of each task, iCaRL [35] maintains a fixed size

exemplar set by computing each sample’s distance to the class-wise mean representation, storing the

nearest prototypes, and discarding the rest. GEM [121] and AGEM [122] store a random subset

into the buffer and apply constraints on the similarity of the gradients obtained on the current

data and buffered samples. Inspired by [121, 122], a gradient-based sample selection algorithm

is proposed in [123] to replace the constrained optimization. Despite the strong performance,

replay-based methods using real data from the past are not always infeasible in practice since

access to previously seen data may be limited due to storage constraints or privacy regulations.

The generative replay technique [36] is proposed to overcome this limitation, where a generative

network is trained in parallel to the classifier. For each task, both the classifier and the generator

are trained with the current data along with samples produced by the generator trained on previous

tasks. By simulating the replay buffer with a generator, this approach avoids storing actual data

while achieving strong performance on continual classification tasks.

15

CHAPTER 3: ARCHITECTURE DESIGN FOR SOUND EVENT DETECTION

Audio signals are presented in the form of time series, and sound events in our daily life are usually

characterized by distinct temporal structures. For the task of sound event detection, analyzing

neighboring time frames may provide cues for understanding the sound events at the current time

step. For instance, suppose we know the previous time frame is the onset of a baby crying, then

the event is very likely to occur at the current step, given that the sound of the baby crying usually

lasts for a few seconds. As described in Section 2.1, recurrent neural networks (RNNs) are known

for their effectiveness in modeling sequential information and have achieved promising results for

detecting sound events [77, 78]. With a hidden state vector, RNNs are able to aggregate and

propagate information back and forth.

Conventional RNNs for natural language processing take one-dimensional signals (i.e., text to-

kens) as input, and the hidden state vector gets unrolled across the temporal dimension. Audio

data, on the other hand, may come with extra dimensions. A common approach to model audio

signals with neural networks is by first transforming the one-dimensional time-domain signal into

two-dimensional time-frequency domain representations (e.g., STFT spectrograms). Another ex-

ample is spatial recordings obtained from microphone arrays, where the additional dimension is

related to the input channels.

In this chapter, we propose two variants of the RNNs that can adapt to the processing of multi-

dimensional audio signals. Meanwhile, these novel architecture designs effectively address the

challenges of learning under constraints for data collection. Section 3.1 presents the Multi-View

Networks (MVNs) for multi-channel speech event detection. Unrolling across both the channel

and the time dimensions, the MVNs do not require collecting a comprehensive set of multi-channel

audio data to train, and it is able to generalize well under an unseen number of channels during

evaluation. Next, we integrate multi-dimensional RNNs with adaptive computation in Section 3.2

for single-channel sound event detection. At each time step, the model intelligently decides the

number of sub-bands it needs to process in order to make a confident prediction about the sound

class. The proposed architecture improves the robustness of the model under scenarios where part

of the information is missing from the data.

3.1 MULTI-CHANNEL SPEECH DETECTION WITH MULTI-VIEW NETWORKS

3.1.1 Multi-Channel Sound Event Detection

Sound event detection is becoming an increasingly relevant problem, one in which we are seeing

a lot of activity and progress in the last few years. In this section, we focus on the scenario with a

lot of acoustic sensors, but neither they all record a clean enough signal for the task at hand, nor

1Part of this chapter has been published in [29, 30].

16

that they are all recording at any time. For instance, consider the case of a few people in an office

setting. Each person will likely have a cell phone with a couple of microphones, a laptop with a few

more, and maybe some mic-enabled wearable devices; there might be a room microphone tethered

to a conferencing system, or audio-enabled desktop computers in the room, perhaps a few hearing

aids, and maybe some security microphones as well. In this situation, we might want to perform

audio sensing tasks (e.g. diarization); although we have access to a large number of recordings in

the room, not all will be of use. For instance, some cell phones might be surrounded by interfering

noise and hence provide a non-informative signal, whereas others might be right next to the type of

sound we want to detect. Our goal is to explore algorithms that will not be misled by channels with

low-informational content and not be tethered to a fixed number of channels. In order to do so we

introduce the concept of the multi-view network (MVN) for the purpose of sound event detection.

The framework that we present here considers a simple classifier but is easily amenable to more

elaborate extensions in order to facilitate state-of-the-art classification and detection models, as

long as they fall under the umbrella of a deep learning model.

Deep learning models for monaural or binaural audio classification have been explored in many

settings. Several deep architectures have shown to be powerful tools for the tagging task [124, 125,

126, 127]. Neural-based approaches for multi-channel audio classification have been investigated in

automatic speech recognition, where the multi-channel input is first aggregated by a beamformer

front end before passing into the acoustic model (both the beamformer and acoustic model are

parameterized by feedforward networks or RNNs) [128, 129]. Multichannel acoustics are also used

in modeling domestic sound events, where the state-of-the-art methods rely on source separation,

dereverberation, and data augmentation as preprocessing steps and CNNs as back ends to classify

multi-channel audio input [130, 131]. These approaches, however, only explore scenarios with a

tight number of channels and have limited discussions on practical challenges associated with multi-

channel data. When a deep audio classification model is trained to perform classification on, e.g.,

four channels it typically can’t guarantee the ability to leverage information when more channels

are provided or to function when some are missing. In contrast to neural-based methods, classic

beamforming approaches can scale to an arbitrary number of input channels. However, with a fixed

number of channels available, learning methods are typically superior to beamforming. Here we

seek to remedy this by using network architectures that accept inputs of variable sizes, allowing us

to train on a fixed number of channels and deploy on any other number of channels at inference

time.

Our work extends the Multi-View Networks for denoising [28]. The denoising model attempted

to predict clean spectra from noisy recordings, our classification model presented here extends that

idea to that of performing classification. Our results show that MVNs are fit for classification

and that they can handle channel disturbances in a dynamic environment with simulated Room

Impulse Responses several times larger than our Short-Time Fourier Transform(STFT) frames.

17

3.1.2 Multi-View Networks

Time

...

...

...

...

...

Channel

Figure 3.1: Forward pass for MVN. Channel-wise information is aggregated by observing all shared
time steps of each channel before making a prediction for this frame. Then, the hidden state after
observing the last channel feeds into the processing of the first channel of the next time step,
enabling the propagation of temporal information.

RNNs have been commonly applied for single-channel audio classification or detection tasks.

They typically operate on a chosen short-time spectral representation and unroll across time to

leverage the temporal dependencies between successive spectral frames. The forward pass for RNNs

is defined as

ht = σh(Whxt +Uhht−1),

yt = σy(Wyht),
(3.1)

where xt ∈ RF is the F−dimensional spectral input at frame t, Wh,Wy,Uh are the learned

weights, ht is the hidden-state representation at time t, σh, σy are non-linearity functions for the

hidden and output layers, respectively, and yt is the prediction at time t. Due to the ability to

process arbitrary-length input, RNNs can be trained and tested by using sequences with different

numbers of frames (i.e., training with shorter sequences and testing on longer ones).

In this work, we study multi-channel voice activity detection where both the number of training

and test time frames and channels are potentially different. We propose the Multi-View Network

(MVN) [28], a multi-dimensional extension of RNNs that can unroll across both the channel and

the frequency dimension to enable the processing of arbitrary numbers in both channels and time

frames. As shown in Figure 3.1, for each time step the model processes the information for all K

18

channels in a fixed order before proceeding to the next frame. The forward pass is defined as

h
(k)
t =

σh(Whx
(k)
t +Uhh

(k−1)
t) if 1 < k ≤ K

σh(Whx
(k)
t +Uhh

(K)
t−1) if k = 1

,

yt = σy(Wyh
(K)
t),

(3.2)

where x
(k)
t is the spectral frame t of the k−th input channel, h

(k)
t is the hidden state representation

after observing the k−th channel of time t, and the other symbols follow the same definition as in

Equation (3.1). Because this recurrence operates on both channel and time dimensions, it enables

the model to process input with an unseen number of channels and time steps during inference.

3.1.3 Experimental Setup

STFT MVN Softmax

Noisy Recordings Magnitude Spectra Class Labels

0 0 1 1 0

Figure 3.2: Audio event classification pipeline with an MVN. For a multi-channel mixture, we first
take the magnitude spectra for each channel with STFT. The network takes the magnitude spectra
as input and predicts if each frame contains speech.

We next introduce the setup of the audio classification experiments, including the data set, the

baseline models, and two experiments evaluating the performance of the models. The models and

the data correspond to a binary classification task in which each input is classified as either speech

or not. Figure 3.2 illustrates the general pipeline for the experiment. These experiments model

various scenarios with many microphones where most of the recorded signals are extremely noisy

or contain little information. This reflects the potential application of this model in IoT sensing

problems.

Dataset

We prepare the data set for the binary audio classification experiments by mixing speech and

noise segments. The speech segments are selected from the TIMIT Corpus, which includes 25,200

recordings with 630 speakers of 8 major dialects of American English, each reading 10 phonetically

19

rich sentences [132]. The noise segments are selected from 13 different background noise recordings

such as “Airport”, “Babble” and “Restaurant” noises [133].

The dataset is made up of two-second noisy mixtures at a sampling rate of 16 kHz. To create a

sequence, we randomly select a two-second segment from one of the noise recordings and a segment

between zero to two seconds in length from one of the TIMIT speech recordings. Next, we normalize

each of the noise and speech segments to unit variance. We then mix them by adding the speech

segment to a random position within the two-second noise segment to obtain a single-channel

mixture. The resulting mixtures are approximately half speech and half background noise. We

apply STFT with a 1024 pt window and a 512 pt hop on each channel of the mixture and take the

magnitude spectrogram as the input to the models.

Based on this single-channel mixture, we propose different ways to generate multi-channel mix-

tures. For our experiments, we set the per-channel SNR of a noisy mixture by scaling it to the

desired SNR in decibels (dB). For the training and validation set, all mixtures contain four chan-

nels whose SNR values are evenly spaced between -5dB and 5dB. For the test set, the number of

channels is ranged between 2 and 30, emulating scenes with different numbers of available sensors

in some ad-hoc networks. We propose two scenarios for generating multi-channel mixtures for test-

ing. In the first scenario, each additional channel has a lower SNR value than the prior channels.

Specifically, for a mixture of K ∈ {2, 3, . . . , 30} channels, the SNR values for the channels are

0dB,−1dB, . . . ,−(K − 1)dB. The more channels, the lower the average SNR value. We call this

scenario “decreasing SNR”. We also propose an “increasing SNR” scenario in which a mixture of

K ∈ {2, 3, . . . , 30} channels contains SNR values of −29dB,−28dB, . . . , (−29+K−1)dB. The more

channels, the higher the average SNR value. In both scenarios, the channel indices are randomly

shuffled.

By providing the model with progressively worse channels we test the ability to ignore noisy

information. By providing progressively better channels we test the ability to leverage new infor-

mation. These setups expose the model to a diverse set of SNRS mimicking sensor networks in a

chaotic environment.

Baseline Models

We now introduce three different binary classification strategies as the baseline for the experi-

ments. Each model takes the mixture’s magnitude STFT spectra as input, and then pass it into a

GRU with 512 hidden units unrolling across time followed by a softmax layer that classifies each

input frame as either noise or signal.

We first consider the Averaging Input model. This model averages the magnitude spectra

across channels for each mixture, and it then feeds the averaged spectra into the network. The

output of the softmax layer is the estimated probability distribution of each frame being noise or

signal:

hΘ(Xt) = argmaxc∈{0,1}P (yt = c|xt;Θ) (3.3)

20

xt =

∑K
k=1 x

(k)
t

K
(3.4)

where Xt is the set of magnitude spectra at time t for a given mixture with K channels, x
(k)
t is

the spectral frame at time t for the kth channel, c ∈ {0, 1} is the binary label for each frame, and

Θ is the set of model parameters.

The second baseline is the Averaging Output model. This model takes the magnitude STFT

spectrogram for each channel of the mixture and processes each channel independently. For a

mixture with K channels, we will therefore have K different output probability distributions from

the softmax layer. We obtain the probability for each frame by averaging the K softmax probability

distributions:

hΘ(Xt) = argmaxc∈{0,1}

∑K
k=1 P (yt = c|x(k)

t ;Θ)

K
. (3.5)

The third baseline is the Max Output model. Similar to the Averaging Output model, this

model takes the magnitude spectrogram for each of the K channels of the mixture and produces

K output distributions for each frame. Instead of averaging the output probabilities, we use the

prediction with highest confidence:

hΘ(Xt) = argmaxc∈{0,1} max
k∈{1...K}

P (yt = c|x(k)
t ;Θ). (3.6)

Training Setups

For all experiments, we train with 250 batches of 40 k-channel mixtures per epoch(10k mixtures

total). We use Adam [134] with an initial learning rate of 1e-3 to minimize the cross-entropy loss,

and we train each model for 100 epochs and use the model saved at the epoch with the lowest

validation loss. The learning rate is decreased by a factor of 0.25 every 20 epochs.

3.1.4 Results and Discussions

We now report the performance of the MVN and the baseline models in two experiments.

Anehoic Mixtures

In the first experiment, we create multi-channel input data with instantaneous mixtures of speech

and environmental noise data according to Section 3.1.3. Since there is no reverberation applied

during the synthesis process, we refer to this setup as “Simple Mixtures”. Besides shuffling the

channel indices, we also shuffle the SNR for each channel at each time step in the time-frequency

domain. With such a setup, we aim to model a dynamic environment in which some sensors move

around the signal of interest or the signal received by the sensors is disturbed intermittently.

21

5 10 15 20 25 30
Channels

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Ac

cu
ra

cy

[Simple Mixtures] Accuracy vs # Channels (Decreasing SNR)

Averaging Input
Averaging Output
Max Output
Multi-View

5 10 15 20 25 30
Channels

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

[Simple Mixtures] Accuracy vs # Channels (Increasing SNR)
Averaging Input
Averaging Output
Max Output
Multi-View

Figure 3.3: Test accuracy of speech activity detection using anechoic mixtures with the decreasing
(top) and increasing (bottom) SNR scenario. Each experiment is repeated five times with different
initialization. The markers and the shades represent the mean and standard deviation, respectively,
for test accuracy.

Figure 3.3 (top) shows the prediction accuracy of the MVN and the baseline models from 2

to 30 channels with decreasing SNR. All models are trained on four-channel mixtures with SNRs

uniformly spaced between -5 and 5dB. For decreasing SNR, the SNR value decreases by 1 dB for

each additional channel. The models have similar performances when the number of channels is

less than 10; however, as it goes beyond, the performance of the MVN is more stable than the

baseline models. The result shows that the MVN is least affected by the channels with low SNR

22

values compared to the baseline models. For increasing SNR, as shown in Figure 3.3 (bottom),

each extra channel is 1 dB higher than the previous channel. The MVN takes the least number

of channels to achieve some desired accuracy, indicating that the MVN collects information more

effectively than all the baseline models. Moreover, the MVN is able to generalize from training on

a fixed number of channels and a limited range of SNRs to testing on a varied number of channels

with a large range of SNRs.

Room Simulation

0 5 10 15 20
meters

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

m
et

er
s

Sample Room Setup

Wall
Speaker Path
Noise Source
Microphones

Figure 3.4: Sample setup with one noise source, four microphones, and a moving speech source in
a 20-by-20 metered room. Diffuse noise is not pictured.

In this experiment, we use Pyroomacoustics [135] to model a room with length and width both

being 20 meters using the image source model using fourth-order echoes. We train the model on

many microphone-speaker-noise source geometries and test on unseen ones. To construct a simu-

lated room we first simulate a noiseless moving speech source. Then, using the same microphone

geometry we simulate a noise source randomly placed on a grid. To construct a mixture we take

a speech recording and a noise recording which correspond to the same microphone geometry and

mix them at some SNR. The separate simulation of noise and speech lets us mix and match to con-

struct training and testing environments without having to explicitly simulate every combination.

For training we use mixtures with per channel SNRs between -5 and 5 dB then at test time we

experiment with both “decreasing SNR” and “increasing SNR” as described in Section 3.1.3. All

speakers are modeled as point sources. In general, the simulated room impulse responses are five

23

times the length of an STFT window.

Inside the simulated rooms we place 2 to 30 microphones, a noise source and a diffuse noise. The

speech source moves in a noisy linear path from one corner of the room to another. The indices of

the microphones are randomized. Figure 3.4 shows one possible configuration of a simulated room.

5 10 15 20 25 30
Channels

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

[Room Simulation] Accuracy vs # Channels (Decreasing SNR)

Averaging Input
Averaging Output
Max Output
Multi-View

5 10 15 20 25 30
Channels

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

[Room Simulation] Accuracy vs # Channels (Increasing SNR)
Averaging Input
Averaging Output
Max Output
Multi-View

Figure 3.5: Test accuracy of speech activity detection using mixtures obtained from room simulation
with the decreasing (top) and increasing (bottom) SNR scenario.

Figure 3.5 depicts the accuracy of the MVN and the baseline models for speech classification.

The mixtures range from 2 to 30 channels. We observe a pattern similar to the experiment with

the anechoic mixtures in Section 3.1.4. Among the four models, the MVN is least affected by noise

24

and room impulse responses, and it collects information most effectively from channels that may

have high SNRs.

3.1.5 Conclusion

We have proposed a neural network method for multi-channel audio classification using an RNN

that unrolls across both channels and time. We demonstrate that the proposed architecture can

be deployed to unseen numbers of channels and unseen room geometries at test time. The system

is robust to noisy channels in a highly dynamic environment, making it unnecessary to eliminate

certain channels as a preprocessing step. Moreover, the system demonstrates the ability to leverage

information effectively from a limited number of clean channels when they appear among many

noisy channels. As such, this model is capable of being trained once and then deployed in settings

with a dynamically changing number of sensors (e.g. in an IoT case), without requiring retraining

or any modifications. The proposed framework is not limited to binary classification and can be

used for multi-class or multi-label classification, but also with any other type of neural network

architecture as long as the channel unrolling takes place. We hope that this will form the basis of

powerful future systems that have to operate under uncertainty on the number of input channels,

as opposed to resorting to simple averaging of voting schemes that are not as adept in taking the

data into account.

3.2 SOUND EVENT DETECTION WITH ADAPTIVE FREQUENCY SELECTION

3.2.1 Efficient Methods for Sound Event Detection

Deep neural networks have achieved significant progress in a variety of audio processing tasks.

Large models with millions of parameters have delivered new state-of-the-art results in sound event

detection [8], scene classification [13], audio captioning [136], and more [17]. The convolutional

recurrent neural network (CRNN) [8], composed of a series of convolutional and recurrent layers,

has become a dominant architecture in event detection competitions [137]. The success of the

CRNN architecture can be attributed to its ability to combine local information with convolutional

layers and temporal information with recurrent layers. Several promising lines of work are based

on improving these structures [9, 10, 11]. However, the deployment of these deep neural networks

is complex as different devices have different computational, storage, or bandwidth limits.

To address this issue, multiple concurrent lines of work have proposed techniques to reduce the

complexity of the model for audio processing tasks. These techniques include sparsity-based ap-

proaches [138, 139, 140, 141], and quantization based approaches [142, 143, 144]. In addition, a

variety of weight-sharing approaches have demonstrated strong results. Sub-band processing, an

approach that shares parameters across bands of input, has successfully decreased computational

costs while maintaining strong performance in sound event detection [145], acoustic scene classi-

25

fication [13], speech recognition [146, 147], speech enhancement [148] and source separation tasks

[149, 150]. However, these methods typically assume that models have access to a fixed number

of bands or inputs. Such an assumption is not realistic in real-world applications where the test

devices have limited bandwidth, or several bands are contaminated during transmission or storage.

In scenarios where the number of input channels or bands is time-varying, systems must scale

to large or small numbers of inputs. The multi-view network (MVN), introduced in Section 3.1,

provides a way to train a model on a fixed number of input channels and test on a varying number

of inputs [28, 29]. Often, the number of inputs is determined by the computational budget. There-

fore, adaptive computation models have been proposed to minimize computation in a time-varying

fashion. These models also incorporate computational expense into their training objectives. Adap-

tive computation time (ACT), originally proposed by [151], achieves this by constructing weighted

sums of hidden states and penalizing excessive hidden state usage. The ACT framework has

been successfully applied to a variety of other tasks including early exiting of convolutional neural

network (CNN) layers [152, 153], adaptive depth Transformers [154], microphone selection [155]

and in visual question answering through the differentiable adaptive computation time (DACT)

mechanism [156].

In this part of the thesis, we propose the Hidden-state Interpolated Differentiable Adaptive Com-

putation Time (HIDACT), a variant of CRNN that is trained with a fixed computational budget

and deployed with an intelligently adaptive budget. We demonstrate this technique in a mono-

phonic sound event detection task where the proposed models vary the number of frequency bins

requested across time. We compare these models to a suite of baselines, including full-band models

and sub-band models observing all frequency sub-bands. To verify that the proposed models are

compatible with the aforementioned advanced neural network architectures for event detection,

we integrate the network design and learning objectives of the adaptive computation with the

CRNN architecture in [8, 9, 10], as it is the most popular architecture in recent DCASE challenges

[137]. We evaluate the classification performance with frame-wise macro F1. We also evaluate

the computational cost of all techniques with the multiply-accumulate (MAC) operations [157].

Empirical results show that the proposed HIDACT can gracefully scale their computational bud-

gets effectively, allowing a single model to be trained and then deployed on devices with a varying

computational budget. Furthermore, during test time, HIDACT is able to generalize well under

partially missing information, accurately predicting sound classes when only a limited number of

frequency sub-bands are presented to the model.

3.2.2 Adaptive Computation with Neural Network

As a precursor for processing input sequences with a variable length, the MVN proposed in

Section 3.1 is designed for processing an arbitrary number of input channels for multi-channel

speech detection. Following the formulation in Equation (3.2), for each frame, the network observes

information from all channels before making a prediction. Then, the hidden state of the last step

26

of the current frame is passed to the processing of the first feature of the next frame, allowing the

propagation of temporal information. Despite being trained on a fixed number of channels, MVNs

can adapt to a wide range of input channels during test time, even under cases where a significant

proportion of the input channels contain little informative content.

MVNs are dynamic but not adaptive: the number of processing steps may change over time,

but MVNs always make use of all available features (channels) at each frame regardless of the

input and cannot determine the amount of information to process. In the context of single-channel

sound event detection, the number of frequency sub-bands at each time step can be treated as the

number of processing steps. To further reduce the amount of computation, it is desirable to have

an adaptive system that intelligently selects the number of frequency sub-bands for each frame

instead of processing all sub-bands. Consider an audio clip with a few seconds of conversation

followed by music. Intuitively, the low frequency bins of the speech frames have richer content,

whereas the high frequency bins of the music frames contain more information. For each frame,

the model unrolls from the lowest frequency sub-band to the highest one. At a speech frame, the

model with adaptive computation is able to detect speech after observing the first few sub-bands,

and it can intelligently stop processing the current frame and continue to the next frame. This can

be achieved with an implicit confidence model, which guides the model to halt the computation at

the current step if it predicts that there is no significant performance gain for processing additional

information. We next introduce formulations of adaptive computation with neural networks, which

serve as the foundation of the proposed HIDACT algorithm.

Adaptive Computation Time

Adaptive Computation Time (ACT) [151] is first proposed to train RNNs that can adjust the

amount of computation for each step. This is achieved by estimating the computational expense

at each frame, and the computation would terminate once the accumulated expense exceeds a

predefined budget. Formally, at frame t, the neural network computes the expense of processing

for the k−th step is defined as

h
(k)
t = fh(s

(k)
t) ∈ [0, 1], (3.7)

where fh is a feed-forward layer, and s
(k)
t ∈ RDs is the RNN’s step-wise hidden state with a

dimensionality of Ds. The computation will halt at N(t) steps once the accumulated expense

exceeds the budget:

N(t) = min{N :
N∑
k=1

h
(k)
t ≥ 1− ϵ}, (3.8)

27

where ϵ is a small constant. We define the remainder term R(t) as

R(t) = 1−
N(t)−1∑
k=1

h
(k)
t , (3.9)

which stands for the remaining computational budget after processing the input at time t. Alongside

the task loss, ACT aims to minimize the following objective

Lact =
∑
t

N(t) +R(t), (3.10)

which encourages the network to produce larger values of h
(k)
t at earlier steps k so that budget will

be used up within fewer steps, thereby reducing the amount of computation.

We define the aggregate hidden state st and output yt at frame t as the weighted sum of the

output of individual steps as follows:

st =

N(t)∑
k=1

w
(k)
t s

(k)
t , yt =

N(t)∑
k=1

w
(k)
t y

(k)
t , (3.11)

where the weights w
(k)
t follow

w
(k)
t =

h
(k)
t , if k < N(t),

R(t), if k = N(t).
(3.12)

After all the information is observed at time t, st is passed to the processing of time t+ 1.

Similar to the MVN, after all the information is observed at time t, the aggregate hidden state st

is passed to the processing of the next time frame t+1, thereby propagating temporal information.

It has been empirically shown that ACT allocates more computation on harder-to-predict input

and minimizes the computation on easier cases [151]. ACT has been extended to a variety of

other tasks, such as early exiting of CNN layers [152, 153] for image classification, adaptive depth

Transformers [154] for language modeling, and for multi-channel speech enhancement [155].

Differentiable Adaptive Computation Time

ACT suffers from instability in the number of processing steps and requires extensive hyperpa-

rameter tuning for good performance [155, 156]. This issue is attributed to the fact that the ACT

pipeline is not fully differentiable. As described in Equations (3.9) and (3.12), ACT imposes the

constraint that the intermediate weights w
(k)
t should sum to one. If the sum is greater than one,

then the weight of the final step is clipped, making the final output non-differentiable.

