
© 2023 Jian Kang

ALGORITHMIC FOUNDATION OF FAIR GRAPH MINING

BY

JIAN KANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Associate Professor Hanghang Tong, Chair
Professor Jiawei Han
Professor Ross Maciejewski, Arizona State University
Assistant Professor Han Zhao

ABSTRACT

In an increasingly connected world, graph mining plays a fundamental role in many real-
world applications, such as financial fraud detection, drug discovery, traffic prediction, and
so on. Years of research in this area have developed a wealth of theories, algorithms, and
systems that are successful in answering what/who types of questions, e.g., who is most
influential in a social network? What item should we recommend to a user? Despite the
remarkable progress in graph mining, unfairness often occurs in many graph mining tasks.
As such, a fundamental question largely remains nascent: how can we make graph mining
process and its results fair?

To answer this question, it is crucial to propose a paradigm shift, from answering what
and who to answering how and why. Four desired properties are called for to build an
algorithmic foundation of fair graph mining, including: utility that promises strong empirical
performance in the mining task, fairness that avoids discriminatory performances over diverse
sensitive groups or individuals, robustness that enhances the resilience toward noise or
adversarial activities in the complex world, and transparency that renders the accountability
and explainability of graph mining algorithms.

The tensions among the desired properties require us to address three key challenges,
namely the auditing challenge, the debiasing challenge, and the safeguarding challenge. First,
the auditing challenge requires to address the tension between utility and transparency by
understanding how the mining results of a given graph mining model relate to the input
graph. Second, the debiasing challenge asks for balancing the trade-off between utility and
fairness so as to ensure fairness on graph mining without much sacrifice on its utility. Third,
the safeguarding challenge connects utility, fairness, robustness, and transparency together,
and studies the tensions among them, which could help the deployment of fair graph mining
techniques in the real world.

The theme of my Ph.D. research is to build an algorithmic foundation of fair graph mining
by developing computational models underpinning all three pillars, namely auditing, debiasing,
and safeguarding, to address these key challenges. First, for auditing, we develop a family of
algorithms Aurora to audit PageRank algorithm from the edge, node, and subgraph level,
and a generic algorithmic framework N2N that audits a variety of graph mining algorithms
from the optimization perspective. Moreover, we develop JuryGCN, which is the first
frequentist-based approach to quantify node uncertainty of graph convolutional network
without any epoch(s) of model training. JuryGCN is proven to be useful in both active

ii

learning on node classification and semi-supervised node classification, and achieves the
best effectiveness and lowest memory usage than the competitors. Second, for debiasing, we
offer the first systematic study of individual fairness on graph mining (InFoRM), including
the measurement, mitigation strategies, and cost. We also design a family of algorithms
RawlsGCN to debias degree unfairness by analyzing its mathematical root cause. Moreover,
we ensure fairness among intersectional groups from the information-theoretic perspective.
Third, for safeguarding, we explore the adversarial robustness of fair graph mining algorithms
by attacking them with a meta learning-based attacking framework named Fate. The
developed framework is broadly applicable to various fairness definitions and graph learning
models, as well as arbitrary choices of manipulation operations. We also conduct analysis on
the poisoned edges to reveal edges with which property would contribute most to the bias
amplification on graph neural networks.

iii

ACKNOWLEDGMENTS

First and foremost, I am profoundly grateful to my advisor, Hanghang Tong, for his
exceptional guidance, invaluable advice, unwavering support, patience, and encouragement
throughout my Ph.D. journey. The significance of his contributions cannot be overstated. He
has taught me so many things through the years of study, including conducting cutting-edge
and impactful research, mentoring students, giving effective presentations, writing grant
proposals, attending PI meetings, and negotiating job offers. His high standards for effective,
concise writing and rigorous research methods have brought my own to a higher level. His
principles of ‘aim high’ and ‘be kind’ has made my doctoral journey fruitful and enjoyable
and will always benefit me in my future career.

I would also like to extend my sincere gratitude to the other thesis committee members,
Jiawei Han, Ross Maciejewski, and Han Zhao, for their valuable insights, constructive feedback,
and time devoted to reviewing and evaluating my thesis. It was the seminal book written
by Jiawei that introduced me the field of data mining. I am fortunate to learn from him in
both CS 512: Data Mining Principles and my thesis proposal and defense. I am grateful
to Ross for his meticulous assistance and mentorship in research and paper writing. The
quality and clarity of my research publications are enhanced a lot from his valuable feedback
and suggestions. Furthermore, I would like to thank Han for his sharp insights on research.
His inspirational research contributions have served as a constant source of motivation and
innovation throughout my doctoral journey.

My Ph.D. study has been full of joy and happiness as a member of IDEA lab and iSAIL
lab (formerly the DATA lab and STAR lab at Arizona State University). These are not
possible without the following wonderful lab members: Jingrui He, Xing Su, Liangyue Li,
Chen Chen, Si Zhang, Boxin Du, Rongyu Lin, Scott Freitas, Haichao Yu, Qinghai Zhou,
Zhe Xu, Lihui Liu, Baoyu Jing, Yuchen Yan, Shengyu Feng, Yuheng Zhang, Derek Wang,
Yian Wang, Zhichen Zeng, Ishika Agarwal, Eunice Chan, Xinyu He, Blaine Hill, Zhining
Liu, Ruizhong Qiu, Hyunsik Yoo, Alex Zheng, David Zhou, Ruike Zhu, Xiao Lin, Yaojing
Wang, Yu Wang, Ziye Zhu, Hao Wang, Haoran Li, Shweta Jain, Tianwen Chen, Yunyong
Ko, Dawei Zhou, Yao Zhou, Arun Reddy Nelakurthi, Xu Liu, Jun Wu, Lecheng Zheng, Xue
Hu, Dongqi Fu, Pei Yang, Yikun Ban, Yunzhe Qi, Haonan Wang, Ziwei Wu, Wenxuan Bao,
Tianxin Wei, Xinrui He, Isaac Joy, and Zihao Li. I would also like to thank all my friends
who has supported my on this incredible journal, both inside and outside of Arizona State
University and University of Illinois at Urbana-Champaign.

iv

I had two great experiences for internship in Meta/Facebook AI Applied Research. I would
like to extend my sincere appreciation to my mentor, Yan Zhu, and all collaborators: Shujian
Bu, Ren Chen, Adam Feldman, Atanu Ghosh, Tiangao Gou, Zhaohui Guo, Yilei He, Yiming
Liao, Dionysios Logothetis, Jin Long, Chenglin Lu, Mahi Luthra, Andrey Malevich, Philip
Pronin, Yuanyuan Shen, Anders Skog, Lin Su, Fiona Tang, Qifei Wang, Yinglong Xia, Fanny
Yang, Pei Yin, and Ranqi Zhu. Their relentless help and generous support helped me onboard
in the new industrial work environment smoothly, become familiar with the company code
base, and accomplish industrial projects with real-world impacts to billion of users.

In addition to my thesis committee members, labmates, as well as mentors and collaborators
during internship, I had a wonderful group of collaborators: Nan Cao, Weilin Cong, Yushun
Dong, Wei Fan, Jundong Li, Jiebo Luo, Mehrdad Mahdavi, Fei Wang, Meijia Wang, Hao
Wu, Xintao Wu, Tiankai Xie, Baichuan Yuan, and Xin Zhou. Their insights and feedback
have helped a lot with my research.

Finally, this thesis is dedicated to my most amazing parents: Yuehu Kang and Fengqin
Yin. Their unconditional love and support are the ultimate source of all my motivation,
confidence, and strength. I am also immensely grateful to my girlfriend, Ming Hu, for always
standing by me and cheering me up, especially during the COVID-19 pandemic.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Essential Properties of Fair Graph Mining 1
1.3 Research Challenges . 3
1.4 Overview of Research Tasks . 4
1.5 Organization . 6

CHAPTER 2 LITERATURE REVIEW . 7
2.1 Graph Mining – Utility . 7
2.2 Graph Mining – Fairness . 8
2.3 Graph Mining – Robustness . 9
2.4 Graph Mining – Transparency . 10

CHAPTER 3 AUDITING GRAPH MINING . 12
3.1 Auditing PageRank on Graphs . 12
3.2 Network Derivative Mining . 30
3.3 Uncertainty Quantification on Graph Convolutional Network 51

CHAPTER 4 DEBIASING GRAPH MINING . 73
4.1 Individual Fairness on Graph Mining . 73
4.2 Degree Fairness on Graph Convolutional Network 96
4.3 Group Fairness with Multiple Sensitive Attributes 114

CHAPTER 5 SAFEGUARDING FAIR GRAPH MINING 133
5.1 Introduction . 133
5.2 Preliminaries and Problem Definition . 134
5.3 Methodology . 136
5.4 Instantiation #1: Statistical Parity on Graph Neural Networks 141
5.5 Instantiation #2: Individual Fairness on Graph Neural Networks 142
5.6 Further Discussions about Fate . 143
5.7 Experiments . 145

CHAPTER 6 CONCLUSION AND FUTURE DIRECTIONS 159
6.1 Key Research Contributions . 159
6.2 Vision for the Future . 161

REFERENCES . 165

vi

CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

Graph mining plays a pivotal role in many domains, ranging from information retrieval,
social network analysis, to transportation, and computational chemistry. Decades of research
in this area have developed a wealth of theories, algorithms, and open-source systems for a
variety of mining tasks. Notably, PageRank [1] and HITS [2] are two commonly used ranking
algorithms to measure node importance in a graph; and spectral clustering [3] is a well-known
graph clustering technique for community detection. In addition, recent advances in machine
learning on graphs have produced various node embedding techniques [4, 5, 6] and graph
neural networks [7, 8] to learn expressive representation of nodes and graphs. These graph
mining models have been widely deployed in various real-world applications, often delivering
superior empirical performance in answering what and who questions. For example, what
are the most important web pages in the web? Who should the algorithm group in the
same online community? What is the best route from the current location to the desired
destination? What molecular structure is likely to be toxic?

In recent years, multiple jurisdictions raise the awareness of ensuring fairness in the use of
graph mining algorithms, which is often violated as shown in existing studies [9, 10]. One
example is the suicide prevention using graph covering algorithm as shown in Figure 1.1,
where only 2 gatekeepers can be selected to watch out potential suicide attempts among their
peers (i.e., cover their neighbors in the graph). Though the current selection of gatekeepers
would maximize the number of covered nodes, it may fail to take care of certain individual
from the minority group that exhibits warning sign of suicide (i.e., the upper left green
node). Unfairness on graphs could also cause worrying outcomes in college recruitment, where
information about the opportunities of college recruitment diffuses disproportionately to
students from high-income families, causing the students from low-income families unaware
of the opportunities of attending selective colleges [9].

1.2 ESSENTIAL PROPERTIES OF FAIR GRAPH MINING

The alarming consequences of unfairness on graphs necessitate us to answer a fundamental
question: how can we make the graph mining process and its results fair? To achieve fair
graph mining, it is crucial to propose a paradigm shift for graph mining, from answering
what and who to understanding how and why. And it is essential to call for four essential

1

Individual from the majority group

Friendship relationship

Gatekeeper

Warning sign of suicide

Individual from the minority group

Figure 1.1: An illustration of unfair graph covering for suicide prevention. We use the
color-based imaginary race groups to avoid ny potential offense.

properties to build an algorithmic foundation of fair graph mining, including utility, fairness,
robustness, and transparency.

(1) Utility. The basic goal of most, if not all, of the graph mining models is to achieve
a strong empirical performance in the corresponding graph mining tasks, in order to
be deployed in the real world. Thus, utility helps measure how useful a graph mining
model is in a graph mining task.

(2) Fairness. It is one of the most fundamental goals, which can be told from the name
‘fair graph mining’ itself. Unfair graph mining results are often caused by the favoritism
in the predictions over a demographic group or individual. Thus, a key to guarantee
fairness is to study how to accommodate differences over diverse demographic groups
or individuals so as to achieve similar quality of service.

(3) Robustness. Real-world graphs are not perfect, possibly containing malicious nodes or
edges. In order to deploy fair graph mining models in real-world scenarios, it is essential
to understand how resilient they are with respect to noise or adversarial activity.

(4) Transparency. The end users of graph mining models are often non-experts in graph
mining. Thus, they may not understand why the model makes certain prediction or
how normal the model functions. Enhancing transparency not only could render the
crucial explainability and audit model behaviors, but also may help determine to what
extent sensitive information is used in decision making.

2

1.3 RESEARCH CHALLENGES

Having the four desired properties in mind, the key challenges of fair graph mining naturally
arise from the tensions among these competing properties.

1.3.1 The Auditing Challenge

The auditing challenge lies in the tension between utility and transparency. The superior
performance of graph mining is often achieved by complex models (e.g., graph neural networks)
that are incomprehensible even by graph mining experts, let alone the majority of non-expert
end users. Without an intuitive way to understand how graph mining models function and
why they output a specific outcomes, the end users can hardly trust whether predictions
made by graph mining models is accurate and/or fair in high-stake applications. In the
meanwhile, though heuristic graph mining models (e.g., solely based on degree centrality)
function in a human-understandable way and can be easily explained, they often yield a
sub-optimal performance in the downstream tasks. Thus, the auditing challenge calls for a
trade-off between utility and transparency and asks the following key research question: how
do the mining results relate to the input graph? By providing a high-quality audit toward
the graph mining results, users can identify potentially influential edges, nodes, or subgraphs
that will drastically affect graph mining results if perturbed, thus explaining model behaviors
or leading to unfair mining results.

1.3.2 The Debiasing Challenge

The debiasing challenge lies in the tension between utility and fairness. Mitigating the bias
in graph mining is the key component that enables fair graph mining. A general approach
to ensure fairness is to impose a fairness constraint in the optimization problem. It might
come at the cost of sacrificing the utility of the graph mining task, because the model
would not only optimize the task-specific loss function for utility, but also consider the
satisfaction of the fairness constraint in the meanwhile. Consequently, it is crucial to balance
the trade-off between utility and fairness. However, the non-IID1 nature of graph data might
bring two caveats compared with existing theories and methods in fair machine learning
on IID data. First, it may invalidate the basic assumption behind many existing studies in
fair machine learning. For example, neighborhood propagation and aggregation, which are
fundamental mining operations in graph ranking and graph neural networks, could amplify

1IID refers to ‘independent and identically distributed’.

3

the bias [11, 12, 13]. Thus, debiasing graph mining models may not only ask for mitigating
discriminatory information in the input node features, but also require the refinement on the
topological structures to avoid bias propagation and amplification through edges. Second, it
could introduce new opportunities for measuring and mitigating bias based on the connections
among nodes. For example, in addition to defining fairness on nodes (analogous to data
points in classic machine learning under IID assumption), the dyadic nature of edges in the
graph may bring new fairness definitions that consider the synergy among nodes, such as
degree fairness [14] and dyadic fairness [15]. Therefore, to solve the debiasing challenge, it is
essential to (1) re-examine the implication(s) of non-IID nature on measuring and mitigating
bias and (2) understand how the implication(s) would affect the trade-off between utility and
fairness.

1.3.3 The Safeguarding Challenge

The safeguarding challenge lies in the tension among all desired properties, including
utility, fairness, transparency, and robustness. The need for robustness and transparency
is critical to the deployment of debiasing techniques developed in the debiasing challenge
in the real world. Regarding the robustness, it is commonplace that the real-world data
is often noisy and could contain malicious users. And a deployable debiasing technique
should be resilient to such noise or adversarial activity. It is worth pointing out that existing
studies on the robustness of graph mining almost exclusively study how resilient the graph
mining models are in terms of utility. However, to deploy the techniques we developed in the
debiasing challenge in real-world scenarios, it is also important to study whether noise or
adversarial activity would make an initially fair graph mining models to be unfair. While
for transparency, the complex debiasing techniques might share the same black-box nature
as many graph mining models. To enhance the trust of end users toward the debiasing
techniques in deployment, transparency should also be considered so as to understand how
and why a model makes a fair/biased prediction, which is largely overlooked by previous
efforts in the area.

1.4 OVERVIEW OF RESEARCH TASKS

As shown in Figure 1.2, the aforementioned challenges form three key pillars to build an
algorithmic foundation of fair graph mining. Thus, the goal of my Ph.D. research is to design
novel algorithms and frameworks underpinning all three pillars. Consequently, a paradigm

4

BigData’18, TKDE’20
PageRank Auditing

CIKM’19
Network Derivative Mining

KDD’22
Uncertainty Quantification

KDD’20
Individual Fairness

WWW’22
Degree Fairness

BigData’22
Group Fairness

NeurIPS’23 (in submission)
Fairness Attacks on Graphs

Task 1: Auditing Task 2: Debiasing Task 3: Safeguarding
Understand how How to mitigate bias How to safeguard

debiasing techniques

Vision: Paradigm Shift
what/who (prior works) → how/why (my thesis)

Goal: Fair Graph Mining

Utility Fairness Robustness TransparencyProperties

Challenges

Utility vs. FairnessUtility vs. Transparency
Utility vs. Fairness vs.

Robustness vs. Transparency

Figure 1.2: An overview of the algorithmic foundation of fair graph mining. Three key pillars
refer to three challenges in achieving the paradigm shift from answering who and what to
understanding how and why.

shift from answering what and who in graph mining to understanding how and why in fair
graph mining could be achieved.
Task 1 – Auditing. As a prelude in achieving fair graph mining, it focuses on the
transparency of graph mining by demonstrating how the mining results of a given graph
mining model relate to the input graph. We start by developing a family of algorithms
Aurora to audit PageRank algorithm. Aurora explores the diminishing returns property
of the graph element influence to identify a set of influential graph elements with theoretical
guarantees on the optimality. Going beyond PageRank, we further generalize the key insights
developed in Aurora and design a general algorithmic framework N2N to audit a variety of
graph mining models, including HITS ranking, spectral clustering, and matrix completion.
Furthermore, observing that the real-world graphs are often uncertain, we introduce the
first frequentist-based uncertainty quantification technique on graph convolutional network
named JuryGCN [16] to audit how uncertain the graph mining results are, which is useful
to improve active learning on node calssification and semi-supervised node classification with
the lowest memory usage than the competitors and a 130× speed-up than the naive model

5

re-training based variant.
Task 2 – Debiasing. As the key component in enabling fair graph mining, it explores
how to ensure various fairness definitions on graph mining. In this task, we offer the first
principled study of individual fairness on graph mining (InFoRM [17]), including how to
measure individual bias of a graph mining result, how to mitigate individual bias, and
what the cost is if individual fairness is satisfied. Moreover, we study degree fairness on
graph convolutional networks, which exhibits performance disparity with respect to node
degrees, resulting in worse predictive accuracy for low-degree nodes. We theoretically prove
that the degree unfairness is rooted in the gradient computation with respect to weight
matrices. Based on the theoretical insights, we design a family of debiasing algorithms
RawlsGCN [18] that can mitigate up to 89% of the degree unfairness with no additional
memory consumption and up to 8× speed-up in time. Other than that, considering the
co-existence of multiple sensitive attribute in real-world applications, we develop a model-
agnostic information-theoretic debiasing framework InfoFair [19] that directly optimizes the
fairness definition itself to ensure group fairness with respect to multiple sensitive attribute.
Task 3 – Safeguarding. As a postlude of fair graph mining, it aims to make fair graph
mining deployable in the real world by balancing the tension among all aforementioned desired
properties. In this task, we study fairness attacks on graph learning models, which amplifies
the bias with respect to a fairness definition and maintains the utility in the downstream
task. We design a meta learning-based framework Fate to perform poisoning attacks on the
input graph for fairness attacks, which is capable of attacking any fairness definition for any
graph learning model. We instantiate Fate to attack both group fairness and individual
fairness on graph neural networks with and without fairness consideration. Experimental
results demonstrate that Fate can amplify the bias with respect to both group fairness and
individual fairness while maintaining the classification accuracy of node classification.

1.5 ORGANIZATION

The rest of the thesis is organized as follows. In Chapter 2, we will review existing literature
in relation to the four properties in the context of graph mining. In Chapter 3, we will
introduce our works that address the auditing task via PageRank auditing, network derivative
mining, and uncertainty quantification. In Chapter 4, we will present our works on ensuring
various definitions of algorithmic fairness. In Chapter 5, we will introduce how we deal with
the safeguarding challenge via fairness attacks on graph mining. Finally, in Chapter 6, we
conclude the thesis and discuss the future research directions.

6

CHAPTER 2: LITERATURE REVIEW

2.1 GRAPH MINING – UTILITY

Graph mining aims at finding interesting patterns from the underlying networked data [1,
2, 3, 4, 5, 7, 8, 20]. Therefore, utility, which targets for strong empirical performance in
graph mining tasks, is a fundamental property across all research tasks in the thesis. To date,
graph mining models have been applied in a variety of graph mining tasks, including ranking,
clustering, embedding, and many more.

For graph ranking, it aims to measure the node importance or node proximity with respect
to a query node. PageRank [1] and HITS [2] are two most widely used algorithms to measure
the importance of nodes. To be specific, PageRank [1] repeat the following procedure until
convergence to calculate the node importance: it randomly walks to a neighboring node with
some probability, or re-starts the random walk process at any node in the graph uniformly
otherwise. HITS [2] measures the node importance with a hub score and an authority score,
which can be calculated with rank-1 singular value decomposition. Ever since, both graph
ranking algorithms inspired the development of many variants. Typical examples include
personalized PageRank [21], random walk with restart [22], and subspace HITS [23].

Regarding graph clustering, one of the most representative clustering method is the
spectral clustering [3]. To cluster nodes into k clusters, it finds the eigenvectors associated
with k smallest eigenvalues of a (normalized) graph Laplacian, and then performs k-means
clustering [24] on the eigenvectors. Other well-known clustering methods on graphs include
hierarchical clustering [25, 26] and online evolutionary clustering [27].

Recent advances in graph machine learning have produced a variety of embedding tech-
niques that encode the structural and/or attributive information of the input graph into a
low-dimensional manifold. Matrix factorization-based approaches learn the node represen-
tations by factorizing the input graph into low-rank matrices [20, 28, 29, 30, 31, 32]. For
example, LLE [28], IsoMap [29], and Laplacian Eigenmap [30] are classic embedding methods
that factorizes the graph Laplacian. Other techniques like NMF [31] and collaborative filter-
ing [20, 32] factorize the input adjacency matrix. More advanced graph embedding techniques
developed in recent years include random walk-based approaches and graph neural networks.
Representative examples of random walk-based embedding approaches include DeepWalk [4],
LINE [5], and node2vec [6]. NetMF [33] further generalizes the random walk-based approaches
and reveals their intrinsic relationships to matrix factorization. Another important line of
research in graph embedding is graph neural networks. Existing works can be categorized into

7

spectral-based methods and spatial-based methods. For spectral-based methods, they often
construct the frequency filtering using the eigenfunctions of the graph Laplacian. Representa-
tive examples include Graph Convolutional Neural Network (GCNN) [34], ChebyNet [35], and
Graph Convolutional Network (GCN) [7]. Spatial-based methods often aggregate information
within the node neighborhood, e.g., GraphSAGE [36], Diffusion-Convolution Neural Network
(DCNN) [37], and Graph Attention Network (GAT) [8].

For more related works, we refer to recent surveys [38, 39]. It should be noted that these
existing works almost exclusively optimize for utility while overlooking other properties (i.e.,
fairness, transparency and robustness).

2.2 GRAPH MINING – FAIRNESS

Fairness is the fundamental property in achieving fair graph mining. It aims to accommodate
the discriminatory differences among multiple sensitive groups. Following this overarching
principle, various types of fairness can be defined depending on the granularity of the group,
such as group fairness [40], individual fairness [41], and counterfactual fairness [42]. Fairness
in classic machine learning under IID setting has been extensively studied for years [9, 43, 44].
However, classic fair machine learning techniques may not be directly applied because of the
non-IID nature of graph data. And a re-examination of the implications of non-IID nature
on measuring and mitigating the bias is required.

Many debiasing techniques on graphs have been developed so far. Group fairness is
one of the most extensively studied fairness definitions. It aims to ensure disparity in
statistical measures (e.g., acceptance rate, true positive/negative rate) for sensitive groups.
To date, group fairness have been studied in PageRank [11, 45], spectral clustering [46], and
node embedding [12, 13, 47, 48, 49, 50, 51, 52]. For example, fair PageRank guarantees a
certain proportion of total PageRank mass is assigned to nodes in a specific demographic
group [11, 45] by modifying the stochastic propagation matrix during the random walk process;
fair spectral clustering considers the member distribution from each demographic group in
a cluster [46] and encodes the fairness consideration as a linear constraint during model
optimization. Moreover, many recent works study group fairness in node embedding. Typical
solutions to learn fair node embedding includes adversarial learning [12, 47, 53], fairness-aware
neighborhood propagation [48, 54] and aggregation [13, 55], embedding normalization [51],
and topological structure modification [15, 50, 56].

Few efforts have been made on enforcing individual fairness and counterfactual fairness as
well. For individual fairness, inspired by InFoRM [17], IF-D [57] ensures individual fairness
on dynamic graph by optimizing a time-encoded individual fairness definition. GFairHint [58]

8

concatenates the node embedding extracted from the input graph and the fairness hint
embedding learned via link prediction on the pairwise similarity graph. REDRESS [59]
leverages learning-to-rank technique to avoid the distance comparison in the [17]. Recently,
FairRankVis [60] designs a visual analytics system to discover the interaction between
individual fairness and group fairness on graphs. Counterfactual fairness is another important
fairness definition, whose goal is to remove the causal connection between the sensitive
attribute and the mining results. NIFTY [61] applies contrastive learning to learn node
embeddings that satisfy counterfactual fairness. GEAR [62] generates counterfactual graphs
with a graph auto-encoder and utilizes the Siamese network [63] for fair representation
learning.

Other than the aforementioned fairness definitions, few other fairness definitions have
been studied as well. For example, degree fairness ensures comparable performance in the
downstream tasks for nodes with different degrees [14, 64, 65, 66, 67]. Dyadic fairness studies
edge-level fairness by ensuring comparable link prediction accuracy for edges of different
types [15, 68]. Max-min fairness incorporates the Rawlsian difference principle [69] to optimize
the performance of graph mining models on the worst-off group of nodes [10, 70]. For more
related literature about fairness in graph mining, we refer to recent surveys [71, 72] and
tutorials [73, 74].

2.3 GRAPH MINING – ROBUSTNESS

Robustness characterizes the stability of graph mining models against random or adversarial
perturbations on graphs, both of which are commonplace in the real world. Thus, in order to
enable the deployment of fair graph mining in the real world, robustness is the key properties
in the safeguarding task. It is worth pointing out that the safeguarding challenge in the
thesis will also study the robustness in terms of how fair a model could be (i.e., how to attack
the mining model to make it biased), which is different from existing works that study the
robustness in terms of the model utility.

Regarding the robustness aspect of graph mining, we briefly review literature related to
both attacking and defense. Attacking aims to apply random or adversarial perturbations
on the input graph to degrade the utility of graph mining models. Due to the notorious
vulnerability of deep learning models [75], the major focus in this line of research is to attack
node embedding algorithms, with few efforts made on the vulnerability of graph ranking
algorithms [76, 77]. Representative approaches to attack node embedding algorithms include
projected gradient descent [78, 79], bi-level optization [80, 81], reinforcement learning [82],
edge flipping [83], and edge rewiring [84]. Other than attacking the utility of graph mining

9

models, FA-GNN [85] is the only method that attacks the fairness aspect of graph neural
networks via edge injection to our best knowledge.

Defending against attacks/perturbations on the graph mining models is another important
line of research. Spectral analysis is commonly applied to analyze the stability of graph
ranking [86, 87, 88] and the robustness of graph connectivity [89, 90, 91, 92]. Besides,
the robustness of node embedding techniques has drawn much research attention in recent
years [93, 94, 95, 96, 97, 98, 99, 100]. More specifically, certified adversarial robustness of
graph neural networks and label/feature propagation is provided in [94]. Adversarial training
is also proven to be useful in robustifying graph neural networks [93]. Moreover, RGCN [95]
introduces Gaussian hidden representations to absorb the effect of adversarial changes;
GNN-Jaccard [96] disconnects dissimilar nodes; Pro-GNN [97] regularizes graph sparsity and
feature smoothness; PA-GNN [98] enhances the robustness of graph neural networks via meta
learning and transfer learning; GNN-SVD [99] exploits the low-rank singular components
of graph topology; and GASOLINE [100] learns the optimal graph structure with maximal
utility via meta learning. Recent surveys [101, 102] present comprehensive reviews for graph
robustness measure and adversarial robustness of graph mining models, respectively.

2.4 GRAPH MINING – TRANSPARENCY

Transparency aims to make graph mining models accountable and explainable through
auditing and generating explanations for the mining results. To develop fair graph mining
models that can be trusted by non-expert end users, transparency should also be a key
properties to consider in the safeguarding task. For auditing, NEAR [103, 104] audits the
skip-gram based node embedding techniques and linear graph neural networks by quantifying
the influence of edges. A visual analytics system [105] is designed to audit the sensitivity of
graph ranking algorithms. The influence of edge and node removal in linear graph neural
network is also derived in [106]. It is also important to enhance the interpretability and
explainability of graph mining algorithms. Most efforts in this line have been made to node
embedding algorithms [107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119]. For
perturbation-based methods, GBP [108] generates the saliency map with gradient information;
ExplaiNE [120] explains node embedding techiniques via the influence function of edges;
GNNExplainer [107] and PGExplainer [112] both find the subgraph with highest mutual
information to the model predictions; GraphMask [113] masks unnecessary edges that would
not affect model predictions; SubgraphX [114] finds the subgraphs that give the highest
Shapley value [121]; and CF-GNNExplainer [117] generates counterfactual explanations via
graph sparsification. For generation-based explainability techniques, XGNN [109] generates

10

the graph pattern that maximizes the prediction probability for a specific class. For surrogate
model-based techniques, GraphLIME [116] introduces LIME [122] to graph neural networks;
PGM-Explainer [111] provides explanations using an interpretable Bayesian network. More
comprehensive review of related literature can be found in [123, 124]. In recent years,
few works focus on the intersection of fairness and explainability on graphs. Specifically,
REFEREE [125] learns a mask matrix for the adjacency matrix to find out the edges that
are most accountable for group fairness; BIND [126] finds the training node that contributes
most to group fairness via influence function; and CFA [127] guarantees similar explanation
quality across different groups.

11

CHAPTER 3: AUDITING GRAPH MINING

Auditing graph mining is a prelude in building an algorithmic foundation of fair graph
mining. By studying the tensions between utility and transparency, it aims to understand how
normal/confident a graph mining model functions and why a graph mining model outputs
the specific graph mining results. In this chapter, we introduce our works on addressing the
auditing challenge, including (1) a family of algorithms to audit PageRank efficiently with
theoretical guarantees, (2) a generic algorithmic framework to audit a variety of graph mining
models, and (3) a post-hoc uncertainty quantification method to understand the confidence
of graph convolutional networks.

3.1 AUDITING PAGERANK ON GRAPHS

Ranking on graph data is a way to measure node importance and plays a fundamental
role in many real-world applications, ranging from information retrieval [1], recommender
systems [128], social networks [129], sports team management [130] to biology [131], and
neuroscience [132]. Among others, PageRank [1], together with many of its random walk
based variants, is one of the most well-known and widely used ones. Its mathematical elegance
lies in that it only requires the topological structure and the associated edge weights as the
input. Such a generality makes it applicable to networks2 from many different application
domains.

PageRank has a strong ability answering questions like what is the most important page
in the World Wide Web, and who is the most influential person in a collaboration network.
Despite its superior performance on graph ranking, PageRank lacks intuitive ways to give
answers to questions like why the top-k returned webpages are the most important ones,
and why the actor John ranks higher than the actor Smith in terms of their relevance with
respect to a particular movie. How the ranking results are derived from the underlying graph
structure has largely remained opaque to the end users, who are often not experts in data
mining and mathematics.

To address this challenge, we aim to explain PageRank by finding the influential graph
elements (e.g., edges, nodes, and subgraphs), which we formulate as the PageRank auditing
problem. The key idea is to quantitatively understand how the ranking results would change
if we perturb a specific graph element. To be specific, we measure the influence of each graph
element by the rate of change in a certain loss function (e.g., Lp norm, etc.) defined over

2We use ‘graph’ and ‘network’ interchangeably.

12

(a) Potentially influential edges. (b) Potentially influential node.

Figure 3.1: Examples of potentially influential edges and node.

the ranking vector. We believe that auditing graph ranking can benefit many real-world
applications. First, it can render the crucial explainability of such ranking algorithms, by
identifying valuable information of influential graph elements. Thus, it can help answer
questions like why a given node ranks on the top of the ranking list, and which link leads
to the ranking vector in a certain way. Furthermore, users can use the auditing results
to optimize the network topology. In addition, it may help identify the vulnerabilities in
the network (e.g., links between two clusters, cutpoints of clusters as shown in Figure 3.1a
and Figure 3.1b). With the auditing results, users may find several links or nodes that
have the greatest influence on the ranking results. It can help users identify if there exist
suspicious individuals that manipulate the ranking results by linking heavily with unrelated,
off-query topics. Finally, with the knowledge of graph ranking auditing, we may design a
more robust ranking algorithm that is hard to be manipulated by users with strategies like
linking heavily [88].

The main contributions of this work are summarized as follows.

• Problem definition. We formally define the PageRank auditing problem and formulate
it as an optimization problem, whose key idea is to measure the influence of different
graph elements as the rate of change in the PageRank results.

• Algorithms and analysis. We develop fast approximation algorithms to solve the
PageRank auditing problem. The algorithms achieve a (1− 1/e) approximation ratio
with a linear complexity.

• Empirical evaluations. We perform extensive experiments on diverse, real-world datasets.
The experimental results demonstrate that Aurora (a) provides reasonable and

13

Table 3.1: Table of symbols for Aurora.

Symbol Definition
G = {V , E} the input network

(i, j) edge from node i to node j
A adjacency matrix of the input network

A [i, j] the element at i-th row and j-th column
A [i, :] i-th row of matrix A
A [:, j] j-th column of matrix A
AT transpose of the matrix A
A−1 inverse of the matrix A
e the teleportation vector in PageRank
r PageRank of the input network

r [i] ranking score of i
Tr (A) Trace of the matrix A
f (r) a loss function over ranking vector r
n number of nodes in the input network
m number of edges in the input network
c damping factor in PageRank

intuitive information to find influential graph elements and (b) scales linearly with
respect to the graph size.

3.1.1 Problem Definition

In this part, we first present a table of symbols (Table 3.1) that contains the main notations
used throughout this work and then review PageRank for ranking nodes on graphs. Finally,
we give a formal definition of the PageRank auditing problem.

We use bold upper-case letters for matrices (e.g., A), bold lower-case letters for vectors
(e.g., a), calligraphic letters for sets (e.g., S), and italic lower-case letters for scalars (e.g.,
c). For matrix indexing conventions, we use the rules similar to Numpy in Python that are
shown as follows. We use A [i, j] to denote the entry of matrix A at i-th row and j-th column,
A [i, :] to denote the i-th row of matrix A, and A [:, j] to denote the j-th column of matrix
A. We use the superscrit T to denote the transpose of matrix (i.e., AT is the transpose of
matrix A).

Given a graph G with n nodes and m edges, PageRank essentially solves the following
linear system,

r = cAr+ (1− c) e (3.1)

where e is the teleportation vector with length n and A is the normalized adjacency matrix of

14

the input graph. In PageRank [1], e is chosen as the uniform distribution 1
n
1; in personalized

PageRank [21], e is a biased vector which reflects user preference (i.e., ‘personalization’) [21];
and in random walk with restart [22], all the probabilities are concentrated on a single node.
A default choice for the normalized adjacency matrix A is the column-normalized matrix
(i.e., the stochastic matrix). A popular alternative choice is the normalized graph Laplacian
matrix. In fact, as long as the largest eigenvalue of A is less than 1/c, a fix-point solution
of the above linear system will converge to r = (1− c) (I− cA)−1 e [133]. In this work, we
use this general form for the adjacency matrix A. For the ease of description, we also define
Q = (I− cA)−1, and r = pg (A, e, c) as the resulting PageRank vector with A, e, and c as
the corresponding inputs.

Regarding explainable learning and mining techniques, Pang and Liang [134] propose a
novel notation of influence functions to quantify the impact of each training example on the
underlying learning system (e.g., a classifier). The key idea is to trace the model’s prediction
back to its training data, where the model parameters were derived. In this way, it learns
how a perturbation of a single training data will affect the resulting model parameters and
identifies the training examples that are most responsible for model predictions.

Our developed method to explain the PageRank results is built upon the principle outlined
in [134]. To be specific, we aim to find a set of graph elements (e.g., edges, nodes, a subgraph)
such that, when we perturb/remove them, the ranking vector will have the greatest change.
Formally, we define the PageRank auditing problem as follows:

Problem 3.1. The PageRank auditing problem.

Given: (1) a graph with adjacency matrix A, PageRank vector r, (2) a loss function f over
its PageRank vector, (3) a user-specific element type (e.g. edges vs. nodes vs. subgraphs),
and (4) an integer budget k.
Find: a set of k influential graph elements that has the largest impact on the loss function
over its PageRank vector f (r).

3.1.2 Auditing PageRank with Aurora

In this part, we present a family of algorithms (Aurora), to solve PageRank auditing
problem (Problem 3.1), together with some analysis in terms of effectiveness and efficiency.
Formulation. The intuition behind Aurora is to find a set of key graph elements (e.g.,
edges, nodes, a subgraph) whose perturbation/removal from the graph would affect the
PageRank results most. To be specific, let r = pg(A, e, c) be the PageRank vector of the
input graph A, and rS = pg(AS , e, c) be the new PageRank vector after removing the graph

15

elements in set S. We formulate the PageRank auditing problem as the following optimization
problem.

max
S

∆f = (f (r)− f (rS))2 s.t. |S| = k (3.2)

In order to solve the above optimization problem, we need to answer two key questions
including (Q1) how to quantitatively measure the influence of an individual graph element
with respect to the objective function and (Q2) how to collectively find a set of k graph
elements with the maximal influence. We first present our solution for Q1 and then develop
three different algorithms for Q2, depending on the specific type of graph elements (i.e., edges
vs. nodes vs. subgraph).
Measuring graph element influence. To measure how f (r) will change if we perturb/re-
move a specific graph element, we define its influence as the rate of change in f (r).

Definition 3.1. (Graph element influence). The influence of an edge (i, j) is defined as
the derivative of the loss function f (r) with respect to the edge, i.e., I [i, j] = df(r)

dA[i,j]
. The

influence of a node is defined as the aggregation of all inbound and outbound edges that

connect to the node., i.e., I [i] =
n∑

j=1,j ̸=i

[I [i, j] + I [j, i]] +
n∑

j=1,j=i

I [i, j]. And the influence of a

subgraph is defined as the aggregation of all edges in the subgraph S, I (S) =
∑
i,j∈S

I [i, j].

We can see that the influence for both nodes and a subgraph can be naturally computed
based on the edge influence. Therefore, we will focus on how to measure the edge influence.
By the property of the derivative of matrices, we first re-write the influence df(r)

dA[i,j]
as

df (r)

dA
=

∂f(r)
∂A

+
(

∂f(r)
∂A

)T
− diag

(
∂f(r)
∂A

)
, if undirected

∂f(r)
∂A

, if directed
(3.3)

Directly calculating ∂f(r)
∂A[i,j]

is hard, and we resort to the chain rule:

∂f (r)

∂A [i, j]
=

(
∂f (r)

∂r

)T
∂r

∂A [i, j]
(3.4)

Next, we present the details on how to solve each partial derivative in Equation (3.4) one
by one.

1 – Computing ∂f(r)
∂r

. Here we discuss the choices of f(·) function. We choose f(·) to be
squared L2 norm for simplicity. However, it is worth mentioning that Aurora is applicable
to a variety of other loss functions as well. We list some alternative choices and their
corresponding derivatives in Table 3.2. In the table, Lp norm is the most commonly-used

16

Table 3.2: Choices of f(·) functions and their derivatives

Description Function Derivatives
Lp norm f (r) = ∥r∥p ∂f

∂r
= r◦|r|p−2

∥r∥p−1
p

Soft maximum f (r) = log

(
n∑

i=1

exp (r [i])

)
∂f
∂r

=

 exp(r[i])
n∑

i=1
exp(r[i])

Energy norm f (r) = rTMr ∂f

∂r
= (M+MT)r

(M in Energy Norm is a Hermitian positive definite matrix.)

vector norm that measures the overall size of a vector. Some commonly-used Lp norm
includes L1 norm and L2 norm (also known as the Euclidean norm); soft maximum is used
to approximate the maximum value of elements in a vector; energy norm is a measurement
often used in system and control theory to measure the internal energy of a vector.

2 – Computing ∂r
∂A[i,j]

. Recall that A is the adjacency matrix of the input graph, and the
PageRank solution can be written as solving the linear system in Equation (3.1). Then we
have

∂r

∂A [i, j]
= c

∂A

∂A [i, j]
r+ cA

∂r

∂A [i, j]
(3.5)

Moving the second term in Equation (3.5) to the left, we have that

(I− cA)
∂r

∂A [i, j]
= c

∂A

∂A [i, j]
r (3.6)

∂r

∂A [i, j]
= c (I− cA)−1 ∂A

∂A [i, j]
r (3.7)

By the property of the first order derivative of matrix, we have that

∂A

∂A [i, j]
=

Sij + Sji − SijSji, if undirected

Sij, if directed
(3.8)

where Sij is the single-entry matrix with 1 at i-th row and j-th column and 0 elsewhere.
Recall that Q = (I− cA)−1, we can re-write Equation (3.7) as the following equation.

∂r

∂A [i, j]
= cr [j]Q [:, i] (3.9)

Combine everything together, we get the closed-form solution for calculating the influence of

17

an edge (i, j) as follows:
∂f (r)

∂A [i, j]
= 2cr [j]Tr

(
rTQ [:, i]

)
(3.10)

Following Equation (3.10), we get the matrix of gradients for all edges as

∂f (r)

∂A
= 2c (1− c)QT reTQT (3.11)

Two major computational challenges in calculating ∂f(r)
∂A

lie in (1) calculating Q with O(n3)

time complexity and (2) O(n2) space complexity to save the matrix of gradients. We address
both challenges by exploring the low-rank structure of ∂f(r)

∂A
. From Equation (3.11), we can

show that it can be re-written as the following low-rank form

∂f (r)

∂A
= 2c (1− c)QT reTQT = 2c(QT r)rT (3.12)

where QTr is an n × 1 vector and r is an n × 1 PageRank vector. Since r = (1− c)Qe,
we have that QTr is a personalized PageRank on the reverse of the input graph with r as
teleportation vector with a constant scaling. With this in mind, we do not need to calculate
Q explicitly, or to save the entire matrix directly. Instead, we can use power method to
calculate r and QTr, each with O (m) time, and save these two vectors with O (n) space.
To extract the element of ∂f(r)

∂A
at the i-th row and the jth column, we simply calculate the

product of the ith element in QT r and the j-th element in r, and scale it by 2c, which takes
O (1) time.
Auditing by edges: Aurora-E. Due to its combinatorial nature, straightforward methods
for solving the optimization problem in Equation (3.2) are not feasible. The key behind
Aurora-E is the diminishing returns property of Problem 3.1, which is summarized in
Theorem 3.1

Theorem 3.1. (Diminishing returns property of Problem 3.1). For any loss function listed
in Table 2, and for any set of graph elements S, which could be either a set of edges, nodes
or subgraphs, in the given graph, its influence measure I (S) defined in Definition 1 is (a)
normalized; (b) monotonically non-decreasing; (c) submodular, where S ⊆ E .

Proof. We only prove the diminishing returns property in the edge case. The proofs for nodes
and subgraphs are similar and thus is omitted due to the space limitation.

Let I(S) =
∑

[i,j]∈S
I [i, j]. It is trivial that, if there is no edge selected, the influence is 0.

Thus it is normalized.
Let I,J ,K be three sets and I ⊆ J . We further define three sets S, T ,K as follows:

18

S = I ∪ K, T = J ∪ K and R = J \ I, then we have

I (J)− I (I) =
∑

[i,j]∈J

I [i, j]−
∑
[i,j]∈I

I [i, j] =
∑

[i,j]∈J\I

I [i, j] =
∑

[i,j]∈R

I [i, j]

≥ 0

(3.13)

which proves that I (S) is monotonically non-decreasing.
Finally, we prove that it is submodular. Define P = T \ S. We have that P = (J ∪ K) \

(I ∪ K) = R \ (R∩K) ⊆ R = J \ I. Then we have

I (T)− I (S) =
∑

[i,j]∈P

I [i, j] ≤ I (J)− I (I) (3.14)

which proves the submodularity of the edge influence. QED.

The diminishing returns property naturally leads to a greedy algorithm to obtain a near-
optimal solution for solving Problem 3.1. We first present the algorithm for auditing by edges.
The algorithms for auditing by nodes and by subgraphs will be presented later.

With the diminishing returns property, we present the Aurora-E (Algorithm 3.1) algorithm
to find top-k influential edges. The key idea of Aurora-E is to select one edge and update
the gradient matrix at each of the k iterations.

Algorithm 3.1: Aurora-E
Input : the adjacency matrix A, integer budget k.
Output : a set of k edges S with the highest influence

1 initialize S = ∅;
2 initialize c (e.g., c = 1/2max eigenvalue (A));
3 calculate PageRank r = pg (A, e, c);
4 calculate partial gradients ∂f(r)

∂A
by Equation (3.12);

5 calculate gradients df(r)
dA

by Equation (3.3);
6 while |S| ≠ k do
7 find (i, j) = argmax

i,j
I [i, j] with Equation (3.3);

8 add edge [i, j] to S;
9 remove [i, j], and remove [j, i] if undirected;

10 re-calculate r, ∂f(r)
∂A

by Equation (3.12), and df(r)
dA

by Equation (3.3);

11 return S;

The effectiveness and efficiency of Aurora-E are summarized in Lemma 3.1 and Lemma 3.2,
respectively. We can see that Aurora-E finds a (1− 1/e) near-optimal solution with a linear
complexity.

19

Lemma 3.1. (Approximation Ratio of Aurora-E). Let Sk = {s1, s2, ..., sk} represents the
set formed by Aurora-E, O is the optimal solution of Problem 3.1, I(S) is the influence
defined in Definition 3.1.

I(Sk) ≥ (1− 1/e) I (O) (3.15)

Proof. By diminishing returns property, ∀ i ≤ k, we have

I (O) ≤ I (O ∪ Si) = I (Si) +
∑
s∈O

∆(s|Si ∪ (O \ {s}))

≤ I (Si) +
∑
s∈O

∆(s|Si)

≤ I (Si) + k∆(smax|Sk)

(3.16)

where smax = argmaxs∈V\Si
∆(s|Si). Then we have

∆(smax|Sk) = I (Si+1)− I (Si) ≥
1

k
(I (O)− I (Si)) (3.17)

After rearranging the terms, we have

I (O)− I (Si+1) ≤
(
1− 1

k

)
(I (O)− I (Si))

I (O)− I (Si) ≤
(
1− 1

k

)
(I (O)− I (Si−1))

...

I (O)− I (S1) ≤
(
1− 1

k

)
(I (O)− I (S0))

Thus, by recursively applying the inequality, we have

I (O)− I (Sk) ≤
(
1− 1

k

)k

(I (O)− f (S0)) =
(
1− 1

k

)k

I (O) ≤ 1

e
I (O) (3.18)

Thus we have (1− 1/e) I (O) ≤ I (Si+1). QED.

Lemma 3.2. (Time and space complexities of Aurora-E). Algorithm 1 is O (mk) in time
and O (m+ n) in space, where m and n are the numbers of edges and nodes in the input
graph, and k is the budget.

Proof. It takes O (m) time complexity to calculate r and ∂f(r)
∂A

by applying power iterations.
In the while-loop, we find the edge with the greatest influence by traversing all edges, which
takes O (m) time. Time spent to re-calculate r and ∂f(r)

∂A
remains the same as O (m). Since

20

the body inside the loop will run k times, the overall time complexity is O (mk). In Algorithm
1, it takes O (m) space to save the sparse adjacency matrix A and O (n) space to save the
PageRank vector r and column vector QT r in Equation (3.12). Therefore, it has O (m+ n)

space complexity. QED.

Auditing by nodes: Aurora-N. By Theorem 3.1, the influence of nodes also enjoys
the diminishing returns property. Following this, we design a greedy algorithm Aurora-N
(Algorithm 3.2) to find a set of k influential nodes with (1− 1/e) approximation ratio with a
linear complexity. The efficiency of Aurora-N is summarized in Lemma 3.3.

Algorithm 3.2: Aurora-N
Input : the adjacency matrix A, integer budget k.
Output : a set of k nodes S with highest influence

1 initialize S = ∅;
2 initialize c (e.g., c = 1/2max eigenvalue (A));
3 calculate PageRank r = pg (A, e, c);
4 calculate partial gradients ∂f(r)

∂A
by Equation (3.12);

5 calculate gradients df(r)
dA

by Equation (3.3);
6 while |S| ≠ k do
7 find vi = argmax

i
I [i];

8 add vi to S;
9 remove all inbound and outbound edges of vi;

10 re-calculate r, ∂f(r)
∂A

by Equation (3.12), and df(r)
dA

by Equation (3.3);

11 return S;

Lemma 3.3. (Time and space complexities of Aurora-N). Algorithm 2 is O (mk) in time
and O (m+ n) in space, where m and n are the numbers of edges and nodes in the input
graph, and k is the budget.

Proof. It takes O (m) time complexity to calculate r and ∂f(r)
∂A

by applying power iterations.
In the while-loop, we calculate the influence of nodes and find the node with the greatest
influence by traversing all edges, which takes O (m) time. Time spent to re-calculate r

and ∂f(r)
∂A

remains the same as O (m). Since the body inside loop will run k times, the
overall time complexity is O (mk). In Algorithm 2, it takes O (m) space to save the sparse
adjacency matrix A and O (n) space to save the PageRank vector r and column vector QT r

in Equation (3.12). Therefore, it has O (m+ n) space complexity. QED.

Auditing by subgraph: Aurora-S. Here, we discuss how to select an influential subgraph
with k nodes, and we focus on the vertex-induced subgraph. With the diminishing returns

21

property (Theorem 3.1) in mind, we develop Aurora-S (Algorithm 3.3) to greedily identify
the influential subgraph with (1− 1/e) approximation ratio with a linear complexity. The
efficiency of Aurora-S is summarized in Lemma 3.4.

Algorithm 3.3: Aurora-S
Input : the adjacency matrix A, output size k.
Output : a vertex-induced subgraph of k nodes S with highest influence

1 initialize S = ∅;
2 initialize c (e.g., c = 1/2max eigenvalue (A));
3 calculate PageRank r = pg (A, e, c);
4 calculate partial gradients ∂f(r)

∂A
by Equation (3.12);

5 calculate gradients df(r)
dA

by Equation (3.3);
6 while |S| ≠ k do
7 find (i, j) = argmax

i,j
I [i, j];

8 if |S|+ 2 ≤ k then
9 add vi and vj to S;

10 else
11 find the endpoint v with higher influence;
12 if v ̸∈ S then
13 add v to S;
14 else
15 add the other endpoint to S;

16 remove all edges in S;
17 re-calculate r, ∂f(r)

∂A
by Equation (3.12), and df(r)

dA
by Equation (3.3);

18 return S;

Lemma 3.4. (Time and space complexities of Aurora-S). Algorithm 3 is O (mk) in time
and O (m+ n) in space, where m and n are the numbers of edges and nodes in the input
graph, and k is the budget.

Proof. It takes O (m) time complexity to calculate r and ∂f(r)
∂A

by applying power iterations.
In the while-loop, we find the edge with the greatest influence by traversing all edges, which
takes O (m) time. Time spent to re-calculate r and ∂f(r)

∂A
remains the same as O (m). Since

the body inside loop will run k times, the overall time complexity is O (mk). In Algorithm
3, it takes O (m) space to save the sparse adjacency matrix A and O (n) space to save the
PageRank vector r and column vector QT r in Equation (3.12). Therefore, it has O (m+ n)

space complexity. QED.

Generalization and variants. The family of Aurora algorithms assumes the input graph

22

is a plain network. However, it is worth pointing out that Aurora algorithms also work on
different types of networks and other random walk-based techniques.
A – Aurora on normalized PageRank. Recall that in Section 3.1.1, we remove the constraint
of A being a normalized adjacency matrix and use the general form instead. The effect of
removing that constraint will cause the L1 norm of PageRank to be not equal to 1. We show
that Aurora is also able to work on L1 normalized PageRank. Let S (r) =

∑
i r [i], we have

∂f (r)

∂A
= cQT

(
−2f (r)

S (r)
1+

2

S (r)
r

)
rT (3.19)

Then we can apply Aurora algorithms by replacing Equation (3.12) with Equation (3.19).
B – Aurora on Network of Networks. Network of Networks (NoN) is a type of networks
first introduced in [135] with the ability to leverage the within-network smoothness in the
domain-specific network and the cross-network consistency through the main network. An
NoN is usually defined as the triplet R = ⟨G,A, θ⟩, where G is the main network, A is a
set of domain-specific networks, and θ is a mapping function to map the main node to the
corresponding domain-specific network. In [135], CrossRank and CrossQuery are two
ranking algorithms proposed to solve ranking on NoN. The authors have proved that they
are actually equivalent to the well-known PageRank and random walk with restart on the
integrated graph. Thus, Aurora algorithms also have the ability to audit CrossRank and
CrossQuery on Network of Networks.
C – Aurora on attributed networks. Given a large attributed network, it is important to
learn the most influential node-attribute or edge-attribute with respect to a query node. We
show that Aurora algorithms have the ability to find top-k influential edge attributes and
node attributes on attributed networks. The central idea is to treat attributes as attribute
nodes and form an augmented graph with those attribute nodes. To support node attributes,
let A be the a× a node-to-node adjacency matrix, and W be the w × a node-to-attribute
matrix, then we can form an augmented graph G = (A 0

W 0). To support edge attributes,
similar to [136], we embed an edge-node for each edge in the input graph and define a
mapping function ψ that maps each edge-node to edge attribute in the original graph. We
assume A is the a× a node-to-node adjacency matrix, and b is the number of different edge
attribute values. By embedding edge-node, it creates a (a+ b)× (a+ b) augmented graph Y.
Then, to find the top-k influential node attributes and edge attributes, we can easily run
Aurora-N on the augmented attributed graphs G and Y, respectively.

23

Table 3.3: Statistics of the datasets used to evaluate Aurora.

Domain Network Type # Nodes # Edges

Social

Karate U 34 78
Dolphins U 62 159
WikiVote D 7,115 103,689

Pokec D 1,632,803 30,622,564

Collaboration

GrQc U 5,242 14,496
DBLP U 42,252 420,640
NBA U 3,923 71,581

cit-DBLP D 12,591 49,743
cit-HepTh D 27,770 352,807
cit-HepPh D 34,546 421,578

Physical Airport D 1,128 18,736

Others Lesmis U 77 254
Amazon D 262,111 1,234,877

(In Type, U means undirected graph; D means directed graph.)

3.1.3 Experimental Evaluation

In this part, we evaluate Aurora. All experiments are designed to answer the following
two questions:

• Effectiveness. How effective are Aurora algorithms in identifying key graph elements
with respect to the PageRank results?

• Efficiency. How efficient and scalable are Aurora algorithms?

Experimental settings. Here, we discuss the detailed experimental settings to evaluate
Aurora.
A – Hardware and software specifications. All datasets are publicly available. All experiments
are performed on a virtual machine with 4 Intel i7-8700 CPU cores at 3.4GHz and 32GB
RAM. The operating system is Windows 10. All codes are written in Python 3.6. The source
code of Aurora can be downloaded at https://jiank2.github.io/files/bigdata18/

aurora-v2.zip.
B – Dataset descriptions. We test our algorithms on a diverse set of real-world network
datasets. The statistics of these datasets are listed in Table 3.3.

• Social networks. Here, nodes are users, and edges indicate social relationships. Among
them, Karate [137] is a well-known network dataset of a university karate club collected
in 1977. Dolphins [138] is an undirected social network of frequent associations between
dolphins in a community living off Doubtful Sound, New Zealand. WikiVote [139] is

24

https://jiank2.github.io/files/bigdata18/aurora-v2.zip
https://jiank2.github.io/files/bigdata18/aurora-v2.zip

generated by Wikipedia voting data from the inception of Wikipedia till January 2008.
Pokec [140] is a popular online social network in Slovakia.

