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Abstract

Understanding the entanglement structure of holographic states has played a significant role in demystifying
quantum gravity and the emergence of spacetime. The state of the art development in this field makes heavy
use of ideas from quantum information and quantum error correction to explain various features of quantum
gravity including the holographic principle, the quantum extremal surface formula and subregion-subregion
duality. In particular, random tensor networks (RTNs), a toy model for holography which is understood to
model fixed-area states, has been demonstrated to effectively capture the aforementioned traits shared by
holographic theories.

While calculations of the entanglement entropy have led to most of the insight into holography and RTNs,
it is useful to consider other quantum information quantities in order to give a more complete picture of the
emergence of spacetime from entanglement. Among these, the canonical purification, along with its associated
quantum information measure known as the reflected entropy, is of special interest in the pursuit of such
new measures. The reflected entropy is closely related to the quantification of tripartite entanglement of a
quantum state and enjoys a bulk geometric dual in terms of the area of entanglement wedge cross-section.

In this dissertation, we study the entanglement structure of the canonical purification of states built from
holographic RTNs. For simple networks made from a single or a pair of random tensors, we analytically
compute the entanglement spectra of the canonically purified density matrix. We found that the spectra
effectively decomposes into different super-selection sectors, each of which can be given a gravitational
interpretation of semiclassical bulk saddles with different topology. We show that our formalism can be
extended to incorporate the West Coast Model, a toy model for black hole evaporation. We find that the
spectrum exhibits a similar form in terms of the super-selection sectors, but with a wider window of fluctuation
compared to the RTN results.

For RTNs built from arbitrary networks, we prove that the problem of finding the integer Rényi reflected
entropy is equivalent to finding an optimization program known as the minimal triway cut when the system is
far away from phase transitions. Minimal triway cuts can be formulated as integer programs which cannot be
relaxed to find a dual maximal flow description. This sheds light on the gap between the existence of tripartite
entanglement in holographic states and the bipartite entanglement structure motivated by bit-threads. In
particular we show that the Markov gap, defined as the difference between the reflected entropy and the
mutual information, is lower bounded by the integrality gap of the program that computes the triway cut.
We apply this result to prove a conjecture that relates entanglement of purification to minimal entanglement

wedge cross-section on a large class of RTNs.
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Chapter 1

Introduction

The study of quantum entanglement has played a pivotal role in the advancement of our understanding of
nature. Theoretical understanding of entanglement has led us to stimulating discoveries in various fields of
physics. Examples of these discoveries include but are not limited to: The classification of topological phases
[1-3], approximation of ground state wavefunction with tensor networks [4, 5], proof of ¢- and a-theorems
under renormalization group (RG) flows [6-8], and the proof of averaged null energy conditions (ANEC) and
quantum null energy conditions (QNEC) in QFT [9, 10], etc.

More importantly, time and again, lessons from quantum entanglement and quantum information have
shed light on our everlasting pursuit towards a complete theory of quantum gravity — from the early days
when Bekenstein-Hawking first conceived the formula of black hole entropy [11, 12], all the way to the recent
calculation of the Page curve in an evaporating black hole [13-15], ideas from quantum entanglement have
either directly or indirectly inspired critical breakthroughs in the field of quantum gravity.

Perhaps the most fruitful, yet surprising, connection between quantum entanglement and quantum gravity
lies in what is now known as AdS/CFT correspondence [16, 17]. Also more colloquially known as holography,
it states that a theory of quantum gravity in a hyperbolic anti-de Sitter (AdS) spacetime (commonly referred
to as the bulk) is dual to a conformal field theory (CFT) that lives at the asymptotic boundary (commonly
referred to as the boundary) of the spacetime. Originating from the top-down approach of superstring theory
[18, 19], it is now believed that any consistent theory of quantum gravity must exhibit such a bulk to boundary
duality. This viewpoint is known as the holographic principle [20, 21], which has led to numerous bottom-up
approaches to AdS/CFT [22-25].

In the landmark work of Ryu-Takayanagi [26, 27], it was shown that the entanglement entropy (a measure
of bipartite entanglement) of a region of the boundary CFT is equivalent to the minimal surface area of a
volume homologous to the said boundary region in bulk spacetime, normalized in Plank units. This idea
was soon generalized to include time dependence [28] and quantum corrections [29, 30]. Together, it was
suggested that quantum entanglement is the fundamental property from which the fabric of spacetime we
commonly know of emerges from. Subsequent works have shown that the bulk gravitational dynamics can be
derived from boundary entanglement properties [31, 32].

In particular, the bulk volume enclosed by the minimal surface of Ryu-Takayanagi, called the entanglement
wedge (EW) [33], is itself dual to the related region on the boundary. This property is an illustration
of subregion-subregion duality [34-36], which is the statement that a boundary region contains complete

information about its bulk entanglement wedge. In this regard, the holographic dictionary can itself be



viewed as a quantum error-correcting code, whose code subspace is the space where the bulk admits a
semiclassical description, and physical subspace is the space of all possible CFT states. It can be shown that
a Ryu-Takayanagi formula follows directly from the structure of any quantum error-correcting codes [37].

The various traits mentioned above were originally thought to be unique to AdS/CFT. However, it was
soon discovered that there are other physical systems that exhibit strikingly similar phenomena. One class
of such models is known as the holographic tensor networks [38-40]. Tensor networks (TN) are methods
for building up many-body wave functions by contracting a collection of simple tensors [41, 42]. As toy
models for AdS/CFT, they are known for possessing key signatures shared by holographic theories, such
as Ryu-Takayanagi formulae [39, 40], subregion-subregion duality and quantum error-correction [39, 43],
holographic renormalization groups [38, 44|, and even non-perturbative gravitational effects [15, 45].

The main advantage of TNs over conventional AdS/CFT models lies in their ability to capture many
desirable features of holography while remaining analytically tractable. In this regard, TN models help bridge
the gap between quantum information theory and the AdS/CFT correspondence by providing a playground
and tool for studying new ideas in quantum gravity. Understanding these systems can teach us valuable
lessons about the fundamentals of the holographic principle. For example, TN models have been used to
support /refute various conjectures that relate boundary entanglement measures to bulk surfaces [46-48].

Thus far, most of the insight into AdS/CFT and TN have come from calculations of entanglement entropy
and related quantities. It is nonetheless useful to consider other quantum information quantities in order to
give a more complete picture of spacetime from entanglement. For example, entanglement entropy based
quantities cannot discriminate between different kinds of multi-partite entanglement [49]. In addition, the
entanglement entropy is generically not well defined in continuum systems without imposing an artificial
cutoff [50, 51]. This divergence issue has been identified as a signature of the underlying operator algebra of
the theory, which is a universal feature across systems with large degrees of freedom [51-55].

In this thesis, we study a particular construction called the canonical purification, along with its associated
quantum information measure known as the reflected entropy [56]. Reflected entropy is a quantity defined on a
bipartite mixed state (or equivalently on a tripartite pure state). As opposed to the entanglement entropy, it is
intrinsically well defined in the ultraviolet, thus circumventing the divergence issue that plagues entanglement
entropy. Information theoretically, the difference of the reflected entropy and mutual information characterizes
a particular type of tri-partite entanglement [57].

Reflected entropy is also of special interest in holographic theories, since it can be given a geometrical
meaning of (twice) the area of the entanglement wedge cross-section (EWCS) [56], the minimal surface that
divides the bulk entanglement wedge into two parts. As such, this relation behaves like a generalization of
Ryu-Takayanagi, which relates a hard-to-compute boundary entanglement quantity to the area of a bulk
surface. This has already given new insights to AdS/CFT, by demonstrating holographic CFT states have
large tri-partite entanglement [58], in contrast to the previous conjecture that their entanglement is mostly
bi-partite [59, 60].

It is known that the entanglement wedge can undergo a discontinuous jump when one smoothly varies the
boundary regions [33]. In such a scenario one also expects the reflected entropy to acquire a jump transition
of order 1/G . This jump is discontinuous in contrast with that of the “Page curve” of entanglement entropy
in which the transition is continuous [61]. However, we do expect non-perturbative phenomena would arise to
smooth out the sharp discontinuity at the phase transition [15, 62, 63]. This is analogous to the corrections
to the Page curve found in [15, 62, 63].

The aim of this thesis is to provide a systematic examination of the canonical purification and reflected



entropy in a subclass of TN models called random tensor network (RTN) [40]. Working in RTN allows us
to study the intricate non-perturbative physics of phase transition of reflected entropy analytically in great
detail. At the same time, we aim to test the assumptions that led to the reflected entropy /EWCS duality,
which has been known to be intricate due to a problem in the analytic continuation of Rényi indices [56]. By
studying the entanglement spectrum, we find effective descriptions of the canonical purification as a classical
mixture of TN states, which can be matched directly into sub-leading saddles in gravitational path integrals
in holography.

Quantum informatically, by working in RTN we show that reflected entropy naturally gives rise to a
program that quantifies the amount of tripartite entanglement in holographic states. In particular, we find
that the problem of calculating the reflected entropy in general RTNs can be translated to a problem in
integer linear programming [64]. The solution to this integer program problem has deep implications on
the non-trivial tripartite entanglement in holography. This is in contrast to the bit-thread program [65, 66]
arising from the calculation of entanglement entropy, which suggests that the entanglement of such states

are mostly bipartite [59, 60]. Our results suggests a new way to think about multi-partite entanglement in
AdS/CFT.