To overcome this issue, Differentiable Adaptive Computation Time (DACT) [156] is proposed

as an end-to-end differentiable pipeline based upon ACT. It applies to halt only at test time while

28

always processing all information during training. This is achieved by constructing the uncertainty

g
(k)
t = fg(s

k
t) ∈ [0, 1] at each step k, where fg is the neural network. The probability that a

subsequent processing step k′ > k may change the model’s prediction is defined to be the product

p
(k)
t =

∏k
i=1 g

(k)
t ∈ [0, 1]. The loss function is defined as

Ldact =
T∑
t

K∑
k

p
(k)
t , (3.13)

where T is the total number of time frames and K is the maximum number of processing steps.

Minimizing Equation (3.13) encourages the model to be confident about its prediction at earlier

steps.

The accumulated output a
(k)
t is a linear combination of the step-wise output y

(i)
t from all previous

processing steps i ≤ k:

akt =

0, if k = 0,

y
(k)
t p

(k−1)
t + a

(k−1)
t (1− p

(k−1)
t), if k > 0.

(3.14)

Notice that if g
(k)
t → 0 at step k then p

(k′)
t → 0 for all subsequent steps k′ > k; the model’s

prediction a
(k)
t is hence unlikely to change. This property allows us to define an early stopping

condition with a lower bound of l(k)[c∗] for the class c∗ with the highest probability and an upper

bound u(k)[c′] for the runner-up class c′ (details in Algorithm 3.1). During inference, we reach the

halting condition once l(k)[c∗] > u(k)[c′]. A theoretical proof of the bounds and the fact that the

class label is guaranteed not to change by subsequent processing steps is presented in [156].

Hidden-state Interpolated Differentiable Adaptive Computation Time

DACT is initially proposed for processing non-temporal information and is not concerned with

passing hidden states between temporal steps. Hence, it does not perform interpolation in the

hidden space. When unrolling across both spectral and temporal dimensions, the hidden state at

the last step of each frame feeds into the processing of the next frame. Preliminary experiments

show that this formulation leads to significant degradation in test performance. One possible

explanation is that the model always processes the maximum number of steps K during training,

but the termination condition might be reached earlier during inference with a hidden state distinct

from processing all K steps.

We overcome this problem with the proposed Hidden-state Interpolated Differentiable Adaptive

Computation Time (HIDACT) by interpolating between the step-wise hidden states, as follows:

q
(k)
t = s

(k)
t p

(k−1)
t + q

(k−1)
t (1− p

(k−1)
t). (3.15)

29

Algorithm 3.1: Forward pass of HIDACT.

Input: fs, fg, fy, x ∈ RT×K
Output: a ∈ RT×C , L
L ← 0
for t← 1 to T do

// Aggregate quantities

qt ← 0; at ← 0; p← 1
for k ← 1 to K do

if k == 1 then

s
(k)
t ← fs(qt−1,x

(k)
t)

else

s
(k)
t ← fs(s

(k−1)
t ,x

(k)
t)

end

y
(k)
t ← fy(s

(k)
t)

g
(k)
t ← fg(s

(k)
t)

// Update aggregate quantities

qt ← s
(k)
t · p+ qt · (1− p)

at ← y
(k)
t · p+ at · (1− p)

p← g
(k)
t · p

if training then
// Update loss

L ← L+ p
else

// Check halting condition

csort ← argsortcat[c] // Descending

c∗ ← c[1]; c′ ← c[2]
l[c∗]← at[c

∗](1− p)K−k

u[c′]← at[c
′] + p · (K − k)

if l[c∗] > u[c′] then
break

end

end

end

Similarly, we interpolate the step-wise output vector a
(k)
t with

a
(k)
t = y

(k)
t p

(k−1)
t + a

(k−1)
t (1− p

(k−1)
t). (3.16)

We describe the process of constructing the aggregate hidden state qt and output at at each time

frame t in Algorithm 3.1. With this interpolation, we impose a constraint on the accumulated

hidden state such that it cannot change significantly once the uncertainty p
(k)
t becomes small and

the halt criterion is met, significantly improving the performance and stability during test time.

30

3.2.3 Experimental Setup

Dataset

We synthesize a dataset for monophonic sound event detection due to the limited availability of

annotated data without overlapping events. Our data is synthesized from the dataset of DCASE

2016 Task 2 [158]. The training split of the DCASE dataset consists of 20 isolated segments for

each one of the 11 event classes. We randomly select 16 segments from each class to synthesize

our training set and 4 segments for the test set. These segments are downsampled to 16k Hz

and mixed with Gaussian noise with the signal-to-noise ratio (SNR) at 0 dB. Each one of the

synthesized recordings is 10 seconds long, and the training set contains 1000 recordings while the

test set contains 200 recordings. We compute the log mel-spectrogram with 128 features with a

window size of 1024 and a hop size of 256.

Model Configuration

Name # Params # Training # Test Loss
(1e6) bands bands type

FB1 2,633
8 8 LceFB3 2,893

SB

133

8
8 LceSBR random

HIDACT 8
adaptive

Lce + λLdact
ACT adaptive Lce + λLact

Table 3.1: Overview of the proposed HIDACT and baseline systems.

We partition the spectral frames into 8 non-overlapping sub-bands so that each sub-band con-

tains 16 contiguous frequency bins. Similar to the architecture in [9, 10], our sub-band network

contains four convolutional blocks with 16, 32, 64, and 128 channels, respectively, followed by a

128-dimensional unidirectional GRU with softmax output heads. We fix the kernel size to be 1× 1

to reduce the computation cost, and we perform convolution within each frequency sub-band.

We compare the proposed method with several sub-band and full-band baseline models. The

sub-band baseline model (SB) has the same model configuration as the proposed system with

the exception that the baseline is trained with only the cross-entropy loss Lce. We also propose a

variant of this baseline by masking out a uniformly random number (between 0 and 7) of contiguous

frequency sub-bands during training (SBR).

The full-band model (FB1) has the same configuration as the sub-band model except that the

GRU contains 2 layers, each with 512 hidden units, to handle the larger input dimension. We also

experiment with a version of the full-band model using 3 × 3 convolutional kernels (FB3). The

full-band models are also trained with the cross-entropy loss only.

31

Table 3.1 shows the comparison between the proposed and each of the baseline models, including

the model size, the number of sub-bands processed during training and inference, and the loss type.

All sub-band systems have roughly the same number of parameters, and they only differ in the

processing of intermediate hidden state and output. The sub-band models have significantly fewer

parameters compared to the full-band models. All the baseline models except SBR process a fixed

number of frequency sub-bands during both training and test time, while SBR is designed to process

a random number of sub-bands during training but also makes a fixed amount of computation at

test time. ACT is adaptive to the input during both training and test, while HIDACT always

processes all sub-bands during training and adaptively selects the number of sub-bands during

inference. All baseline models are trained only with the cross-entropy loss Lce, while the adaptive

systems have an additional pondering cost. λ is a hyperparameter controlling the weights of the

ponder term and is chosen as 0.001 for ACT and 0.01 for HIDACT in our experiments.

Training and Evaluation Details

During training, we randomly select a 2-second window (128 frames) from the entire input to

speed up processing. All models are trained with a batch size of 16 and optimized with Adam [134]

using an initial learning rate of 1e-4. We train the networks for a maximum of 100,000 iterations

(roughly 1500 epochs), and we apply early stopping if the validation macro-f1 has not improved

for 500 epochs.

We evaluate the model’s performance on the 200 test recordings using the frame-wise macro F1

score of the 12-way classification, including the background class. The macro F1 score is defined

as the mean of the class-wise F1 score. We use the amount of MAC operations [157] as a metric

for computational complexity.

3.2.4 Results and Discussions

Comparison with Baselines

We first compare the frame-wise macro F1 score of the test data of the proposed adaptive

frequency selection methods (HIDACT and ACT) to the baseline systems in Section 3.2.3. For each

model, we make eight different test runs. In each run, we limit the maximum number of frequency

sub-bands the model can observe during test time, from 1 to 8, to simulate an environment with

a different budget for data and computation. We start with the lowest frequency sub-band and

incorporate one contiguous sub-band at a time.

Figure 3.6 (left) shows the curve of F1 versus the maximum number of input sub-bands the model

takes as input. Notice that the f1 scores for the baseline models (SB, SBR, FB1, and FB3) always

lie on an integer value of the x-axis, since these methods always process all available sub-bands.

Among all the sub-band models, the HIDACT model on average processes the fewest frequency

32

1 2 3 4 5 6 7 8
Number of sub-bands

0.2

0.4

0.6

0.8

M
ac

ro
 F

1

0 1 2 3 4
MACs 1e9

0.2

0.4

0.6

0.8

ACT HIDACT SB SBR FB1 FB3

Figure 3.6: Test macro f1 scores for the proposed adaptive computation and baseline systems
against the number of frequency sub-bands (left) and the amount of MAC operations (right). The
proposed adaptive methods achieve comparable f1 scores within significantly fewer steps and MACs
than the baseline models.

sub-bands (less than 6) while having the highest test F1. Both HIDACT and ACT achieve roughly

70% F1 within an average of 5 computational steps per frame. The performance of the baseline

sub-band model SB degrades significantly when not observing all 8 sub-bands. SBR, the baseline

observing a random number of sub-bands during training, has a less significant performance drop

for fewer steps, but the performance with all 8 sub-bands is significantly worse than the other

systems. It is possible that SBR overfits an intermediate number of sub-bands and hence the

performance stops improving as more input is available.

Figure 3.6 (right) displays the test performance with MACs. Despite the overhead in estimating

the uncertainty and the computational cost, these adaptive methods can reach better performance

in fewer operations compared to the baseline sub-band SB and the baseline full-band FB1. The

performance is comparable to the full-band model FB3 with 3 × 3 kernels but with much fewer

parameters and only one-third of MACs.

Visualization of Adaptive Frequency Selection

We further analyze the behavior of our proposed adaptive computational method HIDACT with

respect to the input. Figure 3.7 shows the frame-wise number of frequency sub-bands processed by

the HIDACT model, overlayed on the log mel-spectrogram with 128 features with 8 sub-bands of

a test recording. Notice the lags of a few frames between the onset of the events and the change

in the processing steps. When observing a new event, the network needs to process a few frames

to leverage sufficient temporal information. On average, the model requires 6 sub-bands to assign

a background label to the frames with no active events; for event classes coughing, knock, and

laughter where the low-frequency components contain strong cues of the event types, the model

processes 4-5 frequency sub-bands to make a confident prediction; in contrast, for the phone class,

most of the rich content and useful information is found at higher frequency bins, and hence the

model takes up to 7 processing steps. This diagram indicates that HIDACT not only requires less

input and computation but also adaptively adjusts the computation cost based on the input signal.

33

0 2 4 6 8 10
6HFonds

0

400

800

1200

1800

2800

4000

5800

)r
Hq

uH
nF

y
(H

z)

0

1

2

3

4

5

6

7

1
um

bH
r o

f s
ub

-b
an

ds

cough

knock
laughter

keydrop phone ring

Figure 3.7: The number of sub-bands processed by the HIDACTmodel for a test recording overlayed
on the log mel-spectrogram. We include arrows to indicate the ground-truth event labels. HIDACT
can adjust the number of sub-bands it requests and processes based on the spectral properties of
the input signal.

3.2.5 Conclusion

We have proposed a method to efficiently detect non-overlapping sound event classes with adap-

tive frequency selection and sub-band processing. The model is trained once and can adjust its

computational cost according to the available computational budget during inference. It adapts

to the input signal and learns to make confident predictions without processing all frequency sub-

bands. Empirical results show that the proposed HIDACT can maintain the ability to accurately

detect sound events when part of the input information is missing, and it achieves comparable

performance to full-band or sub-band models with higher computational complexity.

34

CHAPTER 4: CONTINUAL LEARNING FOR SOUND CLASSIFICATION

In Chapter 3, we perform sound event detection under conventional settings for supervised learn-

ing, where the training of neural network models takes place by looping through a stationary dataset

until convergence. However, as audio data is being incessantly produced in our daily life, the as-

sumption of training under a fixed dataset may not be applicable in practice. In this chapter,

we explore the scenario where we continually update a sound classification system so that it can

adapt to the recently collected data samples while retaining its performance on the old data it has

previously been trained on. Suppose we want to train a sound classifier for environmental sound

classes. We are first given a set of recordings of animal sound classes (e.g., dog barking, rooster

crowing), and we train the model for a few epochs until it can effectively discriminate different

animal sounds. Then, some sound clips of natural sound (e.g., raindrops, thunderstorms) become

available, and we would like to update the model with the recently collected data so that the model

can discern both animal and natural sound. One way to do so is to train the model with both the

animal and the natural classes, but it is computationally inefficient to train with all the past and

current data, and this approach is difficult to be scalable as the size of the dataset keeps growing.

An alternative strategy is to train the model with only the new natural sound clips; however, the

model may lose the ability to recognize animal sounds as it picks up natural sounds, a phenomenon

referred as catastrophic forgetting [32] where the performance on previous tasks is impaired as the

model gets trained progressively on new tasks.

To balance the tradeoff between efficiency and performance, a plethora of continual learning

(CL) approaches have been proposed to learn new tasks efficiently while retaining the performance

of prior tasks without having full access to the previous datasets. In Section 4.1, we propose

to train a sound classifier on a dataset with the number of sound classes increasing over time

using the generative replay method, where we continually train a generator alongside the classifier

to automatically generate data samples from previous data. Apart from the supervised learning

framework, in Section 4.2 we further investigate approaches to incrementally learn representations

for sound classes with limited or no annotations to the audio clips.

4.1 CONTINUAL LEARNING OF NEW SOUND CLASSES WITH GENERATIVE REPLAY

4.1.1 Motivation for Continual Learning

Standard supervised machine learning setup posits that the full training dataset is available to

the model at once. This is a simplistic assumption. In the wild, the training data may arrive in

(non-iid) batches and new classes may appear throughout the learning process. This is typical of

human learning where new concepts (classes) are learned throughout life.

2Part of this chapter has been published in [39, 53].

35

Continual learning (CL) proposes a more realistic sequential learning paradigm composed of

training episodes [159, 160, 161]. At each episode, the model is only trained on data from a single

new task and does not have access to data from earlier tasks. Continual learning is also useful for

devices with constrained access to data (either due to storage limitations, or privacy constraints).

In such cases classifiers need to be continually trained to learn new classes while minimizing storage.

This limits the amount of possible retraining on previous tasks.

Continual learning is particularly challenging for neural networks because of catastrophic forget-

ting : at each episode the network will “forget” the knowledge it has learned in earlier tasks [32].

While several methods have been recently proposed for continual learning [34, 35, 36, 121, 122],

much work remains before continual learning becomes a practical technique.

In this section, we explore a continual learning setup for training a classifier on environmental

sound classes. This is a challenging task because it necessitates learning a classifier on time-series

data, as opposed to typical applications in the continual learning literature that focus on static

data (e.g., images) [35]. In addition to being an analog to the way in which human beings learn to

classify sounds, the continual learning setup is also useful in practical applications where continual

learning of new sound classes needs to be performed by devices with constrained access to data

(either due to storage limitations, or privacy regulations).

To alleviate catastrophic forgetting, we utilize the generative replay technique [36], which provides

very competitive continually-learned classifiers. A generator is trained simultaneously with the

classifier. For each task, the generator is used to simulate earlier-task examples for the classifier.

Further, we propose a convolutional autoencoder architecture to embed time-series data, and we

make use of the two-step learning framework introduced in [162, 163] to learn the generative model

to replay earlier tasks.

We experiment with the ESC-10 (Environmental Sound Classification) dataset [66]. Namely, we

compare our proposed generative replay-based method with rehearsal which consists in storing a

fixed percentage of the data associated with earlier tasks to combat forgetting. Stored data is used

as training data in each of the subsequent episodes. This method has been shown to be a very

strong baseline [164]. We show that by using a generative model with a size approximately equal

to 4% of the whole training set, we are able to match the classification accuracy obtained with a

rehearsal method that stores 20% of the training dataset.

4.1.2 Methodology for Supervised Continual Learning

In Section 2.5, we provide a definition of continual learning, a setting in which the goal is to train

a model on a sequence of datasets {D1,D2, . . . ,DT }, where each dataset corresponds to a (new) task

T1, T2, . . . , TT . According to the standard continual learning setup, when training the model for task

t, the data of past tasks and future tasks are not available (we are only allowed to use the dataset

Dt). The objective is to learn a single model which is able to predict well on data from all tasks

T1, . . . , TT , despite training in a sequential manner. This is challenging in neural network models

36

as training on the current task without incorporating data from earlier tasks typically results in

forgetting the existing knowledge. This phenomenon is referred to as Catastrophic Forgetting [32].

Namely, when training for task t, the model forgets the knowledge related to tasks with index < t,

if no measures are taken to mitigate forgetting. In addition to avoiding catastrophic forgetting,

another goal of continual learning is to improve/speed-up learning on future and past tasks. This

is referred to as forward transfer and positive backward transfer [121]. This is a very interesting

research direction for continual learning, but in this part of the thesis we focus more on combating

catastrophic forgetting. Next, we describe two strategies for alleviating catastrophic forgetting.

Naive Rehearsal

A simple method to combat catastrophic forgetting is to keep a buffer of random samples to help

the model remember the past tasks. The buffer contains examples from earlier tasks to reinforce the

knowledge from earlier tasks, when training on the current task. This method is referred to as naive

rehearsal or simply rehearsal, as we do in the rest of this paper. Although simple, this method is

surprisingly effective, and has been shown to perform very comparable to state-of-the-art continual

learning methods on various standard continual learning experiments [164]. For this reason, we

use rehearsal as a baseline method. When training for task Tt, we keep a buffer M =
⋃t−1
k=1Mk,

where Mk = {X buffer
k ,Ybuffer

k } ⊂ Dt contains randomly selected annotated data from the dataset

Dk associated with task Tk with k ≤ t− 1. The cost function associated with rehearsal is:

Lrehearsal(Dt,M1:t−1, ft) =
1

|Dt|
∑

(x,y)∈Dt

Lclf(y, ft(x))+

t−1∑
k=1

1

|Mk|
∑

(x′,y′)∈Mk

Lclf(y′, ft(x′)), (4.1)

where the input features are denoted with x, the target values are denoted with y, ft stands for

the continually trained classifier at task Tt, and Lclf is the loss for classification, which is typically

chosen as the cross-entropy loss. The first term accounts for the loss on the current task (current

loss), and the second term accounts for the rehearsal loss. In Figure 4.1 we illustrate the schematics

of the loss function.

ftXt Ŷt current loss

X buffer
1:t−1 Ŷ1:t−1 rh. loss

Yt

Ybuffer
1:t−1

Figure 4.1: The diagram for the loss computation in the naive rehearsal method at task Tt. We
separately compute two losses for the current tasks, and a rehearsal (rh.) loss on the stored buffer.

37

Even though rehearsal combats forgetting, it requires the storage of data in the form of a rehearsal

buffer. In the next section, we introduce another method that mitigates forgetting by continually

learning a generative model, which does not require storage of past data items.

Generative Replay

An effective alternative to rehearsal is generative replay [36]. This method continually trains a

generative model in addition to the classifier to replay the data from earlier tasks. By virtue of

having a generative model, in lieu of storing examples from earlier tasks, we generate data and

use this generated data to avoid forgetting (by using it as training data). The cost function for

continual classifier training is therefore written as follows:

Lgenreplay(Dt,Dg, ft) =
∑

(x,y)∈Dt

Lclf(ft(x), y) +
∑
xg∈Dg

Lclf(ft(xg), ft−1(xg)), (4.2)

where the first term is the loss associated with the current task, and the second term is the loss

associated with the rehearsal, where Dg is data simulated from the generative model Gt−1 after

being done with training it until task t− 1, which is used to rehearse the datasets {D1, . . . ,Dt−1}.
The schematic illustration of this loss function is shown in Figure 4.2.

X replay
1:t−1

ft−1 Ytarget
1:t−1 replay loss

ft Ŷ1:t−1Gt−1

Xt Ŷt current loss
Yt

Figure 4.2: Training the classifier using the generative replay at task Tt: The data for the earlier
tasks is generated from Gt−1. The outputs of the current classifier ft and the earlier classifier ft−1

are matched to compute a replay loss. The weights of the modules in dashed blocks are kept frozen,
and only the modules in solid blocks are updated.

Similarly, the generator Gt is trained by using the examples from the current dataset Dt and the

simulated examples from the generator Gt−1:

Lgen(Dt,Dg, Gt) =
∑
x∈Dt

Lgen(x) +
∑
xg∈Dg

Lgen(xg), (4.3)

where again the loss function is composed of the current loss term (the first term) and the rehearsal

loss (the second term). In both (4.2) and (4.3) we choose |Dt| and |Dg| such that the weight of

each task is equal. We illustrate the workflow of the method in Figure 4.3.

Note that in our application the generator G produces spectral frames since our goal is to classify

segments of audio data. Next, we describe the details of the generative model and architecture for

G.

38

Gt−1 X replay
1:t−1 Gt replay loss

Xt current loss

Figure 4.3: Diagram for continually training a generative model using generative replay: At task
t, the data is replayed from the generative model Gt−1, and its likelihood is evaluated on the
generative model Gt that we currently train.

Generative Model

In this paper, we use maximum-likelihood-based generative modeling as opposed to Generative

Adversarial Networks (GANs) [109] as the former is significantly easier to train [165]. In our

generative models, we use a convolutional autoencoder to compute embeddings for spectrogram

sequences. The architecture of our autoencoder is shown in Figure 4.4, which consists of using

convolutional layers across the time axis to model the temporal structure and then reducing and

increasing the feature dimensionality using fully connected layers. After learning the embeddings

h, we learn the generative model by fitting a Gaussian mixture model (GMM) on the latent em-

beddings, as described in the 2-step learning method in [162]. The advantages of using GMMs in

the latent space (as opposed to using a standard Gaussian prior like the standard VAE [110]) is

advocated by multiple papers in the literature [162, 166, 167, 168, 169]. In our experiments, we

observed that separating the learning of parameters of the prior distribution on the latent variables

from the learning of the autoencoder resulted in the accurate learning of the generative model

(which we refer to as 2-step training). We have observed that the joint training of GMM and the

autoencoder often resulted in slightly worse results than that of the 2-step learning approach, and

therefore we have chosen to use the 2-step training rather than jointly training the prior and the

autoencoder. We also compare the proposed generative modeling scheme with VAEs with stan-

dard Gaussian prior [110], and observe that the proposed generative modeling scheme yields many

superior generations, which results in better classification.

Fully C
onnected

Fully C
onnected

Encoder

C
onv 1D

C
onv 1D

C
onv 1D

Decoder

Transpose C
onv 1D

Transpose C
onv 1D

Transpose C
onv 1D

h

Autoencoder Architecture

Figure 4.4: The autoencoder architecture used to model the spectra. The convolutional encoder
maps the spectra into latent space h, which is then transformed by the decoder into a reconstructed
representation. We apply ReLU after each of the first two convolutional layers in both the encoder
and the decoder.

39

4.1.3 Experimental Setup

In this section, we introduce our continual learning setup for audio classification. The experiments

simulate scenarios where the model incrementally learns new sound classes without having full

access to the previously-encountered sound classes. The model observes ten sound classes in a

sequence of five tasks, where in each task two new classes are presented. This is similar to the

setup in [170].

Dataset

We select the publicly available ESC-10 [66] dataset for our experiments. The ESC-10 dataset

consists of 400 five-seconds recordings sampled at 44kHz of acoustic events from 10 classes, namely:

chainsaw, clock ticking, crackling fire, crying baby, dog, helicopter, rain, rooster, seawaves, and

sneezing.

For each recording, we extract a Time-Frequency spectrogram representation using a 2048 sam-

ples window and a 512 samples hop size. Next, we compute the square root of the mel-scaled

spectrogram using 128 mel-features for each spectrogram. We further segment our data to snippets

that correspond to ≈ 220 ms so that each input data sample has a size of 128 × 16. We ignore

low-energy spectra whose Frobenius norm is less than 1e-4. Finally, we normalize each spectrogram

by the maximum energy from each mel-spectrogram so that each value lies in [0, 1]. Our initial

experimental results demonstrate that normalized mel-spectrograms are more discriminative under

the chosen classifier architecture and can be easily reconstructed from the generator. In total there

are 9500 mel-spectrograms that we further split into training, validation and test set with a ratio

of 7 : 2 : 1.

To set up the experiment in the setting of continual learning, we partition the dataset into five

subsets/tasks where all classes are mutually exclusive. We group the classes based on the their

label indices (i.e, dog with rooster, rain with seawaves) so the two sound classes from the same

group are more similar to each other compared to classes from the other groups. We randomly

permute the group order in different runs.

Model Architecture

The classifier contains two 1-D convolutional layers with 64 and 128 filters, respectively, one

average pooling layer and two fully-connected layers with 50 and 10 hidden nodes each. For the

convolutional layers, we use a filter of length 3 and perform same-padding to the input. We use

a rectified linear unit (ReLU) as a nonlinearity after each convolutional layer and the first fully-

connected layer. The output of the second fully-connected layer is passed into a softmax layer for

a 10-class classification.