• Collaboration networks. Here, nodes are individuals, and two people are connected if
they have collaborated together. We use the collaboration network in the field of General
Relativity and Quantum Cosmology (GrQc) in Physics from arXiv preprint archive3.
DBLP4 is a co-authorship network from DBLP computer science bibliography. And
NBA [141] is a collaboration network of NBA players from 1946 to 2009. cit-DBLP [142]
is the citation network of DBLP, a database of scientific publications such as papers
and books. Each node in the network is a publication, and each edge represents a
citation of a publication by another publication. cit-HepTh [143] is an ArXiv HEP-TH
(High Energy Physics – Theory) citation network. The data covers papers from January
1993 to April 2003. If a paper i cites paper j, there is a directed edge from i to j.
cit-HepPh [143] is an ArXiv HEP-PH (High Energy Physics – Phenomenology) citation
network. The data covers papers from January 1993 to April 2003. If a paper i cites
paper j, there is a directed edge from i to j.

• Physical infrastructure networks. This category refers to the networks of physical
infrastructure entities. Nodes in them correspond to physical infrastructure, and edges
are connections. Airport5 is a dataset of airline traffic. Each node represents an airport
in the United States, and an edge (i, j) represents the airline from i to j while the edge
weight stands for the normalized number of passengers.

• Others. This category contains networks that do not fit into the above categories.
Lesmis [144] is a network of co-appearances of characters in Victor Hugo’s novel “Les
Miserables”. A node represents a character and an edge connects a pair of characters if
they both appear in the same chapter of the book. Amazon [145] is a co-purchasing
network collected by crawling Amazon website. It is based on the Customers Who
Bought This Item Also Bought feature.

C – Baseline methods. We compare Aurora with several baseline methods, which are
summarized as follows.

• Random selection (random). Randomly select k elements and calculate the change by
removing them.

3https://arxiv.org/
4http://dblp.uni-trier.de/
5https://www.transtats.bts.gov/

25

https://arxiv.org/
http://dblp.uni-trier.de/
https://www.transtats.bts.gov/

• Top-k degrees (degree). We first define the degree of an edge (u, v) as follows,

deg (u, v) =

(deg (u)× deg (v))× max
i∈{u,v}

deg (i) , if undirected

(deg (u)× deg (v))× deg (u) , if directed
(3.20)

where deg (u) represents the degree of node u. To audit by graph elements, we select k
elements with the highest degrees. For edges, we select k edges with the highest edge
degrees defined above; for nodes, we select k nodes with the highest node degrees; for
subgraphs, we form a vertex-induced subgraph from k nodes with the highest degrees.

• PageRank. We first define the PageRank score of an edge (u, v) as follows,

r (u, v) =

(r [u]× r [v])× max
i∈{u,v}

r [i] , if undirected

(r [u]× r [v])× r [u] , if directed
(3.21)

where r [u] is the PageRank score of node u. To audit by graph elements, we select k
elements with the highest PageRank scores. That is, for edges, we select k edges with
the highest PageRank scores defined above; for nodes, we select k nodes with highest
PageRank scores; for subgraphs, we form a vertex-induced subgraph from k nodes with
the highest PageRank scores.

• HITS. We first define HITS score of an edge (u, v) and node u as follows,

HITS (u, v) = hub (u)× hub (v) + auth (u)× auth (v) (3.22)

HITS (u) = hub (u) + auth (u) (3.23)

where hub (u) and auth (u) represent the hub score and authority score of node u,
respectively. To audit by graph elements, we select k elements with the highest HITS
scores. That is, for edges, we select k edges with the highest HITS scores defined above;
for nodes, we select k nodes with the highest HITS scores; for subgraphs, we form a
vertex-induced subgraph from k nodes with the highest HITS scores.

D – Evaluation metrics. Here, we choose the loss function to be squared L2 norm. We
quantify the performance of auditing by the goodness score ∆f of the graph elements S

26

Figure 3.2: Auditing results by edges. Budget k = 10. Higher is better. Best viewed in color.

Figure 3.3: Auditing results by nodes. Budget k = 10. Higher is better. Best viewed in color.

found by the corresponding algorithms. The goodness score ∆f is defined as

∆f =

∣∣∣∣∣f
(
r/

n∑
i=1

r [i]

)
− f

(
rS/

n∑
i=1

rS [i]

)∣∣∣∣∣ (3.24)

Effectiveness results. The effectiveness results of Aurora are as follows.
A – Quantitative comparison. We perform effectiveness experiments with the baseline methods.
We set k from 1 to 10 and find k influential edges and nodes, respectively. We set k only
from 2 to 10 to find an influential subgraph of size-k, respectively. This is because a vertex-
induced subgraph with only 1 node does not contain any edge and therefore is meaningless
for the purpose of PageRank auditing. On large graphs, searching a ground-truth with k

most influential elements by brute force is prohibitively expensive due to its combinatorial
nature. For example, even if we use the small Lesmis dataset, it will take over a day to find
ground-truth with k = 5. Thus, we do not report ground-truth results for all datasets.

The results of quantitative comparison across 9 different datasets are shown from Figure 3.2
to Figure 3.4. From those figures, we have observed that our family of Aurora algorithms
consistently outperform other baseline methods on all datasets. Figure 3.5 and Figure 3.6
shows the effect of k on auditing results. We can observe the following findings from those
figures. (1) Our family of Aurora algorithms incrementally find influential graph elements
with respect to the budget k; (2) Aurora algorithms consistently outperform baseline
methods on different budgets.
B – Case study on the Airport dataset. A natural use case of our Aurora algorithms is to
find influential edges and nodes in a given graph. To demonstrate that our algorithms are

27

Figure 3.4: Auditing results by subgraphs. Budget k = 10. Higher is better. Best viewed in
color.

(a) Auditing by edges. (b) Auditing by nodes. (c) Auditing by subgraphs.

Figure 3.5: Effect of k on auditing results (cit-HepPh Dataset). Higher is better. Best viewed
in color.

indeed able to provide intuitive information, we test our algorithms on the Airport dataset.
This dataset was manually created from the commercial airline traffic data in 2017, which is
provided by the United States Department of Transportation. We perform Aurora-E and
Aurora-N to find the most influential airlines (edges in the graph) and airports (nodes in
the graph) across United States with k = 7.

Edges selected by Aurora-E are ATL-LAX, LAX-ATL, ATL-ORD, ORD-ATL, ATL-DEN, DEN-ATL
and LAX-ORD. In contrast, PageRank selects ATL-LAS instead of DEN-ATL and ATL-DFW
instead of LAX-ORD. DEN-ATL plays a more important role in determining the centrality (e.g.,
PageRank) of other airports. This is because DEN serves as one of the busiest hub airports
that connects West coast and East coast; while ATL-LAS is less important in that regard,
considering the existence of ATL-LAX and ATL-PHX. Comparing LAX-ORD and ATL-DFW,
LAX-ORD directly connects Los Angeles and Chicago, both of them are largest cities in the
United States.

In the scenario of node-auditing, Aurora-N selects ATL, LAX, ORD, DFW, DEN, LAS and CLT.
In contrast, PageRank selects SFO instead of CLT. CLT seems to be a more reasonable choice
because it serves as a major hub airport, the 6th busiest airport by FAA statistics, to connect
many regional airports around states like North Carolina, South Carolina, Virginia, West
Virginia, etc. Compared with CLT, SFO is less influential in that regard, mainly due to the

28

(a) Auditing by edges. (b) Auditing by nodes. (c) Auditing by subgraphs.

Figure 3.6: Effect of k on auditing results (cit-HepTh Dataset). Higher is better. Best viewed
in color.

following two reasons. (1) It ranks after CLT (7th vs. 6th) in the list of busiest airports by
the FAA statistics; (2) due to the location proximity of SFO to LAX and SJC, even if this
node is perturbed (i.e., absent), many surrounding airports (especially regional airports in
California) could still be connected via LAX and SJC.
C – Case study on the DBLP dataset. Another interesting use case of Aurora algorithms
is sense-making in graph proximity. We construct a co-authorship network from DBLP
computer science bibliography to test our algorithms. We perform Aurora-N and PageRank
with k = 6. Different from the previous case study, here we use a personalized PageRank
with the query node being Christos Faloutsos. In this case, the top-ranked scholars in
the resulting ranking vector r form the proximity (i.e., ‘neighborhood’) of the query node
(i.e., who are most relevant to Christos Faloutsos). Consequently, the nodes selected by
an auditing algorithm indicate those important nodes in terms of making/maintaining the
neighborhood of the query node. Comparing the results by Aurora-N and PageRank, 5
of them are the same while Aurora-N selects Jure Leskovec instead of Yannis Ioannidis.
This result is consistent with the intuition, since Jure Leskovec, as the former student of
Christos Faloutsos with lots of joint publications, plays a more prominent role in the
neighborhood of Christos Faloutsos by sharing more common collaborators.
D – Case study on the NBA dataset. In a collaboration network, a subgraph can be naturally
viewed as a team (e.g., sports team). From this perspective, Aurora-S has the potential
to find teammates of a player. We set the query node as Tracy McGrady. Since there are
average 14 players for each team in NBA, we set the budget k = 14. Comparing the results
by Aurora-N and PageRank, 13 of them are the same. However, Aurora-N selects Rafer
Alston instead of Steven Hunter. As Tracy’s teammate, we believe Rafer Alston is a
more important collaborator and teammate mainly because of the following two reasons. (1)
Rafer Alston played more seasons with Tracy McGrady than Steven Hunter (4 seasons,

29

Figure 3.7: Running time vs. the number of
edges on Pokec dataset.

Figure 3.8: Running time vs. number of k
on Pokec dataset.

191 games vs. 3 seasons, 129 games); and (2) he played more games in the starting lineups
with Tracy McGrady than Steven Hunter (187 games vs. 47 games).
Efficiency results of Aurora. We show the running time vs. the number of edges
m and budget size k on Pokec dataset in Figure 3.7 and Figure 3.8. We can see that
Aurora algorithms scale linearly with respect to m and k, respectively. This is consistent
with our complexity analysis that the family of Aurora algorithms is linear with respect to
the number of edges and the budget.
Visualization. To better understand the auditing results, we developed a prototype system
with D3.js to represent the influence of graph elements visually. In the system, we use the
strength of line to represent the gradient of an edge and use the size and color for the gradient
of nodes. An example of visualizing hand-crafted toy graph is shown in Figure 3.9. It is easy
to see in the figure that Node 5 is the most influential node, and edges around Node 5 is
more influential than other edges, both of which are consistent with our intuition.

3.2 NETWORK DERIVATIVE MINING

Network mining plays a pivotal role in many important real-world applications, including
information retrieval [1, 2], healthcare [131], social network analysis [146], security [80], and
recommender systems [128]. Throughout the years, researchers have developed many network
mining algorithms for various mining tasks. To name a few, HITS [2] is a well-known and
widely used ranking algorithm to measure node importance by considering the network
structure; spectral clustering [3] is a popular technique for community detection and image
segmentation; and matrix factorization-based completion [20] on a bipartite network is a key

30

Figure 3.9: Visualization of Aurora results on the toy graph. Best viewed in color.

enabling technology for modern recommender systems.
State-of-the-art network mining algorithms have been widely adopted in various real-

world applications, which often deliver a strong empirical performance in finding interesting
patterns, e.g., which webpages are the most important, who are grouped into the same
online community and which movies best suit users’ tastes, etc. Despite the tremendous
progress, it remains opaque on how the results of a given mining algorithm relate to the
underlying network structure. Consequently, it is often hard to answer questions like how
the ranking results for webpages might be manipulated by malicious link farms; why two
seemingly different users are grouped into the same online community; how sensitive the
recommendation results are due to the random noisy or fake ratings; and what would have
happened to the epidemic dynamics if we had distributed vaccines in a different way, etc.

To tackle this issue, we introduce a paradigm shift of network mining and introduce the
network derivative mining (N2N) problem. To be specific, given an input network and
a mining algorithm, it aims to find a derivative network, each of whose edges provides a
quantitative measurement of the influence of the corresponding edge of the input network on
the given mining algorithm. In detail, we define the influence of edges as the rate of change of
a function over the mining results induced by the given mining algorithm. We envision that
network derivative mining will benefit a variety of aspects. First, it is directly applicable to
adversarial network mining, where users can identify potential edges which, if attacked, will
drastically affect network mining results. Second, it will render the crucial explainability of
the network mining model by identifying the most responsible/relevant edges for the mining

31

results. It can further help answer questions like why a node belongs or does not belong to
a certain cluster. Third, the derivative network can be used as a quantitative reference for
sensitivity analysis on network structure. Fourth, the network derivative mining has great
potential in active learning where edges with the high influence act as the most valuable data
points to query the oracle. Fifth, it will offer an effective way to encode side information to
boost some network mining tasks, e.g., to learn an optimal network based on user feedback
[133]. Finally, it allows the end users to quickly examine how the mining results would differ
should the underlying network have changed, and thus it naturally fits for counterfactual
learning on networks.

Besides the problem definition, the main contributions of this work are summarized as
follows.

• Algorithmic framework. We formulate the network derivative mining problem as an
optimization problem and introduce a generic algorithmic framework. Its key idea is to
measure the influence as the rate of change of a scalar valued function over the given
network mining task.

• Instantiations and computation. We instantiate the developed framework by three classic
network mining tasks, including ranking, clustering, and completion. For each task,
we develop effective and efficient algorithm to construct the corresponding derivative
network with a linear complexity in both time and space.

• Empirical evaluations. We perform extensive experiments on diverse, real-world datasets.
The experimental results demonstrate that our method (a) is effective in adversarial
network mining for different instantiations and (b) scales linearly with respect to the
number of nodes and edges in the network.

3.2.1 Problem Definition

In this part, we first present a table of symbols used throughout this work (Table 3.4).
Then we review the general procedure of classic network mining tasks. Finally, we formally
define the network derivative mining problem.

In this paper, we denote matrices with bold upper-case letters (e.g., A), vectors with
bold lower-case letters (e.g., x), sets with calligraphic fonts (e.g., S), and scalars with italic
lower-case letters (e.g., c). For matrix indexing conventions, we use the rules similar to
Numpy in Python as follows. We use A [i, j] to denote the entry of matrix A at the i-th row
and the j-th column, A [i, :] to denote the i-th row of matrix A, and A [:, j] to denote the

32

Table 3.4: Table of symbols for N2N.

Symbol Definition
G = {V , E} the input network

(i, j) edge from node i to node j
A a matrix

A [i, j] the element at the i-th row and the j-th column
A [i, :] the i-th row of matrix A
A [:, j] the j-th column of matrix A
AT transpose of the matrix A
A−1 inverse of the matrix A
u a vector

u [i] the i-th element of vector u
I [i, j] the influence of edge [i, j]
L (·) the loss function for a mining task
Y∗ the optimal model output
θ a set of parameters

f(Y∗) a scalar function over the mining results
n number of nodes
m number of edges

j-th column of matrix A. We use superscript T to denote the transpose of matrix (i.e., AT is
the transpose of matrix A).

Generally speaking, given a network A with n nodes and m edges, a network mining
algorithm aims to learn mining results Y∗ by optimizing a loss function L (A,Y , θ), where
Y∗ = argminYL (A,Y , θ) is the optimal model output, and θ is a set of additional parameters
that corresponds to a specific mining task. Let us illustrate this using three classic examples.
Table 3.5 presents a summary.

The first example is HITS [2], which is a widely-used ranking algorithm that measures the
importance of nodes with hub scores u and authority scores v for network structure analysis.
It solves the linear system u = Av, v = ATu, which can be naturally formulated as the
following optimization problem,

min
u,v
||A− uvT ||2F (3.25)

The second example is spectral clustering, which aims to find a matrix U with r orthonormal
column vectors by the following optimization problem,

min
U

Tr
(
UTLU

)
s.t. UTU = I (3.26)

33

where L is the Laplacian matrix of adjacency matrix A, and r is the number of clusters. It is
well-known that UTLU is essentially the diagonal matrix of the r smallest eigenvalues of L,
and columns in U are the associated eigenvectors.

The third example is matrix-factorization based completion, where we are given a bipartite
network A with n1 users, n2 items, and m observations. We denote A [i, j] as the rating of the
j-th item made by the i-th user. With the low-rank assumption, matrix factorization-based
completion finds two low-rank matrices with r latent factors, namely U and V, such that

min
U,V
||projΩ(A−UVT)||2F + λu||U||2F + λv||V||2F (3.27)

where Ω = {(i, j) : A [i, j] is observed}, and λu and λv are two hyperparameters for regular-
ization. Each row of the factorized n1 × r matrix U and each row of the n2 × r matrix V

represent a latent vector for the corresponding user and item, respectively.
Though these network mining algorithms have achieved a remarkable empirical performance

in finding various patterns for the corresponding network mining tasks, they often lack effective
and efficient ways to characterize how such results relate to the input network’s structure.
Following an overarching principle laid in [134, 147, 148], we adopt the influence functions
to quantify the impact of network structure (e.g., edges) when perturbed. Based on that,
we go an extra mile to further construct a derivative network, where each edge measures
the influence of the corresponding edge of the input network on the given mining algorithm.
Formally, we define the network derivative mining problem as follows.

Problem 3.2. The network derivative mining problem (N2N).

Input: (1) an input network with adjacency matrix A and (2) a network mining algorithm
represented as L (A,Y , θ), where L (·) is the loss function, Y∗ = argminYL (A,Y , θ) is the
model output, and θ contains all the additional parameters.
Output: a derivative network B, which has the same node set as the input network A,
where B [i, j] measures the influence of edge A [i, j] on Y∗, and B [i, j] = 0 if A [i, j] does not
exist.

Remarks. In this work, we focus on the derivatives of existing edges (i.e., A [i, j] = 1).
Nonetheless, the developed technique for computing the influence B [i, j] naturally applies to
non-existing edges (i.e., A [i, j] = 0).

34

Table 3.5: Examples of network mining algorithms studied in N2N.

Mining Task Loss Function L Mining Results Y Parameters θ 6Scalar Function f(·)

Ranking by HITS min
u,v

∥A− uvT∥2F hub vector u none f (Y∗) = λ1 − λ2authority vector v

Spectral Clustering min
U

Tr
(
UTLU

)
matrix U number of clusters r f (Y∗) =

r∑
i=1

λi
s.t. UTU = I

Matrix Completion min
U,V

∥projΩ(A−UVT∥2F user matrix U latent dimensions r
f (Y∗) = ∥UVT∥2F

+λu∥U∥2F + λv∥V∥2F item matrix V regularization parameters λu, λv

3.2.2 N2N Algorithmic Framework

In this part, we present a generic algorithmic framework for the network derivative
mining problem. We first define the influence of edges and then formulate the network
derivative mining problem from the optimization perspective, followed by a generic algorithmic
framework to solve it. Formally, we define the influence as the rate of change in f (Y∗) for
different edges.

Definition 3.2. (Edge influence). Let B be the derivative network, Y∗ be the optimal
result of a network mining task, and f (·) be a scalar function defined over the mining result
Y∗, the influence of an edge [i, j] is defined as the derivative of f (Y∗) with respect to the
corresponding edge in the input network A, i.e., I [i, j] = B [i, j] = df(Y∗)

dA[i,j]
.

Based on Definition. 3.2, the network derivative mining problem can be naturally formulated
as the following optimization problem

B =
df (Y∗)

dA
s.t. Y∗ ∈ argmin

Y
L (A,Y , θ) (3.28)

where L (·) is the loss function of a network mining task with θ being the additional parameters
from Table 3.5. To be specific, we have that

B =
df (Y∗)

dA
=

∂f(Y∗)
∂A

+
(

∂f(Y∗)
∂A

)T
− diag

(
∂f(Y∗)
∂A

)
, if undirected

∂f(Y∗)
∂A

, if directed
(3.29)

We can see that for both directed and undirected networks, the key to constructing the
derivative network B is ∂f(Y∗)

∂A
. Therefore, in the remaining of this work, we will mainly focus

6It is worth mentioning that the N2N framework is applicable to other choices of loss function f (·), as
long as it is a differentiable or subdifferentiable scalar valued function, e.g., Lp norm of a vector, L1,1 or
Frobenius norm of a matrix, soft maximum to approximate the largest entry value in the vector, etc. It
would be an interesting future direction to study (1) how to automatically choose the ‘best’ loss function for
a specific mining task and (2) how to generalize the N2N framework for non-differentiable loss function.

35

on effective and efficient computation of this quantity (i.e., ∂f(Y∗)
∂A

). Based on Equation (3.29),
we develop a generic algorithmic framework to solve Problem 3.2, which is summarized in
Algorithm 3.4. The key idea is to generate the derivative network by applying Equation (3.28)
and (3.29). In Algorithm 3.4, it first runs the network mining algorithm and get the optimal
model output Y∗ (step 1). Based on the output Y∗ and the corresponding scalar function f ,
it calculates the partial derivatives of f (Y∗) with respect to the network adjacency matrix A

(step 2), and then uses it to generate the derivative network finally (step 3).

Algorithm 3.4: N2N Algorithm Framework
Input : the adjacency matrix A, a mining algorithm L (A,Y , θ), and a scalar

function f (·).
Output : the derivative network B.

1 calculate Y∗ = argmin
Y

L (A,Y , θ) ;

2 calculate partial derivative ∂f(Y∗)
∂A

;
3 generate derivative network B = df(Y∗)

dA
by Equation (3.29) ;

4 return B;

There are two key challenges remained in Algorithm 3.4.

• (C1) How to compute Equation (3.28) to generate the derivative network? The key
step to computing Equation (3.28) requires the partial derivative of the optimal mining
result Y∗ with respect to the entire input network A, and the optimal mining result Y∗

itself involves a potentially complicated optimization problem.

• (C2) How to scale up the computation to large networks? Even if we can compute
the influence of each edge with a reasonable time complexity (e.g., linear complexity
with respect to the input network size), the entire Algorithm 3.4, which iterates over
every edge and calculates the corresponding influence, could still bear a superlinear
complexity in both time and space, which makes it hard to scale up to large networks.

In the next part, we instantiate the N2N framework using three classic network mining
tasks with effective and efficient algorithms to address these two challenges.

3.2.3 N2N Instantiation and Computation

In this part, we provide the instantiations of the N2N framework for three classic network
mining tasks shown in Table 3.5. For each mining task, we start with the specific choice
of f (·) function, then present the mathematical details on how to compute the derivative

36

network B (i.e., C1 challenge), and finally design efficient ways to scale-up the computation
(i.e., C2 challenge).
Instantiation #1: Ranking by HITS. Here, we discuss how to construct the derivative
network for HITS ranking. We discuss how to choose the scalar function f (·), how to
calculate the derivative network, as well as how to scale up the computation.
A – Choice of f (·) function. Given an input network G = {V , E} with A being the adjacency
matrix, and let u and v be its associated hub vector and authority vector, respectively, HITS
algorithm iteratively solves the linear equations u = Av, v = ATu until convergence to find
the final hub and authority vectors. It is well-known that the hub vector u is the principal
eigenvector associated with the leading eigenvalue of AAT , while the authority vector v is
the principal eigenvector associated with the leading eigenvalue of ATA.

Our choice of f (·) function for HITS is inspired by [23], which proves that hubs and
authorities are actually sensitive to the eigengap of AAT and ATA. Furthermore, it is known
that the eigenvalues of AAT and ATA are the same. Therefore, we choose the scalar function
over the mining results f (·) to be the eigengap between first and second largest eigenvalues
to reflect the stability of the ranking results. That is, f (Y∗) = λ1 − λ2, where λ1 and λ2 are
the first and second largest eigenvalues of AAT and ATA.
B – Calculating the derivative network B. A key step to generating the derivative network B

is to calculate the partial derivative ∂f(Y∗)
∂A

= ∂λ1

∂A
− ∂λ2

∂A
, which is summarized in Lemma 3.5.

Lemma 3.5. (N2N for HITS). For a given input network with adjacency matrix A, the partial
derivative of eigengap with respect to the adjacency matrix is ∂f(Y∗)

∂A
= 2

(
u1u

T
1A− u2u

T
2A
)
,

where u1 and u2 are the eigenvectors associated with λ1 and λ2, respectively.

Proof. We mainly show how to calculate ∂λ1

∂A
, since ∂λ2

∂A
can be calculated in a very similar

way. The key idea is to obtain the representation of ∂λ1

∂A[i,j]
, which is the partial derivative

with respect to each element in A. By the chain rule of matrix derivative, we have that
∂λ1

∂A[i,j]
= Tr

[(
∂λ1

∂AAT

)T ∂AAT

∂A[i,j]

]
.

We follow a similar strategy to calculate the first term in the chain rule by computing
∂λ1

∂(AAT)[i,j]
. Since AAT is a real symmetric matrix, the partial derivative of its eigenvalue can

be written as
∂λ1

∂ (AAT) [i, j]
= uT

1

∂AAT

∂ (AAT) [i, j]
u1 = uT

1 [i]u1 [j] (3.30)

where u1 is the eigenvector associated with λ1. By Equation (3.30), we can write out its
matrix form solution as follows, where each element is the derivative of eigenvalue with

37

respect to the corresponding element in AAT

∂λ1
∂AAT

= u1u
T
1 (3.31)

Then we show how to calculate the second term in chain rule ∂AAT

∂A[i,j]
. By the property of

derivative of matrix multiplication, we have that

∂AAT

∂A [i, j]
=

∂A

A [i, j]
AT +A

∂AT

A [i, j]
= SijAT +ASji (3.32)

where Sij is a single-entry matrix with 1 at the i-th row and the j-th column and 0

elsewhere. Putting Equation (3.31) and Equation (3.32) together, we have that ∂λ1

∂A[i,j]
=

2
[
u1 [i]

(
uT
1A
)
[j]
]
. With that in mind, we obtain its matrix form solution as

∂λ1
∂A

= 2u1u
T
1A (3.33)

Following the same strategy for the second largest eigenvalue λ2, we can write out ∂λ2

∂A[i,j]
=

2[u2 [i] (u
T
2A) [j]] with the matrix form solution to be

∂λ2
∂A

= 2u2u
T
2A (3.34)

Combining Equation (3.33) and Equation (3.34) together, we obtain the matrix form
solution to complete the proof, i.e.,

∂f (Y∗)

∂A
=
∂λ1
∂A
− ∂λ2
∂A

= 2
(
u1u

T
1A− u2u

T
2A
)

(3.35)

where each element in the matrix is its partial derivative with respect to corresponding
element in the adjacency matrix A. QED.

Based on Lemma 3.5, the derivative network B can be calculated by applying Equa-
tion (3.35) and Equation (3.29).
C – Scale-up Computation. We have shown in Lemma 3.5 how to calculate B. However,
directly calculating u1u

T
1A and u2u

T
2A in Equation (3.35) requires matrix-matrix multiplica-

tion for n× n matrices, which would impose an Ω(n2) lower-bound on the complexity. To
address this issue, we explore the low-rank structure of Equation (3.35), where u1 is the
n × 1 eigenvector and uT

1A is a 1 × n row vector. Similar properties also hold for u2 and
uT
2A. Furthermore, since u1 is the eigenvector of AAT which is actually the first left singular

vector associated with the largest singular value of A, we can show in Lemma 3.6 that u1u
T
1A

38

can be computed by truncated singular value decomposition (SVD) on A in a much more
compact way.

Lemma 3.6. (Efficient computation of N2N for HITS). For a given input network with
adjacency matrix A, the partial derivative ∂f(Y∗)

∂A
= 2

(
u1u

T
1A− u2u

T
2A
)

can be calculated
by a rank-2 truncated SVD on A.

Proof. Let δ1 and δ2 be the first and second largest singular values associated with the left
singular vectors u1 and u2, and let v1 and v2 be the corresponding right singular vectors. By
truncated SVD on A, we have

A = [u1 u2]

[
δ1

δ2

][
vT
1

vT
2

]
+∆ (3.36)

where ∆ =
∑

3≤i≤n

uiδiv
T
i is defined as the residual matrix. Note that the left singular vectors

are unitary, i.e. uT
i uj = 0 if i ̸= j, then

u1u
T
1A = u1u

T
1 u1δ1v

T
1 + u1u

T
1 u2δ2v

T
2 + u1u

T
1∆ = u1δ1v

T
1 (3.37)

Similarly, for u2u
T
2A, we have u2u

T
2A = u2δ2v

T
2 . Combining it with Equation (3.37), we

have that

∂f (Y∗)

∂A
= 2u1u

T
1A− u2u

T
2A = 2u1δ1v

T
1 − u2δ2v

T
2 = 2[u1 u2]

[
δ1

−δ2

][
vT
1

vT
2

]
(3.38)

which is equivalent to truncated SVD on the adjacency matrix A after reversing the second
largest singular value δ2. QED.

To be specific, based on Lemma 3.6, for each edge A [i, j], we compute the corresponding
edge weight in the derivative network B as B [i, j] = 2δ1u1 [i]v1 [j] − 2δ2u2 [i]v2 [j]. Then
the derivative network B can be easily computed by applying Equation (3.29) with a linear
complexity in both time and space.

Lemma 3.7. (Time and space complexities of N2N for HITS). It takes O (m+ n) in time
and O (m+ n) in space to generate the derivative network B for HITS on the input network
A, where n is the number of nodes and m is the number of edges.

Proof. It takes O (r (m+ n) + r2n) time complexity to perform the rank-r truncated SVD.
Here, we strictly let r = 2, which reveals a O (m+ n) time complexity. Computing the
partial derivatives of all edges takes O (m) time in total. And it takes O (m) time to calculate

39

the influence of all edges and generate the derivative network B. Thus, the overall time
complexity is O (m+ n). For space complexity, it takes O (m) space complexity to save the
adjacency matrix A and the derivative network B in sparse format. It also takes O (n) space
to save the rank-2 SVD results. Therefore, it has O (m+ n) space complexity. QED.

Instantiation #2: Spectral clustering. Here, we discuss how to construct the derivative
network for spectral clustering, including how to choose the scalar function f (·), how to
calculate the derivative network, as well as how to scale up the computation.
A – Choice of f (·) function. Here, we have an undirected network G = {V , E} with A being
the adjacency matrix. We have the Laplacian matrix L = D−A, where D is the diagonal
degree matrix of A. Spectral clustering aims to find a matrix U by solving the optimization
problem in Equation (3.26), which maximizes the intra-cluster connectivity while minimizing
the inter-cluster connectivity. Naturally, we have Y∗ = U and define f (Y∗) = Tr

(
UTLU

)
,

which aligns with the objective function of the spectral clustering.
B – Calculating the derivative network B. With our choice of f (·) function shown above, key
steps to calculating the partial derivative ∂f(Y∗)

∂A
are summarized in Lemma 3.8.

Lemma 3.8. (N2N for spectral clustering). For a given input undirected network with
adjacency matrix A, the partial derivative of the sum of the r smallest eigenvalues with
respect to the adjacency matrix is ∂f(Y∗)

∂A
= diag

(
UUT

)
1n×n −UUT , where columns in U

are the associated eigenvectors, and 1n×n is an n× n matrix with all entries equal to 1.

Proof. Since U is the eigenvectors associated with the r smallest eigenvalues, we let λi be

the i-th smallest eigenvalue and re-write the objective as f (Y∗) = Tr
(
UTLU

)
=

r∑
i=1

λi. We

first apply chain rule to get the influence of each edge (i, j) as

∂f (Y∗)

∂A [i, j]
= Tr[(

∂f (Y∗)

∂L
)T

∂L

∂A [i, j]
] (3.39)

To calculate ∂f(Y∗)
∂L

, we have the following

∂f (Y∗)

∂L [i, j]
=

r∑
l=1

(
∂λl

∂L [i, j]

)
=

r∑
l=1

U [:, l]T SijU [:, l] (3.40)

where Sij is a single-entry matrix with 1 at the i-th row and the j-th column and 0 elsewhere.
With this, the matrix form solution of ∂f(Y∗)

∂L
can be written as

∂f (Y∗)

∂L
=

[
r∑

l=1

U [:, l]T SijU [:, l]

]
1≤i≤n,1≤j≤n

= UUT (3.41)

40

Since L = D−A, we can calculate ∂L
∂A[i,j]

as ∂L
∂A[i,j]

= Sii − Sij.
Putting everything together, we have the partial derivative of f (Y∗) with respect to A as

follows
∂f (Y∗)

∂A
= diag

(
UUT

)
1n×n −UUT (3.42)

where 1n×n is an n× n matrix with all entries equal to 1. QED.

Then we can apply Equation (3.29) to calculate its corresponding derivative network B.
C – Scale-up computation. Major computational challenges in Equation (3.42) lie in the matrix
multiplication of diag

(
UUT

)
1n×n and UUT , which, if computed in a straightforward way,

would require O (n3) complexity in time and O (n2) in space. We address the computational
challenges by exploring the low-rank structure of diag

(
UUT

)
1n×n −UUT .

Let us denote the i-th row of U by uT
i , use 1n×1 to denote the n× 1 column vector filled

by 1s, and use 11×n to denote the 1× n row vector filled by 1s. Then diag(UUT)1n×n can
be re-written as follows

diag(UUT)1n×n = diag(UUT)1n×111×n =

uT
1 u1

uT
2 u2

. . .

uT
nun

11×n (3.43)

such that the column vector is of size n× 1, and 11×n is a 1× n row vector. Then ∂f(Y∗)
∂A

can
be represented in the following low-rank form

∂f (Y∗)

∂A
=

uT
1 u1

uT
2 u2

. . .

uT
nun

11×n −

uT
1

uT
2

. . .

uT
n

 [u1 u2 . . . un] (3.44)

With the low-rank structure, to get the partial derivative of edge (i, j) (i.e., element at the
i-th row and the j-th column in ∂f(Y∗)

∂A
), we can simply calculate it as uT

i ui−uT
i uj . Then the

influence of an edge (i, j) can be calculated as B [i, j] = uT
i ui + uT

j uj − uT
i uj − uT

j ui, which
takes O (r) in time. In this way, we achieve linear time and space complexities with respect
to the input network size, as stated in the following lemma.

Lemma 3.9. (Time and space complexities of N2N for spectral clustering). It takes
O (r (m+ n) + r2n) complexity in time and O (rn+m) in space to generate the derivative
network B for the task of spectral clustering, where n and m are the numbers of nodes and
edges of the input network respectively, and r is the number of clusters.

41

Proof. It takes O (n) time to get the Laplacian matrix L and O (r (m+ n) + r2n) to perform
a rank-r eigen-decomposition on L. Precomputing uT

i ui for 1 ≤ i ≤ n in Equation (3.44)
takes O (rn) time complexity. Then it takes O (rm) time to calculate the partial derivatives
and the influence of all edges in the derivative network. Thus, the overall time complexity to
calculate the derivative network B is O (r (m+ n) + r2n). Regarding the space complexity,
it takes O (m) space to save the adjacency matrix A and the derivative network B in sparse
format. Also, it takes O (n) space to store the low-rank form of diag

(
UUT

)
1 and O (rn)

space to save the matrix U. Hence, the space complexity is O (rn+m). QED.

Instantiation #3: Matrix completion. Now we discuss how to construct the derivative
network for matrix factorization-based completion. The following discussions include how to
choose the scalar function f (·), how to calculate the derivative network, as well as how to
scale up the computation.
A – Choice of f (·) function. For matrix factorization-based completion, it solves the
optimization problem in Equation (3.27) to find two low-rank matrices U and V with r

latent factors. Here, the input is a user-item bipartite network A with n1 users, n2 items,
and m observations, where A [i, j] is the rating of the j-th item made by the i-th user. Since
Â = UVT is often used to complete/infer the missing entries in the observed rating matrix
A, we choose f (Y∗) = ∥UVT∥2F .
B – Calculating the derivative network B. Since the bipartite network A is often represented
as an asymmetric n1 × n2 matrix, we have B = df(Y∗)

dA
= ∂f(Y∗)

∂A
by Equation (3.29). Similar

to the previous two instantiations, we aim to get the representation of ∂f(Y∗)
∂A[i,j]

and then write
out the matrix form solution. We first denote X = UVT and then apply chain rule to get

∂f (Y∗)

∂A [i, j]
=

n1∑
l=1

n2∑
t=1

∂f (Y∗)

∂X [l, t]

∂X [l, t]

∂A [i, j]
(3.45)

However, it is non-trivial to calculate Equation (3.45). We present an accurate and efficient
solution to calculate ∂f(Y∗)

∂X[l,t]
and ∂X[l,t]

∂A[i,j]
in Lemma 3.10.

Lemma 3.10. (N2N for matrix completion). For a given bipartite network A, with U and
V being the optimal model output of Equation (3.27), the influence of [i, j] rating is I [i, j] =

2U [i, :]VTVC−1
i V [j, :]T + 2V [j, :]UTUD−1

j U [i, :]T , where Ci = λuI+
∑
k∈Ωi

V [k, :]T V [k, :],

Dj = λvI+
∑
k∈Ωj

U [k, :]T U [k, :], and Ωi and Ωj are sets of indices for non-zero entries of user

i and item j, respectively.

Proof. We solve the two terms in Equation (3.45) one by one. First, we show how to compute
∂f(Y∗)
∂X[l,t]

. Recall that we define f (Y∗) = ∥UVT∥2F and X = UVT . By the derivative of matrix

42

norm, we have ∂f(Y∗)
∂X

= 2X = 2UVT . Thus, the partial derivative ∂f(Y∗)
∂X[l,t]

can be denoted as

∂f (Y∗)

∂X [l, t]
= 2X [l, t] (3.46)

This completes the calculation of the first term ∂f(Y∗)
∂X[l,t]

in Equation (3.45).
Next, we show how to compute ∂X[l,t]

∂A[i,j]
. Since X = UVT , we have X [l, t] = U [l, :]V [t, :]T .

Then the second term in Equation (3.45) ∂X[l,t]
∂A[i,j]

can be re-written as ∂X[l,t]
∂A[i,j]

= ∂U[l,:]
∂A[i,j]

V [t, :]T +

U [l, :] (∂V[t,:]
∂A[i,j]

)T . However, it is hard to directly calculate ∂U[l,:]
∂A[i,j]

and ∂V[t,:]
∂A[i,j]

, since there is
no straightforward closed-form solution for U and V with respect to A [i, j]. To solve this
problem, we follow [78, 149] and consider the KKT conditions of Alternating Least Square
(ALS) method, which are shown as follows

λuU [l, :] =
∑
k∈Ωl

(A [l, k]−U [l, :]V [k, :]T)V [k, :]

λvV [t, :] =
∑
k∈Ωt

(A [k, t]−U [k, :]V [t, :]T)U [k, :]
(3.47)

where Ωl and Ωt are sets of indices for non-zero entries of user l and item t, respectively.
Following the equations in Equation (3.47), we obtain the following partial derivatives,

∂U [l, :]

∂A [i, j]
=

V [j, :]

[
λuI+

∑
k∈Ωl

V [k, :]T V [k, :]

]−1

, if i = l

0, otherwise

∂V [t, :]

∂A [i, j]
=

U [i, :]

[
λvI+

∑
k∈Ωt

U [k, :]T U [k, :]

]−1

, if j = t

0, otherwise

(3.48)

Since Cl = λuI+
∑
k∈Ωl

V [k, :]T V [k, :], Dt = λvI+
∑
k∈Ωt

U [k, :]T U [k, :], we have the following

equation
∂X [l, t]

∂A [i, j]
= V [j, :]C−1

i V [t, :]T +U [l, :]D−1
j U [i, :]T (3.49)

43

Combining Equation (3.46) and Equation (3.49), we re-write Equation (3.45) as

∂f (Y∗)

∂A [i, j]
= 2

m∑
t=1

U [i, :]V [t, :]T
∂U [i, :]

∂A [i, j]
V [t, :]T + 2

n∑
l=1

U [l, :]V [j, :]T U [l, :]

(
∂V [j, :]

∂A [i, j]

)T

= 2
m∑
t=1

U [i, :]V [t, :]T V [j, :]C−1
i V [t, :]T + 2

n∑
l=1

U [l, :]V [j, :]T U [l, :]D−1
j U [i, :]T

= 2U [i, :]VTVC−1
i V [j, :]T + 2V [j, :]UTUD−1

j U [i, :]T

(3.50)
which completes the proof. QED.

C – Scale-up computation. Simply calculating the influence by Equation (3.50) will take
O (r2 (n1 + n2)) time complexity for each rating. Therefore, the amortized time complexity
will still be superlinear with respect to the network size (O (r2 (n1 + n2)m)), which makes it
not scalable to large networks. However, if we take one more look at Equation (3.50), we
can find out that C−1

i for each user i, D−1
j for each item j, UTU, and VTV are globally

shared by all elements in A. Thus, we can precompute them for all users and items once
we have trained the optimal model output U and V. With the help of precomputation,
for each edge A [i, j] in the input bipartite network A, we can calculate its influence as
B [i, j] = 2U [i, :]VTVC−1

i V [j, :]T + 2V [j, :]UTUD−1
j U [i, :]T in O (r) time. Since we only

compute B [i, j] for observed rating A [i, j], we efficiently reduce the overall time complexity
to be linear with respect to the input network size.

Lemma 3.11. (Time and space complexities of N2N for matrix completion.). The amortized
time complexity to generate the derivative network B is O (r3 (n1 + n2) + r2m), where n1

and n2 are numbers of users and items, r is the dimension of latent factors, and m is the
total number of observed ratings. It takes O (r2 (n1 + n2) +m) complexity in space.

Proof. It takes O (r3 (n1 + n2) + r2m) to train the model by ALS. It takes O (r2|Ωi|) and
O (r2|Ωj|) to precompute Ci and Dj , where |Ωi| and |Ωj| are the number of observed feedback
for user i and item j, respectively. And it takes O (r3) complexity to inverse each Ci and Dj

for all 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. Thus, the amortized complexity in the precomputation
stage is O (r3 (n1 + n2) + r2m). And the time complexities to precompute UTU and VTV

are O (r2n) and O (r2m), respectively. Then, to calculate the influence for one element A [i, j],
it takes O (r2) time complexity. Thus, the overall amortized time complexity to calculate the
influence for all observed element in A is O (r3 (n1 + n2) + r2m). Regarding space complexity,
it takes O (m) space to save the bipartite network A. Each Ci and Dj for any 1 ≤ i ≤ n1

and 1 ≤ j ≤ n2 takes O (r2) space. And we also need to save the precomputed UTU and

44

VTV, which also requires O (r2) space. Thus, it takes O (r2 (n1 + n2) +m) complexity in
space. QED.

3.2.4 Experimental Evaluation

In this part, we perform empirical evaluations on the developed N2N framework. All
experiments are designed to answer the following questions:

• Effectiveness. How effective is the developed N2N framework with respect to the
corresponding mining task?

• Efficiency. How efficient and scalable is the developed N2N framework to generate the
derivative network?

3.2.5 Experimental setting.

The detailed experimental settings to evaluate N2N are as follows.
Hardware and software specifications. All experiments are performed on a Windows PC with
3.8GHz Intel Core i7-9800X CPU and 64 GB RAM. All datasets are publicly available. The
methods are programmed in Python 3.6. The source code of N2N can be downloaded at
https://jiank2.github.io/files/cikm19/n2n.zip.
A – Dataset descriptions. We test our algorithms on a diverse set of real-world datasets. The
statistics of these datasets are summarized in Table 3.6.

There are three types of datasets, including directed uni-partite networks (‘D’) for the
ranking task, undirected uni-partite networks (‘U’) for the spectral clustering task, and
bipartite networks (‘B’) for the matrix completion task. Among them, the three largest
ones (i.e., patent, douban and ml-20m) are used for scalability experiments. These datasets
come from a variety of application domains, including social networks (Social), citation
networks (Cit), collaboration networks (CA), physical infrastructure networks (Infra), and
rating networks (Rating). The detailed descriptions of these datasets are as follows.

• Social networks. Here, nodes are users, and edges indicate social relationships. Among
them, gplus [150] is a directed network of Google+ user-user links, which is a social
network by Google. A directed edge indicates that one user has the other user in
his/her circle. epinions [151] is a directed who-trust-whom network from consumer
reviews website Epinions7. hamster [150] is a directed network of friendship among

7http://www.epinions.com/

45

https://jiank2.github.io/files/cikm19/n2n.zip
http://www.epinions.com/

Table 3.6: Statistics of datasets used to evaluate N2N.

Task Domain Type Dataset # Nodes # Edges(Users/Items)

HITS

Cit

D cit-hepth 27,770 352,807
D cit-dblp 12,590 49,759
D cora 23,166 91,500
D patent 3,774,768 16,518,948

Social D gplus 23,628 39,242
D epinions 75,879 508,837

Infra D gnutella 8,114 26,013

CA

U astroph 18,772 198,110
U condmat 23,133 93,497

Spectral U grqc 5,242 14,496
clustering U ca-hepph 12,008 118,521

Social U hamster 1,858 12,534
U douban 154,908 327,162

Infra U twin 14,274 20,573

Rating

B lastfm 1,892/17,632 92,834
Matrix B delicious 1,867/69,223 437,593

completion B movielens 610/9,724 100,836
B ml-20m 138,493/26,744 20,000,264

(In Type, D: directed; U: undirected; B: bipartite.)

users of the website hamsterster.com. douban [150] is the social network of a Chinese
online recommendation site Douban8.

• Citation networks. Here, each node is a research paper. If a paper i cites paper j,
there is a directed edge from node i to node j. cit-hepph [151] is an ArXiv HEP-PH
(High Energy Physics – Phenomenology) citation network. The data covers papers from
January 1993 to April 2003. cit-dblp [150] is a directed network of citation data on
DBLP9, a database of computer science bibliography. cora [150] is the CORA citation
network. patent [151] is a directed network of all the utility patents granted from 1963
to 1999.

• Collaboration networks. Here, nodes are researchers, and two individuals are connected
if they have collaborated together. We use four collaboration networks in the field
of Physics from arXiv preprint archive10: Astro Physics (astroph), Condense Matter
Physics (condmat), General Relativity and Quantum Cosmology (grqc), and High
Energy Physics – Phenomenology (ca-hepph).

8https://www.douban.com
9http://dblp.uni-trier.de/

10https://arxiv.org/

46

hamsterster.com
https://www.douban.com
http://dblp.uni-trier.de/
https://arxiv.org/

• Physical infrastructure networks. This domain refers to the networks of physical
infrastructure entities. Nodes correspond to physical infrastructure, and edges are
connections. gnutella [151] is a snapshots of Gnutella peer-to-peer file sharing network
collected on August 9, 2002. twin [150] is an undirected network of cities connected by
sister city relationships. The dataset is extracted from WikiData11.

• Rating networks. It is a collection of bipartite networks that consist of feedback given
to items by users, weighted by a rating value. Four different rating networks are used.
Among them, lastfm is extracted from the music streaming service Last.fm12. If a user
i listened to a song by an artist j, its corresponding feedback A [i, j] = 1, otherwise it
is 0. delicious is extracted from the social bookmark sharing service website Delicious13.
If a user i bookmarked a particular URL j, the feedback A [i, j] = 1, otherwise it
is 0. movielens and ml-20m are two rating networks of users to movies provided by
GroupLens Research14. An edge between a user and a movie represents a rating of the
movie by the user. Each rating ranges from 0.5 to 5.0.

C – Baseline methods. We compare N2N (Algorithm 3.4) with several baseline methods. We
briefly summarize the baseline methods as follows.

• Top Degrees (Degree). We define the degree score of an edge (u, v) as follows.

deg (u, v) =

deg (u) + deg (v) , if undirected

(d (u) + deg (v))× deg (u) , if directed
(3.51)

where deg (u) represents the degree of node u.

• Top Eigenvector Centrality (EigenCentrality). We define the eigenvector centrality
score of an edge (u, v) as follows.

eig (u, v) =

eig (u) + eig (v) , if undirected

(eig (u) + eig (v))× eig (u) , if directed
(3.52)

where eig (u) is the eigenvector centrality score of node u.
11https://www.wikidata.org
12https://www.last.fm
13https://del.icio.us
14https://grouplens.org/datasets/movielens/

47

https://www.wikidata.org
https://www.last.fm
https://del.icio.us
https://grouplens.org/datasets/movielens/

Figure 3.10: HITS ranking attacking results. Higher is better (i.e., more effective attacking).
Best viewed in color.

Figure 3.11: Spectral clustering attacking results. Higher is better (i.e., more effective
attacking). Best viewed in color.

• HITS. We define HITS score of an edge (u, v) as follows.

HITS (u, v) = hub (u) + hub (v) + auth (u) + auth (v) (3.53)

where hub (u) and auth (u) represent the hub score and authority score of node u,
respectively.

• Contain. Contain [152] is an algorithm to optimize the network connectivity. It
iteratively selects a network element (e.g., a node or an edge) with the highest impact
score on a user-defined connectivity measurement.

• Aurora. Aurora [147, 148] is an algorithm for PageRank auditing problem. It iteratively
selects a network element (e.g., a node, an edge, or a subgraph) with the highest
influence on the PageRank ranking vector of a network.

Algorithm 3.5 describes the procedures to select edges for our developed N2N method and
baseline methods (including top degrees, top eigenvector centrality and HITS). The edge
scoring function are defined as follows: C (u, v) = I (u, v) for N2N, C (u, v) = deg (u, v) for
top degrees, C (u, v) = eig (u, v) for top eigenvector centrality, and C(u, v) = HITS (u, v) for
HITS.
D – Evaluation metrics. Generally speaking, we want to measure how the mining results
would change if we perturb the network elements (e.g., nodes, edges) for each mining task
(i.e., HITS, spectral clustering, matrix completion).

48

Figure 3.12: Matrix completion attacking results. Higher is better (i.e., more effective
attacking). Best viewed in color.

Algorithm 3.5: Description of Baseline Methods in N2N
Input : the adjacency matrix A, an edge scoring function C(·, ·), integer budget k.
Output : a set of k edges S with highest edge scores.

1 initialize S = ∅ ;
2 let Ã = A ;
3 while |S| ≠ k do
4 find edge (u, v) = argmax

[u,v]∈Ã
C (u, v) ;

5 add edge (u, v) to S ;
6 remove edge (u, v) from Ã ;

7 return S;

More specifically, for HITS, we measure how the hub and authority rankings change in
total if we perturb the set of network elements. We define the distortion error metric for
HITS as

err = ∥u− ũ∥2 + ∥v − ṽ∥2 (3.54)

where u and v are the original hub and authority vectors, while ũ and ṽ are the hub and
authority vectors after perturbation.

For spectral clustering, we measure changes in cluster assignments after we perturb the
set of network elements. We use the normalized mutual information (NMI) to measure the
agreement between two cluster assignments before and after the perturbation. We define the
distortion error metric as

err = 1− NMI
(
C, C̃

)
= 1−

2MI
(
C, C̃

)
H (C) +H

(
C̃
) (3.55)

where C and C̃ are the cluster assignments before and after perturbation, MI
(
C, C̃

)
is the

mutual information between C and C̃, and H (C) is the entropy of assignment C. Notice that

49

Figure 3.13: HITS ranking attacking results on different budget size. Higher is better (i.e.,
more effective attacking). Best viewed in color.

a larger err means a bigger difference between the clustering assignment before and after
perturbation, which implies more effective attacking on clustering.

Regarding matrix completion, we measure how the model prediction changes after we
perturb the set of network elements. We measure its change as follows,

RMSE =

√√√√ ∑
[i,j]∈ΩC

(
Â [i, j]− Ã [i, j]

)2
/ |ΩC | (3.56)

where Â [i, j] = U [i, :]V [j, :]T is the prediction made by the original model output, Ã [i, j] =

Ũ [i, :] Ṽ [j, :]T is the prediction made by the model after perturbation, and
∣∣ΩC

∣∣ is the
cardinality of the complementary set of Ω. Notice that a larger RMSE means a bigger
difference in predicting a user’s preference, which implies more effective attacking on the
recommender system.
E – Detailed parameter settings. Regarding detailed parameter settings in the experimental
evaluations, we set the budget size k = 50 for ranking and spectral clustering, and k = 10 for
matrix completion. For Contain method, we use the leading eigenvalue as the connectivity
measurement and set its rank parameter to 80 (see details in [152]). For spectral clustering,
the number of clusters is set to 5. Regarding matrix completion, we set the latent dimension
r = 10, the regularization parameters λu = 0.5 and λv = 0.5, and the number of training
iterations to 10. Regarding the random initialization of cluster centroids in spectral clustering
and low-rank matrices U, V in matrix completion, the random seed is uniformly selected
from 1 to 50 for each dataset.
Effectiveness results. We perform quantitative effectiveness comparison with baseline
methods. The experiments are designed to explore the potential of the developed N2N frame-

50

(a) HITS ranking. (b) Spectral clustering. (c) Matrix Completion.

Figure 3.14: The scalability of the developed N2N on different network mining tasks.

work in attacking the corresponding network mining task, i.e., the mining results could be
distorted greatly by removing a set of influential network edges in the derivative network.
Quantitative comparison. The quantitative comparison results for HITS, spectral clustering,
and matrix completion across 15 different datasets are shown from Figure 3.10 to Figure 3.12,
respectively. From those figures, we can see that the developed N2N framework (the leftmost
red solid bar in Figures 3.10, 3.11, and 3.12) consistently outperforms other baseline methods
in all datasets, which indicates that the derivative network generated by our developed
N2N framework can indeed effectively attacking the network mining tasks by a few edge
deletion.
Effect of budget size k. We explore the power of N2N on different budget size. Note that we
only show the results of HITS ranking here. We set the budget size k from 1 to 50. From the
results shown in Figure 3.13, we can observe that our developed N2N method (red solid line
in Figure 3.13) outperforms other baseline methods on different budget size k.
Efficiency results. We show the running time vs. the input network size for HITS,
spectral clustering, and matrix completion in Figure 3.14. We can see that the developed
N2N framework scales linearly with respect to the input network size m + n in all three
instantiations. These results are consistent with our complexity analysis in Lemmas 3.7, 3.9,
and 3.11, which states that the derivative network B can be computed in linear time with
respect to the number of edges m and the number of nodes n.

3.3 UNCERTAINTY QUANTIFICATION ON GRAPH CONVOLUTIONAL NETWORK

Graph Convolutional Network (GCN) has become a prevalent learning paradigm in many
real-world applications, including financial fraud detection [153], drug discovery [154], and
traffic prediction [155]. To date, the vast majority of existing works do not take into account
the uncertainty of a GCN regarding its prediction, which is alarming especially in high-stake

51

scenarios. For example, in automated financial fraud detection, it is vital to let expert banker
to take controls if a GCN-based detector is highly uncertain about its predictions in order to
prevent wrong decisions on suspending banking account(s).

A well established study on uncertainty quantification of GCN could bring several crucial
benefits. First, it is a cornerstone in trustworthy graph mining. Uncertainty quantification
aims to understand to what extent the model is likely to be incorrect, thus providing natural
remedy to questions like how uncertain is a GCN in its own predictions? Second, an accurate
quantification of GCN uncertainty could potentially answer how to improve GCN predictions
by leveraging its uncertainty in many graph mining tasks. For example, in active learning on
graphs, nodes with high uncertainty could be selected as the most valuable node to query
the oracle; in node classification, the node uncertainty could help calibrate the confidence of
GCN predictions, thereby improving the overall classification accuracy.

Important as it could be, very few studies on uncertainty quantification of GCN exist, which
mainly focuses on two different directions: Bayesian-based approaches and deterministic
quantification-based approaches. Regarding Bayesian-based approaches [156, 157], they
either drops edge(s) with certain sampling strategies or leverages random graph model (e.g.,
stochastic block model) to assign edge probabilities for training. However, these models
fall short in explicitly quantifying the uncertainty on model predictions. Another type of
methods, i.e., deterministic quantification-based approaches [158, 159, 160], directly quantifies
uncertainty by parameterizing a Dirichlet distribution as prior to estimate the posterior
distribution under a Bayesian framework. Nevertheless, it changes the training procedures of
a graph neural network by introducing additional parameters (e.g., parameters for Dirichlet
distribution) or additional architectures (e.g., teacher network) in order to precisely estimate
the uncertainty.