1.1 Outline of the thesis
This dissertation is organized as follows:

e Chapter 2 reviews the necessary ingredients in quantum information theory and random tensor networks
in order to set up our calculations in later chapters. After formalizing the basics of holographic
entanglement entropy, we establish the definition of the canonical purification and reflected entropy. We
then review the fundamentals of random tensor networks, focusing on the effective statistical mechanical
model that reproduces a version of Ryu-Takayanagi formula. We conclude this chapter by giving a first
pass on setting up the reflected entropy replica trick on RTNs, the naive saddle solutions, and their

gravitational interpretations.

e Chapter 3 studies the canonical purification of a single tri-partite random tensor, which we will refer
to as the 1TN model. Holographically, this setup corresponds to a coarse-grained version of three-
boundary wormhole. We start by studying the reflected entropy phase diagram of the 1TN model. In
particular, we show that there is no problem of analytic continuation if one is careful when picking the
dominant saddles. We continue our journey by presenting a computation of the reflected spectrum (the
entanglement spectrum of the canonical purification) by solving a set of matrix recursion relations. We
obtain, analytically, the leading order corrections contributing to the reflected entropy phase transition
and verify our finding with explicit numerics. The spectrum we obtained is not flat, as opposed to the
usual Rényi spectrum for these networks. We propose an effective description for the 1TN models as a
summation over two super-selection sectors with different area operator and discuss the gravitational
interpretation of them. Lastly, we note that the calculation of reflected spectrum can also be computed

directly by summing over a large class of group permutations.

e Chapter 4 switches focus from RTNs and present a parallel analysis of the canonical purification in
the west coast model, a model of black hole evaporation consisting of Jackiw-Titelboim (JT) gravity
coupled to end-of-the-world branes. The west coast model can be thought of as a generalization of

RTN states in a canonical ensemble. By performing the gravitational path integral, we show that the
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reflected spectrum of this model can be extracted analytically by solving a similar matrix recursion
relation as in the 1TN analysis. In short we find a similar story: the spectra consists of a sum over two
super-selection sectors, which can be interpreted as a direct sum of geometries, a connected one and
a disconnected one in a closed universe. We find that area fluctuations that spread out the reflected
entropy phase transition is larger than the corresponding one in 1TN. transition. We compute the
Renyi generalization of the reflected entropy and show that the location of the phase transition varies

as a function of the Renyi parameter.

e Chapter 5 builds upon our 1TN results by studying a pair of tripartite random tensors contracted
by an internal bond, which we will refer to as the 2T N model. This corresponds to a coarse-grained
version of a multi-boundary wormhole with the topology of two pairs of pants sewn together. Motivated
by holography, we restrict our analysis to the limit where the external bond dimensions are much
greater than the internal one. Under this limit, the spectrum of the 2TN model factorizes nicely into
irreducible representations of an algebraic object known as the Temperley-Lieb algebra. The effective
description now consists of an infinite tower of super-selection sectors. These sectors have the nice
interpretation of a series of bulk solution of four-boundary wormholes with an increasing number of
genus. Similar to the case of the 1TN model, we find important non-perturbative effects that contribute
near the entanglement wedge phase transition. We give an expression for the reflected spectrum up to
second order in terms of the internal bond dimension and compare it with numerical results. Finally,
we conjecture that an emergent type-II; von Neumann algebra will arise on a modular flowed version of

the canonical purification of the 2TN model.

e Chapter 6 examines generic random tensor networks and study the properties of their canonical
purification. In contrast to our previous simple tensor models, it is not possible to perform an exact
analysis on the spectrum of a generic RTN at any given point in the parameter space. However, we will
make progress by limiting our attention to the case where the system is far from the phase transitions.
Using techniques from linear programming theory, we relate the problem of computing integer Rényi
reflected entropies to the problem of finding minimal triway cuts through the network. More precisely,
we prove that the integer Rényi entropy of generic RTN states converges to the one given by the triway
cut in large bond dimensions. Minimal multiway cuts can be formulated as integer programs which
cannot be relaxed to a dual maximal flow problem. This is in contrast to the bit-thread formalism of
entanglement entropy where such duality is present, with the implication that the bulk entanglement
structure is dominantly bipartite (which is now known to be false). We show that the Markov gap
(difference between reflected entropy and mutual information) that measures tripartite entanglement,
is lower bounded by the integrality gap of the integer program that computes the triway cut. We
demonstrate our result on RTN defined on hyperbolic graphs, giving an expression of the reflected

entropy and the effective description in terms of a superposition over different RTNs.

e Chapter 7 uses the results we obtained for generic RTNs to prove a conjecture related to the entanglement
of purification in holographic RTNs. The entanglement of purification has been conjectured to also be
dual to EWCS in holographic theories. However, it is generally intractable to compute the entanglement
of purification due to the required optimization over all possible purifications. We will show that our
result in Chapter 6 allow us to prove this conjecture on a wide class (a codimension-0 subset in the

parameter space) of generic RTNs.

e Chapter 8 wraps up this thesis with some discussions and future outlooks.

4



Several long technical reviews, calculations and proofs of this thesis are relegated to the appendices. The
results presented in this dissertation is sourced mostly from the joint research works [48, 67-70] with the

author’s advisor Thomas Faulkner, and collaborators Chris Akers and Pratik Rath.



Chapter 2

Preliminaries

2.1 Quantum information basics

Let p be a density operator on a bipartite quantum system with corresponding Hilbert space H = Ha ® Hp.

We say that p is separable if there exists a decomposition of p4p into a sum of tensor products

p=> Xipy®pp (2.1)

i
for some p'; supported on H4 and pfg supported on Hp. We say p is entangled if it is not separable. We
define the reduced density matriz on system A by tracing out all the degree of freedoms on the complement

system B:
pa=Trpp. (2.2)

The entanglement entropy of subsystem A is defined as the von Neumann entropy of the reduced density
matrix pa:
S(A), = Sun(pa) =—Trapalnpa. (2.3)

We have the bound 0 < S,(A) < In(dimH 4) for any finite dimensional quantum system. In the case where
p=|¥) (¥| is a pure state, we have S(A), = S(B), and the entanglement entropy quantifies the amount of
entanglement between subsystems A and B. That is, S,(A) = 0 if and only if p is separable. p is said to be
mazimally entangled if its entanglement entropy saturates the upper bound, i.e. S(A4), = In(dimH ).

Operationally, the entanglement entropy quantifies the amount of distillable entanglement: Let’s say Alice
and Bob has n copies of the pure state p%%. Then S(A), = S(B), measures the asymptotic rate where
Alice and Bob can produce Bell pairs using only Local Operations and Classical Communications (LOCC) as
n — 00. In other words, it measures the maximum amount of maximally entangled pairs that can be distilled
out of a bipartite pure state.

The mutual information of a bipartite state p, denoted by I(A : B), is defined as
I(A:B)=S(A),+S(B), — S(AB),. (2.4)

The mutual information measures the correlation (both quantum and classical) between subsystems A and B

and I(A : B) = 0 implies the state is factorizable, i.e. p = pa ® pp. In the case where p is pure, I(A: B) is



equal to twice of the entanglement entropy. The mutual information is always semi-positive, I(A : B) > 0.

When translated into the entanglement entropies this means
S(A), +S(B), > S(AB),. (2.5)

This property is known as the subadditivity of the von Neumann entropy.
We will also consider a family of entropies called the Rényi entropies, which are defined in terms of the

moments of the density operator p:

1
Sn(p) = — In Tr p". (2.6)

The canonical definition here requires n to be a integer, but in various places it is useful to consider the
analytical continuation of the Rényi index n into positive real numbers. In particular, the limit n — 1

reproduces the von Neumann entropy

. .0 n
Sun(p) = lim Sn(p) = — lim ——InTr p". (2.7)
Other notable cases are Sp(p) = InRank(p) and So(p) = — In Apax, the largest eigenvalue of p. The Rényi

entropies are non-increasing in its indices
Su(p) = Smlp), n=m=>0, (2.8)

which may come handy in proving various bounds in quantum information.

Our main interest of Rényi entropies is that they can be used as a means for calculating the von Neumann
entropy. When the exact form of the density matrix is not known (e.g. as an disordered average) or hard to
write down (e.g. for gravitational path integrals), it is not possible to compute the von Neumann entropy
directly. Even if one does have a density matrix, a direction computation of the logarithm in S, N requires
exact diagonalization for the density matrix, which is in many cases not feasible. Instead, suppose that one
knows the Rényi entropies for all integers. If one can “analytically continue” the Rényi entropies near n =1,
then Eq. (2.7) gives the value of the von Neumann entropy. This procedure is known as the replica trick [71].

Suppose that we start from a pure state |¢)) on a bipartite system AB and we form the reduced density
matrix pa = Trg [¢) (¢| by tracing out subsystem B. It is useful to introduce the tensor network diagrammatic

notation here: To express the reduced density matrix we use the following diagram

A B

A B
PAB = W pa =trppap = (29)

where we have expressed the state |¢)) as a triangle and used lines to denote the Hilbert space corresponding
to subsystems AB. An upward open line indicates basis in Hilbert space and downward open line indicates
the dual Hilbert space, although for finite dimensional systems they are isomorphic and we will not care about
the orientation of the diagram in general. A closed line indicates contraction in the Hilbert space along the
common basis. Here we see that the partial trace can be simply expressed as a closed loop (self-contraction)

around system B.



The trace of the n-th power of the reduced density matrix p’; can be expressed as, e.g.

traph = (2.10)

)

where we have rearranged the density matrices p4 in a to lay on a circle. It is clear from that the contraction
pattern respects cyclic symmetry 7,, whose action permutes different copies of density matrix cyclically (which
is realized as a rotational symmetry in Eq. (2.10)). This symmetry is known as the replica symmetry.

In general we can write the moment of p4 as some expectation value of the n-th tensor power of the

original density matrix p:
Trapli = Te(Sa(04)S5(0)p5E) = (17" Sal0a)Er(os) [¥)°", (2.11)

where X 4 and X g acts on the tensor product Hilbert space ’H%g by permuting the bases of different replicas
on subregion A and B respectively. They are known as the twist operators. The action for ¥4 and X5 are
characterized by a group element in the discrete permutation group o4,0p5 € S,. In the Rényi entropy case

they can be simply read out from Eq. (2.10) to be
OA=Tn, OB=cE€, (2.12)
where 7, = (12---n) is the maximal cyclic permutation of S,, and e is the identity permutation. Note that

Y p(e) = 14p, the identity operator on H4p, so we can omit it in Eq. (2.11) and write the Rényi entropy as

S(4) = T 0 91" Sa(r) [9)°". (213)

2.2 Holographic entanglement entropy

We give a brief introduction of AdS/CFT and holographic entanglement in this section. The field of
holographic entanglement has grown tremendously in the recent years, which we will not be able to do it
justice in one single section. For more complete reviews on standard AdS/CFT dictionary we refer the reader
to [72-75]. For reviews on the entanglement and quantum information methods in QFT and holography we
refer the reader to the excellent book of Ragamani-Takayanagi [76], as well as TASI lecture notes [77, 78].
First, we give a lightening introduction to the AdS/CFT correspondence. AdS/CFT is a duality statement
between quantum gravity and strongly coupled field theories. In its most common settings, it posits that
a theory of quantum gravity (formulated in terms of string theory or M-theory) in the background of a
d 4 1-dimensional asymptotic Anti-de Sitter (AdS) space is dual to a conformal field theory (CFT) that lives
on its d-dimensional conformal boundary. More concretely, the AdS4y1 space can be parameterized by the

following metric in the Poincaré patch:

1
d82 = ;(dZQ + ﬂuudfﬂudxy)v M,V = O’ Tt d -1 (214)



The metric diverges as z — 0. Its conformal boundary can be obtained by a scale transformation z — z/z

and then sending z — 0:
ds® =, drtdz”, (2.15)

which is the usual metric of Minkowski space in d dimensions. If one approaches the boundary at different

rates z ~ ef(z,z*), the resulting metric attains a Weyl factor
ds® = f?(z, 2" )y dat ", (2.16)

which is conformally equivalent to the previous metric. Thus the field theory living on the boundary must be
invariant under a conformal transformation. Different choices of functions correspond to different symmetry
transformations which must be respected by both sides of theories. In the case of AdSyy1, the full isometry
group is SO(d,2), which is the same as the group of conformal isometry on d dimensions for d > 2. !