For the generator, we experiment with both the autoencoder and the variational autoencoder

architectures. The encoder consists of three 1-D convolutional layers followed by a fully-connected

40

layer with 50 hidden units. Each of the convolutional layers uses 128 filters of lengths 6, 4, and 3

and strides of 1, 2, and 2, respectively. The decoder consists of three 1-D transposed convolutional

layers, each with 128 filters of length 4, 4, and 7 and stride of 2, 2, and 1, respectively. We do

not perform zero-padding and we apply ReLU after each one of the first two convolutional layers

in both the encoder and the decoder as shown in Figure 4.4. For the autoencoder, we train a

50-component GMM for the latent embedding, where each Gaussian component is parameterized

by a diagonal covariance matrix. The variational autoencoder architecture contains an additional

linear layer on top of the convolutional encoder with 50 dimensions with a reparameterization trick

for being able to sample from the latent space.

Training Setup

We compare the proposed generative replay mechanism with rehearsal-based methods. We set

up the rehearsal data by storing p% of the training data at each task into a buffer. This buffer

is available to the models throughout all tasks. In our setting, the size of the buffer increases

linearly with the number of tasks. We adjust the percentage of the rehearsal data such that the

data from each task have an equal probability to be drawn. The parameter of the percentage p of

the rehearsal data lies in p ∈ {5, 10, 20, 100}.
For all experiments, we optimize our models using the Adam optimizer The batch size is set

to 100, and there are 10 - 15 batches per epoch for each task. To train the classifier, we use an

initial learning rate equal to 5e-4 and we train it for 300 epochs by minimizing the cross-entropy

loss for each task. Moreover, in order to train the generator, we use an initial learning rate of 1e-3

and train it for 1700 epochs for each task. The autoencoder loss is the binary cross-entropy for

each time-frequency bin between the original spectrogram and the reconstruction. The loss for the

variational autoencoder is the sum of binary cross-entropy and KL divergence between the modeled

distribution and unit Gaussian.

4.1.4 Results and Discussions

We report the performance of various replay strategies under the sound classification setup. For

each experiment, we report the performance obtained by the models using five different permu-

tations of the order of tasks. In each task, we report the mean accuracy on the test set, which

contains all sound classes that the model has seen up until the current task.

Overall Results

Figure 4.5 shows the test accuracy of different generative replay strategies and rehearsal methods

for various buffer sizes. “AE+GMM” refers to the proposed generative replay setting with an

autoencoder and a Gaussian mixture learned in two steps as described in Section 4.1.2. “VAE”

41

1 2 3 4 5
Task id

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Test accuracy of ESC 10 with Different Replay Strategies

AE+GMM
VAE
RHS 100%
RHS 20%
RHS 10%
RHS 5%

Figure 4.5: Test accuracy on the ESC-10 dataset using generative replay and rehearsal methods
with various buffer sizes. The x-axis and y-axis denote the task index and the model’s test accu-
racy, respectively. Each point represents the mean of the accuracy after five runs using different
permutations for the tasks.

1 2 3 4 5
Task id

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Test accuracy of ESC 10 with Different GMM Components

#Comp=1
#Comp=5
#Comp=10
#Comp=20
#Comp=30
#Comp=40
#Comp=50

Figure 4.6: Test accuracy on the ESC-10 dataset using AE+GMM over different numbers of Gaus-
sian components.

corresponds to the variational autoencoder mentioned in Section 4.1.3. “RHS X%” denotes a

rehearsal-based method with X% training data stored in the buffer. “RHS 100%” is used as an

upper-bound estimation of the performance of any replay strategy since it corresponds to the ideal

case where all the training data is available in all future stages.

42

Figure 4.7: Mel-spectrograms from the training set (column a), generated by AE+GMM (column
b) and by a VAE (column c). Notice how the VAE generated data do not reproduce salient class
features, whereas the proposed AE+GMM generator does so better.

Overall, RHS 100% has the highest mean accuracy and it fits the expectation as an upper-bound

estimation of any replay strategy. The performance of rehearsal methods increases as the proportion

of the data stored in the buffer increases. We also notice that for all methods the variance of the test

accuracy tends to decrease as the number of tasks increases. Initially, the variance is large because

a random binary classification task might deviate too much in terms of difficulty from another.

However, towards the end, the models have seen all sound classes regardless of the permutation,

and therefore the mean accuracy tends to stabilize.

Impact of Two-step Learning and Number of Gaussian Components

We next assess the choice of the generative model between the conventional VAE and the proposed

two-step AE+GMM. From Figure 4.5, we can observe that AE+GMM significantly outperforms

VAE as a replay strategy throughout the sequence of tasks. The average accuracy after the final task

for AE+GMM (78.7%) is similar to RHS 20% (80.6%), while VAE (33.6%) performs significantly

worse than 5% (61.5%). We analyze such notable differences by looking at the samples generated

by both models as illustrated in Figure 4.7. We show three examples from the training set and

the respective generations using AE+GMM and VAE. Note that VAE smooths out the temporal

43

structure of the generated mel-spectrograms and lacks diversity between classes. On the other hand,

AE+GMM generates mel-spectrograms with a much more diverse temporal structure, exhibiting a

much closer resemblance to the examples from the training set.

To further examine the factors leading to AE+GMM’s superior performance over conventional

VAE, we perform an additional ablation study on the number of Gaussian components for the two-

step training. To highlight the impact of two-step learning, we include the results when the latent

space of the two-step model is parameterized with only one Gaussian with diagonal covariance,

which is equivalent to the latent space parameterization of the conventional VAE, as shown in the

curve in Figure 4.6. Under the single Gaussian, the two-step model obtains an accuracy of 56.7%

at the end of the final task, surpassing the jointly trained VAE by 23.1%. The accuracy values

increase as the number of Gaussian components rises, but the performance gain diminishes beyond

20 components. We did not experiment with over 50 components since the training of the GMM

becomes unstable and less likely to converge.

Comparison Between AE+GMM and Rehearsal Based Methods

We observe that AE+GMM performs significantly better than rehearsal schemes with buffer

proportion p = 5%, 10%. The accuracy of AE+GMM is almost identical to RHS 20% at the last

task and marginally higher in all previous tasks. The total number of trainable parameters in

AE+GMM is less than 480, 000. The size of the network is equivalent to 480000/(128×16)
9500×0.7 ≈ 3.5%

of the training data. In other words, using a generator whose size is less than 4% of the training

data, we are capable of reaching the accuracy comparable to storing 20% of the data. The result

demonstrates the effectiveness of AE+GMM generative replay strategy when limited storage space

is available.

4.1.5 Conclusion

We showed that generative replay is an effective continual learning method for audio classification

tasks. Using a generative model whose size is less than 4% of the size of the training data, we obtain

a test accuracy comparable to a buffer-based rehearsal scheme which needs to store 20% of all used

training data. These results highlight the potential of using generative models instead of keeping

previously seen training data when there are storage constraints. We see these aspects as being

crucial to sound recognition systems for which keeping prior training data is prohibitive, but often

need (to learn) to perform new tasks on the fly.

44

4.2 LEARNING REPRESENTATIONS FOR NEW SOUND CLASSES WITH CONTINUAL
SELF-SUPERVISED LEARNING

4.2.1 Motivation for Continual Representation Learning

Deep neural networks for audio classification require large amounts of data to be trained on

[17, 50]. However, in many realistic deployments, additional labeled data for new sound classes

might present itself after initial training, necessitating a time and resource-consuming retraining

process that incorporates both past and new data. This problem could be exacerbated by storage

constraints, hardware corruption, or privacy regulations that can limit access to past data. As

introduced in Section 2.5, continual learning has been a field of rising interest to address the

aforementioned concerns. The goal is to design learning algorithms that would continuously learn

from a sequence of tasks to let the models imitate the learning process of human beings. A major

problem that arises when a model is continually trained is called catastrophic forgetting [32], which

is associated with deteriorating performance on previously learned tasks.

In Section 4.1, we present an approach based on generative replay to combat catastrophic forget-

ting when learning sound classes under a supervised continual learning setup. In this section, we

extend this setup to unsupervised learning. We propose to adopt continual representation learn-

ing (CRL) for the sound event classification task and experimentally show its efficacy for class-

incremental continual learning. Representation learning decouples the learning into two stages:

i) Learning of an encoder with a representation-specific objective (e.g., with a self-supervised learn-

ing objective). ii) Finetuning of a shallow classifier on top of the encoder for a downstream task. To

the best of our knowledge, this is the first time that continual representation learning has been used

in the sound event classification domain. We argue that using a representation learning pipeline

in continual learning is especially beneficial for practical use-case implications. Namely, i) The

majority of the computational burden is passed on to the encoder learning stage, and therefore the

shallow output layer can be trained including earlier tasks. ii) Decoupling the output head gives

the additional flexibility to add an indefinite number of classes by re-training an ad-hoc output

head for each task, which is required in real-life applications. iii) In the case where labeled data is

scarce, learning an encoder from unlabeled data is beneficial for generalization performance, as we

showcase with our experiments.

As hinted above, we adopt self-supervised learning (SSL) within CRL. As mentioned in Section

2.3, SSL is a relatively novel research area that is revolutionizing deep learning due to its impressive

ability to learn features that generalize well without labels. In SSL, deep networks are trained with

pretext tasks such as clustering [171], mutual information maximization [172], image colorization

[40], masked token prediction [42, 44], contrastive learning [45, 46, 47] and so on. These early works

on self-supervised learning focused on images and natural language processing. Only recently has

self-supervised learning been extended to audio and speech as well [48, 49, 50, 51, 173, 174].

In the space of incorporating representation learning within a continual learning setup, recent

45

works include [175, 176, 177, 178]. Different from our work, these works are applied to images

and involve explicit ways to combat catastrophic forgetting. A continual representation learning

method for speech recognition is proposed in [179] by learning more languages over time, but the

size of the model grows as more languages are involved, and language information is required during

inference. In contrast, we focus on a more challenging setup where the model remains constant in

size while progressively learning new sound classes, and no prior information on the input data is

needed at test time (e.g., category of the sound).

To summarize, in this section, we propose using the continual representation learning paradigm

for class-incremental learning of new audio classes. We list our contributions as follows:

• We show that adopting representation learning for continual learning of new sound classes

enables the study of the practically interesting case where only a small amount of labels is

present. This is a realistic use case where the system is mainly trained on unlabeled data. To

the best of our knowledge, this is the first study to explore continual representation learning in

the audio domain with a partially labeled dataset setup. We investigate both in-domain and

out-of-domain performance. For the evaluation of the partially labeled use case, we propose

several evaluation metrics.

• We empirically observe that even if we do not employ an explicit mechanism to combat

forgetting, employing similarity-based self-supervised learning within CRL yields better per-

formance than continual supervised representation learning, and comparable performance to

distillation-based continual learning methods to combat forgetting, which requires additional

storage and computation.

4.2.2 Methods for Continual Representation Learning

Training Task

Task Encoder

Task

In-domain Evaluation Task

...
...

Encoder

Evaluation

Classifier

Out-of-domain Evaluation Task

Encoder

Evaluation

Classifier

Figure 4.8: (Left) Training pipeline for continual representation learning: Representations
are learned by continually training an encoder fθ with one task/dataset at a time. (Middle) In-
domain evaluation: The representations are evaluated by training a classifier h′ψ using a labeled
training set on top of the frozen fθ. (Right) Out-of-domain evaluation: The dataset used for
training the output head h′ψ is different from the dataset for encoder training.

State-of-the-art representation learning approaches require a large dataset to train high-quality

representations. In practical cases where the dataset grows over time, frequently updating the model

using all of the data samples is computationally prohibitive. The proposed continual representation

learning framework circumvents this bottleneck by training an encoder only for the most recent

46

task, which carries the majority of the computational burden. For instance, suppose we collect new

data with new urban sound types (e.g., car horn, gunshot) to train a model that has been previously

trained to recognize animal sounds (e.g., dog, rooster). Instead of retraining the network on both

datasets, the encoder is updated only on the urban sound classes while preserving the ability to

effectively represent animal classes. Once the encoder is updated with new unlabeled data, a

shallow output layer is trained from scratch on top of the encoder, with available labeled data.

That is, in continual representation learning, we aim to learn low-dimensional embeddings by

training an encoder model fθ on one task at a time. Under the class-incremental setting, in each

task, the encoder is trained with data from a set of classes that corresponds to the current task:

When entering a new task, fθ is initialized from the end of the previous task. It is then updated

with a representation learning objective with the current dataset Dtrain
t . After training, the learned

representations are evaluated on a classification task. A shallow classifier h′ψ is trained on top of

the encoder’s output using a small amount of labeled data Deval
t with the encoder’s weights fixed.

In the case of in-domain evaluation, Deval
t contains examples from previous classes (see Figure 4.8),

and in the case of out-of-distribution evaluation, Deval
t may come from a different distribution from

the dataset used for training the encoder. This continual learning framework is shown in Fig. 4.8.

We propose using similarity-based self-supervised algorithms for representation learning in this

framework, and we call this approach continual self-supervised representation learning (CSSL).

As introduced in Section 2.3, these similarity-based SSL methods maximize the similarity between

embeddings from a pair of distorted views of the same input to make representations robust to

distortions. We consider SimCLR [46, 180], MoCo [45], and Barlow Twins [113] as candidates

for the continual representation learning framework. To create positive pairs for these similarity-

based methods, we apply audio data augmentation by first taking fixed-length random segments

from each clip, and then applying SpecAugment [181] to the spectrograms. We compare CSSL

with continual supervised representation learning (CSUP), which relies on the assumption that

annotations are accessible. In CSUP, we train an additional classifier hψ jointly with fθ to propagate

label information. This classifier is discarded for downstream tasks or evaluation. For a fair

comparison, we apply identical data augmentations and encoder architecture to both approaches.

We hypothesize that similarity-based SSL is beneficial in the context of CRL due to its strong

generalization ability. The set of features learned from the current data generalizes well to past

data, and consequently, this results in a system that is less prone to forgetting.

4.2.3 Evaluation for Continual Representation Learning

SSL algorithms are usually trained and evaluated in two steps [45, 46, 113]. First, the encoder

network that maps the input to the latent embedding is optimized with the representation learning

objectives. Then, the learned embedding is used as input for downstream classification tasks.

Similarly, in the continual learning setting, we first learn the representation with the encoder fθ

only using data from the current task. At the end of each task, we evaluate the representation by

47

training an evaluation classifier, h′ψ, randomly initialized, on top of the pre-trained frozen encoder

(see Fig. 4.8). Note that h′ψ is much smaller in size compared to the encoder and is computationally

more affordable to train. Also, notice that the classifier hψ in CSUP (trained jointly with fθ) is

discarded before evaluation since only the classes for the current task are seen during training while

all previously seen classes are used for evaluation. Initializing a new evaluation classifier h′ψ from

scratch ensures a fair comparison between CSSL and CSUP.

Following supervised continual learning metrics for classification, for each task t ∈ {1, 2, . . . , T},
we compute the accuracy of the classifier on the test set of task j using the encoder at task t denoted

as At,j . We measure the average accuracy at the end of each task: Āt =
1
t

∑
iAt,i and obtain the

average accuracy at the end of the training, Ā = ĀT . Additionally, we compute forgetting, which

measures the average decrease in accuracy of each task between its peak and the final performance,

defined by F̄ = 1
T−1

∑T−1
j=1 max

τ=1,2,...T
(Aτ,j −AT,j).

We propose a set of evaluation protocols with different data distributions and types of models

for the downstream classification task. When encoder training and evaluation take place on the

same dataset (see Fig. 4.8 Middle), we propose the following in-domain protocols:

1. Linear Evaluation Protocol (LEP) [177], where a linear classifier h′ψ is trained with the output

of the fixed, pre-trained encoder fθ using labeled data from past and current task t, {Dτ}tτ=1;

2. Subset Linear Evaluation Protocol (SLEP), where h′ψ is trained with a random subset,

{D′
τ}tτ=1, where D′

τ ⊂ Dτ . This protocol simulates the scenario with limited labels. We

keep a subset of 200 samples per task (≈ 12% of data).

For both LEP and SLEP, classification becomes more challenging over time since the test data

involves more classes as more tasks are learned.

Additionally, we propose an out-of-domain (OOD) protocol (Fig. 4.8 Right) where the represen-

tations are evaluated on a different dataset from which they are learned. We introduce the Full

Linear Evaluation Protocol (FLEP), where at each task the linear evaluation classifier is trained

on the full downstream dataset. As opposed to the in-domain protocols, here the test set does not

grow with more tasks.

4.2.4 Experimental Setup

Datasets

We use UrbanSound8K [182], the TAU Urban Acoustic Scenes 2019 (DCASE TAU19) [183], and

VGGSound [184] to continually train the encoder. We partition each dataset into class-disjoint

subsets. Following [164], we set the number of tasks to T = 5 or T = 10, and the classes are evenly

split between tasks. Namely, each task corresponds to a set of classes. For example, in a T = 5 case

for a 10-class dataset, we have two distinct classes in each task. The ordering of classes is randomly

48

shuffled before the split. The UrbanSound8K and the TAU Urban Acoustic Scenes 2019 (DCASE

TAU19) are used for in-domain evaluation, and VGGSound [184] is used to learn representations

for OOD experiments. The details for each dataset are as follows:

• The UrbanSound8K dataset [182] is a dataset for sound event recognition that contains 8,732

recordings with a total duration of 8.75 hours, where the length of each clip is limited to 4

seconds. Each recording is labeled with a single event class from the 10 possible classes, air

conditioner, car horn, children playing, dog bark, drilling, engine idling, gunshot, jackham-

mer, siren, and street music. Each class has no more than 1,000 clips. All files are pre-sorted

into 10 folds for cross-validation.

• The TAU Urban Acoustic Scenes 2019 dataset is used for the DCASE 2019 Task-1(A) chal-

lenge [183] for acoustic scene classification. The development set consists of 40 hours of audio

collected from ten cities, with 9,185 recordings for training and 4,185 recordings for evalu-

ation. Each clip is 10 seconds long and is labeled with one of 10 following classes: airport,

shopping mall, metro station, pedestrian street, public square, street traffic, tram, bus, metro,

and part. Furthermore, we create the validation set by randomly holding out 20% of the

training data for each class.

• The VGGSound dataset [184] is an audio-visual dataset with 200,000 clips with a total du-

ration of 560 hours from more than 300 sound classes such as instruments, horns, and city

sounds. The recordings are scraped from YouTube and are labeled by pre-trained image and

sound classifiers. However, these data samples may not be accurately labeled due to i) the

classifiers are pre-trained on a different dataset, and ii) the recordings may contain interfering

sound events while each clip is assigned a single label. We consider learning the representation

using VGGSound while evaluating with a different downstream dataset with an OOD setup.

To preprocess the data, we first downsample all audio clips to 16k Hz, and we convert all binaural

recordings to a single channel by taking the average of two channels. For each signal, we compute

the mel-spectrogram with 80 features with a window size of 25 ms and a hop size of 10 ms. The

spectrograms are normalized to be zero-mean and unit-variance across each batch before feeding

into the encoder network.

Model Training

We use the CNN14 architecture as the backbone encoder model with 78M trainable parameters

[17]. The output representation has 2048 dimensions. We train the encoder for 50 epochs per

task on UrbanSound8K and VGGSound, and 100 epochs per task on DCASE TAU19. The linear

classifiers for evaluation are trained for 30 epochs per task on UrbanSound8K and 100 epochs on

DCASE TAU19. Results are averaged across 10 folds on UrbanSound8K and across three runs

49

with different seeds on DCASE TAU19 and VGGSound. Additional details can be found in our

SpeechBrain [185] implementation3.

4.2.5 Results and Discussions

CSUP SimCLR Barlow Twins MoCo

UrbanSound8K 80.9 74.3 73.3 69.3
DCASE TAU19 68.2 62.5 58.8 50.3

Table 4.1: Offline accuracy when representations are trained with the entire dataset. The best
performances are highlighted in bold.

Method
UrbanSound8K (T = 5) DCASE TAU19 (T = 5)
LEP SLEP LEP SLEP

A (↑) F (↓) A (↑) F (↓) A (↑) F (↓) A (↑) F (↓)
No distillation

CSUP 65.6 19.6 48.4 33.1 48.2 27.6 32.5 38.4
SimCLR 70.3 15.3 50.3 26.6 59.7 17.8 42.1 27.9

Barlow Twins 68.5 14.1 49.7 20.5 55.9 19.0 41.0 23.4
MoCo 68.4 15.6 50.3 25.8 49.5 20.2 34.8 25.8

With distillation
CSUP + LMSE 58.6 27.0 43.8 39.2 49.1 26.1 35.1 35.8
CSUP + Lsim 70.6 13.8 54.9 27.1 56.2 19.7 42.1 32.4
CSUP + LKLD 69.8 15.9 55.4 27.4 55.7 19.4 42.6 30.3

SimCLR + LMSE 70.9 14.6 50.6 25.1 56.2 19.6 42.0 26.5
SimCLR + Lsim 70.6 14.0 51.1 25.0 60.0 17.6 42.8 25.9

Table 4.2: In-domain evaluation: Average accuracy (A) and forgetting (F) for CSSL and CSUP
methods. Best performances are in bold. Note that rows with gray backgrounds correspond to the
CSSL approaches where no distillation against forgetting is used.

Offline Evaluation

We first train and evaluate the representations with supervised and SSL algorithms under the

ideal offline scenario in which the entire training set is available for training (i.e., there is only

T = 1 task). We consider three SSL algorithms, namely, SimCLR, MoCo, and Barlow Twins. For

evaluation, we train a new classifier h′ψ on the output of the fixed, pre-trained encoder fθ following

Section 4.2.3.

3https://github.com/zhepeiw/cssl_sound

50

https://github.com/zhepeiw/cssl_sound

40

60

80

100

Ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 7 8 9 10
Task ID

40

60

80

100

Ac
cu

ra
cy

 (%
)

CSUP T= 5
CSUP T= 10

CSSL T= 5
CSSL T= 10

1 2 3 4 5 6 7 8 9 10
Training Task ID

58

60

62

64

66

Ac
cu

ra
cy

 (%
)

CSUP CSSL

Figure 4.9: (Left) The In-Domain experiment: The classification performance obtained with
CSSL and CSUP on UrbanSound8K (top) and DCASE TAU19 (bottom). (Right) The OOD
experiment: Performance of CSSL and CSUP trained on VGGSound and evaluated with full-set
linear evaluation protocol (FLEP) on DCASE TAU19.

As we show in Table 4.1 on both datasets, CSUP outperforms the CSSL approaches. This

indicates that the supervised classification loss provides a strong baseline for representation learning

when trained with the entire corpus at once without continual learning constraints.

Comparison between CSSL and CSUP

We compare representations learned from CSSL and CSUP in terms of their classification perfor-

mance and resilience to forgetting. Similar to the offline experiments, we consider SimCLR, MoCo,

and Barlow Twins for CSSL. In this experiment, we perform an in-domain evaluation with T = 5

tasks, and we measure both values for average accuracy and forgetting at the completion of all

tasks.

Table 4.2 (No distillation) summarizes the average accuracy and forgetting for the in-domain

protocols. First, the accuracy values for all learning methods for T = 5 are lower than the cor-

responding offline accuracy in Section 4.2.5; this indicates the existence of catastrophic forgetting

for continual representation learning regardless of the approaches. While supervised learning beats

SSL in offline evaluation, the trend is reversed when evaluating in a continual learning setup. All

three CSSL methods (highlighted in gray) outperform CSUP on both datasets across all evaluation

protocols and metrics. The consistent advantage of SSL in both accuracy and forgetting indicates

that the similarity-based objectives learn features that generalize better and are less

affected by forgetting than CSUP.

In Fig. 4.9 (Left), we also show the trajectories of accuracies obtained with CSSL and CSUP for

five tasks (T = 5) and ten tasks (T = 10) using SimCLR as the CSSL method. CSSL has higher

average accuracy, and generally, the gap widens for both T = 5 and T = 10 as training progresses.

51

Knowledge Distillation

We additionally study the effects of regularization-based CL algorithms by adapting the Learning

Without Forgetting (LwF) [34] framework to the continual representation learning setting. At each

task t > 1, the representation learning objective is optimized jointly with a knowledge distillation

loss

LKD(x, t) = Ldist(fθ(x), fθ(t−1)(x)), (4.4)

where fθ(t−1) is the snapshot of the encoder at the completion of task t−1 whose weights are frozen

at the current task t. We consider the following candidates for the distillation loss Ldist:
• mean squared error, LMSE [186];

• similarity-based objective that is used in SimCLR [112], Lsim;

• KL-Divergence loss, LKLD (used for CSUP only) applied to the logits obtained after the

output head [34].

Table 4.2 (With distillation) shows the in-domain evaluation results of CSSL with SimCLR and

CSUP with these loss options. To verify the consistency of these results for different SSL algorithms,

we also tried Barlow Twins and MoCo and observed similar performance. We omit these results

due to space constraints.

We find that distillation with LMSE does not improve the results for CSUP on UrbanSound8K

nor SimCLR on DCASE TAU19. LKLD outperforms LMSE, but it is still beaten by the plain

SimCLR except for the SLEP evaluation protocol, even though the plain SimCLR does not require

storing any models or labels. Both LMSE and LKLD explicitly restrict the output to mitigate

forgetting, but they reduce the plasticity of learning knowledge from new tasks and hence do

not improve the overall performance. With the similarity-based loss Lsim, the accuracy of CSUP

increases significantly on both datasets. The performance gain of CSUP once again highlights the

generalization ability of the similarity-based self-supervised objective and its resilience

against forgetting in continual representation learning. The marginal improvement with

Lsim on SimCLR shows that the similarity-based framework alone learns features that generalize

across tasks as well as distillation-based methods. For CSSL, distillation does not provide more

advantages of generalization despite the cost of additional computation during training and storage

for model saving. Given the computational benefits, we hence conclude that CSSL

without explicit methods for combating forgetting is preferable over the alternatives

that use distillation.