To address the aforementioned limitations, we provide the first study on frequentist-based
analysis of the GCN uncertainty, which we term as the JuryGCN problem. Building upon the
general principle of jackknife (leave-one-out) resampling [161], the jackknife uncertainty of a
node is defined as the width of confidence interval constructed by a jackknife estimator
when leaving the corresponding node out. In order to estimate the GCN parameters
without exhaustively re-training GCN, we leverage influence functions [134] to quantify
the change in GCN parameters by infinitesimally upweighting the loss of a training node.
Compared with existing works, our method brings several advantages. First, our method
provides deterministic uncertainty quantification, which is not available in Bayesian-based
approaches [156, 157]. Second, different from existing works on deterministic uncertainty
quantification [158, 159, 160], our method does not introduce any additional parameters or
components in the GCN architecture. Third, our method can provide post-hoc uncertainty

52

quantification. As long as the input graph and a GCN are provided, our method can always
quantify node uncertainty without any epoch(s) of model training.

The major contributions of this work are summarized as follows.

• Problem definition. To our best knowledge, we provide the first frequentist-based
analysis of GCN uncertainty and formally define the JuryGCN problem.

• Algorithm and analysis. We develop JuryGCN to quantify jackknife uncertainty on
GCN. The key idea is to leverage a jackknife estimator to construct a leave-one-out
predictive confidence interval for each node, where the leave-one-out predictions are
estimated using the influence functions with respect to model parameters.

• Experimental evaluations. We demonstrate the effectiveness of JuryGCN through
extensive experiments on real-world graphs in active learning on node classification and
semi-supervised node classification.

3.3.1 Problem Definition

In this part, we first introduce preliminary knowledge on the Graph Convolutional Network
(GCN), predictive uncertainty, and jackknife resampling. Then we formally define the problem
of jackknife uncertainty quantification on GCN (JuryGCN).

In this work, unless otherwise specified, we use bold upper-case letters for matrices (e.g.,
A), bold lower-case letters for vectors (e.g., x), calligraphic letters for sets (e.g., G), and
fraktur font for high-dimensional tensors (H). We use supercript T for matrix transpose
and superscript −1 for matrix inversion, i.e., AT and A−1 are the transpose and inverse
of A, respectively. We use conventions similar to Numpy in Python for indexing. For
example, A [i, j] represents the entry of A at the i-th row and j-th column; A [i, :] and A [:, j]

demonstrate the i-th row and j-th column of A, respectively.
Preliminaries. We briefly review preliminary knowledge on graph convolutional network
(GCN), uncertainty quantification, and jackknife resampling.
A – Graph Convolutional Network (GCN). Let G = {V ,A,X} denote a graph whose node
set is V , adjacency matrix is A, and node feature matrix is X. For the l-th hidden layer in
an L-layer GCN, we assume E(l) is the output node embeddings (where E(0) = X), and W(l)

is the weight matrix. Mathematically, the graph convolution at the l-th hidden layer can be
represented by E(l) = σ(ÂE(l−1)W(l)), where σ is the activation, and Â = D̃− 1

2 (A+ I) D̃− 1
2

is the renormalized graph Laplacian with D̃ being the degree matrix of (A+ I).
B – Uncertainty quantification is one of the cornerstones in safe-critical applications. It
provides accurate quantification on how confident a mining model is towards its predictions.

53

In general, uncertainty can be divided into two types: aleatoric uncertainty and epistemic
uncertainty [162]. Aleatoric uncertainty (or data uncertainty) refers to the variability in
mining results due to the inherent randomness in input data, which is irreducible due to
complexity of input data (e.g., noise); whereas epistemic uncertainty (or model uncertainty)
measures how well the mining model fits the training data due to the lack of knowledge on
the optimal model parameters, which is reducible by increasing the size of training data.
C – Jackknife resampling is a classic method to estimate the bias and variance of a pop-
ulation [163]. It often relies on a jackknife estimator, which is built by leaving out an
observation from the entire population (i.e., leave-one-out) and evaluating the error of
the model re-trained on the held-out population. Suppose we have (1) a set of n data
points D = {(xi, yi) |i = 1, . . . , n}, (2) a test point (xtest, ytest), (3) a mining model fθ ()
parameterized by θ (e.g., a neural network) where fθ (x) is the prediction of input fea-
ture x, and (4) a target coverage level (1− α) such that the label y is covered by the
predictive confidence interval with probability (1− α). Mathematically, the confidence in-
terval constructed by the naive jackknife [164] is upper bounded by C+ (xtest) = Q1−α (R+)

and lower bounded by C− (xtest) = Qα (R−), where Qα finds the α quantile of a set and
Rγ = {fθ (xtest) + γ · |ytest − fθ−i

(xtest)||i = 1, . . . , n} for γ ∈ {−,+} and |ytest − fθ−i
(xtest)|

is the error residual of the re-trained model on the dataset D \ {(xi, yi)} (i.e., parameterized
by θ−i).15 Hence, R+ and R− represent the sets of upper and lower uncertainty bounds on
the original model prediction (i.e., fθ (xtest)). Furthermore, jackknife+ [165] constructs the
predictive confidence interval for exchangeable data as

C+ (xtest) = Q1−α

(
P+
)

C− (xtest) = Qα

(
P−) (3.57)

where Pγ for γ ∈ {−,+} is defined as Pγ =
{
fθ−i

(xtest) + γ · |yi − fθ−i
(xi)||i = 1, . . . , n

}
.

Similarly, P− and P+ represent the sets of the lower and upper uncertainty bounds of the leave-
one-out prediction fθ−i

(xtest), respectively. With the assumption on data exchangeability, it
yields a (1− 2α) coverage rate theoretically.
Problem definition. Existing works on deterministic uncertainty quantification of a graph
neural network (GNN) mainly rely on changing the training procedures of a vanilla GNN
(i.e., graph neural network without consideration of uncertainty) [159, 160]. As such, given a
well-trained GNN, it requires epoch(s) of re-training to quantify its uncertainty. Nevertheless,
it would cost a lot of computational resources to re-train it, especially when the model has
already been deployed in an operational environment. Additionally, it remains a challenging

15We use γ to represent the symbol before the leave-one-out error, i.e., fθ (xtest)−|ytest− fθ−i
(xtest)| when

γ = −, or fθ (xtest) + |ytest − fθ−i (xtest)| otherwise.

54

problem to further comprehend the predictive results of GNN from the perspective of
uncertainty and to answer the following question: to what extent the GNN model is confident
of the current prediction? Therefore, it is essential to investigate the uncertainty quantification
in a post-hoc manner, i.e., quantifying uncertainty without further (re-)training on the model.

Regarding post-hoc uncertainty quantification for IID (i.e., non-graph) data, Alaa and van
der Schaar [166] propose a frequentist-based method inspired by jackknife resampling. It
uses high-order influence functions to quantify the impact of a data point on the underlying
neural network. Given that the parameters of a neural network are derived by learning with
data points, high-order influence functions are capable of understanding how much a data
point will affect the model parameters. Then the change in model parameters can be used to
infer the uncertainty of the corresponding data point on the neural network by a jackknife
estimator [165]. Under mild assumption (such as the algorithmic stability assumption and
the IID/exchangebility of data), the naive jackknife estimator [164] and its variants [165]
bear strong theoretical guarantee in terms of the coverage such that the confidence interval
will cover the true model parameters with a high probability.

Building upon the jackknife resampling [161] and the general principle outlined in [166],
we seek to bridge the gap between frequentist-based uncertainty quantification and graph
neural networks. To be specific, given an input graph and a GCN, we aim to estimate the
uncertainty of a node as the impact of leaving out its loss when computing the overall loss.
Formally, we define the problem of jackknife uncertainty quantification on GCN, which is
referred to as JuryGCN problem.

Problem 3.3. JuryGCN: Jackknife uncertainty quantification on Graph Convolutional
Network.

Given: (1) an undirected graph G = {V ,A,X}, (2) an L-layer GCN with the set of weights
Θ, and (3) a task-specific loss function R (G,Y ,Θ) where Y is the set of node labels.
Find: an uncertainty score UΘ (u) for any node u in graph G with respect to the GCN
parameters Θ and the task-specific loss function R (G,Y ,Θ).

3.3.2 JuryGCN: Measure and Computation

In this part, we start by discussing the general strategy of quantifying jackknife uncertainty
with influence functions and formally define the node jackknife uncertainty. After that, we
present mathematical analysis on the influence function computation for GCN.
Jackknife uncertainty of GCN. In this work, we consider an L-layer GCN with ReLU
activation for node-level tasks (e.g., node classification). We further assume that the nodes

55

of the input graph G are exchangeable data.16

We first observe that the loss function of many node-level tasks can often be decomposed
into a set of node-specific subproblems. Mathematically, it can be written as

Θ∗ = argmin
Θ

R (G,Ytrain,Θ) = argmin
Θ

1

|Vtrain|
∑

v∈Vtrain

r (v,yv,Θ) (3.58)

where Vtrain ⊆ V is the set of training nodes, |Vtrain| is the number of training nodes,
Ytrain = {yv|v ∈ Vtrain} is the set of ground-truth training labels, and yv is the label of node v.
In this case, the overall loss function R (G,Ytrain,Θ) is decomposed into several subproblems,
each of which minimizes the node-specific loss function r (v,yv,Θ) for a node v. An example
is the cross entropy with node-specific loss as r (v,yv,Θ) = −

∑c
i=1 yv [c] log (GCN (v,Θ) [c]),

where c is the number of classes, and GCN (v,Θ) is the vector of predicted probabilities for
each class using the GCN with parameters Θ. If we upweight the importance of optimizing
the loss of a node i with some small constant ϵ, we have the following loss function.

Θ∗
ϵ,i = argmin

Θ
ϵr (i,yi,Θ) +

1

|Vtrain|
∑

v∈Vtrain

r (v,yv,Θ) (3.59)

Influence function is a powerful approach to evaluate the dependence of the estimator on the
value of the data examples [134, 170]. In order to obtain Θ∗

ϵ,i without re-training the GCN,
we leverage the influence function [134], which is essentially the Taylor expansion over the
model parameters.

Θ∗
ϵ,i ≈ Θ∗ + ϵIΘ∗ (i) (3.60)

where IΘ∗ (i) =
dΘ∗

ϵ,i

dϵ
|ϵ=0 is the influence function with respect to node i. The influence

function IΘ∗ (i) can be further computed using the classical result in [171] as

IΘ∗ (i) = H−1
Θ∗∇Θr (i,yi,Θ

∗) (3.61)

where HΘ∗ = 1
|Vtrain|∇

2
ΘR (G,Ytrain,Θ

∗) is the Hessian matrix with respect to model parameters
Θ∗. For a training node i, by setting ϵ = − 1

|Vtrain| , Equation (3.60) efficiently estimates the
leave-one-out (LOO) parameters Θ∗

ϵ,i if leaving out the loss of node i. After that, by simply
switching the original model parameters to Θ∗

ϵ,i, we estimate the leave-one-out error erri of
node i as follows.

erri = ∥yi −GCN
(
i,Θ∗

ϵ,i

)
∥2 (3.62)

16A sequence of random variables is exchangeable if and only if the joint distribution of the random
variables remains unchanged regardless of their ordering in the sequence [167]. This assumption is commonly
used in random graph models, e.g., Erdős-Rényi model [168], stochastic block model [169], etc.

56

where GCN
(
u,Θ∗

ϵ,i

)
represents the output of node u using the GCN with leave-one-out

parameters Θ∗
ϵ,i.

With Equation (3.62), we use jackknife+ [165], which requires the data to be exchangeable
instead of IID, to construct the confidence interval of node u. Mathematically, the lower
bound C−

Θ (u) and upper bound C+
Θ (u) of the predictive confidence interval of node u are

C−
Θ∗ (u) = Qα({∥GCN

(
u,Θ∗

ϵ,i

)
∥2 − erri|∀i ∈ Vtrain \ {u}})

C+
Θ∗ (u) = Q1−α

({
∥GCN

(
u,Θ∗

ϵ,i

)
∥2 + erri|∀i ∈ Vtrain \ {u}

}) (3.63)

where Qα and Q1−α are the α and (1− α) quantile of a set. Since a wide confidence interval
of node u means that the model is less confident with respect to node u, it implies that node
u has high uncertainty. Following this intuition, the uncertainty of node u can be naturally
quantified by the width of the corresponding confidence interval (Equation (3.63)). Since the
uncertainty is quantified using the confidence interval constructed by a jackknife estimator,
we term it as jackknife uncertainty, which is formally defined in Definition 3.3.

Definition 3.3. (Node jackknife uncertainty). Given an input graph G with node set V , a
set of training nodes Vtrain ⊆ V, and an L-layer GCN with parameters Θ, ∀i ∈ Vtrain and
∀u ∈ V, we assume (1) the nodes are exchangeable, (2) the LOO parameters are denoted
as Θϵ,i, (3) the error is defined as Equation (3.62), and (4) the lower bound C−

Θ (u) and the
upper bound C+

Θ (u) of predictive confidence interval are defined as Equation (3.63). Then
the jackknife uncertainty of node u is

UΘ (u) = C+
Θ (u)− C−

Θ (u) (3.64)

We note that Alaa and van Der Schaar [166] leverage high-order influence functions to
quantify the jackknife uncertainty for IID data. Though Equation (3.60) shares the same
form as in [166] when the order is up to 1, our work bears three subtle differences. First,
[166] views the model parameters as statistical functionals of data distribution and exploits
von Mises expansion over the data distribution to estimate the LOO parameters,17 which
is fundamentally different from our Taylor expansion-based estimation. Specifically, von
Mises expansion requires that the perturbed data distribution should be in a convex set
of the original data distribution and all possible empirical distributions [172]. Since the
node distribution of a graph is often unknown, the basic assumption of von Mises expansion
might not hold on graph data. However, our definition relies on the Taylor expansion over
model parameters which are often drawn independently from Gaussian distribution(s). Thus,

17A statistical functional is a map that maps a distribution to a real number.

57

our method is able to generalize on graphs. Second, [166] works for regression or binary
classification tasks by default, whereas we target more general learning settings on graphs
(e.g., multi-class node classification). Third, jackknife uncertainty is always able to quantify
aleatoric uncertainty and epistemic uncertainty simultaneously on IID data. Nevertheless,
as shown in Proposition 3.1, it requires additional assumption to quantify both types of
uncertainty on GCN simultaneously for a node u.

Proposition 3.1. (Necessary condition of aleatoric and epistemic uncertainty quantification
on GCN). Given an input graph G whose node set is V , a node u ∈ V , a set of training nodes
Vtrain, and an L-layer GCN, jackknife uncertainty quantifies the aleatoric uncertainty and the
epistemic uncertainty as long as u is outside the L-hop neighborhood of an arbitrary training
node v ∈ Vtrain \ {u}.

Proof. For an arbitrary node v ∈ V in the graph, its receptive field after L graph convolution
layers is the set of all neighbors within L hops. Then if the node u, whose uncertainty is going
to be quantified, is not within the L-hop neighborhood of any training node v ∈ Vtrain \ {u},
whether to leave out the loss of node u during training will have no impact on hidden node
representations and final predictions of v, which is equivalent to the leave-one-out settings
for IID data. QED.

Remark. For GCN, jackknife uncertainty cannot always measure the aleatoric uncertainty
and epistemic uncertainty simultaneously. In fact, if a node u is one of the neighbors within L
hops with respect to any training node v ∈ Vtrain \ {u}, jackknife uncertainty only quantifies
the epistemic uncertainty due to lack of knowledge on the loss of node u. In this case, jackknife
uncertainty cannot quantify aleatoric uncertainty because leaving out the loss of node u does
not necessarily remove node u in the graph. More specifically, the aleatoric uncertainty of
node u can still be transferred to its neighbors through neighborhood aggregation in graph
convolution.
The influence functions of GCN. In order to quantify jackknife uncertainty (Equa-
tion (3.64)), we need to compute the influence functions to estimate the leave-one-out
parameters by Equation (3.60). Given a GCN with Θ being the set of model parameters,
to compute the influence functions of node i (Equation (3.61)), we need to compute two
key terms, including (1) first-order derivative ∇Θr (i,yi,Θ) and (2) second-order derivative
HΘ. We first give the following proposition for the computation of first-order derivative in
Proposition 3.2.18 Based on that, we present the main results for computing the second-order

18The method to compute the first-order derivative was first proposed in [18] for a different purpose, i.e.,
ensuring degree-related fairness in GCN.

58

derivative in Theorem 3.2. Finally, we show details of influence function computation in
Algorithm 3.6.

Proposition 3.2. (First-order derivative of GCN [18]). Given an L-layer GCN whose
parameters are Θ, an input graph G = {V ,A,X}, a node i with its label yi, and a node-wise
loss function r (i,yi,Θ) for node i, the first-order derivative of loss function r (i,yi,Θ) with
respect to the parameters W(l) in the l-th graph convolution layer is

∇W(l)r (i,yi,Θ) =
(
ÂE(l−1)

)T (∂r (i,yi,Θ)

∂E(l)
◦ σ′

(
ÂE(l−1)W(l)

))
(3.65)

where Â = D̃− 1
2 (A+ I)D̃− 1

2 is the renormalized graph Laplacian with D̃ being the degree
matrix of A+I, σ′ is the derivative of the activation function σ, ◦ is the element-wise product,
and ∂r(i,yi,Θ)

∂E(l) can be iteratively calculated by

∂r (i,yi,Θ)

∂E(l)
= ÂT

(
∂r (i,yi,Θ)

∂E(l−1)
◦ σ′

(
ÂE(l)W(l−1)

))(
W(l−1)

)T
(3.66)

Proof. To prove it, we derive the element-wise computation of ∇W(l)r (i,yi,Θ) and then
write out the matrix form. We first apply the chain rule and get

∂r (i,yi,Θ)

∂W(l) [a, b]
=

n∑
c=1

hl∑
d=1

∂r (i,yi,Θ)

∂E(l) [c, d]

∂E(l) [c, d]

∂W(l) [a, b]
(3.67)

where hl is the hidden dimension of l-th layer. Regarding the computation of ∂E(l)[c,d]

∂W(l)[a,b]
, since

E(l) = σ(ÂE(l−1)W(l)), we have

∂E(l) [c, d]

∂W(l) [a, b]
=
∂σ
(
ÂE(l−1)W(l)

)
[c, d]

∂
(
ÂE(l−1)W(l)

)
[c, d]

∂
(
ÂE(l−1)W(l)

)
[c, d]

∂W(l) [a, b]

= σ′
(
ÂE(l−1)W(l)

)
[c, d]

(
ÂE(l−1)

)
[c, a] I [d, b]

(3.68)

where σ′ is the first-order derivative of the activation function σ. Combining Equations (3.67)
and (3.68) together, we have the element-wise computation of ∇W(l)r (i,yi,Θ) as follows.

∂r (i,yi,Θ)

∂W(l) [a, b]
=
(
ÂE(l−1)

)T
[a, :]

(
∂r (i,yi,Θ)

∂E(l)
◦ σ′

(
ÂE(l−1)W(l)

))
[:, b] (3.69)

where ◦ is the element-wise product. Finally, we get Equation (3.65) by writing Equation (3.69)
into matrix form.

59

Regarding the computation of ∂r(i,yi,Θ)

∂E(l) , the key idea is to write out a recursive function
with respect to ∂r(i,yi,Θ)

∂E(l) based on the chain rule. More specifically, we first consider the
element-wise computation and apply the chain rule as follows.

∂r (i,yi,Θ)

∂E(l) [c, d]
=

n∑
e=1

hl+1∑
f=1

∂r (i,yi,Θ)

∂E(l+1) [e, f]

∂E(l+1) [e, f]

∂E(l) [c, d]
(3.70)

We take derivative on both sides of E(l) = σ(ÂE(l−1)W(l)) and get

∂E(l+1) [e, f]

∂E(l) [c, d]
= σ′

(
ÂE(l)W(l+1)

)
[e, f] Â [e, c]W(l+1) [d, f] (3.71)

Combining Equations (3.70) and (3.71) together, we get the following element-wise first-order
derivative.

∂r (i,yi,Θ)

∂E(l) [c, d]
=

n∑
e=1

hl+1∑
f=1

ÂT [c, e] ·
(
∂r (i,yi,Θ)

∂E(l+1)
σ′
(
ÂE(l)W(l+1)

))
[e, f] ·

(
W(l+1)

)T
[f, d]

(3.72)
We complete the proof by writing Equation (3.72) into matrix form. QED.

Since the parameters are often represented as matrices in the hidden layers, the second-order
derivative will be a 4-dimensional tensor (i.e., a Hessian tensor). Building upon the results in
Proposition 3.2, we first present the computation of the Hessian tensor in Theorem 3.2. Then
we discuss efficient computation of influence function, which is summarized in Algorithm 3.6.

Theorem 3.2. (The Hessian tensor of GCN). Following the settings of Proposition 3.2,
denoting the overall loss R(G,Ytrain,Θ) as R and σ′

l as σ′
(
ÂE(l−1)W(l)

)
, the Hessian tensor

Hl,i =
∂2R

∂W(l)∂W(i) of R with respect to W(l) and W(i) has the following forms.

• Case 1. i = l, Hl,i = 0

• Case 2. i = l − 1

Hl,i [:, :, c, d] =

(
Â

∂E(l−1)

∂W(i) [c, d]

)T (
∂R

∂E(l)
◦ σ′

l

)
(3.73)

where ∂E(l−1)

∂W(i)[c,d]
is the matrix whose entry at the a-th row and the b-th column is

∂E(l−1) [a, b]

∂W(l−1) [c, d]
= σ′

l−1 [a, b]
(
ÂE(l−2)

)
[a, c] I [b, d] (3.74)

60

• Case 3. i < l − 1

– Apply Equation (3.74) for the i-th hidden layer.

– Forward to the (l − 1)-th layer iteratively with

∂E(l−1)

∂W(i) [c, d]
= σ′

l−1 ◦
(
Â

∂E(l−2)

∂W(i) [c, d]
W(l−1)

)
(3.75)

– Apply Equation (3.73).

• Case 4. i = l + 1

Hl,i [:, :, c, d] = (ÂE(l−1))T
(

∂2R

∂E(l)∂W(i) [c, d]
◦ σ′

l

)
(3.76)

where ∂2R
∂E(l)[a,b]∂W(l−1)[c,d]

= I [b, c]
[
ÂT
(

∂R
∂E(l−1) ◦ σ′

l+1

)]
[a, d]

• Case 5. i > l + 1

– Compute ∂2R
∂E(i−1)∂W(i)[c,d]

whose (a, b)-th entry has the form ∂2R
∂E(i−1)[a,b]∂W(i)[c,d]

=

I [b, c]
(
ÂT
(

∂R
∂E(i) ◦ σ′

i

))
[a, d]

– Backward to (l − 1)-th layer iteratively with

∂2R

∂E(l)∂W(i) [c, d]
= ÂT

(
∂2R

∂E(l−1)∂W(i) [c, d]
◦ σ′

l+1

)(
W(l−1)

)T
(3.77)

– Apply Equation (3.76).

Proof. We prove case by case.

• Case 1. When i = l, since the activation function σ is the ReLU function, it is trivial
that the subgradient of its second-order derivative is always 0, since the first-order
derivative is the indicator function. Thus, Hl,l = 0.

• Case 2. When i = l − 1, to get Equation (3.73), it is trivial to prove by taking
derivative on both sides of Equation (3.65). See the proof of Proposition 3.2 for the
proof of Equation (3.74).

• Case 3. When i < l − 1, we first take derivative on both sides of Equation (3.65) in
i-th hidden layer. Then we have

Hl,i [:, :, c, d] =

(
Â

∂E(i−1)

∂W(i) [c, d]

)T (
∂R

∂E(i)
◦ σ′

l

)
(3.78)

61

To compute ∂E(l−1)

∂W(i)[c,d]
, we first consider an arbitrary (a, b)-th element in ∂E(l−1)

∂W(i)[c,d]
, i.e.,

∂E(l−1)[a,b]

∂W(i)[c,d]
. Then we take the derivative on both sides of ∂E(l−1)[a,b]

∂W(i)[c,d]
, which gives us

∂E(l−1) [a, b]

∂W(i) [c, d]
= σ′

l−1 [a, b] ·
n∑

e=1

hi∑
f=1

Â [a, e]
∂E(l−2) [e, f]

∂W(i) [c, d]
W(l−1) [f, b]

=

(
σ′
l−1 ◦

(
Â

∂E(l−2)

∂W(i) [c, d]
W(l−1)

))
[a, b]

(3.79)

It is trivial to get Equation (3.75) by writing out the matrix form of Equation (3.79).

• Case 4. When i = l+1, to get Equation (3.76), it is trivial to prove by taking derivative
on both sides of Equation (3.65). Regarding the computation of ∂2R

∂E(l)[a,b]∂W(l+1)[c,d]
, by

Equation (3.66), we have

∂R

∂E(l) [a, b]
=

(
ÂT

(
∂R

∂E(l+1)
◦ σ′

(
ÂE(l)W(l+1)

))(
W(l+1)

)T)
[a, b] (3.80)

Then we take derivative on both sides and get

∂2R

∂E(l) [a, b] ∂W(l+1) [c, d]
=

n∑
e=1

hl+1∑
f=1

ÂT [a, e] ·
(

∂R

∂E(l+1)
σ′
l+1

)
[e, f] · ∂W

(l+1) [b, f]

∂W(l+1) [c, d]

= I [b, c]
n∑

e=1

ÂT [a, e] ·
(

∂R

∂E(l+1)
σ′
l+1

)
[e, d]

= I [b, c]

(
ÂT

(
∂R

∂E(l+1)
◦ σ′

l+1

))
[a, d]

(3.81)

• Case 5. When i > l + 1, we get Equation (3.77) by taking derivative on both sides of
Equation (3.66).

Putting everything (Cases 1 – 5) together, we complete the proof. QED.

Even with Proposition 3.2 and Theorem 3.2, it is still non-trivial to compute the influence
of node u due to (C1) the high-dimensional nature of the Hessian tensor and (C2) the high
computational cost of Equation (3.61) due to the inverse operation. Regarding the first
challenge (C1), for any node u, we observe that each element in the first-order derivative
∇W(l)R is the element-wise first-order derivative, i.e., ∇W(l)R [a, b] = ∂R

∂W(l)[a,b]
. Likewise, for

the Hessian tensor, we have Hl,i [a, b, c, d] =
∂2R

∂W(l)[a,b]∂Wi[c,d]
.19 Thus, the key idea to solving

19We use R to represent R(G,Ytrain,Θ) for notational simplicity.

62

the first challenge (C1) is to vectorize the first-order derivative into a column vector and
compute the element-wise second-order derivatives accordingly, which naturally flatten the
Hessian tensor into a Hessian matrix. More specifically, we first vectorize the first-order
derivatives of R with respect to W(l),∀l ∈ {1, . . . , L} into column vectors and stack them
vertically as follows,

fR =

vec (∇W(1)R) = vec

(
∂R

∂W(1)

)
...

vec (∇W(l)R) = vec
(

∂R
∂W(l)

)
 (3.82)

where vec(·) vectorizes a matrix to a column vector. Then the flattened Hessian matrix is a
matrix Hflat whose rows are of the form

Hflat [(i · c+ d) , :] =

(
∂fR

∂W(i) [c, d]

)T

= vec (Hl,i [:, :, c, d])
T (3.83)

Finally, we follow the strategy to compute the influence of node u: (1) compute∇W(l)r (u,yu,Θ)

for all l-th hidden layer; (2) vectorize ∇W(l)r (u,yu,Θ) and stack to column vector fu as
shown in Equation (3.82); and (3) compute the influence function I (u) = H−1

flatfu.
Regarding the second challenge (C2), the key idea is to apply Hessian-vector product

(Algorithm 3.6) [134, 166], which approximates I (u) = H−1
flatfu using the power method.

Mathematically, it treats H−1
flatfu as one vector and iteratively computes

H−1
flatfu = fu +

(
I− Ĥflat

) (
H−1

flatfu
)

(3.84)

where Ĥflat
(
H−1

flatfu
)

is viewed as a vector, and Ĥflat is the flattened Hessian matrix with
respect to a set of sampled nodes at the current iteration. The workflow of the Hessian-vector
product is presented in Algorithm 3.6. For any l-th hidden layer (step 2), we first compute
the first-order derivative ∇W(l)r (u,yu,Θ) with respect to W(l) (step 3). Then we vectorize
it to a column vector and stack it to fu that stores the first-order derivatives of all hidden
layers (step 4). After all first-order derivatives are computed, we apply the power method to
compute the Hessian-vector product. In each iteration, we first sample a batch of t training
nodes, which helps reduce both noise and running time, and then compute the empirical loss
over these nodes (steps 7 – 8). After that, we compute the second-order derivatives with
Theorem 3.2 and flatten it to a matrix with the strategy shown in Equation (3.83) (step 9).
We finish this iteration by computing Equation (3.84) (step 10). The power method (steps 7
– 10) iterates until the maximum number of iteration is reached to ensure the convergence.
Consequently, Algorithm 3.6 offers a computationally friendly way to approximate influence

63

Algorithm 3.6: Hessian-Vector Product
Input : an input graph G, training nodes Vtrain, ground-truth labels Ytrain, node u

with label yu, an L-layer GCN with parameters Θ, a node-wise loss
function r, sampling batch size t, #iterations m.

Output : the influence IΘ (u) of node u.
1 initialize fu = [] as an empty column vector;
2 for l = 1→ L do
3 compute ∇W(l)r (u,yu,Θ) by Equation (3.65);
4 vectorize ∇W(l)r (u,yu,Θ) and stack it to fu as Equation (3.82);

5 initialize
(
H−1

flatfu
)
0
← fu;

6 for iter = 1→ m do
7 uniformly sample t training nodes and get Vs;
8 compute empirical loss Rs ← 1

|Vs|
∑

i∈Vs
r (i,yi,Θ);

9 compute Ĥflat of Rs with Theorem 3.2 and Equation (3.83);

10 compute
(
H−1

flatfu
)
iter ← fu +

(
I− Ĥflat

) (
H−1

flatfu
)
iter−1

11 return
(
H−1

flatfu
)
m

;

functions without involving both tensor-level operations and the computationally expensive
matrix inversion.

Remark. We observe that both the first-order derivative (Proposition 3.2) and the second-
order derivative (Theorem 3.2) can be computed in the style of neighborhood aggregation.
Due to the well-known over-smoothness of GCN and the homophily nature of neighborhood
aggregation, the resulting influence functions by Algorithm 3.6 may follow the homophily
principle as well. For two nodes under homophily, due to similarity between their influences,
their corresponding LOO parameters and LOO errors could be similar as well, which in
turn could cause similar uncertainty scores by Definition 3.3. The potential homophily
phenomenon in jackknife uncertainty is consistent with the homophily assumption with
respect to uncertainty/confidence in existing works [159, 160, 173].

3.3.3 JuryGCN: Algorithm and Applications

In this part, we present JuryGCN to quantify node jackknife uncertainty (Algorithm 3.7)
followed by discussions on applications and generalizations of JuryGCN.
JuryGCN algorithm. With Algorithm 3.6, the LOO parameters of each node can be
efficiently computed by proper initialization on the perturbation coefficient (ϵ in Equa-
tion (3.61)). After that, the LOO predictions and LOO errors can be efficiently inferred
by simply switching the original parameters to the LOO parameters, resulting in efficient

64

jackknife uncertainty quantification.
Based on that, Algorithm 3.7 presents the general workflow of JuryGCN to quantify

the jackknife uncertainty of a node. In detail, with proper initialization (step 1), we loop
through each training node i to quantify their influences (step 2). For each training node i, it
estimates the LOO parameters by leaving out training node i (steps 3 – 6), outputs the LOO
predictions of nodes i and u (step 7), and computes the LOO error of each training node
i (step 8). After the LOO predictions of node u and the LOO errors of all training nodes
are obtained, we compute the lower bound and upper bound of the predictive confidence
interval (steps 9 – 10). Finally, the uncertainty of the node is computed as the width of the
predictive confidence interval (step 11).

Algorithm 3.7: JuryGCN: Jackknife Uncertainty Quantification
Input : an input graph G = {V ,A,X} with training nodes Vtrain, a node u, a GCN

with parameters Θ, a node-wise loss function r, a coverage parameter α.
Output : the uncertainty UΘ (u) of node u.

1 initialize ϵ← − 1
|Vtrain| ;

2 for i ∈ Vtrain do
3 compute node-wise loss ri,Θ ← r (i,yi,Θ);
4 compute node-wise derivative ∇Θri,Θ;
5 compute IΘ (i)← H−1

Θ ∇Θri,Θ using Algorithm 3.6;
6 estimate LOO model parameters Θϵ,i ← Θ+ ϵIΘ (i);
7 output LOO predictions GCN (i,Θϵ,i) and GCN (u,Θϵ,i);
8 compute LOO error erri ← ∥yi −GCN (i,Θϵ,i) ∥2;
9 compute lower bound C−

Θ (u)← Qα ({∥GCN (u,Θϵ,i) ∥2 − erri|i ∈ Vtrain \ {u}});
10 compute upper bound C+

Θ (u)← Q1−α ({∥GCN (u,Θϵ,i) ∥2 + erri|i ∈ Vtrain \ {u}});
11 return UΘ (u)← C+

Θ (u)− C−
Θ (u);

JuryGCN applications. After quantifying the jackknife uncertainty of each node, we
utilize the node uncertainty in (1) active learning on node classification and (2) semi-supervised
node classification. The details of uncertainty-aware active learning and node classification
are as follows.
A – Application #1: Active learning on node classification. In general, active learning
sequentially selects a subset of data points to query according to an acquisition function,
which is designed to identify the most informative samples, and hence improves the model
performance from the obtained labels. In active learning on node classification, we are given
(1) an unlabelled training set of nodes (i.e., Vtrain), (2) a node classifier (e.g., GCN), (3)
step size b, and (4) the query budget K. At each query step, according to the acquisition
function, we select b nodes from the remaining unlabelled nodes in the training set Vtrain to

65

query and then re-train the classifier. The query step is repeated until the query budget K is
exhausted. Intuitively, a node with high predictive uncertainty is a better query candidate
compared to the one with certain prediction. From Algorithm 3.7, we can obtain the jackknife
uncertainty of each node in Vtrain. Hence, we define the acquisition function as follows,
Acq (Vtrain) = argmaxu∈Vtrain

UΘ (u), where UΘ (u) is the jackknife uncertainty of node u from
the remaining unlabelled nodes in Vtrain and is computed in Equation (3.64). Therefore, at
each step, we select b unlabelled nodes with the top-b jackknife uncertainty.
B – Application #2: Semi-supervised node classification. In training a GCN-based node
classification model, existing approaches treat each training node equally and compute
the mean of loss from all training nodes, i.e., R = 1

|Vtrain|
∑

i∈Vtrain
r (i,yi,Θ) where the

node-specific loss (i.e., r(·)) is factored by an identical weight (i.e., 1
|Vtrain|). Intuitively,

training nodes have various levels of uncertainty during training, the easily predicted samples
(i.e., small uncertainty) may comprise the majority of the total loss and hence dominate the
gradient, which makes the training inefficient. To address this problem, based on the jackknife
uncertainty estimation, we introduce a dynamic scale factor, β, to adjust the importance for
nodes with different levels of uncertainty. Specifically, given the cross-entropy loss that is
utilized in semi-supervised node classification, we define the uncertainty-aware node-specific
loss as ru = −βτ

u log
(
p
(i)
u

)
, where p(i)u is the predictive probability of the i-th class from

GCN, and τ is a hyperparameter. The scale factor of node u is computed by normalizing the
uncertainty over all training nodes, i.e., βu = |UΘ(u)|√∑

i∈Vtrain
|UΘ(i)|2

. By introducing βu, the loss

of node with larger uncertainty (i.e., UΘ) would be upweighted in the total loss, and hence
the training is guided toward nodes with high uncertainty. Therefore, when training a node
classification model, we leverage Algorithm 3.7 to estimate the jackknife uncertainty of the
training nodes and then apply the obtained uncertainty results to update the loss every few
number of epochs.

In addition to Applications #1 and #2, JuryGCN is generalizable to other learning tasks
and graph mining models. Here, we only present brief descriptions of each generalization
direction, which could be a future direction of JuryGCN.
C – Applications beyond node classification. JuryGCN can be applied to a variety of learning
tasks. For example, it can estimate the confidence interval of the predictive dependent
variable in a regression task by replacing the cross-entropy loss for node classification with
mean squared error (MSE) [166]. Besides active learning, reinforcement learning (RL) is
extensively explored to model the interaction between agent and environment. JuryGCN is
applicable to RL in the following two aspects. First, in the early stage of training an RL
model, the uncertainty quantification results can be utilized to guide the exploration. Second,

66

Table 3.7: Statistics of datasets to evaluate JuryGCN.

Dataset # Nodes # Edges # Features # Classes
Cora 2, 708 5, 429 1, 433 7

Citeseer 3, 327 4, 732 3, 703 6
Pubmed 19, 717 44, 338 500 3
Reddit 232, 965 114, 615, 892 602 41

through effectively quantifying the uncertainty of the reward after taking certain actions,
JuryGCN can also benefit the exploitation. Specifically, as a classic topic of RL, multi-
armed bandit can also be a potential application for JuryGCN where uncertainty is highly
correlated with decision making.
D – Beyond JuryGCN: Generalizations to other GNN models. JuryGCN is able to be
generalized to other graph mining models with the help of automatic differentiation in many
existing packages, e.g., PyTorch, TensorFlow. In this way, only model parameters and the loss
function are required in computing the first-order and second-order derivatives for influence
function computation (Algorithm 3.6), which is further used in Algorithm 3.7 for jackknife
uncertainty quantification.

3.3.4 Experimental Evaluation

In this part, we conduct experiments to answer the following research questions:

• RQ1. How effective is JuryGCN in improving GCN predictions?

• RQ2. How efficient is JuryGCN in terms of time and space?

• RQ3. How sensitive is JuryGCN to hyperparameters?

Experimental settings. Here, we provide the detailed experimental settings to evaluate
JuryGCN.
A – Hardware and software specifications. All datasets are publicly available. All codes
are programmed in Python 3.6.9 and PyTorch 1.4.0. All experiments are performed on
a Linux server with 2 Intel Xeon Gold 6240R CPUs and 4 Nvidia Tesla V100 SXM2
GPUs with 32 GB memory. The source code of JuryGCN can be accessed at https:

//github.com/bluewhalezhou/jurygcn_uq.
B – Dataset descriptions. We adopt four widely used benchmark datasets, including Cora [174],
Citeseer [174], Pubmed [175], and Reddit [36]. Table 3.7 summarizes the statistics of the
datasets.

67

https://github.com/bluewhalezhou/jurygcn_uq
https://github.com/bluewhalezhou/jurygcn_uq

C – Baseline methods. We present the detailed descriptions of all baseline methods that are
used in the experiments. For the application of active learning on node classification, we
have the following methods.

• AGE [176] measures the informativeness of each node by considering the following
perspectives, including (1) the entropy of the prediction results, (2) the centrality score,
and (3) the distance between the corresponding representation and its nearest cluster
center. At each step of query, nodes with the highest scores are selected.

• ANRMAB [177] leverages the same selection criterion as in AGE. Additionally, AN-
RMAB proposes a multi-armed bandit framework to dynamically adjust weights for
the three perspectives. ANRMAB utilizes the performance score of the previous query
steps as the rewards to learn the optimal combination of weights during the query
process.

• Coreset [178] is originally proposed for Convolutional Neural networks and performs
k-means clustering on the vector representations from the last hidden layer. We follow
Hu et al. [179] and apply Coreset on the node representations obtained by GCN. At
each query step, we select the node closet to the cluster centroid to label.

• Centrality selects the nodes with the highest scores of betweenness centrality at each
query step.

• Degree queries the node with the highest degree.

• Random annotates node randomly at each query step.

• SOPT-GCN [180] utilizes Σ-optimal (SOPT) acquisition function as the active learner [181],
which requires the graph Laplacian and the indices of labeled nodes. We follow the
same setting as in [180] to conduct the experiments.

For semi-supervised node classification, we compare JuryGCN with the following approaches.

• S-GNN [159] is an uncertainty-aware estimation framework, which leverages a graph-
based kernel Dirichlet distribution to estimate different types of uncertainty associated
with the prediction results. We utilize the obtained node-level representations to
perform classification in the experiments.

• GPN [160] derives three axioms for characterizing the predictive uncertainty and
performs Bayesian posterior updates over the predictions based on density estimation
and diffusion. Similarly, we utilize the node representations for the classification task.

68

• GCN [7] learns node-level representations by stacking multiple layers of spectral graph
convolution.

• GAT [8] computes the representation of each node by introducing the learnable attention
weights from its neighbors.

D – Evaluation metrics. We use the micro F1 score (Micro-F1) to evaluate the effectiveness.
In terms of efficiency, we compare the running time (in seconds) and the memory usage (in
MB).
E – Implementation details. In the experiments, we conduct empirical evaluations in two
applications, including (1) active learning on node classification and (2) semi-supervised node
classification, as described in Section 3.3.3.

• In active learning on node classification, we evaluate all methods on a randomly
constructed test set of 1, 000 nodes for Cora, Citeseer, and Pubmed, and 139, 779 nodes
for Reddit. The validation sets for the first three citation networks contains 500 nodes,
and 23, 296 is the size of validation set for Reddit. The remaining nodes comprise the
training set (i.e., Vtrain) where the nodes for querying are selected. For Cora, Citeseer,
Pubmed, and Reddit, (1) we have 10, 10, 5, and 20 randomly selected labels, respectively,
to initiate the computation of jackknife uncertainty using Algorithm 3.7; (2) the query
budgets are set as 100, 100, 50, and 250; and (3) the query step sizes are 20, 20, 10,
and 50.

• In semi-supervised node classification, we randomly selected 100, 100, 50, and 200

nodes from Cora, Citeseer, Pubmed, and Reddit, respectively, as the training nodes. The
sizes of test sets are the same as those in active learning on node classification. During
training, we run Algorithm 3.7 to perform uncertainty estimation over the training
nodes every 10 epochs and update the scale factor α accordingly. In addition, we also
evaluate the model performance when the number of training nodes is significantly
small.

In both applications, we adopt a two-layer GCN with 16 hidden layer dimension. For training,
we use the Adam optimizer [182] with learning rate 0.01 and train the GCN classifier for
100 epochs. The coverage parameter (α) in Algorithm 3.7 is 0.025, and the hyperparameter
τ is set as 2 in semi-supervised node classification. For all other baseline methods, we use
the original settings. We report the average results after 20 runs of each method on two
applications.
Effectiveness results (RQ1). We evaluate the effectiveness of JuryGCN in the tasks of
active learning on node classification and semi-supervised node classification.

69

Table 3.8: Performance comparison results on active learning on node classification with
respect to Micro-F1. Higher is better.

Dataset Query size JuryGCN ANRMAB AGE Coreset Centrality Degree Random SOPT-GCN

Cora

20 51.1± 1.2 46.8± 0.5 49.4± 1.0 43.8± 0.8 41.9± 0.6 38.5± 0.7 40.5± 1.6 48.8± 0.7
40 64.7± 0.8 61.2± 0.8 58.2± 0.7 55.4± 0.5 57.3± 0.7 48.4± 0.3 56.8± 1.3 62.6± 0.8
60 69.9± 0.9 67.8± 0.7 65.7± 0.8 62.2± 0.6 63.1± 0.5 58.8± 0.6 64.5± 1.5 67.9± 0.6
80 74.2± 0.7 73.3± 0.6 72.5± 0.4 70.2± 0.5 69.1± 0.4 67.6± 0.4 69.7± 1.6 73.6± 0.5
100 75.5± 0.6 74.9± 0.4 74.2± 0.3 73.8± 0.4 74.1± 0.3 73.0± 0.2 74.2± 1.2 75.5± 0.7

Citeseer

20 38.4± 1.5 35.9± 1.0 33.1± 0.9 30.2± 1.2 35.6± 1.1 31.5± 0.9 30.3± 2.3 36.1± 0.7
40 51.1± 0.9 46.7± 1.3 49.5± 0.6 42.1± 0.8 49.8± 1.3 39.8± 0.7 41.1± 1.8 49.2± 0.5
60 58.2± 0.8 55.2± 0.9 56.1± 0.5 52.1± 0.9 57.1± 0.7 50.1± 1.1 49.8± 1.3 56.4± 0.5
80 63.8± 1.1 63.2± 0.7 61.5± 0.8 59.9± 0.6 63.3± 1.0 58.8± 0.6 58.1± 1.1 63.2± 0.8
100 64.3± 1.2 64.1± 0.5 63.2± 0.7 62.8± 0.4 63.9± 0.6 61.8± 0.5 62.9± 0.8 63.8± 0.6

Pubmed

10 61.8± 0.9 60.5± 1.3 58.9± 1.1 53.1± 0.7 55.8± 1.2 56.4± 1.5 52.4± 1.7 59.5± 0.6
20 70.2± 0.6 66.8± 1.1 68.7± 0.7 62.8± 0.5 67.2± 1.4 64.3± 1.0 60.5± 1.4 67.9± 0.9
30 73.9± 0.3 71.6± 0.8 72.8± 1.0 68.9± 0.3 73.5± 0.9 70.1± 0.7 68.9± 1.1 72.3± 0.8
40 74.6± 0.4 73.2± 0.6 74.7± 0.8 72.8± 0.8 74.1± 0.7 72.0± 0.8 71.8± 1.2 73.8± 0.7
50 75.4± 0.5 74.7± 0.4 75.1± 0.5 73.5± 0.6 74.2± 0.6 72.9± 0.5 73.1± 1.0 75.2± 0.5

Reddit

50 69.7± 1.7 67.8± 0.9 64.2± 1.1 62.1± 0.6 65.5± 1.2 62.5± 1.4 63.7± 2.4 68.1± 1.2
100 82.9± 1.5 81.3± 1.0 79.5± 0.8 81.2± 1.0 78.2± 0.9 81.1± 1.2 80.5± 1.6 80.4± 1.3
150 86.0± 1.4 84.3± 0.7 83.2± 0.4 84.8± 0.9 84.1± 1.1 82.5± 1.2 81.5± 1.4 85.0± 1.5
200 88.1± 0.9 86.1± 0.8 85.8± 0.5 85.5± 0.8 87.5± 0.8 85.4± 0.7 83.1± 1.8 87.2± 0.9
250 89.2± 0.8 87.6± 0.7 87.1± 0.4 86.6± 1.1 88.7± 0.6 86.1± 1.0 87.3± 1.5 87.8± 1.1

A – Active learning on node classification. Table 3.8 presents the results of active learning
at different query steps. We highlight the best performing approach in bold and underline
the best competing one. We have the following observations. (1) At the final query
step (i.e., the 5-th line for each dataset), JuryGCN selects more valuable training nodes
than other baseline methods, resulting in higher Micro-F1. Though AGE outperforms
JuryGCN on Pubmed at 40 queries, the superiority is very marginal (i.e., 0.1%). (2) In
general, JuryGCN achieves a much better performance when the query size is small. For
example, on Cora, JuryGCN outperforms SOPT-GCN by 2.3% at 20 queries while the gain
becomes 0.6% at 80 queries. One possible explanation is that newly-selected query nodes
may contain less fruitful information about new classes/features for a GCN classifier that is
already trained with a certain number of labels. (3) As the query size increases, the gained
performance of each method is diminishing, which is consistent with the second observation.
For instance, on Reddit, ANRMAB improves 13.5% when query size becomes 100 (from 50),
while the gain is only 1.5% at 250 queries.
B – Semi-supervised node classification. We classify nodes by training with various numbers
of training nodes. Figure 3.15 summarizes the results on four datasets. We can see that, in
general, under the conventional setting of semi-supervised node classification (i.e., the right
most bar where the number of training nodes is similar with [7, 8]), JuryGCN improves
the performance of GCN to certain extent with respect to Micro-F1 (dark blue vs. yellow).
Nonetheless, GCN can achieve a slightly better performance than JuryGCN on Cora. In

70

(a) Cora. (b) Citeseer. (c) Pubmed. (d) Reddit.

Figure 3.15: Node classification results under various numbers of labels. Higher is better.
Best viewed in color.

the mean time, as the number of training nodes becomes smaller, we can observe a consistent
superiority of JuryGCN over other methods. For example, on Citeseer, when 20 training
labels are provided, JuryGCN outperforms the best competing method (i.e., GPN) by
2.3% with respect to Micro-F1, which further demonstrate the effectiveness of JuryGCN in
quantifying uncertainty when the training labels are sparse.

To summarize, the uncertainty obtained by JuryGCN is mostly valuable when either the
total query budget (for active learning) or the total available labels (for semi-supervised node
classification) is small. This is of high importance especially for high-stake applications (e.g.,
medical image segmentation) where the cost of obtaining high-quality labels is high.
Efficiency results (RQ2). We evaluate the efficiency of JuryGCN on Reddit in terms
of running time and memory usage (Figure 3.16). Regarding running time, we compare
the influence function-based estimation with re-training when leaving out one sample at a
time. In Figure 3.16a, as the number of training nodes increases, the total running time of
re-training becomes significantly larger than that of JuryGCN. For example, JuryGCN can
achieve over 130× speed-up over re-training with 10, 000 training labels. In terms of memory
usage in Figure 3.16b, compared to GPN and S-GNN, JuryGCN (i.e., blue diamond at the
upper-left corner) reaches the best balance between Micro-F1 and memory usage, with the
best effectiveness and lowest memory usage.
Parameter and sensitivity analysis (RQ3). We investigate the sensitivity of Ju-

ryGCN with respect to (1) the coverage parameter α in active learning at the third query
step and (2) the hyperparameter τ in semi-supervised node classification, where the number
of training labels corresponds to the third value on x-axis in Figure 3.15. Figure 3.17 presents
the results of sensitivity analysis. For active learning on node classification (i.e., Figure 3.17a),
the Micro-F1 results represent the performance at the third query step (i.e., the middle line
of each dataset in Table 3.8). And for semi-supervised classification, the number of labels
corresponds to the third value on x-axis in Figure 3.15. Regarding the sensitivity of α, results

71

(a) Running time vs. # labels. (b) Micro-F1 vs. memory usage.

Figure 3.16: Efficiency results with respect to time and memory usage.

(a) Micro-F1 vs. 2α. (b) Micro-F1 vs. τ .

Figure 3.17: Parameter study on the coverage parameter α and the hyperparameter τ .

in Figure 3.17a show that Micro-F1 slightly decreases as α increases. It might be due to the
larger target coverage (1−2α)20 caused by the smaller α, resulting in wider confidence interval.
Hence, different levels of uncertainty can be accurately captured for selecting valuable query
nodes. Regarding the sensitivity of τ , we can observe from Figure 3.17b that JuryGCN is
comparatively robust to τ from 0 (i.e., cross-entropy loss) to 3. Meanwhile, by adjusting the
importance of training node with the scale factor, Micro-F1 of JuryGCN improves, which is
consistent with our findings in the effectiveness results.

20The theoretical coverage of jackknife+ is 1− 2α.

72

CHAPTER 4: DEBIASING GRAPH MINING

Debiasing graph mining is the key component to enable fair graph mining. It addresses the
tension between the utility and fairness to further learn graph mining results that are effective
and do not favor one group/individual toward another. In this chapter, we present our works
in debiasing the mining results based on three fairness definitions. Specifically, we introduce
how to ensure (1) individual fairness on graph mining with a principled study of the measure,
the debiasing algorithms, and the cost of fairness, (2) degree fairness on graph convolutional
network via understanding the mathematical root cause of degree unfairness, and (3) group
fairness with respect to multiple sensitive attribute from the information-theoretic perspective.

4.1 INDIVIDUAL FAIRNESS ON GRAPH MINING

In an increasingly connected world, graph mining is playing a more and more important role
in many application domains, such as information retrieval [129], community detection [183],
recommender systems [184], and security [185]. Decades of research in graph mining have
produced a wealth of powerful computational models and algorithms. Despite the remarkable
progress, several fundamental questions in relation to algorithmic fairness have remained
largely unanswered, e.g., are the graph mining results fair? If not, how to best mitigate the
bias? How would fairness impact the graph mining performance (e.g., ranking precision,
classification accuracy)?

The notion of algorithmic fairness has attracted much attention. To date, researchers have
developed a large collection of fair machine learning measures and algorithms, typically for
spatial or text data, including statistical measures (e.g., disparate impact [40], statistical
parity, equalized odds [186]) and causal reasoning-based measures (e.g., counterfactual
fairness [187]). Unlike these settings, a major challenge of fair graph mining lies in the
non-IID nature of graph data. Since the data samples (i.e., nodes) in a graph are inter-
connected, the fundamental IID assumption behind classical fair machine learning methods
might be violated. To address this issue, several methods have emerged in recent years, which
aim to generalize the traditional fairness notation and bias mitigation algorithms to graph
data. For example, fair spectral clustering [46] has been studied to ensure that each cluster
contains approximately the same number of elements from each demographic group [188].
Fairness in graph embedding by fulfilling statistical parity has also been explored [47, 48].
Furthermore, there has been research works on fairness in recommendations to enforce
statistical parity [189] or other parity-based fairness that measures the differences between

73

model behaviors for advantaged users and disadvantaged users [190]. It is worth pointing out
that the vast majority of the existing work on fair graph mining [46, 47, 48, 188, 189, 190]
has almost exclusively been focusing on group-based fairness.

However, individual fairness [41] has not been well studied in the context of graph mining.
The notation of individual fairness is rooted in the Merriam-Webster’s dictionary definition
of fairness21. In the context of algorithmic fairness, this often translates into a generic design
principle that any two individuals who are similar should receive similar algorithmic outcomes.
Compared with the group-based notation, the individual-based approach offers a fairness
measure at a much finer granularity (i.e., at the node level). A thorough study of individual
fairness in the context of graph mining will complement and expand the current landscape of
fair graph mining, which has mostly focused on group-based fairness. Broadly speaking [191],
since bias and discrimination could happen in different forms due to the various settings of
tasks with machine automation, there have been debates on which fairness notion should
be applied in a given context. The fine granularity of individual fairness might provide a
natural remedy for such debates.

This paper presents the first principled study of Individual Fairness on gRaph Mining,
which is referred to as the InFoRM problem. We focus on three fundamental questions:

• Q1. (InFoRM Measures) For the traditional machine learning setting, a major concern
of individual fairness lies in its requirement of an appropriate similarity measure, which
often requires solving a non-trivial problem that may need expert knowledge to address
legal, ethical, or social concerns [41]. Given the rich similarity measures for the graph
data [192, 193, 194], we seek to answer the following question: given a graph mining
model and an arbitrary similarity measure, how can we tell if the mining results are
fair? If the results are not fair, how can we quantitatively measure the overall bias?

• Q2. (InFoRM Algorithms) Generally speaking, a graph mining method consists of
three components, including the input graph, the mining model, and the mining results.
Each of these three components could introduce and/or amplify the aforementioned
bias. How can we develop generic, effective, and efficient algorithms to mitigate such
bias by adjusting the input graph, the mining model, or the mining results, respectively?

• Q3. (InFoRM Cost) By mitigating the bias, it is likely to alter the original graph
mining results without the fairness consideration, and thus might degrade the mining
performance (e.g., ranking, clustering, embedding, etc.). How can we quantitatively

21In Merriam-Webster, it is defined as ‘lack of favoritism toward one side or another’.

74

characterize such cost, i.e., to what extent the debiased graph mining results will deviate
from the ones without the fairness constraint?

For Q1, we present a generic definition of individual fairness on graph mining based on the
Lipschitz property. The fairness measure naturally enables us to quantify the overall bias of
graph mining results by the trace of a quadratic form of the mining results. For Q2, building
upon the individual fairness measure from Q1, we design three mutually complementary
algorithmic frameworks to mitigate the individual bias measure: debiasing the input graph,
debiasing the mining model, and debiasing the mining results. For each algorithmic framework,
we formulate the framework as an optimization problem, develop effective and efficient solvers,
and demonstrate that the framework is applicable to multiple graph mining tasks. In order
to debias the input graph, we formulate it as a bi-level optimization problem, where the extra
level of optimization can be effectively solved by its KKT conditions [195]. To debias the
mining model, we show that the extra time cost incurred due to the fairness consideration is
only linear with respect to the number of similarity links. To debias the mining results, we
develop a closed-form solution that is applicable to any graph mining task, whose results are
in the form of a matrix. For Q3, we develop an upper bound on the difference between the
debiased mining results and the original mining results. Our analysis reveals that the cost of
ensuring individual fairness is closely-related to the input graph structure (e.g., the rank, the
spectral norm, etc.).