The duality statement in AdS/CFT is usually phrased in terms of holographic dictionaries. They consist
of a set of relations between semiclassical fields in the bulk gravity theory and operators as well as a rule to
match different computible objects on both sides. The two commonly used holographic dictionaries are the

GPKW dictionary [16, 17], which state the equivalence of partition functions:

Zgrav [Qﬂ = ZCFT [d)] (2 17)

And the extrapolate dictionary [80], which states the equivalence of correlation functions:

(O1(1) -+ On(@n)) pp = lim 27 221 (O (21, 2) - - - On (2, 2))

z—0

(2.18)

grav ’

where A; is the scaling dimension of the operator O;.

We now list a few pairs of well-known field theories and their corresponding gravity duals. The superstring
theory is 10-dimensional in nature, hence the topology of the dual gravity theory generally has the topology
of AdSy; x M with M a compactified manifold.

e N =4 4d super Yang-Mills theory/ IIB superstring theory on AdSs x S°. This is the first discovered
example of AdS/CFT [18, 19] and one of the best understood one. The field theory side is controlled by
the coupling constant gyy; and the number of gauge fields N. In the limit N — oo and holding the t’
Hooft coupling A = g2, N fixed, the bulk dual is IIB superstring theory on AdSs x S°. If one further
takes A — oo, the bulk dynamics truncates to type IIB supergravity on the same background.

e 2d CFTs with large central charge ¢ > 1/ classical gravity in AdS3. The details of the gravity side
depends on the particular 2d CFT (which may not have a Einstein-Hilbert dual). However such duality
is generally believed to hold true and is often used as a bottom-up approach. Models with precise
duals do exist. A particular construction is (4,0)24 Superconformal Field Theory (SCFT) and classical
gravity on AdSz x S? x X4, where X4 can be either K3 or T*, see e.g. [81].

o Sachdev-Ye-Kiteav (SYK) model / Jackiw-Titelboim (JT) gravity. SYK model is a quantum mechanical
system of N interacting Majorana fermions with random interactions [23, 82, 83]. In the large N limit,
the low energy sector of SYK model has been shown to be closed related to JT gravity, a 2d gravity

1For d = 2 one must raise the bulk isometry group S0O(2,2) as a projective representation of the classical Poisson bracket.
Doing so introduces a central charge to the Lie algebra, which is isomorphic to the Virasoro algebra, the local symmetry group
of 2d CFTs. [79]



theory with a dilaton. For this reason this particular pair is usually refereed to as a AdSy/CFT; duality.
It has been used as a toy model to study various properties of holographic black holes [84, 85] and as a

model for discrete bulk spacetime [86].

We will be mostly interested in the case where the CFT is strongly interacting with a large degree of
freedom. It is in this limit that the dual bulk theory is semi-classical, i.e. weak-gravitating with a small
Newton’s constant and a large AdS radius compared to the string scale. This choice suppresses the stringy
effects and allows us to work with classical geometry (plus perturbative corrections) in the bulk, which is
crucial for making a precise proposal of holographic entanglement.

We now review the key developments in holographic entanglement. A central player in this field is
the Ryu-Takayanagi formula [26, 27]. It has far-reaching implications in our modern understanding of the
holographic duality, such as bulk reconstruction, subregion-subregion duality [34-36], and the corresponding
quantum error correction picture [37], all of which we will review shortly below. A version of the RT formula
has recently enabled us, for the first time ever since the black hole information paradox was proposed [87],
formulate a purely semi-classical calculation of the Page curve for unitary black hole evaporation process [13].

The proposal of both holographic dictionaries (Eq. (2.17) and Eq. (2.18)) are concerned with mapping
between the field /operator content of the duality. The RT formula proposes a dictionary of a different kind —
by directly relating a geometrical object in the bulk theory to measures of entanglement on the boundary.
This proposition is remarkable in both directions: First, it is a duality statement directly about the bulk
geometry, which lies at the heart of the classical gravity theory. Second, it gives the entanglement entropy,
a rather abstract information measure on the boundary CFT, a clear geometrical meaning. The original
RT formula states that in a time reflection symmetric solution, the boundary entanglement entropy on a
subregion A is equivalent to the area of a bulk codimension-2 minimal surface 4 homologous to A 2:

i Arealya)

S(A) = mi

0
nin — =2+ O(GR). (2.19)

The minimal surface 4 is usually called the RT surface of A. See Fig. (2.1) for an illustration. The fully
covariant generalization was established by Hubeny-Ragamani-Takayanagi (HRT) [28], which replaces the
minimal surface on a time reflection-symmetric Cauchy slice by an extremal surface in the full spacetime.
An equivalent covariant formulation was given later by Wall [35] in terms of a maxmin prescription. A
perturbative quantum correction (the O(G%) term) was found later by Faulkner-Lewkowycz-Maldacena
(FLM) [29].

Some clarification is needed here. Both sides of Eq. (2.19) are divergent in nature: The area of minimal
surface is divergent since the AdS metric is singular at its asymptotic boundary; whereas the entanglement
entropy of a subregion in QFT is inherently divergent due to short range modes [50, 51]. To properly define
Eq. (2.19) we must regularize both theories by imposing a IR cutoff in the bulk and a UV cutoff on the
boundary. This kind of UV-IR correspondence is a common occurrence in holography, which is a manifestation
of holographic renormalization groups [88-91].

As a simple example, let’s take region A to be a single interval of length ¢ on a 2D CFT in Minkowski
space. The entanglement entropy of the vacuum state in 2D CFT is uniquely determined by its central charge
c [92]:

S(A) = gln(é/e), (2.20)

2Homologous here means that the boundary of v, the same as A, i.e. dy4 = A.
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A

Figure 2.1: A spatial slice of the bulk AdS space with boundary region A and its complement A. The figure
shows the entanglement wedge of A (gray), the RT surface 74 and the entanglement wedge EW(A).

where € is a short distance cutoff. The holographic counterpart in AdSs is given by the minimal surface A
with (renormalizaed) boundary length £. The area (which is the same as its geodesic length) of this surface

can be easily obtained from Eq. (2.14). It reads

Area(ya) 1 . 4 1
Gy~ 20x sinh™" (£/26) o ﬂln(f/é) (2.21)

where ¢ is the bulk IR cutoff. We take § — 0 since the asymptotic boundary of the Poincare patch lies at
z = 0. The holographic dictionary between AdS3;/CFTy states that the bulk Newton’s constant is related to
the boundary central charge by ¢ = 3/2G . ® We see that the RT formula holds true under this identification.

A important advancement in holographic entanglement took place when Engelhardt and Wall proposed a
generalization of RT known as the Quantum extremal surface (QES) formula [30]. The QES formula proposes
that, if one takes quantum correction at any given order into account, then the RT formula must be revised

to minimize the generalized entropy Sgen:

rea Q
S(A) = m(gn(Sgen('yg)) = min (Am(;f‘) + Sbulk(EW(A))> (2.22)

where Spu(EW(A)) is the bulk entanglement entropy of the entanglement wedge of A, the codimension-1
volume 4 enclosed by vg and A. The minimization is carried over all possible quantum extremal surfaces
'yg homologous to A. See Fig. (2.1) for an example. The implications of the QES formula is way more
far-reaching a mere quantum correction to the RT proposal: It implies that the area of minimal surface
and bulk entanglement are merely two faces of a single coin and must be treated on equal footing. In
particular, it was recognized that the renormalization procedure needed for the minimal surface area and
the bulk entanglement entropy cancels with each other, which allows one to give a UV-finite formulation of
entanglement entropy in quantum gravity. This idea was recently rigorously formalized in the language of
operator algebra in various semi-classical gravity systems [93-95].

The entanglement wedge (EW) of region A, defined as the region enclosed by the quantum extremal
surface, is of special importance in the program of bulk reconstruction. It was proposed to be the dual bulk
prescription of the reduced boundary density matrix p4 in boundary CFT [34-36]. This implies that all the

information in the entanglement wedge can be reconstructed from the boundary theory given full knowledge

3We have normalized the AdS characteristic length €445 to be 1 here.

4The entanglement wedge also refers to the causal development of the region, which is a bulk codimension-0 object. Since
we are restricting to time-reflection symmetric situations with a preferred choice of Cauchy slice we will be agnostic to the
differences.
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Figure 2.2: A spatial slice of the bulk AdS space with A and B chosen to be two disconnected intervals on the
boundary. The figure depicts the entanglement wedge of AB (gray), the entanglement wedge of C' (green),
the RT surface v4p and the entanglement wedge cross-section I'4.5.

of the reduced density p4. This property is known as the subregion-subregion duality of holography.