Out-of-domain (OOD) Evaluation

In addition to the in-domain evaluation, we compare CSSL and CSUP when the representation

learning and downstream evaluation are performed on different datasets. Fig. 4.9 (Right) shows

52

the trajectories of the average accuracy using the FLEP protocol on DCASE TAU19 when the

encoder is trained on VGGSound. We consider SimCLR for CSSL using T = 10 tasks. When

evaluating the representation using a linear classifier with the FLEP protocol, we see that CSSL

outperforms CSUP after the second task. The performance gap widens as the encoder learns more

tasks. We observe a decreasing trend in the accuracy curve of CSUP, indicating that the transfer

of knowledge is overwhelmed by catastrophic forgetting. For CSSL, the curve keeps increasing for

the first seven tasks. The results from the OOD evaluation demonstrate the effectiveness of CSSL

to learn continually without labels and its ability to generalize to a different downstream task.

Continual Representation Learning with Full Replay Buffer

Table 4.3: In-domain Evaluation for Different Encoder Training Dataset

CSUP-O SimCLR-O CSUP-NR SimCLR-NR CSUP-FR SimCLR-FR

US8K 80.9 74.3 65.6 70.3 82.3 77.2
DCASE 68.2 62.5 48.2 59.7 69.1 67.4

Table 4.4: Final average accuracy with the linear evaluation protocol when representations are
trained with the full dataset at once (CSUP-O, SimCLR-O), continually trained without using
data buffer (CSUP-NR, SimCLR-NR), and using full data buffer (CSUP-FR, SimCLR-FR) for
T = 5 tasks.

We also consider continually training the encoder fθ and the output head hψ with a full replay

(FR) buffer by storing data samples from the current and all previous tasks with T = 5 tasks. We

provide the final average accuracy using the in-domain linear evaluation protocol for UrbanSound8K

and DCASE TAU19 in Table 4.4 for CSUP and CSSL using SimCLR, denoted by CSUP-FR

and SimCLR-FR, respectively. We also include the corresponding offline systems (denoted by

CSUP-O, SimCLR-O) from Table 4.1 and the continually trained systems without using replay

buffer (trained only on the current task) - (denoted by CSUP-NR, SimCLR-NR) taken from Table

4.2. Both FR systems achieve the best performance compared to the offline and NR systems by

beating the offline systems by a small margin (possibly due to a curriculum effect) and significantly

exceeding the accuracy of the NR systems. When the encoder observes data from all tasks in both

offline and full replay scenarios, the supervised algorithm slightly outperforms SimCLR. However,

this performance gain comes at the extra computational cost of storing and revisiting past data

samples during the encoder training. Also, notice that the gap between CSUP-FR and CSUP-NR is

significantly larger than the one between SimCLR-FR and SimCLR-NR, and this further indicates

that representations learned with supervised objectives are more prone to performance degradation

when access to previous data is restricted.

53

Assessing the Impact of Self-Supervised Objectives

Figure 4.10: Average accuracy on the linear combination of CSSL and CSUP with the supervised
weight α = 1 fixed on in-domain linear evaluation (LEP) and subset evaluation (SLEP) protocols
on UrbanSound8K (upper) and DCASE TAU19 (lower).

To analyze the influence of the SSL objective on continual representation learning, we first

perform an ablation study by controlling the amount of self-supervision in the learning framework.

For this experiment, we assume the existence of annotations and train the encoder jointly with

both classification loss and the similarity-based SSL loss [112], given by

Ljoint = αLsup + βLssl, (4.5)

where α, β ≥ 0 control the weight of each objective. We fix the weight of the supervised loss as

α = 1 and increase the weight of the SSL objective β from 0 to 1. Notice that α = 1, β = 0 is

equivalent to CSUP. We compute the final average accuracy at the end of T = 5 tasks using the

in-domain protocols on two different datasets, as shown in Figure 4.10. In general, higher weights

on SSL leads to better performance. In particular, there is a significant performance gain between

β = 0 and β = 0.2 across both protocols. These observations imply the benefits of incorporating

similarity-based SSL objectives in continual representation learning even if label information is

available.

Impact from the Number of Tasks

We are interested in whether the relative performance between CSSL and CSUP is consistent

with a varying total number of tasks. As mentioned in Section 4.2.5, Fig. 4.9 (Right) displays

the trajectories of the average accuracy at the end of each task for CSSL using SimCLR and

CSUP with T = 5, 10 total tasks. CSSL has a higher average accuracy at the completion for both

T = 5, 10 on both datasets than CSUP. The performance gap is significantly larger in T = 10

than in T = 5. Furthermore, in T = 10, this gap widens as training progresses. Since both

54

UrbanSound8K and DCASE TAU19 contain 10 classes, T = 10 creates an extreme setting where

the encoder learns only one class at a time. If training without replay data using cross-entropy,

the supervised framework may optimize by biasing the weight towards the current class without

learning useful representations. In contrast, without label information, the similarity-based CSSL

framework is more robust to the shift in data distribution across tasks.

4.2.6 Conclusion

In this section, we propose a continual representation learning framework for sound classes.

In this framework, the encoder training does not rely on labels and therefore is suitable for the

practically relevant case where only a subset of labels is used to finetune an output classifier.

Additionally, the framework is flexible enough to continually incorporate novel classes without the

apriori knowledge of the total number of classes. With the continually pre-trained representations,

the computational burden is significantly alleviated by simply finetuning a shallow classifier for

downstream tasks. We showed, for the first time, that continual self-supervised learning gets

competitive performance even if we do not use any mechanism against forgetting, which helps to

reduce computational complexity. In future work, we plan to integrate continual self-supervised

learning on more challenging audio tasks such as multi-label classification.

55

CHAPTER 5: SEMI-SUPERVISED SOUND CLASSIFICATION AND
SEPARATION

Learning without human annotations has been a long-standing research problem. Audio data

with high-quality human annotations are costly or even infeasible to obtain. For classification

problems, audio clips may contain overlapping events, and it requires extensive efforts to verify

all classes are correctly identified in the label. For source separation tasks, the clean reference

signal for each individual source is required as the training target, but the source signal from real-

world mixtures hardly exists in isolation, and synthetic mixtures with available source signals are

commonly used as a resort. In contrast, audio data without reference exists at a large scale in the

wild.

One way to leverage audio data without annotations is self-supervised learning. As described in

Sections 2.3 and 4.2, low-dimensional representations are first learned through a pretraining stage

using proxy labels that come from the data itself; then, the learned representations are applied to

downstream tasks with a small set of labeled data that can be used to fine-tune the output head.

Since label information is not used at all during the pretraining stage, task-specific performance is

not guaranteed to be on par with the end-to-end supervised approaches. On the other hand, semi-

supervised learning approaches, first introduced in Section 2.4, focus on incorporating a massive

amount of unlabeled data into the joint training with a limited set of data with annotations. The

bootstrapping framework is a popular semi-supervised approach, where a teacher model trained

with labeled data is used for assigning pseudo-labels for data without annotations. These pseudo-

labeled data will be used in conjunction with the labeled data to train a refined student model. To

investigate semi-supervised learning in the audio domain, in Section 5.1, we integrate bootstrapping

with contrastive learning in cross-modal audio-text representation learning where we improve the

state-of-the-art approach by curating audio-text pairs from unaligned audio and text corpus. We

further incorporate bootstrapping for the task of singing voice separation in Section 5.2. Aside

from bootstrapping methods, in Section 5.3, we also consider regularization-based semi-supervised

learning for personalized speech enhancement by designing separate loss functions for data with and

without reference speech, making it possible to learn from mixtures without corresponding clean

speech of the target speaker. With the effective usage of the in-the-wild data without reference, we

empirically show that the proposed methods surpass conventional supervised approaches relying

solely on human annotations.

4Part of this chapter has been published in [62, 63, 64].

56

5.1 SEMI-SUPERVISED IMPROVEMENT FOR AUDIO-TEXT CROSS-MODAL
REPRESENTATIONS

5.1.1 Cross-Modal Representation Learning

Representation learning methods such as Self-Supervised Learning (SSL) [187] expand the limited

scope of supervised learning by learning representations that can be applied to a large variety of

downstream tasks. However, the mainstream SSL methods in the literature typically train an

encoder on uni-modal data [42, 46, 50].

Learning cross-modal representations that involve text adds the additional flexibility of incorpo-

rating language in downstream tasks. This enables downstream tasks such as zero-shot classification

possible, where the model is able to perform classification without being restricted by a pre-defined

and explicitly annotated label set. The cross-modal representations can also be used in other tasks,

such as audio-to-text and text-to-audio retrieval.

Learning cross-modal representations has been explored in computer vision under prior works

including CLIP [188], Florence [189], and ALIGN [190]. AudioCLIP [191] extends the CLIP frame-

work to the audio domain by incorporating an audio encoder to learn a joint embedding space for

audio, vision, and language using aligned data across the three domains. CLAP [192], on the other

hand, learns audio-text embeddings directly without depending on the image domain. It aims to

maximize the similarity of the text-and-audio representations that correspond to the paired audio

and caption within a given batch. To train semantically meaningful representations, these methods

require a large number of paired audio and text items. While in-the-wild audio-text pairs exist

at an extensive scale (e.g., captions from online video, metadata from audio datasets), the text is

likely to be irrelevant to the sound events presented in the audio and is therefore unsuitable for

training audio representations. Collecting high-quality captioned audio is an expensive task, hence

data availability might constitute a bottleneck for scaling the audio-text pretraining. To overcome

the limitation, Wav2CLIP [193] uses audio-image pairs from video clips to learn audio-text corre-

spondence by distilling from the pre-trained CLIP model. VIP-ANT [194] extends Wav2CLIP by

mining additional audio-text pairs from video and text data using pre-trained CLIP. The LAION-

CLAP [195] augments the training data by performing keyword-to-caption generation from tags or

labels of audio clips using a pre-trained language model. These approaches, however, assume the

existence of either an additional anchor modality with paired annotations or a pre-trained model

for generating text.

In this work, we explore the possibility of improving the zero-shot classification performance of

audio-text representations using unpaired text and audio. For this purpose, we first train an initial

teacher model using paired audio clips and captions; we then use this teacher model to automatically

align textual descriptions to in-the-wild audio files, using the pairs aligned with higher confidence

to train a new model. We then argue that this performance can be further improved by curating

a refined, domain-specific dataset that is more akin to the zero-shot classification domain. Our

57

contributions are listed as follows,

• We propose domain-unspecific and domain-specific curation methods and show the improve-

ment on three downstream zero-shot audio classification tasks.

• We propose a soft-labeled training objective that can avoid learning with hard labels in cases

where the batch contain similar data items. We show that this training objective significantly

improves the performance under domain-specific curation strategies.

• We show that the proposed curation methods significantly improve the model even in the

case where the teacher model is trained on a small amount of paired data (%10 of the data).

5.1.2 Contrastive Audio-Text Pretraining

Training Framework

INPUT TEXT Text Encoder

Audio Encoder

t⊤1 a1 t⊤1 a2 t⊤1 a3

t⊤2 a1 t⊤2 a2 t⊤2 a3

t⊤3 a1 t⊤3 a2 t⊤3 a3

a1 a2 a3

t1

t2

t3

Figure 5.1: The training of the CLAP model for learning cross-modal representations. Input data
from each domain is mapped to the shared latent space with the corresponding encoder network.
The similarity between the embeddings of the audio-text pairs (diagonal terms of the similarity
matrix, shown in blue) is maximized.

Our proposed method is based on CLAP, “Contrastive Language-Audio Pretraining” [192], which

learns a joint latent space between text and audio by maximizing the similarity between the text

and audio latent representation for the text caption and its corresponding audio signal. Let, Xt, Xa

respectively denote a batch of text and audio. In the CLAP model, the latent representation is

obtained by passing the text and audio through the text and audio encoders ft(.), and fa(.) such

that,

Lt = ft(Xt), La = fa(Xa), (5.1)

where Lt ∈ RN×T , La ∈ RN×A, such that T is the latent dimensionality of text, A is the latent

dimensionality of audio, and N is the batch size. CLAP trains a joint latent space by passing Lt

58

and La through fully-connected layers such that,

t =FCt(Lt), a = FCa(La), (5.2)

where FC(.) denotes the multi-layer perceptron transformation layers, t ∈ RN×d, and a ∈ RN×d

respectively denote the latent variables with same latent dimensionality d. The model then tries to

maximize the diagonal entries on the matrix C = ta⊤. This translates into the following training

loss function,

L(C) =
1

2

N∑
i=1

(
log(Softmaxt(C/τ)i,i) + log(Softmaxa(C/τ)i,i)

)
, (5.3)

where Softmaxt(.) and Softmaxa(.) respectively denote Softmax functions along text and audio

dimensions, τ is a learnable temperature scaling parameter, and the Ci,i denotes the diagonal

elements of the C matrix. We show the training forward pass pipeline in Figure 5.1.

Zero-shot Classification

This is a DOG sound

This is a CAT sound

This is a BIRD sound

Text Encoder

Audio Encoder

t⊤1 atest

t⊤2 atest

t⊤3 atest

atest

t1

t2

t3

Figure 5.2: Zero shot classification with the CLAP model. Each class label is first prepended
with a prompt to make it a caption, and the similarity between this caption’s embedding and the
test audio’s embedding is computed. The class label associated with the caption that obtains the
highest similarity score with the audio embedding is used as the predicted output.

The CLAP model is able to perform zero-shot classification by simply calculating the similarity of

a given audio to a fixed set of text prompts constructed from class labels. That is, the classification

decision is simply taken to be

ĉ = argmax
j

t⊤j atest, (5.4)

where ĉ is the zero-shot classification decision, atest is the embedding for the test audio, and tj

is the text embedding corresponding to the label of class j. We show the pipeline of zero-shot

classification in Figure 5.2.

59

Training set

Audio Captions

Improvement-Set

In-the-wild audio

Match via
Teacher CLAP

Data annotation

Figure 5.3: Domain-Unspecific (DU) Curation of Improvement-Set. With the pre-trained teacher
CLAP model, the embedding of each in-the-wild audio clip is matched against the embeddings of
all training captions. The new audio-text pairs with similarity above a threshold σ are included in
the Improvement-Set.

5.1.3 Semi-supervised Improvement of Cross-Modal Audio-Text Representations

In this section, we describe the different strategies we employ to curate a paired dataset from

unpaired text and audio. This curated dataset is used to train a student model in order to im-

prove upon the zero-shot performance of the teacher model. We call this curated dataset the

Improvement-Set. We follow two different strategies to curate this dataset. We call the first strat-

egy the “Domain-Unspecific” (DU) dataset curation, where we form pairs using in-the-wild audio

and text. The second strategy is “Domain-Specific” (DS) where we explicitly try to find audio

recordings that are more relevant to the zero-shot classification task at hand.

Domain-Unspecific Improvement-Set Curation

For this strategy, we use a teacher CLAP model to curate an Improvement-Set. We match

the captions of the training data with audio from a large dataset such as AudioSet [196]. We

compute the cosine similarity between each pair of audio and text embeddings, and keep pairs with

similarity above a threshold σ ∈ [0, 1]. We show this strategy in Figure 5.3. As we showcase in the

experiments, this strategy provides an improvement over the base model; however, with a domain-

specific refinement of the Improvement-Set, we can further enhance the zero-shot performance.

Domain-Specific Improvement-Set Curation

For this strategy, the main idea is to narrow down the captions used for the Improvement-Set by

calculating text-to-text similarities between the captions from the training set and in-domain labels

for a zero-shot classification task. Once these similarities are obtained, the first domain-specific

(DS) strategy is to narrow down the training set by picking the subset of audio-text pairs that

are most related to the downstream task through the text modality, determined by the maximum

similarity between the embeddings of the caption and all the in-domain labels of the downstream

task. We illustrate this procedure in Figure 5.4.

Another option is to augment the domain-specific Improvement-Set by involving in-the-wild

60

Training set

Audio Captions
In-Domain
Labels

Improvement-Set

Filter w. DS

captions Text En-

coder

Domain-Specific Captions

Figure 5.4: Domain-Specific (DS) Curation of Improvement-Set with Domain-Specific Audio. The
Improvement-Set consists of audio-caption pairs from the training set that are most relevant to the
downstream task by measuring the similarity between the embeddings of the training captions and
in-domain labels of the downstream task.

Training set

Audio Captions
In-Domain
Labels

Improvement-Set

In-the-wild audio
Match via
Teacher CLAP

Data annotation
Text

Encoder

Domain-Specific Captions

Figure 5.5: Augmented Domain-Specific (ADS) Curation of Improvement-Set. First, DS Curation
is performed to obtain the subset of captions from the training set that are most related to the
downstream task. Then, in-the-wild audio clips are aligned with this subset of captions with the
pre-trained teacher CLAP model.

audio data. The process to create the Augmented Domain-Specific (ADS) Improvement-Set, as

demonstrated in Figure 5.5, is as follows:

1. We calculate the similarities between the text embeddings of class labels from the in-domain

dataset and the captions from the teacher’s training set. We take the most similar captions

from this set by thresholding the similarity values.

2. We find the correspondences between the domain-specific captions and the in-the-wild audio

using the teacher CLAP.

5.1.4 Using Soft Labels in Contrastive Loss

An underlying issue with the original CLAP learning objective in Equation (5.3) is that it

neglects local similarities for data within the same batch and treats all negative samples equally. It

is possible to sample audio-text pairs with similar content from the same batch (i.e, multiple clips

of “dog-barking”), while the objective in Equation (5.3) penalizes the model for not discriminating

these similar instances. This issue is exacerbated when the training data is less diverse. For

61

text2
text1

text3

Teacher Text
Encoder

Teacher Audio
Encoder

audio2
audio1

audio3

t̃⊤1 t̃1 t̃⊤1 t̃2 t̃⊤1 t̃3

t̃⊤2 t̃1 t̃⊤2 t̃2 t̃⊤2 t̃3

t̃⊤3 t̃1 t̃⊤3 t̃2 t̃⊤3 t̃3

t̃1 t̃2 t̃3

t̃1

t̃2

t̃3

ã⊤1 ã1 ã⊤1 ã2 ã⊤1 ã3

ã⊤2 ã1 ã⊤2 ã2 ã⊤2 ã3

ã⊤3 ã1 ã⊤3 ã2 ã⊤3 ã3

ã1 ã2 ã3

ã1

ã2

ã3

1 0 0

0 1 0

0 0 1

1− β
β

1− β
β

ỹa→t

ỹt→a

Figure 5.6: Computation pipeline for soft-labeled loss function. We first obtain the intra-batch
similarity using the audio and text embeddings computed from the pre-trained teacher model. The
soft labels are defined as the linear interpolation between the intra-batch similarity and the one-hot
labels (rows or columns of the identity matrix).

instance, with the DS or ADS Improvement-Set, it is more likely to sample similar inputs within a

batch.

The original learning framework of CLAP is equivalent to solving an N -class classification prob-

lem for a batch size of N , where the label for the i-th sample of each batch is the one-hot vector

yi ∈ RN with only the i-th entry equal to 1. Similar to prior studies in image-text pretraining

[197, 198], we propose a label-softening technique when training the student model. The soft labels

are obtained from the similarity between input samples within each batch, as illustrated in Figure

5.6. For each input batch, we obtain the soft targets by estimating the intra-modal similarity using

the teacher audio (ã) and text (t̃) embeddings. We define,

C̃a = ãã⊤, C̃t = t̃t̃⊤, (5.5)

where C̃a, C̃t ∈ RN×N represent the intra-batch, intra-modal similarity matrices for audio and text,

respectively. For the i-th sample in this batch, we define the audio-to-text soft label as,

ỹ
(i)
a→t = (1− β)yi + βC̃(i)

a , (5.6)

where C̃
(i)
a is the i-th row of the matrix C̃a and the coefficient

β ∈ [0, 1] adjusts the weights of the hard and soft labels; in symmetry, the text-to-audio soft label

can be formulated as,

ỹ
(i)
t→a = (1− β)yi + βC̃

(i)
t . (5.7)

62

The overall learning objective is therefore,

L̃(C) = 1
2(L̃t(C) + L̃a(C)), with

L̃t(C) =
1

N

N∑
i=1

DKL(ỹ(i)
a→t∥Softmaxt(C/τ)(i)),

L̃a(C) =
1

N

N∑
i=1

DKL(ỹ(i)
t→a∥Softmaxa(C/τ)(i)),

(5.8)

where DKL denotes KL-Divergence, and C denotes the similarity matrix obtained from the student

model.

5.1.5 Experimental Setup

Downstream Evaluation

We consider the following datasets for downstream evaluation with sound event classification

and acoustic scene classification tasks:

• ESC-50 [66] with 2000, 5-second audio clips from 50 environmental sound classes.

• UrbanSound8K [182] with 8732, 4-second recordings from 10 possible urban sound classes.

• TUT Acoustic Scenes 2017 (TUT17) [199] with 6300, 10-second clips from 15 possible scene

classes.

We measure the performance of the models using the accuracy from zero-shot evaluation de-

scribed in Section 5.1.2. Following [192], we add a prefix prompt “this is a sound of [class label]”

to each label in the downstream dataset before computing text embeddings.

Training Data

DU
ESC-50 UrbanSound8K TUT17

DS ADS DS ADS DS ADS

5.0×106 15.6×103 1.30×106 9.7×103 1.1×106 8.7×103 0.3×106

Table 5.1: Number of audio-caption pairs used in the curated Improvement-Set. DU represents the
domain-unspecific curation; DS refers to the domain-specific curation containing the subset of the
teacher training set relevant to each downstream task; ADS is the domain-specific curation from
the in-the-wild audio.

For training the teacher CLAP, we follow the original paper [192] by using 128k paired audio

and text captions from FSD50k [200], ClothoV2 [201], AudioCaps [202], and MACS [203]. For

63

the unsupervised curation in Section 5.1.3, we use the captions from the teacher training set and

recordings from the unbalanced training set from AudioSet [196] by excluding recordings that are

corrupted or contained in AudioCaps for the teacher training, which results in more than 1.9 million

clips; notice that no label information from AudioSet is used during curation. We use a similarity

threshold σ = 0.7 for the domain-unspecific curation and a threshold between 0.6 and 0.75 for

the domain-specific experiments. The numbers of audio-caption pairs of the curated datasets are

outlined in Table 5.1.

During training, each input audio recording is resampled to 44.1 kHz. If longer than 5 seconds,

a random 5-second segment of the recording is chosen; if shorter, the recording is zero-padded.

Training Details

Following CLAP [192], we use the CNN14 [17] as the audio encoder and the BERT [42] as the

text encoder, each followed by a two-layer MLP as the projection layer. The CNN14 is initialized

from the AudioSet pre-trained checkpoints with a sampling rate of 32 kHz [17], and the BERT

is initialized from the BERT base uncased in [204]. The embedding vectors have a dimension of

1024. The temperature parameter τ is initialized to 0.007, and the coefficient β for soft labels is

set to 0.3. The student model is initialized from the teacher model. All models are trained with 2

Quadro RTX 6000 GPUs using a batch size of 64 per GPU. We perform three runs for each setup

and obtain the average results.

For student training with the DU Improvement-Set, we randomly replace the batches with sam-

ples replayed from the teacher training set to combat catastrophic forgetting [53]. For student

training with ADS Improvement-Set, the replay dataset is selected as the subset of audio-text pairs

that are relevant to the downstream task, namely, the DS Improvement-Set. Note that with the

addition of replay, we observed a performance gain of 0.6%, 0.9%, and 2.1% under the ADS cu-

ration strategy, on ESC-50, Urbansound8K, and TUT17, respectively compared with the models

trained without using replay. We noticed similar trends with other curation strategies as well, so

we used replay in all of our results.

5.1.6 Results and Discussions

Student Training from Full-dataset Teacher

In Table 5.2, we showcase the improvements obtained when the teacher model is trained with

the full training set. We first observe that the teacher model with our training conditions can

replicate the performance of the CLAP model released by Microsoft [192] (that we refer to as MS-

CLAP). On UrbanSound8K, our implementation exceeds the performance of MS-CLAP by 1.4%.

When further training the teacher CLAP model with the soft-labeled loss (OC+SL), the accuracy

increases by 1.2% on ESC and by 0.3% on TUT17 while decreasing by 0.9% on UrbanSound8K

64

Zero-Shot Evaluation Set

Model ESC-50 UrbanSound8K TUT17

MS-CLAP 82.6 73.4 29.6
Our-CLAP (OC) 81.9 ± 0.9 74.8 ± 1.2 29.8 ± 1.3
OC+SL 83.1 ± 1.2 73.9 ± 2.6 30.1 ± 2.1

OC, DU 82.4 ± 1.4 73.9 ± 0.2 31.5 ± 1.0
OC, DU+SL 83.0 ± 0.5 74.9 ± 1.4 29.9 ± 1.9

OC, DS 78.8 ± 0.5 73.2 ± 1.1 29.8 ± 2.6
OC, DS+SL 83.5 ± 0.6 75.5 ± 1.4 31.8 ± 2.6
OC, ADS 84.2 ± 0.5 74.2 ± 2.1 32.5 ± 1.0
OC, ADS+SL 85.1 ± 0.7 77.4 ± 0.6 36.0 ± 1.8

Table 5.2: Accuracy (percentage) on zero-shot evaluation for teacher and student models based on
the teacher trained using full dataset. DU, DS, ADS, and SL denote Domain-Unspecific, Domain-
Specific, Augmented Domain-Specific, and soft-labeled loss. Best performances are highlighted in
bold.

compared to the teacher model, indicating that soft-labeled loss alone cannot yield significant and

consistent performance gains.