To our best knowledge, we are the first to study individual fairness on graph mining. In
addition to the problem definition, the main contributions of this work can be summarized
as follows.

• Measure. We provide a novel definition of individual fairness on graph mining, which is
capable of (1) identifying if the mining results are fair with respect to any given graph
similarity measure and (2) measuring the individual bias as the trace of a quadratic
form in the mining results.

• Algorithms. We develop generic, effective, and efficient algorithms to mitigate individual
bias through the input graph graph, the mining model, and mining results.

• Analysis. We provide analysis to (1) understand the quality, complexities, and applica-
bility of the developed debiasing algorithms and (2) reveal the key factors that impact
the cost for accommodating individual fairness on graph mining.

• Evaluations. We perform extensive empirical evaluations on real-world datasets, which
demonstrate that our developed methods are effective and efficient in reducing bias
while preserving the performance of vanilla graph mining models.

75

Table 4.1: Table of symbols in InFoRM.

Symbol Definition
A a matrix
AT transpose of matrix A
A−1 inverse of matrix A
A+ pseudo-inverse of matrix A
LA Laplacian matrix of A
u a vector
l(·) the loss function for a mining task
S node-node similarity matrix
Y graph mining results
Ȳ vanilla graph mining results
Y∗ debiased graph mining results
θ a set of parameters

n,m1 number of nodes and edges
m2 number of similarity links
r dimension of mining results Y[i, :] for node i
c damping factor for PageRank
k number of clusters
d dimension of node embedding

4.1.1 Problem Definition

In this part, we present the key symbols used throughout the paper (Table 4.1). Then we
review the general procedure of several classic graph mining algorithms from the optimization
viewpoint. Finally, we formally define three problems of individual fairness for graph mining.

In this work, we use bold upper-case letters for matrices (e.g. A), bold lower-case letters for
vectors (e.g. u), and italic lower-case letters for scalars (e.g. c). Regarding matrix indexing
conventions, we use rules similar to Numpy in Python. We use A [i, j] to represent the entry
of matrix A at the i-th row and the j-th column, A [i, :] to represent the i-th row of matrix
A and A [:, j] to represent the j-th column of matrix A. We use superscript T to represent
the transpose of a matrix (i.e. AT is the transpose of matrix A) and the superscript plus
sign to represent the pseudo-inverse of matrix (i.e. A+ is the pseudo-inverse of matrix A).
Graph mining: An optimization pointview. Given a graph with adjacency matrix A, a
graph mining algorithm learns the mining results by optimizing a loss function l(A,Y, θ),
where Y = argminY l(A,Y, θ) is the model output (i.e., the mining results), and θ is the
set of all parameters that corresponds to a specific mining task. We use three classic graph
mining algorithms, including ranking, clustering, and embedding, summarized in Table 4.2.

The first classic algorithm we apply is PageRank [1]. PageRank is a widely used random

76

Table 4.2: Examples of graph mining algorithms studied in InFoRM.

Mining Task Loss Function l Mining Results Y Parameters θ

Ranking (PageRank [1]) min
r

crT (I−A) r+ (1− c) ∥r− e∥22 PageRank vector r
damping factor c

teleportation vector e

Clustering (spectral clustering [3]) min
U

Tr
(
UTLU

)
s.t. UTU = I matrix U number of clusters k

Embedding (LINE (1st) [5]) max
X

∑n
i=1

∑n
j=1 A [i, j]

(
log g

(
X [j, :]X [i, :]T

)
embedding matrix X

embedding dimension d

+bEj′∼Pn

[
log g

(
−X [j′, :]X [i, :]T

)])
number of negative samples b

walk-based ranking algorithm. It outputs the ranking vector r by minimizing a smoothing
term (rT (I−A)r) and a query-specific term (∥r−e∥22), with c being a regularization parameter
to balance the two terms.22 The second algorithm is spectral clustering [3], which finds the
soft cluster membership matrix U of nodes in a graph by analyzing the spectrum of its graph
Laplacian. It has been shown that spectral clustering is equivalent to finding the eigenvectors
that are associated with the k smallest eigenvalues, where k is the number of clusters. The
final algorithm we use is LINE [5]. Given a graph with n nodes, LINE learns the n × d
embedding matrix U, where each node is mapped into a d-dimensional vector that embeds
its structural property.
Individual fairness for graph mining. We aim to answer three questions regarding the
individual fairness for graph mining (InFoRM). Based on that, we formally define these
three problems and then present our solutions in the subsequent sections.

For Q1 (InFoRM Measures), given a graph mining model and an arbitrary similarity
measure, we want to (1) determine if the mining results are fair and, if not, (2) quantitatively
measure the overall bias. Formally, we define the problem of InFoRM Measures as follows.

Problem 4.1. InFoRM measures.

Input: (1) a non-negative symmetric node-node similarity matrix S, (2) a graph mining
algorithm Y = argminY l (A,Y, θ) from Table 4.2, and (3) a fairness tolerance parameter ϵ.
Output: (1) a binary decision regarding whether or not the mining results are fair and (2) a
bias measure Bias (Y,S) which measures the overall individual bias of the mining results Y

with respect to the similarity matrix S.
For Q2 (InFoRM Algorithms), we aim to develop generic, effective, and efficient algorithms

to mitigate the bias of the mining results Bias(Y,S), by adjusting the input graph, the
mining model, or the mining results. Formally, we define the problem of InFoRM Algorithms
as follows.

Problem 4.2. InFoRM algorithms.
220 < c < 1 is often called the damping factor in PageRank and its variants.

77

Input: (1) a non-negative symmetric node-node similarity matrix S, (2) a graph mining
algorithm Y = argminY l (A,Y, θ) from Table 4.2, and (3) a bias measure Bias (Y,S) from
Problem 4.1.
Output: a revised model output Y∗ which minimizes (1) the loss function l (A,Y, θ) and
(2) the individual bias Bias (Y,S).

For Q3 (InFoRM Cost), we want to quantitatively characterize to what extent the revised
graph mining results (Y∗) from Problem 4.2 will deviate from the graph mining results (Ȳ)
without the fairness constraint. For clarity, we refer to (1) the original results (Ȳ) without
the fairness constraint as vanilla mining results, and (2) the revised results (Y∗) as debiased
mining results. Formally, we seek to develop an upper bound of such cost, which is defined
as follows

Problem 4.3. InFoRM cost.

Input: (1) the vanilla mining results Ȳ without consideration of individual fairness, i.e.,
Ȳ = argminY l (A,Y, θ) from Table 4.2 and (2) the debiased mining results Y∗ from
Problem 4.2.
Output: an upper bound of ∥Y∗ − Ȳ∥F .

4.1.2 Problem 4.1: InFoRM Measures

In this part, we address Problem 4.1 and aim to measure the individual fairness and bias
for graph mining. That is, given the graph mining results Y and a node similarity measure
S, we want to determine if the mining results are fair, and if not, we want to quantitatively
measure the overall bias.

We follow the generic design principle underlying individual fairness that any two individuals
who are similar should receive similar algorithmic outcome [41]. In our setting, this implies
that, if two nodes (i and j) are similar (i.e., S [i, j] is high), their mining results (Y [i, :] and
Y [j, :]) should be similar as well. We start with the following criterion: the mining results Y

are fair with respect to to the node similarity measure S if the following condition holds.

∥Y [i, :]−Y [j, :] ∥2F ≤
ϵ

S [i, j]
∀i, j = 1, ..., n (4.1)

where ϵ > 0 is a constant for tolerance.
According to Eq (4.1), the difference between the mining results of a pair of nodes i and j

is upper bounded by a scalar ϵ
S[i,j]

. The upper bound itself is dependent on the similarity
between them S [i, j]. That is, the more similar the node i and the node j, the smaller the

78

upper-bound, and therefore the smaller the difference between Y [i, :] and Y [j, :] is likely to
be (i.e., the more similar the mining results between them). An illustrative example is shown
in Figure 4.1. Therefore, Eq (4.1) naturally reflects the aforementioned design principle of
individual fairness.

Node i

Node j

…min
𝐘

𝑙(𝐀, 𝐘, 𝜃)
mining model

Mining Results: Y
Input Graph: A Similarity Links: S

Y[i, :]

Y[j, :]

…
…

Node i

Node j

𝐘 𝑖, ∶ − 𝐘[𝑗, ∶] 1
2 ≤

𝜀
𝐒[𝑖, 𝑗]

Figure 4.1: An illustrative example of individual fairness for graph mining. S is a node-node
similarity matrix. Individual fairness requires that the difference between the mining results
be small for a pair of similar nodes i and j.

The criteria in Eq (4.1) requires the inequality constraint to be held for every pair of
nodes i and j as long as their similarity S [i, j] is non-zero.23 Such a constraint might be
too restrictive to be fulfilled. Therefore, we further seek for a relaxed criterion to tell if the
mining results are fair. Based on Equation (4.1), we have

n∑
i=1

n∑
j=1

∥Y [i, :]−Y [j, :] ∥2FS [i, j] = 2Tr
(
YTLSY

)
≤ mϵ = δ (4.2)

where LS is the Laplacian matrix of similarity S, m is the number of non-zero elements in S,
and Tr

(
YTLSY

)
measures the difference of the mining results between all pairs of nodes.

Based on Equation (4.2), we formally define the following fairness definition and bias measure
to (1) determine if the mining results are fair and (2) measure the overall bias.

Definition 4.1. (Individual fairness and bias). Given a graph mining results Y of size n× r,
an n× n non-negative, a symmetric node similarity matrix S, and a constant δ for fairness
tolerance, Y is individually fair with respect to the similarity measure S if it satisfies

Tr
(
YTLSY

)
≤ δ/2 (4.3)

23If S [i, j] = 0, the right hand side of Equation (4.1) will be infinity, which simply means that it becomes
a dummy constraint for nodes i and j.

79

where LS is the Laplacian matrix of similarity matrix S. Bias (Y,S) = Tr
(
YTLSY

)
is the

overall bias regarding the individual fairness.

For traditional fair machine learning on spatial data or text data, the notation of individual
fairness often has a root in the Lipschitz constant [41]. Here, we show that Equation (4.1)
can be interpreted from the perspective of the Lipschitz constant.

Definition 4.2. ((D1, D2)-Lipschitz property [41]). Given a function f , denote f (x) as the
outcome of instance x. We say function f satisfies (D1, D2)-Lipschitz property if

D1 (f (x) , f (y)) ≤ LD2 (x, y) ∀ (x, y) , (4.4)

where L is the Lipschitz constant, D1 (·, ·) and D2 (·, ·) are two functions used to measure
the dissimilarty of outcomes and instances, respectively.

Let f (i) = Y [i, :] and f (j) = Y [j, :], and define D1 (f (i) , f (j)) = ∥f (i) − f (j) ∥2 and
D2 (i, j) =

1
S[i,j]

. It can be shown that the individual fairness definition in Equation (4.1)
naturally satisfies (D1, D2)-Lipschitz property with ϵ being the Lipschitz constant.

4.1.3 Problem 4.2: InFoRM Algorithms

Generally speaking, a graph mining method consists of three major components, including
(1) the input graph, (2) the mining model, and (3) the mining results. Each of these three
components can introduce and/or amplify the introduced bias measure. In this part, we
present three complementary solutions to mitigate such bias (i.e., Bias (Y,S)) from the
perspective of each component, namely (1) debiasing the input graph, (2) debiasing the
mining model, and (3) debiasing the mining results. For each of them, we formulate the bias
mitigation problem (i.e., Problem 4.2) as an optimization problem, develop an effective and
efficient algorithm to solve the optimization problem, and instantiate it with the three graph
mining tasks in Table 4.2. Finally, we compare the three developed solutions.
Debiasing the input graph. Given a graph with adjacency matrix A, if the graph itself is
contaminated with bias, it is likely that the bias will be transmitted to, or even amplified in,
the mining results Y if such a graph A is used to train a graph mining model l (A,Y, θ).
The intuition and rationality of debiasing the input graph is as follows. If we have the access
to modify the graph and have knowledge about the mining model itself, we aim to learn
a new topology of the graph Ã so that the bias of mining results based on the modified
graph Ã is minimized. We also want to make sure that the modified graph Ã preserves as

80

Table 4.3: Algorithm 4.1 instantiations.

Mining Task Mining Results Y Partial Derivatives H Remarks

PageRank Y = r = (1− c)Qe H = 2cQTLSrr
T Q =

(
I− cÃ

)−1

Spectral clustering Y = U = eigenvectors with H = 2
∑k

i=1

(
diag

(
MT

i LSuiu
T
i

)
1n×n

λi = i-th eigenvalue of LÃ

smallest eigenvalues −MT
i LSuiu

T
i

) ui = eigenvector of LÃ corresponds to λi
Mi = (λiI− LÃ)

+

LINE (1st) YYT = Z (see Equation (4.15)) H = 2f
(
Ã+ ÃT

)
◦ LS

f () calculates Hadamard inverse

−2diag (BLS)1n×n
◦ calculates Hadamard product
B refers to Equation (4.18)

much information of A as possible. Mathematically, we formulate debiasing the input graph
method as the following optimization problem.

min
Ã
∥Ã−A∥2F + αTr

(
YTLSY

)
s.t. Y = argmin

Y
l
(
Ã,Y, θ

)
(4.5)

where α > 0 is the regularization parameter, and LS is the Laplacian matrix of the similarity
matrix S.

Equation (4.5) is hard to solve due to its bi-level optimization nature. A generic strategy
to solving such a bi-level optimization problem is proposed by Mei and Zhu [149], which
reduces the bi-level optimization problem by replacing the lower-level optimization problem
with its KKT conditions. By applying this generic strategy to our setting, where the low-level
optimization problem is Y∗ = argminY l

(
Ã,Y, θ

)
, we have

min
Ã
∥Ã−A∥2F + αTr

(
YTLSY

)
s.t. ∂Yl

(
Ã,Y, θ

)
= 0 (4.6)

We introduce Algorithm 4.1 to solve Equation (4.6). At each iteration of Algorithm 4.1, we
first find the mining results Ỹ based on the current modified graph Ã (step 3), and then
we use the current mining results Ỹ to further modify the graph Ã (steps 4 – 6). Once we
obtain the modified graph Ã, we use it to generate the debiased mining results Y∗ (step
7). In order to update Ã, we apply the gradient descent method to the objective function
J = ∥Ã−A∥2F + αTr

(
ỸTLSỸ

)
. To this end, we compute the partial derivative of J with

respect to Ã as

81

∂J

∂Ã
= 2

(
Ã−A

)
+ α

∂Tr
(
ỸTLSỸ

)
∂Ã

= 2
(
Ã−A

)
+ α

Tr

∂Tr
(
ỸTLSỸ

)
∂ỸT

∂Ỹ

∂Ã [i, j]

= 2

(
Ã−A

)
+ α

[
Tr

(
2ỸTLS

∂Ỹ

∂Ã [i, j]

)]
(4.7)

where
[
Tr
(
2ỸTLS

∂Ỹ
∂Ã[i,j]

)]
is a matrix with its element at i-th row and j-th column as

Tr
(
2ỸTLS

∂ỸT

∂Ã[i,j]

)
for any 1 ≤ i ≤ n, 1 ≤ j ≤ n. The corresponding gradient can be

computed as dJ
dÃ

= ∂J
∂Ã

+
(

∂J
∂Ã

)T
− diag

(
∂J
∂Ã

)
if Ã is an undirected graph; otherwise, we have

its gradient as dJ
dÃ

= ∂J
∂Ã

.

A key step in Equation (4.7) is to calculate H =
[
Tr
(
2ỸTLS

∂Ỹ
∂Ã[i,j]

)]
. Therefore, Algo-

rithm 4.1 can be applied to a variety of graph mining tasks as long as ∂Ỹ
∂Ã[i,j]

exists. We
summarize how to calculate H in Table 4.3 for three graph mining tasks.

Algorithm 4.1: Debiasing the Input Graph
Input : adjacency matrix A, similarity matrix S, a mining algorithm l (A,Y, θ),

regularization parameter α, learning rate η.
Output :modified topology Ã and debiasd mining results Y∗.

1 initialize Ã = A;
2 while not converged do
3 find Ỹ = argminY l

(
Ã,Y, θ

)
;

4 calculate partial derivative ∂J
∂Ã

by Equation (4.7);
5 calculate derivative dJ

dÃ
based on partial derivative ∂J

∂Ã
;

6 update Ã = Ã− η dJ
dÃ

;

7 return Ã and Y∗ = argminY l
(
Ã,Y, θ

)
;

A – Algorithm 4.1 instantiation with PageRank. Given a symmetric normalized graph A, by
Table 4.2, PageRank essentially calculates the fixed-point solution: r = (1− c) (I− cA)−1 e,
where c is the damping factor, and e is the teleportation vector. With that in mind, we can
re-write Equation (4.7) as

∂J

∂Ã
= 2

(
Ã−A

)
+ 2α

[
rTLS

∂r

∂Ã [i, j]

]
(4.8)

82

where r = (1− c)
(
I− cÃ

)−1

e. Based on [147], we have ∂r
∂Ã[i,j]

= cr [j]
(
I− cÃ

)−1

[:, i].

Then defining Q =
(
I− cÃ

)−1

, we can further simplify Equation (4.8) and get

∂J

∂Ã
= 2

(
Ã−A

)
+ 2cαQTLSrr

T (4.9)

Then we can easily learn its debiased topology by applying Algorithm 4.1 with Equation (4.9).
B – Algorithm 4.1 instantiation with spectral clustering. For spectral clustering, as shown
in Table 4.2, given an undirected graph with adjacency matrix A, it finds the soft cluster
membership matrix U as the eigenvectors of LA associated with the smallest k eigenvalues.
With that in mind, we first re-write Equation (4.7) as

∂J

∂Ã
= 2

(
Ã−A

)
+ 2α

∂Tr
(
UTLSU

)
∂Ã

(4.10)

However, directly calculating
∂Tr(UTLSU)

∂Ã
is hard, we resort to the chain rule. First, to

calculate
∂Tr(UTLSU)

∂LÃ
, we denote ui as the i-th column of U and write

∂Tr
(
UTLSU

)
∂LÃ

= 2

[
Tr
(
(LSU)T

∂U

∂LÃ [i, j]

)]
= 2

k∑
i=1

[
uT
i LS

∂ui

∂LÃ [i, j]

]
(4.11)

Denote Mi = (λiI− LÃ)
+ where λi is the i-th eigenvalue. Written in a matrix form, by the

derivative of eigenvectors, we have[
uT
i LS

∂ui

∂LÃ [i, j]

]
=
[
uT
i LSM [:, i]ui [j]

]
= MT

i LSuiu
T
i (4.12)

Then, based on [195], we get

∂Tr
(
UTLSU

)
∂Ã

= diag
(
∂Tr(UTLSU)

∂LÃ

)
1n×n −

∂Tr
(
UTLSU

)
∂LÃ

= 2
k∑

i=1

(
diag

(
MT

i LSuiu
T
i

)
1n×n −MT

i LSuiu
T
i

) (4.13)

where 1n×n is an n× n matrix filled with 1. To learn the debiased topology, we can apply
Algorithm 4.1 by combining Equations (4.10) and (4.13).
C – Algorithm 4.1 instantiation with LINE. Denote the n× d embedding matrix learned by

83

LINE (1st) as X. We apply the chain rule and re-write Equation (4.7) as

∂J

∂Ã
= 2

(
Ã−A

)
+ 2α

∂Tr
(
XTLSX

)
∂Ã

= 2
(
Ã−A

)
+ 2α

∂Tr
(
LSXXT

)
∂Ã

= 2
(
Ã−A

)
+ 2α

[
Tr
(
LT

S

∂XXT

∂Ã [i, j]

)] (4.14)

Let Z = XXT . We use the following method to compute ∂Z
∂Ã[i,j]

.24 First, we have

Z [s, t] = log

T
(
Ã [s, t] + Ã [t, s]

)
dsd

3/4
t + d

3/4
s dt

− log b (4.15)

where di is the out degree of node i, and T =
∑n

i=1 d
3/4
i . Then we have the partial derivative

∂Z [s, t]

∂Ã [i, j]
=

3

4Td
1/4
i

+
1

Ã [s, t] + Ã [t, s]
(1 [i = s, j = t] + 1 [i = t, j = s])

− 4d
1/4
s + 3d

1/4
t

4
(
dsd

1/4
t + d

5/4
s

)1 [i = s]− 3d
1/4
s + 4d

1/4
t

4
(
d
1/4
s dt + d

5/4
t

)1 [i = t]
(4.16)

where 1 is the indicator function.
With Equation (4.16), we get the following matrix form of derivatives[

Tr
(
LT

S

∂Z

∂Ã [i, j]

)]
= 2f

(
Ã+ ÃT

)
◦ LS − 2diag (BLS)1n×n (4.17)

where f(Ã) calculates the Hadamard inverse matrix Ã, ◦ is the Hadamard product operator,
and B has the following form

B =
3

4
f
(
d5/4

(
d−1/4

)T
+ d11×n

)
+ f

(
d3/4

(
d1/4

)T
+ d11×n

)
(4.18)

with dx being a column vector of the form dx [i] = dxi .

Lemma 4.1. (Time and space complexities of Algorithm 4.1 for LINE) To calculate the
partial derivatives H, it takes O (min{m1,m2}+m2) time and O (min{m1,m2}+ n) space,
where n is the number of nodes, and m1 and m2 are the number of edges in A and S,
respectively.

24This method was first developed in [33] in order to establish the relationship between LINE (2nd) and
matrix factorization.

84

Proof. It takes O (min{m1,m2}) time to calculate f
(
A+AT

)
◦ LS and O (m2) time to

calculate diag (BLS). Thus, the overall time complexity is O (min{m1,m2}+m2). For space
complexity, it takes O (min{m1,m2}) space to save f

(
A+AT

)
◦ LS in sparse format and

O (n) space to save diag (BLS). Therefore, the overall space complexity is O(min{m1,m2}+
n). QED.

Debiasing the mining model. The intuition and rationality of debiasing the mining model
is as follows. If we directly incorporate the bias measure (Bias (Y,S)) as a regularization
term in the loss function of the given mining model (i.e., those listed in Table 4.2), the
generated mining results are likely to have a small bias. Mathematically, we formulate it as

Y∗ = argmin
Y

J = l (A,Y, θ) + αTr
(
YTLSY

)
(4.19)

where α > 0 is the parameter for regularization.
To solve Equation (4.19), we apply (stochastic) gradient descent/ascent-based methods.

Since Y is, in general, not symmetric, its derivative is dJ
dY

= ∂J
∂Y

. We have

dJ

dY
=
∂J

∂Y
=
∂l (A,Y, θ)

∂Y
+ α

∂Tr
(
YTLSY

)
∂Y

=
∂l (A,Y, θ)

∂Y
+ α

(
LS + LT

S

)
Y

=
∂l (A,Y, θ)

∂Y
+ 2αLSY

(4.20)

The last equality holds because S is a symmetric matrix and so is its Laplacian matrix LS.
We can see that, compared with the original graph mining model without the fairness consid-
eration, the extra time to calculate LSY is just linear with respect to the number of similarity
links in S. Based on that, we develop a generic algorithmic framework (i.e., Algorithm 4.2) to
debias the mining model. The key of Algorithm 4.2 is to solve Equation (4.19) (step 2). This
can be done either by (stochastic) gradient descent/ascent method based on Equation (4.20),
or by a specific algorithm designed for the given graph mining model. For the latter, we give
three examples for the mining models in Table 4.2.

Algorithm 4.2: Debiasing the Mining Model
Input : adjacency matrix A, similarity matrix S, a mining model l(A,Y, θ),

regularization parameter α, learning rate η.
Output : debiased mining results Y∗.

1 solve Equation (4.19);
2 return Y∗;

85

A – Algorithm 4.2 instantiation with PageRank. Instantiating Equation (4.19) with PageRank,
we have that r∗ = argmin

r
J = crT (I−A) r+ (1− c) ∥r− e∥2F + αrTLSr. We can show that

J is a quadratic convex function with respect to r as long as the regularization parameter α
is positive. Therefore, its optima has a zero derivative ∂J

∂r
= 0. Then we have

∂J

∂r
= 2r− 2cAr+ 2αLSr− 2 (1− c) e = 0⇒ r∗ = c

(
A− α

c
LS

)
r∗ + (1− c) e (4.21)

which is equivalent to PageRank on a new transition matrix A − α
c
LS. Furthermore, if

the similarity matrix S is symmetrically normalized (i.e., LS = I − S), we have r∗ =(
c

1+α
A+ α

1+α
S
)
r∗ + 1−c

1+α
e.

B – Algorithm 4.2 instantiation with spectral clustering. Instantiating Equation (4.19)
with spectral clustering, we have that U∗ = argmin

U
J = Tr

(
UTLAU

)
+ αTr

(
UTLSU

)
=

Tr
(
UTLA+αSU

)
, which is very similar to the loss function of the original spectral clustering

without the fairness consideration in Table 4.2, and both loss functions require U to be
orthonormal. The only difference is that the debiased U∗ is equivalent to the eigenvectors of
LA+αS, instead of the original LA, with the k smallest eigenvalues. In other words, debiased
spectral clustering U∗ is essentially spectral clustering on a modified graph with an adjacency
matrix A+ αS.
C – Algorithm 4.2 instantiation with LINE. Instantiating Equation (4.19) with LINE (1st),
we have

X∗ = argmax
X

n∑
i=1

n∑
j=1

A [i, j]

(
log g

(
X [j, :]X [i, :]T

)
+ bEj′∼Pn

[
log g

(
−X [j′, :]X [i, :]T

)])
− αTr

(
XTLSX

) (4.22)

where g (x) = 1/ (1 + e−x) is the sigmoid function.
Due to the unique edge sampling strategy of LINE, we factorize the bias term (i.e.,

Tr
(
XTLSX

)
) and consider it edge-wise. Specifically, for an edge (i, j), LINE (1st) aims to

maximize the following objective function

log g
(
xjx

T
i

)
+ bEj′∼Pn

[
log g

(
−xj′x

T
i

)]
− α∥xi − xj∥22S [i, j] (4.23)

where xi and xj are the node embeddings for node i and j (i.e. i-th row and j-th row in X),
respectively. It is worth pointing out that adding such a bias constraint does not increase
the time complexity. To see this, we can show that the optimization for one edge in the
original LINE takes O (db) time, where b is the number of negative samples, and d is the

86

embedding dimension. By adding the bias constraint ∥xi − xj∥22S [i, j], it would introduce an
additional O (d) time per edge, which does not change the overall time complexity in the
big-O notation.
Debiasing the mining results. If we do not have access to either the input graph or the
graph mining model, we could mitigate the individual bias via a post-processing strategy
on the mining results. We formulate this mitigation strategy as a regularized optimization
problem below.

Y∗ = argmin
Y

J = ∥Y − Ȳ∥2F + αTr
(
YTLSY

)
(4.24)

where Ȳ is the vanilla mining results, i,e., the original model output without the consideration
of individual fairness.

We can prove that J is a convex function since ∥Y − Ȳ∥2F and Tr
(
YTLSY

)
are both

convex, and α is a positive regularization hyper-parameter. Thus, the optimal solution for
Equation (4.24) can be obtained by taking the derivative of J with respect to Y and setting
it to zero.

∂J

∂Y
=
∂∥Y − Ȳ∥2F

∂Y
+α

∂Tr
(
YTLSY

)
∂Y

= 0⇒ 2Y− 2Ȳ+2αLSY = 0⇒ (I+ αLS)Y
∗ = Ȳ

(4.25)
Equation (4.25) indicates that debiasing the mining results is essentially solving a linear

system with respect to the debiased mining results. Many linear system solvers can be
utilized, e.g., Krylov subspace method, conjugate gradient method, etc. The algorithm for
debiasing mining results is summarized in Algorithm 4.3.

Algorithm 4.3: Debiasing the Mining Results
Input : vanilla graph mining results Ȳ, similarity matrix S, regularization

parameter α.
Output : debiased mining results Y∗.

1 calculate I+ αLS;
2 solve (I+ αLS)Y

∗ = Ȳ;
3 return Y∗;

Analysis and discussions. The three developed algorithmic frameworks are mutually
complementary with each other. For example, to debias the input graph (Algorithm 4.1),
we modify the input graph and mining results in an iterative way. The potential benefit is
that it eliminates or mitigates the bias from the ‘origin’ (i.e., the input graph), and thus the
modified/debiased graph might also help mitigate the bias for other related graph mining
models. In order to debias the mining model (Algorithm 4.2), we need the knowledge of

87

the details of the mining model itself, whereas the input graph remains unchanged. On the
contrary, neither the knowledge of the input graph nor the mining model is required for
debiasing the mining results (Algorithm 4.3).

Regarding the applicability of the developed frameworks, we can always debias the input
graph as long as the gradient dY

dA[i,j]
in Equation (4.7) exists. For debiasing the mining model

method, it is applicable as long as a (stochastic) gradient descent solution for the vanilla
graph mining algorithm (i.e., the one without the consideration of individual fairness) exists.
This is because adding the additional bias term in Equation (4.19) would only incur a linear
term in computing the gradient. Besides, the convexity of the vanilla graph mining algorithm
will not be affected since the bias term itself is convex. For debiasing the mining results
method, it can be applied to any graph mining model whose mining results Y are in a matrix
form, thanks to its model-agnostic closed-form solution.

The three developed algorithmic frameworks differ in computational efficiency. First, the
debiasing the input graph method is the most time- and space-consuming, since H is usually
non-trivial to compute and could be a full matrix with O(n2) space cost. However, for some
special mining models, including all three models in Table 4.2, we can handle this issue by
exploring the low-rank structure of H. For example, in PageRank and spectral clustering,
QTLSr and MT

i LSui are both column vectors of length n, where QTLSr can be computed
by power iterations, and Mi can be efficiently calculated by singular value decomposition
(SVD). In LINE, diag(BLS)1n×n is equivalent to vectorizing the diagonal of BLS as a column
vector and multiplying with 11×n. As Lemma 4.1 says, Algorithm 4.1 for LINE has a linear
complexity. Second, for debiasing the mining model method, the additional time incurred
in the gradient computation is linear with respect to the number of non-zero elements in S

(m2, the number of links in the similarity matrix S), according to Equation (4.20). Finally,
for debiasing the mining results method, it always has a linear time complexity with respect
to m2 (the number of links in the similarity matrix S), since we only need to solve a linear
system in Equation (4.25).

4.1.4 Problem 4.3: InFoRM Cost

In this part, we address Problem 4.3 (i.e., InFoRM cost), aiming to characterize how the
debiased graph mining results Y∗ would deviate from the vanilla ones Ȳ without the fairness
consideration. Among the three developed debiasing algorithms, debiasing the mining results
method (Algorithm 4.3), being agnostic to both the input graph and the mining model, has
the widest applicability. Therefore, we will mainly focus on characterizing the InFoRM cost
of this method. The InFoRM costs of the other two developed methods (i.e., debiasing the

88

input graph and debiasing the mining model) are dependent on the specific graph and/or the
specific mining model. After that, we provide a case study that analyzes the InFoRM cost
for PageRank with the debiasing mining model method (Algorithm 4.2).
Cost of debiasing the mining results. For debiasing the mining results method, the
solution of Equation (4.25) is always optimal, since Equation (4.24) is a convex optimization
problem. Based on this solution, we characterize the cost of debiasing the mining results in
Lemma 4.2.

Lemma 4.2. Given a graph of n nodes with the adjacency matrix A and a node-node
similarity matrix S, let Ȳ be the vanilla mining results without considering the fairness and
Y∗ = (I+ αLS)

−1 Ȳ be the solution of Equation (4.24) (i.e., the debiased mining results). If
∥S−A∥F = δ, we have that

∥Y∗ − Ȳ∥F ≤ 2α
√
n
(
δ +

√
r (A)σmax (A)

)
∥Ȳ∥F (4.26)

where r (A) is the rank of A, and σmax (A) is the largest singular value of A.

Proof. Since Y∗ = (I+ αLS)
−1 Ȳ, by re-arranging terms, we have

∥Y∗ − Ȳ∥F = α∥LSY
∗∥F ≤ α∥LS∥F∥ (I+ αLS)

−1 ∥F∥Ȳ∥F (4.27)

The last inequality above holds due to the triangle inequality. Since ∥Y∥F is a constant, our
goal is to find upper bounds of ∥LS∥F and ∥ (I+ αLS)

−1 ∥F , respectively.
First, we derive an upper bound of ∥ (I+ αLS)

−1 ∥F . For any matrix W, we have ∥W∥F =√∑r(W)
i=1 σ2

i (W) ≤
√
r (W)σmax (W), where σmax (W) is the largest singular value (i.e., the

spectral norm) of matrix W, and r (W) is the rank of matrix W [196]. Applying it to
∥ (I+ αLS)

−1 ∥F , we have the following inequality

∥ (I+ αLS)
−1 ∥F ≤

√
nσmax

(
(I+ αLS)

−1) = √
n

σmin (I+ αLS)
=
√
n (4.28)

The above inequality holds due to the facts that (1) (I+ αLS)
−1 is full-rank n× n matrices;

and (2) graph laplacian LS is a symmetric singular matrix with smallest singular value being
0, which implies that σmin (I+ αLS) = 1.

89

Next, we derive an upper bound of ∥LS∥F . Denote di = LS [i, i]. We have

∥LS∥2F =
∑
i

(
d2i +

∑
j:j ̸=i

S [i, j]2
)

=
∑
i

(∑
j:j ̸=i

S [i, j]

)2

+
∑
j:j ̸=i

S [i, j]2

≤
∑
i

(
2
∑
j:j ̸=i

S [i, j]2 +
∑
k:k ̸=i

S [i, k]2 +
∑
l:l ̸=i

S [i, l]2
)
≤ 4∥S∥2F

(4.29)

Taking square root on both sides and applying triangle inequality, we have the upper bound
of ∥LS∥F as follows.

∥LS∥F ≤ 2∥S∥F ≤ 2 (δ + ∥A∥F) ≤ 2
(
δ +

√
r (A)σmax (A)

)
(4.30)

We complete the proof by combining Equations (4.27), (4.28), and (4.30). QED.

From Lemma 4.2, we can see that the cost of debiasing the mining results depends on
a number of factors, including the size of input graph (i.e., the number of nodes n), the
difference δ between S and A, the rank of the adjacency matrix r (A), and the largest singular
value of the adjacency matrix σmax (A). r (A) of many real graphs could be small, since
they often have an (approximate) low-rank structure. Furthermore, if A is a symmetrically
normalized matrix (i.e., A ← D−1/2AD−1/2, where D is the degree matrix), its largest
singular value is upper bounded by 1. These facts help make the overall upper bound in
Lemma 4.2 to be relatively small.
Cost of debiasing the mining model: A case study on PageRank. Given a graph
with adjacency matrix A, similarity matrix S, and regularization parameter α, the cost of
debiasing the mining model method on PageRank is summarized in Lemma 4.3.

Lemma 4.3. Given a graph with the symmetrically normalized adjacency matrix A and
node-node similarity matrix S, let r̄ be the PageRank vector without considering the fairness
and r∗ be the debiased PageRank vector as in Equation (4.21). If teleportation vector
∥e∥1 = 1 and similarity matrix ∥S−A∥F = δ, it satisfies

∥r∗ − r̄∥F ≤
2αn

1− c

(
δ +

√
r (A)σmax (A)

)
(4.31)

where c is the damping factor, and α is the regularization parameter for individual fairness.

Proof. Recall that debiasing the mining model on PageRank is equivalent to solving the linear
system r = c

(
A− α

c
LS

)
r+ (1− c) e. After re-arranging terms, we can get its closed-form

solution as r∗ = (1− c) (I− cA+ αLS)
−1 e. If we do not consider the individual fairness

90

constraint, we can easily set LS = 0 and get r̄ = (1− c) (I− cA)−1 e. Then we have the cost
of individual fairness in PageRank as

∥r∗ − r̄∥F = (1− c) ∥
(
(I− cA+ αLS)

−1 − (I− cA)−1) e∥F
≤ (1− c) ∥

(
(I− cA+ αLS)

−1 − (I− cA)−1) ∥F∥e∥F
≤ (1− c) ∥

(
(I− cA+ αLS)

−1 − (I− cA)−1) ∥F
= (1− c) ∥ (I− cA+ αLS)

−1 · αLS · (I− cA)−1 ∥F
≤ α (1− c) ∥ (I− cA+ αLS)

−1 ∥F · ∥LS∥F · ∥ (I− cA)−1 ∥F

(4.32)

Since A is a symmetrically normalized matrix, its Laplacian matrix is I−A, which reveals that
I− cA = (1− c) I+LcA and I− cA+αLS = (1− c) I+LcA+αS. Define C = (1− c) I+LcA

and D = (1− c) I+LcA+αS. Based on Equation (4.28), we have the following two inequalities
holds.

∥(D)−1∥F ≤
√
nσmax

(
((1− c) I+ LcA+αS)

−1)
=

√
n

σmin ((1− c) I+ LcA+αS)
=

√
n

1− c
(4.33)

∥ (C)−1 ∥F ≤
√
nσmax

(
((1− c) I+ LcA)

−1) = √
n

1− c
(4.34)

Combining Equations (4.33) and (4.34) with Equation (4.32), we have ∥r∗− r̄∥F ≤ αn
1−c
∥LS∥F .

As shown in Equation (4.30), we have ∥LS∥F ≤ 2
(
δ +

√
r (A)σmax (A)

)
. Thus, we have

∥r∗ − r̄∥F ≤ 2αn
1−c

(
δ +

√
r (A)σmax (A)

)
. QED.

Similar to the cost of debiasing the mining results, the cost of debiasing the mining model
with PageRank depends on the regularization hyperparameter α, the number of nodes n,
rank of adjacency matrix r (A), and the largest singular value σmax (A).

4.1.5 Experimental Evaluation

In this part, we perform experimental evaluations on InFoRM. The experiments are
designed to answer the following questions:

• RQ1. How does the individual fairness constraint impact the graph mining performance?

• RQ2. How effective are the developed debiasing methods?

• RQ3. How efficient are the developed debiasing methods?

91

Table 4.4: Statistics of datasets to evaluate InFoRM.

Domain Dataset # Nodes # Edges

Collaboration AstroPh 18,772 198,110
CondMat 23,133 93,497

Social Facebook 22,470 171,002
Twitch 7,126 35,324

Biology PPI 3,890 76,584

Experimental settings. Here, we provide the detailed experimental settings to evaluate
InFoRM.
A – Hardware and software specifications. All experiments are performed on a Windows
PC with i7-9800X CPU and 64GB RAM. All datasets are publicly available. All codes are
programmed in Python 3.7. The source code can be downloaded at https://github.com/
jiank2/inform.
B – Dataset descriptions. Table 4.4 summarizes the statistics of the datasets. All datasets
are undirected uni-partite graphs. We extract the largest connected components in these
datasets for experiments in spectral clustering. The largest one in Table 4.4 is used to test the
efficiency of the developed methods. These datasets are collected from various application-
domains, including collaboration networks (Collaboration), social networks (Social), and
biology network (Biology). We provide the detailed descriptions of these datasets as follows.

• Collaboration networks. In this type of networks, nodes usually represent researchers.
Two researchers are connected if they have collaborated together. We use two collabo-
ration networks in the field of Physics from arXiv preprint archive25: Astro Physics
(AstroPh) and Condense Matter Physics (CondMat) [151].

• Social networks. Here, nodes are users, and edges indicate mutual social relationships.
Among them, Facebook [151] is the page-page network of official Facebook pages, which
is collected through Facebook Graph API in November, 2017. Twitch [151] is the user-
user social network of gamers that streams in English on the popular game streaming
website Twitch26.

• Biology network. This domain includes the well-known PPI [151] network. It is a
subgraph of the protein-protein interaction network for Homo Sapiens.

C – Baseline methods. We compare the performance of the debiased graph mining results
with the original graph mining results without consideration of individual fairness.

25https://arxiv.org/
26https://www.twitch.tv/

92

https://github.com/jiank2/inform
https://github.com/jiank2/inform
https://arxiv.org/
https://www.twitch.tv/

D – Similarity matrix. For each dataset, we construct its node-node similarity S matrix by
two different similarity measures: Jaccard index and cosine similarity. For PageRank and
LINE, we filter out similarity links smaller than a pre-defined threshold. The threshold is
defined as

threshold = mean (S) + 0.75std (S) (4.35)

where mean (S) and std (S) calculate the mean and standard deviation of all non-zero elements
in S, respectively.
E – Evaluation metrics. To answer RQ1, we use two types of measures. First, we measure
the difference between the original/vanilla mining results Ȳ and the debiased mining results
Y∗ as Diff = ∥Y∗ − Ȳ∥F/∥Ȳ∥F . For PageRank, we also measure the KL divergence between
Ȳ and Y∗ (i.e., KL

(
Y∗

∥Y∗∥1 ||
Ȳ

∥Ȳ∥1

)
=
∑

i
Y∗[i]
∥Y∗∥1 log

Y∗[i]/∥Y∗∥1
Ȳ[i]/∥Ȳ∥1

). We normalize Ȳ and Y∗, since
the norm may not equal to 1. Second, we also use a set of task-specific performance metrics.
In detail, for PageRank, we use the precision (Prec) and the normalized discounted cumulative
gain (NDCG). We label the top-K entities in the original PageRank as relevant (rel = 1) and
others as irrelevant (rel = 0). Then, we calculate precision at K (Prec@K = # of relevant items

K
)

and NDCG at K (NDCG@K =
∑K

i=1
rel

log(1+i)
). For spectral clustering, we use the normalized

mutual information (NMI) to measure the agreement between two cluster assignments before
and after debiasing, which is defined as NMI (C, C0) = 2MI(C,C0)

H(C)+H(C0) , where C0 and C are the
cluster assignments of original and debiased spectral clustering, MI (C, C0) is the mutual
information between C and C0, and H (C) is the entropy of assignment C. For LINE, we
perform link prediction using the debiased mining results and the original mining results and
compare their F1 score and ROC-AUC score. To answer RQ2, we measure to what extent

the individual bias is reduced as Reduction = 1− Tr((Y∗)TLSY
∗)

Tr(ȲTLSȲ)
. Finally, to answer RQ3, we

measure the running time of each debiasing method (Time) in seconds.
F – Detailed parameter settings. To debias the input graph, for PageRank, we set
α = 1× 106 for PPI dataset, α = 5× 106 for other datasets, and η = 5× 10−4 for all datasets;
for spectral clustering, we set α = 3 × 105, η = 0.02 for Twitch dataset and α = 1 × 107,
η = 0.05 for PPI dataset; for LINE, we set α = 0.25, η = 0.5 for Twitch dataset and α = 10,
η = 0.025 for PPI dataset. To debias the mining model and the mining results, we set
α = 0.5 for all mining tasks. Besides, for PageRank, we set its damping factor c = 0.85

and symmetrically normalize the adjacency matrix A and similarity matrix S to ensure the
convergence of power iterations; for spectral clustering, we set the number of clusters as 10;
for LINE, we randomly select 85% of all edges as training set, 5% as validation set, and 10%

as test set. During model training, we sample 3200× n edges for each dataset, where n is
the number of nodes, and use the same learning rate as in [5].

93

Table 4.5: Effectiveness results for PageRank. Lower is better in gray columns. Higher is
better in the others.

Debiasing the Input Graph

Dataset Jaccard Index Cosine Similarity

Diff KL Prec@50 NDCG@50 Reduction Time Diff KL Prec@50 NDCG@50 Reduction Time
AstroPh 0.059 4.61× 10−4 0.840 0.887 16.3% 3632 0.117 1.99× 10−3 0.680 0.738 31.9% 3844
CondMat 0.008 1.06× 10−5 0.980 0.986 2.16% 1817 0.031 1.57× 10−4 0.940 0.957 9.37% 1922
Facebook 0.031 1.83× 10−4 0.920 0.943 7.01% 3442 0.072 9.38× 10−4 0.760 0.827 16.6% 3623
Twitch 0.109 5.37× 10−4 1.000 1.000 24.7% 564.9 0.299 5.41× 10−3 0.860 0.899 62.9% 649.3
PPI 0.185 1.90× 10−3 0.920 0.944 43.4% 584.4 0.328 8.07× 10−3 0.780 0.838 68.7% 636.8

Debiasing the Mining Model

Dataset Jaccard Index Cosine Similarity

Diff KL Prec@50 NDCG@50 Reduction Time Diff KL Prec@50 NDCG@50 Reduction Time
AstroPh 0.133 3.28× 10−3 0.820 0.871 51.0% 23.08 0.143 4.16× 10−3 0.880 0.912 50.4% 26.92
CondMat 0.117 2.43× 10−3 0.880 0.915 51.6% 12.02 0.149 4.01× 10−3 0.860 0.901 54.6% 12.83
Facebook 0.149 3.33× 10−3 0.840 0.884 47.7% 32.41 0.179 4.65× 10−3 0.840 0.883 53.3% 33.31
Twitch 0.182 4.97× 10−3 0.940 0.958 62.0% 16.18 0.315 1.05× 10−2 0.940 0.957 73.9% 12.73
PPI 0.211 4.78× 10−3 0.920 0.942 50.8% 10.76 0.280 9.56× 10−3 0.900 0.928 67.5% 10.50

Debiasing the Mining Results

Dataset Jaccard Index Cosine Similarity

Diff KL Prec@50 NDCG@50 Reduction Time Diff KL Prec@50 NDCG@50 Reduction Time
AstroPh 0.055 1.40× 10−3 0.960 0.971 37.4% 0.038 0.094 4.46× 10−3 0.960 0.972 49.2% 0.054
CondMat 0.040 8.26× 10−4 0.940 0.959 34.4% 0.021 0.082 3.01× 10−3 0.780 0.839 48.9% 0.025
Facebook 0.047 1.12× 10−3 0.900 0.930 32.6% 0.048 0.086 3.87× 10−3 0.960 0.972 44.6% 0.062
Twitch 0.035 9.75× 10−4 0.980 0.986 33.9% 0.033 0.101 5.84× 10−3 0.940 0.958 44.6% 0.024
PPI 0.045 1.22× 10−3 0.940 0.958 27.0% 0.020 0.112 6.97× 10−3 0.940 0.958 45.0% 0.019

Table 4.6: Effectiveness results for LINE. Lower is better in gray columns. Higher is better
in the others.

Debiasing the Input Graph

Dataset Jaccard Index Cosine Similarity

Diff Orig. ROC Fair ROC Orig. F1 Fair F1 Reduce Time Diff Orig. ROC Fair ROC Orig. F1 Fair F1 Reduce Time
Twitch 1.079 0.687 0.691 0.625 0.622 1.92% 1878 1.267 0.687 0.662 0.625 0.606 12.1% 1999
PPI 0.674 0.682 0.678 0.618 0.620 2.06% 1656 0.699 0.682 0.686 0.618 0.621 1.22% 1779

Debiasing the Mining Model

Dataset Jaccard Index Cosine Similarity

Diff Orig. ROC Fair ROC Orig. F1 Fair F1 Reduction Time Diff Orig. ROC Fair ROC Orig. F1 Fair F1 Reduction Time
AstroPh 0.462 0.973 0.970 0.924 0.914 51.6% 934.7 0.913 0.973 0.966 0.924 0.906 49.5% 923.0
CondMat 0.302 0.963 0.962 0.922 0.920 44.1% 1130 0.439 0.963 0.961 0.922 0.918 41.6% 1133
Facebook 0.323 0.946 0.954 0.888 0.902 49.6% 1099 0.442 0.946 0.957 0.888 0.906 56.0% 1100
Twitch 0.099 0.687 0.690 0.625 0.625 0.64% 333.8 0.152 0.687 0.694 0.625 0.628 0.83% 340.3
PPI 0.238 0.682 0.715 0.618 0.642 5.85% 180.3 0.418 0.682 0.740 0.618 0.669 7.71% 181.6

Debiasing the Mining Results

Dataset Jaccard Index Cosine Similarity

Diff Orig. ROC Fair ROC Orig. F1 Fair F1 Reduction Time Diff Orig. ROC Fair ROC Orig. F1 Fair F1 Reduction Time
AstroPh 0.365 0.973 0.962 0.924 0.898 83.3% 3.284 0.539 0.973 0.963 0.924 0.902 91.1% 6.461
CondMat 0.215 0.963 0.961 0.922 0.918 71.8% 1.464 0.322 0.963 0.960 0.922 0.915 78.4% 2.213
Facebook 0.304 0.946 0.950 0.888 0.890 88.5% 4.122 0.416 0.946 0.953 0.888 0.891 92.4% 7.394
Twitch 0.457 0.687 0.681 0.625 0.629 95.2% 2.320 0.603 0.687 0.658 0.625 0.616 97.6% 4.343
PPI 0.508 0.682 0.713 0.618 0.642 90.1% 1.031 0.722 0.682 0.634 0.618 0.589 97.0% 2.245

94

Table 4.7: Effectiveness results for spectral clustering. Lower is better in gray columns.
Higher is better in the others.

Debiasing the Input Graph

Dataset Jaccard Index Cosine Similarity

Diff NMI Reduce Time Diff NMI Reduce Time
Twitch 0.031 1.000 5.44% 1698 0.107 1.000 24.5% 1714
PPI 1.035 0.914 19.5% 829.3 0.933 0.849 24.1% 985.1

Debiasing the Mining Model

Dataset Jaccard Index Cosine Similarity

Diff NMI Reduction RT Diff NMI Reduction RT
AstroPh 0.885 0.948 10.2% 333.9 1.085 0.868 23.6% 323.4
CondMat 1.108 0.856 26.4% 383.7 1.186 0.742 35.9% 360.7
Facebook 0.972 0.816 31.9% 549.3 0.897 0.810 37.9% 545.0
Twitch 1.147 0.838 88.3% 26.50 1.145 0.875 87.4% 26.62
PPI 0.994 0.658 67.0% 6.047 0.897 0.667 75.2% 6.244

Debiasing the Mining Results

Dataset Jaccard Index Cosine Similarity

Diff NMI Reduction Time Diff NMI Reduction Time
AstroPh 0.071 1.000 24.3% 10.22 0.123 0.984 39.5% 16.46
CondMat 0.071 1.000 34.5% 2.076 0.108 0.985 46.2% 3.196
Facebook 0.056 0.994 24.8% 8.425 0.102 0.994 35.9% 12.81
Twitch 0.150 1.000 90.9% 4.820 0.204 1.000 91.7% 6.513
PPI 0.242 0.811 77.5% 2.896 0.343 0.731 87.4% 4.288

Main results. The evaluation of PageRank is shown in Table 4.5. From the table, we can
see that all three debiasing methods can effectively reduce the bias with small changes (i.e.,
Diff and KL columns in Table 4.5) to the vanilla mining results, while being able to preserve
the performance (i.e., Prec@50 and NDCG@50) of the vanilla algorithm without fairness
consideration. Comparing among these three methods, the debiasing the input graph method
takes the longest running time. However, it is not as effective as the other two methods in
terms of reducing the bias.27 Thus, for spectral clustering and LINE, we mainly evaluate the
efficacy on debiasing the mining model and debiasing the mining results, while evaluating
the effectiveness only on relatively small-size Twitch and PPI datasets. Evaluation results
for spectral clustering and LINE are shown in Tables 4.7 and 4.6, respectively. From these
tables, we can see that our developed methods can effectively reduce bias and preserve the
performance of the vanilla graph mining algorithm (i.e., Orig. ROC vs. Fair ROC, Orig. F1
vs. Fair F1 for LINE, and NMI for spectral clustering). Interestingly, as shown in Table 4.6,
adding the fairness constraint on LINE sometimes actually improves the link prediction
performance (e.g., on Facebook, Twitch, and PPI datasets).

27Algorithm 4.1 for PageRank still enjoys a linear complexity in big-O notation by exploring the low-rank
structure of H matrix.

95

4.2 DEGREE FAIRNESS ON GRAPH CONVOLUTIONAL NETWORK

Graph-structured data naturally appears in many real-world scenarios, ranging from
social network analysis [197], drug discovery [154], financial fraud detection [198] to traffic
prediction [155], recommendation [199], and many more. The success of deep learning on
grid-like data has inspired many graph neural networks in recent years. Among them, Graph
Convolutional Network (GCN) [7] is one of the most fundamental and widely used ones, often
achieving superior performance in a variety of tasks and applications.

Despite their strong expressive power in node/graph representation learning, recent studies
show that GCN tends to under-represent nodes with low degrees [14], which could result in
high loss values and low predictive accuracy in many tasks and applications. As shown in
Figure 4.2, it is clear that low-degree nodes suffer from higher average loss and lower average
accuracy in semi-supervised node classification. Such a performance disparity with respect
to degrees is even more alarming, given that node degrees of real-world graphs often follow a
long-tailed power-law distribution which means that a large fraction of nodes have low node
degrees. In other words, the overall performance of GCN might be primarily beneficial to a
few high-degree nodes (e.g., celebrities on a social media platform) but biased against a large
number of low-degree nodes (e.g., grassroot users on the same social media platform).

To date, only a few efforts have been made to improve the performance for low-degree
nodes. For example, DEMO-Net [64] randomly initializes degree-specific weight parameters,
in order to preserve the neighborhood structure for low-degree nodes. SL-DSGCN [14]
introduces a degree-specific weight generator based on recurrent neural network (RNN) and
a semi-supervised learning module to provide pseudo labels for low-degree nodes. Recently,
Tail-GNN [65] proposes a novel neighborhood translation mechanism to infer the missing local
context information of low-degree nodes. However, the fundamental cause of degree-related
unfairness in GCN largely remains unknown, which in turn prevents us from mitigating
such unfairness from its root. Furthermore, existing works introduce either additional
degree-specific weight parameters [14, 64] or additional operation on node representations
(e.g., forged node generator, neighborhood translation) [65], which significantly increase the
computational cost in both time and space and thus hinder the scalability of these models.

In order to tackle these limitations, we introduce the Rawlsian difference principle [69] to
mitigate degree-related unfairness in GCN. As one of the earliest definitions of fairness from
the theory of distributive justice [69], the Rawlsian difference principle aims to maximize
the welfare of the least fortunate group and achieves stability when the worst-off group
seeks to preserve its status quo. In the context of GCN, it requires a GCN model to have
balanced performance among the groups of nodes with the same degree when the Rawlsian

96

A
ve

ra
ge

 A
cc

u
ra

cy
A

ve
ra

ge
 L

o
ss

Degree

Degree

Figure 4.2: An illustrative example of the underrepresentation of low-degree nodes in semi-
supervised node classification. A 2-layer GCN is trained on the Amazon-Photo dataset. Blue
dots refers to the average loss and average accuracy of a specific degree group (i.e., the set of
nodes with the same degree) in the top and bottom figures, respectively. Black lines are the
regression lines of the blue dots in each figure. For visualization clarity, we only consider the
degree groups that contain more than five nodes.

difference principle is in its stability. Given its essential role in training the GCN through
backpropagation, we focus our analysis on the gradients of weight matrices of GCN. In
particular, we establish the mathematical equivalence between the gradient of the weight
matrix in a graph convolution layer and a weighted summation over the influence matrix of
each node, weighted by its corresponding node degree in the input of GCN. This analysis not
only reveals the root cause of degree-related unfairness in GCN, but also naturally leads to two
new methods to mitigate the performance disparity with respect to node degrees, including
(1) a pre-processing method named RawlsGCN-Graph that precomputes a doubly stochastic
normalization of the input adjacency matrix to train the GCN and (2) an in-processing
method named RawlsGCN-Grad that normalizes the gradient so that each node will have
an equal importance in computing the gradients of weight matrices.

The main contributions of this work are summarized as follows.

• Problem. To our best knowledge, we are the first to introduce the Rawlsian difference
principle to GCN so as to mitigate the degree-related unfairness.

• Analysis. We reveal the mathematical root cause of the degree-related unfairness in
GCN.

• Algorithms. We develop two easy-to-implement methods to mitigate the degree bias,
with no need to change the existing GCN architecture or introduce additional parame-
ters.

97

Table 4.8: Table of symbols in RawlsGCN.