The idea of bulk reconstruction and subregion-subregion duality strongly suggests that the holography map
between the boundary and the bulk should really be thought of as a realization of quantum error-correction
(QEC) codes [24]. The code associated to holography is a special kind of QEC code with the property of
complementary recovery. Consider the boundary region A along with its complement A and denote their
corresponding entanglement wedges EW(A) and EW(A). The holographic map can be viewed as isometry
V that maps the boundary Hilbert space (the code subspace Hcode) to the semiclassical bulk states (the
physical subspace Hpnys). The recovery map inverts the map V' by embedding the code subspace back into
the physical subspace, protecting against the error of the action of any operators in its complement, i.e. for
any state [¢0) € Hpnys and any Hermitian O4 € End(Ha),0z € End(74) there exists Hermitian operators

Orw € End(Hew(a)), Ogw € Hrw(a) such that they satisfies the complementary recovery condition
VOalY) = OewV ), VOzlh)=OwgVI[¥). (2.23)

The connection between QEC and the RT formula was first realized by Harlow [37], where he showed that
the complementary recovery condition is equivalent to the existence of an area operator £, and an entropy

formula that mimics RT:
S(pa) = Tr(pLa) + S(p, EW(A)) (2.24)

In particular, the area operator factorizes in terms of the centralizer of the underlying operator algebra £4 =
D, Aalew(a),Ew(a), Which correspond to different superselection sectors 5 that has physical interpretation
of fixed area states [96-98] which possess flat entanglement spectra. We will see that these fixed area states

are precisely the proposed dual of RTNs when we review the basics of RTN later in this chapter.

2.3 Canonical purification and the reflected entropy

In this section we introduce the definition of the canonical purification and reflected entropy. We review
various properties of the reflected entropy, focusing on the holography proposal that related reflected entropy
to entanglement wedge cross-sections (EWCS). We then introduce the Rényi generalization and the replica

trick for the reflected entropy.

5These are also sometimes referred to as a-blocks or a-sectors.
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Let pap be a density matrix on a bipartite quantum system AB with Hilbert space Hap = Ha @ Hp. ©
A purification for pap is an extended density operator pspc on a larger Hilbert space H apc such that

Trc papc = pas, (2.25)

and that p4pc is a pure state.

Given any p there will in general be many different choices of purifications. However there is a standard
choice on the “doubled” Hilbert space: The space of linear maps End(#) acting on H itself forms a Hilbert
space with inner product (X|Y) = Tr(XTY") with the trace taken in the original Hilbert space. In general
End(H) is isomorphic to the tensor product H @ H*, where H* is the dual Hilbert space of H. For the density

matrix p4p introduced above, we define the canonical purification for pap to be the state
|Vpag) € End(Ha) @ End(Hp) = (Ha @ Hy) @ (He @ HE) , (2.26)

In other words, define |\/pag) by finding the unique positive matrix square root of p4p, regarding the result
as a state in End(H 4 ® Hp). It is normalized since <./pAB | ,/pAB> =tr(pap) = 1. To see that it is really a

purification, write pap =Y, Ai |7) 45 (i| 45 In eigenbasis and we can compute

T‘I‘A*B*

Z'>AB |i/>A*B* <j|AB <j/|A*B*

VPap) (Voasl = Y A Trap-
- Z Z )\Z |i>AB <j|AB <k/ | il)A*B* <]/ ‘ k/>A*B* (227)

k' g

= Z)\i |i>AB <i|AB = PAB;
i

where [i’) 4. 5. is the dual eigenbasis for pap.
In the case where py, = >, e #En |E,) (E,| is a thermal density matrix, the canonical purification is
known as the thermal field double (TFD) [99]

|Vpn) = |TFD) =Y e PEn2|E,) |E}) (2.28)

which has been widely adopted in holography to as the boundary dual of two-sided eternal black holes [100].
Therefore, physically one can think of the canonical purification as a generalization of TFD states to arbitrary
density matrices.

The reflected entropy of a bipartite density matrix pap, is defined as the entanglement entropy on region

AA* (or equivalently BB* ) of the canonical purification [56]:

SR(AB):S(AA*M\/MT):TF(/)AA* lnpAA*), PAA* :TrBB*|1/pAB> <1/pAB|~ (229)

We have Sgp(A: B) = 2S(A) if pap is pure and Sp(A : B) = 01if pap = pa ® pp is factorized. In general Sg
satisfies the following inequality:
I(A: B) < Sg <2min(Sa, Sp). (2.30)

We will mostly work with factorizable finite dimensional quantum in this thesis, although both canonical purification and
the reflected entropy is well defined in continuum. We will come back to this issue later.

13



N
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2>

Figure 2.3: A sketch depicting the argument of the reflected entropy/EWCS duality. The entanglement wedge
of AB (shown in yellow) is glued with its CPT dual, which acts like a mirror reflection of AB into A*B*,
along their common RT surface. The end result creates a cylinder-like geometry. With the RT dictionary, the
minimal surface of AA* falls into the bulk which is then identified with twice of the EWCS 2I' 4.5.

In particular, the difference between mutual information and the reflected entropy,
MG(A:B)=Sgr(A:B)—I(A:B) >0, (2.31)

called the Markov gap [101], is a useful measure of tri-partite entanglement. If p4p comes from tracing out
a tri-partite pure state [¢)) 4 5o, then MG(A : B) is zero if and only if it can be written as a linear sum of
triangle states [57], whose entanglement profiles are purely bipartite. Note that Sg = 0 is only a necessary
condition of the state having only bipartite entanglement. For example the reflected entropy vanishes for
GHZ states.

Holographically, the reflected entropy on the boundary CFT is conjectured to be dual to the twice the
area of the entanglement wedge cross-section (EWCS), normalized in Plank units [56]. EWCS is the minimal
area surface I' in the bulk geometric that divides the bulk EW into two regions, one containing region A the
other containing B. See Fig. (2.2) for an example. More concretely, split the boundary into three regions
ABC and for a reduced density matrix pap on CFT obtained by tracing out the degree freedom on region C

we have
Area(T)

Sr(A:B)=2EW(A:B)= 2rr¥n 1Cx

+0(1), (2.32)

where the minimization I' is taken over all possible cross-sections that splits A : B. When the entanglement
wedge is disconnected, we define the area of EWCS to be zero. Note that we have assumed a classical, time
symmetric bulk solution in above. This proposal of reflected entropy-EWCS has been generalized to include
time-dependent bulk configurations, where one adopts a maxmin recipe [102-104], and quantum corrections,
where there is an additional term similar to that of the generalized entropy [103]. There are also proposal for
generalizations to include multiple (n > 3) regions [105].

Ref. [56] establishes the duality Eq. (2.32) based on a holographic construction of the canonical purification
whose holographic entropy can be related to the EWCS. We quickly sketch their arguments here: As shown
in Fig. (2.3), by subregion-subregion duality, the reduced density matrix pap is dual to the EW of AB. The
holographic construction of the canonical purification can be identified with taking the EW and glue it with
its CPT dual along their common minimal surfaces. This construction has the property that these gluing
surfaces acts like a “mirror” that reflects the EW into its CPT dual. Using the RT dictionary, the entropy of
the boundary region AA* should be identified with the minimal area surface that is homologous to AA*,

which can be shown to be equal to twice of the EW cross-section.
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For our purposes, it will be useful to consider a two parameter Rényi generalization of the reflected

entropy, based on the following state:”

6™ = (Teplgs) 2|55 ) (2.33)

The Rényi generalization is then given by

SE(A: B) = I Tr(p{3)", p;XFm%BTrBB*

m/2 m/2
PAJé > <PA1/3

, (2.34)

for positive even integer m and positive integer n. We will refer to these as (m, n)-Rényi reflected entropies.
Sr(A : B) is given by the analytic continuation of the Sl(zm’") Rényi indices (m,n) — (1,1). We will sometimes
consider the effects of analytic continuation m — 1 only and leave n to be an arbitrary positive integer. We
will refer to denote these quantities as n-Rényi reflected entropies and denote them by Sg’n), or simply Sgl).

The n-Rényi reflected entropy is monotonically decreasing under partial trace
(1,n) . (1,n) .
Sp(A:BC)> SR (A: B) (2.35)

for all integers n > 1 [56]. However it was shown recently [106] that Eq. (2.35) is violated for n = 1, so that
Sk does not satisfy the requirement for a correlation measure. Nonetheless we still expect that Eq. (2.35)
holds true for holographic states up to O(1) corrections, as the EWCS is known to be monotonic under
inclusion [33].

We now describe the replica trick for Rényi reflected entropies. In contrast to the von Neumann case we
now have two Rényi indices which means that we will need to take mn replicas. Suppose that the density
matrix pap is obtained by partial tracing out system C for a tri-partite pure state [¢) , 5. Using the same

diagrammatic notation as in Sec. (2.1), we write the (unnormalized) density matrix pf&)* as

A
A B 2
C
2 2
pAB = | Trpse |phE) (OAE | = (2.36)
2

)

where the top stack of triangles corresponds to | p%/;> and the bottom stack corresponds to (,0%/32 . Note

that there are two open lines for each of A and A* since it is a p%;) is a density matrix on H 44~. Raising

"Note that [1(™)) is no longer a purification of p4p.
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pfﬁl)* to the n-th power and taking the trace we obtain the following diagram (Here m = 8 and n = 3):

Tr (|0557) (pn )™ % % % (2.37)

o~
7*_7—7’14

We have arranged the diagram such that each circle corresponds to replicas with the same n, and going
clockwise increases the m-replica number and that going to the right circle increases the n-replica number.
The contraction pattern for system A is further conjugated by the n-twist operators (shown as yellow and
blue), and their action permutes the contraction lines cyclically in n.