We next observe that the domain-unspecific (DU) improvement of the CLAP model improves

the zero-shot performance in certain cases. On ESC-50, especially with the addition of soft labels,

we are able to increase the zero-shot accuracy from 81.9% to 83.0%. However, we do not observe

an improvement for all three downstream datasets with DU.

When curating the Improvement-Set with the downstream domain knowledge, we observe that

the Domain-Specific (DS) curation alone does not improve the performance: The results validate

our hypothesis that learning with hard labels with similar input data from the same batch would

adversely impact the quality of learned representations. However, we observe that adding the soft-

labeled loss significantly boosts the zero-shot accuracy by exceeding the performance of the teacher

model on all three datasets. We finally make the observation that the augmented domain-specific

curation along with soft labels (ADS+SL) substantially improves the performance across the board.

The results suggest that additional data with domain-specific curation and soft-labeled loss become

more effective when used in conjunction, each of which is crucial to performance improvement.

Student Training from Subset Teacher

In prior experiments, we assume the availability of adequate paired audio and text data for

training the teacher model. We would also like to investigate how data curation, label softening,

and subsequent student training can be impacted if the amount of paired audio and text is limited

during teacher training. To this end, we perform the teacher training by randomly sampling 10%

of the original 128 × 103 paired audio and caption data. We follow the identical setup for the

unsupervised curation and label softening as in the experiments involving the complete dataset.

65

Zero-Shot Evaluation Set

Model ESC-50 UrbanSound8K TUT17

CLAP teacher (full-dataset) 81.9 ± 0.9 74.8 ± 1.2 29.8 ± 1.3
CLAP teacher (subset) 74.2 ± 1.3 73.5 ± 2.0 30.9 ± 1.6

DU + SL 78.9 ± 0.3 73.7 ± 1.3 28.8 ± 1.1
ADS + SL 81.3 ± 1.0 74.5 ± 0.7 31.3 ± 0.5

Table 5.3: Zero-shot accuracy for experiments where the teacher model is trained with 10% of the
original training data. As a reference, we also include the CLAP teacher model trained with the
full dataset from Table 5.2. The best subset model is highlighted in bold.

We outline the zero-shot accuracy of the teacher and student models in Table 5.3.

Student models trained with the DU Improvement-Set enhance the performance on ESC-50 (from

74.2% to 78.9%) and UrbanSound8K (from 73.5% to 73.7%) while slightly degrading on TUT17

(from 30.9% to 28.8%); the results can be attributed to the domain-unspecific curation, which

yields data that are more relevant to environmental sound classes and distinct from acoustic scene

recordings. By incorporating domain-specific knowledge, the ADS strategy further enhances the

performance of ESC-50 (to 81.3%) and UrbanSound8K (to 74.5%) beyond that of the teacher model

and also exhibits a slight improvement on TUT17 (to 31.3%). Quite notably, the performance on

ESC-50 and UrbanSound8K is similar to that of the teacher model trained with the full dataset.

These improvements observed in the student training demonstrate the effectiveness of the data

curation and label softening techniques proposed, even in the absence of ample paired multi-modal

data for training the teacher model.

5.1.7 Conclusion

In this work, we propose domain-unspecific and domain-specific data curation methods to obtain

additional audio-text pairs from unaligned audio and text corpus for audio-text pretraining. The

proposed methods can effectively improve the zero-shot classification performance of cross-modal

representations. We have identified that using domain-specific dataset curation combined with

a soft-labeled loss significantly improves the performance over a baseline teacher model. This

observation holds even in the case where the baseline teacher is trained with 10% of the original

training data. We plan to further improve our approach by incorporating general text corpora into

the curation pipeline and exploring more advanced algorithms for audio-text matching in future

work.

66

5.2 SEMI-SUPERVISED SINGING VOICE SEPARATION WITH NOISY SELF-TRAINING

5.2.1 Supervised and Semi-Supervised Learning for Singing Voice Separation

The task of singing voice separation is to separate the input mixture into different components:

singing voice and accompaniment. It is a crucial problem in music information retrieval and has

commercial usage such as music remixing and karaoke applications. It also has the potential to

provide useful information for downstream tasks such as song identification, lyric transcription,

singing voice synthesis, and voice cloning without access to clean sources.

Deep learning models have recently shown promising results in singing voice separation. Popular

methods are mostly supervised methods, where a deep neural network is trained on a multi-track

corpus with paired vocal and accompaniment ground-truths. A common approach is to apply

dense connections between convolutional or long short-term memory (LSTM) blocks to estimate

separate masks [205, 206], or to use a bidirectional LSTM (BLSTM) network in the separator

[207]. Models with multi-scale processing further improve the performance of separation. With the

concatenation of features at different scales along with skip connections, U-Net [208] can maintain

long-term temporal correlation while processing local information with higher resolution. Such

architecture has been effective in both time-frequency domain [209, 210, 211, 212] and end-to-

end, time-domain methods [213, 214]. Inspired by [104] in monaural speech separation, models

that simultaneously process features at different resolutions with multiple paths have also shown

effectiveness in singing voice separation systems [215, 216].

The primary challenge for supervised methods with deep learning is the lack of training data with

ground-truth. It is more significant for larger networks that are more prone to overfitting issues.

There are several multi-track datasets publicly available for singing voice separation including MIR-

1K [217], ccMixter [218], and MUSDB [219]. However, these datasets are relatively small (all these

combined are around 15 hours) and not diverse. To artificially increase the size of the dataset,

data augmentation methods, including random channel swapping, amplitude scaling, remixing

sources from different songs, time-stretching, pitch shifting, and filtering, are applied to the input

signal [210, 220, 221]. These methods, individually or combined, are empirically shown to enhance

separation performance only by a limited margin [210].

On the other hand, semi-supervised and unsupervised methods do not require a large corpus

with a one-to-one correspondence between the mixtures and ground-truth sources. Demucs [213]

leverages mixture data by first training a silent-source detector on a small labeled dataset, then

mixing recordings with only one source and mixture recordings with the source being silent, and

finally optimizing with a weakly supervised loss. Methods based on generative adversarial networks

[222, 223] require only the isolated sources for training. The distance between the distributions of

separator’s output and the isolated sources is minimized with adversarial training. In [224, 225],

unpaired vocal and accompaniment data are used to learn non-negative, smooth representations

with a denoising auto-encoder using an unsupervised objective. Authors for [226] propose a stage-

67

wise algorithm where a clustering-based labeler assigns time-frequency bin labels with confidence

measure, and a student separator network is trained on these labels afterward.

Self-training is a semi-supervised framework in which a pre-trained teacher model assigns pseudo-

labels for unlabeled data. Then a student model is trained with the self-labeled dataset. It has

been applied in several applications such as image recognition [57] and automatic speech recogni-

tion [61, 227]. Our approach follows the noisy self-training method in which we investigate data

augmentation methods on musical signal and evaluate how they affect the separation performance.

With the framework of noisy self-training, we aim to improve the performance of a deep separator

network where only a limited amount of data with ground-truth is available. The contribution of

this work is listed as follows:

• We use a large unlabeled corpus to improve separation results under the noisy self-training

framework.

• We show how data augmentation can improve the model’s ability to generalize with a focus

on random remixing between sources.

• We propose to use a voice activity detector to evaluate the quality of self-labeled data in the

student training to perform data filtering.

5.2.2 Noisy Self-Training for Singing Voice Separation

Overview of Pipeline

We propose a noisy self-training pipeline based on the concept of self-training introduced in

Section 2.4. Our proposed self-training framework for singing voice separation consists of the

following steps:

1. Train a teacher separator network f (0) on a small labeled dataset Dl.

2. Assign pseudo-labels for the large unlabeled dataset Du with f (0) to obtain the self-labeled

dataset D(0).

3. Filter data samples from D(0) to obtain a refined self-labeled dataset D(0)
f .

4. Train a student network f (1) with Dl ∪ D(0)
f .

This framework can be made iterative by repeating steps 2 to 4, using the student network f (i) as

the new teacher to obtain a self-labeled dataset D(i+1), filter low-quality samples to obtain D(i+1)
f ,

and training a new student model f (i+1). The process stops when there is no performance gain.

We illustrate the framework pipeline in Figure 5.7.

68

Train teacher model Assign pseudo-labels

Train student model

Make student model
the new teacher

Filter self-labeled data

Multi-track data

Mixture data

�

�

�
�

Self-labeled data

1 2

3 4

5

Figure 5.7: The pipeline of noisy self-training for singing voice separation.

Data Filtering with Voice Activity Detector

The primary difference between the proposed self-training framework and conventional boot-

strapping setups with teacher-student training in Section 2.4 is the data filtering step. For singing

voice separation tasks, poor quality self-labeled samples may contain leakage of the singing voice

in the accompaniment tracks or leakage of musical background in the vocal tracks. To filter out

these samples, we evaluate the quality of the data with a voice activity detector (VAD).

The VAD takes the STFT magnitude spectrogram of the mixture as input and predicts the

frame-level energy ratio between the source and the mixture. We use the 2D-CRNN architecture

with the same configuration as in [228]. We train two separate VADs to estimate the energy ratio

of vocal over mixture, and accompaniment over mixture, respectively. The ground-truth is defined

as 0 when both the vocal and the accompaniment are silent. The VADs are trained with the same

labeled dataset as the one for the teacher separator model using binary cross-entropy loss.

To measure the leakage of accompaniment in vocal tracks, we pass the self-labeled vocal track

into the accompaniment activity detector. Similarly, we feed the self-labeled background track

into the vocal activity detector to detect leakage of the singing voice. A frame is defined as a

“poor quality frame” if either its accompaniment energy in the vocal track or its vocal energy in

the background track is higher than some threshold. We count the total number of “poor quality

frames” for each song, and songs with a smaller percentage of such frames are considered to have

higher quality.

69

Data Augmentation

Data noise is a key component in the noisy self-training framework. We apply data augmentation

methods for the training of both teacher and student models. Each training sample contains

both vocal and accompaniment tracks of 30 seconds duration. To augment the training set, we

randomly select a window of duration T seconds (with T < 30) from the sample. We also perform

“random mixing” by mixing vocal and background sources from two randomly selected songs with

a probability of p. Besides, we apply dynamic mixing ratio, pitch shifting, lowpass filtering, and

EQ filtering to the data.

5.2.3 Singing Voice Separator

Model Architecture

Dense

Block

Dense Attention
Block

Dense Attention
Block

Dense Attention
Block

b b b

Positional
Embeddings

STFT
Real, Imaginary

Attention

Dense

Block
Attention Dense Attention

Block
Dense Attention

Block

Dense

Block
Attention

Dense Attention
Block

Dense Attention
Block

Dense

Block
Attention

Complex
Ratio Mask

Real, Imaginary

BlockBlockBlockISTFT

Laudio(·, y)
Lspectral(·, |Y |)

b b b

Figure 5.8: Top two levels of the U-Net architecture. Frequency positional embeddings are con-
catenated to the STFT real and imaginary parts as input to the network.

b softmax

b

values

query

key

Figure 5.9: Details of the DenseNet and attention blocks. Straight arrows are convolutions with
batch normalization and ReLU activation; curved arrows are concatenations.

We use the PoCoNet [101] for both teacher and student models. The neural network takes

the concatenation of real and imaginary parts of the mixture’s STFT spectrogram as input. The

70

separator estimates the complex ratio masks for each source. The wave-form signal is obtained by

applying inverse STFT transform on the estimated spectrograms.

As shown in Figure 5.8, the separator is a fully-convolutional 2D U-Net architecture with

DenseNet and attention blocks. The connection of layers in DenseNet and attention blocks is

illustrated in Figure 5.9. Each DenseNet block contains three convolutional layers, each followed

by batch normalization and Rectified Linear Unit (ReLU). Convolutional operations are causal

only in the time direction but not in the frequency direction. We choose a kernel size of 3 × 3

and a stride size of 1, and the number of channels increases from 32, 64, 128 to 256. We control

the size of the network by varying the number of levels in U-Net and the maximum number of

channels. In the attention module, the number of channels is set to 5 and the encoding dimension

for key and query is 20. The connections of layers in DenseNet and attention blocks follow [101].

Frequency-positional embeddings are applied to each time-frequency bin of the input spectrogram.

For time frame t and frequency bin f , the embedding vector is defined as:

ρ(t, f) = (cos(π
f

F
), cos(2π

f

F
), . . . , cos(2k−1π

f

F
)), (5.9)

where F is the frequency bandwidth and k = 10 is the dimension of the embedding.

Loss Functions

For each output source, the loss function is the weighted sum of wave-form and spectral loss:

Lc(y, ŷ) = λaudLaud(y, ŷ) + λspecLspec(Y, Ŷ), (5.10)

where c ∈ {voc, acc} denotes either the vocal or accompaniment source, y, ŷ ∈ RT are time-domain

output and reference signals with length T , and Y = |STFT(y)|, Ŷ = |STFT(ŷ)| ∈ RF×L are the

corresponding STFT magnitude spectrograms with F frequency bins and L frames. The time-

domain and spectral-domain loss functions are weighted by λaud and λspec, respectively. We choose

both Laud(·) and Lspec(·) to be ℓ1 loss. The total loss is the weighted sum of each source:

L(y, ŷ) = λvocLvoc(y, ŷ) + λaccLacc(Y, Ŷ), (5.11)

with the weighting coefficients λvoc for vocal tracks and λacc for accompaniment tracks.

5.2.4 Experimental Setup

Data Preparation

We use MIR-1K [217], ccMixter [218], and the training partition of MUSDB [219] as the labeled

dataset for supervised training. The training set contains approximately 11 hours of recordings.

71

We use DAMP [229] as the unlabeled dataset for training the student model. DAMP dataset

contains more than 300 hours of vocal and background recordings from karaoke app users. Since

these recordings are not professionally produced, there exists bleeding of music in the vocal tracks

and bleeding of the singing voice in the accompaniment tracks as well; hence, it is not suitable for

supervised source separation.

To reduce dimensionality and speed up processing, we downsample each track to 16 kHz and

convert it to mono. We further segment the recordings to non-overlapping 30-second segments,

and if the segment is less than 30 seconds we zero-pad to the end of the signal. The spectrograms

are computed with a 1024-point STFT with a hop size of 256.

Noisy Self-Training Procedure

For both teacher and student training, we minimize Equation (5.11) with an Adam optimizer with

an initial learning rate of 1e-4, and we decrease the learning rate by half for every 100k iterations

until it’s no greater than 1e-6. We set λaud = λspec = 1 in Equation (5.10) and λvoc = λacc = 1 in

Equation (5.11).

To augment the training set, we randomly select a window size of T = 2.5, 5, 10 seconds as the

input to the model to experiment with the effect of input length, each with a batch size of 4, 2,

and 1, respectively. The maximal batch size is chosen under the memory limit. We experiment

with different probabilities of applying random mixing with p = 0, 0.25, 0.5, 0.75, 1.

The teacher model is trained on the labeled datasets. Then, it assigns pseudo-labels for the

unlabeled dataset. We infer vocal labels using DAMP vocal tracks as input to the teacher model

and infer accompaniment labels from DAMP accompaniment tracks. Due to the leakage in these

vocal and background tracks, they can be viewed as mixtures where one source is more likely to

dominate the other, compared to normal mixtures.

Evaluation Details

As in previous studies on singing voice separation [205, 206, 208, 211, 223], we measure the signal-

to-distortion ratio (SDR) to evaluate the separation performance. Following the SiSec separation

campaign [85], we use the 50 songs from the test partition of MUSDB [219] as the test set. We

partition each audio track into non-overlapping one-second segments, and we take the median of

segment-wise SDR for each song and report the median from all 50 songs. We use the python

package museval5 to compute SDR.

72

Len Size Prob Use SDR(V) SDR(A) Mean
(s) (1e6) RM DAMP

2.5

8.3

0

No

1.84 10.31 6.08
0.5 1.72 9.51 5.62

5
0 3.55 10.91 7.23
0.5 4.08 11.34 7.71

10

0 Yes 3.93 11.46 7.70

0

No

5.88 12.52 9.2
0.25 6.35 12.56 9.46
0.5 7.06 13.35 10.21
0.75 6.98 13.36 10.17
1.0 6.91 13.66 10.29

1.6
0 Yes 0.03 6.62 3.33

0
No

4.17 10.86 7.52
0.5 4.34 11.13 7.74

15.4
0

No
5.81 11.94 8.88

0.5 6.9 13.07 9.99

Table 5.4: Test performance metrics (SDR in dB) for teacher model candidates. We experiment
with various input sizes (Len), number of model parameters (Size), and the probability of random
mixing (Prob RM) to pick the best configuration for the teacher model. The notations “V” and
“A” denote vocal and accompaniment, respectively. The best performance is highlighted in bold.

5.2.5 Results and Discussions

Teacher Training

We select the configuration for the teacher model by experimenting with different input window

sizes of training samples and the number of model parameters. Table 5.4 shows the test SDR for the

combinations of input and model size. We first observe that using a longer input size improves both

vocal and accompaniment SDR. The improvement can be attributed to the attention blocks where

a longer input context provides more information for separation. Another observation is that larger

models do not guarantee performance gain. The largest model (15.4M param) performs significantly

better than the smallest one (1.6M) but is slightly worse than the 8.3M version for the probability of

random mixing p = 0, 0.5. Using the best combination of input length (10 seconds) and model size

(8.3M), we experiment with different probabilities of applying random mixing. As shown in [210],

random mixing does not have a positive effect on test SDR, and one possible explanation is that

it creates mixtures with somewhat independent sources. Our experiments, however, indicate that

random mixing alone significantly improves the results. The best performance is obtained when

random mixing is always applied. Our observations are consistent with the argument in [230] that

5https://sigsep.github.io/sigsep-mus-eval/

73

https://sigsep.github.io/sigsep-mus-eval/

“one-versus-all” separation benefits from mixing independent tracks. Intuitively, mixtures with

dependent sources are more difficult to separate. Random mixing makes it easier for the model to

learn and to converge faster on the training set. Meanwhile, by mixing up sources from different

songs, the training set becomes more diverse and the model has a better ability to generalize at

inference time.

In addition, we verify that the DAMP dataset should not be applied directly in supervised source

separation tasks by including this dataset along with the other labeled datasets. We experiment

with two model sizes (1.6M and 8.3M) using 10-second input without random mixing, and the SDR

values degrade sharply for both cases.

To summarize, we select the model using 10-second input window with 8.3M parameters and

probability p = 1.0 of applying random mixing as the teacher model to infer pseudo-labels.

Student Training

Size top % SDR(V) SDR(A) Mean
(1e6)

8.3 1 6.57 12.92 9.75

15.4
1 7.27 13.73 10.5
0.5 7.52 13.91 10.72
0.25 7.8 13.92 10.86

Table 5.5: Test performance metrics (SDR in dB) for student models. We experiment with dif-
ferent model sizes and the proportion of quality-controlled self-labeled samples (top %). The best
performance is shown in bold.

Table 5.5 summarizes the test SDR for student models. As opposed to the teacher model, the

15.4M model has a 0.75 dB SDR gain compared to the 8.3M model. The observation that the

larger capacity student model improves performance is consistent with the findings in [57].

To verify the quality control approach with VADs, we first count for each source track the number

of “poor-quality frames” as defined in Section 5.2.2 from three different datasets: DAMP, self-

labeled DAMP, and MUSDB. The input to the VADs is a 10-second clip, equivalent to 625 frames.

From the visualization in Figure 5.10, the unprocessed DAMP contains the highest percentage of

data with a large number of poor-quality frames, the distribution of MUSDB is concentrated in

the low count region, while the self-labeled dataset lies in between. This implies that the count of

“poor-quality frames” based on the output of VADs is a reasonable indicator of the quality of data

samples. The experimental results demonstrate that the proposed data filtering method with VADs

further improves the performance. The highest SDR is obtained when only the top quarter of the

self-labeled data is included in the training. Incorporating a higher percentage of self-labeled data

may provide more diversity but is more likely to include samples with poor quality, thus negatively

affecting the model’s performance.

74

DAMP Self-labeled DAMP MUSDB18
0

100

200

300

400

Ob
se

rv
ed

 v
al

ue
s

Violin Plot of VAD "Poor" Frame Count

Figure 5.10: Count of “poor-quality frames” using reference vocal or accompaniment tracks for
different datasets. Each input contains a total number of 625 frames. The higher the number
of “poor-quality frames”, the more likely there is leakage of vocal or accompaniment from the
reference track.

Comparison with Other Methods

To compare the separation of singing voice with state-of-the-art, we also include models that

separate the mixture into four sources, listed in Table 5.6. It has been shown in [210] that, these

four-source models have similar vocal separation performance compared to two-source models,

even though the four-source separation task is more challenging than the two-source counterpart;

possibly because of the additional supervision provided by different instrumental sources in the

multi-task learning setup. Hence, we include the vocal SDR values of state-of-the-arts for four-

source models [214, 215] in our comparison. Our proposed approach, the student model using

quality control with VADs, obtains the highest vocal and average SDR among all models, and

the vocal separation outperforms others by a significant margin. The accompaniment SDR is

higher than the baseline model with mono input [211] but worse than the stereo ones [205, 206].

Stereo input contains more spatial information for accompaniment than vocal since the left and

right channel differences for background tracks are at a much larger scale than vocal tracks. Such

information may improve the separation of accompaniment.

75

Name #Src Input Extra SDR(V) SDR(A) Mean
type Data

Demucs[214]
4 Stereo

Labeled 7.05 N/A N/A
Nachmani et. al. [215] ✗ 6.92 N/A N/A

MMDenseLSTM[206]

2
Stereo

✗ 4.94 16.4 10.67
MDN[205] ✗ 3.87 15.41 9.64

MT U-Net[211]
Mono

✗ 5.28 13.04 9.16
Michelashvili et. al. [223] ✗ 3.5 N/A N/A

Ours (teacher)
2 Mono

✗ 6.91 13.66 10.29
Ours (student, no VAD) DAMP 7.27 13.73 10.5
Ours (student, VAD) DAMP 7.8 13.92 10.86

Table 5.6: Test performance (SDR in dB) of the proposed method and other baseline models. We
include models that take different numbers of input channels (Input type) and output channels
(#Src) and list any extra dataset used for training the model (Extra Data) if applicable. The best
performance is shown in bold.

5.2.6 Conclusion

We present a semi-supervised method for singing voice separation to deal with the scarcity of

data with ground-truth. Using the noisy self-training framework, we can effectively make use of

a large unlabeled dataset to train a deep separation network. Experimental results show that

random mixing as data augmentation improves model training, and the data filtering method with

pre-trained voice activity detectors improves the quality of the self-labeled training samples. Our

study serves as a foundation for more complicated systems such as using stereo input, working

with unlabeled datasets with mixture only (as opposed to noisy source tracks), and extending the

teacher-student loop with additional iterations.

5.3 SEMI-SUPERVISED TIME-DOMAIN PERSONALIZED SPEECH ENHANCEMENT

5.3.1 Introduction to Personalized Speech Enhancement

Communications in the real world often take place in complex auditory scenes, where the speech

of a target speaker is likely to be contaminated by an interfering speaker or background noise.

To improve the quality of speech, deep learning methods have been developed for personalized

speech enhancement (PSE), also known as target speaker extraction, with promising performance

[231, 232]. PSE is distinct from the conventional speech enhancement (SE) task since the former

requires the identification of a particular speaker while the latter is speaker-agnostic. As opposed

to blind source separation (BSS) systems where all individual sources are separated by the model,

PSE systems isolate the speech signal of the speaker in interest from all other speakers and ambient

noise. By focusing only on the target speaker and treating the rest of the signal as interference,

76

PSE systems do not require information on the total number of sources beforehand and do not

suffer from permutation ambiguity, which are the two primary challenges in BSS [103, 107].

The VoiceFilter [231] is one of the first neural-based architectures to extract the speech of a

target speaker. It contains a bidirectional LSTM (BLSTM)-based separation module to extract

the magnitude mask of the target signal from the mixture spectrogram. A pre-trained speaker

embedding module extracts cues from the target speaker, which requires an enrollment utterance

of the target speaker as an additional input. The speaker embedding guides the separator during

the mask estimation. Several studies follow this embedder-separator design with improvements

in the architecture to enhance the enhancement quality or running-time efficiency using spectral

[232, 233, 234] or perceptual [67] features as input.

The recent success of end-to-end networks such as ConvTasNet [26] in BSS has drawn attention

to time-domain architectures in PSE. The separator includes paired 1D convolutional encoder and

decoder, along with stacks of convolutional blocks in the middle. The embedder network can be

pre-trained [235] or learned jointly with the separator [236, 237, 238, 239, 240, 241]. Inspired

by the Sepformer [105] in BSS, we propose the Exformer, a transformer-based network that can

extract the speech of a given target speaker, and study the effectiveness of the multi-head attention

(MHA) mechanisms with the transformer encoder [7] as the building block of the separator module

for time-domain PSE. Specifically, we compare multiple configurations of the fusion of the speaker

embedding into the separator module within the transformer blocks.

Despite the performance gain from the architectural improvement, these networks usually require

a vast amount of labeled data to train. While it is unrealistic to obtain both the mixture and its

source components in real-world acoustic conditions, noisy speech recordings exist on a large scale

and are easy to collect. In the Mixture Invariant Training (MixIT) [97], separation models are

trained with mixture of mixtures in both unsupervised and semi-supervised setups. An alternative

approach to leverage the noisy mixtures is to train the network with pseudo-labels assigned by a

pre-trained teacher model, with promising results in singing-voice separation [63, 242] and speech

enhancement [243, 244]. Meanwhile, training with noisy data in PSE is yet to be explored. We

propose a semi-supervised framework to train the Exformer with both labeled and unlabeled data.