Symbol Definition
A a matrix
AT transpose of matrix A
u a vector
G a graph
V a set of nodes
J(·) objective function
σ(·) activation function
X node feature matrix
H(l) node representations at l-th layer
W(l) weight matrix at l-th layer
L number of graph convolution layers
dl hidden dimension of l-th layer

deg(u) degree of node u

• Evaluations. We perform extensive empirical evaluations on real-world graphs, which
demonstrate that our developed methods (1) achieve comparable accuracy with the
vanilla GCN, (2) significantly decrease the degree bias, and (3) take almost the same
training time as the vanilla GCN. Surprisingly, by mitigating the bias of low-degree
nodes, our methods can sometimes improve the overall classification accuracy by a
significant margin.

4.2.1 Preliminaries and Problem Definition

In this part, we first introduce the main symbols used throughout this work in Table 4.8.
Then we present a brief review on the Graph Convolutional Network (GCN) and the Rawlsian
difference principle. Finally, we formally define the problem of enforcing the Rawlsian
difference principle on GCN.

In RawlsGCN, unless otherwise specified, we denote matrices with bold upper-case letters
(i.e., A), vectors with bold lower-case letters (i.e., x), and scalars with italic lower-case letters
(i.e., c). We use rules similar to NumPy in Python for matrix and vector indexing. A [i, j]

represents the entry of matrix A at the i-th row and the j-th column. A [i, :] and A [:, j]

represent the i-th row and the j-th column of matrix A, respectively. We use superscript T

to represent the transpose of a matrix, i.e., AT is the transpose of matrix A.
Preliminaries. Here, we briefly review the Graph Convolutional Network and introduce the
Rawlsian difference principle.
A – Graph Convolutional Network (GCN). We denote a graph as G = {VG,A,X} where VG

98

is the set of n nodes in the graph (i.e., n = |VG|), A is the n × n adjacency matrix, and
X ∈ Rn×d0 is the node feature matrix.

GCN is a typical graph neural network model that contains a stack of graph convolution
layers. Based on the first-order Chebyshev polynomial, the graph convolution layer learns
the latent node representations through the message-passing mechanism in two major steps.
First, each node in the graph aggregates its own representation with the representations of
its one-hop neighbors. Then, the aggregated representations are transformed through a fully-
connected layer. Mathematically, for the l-th graph convolution layer, denoting its output
node representations as H(l) (we assume H(0) = X for notational consistency), it computes the
latent representation with H(l) = σ(ÂH(l−1)W(l)),∀l ∈ {1, . . . , L} where σ (·) is the nonlinear
activation function, W(l) ∈ Rdl−1×dl is the weight matrix, and Â = D̃− 1

2 (A+ I) D̃− 1
2 is the

renormalized graph Laplacian with D̃ being the diagonal degree matrix of A+ I.
B – The Rawlsian difference principle. The Rawlsian difference principle is one of the major
aspects of the equality principle in the theory of distributive justice by John Rawls [69].
The difference principle achieves equality by maximizing the welfare of the worst-off groups.
When the Rawlsian difference principle is in its stability, the performance of all groups
are balanced since there is no worst-off group whose welfare should be maximized, and all
groups preserve their status quo. For a machine learning model that predicts task-specific
labels for each data sample, the welfare is often defined as the predictive accuracy of the
model [10, 200]. We denote (1) D = {D1, . . . ,Dh} as a dataset that can be divided into
h different groups, (2) J (D,Y, θ) as the task-specific loss function that the model with
parameters θ aims to minimize where Y is the model output, and (3) U (·, θ) as the utility
function that measures the predictive accuracy over a set of samples using the model with
parameters θ. The Rawlsian difference principle can be mathematically formulated as

minθ Var ({U (Di, θ) |i = 1, . . . , h}) s.t. θ = argmin J (D,Y, θ) (4.36)

where Var ({U (Di, θ) |i = 1, . . . , h}) calculates the variance of the utilities of the groups
{D1, . . . ,Dh}.
Problem definition. Despite superior performance of GCN in many tasks, GCN is often
biased towards benefiting high-degree nodes. Following the overarching difference principle
by John Rawls, we view the inconsistent predictive accuracy of GCN for high-degree and
low-degree nodes as a distributive justice problem. However, directly enforcing the Rawlsian
difference principle (Equation (4.36)) is non-trivial for two major reasons. First (C1), in many
real-world applications, there could be multiple utility measures of interest. For example, in
a classification task, an algorithm administrator might be interested in different measures like

99

the classification accuracy, precision, recall, and F1 score. Even if only one utility measure is
considered, it is likely that the measure itself is non-differentiable, which conflicts with the
end-to-end training paradigm of GCN. Second (C2), it is hard to decide whether a node is
low-degree or high-degree by a clear threshold of degree value. A bad choice of the threshold
value could even introduce more bias in calculating the average utilities. For example, if
we set the threshold to be too large, the group of low-degree nodes might contain relatively
high-degree nodes on which GCN achieves high utility. Then its average utility will increase
by including these relatively high-degree nodes. In this case, even when the GCN balances
the utilities between the groups of low-degree nodes and high-degree nodes, many nodes with
relatively low degrees still suffer from the issue of low predictive accuracy.

To address the first challenge (C1), we replace the utility function U with the loss function
J as a proxy measure of predictive accuracy. The intuition lies in the design of the end-to-end
training paradigm of GCN, in which we minimize the loss function in order to maximize the
predictive accuracy of GCN. Thus, we aim to achieve a balanced loss in the stability of the
Rawlsian difference principle. As for the second challenge (C2), instead of setting a hard
threshold to split the groups of low-degree nodes and high-degree nodes, we split the node
set V = ∪degmax

i=1 Vi to a maximum of degmax degree groups where Vi refers to the set of nodes
whose degrees are equal to i. With that, we formally define the problem of enforcing the
Rawlsian difference principle on GCN as follows.

Problem 4.4. Enforcing the Rawlsian difference principle on GCN.

Input: (1) an undirected graph G = {VG,A,X}, (2) an L-layer GCN with the set of weights
θ, and (3) a task-specific loss function J (G,Y, θ) where Y is the model output.
Output: a well-trained GCN that (1) minimizes the task specific loss J (G,Y, θ) given the
input graph G and (2) achieves a balanced loss for all degree groups Vi (i = 1, . . . , degmax).

4.2.2 Methodology

In this part, we present a family of algorithms, namely RawlsGCN, to enforce the
Rawlsian difference principle on GCN. We first present analysis on the source of degree-
related unfairness, which turns out to be rooted in the gradient of weight parameters in
the GCN. Then we discuss how to compute doubly stochastic matrix, which is the key to
mitigate the degree-related unfairness. Based on that, we present a pre-processing method
(RawlsGCN-Graph) and an in-processing method (RawlsGCN-Grad) to solve Problem 4.4.
Source of unfairness. The key to solving Problem 4.4 is to understand why the loss of
a GCN varies among nodes with different degrees after training. Since the key component

100

in training a GCN is the gradient matrix of the weight parameters with respect to the loss
function, we seek to understand the root cause of such degree-related unfairness by analyzing
it mathematically. In this section, our detailed analysis (Theorem 4.1) reveals the following
fact: in a graph convolution layer, the gradient matrix ∂J

∂W
of the loss function J with respect

to the weight parameter W is equivalent to a weighted summation of the influence matrix of
each node,28 weighted by its degree in input adjacency matrix Â.

Theorem 4.1. (Source of degree unfairness). Suppose we have an input graph G =

{VG,A,X}, the renormalized graph Laplacian Â = D̃− 1
2 (A+ I) D̃− 1

2 , a nonlinear acti-
vation function σ (·), and an L-layer GCN that minimizes a task-specific loss function J . For
any l-th hidden graph convolution layer (∀l ∈ {1, . . . , L}), the gradient of the loss function J
with respect to the weight parameter W(l) is a linear combination of the influence of each
node weighted by its degree in the renormalized graph Laplacian.

∂J

∂W(l)
=

n∑
j=1

degÂ (j) I
(row)
j =

n∑
i=1

degÂ (i) I
(col)
i (4.37)

where degÂ (i) is the degree of node i in the renormalized graph Laplacian Â, I(row)
j is the

row-wise influence matrix of node j of the form
(
H(l−1) [j, :]

)T
Ei∼pN̂ (j)

[
∂J

∂E(l)[i,:]

]
, I(col)

i is the

column-wise influence matrix of node i of the form
(

Ej∼pN̂ (i)

[
H(l−1) [j, :]

])T
∂J

∂E(l)[i,:]
, H(l−1)

is the input node embeddings of the hidden layer, and E(l) = ÂH(l−1)W(l) is the node
embeddings before the nonlinear activation.

Proof. To compute the derivative of the objective function J with respect to the weight W(l)

in the l-th graph convolution layer, by the graph convolution H(l) = σ(ÂH(l−1)W(l)) and the
chain rule of matrix derivative, we have

∂J

∂W(l) [i, j]
=

n∑
a=1

dl∑
b=1

∂J

∂H(l) [a, b]

∂H(l) [a, b]

∂W(l) [i, j]
(4.38)

where dl is the number of columns in H(l). To compute Equation (4.38), a key term is
∂H(l)[a,b]

∂W(l)[i,j]
. Denoting σ′ as the derivative of the activation function σ, by the graph convolution,

we get

∂H(l) [a, b]

∂W(l) [i, j]
=
∂σ
(
(ÂH(l−1)W(l)) [a, b]

)
∂(ÂH(l−1)W(l)) [a, b]

∂(ÂH(l−1)W(l)) [a, b]

∂W(l) [i, j]

= σ′
(
(ÂH(l−1)W(l)) [a, b]

)
(ÂH(l−1)) [a, i] 1 [b = j]

(4.39)

28We use J to represent J (G,Y, θ) for notational simplicity.

101

Combining Equations (4.38) and (4.39), we have

∂J

∂W(l) [i, j]
=
∑
a

(
ÂH(l−1)

)T
[i, a]

(
∂J

∂H(l)
◦ σ′(ÂH(l−1)W(l))

)
[a, j]

=
(
ÂH(l−1)

)T
[i, :]

(
∂J

∂H(l)
◦ σ′(ÂH(l−1)W(l))

)
[:, j]

(4.40)

where ◦ represents the element-wise product. Writing Equation (4.40) into matrix form, we
have

∂J

∂W(l)
= (H(l−1))T ÂT

(
∂J

∂H(l)
◦ σ′(ÂH(l−1)W(l))

)
(4.41)

Let E(l) = ÂH(l−1)W(l) denote the node embeddings before the nonlinear activation, i.e.,
H(l) = σ(E(l)). By the chain rule of matrix derivative, we have ∂J

∂E(l) =
∂J

∂H(l) ◦σ′(ÂH(l−1)W(l)).
Then Equation (4.41) can be written as29

∂J

∂W(l)
= (H(l−1))T ÂT ∂J

∂E(l)
(4.42)

To analyze the influence of each node on the gradient ∂J
∂W(l) , we factorize Equation (4.42)

as follows.
∂J

∂W(l)
=

n∑
i=1

n∑
j=1

ÂT [i, j]
(
H(l−1) [i, :]

)T ∂J

∂E(l) [j, :]
(4.43)

Denoting the distribution pN̂ (i) over the neighborhood of node i in the renormalized graph
Laplacian Â such that pN̂ (i)(j) ∝ Â [i, j] = Â[j, i], ∀j ∼ pN̂ (i), we can re-write Equation (4.43)
as

∂J

∂W(l)
=

n∑
j=1

degÂ (j)
(
H(l−1) [j, :]

)T
Ei∼pN̂ (j)

[
∂J

∂E(l) [i, :]

]

=
n∑

i=1

degÂ (i)
(

Ej∼pN̂ (i)

[
H(l−1) [j, :]

])T ∂J

∂E(l) [i, :]

(4.44)

where degÂ (i) =
∑n

i=1 Â [i, j] =
∑n

i=1 Â [j, i] is the degree of node i in the renormalized
graph Laplacian Â. We define the row-wise influence matrix I

(row)
j of a node j and the

column-wise influence matrix I
(col)
i of a node i as follows.

I
(row)
j = (H [j, :])T Ei∼pN̂ (j)

[
∂J

∂E(l) [i, :]

]
I
(col)
i =

(
Ej∼pN̂ (i)

[H [j, :]]
)T ∂J

∂E(l) [i, :]
(4.45)

Then Equation (4.44) can be written as the weighted summation over the (row-/column-wise)
29A simplified result on linear GCN without nonlinear activation is shown in [201], while our result

(Equation (4.42)) generalizes to GCN with arbitrary differentiable nonlinear activation function.

102

Cora-ML

Coauthor-Physics Amazon-Computers Amazon-Photo

Coauthor-CSCiteseer

Degree in 𝐀

Degree in 𝐀 Degree in 𝐀

Degree in 𝐀 Degree in 𝐀

Degree in 𝐀

D
e

gr
e

e
 in

 𝐀

D
e

gr
e

e
 in

 𝐀
D

e
gr

e
e

 in
 𝐀

D
e

gr
e

e
 in

 𝐀

D
e

gr
e

e
 in

 𝐀

D
e

gr
e

e
 in

 𝐀

Figure 4.3: Node degrees in the original adjacency matrix A (x-axis) vs. the corresponding
node degrees in the renormalized graph Laplacian Â (y-axis).

influence matrix of each node, weighted by its corresponding degree in the renormalized
graph Laplacian Â.

∂J

∂W(l)
=

n∑
j=1

degÂ (j) I
(row)
j =

n∑
i=1

degÂ (i) I
(col)
i (4.46)

QED.

Remark. By Theorem 4.1, the gradient ∂J
∂W(l) is essentially equivalent to a linear combination

of the influence matrix of each node in the graph, with the corresponding node degree degÂ
in the renormalized graph Laplacian Â serving as the importance of the influence matrix.
As a consequence, as long as the node degrees are not equal to a constant (e.g., 1), the
gradient ∂J

∂W(l) will favor the nodes with higher degrees in Â. It is noteworthy that, even
if Â = D̃− 1

2 (A+ I) D̃− 1
2 is symmetrically normalized, such normalization only guarantees

the largest eigenvalue of Â to be 1, whereas the degrees in Â are not constant as shown in
Figure 4.3. From the figure, we have two key observations: (1) the node degrees in Â are not
equal among all nodes (y-axis); and (2) there is a positive correlation between a node degree
in A (x-axis) and a node degree in Â (y-axis). Putting everything together, it means that
the higher the node degree in A, the more importance it has on the gradient of the weight
matrix. This shows exactly why the vanilla GCN favors high-degree nodes while being biased
against low-degree nodes.
Doubly stochastic matrix computation. In order to mitigate the node degree-related
unfairness, the key idea is to normalize the importance of influence matrices (i.e., the node
degrees in Â) to 1 in Equation (4.46), such that each node will have equal importance in
updating the weight parameters. To achieve that, Equation (4.46) naturally requires that

103

the rows and columns of Â sum up to 1, which is a doubly stochastic matrix.
Computing the doubly stochastic matrix is non-trivial. To achieve that, we adopt the

Sinkhorn-Knopp algorithm, which is an iterative algorithm to balance a matrix into doubly
stochastic form [202]. Mathematically speaking, given a non-negative n× n square matrix
A, it aims to find two n × n diagonal matrices D1 and D2 such that D1AD2 is doubly
stochastic. The intuition of the Sinkhorn-Knopp algorithm is to learn a sequence of matrices
whose rows and columns are alternatively normalized. Mathematically, defining r0 = c0 = 1

to be the column vectors of all 1s and x−1 to be the operator for element-wise reciprocal,
i.e., x−1 [i] = 1/x [i], the Sinkhorn-Knopp algorithm alternatively calculates the following
equations.

ck+1 =
(
AT rk

)−1
rk+1 = (Ack+1)

−1 (4.47)

If the algorithm converges after K iterations, the doubly stochastic form of A is P =

diag(rK)Adiag (cK) where diag (rK) and diag (cK) diagonalize the column vectors rK and cK

into diagonal matrices. The time and space complexities of computing the doubly stochastic
matrix P is linear with respect to the size of input matrix A.

Lemma 4.4. (Time and space complexities of the Sinkhorn-Knopp algorithm). Let A be an
n× n non-negative matrix with m non-zero elements, the time complexity of the Sinkhorn-
Knopp algorithm is O (K (m+ n)) where K is the number of iterations to convergence. It
takes an additional O (m+ n) space.

Proof. In the k-th iteration (where 1 ≤ k ≤ K) of the Sinkhorn-Knopp algorithm, it takes
O (m) time to compute AT rk and Ack+1. Then it takes O (n) time for element-wise reciprocal.
Thus, the time complexity of an iteration is O (m+ n). Since the algorithm takes K iterations
to converge, the overall time complexity is O (K (m+ n)). Regarding the space complexity,
it takes an additional O (n) space to store vectors ck and rk in the k-th iteration and an
additional O (m) time to store the resulting doubly stochastic form of matrix A. Thus, the
overall space complexity is O (m+ n). QED.

Next, we prove the convergence of the Sinkhorn-Knopp algorithm in our setting. To this
end, we first present the definition of the diagonal of a matrix corresponding to a column
permutation.

Definition 4.3. (Diagonal of a matrix corresponding to a column permutation [202]). Let
A be an n× n square matrix and δ be a permutation over the set {1, . . . , n}.

(1) The sequence of elements A [1, δ (1)] ,A [2, δ (2)] , . . . ,A [n, δ (n)] is called the diagonal
of A corresponding to δ.

104

(2) If δ is the identity, the diagonal is the main diagonal of A.

(3) If A [i, δ (i)] > 0,∀i, the diagonal is a positive diagonal.

We then provide the formal definition of the support of a matrix in Definition 4.4.

Definition 4.4. (Support of a non-negative square matrix [202]). Let A be an n × n

non-negative matrix. A is said to have support if A contains a positive diagonal. A is said
to have total support if A ̸= 0 and if every positive element of A lies on a positive diagonal,
where 0 is the zero matrix of the same size as A.

By Definitions 4.3 and 4.4, Sinkhorn and Knopp [202] proved the following result.

Theorem 4.2. (Sinkhorn-Knopp theorem [202]). If A is an n× n non-negative matrix, the
Sinkhorn-Knopp algorithm converges and finds the unique doubly stochastic matrix of the
form D1AD2 if and only if A has total support, where D1 and D2 are diagonal matrices.

Proof. Omitted. QED.

Based on Theorem 4.2, we give Lemma 4.5 which says that the Sinkhorn-Knopp algorithm
always converges in our setting and finds the doubly stochastic matrix with respect to the
renormalized graph Laplacian Â.

Lemma 4.5. (Convergence of the Sinkhorn-Knopp algorithm on renormalized graph Lapla-
cian). Given an adjacency matrix A, if Â = D̃− 1

2 (A+ I) D̃− 1
2 with D̃ as the degree matrix

of A+I, the Sinkhorn-Knopp algorithm always converges to find the unique doubly stochastic
form of Â.

Proof. The key idea is to prove that Â has total support. Let degÂ (i) be the degree
of node i in Â. It is trivial that Â has support because its main diagonal is positive.
In order to prove that Â has total support, for any undirected edge A [i, j], we define a
column permutation δij as a permutation that satisfies (1) δij (i) = j, (2) δij(j) = i, and (3)
δij(k) = k, ∀k ̸= i and k ̸= j. Then, for any edge (i, j), by applying the permutation δij,
the diagonal of Â corresponding to δij is a positive diagonal due to the non-negativity of Â.
Thus, Â has total support because all positive elements of Â lie on positive diagonals, which
completes the proof. QED.

Lemma 4.5 guarantees that we can always calculate the doubly stochastic form of Â using
the Sinkhorn-Knopp algorithm, in order to ensure the equal importance of node influence in
calculating the gradient of the weight parameter ∂J

∂W(l) in the l-th layer.

105

RawlsGCN algorithms. If the gradient ∂J
∂W(l) is computed using the doubly stochastic

matrix ÂDS with respect to the renormalized graph Laplacian Â, it is fair with respect to
node degrees because all nodes will have equal importance in determining the gradient, i.e.,
their degrees in ÂDS are all equal to 1. Thus, a fair gradient with respect to node degrees
can be calculated using Equation (4.42) as follows.

∂J

∂W(l) fair
=
(
H(l−1)

)T
ÂT

DS
∂J

∂E(l)
(4.48)

where E(l) = ÂH(l−1)W(l).
Observing the computation of fair gradient in Equation (4.48), it naturally leads to two

methods to mitigate the degree-related unfairness, including (1) a pre-processing method
named RawlsGCN-Graph which utilizes the doubly stochastic matrix ÂDS as the input
adjacency matrix and (2) an in-processing method named RawlsGCN-Grad that normalizes
the gradient in GCN with Equation (4.48).
A – Method #1: Pre-processing with RawlsGCN-Graph. If we are allowed to modify
the input of the GCN whereas the model itself are fixed, we can precompute the input
renormalized graph Laplacian Â into its doubly stochastic form ÂDS and feed ÂDS as the
input of the GCN. With that, the gradient computed using Equation (4.42) is equivalent to
Equation (4.48). As a consequence, the Rawlsian difference principle is naturally ensured
since all nodes in ÂDS have the same degree. Given a graph G = {V ,A,X} and an L-layer
GCN, RawlsGCN-Graph adopts the following 3-step strategy.

1. Precompute Â = D̃− 1
2 (A+ I) D̃− 1

2 where D̃ is the diagonal degree matrix of A+ I.

2. Precompute ÂDS by applying the Sinkhorn-Knopp algorithm on Â.

3. Input ÂDS and X to the GCN for model training.

B – Method #2: In-processing with RawlsGCN-Grad. If we have access to the model or the
model parameters while the input data is fixed, we can precompute the doubly stochastic
matrix ÂDS and use ÂDS to compute the fair gradient by Equation (4.48). Then training
GCN with the fair gradient ensures the Rawlsian difference principle because nodes of different
degrees share the same importance in determining the gradient for gradient descent-based
optimization. Given a graph G = {V ,A,X} and an L-layer GCN, the general workflow of
RawlsGCN-Grad is as follows.

1. Precompute Â = D̃− 1
2 (A+ I) D̃− 1

2 where D̃ is the diagonal degree matrix of A+ I.

2. Precompute ÂDS by applying the Sinkhorn-Knopp algorithm on Â.

106

3. Input Â and X to the GCN for model training.

4. For each graph convolution layer l ∈ {1, . . . , L}, compute the fair gradient ∂J
∂W(l) fair

for
each weight matrix W(l) using Equation (4.48).

5. Update the model parameters W(l) using the fair gradient ∂J
∂W(l) fair

.

6. Repeat steps 4 – 5 until the model converges.

An advantage of both RawlsGCN-Graph and RawlsGCN-Grad is that no additional
time complexity will be incurred during the learning process of GCN, since we can precompute
and store ÂDS. For RawlsGCN-Graph, ÂDS has the same number of non-zero elements
as Â because computing ÂDS is essentially rescaling each non-zero element in Â. Thus,
there is no additional time cost during the graph convolution operation with ÂDS. For
RawlsGCN-Grad, computing the fair gradient with Equation (4.48) enjoys the same time
complexity as the vanilla gradient computation (Equation (4.42)) because ÂDS and Â has
exactly the same number of non-zero entries. Thus, there is no additional time cost in
the big-O notation in optimizing the GCN parameters. In terms of the additional costs in
computing ÂDS, it bears a linear time and space complexities with respect to the number of
nodes and the number of edges in the graph as stated in Lemma 4.4.

4.2.3 Experimental Evaluation

In this section, we evaluate our developed RawlsGCN methods in the task of semi-
supervised node classification to answer the following questions:

• RQ1. How accurate are the RawlsGCN methods in node classification?

• RQ2. How effective are the RawlsGCN methods in debiasing?

• RQ3. How efficient are the RawlsGCN methods in time and space?

Experimental settings. We present the detailed experimental settings for RawlsGCN.
A – Hardware and software specifications. All datasets are publicly available. All codes
are programmed in Python 3.8.5 and PyTorch 1.9.0. All experiments are performed on a
Linux server with 2 Intel Xeon Gold 6240R CPUs at 2.40 GHz and 4 Nvidia Tesla V100
SXM2 GPUs with 32 GB memory. The source code of RawlsGCN can be found at
https://github.com/jiank2/rawlsgcn.
B – Dataset descriptions. We utilize six publicly available real-world networks for evaluation.
Their statistics, including the number of nodes, the number of edges, number of node features,

107

https://github.com/jiank2/rawlsgcn

Table 4.9: Statistics of datasets to evaluate RawlsGCN.

Dataset # Nodes # Edges # Features # Classes Median Deg.
Cora-ML 2,995 16,316 2,879 7 3
Citeseer 3,327 9,104 3,703 6 2

Coauthor-CS 18,333 163,788 6,805 15 6
Coauthor-Physics 34,493 495,924 8,415 5 10

Amazon-Computers 13,752 491,722 767 10 22
Amazon-Photo 7,650 238,162 745 8 22

number of classes, and the median of node degrees (Median Deg.), are summarized in
Table 4.9. For semi-supervised node classification, we use a fixed random seed to generate
the training/validation/test sets for each network. The training set contains 20 nodes per
class. The validation set and the test set contain 500 nodes and 1000 nodes, respectively.
C – Baseline methods. We compare RawlsGCN with several baseline methods, including
GCN [7], DEMO-Net [64], DSGCN [14], Tail-GNN [65], Adversarial Fair GCN (AdvFair) [47],
and REDRESS [59].30

• GCN [7] refers to the original Graph Convolutional Network (GCN) without fairness
considerations. In our experiments, we adopt the same architecture as in [7] but
increasing the hidden dimension to 64 for a fair comparison.

• DEMO-Net [64] uses multi-task graph convolution where each task learns degree-specific
node representations in order to preserve the degree-specific graph structure. We use
DEMO-Net with degree-specific weight function instead of hashing function due to its
higher classification accuracy and better stability. For a fair comparison, we remove
the components for order-free and seed-oriented representation learning as they are
irrelevant to fairness with respect to node degree.

• DSGCN [14] mitigates degree-related bias by degree-specific graph convolution, which
infers the degree-specific weights using a recurrent neural network (RNN). We use 2
degree-specific graph convolution layers in DSGCN with the same hidden dimension
settings as the vanilla GCN. We set the number of RNN cell to 10 (i.e., nodes with
degree larger than 10 will share the same degree-specific weight), which is consistent
with [14]. We set the activation function of the RNN cell to tanh function. For a fair
comparison, we only use the degree-specific graph convolution module (i.e., DSGCN in
[14]) for our experiments.

30We use the official PyTorch implementation of GCN, Tail-GNN, and REDRESS for experimental
evaluation. For DEMO-Net, we implement our own PyTorch version and consult with the original authors
for a sanity check. For DSGCN, we implement our own PyTorch version due to the lack of publicly available
implementation.

108

• Tail-GNN [65] learns robust embedding for low-degree nodes (i.e., tail nodes) in an
adversarial learning fashion with the novel neighborhood translation mechanism. It
first generates forged tail nodes from nodes with degree higher than a certain threshold
k. Then the neighborhood translation operation predicts the missing information of
tail nodes and forged tail nodes by a translation model learned from head nodes. After
that, a discriminator is applied to predict whether a node is head or tail based on the
node representations. In our experiments, we set k = 5 for forged tail nodes generation.
If a training node u has degree less than k, we do not generate the forged tail node
using this training node.

• Adversarial Fair GCN (AdvFair) is a variant of [47] which ensures group fairness
for graph embeddings in the compositional setting (i.e., for different combinations of
sensitive attributes). We set the node degree as the sensitive attribute, i.e., nodes of the
same degree form a demographic group. For a fair comparison, we compute the node
embeddings using 2 graph convolution layers with ReLU activation, each of which has
64 hidden dimension. The ‘filtered’ embeddings are computed by the filter, which is a
2-layer multi-layer perceptron (MLP) with 128 and 64 hidden dimensions, respectively.
The discriminator is a 2-layer MLP where the first layer contains 64 hidden dimensions
and the second layer predicts the sensitive attribute of each node. Both the filter and
the discriminator use leaky ReLU as the activation function. A multi-class logistic
regression is applied on the ‘filtered’ embeddings for node classification.

• REDRESS [59] ensures individual fairness of graph neural network (GNN) by optimizing
the similarity between the ranking lists of model input and output. In our experiments,
we set the backbone GNN model as the vanilla GCN model described above.

D – Evaluation metrics. We use cross entropy as the loss function in semi-supervised node
classification. To answer RQ1, we evaluate the accuracy of node classification (i.e., Acc. in
Table 4.10). For metrics in RQ2, we define the bias with respect to the Rawlsian difference
principle as the variance of degree-specific average cross entropy (i.e., AvgCE) to be consistent
with the definition of Problem 4.4. Mathematically, it is defined as

AvgCE (k) = E [{CE (u) ,∀ node u such that deg (u) = k}]
Bias = Var ({AvgCE (k) ,∀ node degree k})

(4.49)

where CE (u) and deg (u) are the cross entropy and the degree of node u, respectively. To
measure the efficiency (RQ3), we count the number of learnable parameters (# Param. in
Table 4.11), GPU memory usage in MB (Memory in Table 4.11), and training time in seconds.

109

Table 4.10: Effectiveness for node classification. Lower is better for bias (in gray). Higher is
better for accuracy (Acc., in percentage).

Method Cora-ML Citeseer Coauthor-CS

Acc. Bias Acc. Bias Acc. Bias
GCN 80.10± 0.812 0.392± 0.046 68.60± 0.341 0.353± 0.040 93.28± 0.194 0.075± 0.004

DEMO-Net 61.60± 0.687 0.181± 0.015 60.26± 0.408 0.315± 0.022 65.90± 0.583 0.164± 0.006
DSGCN 30.26± 5.690 8.003± 2.766 31.42± 3.257 6.887± 1.947 44.20± 7.155 1.460± 0.397

Tail-GNN 78.54± 0.582 0.503± 0.284 66.34± 0.009 0.655± 0.382 92.66± 0.196 0.052± 0.031
AdvFair 67.56± 2.594 10.01± 2.480 50.26± 6.277 3.146± 2.425 84.82± 2.254 12.26± 6.797

REDRESS 75.70± 0.620 0.955± 0.213 65.80± 0.518 0.944± 0.077 92.44± 0.233 0.028± 0.003
RawlsGCN-Graph (Ours) 76.96± 1.098 0.105± 0.012 69.34± 0.745 0.196± 0.013 92.52± 0.264 0.043± 0.002
RawlsGCN-Grad (Ours) 79.34± 1.247 0.232± 0.065 68.81± 0.462 0.283± 0.047 92.68± 0.240 0.058± 0.007

Method Coauthor-Physics Amazon-Computers Amazon-Photo

Acc. Bias Acc. Bias Acc. Bias
GCN 93.96± 0.367 0.023± 0.001 64.84± 0.641 0.353± 0.026 79.58± 1.507 0.646± 0.038

DEMO-Net 77.50± 0.566 0.084± 0.010 26.48± 3.455 0.456± 0.021 39.92± 1.242 0.243± 0.013
DSGCN 79.08± 1.533 0.262± 0.075 27.68± 1.663 1.407± 0.685 26.76± 3.387 0.921± 0.805

Tail-GNN OOM OOM 76.24± 1.491 1.547± 0.670 86.00± 2.715 0.471± 0.264
AdvFair 87.44± 1.132 0.892± 0.502 53.50± 5.362 4.395± 1.102 75.80± 3.563 51.24± 39.94

REDRESS 94.48± 0.172 0.019± 0.001 80.36± 0.206 0.455± 0.032 89.00± 0.369 0.186± 0.030
RawlsGCN-Graph (Ours) 94.06± 0.196 0.016± 0.000 80.16± 0.859 0.121± 0.010 88.58± 1.116 0.071± 0.006
RawlsGCN-Grad (Ours) 94.18± 0.306 0.021± 0.002 74.18± 2.530 0.195± 0.029 83.70± 0.672 0.186± 0.068

E – Detailed parameter settings. For all methods, we use a 2-layer GCN as the backbone model
with the hidden dimension as 64. We evaluate all methods on 5 different runs and report
their average performance. For the purpose of the reproducibility, the random seeds for these
5 runs are varied from 0 to 4. We use the Adam [182]optimizer to train all methods. Unless
otherwise specified, the default weight decay of the optimizer is set to 0.0005. Regarding the
learning rate, for RawlsGCN-Graph, RawlsGCN-Grad, and Adversarial Fair GCN, we
search the learning rate that achieves the highest average classification accuracy in the set of
{0.075, 0.05, 0.025, 0.01, 0.0075, 0.005, 0.0025}. For DSGCN, due to its long running time, we
search the learning rate in the set of {0.05, 0.025, 0.01, 0.005}. For REDRESS, we search the
best choice of α (see details in [59]) in the range of {10−5, 10−4, 10−3, 10−2, 10−1}. Regarding
the number of training epochs, we train RawlsGCN models for 100 epochs without early
stopping. For Adversarial Fair GCN, we train the model for 1000 epochs with a patience of
200 for early stopping. For DSGCN, due to long training time, we train the model for 200
epochs without early stopping, which is consistent with the settings in GCN. For all other
parameter settings for GCN, DEMO-Net, Tail-GNN, and REDRESS, we use the suggested
hyperparameters (including learning rate, weight decay, number of epochs, and early stopping
conditions) in the released source code.
Effectiveness results. The evaluation results are shown in Table 4.10. We do not report
the results of Tail-GNN for the Coauthor-Physics dataset due to the out-of-memory (OOM)
error. From the table, we can see that RawlsGCN-Graph and RawlsGCN-Grad are

110

y
=

A
vg

. A
cc

.
y

=
A

vg
. L

o
ss

x = Degree

x = Degree

𝒚 = −𝟎. 𝟎𝟏𝟑𝟖𝒙 + 𝟏. 𝟑𝟕𝟏𝟐

𝒚 = 0.00𝟑𝟒𝒙 + 𝟎. 𝟕𝟑𝟔𝟎

(a) GCN.

y
=

A
vg

. A
cc

.
y

=
A

vg
. L

o
ss

x = Degree

x = Degree

𝒚 = −𝟎. 𝟎𝟎𝟒𝟗𝒙 + 𝟎. 𝟖𝟑𝟑𝟏

𝒚 = 0.00𝟐𝟑𝒙 + 𝟎. 𝟖𝟐𝟐𝟎

(b) RawlsGCN-Graph.

y
=

A
vg

. A
cc

.
y

=
A

vg
. L

o
ss

x = Degree

x = Degree

𝒚 = −𝟎. 𝟎𝟏𝟑𝟏𝒙 + 𝟏. 𝟐𝟐𝟐𝟏

𝒚 = 0.00𝟏𝟗𝒙 + 𝟎. 𝟕𝟗𝟕𝟔

(c) RawlsGCN-Grad.

Figure 4.4: Visualization on how our developed RawlsGCN algorithms improve the perfor-
mance of low-degree nodes on the Amazon-Photo dataset. (a) shows the results for vanilla
GCN. (b) shows the results for RawlsGCN-Graph. (c) shows the results for RawlsGCN-
Grad. Similar to Figure 4.2, blue dots refer to the average loss (Avg. Loss) and average
accuracy (Avg. Acc.) of a specific degree group in the top and bottom figures, respectively.
Black lines are the regression lines of the blue dots in each figure. For a more clear visualiza-
tion, we only consider the degree groups which contain more than five nodes.

the only two methods that can consistently reduce the bias across all datasets. Though
REDRESS reduces bias more than our methods on the Coauthor-CS dataset, it bears a much
higher bias than our methods in other datasets. Surprisingly, on the Amazon-Computers and
Amazon-Photo datasets, RawlsGCN-Graph and RawlsGCN-Grad significantly improve
the overall classification accuracy by mitigating the bias of low-degree nodes. This is because,
compared with the vanilla GCN, the classification accuracy of low-degree nodes are increased
while the classification accuracy of high-degree nodes are largely retained, resulting in the
significantly improved overall accuracy.

In Figure 4.4, we visualize how RawlsGCN-Graph and RawlsGCN-Grad benefit the low-
degree nodes and balance the performance between low-degree nodes and high-degree nodes.
From the figure, we observe that both RawlsGCN-Graph (Figure 4.4b) and RawlsGCN-
Grad (Figure 4.4c) show lower average loss values and higher average classification accuracy
compared with GCN (Figure 4.4a). Moreover, to visualize how our methods balance the
performance between low-degree nodes and high-degree nodes, we perform linear regression
on the average loss and average accuracy with respect to node degree. From the figure, we
can see that the slopes of the regression lines for RawlsGCN-Graph and RawlsGCN-Grad
are flatter than the slopes of the regression line in GCN.
Efficiency results. We measure the memory and time consumption of all methods in
Table 4.11. In the table, GCN (100 epochs) and GCN (200 epochs) denote the GCN
models trained with 100 epochs and 200 epochs, respectively. From the table, we have
two key observations. (1) Compared with other baseline methods, RawlsGCN-Graph and

111

Table 4.11: Efficiency of training a 2-layer GCN on the Amazon-Photo dataset. Lower is
better for all columns. GPU memory usage (Memory) is measured in MB. Training time is
measured in seconds.

Method # Param. Memory Training Time
GCN (100 epochs) 48, 264 1, 461 13.335
GCN (200 epochs) 48, 264 1, 461 28.727

DEMO-Net 11, 999, 880 1, 661 9158.5
DSGCN 181, 096 2, 431 2714.8

Tail-GNN 2, 845, 567 2, 081 94.058
AdvFair 89, 280 1, 519 148.11

REDRESS 48, 264 1, 481 291.69
RawlsGCN-Graph (Ours) 48, 264 1, 461 11.783
RawlsGCN-Grad (Ours) 48, 264 1, 461 12.924

Table 4.12: Ablation study of different matrix normalization techniques. Lower is better for
bias (i.e., the gray column). Higher is better for accuracy (Acc.).

Method Normalization Cora-ML Citeseer Coauthor-CS

Acc. Bias Acc. Bias Acc. Bias

RawlsGCN-Graph

Row 79.74± 0.320 0.098± 0.004 69.18± 0.595 0.240± 0.013 92.78± 0.331 0.052± 0.002
Column 76.78± 1.360 0.260± 0.330 69.12± 0.781 0.243± 0.093 92.44± 0.609 0.049± 0.012

Symmetric 77.04± 1.606 0.109± 0.015 69.20± 0.735 0.196± 0.014 92.56± 0.120 0.042± 0.001
Doubly Stochastic 76.98± 1.098 0.105± 0.012 69.34± 0.745 0.196± 0.013 92.52± 0.264 0.043± 0.002

RawlsGCN-Grad

Row 79.78± 0.349 0.230± 0.017 68.64± 0.215 0.274± 0.036 92.92± 0.440 0.069± 0.006
Column 79.94± 0.599 0.253± 0.077 68.48± 0.204 0.302± 0.049 92.78± 0.407 0.058± 0.006

Symmetric 79.68± 0.458 0.199± 0.008 68.68± 0.248 0.286± 0.042 93.00± 0.341 0.063± 0.006
Doubly Stochastic 79.34± 1.247 0.232± 0.065 68.81± 0.462 0.283± 0.047 92.68± 0.240 0.058± 0.007

Method Normalization Coauthor-Physics Amazon-Computers Amazon-Photo

Acc. Bias Acc. Bias Acc. Bias

RawlsGCN-Graph

Row 94.36± 0.488 0.013± 0.000 78.54± 1.125 0.092± 0.013 87.98± 0.791 0.076± 0.006
Column 93.98± 0.508 0.016± 0.003 78.18± 4.354 0.196± 0.106 88.32± 2.315 0.138± 0.112

Symmetric 93.98± 0.248 0.016± 0.000 80.22± 0.803 0.126± 0.012 89.12± 0.945 0.071± 0.005
Doubly Stochastic 94.06± 0.196 0.016± 0.000 80.16± 0.859 0.121± 0.010 88.58± 1.116 0.071± 0.006

RawlsGCN-Grad

Row 94.08± 0.204 0.027± 0.001 63.46± 1.376 0.453± 0.039 82.86± 1.139 0.852± 0.557
Column 94.26± 0.294 0.020± 0.002 75.48± 1.273 0.218± 0.033 84.96± 1.235 0.221± 0.064

Symmetric 94.30± 0.346 0.021± 0.001 66.42± 0.584 0.353± 0.021 82.92± 1.121 0.744± 0.153
Doubly Stochastic 94.18± 0.306 0.021± 0.002 74.18± 2.530 0.195± 0.029 83.70± 0.672 0.186± 0.068

RawlsGCN-Grad have fewer number of parameters to learn and are much more efficient in
memory consumption. (2) RawlsGCN-Graph and RawlsGCN-Grad bear almost the same
training time as the vanilla GCN with 100 epochs of training (i.e., GCN (100 epochs)) while
all other baseline methods significantly increase the training time.
Ablation study. To evaluate the effectiveness of the doubly stochastic normalization on
the renormalized graph Laplacian, we compare it with three other normalization methods,
including row normalization, column normalization, and symmetric normalization. From
Table 4.12, we observe that, although row normalization and symmetric normalization
outperform the doubly stochastic normalization in some cases, it can also increase the bias in
other cases, e.g., Amazon-Computers and Amazon-Photo. Meanwhile, for Amazon-Photo

112

dataset, while all these normalization methods lead to similar accuracy (within 2% difference),
doubly stochastic normalization leads to a much smaller bias than others. All in all, the
doubly stochastic normalization is the best one that (1) consistently mitigates bias for both
RawlsGCN-Graph and RawlGCN-Grad and (2) achieves good balance between accuracy and
fairness.

Table 4.13: Pros and cons of RawlsGCN-Graph and RawlsGCN-Grad.

RawlsGCN-Graph RawlsGCN-Grad

Pros

• No need to modify the GNN model.

• Higher accuracy on graph with
more diverse degree empirically.

• Smaller bias than RawlsGCN-
Grad.

• Higher accuracy on graph with less
diversity in node degree empiri-
cally.

• Able to work in use cases like dis-
tributed training of large graphs.

Cons

• Lower accuracy on smaller graph/-
graph with less diversity in node
degree empirically.

• May be unable to work in use
cases like distributed training on
extremely large graphs.

• Slightly higher bias than
RawlsGCN-Graph.

• Need to change the optimizer of
model.

4.2.4 Discussion: RawlsGCN-Graph vs. RawlsGCN-Grad

Finally, we discuss the advantages and disadvantages of RawlsGCN. We list the pros
and cons of RawlsGCN in Table 4.13. Moreover, though RawlsGCN-Graph and Rawls-

GCN-Grad have the same pre-processing procedure in the setting of fixed input graph, we
believe that the general idea of normalizing the gradient in RawlsGCN-Grad is useful
for distributed training of extremely large graphs, in which a local subgraph of each node
is often sampled using a (non-)deterministic sampler for feature aggregation and gradient
computation. In this setting, the input graph is not deterministic during training and often
asymmetric. Consequently, it is often impossible to precompute the doubly stochastic matrix
for RawlsGCN-Graph. However, we can still use the sampling distribution of local subgraphs
to calculate the normalized gradient using Equations (4.45) and (4.46).

113

4.3 GROUP FAIRNESS WITH MULTIPLE SENSITIVE ATTRIBUTES

The increasing amount of data and computational power have empowered machine learning
algorithms to play crucial roles in automated decision-making for a variety of real-world
applications, including credit scoring [203], criminal justice [204], and healthcare analysis [205].
As the application landscape of machine learning continues to broaden and deepen, so does
the concern regarding the potential, often unintentional, bias it could introduce or amplify.
For example, recent media coverage has revealed that a well-trained image generator could
turn a low-resolution picture of a black man into a high-resolution image of a white man
due to the skewed data distribution that causes the model to disfavor the minority group;31

and another article highlighted an automated credit card application system assigning a
dramatically higher credit limit to a man than to his female partner, even though his partner
has a better credit history.32

As such, algorithmic fairness, which aims to mitigate unintentional bias caused by auto-
mated learning algorithms, has become increasingly important. To date, researchers have
proposed a variety of fairness notions [40, 41]. Among them, one of the most fundamental
notions is group fairness.33 Generally speaking, to ensure group fairness, the first step is to
partition the entire population into a few demographic groups based on a pre-defined sensitive
attribute (e.g., gender). Then the fair learning algorithm will enforce parity of a certain
statistical measure among those demographic groups. Group fairness can be instantiated
with many statistical notions of fairness. Statistical parity [206] enforces the learned classifier
to accept equal proportion of population from the pre-defined majority group and minority
group. Likewise, disparate impact [40] ensures the acceptance rate for the minority group
should be no less than four-fifth of that for the group with the highest acceptance rate,
which is analogous to the famous ‘four-fifth’ rule in the legal support area [207]. In addition,
equalized odds and equal opportunity [186] are used to enforce the classification accuracies to
be equal across all demographic groups conditioned on ground-truth outcomes or positively
labeled populations, respectively. The vast majority of the existing works in group fairness
primarily focus on debiasing with respect to a single sensitive attribute. However, it is quite
common for multiple sensitive attributes (e.g., gender, race, marital status, etc.) to co-exist
in a real-world application. We ask: would a debiasing algorithm designed to ensure the group
fairness for a particular sensitive attribute (e.g., marital status) unintentionally amplify the

31https://shorturl.at/fHIQ5
32https://www.nytimes.com/2019/11/10/business/Apple-credit-card-investigation.html
33An orthogonal work in algorithmic fairness is individual fairness. Although it promises fairness by

‘treating similar individuals similarly’ in principle, it is often hard to be operationalized in practice due to its
strong assumption on the distance metrics and data distributions.

114

https://shorturl.at/fHIQ5
https://www.nytimes.com/2019/11/10/business/Apple-credit-card-investigation.html

male

female

orange greenaccepted

accepted

accepted

accepted

Figure 4.5: An illustrative example of bias in job application classification when considering
multiple sensitive attributes. Rows indicate gender (e.g., male vs. female) and columns
indicate race (e.g., orange vs. green).34Boxed individuals receive job offers. If we consider
gender or race alone, statistical parity is enforced due to the equal acceptance rate. However,
when considering gender and race (i.e., forming finer-grained gender-race groups), the
classification result is biased in the fine-grained gender-race groups. This is because the
acceptance rates in two fine-grained groups (i.e., male-green group and female-orange) are
lower than that of the two other fine-grained groups (i.e., male-orange and female-green).

group bias with respect to another sensitive attribute (e.g., gender)? If so, how can we ensure
a fair learning outcome with respect to all sensitive attributes of concern simultaneously?

Existing works for answering these questions [40, 47, 206, 208] have two major limitations.
The first limitation is that some existing works could only debias multiple distinct sensitive
attributes [47], which fails to mitigate bias on the fine-grained groups formed by multiple
sensitive attributes. Figure 4.5 provides an illustrative example of the difference between
fairness with respect to multiple distinct sensitive attributes and fairness among fine-grained
groups of multiple sensitive attributes. The second limitation is that the optimization
problems behind some existing works are often subject to surrogate constraints of statistical
parity [40, 206, 208] instead of directly optimizing statistical parity itself, resulting in
unstable performance on bias mitigation unless the learned models could perfectly model the
relationship between the training data and the ground-truth outcomes.

In this paper, we tackle these two limitations by studying the problem of information-
theoretic intersectional fairness (InfoFair), which aims to directly enforce statistical parity on
multiple sensitive attributes simultaneously. Though our focused fairness notion is statistical
parity, the developed method can be generalized to other statistical fairness notions (e.g.,
equalized odds and equal opportunity) with minor modifications. The key idea in solving the
InfoFair problem is to consider all sensitive attributes of interest as a vectorized sensitive
attribute in order to partition the demographic groups and then minimize the dependence
between the learning outcomes and this vectorized attribute. More specifically, we measure

34We use imaginary race groups to avoid potential offenses.

115

Table 4.14: Table of symbols in InfoFair.

Symbol Definition
D a set
W a matrix
h a vector

h [i] the i-th element in h
Pr(·) the probability of an event happening
p·,· joint distribution of two random variables
p· marginal distribution of a random variable

H (·) entropy
H (·|·) conditional entropy
I (·; ·) mutual information

the dependence using mutual information originated in information theory [209]. Building
upon it, we formulate the InfoFair problem as an optimization problem regularized on
mutual information minimization.

The main contributions of this work are as follows.

• Problem definition. We formally define the problem of information-theoretic intersec-
tional fairness and formulate it as an optimization problem, where the key idea is to
minimize both the task-specific loss function (e.g., cross-entropy loss in classification)
and mutual information between the learning outcomes and the vectorized sensitive
attribute.

• End-to-end algorithmic framework. We introduce a novel end-to-end bias mitigation
framework named InfoFair by optimizing a variational representation of mutual
information. The developed framework is extensible and capable of solving any learning
task with a gradient-based optimizer.

• Empirical evaluations. We perform empirical evaluations in the fair classification task
on three real-world datasets. The evaluation results demonstrate that our developed
framework can effectively mitigate bias with little sacrifice in the classification accuracy.

4.3.1 Preliminaries and Problem Definition

In this part, we present a table of the main symbols used in this work. Then we briefly
review the concepts of statistical parity and mutual information, as well as their relationships.
Finally, we formally define the problem of information-theoretic intersectional fairness.

116

In this work, matrices are denoted by bold uppercase letters (e.g., X), vectors are denoted
by bold lowercase letters (e.g., y), scalars are denoted by italic lowercase letters (e.g., c), and
sets are denoted by calligraphic letters (e.g., D). We use superscript T to denote transpose
(e.g., hT is the transpose of h) and superscript C to denote the complement of a set (e.g., set
DC is the complement of set D). We use a convention similar to Numpy in Python for vector
indexing (e.g., h [i] is the i-th element in vector h).
Preliminaries. We briefly introduce statistical parity and mutual information, both of
which are essential to study information-theoretic intersectional fairness.
A – Statistical parity is one of the most intuitive and widely-used group fairness notions. Given
a set of data points X , their corresponding labels y and a sensitive attribute s, classification
with statistical parity aims to learn a classifier to predict outcomes that (1) are as accurate
as possible with respect to y and (2) do not favor one group over another with respect to s.
Mathematically, statistical parity is defined as follows.

Definition 4.5. (Statistical parity [206]). Suppose we have (1) a population X , (2) a
hypothesis h : X → {0, 1} which assigns a binary label to individual x drawn from X , and
(3) a sensitive attribute which splits the population X into majority groupM and minority
group MC (i.e., X =M∪MC). An individual x is accepted if h (x) = 1 and rejected if
h (x) = 0. The hypothesis h : X → {0, 1} is said to have statistical parity on the population
X as long as

Pr [h (x) = 1|x ∈M] = Pr
[
h (x) = 1|x ∈MC] (4.50)

where Pr [·] denotes the probability of an event happening.

Many methods have been proposed to achieve statistical parity. For example, Zemel et
al. [210] learn fair representation by regularizing the difference in expected positive rate for
majority and minority groups. Zhang, Lemoine and Mitchell [211] propose an adversarial
learning-based framework for fair classification, in which the output of the predictor is used to
predict the sensitive attribute by the adversary. Kearns et al. [208] propose a learner-auditor
framework to enforce subgroup fairness through fictitious play strategy.
B – Mutual information was first introduced in the 1940s [209]. Given two random variables,
mutual information measures the dependence between them by quantifying the amount of
information in bits obtained on one random variable through observing the other one. Let
(x, y) be a pair of random variables x and y. Suppose their joint distribution is px,y and the
marginal distributions are px and py. The mutual information between x and y is defined as

I (x; y) = H (x)−H (x|y) =
∫
x

∫
y

px,y log
px,y
pxpy

dxdy (4.51)

117

where H (x) = −
∫
x
px log pxdx is the entropy of x and H (x|y) = −

∫
x

∫
y
px,y log px|ydxdy is

the conditional entropy of x given y. Unlike correlation coefficients (e.g., Pearson’s correlation
coefficient) which could only capture the linear dependence between two random variables,
mutual information is more general in capturing both the linear and nonlinear dependences
between two random variables. We have I (x; y) = 0 if and only if two random variables x
and y are independent to each other.

According to Lemma 4.6, there is an equivalence between statistical parity and zero mutual
information.

Lemma 4.6. (Equivalence between statistical parity and zero mutual information [210, 212]).
Statistical parity requires a sensitive attribute to be statistically independent to the learning
results, which is equivalent to zero mutual information. Mathematically, given a learning
outcome ỹ and the sensitive attribute s, we have

pỹ|s = pỹ︸ ︷︷ ︸
statistical parity

⇔ pỹ,s = pỹps ⇔ I (ỹ; s) = 0︸ ︷︷ ︸
zero mutual information

(4.52)

Proof. Omitted. QED.

Information-theoretic intersectional fairness. In order to generalize Lemma 4.6 from a
single sensitive attribute to a set of sensitive attributes S =

{
s(1), . . . , s(k)

}
, we first introduce

the concept of vectorized sensitive attribute s given S. We define the vectorized sensitive
attribute s = [s(1), . . . , s(k)] as a multi-dimensional random variable, where each element of
s represents the corresponding sensitive attribute in S (e.g., s [i] = s(i) is the i-th sensitive
attribute). Based on that, we have the following equivalence. For notational simplicity, we
denote I

(
ỹ; s(1), . . . , s(k)

)
, pỹ,s(1),...,s(k) , and ps(1),...,s(k) with I(ỹ; s), pỹ,s, and ps, respectively.

pỹ|s = pỹ ⇔ pỹ,s = pỹps ⇔ I (ỹ; s) = 0 (4.53)

Based on Equation (4.53), we formally define the problem of information-theoretic inter-
sectional fairness as a mutual information minimization problem.

Problem 4.5. InfoFair: Information-theoretic intersectional fairness

Input: (1) a set of k sensitive attributes S =
{
s(1), . . . , s(k)

}
, (2) a set of n data points

D = {(xi, si, yi) |i = 1, . . . , n} where xi is the feature vector of the i-th data point, yi is its
label, and si =

[
s
(1)
i , . . . , s

(k)
i

]
describes the vectorized sensitive attributes on S of the i-th

data point (with s(j)i being the corresponding attribute value of the j-th sensitive attribute
s(j)), and (3) a learning algorithm represented by l (x; s; y; ỹ; θ), where l is the loss function,

118

and ỹ∗ = argminỹl (x; s; y; ỹ; θ) is the optimal learning outcome on the input data with θ

being model parameters.
Output: a set of revised learning outcomes {ỹ∗} which minimizes (1) the empirical risk
E(x,s,y)∼D [l (x; s; y; ỹ; θ)] and (2) the expectation of mutual information between the learning
outcomes and the sensitive attributes E(x,s,y)∼D [I (ỹ; s)].

Remark. A byproduct of InfoFair is that the statistical parity can also be achieved on
any subset of sensitive attributes included in S, which is summarized in Lemma 4.7. This
could be particularly useful in that the algorithm administrator does not need to re-train the
model in order to obtain fair learning results if s/he is only interested in a subset of available
sensitive attributes.

Lemma 4.7. (Statistical parity on the subset of sensitive attributes). Consider statistical
parity as the fairness notion, and suppose we are given a learning outcome ỹ, a set of k sensitive
attributes S =

{
s(1), . . . , s(k)

}
, and the vectorized sensitive attribute s =

[
s(1), . . . , s(k)

]
. If

ỹ is fair with respect to s, ỹ is fair with respect to any vectorized sensitive attribute ssub

induced from the subset of sensitive attributes Ssub ⊆ S =
{
s(1), . . . , s(k)

}
.

Proof. Omitted. QED.

4.3.2 Methodology

In this part, we present a generic end-to-end algorithmic framework named InfoFair for
information-theoretic intersectional fairness. We first formulate the problem as a mutual
information minimization problem and then present a variational representation of mutual
information. Based on that, we present the InfoFair framework to solve the optimization
problem, followed by discussions on generalizations and variants of the InfoFair framework.
Objective function. Given a dataset D = {(xi, si, yi) |i = 1, . . . , n}, the InfoFair problem
(Problem 4.5) can be naturally formulated as minimizing the following objective function,

J = E(x,s,y)∼D [l (x; s; y; ỹ; θ) + αI (ỹ; s)] (4.54)

where l is a task-specific loss function for a learning task, θ is the model parameter, ỹ is
the learning outcome, and α > 0 is the regularization hyperparameter. An example of loss
function l is the negative log likelihood

l (x; s; y; ỹ; θ) = − log ỹ [y] (4.55)

119

where y is the class label, and ỹ denotes the probabilities of being classified into the
corresponding class.