The twist operators X 4(ga),X5(g98),Xc(gc) for the Rényi reflected entropies can be read out from
Eq. (2.37). For concreteness we assign the following numbering notation: Denoting a specific replica by («, 8),

where a =1,--- ;mand = 1,---,n, we represent the elements in S,,,, in the following notation:
) a,l-B), a=i,
(im e S, Mm . (a,8) = (e, £ ) (€S, (2.38)
(,B), a#i
and similarly:
1 ; K- Q, ’ = '7
K/[J]n € Smna /{[J]n . (Q’IB) = ( 6) ﬁ ] K € Sm (239)
(a,8),  B#1J,

The group elements that permute the regions A, B can thus be written as

p=[I7E",  ga=(rt)mzin H el | 7l (2.40)
where 7,,, T, are the respective full cyclic twist operators on S,,, S,. If we define

o= [ i (2.41)

i=m/2+1

as the group element corresponding to the full n-cyclic permutation in the lower half replicas 5 > m/2, we

can express g4 as a conjugation of gg such that

9A = V9BV (2.42)

where it is useful to note that conjugation relabels the elements while preserving the cycle structure.
Since these definitions are a bit complicated to unpack, we introduce a graphical visualization for elements
in Sy, in Fig. (2.4). We represent each column of replicas with the same n index by a circle. The same circle

is then repeated n times to make the full mn copies for g to act on. Each individual replica corresponds to
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Figure 2.4: A graphical representation of g4 and gg. We use the same replica ordering as in Eq. (2.37):
The individual circles each represents the m replicas of the original tensor and each of the circles is further
replicated n times. Going clockwise in each circle increases the m replica number and going to the next circle
on the right increases the n replica number. A cycle of the permutation is represented by a closed directed
loop. The element g4 can be thought of as cutting open the m-circles of gg from the middle, shifting the
bottom half cyclically in the n direction (as the red arrows) and then gluing them back together.

a dot on the circles — there will be m dots on the circle. The action of g € S;,,,, is represented by drawing
directed closed loops corresponding to the cycle decomposition of g. For each circle we denote the upper half
to be the 8 =1,--- ,m/2 replicas of the column and the lower half to be 5 =m/2+1,--- ,m. The action of
conjugation by ~, is simply cutting open each circle along its middle line, making a cyclic permutation on

the lower halves, and then gluing back together.

2.4 Random tensor networks

Here we quickly review random tensor networks (RTNs). The entanglement profile of RTNs have been
known to satisfy an generalized area law [107, 108]. In addition, RTNs have been shown to give rise to a
bi-directional quantum error-correcting code and a two-point correlation function that matches expected
holographic behavior [40], which makes them excellent candidates of a model of holographic duality. However
in contrast to generic states obtained from gravitational path integral, RTN states have flat entanglement
spectra. For this reason it was argued that they correspond to a special class of holographic states called the
fized area states [96-98]. There has been proposals to generalize RTN models to include gauge symmetry
[109] and non-flat spectra [110]. For our purpose we will restrict our attention to the most basic formulation
of RTNs, closely following the treatment in [40].

Consider a weighted graph G = {V, E} with a edge weight function x : E — R,. For each vertex v € V

we assign a rank-k tensor T, where the indices u; label the edges e; connecting the vertex v. Thinking

SR
of each connecting edge as a Hilbert space H; spanned by basis vectors |u;), the tensor T, defines a state

Te) = Ty uaeoopn, |11) [pi2) - ) (2.43)

on the product Hilbert space of each edge H" = ), H;. The dimension of the respective Hilbert space is
identified with the weight x(e;), called the bond dimension of the edge. In this thesis we will mostly work in

the limit where all the bond dimensions are large, i.e. x(e;) > 1. The idea is to contract all the adjacent
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Figure 2.5: (a) We tile the hyperbolic disk isometrically by a graph. Each blue circle represents a random
tensor and the connecting edges indicates contraction of the tensors. This tensor network defines a state on
the Hilbert space spanned by the dangling legs on the boundary. (b) The Ising domain wall that arises in the
calculation of Rényi entropies of region A in the RTN. Minimizing the length of the domain wall gives rise to
an entropy formula that corresponds to the RT formula in AdS/CFT.

vertices among their shared common edges

Q) (zyl <® ITU>> : (2.44)

{zy}eFE veV

Here |zy) = 0,,, ) |pi) [1) is an un-normalized maximally entangled state defined on the doubled Hilbert
space of the edge {z,y} where the i-th index of tensor x is contracted with the j-th index of tensor y. This
defines a c-number for the network once one specifies the collection of tensors T, associate to the graph G.

To define a tensor network state, we mark special boundary vertices  C V' and we leave the boundary
vertices un-contracted. The resulting network now defines a pure state in the boundary Hilbert space

Ho = Q) ,c9 H" associated to the “dangling legs”:

= & @yl|| &Q IT) | eHo (2.45)

{zy}eFE veV\o

While we can work with a general graph, we will often be interested in models of AdS/CFT, where it is
natural to pick a triangulation of two dimensional hyperbolic space, thought to represent a fixed time slice of
the AdSs spacetime, see Fig. (2.5) (a). We fix all of the bond dimensions on this network to be the same,
denoted as x. We pick the boundary vertices of the network to be at a cutoff region near the boundary of
hyperbolic space.

For RTNs, we demand that the state |T,) is sampled from a uniform random ensemble on the tensor
Hilbert space. This can be achieved by acting with a unitary matrix U, picked from a Haar-random measure
on some fixed anchor state |0,). Then the average over such a measure can be readily done using Schur’s
Lemma [111]:

VWl = [1DU] (U0 00D ™" x 3 a0 (2.40)
Gv€Sn
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where g, is a element of the symmetry group S, whose action is to permute the contraction edges of the
n-replicas. The state |¥) is unnormalized. Normalization can be achieved “on average” by dividing by the
average of the norm of |¥). At large bond dimension this procedure is sufficient for our purposes.

We now consider a factorization of the boundary Hilbert space as Hop = Ha ® Hz. The n-th Rényi
entropy of subregion A can be written as the expectation value of a twist operator ¥4 which acts on the
tensor product of n copies of H 4. The twist operator cyclically permutes the different copies of H 4 and we
label the operation by 7,,, the maximal cyclic permutation element in S,. After averaging and normalizing as

described above one finds at large bond dimensions the moments of the density matrix can be written as &

Zy(A)=Trph = (" Sa(m) [ W) = Y exp|— D dlgagy)Inx(e)|,  (247)
{gv€Sn}b.c. e={z,y}€E

where Y 4(g4) is the twist operator on subregion A. This expression can be viewed as the partition function
for a classical Ising-like model with nearest neighbor interactions where each Ising “spin” takes value in the

symmetry group S,. The interaction strength is given by the Cayley distance °

d(g,h) = n—#(gh™") (2.48)

where #(-) is a function that counts the total number of cycles of a group element, including trivial cycles
that map a given element to itself. Cayley distance is a metric on the symmetric group in the sense that
it measures the abstract distance between two elements g, h € S,,, symmetric, semi-positive and satisfies
triangle inequality, and d(g,h) = 0 iff g = h. Hence the energy function of the Ising model favors group
elements that are “close” to each other in group space. The boundary conditions on the sum {g, € S, }p.c.
are dictated by the presence of the twist operators, i.e. we impose g = 7,, on boundary region A C 9 and
g=-ceon A=0\A. In the case of large bond dimension, the Ising model is in its low temperature limit and
is localized to its ground state. The field configuration in this limit is given by domains of group elements 7,
and e, separated by a domain wall as shown in Fig. (2.5) (b). Minimizing the energy of this domain wall
requires it to be a minimal surface, thus reproducing the usual RT formula.

The Rényi entropy for p4 can be written as

1 Tr p” 1 Tr p” 1 Zn
Sp(A) = <1n "PA ) ~ In —PA_ — In ", (2.49)
1-n (Trpa)™ L=n  (Trpa)n 1-n  (Z))"

where we have replaced the average over the logarithm by the logarithm of the averages of the partition
function. The fluctuations around the average can be shown to be suppressed exponentially in bound
dimension x at large bond dimensions. More specifically, the normalized variance of the partition function

around its average is given by

Z > 7z
(” — 1) === L (2.50)
The squared partition function can be shown to be dual to an Ising model with spin taking values in Sy,

using a very similar approach. The boundary condition on this new model is g = 7, X 7, on A and g = e

8we have ignored the proportionality factor in Eq. (2.46), since it cancels out after we divide by the normalization of density
matrix.
9We summarize various useful results for the symmetric group in Appendix A.
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on A. At large bond dimension the value of the partition function is simply the square of the original one,
plus corrections in O(1/x). It then follows that the variance Eq. (2.50) vanishes as xy — oo. Since this result
holds for all integer n > 0 one can prove a similar convergence on the spectrum of the density matrix itself,
i.e. the eigenvalues of the RTN states are narrowly peaked around their average value. These results are
known as measure concentration, which are known to hold for large random matrices; see [112].

Note that the above calculation gives the same results for the Rényi entropies S, (A) for all n > 0.
The entanglement spectrum for the RTN is therefore flat, which is clearly not true for generic holographic
states. Instead, RTN have been interpreted as models of fixed-area states in such theories [96-98]. Generic
holographic states can be obtained as a superposition of fixed-area states. We will see in the later chapters

that such superpositions naturally arise from the canonical purification without adding this structure in by
hand.

2.5 A first pass

To set up the calculation for reflected entropy, we now consider a RTN defined by graph G and divide the
boundary into three different regions 9 = AU B LU C. As a simple example, we take both A and B to be
connected intervals and trace out C to get the reduced density matrix p4p. We will make use of the reflected
entropy replica trick described in Sec. (2.3). To recapitulate, we want to construct the canonical purified

density matrix

pas = |\/pap) (V/paB| = papa-p+, (2.51)

where the A* (respectively B*) is the canonical purified counterpart of the original region. We achieve this
by first computing the (m,n)-Rényi reflected entropies defined in Eq. (2.34). This is possible using a similar
Ising-like model, for integer n > 1 and even integer m > 2. Using the same procedure as in Sec. (2.4),

including an appropriate normalization that works at large bond dimension, we find:

Sg"" (A B) ~ ! ~In ( ( Z’&) , (2.52)
Zmn(A,B) = (¥|*™" Sa(g4)SB(g8) [¥)°™", (2.53)
w1 (A, B) = (U|%" S p(7) [0). (2.54)

The group actions of twist operators g4 and gp is given by Eq. (2.40). The partition functions of the Ising

model Z,, ,, given by the sum over permutation group elements

Zmm = Z exp |— Z d(gz,9y) Inx(e)| . (2.55)

{9v€Smntp.c/ e={z,y}cFE

The new boundary condition on the sum, denoted b.c.’, imposes g, = g4 for x € A, g, = g for x € B and
gy =eforxzeC.

We now consider two natural saddle points, i.e. domain wall configurations for the Ising problem that arose
in computing the (m, n)-Rényi reflected entropy. These saddles are the tensor network analogs of the saddle
points that were considered in Ref. [56] and used to prove the reflected entropy/EWCS correspondence. These

were also interpreted as arising from the gluing construction of Refs. [113, 114], which has a natural analog
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Figure 2.6: Two naive solutions for the spin Ising model for a RTN defined on a hyperbolic space. The
domain for permutation group elements are indicated using different colors. The blue region indicates g4, the
red ¢gg, and white the identity permutation e. The left configuration is the naive disconnected saddle, and
right configuration is the naive connected saddle.

in the tensor network case [115]. 10 In particular, these saddles are analogs of the Lewkowycz-Maldacena
saddles [116] used to compute Rényi entropies in AdS/CFT.