Empirical studies on two-speaker mixtures show that the proposed Exformer outperforms the prior

architectures based on ConvTasNet under supervised learning, and the incorporation of unlabeled

data with the semi-supervised setup further improves the quality of the extracted signal.

5.3.2 Model Architecture for Time-Domain Personalized Speech Enhancement

The proposed Exformer model follows the design of the masking-based audio source separation

methods introduced in Section 2.2.2 with an encoder, a separator, and a decoder. As illustrated

in Figure 5.11, Exformer is based upon the Sepformer [105] for time-domain speech separation.

Apart from the masking-based separation components, a pre-trained BLSTM speaker embedder

is used to extract speaker information to guide the extraction. The speaker extractor (encoder,

77

Speaker
Embedder

Encoder

Enrollment

Mixture

Dual Path
Transformer Block

Masking Network

Decoder

Target Estimates

Embedding
Residual Estimates

Segmentation
Overlap-Add

Figure 5.11: The architecture of the Exformer. The speaker embedder is pre-trained, and its
weights are fixed during the training of the separation network. Speaker embeddings are applied
to each of the dual-path transformer blocks.

masking network, and decoder) is trained with the negative scale-invariant signal-to-distortion ratio

(SI-SDR) [106], and the parameters of the embedder network are fixed.

Speaker Embedder

The embedder network obtains a fix-sized embedding vector ze = femb(xe) ∈ RD of the target

speaker, where femb is the embedder network and xe is the enrollment utterance. Following the

embedder design in [231], the mel-spectrogram of the enrollment speech is processed by a stack

of BLSTM layers to model sequential information. The average of the hidden-state representation

from the first and the last frames is projected to a lower dimension with a linear layer. Finally,

the projection output is normalized with unit ℓ2 norm to obtain the speaker embedding ze. The

embedder network is pre-trained with the generalized end-to-end loss (GE2E) [245], which pushes

the embedding to the centroid of all speech embeddings of the same speaker from the batch and

away from the embeddings of other speakers.

Encoder

The encoder network consists of a one-dimensional convolutional layer followed by ReLU ac-

tivation. It transforms the time domain input mixture x ∈ RL with L samples to a hidden

representation H ∈ RF×T with F features and T temporal frames.

Masking Network

The masking network takes the mixture representation H and the speaker embedding ze as input

and estimates a mask Mc ∈ RF×T , c ∈ {1, 2, . . . C}, where C is the total number of sources. We

set C = 2 as the model estimates one mask for the target speech and another mask for the residual

78

interfering signal. Similar to DPRNN [104] and Sepformer [105], the masking network consists of

three modules: segmentation, embedding-guided dual-path processing, and overlap-add.

Segmentation The segmentation module divides the T frames from the mixture representation

H into S segments, each with length K, with 50% overlap between segments. All segments are

concatenated to form a tensor V(0) = {V(0)
s }Ss=1 ∈ RF×K×S .

Embedding Fusion The embedding fusion module combines the segmented mixture represen-

tation and the target speaker embedding ze. We apply embedding fusion at the beginning of each

processing block as in [237, 238, 239, 240]. At the beginning of block j, we perform

W(j) = f
(j)
fus (V

(j−1), ze), (5.12)

where W(j) ∈ RF×T×S is the embedding-guided mixture representation, f
(j)
fus is the fusion function

that applies independently to each segment and frame, and the superscript j denotes the block

index.

We experiment with multiple approaches to incorporate speaker information into the separation

pipeline. The first method concatenates the embedding and the latent mixture representation

similar to [231, 237, 239, 240, 241, 246]. The embedding ze is first duplicated on the frame and the

chunk dimensions to obtain Ze ∈ RD×K×S . Then, Ze is concatenated along the feature dimension

to V(j−1) and linearly projected back to the F -dimensional space:

f
(j)
cat(V

(j−1),Ze) = Linear(Concat(V(j−1),Ze)). (5.13)

In the second approach, we first project the embedding Ze to the same dimension as V(j−1) and

then element-wise multiply with the mixture representation following [238]:

f
(j)
mult(V

(j−1),Ze) = Linear(Ze)⊙V(j−1), (5.14)

where ⊙ stands for element-wise multiplication.

We also consider replacing the element-wise multiplication with addition similar to the applica-

tion of positional embeddings in transformer [7], leading to our third approach:

f
(j)
add(V

(j−1),Ze) = Linear(Ze) +V(j−1). (5.15)

Dual-Path Processing Figure 5.12 (Left) shows the pipeline of a dual-path transformer block.

After the embedding fusion, the dual-path module alternates the processing between short-term and

long-term information. The intra-chunk layer computes the local dependency within each segment,

while the inter-chunk layer communicates between the segments to model global information. As

shown in Figure 5.12 (Right), each of the intra-chunk and inter-chunk layers contains multiple

79

Fusion

Intra-chunk
Layer

Inter-chunk
Layer

Input

Pos
Encoding +

Layer
Norm

MHA + Layer
Norm

Feed
Forward

+ +

Output

Figure 5.12: (Left) The j-th dual path transformer block. The dual-path processing module is made
up of a stack of dual-path transformer blocks, where each block contains a fusion layer for processing
speaker information, an intra-chunk layer for learning local dependency, and an inter-chunk layer
for modeling global dependency. (Right) An intra (or inter)-chunk layer, which includes layer
normalization, multi-head attention, and a feed-forward layer with residual connections. Positional
encoding is applied at the beginning each intra (or inter)-chunk layer.

transformer encoder blocks [7], including layer normalization [247], multi-head attention (MHA),

and a feed-forward layer with residual connections. A sinusoidal positional encoding is applied

before each MHA layer. Each transformer block preserves the number of features F .

The intra-chunk layer operates on each of the S segments independently and computes the local

dependency within each segment. For the j-th dual-path block, the intra-chunk layer is applied to

the second dimension of the speaker-guided input tensor W(j) by

U
(j)
i = f

(j)
intra(W

(j)[:, :, i]), i ∈ {1, 2, . . . ,K}, (5.16)

where f
(j)
intra represents the j-th intra-chunk layer, and the intra-chunk output U(j) is obtained by

concatenating {U(j)
i }Ki=1 along the third dimension. The inter-chunk layer processes the long-term,

global dependency between the segments and is applied to the third dimension of the intra-chunk

layer’s output

V
(j)
i = f

(j)
inter(U

(j)[:, i, :]), i ∈ {1, 2, . . . , S}, (5.17)

and we concatenate {V(j)
i }Si=1 along the second dimension to obtain the block output V(j), which

is further processed by block j + 1. With the interleaving intra-chunk and inter-chunk layers, the

model effectively models both local and global dependency in turn.

With a total of B dual-path blocks, the output V(B) is processed by a 2D convolutional layer to

increase its dimension by C folds, representing each of the C output sources with M′ = {M′
c}Cc=1 =

80

Conv2D(V(B)), where M′
c ∈ RF×K×S .

Overlap-Add Finally, an overlap-add operation transforms the S segments in each M′
c back to

T frames followed by a ReLU activation to obtain the estimated mask Mc ∈ RF×T for source c.

Decoder

The decoder is a one-dimensional transposed convolutional layer that transforms the masked

representation Hc = Mc ⊙H ∈ RF×T of each source c to the estimation of the time domain signal

ŝc = ConvTr1D(Hc) ∈ RL.

5.3.3 Semi-Supervised Learning for Personalized Speech Enhancement

Prior studies on personalized speech enhancement focus on supervised training with the reference

speech available. To incorporate a large unlabeled corpus, where the ground-truth target is missing,

we propose a semi-supervised approach by applying a triplet speaker representation loss [248].

Given the estimated target signal ŝt and residual ŝr, we compute the embeddings zt = femb(ŝt) and

zr = femb(ŝr) with the pre-trained embedder, and compute their distances to ze which is obtained

from the enrollment speech. If the estimated target is separated from the residual, ze should be

much more similar to zt than to zr. The triplet embedder loss is defined as

Lemb(ze, zt, zr) = max{∥ze − zt∥2−∥ze − zr∥2 + γ, 0}, (5.18)

where γ = 1 represents the margin. The embedder loss is computed along with the reconstruction

loss in a supervised context in [248], while we extend its application to unlabeled data. Specifically,

when the ground-truth signal is not available, we only compute the embedder loss; otherwise,

we compute both the reconstruction loss LSI-SDR and Lemb. The overall objective for the semi-

supervised setup is

Lsemi = λs1[{s,x,xe} ∈ Dl] ·
1

2

∑
c∈{t,r}

LSI-SDR(sc, ŝc))

+ λuLemb(ze, zt, zr),

(5.19)

where λs, λu are hyperparameters controlling the two losses, 1 is the indicator function, and Dl
represents the dataset with ground-truth target speech.

One concern with applying semi-supervised training from scratch is that it might be difficult

for the model to obtain optimal separation performance quickly since the parameters are drifted

away by the embedder loss in Equation (5.18). We experiment with a two-stage setup where the

model is first trained with SI-SDR using only labeled data and then trained with both labeled

and unlabeled data with Equation (5.19). In the supervised stage, the model learns to adapt the

81

speaker embedding and to extract the target speech for high-quality reconstruction. When the

performance reaches the plateau, we enter the second stage by introducing the unlabeled data and

the embedder loss. The goal for the second stage is to improve the model’s ability to generalize

with the additional unlabeled data.

5.3.4 Experimental Setup

Dataset

We train and evaluate the system with the simulated 2-speaker mixture from the WSJ0-2mix-

extr6 dataset. The recordings are at a sampling rate of 8 kHz. The training, development, and test

set contains 20,000, 5,000, and 3,000 utterances, respectively. The mixtures are generated from

speech recordings at a signal-to-noise ratio (SNR) between 0 and 5 dB. The first speaker is chosen

to be the target speaker and the second speaker is treated as interference. For each target speaker,

another speech recording from this speaker is randomly selected as the enrollment utterance. For

the semi-supervised setup, we incorporate over 100,000 recordings from the VoxCeleb 1 corpus

[249]. Since the recordings may contain background and reverberation, they are not suitable for

the standard supervised setup.

Model and Training Details

First, we pre-train the speaker embedder following [231]. The embedder takes the 40-dimensional

log mel-spectrogram as input. It consists of 3 BLSTM layers, each with 768 hidden units, and a

linear projection head is attached to obtain an embedding with a dimensionality of 256. The net-

work is trained on the VoxCeleb 1 & 2 [249] and the clean training partition of the Librispeech [250]

corpus combined, which may contain ambiance noise or reverberation. To adapt to the memory

constraint, each batch consists of 46 speakers, each speaker with 4 utterances with 4 seconds long.

The network parameters are updated with the Adam optimizer [134] with an initial learning rate of

5e-4. During preliminary experiments on supervised personalized speech enhancement, we obtain

the best-performing teacher network with the embedder checkpoint at 550,000 steps with an equal

error rate (EER) of 6.5% on the VoxCeleb1 verification test set.

We train the extractor network with the optimal configuration from [105]. The encoder convo-

lution has a kernel size of 16 and a stride of 8 with 256 output channels. The masking network

contains two dual-path blocks. Each intra-chunk or inter-chunk module contains 8 transformer

encoder layers, each layer with 8-head attention and a 1024-dimensional feed-forward projection.

The decoder mirrors the encoder with the same kernel and stride sizes. We experiment with con-

catenation, element-wise multiplication, and addition as the embedding-mixture fusion discussed

in 5.3.2.

6https://github.com/xuchenglin28/speaker_extraction

82

https://github.com/xuchenglin28/speaker_extraction

During training, we apply dynamic mixing [105] to generate mixtures on the fly from a random

3-second segment from each source recording. If either of the sources is less than three seconds,

zero padding is applied on both ends. We also apply time-domain speed perturbing by 5% as data

augmentation. We set the batch size as 1 for the experiments, and we use an Adam optimizer with

an initial learning rate of 1.5e-4. The learning rate is reduced by half if the validation loss is not

improved for two consecutive epochs after 85 epochs until the learning rate reaches 1e-6.

For the semi-supervised training setup, we set the weights of the two loss functions with λs = 1

and λu = 0.05. We experiment with different probabilities of data sampled from the labeled versus

unlabeled corpus. For the two-stage setup, we proceed with the best-performing model from the

supervised setup. We adjust the initial learning rate for the second stage to be 7.5e-5, and the

aforementioned learning rate scheduler applies after 65 epochs. We encourage the readers to refer

to our implementation7.

Evaluation Details

We compare the different configurations of the proposed Exformer with previous works using the

test partition of the WSJ0-2mix-extr dataset. We evaluate each system with the SI-SDR and the

perceptual evaluation of speech quality (PESQ) [251] score of the model’s output with respect to

the reference speech.

5.3.5 Results and Discussions

Supervised Training and Fusion Configuration

Method Fusion Type SI-SDR (dB) PESQ

Input ✗ 2.51 1.81

TseNet [246]
Concat

14.73 3.14
SpEx+ [240] 18.2 3.49

Exformer (Ours)
Concat 19.05 3.78
Mult 19.55 3.82
Add 19.85 3.82

Table 5.7: Performance on the WSJ0-2mix-extr test set of the proposed and baseline time-domain
TSE systems under supervised training, with the best performance in bold.

Table 5.7 summarizes the performance of previous methods on time-domain personalized speech

enhancement as well as the proposed architecture with multiple configurations under the supervised

setup. We report the mean SI-SDR and PESQ for each setup. The SI-SDR and PESQ scores for

the baselines are adapted from [240].

7https://github.com/zhepeiw/tse_semi

83

https://github.com/zhepeiw/tse_semi

All three variants of the Exformer outperform the baseline methods [240, 246]. The performance

gain can be attributed to the use of the dual-path transformer blocks in the masking network which

effectively model local and global dependency. Our observations are consistent with the findings of

BSS systems in [105], where the performance of the transformer blocks dominates over that of the

convolutional blocks.

We also study the impact of different fusion strategies for speaker embedding and mixture rep-

resentation. Among the three fusion types, additive fusion has the best performance with a gain

of 0.3 dB SI-SDR over element-wise multiplication and a 0.8dB gain over concatenation. Addition

and multiplication share the same PESQ score slightly higher than concatenation. Adding the

speaker embedding to the mixture representation is similar to applying a time-varying positional

encoding in various sequential modeling tasks [7]. With the concatenation approach, a part of the

dimensional space of the concatenated representation will be used for modeling the speaker embed-

ding, hence decreasing the proportion of the vector space used for the representation for speaker

extraction and may have a negative impact on the extraction quality. In contrast, addition or

element-wise multiplication avoids the hard split in the vector space and leaves the optimization of

the usage of the vector space for the learning process. We show in our experiments the effectiveness

of adding a time-invariant speaker embedding to the latent representation, allowing the network to

effectively capture the conditioning speaker information.

Semi-supervised Training and Embedder Loss

Embedder Unlabeled
Two-stage

SI-SDR
PESQ

Loss Percentage (dB)

✗

0
✗ 19.85 3.82

✓ ✗ 19.74 3.85
✓ ✓ 20.21 3.83

✓ 5
✗ 19.52 3.79
✓ 20.34 3.83

✓ 10
✗ 19.17 3.74
✓ 20.49 3.85

✓ 25
✗ 19.60 3.82
✓ 20.20 3.83

✓ 50
✗ 17.27 3.56
✓ 19.92 3.82

Table 5.8: Personalized speech enhancement performance of the Exformer trained with the embed-
der loss along with multiple semi-supervised configurations.

We next study the impact of the embedder loss (5.18) and the use of unlabeled data. We report in

Table 5.8 the performance of the Exformer trained on different combinations of the loss functions,

the number of training stages, and the probability of unlabeled data being sampled into a training

84

batch. We initialize the networks in the second stage with the weights of the best-performing

supervised system in Table 5.7.

Training the network from scratch using the embedder loss yields worse performance. This ob-

servation verifies our hypothesis that the embedder loss does not contribute to optimal separation

performance with random initialization compared to training with reconstruction loss alone. With

two-stage training, however, the extraction performance improves consistently among various per-

centages of applying unlabeled data. As the percentage increases, the performance reaches the

peak at a probability of 10% of sampling unlabeled data in both evaluation metrics with a 0.6 dB

gain of SI-SDR over the supervised baseline. The results show that the system benefits from a

two-stage procedure with the embedder loss using a small ratio of unlabeled to labeled data.

5.3.6 Conclusion

We propose the Exformer, a time-domain transformer-based architecture for personalized speech

enhancement. Under the supervised training setup, the Exformer significantly outperforms prior

time-domain networks. More importantly, we show that the extraction performance can be further

enhanced with a two-stage semi-supervised pipeline where mixtures without clean reference speech

can be learned with the proposed embedder loss. By leveraging the massive amount of data

without annotations, we empirically demonstrate that the semi-supervised method outperforms

the supervised counterparts trained only with data samples with corresponding references. A

possible future direction is to extend this approach to more complicated conditions with additional

speakers, noise, and reverberation.

85

CHAPTER 6: CONCLUSION

6.1 SUMMARY OF CONTRIBUTIONS

In this thesis, we present data-efficient learning approaches for audio classification and separation

tasks. We overcome a variety of data-related challenges in training and inference settings for audio

processing. First, in Chapter 3, we present architectural designs for more efficient data usage in

sound event detection. We study a scenario with training data homogeneous in terms of the number

of input channels in a multi-channel speech detection task. We design a multi-view network that

unrolls across both channel and temporal dimensions to overcome the lack of variability in the

number of channels from the training data. The model can first be trained on a fixed number of

channels and then deployed to cases with varying channel numbers, thereby reducing the effort to

collect a training set covering a wide range of channels. We extend the multi-view network to an

adaptive computation framework, HIDACT, for single-channel sound event detection. The model

is trained to make predictions without observing information from all frequency sub-bands and to

intelligently adjust the amount of computation based on the properties of the input. This technique

enables processing in a challenging condition where part of the sub-band information is unavailable

to the model.

Next, in Chapter 4, we investigate approaches to continually update a model to recognize new

sound classes. We present a continual learning framework to efficiently train the classifier only

on new data without forgetting what it has learned previously. We propose a generative replay

method, where a generator is trained to produce data from the past as an economical alternative to

storing previous data. Our method effectively combats catastrophic forgetting while significantly

alleviating the storage burden that would otherwise exist if training along with past data. We then

explore unsupervised continual learning in which few or no annotations exist. We integrate contin-

ual learning with similarity-based self-supervised algorithms to incrementally learn representations

for new sound classes. This simple continual self-supervised learning framework is computation-

ally efficient, is flexible to learn representations for an indefinite number of sound classes, and is

applicable to practical use cases where only limited labels are available.

Finally, in Chapter 5, we present semi-supervised algorithms to learn sound classifiers and sepa-

rators with a massive amount of data without annotations. We focus on bootstrapping-based ap-

proaches for cross-modal representation learning, where we automatically curate additional audio-

text pairs from unpaired audio and text corpus using a pre-trained teacher model trained on a

small set of paired data, and the curated data is used for training a student model that improves

upon the teacher. We also propose this teacher-student framework for singing voice separation. In

this case, the teacher model extracts vocal and accompaniment tracks from the input mixtures,

which are then used as training targets for the subsequent student model. Last but not least, we

consider a regularization-based semi-supervised learning scheme for personalized speech enhance-

86

ment, where a large scale of noisy speech mixtures without a clean reference can be learned with a

speaker embedding loss. By extending the limited dataset with annotations, we empirically show

the improvement of the semi-supervised algorithms upon conventional supervised baselines.

6.2 FUTURE DIRECTIONS

Our current progress can be extended further in terms of the scope of the problem and the

methodology applied. Specifically, we consider the following extensions to the existing work.

6.2.1 Multi-Label Sound Classification

Our current approaches for sound classification are limited to multi-class classification where

the ground truth is assumed to be one-hot. In practice, however, a single audio clip may entail

multiple event classes. The scale of publicly available audio datasets that contain only a single event

for each clip is limited. These datasets often contain recordings with limited duration and cover

only a narrow set of sound classes. Meanwhile, research in sound recognition has recently shifted

towards large-scale datasets with real-world recordings such as AudioSet [196] and FSD50K [200]

in which a noticeable portion of the clips involve multiple sound classes. To fairly compare with

the mainstream classification algorithms and to make our method more applicable to practical use

cases, it is essential to extend our current sound classification algorithms to multi-label scenarios

in order to handle challenging acoustic conditions with potentially overlapping sound events. We

would like to integrate the proposed network architectures, continual, self-supervised, and semi-

supervised learning frameworks into multi-label classification settings to bridge the gap toward

real-world audio applications.

6.2.2 Diverse Settings and Applications for Continual Learning

For the continual learning algorithms presented in this thesis, we focus on the class-incremental

setting where the model progressively learns new sound classes. As mentioned in Section 2.5,

domain-incremental learning is another continual learning setting with importance. Instead of

learning new sound classes over time, the goal for domain-incremental learning is to learn from a

sequence of datasets, each with potentially distinct distributions. This setting is less restrictive on

the dataset assumptions and is more closely related to real-world training than class-incremental

learning. For instance, we may collect sound clips recorded from different microphones and acoustic

conditions over time, and domain-incremental learning aims to continually learn a classifier that

can recognize sound classes from recordings produced under a variety of environments that the

model has seen. We would also like to further explore memory and computationally efficient

algorithms (e.g., regularization-based methods, generative replay) to cope with these continual

learning settings.

87

Besides different continual learning settings, we would also like to extend continual learning to

additional audio processing tasks beyond sound event classification. We consider applications of

continual learning in source separation tasks, where the model progressively learns to separate new

sound classes or to separate under different acoustic conditions. Additionally, the integration of

continual learning with cross-modal representation learning is also relevant. Cross-modal represen-

tation learning requires an even more substantial amount of data than learning unimodal audio

representations, and it may become infeasible to train these large models with all multi-modal data

at once. Continual learning approaches can help balance the trade-off between performance and

efficiency when progressively updating these cross-modal representations with new data.

6.2.3 Multi-Modal Applications

In this thesis, we have presented a study on audio-text pretraining that bridges the representa-

tions of audio and natural language. As video clips with soundtracks exist at a large scale and is

easily accessible [184, 196], audio-visual learning for multi-modal applications has become a central

research problem. Learning representations jointly across audio, image, and natural language [191]

can provide us with a more holistic perception, since information missing from one modality can

be complemented by the others. It also enables cross-modal information retrieval and can improve

the organization of multimedia content. Learning multi-modal representations with data-efficient

approaches is a promising future direction since models involving multiple modalities require a

massive amount of data to train while data aligned across different modalities may be expensive

to obtain.

6.3 BROADER IMPACT

The research presented in this thesis has several contributions to the research community of

artificial intelligence and machine learning. To begin with, addressing the shortage of data with

high-quality annotations has been a long-lasting research problem. It requires considerable human

efforts to collect, organize, and annotate the data at a large scale. To address the lack of diversity

of training data, we propose algorithms that learn from a relatively homogeneous training set while

generalizing well to various unseen test conditions, alleviating the need for collecting training data

with comprehensive coverage. To overcome the bottleneck of the quantity of labeled training data,

we propose self-supervised and semi-supervised approaches to incorporate a substantial amount of

data without annotations into the learning procedure, which outperforms supervised algorithms

that rely solely on annotated data. To this end, the proposed research shows the potential for

training models with reduced laboring costs for human supervision of data collection. Another

limitation to the development of conventional machine learning paradigms is the assumption of a

fixed training dataset. This assumption may become unrealistic in practice, as new data samples can

be produced at all times. We present continual learning methods that can bridge the gap between

88

existing learning schemes and real-world problems by incrementally incorporating knowledge from

the new data while not forgetting about the past. These algorithms serve as a foundation for

how industries and institutions can progressively update learned models in a lifelong fashion with

minimal performance degradation.

Aside from the influence on scientific research, this thesis can also make a significant social im-

pact from several perspectives. First, the research on sound event classification and detection is

beneficial for public safety and home security systems. Events such as gunshots, glass breaking,

screaming, and baby crying are easier to be recognized through audio than through visual surveil-

lance. Accurately analyzing and detecting these events can help identify potential safety threats

or enable a faster response by security and emergency services. Second, the presented research

also has the potential to be applied to assistive technologies. By providing text descriptions of

the recognized sound scenes and events, sound classification algorithms can make audio accessible

to the community with hearing disabilities and help them understand the physical surroundings.

Furthermore, our proposed research can greatly enhance the experience of remote communication.

Research on source separation and speech enhancement has played an instrumental role as on-

line meeting systems become increasingly popular since the spread of the pandemic. With the

reduction of background noise and enhancement of signal quality, we enable a more accessible and

frustration-free experience for online communication, improving productivity and the quality of our

work and life. Last but not least, the studies of adaptive computation and continual learning are

aligned with the spirit of sustainability and affordability. By reducing the computational overhead

and storage requirement, the proposed solutions demonstrate the potential for deploying these al-

gorithms on edge devices, not only reducing carbon footprint but also enabling applications under

resource-constrained settings.

89

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Systems,
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25. Curran
Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” CoRR, vol. abs/1409.1556, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

[4] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estimation of word representa-
tions in vector space,” in ICLR, 2013.

[5] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for word representation,”
in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational Linguistics, Oct. 2014. [Online].
Available: https://aclanthology.org/D14-1162 pp. 1532–1543.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” CoRR, vol. abs/1409.0473, 2015.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. [Online]. Available: https:
//proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[8] E. Cakir, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen, “Convolutional re-
current neural networks for polyphonic sound event detection,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 25, no. 6, pp. 1291–1303, jun 2017.

[9] L. JiaKai, “Mean teacher convolution system for dcase 2018 task 4,” in DCASE Challenge,
2018.

[10] L. Delphin-Poulat and C. Plapous, “Mean teacher with data augmentation for dcase 2019
task 4 technical report,” in DCASE Challenge, 2019.