To optimize the above objective function, a key challenge lies in optimizing the mutual
information I (ỹ; s) between the learning outcome ỹ and the vectorized sensitive feature s.
Inspired by the seminal work of Belghazi et al. [213], a natural choice would be to apply
off-the-shelf mutual information estimation methods for high-dimensional data. Examples
include MINE [213], Deep Infomax [214], and CCMI [215], which estimate mutual information
by parameterizing neural networks to maximize tight lower bounds of mutual information.
However, in a mutual information minimization problem like Equation (4.54), it is often
counter-intuitive to maximize a lower bound of mutual information. Though one could still
maximize the objective function of these estimators to estimate the mutual information and
use such estimation to guide the optimization of Equation (4.54) as a minimax game, it
is hindered by two hurdles. First, it requires learning a well-trained estimator to estimate
the mutual information during each epoch of optimizing Equation (4.54). Second, if the
estimator is not initialized with proper parameter settings, mutual information may be poorly
estimated, which could further result in failing to find a good saddle point in such a minimax
game.
Variational representation of mutual information. We take a different strategy
from MINE and other similar methods by deriving a variational representation of mutual
information I (ỹ; s). Our variational representation leverages a variational distribution of the
vectorized sensitive feature s given the learning outcome ỹ (Lemma 4.8).

Lemma 4.8. (Variational representation of mutual information). Suppose the joint distribu-
tion of the learning outcome ỹ and the vectorized sensitive feature s is pỹ,s, and the marginal
distributions of ỹ and s are pỹ and ps, respectively. Mutual information I (ỹ; s) between ỹ

and s is as follows.

I (ỹ; s) = H (s) + E(ỹ,s)∼pỹ,s

[
log qs|ỹ

]
+ E(ỹ,s)∼pỹ,s

[
log

pỹ,s
pỹqs|ỹ

]
(4.56)

where qs|ỹ is the variational distribution of s given ỹ.

Proof. Omitted. QED.

Next, we minimize the variational representation shown in Lemma 4.8, which contains three
terms: (1) the entropy H (s), (2) the expectation of log likelihood E(ỹ,s)∼pỹ,s

[
log qs|ỹ

]
, and (3)

the expectation of log density ratio E(ỹ,s)∼pỹ,s

[
log

pỹ,s

pỹqs|ỹ

]
. For the first term H (s), we assume

it to be a constant term, which can be ignored in the optimization stage. The rationale

120

behind our assumption is that, in most (if not all) use cases, the vectorized sensitive feature
s relates to the demographic information of an individual (e.g., gender, race, marital status,
etc.), which should remain unchanged during the learning process. Then the remaining key
challenges lie in (C1) calculating log qs|ỹ and (C2) estimating log

pỹ,s

pỹqs|ỹ
. The intuition of C1

and C2 is that we strive to find a learning outcome ỹ such that (1) ỹ fails to predict the
vectorized sensitive feature s (referring to C1), while (2) making it hard to distinguish if the
vectorized sensitive feature s is generated from the variational distribution or sampled from
the original distribution (referring to C2).
C1 – Calculating log qs|ỹ. It can be naturally formulated as a prediction problem, where the
input is the learning outcome ỹ, and the output is the probability of s being predicted. To
solve it, we parameterize a decoder f (ỹ; s;W) (e.g., a neural network) as a sensitive feature
predictor to ‘reconstruct’ s, where W is the learnable parameters in the decoder.

log qs|ỹ = log f (ỹ; s;W) (4.57)

For categorical sensitive attribute, log qs|ỹ refers to the log likelihood of classifying ỹ into
label s, which can be interpreted as the negative of cross-entropy loss of the decoder f (ỹ; s;W).
Moreover, if s contains multiple categorical sensitive attributes, solving Equation (4.57)
requires solving a multi-label classification problem, which itself is not trivial to solve. In this
case, we further reduce it to a single-label problem by applying a mapping function map (·)
to map the multi-hot encoding s into a one-hot encoding ŝ (i.e., ŝ = map (s)).
C2 – Estimating log

pỹ,s

pỹqs|ỹ
. In practice, calculating pỹ,s and pỹqs|ỹ individually is hard since

the underlying distributions pỹ,s and pỹ are often unknown. Recall that our goal is to estimate
the log of the ratio between these two joint distributions. Therefore, we estimate it through
density ratio estimation, where the numerator pỹ,s denotes the original joint distribution of
the learning outcome ỹ and ground-truth vectorized sensitive feature s, and the denominator
pỹqs|ỹ denotes the joint distribution of the learning outcome ỹ and the vectorized sensitive
feature s̃ generated from the learning outcome using the aforementioned decoder.

We further reduce this density ratio estimation problem to a class probability estimation
problem, which was originally developed in [216] for solving a different problem (i.e., the
classification problem with the input distribution and the test distribution differing arbitrarily).
The core idea is that, given a pair of learning outcome and vectorized sensitive feature, we want
to predict whether it is drawn from the original joint distribution or from the joint distribution
inferred by the decoder. We label each pair of learning outcome and ground-truth vectorized
sensitive feature (ỹ, s) with a positive label (c = 1) and each pair of learning outcome and
generated vectorized sensitive feature (ỹ, s̃) with a negative label (c = −1). After that, we

121

Feature
Extractor

non-sensitive features 𝐱

sensitive features 𝐬

outcome 𝐲
Target

Predictor

(C1)
Sensitive
Feature

Predictor

Gumbel-Softmax
(if categorical)

(C2) Density Ratio Estimator

predicted sensitive features 𝐬

loss 𝐽
× 𝛼 (regularization)

× 𝛼 (regularization)

Figure 4.6: A General overview of the InfoFair framework. The dashed line between
sensitive feature s and feature extractor means that sensitive features can be optionally
passed into feature extractor as the input.

re-write the probability densities as pỹ,s = Pr [c = 1|ỹ, s] and pỹqs|ỹ = Pr [c = −1|ỹ, s]. Then
the density ratio can be further re-written as

log
pỹ,s
pỹqs|ỹ

= log
Pr [c = 1|ỹ, s]

Pr [c = −1|ỹ, s]
= logit (Pr [c = 1|ỹ, s]) (4.58)

Furthermore, if we model Pr [c = 1|ỹ, s] using logistic regression (i.e., Pr [c = 1|ỹ, s] =

logistic (ỹ; s)), Equation (4.58) is reduced to a simple linear function as

log
pỹ,s
pỹqs|ỹ

= logit (logistic (ỹ; s)) = wT
1 ỹ +wT

2 s (4.59)

where both w1 and w2 are learnable parameters. Putting everything together, we re-write
Equation (4.54) as

J = E(x,y)∼D
[
l (x; s; y; ỹ; θ) + α log qs|ỹ

]
+ αE{(ỹ,s)∼pỹ,s}∪{(ỹ,s)∼pỹqs|ỹ}

[
wT

1 ỹ +wT
2 s
]

(4.60)

where pỹ,s is the joint distribution of the learning outcome ỹ and ground-truth vectorized
sensitive feature s, and pỹqs|ỹ is the joint distribution of the learning outcome ỹ and predicted
vectorized sensitive feature s.
InfoFair: Overall framework. Based on the objective function (Equation (4.60)), we
develop a generic end-to-end framework named InfoFair to solve the information-theoretic
intersectional fairness problem. A general overview of the model architecture is shown in
Figure 4.6. InfoFair contains four main modules, including (1) feature extractor, (2) target
predictor, (3) sensitive feature predictor, and (4) a density ratio estimator. In principle, as
long as each module is differentiable, InfoFair can be optimized by any gradient-based
optimizer.

122

The general workflow of InfoFair is as follows.

1. The non-sensitive features and sensitive features (optional) are passed into a feature
extractor to extract the learning outcomes.

2. The learning outcomes will be fed into a target predictor to predict the targets for a
certain downstream task (i.e., l (x; s; y; ỹ; θ) in Equation (4.60)).

3. The learning outcomes will be passed into the sensitive feature predictor to ‘reconstruct’
the vectorized sensitive features (i.e., log qs|ỹ in Equation (4.60)).

4. Together with the learning outcomes and the ground-truth vectorized sensitive features,
the predicted vectorized sensitive features will be used to estimate the density ratio
between the original distribution and the variational distribution (i.e., wT

1 ỹ +wT
2 s in

Equation (4.60)).

Given a data point with categorical sensitive attribute(s), the predicted vectorized sensitive
feature s is usually denoted as a one-hot vector. However, learning a one-hot vector is a
difficult problem due to the discrete nature of vector elements, which makes the computation
non-differentiable. To address this issue, we approximate such one-hot encoding by Gumbel-
Softmax [217], which can be calculated as s [i] = exp([log(os[i])+gi]/τ)∑ns

j=1 exp([log(os[j])+gj]/τ)
, where os is the

output of the sensitive feature predictor, ns is the dimension of s, g1, . . . , gns are i.i.d. points
drawn from Gumbel(0, 1) distribution, and τ is the softmax temperature. As τ →∞, the
Gumbel-Softmax samples are uniformly distributed; while as τ → 0, the Gumbel-Softmax
distribution converges to a one-hot categorical distribution. In InfoFair, we start with a
high temperature and then anneal it during epochs of training.
InfoFair: Generalizations and variants. InfoFair is able to be generalized in multiple
aspects. Here, we give some brief descriptions, each of which could be a future direction in
applying our framework.
A – InfoFair with equal opportunity. The InfoFair framework is generalizable to enforce
equal opportunity [186], another widely-used group fairness notion. We leave for future work
to explore the potential of InfoFair in enforcing equal opportunity.

Equal opportunity ensures equality across demographic groups for a preferred label (i.e.,
the label that benefits an individual). Mathematically, it is defined as follows.

Definition 4.6. (Equal opportunity [186]). Following the settings of Definition 4.5, if equal
opportunity is enforced, the hypothesis h : X → {0, 1} satisfies

Pr [h (x) = 1|x ∈M, y = 1] = Pr
[
h (x) = 1|x ∈MC, y = 1

]
(4.61)

123

where Pr [·] denotes the probability of an event happening.

Analogous to the relationship between mutual information and statistical parity, ensuring
equal opportunity is essentially a conditional mutual information minimization problem.

pỹ|s,y=1 = pỹ|y=1︸ ︷︷ ︸
equal opportunity

⇔ I (ỹ; s|y = 1) = 0︸ ︷︷ ︸
zero conditional mutual information

(4.62)

By the definition of conditional mutual information, we have I (ỹ; s|y = 1) = H (s|y = 1)−
H (s|ỹ, y = 1). For H (s|y = 1), we assume it as a constant term by the similar rationale of
statistical parity. Similarly, we can re-write H (s|ỹ, y = 1) as

H (s|ỹ, y = 1) = E(ỹ,s)∼pỹ,s|y=1

[
− log qs|ỹ,y=1

]
− E(ỹ,s)∼pỹ,s|y=1

[
log

pỹ,s|y=1

pỹ|y=1qs|ỹ,y=1

]
(4.63)

Then, to compute log qs|ỹ,y=1, we could adopt similar strategy as computing log qs|ỹ described
before by constructing a decoder f (ỹ; s;W) to ‘reconstruct’ s for positive training samples.
Similarly, estimating the density ratio can be achieved by applying Equation (4.59) on positive
training samples. Thus, InfoFair is able to enforce equal opportunity by minimizing

J = E(x,y)∼D
[
l (x; s; y; ỹ; θ) + α log qs|ỹ

]
+ αE{(ỹ,s)∼pỹ,s|y=1}∪{(ỹ,s)∼pỹ|y=1qs|ỹ,y=1}

[
wT

1 ỹ +wT
2 s
]

(4.64)
B – Relationship to adversarial debiasing. Adversarial debiasing framework [211] consists
of (1) a predictor that predicts the class membership probabilities using given data and
(2) an adversary that takes the output of the predictor to predict the sensitive attribute
of given data. The framework is optimized to minimize the loss function of the predictor
while maximizing the loss function of the adversary. If we merge feature extractor and
target predictor to one single module and remove the density ratio estimator, InfoFair will
degenerate to the adversarial debiasing method.
C – Relationship to information bottleneck. If we set the loss function l in Equation (4.54)
as the negative mutual information −I (ỹ; y), Equation (4.54) becomes the information
bottleneck method [218]. Then the goal becomes to learning ỹ that depends on the vectorized
sensitive attribute s minimally and ground truth y maximally.
D – Fairness for continuous-valued sensitive features. Most existing works in fair machine
learning only consider categorical sensitive attribute (e.g., gender, race). The InfoFair frame-
work could be generalized to continuous-valued features, as mutual information supports
continuous-valued random variables. This advantage could empower our framework to work in
even more application scenarios. For example, in image classification, we can classify images

124

without the impact of certain image patches (e.g., patches that relate to individual’s skin
color). However, a major difficulty lies in modeling the variational distribution of sensitive
attribute given the learning outcomes extracted from feature extractor. A potential solution
could be utilizing a generative model (e.g., VAEs [219]) as the sensitive feature predictor.
E – Fairness for non-IID graph data. For fair graph mining, given a graph G = {A,X} where
A is the adjacency matrix and X is the node feature matrix, we can use graph convolutional
layer(s) as a feature extractor with the weight of the last layer to be identity matrix I

and no nonlinear activation in the last graph convolution layer, in order to extract node
representations. The reason for such a specific architecture in the last graph convolution
layer is as follows. In general, a graph convolutional layer consists of two operations: feature
aggregation Z = faggregate (A;X) = AX and feature transformation H = ftransform (Z;W) =

σ (ZW), where W is learnable parameters, and σ is usually a nonlinear activation. The last
layer in GCN [7] is simply softmax (AXW), which can be viewed as a general multi-class
logistic regression on the aggregated feature Z = AX (i.e., softmax (ZW)).
F – Fairness beyond classification. Note that InfoFair does not have specific restrictions on
the architecture of the feature extractor, target predictor, or sensitive target predictor, which
empowers it to handle many different types of tasks by selecting the proper architecture for
each module. For example, if an analyst aims to learn fair representations with respect to
gender for recommendation, s/he can set the feature extractor to be a multi-layer perceptron
(MLP) for learning outcome extraction, the target predictor layer to be an MLP that predicts
a rating and minimizes the mean squared error (MSE) between the predicted rating and
ground-truth rating, and the sensitive target predictor to be another MLP with softmax to
predict the gender based on extracted embedding.

4.3.3 Experimental Evaluation

In this part, we conduct experimental evaluations. All experiments are designed to answer
the following questions:

• RQ1. How does the fairness impact the learning performance?

• RQ2. How effective is InfoFair in mitigating bias?

Experimental settings. The detailed experimental settings to evaluate InfoFair, including
dataset descriptions, baseline methods, evaluation metrics, parameter settings, and all other
necessary information for reproducibility, are presented as follows.
A – Hardware and software specifications. All three datasets are publicly available online. All
models (i.e., InfoFair and baseline methods) are implemented with PyTorch 1.9.0 and are

125

Table 4.15: Statistics of datasets to evaluate InfoFair.

Dataset # Samples # Attributes # Classes
COMPAS 6,172 52 2

Adult Income 45,222 14 2
Dutch Census 60,420 11 2

trained on a Linux server with 2 Intel Xeon Gold 6240R CPUs at 2.40 GHz and 4 Nvidia Tesla
V100 SXM2 GPUs with 32 GB memory. The source code of InfoFair can be downloaded
at https://github.com/jiank2/infofair.
B – Dataset descriptions. We test InfoFair on three commonly-used datasets in fair machine
learning research. The statistics of these datasets are summarized in Table 4.15.

For all datasets, we randomly split them into 80% training set, 10% validation set, and
10% test set. A description of each dataset, as well as the pre-processing procedures, is shown
below.

• COMPAS dataset contains in total of 6,172 criminal defendants in Broward County,
Florida. Each defendant is described by 52 attributes used by the COMPAS (Correc-
tional Offender Management Profiling for Alternative Sanctions) algorithm for scoring
his/her likelihood of re-offending crimes in the following 2 years. The goal is to deter-
mine whether a criminal defendant will re-offend in the next 2 years. To pre-process
the dataset, we remove duplicate features and features related to date, case number,
and descriptions of criminal charge. We then manually calculate the length of stay
in jail for each criminal and quantize them into three bins: length less than 1 week,
length larger than 1 week but less than 3 months, and length larger than 3 months.
Similarly, for features related to the count of criminal charges, we quantize them into
three bins: count is 0, count within 1 to 3, and count more than 3. The rest of the
pre-processing procedures are as follows: (1) continuous-valued features are kept as
is; and (2) discreate features are transformed into a single boolean value or one-hot
encoding for binary and other features.

• Adult Income dataset contains in total of 45,222 individuals. Each individual is described
by 14 attributes that relate to his/her personal demographic information, including
gender, race, education, marital status, etc. The goal is to predict whether a person
can earn a salary over $50,000 a year. To pre-process it, all features in the original
datasets are used. We first remove data samples with missing values. Then we follow
similar procedures as processing COMPAS dataset.

126

https://github.com/jiank2/infofair

• Dutch Census dataset contains in total of 60,420 individuals.35 Each individual is
described by 11 attributes that relate to her/his demographic and economic information
to predict whether s/he has a prestigious occupation. The pre-processing procedures
are the same as the Adult Income dataset.

C – Baseline methods. We compare InfoFair with the following baseline methods.

• Learning Fair Representations (LFR) [210] learns a set of fair prototype representations.
Each data sample is first mapped to a prototype, which is used to predict a fair outcome.
We use the implementation by IBM AIF36036 and the same grid search strategy for
hyperparameters in [210].

• MinDiff [220] ensures equal false positive rate by minimizing the maximum mean
discrepancy (MMD) between the two demographic groups with negative samples
only. We implement our own version of MinDiff with the Gaussian kernel. The
hyperparameters for the Gaussian kernel is set to be consistent with [220]. For fair
comparison, we set the regularization hyperparameter to 0.1, which is the same with
the corresponding setting for InfoFair.

• Disparate Impact (DI) [40] ensures disparate impact by interpolating the original data
distribution with an unbiased distribution. For fair comparison, we set the linear
interpolation coefficient, which is referred to as λ in [40], such that the interpolation
ratios of [40] and ours are the same, i.e., 1−λ

λ
= 1

α
.

• Adversarial Debiasing (Adversarial) [211] uses an adversary to predict the sensitive
attribute using the prediction from a predictor. Both the predictor and the adversary
can be flexibly chosen. Since its official source code is not available, we implement the
model using the same machine configurations as InfoFair. For fair comparison, we
switch (1) the predictor to feature extractor and target predictor in our framework and
(2) the adversary to sensitive feature predictor in our framework. We also set the same
learning rate as our framework.

• Fair Classification with Fairness Constraints (FCFC) [206] measures the statistical
imparity as the covariance between the sensitive attribute of a data sample and the
distance of the corresponding data sample to the decision boundary of a linear classifier.
We use the official implementation of FCFC provided by Zafar et al. and adopt their
released parameter settings in our experiments.

35https://sites.google.com/site/faisalkamiran/
36https://github.com/Trusted-AI/AIF360

127

https://sites.google.com/site/faisalkamiran/
https://github.com/Trusted-AI/AIF360

• GerryFair [208] ensures subgroup fairness for cost-sensitive classification through
fictitious play from the game-theoretic perspective. Since the relationship between α
in InfoFair and parameters of GerryFair is unclear, we use the default parameters
provided in the officially released source code.

• Generalized Demographic Parity (GDP) [221] computes the weighted total variation
distance on the local average prediction and the global average prediction. For fair
comparison, we use the official implementation, set the same backbone model for feature
extraction and prediction, and use the same regularization hyperparameter (0.1) as
InfoFair.

D – Evaluation metrics. To answer RQ1, we measure the performance of classification using
micro F1 and macro F1 scores (Micro/Macro F1). To answer RQ2, we measure to what
extent the bias is reduced by the average statistical imparity (Imparity) and the relative
bias reduction (Reduction) on average statistical imparity. The average statistical imparity
(Imparity) is defined as Imparity = avg (|Pr [ŷ = c|x ∈ g1]− Pr [ŷ = c|x ∈ g2] |) for any class
label c and any pair of two different demographic groups g1 and g2. The relative bias reduction
measures the relative decrease of the imparity of the debiased outcomes Imparitydebiased to
the imparity of vanilla outcomes (i.e., outcomes without fairness consideration) Imparityvanilla.
It is computed mathematically as Reduction = 1− Imparitydebiased

Imparityvanilla
. Note that the relative bias

reduction defined above can be negative if the debiased learning outcome is more biased than
the vanilla learning outcome.
E – Experimental protocol and model architecture. The learning task we consider is fair
classification with respect to categorical sensitive attribute(s). For all datasets, we take both
non-sensitive features and sensitive features as input to the feature extractor. Regarding
the model architecture, for Adult Income and Dutch Census, the feature extractor is a
1-layer MLP with hidden dimension 32, the target predictor contains one hidden layer that
calculates the log likelihood of predicting class label using the embeddings output by the
feature extractor, and the sensitive feature predictor is similar to the target predictor that
leverages one hidden layer to calculate the log likelihood of predicting the vectorized sensitive
feature using the extracted embeddings. For COMPAS, we set the feature extractor to be a
2-layer MLP with hidden dimension 32 in each layer, while keeping all other modules to be
the same as they are for Adult Income and Dutch Census.
F – Detailed parameter setting. For all datasets, we set the regularization parameter α = 0.1.
The number of epochs for training is set to 100 with a patience of 5 for early stopping.
Weight decay is set to 0.01. We tune the learning rate as 0.001 for DI and 0.0001 for MinDiff,
Adversarial, and our method. All learnable model parameters are optimized with the Adam

128

Table 4.16: Debiasing results on all datasets. Lower is better for the gray column (Imparity).
Higher is better for all others.

Debiasing results on the COMPAS dataset

Method gender race gender & race

Micro/Macro F1 Imparity Reduction Micro/Macro F1 Imparity Reduction Micro/Macro F1 Imparity Reduction
Vanilla 0.972/0.972 0.050 0.000% 0.972/0.972 0.181 0.000% 0.972/0.972 0.234 0.000%
LFR 0.554/0.357 0.000 100.0% N/A N/A N/A N/A N/A N/A

MinDiff 0.972/0.972 0.050 0.000% N/A N/A N/A N/A N/A N/A
DI 0.972/0.972 0.050 0.000% 0.972/0.972 0.181 0.000% 0.972/0.972 0.234 0.000%

Adversarial 0.554/0.357 0.000 100.0% 0.554/0.357 0.000 100.0% 0.554/0.357 0.000 100.0%
FCFC 0.446/0.308 0.000 100.0% 0.446/0.308 0.000 100.0% 0.446/0.308 0.000 100.0%

GerryFair 0.972/0.972 0.050 0.000% 0.972/0.972 0.181 0.000% 0.972/0.972 0.234 0.000%
GDP 0.972/0.972 0.050 0.000% 0.972/0.972 0.181 0.000% 0.972/0.972 0.234 0.000%

InfoFair 0.924/0.923 0.038 23.15% 0.815/0.803 0.179 1.010% 0.877/0.872 0.231 1.350%

Debiasing results on the Adult Income dataset

Method
gender race gender & race

Micro/Macro F1 Imparity Reduction Micro/Macro F1 Imparity Reduction Micro/Macro F1 Imparity Reduction
Vanilla 0.830/0.762 0.066 0.000% 0.830/0.762 0.062 0.000% 0.830/0.762 0.083 0.000%
LFR 0.743/0.426 0.000 100.0% N/A N/A N/A N/A N/A N/A

MinDiff 0.828/0.746 0.058 12.06% N/A N/A N/A N/A N/A N/A
DI 0.823/0.730 0.053 19.85% 0.825/0.743 0.056 10.62% 0.823/0.736 0.081 2.276%

Adversarial 0.743/0.426 0.000 100.0% 0.743/0.426 0.000 100.0% 0.743/0.426 0.000 100.0%
FCFC 0.257/0.204 0.000 100.0% 0.257/0.204 0.000 100.0% 0.257/0.204 0.000 100.0%

GerryFair 0.833/0.752 0.056 15.70% 0.833/0.752 0.067 −7.664% 0.797/0.710 0.215 −158.3%
GDP 0.825/0.744 0.055 16.73% 0.827/0.749 0.059 6.351% 0.824/0.740 0.075 9.246%

InfoFair 0.816/0.721 0.047 29.24% 0.810/0.686 0.042 32.11% 0.818/0.714 0.082 1.532%

Debiasing results on the Dutch Census dataset

Method
gender marital status gender & marital status

Micro/Macro F1 Imparity Reduction Micro/Macro F1 Imparity Reduction Micro/Macro F1 Imparity Reduction
Vanilla 0.832/0.831 0.119 0.000% 0.832/0.831 0.079 0.000% 0.832/0.831 0.172 0.000%
LFR 0.521/0.342 0.000 100.0% N/A N/A N/A N/A N/A N/A

MinDiff 0.831/0.830 0.107 10.16% N/A N/A N/A N/A N/A N/A
DI 0.825/0.824 0.104 12.43% 0.830/0.830 0.080 −1.156% 0.814/0.811 0.127 26.65%

Adversarial 0.521/0.342 0.000 100.0% 0.521/0.342 0.000 100.0% 0.521/0.342 0.000 100.0%
FCFC 0.479/0.324 0.000 100.0% 0.479/0.324 0.000 100.0% 0.479/0.324 0.000 100.0%

GerryFair 0.826/0.823 0.078 34.29% 0.826/0.823 0.070 11.70% 0.826/0.823 0.125 27.53%
GDP 0.828/0.826 0.097 18.31% 0.827/0.826 0.086 −9.056% 0.827/0.825 0.131 23.80%

InfoFair 0.817/0.813 0.068 43.08% 0.815/0.811 0.077 2.017% 0.819/0.817 0.128 25.65%

optimizer [182]. The starting temperature for Gumbel-Softmax is set to 1 and is divided by
2 every 50 epochs for annealing. To reduce randomness and enhance reproducibility, we run
5 different initializations with random seed from 0 to 4.
Main results. We test InfoFair, as well as baseline methods, in three different settings:
debiasing binary sensitive attribute (i.e., gender for all three datasets), debiasing non-binary
sensitive attribute (i.e., race for COMPAS and Adult Income, marital status for Dutch Census),
and debiasing multiple sensitive attributes (i.e., gender & race for COMPAS and Adult Income,
gender & marital status for Dutch Census). For each dataset and each setting, we train
each model on the training set, then select the trained model with best bias mitigation
performance on the validation set, and report its performance on the test set. For the vanilla
model (without any fairness consideration), we report the model with the highest micro and
macro F1 scores. This is because the algorithm administrators are often more concerned
with maximizing the utility of classification algorithms. The results of LFR and MinDiff in
debiasing non-binary sensitive attribute and multiple sensitive attributes are absent since
they only handle binary sensitive attribute by design.

129

A – Effectiveness results. The effectiveness results of InfoFair and all baseline methods
on COMPAS, Adult Income, and Dutch Census datasets are shown in Table 4.16. From the
table, we have the following observations. First, our method is the only method that can
mitigate bias (i.e., Imparity and Reduction) effectively and consistently with a small degree
of sacrifice to the vanilla classification performance (i.e., Micro/Macro F1) for all datasets
and all settings. Second, though LFR, Adversarial Debiasing, and FCFC achieve the perfect
bias reduction, their classification performance is severely reduced by predicting all data
samples with the same label (i.e., negative label for LFR and Adversarial Debiasing, positive
label for FCFC). Though, in a few settings, DI, GerryFair, and GDP mitigate more bias
than InfoFair, they either amplify the bias or fail to outperform InfoFair in the other
settings. All in all, InfoFair achieves the best balance in reducing the bias and maintaining
the classification accuracy in most cases.
B – Trade-off between micro F1 score and average statistical imparity. Figure 4.7 shows the
results of the trade-off between the micro F1 score (Micro F1) and the average statistical
imparity (Imparity). From the figure, we can observe that InfoFair achieves the best
trade-off between accuracy and fairness (i.e., being closer to the bottom right corner in
Figure 4.7) in most cases.
Ablation study. Let T = E [l (x; s; y; ỹ; θ)] be the empirical loss of target predictor, S =

αE
[
log qs|ỹ

]
be the empirical loss of sensitive feature predictor, and D = αE

[
wT

1 ỹ +wT
2 s
]

be the empirical loss of density ratio estimator, the objective function of InfoFair (Equa-
tion (4.60)) can be written as J = T + S +D. To evaluate the effectiveness on optimizing
the variational representation of mutual information, we compare with two variants of the
objective function, i.e., T + S and T +D, on the same datasets and the same set of sensitive
attributes described before. Experimental protocols and parameter settings are kept the
same among all compared objective functions (i.e., T + S + D, T + S, and T + D). The
results of the ablation study are shown in Figure 4.8. From the figure, we observe that our
objective function (i.e., T + S +D) can mitigate more bias than the other two variants (i.e.,
T + S and T +D) in most cases. This implies that our variational representation can better
model the dependence between the learning outcomes and the vectorized sensitive features.

When debiasing race on COMPAS and debiasing marital status on Dutch Census, we
observe that the cardinalities of the demographic groups are more imbalanced. Recall that
the goal of sensitive feature predictor is to reduce the accuracy of predicting sensitive feature
using the extracted embedding. When the demographic groups are more imbalanced, it tends
to learn an embedding that contains information about a wrong demographic group to reduce
its accuracy. Thus, though T + S may achieve lower imparity, the statistical dependence
between the extracted embeddings and the sensitive feature may not be reduced, meaning

130

Adult Income

COMPAS

Dutch Census

Figure 4.7: Trade-off between the micro F1 score and the average statistical imparity. Best
viewed in color. Red star represents InfoFair. The closer to bottom right, the better
trade-off between the micro F1 score and the average statistical imparity. Bias is amplified
by a method if its corresponding point is above the dashed line (which denotes the imparity
of Vanilla).

131

COMPAS Adult Income

Dutch Census

Figure 4.8: Ablation study on the variants of objective function. Best viewed in color. Higher
is better.

that the extracted embeddings are merely shifted to correlate with wrong demographic
groups. However, with the addition of density ratio estimator, we ensure that (1) not only the
sensitive feature predictor makes wrong prediction (2) but also the distribution of sensitive
attribute and the extracted embeddings modeled by S (pỹqs|ỹ) are similar to its corresponding
original distribution (i.e., pỹ,s).

132

CHAPTER 5: SAFEGUARDING FAIR GRAPH MINING

Address the safeguarding task is a postlude in building an algorithmic foundation of
fair graph mining. It brings together all key properties to make the developed debiasing
techniques deployable in the real-world setting. Notably, the real world often consists of
adversarial activities, and it is unclear how these adversarial activities would affect the model
fairness. To this end, in this chapter, we address the safeguarding challenge by studying how
to attack the fairness of a graph mining model, such that the model after adversarial attacks
would be more biased but still expresses strong performance in the downstream tasks. We
further empirically reveal the properties of the adversarial edges in the graph that contribute
the most to effective and efficient fairness attacks.

5.1 INTRODUCTION

Algorithmic fairness in graph learning has received much research attention [17, 18, 47].
Despite its substantial progress, existing studies mostly assume the benevolence of input
graphs and aim to ensure that the bias would not be perpetuated or amplified in the learning
process. However, malicious activities in the real world are commonplace. For example,
consider a financial fraud detection system which utilizes a transaction network to classify
whether a bank account is fraudulent or not [153, 198]. An adversary may manipulate the
transaction network (e.g., malicious banker with access to the transaction data, theft of bank
accounts to make malicious transactions), so that the graph-based fraud detection model
would exhibit unfair classification results with respect to people of different demographic
groups. Consequently, a biased fraud detection model may infringe civil liberty to certain
financial activities and impact the well-being of an individual negatively [222]. It would also
make the graph learning model fail to provide the same quality of service to people of certain
demographic groups, causing the financial institutions to lose business in the communities
of the corresponding demographic groups. Thus, it is critical to understand how resilient a
graph learning model is with respect to adversarial attacks on fairness, which we term as
fairness attacks.

To date, fairness attacks have not been well studied. Sporadic literature often follows
two strategies: (1) adversarial data point injection, which is often designed for tabular data
rather than graphs [223, 224, 225, 226], or (2) adversarial edge injection, which only attacks
the group fairness of a graph neural network [85]. It is thus crucial to study how to attack
different fairness definitions for a variety of graph learning models with strategies other than

133

data/edge injection.
To achieve this goal, we study the Fairness attacks on graph learning (Fate) problem. We

formulate it as a bi-level optimization, where the lower-level problem optimizes a task-specific
loss function to make the fairness attacks deceptive, and the upper-level problem leverages the
supervision signal to modify the input graph and maximize the bias function corresponding
to a user-defined fairness definition. To solve the bi-level optimization problem, we design
a meta learning-based solver (Fate), whose key idea is to compute the meta-gradient of
the upper-level bias function with respect to the input graph to guide the fairness attacks.
Compared with existing works, Fate has two major advantages. First, it is capable of
attacking any fairness definition on any graph learning model, as long as the corresponding
bias function and the task-specific loss function are differentiable. Second, it is equipped
with the ability for either continuous or discretized poisoning attacks on the graph topology.
We also briefly discuss its ability for poisoning attacks on node features later.

The major contributions of this work are summarized as follows.

• Problem definition. We formally define the problem of fairness attacks on graph
learning (the Fate problem). Based on the definition, we formulate it as a bi-level
optimization problem, whose key idea is to maximize a bias function in the upper level
while minimizing a task-specific loss function for a graph learning task.

• Attacking framework. We design an end-to-end attacking framework named Fate. It
learns a perturbed graph topology via meta learning, such that the bias with respect
to the learning results trained with the perturbed graph will be amplified.

• Empirical evaluation. We conduct experiments on three benchmark datasets to demon-
strate the efficacy of the Fate framework in amplifying the bias while being the most
deceptive method (i.e., achieving the highest micro F1 score) on semi-supervised node
classification. We also conduct empirical analysis to understand the types of edges
contributing the most to fairness attacks.

5.2 PRELIMINARIES AND PROBLEM DEFINITION

Notations. Throughout this work, we use bold upper-case letter for matrix (e.g., A),
bold lower-case letter for vector (e.g., x), and calligraphic letter for set (e.g., G). We use
superscript T to denote the transpose of a matrix/vector (e.g., xT is the transpose of x).
Regarding matrix/vector indexing, we use conventions similar to Numpy in Python. For

134

example, A [i, j] is the entry of A at the i-th row and j-th column; x [i] is the i-th entry of x;
and A [i, :] and A [j, :] are the i-th row and j-th column of A, respectively.
Algorithmic fairness. The general principle of algorithmic fairness is to ensure the learning
results would not favor one side over another.37 Among several fairness definitions that
follow this principle, group fairness [40, 186] and individual fairness [41] are the most widely
studied ones. Group fairness splits the entire population into multiple demographic groups
by a sensitive attribute (e.g., gender) and ensures the parity of a statistical property among
the learning results of those groups. For example, statistical parity, a classic group fairness
definition, guarantees the statistical independence between the learning results (e.g., predicted
labels of a classification algorithm) and the sensitive attribute [40]. Individual fairness suggests
that similar individuals should be treated similarly. It is often formulated as a Lipschitz
inequality such that distance between the learning results of two data points should be no
larger than the difference between these two data points [41].
Problem definition. Existing work [85] for fairness attacks on graphs randomly injects
adversarial edges that satisfy certain property, so that the disparity between the learning
results of two different demographic groups would be amplified. However, it suffers from
three major limitations. (1) First, it only attacks statistical parity while overlooking other
fairness definitions (e.g., individual fairness [41]). (2) Second, it only considers adversarial
edge injection, excluding other manipulations like edge deletion or reweighting. Hence, it is
essential to investigate the possibility to attack other fairness definitions on real-world graphs
with an arbitrary choice of manipulation operations. (3) Third, it does not consider the
utility of graph learning models while achieving the fairness attacks, resulting in performance
degradation in the downstream tasks. However, an institution that applies the graph learning
models are often utility-maximizing [227, 228]. Thus, a performance degradation in the utility
might make the fairness attacks not deceptive from the perspective of a utility-maximizing
institution.

In this work, we seek to overcome the aforementioned limitations. To be specific, given
an input graph, an optimization-based graph learning model, and a user-defined fairness
definition, we aim to learn a modified graph such that a bias function of the corresponding
fairness definition would be maximized for effective fairness attacks, while minimizing the
task-specific loss function with respect to the graph learning model for deceptive fairness
attacks. Formally, we define the problem of fairness attacks on graph learning, which is
referred to as the Fate problem.

Problem 5.1. Fate: Fairness attacks on graph learning.
37https://www.merriam-webster.com/dictionary/fairness

135

https://www.merriam-webster.com/dictionary/fairness

Given: (1) an undirected graph G = {A,X}, (2) a task-specific loss function l (G,Y ,Θ, θ)
where Y is the graph learning results, Θ is the set of learnable variables, and θ is the set of
hyperparameters, (3) a bias function b (Y,Θ∗,F, θ) where Θ∗ = argminΘ l (G,Y ,Θ, θ), and
F is the matrix that contains auxiliary fairness-related information (e.g., sensitive attribute
values of all nodes in G for group fairness, pairwise node similarity matrix for individual
fairness), and(4) an integer budget B.
Find: a poisoned graph G̃ =

{
Ã, X̃

}
which satisfies the following properties: (1) d

(
G, G̃

)
≤

B where d
(
G, G̃

)
is the distance between the input graph G and the poisoned graph G̃

(e.g., ∥A, Ã∥1,1), (2) the bias function b (Y,Θ∗,F) is maximized for effectiveness, and (3) the
task-specific loss function l

(
G̃,Y ,Θ, θ

)
is minimized for deceptiveness.

5.3 METHODOLOGY

In this part, we formulate Problem 5.1 as a bi-level optimization problem, followed by a
generic meta learning-based solver named Fate.

5.3.1 Problem Formulation

Given an input graph G = {A,X} with adjacency matrix A and node feature matrix X,
an attacker aims to learn a poisoned graph G̃ = {Ã, X̃} such that the graph learning model
will be maximally biased when trained on G̃. In this work, we consider the following settings
for the attacker.

• The goal of the attacker. The attacker aims to amplify the bias of the graph learning
results output by a victim graph learning model. And the bias to be amplified is a
choice made by the attacker based on which fairness definition the attacker aims to
attack.

• The knowledge of the attacker. Following similar settings in [85], we assume the
attacker has access to the adjacency matrix, the feature matrix of the input graph,
and the sensitive attribute of all nodes in the graph. For a (semi-)supervised learning
problem, we assume that the ground-truth labels of the training nodes are also available
to the attacker. For example, for a graph-based financial fraud detection problem,
the malicious banker may have access to the demographic information (i.e., sensitive
attribute) of the account holders and also know whether some bank accounts are
fraudulent or not, which are the ground-truth labels for training nodes. Similar to

136

[80, 81, 85], the attacker has no knowledge about the parameters of the victim model.
Instead, the attacker will perform a gray-box attack by attacking a surrogate graph
learning model.

• The capability of the attacker. The attacker is able to perturb up to B edges/features
in the graph (i.e., ∥A− Ã∥1,1 ≤ B or ∥X− X̃∥1,1 ≤ B).

Based on that, we formulate Problem 5.1 as a bi-level optimization problem as follows.

G̃ = argmax
G

b (Y,Θ∗,F) s.t. Θ∗ = argmin
Θ
l (G,Y,Θ, θ) , d

(
G, G̃

)
≤ B (5.1)

where the lower-level problem learns an optimal surrogate graph learning model Θ∗ by
minimizing l (G,Y,Θ, θ), the upper-level problem finds a poisoned graph G̃ that could
maximize a bias function b (Y,Θ∗,F) for the victim graph learning model, and the distance
d
(
G, G̃

)
between the input graph G and the poisoned graph G̃ is constrained to satisfy the

setting about the budgeted attack. Note that Equation (5.1) is applicable to attack any
fairness definition on any graph learning model, as long as the bias function b (Y,Θ∗,F) and
the loss function l (G,Y,Θ, θ) are differentiable.
Lower-level optimization problem. Many graph learning models are essentially solving
optimization problems. Take the graph convolutional network (GCN) [7] as an example.
It learns the node representation by aggregating information from its neighborhood, i.e.,
message passing. Mathematically, for an L-layer GCN, the hidden representation at k-th layer
can be represented as E(k) = σ

(
ÂE(k−1)W(k)

)
where σ is a nonlinear activation function

(e.g., ReLU), Â = D−1/2 (A+ I)D−1/2 with D being the degree matrix of (A+ I), and
W(k) is the learnable weight matrix of the k-th layer. Then the lower-level optimization
problem aims to learn the set of parameters Θ∗ =

{
W(k)|k = 1, . . . , L

}
that could minimize

a task-specific loss function (e.g., cross-entropy loss for semi-supervised node classification).
Upper-level optimization problem. To attack the fairness aspect of a graph learning
model, we aim to maximize a differentiable bias function b (Y,Θ∗,F) with respect to a
user-defined fairness definition in the upper-level optimization problem. For example, for
statistical parity [40], the fairness-related auxiliary information matrix F can be defined as
the one-hot demographic membership matrix, where F [i, j] = 1 if and only if node i belongs
to the j-th demographic group. Then the statistical parity is equivalent to the statistical
independence between the learning results Y and F. Based on that, existing studies propose
several differentiable measurements of the statistical dependence between Y and F as the
bias function. For example, Bose and Hamilton [47] use mutual information I (Y;F) as the

137

bias function; Prost et al. [220] define the bias function as the Maximum Mean Discrepancy
MMD (Y0,Y1) between the learning results of two different demographic groups Y0 and Y1.

5.3.2 The Fate Framework

To solve Equation (5.1), we present a generic attacking framework named Fate to learn
the poisoned graph. The key idea is to view Equation (5.1) as a meta learning problem, which
treats the graph G as a hyperparameter and aims to find suitable hyperparameter settings
for a learning task [229]. With that, we learn the poisoned graph G̃ using the meta-gradient
of the bias function b (Y,Θ∗,F) with respect to G. In the following, we introduce two key
parts of Fate in details, including meta-gradient computation and graph poisoning with
meta-gradient.
Meta-gradient computation. The key term in learning the poisoned graph is the meta-
gradient of the bias function with respect to the graph G. Before computing the meta-gradient,
we assume that the lower-level optimization problem converges in T epochs. Thus, we first
pre-train the lower-level optimization problem by T epochs to obtain the optimal model
Θ∗ = Θ(T) before computing the meta-gradient. The training of the lower-level optimization
problem can also be viewed as a dynamic system with the following updating rule

Θ(t+1) = opt(t+1)
(
G,Θ(t), θ,Y

)
, ∀t ∈ {1, . . . , T} (5.2)

where Θ(1) refers to Θ at initialization, opt(t+1)(·) is an optimizer that minimizes the lower-level
loss function l

(
G,Y,Θ(t), θ

)
at the (t+ 1)-th epoch. From the perspective of the dynamic

system, by applying the chain rule and unrolling the training of lower-level problem with
Equation (5.2), the meta-gradient ∇Gb can be written as

∇Gb = ∇Gb
(
Y,Θ(T),F

)
+

T−2∑
t=0

AtBt+1 . . . BT−1∇θ(T)b
(
Y,Θ(T),F

)
(5.3)

where At = ∇GΘ
(t+1) and Bt = ∇Θ(t)Θ(t+1). However, Equation (5.3) is computationally

expensive in both time and space. To further speed up the computation, we adopt a first-order
approximation of the meta-gradient [230] and simplify the meta-gradient as

∇Gb ≈ ∇Θ(T)b
(
Y,Θ(T),F

)
· ∇GΘ

(T) (5.4)

Since the input graph is undirected, the derivative of the symmetric adjacency matrix A can

138

be computed as follows by applying the chain rule of a symmetric matrix [195].

∇Ab← ∇Ab+ (∇Ab)
T − diag (∇Ab) (5.5)

For the node feature matrix X, its derivative is equal to the partial derivative ∇Xb since it is
often an asymmetric matrix.
Graph poisoning with meta-gradient. After computing the meta-gradient of the bias
function ∇Gb, we aim to poison the input graph guided by ∇Gb. We introduce two poisoning
strategies: (1) continuous poisoning and (2) discretized poisoning.
A – Continuous poisoning attack. The continuous poisoning attack is straightforward by
reweighting edges in the graph. We first compute the meta-gradient of the bias function ∇Ab,
then use it to poison the input graph in a gradient descent-based updating rule as follows.

A← A− η∇Ab (5.6)

where η is a learning rate to control the magnitude of the poisoning attack. The learning
rate should satisfy η ≤ B

∥∇A∥1,1 to ensure the constraint on the budgeted attack.
B – Discretized poisoning attack. The discretized poisoning attack aims to select a set of
edges to be added/deleted. It is guided by a poisoning preference matrix defined as follows.

∇A = (1− 2A) ◦ ∇Ab (5.7)

where 1 is an all-one matrix with the same dimension as A, and ◦ denotes the Hadamard
product. A large positive ∇A [i, j] indicates strong preference in adding an edge, if nodes
i and j are not connected (i.e., positive ∇Ab [i, j], positive (1− 2A) [i, j]), or deleting an
edge, if nodes i and j are connected (i.e., negative ∇Ab [i, j], negative (1− 2A) [i, j]). Then
a greedy selection strategy is applied to find the set of edges Eattack to be added/deleted.

Eattack = topk (∇A, δ) (5.8)

where topk (∇A, δ) selects δ entries with highest preference score in ∇A. Note that, if we
only want to add edges without any deletion, all negative entries in ∇Ab should be zeroed
out before computing Equation (5.7). Likewise, if edges are only expected to be deleted, all
positive entries should be zeroed out.

Remarks. Poisoning node feature matrix X follows the same steps as poisoning adjacency
matrix A without applying Equation (5.5).
Overall framework. Algorithm 5.1 summarizes the detailed steps on fairness attack with

139

Algorithm 5.1: Fate
Given : an undirected graph G = {A,X}, the set of training nodes Vtrain,

fairness-related auxiliary information matrix F, total budget B, budget in
step i δi, the bias function b, number of pre-training epochs T .

Find : the poisoned graph G̃.
1 poisoned graph G̃ ← G;
2 cumulative budget ∆← 0;
3 step counter i← 0;
4 while ∆ < B do
5 ∇G̃b← 0;
6 for t = 1 to T do
7 update Θ(t) to Θ(t+1) with a gradient-based optimizer (e.g., Adam);
8 end
9 get Y(T) and Θ(T);

10 compute the meta-gradient ∇Gb← ∇Θ(T)b
(
Y,Θ(T),F

)
· ∇GΘ

(T);
11 if attack the adjacency matrix then
12 compute the derivative ∇Ãb← ∇Ãb+

(
∇Ãb

)T − diag
(
∇Ãb

)
;

13 end
14 if discretized poisoning attack then
15 compute the poisoning preference matrix ∇Ã by Equation (5.7);
16 select the edges to poison in ∇Ã with budget δi by Equation (5.8);
17 update the corresponding entries in G̃;
18 else
19 update G̃ by Equation (5.6) with budget δi;
20 end
21 ∆← ∆+ δi;
22 i← i+ 1;
23 end
24 return G̃;

Fate. To be specific, after initialization (line 1), we pre-train the surrogate graph learning
model (steps 6 – 8) and get the pre-trained surrogate model Θ(T) as well as learning results
Y(T) (step 9). After that, we compute the meta gradient of the bias function (steps 10 –
13) and perform either discretized attack or continuous attack based on the interest of the
attacker (i.e., discretized poisoning attack in steps 14 – 17 or continuous poisoning attack in
steps 18 – 20).
Limitations. Since Fate leverages the meta-gradient to poison the input graph, it requires
the bias function b

(
Y,Θ(T),F

)
to be differentiable in order to calculate the meta-gradient

∇Gb. In Sections 5.4 and 5.5, we present carefully chosen bias functions for Fate. And we
leave it for future work on exploring the ability of Fate in attacking other fairness definitions.

140

Moreover, though the meta-gradient can be efficiently computed via auto-differentiation
in many deep learning packages (e.g., PyTorch38, TensorFlow39), it requires O(n2) space
complexity to store the meta-gradient when attacking fairness via edge flipping. It is still
a challenging open problem on how to efficiently compute the meta-gradient in terms of
space. One possible remedy for discretized attack might be a low-rank approximation on
the perturbation matrix formed by Eattack. Since the difference between the benign graph
and poisoned graph are often small and budgeted (d

(
G, G̃

)
≤ B), it is likely that the edge

manipulations may be around a few set of nodes, which makes the perturbation matrix to be
an (approximately) low-rank matrix.

5.4 INSTANTIATION #1: STATISTICAL PARITY ON GRAPH NEURAL NETWORKS

Here, we instantiate the Fate framework by attacking statistical parity on graph neural
networks in a binary node classification problem with a binary sensitive attribute. We briefly
discuss how to choose (1) the surrogate graph learning model used by the attacker, (2) the
task-specific loss function in the lower-level optimization problem, and (3) the bias function
in the upper-level optimization problem.
Surrogate graph learning model. We assume that the surrogate model to be used by the
attacker is a 2-layer linear GCN [231] with different hidden dimensions and model parameters
at initialization.
Lower-level loss function. We consider a semi-supervised node classification task for
the graph neural network to be attacked. Thus, the lower-level loss function is chosen as
the cross entropy between the ground-truth label and the predicted label: l (G,Y,Θ, θ) =

1
|Vtrain|

∑
i∈Vtrain

∑c
j=1 yi,j ln ŷi,j, where Vtrain is the set of training nodes with |Vtrain| being its

cardinality, c is the number of classes, yi,j is a binary indicator of whether node i belongs to
class j, and ŷi,j is the prediction probability of node i belonging to class j.
Upper-level bias function. We aim to attack statistical parity in the upper-level problem,
which asks for P [ŷ = 1] = P [ŷ = 1|s = 1]. Suppose p (ŷ) is the probability density function
(PDF) of ŷi,1 for any node i, and p (ŷ|s = 1) is the PDF of ŷi,1 for any node i belonging to
the demographic group with sensitive attribute value s = 1. We observe that P [ŷ = 1] and
P [ŷ = 1|s = 1] are equivalent to the cumulative distribution functions (CDF) of p

(
ŷ < 1

2

)
and p

(
ŷ < 1

2
|s = 1

)
, respectively. To estimate both P [ŷ = 1] and P [ŷ = 1|s = 1] with a

differentiable function, we first estimate their probability density functions (p
(
ŷ < 1

2

)
and

p
(
ŷ < 1

2
|s = 1

)
) with kernel density estimation (KDE, Definition 5.1).

38https://pytorch.org/
39https://www.tensorflow.org/

141

https://pytorch.org/
https://www.tensorflow.org/

Definition 5.1. (Kernel density estimation [232]). Given a set of n IID samples {x1, . . . , xn}
drawn from a distribution with an unknown probability density function f , the kernel density
estimation of f at point τ is defined as follows.

f̃ (τ) =
1

na

n∑
i=1

fk

(
τ − xi
a

)
(5.9)

where f̃ is the estimated probability density function, fk is the kernel function, and a is a
non-negative bandwidth.

Moreover, we assume the kernel function in KDE is the Gaussian kernel fk (x) = 1√
2π
e−x2/2.

However, computing the CDF of a Gaussian distribution is non-trivial. Following [233], we
leverage a tractable approximation of the Gaussian Q-function as follows.

Q (τ) = Fk (τ) =

∫ ∞

τ

fk (x) dx ≈ e−ατ2−βτ−γ (5.10)

where fk (x) == 1√
2π
e−x2/2 is a Gaussian distribution with zero mean, α = 0.4920, β = 0.2887,

and γ = 1.1893 [234]. The overall workflow of estimating P [ŷ = 1] is as follows.

• For any node i, get its prediction probability ŷi,1 with respect to class 1.

• Estimate the CDF P [ŷ = 1] using a Gaussian KDE with bandwidth a by P [ŷ = 1] =

1
n

∑n
i=1 exp

(
−α
(

0.5−ŷi,1
a

)2
− β

(
0.5−ŷi,1

a

)
− γ
)

, where α = 0.4920, β = 0.2887, γ =

1.1893, and exp(x) = ex.

Note that P [ŷ = 1|s = 1] can be estimated with a similar procedure with minor modifications.
The only modifications needed are: (1) get the prediction probability of nodes with s = 1

and (2) compute the CDF using the Gaussian Q-function over nodes with s = 1 rather than
all nodes in the graph.

5.5 INSTANTIATION #2: INDIVIDUAL FAIRNESS ON GRAPH NEURAL
NETWORKS

We provide another instantiation of the Fate framework by attacking individual fairness
on graph neural networks. Here, we consider the same surrogate graph learning model (i.e.,
a 2-layer linear GCN) and the same lower-level loss function (i.e., cross-entropy loss) as
described in Section 5.4. To attack individual fairness, we define the upper-level bias function
following the principles in [17]. The fairness-related auxiliary information matrix F is defined

142

as the oracle symmetric pairwise node similarity matrix S (i.e., F = S), where S [i, j] measures
the similarity between node i and node j. Kang et al. [17] define the overall individual bias
to be Tr

(
YTLSY

)
. Assuming that Y is the output of an optimization-based graph learning

model, Y can be viewed as a function with respect to the input graph G, which makes
Tr
(
YTLSY

)
differentiable with respect to G. Thus, the bias function b (·) can be naturally

defined as the overall individual bias of the input graph G, i.e., b (Y,Θ∗,S) = Tr
(
YTLSY

)
.

5.6 FURTHER DISCUSSIONS ABOUT FATE

In this part, we provide additional discussions about Fate, including (1) other graph
learning models from the optimization perspective, (2) the relationship between fairness
attacks and the impossibility theorem of fairness, and (3) the relationship between Fate and
Metattack, which is another meta learning-based attacking framework on graph neural
networks.

5.6.1 Graph Learning from the Optimization Perspective: More Discussions

Here, we discuss four additional non-parameterized graph learning models from the opti-
mization perspective, including PageRank, spectral clustering, matrix factorization-based
completion, and first-order LINE.
Model #1: PageRank. It is one of the most successful random walk based ranking
algorithm to measure node importance. Mathematically, PageRank solves the linear system

r = cPr+ (1− c) e (5.11)

where c is the damping factor, P is the propagation matrix, and e is the teleportation vector.
In PageRank, the propagation matrix P is often defined as the row-normalized adjacency
matrix of a graph G, and the teleportation vector is a uniform distribution 1

n
1 with 1 being

a vector filled with 1. Equivalently, given a damping factor c and a teleportation vector e,
the PageRank vector Y = r can be learned by minimizing the following loss function

min
r

crT (I−P) r+ (1− c) ∥r− e∥22 (5.12)

where c
(
rT (I−P) r

)
is a smoothness term, and (1− c) ∥r− e∥22 is a query-specific term. To

attack the fairness of PageRank with Fate, the attacker could attack a surrogate PageRank
with different choices of damping factor c and/or teleportation vector e.