With the above results at hand, we are now ready to make a first-pass calculation of the reflected entropy
in RTN using the saddle-point approximation. The presentation in this section will be schematic and brief,
merely touching on the issues that arise during the calculation. We return to those issues with more detailed
treatments in Chapter 3 and Chapter 5, where we study the non-trivial corrections around the phase transition,
and in Chapter 6, where we study the properties of saddles in generic RTNs using more advanced methods.

Imposing the boundary elements to be g4 on region A and g on region B and allowing the corresponding
domains to propagate into the bulk, we immediately identify two possible geometrical saddles (see Fig. (2.6)).
The first saddle is characterized by each region bounded by its minimal homology surface (we call this the
naive disconnected saddle). The second saddle features a non-trivial entanglement wedge, with the minimal
wedge cross-section marked as the domain wall for g4 <> gp (we call this the naive connected saddle). The

tensions of these domain walls are found from the Cayley distances:
d(ga,e) =d(gp,e) = n(m —1), d(ga,g8) =2(n—1) (2.56)

Assuming the naive disconnected saddle dominates and doing a simple analytic continuation to (m,n) — (1,1)
one finds that the reflected entropy vanishes, while a similar procedure for the naive connected saddles gives a
reflected entropy proportional to the EW cross-section. It is then expected that as we vary the size of regions
A, B, one of the two solutions gains dominance over the other, with a phase transition at some critical size.
Furthermore, one can verify that the transition point occurs right at the point when the RT surface of AU B
jumps. Hence the conjecture “Sr(A : B) = 2EW (A : B)” seems to be true in RTN.

We do expect that our construction of the two semi-classical saddles works well when the bulk is far
from the transition point, where the sum in the partition function is strongly dominated by a single saddle.

However there are several issues that arise from this proposal:

e This construction fails to correctly account for the n-Rényi reflected entropies at m = 1 even away from

the phase transition. If we treat these saddles seriously for all (m,n) then we find the Rényi entropies

10This was one of several methods suggested for proving the correspondence in Ref. [56]. The other method is studying the
modular flowed correlators, which doesn’t obviously extend to the tensor network case.
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for n > 1 at m = 1 are dominated (have smaller free energy) by the disconnected phase and thus vanish
to leading order in In x. Taking the limit n — 1 after setting m = 1 gives 0 for the reflected entropy
even in the connected phase. In particular this indicates an order of limits issue that was first pointed
out in Ref. [117]. This answer is not obviously inconsistent, however we will argue that it is nevertheless

incorrect.

e While the two bulk solutions are legitimate saddles at integer (m/2,n) and each carries physical
significance, it is not obvious that other semi-classical bulk configurations do not dominate over these.
There is ample reasoning to expect there would be other bulk solutions. First, the order of limits issue
mentioned above suggests that the naive bulk solutions do not have nice analytical properties which
may be resolved by inclusion of new saddles. Second, a similar situation happens for the negativity
computations, where a series of non-trivial “replica symmetry breaking” elements are important in the
semi-classical saddle solutions [118-120]. Indeed, we will show in the later chapters that there is such

an element for reflected entropy as well, although the details differ significantly with negativity.

e At the EW phase transition there is considerable uncertainty with how to proceed. So far the calculations
we discussed were based on some fixed integer replica number n,m > 1. To obtain the reflected entropy
we need to analytically continue n,m — 1. While the solutions we obtained above work independently,
we need to include both of them to make a phase transition. However simply summing the two saddles
is known to lead to incorrect results [121]. The simplest issue that arises is from the normalization.

Sending n — 1 we expect:

VpaB) (vpasl) (2.57)

However since we view the two bulk solutions as independent from one another, each of them contributes

1=trpaa- =tr (tI"BB*

unity to the trace exactly at the phase transition. Adding those up we obtain a paradoxical result
trpaax = 2. It is clear that we should somehow treat the two seemingly different saddles as limits of a

more general class of solution.

e Indeed, around the phase transition point we expect there will be other previously sub-leading saddles
that will smooth out the sharp transition. A notable example for such effect is the calculation of
entanglement entropy for two disjoint regions [62, 63] (See also Ref. [15]), where a summation over
a larger class of group elements called the non-crossing permutations is performed. In our case the
problem is harder due to the appearance of the domain wall g4 <> ¢gg in our bulk solution. However
when we include a summation over a larger set of saddles, we also expect to find a smoothing out of the

reflected entropy phase transition.
The above issues can be classified into two big categories:
1. The uncertainty of the dominant semi-classical saddles away from the phase transition.
2. The uncertainty of the sub-leading corrections at the vicinity of the phase transition.

These two problems are not independent of each other. For example understanding the first can help us
determine what are the important saddles we should include to obtain the corrections in the second.
To answer the first problem, we will prove in the later chapters that there will be a new class of solutions

featuring a new group element X € S,,, that can dominate the partition function. Using the notation
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Figure 2.7: A graphical representation of X. It features maximal cyclic permutations in the upper and lower
halves of each circle (separated by blue dashed lines).

Figure 2.8: The bulk solution with the new element X (indicated as the green region). As n — 1 the region
disappears and we revert back to the naive connected saddle.

introduced in Sec. (2.3), the element X is given by
X =[[GE orl )i, 7V =(12--m/2), P =(m/2+1---m), (2.58)
j=1

where 7Y and 7P are maximum cyclic permutations in the “upper” and “lower” m circles. A visualization of
the actions of X is shown in Fig. (2.7). We will see that new element interacts with the existing solutions,
and we will argue that phases involving X are the correct ones for computing the Rényi entropies at m = 1.
Moreover, we prove rigorously in Chapter 6 that these are the only important saddles for RTNs defined on
any graph, as long as one is only concerned with the parametric region away from phase transition. In short,
the elements X “fill in” the spaces between the backreacted EW and the un-backreacted EW. As we continue
n — 1, the X regions slowly shrinks and give back the minimal cross-section solution, see Fig. (2.8).

The answer to the second problem is much more involved and intricate than the first one. The issues
we list above suggest we need to sum over a larger set of non-trivial bulk saddles. For a generic RTN the
bulk geometry is complicated, and it is not obvious how to construct these solutions a priori. However, we
will show in later chapters that such summation is possible the case of a single tripartite random tensor
(Chapter 3) and a pair of contracted random tensors (Chapter 5), see Fig. (2.9). That is, we are able to
perform an analytic computation of the full entanglement spectrum of the canonical purified density matrix
for these systems. Having the full eigenvalue spectrum is a very powerful result, as it allows us to construct
effective descriptions of the canonical purification. We argue that these effective descriptions correspond to
non-perturbative effects in the bulk as a genus expansion in the gravitational path integral. Although the

answers we obtained for the second problem are limited only to the simplest networks, there is evidence that
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EW phase transitions in general RTN and holography also follows a similar behavior, and we expect the

lessons we learnt from these models hold generically true in other more complicated scenarios.
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Figure 2.9: The simple tensor models for which we were able to extract analytical spectra of their canonical
purifications. The left represents a tripartite single random tensor with bond dimensions x 4,p/c, which
we study in detail in Chapter 3. The right represents a pair of random tensors contracted along a common
internal bond x, which we study in detail in Chapter 5.

Another advantage of working with simple tensors is that we are able to check our analytical answer

directly with numerical simulations. Indeed we find that, in the case of both the 1TN and 2TN model, our

analytical expressions for the reflected spectra match with the numerical results in the relevant large bond

dimension limit, quantifying the corrections that smooth out the sharp jump of the reflected entropy around

the phase transition.
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Chapter 3

Single Random Tensor

In this chapter, we begin to explore the non-perturbative physics that describes the discontinuity of reflected
entropy phase transition using a toy model of a single tripartite random tensor, which we refer to as 1TN.
The 1TN models a three-boundary wormhole with horizon areas fixed to a small window [96-98] and a large
interior. This results in an EW phase transition as we tune the bond dimensions (the horizon areas). We
compute the reflected entropy near such a phase transition, paying special attention to how non-perturbative
effects smooth out the transition. We find a sharp, continuous transition analogous to the Page curve [61],
which reproduces the expected discontinuous transition in the limit that the bond dimension goes to infinity.

The results presented in this chapter is mostly based on Ref. [48].

3.1 Summary of results

We now summarize some of the main points in this chapter:

e We prove some general results for the (m, n)-Rényi reflected entropy for 1TN, including various continuity
arguments as a function of m which establishes independence of m away from the phase transition.
These will serve as checks on our later computations, and help motivate the prescription we use to
analytically continue in (m,n). We then describe the phase diagram of dominant saddle points at
integer m/2,n. See Sec. (3.3) and Sec. (3.4).

e We use a Schwinger-Dyson re-summation method similar to [15, 118] to compute the reflected spectrum
for I'TN. We make an assumption about the class of diagrams that dominates, and prove this to be
correct in various limits. The reflected spectrum thus obtained has two main components: A single
eigenvalue representing the disconnected EW phase, and a broad peak with exp(2 EW (A : B)) eigenvalues
representing the connected EW phase. These two contributions are always present irrespective of the
relevant phase, but their respective weights move around as we tune the bond dimensions in the tensor
network. They make dominant contributions to the reflected entropy in their respective phases. We
show a cartoon of the reflected spectrum for the single tensor model in Fig. (3.1). See Sec. (3.5) and
Sec. (3.6).

e Based on the above we argue that near the phase transition both sets of eigenvalues contribute. In the
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Figure 3.1: The reflected spectrum in the single tensor model has two superselection sectors corresponding to
the disconnected and connected phase respectively.

single tensor, the reflected entropy takes the form:
X 2
Sr(A:B)=—polnpy —p11np; + p; (111)(124 - 2){‘%) + O(X;LB)’ (3.1)
B

where xx > 1 are the bond dimensions for X = A, B, C' and the classical probabilities are:

Po = inB 2 11(1/2,-1/2;2; X§§3)27 p1+po =1, (3.2)
At large bond dimensions this reproduces the characteristic jump in the reflected entropy, see Fig. (3.2).
We argue that these results can be understood as arising from an effective description of the entanglement
structure for the canonically purified state as a superposition of tensor networks states. Here, one state
is described by a doubled random tensor network, representing the connected phase, while the other

tensor network is trivially factorized:

A B A B A B

pas ~ P1 + +/Po (3.3)

A* B* A* B* A B*

The two terms are weighted by the associated probabilities pg and p; = 1 — pg. The reduced density
matrices on AA* are approximately orthogonal, so these represent (approximate) superselection sector

with an associated area operator:

Lar= P Sun(¢) (3.4)

s=0,1

where (1 ~ 144+/x% and (o = [14/xa) (14/x4|- We also check the above results against numerics. See
Sec. (3.7) and Sec. (3.9).