[11] K. Miyazaki, T. Komatsu, T. Hayashi, S. Watanabe, T. Toda, and K. Takeda, “Convolution-
augmented transformer for semi-supervised sound event detection,” DCASE2020 Challenge,
Tech. Rep., June 2020.

[12] X. Zheng, H. Chen, and Y. Song, “Zheng ustc team’s submission for dcase2021 task4 –
semi-supervised sound event detection,” DCASE2021 Challenge, Tech. Rep., June 2021.

[13] S. Suh, S. Park, Y. Jeong, and T. Lee, “Designing acoustic scene classification models with
CNN variants,” DCASE2020 Challenge, Tech. Rep., June 2020.

90

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://aclanthology.org/D14-1162
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[14] F. Schmid, S. Masoudian, K. Koutini, and G. Widmer, “CP-JKU submission to dcase22:
Distilling knowledge for low-complexity convolutional neural networks from a patchout audio
transformer,” DCASE2022 Challenge, Tech. Rep., June 2022.

[15] Y. Tokozume and T. Harada, “Learning environmental sounds with end-to-end convolutional
neural network,” in 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2017, pp. 2721–2725.

[16] Y. Gong, Y.-A. Chung, and J. Glass, “AST: Audio Spectrogram Transformer,” in Proc.
Interspeech 2021, 2021, pp. 571–575.

[17] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumbley, “Panns: Large-scale
pretrained audio neural networks for audio pattern recognition,” 2019. [Online]. Available:
https://arxiv.org/abs/1912.10211

[18] S. Oramas, F. Barbieri, O. Nieto, and X. Serra, “Multimodal deep learning for music genre
classification,” Trans. Int. Soc. Music. Inf. Retr., vol. 1, pp. 4–21, 2018.

[19] C. Liu, L. Feng, G. Liu, H. Wang, and S. Liu, “Bottom-up broadcast neural network for
music genre classification,” 2019. [Online]. Available: https://arxiv.org/abs/1901.08928

[20] S. Tripathi, S. Tripathi, and H. Beigi, “Multi-modal emotion recognition on iemocap dataset
using deep learning,” 2018. [Online]. Available: https://arxiv.org/abs/1804.05788

[21] J. Zhao, X. Mao, and L. Chen, “Speech emotion recognition using deep 1d & 2d cnn lstm
networks,” Biomed. Signal Process. Control., vol. 47, pp. 312–323, 2019.

[22] O. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai, and S. Laurenzo, “Streaming
keyword spotting on mobile devices,” in Interspeech 2020. ISCA, oct 2020. [Online].
Available: https://doi.org/10.21437%2Finterspeech.2020-1003

[23] B. Desplanques, J. Thienpondt, and K. Demuynck, “ECAPA-TDNN: Emphasized Channel
Attention, propagation and aggregation in TDNN based speaker verification,” in Interspeech
2020, 2020, pp. 3830–3834.

[24] S. Pascual, A. Bonafonte, and J. Serrà, “Segan: Speech enhancement generative adversarial
network,” in Interspeech, 2017.

[25] J.-M. Valin, S. V. Tenneti, K. Helwani, U. Isik, and A. Krishnaswamy, “Low-complexity,
real-time joint neural echo control and speech enhancement based on percepnet,”
in ICASSP 2021, 2021. [Online]. Available: https://www.amazon.science/publications/
low-complexity-real-time-joint-neural-echo-control-and-speech-enhancement-based-on-percepnet

[26] Y. Luo and N. Mesgarani, “Conv-tasnet: Surpassing ideal time–frequency magnitude masking
for speech separation,” IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 27, pp. 1256–1266, 2018.

[27] E. Tzinis, Z. Wang, and P. Smaragdis, “Sudo rm -rf: Efficient networks for universal audio
source separation,” 2020 IEEE 30th International Workshop on Machine Learning for Signal
Processing (MLSP), pp. 1–6, 2020.

91

https://arxiv.org/abs/1912.10211
https://arxiv.org/abs/1901.08928
https://arxiv.org/abs/1804.05788
https://doi.org/10.21437%2Finterspeech.2020-1003
https://www.amazon.science/publications/low-complexity-real-time-joint-neural-echo-control-and-speech-enhancement-based-on-percepnet
https://www.amazon.science/publications/low-complexity-real-time-joint-neural-echo-control-and-speech-enhancement-based-on-percepnet

[28] J. Casebeer, B. Luc, and P. Smaragdis, “Multi-view networks for denoising of arbitrary
numbers of channels,” 2018 16th International Workshop on Acoustic Signal Enhancement
(IWAENC), pp. 496–500, 2018.

[29] J. Casebeer, Z. Wang, and P. Smaragdis, “Multi-view networks for multi-channel audio clas-
sification,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2019, pp. 940–944.

[30] Z. Wang, J. Casebeer, A. Clemmitt, E. Tzinis, and P. Smaragdis, “Sound event detection with
adaptive frequency selection,” 2021 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA), pp. 41–45, 2021.

[31] G. Kaissis, A. Ziller, J. Passerat-Palmbach, T. Ryffel, D. Usynin, A. Trask, I. Lima, J. V.
Mancuso, F. Jungmann, M.-M. Steinborn, A. Saleh, M. R. Makowski, D. Rueckert, and
R. F. Braren, “End-to-end privacy preserving deep learning on multi-institutional medical
imaging,” Nat. Mach. Intell., vol. 3, pp. 473–484, 2021.

[32] R. French, “Catastrophic forgetting in connectionist networks,” Trends in Cognitive Sciences,
no. 4, 1999.

[33] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and
R. Hadsell, “Overcoming catastrophic forgetting in neural networks,” Proceedings of the Na-
tional Academy of Sciences, vol. 114, 12 2016.

[34] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 40, no. 12, pp. 2935–2947, 2018.

[35] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “iCaRL: incremental classifier
and representation learning,” in CVPR, 2017.

[36] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative
replay,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran
Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/
0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf

[37] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single network by iterative
pruning,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 7765–7773.

[38] A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single network to multiple
tasks by learning to mask weights,” in ECCV, 2018.

[39] Z. Wang, Y. C. Sübakan, E. Tzinis, P. Smaragdis, and L. Charlin, “Continual learning of
new sound classes using generative replay,” 2019 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), pp. 308–312, 2019.

[40] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in European Conference
on Computer Vision (ECCV), 2016.

92

https://proceedings.neurips.cc/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf

[41] A. Dosovitskiy, J. T. Springenberg, M. A. Riedmiller, and T. Brox, “Discriminative unsuper-
vised feature learning with convolutional neural networks,” in NIPS, 2014.

[42] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirec-
tional transformers for language understanding,” in Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics, 2019.

[43] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A lite bert
for self-supervised learning of language representations,” ArXiv, vol. abs/1909.11942, 2020.

[44] K. He, X. Chen, S. Xie, Y. Li, P. Doll’ar, and R. B. Girshick, “Masked autoencoders are
scalable vision learners,” ArXiv, 2021.

[45] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual
representation learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

[46] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive
learning of visual representations,” in Proceedings of the International Conference on Machine
Learning (ICML), 2020.

[47] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Unsupervised learning
of visual features by contrasting cluster assignments,” in Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[48] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive
coding,” ArXiv, vol. abs/1807.03748, 2018.

[49] M. Ravanelli, J. Zhong, S. Pascual, P. Swietojanski, J. Monteiro, J. Trmal, and Y. Bengio,
“Multi-task self-supervised learning for robust speech recognition,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020.

[50] Y. Gong, C.-I. J. Lai, Y.-A. Chung, and J. Glass, “Ssast: Self-supervised audio spectrogram
transformer,” arXiv preprint arXiv:2110.09784, 2021.

[51] D. Niizumi, D. Takeuchi, Y. Ohishi, N. Harada, and K. Kashino, “Byol for audio: Self-
supervised learning for general-purpose audio representation,” in International Joint Confer-
ence on Neural Networks (IJCNN), 2021.

[52] E. Fonseca, A. Jansen, D. P. W. Ellis, S. Wisdom, M. Tagliasacchi, J. R. Hershey, M. Plakal,
S. Hershey, R. C. Moore, and X. Serra, “Self-supervised learning from automatically separated
sound scenes,” IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2021.

[53] Z. Wang, C. Subakan, X. Jiang, J. Wu, E. Tzinis, M. Ravanelli, and P. Smaragdis, “Learning
representations for new sound classes with continual self-supervised learning,” ArXiv, vol.
abs/2205.07390, 2022.

[54] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learning. The MIT Press,
2006. [Online]. Available: http://dblp.uni-trier.de/db/books/collections/CSZ2006.html

[55] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results,” in NIPS, 2017.

93

http://dblp.uni-trier.de/db/books/collections/CSZ2006.html

[56] C. Baur, S. Albarqouni, and N. Navab, “Semi-supervised deep learning for fully convolutional
networks,” in International Conference on Medical Image Computing and Computer-Assisted
Intervention, 2017.

[57] Q. Xie, E. H. Hovy, M.-T. Luong, and Q. V. Le, “Self-training with noisy student improves
imagenet classification,” ArXiv, vol. abs/1911.04252, 2019.

[58] P. Liang, “Semi-supervised learning for natural language,” 2005.

[59] S. Grollmisch and E. Cano, “Improving semi-supervised learning for audio classification with
fixmatch,” Electronics, 2021.

[60] L. Cances and T. Pellegrini, “Comparison of deep co-training and mean-teacher approaches
for semi-supervised audio tagging,” in ICASSP 2021 - 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 361–365.

[61] S. Novotney and R. Schwartz, “Analysis of low-resource acoustic model self-training,” in Pro-
ceedings of the Annual Conference of the International Speech Communication Association,
INTERSPEECH, 01 2009, pp. 244–247.

[62] Z. Wang, C. Subakan, K. Subramani, J. Wu, T. F. Tavares, F. Ayres, and P. Smaragdis,
“Unsupervised improvement of audio-text cross-modal representations,” ArXiv, vol.
abs/2305.01864, 2023.

[63] Z. Wang, R. Giri, U. Isik, J.-M. Valin, and A. Krishnaswamy, “Semi-
supervised singing voice separation with noise self-training,” in ICASSP
2021, 2021. [Online]. Available: https://www.amazon.science/publications/
semi-supervised-singing-voice-separation-with-noise-self-training

[64] Z. Wang, R. Giri, S. Venkataramani, U. Isik, J.-M. Valin, P. Smaragdis, M. Goodwin, and
A. Krishnaswamy, “Semi-supervised time domain target speaker extraction with attention,”
ArXiv, vol. abs/2206.09072, 2022.

[65] T. Heittola, A. Mesaros, and T. Virtanen, “Tau urban acoustic scenes 2022 mobile, develop-
ment dataset,” 2022.

[66] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,” in Proceedings of
the 23rd Annual ACM Conference on Multimedia. ACM Press, 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2733373.2806390 pp. 1015–1018.

[67] R. Giri, S. Venkataramani, J.-M. Valin, U. Isik, and A. Krishnaswamy, “Personalized
percepnet: Real-time, low-complexity target voice separation and enhancement,” in
Interspeech 2021, 2021. [Online]. Available: https://www.amazon.science/publications/
personalized-percepnet-real-time-low-complexity-target-voice-separation-and-enhancement

[68] F. Su, L. Yang, T. Lu, and G. Wang, “Environmental sound classification for scene recognition
using local discriminant bases and hmm,” in MM ’11, 2011.

[69] L. Vuegen, B. V. Broeck, P. Karsmakers, J. Gemmeke, B. Vanrumste, and H. V. hamme,
“An mfcc-gmm approach for event detection and classification,” in IEEE AASP Challenge
on Detection and Classification of Acoustic Scenes and Events, 2013.

94

https://www.amazon.science/publications/semi-supervised-singing-voice-separation-with-noise-self-training
https://www.amazon.science/publications/semi-supervised-singing-voice-separation-with-noise-self-training
http://dl.acm.org/citation.cfm?doid=2733373.2806390
https://www.amazon.science/publications/personalized-percepnet-real-time-low-complexity-target-voice-separation-and-enhancement
https://www.amazon.science/publications/personalized-percepnet-real-time-low-complexity-target-voice-separation-and-enhancement

[70] Lie Lu, Stan Z. Li, and Hong-Jiang Zhang, “Content-based audio segmentation using support
vector machines,” in IEEE International Conference on Multimedia and Expo, 2001. ICME
2001., 2001, pp. 749–752.

[71] B. Uzkent, B. Barkana, and H. Çevikalp, “Non-speech environmental sound classification
using svms with a new set of features,” in International Journal of Innovative Computing,
Information and Control, 2012.

[72] Jia-Ching Wang, Jhing-Fa Wang, Kuok Wai He, and Cheng-Shu Hsu, “Environmental sound
classification using hybrid svm/knn classifier and mpeg-7 audio low-level descriptor,” in The
2006 IEEE International Joint Conference on Neural Network Proceedings, 2006, pp. 1731–
1735.

[73] S. Gunasekaran and K. Revathy, “Content-based classification and retrieval of wild animal
sounds using feature selection algorithm,” in 2010 Second International Conference on Ma-
chine Learning and Computing, 2010, pp. 272–275.

[74] J. Salamon and J. P. Bello, “Deep convolutional neural networks and data augmentation
for environmental sound classification,” IEEE Signal Processing Letters, vol. 24, no. 3, pp.
279–283, 2017.

[75] V. Boddapati, A. Petef, J. Rasmusson, and L. Lundberg, “Classifying environmental sounds
using image recognition networks,” Procedia Computer Science, vol. 112, pp. 2048–2056, 12
2017.

[76] S. Abdoli, P. Cardinal, and A. Lameiras Koerich, “End-to-end environmental sound
classification using a 1d convolutional neural network,” Expert Systems with Applications,
vol. 136, pp. 252 – 263, 2019. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0957417419304403

[77] J. Kim, J. Kim, S. Lee, J. Park, and M. Hahn, “Vowel based voice activity detection with
lstm recurrent neural network,” in Proceedings of the 8th International Conference on Signal
Processing Systems, 11 2016, pp. 134–137.

[78] G. Gelly and J. Gauvain, “Optimization of rnn-based speech activity detection,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 26, no. 3, pp. 646–656, 2018.

[79] S. Adavanne, P. Pertilä, and T. Virtanen, “Sound event detection using spatial features
and convolutional recurrent neural network,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 771–775.

[80] J. Sang, S. Park, and J. Lee, “Convolutional recurrent neural networks for urban sound
classification using raw waveforms,” in 2018 26th European Signal Processing Conference
(EUSIPCO), 2018, pp. 2444–2448.

[81] H. Lim, J. Park, K. Lee, and Y. Han, “Rare sound event detection using 1d convolutional
recurrent neural networks,” in Workshop on Detection and Classification of Acoustic Scenes
and Events, 2017.

[82] Z. Zhang, S. Xu, S. Zhang, T. Qiao, and S. Cao, “Learning attentive representations for
environmental sound classification,” IEEE Access, vol. 7, pp. 130 327–130 339, 2019.

95

http://www.sciencedirect.com/science/article/pii/S0957417419304403
http://www.sciencedirect.com/science/article/pii/S0957417419304403

[83] Z. Zhang, S. Xu, T. Qiao, S. Zhang, and S. Cao, “Attention based convolutional recurrent
neural network for environmental sound classification,” in Pattern Recognition and Computer
Vision, Z. Lin, L. Wang, J. Yang, G. Shi, T. Tan, N. Zheng, X. Chen, and Y. Zhang, Eds.
Cham: Springer International Publishing, 2019, pp. 261–271.

[84] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third ‘chime’ speech separation and
recognition challenge: Dataset, task and baselines,” in 2015 IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), 2015, pp. 504–511.

[85] F.-R. Stöter, A. Liutkus, and N. Ito, The 2018 Signal Separation Evaluation Campaign, 06
2018, pp. 293–305.

[86] I. Kavalerov, S. Wisdom, H. Erdogan, B. Patton, K. W.Wilson, J. L. Roux, and J. R. Hershey,
“Universal sound separation,” 2019 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA), pp. 175–179, 2019.

[87] E. Tzinis, S. Venkataramani, and P. Smaragdis, “Unsupervised deep clustering for source
separation: Direct learning from mixtures using spatial information,” in ICASSP 2019 -
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2019, pp. 81–85.

[88] P. C. Loizou, Speech enhancement: theory and practice. CRC press, 2013.

[89] H. Dubey, V. Gopal, R. Cutler, A. Aazami, S. Matusevych, S. Braun, S. E. Eskimez,
M. Thakker, T. Yoshioka, H. Gamper, and R. Aichner, “Icassp 2022 deep noise suppres-
sion challenge,” in IEEE ICASSP, 2022.

[90] P. Smaragdis, “Non-negative matrix factor deconvolution; extraction of multiple sound
sources from monophonic inputs,” in Independent Component Analysis and Blind Signal
Separation: Fifth International Conference, ICA 2004, Granada, Spain, September 22-24,
2004. Proceedings 5. Springer, 2004, pp. 494–499.

[91] M. N. Schmidt and R. K. Olsson, “Single-channel speech separation using sparse non-negative
matrix factorization.” in Interspeech, vol. 2. Citeseer, 2006, pp. 2–5.

[92] P. Comon and C. Jutten, Handbook of Blind Source Separation: Independent component
analysis and applications. Academic press, 2010.

[93] S. Choi, A. Cichocki, H.-M. Park, and S.-Y. Lee, “Blind source separation and independent
component analysis: A review,” Neural Information Processing-Letters and Reviews, vol. 6,
no. 1, pp. 1–57, 2005.

[94] A. Ozerov, C. Févotte, and M. Charbit, “Factorial scaled hidden markov model for polyphonic
audio representation and source separation,” in 2009 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics. IEEE, 2009, pp. 121–124.

[95] G. J. Mysore, P. Smaragdis, and B. Raj, “Non-negative hidden markov modeling of audio
with application to source separation,” in Latent Variable Analysis and Signal Separation:
9th International Conference, LVA/ICA 2010, St. Malo, France, September 27-30, 2010.
Proceedings 9. Springer, 2010, pp. 140–148.

96

[96] S. Venkataramani, E. Tzinis, and P. Smaragdis, “A style transfer approach to source separa-
tion,” in 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA). IEEE, 2019, pp. 170–174.

[97] S. Wisdom, E. Tzinis, H. Erdogan, R. Weiss, K. Wilson, and J. Hershey, “Unsupervised
sound separation using mixture invariant training,” in Neural Information Processing Systems
(NeurIPS), vol. 33, 2020.

[98] P. Chandna, M. Miron, J. Janer, and E. Gómez, “Monoaural audio source separation using
deep convolutional neural networks,” in Latent Variable Analysis and Signal Separation: 13th
International Conference, LVA/ICA 2017, Grenoble, France, February 21-23, 2017, Proceed-
ings 13. Springer, 2017, pp. 258–266.

[99] D. S. Williamson, Y. Wang, and D. Wang, “Complex ratio masking for monaural speech
separation,” IEEE/ACM transactions on audio, speech, and language processing, vol. 24,
no. 3, pp. 483–492, 2015.

[100] J. Le Roux, G. Wichern, S. Watanabe, A. Sarroff, and J. R. Hershey, “Phasebook and friends:
Leveraging discrete representations for source separation,” IEEE Journal of Selected Topics
in Signal Processing, vol. 13, no. 2, pp. 370–382, 2019.

[101] U. Isik, R. Giri, N. Phansalkar, J.-M. Valin, K. Helwani, and A. Krishnaswamy, “Poconet:
Better speech enhancement with frequency-positional embeddings, semi-supervised conver-
sational data, and biased loss,” in Proceedings of the Annual Conference of the International
Speech Communication Association, INTERSPEECH, 2020.

[102] Z.-Q. Wang, G. Wichern, S. Watanabe, and J. Le Roux, “Stft-domain neural speech enhance-
ment with very low algorithmic latency,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 31, pp. 397–410, 2023.

[103] J. R. Hershey, Z. Chen, J. L. Roux, and S. Watanabe, “Deep clustering: Discriminative em-
beddings for segmentation and separation,” 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 31–35, 2015.

[104] Y. Luo, Z. Chen, and T. Yoshioka, “Dual-path rnn: Efficient long sequence modeling for
time-domain single-channel speech separation,” ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 46–50, 2020.

[105] C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong, “Attention is all you need
in speech separation,” ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 21–25, 2021.

[106] J. L. Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “Sdr – half-baked or well done?”
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019.

[107] D. Yu, M. Kolbæk, Z. Tan, and J. H. Jensen, “Permutation invariant training of deep models
for speaker-independent multi-talker speech separation,” IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2017.

[108] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context encoders:
Feature learning by inpainting,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 2536–2544.

97

[109] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural
Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K. Weinberger, Eds., vol. 27. Curran Associates, Inc., 2014. [Online]. Available: https:
//proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[110] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” CoRR, vol. abs/1312.6114,
2014.

[111] X. Chen, H. Fan, R. B. Girshick, and K. He, “Improved baselines with momentum contrastive
learning,” ArXiv, vol. abs/2003.04297, 2020.

[112] K. Sohn, “Improved deep metric learning with multi-class n-pair loss objective,” in Advances
in Neural Information Processing Systems (NeurIPS), 2016.

[113] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins: Self-supervised learn-
ing via redundancy reduction,” in Proceedings of the International Conference on Machine
Learning, M. Meila and T. Zhang, Eds. PMLR, 2021.

[114] J.-B. Grill, F. Strub, F. Altch’e, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch,
B. Á. Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko,
“Bootstrap your own latent: A new approach to self-supervised learning,” ArXiv, vol.
abs/2006.07733, 2020.

[115] X. Chen and K. He, “Exploring simple siamese representation learning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[116] Y. Ouali, C. Hudelot, and M. Tami, “An overview of deep semi-supervised learning,” ArXiv,
vol. abs/2006.05278, 2020.

[117] C. Biemann, “Unsupervised and knowledge-free natural language processing in the structure
discovery paradigm,” in Ausgezeichnete Informatikdissertationen, 2007.

[118] C. Zeno, I. Golan, E. Hoffer, and D. Soudry, “Task-agnostic continual learning using online
variational bayes with fixed-point updates,” Neural Computation, vol. 33, pp. 3139–3177,
2021.

[119] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,
R. Pascanu, and R. Hadsell, “Progressive neural networks,” 2016.

[120] R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert gate: Lifelong learning with a network
of experts,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[121] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,” in Pro-
ceedings of Advances in Neural Information Processing Systems (NeurIPS), 2017.

[122] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong learning with
a-gem,” in ICLR, 2019.

[123] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based sample selection for online
continual learning,” in NeurIPS, 2019.

98

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[124] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore, M. Plakal,
D. Platt, R. A. Saurous, B. Seybold et al., “Cnn architectures for large-scale audio classi-
fication,” in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International
Conference on. IEEE, 2017, pp. 131–135.

[125] T. H. Vu and J.-C. Wang, “Acoustic scene and event recognition using recurrent neural
networks,” Detection and Classification of Acoustic Scenes and Events, vol. 2016, 2016.

[126] K. Choi, G. Fazekas, and M. Sandler, “Automatic tagging using deep convolutional neural
networks,” arXiv preprint arXiv:1606.00298, 2016.

[127] Y. Xu, Q. Kong, Q. Huang, W. Wang, and M. D. Plumbley, “Convolutional gated recur-
rent neural network incorporating spatial features for audio tagging,” in Neural Networks
(IJCNN), 2017 International Joint Conference on. IEEE, 2017, pp. 3461–3466.

[128] B. Li, T. N. Sainath, R. J. Weiss, K. W. Wilson, and M. Bacchiani, “Neural network adaptive
beamforming for robust multichannel speech recognition,” in Interspeech, 2016.

[129] X. Xiao, S. Watanabe, H. Erdogan, L. Lu, J. Hershey, M. L. Seltzer, G. Chen, Y. Zhang,
M. Mandel, and D. Yu, “Deep beamforming networks for multi-channel speech recogni-
tion,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2016, pp. 5745–5749.

[130] T. Inoue, P. Vinayavekhin, S. Wang, D. Wood, N. Greco, and R. Tachibana, “Domestic activi-
ties classification based on CNN using shuffling and mixing data augmentation,” DCASE2018
Challenge, Tech. Rep., September 2018.

[131] R. Tanabe, T. Endo, Y. Nikaido, T. Ichige, P. Nguyen, Y. Kawaguchi, and K. Hamada,
“Multichannel acoustic scene classification by blind dereverberation, blind source separation,
data augmentation, and model ensembling,” DCASE2018 Challenge, Tech. Rep., September
2018.

[132] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and N. L. Dahlgren,
“Darpa timit acoustic phonetic continuous speech corpus cdrom,” 1993.

[133] D. Liu, P. Smaragdis, and M. Kim, “Experiments on deep learning for speech denoising,” Pro-
ceedings of the Annual Conference of the International Speech Communication Association,
INTERSPEECH, pp. 2685–2689, 1 2014.

[134] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.
abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[135] R. Scheibler, E. Bezzam, and I. Dokmanić, “Pyroomacoustics: A python package for audio
room simulation and array processing algorithms,” in 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 351–355.

[136] Y. Koizumi, D. Takeuchi, Y. Ohishi, N. Harada, and K. Kashino, “The NTT DCASE2020
challenge task 6 system: Automated audio captioning with keywords and sentence length
estimation,” in DCASE Challenge, 2020.

[137] N. Turpault, R. Serizel, A. Parag Shah, and J. Salamon, “Sound event detection in domestic
environments with weakly labeled data and soundscape synthesis,” in DCASE Challenge,
2019.