143

Model #2: Spectral clustering. It aims to assign nodes into several clusters, such that
the intra-cluster connectivity are maximized, and the inter-cluster connectivity are minimized.
To find k clusters of nodes, spectral clustering finds a soft cluster membership matrix Y = C

with orthonormal columns by minimizing the following loss function

min
C

Tr
(
CTLC

)
s.t.CTC = I (5.13)

where L is the (normalized) graph Laplacian of the input graph G. It is worth noting that the
columns of C is equivalent to the eigenvectors of L associated with the smallest k eigenvalues.
To attack the fairness of spectral clustering with Fate, the attacker might attack a surrogate
spectral clustering with different number of clusters k.
Model #3: Matrix factorization-based completion. Suppose we have a bipartite
graph G with n1 users, n2 items, and m interactions between users and items. Matrix
factorization-based completion aims to learn two low-rank matrices: an n1 × z matrix U and
an n2 × z matrix V, such that the following loss function will be minimized

min
U,V
∥ projΩ

(
R−UVT

)
∥2F + λ1∥U∥2Fλ2 + ∥V∥2F (5.14)

where A =

(
0n1 R

RT 0n2

)
with 0n1 being an n1 × n1 square matrix filled with 0, Ω =

{(i, j) | (i, j) is observed} is the set of observed interaction between any user i and any
item j, projΩ (Z) [i, j] equals to Z [i, j] if (i, j) ∈ Ω and 0 otherwise, and λ1 and λ2 are two
hyperparameters for regularization. To attack the fairness of matrix factorization-based
completion with Fate, the attacker could attack a surrogate model with different number of
latent factors z.
Model #4: First-order LINE. It is a skip-gram based node embedding model. The key
idea of first-order LINE is to map each node into a h-dimensional space such that the dot
product of the embeddings of any two connected nodes will be small. To achieve this goal,
first-order LINE essentially optimizes the following loss function

max
H

n∑
i=1

n∑
j=1

A [i, j]
(
log g

(
H [j, :]H [i, :]T

)
+ kEj′∼Pn

[
log g

(
−H [j′, :]H [i, :]T

)])
(5.15)

where H is the embedding matrix with H [i, :] being the h-dimensional embedding of node i,
g (x) = 1/ (1 + e−x) is the sigmoid function, k is the number of negative samples, and Pn is the
distribution for negative sampling where the sampling probability for node i is proportional
to the power of 0.75 of its degree deg0.75i . For a victim first-order LINE, the attacker could

144

attack a surrogate first-order LINE with different dimension h in the embedding space and/or
a different number of negative samples g.
Remarks. Note that, for a non-parameterized graph learning model (e.g., PageRank, spectral
clustering, matrix completion, first-order LINE), we have Θ = {Y} which is the set of learning
results. For example, we have Θ = {r} for PageRank, Θ = {C} for spectral clustering,
Θ = {U,V} and Θ = {H} for LINE (1st). For parameterized graph learning models (e.g.,
GCN), Θ refers to the set of learnable weights, e.g., Θ =

{
W(1), . . . ,W(L)

}
for an L-layer

GCN.

5.6.2 Relationship between Fairness Attacks and the Impossibility Theorem of Fairness.

The impossibility theorem [235] implies that some fairness definitions may not be satisfied
at the same time. However, this may not always be regarded as fairness attacks. More
specifically, the impossibility theorem proves that two fairness definitions (e.g., statistical
parity and predictive parity) cannot be fully satisfied at the same time, i.e., biases for two
fairness definitions are both zero. However, there is no formal theoretical guarantees that
ensuring one fairness definition will always amplify the bias of another fairness definition.
Such formal guarantees might be non-trivial and beyond the scope of this work. The main
goal of Fate is to provide insights into the adversarial robustness of fair graph learning and
shed light on designing robust and fair graph learning in future studies.

5.6.3 Relationship between Fate and Metattack.

Fate bears subtle differences with Metattack [81], which also utilizes meta learning for
adversarial attacks. Note that Metattack aims to degrade the utility of a graph neural
network by maximizing the task-specific utility loss (e.g., cross entropy for node classification)
in the upper-level optimization problem. Different from Metattack, Fate aims to attack the
fairness instead of utility by setting the upper-level optimization problem as maximizing a
bias function rather than a utility loss.

5.7 EXPERIMENTS

In this part, we conduct experiments to answer the following research questions:

• RQ1. How effective is Fate in exacerbating bias?

• RQ2. How effective is Fate in maintaining utility of the downstream task?

145

Table 5.1: Statistics of the datasets to evaluate Fate.

Dataset # Nodes # Edges # Features Sensitive Attribute Label
Pokec-z 7, 659 20, 550 276 Region Working field
Pokec-n 6, 185 15, 321 265 Region Working field

Bail 18, 876 311, 870 17 Race Bail decision

5.7.1 Experimental Settings

Hardware and software specifications. All codes are programmed in Python 3.8.13 and
PyTorch 1.12.1. All experiments are performed on a Linux server with 2 Intel Xeon Gold
6240R CPUs and 4 Nvidia Tesla V100 SXM2 GPUs with 32 GB memory.
Dataset descriptions. We use three widely-used public benchmark datasets for fair graph
learning: Pokec-z, Pokec-n, and Bail. For each dataset, we use a fixed random seed to split
the dataset into training, validation, and test sets with the split ratio being 50%, 25%, and
25%, respectively. The statistics of the datasets, including the number of nodes (# Nodes),
the number of edges (# Edges), the number of features (# Features), the sensitive attribute
(Sensitive Attribute), and the label (Label), are summarized in Table 5.1.

• Pokec-z and Pokec-n are two datasets collected from the Slovakian social network Pokec,
each of which represents a sub-network of a province. Each node in these datasets is a
user belonging to two major regions of the corresponding provinces, and each edge is
the friendship relationship between two users. The sensitive attribute is the user region,
and the label is the working field of a user.

• Bail is a similarity graph of criminal defendants during 1990 – 2009. Each node is a
defendant during this time period. Two nodes are connected if they share similar past
criminal records and demographics. The sensitive attribute is the race of the defendant,
and the label is whether the defendant is on bail or not.

Baseline methods. We compare Fate with several baseline methods, including Random,
DICE [236], and FA-GNN [85]. Descriptions of the baseline methods are as follows.

• Random is a heuristic approach that randomly inserts edges to the input graph.

• DICE [236] attacks the utility of a graph learning algorithm by randomly deleting
edges within a community and randomly inserting edges across different communities.
Similar to [80, 85], the community is defined as the group of nodes with the same class
label.

146

• FA-GNN [85] aims to attack the fairness of a graph neural network by inserting
adversarial edges that connect nodes in consideration of their class labels and sensitive
attribute values.

Evaluation metrics. In our experiments, we aim to evaluate how effective Fate is in (1)
attacking the fairness (for effective fairness attacks) and (2) maintaining the utility of node
classification (for deceptive fairness attacks). First, to evaluate the performance of Fate in
attacking the group fairness, we evaluate the effectiveness using ∆SP, which is defined as
follows.

∆SP = |P [ŷ = 1 | s = 1]− P [ŷ = 1 | s = 0] | (5.16)

where s is the sensitive attribute value of a node, and ŷ is the predicted class label of a node.
To evaluate the performance of Fate in attacking the individual fairness, we evaluate the
effectiveness using the InFoRM bias (Bias) measure [17], which is defined as follows.

Bias =
∑

i∈Vtest

∑
j∈Vtest

S [i, j] ∥Y [i, :]−Y [j, :] ∥2F (5.17)

where Vtest is the set of test nodes, and S is the oracle pairwise node similarity matrix.
The intuition of Equation (5.17) is to measure the individual bias as the squared difference
between the learning results of two test nodes, weighted by their pairwise similarity. Second,
to evaluate the performance of Fate in maintaining the utility, we use micro F1 score (Micro
F1), macro F1 score (Macro F1), and AUC score (AUC).
Detailed parameter settings. Here we provide detailed parameter settings for poisoning
the input graph and training the victim model in our experiments.
A – Poisoning the input graph. During poisoning attacks, we set a fixed random seed to
control the randomness. The random seed used for each dataset in attacking group/individual
fairness are summarized in Table 5.2.

• Surrogate model training. We run all methods with a perturbation rate from 0.05 to
0.25 with a step size of 0.05. For FA-GNN [85], we follow its official implementation
and use the same surrogate 2-layer GCN [7] with 16 hidden dimensions for poisoning
attack.40 The surrogate GCN in FA-GNN is trained for 500 epochs with a learning rate
1e− 2, weight decay 5e− 4, and dropout rate 0.5. For Fate, we use a 2-layer linear
GCN [231] with 16 hidden dimensions for poisoning attacks. And the surrogate linear
GCN in Fate is trained for 100 epochs with a learning rate 1e− 2, weight decay 5e− 4,
and dropout rate 0.5.

40https://github.com/mengcao327/attack-gnn-fairness

147

https://github.com/mengcao327/attack-gnn-fairness

Table 5.2: Parameter settings on the random seed for all baseline methods in poisoning
attacks (Random Seed) and the number of steps for poisoning attacks in Fate (Attacking
Steps).

Dataset Fairness Definition Attacking Steps Random Seed

Pokec-n Statistical parity 3 25
Individual fairness 3 45

Pokec-z Statistical parity 3 25
Individual fairness 5 15

Bail Statistical parity 3 25
Individual fairness 3 5

• Graph topology manipulation. For Random and DICE, we use the implementations
provided in the deeprobust package with the default parameters to add the adversarial
edges.41 For FA-GNN, we add adversarial edges that connect two nodes with different
class labels and different sensitive attributes, which provides the most promising
performance as shown in [85]. For Fate, suppose we poison the input graph in
p (p > 1) attacking steps. Then the per-iteration attacking budget in Algorithm 5.1
is set as δ1 = 1 and δi =

r|E|−1
p−1

, ∀i ∈ {2, . . . , p}, where r is the perturbation rate,
and |E| is the number of edges. Detailed choices of p for each dataset in attacking
group/individual fairness are summarized in Table 5.2.

B – Training the victim model. We use a fixed list of random seed (i.e., [0, 1, 2, 42, 100]) to
train each victim model 5 times and report the mean and standard deviation. Regarding the
victim models in attacking group fairness, we train a 2-layer GCN [7] for 400 epochs and a
2-layer FairGNN [12] for 2000 epochs to evaluate the efficacy of fairness attacks. The hidden
dimension, learning rate, weight decay, and dropout rate of GCN and FairGNN are set to
128, 1e− 3, 1e− 5, and 0.5, respectively. The regularization parameters in FairGNN, namely
α and β, are set to 100 and 1 for all datasets, respectively. Regarding the victim models in
attacking individual fairness, we train a 2-layer GCN [7] and a 2-layer InFoRM-GNN [17, 59]
for 400 epochs. The hidden dimension, learning rate, weight decay, and dropout rate of GCN
and InFoRM-GNN are set to 128, 1e− 3, 1e− 5, and 0.5, respectively. The regularization
parameter in InFoRM-GNN is set to 0.1 for all datasets.

41https://deeprobust.readthedocs.io/

148

https://deeprobust.readthedocs.io/

Table 5.3: Effectiveness of attacking group fairness on GCN. Fate poisons the graph via both
edge flipping (Fate-flip) and edge addition (Fate-add), while all other baseline methods
poison the graph via edge addition. Higher is better (↑) for micro F1 score (Micro F1) and
∆SP. Bold font indicates the success of fairness attack (i.e., ∆SP is increased after fairness
attack) with the highest micro F1 score. Underlined cell indicates the failure of fairness
attack (i.e., ∆SP is decreased after fairness attack).

Dataset Ptb. Random DICE FA-GNN Fate-flip Fate-add

Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑)

Pokec-n

0.00 67.5± 0.3 7.1± 0.4 67.5± 0.3 7.1± 0.4 67.5± 0.3 7.1± 0.4 67.5± 0.3 7.1± 0.4 67.5± 0.3 7.1± 0.4
0.05 68.0± 0.3 6.2± 0.8 67.6± 0.2 6.8± 0.3 67.8± 0.1 3.3± 0.4 67.9± 0.4 9.3± 1.2 67.9± 0.4 9.3± 1.2
0.10 66.8± 0.8 7.3± 0.7 66.1± 0.5 6.6± 1.1 66.0± 0.2 11.5± 0.6 68.2± 0.6 9.8± 1.5 68.2± 0.6 9.8± 1.5
0.15 66.7± 0.4 8.1± 0.4 65.6± 0.4 7.7± 0.8 66.0± 0.4 15.6± 3.0 68.0± 0.3 11.5± 1.0 68.0± 0.3 11.5± 1.0
0.20 66.3± 0.7 8.6± 1.8 64.2± 0.4 3.4± 0.9 65.8± 0.1 18.4± 0.7 68.2± 0.5 12.0± 1.8 68.2± 0.5 12.0± 1.8
0.25 66.2± 0.6 8.5± 0.8 63.4± 0.2 6.3± 0.8 66.6± 0.2 23.3± 0.5 68.3± 0.4 12.1± 2.1 68.3± 0.4 12.1± 2.1

Pokec-z

0.00 68.4± 0.4 6.6± 0.9 68.4± 0.4 6.6± 0.9 68.4± 0.4 6.6± 0.9 68.4± 0.4 6.6± 0.9 68.4± 0.4 6.6± 0.9
0.05 68.8± 0.4 6.4± 0.6 67.4± 0.5 6.6± 0.3 68.1± 0.3 2.2± 0.4 68.7± 0.4 6.7± 1.4 68.7± 0.4 6.7± 1.4
0.10 68.7± 0.3 8.0± 0.6 66.5± 0.2 6.3± 0.8 67.7± 0.4 13.5± 0.9 68.7± 0.6 7.5± 0.7 68.7± 0.6 7.5± 0.7
0.15 67.9± 0.3 9.1± 0.8 65.9± 0.8 5.5± 1.3 66.6± 0.4 16.9± 2.6 69.0± 0.8 8.5± 1.1 69.0± 0.8 8.5± 1.1
0.20 68.5± 0.4 9.3± 1.0 62.9± 0.7 8.7± 1.0 66.1± 0.2 25.4± 1.3 68.5± 0.6 8.8± 1.1 68.5± 0.6 8.8± 1.1
0.25 68.3± 0.5 7.3± 0.5 63.9± 0.4 6.0± 1.0 65.5± 0.6 22.3± 2.8 68.5± 1.1 8.6± 2.5 68.5± 1.1 8.6± 2.5

Bail

0.00 93.1± 0.2 8.0± 0.2 93.1± 0.2 8.0± 0.2 93.1± 0.2 8.0± 0.2 93.1± 0.2 8.0± 0.2 93.1± 0.2 8.0± 0.2
0.05 92.7± 0.2 8.1± 0.0 91.6± 0.2 8.5± 0.1 91.7± 0.1 10.0± 0.4 92.6± 0.1 8.6± 0.1 92.5± 0.1 8.6± 0.1
0.10 92.2± 0.2 7.8± 0.2 90.3± 0.1 8.5± 0.1 90.5± 0.0 10.3± 0.4 92.4± 0.1 8.9± 0.1 92.4± 0.1 8.6± 0.1
0.15 91.9± 0.2 7.8± 0.1 89.2± 0.1 7.7± 0.1 90.0± 0.2 8.4± 0.2 92.2± 0.2 9.1± 0.1 92.3± 0.1 9.1± 0.1
0.20 91.6± 0.2 7.8± 0.1 88.3± 0.1 8.3± 0.1 89.7± 0.1 7.4± 0.4 92.2± 0.2 9.3± 0.1 92.3± 0.1 9.3± 0.2
0.25 91.4± 0.1 8.3± 0.1 87.8± 0.0 7.8± 0.1 89.8± 0.2 5.2± 0.2 92.1± 0.1 9.1± 0.2 92.1± 0.1 9.1± 0.3

5.7.2 Attacking Statistical Parity on Graph Neural Networks

Settings. We compare Fate with Random, DICE [236], and FA-GNN [85], under the same
settings as in Section 5.4. That is, (1) the fairness definition to be attacked is statistical
parity, and (2) the downstream task is semi-supervised node classification with binary class
label and binary sensitive attribute. The experiments are conducted on 3 real-world datasets,
i.e., Pokec-n, Pokec-z, and Bail. Similar to existing works [12, 85], we use the 50%/25%/25%
splits for train/validation/test sets. For all baseline methods, the victim models are set to
GCN [7] and FairGNN [12], which guarantees statistical parity through adversarial learning.
For each dataset, we use a fixed random seed to learn the poisoned graph corresponding to
each baseline method. Then we train the victim model 5 times with different random seeds.
For a fair comparison, we only attack the adjacency matrix in all experiments.
Effectiveness results. For Fate, we conduct fairness attacks via both edge flipping (Fate-
flip in Table 5.3 and edge addition (Fate-add in Table 5.3). For all other baseline methods,
edges are only added. The effectiveness of fairness attacks on GCN are presented in Table 5.3.
From the table, we have the following key observations. (1) Fate-flip and Fate-add are the
only methods that consistently succeed in fairness attacks, while all other baseline methods
might fail in some cases (indicated by the underlined ∆SP) because of the decrease in ∆SP. (2)
Fate-flip and Fate-add not only amplify ∆SP consistently, but also achieve the best micro
F1 score on node classification, which makes Fate-flip and Fate-add more deceptive than
all baseline methods. Notably, Fate-flip and Fate-add are able to even increase micro F1

149

Table 5.4: Effectiveness of attacking group fairness on FairGNN. Fate poisons the graph
via both edge flipping (Fate-flip) and edge addition (Fate-add), while all other baseline
methods poison the graph via edge addition. Higher is better (↑) for micro F1 score (Micro
F1) and ∆SP. Bold font indicates the success of fairness attack (i.e., ∆SP is increased after
attack) with the highest micro F1 score. Underlined cell indicates the failure of fairness
attack (i.e., ∆SP is decreased after attack).

Dataset Ptb. Random DICE FA-GNN Fate-flip Fate-add

Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑)

Pokec-n

0.00 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0
0.05 67.4± 0.8 8.2± 2.5 66.2± 0.6 9.9± 1.7 66.7± 1.2 2.8± 1.3 68.4± 0.2 8.9± 1.8 68.4± 0.2 8.9± 1.8
0.10 67.5± 0.5 8.3± 1.5 66.3± 0.4 9.5± 2.1 66.6± 0.5 5.9± 1.3 68.5± 0.4 9.5± 1.4 68.5± 0.4 9.5± 1.4
0.15 65.9± 0.6 10.4± 2.3 65.4± 0.6 9.2± 2.6 64.8± 1.6 9.0± 3.3 68.5± 0.8 10.5± 2.6 68.5± 0.8 10.5± 2.6
0.20 65.4± 0.5 10.0± 1.5 65.0± 0.4 4.4± 2.5 65.2± 0.2 11.6± 2.6 68.3± 0.3 10.7± 2.3 68.3± 0.3 10.7± 2.3
0.25 65.8± 1.1 7.5± 1.9 63.8± 0.3 5.4± 1.8 64.8± 0.8 14.2± 2.3 68.5± 0.3 9.1± 3.6 68.5± 0.3 9.1± 3.6

Pokec-z

0.00 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9
0.05 67.3± 0.6 8.7± 2.8 67.5± 0.4 8.5± 1.3 67.1± 1.0 1.7± 1.3 68.7± 0.4 8.0± 0.9 68.7± 0.4 8.0± 0.9
0.10 67.1± 0.2 8.6± 2.7 66.1± 0.3 7.0± 2.9 65.9± 0.8 6.8± 1.7 68.5± 0.5 9.0± 1.8 68.5± 0.5 9.0± 1.8
0.15 66.8± 0.8 8.9± 2.2 65.2± 0.5 6.6± 1.4 64.9± 0.9 10.0± 1.7 68.7± 0.5 9.5± 2.2 68.7± 0.5 9.5± 2.2
0.20 66.8± 0.7 8.6± 3.0 63.7± 0.6 6.6± 2.9 64.6± 0.8 14.2± 3.1 68.8± 0.2 10.4± 1.6 68.8± 0.2 10.4± 1.6
0.25 66.4± 0.4 7.9± 2.8 63.4± 0.4 6.0± 2.8 64.0± 1.1 14.0± 2.0 68.5± 0.3 10.3± 2.1 68.5± 0.3 10.3± 2.1

Bail

0.00 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2
0.05 90.6± 1.2 8.3± 0.2 89.1± 1.2 8.3± 0.3 89.1± 2.0 10.8± 1.1 93.6± 0.1 9.2± 0.2 93.6± 0.1 9.1± 0.2
0.10 90.1± 2.0 8.5± 0.6 88.1± 1.8 8.2± 0.3 87.3± 2.2 12.2± 1.2 93.4± 0.1 9.3± 0.2 93.4± 0.1 9.3± 0.2
0.15 90.0± 2.0 8.1± 0.5 86.9± 2.0 8.1± 0.5 87.8± 2.0 10.9± 2.1 93.3± 0.1 9.2± 0.3 93.3± 0.1 9.2± 0.3
0.20 89.2± 2.4 8.4± 0.7 85.3± 2.7 8.2± 0.4 86.0± 2.7 11.7± 2.4 93.1± 0.2 9.3± 0.3 93.0± 0.1 9.4± 0.2
0.25 88.8± 2.3 8.2± 0.7 85.3± 3.3 7.9± 0.5 87.0± 1.9 8.5± 2.6 93.0± 0.1 9.2± 0.4 93.0± 0.2 9.3± 0.3

score on all datasets, while other baseline methods attack the graph neural networks at the
expense of utility (micro F1 score). (3) Though FA-GNN could make the model more biased
in some cases, it (1) degrades the utility which makes the fairness attacks less deceptive, and
(2) cannot guarantee consistent success in fairness attacks on all three datasets as shown by
the underlined ∆SP.

The effectiveness results of fairness attacks on FairGNN are presented in Table 5.4. We
have the following observations. (1) Even though the surrogate model is linear GCN without
fairness consideration, FairGNN, which ensures statistical parity on graph neural networks,
cannot mitigate the bias caused by fairness attacks and is vulnerable to fairness attack. (2)
Fate-flip and Fate-add are effective and the most deceptive method in fairness attacks.
(3) Fate-flip and Fate-add are the only methods that consistently succeed in effective and
deceptive fairness attacks, while all other baseline methods degrade the utility and might fail
in some cases (indicated by the underlined ∆SP).

All in all, Fate consistently succeeds in fairness attacks while being the most deceptive
(i.e., highest micro F1 score), regardless of the victim model.
Performance evaluation under other utility metrics. We provide additional evaluation
results of the utility using macro F1 score and AUC score. From Tables 5.5 and 5.6, we can
see that both metrics are less impacted by different perturbation rates. Thus, it provide
extra evidence that Fate framework can achieve deceptive fairness attacks with comparable
or even better utility on semi-supervised node classification.

150

Table 5.5: Macro F1 score and AUC score of attacking group fairness on GCN. Fate poisons
the graph via both edge flipping (Fate-flip) and edge addition (Fate-add), while all other
baseline methods poison the graph via edge addition. Higher is better (↑) for macro F1 score
(Macro F1) and AUC score (AUC). Bold font indicates the highest macro F1 score or AUC
score.

Dataset Ptb. Random DICE FA-GNN Fate-flip Fate-add

Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5
0.05 65.7± 0.3 70.4± 0.4 64.9± 0.2 69.8± 0.3 64.9± 0.2 70.4± 0.2 66.0± 0.3 70.3± 0.6 66.0± 0.3 70.3± 0.6
0.10 64.6± 0.4 69.6± 0.3 63.4± 0.6 67.7± 0.3 64.1± 0.3 70.0± 0.1 66.1± 0.6 70.4± 0.6 66.1± 0.6 70.4± 0.6
0.15 65.1± 0.4 69.6± 0.1 62.8± 0.7 67.3± 0.4 64.3± 0.6 69.1± 0.5 66.1± 0.2 70.6± 0.6 66.1± 0.2 70.6± 0.6
0.20 64.5± 0.5 69.1± 0.1 60.9± 0.2 64.6± 0.2 63.5± 0.2 68.0± 0.2 66.4± 0.3 70.7± 0.4 66.4± 0.3 70.7± 0.4
0.25 64.5± 0.6 68.8± 0.1 59.7± 0.6 63.6± 0.6 65.0± 0.2 69.5± 0.3 66.3± 0.3 70.6± 0.6 66.3± 0.3 70.6± 0.6

Pokec-z

0.00 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3
0.05 68.5± 0.4 74.5± 0.4 67.2± 0.5 74.2± 0.3 67.9± 0.3 74.5± 0.2 68.6± 0.4 75.2± 0.4 68.6± 0.4 75.2± 0.4
0.10 68.5± 0.3 74.8± 0.3 66.3± 0.2 72.9± 0.1 67.5± 0.5 73.8± 0.3 68.6± 0.6 75.2± 0.3 68.6± 0.6 75.2± 0.3
0.15 67.8± 0.3 74.4± 0.3 65.3± 1.0 70.0± 0.8 66.1± 0.6 72.7± 0.2 68.9± 0.7 75.3± 0.2 68.9± 0.7 75.3± 0.2
0.20 68.2± 0.4 74.5± 0.6 62.6± 0.6 68.0± 0.9 66.1± 0.2 71.9± 0.1 68.4± 0.5 75.1± 0.3 68.4± 0.5 75.1± 0.3
0.25 68.0± 0.4 74.0± 0.4 63.4± 0.4 68.6± 0.6 65.3± 0.6 71.2± 0.3 68.4± 1.1 74.4± 1.4 68.4± 1.1 74.4± 1.4

Bail

0.00 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1
0.05 92.0± 0.2 95.3± 0.2 90.6± 0.3 93.8± 0.2 90.8± 0.1 94.4± 0.2 91.8± 0.1 97.1± 0.1 91.7± 0.1 97.1± 0.2
0.10 91.4± 0.2 94.7± 0.3 89.2± 0.1 92.2± 0.3 89.5± 0.1 93.5± 0.1 91.6± 0.2 96.9± 0.1 91.6± 0.2 96.9± 0.1
0.15 91.1± 0.2 94.2± 0.2 87.8± 0.2 91.1± 0.2 88.7± 0.3 92.5± 0.2 91.4± 0.2 96.9± 0.1 91.5± 0.1 96.9± 0.1
0.20 90.7± 0.2 94.1± 0.1 86.9± 0.1 90.2± 0.2 88.4± 0.1 92.2± 0.1 91.3± 0.2 96.8± 0.1 91.4± 0.2 96.8± 0.1
0.25 90.4± 0.2 93.4± 0.3 86.2± 0.1 89.2± 0.3 88.5± 0.2 92.0± 0.1 91.2± 0.1 96.8± 0.1 91.3± 0.2 96.8± 0.1

Table 5.6: Macro F1 score and AUC score of attacking group fairness on FairGNN. Fate poi-
sons the graph via both edge flipping (Fate-flip) and edge addition (Fate-add), while all
other baseline methods poison the graph via edge addition. Higher is better (↑) for macro F1
score (Macro F1) and AUC score (AUC). Bold font indicates the highest macro F1 score or
AUC score.

Dataset Ptb. Random DICE FA-GNN Fate-flip Fate-add

Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5
0.05 64.3± 0.6 68.3± 1.1 64.2± 0.8 68.4± 1.4 63.6± 0.7 68.2± 0.5 65.8± 0.5 70.7± 0.4 65.8± 0.5 70.7± 0.4
0.10 63.8± 0.2 67.3± 1.1 63.4± 0.8 67.4± 0.6 63.9± 0.4 68.3± 0.2 66.0± 0.7 70.8± 0.5 66.0± 0.7 70.8± 0.5
0.15 63.5± 0.2 67.8± 0.4 60.7± 0.7 65.2± 1.2 63.1± 0.6 67.2± 0.5 65.8± 1.0 70.8± 0.5 65.8± 1.0 70.8± 0.5
0.20 63.1± 0.6 67.8± 1.1 60.2± 1.0 63.7± 1.1 62.3± 0.6 66.7± 0.9 65.7± 0.7 70.4± 0.5 65.7± 0.7 70.4± 0.5
0.25 62.4± 0.3 66.8± 0.8 57.3± 0.4 61.8± 0.7 62.4± 1.4 67.6± 1.3 65.1± 1.2 70.1± 0.5 65.1± 1.2 70.1± 0.5

Pokec-z

0.00 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3
0.05 66.3± 0.9 73.5± 0.9 66.4± 0.8 72.8± 1.2 66.5± 1.4 72.6± 1.4 68.4± 0.4 74.7± 0.9 68.4± 0.4 74.7± 0.9
0.10 66.0± 0.7 72.9± 1.1 64.9± 0.8 71.4± 0.4 65.2± 0.9 71.3± 1.7 68.2± 0.8 75.3± 0.8 68.2± 0.8 75.3± 0.8
0.15 66.0± 0.8 71.8± 2.1 63.9± 0.8 68.5± 1.5 63.4± 1.5 70.0± 1.8 68.3± 0.5 75.2± 0.6 68.3± 0.5 75.2± 0.6
0.20 65.6± 0.9 71.9± 1.4 62.1± 1.1 67.9± 1.8 63.7± 0.9 68.9± 1.6 68.3± 0.3 75.5± 0.3 68.3± 0.3 75.5± 0.3
0.25 65.0± 0.7 71.2± 1.7 61.9± 0.4 66.7± 1.1 62.8± 1.8 69.4± 1.5 68.0± 0.5 75.3± 0.3 68.0± 0.5 75.3± 0.3

Bail

0.00 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1
0.05 89.5± 1.5 92.8± 1.8 87.8± 1.3 90.9± 1.5 87.8± 2.2 91.2± 1.8 93.0± 0.1 97.3± 0.1 93.0± 0.1 97.3± 0.1
0.10 89.1± 2.2 92.7± 2.5 86.7± 2.0 90.1± 1.0 85.6± 2.7 90.5± 1.7 92.7± 0.1 97.1± 0.1 92.7± 0.1 97.1± 0.1
0.15 88.8± 2.2 92.4± 2.5 85.2± 2.3 88.0± 2.8 86.1± 2.4 90.3± 2.2 92.6± 0.1 97.0± 0.1 92.6± 0.1 97.0± 0.1
0.20 87.8± 2.8 91.6± 2.5 83.2± 3.1 86.5± 3.6 84.1± 3.0 89.0± 1.5 92.5± 0.2 97.0± 0.1 92.3± 0.1 97.0± 0.1
0.25 87.5± 2.6 91.5± 2.6 83.3± 3.9 87.3± 3.7 85.1± 2.3 89.6± 1.3 92.3± 0.1 97.0± 0.1 92.3± 0.2 97.0± 0.1

151

(a) (b)

Figure 5.1: Attacking statistical parity with Fate-flip. (a) Ratios of flipped edges that
connect two nodes with same/different label or sensitive attribute (sen. attr.). (b) SL
(abbreviation for same label) refers to the ratios of flipped edges whose two endpoints are
both from the same class. SSA (abbreviation for same sensitive attribute) refers to the
ratios of flipped edges whose two endpoints are both from the same demographic group.
Majority/minority classes are determined by splitting the training nodes based on their class
labels. The protected group is the demographic group with fewer nodes.

Effect of the perturbation rate. From Tables 5.3 and 5.4, we have the following
observations. First, ∆SP tends to increase when the perturbation rate increases, which
demonstrates the effectiveness of Fate-flip and Fate-add for attacking fairness. Though in
some cases ∆SP might have a marginal decrease, Fate-flip and Fate-add still successfully
attack the fairness compared with GCN trained on the benign graph by being larger to the
∆SP when the perturbation rate (Ptb.) is 0.00. Second, Fate-flip and Fate-add are deceptive,
meaning that the micro F1 scores on the poisoned graphs are close to or even higher than
the micro F1 scores on the benign graph. In summary, across different perturbation rates,
Fate-flip and Fate-add are effective (i.e., amplifying more bias with higher perturbation
rate) and deceptive (i.e., achieving similar or even higher micro F1 score).
Analysis on the manipulated edges. To better understand which edges contribute the
most to exacerbate the bias, we characterize the properties of the edges that are flipped
by Fate (i.e., Fate-flip) when attacking statistical parity. The reason to only analyzing
Fate-flip is that the majority of edges manipulated by Fate-flip on all three datasets is by
addition (i.e., flipping from non-existing to existing), so such analysis also provides insights
about the edges that are added by Fate-add. Figure 5.1b suggests that, if the two endpoints
of a manipulated edge share the same class label or same sensitive attribute value, these
two endpoints are most likely from the minority class and protected group. Combining
Figures 5.1a and 5.1b, Fate would significantly increase the number of edges that are incident
to nodes in the minority class and/or protected group.

152

Table 5.7: Effectiveness of attacking individual fairness on GCN. Fate poisons the graph
via both edge flipping (Fate-flip) and edge addition (Fate-add), while all other baseline
methods poison the graph via edge addition. Higher is better (↑) for micro F1 score (Micro
F1) and InFoRM bias (Bias). Bold font indicates the success of fairness attack (i.e., bias is
increased after attack) with the highest micro F1 score. Underlined cell indicates the failure
of fairness attack (i.e., bias is decreased after attack).

Dataset Ptb. Random DICE FA-GNN Fate-flip Fate-add

Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑)

Pokec-n

0.00 67.5± 0.3 0.9± 0.2 67.5± 0.3 0.9± 0.2 67.5± 0.3 0.9± 0.2 67.5± 0.3 0.9± 0.2 67.5± 0.3 0.9± 0.2
0.05 67.6± 0.3 1.6± 0.3 66.9± 0.3 1.6± 0.2 67.8± 0.5 1.9± 0.2 67.8± 0.3 1.2± 0.4 67.6± 0.3 1.5± 0.6
0.10 67.2± 0.5 1.4± 0.3 65.3± 0.7 1.1± 0.1 67.4± 0.4 1.2± 0.2 67.9± 0.4 1.3± 0.3 67.7± 0.4 1.6± 0.4
0.15 67.2± 0.3 1.2± 0.4 63.9± 0.6 1.1± 0.2 66.1± 0.3 1.5± 0.3 67.8± 0.4 1.2± 0.2 67.6± 0.2 1.1± 0.3
0.20 66.6± 0.3 1.1± 0.2 63.8± 0.1 0.8± 0.1 65.7± 0.6 1.5± 0.3 67.3± 0.4 1.1± 0.3 68.2± 1.0 1.7± 0.8
0.25 66.7± 0.3 1.3± 0.4 62.5± 0.4 0.6± 0.0 65.2± 0.5 1.3± 0.4 67.8± 0.8 1.4± 0.7 67.9± 0.9 1.4± 0.7

Pokec-z

0.00 68.4± 0.4 2.6± 0.7 68.4± 0.4 2.6± 0.7 68.4± 0.4 2.6± 0.7 68.4± 0.4 2.6± 0.7 68.4± 0.4 2.6± 0.7
0.05 69.0± 0.4 3.4± 0.5 67.1± 0.5 2.7± 1.0 68.1± 0.4 2.9± 0.3 68.7± 0.5 2.9± 0.5 68.7± 0.4 3.1± 1.0
0.10 68.7± 0.1 2.4± 0.5 66.3± 0.6 1.7± 0.6 68.2± 0.5 1.7± 0.5 69.0± 0.6 2.9± 0.6 69.0± 0.5 3.0± 0.6
0.15 67.9± 0.3 2.8± 0.3 65.5± 0.3 1.4± 0.3 67.0± 0.5 1.3± 0.2 68.6± 0.5 2.9± 0.6 69.0± 0.7 2.7± 0.4
0.20 67.9± 0.3 2.2± 0.6 64.2± 0.4 0.7± 0.3 66.1± 0.1 1.6± 0.5 68.8± 0.4 3.0± 0.4 69.2± 0.4 2.9± 0.3
0.25 67.6± 0.3 1.9± 0.3 64.2± 0.3 0.5± 0.1 65.1± 0.3 1.9± 0.6 69.1± 0.3 2.9± 0.7 69.3± 0.3 2.7± 0.6

Bail

0.00 93.1± 0.2 7.2± 0.6 93.1± 0.2 7.2± 0.6 93.1± 0.2 7.2± 0.6 93.1± 0.2 7.2± 0.6 93.1± 0.2 7.2± 0.6
0.05 92.1± 0.3 8.0± 1.9 91.8± 0.1 7.1± 1.1 91.2± 0.2 5.6± 0.7 93.0± 0.3 7.8± 1.0 92.9± 0.2 7.7± 1.0
0.10 91.6± 0.1 7.3± 1.2 90.3± 0.1 6.1± 0.6 90.3± 0.1 5.1± 0.4 93.0± 0.1 8.0± 0.7 92.9± 0.2 7.9± 0.8
0.15 91.3± 0.1 6.5± 0.9 89.4± 0.0 4.8± 0.1 89.8± 0.1 5.2± 0.1 93.1± 0.1 8.2± 0.6 93.0± 0.2 7.8± 0.8
0.20 91.2± 0.2 6.6± 0.6 88.5± 0.1 4.0± 0.4 89.3± 0.1 5.3± 0.4 93.1± 0.1 7.9± 0.6 93.1± 0.1 8.2± 0.6
0.25 90.9± 0.1 6.8± 0.8 87.4± 0.3 3.6± 0.5 88.9± 0.1 5.4± 0.3 92.9± 0.1 7.6± 0.5 93.0± 0.2 7.8± 0.7

5.7.3 Attacking Individual Fairness on Graph Neural Networks

Settings. To showcase the ability of Fate on attacking individual fairness (Section 5.5),
we further compare Fate with the same set of baseline methods (Random, DICE [236],
FA-GNN [85]) on the same set of datasets (Pokec-n, Pokec-z, Bail). We follow the settings as
in Section 5.5. We use the 50%/25%/25% splits for train/validation/test sets with GCN [7]
and InFoRM-GNN [17] being the victim models. Please note that InFoRM-GNN is an
individually fair graph neural network that regularizes the individual bias measure defined
in Section 5.5. For each dataset, we use a fixed random seed to learn the poisoned graph
corresponding to each baseline method. Then we train the victim model 5 times with
different random seeds. And each entry in the oracle pairwise node similarity matrix is
computed by the cosine similarity of the corresponding rows in the adjacency matrix. That
is, S [i, j] = cos (A [i, :] , A [j, :]), where cos () is the function to compute cosine similarity. For
a fair comparison, we only attack the adjacency matrix in all experiments.
Effectiveness results. We test Fate with both edge flipping (Fate-flip) and edge addition
(Fate-add), while all other baseline methods only add edges. Regarding the effectiveness
results on GCN (Table 5.7), we have two key observations. (1) Fate-flip and Fate-add
are effective – they are the only methods that could consistently attack individual fairness,
whereas all other baseline methods mostly fail to attack individual fairness. (2) Fate-flip
and Fate-add are deceptive – they achieve comparable or even better utility on all datasets

153

Table 5.8: Effectiveness of attacking individual fairness on InFoRM-GNN. Fate poisons
the graph via both edge flipping (Fate-flip) and edge addition (Fate-add), while all other
baseline methods poison the graph via edge addition. Higher is better (↑) for micro F1 score
(Micro F1) and InFoRM bias (Bias). Bold font indicates the success of fairness attack (i.e.,
bias is increased after attack) with the highest micro F1 score. Underlined cell indicates the
failure of fairness attack (i.e., bias is decreased after attack).

Dataset Ptb. Random DICE FA-GNN Fate-flip Fate-add

Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑)

Pokec-n

0.00 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1
0.05 67.3± 0.5 0.5± 0.0 67.0± 0.2 0.5± 0.0 68.3± 0.2 0.5± 0.0 68.4± 0.4 0.6± 0.1 68.3± 0.4 0.5± 0.1
0.10 67.0± 0.2 0.5± 0.1 65.5± 0.6 0.5± 0.1 67.2± 0.2 0.4± 0.0 68.3± 0.6 0.5± 0.1 68.4± 0.5 0.6± 0.1
0.15 66.7± 0.5 0.5± 0.1 63.8± 0.3 0.4± 0.0 66.1± 0.2 0.4± 0.0 68.3± 0.6 0.6± 0.1 68.1± 0.7 0.6± 0.1
0.20 66.9± 0.3 0.4± 0.1 63.7± 0.2 0.3± 0.0 66.5± 0.2 0.4± 0.0 67.9± 0.8 0.5± 0.1 68.1± 0.7 0.6± 0.1
0.25 66.6± 0.5 0.5± 0.0 62.2± 0.5 0.2± 0.1 65.1± 0.2 0.4± 0.0 68.7± 0.3 0.6± 0.0 68.5± 0.8 0.6± 0.1

Pokec-z

0.00 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0
0.05 68.9± 0.2 0.6± 0.1 67.0± 0.6 0.6± 0.1 68.1± 0.7 0.5± 0.1 68.7± 0.7 0.7± 0.1 68.9± 0.5 0.6± 0.0
0.10 67.9± 0.2 0.6± 0.1 66.3± 0.4 0.5± 0.1 68.0± 0.6 0.5± 0.0 68.9± 0.6 0.6± 0.0 68.8± 0.6 0.6± 0.0
0.15 67.6± 0.3 0.6± 0.1 65.3± 0.4 0.4± 0.1 66.8± 0.3 0.5± 0.1 69.1± 0.5 0.6± 0.0 69.0± 0.7 0.6± 0.1
0.20 67.7± 0.5 0.6± 0.1 63.9± 0.6 0.3± 0.0 66.4± 0.6 0.4± 0.1 69.1± 0.2 0.6± 0.0 69.3± 0.3 0.6± 0.0
0.25 66.8± 0.4 0.5± 0.1 64.5± 0.3 0.2± 0.0 65.3± 0.4 0.4± 0.0 68.9± 0.7 0.6± 0.0 69.4± 0.4 0.6± 0.0

Bail

0.00 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1
0.05 91.9± 0.1 0.4± 0.0 91.5± 0.1 1.6± 0.0 91.3± 0.1 1.5± 0.1 92.8± 0.3 1.7± 0.1 92.7± 0.1 1.6± 0.1
0.10 91.7± 0.1 0.3± 0.0 90.4± 0.1 1.4± 0.1 90.4± 0.2 1.5± 0.1 92.8± 0.1 1.6± 0.0 92.8± 0.1 1.6± 0.0
0.15 91.5± 0.1 0.3± 0.0 89.7± 0.1 1.4± 0.0 90.0± 0.1 1.7± 0.1 92.8± 0.0 1.6± 0.1 92.8± 0.1 1.6± 0.0
0.20 91.5± 0.1 0.3± 0.0 88.6± 0.2 1.3± 0.1 89.1± 0.1 1.7± 0.1 92.8± 0.1 1.6± 0.0 92.7± 0.1 1.5± 0.1
0.25 91.1± 0.2 0.3± 0.0 87.6± 0.2 1.3± 0.1 88.9± 0.1 1.8± 0.1 92.6± 0.1 1.6± 0.1 92.7± 0.0 1.6± 0.1

compared with the utility on the benign graph. Hence, Fate framework is able to achieve
effective and deceptive attacks to exacerbate individual bias.

For attacking individual fairness on InFoRM-GNN (Table 5.8), we get the following
observations. (1) For Pokec-n and Pokec-z, Fate-flip and Fate-add are effective because
they are the only methods that could consistently attack individual fairness across different
perturbation rates; Fate-flip and Fate-add are deceptive by achieving comparable or higher
micro F1 scores on the poisoned graph compared with the micro F1 scores on the benign
graph (when perturbation rate is 0.00). (2) For Bail, almost all methods fail the fairness
attacks. A possible reason is that the adjacency matrix A of Bail is essentially a similarity
graph, which causes the pairwise node similarity matrix S being close to the adjacency
matrix A. Even though Fate (and other baseline methods) add adversarial edges to attack
individual fairness, regularizing the individual bias defined by S not only helps to ensure
individual fairness, but also provides useful supervision signal in learning a representative
node representation due to the similarity between S and A. (3) Compared with the results
in Table 5.7 where GCN is the victim model, InFoRM-GNN is more robust against fairness
attacks against individual fairness due to smaller individual bias in Table 5.8.
Performance evaluation under other utility metrics. We provide additional results on
evaluating the utility of Fate with macro F1 score and AUC score. From Tables 5.9 and
5.10, we can draw a conclusion that Fate can achieve comparable or even better macro F1
scores and AUC scores for both GCN and InFoRM-GNN across different perturbation rates,

154

Table 5.9: Macro F1 score and AUC score of attacking individual fairness on GCN. Fate poi-
sons the graph via both edge flipping (Fate-flip) and edge addition (Fate-add), while all
other baseline methods poison the graph via edge addition. Higher is better (↑) for macro F1
score (Macro F1) and AUC score (AUC). Bold font indicates the highest macro F1 score or
AUC score.

Dataset Ptb. Random DICE FA-GNN Fate-flip Fate-add

Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5
0.05 65.2± 0.3 70.1± 0.2 64.4± 0.4 69.5± 0.2 65.6± 0.6 71.1± 0.2 65.7± 0.4 70.1± 0.6 65.5± 0.3 70.2± 0.8
0.10 65.2± 0.3 69.6± 0.5 62.5± 0.3 66.9± 0.2 65.4± 0.6 70.2± 0.3 65.5± 0.3 70.2± 0.7 65.8± 0.5 70.7± 0.6
0.15 65.4± 0.2 69.4± 0.3 60.9± 0.5 64.8± 0.4 64.6± 0.2 69.4± 0.1 65.6± 0.4 70.0± 0.5 65.4± 0.1 69.8± 0.7
0.20 64.9± 0.2 69.6± 0.3 61.3± 0.2 65.5± 0.2 63.7± 0.5 69.0± 0.1 65.2± 0.3 69.7± 0.6 65.6± 0.6 70.2± 0.7
0.25 64.7± 0.1 69.4± 0.2 60.0± 0.3 63.5± 0.4 63.3± 0.5 68.4± 0.3 65.4± 0.6 69.7± 0.7 65.6± 0.8 69.8± 0.8

Pokec-z

0.00 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3
0.05 68.7± 0.4 75.0± 0.4 67.0± 0.5 73.8± 0.5 68.0± 0.4 75.1± 0.5 68.5± 0.5 75.4± 0.2 68.5± 0.3 75.2± 0.4
0.10 68.5± 0.1 75.1± 0.5 66.0± 0.5 72.5± 0.3 67.9± 0.6 74.4± 0.5 68.8± 0.5 75.5± 0.3 68.8± 0.4 75.6± 0.2
0.15 67.5± 0.4 74.4± 0.3 65.1± 0.4 71.0± 0.5 66.8± 0.4 72.6± 0.2 68.4± 0.5 75.5± 0.4 68.8± 0.7 75.6± 0.3
0.20 67.5± 0.4 74.7± 0.4 63.9± 0.3 69.4± 0.4 66.1± 0.1 71.8± 0.2 68.7± 0.5 75.5± 0.3 69.0± 0.4 75.6± 0.3
0.25 67.2± 0.3 74.1± 0.3 63.5± 0.4 68.5± 0.3 64.8± 0.4 70.5± 0.4 68.9± 0.3 75.6± 0.2 69.1± 0.3 75.7± 0.3

Bail

0.00 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1
0.05 91.2± 0.3 94.8± 0.2 90.9± 0.1 94.0± 0.2 90.3± 0.2 94.1± 0.2 92.3± 0.4 97.3± 0.1 92.1± 0.3 97.3± 0.1
0.10 90.6± 0.1 94.2± 0.3 89.0± 0.1 91.9± 0.2 89.1± 0.1 92.9± 0.3 92.3± 0.1 97.3± 0.4 92.2± 0.2 97.3± 0.1
0.15 90.3± 0.1 94.1± 0.2 88.0± 0.0 90.9± 0.2 88.6± 0.2 92.4± 0.3 92.4± 0.1 97.3± 0.0 92.3± 0.2 97.3± 0.1
0.20 90.2± 0.0 93.9± 0.1 87.1± 0.2 90.4± 0.2 87.9± 0.2 91.8± 0.2 92.4± 0.1 97.3± 0.0 92.4± 0.2 97.3± 0.1
0.25 90.9± 0.1 93.5± 0.2 85.9± 0.3 89.6± 0.3 87.6± 0.1 91.6± 0.2 92.2± 0.2 97.2± 0.1 92.2± 0.2 97.3± 0.1

Table 5.10: Macro F1 score and AUC score of attacking individual fairness on InFoRM-GNN.
Fate poisons the graph via both edge flipping (Fate-flip) and edge addition (Fate-add),
while all other baseline methods poison the graph via edge addition. Higher is better (↑) for
macro F1 score (Macro F1) and AUC score (AUC). Bold font indicates the highest macro F1
score or AUC score.

Dataset Ptb. Random DICE FA-GNN Fate-flip Fate-add

Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8
0.05 65.1± 0.3 69.9± 0.2 64.5± 0.4 69.3± 0.2 65.6± 0.3 70.8± 0.1 65.9± 0.4 70.7± 0.8 65.8± 0.5 70.5± 0.9
0.10 64.9± 0.2 69.6± 0.5 62.7± 0.4 67.0± 0.2 64.8± 0.4 69.8± 0.3 65.8± 0.5 70.3± 1.0 66.0± 0.4 70.9± 1.1
0.15 64.8± 0.4 69.6± 0.4 60.7± 0.2 64.8± 0.2 64.4± 0.1 69.2± 0.3 65.7± 0.6 70.3± 0.7 65.8± 0.4 70.3± 0.9
0.20 65.1± 0.2 69.5± 0.3 61.0± 0.1 65.4± 0.3 63.4± 0.4 69.0± 0.2 65.5± 0.8 70.2± 0.9 65.6± 0.6 70.5± 0.7
0.25 64.6± 0.3 69.6± 0.2 59.8± 0.3 63.4± 0.2 63.6± 0.3 68.6± 0.2 66.0± 0.5 70.8± 0.3 65.9± 0.5 70.4± 0.8

Pokec-z

0.00 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2
0.05 68.6± 0.2 75.1± 0.3 66.9± 0.5 73.4± 0.4 67.8± 0.6 75.0± 0.3 68.6± 0.7 75.1± 0.6 68.7± 0.4 75.4± 0.3
0.10 67.6± 0.2 74.3± 0.4 66.1± 0.4 72.1± 0.8 67.7± 0.6 73.9± 0.6 68.6± 0.6 75.6± 0.3 68.6± 0.6 75.5± 0.3
0.15 67.2± 0.3 74.1± 0.4 64.9± 0.5 71.2± 0.3 66.7± 0.3 72.3± 0.1 68.9± 0.4 75.4± 0.4 68.9± 0.6 75.4± 0.4
0.20 67.3± 0.6 74.4± 0.4 63.9± 0.6 69.4± 0.5 66.0± 0.5 71.7± 0.2 69.0± 0.2 75.5± 0.2 69.2± 0.4 75.4± 0.4
0.25 66.3± 0.4 73.9± 0.4 63.9± 0.6 68.9± 0.4 65.0± 0.5 70.8± 0.2 68.8± 0.7 75.6± 0.3 69.3± 0.4 75.8± 0.1

Bail

0.00 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0
0.05 91.0± 0.1 94.2± 0.2 90.5± 0.1 93.9± 0.1 90.4± 0.1 94.2± 0.1 92.0± 0.0 97.1± 0.1 91.9± 0.2 97.0± 0.2
0.10 90.7± 0.2 93.9± 0.3 89.3± 0.1 92.4± 0.3 89.4± 0.2 93.3± 0.1 92.0± 0.1 97.0± 0.0 91.9± 0.1 97.0± 0.0
0.15 90.5± 0.1 93.8± 0.3 88.4± 0.1 91.4± 0.3 88.8± 0.2 92.4± 0.1 92.0± 0.1 97.0± 0.0 91.9± 0.2 97.0± 0.1
0.20 90.5± 0.2 93.7± 0.2 87.3± 0.2 90.5± 0.3 87.8± 0.1 91.8± 0.1 92.0± 0.1 96.9± 0.0 91.9± 0.1 96.8± 0.1
0.25 90.1± 0.2 93.4± 0.3 85.9± 0.2 89.1± 0.5 87.4± 0.1 91.4± 0.1 91.8± 0.1 96.8± 0.1 91.9± 0.1 96.9± 0.0

155

(a) (b)

Figure 5.2: Attacking individual fairness with Fate-flip. (a) Ratios of flipped edges that
connect two nodes with same/different label. (b) Ratios of flipped edges whose two endpoints
are both from the majority/minority class. Majority/minority classes are formed by splitting
the training nodes based on their class labels.

which are consistent with our findings when evaluating the utility with micro F1 score. It
further proves the ability of Fate on deceptive fairness attacks in the task of semi-supervised
node classification.
Effect of the perturbation rate. From Tables 5.7 and Table 5.8, we obtain similar
observations as in Section 5.7.2 for Bail when the victim model is GCN. While for all other
cases, the correlation between the perturbation rate (Ptb.) and the individual bias is weaker.
One possible reason is that the individual bias is computed using the pairwise node similarity
matrix, which is not impacted by poisoning the adjacency matrix, and the discrepancy
between the oracle pairwise node similarity matrix and the benign graph is larger. Since
the individual bias is computed using the oracle pairwise node similarity matrix rather than
the benign/poisoned adjacency matrix, a higher perturbation rate to poison the adjacency
matrix may have less impact on the computation of individual bias.
Analysis on the manipulated edges. Since the majority of edges manipulated by Fate-flip
is through addition, we only analyze Fate-flip here. And we believe this analysis also provides
insights about the properties of the edges manipulated by Fate-add. From Figure 5.2, we
can find out that Fate tends to manipulate edges from the same class (especially from the
minority class). In this way, Fate would find edges that could increase the individual bias to
make the fairness attacks effective and improve the utility of the minority class to make the
fairness attack deceptive.

5.7.4 Tranferability of Fairness Attacks by Fate

For all aforementioned evaluation results, both the surrogate model (linear GCN) and the
victim models (i.e., GCN, FairGNN, InFoRM-GNN) are convolutional aggregation-based
graph neural networks. In this part, we test the transferability of Fate by generating poisoned

156

graphs on the convolutional aggregation-based surrogate model (i.e., linear GCN) and testing
on graph attention network (GAT), which is a non-convolutional aggregation-based graph
neural network.

More specifically, we train a graph attention network (GAT) with 8 attention heads for
400 epochs. The hidden dimension, learning rate, weight decay, and dropout rate of GAT are
set to 64, 1e− 3, 1e− 5, and 0.5, respectively.

The results of attacking statistical parity and individual fairness with GAT as the victim
model are shown in Table 5.11. Even though the surrogate model used by the attacker is
a convolutional aggregation-based linear GCN, from the table, it is clear that Fate can
consistently succeed in (1) effective fairness attack by increasing ∆SP and the individual bias
(Bias) and (2) deceptive attack by offering comparable or even better micro F1 score (Micro
F1) when the victim model is not a convolutional aggregation-based model (i.e., GAT). Thus,
it shows that the adversarial edges flipped/added by Fate is able to transfer to graph neural
networks with different type of aggregation function.

157

Table 5.11: Transferability of attacking statical parity and individual fairness with Fate on
GAT. Fate poisons the graph via both edge flipping (Fate-flip) and edge addition (Fate-
add). Higher is better (↑) for micro F1 score (Micro F1) ∆SP and InFoRM bias (Bias).

Attacking Statistical Parity

Method Ptb. Pokec-n Pokec-z Bail

Micro F1 (↑) Bias (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑)

Fate-flip

0.00 63.8± 5.3 4.0± 3.2 68.2± 0.5 8.6± 1.1 89.7± 4.2 7.5± 0.6
0.05 63.9± 5.5 6.4± 5.1 68.3± 0.4 10.5± 1.3 90.1± 3.8 8.1± 0.6
0.10 63.6± 5.3 7.9± 6.7 67.8± 0.4 11.2± 1.7 90.3± 3.2 8.5± 0.6
0.15 63.7± 5.3 7.5± 6.1 68.2± 0.6 11.2± 1.5 90.2± 2.7 8.8± 0.3
0.20 64.1± 5.6 7.7± 6.3 67.8± 0.6 11.1± 0.9 90.0± 2.7 8.7± 0.6
0.25 63.6± 5.2 8.5± 7.0 68.0± 0.4 11.5± 1.2 89.9± 3.0 8.8± 0.5

Fate-add

0.00 63.8± 5.3 4.0± 3.2 68.2± 0.5 8.6± 1.1 89.7± 4.2 7.5± 0.6
0.05 63.9± 5.5 6.4± 5.1 68.3± 0.4 10.5± 1.3 90.2± 3.7 8.1± 0.7
0.10 63.6± 5.3 7.9± 6.7 67.8± 0.4 11.2± 1.7 90.3± 3.2 8.5± 0.6
0.15 63.7± 5.3 7.5± 6.1 68.2± 0.6 11.2± 1.5 90.3± 2.6 8.8± 0.3
0.20 64.1± 5.6 7.7± 6.3 67.8± 0.6 11.1± 0.9 90.1± 2.6 8.8± 0.5
0.25 63.6± 5.2 8.5± 7.0 68.0± 0.4 11.5± 1.2 89.9± 2.9 8.8± 0.5

Attacking Individual Fairness

Method Ptb. Pokec-n Pokec-z Bail

Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑)

Fate-flip

0.00 63.8± 5.3 0.4± 0.2 68.2± 0.5 0.5± 0.1 89.7± 4.2 2.5± 1.2
0.05 63.6± 5.3 0.5± 0.2 68.2± 0.8 0.6± 0.1 90.0± 4.2 2.7± 1.1
0.10 63.7± 5.3 0.5± 0.2 67.8± 0.5 0.6± 0.1 90.0± 4.0 2.8± 1.3
0.15 63.7± 5.4 0.5± 0.2 68.2± 0.5 0.6± 0.2 90.2± 3.6 2.8± 1.4
0.20 63.5± 5.1 0.5± 0.2 68.5± 0.5 0.6± 0.2 90.2± 3.4 2.8± 1.2
0.25 63.5± 5.1 0.5± 0.2 68.0± 0.6 0.6± 0.1 90.2± 3.1 2.7± 1.2

Fate-add

0.00 63.8± 5.3 0.4± 0.2 68.2± 0.5 0.5± 0.1 89.7± 4.2 2.5± 1.2
0.05 63.9± 5.4 0.5± 0.2 68.2± 0.7 0.6± 0.1 90.0± 4.6 2.7± 1.4
0.10 63.8± 5.4 0.5± 0.2 68.2± 0.5 0.6± 0.2 90.1± 4.0 2.8± 1.2
0.15 63.8± 5.4 0.5± 0.2 68.3± 0.2 0.6± 0.2 90.1± 3.9 2.8± 1.2
0.20 63.7± 5.3 0.5± 0.2 68.4± 0.3 0.6± 0.1 90.3± 3.2 2.8± 1.3
0.25 63.7± 5.3 0.5± 0.2 68.4± 0.3 0.6± 0.1 90.2± 3.1 2.8± 1.2

158

CHAPTER 6: CONCLUSION AND FUTURE DIRECTIONS

In this chapter, we conclude our key research contributions and discuss the future research
directions in fair graph mining.