26



Sk(A:B) /2 S,
1

0.75}
0.5}
0.25}
. . log(xc)
0.5 1 1.5 log(xa X8)

Figure 3.2: “Page curve” of the reflected entropy, for a single tripartite random tensor with bond dimensions
XA, XB,Xc- The blue curve corresponds to the infinite bond dimension limit, y — co. The other curves
correspond to large but finite bond dimension, correctly limiting to the blue curve as the bond dimension
increases.

e Our results will resolve the order of limits issue pointed out in Ref. [117]. In particular if one applies the
naive LM-like saddle point analysis in the limit (m,n) — (1,1) then the “wrong” phase can dominate if
one takes the limit m — 1 first and then n — 1, leading to a formula different from Eq. (2.32). This
later formula fails several quantum information bounds, so one can rule out this order of limits on these
grounds. However a better understanding of this issue and justification of the order of limit is desired.
In fact we will show that no such order of limits issue occurs after we give a prescription for continuing
the (m,n)-Rényi reflected entropies from m > 2 to m = 1. We will give evidence for this prescription

based on the single random tensor, and show how it is consistent with a more general set of QI bounds.

Several appendices support our calculations, most notably Appendix C.1 where we give a proof of the

phase diagram for the single network case.

3.2 Setup

Consider a single tripartite random tensor 7" with bond dimensions x4, xp and x¢ that prepares a state
|¥) 4 g on the Hilbert space Hapc. This setup can be thought of as a toy model for the holographic setting
of a multiboundary wormhole with three asymptotic boundaries, where the area of the mouths A4 g ¢ are

related to the bond dimensions x4,p,c as

V.YW:Xe!

TeR (3.5)

log xa,B,c =

by the standard relation between the bulk spacetime and the tensor network that discretizes it [40, 122], as
shown in Fig. (3.3). More so, when computing the Rényi entropy, there is an exact correspondence (including

non-perturbative effects) between the single random tensor and the multiboundary wormhole when the
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Figure 3.3: (left) A state on the Hilbert space H apc is prepared by a single tripartite random tensor with
bond dimensions x4, xp and x¢. (right) The three-boundary wormhole solution, which is modeled by the
single random tensor when its horizon areas are fixed to a small window. The horizon areas of the wormhole
corresponds to the bond dimensions of the single tensor.

horizon areas are fixed to a parametrically small window [96-98].1

Note that in order for the connection between the single tensor and the three boundary wormhole to be
sharp, we require that the interior region is large enough that there are no other competing entanglement
wedge cross sections except the horizons of A and B since there is no analog of such surfaces in the single
tensor. It seems plausible that this can be arranged for by adding sufficient matter in the interior to support
a long wormhole like in Ref. [123].

This setup is much more tractable than the general tensor network and allows us to understand phase
transitions in the reflected entropy in detail. We will use the resolvent trick described in [15] to compute the
exact entanglement spectrum of pa 4+ in the limit of large bond dimension. This allows us to compute the
reflected entropy Sg(A : B), along with other generalizations such as its Rényi versions, as a function of the
bond dimensions. We will find a phase structure that is consistent with the holographic proposal [56] for the
reflected entropy at least away from phase transitions, and the spectrum will smoothly interpolate between
the different phases.

We summarize now the various parameter ranges we will be interested in, each some limit with

XA, XBs Xc > 1. We consider the following fixed parameters as we take x; large:

_ In x4 _ Inxp

T = o xp = o (3.6)

with 0 < z4,zp < co. The “entanglement wedge” phase transition, corresponding to the Page phase
transition that we are mostly interested in, lives along the line z4 +xp = 1. There are other phase boundaries
along z4 =1+ xp and g = 1 4+ x4 where the derivative of the mutual information jumps. However, the

reflected entropy Sr(A : B) does not have interesting behavior here so we are less interested in them.

INote that by non-perturbative effects we mean effects of O(e_l/GN) ~ x¥ for some k, i.e., power law corrections in the
bond dimension.
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In terms of these parameters the mutual information approaches

I(A:B)_) 0, A+ <1

(3.7)
Inxc zat+zp—1, za+axp>1& za—-1<zp<zpa+1,

in the large bond dimensions limit. Also, as we will demonstrate below, the reflected entropy behaves like

Sr(A: B 0, Ta+axp<l1
r( )_> A B

(3.8)
In xc 2min(za,z), zatap>1& za—1l<azp<za+l1.

Note the value of the reflected entropy in the connected phase matches the holographic expectation; it is the
entanglement wedge cross-section in this single-tensor model. Our goal will be to compute this rigorously
and to also study Sgi near the phase boundaries.

Consider now the phase boundary near x4 + xzp = 1. Set:

q=xaxs/xc, y=lnxa/lnxs (3.9)

We will explore the parameter range 0 < ¢ < oo and 0 < y < oo fixed as we send y¢ — oco. The mutual
information is well studied in this limit as it can be computed from the entanglement entropies [61]. The
behavior across the phase transition is generally referred to as the Page result/transition.

There is also another limit of interest at the edge of this phase boundary which lives near xp = 0 and
x4 = 1 where we fix g > 1 and send x¢ — oo holding p = xa/xc¢ fixed and xp fixed. This limit is mostly
of interest because the analytic calculation is more tractable.

We start by proving certain results rigorously for the reflected entropy in different regimes of parameter
space in Sec. (3.3). We then compute the phase diagram for the Rényi reflected entropy in the saddle point
approximation in Sec. (3.4). We then analyze the phase transitions in reflected entropy by using the resolvent
trick. Before doing so, in Sec. (3.5) we describe the phase transition in entanglement entropy which reproduces
the Page curve as a warm up problem. This helps us establish the formalism and ingredients required to
describe the reflected entropy phase transition in Sec. (3.6). We discuss the results of this calculation in

Sec. (3.7) and check these against numerics in Sec. (3.9).

3.3 General considerations

Let us start by proving some rigorous results on reflected entropies and the Rényi generalizations in the large
bond dimension limit. These results will help guide our way through the replica treatment of this problem.

The intuition behind the following result is that for a random state, the reduced density matrix pap
has an approximately flat spectrum, implying it is approximately proportional to a projector at large bond
dimension. This implies that the states ‘ pzé2> for different m and after normalization, are close in the
Hilbert space norm. This implies a certain continuity in m for the (m,n)-Rényi reflected entropies. While
continuity results for Rényi entropies are weak, the states in question are sufficiently close at large bond

dimension to imply a useful result. We prove the following lemma:

Lemma 3.1. The (m,n)-Rényi reflected entropy for a tripartite random state with xc < xaxp satisfies a
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continuity bound as a function of m for 1 <m <2 andn > 1:

1/2

- o 2 -1 . n— n—

S (4 B) - s (A B)| < n1<(m )Xc) min{x 3"~ 5" ) (3.10)
n— XAXB

Also the reflected entropy (at n = 1) satisfies:

-1
[Sr(A:B) = SF V(A B)| <2 ((m Jxo
XAXB

1/2
) min{ln x4,Inxp} +1n2 (3.11)
Proof. We will also need the continuity bound for reflected entropy [58], which follows from applying the
Fannes-Audenaert inequality [124, 125] to the reflected entropy. In fact we will need a Rényi generalization of

this inequality, which is usually considered to be a weak bound [126]:

2(n—1)
m X —n
Sa(plih) = Sulph)| € A (1= (=T = (A -D'"T")  nz1 (3.12)
2(n—
< MT (3.13)
- n-—1

where T is the trace distance:

(Tr ng)/z)
1,0 _  (m) — 1D | m) N2 — _
T = [lph — Pl < 24/1 — (PO [ptm) 2 = 24| 1 T (3.14)

The later inequality follows from the bound of the trace norm by the fidelity, as well as monotonicity of the
fidelity under tracing from ABA*B* to AA*. The overlap |<¢(1) |w(m)>| is the fidelity on ABA*B*. The last

equality uses the Hilbert-Schmidt norm. We estimate:

T < 2,/1 = exp (—(m — 1)(Sns1)2(pa5) — Sm(pan))
< 2((m —1))Y2(S(nr1yj2(pa8) — Sm(par))'? (3.15)
<2((m—1))"*(Inxc — S2(pap))'/?
where we used some elementary bounds and in the last line we used monotonicity of the Rényi entropies as a

function of m: Sy, > S for m < 2. We also used S(;;,41)/2(paB) < In x¢ which follows from Schmidt rank

and the assumption x¢ < xaxp. Averaging over the Haar random unitaries we have:

T < 2((m —1)"*(nxe — S2(pan)) /2 (3.16)

We now apply the Lubkin result [127], see Ref. [128]:

(S2(paB)) =2 Inxc — (3.17)

XAXB

So we have:

A

12 1/2
(Inxe — Sa(pan))'/? < (ln Xc — SZ(PAB)) < <X§>C(B) (3.18)
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by Jensen and concavity of the square root. Putting all these inequalities together we find that:

1/2

T < 2((m—1))"/? (Xc) (3.19)
XAXB

which gives Eq. (3.10) after using the symmetry between A and B. A similar analysis for the n = 1 case using

now the Fannes continuity result and the bound on the Shannon correction term —T'InT — (1 -T)In(1-T) <

In 2 gives Eq. (3.11). O

While we focused on 1 < m < 2 there is no obstruction to finding similar results for later m > 2, say by
generalizing the Lubkin bound Eq. (3.17) for other integer Rényi entropies. The most efficient way to do this
for general m would involve taking the large bond dimension limit, whereas the result above is for any bond
dimensions. We expect the conclusions are the same for m > 2.