99

http://arxiv.org/abs/1412.6980

[138] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149,
2015.

[139] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for efficient
neural network,” in NIPS, 2015.

[140] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse convolutional neural
networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2015.

[141] J. Casebeer, U. Isik, S. Venkataramani, and A. Krishnaswamy, “Efficient trainable front-ends
for neural speech enhancement,” in IEEE ICASSP, 2020.

[142] G. Cerutti, R. Andri, L. Cavigelli, E. Farella, M. Magno, and L. Benini, “Sound event detec-
tion with binary neural networks on tightly power-constrained iot devices,” in ACM/IEEE
ISLPED, 2020.

[143] M. Kim and P. Smaragdis, “Bitwise neural networks for efficient single-channel source sepa-
ration,” in IEEE ICASSP, 2018.

[144] S. Kim, M. Maity, and M. Kim, “Incremental binarization on recurrent neural networks for
single-channel source separation,” in IEEE ICASSP, 2019.

[145] H.-W. Liao, J.-Y. Huang, S.-S. Lan, T.-H. Lee, Y.-W. Liu, and M.-S. Bai, “DCASE 2018
task 5 challenge technical report: Sound event classification by a deep neural network with
attention and minimum variance distortionless response enhancement,” in DCASE Challenge,
2018.

[146] J. Li, A. Mohamed, G. Zweig, and Y. Gong, “Lstm time and frequency recurrence for auto-
matic speech recognition,” in 2015 IEEE ASRU, 2015.

[147] C.-C. Kao, M. Sun, Y. Gao, S. Vitaladevuni, and C. Wang, “Sub-Band Convolutional Neural
Networks for Small-Footprint Spoken Term Classification,” in INTERSPEECH, 2019.

[148] Q. Wang, J. Du, L.-R. Dai, and C.-H. Lee, “Joint noise and mask aware training for dnn-based
speech enhancement with sub-band features,” in HSCMA, 2017.

[149] Y. Luo, C. Han, and N. Mesgarani, “Ultra-lightweight speech separation via group commu-
nication,” arXiv preprint arXiv:2011.08397, 2020.

[150] Y. Luo, C. Han, and N. Mesgarani, “Group communication with context codec for ultra-
lightweight source separation,” arXiv preprint arXiv:2012.07291, 2020.

[151] A. Graves, “Adaptive computation time for recurrent neural networks,” arXiv preprint
arXiv:1603.08983, 2016.

[152] S. Teerapittayanon, B. McDanel, and H. Kung, “Branchynet: Fast inference via early exiting
from deep neural networks,” in ICPR, 2016.

[153] M. Figurnov, M. Collins, Y. Zhu, L. Zhang, J. Huang, D. Vetrov, and R. Salakhutdinov,
“Spatially adaptive computation time for residual networks,” in IEEE/CVF CVPR, 2017,
pp. 1790–1799.

100

[154] S. Sukhbaatar, E. Grave, P. Bojanowski, and A. Joulin, “Adaptive attention span in trans-
formers,” in Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, 2019.

[155] J. Casebeer, J. Kaikaus, and P. Smaragdis, “Communication-cost aware microphone se-
lection for neural speech enhancement with ad-hoc microphone arrays,” arXiv preprint
arXiv:2011.07348, 2020.

[156] C. Eyzaguirre and Á. Soto, “Differentiable adaptive computation time for visual reasoning,”
in IEEE/CVF CVPR, 2020.

[157] N. Whitehead and A. Fit-Florea, “Precision & performance: floating point and ieee 754
compliance for nvidia gpus,” rn (A+B), 2011.

[158] A. Mesaros, T. Heittola, E. Benetos, P. Foster, M. Lagrange, T. Virtanen, and M. D. Plumb-
ley, “Detection and classification of acoustic scenes and events: Outcome of the DCASE 2016
challenge,” IEEE/ACM TASLP, 2018.

[159] J. C. Schlimmer and D. Fisher, “A case study of incremental concept induction,” in AAAI,
vol. 86, 1986, pp. 496–501.

[160] R. S. Sutton, S. D. Whitehead et al., “Online learning with random representations,” in
Proceedings of the Tenth International Conference on Machine Learning, 1993, pp. 314–321.

[161] M. B. Ring, “Child: A first step towards continual learning,” Machine Learning, vol. 28,
no. 1, pp. 77–104, 1997.

[162] Y. C. Sübakan, O. Koyejo, and P. Smaragdis, “Learning the base distribution in
implicit generative models,” CoRR, vol. abs/1803.04357, 2018. [Online]. Available:
http://arxiv.org/abs/1803.04357

[163] E. Tzinis, S. Venkataramani, Z. Wang, Y. C. Sübakan, and P. Smaragdis, “Two-step sound
source separation: Training on learned latent targets,” ICASSP 2020 - 2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 31–35, 2020.

[164] Y. Hsu, Y. Liu, and Z. Kira, “Re-evaluating continual learning scenarios: A categorization
and case for strong baselines,” CoRR, vol. abs/1810.12488, 2018. [Online]. Available:
http://arxiv.org/abs/1810.12488

[165] M. Lucic, K. Kurach, M. Michalski, O. Bousquet, and S. Gelly, “Are gans created
equal? a large-scale study,” in Proceedings of the 32Nd International Conference on Neural
Information Processing Systems, ser. NIPS’18. USA: Curran Associates Inc., 2018. [Online].
Available: http://dl.acm.org/citation.cfm?id=3326943.3327008 pp. 698–707.

[166] M. D.Hoffman and M. J. Johnson, “ELBO surgery: yet another way to carve up the vari-
ational evidence lower bound,” in NIPS workshop for approximate Bayesian inference, Dec.
2016.

[167] N. Dilokthanakul, P. A. M. Mediano, M. Garnelo, M. C. H. Lee, H. Salimbeni,
K. Arulkumaran, and M. Shanahan, “Deep unsupervised clustering with gaussian
mixture variational autoencoders,” CoRR, vol. abs/1611.02648, 2016. [Online]. Available:
http://arxiv.org/abs/1611.02648

101

http://arxiv.org/abs/1803.04357
http://arxiv.org/abs/1810.12488
http://dl.acm.org/citation.cfm?id=3326943.3327008
http://arxiv.org/abs/1611.02648

[168] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep embedding: an un-
supervised and generative approach to clustering,” in Proceedings of the 26th International
Joint Conference on Artificial Intelligence. AAAI Press, 2017, pp. 1965–1972.

[169] J. Tomczak and M.Welling, “Vae with a vampprior,” in International Conference on Artificial
Intelligence and Statistics, 2018, pp. 1214–1223.

[170] A. Rios and L. Itti, “Closed-loop GAN for continual learning,” CoRR, vol. abs/1811.01146,
2018. [Online]. Available: http://arxiv.org/abs/1811.01146

[171] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsupervised learn-
ing of visual features,” in European Conference on Computer Vision (ECCV), 2018.

[172] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and
Y. Bengio, “Learning deep representations by mutual information estimation and maximiza-
tion,” in International Conference on Learning Representations (ICLR), 2019.

[173] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework for self-
supervised learning of speech representations,” in Proceedings of Advances in Neural In-
formation Processing Systems (NeurIPS), 2020.

[174] P.-H. Chi, P.-H. Chung, T.-H. Wu, C.-C. Hsieh, S.-W. Li, and H. yi Lee, “Audio albert: A lite
bert for self-supervised learning of audio representation,” IEEE Spoken Language Technology
Workshop (SLT), 2021.

[175] E. Fini, V. G. T. da Costa, X. Alameda-Pineda, E. Ricci, K. Alahari, and J. Mairal, “Self-
supervised models are continual learners,” arXiv preprint arXiv:2112.04215, 2021.

[176] D. Madaan, J. Yoon, Y. Li, Y. Liu, and S. J. Hwang, “Representational continuity for
unsupervised continual learning,” in International Conference on Learning Representations,
2022.

[177] Z. Ni, S. Tang, and Y. Zhuang, “Self-supervised class incremental learning,” arXiv preprint
arXiv:2111.11208, 2021.

[178] S. Zhang, G. Shen, and Z. Deng, “Self-supervised learning aided class-incremental lifelong
learning,” ArXiv, 2020.

[179] S. Kessler, B. Thomas, and S. Karout, “An adapter based pre-training for efficient and scal-
able self-supervised speech representation learning,” in International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), 2022.

[180] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton, “Big self-supervised models
are strong semi-supervised learners,” in Advances in Neural Information Processing Systems,
2020.

[181] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le, “Specaug-
ment: A simple augmentation method for automatic speech recognition,” in INTERSPEECH,
2019.

[182] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban sound research,”
in ACM International Conference on Multimedia, 2014.

102

http://arxiv.org/abs/1811.01146

[183] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-device dataset for urban acoustic scene
classification,” in Proceedings of the Detection and Classification of Acoustic Scenes and
Events Workshop (DCASE), 2018.

[184] H. Chen, W. Xie, A. Vedaldi, and A. Zisserman, “Vggsound: A large-scale audio-visual
dataset,” in International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2020.

[185] M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell, L. Lugosch, C. Subakan,
N. Dawalatabad, A. Heba, J. Zhong, J.-C. Chou, S.-L. Yeh, S.-W. Fu, C.-F. Liao, E. Ras-
torgueva, F. Grondin, W. Aris, H. Na, Y. Gao, R. D. Mori, and Y. Bengio, “Speechbrain: A
general-purpose speech toolkit,” ArXiv, 2021.

[186] J. Smith, J. Tian, Y.-C. Hsu, and Z. Kira, “A closer look at rehearsal-free continual learning,”
ArXiv, 2022.

[187] J. Gui, T. Chen, Q. Cao, Z. Sun, H. Luo, and D. Tao, “A survey of self-supervised learning
from multiple perspectives: Algorithms, theory, applications and future trends,” 2023.

[188] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable visual models
from natural language supervision,” in Proceedings of the 38th International Conference on
Machine Learning, 2021, pp. 8748–8763.

[189] L. Yuan, D. Chen, Y.-L. Chen, N. C. F. Codella, X. Dai, J. Gao, H. Hu, X. Huang, B. Li,
C. Li, C. Liu, M. Liu, Z. Liu, Y. Lu, Y. Shi, L. Wang, J. Wang, B. Xiao, Z. Xiao, J. Yang,
M. Zeng, L. Zhou, and P. Zhang, “Florence: A new foundation model for computer vision,”
ArXiv, vol. abs/2111.11432, 2021.

[190] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le, Y. Sung, Z. Li, and
T. Duerig, “Scaling up visual and vision-language representation learning with noisy text
supervision,” 2021.

[191] A. Guzhov, F. Raue, J. Hees, and A. Dengel, “Audioclip: Extending clip to image, text and
audio,” 2021.

[192] B. Elizalde, S. Deshmukh, M. A. Ismail, and H. Wang, “Clap: Learning audio concepts from
natural language supervision,” arXiv preprint arXiv:2206.04769, 2022.

[193] H.-H. Wu, P. Seetharaman, K. Kumar, and J. P. Bello, “Wav2clip: Learning robust audio
representations from clip,” 2022.

[194] Y. Zhao, J. Hessel, Y. Yu, X. Lu, R. Zellers, and Y. Choi, “Connecting the dots between audio
and text without parallel data through visual knowledge transfer,” in Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Seattle, United States: Association for Computational
Linguistics, July 2022, pp. 4492–4507.

[195] Y. Wu*, K. Chen*, T. Zhang*, Y. Hui*, T. Berg-Kirkpatrick, and S. Dubnov, “Large-
scale contrastive language-audio pretraining with feature fusion and keyword-to-caption aug-
mentation,” in IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP, 2023.

103

[196] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore,
M. Plakal, and M. Ritter, “Audio set: An ontology and human-labeled dataset for audio
events,” in Proc. IEEE ICASSP 2017, New Orleans, LA, 2017.

[197] A. Andonian, S. Chen, and R. Hamid, “Robust cross-modal representation learning with
progressive self-distillation,” in CVPR 2022, 2022.

[198] Y. Gao, J. Liu, Z.-H. Xu, T. Wu, W. Liu, J. jin Yang, K. Li, and X. Sun, “Softclip: Softer
cross-modal alignment makes clip stronger,” ArXiv, vol. abs/2303.17561, 2023.

[199] A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah, E. Vincent, B. Raj, and T. Vir-
tanen, “DCASE 2017 challenge setup: Tasks, datasets and baseline system,” in Proceed-
ings of the Detection and Classification of Acoustic Scenes and Events 2017 Workshop
(DCASE2017), November 2017, pp. 85–92.

[200] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra, “Fsd50k: An open dataset of human-
labeled sound events,” IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 30, pp. 829–852, 2022.

[201] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: an audio captioning dataset,” ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 736–740, 2019.

[202] C. D. Kim, B. Kim, H. Lee, and G. Kim, “AudioCaps: Generating captions for audios in
the wild,” in Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics,
June 2019. [Online]. Available: https://aclanthology.org/N19-1011 pp. 119–132.

[203] I. Mart́ın-Morató and A. Mesaros, “What is the ground truth? reliability of multi-annotator
data for audio tagging,” 2021 29th European Signal Processing Conference (EUSIPCO), pp.
76–80, 2021.

[204] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite,
J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush,
“Transformers: State-of-the-art natural language processing,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstrations.
Online: Association for Computational Linguistics, Oct. 2020. [Online]. Available:
https://www.aclweb.org/anthology/2020.emnlp-demos.6 pp. 38–45.

[205] N. Takahashi and Y. Mitsufuji, “Multi-scale multi-band densenets for audio source
separation,” CoRR, vol. abs/1706.09588, 2017. [Online]. Available: http://arxiv.org/abs/
1706.09588

[206] N. Takahashi, N. Goswami, and Y. Mitsufuji, “Mmdenselstm: An efficient combination of
convolutional and recurrent neural networks for audio source separation,” in 2018 16th In-
ternational Workshop on Acoustic Signal Enhancement (IWAENC), 2018, pp. 106–110.

[207] F.-R. Stöter, S. Uhlich, A. Liutkus, and Y. Mitsufuji, “Open-unmix - a reference
implementation for music source separation,” Journal of Open Source Software, 2019.
[Online]. Available: https://doi.org/10.21105/joss.01667

104

https://aclanthology.org/N19-1011
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/1706.09588
http://arxiv.org/abs/1706.09588
https://doi.org/10.21105/joss.01667

[208] D. Stoller, S. Ewert, and S. Dixon, “Wave-u-net: A multi-scale neural network for end-to-end
audio source separation,” in ISMIR, 2018.

[209] R. Hennequin, A. Khlif, F. Voituret, and M. Moussallam, “Spleeter: a fast and
efficient music source separation tool with pre-trained models,” Journal of Open
Source Software, vol. 5, no. 50, p. 2154, 2020, deezer Research. [Online]. Available:
https://doi.org/10.21105/joss.02154

[210] L. Prétet, R. Hennequin, J. Royo-Letelier, and A. Vaglio, “Singing voice separation: A study
on training data,” ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 506–510, 2019.

[211] V. S. Kadandale, J. F. Montesinos, G. Haro, and E. Gómez, “Multi-channel u-net for music
source separation,” 2020.

[212] Y. Liu, B. Thoshkahna, A. A. Milani, and T. Kristjansson, “Voice and accompaniment separa-
tion in music using self-attention convolutional neural network,” ArXiv, vol. abs/2003.08954,
2020.

[213] A. Défossez, N. Usunier, L. Bottou, and F. Bach, “Demucs: Deep extractor for music sources
with extra unlabeled data remixed,” ArXiv, vol. abs/1909.01174, 2019.

[214] A. Défossez, N. Usunier, L. Bottou, and F. R. Bach, “Music source separation in the waveform
domain,” ArXiv, vol. abs/1911.13254, 2019.

[215] E. Nachmani, Y. Adi, and L. Wolf, “Voice separation with an unknown number of multiple
speakers,” ArXiv, vol. abs/2003.01531, 2020.

[216] D. Samuel, A. Ganeshan, and J. Naradowsky, “Meta-learning extractors for music source
separation,” ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 816–820, 2020.

[217] C. Hsu and J. R. Jang, “On the improvement of singing voice separation for monaural record-
ings using the mir-1k dataset,” IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 18, no. 2, pp. 310–319, 2010.

[218] A. Liutkus, D. Fitzgerald, Z. Rafii, B. Pardo, and L. Daudet, “Kernel additive models for
source separation,” IEEE Transactions on Signal Processing, vol. 62, no. 16, pp. 4298–4310,
2014.

[219] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner, “The MUSDB18 corpus for
music separation,” Dec. 2017. [Online]. Available: https://doi.org/10.5281/zenodo.1117372

[220] S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp, N. Takahashi, and Y. Mitsufuji, “Im-
proving music source separation based on deep neural networks through data augmentation
and network blending,” in 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2017, pp. 261–265.

[221] A. Cohen-Hadria, A. Röbel, and G. Peeters, “Improving singing voice separation using deep
u-net and wave-u-net with data augmentation,” 2019 27th European Signal Processing Con-
ference (EUSIPCO), pp. 1–5, 2019.

105

https://doi.org/10.21105/joss.02154
https://doi.org/10.5281/zenodo.1117372

[222] D. Stoller, S. Ewert, and S. Dixon, “Adversarial semi-supervised audio source separation
applied to singing voice extraction,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2018, pp. 2391–2395.

[223] M. Michelashvili, S. Benaim, and L. Wolf, “Semi-supervised monaural singing voice sepa-
ration with a masking network trained on synthetic mixtures,” ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 291–295,
2019.

[224] S. I. Mimilakis, K. Drossos, and G. Schuller, “Unsupervised interpretable representation
learning for singing voice separation,” ArXiv, vol. abs/2003.01567, 2020.

[225] S. I. Mimilakis, K. Drossos, and G. Schuller, “Revisiting representation learning for singing
voice separation with sinkhorn distances,” ArXiv, vol. abs/2007.02780, 2020.

[226] P. Seetharaman, G. Wichern, J. L. Roux, and B. Pardo, “Bootstrapping deep music separa-
tion from primitive auditory grouping principles,” ArXiv, vol. abs/1910.11133, 2019.

[227] D. S. Park, Y. Zhang, Y. Jia, W. Han, C.-C. Chiu, B. Li, Y. Wu, and Q. V. Le, “Improved
noisy student training for automatic speech recognition,” ArXiv, vol. abs/2005.09629, 2020.

[228] F. Pishdadian, G. Wichern, and J. L. Roux, “Finding strength in weakness: Learning to
separate sounds with weak supervision,” ArXiv, vol. abs/1911.02182, 2019.

[229] I. Smule, “DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation,”
Zenodo, Oct. 2019. [Online]. Available: https://doi.org/10.5281/zenodo.3520973

[230] E. Manilow, P. Seetharman, and J. Salamon, Open Source Tools & Data for Music Source
Separation. https://source-separation.github.io/tutorial, Oct. 2020. [Online]. Available:
https://source-separation.github.io/tutorial

[231] Q. Wang, H. Muckenhirn, K. Wilson, P. Sridhar, Z. Wu, J. R. Hershey, R. A. Saurous,
R. J. Weiss, Y. Jia, and I. L. Moreno, “VoiceFilter: Targeted Voice Separation by Speaker-
Conditioned Spectrogram Masking,” in Interspeech, 2019.

[232] K. Žmoĺıková, M. Delcroix, K. Kinoshita, T. Ochiai, T. Nakatani, L. Burget, and J. Černocký,
“Speakerbeam: Speaker aware neural network for target speaker extraction in speech mix-
tures,” IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 4, 2019.

[233] Q. Wang, I. L. Moreno, M. Saglam, K. Wilson, A. Chiao, R. Liu, Y. He, W. Li, J. Pelecanos,
M. Nika, and A. Gruenstein, “VoiceFilter-Lite: Streaming Targeted Voice Separation for
On-Device Speech Recognition,” in Interspeech, 2020.

[234] C. Xu, W. Rao, C. E. Siong, and H. Li, “Optimization of speaker extraction neural network
with magnitude and temporal spectrum approximation loss,” IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2019.

[235] X. Ji, M. Yu, C. Zhang, D. Su, T. Yu, X. Liu, and D. Yu, “Speaker-aware target speaker
enhancement by jointly learning with speaker embedding extraction,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020.

106

https://doi.org/10.5281/zenodo.3520973
https://source-separation.github.io/tutorial

[236] M. Delcroix, T. Ochiai, K. Žmoĺıková, K. Kinoshita, N. Tawara, T. Nakatani, and
S. Araki, “Improving speaker discrimination of target speech extraction with time-domain
speakerbeam,” IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020.

[237] S. He, H. Li, and X. Zhang, “Speakerfilter: Deep learning-based target speaker extraction
using anchor speech,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2020.

[238] J. Zhao, S. Gao, and T. Shinozaki, “Time-Domain Target-Speaker Speech Separation with
Waveform-Based Speaker Embedding,” in Interspeech, 2020.

[239] C. Xu, W. Rao, E. S. Chng, and H. Li, “Spex: Multi-scale time domain speaker extraction
network,” IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP),
vol. 28, 2020.

[240] M. Ge, C. Xu, L. Wang, C. E. Siong, J. Dang, and H. Li, “SpEx+: A Complete Time Domain
Speaker Extraction Network,” in Interspeech, 2020.

[241] M. Ge, C. Xu, L. Wang, C. E. Siong, J. Dang, and H. Li, “Multi-stage speaker extraction with
utterance and frame-level reference signals,” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021.

[242] S. Yuan, Z. Wang, U. Isik, R. Giri, J.-M. Valin, M. Goodwin, and A. Krishnaswamy, “Im-
proved singing voice separation with chromagram-based pitch-aware remixing,” IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022.

[243] E. Tzinis, Y. Adi, V. K. Ithapu, B. Xu, and A. Kumar, “Continual self-training with boot-
strapped remixing for speech enhancement,” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2022.

[244] A. Sivaraman, S. Kim, and M. Kim, “Personalized speech enhancement through self-
supervised data augmentation and purification,” in Interspeech, 2021.

[245] L. Wan, Q. Wang, A. Papir, and I. Lopez-Moreno, “Generalized end-to-end loss for speaker
verification,” IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018.

[246] C. Xu, W. Rao, C. E. Siong, and H. Li, “Time-domain speaker extraction network,” IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU), 2019.

[247] J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” ArXiv, vol. abs/1607.06450,
2016.

[248] S. Mun, S. Choe, J. Huh, and J. S. Chung, “The sound of my voice: Speaker representation
loss for target voice separation,” IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020.

[249] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A large-scale speaker identification
dataset,” in Interspeech, 2017.

107

[250] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An asr corpus based
on public domain audio books,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015.

[251] A. Rix, J. Beerends, M. Hollier, and A. Hekstra, “Perceptual evaluation of speech quality
(pesq)-a new method for speech quality assessment of telephone networks and codecs,” in
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2,
2001.

108

	CHAPTER 1 INTRODUCTION
	Structure of the Thesis
	Challenges for Data-Driven Audio Processing Tasks
	Limited Coverage of Training Data
	Missing Information
	Unavailable Data From the Past
	Data Without Annotations

	CHAPTER 2 BACKGROUND
	Audio Classification Tasks
	Audio Tagging
	Sound Event Detection
	Methods for Audio Classification

	Audio Source Separation
	Audio Source Separation Tasks
	Methods for Audio Source Separation

	Self-Supervised Learning
	Semi-Supervised Learning
	Continual Learning

	CHAPTER 3 ARCHITECTURE DESIGN FOR SOUND EVENT DETECTION
	Multi-Channel Speech Detection with Multi-View Networks
	Multi-Channel Sound Event Detection
	Multi-View Networks
	Experimental Setup
	Results and Discussions
	Conclusion

	Sound Event Detection with Adaptive Frequency Selection
	Efficient Methods for Sound Event Detection
	Adaptive Computation with Neural Network
	Experimental Setup
	Results and Discussions
	Conclusion

	CHAPTER 4 CONTINUAL LEARNING FOR SOUND CLASSIFICATION
	Continual Learning of New Sound Classes with Generative Replay
	Motivation for Continual Learning
	Methodology for Supervised Continual Learning
	Experimental Setup
	Results and Discussions
	Conclusion

	Learning Representations for New Sound Classes With Continual Self-Supervised Learning
	Motivation for Continual Representation Learning
	Methods for Continual Representation Learning
	Evaluation for Continual Representation Learning
	Experimental Setup
	Results and Discussions
	Conclusion

	CHAPTER 5 SEMI-SUPERVISED SOUND CLASSIFICATION AND SEPARATION
	Semi-Supervised Improvement for Audio-Text Cross-Modal Representations
	Cross-Modal Representation Learning
	Contrastive Audio-Text Pretraining
	Semi-supervised Improvement of Cross-Modal Audio-Text Representations
	Using Soft Labels in Contrastive Loss
	Experimental Setup
	Results and Discussions
	Conclusion

	Semi-Supervised Singing Voice Separation with Noisy Self-Training
	Supervised and Semi-Supervised Learning for Singing Voice Separation
	Noisy Self-Training for Singing Voice Separation
	Singing Voice Separator
	Experimental Setup
	Results and Discussions
	Conclusion

	Semi-Supervised Time-Domain Personalized Speech Enhancement
	Introduction to Personalized Speech Enhancement
	Model Architecture for Time-Domain Personalized Speech Enhancement
	Semi-Supervised Learning for Personalized Speech Enhancement
	Experimental Setup
	Results and Discussions
	Conclusion

	CHAPTER 6 CONCLUSION
	Summary of Contributions
	Future Directions
	Multi-Label Sound Classification
	Diverse Settings and Applications for Continual Learning
	Multi-Modal Applications

	Broader Impact

	REFERENCES