6.1 KEY RESEARCH CONTRIBUTIONS

As the first batch of researchers to study fair graph mining, my thesis research aims
to understand the how and why questions for fair graph mining and build an algorithmic
foundation of fair graph mining. We study three research tasks associated with three key
challenges, namely the auditing challenge, the debiasing challenge, and the safeguarding
challenge, arisen from the tension of four foundational key properties (utility, fairness,
robustness, and transparency). The main contributions of the thesis can be summarized as
follows.
Task 1 – Auditing. We address the auditing task (utility vs. transparency) by understanding
how the graph mining results would relate to the input graph.
Auditing PageRank. We offer the first solution named Aurora to audit PageRank by finding
the influential graph elements, such as edges, nodes, and a subgraph. The key idea to measure
the influence of graph elements is to compute the rate of change in a scalar-valued function
(e.g., Lp norm) defined over the ranking results. We further prove the (1− 1/e) optimality
and the linear time and space complexities of Aurora. The experiments demonstrate that
Aurora is able to provide reasonable and intuitive information to find influential graph
elements in linear time with respect to the number of nodes and edges.
Network derivative mining. We introduce the network derivative mining (N2N) problem. It
can be helpful to various tasks like explainable graph mining, adversarial graph mining, and
sensitive analysis. The goal of N2N problem is to construct a derivative network, each of
whose edge quantifies the influence of the corresponding edge of the input graph on the mining
results. We develop a generic N2N framework for network derivative mining and instantiate
the N2N framework with three classic graph mining algorithms from the optimization
perspective. For each graph mining algorithm, we design effective solver for constructing the
derivative network in linear time. The experiments demonstrate that N2N can consistently
(1) find high-influence edges, whose removal results in up to 10× more deviation than the
best competitor, and (2) scale linearly with respect to the graph size.
Uncertainty quantification. We develop the first frequentist-based distribution-free uncertainty
quantification method JuryGCN on graph convolutional network. The key idea is to leverage

159

a jackknife estimator to construct a leave-one-out confidence interval for each node. We avoid
model re-training after leaving the loss of a training node out by leveraging influence function
with respect to the model parameters. We further discuss how to apply JuryGCN to active
learning on node classification and semi-supervised node classification. Experimental results
demonstrate that JuryGCN offers the best effectiveness and lowest memory usage than
the competitors. Notably, by leveraging the influence function, JuryGCN achieves a 130×
speed-up in running time compared with model re-training.
Task 2 – Debiasing. We address the debiasing task (utility vs. fairness) by understanding
how to make the graph mining process and its results fair.
Individual fairness on graphs. We offer the first principled study of individual fairness on
graph mining (InFoRM), including the bias measure, the debiasing algorithms, and the
theoretical analysis on the cost of individual fairness. To measure the individual bias, we
present a quantitative measure of individual bias on graph mining based on the mining
results and the pairwise node similarity matrix. To mitigate the individual bias, we develop
three mutually complementary algorithmic frameworks, namely debiasing the input graph,
debiasing the mining model, and debiasing the mining results, with three instantiations
(PageRank, spectral clustering, and LINE). Moreover, we characterize the cost of individual
fairness and find out key factors in relation to the cost. The experiments demonstrate that
InFoRM can consistently mitigate up to 97% of bias with small deviation to the vanilla
mining results and comparable performance on the downstream tasks.
Degree fairness on graphs. We study how to ensure degree fairness on graph convolutional
networks without introducing additional learnable parameters and changing the model
architecture. Specifically, we reveal the mathematical root cause of degree unfairness by
analyzing how the gradient matrix of weight parameters in GCN is computed. Guided by its
computation, we design a pre-processing method RawlsGCN-Graph and an in-processing
named RawlsGCN-Grad to mitigate the degree unfairness. The experiments demonstrate
that RawlsGCN-Graph and RawlsGCN-Grad can mitigate up to 89% and 71% of the
degree unfairness, respectively, with no additional memory consumption and up to 8×
speed-up in time compared with the best competitor.
Group fairness with multiple sensitive attributes. We study how to satisfy group fairness
on the intersectional groups defined by multiple sensitive attributes from the information-
theoretic perspective. Specifically, we develop an end-to-end framework InfoFair that
minimizes a variational representation of mutual information between the mining results
and the vectorized sensitive attribute. The experiments demonstrate that InfoFair can
effectively debias the classification results with respect to one or more sensitive attribute(s)
with little sacrifice to the classification accuracy.

160

Task 3 – Safeguarding. We study how robust the fairness aspect of (fair) graph mining
models is. Specifically, we aim to achieve fairness attacks on graph learning models, whose goal
is to amplify the bias while maintaining the utility on the downstream task. Mathematically,
we define the problem as a bi-level optimization problem such that effective and deceptive
fairness attacks can be achieved in the upper-level optimization problem and lower-level
optimization problem, respectively. Then we introduce a meta learning-based framework
Fate to poison the input graph using the meta-gradient of the bias function with respect to
the input graph. We instantiate Fate by attacking statistical parity and individual fairness
on graph neural networks. The experiments demonstrate that Fate can consistently amplify
bias and achieve comparable or even better utility compared with training graph neural
networks on the benign graph.

6.2 VISION FOR THE FUTURE

While graph mining increasingly benefit our society, there is rising societal awareness that
calls for the trustworthiness of these techniques. My current contributions have laid solid
foundation in fair graph mining, which prepares me well for future investigations. In the near
future, I will mainly continue investigating fair graph mining under more realistic but also
more challenging settings (e.g., with noisy graph, in the online setting, and beyond equitable
predictive outcomes). In the long run, I am interested in fundamental theories behind the
interconnections among different aspects of trustworthiness and principled solutions to deploy
graph mining in an open world.

6.2.1 Short-term Research Plan

In the near future, I will focus on the following three research directions, all of which are
closely related to my thesis research about fair graph mining.
Fair graph mining with noisy data. Fair graph mining has been actively studied in
recent years, existing techniques almost exclusively rely on learning debiased representations
with observed graph and labels, while overlooking the fact that the observations could be
noisy. The noisy observations brings several challenges in fair graph mining. First, noisy
observations could result in a distributional shift (e.g., covariate shift, concept shift) between
distributions of the training set and the test set, which might violate the fundamental
assumption about the same distribution between training data and test data in various
graph mining techniques. Second, noises in the observations could mislead the fair graph
mining model toward sub-optimal training directions, resulting in unfairness in the testing

161

phase. To tackle these challenges, it is essential to investigate how to ensure fairness with
noisy data. We will analyze the theoretical necessity of investigating fairness on the noisy
data. Additionally, a possible solution is to regularize the distributional distance between
the hidden representations of the training nodes and the test nodes in order to mitigate
the impact of distributional shifts caused by noisy observations. We envision that a fair
graph mining technique being resilient to noisy data would also facilitate research on the
safeguarding task in the thesis.
Fair graph mining in the online setting. The real world is not static with nodes and edges
appearing, disappearing, or re-appearing over time. For example, in a real-world graph-based
recommender system, the users may have changing user profiles and preferences in the system
over-time, rate new item(s) they purchased, or update the rating(s) they provided before. In
a road network, a road might be closed due to maintenance or car accident, and new roads
(i.e., new edges in the network) can appear after the construction is finished. Despite many
previous efforts in fair graph mining, almost all existing techniques assume an offline setting
without considering the real-world user feedback and graph dynamics. However, graphs at
various timestamps could have different distributions of nodes and edges, and the users of
graph mining models might provide user feedback on the mining results (e.g., whether to
accept the model predictions) in the meanwhile. Therefore, simply applying the fair graph
mining algorithms trained in offline setting would fail to accommodate the impact of graph
dynamics and align with the value of users in terms of model fairness. Though a naive
solution is to repeatedly apply fair graph mining techniques in offline setting whenever the
input graph changes or the user provides feedback, it would impose prohibitively long running
time and high computational cost, which is detrimental to the environmental well-being.
Thus, it is interesting to investigate how to effectively and efficiently update the fair graph
mining algorithm over time and with real-world interactions. It could further strengthen the
research depth of the debiasing task in the thesis. And one possible solution is to (1) fine-tune
the fair graph mining model when a new node/edge is received and/or (2) introduce a policy
network so as to align the model predictions with user interests based on the feedback from
end users.
Fair graph mining beyond equitable predictive outcomes. As Graph mining being
increasingly deployed in high-stake domains like finance and healthcare, the confidence of
model predictions is also needed along with the model predictions. One promising method to
quantify model confidence is to construct a prediction set or interval that characterizes the
plausible range of values covering the true outcome. However, existing works do not offer
insights about the variations in the coverage of prediction sets/intervals among demographic
groups or individuals, while only focusing on ensuring equitable predictive performance

162

measured by the model predictions (e.g., accuracy of the model predictions). For example, a
highly confident disease risk prediction may offer good coverage guarantee on the population,
who has access to essential medical resources and participates more frequently during data
collection (e.g., people with high income level), but would provide uncertain and unreliable
predictions with low coverage for others (e.g., people with low income level). This calls for a
need to develop graph mining models that are equally confident about its predictions with
respect to different demographic groups. A potential solution is to investigate conformal
prediction with conditional coverage guarantee [237] on graphs. Specifically, we shall re-
investigate whether the exchangeablity of the conformity score holds on graphs under
conditional coverage guarantee. Then we may develop a fairness-aware re-weighting strategy
to assign higher importance to nodes with high residual errors from the minority group.
We believe that a rigorous study of fair graph mining with equal coverage guarantee would
further benefit both all tasks in the thesis, i.e., prediction set construction for the auditing
task, novel equal coverage graph mining model for the debiasing task, and robust fair graph
mining toward uncertainty for the safeguarding task.

6.2.2 Long-term Research Plan

In the long run, the ultimate goal of my research is to achieve reliable graph mining in an
open world that could benefit every aspect of human-being. This goal would require future
research along two key directions: model trustworthiness and task complexity.
Model trustworthiness: Interconnections among aspects of trustworthiness. To
date, major efforts in trustworthy graph mining aim to guarantee one aspect of trustworthiness
(e.g., transparency, fairness, robustness, privacy), while overlooking the interconnections
among them. Without deep understanding on their implicit relationships, trustworthy
graph mining models would not be trustworthy and conscious enough to adapt the learned
knowledge on unknown factors that do not exist previously. Thus, in the long term, it is
important to understand the interconnections among different aspects of trustworthiness,
which could help make a graph mining model to be trustworthy from multiple perspectives
rather than respecting to only one aspect. For example, following our work Fate, we shall
theoretically analyze how to certify the fairness of graph mining models with respect to
bounded perturbations on the input graph. Moreover, it is also important to explore the
potential applications of such general trustworthy graph mining models, such as medical
diagnosis and policy making.
Task complexity: Graph mining in the wild. Current graph mining algorithms are
primarily developed and evaluated in a closed or domain-specific environment. However, the

163

real world is often complicated and keeps evolving. As a consequence, existing graph mining
algorithms could be vulnerable to the real world with noises, distributional shifts, new users,
and unobserved domains. For my long-term future research, I would like to study graph
mining in the wild. Compared with graph mining in a closed-world setting, graph mining in
the wild should be capable of accommodating the incoming new edges, nodes, and domains
that do not exist in the history. To adapt graph mining in such open world, it might rely on
(1) a multi-modal learning module that learn knowledge from data in multiple modalities (e.g.,
text, images, social relationships), (2) a domain-invariant learning framework which enables
the knowledge to be transferred across domains, and (3) a lifelong learning framework which
continually learns knowledge while keeping useful historical knowledge without catastrophic
forgetting. Though being challenging, a solution to open-world graph mining can facilitate
the deployment of graph mining algorithms in a complicated real-world environment.

164

REFERENCES

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web,” Stanford InfoLab, Tech. Rep., 1999.

[2] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” Journal of the
ACM (JACM), vol. 46, no. 5, pp. 604–632, 1999.

[3] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” Advances in Neural Information Processing Systems, pp. 849–856, 2002.

[4] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-
sentations,” in Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[5] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale information
network embedding,” in The World Wide Web Conference, 2015, pp. 1067–1077.

[6] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016, pp. 855–864.

[7] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in International Conference on Learning Representations, 2017.

[8] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph
attention networks,” in International Conference on Learning Representations, 2018.

[9] S. Barocas, M. Hardt, and A. Narayanan, “Fairness in machine learning,” Nips tutorial,
vol. 1, p. 2017, 2017.

[10] A. Rahmattalabi, P. Vayanos, A. Fulginiti, E. Rice, B. Wilder, A. Yadav, and M. Tambe,
“Exploring algorithmic fairness in robust graph covering problems,” Advances in Neural
Information Processing Systems, vol. 32, pp. 15 776–15 787, 2019.

[11] S. Tsioutsiouliklis, E. Pitoura, P. Tsaparas, I. Kleftakis, and N. Mamoulis, “Fairness-
aware pagerank,” in Proceedings of the Web Conference 2021, 2021, pp. 3815–3826.

[12] E. Dai and S. Wang, “Say no to the discrimination: Learning fair graph neural
networks with limited sensitive attribute information,” in Proceedings of the 14th ACM
International Conference on Web Search and Data Mining, 2021, pp. 680–688.

[13] X. Lin, J. Kang, W. Cong, and H. Tong, “Bemap: Balanced message passing for fair
graph neural network,” arXiv preprint arXiv:2306.04107, 2023.

165

[14] X. Tang, H. Yao, Y. Sun, Y. Wang, J. Tang, C. Aggarwal, P. Mitra, and S. Wang,
“Investigating and mitigating degree-related biases in graph convoltuional networks,” in
Proceedings of the 29th ACM International Conference on Information and Knowledge
Management, 2020, pp. 1435–1444.

[15] P. Li, Y. Wang, H. Zhao, P. Hong, and H. Liu, “On dyadic fairness: Exploring
and mitigating bias in graph connections,” in International Conference on Learning
Representations, 2021.

[16] J. Kang, Q. Zhou, and H. Tong, “Jurygcn: Quantifying jackknife uncertainty on graph
convolutional networks,” in Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2022, pp. 742–752.

[17] J. Kang, J. He, R. Maciejewski, and H. Tong, “Inform: Individual fairness on graph min-
ing,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2020, pp. 379–389.

[18] J. Kang, Y. Zhu, Y. Xia, J. Luo, H. Tong, and X. Wang, “Rawlsgcn: Towards rawlsian
difference principle on graph convolutional network,” in Proceedings of the ACM Web
Conference 2022, 2022.

[19] J. Kang, T. Xie, X. Wu, R. Maciejewski, and H. Tong, “Infofair: Information-theoretic
intersectional fairness,” in 2022 IEEE International Conference on Big Data (Big Data).
IEEE, 2022, pp. 1455–1464.

[20] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender
systems,” Computer, no. 8, pp. 30–37, 2009.

[21] T. H. Haveliwala, “Topic-sensitive pagerank: A context-sensitive ranking algorithm for
web search,” IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 4,
pp. 784–796, 2003.

[22] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with restart and its applica-
tions,” in Sixth International Conference on Data Mining (ICDM’06). IEEE, 2006,
pp. 613–622.

[23] A. Y. Ng, A. X. Zheng, and M. I. Jordan, “Link analysis, eigenvectors and stability,” in
International Joint Conference on Artificial Intelligence, 2001, pp. 903–910.

[24] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive
survey and performance evaluation,” Electronics, vol. 9, no. 8, p. 1295, 2020.

[25] U. Brandes, M. Gaertler, and D. Wagner, “Experiments on graph clustering algorithms,”
in European Symposium on Algorithms, 2003, pp. 568–579.

[26] L. Donetti and M. A. Munoz, “Detecting network communities: A new systematic
and efficient algorithm,” Journal of Statistical Mechanics: Theory and Experiment, vol.
2004, no. 10, p. P10012, 2004.

166

[27] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,” in Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2006, pp. 554–560.

[28] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[29] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A global geometric framework for
nonlinear dimensionality reduction,” science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[30] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding
and clustering,” Advances in neural information processing systems, vol. 14, 2001.

[31] C. Ding, X. He, and H. D. Simon, “On the equivalence of nonnegative matrix factoriza-
tion and spectral clustering,” in Proceedings of the 2005 SIAM International Conference
on Data Mining. SIAM, 2005, pp. 606–610.

[32] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feedback datasets,”
in 2008 Eighth IEEE International Conference on Data Mining. Ieee, 2008, pp. 263–272.

[33] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network embedding as matrix
factorization: Unifying deepwalk, line, pte, and node2vec,” in Proceedings of the eleventh
ACM international conference on web search and data mining, 2018, pp. 459–467.

[34] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[35] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering,” Advances in Neural Information Processing
Systems, vol. 29, 2016.

[36] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Advances in Neural Information Processing Systems, 2017, pp. 1025–1035.

[37] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” in Advances in
Neural Information Processing Systems, 2016, pp. 1993–2001.

[38] F. Xia, K. Sun, S. Yu, A. Aziz, L. Wan, S. Pan, and H. Liu, “Graph learning: A survey,”
IEEE Transactions on Artificial Intelligence, vol. 2, no. 2, pp. 109–127, 2021.

[39] Y. Zhou, H. Zheng, X. Huang, S. Hao, D. Li, and J. Zhao, “Graph neural networks:
Taxonomy, advances, and trends,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 13, no. 1, pp. 1–54, 2022.

[40] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian,
“Certifying and removing disparate impact,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2015, pp. 259–268.

167

[41] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness through aware-
ness,” in Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
2012, pp. 214–226.

[42] M. J. Kusner, J. Loftus, C. Russell, and R. Silva, “Counterfactual fairness,” Advances
in Neural Information Processing Systems, vol. 30, 2017.

[43] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on bias
and fairness in machine learning,” ACM Computing Surveys (CSUR), vol. 54, no. 6, pp.
1–35, 2021.

[44] Z. Tang, J. Zhang, and K. Zhang, “What-is and how-to for fairness in machine learning:
A survey, reflection, and perspective,” arXiv preprint arXiv:2206.04101, 2022.

[45] S. Tsioutsiouliklis, E. Pitoura, K. Semertzidis, and P. Tsaparas, “Link recommendations
for pagerank fairness,” in Proceedings of the ACM Web Conference 2022, 2022.

[46] M. Kleindessner, S. Samadi, P. Awasthi, and J. Morgenstern, “Guarantees for spectral
clustering with fairness constraints,” in International Conference on Machine Learning,
2019, pp. 3458–3467.

[47] A. Bose and W. Hamilton, “Compositional fairness constraints for graph embeddings,”
in International Conference on Machine Learning, 2019, pp. 715–724.

[48] T. A. Rahman, B. Surma, M. Backes, and Y. Zhang, “Fairwalk: Towards fair graph
embedding,” in Proceedings of the 28th International Joint Conference on Artificial
Intelligence, 2019, pp. 3289–3295.

[49] M. Buyl and T. De Bie, “Debayes: A bayesian method for debiasing network embed-
dings,” in International Conference on Machine Learning, 2020, pp. 1220–1229.

[50] I. Spinelli, S. Scardapane, A. Hussain, and A. Uncini, “Fairdrop: Biased edge dropout for
enhancing fairness in graph representation learning,” IEEE Transactions on Artificial
Intelligence, vol. 3, no. 3, pp. 344–354, 2021.

[51] O. D. Kose and Y. Shen, “Fast&fair: Training acceleration and bias mitigation for
gnns,” Transactions on Machine Learning Research, 2023.

[52] H. Zhu, G. Fu, Z. Guo, Z. Zhang, T. Xiao, and S. Wang, “Fairness-aware message
passing for graph neural networks,” arXiv preprint arXiv:2306.11132, 2023.

[53] Y. Wang, Y. Zhao, Y. Dong, H. Chen, J. Li, and T. Derr, “Improving fairness in
graph neural networks via mitigating sensitive attribute leakage,” in Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp.
1938–1948.

168

[54] A. Khajehnejad, M. Khajehnejad, M. Babaei, K. P. Gummadi, A. Weller, and B. Mirza-
soleiman, “Crosswalk: Fairness-enhanced node representation learning,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 36, no. 11, 2022, pp. 11 963–
11 970.

[55] O. D. Kose and Y. Shen, “Fairness-aware selective sampling on attributed graphs,” in
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2022, pp. 5682–5686.

[56] Y. Dong, N. Liu, B. Jalaian, and J. Li, “Edits: Modeling and mitigating data bias for
graph neural networks,” in Proceedings of the ACM Web Conference 2022, 2022, pp.
1259–1269.

[57] Z. Song, Y. Ma, and I. King, “Individual fairness in dynamic financial networks,” in
NeurIPS 2022 Workshop: New Frontiers in Graph Learning, 2022.

[58] P. Xu, Y. Zhou, B. An, W. Ai, and F. Huang, “Gfairhint: Improving individual fairness
for graph neural networks via fairness hint,” arXiv preprint arXiv:2305.15622, 2023.

[59] Y. Dong, J. Kang, H. Tong, and J. Li, “Individual fairness for graph neural networks:
A ranking based approach,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2021, pp. 300–310.

[60] T. Xie, Y. Ma, J. Kang, H. Tong, and R. Maciejewski, “Fairrankvis: A visual ana-
lytics framework for exploring algorithmic fairness in graph mining models,” IEEE
Transactions on Visualization and Computer Graphics, vol. 28, no. 1, pp. 368–377,
2021.

[61] C. Agarwal, H. Lakkaraju, and M. Zitnik, “Towards a unified framework for fair and
stable graph representation learning,” arXiv preprint arXiv:2102.13186, 2021.

[62] J. Ma, R. Guo, M. Wan, L. Yang, A. Zhang, and J. Li, “Learning fair node rep-
resentations with graph counterfactual fairness,” arXiv preprint arXiv:2201.03662,
2022.

[63] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using
a “siamese” time delay neural network,” Advances in Neural Information Processing
Systems, vol. 6, 1993.

[64] J. Wu, J. He, and J. Xu, “Net: Degree-specific graph neural networks for node and graph
classification,” in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2019, pp. 406–415.

[65] Z. Liu, T.-K. Nguyen, and Y. Fang, “Tail-gnn: Tail-node graph neural networks,” in
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, 2021, pp. 1109–1119.

[66] Y. Wang and T. Derr, “Degree-related bias in link prediction,” in 2022 IEEE Interna-
tional Conference on Data Mining Workshops (ICDMW). IEEE, 2022, pp. 757–758.

169

[67] Z. Liu, T.-K. Nguyen, and Y. Fang, “On generalized degree fairness in graph neural
networks,” arXiv preprint arXiv:2302.03881, 2023.

[68] F. Masrour, T. Wilson, H. Yan, P.-N. Tan, and A. Esfahanian, “Bursting the filter
bubble: Fairness-aware network link prediction,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 34, no. 01, 2020, pp. 841–848.

[69] J. Rawls, A theory of justice: Revised edition. Harvard university press, 2020.

[70] A. Rahmattalabi, S. Jabbari, H. Lakkaraju, P. Vayanos, M. Izenberg, R. Brown, E. Rice,
and M. Tambe, “Fair influence maximization: A welfare optimization approach,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2021, pp. 11 630–11 638.

[71] W. Zhang, J. C. Weiss, S. Zhou, and T. Walsh, “Fairness amidst non-iid graph data: A
literature review,” arXiv preprint arXiv:2202.07170, 2022.

[72] Y. Dong, J. Ma, C. Chen, and J. Li, “Fairness in graph mining: A survey,” arXiv
preprint arXiv:2204.09888, 2022.

[73] J. Kang and H. Tong, “Fair graph mining,” in Proceedings of the 30th ACM International
Conference on Information and Knowledge Management, 2021, pp. 4849–4852.

[74] J. Kang and H. Tong, “Algorithmic fairness on graphs: methods and trends,” in
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2022, pp. 4798–4799.

[75] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.

[76] Z. Gyongyi and H. Garcia-Molina, “Web spam taxonomy,” in First International
Workshop on Adversarial Information Retrieval on the Web (AIRWeb 2005), 2005.

[77] A. Cheng and E. Friedman, “Manipulability of pagerank under sybil strategies,” 2006.

[78] B. Li, Y. Wang, A. Singh, and Y. Vorobeychik, “Data poisoning attacks on factorization-
based collaborative filtering,” Advances in Neural Information Processing Systems,
vol. 29, 2016.

[79] M. Sun, J. Tang, H. Li, B. Li, C. Xiao, Y. Chen, and D. Song, “Data poisoning attack
against unsupervised node embedding methods,” arXiv preprint arXiv:1810.12881,
2018.

[80] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on neural networks
for graph data,” in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2018, pp. 2847–2856.

[81] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural networks via meta
learning,” arXiv preprint arXiv:1902.08412, 2019.

170

[82] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Adversarial attack
on graph structured data,” in International conference on machine learning. PMLR,
2018, pp. 1115–1124.

[83] A. Bojchevski and S. Günnemann, “Adversarial attacks on node embeddings via graph
poisoning,” in International Conference on Machine Learning. PMLR, 2019, pp.
695–704.

[84] Y. Ma, S. Wang, T. Derr, L. Wu, and J. Tang, “Graph adversarial attack via rewiring,”
in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2021, pp. 1161–1169.

[85] H. Hussain, M. Cao, S. Sikdar, D. Helic, E. Lex, M. Strohmaier, and R. Kern, “Adver-
sarial inter-group link injection degrades the fairness of graph neural networks,” arXiv
preprint arXiv:2209.05957, 2022.

[86] A. Y. Ng, A. X. Zheng, and M. I. Jordan, “Stable algorithms for link analysis,” in
Proceedings of the 24th annual international ACM SIGIR Conference on Research and
Development in Information Retrieval, 2001, pp. 258–266.

[87] R. Andersen, C. Borgs, J. Chayes, J. Hopcroft, K. Jain, V. Mirrokni, and S. Teng,
“Robust pagerank and locally computable spam detection features,” in Proceedings of
the 4th International Workshop on Adversarial Information Retrieval on the Web, 2008,
pp. 69–76.

[88] D. F. Gleich and M. W. Mahoney, “Using local spectral methods to robustify graph-
based learning algorithms,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2015, pp. 359–368.

[89] E. Estrada, “Network robustness to targeted attacks. the interplay of expansibility and
degree distribution,” The European Physical Journal B-Condensed Matter and Complex
Systems, vol. 52, no. 4, pp. 563–574, 2006.

[90] W. Ellens and R. E. Kooij, “Graph measures and network robustness,” arXiv preprint
arXiv:1311.5064, 2013.

[91] F. D. Malliaros, V. Megalooikonomou, and C. Faloutsos, “Fast robustness estimation in
large social graphs: Communities and anomaly detection,” in Proceedings of the 2012
SIAM International Conference on Data Mining. SIAM, 2012, pp. 942–953.

[92] S. Freitas, D. Yang, S. Kumar, H. Tong, and D. H. Chau, “Evaluating graph vulnerability
and robustness using tiger,” in Proceedings of the 30th ACM International Conference
on Information and Knowledge Management, 2021, pp. 4495–4503.

[93] K. Xu, H. Chen, S. Liu, P.-Y. Chen, T.-W. Weng, M. Hong, and X. Lin, “Topology attack
and defense for graph neural networks: An optimization perspective,” in Proceedings of
the 28th International Joint Conference on Artificial Intelligence, 2019, pp. 3961–3967.

171

[94] A. Bojchevski and S. Günnemann, “Certifiable robustness to graph perturbations,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[95] D. Zhu, Z. Zhang, P. Cui, and W. Zhu, “Robust graph convolutional networks against
adversarial attacks,” in Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2019, pp. 1399–1407.

[96] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu, “Adversarial examples
for graph data: Deep insights into attack and defense,” in Proceedings of the 28th
International Joint Conference on Artificial Intelligence, 2019, pp. 4816–4823.

[97] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph structure learning for
robust graph neural networks,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2020, pp. 66–74.

[98] X. Tang, Y. Li, Y. Sun, H. Yao, P. Mitra, and S. Wang, “Transferring robustness for
graph neural network against poisoning attacks,” in Proceedings of the 13th international
conference on web search and data mining, 2020, pp. 600–608.

[99] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalexakis, “All you need
is low (rank): Defending against adversarial attacks on graphs,” in Proceedings of the
13th International Conference on Web Search and Data Mining, 2020, pp. 169–177.

[100] Z. Xu, B. Du, and H. Tong, “Graph sanitation with application to node classification,”
in Proceedings of the ACM Web Conference 2022, 2022.

[101] S. Freitas, D. Yang, S. Kumar, H. Tong, and D. H. Chau, “Graph vulnerability and
robustness: A survey,” IEEE Transactions on Knowledge and Data Engineering, 2022.

[102] J. Xu, J. Chen, S. You, Z. Xiao, Y. Yang, and J. Lu, “Robustness of deep learning
models on graphs: A survey,” AI Open, vol. 2, pp. 69–78, 2021.

[103] Y. Wang, Y. Yao, H. Tong, F. Xu, and J. Lu, “Discerning edge influence for network
embedding,” in Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019, pp. 429–438.

[104] Y. Wang, Y. Yao, H. Tong, F. Xu, and J. Lu, “Auditing network embedding: An edge
influence based approach,” IEEE Transactions on Knowledge and Data Engineering,
2021.

[105] T. Xie, Y. Ma, H. Tong, M. T. Thai, and R. Maciejewski, “Auditing the sensitivity of
graph-based ranking with visual analytics,” IEEE Transactions on Visualization and
Computer Graphics, vol. 27, no. 2, pp. 1459–1469, 2020.

[106] Z. Chen, P. Li, H. Liu, and P. Hong, “Characterizing the influence of graph elements,”
arXiv preprint arXiv:2210.07441, 2022.

172

[107] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer: Generating
explanations for graph neural networks,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[108] F. Baldassarre and H. Azizpour, “Explainability techniques for graph convolutional
networks,” in International Conference on Machine Learning (ICML) Workshops, 2019
Workshop on Learning and Reasoning with Graph-Structured Representations, 2019.

[109] H. Yuan, J. Tang, X. Hu, and S. Ji, “Xgnn: Towards model-level explanations of graph
neural networks,” in Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2020, pp. 430–438.

[110] T. Schnake, O. Eberle, J. Lederer, S. Nakajima, K. T. Schütt, K.-R. Müller, and
G. Montavon, “Higher-order explanations of graph neural networks via relevant walks,”
arXiv preprint arXiv:2006.03589, 2020.

[111] M. Vu and M. T. Thai, “Pgm-explainer: Probabilistic graphical model explanations for
graph neural networks,” Advances in Neural Information Processing Systems, vol. 33,
pp. 12 225–12 235, 2020.

[112] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang, “Parameterized
explainer for graph neural network,” Advances in neural information processing systems,
vol. 33, pp. 19 620–19 631, 2020.

[113] M. S. Schlichtkrull, N. De Cao, and I. Titov, “Interpreting graph neural networks
for nlp with differentiable edge masking,” in International Conference on Learning
Representations, 2021.

[114] H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji, “On explainability of graph neural networks
via subgraph explorations,” in International Conference on Machine Learning, 2021,
pp. 12 241–12 252.

[115] Y. Zhang, D. Defazio, and A. Ramesh, “Relex: A model-agnostic relational model
explainer,” in Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and
Society, 2021, pp. 1042–1049.

[116] Q. Huang, M. Yamada, Y. Tian, D. Singh, and Y. Chang, “Graphlime: Local in-
terpretable model explanations for graph neural networks,” IEEE Transactions on
Knowledge and Data Engineering, 2022.

[117] A. Lucic, M. A. Ter Hoeve, G. Tolomei, M. De Rijke, and F. Silvestri, “Cf-gnnexplainer:
Counterfactual explanations for graph neural networks,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2022, pp. 4499–4511.

[118] C. Agarwal, M. Zitnik, and H. Lakkaraju, “Probing gnn explainers: A rigorous theoret-
ical and empirical analysis of gnn explanation methods,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2022, pp. 8969–8996.

173

[119] C. Agarwal, O. Queen, H. Lakkaraju, and M. Zitnik, “Evaluating explainability for
graph neural networks,” Scientific Data, vol. 10, no. 1, p. 144, 2023.

[120] B. Kang, J. Lijffijt, and T. De Bie, “Explaine: An approach for explaining network
embedding-based link predictions,” arXiv preprint arXiv:1904.12694, 2019.

[121] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[122] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?" explaining the
predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016, pp. 1135–1144.

[123] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural networks: A
taxonomic survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2022.

[124] H. Liu, Y. Wang, W. Fan, X. Liu, Y. Li, S. Jain, Y. Liu, A. K. Jain, and J. Tang,
“Trustworthy ai: A computational perspective,” arXiv preprint arXiv:2107.06641, 2021.

[125] Y. Dong, S. Wang, Y. Wang, T. Derr, and J. Li, “On structural explanation of bias
in graph neural networks,” in Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2022, pp. 316–326.

[126] Y. Dong, S. Wang, J. Ma, N. Liu, and J. Li, “Interpreting unfairness in graph neural
networks via training node attribution,” arXiv preprint arXiv:2211.14383, 2022.

[127] Y. Zhao, Y. Wang, and T. Derr, “Fairness and explainability: Bridging the gap towards
fair model explanations,” arXiv preprint arXiv:2212.03840, 2022.

[128] M. Gori and A. Pucci, “Itemrank: A random-walk based scoring algorithm for recom-
mender engines,” in Proceedings of the 20th International Joint Conference on Artifical
Intelligence, 2007, pp. 2766–2771.

[129] J. Weng, E.-P. Lim, J. Jiang, and Q. He, “Twitterrank: Finding topic-sensitive influential
twitterers,” in Proceedings of the Third ACM International Conference on Web Search
and Data Mining, 2010, pp. 261–270.

[130] F. Radicchi, “Who is the best player ever? a complex network analysis of the history of
professional tennis,” PloS one, vol. 6, no. 2, p. e17249, 2011.

[131] R. Singh, J. Xu, and B. Berger, “Pairwise global alignment of protein interaction
networks by matching neighborhood topology,” in Research in computational molecular
biology. Springer, 2007, pp. 16–31.

[132] J. J. Crofts and D. J. Higham, “Googling the brain: Discovering hierarchical and asym-
metric network structures, with applications in neuroscience,” Internet Mathematics,
vol. 7, no. 4, pp. 233–254, 2011.

174

[133] L. Li, Y. Yao, J. Tang, W. Fan, and H. Tong, “Quint: on query-specific optimal
networks,” in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 985–994.

[134] P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,”
in International conference on machine learning. PMLR, 2017, pp. 1885–1894.

[135] J. Ni, H. Tong, W. Fan, and X. Zhang, “Inside the atoms: ranking on a network
of networks,” in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014, pp. 1356–1365.

[136] R. Pienta, A. Tamersoy, H. Tong, and D. H. Chau, “Mage: Matching approximate
patterns in richly-attributed graphs,” in 2014 IEEE International Conference on Big
Data (Big Data). IEEE, 2014, pp. 585–590.

[137] W. W. Zachary, “An information flow model for conflict and fission in small groups,”
Journal of anthropological research, vol. 33, no. 4, pp. 452–473, 1977.

[138] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson,
“The bottlenose dolphin community of doubtful sound features a large proportion
of long-lasting associations,” Behavioral Ecology and Sociobiology, vol. 54, no. 4, pp.
396–405, 2003.

[139] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in social media,” in
Proceedings of the SIGCHI conference on human factors in computing systems, 2010,
pp. 1361–1370.

[140] L. Takac and M. Zabovsky, “Data analysis in public social networks,” in International
scientific conference and international workshop present day trends of innovations,
vol. 1, no. 6. Present Day Trends of Innovations Lamza Poland, 2012.

[141] L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin, and N. Buchler, “Replacing the irreplace-
able: Fast algorithms for team member recommendation,” in Proceedings of the 24th
International Conference on World Wide Web, 2015, pp. 636–646.

[142] M. Ley, “The dblp computer science bibliography: Evolution, research issues, perspec-
tives,” in String Processing and Information Retrieval: 9th International Symposium,
SPIRE 2002 Lisbon, Portugal, September 11–13, 2002 Proceedings 9. Springer, 2002,
pp. 1–10.

[143] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densification laws,
shrinking diameters and possible explanations,” in Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining, 2005, pp.
177–187.

[144] D. E. Knuth, The stanford graphbase: A platform for combinatorial computing. Addison-
Wesley Reading, 1993, vol. 37.

175

[145] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densification and
shrinking diameters,” ACM Transactions on Knowledge Discovery from Data (TKDD),
vol. 1, no. 1, p. 2, 2007.

[146] L. Tang and H. Liu, “Graph mining applications to social network analysis,” in Managing
and Mining Graph Data. Springer, 2010, pp. 487–513.

[147] J. Kang, M. Wang, N. Cao, Y. Xia, W. Fan, and H. Tong, “Aurora: Auditing pagerank
on large graphs,” in 2018 IEEE International Conference on Big Data (Big Data), 2018,
pp. 713–722.

[148] M. Wang, J. Kang, N. Cao, Y. Xia, W. Fan, and H. Tong, “Graph ranking auditing:
Problem definition and fast solutions,” IEEE Transactions on Knowledge and Data
Engineering, vol. 33, no. 10, pp. 3366–3380, 2020.

[149] S. Mei and X. Zhu, “Using machine teaching to identify optimal training-set attacks on
machine learners,” in Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[150] J. Kunegis, “Konect: The koblenz network collection,” in Proceedings of the 22nd
International Conference on World Wide Web, 2013, pp. 1343–1350.

[151] J. Leskovec and A. Krevl, “SNAP datasets: Stanford large network dataset collection,”
http://snap.stanford.edu/data, Jun 2014.

[152] C. Chen, R. Peng, L. Ying, and H. Tong, “Network connectivity optimization: Fun-
damental limits and effective algorithms,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2018, pp. 1167–
1176.

[153] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou, S. Yang, and Y. Qi,
“A semi-supervised graph attentive network for financial fraud detection,” in 2019 IEEE
International Conference on Data Mining (ICDM). IEEE, 2019, pp. 598–607.

[154] C. Chen, W. Ye, Y. Zuo, C. Zheng, and S. P. Ong, “Graph networks as a universal
machine learning framework for molecules and crystals,” Chemistry of Materials, vol. 31,
no. 9, pp. 3564–3572, 2019.

[155] A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez, M. Nunkesser,
S. Lee, X. Guo, B. Wiltshire et al., “Eta prediction with graph neural networks in
google maps,” in Proceedings of the 29th ACM International Conference on Information
and Knowledge Management, 2021.

[156] A. Hasanzadeh, E. Hajiramezanali, S. Boluki, M. Zhou, N. Duffield, K. Narayanan,
and X. Qian, “Bayesian graph neural networks with adaptive connection sampling,” in
International conference on machine learning, 2020, pp. 4094–4104.

[157] Y. Zhang, S. Pal, M. Coates, and D. Ustebay, “Bayesian graph convolutional neural
networks for semi-supervised classification,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 33, no. 01, 2019, pp. 5829–5836.

176

http://snap.stanford.edu/data

[158] Z.-Y. Liu, S.-Y. Li, S. Chen, Y. Hu, and S.-J. Huang, “Uncertainty aware graph
gaussian process for semi-supervised learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 2020, pp. 4957–4964.

[159] X. Zhao, F. Chen, S. Hu, and J.-H. Cho, “Uncertainty aware semi-supervised learning
on graph data,” Advances in Neural Information Processing Systems, vol. 33, pp.
12 827–12 836, 2020.

[160] M. Stadler, B. Charpentier, S. Geisler, D. Zügner, and S. Günnemann, “Graph posterior
network: Bayesian predictive uncertainty for node classification,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[161] R. G. Miller, “The jackknife-a review,” Biometrika, vol. 61, no. 1, pp. 1–15, 1974.

[162] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh,
P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya et al., “A review of uncertainty
quantification in deep learning: Techniques, applications and challenges,” Information
Fusion, vol. 76, pp. 243–297, 2021.

[163] J. Tukey, “Bias and confidence in not-quite large sample,” Annals of Mathematical
Statistics, vol. 29, p. 614, 1958.

[164] B. Efron, “Jackknife-after-bootstrap standard errors and influence functions,” Journal
of the Royal Statistical Society: Series B (Methodological), 1992.

[165] R. F. Barber, E. J. Candes, A. Ramdas, and R. J. Tibshirani, “Predictive inference
with the fackknife+,” The Annals of Statistics, vol. 49, no. 1, pp. 486–507, 2021.

[166] A. Alaa and M. van Der Schaar, “Discriminative jackknife: Quantifying uncertainty
in deep learning via higher-order influence functions,” in International conference on
machine learning, 2020, pp. 165–174.

[167] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a random world.
Springer Science & Business Media, 2005.

[168] P. Erdős, A. Rényi et al., “On the evolution of random graphs,” Publ. Math. Inst. Hung.
Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[169] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: First steps,”
Social Networks, vol. 5, no. 2, pp. 109–137, 1983.

[170] Q. Zhou, L. Li, X. Wu, N. Cao, L. Ying, and H. Tong, “Attent: Active attributed
network alignment,” in Proceedings of the Web Conference 2021, 2021, pp. 3896–3906.

[171] R. D. Cook and S. Weisberg, Residuals and influence in regression. New York:
Chapman and Hall, 1982.

[172] L. T. Fernholz, Von Mises calculus for statistical functionals. Springer Science &
Business Media, 2012, vol. 19.

177

[173] X. Wang, H. Liu, C. Shi, and C. Yang, “Be confident! towards trustworthy graph neural
networks via confidence calibration,” in Advances in Neural Information Processing
Systems, 2021, pp. 23 768–23 779.

[174] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective
classification in network data,” AI Magazine, 2008.

[175] G. Namata, B. London, L. Getoor, B. Huang, and U. Edu, “Query-driven active
surveying for collective classification,” in 10th International Workshop on Mining and
Learning with Graphs, 2012, p. 1.

[176] H. Cai, V. W. Zheng, and K. C.-C. Chang, “Active learning for graph embedding,”
arXiv preprint arXiv:1705.05085, 2017.

[177] L. Gao, H. Yang, C. Zhou, J. Wu, S. Pan, and Y. Hu, “Active discriminative net-
work representation learning,” in IJCAI International Joint Conference on Artificial
Intelligence, 2018, pp. 2142–2148.

[178] O. Sener and S. Savarese, “Active learning for convolutional neural networks: A core-set
approach,” arXiv preprint arXiv:1708.00489, 2017.

[179] S. Hu, Z. Xiong, M. Qu, X. Yuan, M.-A. Côté, Z. Liu, and J. Tang, “Graph policy
network for transferable active learning on graphs,” arXiv preprint arXiv:2006.13463,
2020.

[180] Y. C. Ng, N. Colombo, and R. Silva, “Bayesian semi-supervised learning with graph
gaussian processes,” Advances in Neural Information Processing Systems, vol. 31, 2018.

[181] Y. Ma, R. Garnett, and J. Schneider, “σ-optimality for active learning on gaussian
random fields,” Advances in Neural Information Processing Systems, vol. 26, 2013.

[182] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International
Conference on Learning Representations, 2015.

[183] P. Bedi and C. Sharma, “Community detection in social networks,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 6, no. 3, pp. 115–135,
2016.

[184] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional networks: a
comprehensive review,” Computational Social Networks, vol. 6, no. 1, pp. 1–23, 2019.

[185] D. Zhou, J. He, H. Yang, and W. Fan, “Sparc: Self-paced network representation for
few-shot rare category characterization,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2018, pp. 2807–
2816.

[186] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised learning,”
Advances in neural information processing systems, vol. 29, 2016.

178

[187] Y. Wu, L. Zhang, X. Wu, and H. Tong, “Pc-fairness: A unified framework for measuring
causality-based fairness,” Advances in Neural Information Processing Systems, vol. 32,
2019.

[188] F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvitskii, “Fair clustering through
fairlets,” Advances in Neural Information Processing Systems, vol. 30, pp. 5029–5037,
2017.

[189] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Enhancement of the neutrality in
recommendation,” in Decisions@ RecSys, 2012, pp. 8–14.

[190] S. Yao and B. Huang, “Beyond parity: Fairness objectives for collaborative filtering,”
Advances in Neural Information Processing Systems, vol. 30, pp. 2921–2930, 2017.

[191] S. Verma and J. Rubin, “Fairness definitions explained,” in Proceedings of the interna-
tional workshop on software fairness, 2018, pp. 1–7.

[192] G. Jeh and J. Widom, “Simrank: a measure of structural-context similarity,” in
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2002, pp. 538–543.

[193] D. Koutra, A. Parikh, A. Ramdas, and J. Xiang, “Algorithms for graph similarity and
subgraph matching,” in Proc. Ecol. Inference Conf., vol. 17, 2011.

[194] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt, “Graph
kernels,” Journal of Machine Learning Research, vol. 11, no. Apr, pp. 1201–1242, 2010.

[195] J. Kang and H. Tong, “N2n: Network derivative mining,” in Proceedings of the 28th
ACM International Conference on Information and Knowledge Management, 2019, pp.
861–870.

[196] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press, 2013.

[197] S. Peng, G. Wang, and D. Xie, “Social influence analysis in social networking big data:
Opportunities and challenges,” IEEE Network, vol. 31, no. 1, pp. 11–17, 2016.

[198] S. Zhang, D. Zhou, M. Y. Yildirim, S. Alcorn, J. He, H. Davulcu, and H. Tong, “Hidden:
Hierarchical dense subgraph detection with application to financial fraud detection,”
in Proceedings of the 2017 SIAM International Conference on Data Mining, 2017, pp.
570–578.

[199] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph collaborative
filtering,” in Proceedings of the 42nd International ACM SIGIR conference on Research
and Development in Information Retrieval, 2019, pp. 165–174.

[200] T. Hashimoto, M. Srivastava, H. Namkoong, and P. Liang, “Fairness without demograph-
ics in repeated loss minimization,” in International Conference on Machine Learning,
2018, pp. 1929–1938.

179

[201] K. Guo, K. Zhou, X. Hu, Y. Li, Y. Chang, and X. Wang, “Orthogonal graph neural
networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 4, 2022, pp. 3996–4004.

[202] R. Sinkhorn and P. Knopp, “Concerning nonnegative matrices and doubly stochastic
matrices,” Pacific Journal of Mathematics, vol. 21, no. 2, pp. 343–348, 1967.

[203] C. Luo, D. Wu, and D. Wu, “A deep learning approach for credit scoring using credit
default swaps,” Engineering Applications of Artificial Intelligence, vol. 65, 2017.

[204] R. Berk, H. Heidari, S. Jabbari, M. Kearns, and A. Roth, “Fairness in criminal justice
risk assessments: The state of the art,” arXiv preprint arXiv:1703.09207, 2017.

[205] M. A. Ahmad, C. Eckert, and A. Teredesai, “Interpretable machine learning in health-
care,” in Proceedings of the 2018 ACM international conference on bioinformatics,
computational biology, and health informatics, 2018, pp. 559–560.

[206] M. B. Zafar, I. Valera, M. G. Rogriguez, and K. P. Gummadi, “Fairness constraints:
Mechanisms for fair classification,” in Artificial Intelligence and Statistics. PMLR,
2017, pp. 962–970.

[207] S. B. Morris and R. E. Lobsenz, “Significance tests and confidence intervals for the
adverse impact ratio,” Personnel Psychology, vol. 53, no. 1, 2000.

[208] M. Kearns, S. Neel, A. Roth, and Z. S. Wu, “Preventing fairness gerrymandering:
Auditing and learning for subgroup fairness,” in International Conference on Machine
Learning. PMLR, 2018, pp. 2564–2572.

[209] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical
Journal, vol. 27, no. 3, 1948.

[210] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning fair representations,”
in International conference on machine learning, 2013, pp. 325–333.

[211] B. H. Zhang, B. Lemoine, and M. Mitchell, “Mitigating unwanted biases with adversarial
learning,” in Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society,
2018, pp. 335–340.

[212] A. Ghassami, S. Khodadadian, and N. Kiyavash, “Fairness in supervised learning: An
information theoretic approach,” in 2018 IEEE international symposium on information
theory (ISIT), 2018, pp. 176–180.

[213] M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, A. Courville, and
D. Hjelm, “Mutual information neural estimation,” in International conference on
machine learning. PMLR, 2018, pp. 531–540.

[214] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler,
and Y. Bengio, “Learning deep representations by mutual information estimation and
maximization,” in International Conference on Learning Representations, 2019.

180

[215] S. Mukherjee, H. Asnani, and S. Kannan, “Ccmi: Classifier based conditional mutual
information estimation,” in Uncertainty in artificial intelligence. PMLR, 2020, pp.
1083–1093.

[216] S. Bickel, M. Brückner, and T. Scheffer, “Discriminative learning under covariate shift,”
Journal of Machine Learning Research, vol. 10, no. 9, 2009.

[217] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,”
in International Conference on Learning Representations, 2017.

[218] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” arXiv
preprint physics/0004057, 2000.

[219] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[220] F. Prost, H. Qian, Q. Chen, E. H. Chi, J. Chen, and A. Beutel, “Toward a better
trade-off between performance and fairness with kernel-based distribution matching,”
arXiv preprint arXiv:1910.11779, 2019.

[221] Z. Jiang, X. Han, C. Fan, F. Yang, A. Mostafavi, and X. Hu, “Generalized demographic
parity for group fairness,” in International Conference on Learning Representations,
2022.

[222] C. F. P. Bureau, “CFPB targets unfair discrimination in con-
sumer finance,” https://www.consumerfinance.gov/about-us/newsroom/
cfpb-targets-unfair-discrimination-in-consumer-finance/, 2022, [Online; accessed
13-April-2023].

[223] D. Solans, B. Biggio, and C. Castillo, “Poisoning attacks on algorithmic fairness,”
in Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part I.
Springer, 2021, pp. 162–177.

[224] N. Mehrabi, M. Naveed, F. Morstatter, and A. Galstyan, “Exacerbating algorithmic
bias through fairness attacks,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 10, 2021, pp. 8930–8938.

[225] A. Chhabra, A. Singla, and P. Mohapatra, “Fairness degrading adversarial attacks
against clustering algorithms,” arXiv preprint arXiv:2110.12020, 2021.

[226] M.-H. Van, W. Du, X. Wu, and A. Lu, “Poisoning attacks on fair machine learning,” in
International Conference on Database Systems for Advanced Applications. Springer,
2022, pp. 370–386.

[227] L. T. Liu, S. Dean, E. Rolf, M. Simchowitz, and M. Hardt, “Delayed impact of fair
machine learning,” in International Conference on Machine Learning. PMLR, 2018,
pp. 3150–3158.

181

https://www.consumerfinance.gov/about-us/newsroom/cfpb-targets-unfair-discrimination-in-consumer-finance/
https://www.consumerfinance.gov/about-us/newsroom/cfpb-targets-unfair-discrimination-in-consumer-finance/

[228] J. Baumann, A. Hannák, and C. Heitz, “Enforcing group fairness in algorithmic decision
making: Utility maximization under sufficiency,” in 2022 ACM Conference on Fairness,
Accountability, and Transparency, 2022, pp. 2315–2326.

[229] Y. Bengio, “Gradient-based optimization of hyperparameters,” Neural computation,
vol. 12, no. 8, pp. 1889–1900, 2000.

[230] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation
of deep networks,” in International conference on machine learning. PMLR, 2017, pp.
1126–1135.

[231] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph
convolutional networks,” in International conference on machine learning. PMLR,
2019, pp. 6861–6871.

[232] Y.-C. Chen, “A tutorial on kernel density estimation and recent advances,” Biostatistics
& Epidemiology, vol. 1, no. 1, pp. 161–187, 2017.

[233] J. Cho, G. Hwang, and C. Suh, “A fair classifier using kernel density estimation,”
Advances in neural information processing systems, vol. 33, pp. 15 088–15 099, 2020.

[234] M. López-Benítez and F. Casadevall, “Versatile, accurate, and analytically tractable
approximation for the gaussian q-function,” IEEE Transactions on Communications,
vol. 59, no. 4, pp. 917–922, 2011.

[235] K. K. Saravanakumar, “The impossibility theorem of machine fairness–a causal per-
spective,” arXiv preprint arXiv:2007.06024, 2020.

[236] M. Waniek, T. P. Michalak, M. J. Wooldridge, and T. Rahwan, “Hiding individuals and
communities in a social network,” Nature Human Behaviour, vol. 2, no. 2, pp. 139–147,
2018.

[237] I. Gibbs, J. J. Cherian, and E. J. Candès, “Conformal prediction with conditional
guarantees,” arXiv preprint arXiv:2305.12616, 2023.

182

	CHAPTER 1 INTRODUCTION
	Motivation
	Essential Properties of Fair Graph Mining
	Research Challenges
	The Auditing Challenge
	The Debiasing Challenge
	The Safeguarding Challenge

	Overview of Research Tasks
	Organization

	CHAPTER 2 LITERATURE REVIEW
	Graph Mining – Utility
	Graph Mining – Fairness
	Graph Mining – Robustness
	Graph Mining – Transparency

	CHAPTER 3 AUDITING GRAPH MINING
	Auditing PageRank on Graphs
	Problem Definition
	Auditing PageRank with Aurora
	Experimental Evaluation

	Network Derivative Mining
	Problem Definition
	N2N Algorithmic Framework
	N2N Instantiation and Computation
	Experimental Evaluation
	Experimental setting.

	Uncertainty Quantification on Graph Convolutional Network
	Problem Definition
	JuryGCN: Measure and Computation
	JuryGCN: Algorithm and Applications
	Experimental Evaluation

	CHAPTER 4 DEBIASING GRAPH MINING
	Individual Fairness on Graph Mining
	Problem Definition
	Problem 4.1: InFoRM Measures
	Problem 4.2: InFoRM Algorithms
	Problem 4.3: InFoRM Cost
	Experimental Evaluation

	Degree Fairness on Graph Convolutional Network
	Preliminaries and Problem Definition
	Methodology
	Experimental Evaluation
	Discussion: RawlsGCN-Graph vs. RawlsGCN-Grad

	Group Fairness with Multiple Sensitive Attributes
	Preliminaries and Problem Definition
	Methodology
	Experimental Evaluation

	CHAPTER 5 SAFEGUARDING FAIR GRAPH MINING
	Introduction
	Preliminaries and Problem Definition
	Methodology
	Problem Formulation
	The Fate Framework

	Instantiation #1: Statistical Parity on Graph Neural Networks
	Instantiation #2: Individual Fairness on Graph Neural Networks
	Further Discussions about Fate
	Graph Learning from the Optimization Perspective: More Discussions
	Relationship between Fairness Attacks and the Impossibility Theorem of Fairness.
	Relationship between Fate and Metattack.

	Experiments
	Experimental Settings
	Attacking Statistical Parity on Graph Neural Networks
	Attacking Individual Fairness on Graph Neural Networks
	Tranferability of Fairness Attacks by Fate

	CHAPTER 6 CONCLUSION AND FUTURE DIRECTIONS
	Key Research Contributions
	Vision for the Future
	Short-term Research Plan
	Long-term Research Plan

	REFERENCES