As an application of these results, consider sitting on the (z4,zp) phase diagram above x4 + x5 > 1
and assume that 4 < xp. We see that there is always some window 1 < n < n. where the leading large x

(m,n)-Rényi entropies are provably independent of m:

2”((m - 1))1/2 1/2(1—xza—xB)+2x4(n—1)

19 (04 he) = S (P < — X (3.20)
n—1

which implies that the change in the (m,n)-Rényi reflected entropy as a function of m is non-perturbatively
small for n > 1 and n < n. where n, = 5/4 — (1 —xp)/(4x4) > 1. Additionally at n = 1 the shift as a
function of m can be order 1. Based on explicit calculations we will argue that this is true for all n > 1,
although these results will be less rigorous, relying on certain assumptions about the analytic continuation.
In this way Lemma 3.1 will serve as a check on our method for analytic continuation.

We can make a similar argument for y 4x5 < x¢, but now we expect the reflected density matrix to be
close to a factorized density matrix pap ~ 14 ® 15/(xaxp). This allows us to make a stronger statement

since the reflected entropy of this density matrix vanishes.

Lemma 3.2. For a tripartite random state with xaxp < X¢

s )<A:B>§”(X""‘B> min{ "V, A"y (3.21)
n—1 Xc

for 1 <m <2 andn > 1. Similarly for the entropy:

1/2
S}(%m’l)(A :B) <2 (X;iB) : min{ln xy4,Inxp} +In2 (3.22)
Proof. We use the same proof idea as in Lemma 3.1, except now one of our states in the Fannes-like inequalities
is the reduced state paa~ associated to the canonical purification for the maximally mixed state pap =
1a/(xaxs). Of course the reflected entropy vanishes for this state, and thus paa« is a minimal projection.
Again the trace distance can be estimated in terms of the overlap | (x(") |ﬁ}4/]§,> |2 = (TI“/)Z/;)Q/(XAXBTTPZIB)-
For 1 <m < 2 we apply monotonicity S,/ > Sz and S,,, > 5o and finally we use the Lubkin bound (for the
case xaxB > xc)- This gives the stated results. O

Note that if we simply set m = 1 we see this constrains the answer that we are interested in. Both the

reflected entropy and the Rényi reflected entropies are provably non-perturbatively small, i.e. power law
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suppressed in x¢, for x4 + 2p < 1 and for n > 1 (using monotonicity with n).

3.4 Phase diagram and Rényi reflected entropies

In order to proceed we will use the replica trick at (m/2,n) integer to evaluate the (m,n)-Rényi reflected
entropy. We will find a phase diagram as a function of the bond dimensions and then give some arguments
for how to analytically continue this phase diagram away from the integers.

The integer moments of the density matrix for the reflected entropy reads (up to the usual small corrections

from the treatment of the normalization):

2 oges, exXp (—Inxc(rad(g, ga) + rpd(g,95) + d(g,¢)))
(Syes,, 0 (= Inxc((wa+2p)d(g, 7n) +d(g,€)))

Tr(py3 )" = (3.23)

We now simply find the phase diagram (as a function of the various bond dimensions) at fixed integer (m/2,n).
At each point in the phase diagram some set of g dominates. We will find a picture of the phase diagram
where at each point one of four possible elements dominates: e, g4, gp and a new element we call X.

To set the stage we are interested in minimizing the following free energy:

f(g) = wad(g,94) +zpd(g,98) +d(g,¢), g€ Smn (3.24)

where we have factored out In y¢. Since f is a linear function of z4 and xp, any region of the phase diagram
in the (x4 > 0,25 > 0) plane must be convex.? The Cayley distance, as a metric on S, satisfies the triangle
inequality d(g1, g2) + d(gs, g3) > d(g1, g3). It will be useful to introduce the geodesics in the Cayley that pass

between two group elements g1, g2 as the set that saturates this inequality. We denote these elements using:

T'(g1,92) = {9 € Sin = d(g1,9) + d(g,92) = d(g1,92)} (3.25)

See Appendix A for a discussion of elements on this geodesic.

We now determine the two-dimensional phase diagram in terms of (z4,zp5). As a first step we proceed as
follows. We solve for the dominating elements at various special points in the phase diagram. Then we fill
in the undetermined regions by the convexity of the phase diagram. As a limiting case, it is easy to show
that the identity element e dominates at x4 = xp = 0 and ga(gp) dominates at x4(xp) — co. For the other

regions:

e Along the line x4 + zp = 1:

f=24(d(g,94) +d(g,€)) + (1 —x4)(d(g,95) + d(g,¢))

(3.26)
> wad(ga,e) + (1 —za)d(gp, e) =n(m—1)

with saturation achieved for g € I'(ga,e) NT'(gp, ).

2See Lemma C.2 in Appendix C.1 for a proof.
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e Along the line x4 = zp + 1:

f=xp(d(g,94) +d(g,98)) + (d(g,ga) +d(g,e))

(3.27)
> xpd(ga,gp) +d(ga,e) =2(n — )zp +n(m —1)

with saturation for g = g4 since this is the single element in I'(ga, g5) NT'(ga,e).
e Along the line xtg = x4 + 1 is the same as above with A < B.

After applying convexity to the above results the only region left is for x g +2zp > land 1 —axp < z4 < 14+ zp.
This is of course the main region of interest where the entanglement wedge is connected. Because there is
no common geodesic element between all three elements (that is I'(ga,e) NT'(9p,e) NT'(ga, gp) is empty),
there is no simple argument that determines the phase in this region.? This is the main difference between
our calculation and the negativity computations in [118-120]. Instead we must seek other methods for
determining the phase in this region. Indeed, there exists a proof for this main region, providing a complete
picture of the phase diagram. However, because the proof is relatively involved, we present it in Appendix

C.1 for interested readers. For now we just summarize the results we find:

e There exists a new phase with a non-trivial element, which we denote X, in the triangular region
xa+ap>1lza <l4+ap(l—-2/n),2p <1+4+z4(1—2/n). X is a group element with the special
property that it lies on the joint geodesic I'(ga, e) NT'(gp, e) while being closest to g4 or gg whose form

is given in Sec. (2.5) which we replicate here:
X =T[5 o)V (3.28)

where Tnli /2 is the cyclic permutation that acts on the upper half of each puddle (that is it cyclically
permutes elements 5 = 1,--- ,m/2 within each fixed puddle) and T£ /2 is the full cyclic permutation on
the lower half (cyclically permuting elements 8 = m/2+ 1,--- ,m within each fixed puddle). See the
discussion in Sec. (2.3) to unpack this notation.

e The phase of g = g4 smoothly extends into the main region and occupies the upper-diagonal wedge
xa >xp,x4 > 1+ xp(1 —2/n). The same is also true for gg, where it occupies the lower-diagonal
wedge. At the boundary where the two phases meet (i.e. x4 = xp and x4 > n/2) we have a large

degeneracy shared by a complicated set of elements.*

e No other elements are dominant in the space between the co-existence boundaries.

We give an example of the phase diagram in Fig. (3.4).
We now extract the consequences for Sr and its Rényi versions. For the disconnected entanglement wedge
with z4 + xp < 1, there is only ever one phase for all (n,m) so it is reasonable that this remains the case

n)

upon analytic continuation. Indeed this always gives Sg%m = 0 upon correctly normalizing the free energy.

This is of course consistent with Lemma 3.2.

3If there was a common geodesic element then this element would sit on all three edges of the region under consideration - so
we could then fill the phase diagram inside the region with this common element using convexity.
4For detailed description of this set please see Appendix C.2.
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Figure 3.4: An example of the phase diagram of the single tripartite tensor. The tip of the X triangle lies at

(n/2,n/2).

From now on we consider only z4 + zp > 1. The free energies of the four possible phases, including the

normalization subtraction (which is different to the disconnected phase) are:

Fle)/lnxc =(za+2zp—1)(m—1)n, F(X)/Inxc=-n+ (za+xp)n,

(3.29)
F(ga)/Inxc =2xzp(n—1), F(gp)/Inxc =2za(n —1)

We make some observations. Firstly, at fixed (x4, zp) in certain regions of the phase diagram there is a
new novel behavior where there is a phase transition as a function of n. This indicates that the entanglement
spectrum is not flat for the reflected density matrix, as compared to the usual reduced density matrix of
a random pure state. Secondly, if we do a very naive analytic continuation away from the integers, where
we include all four phases and re-minimize at each (n,m) we arise at some puzzling results. For example at

m = 1 and fixed n > 1 the e phase has minimal free energy and:

SOl =0, w>1 (3.30)
naive

Which seems to imply that taking limn — 1, Sg(A: B) =0 for x4 + xp > 1 which cannot be the case. In
particular it violates the mutual information bound S > I. Previously this was attributed to an order of
limits issue [117] where one must take lim,,_,; lim,_,; to get the right answer - indeed here that resolution
does work. However this result gives a very puzzling set of Rényi entropies, which were naively still consistent.
However we can now observe using Lemma 3.1 that they are in fact not consistent, since for m = 2, we see
that either F'(X) = F(e) or F(ga,p) dominates and neither gives the same reflected entropy as the naive
m = 1 phase with g = e given in Eq. (3.30). This is inconsistent with the continuity bounds of Lemma 3.1,

at least in some window of parameters.
Note that one way to understand the origin of this latter issue is as follows. The Cayley distance between

X and e reads

d(X,e) =n(m—2) (3.31)
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For m < 2 this is negative. The effect of this negative tension is to exchange the two phases e <> X in the
phase diagram Fig. (3.4). This leads to the dominance of the e phase even deep in the phase diagram where
the entanglement wedge is connected.

The resolution that we land on is to simply discard the F(e) saddle for x4 + x5 > 1. This is reasonable
since it never appears in the x4 + g > 1 part of the phase diagram for integer (n,m/2). This will now give
a different answer for the Rényi entropies as compared to the naive analysis. We motivate this prescription
as follows. Rather than analytically continue the Rényi entropies we will analytically continue the spectrum
of pi‘";‘)* from m > 2 down to m = 1. This has the same effect of discarding the e saddle. In fact the analytic
continuation in m is trivial since there is simply no dependence on m in the free energies of X, ga, gg. This

is now consistent with the bounds we derived in Lemma 3.1. The Rényi entropies read:

S}(%m’n)zlnXCxmin{QacB,QxA,nT_ll(xB—i—xA—1)} n>1 (3.32)
and the entanglement spectrum defined via:
Tr(p) )" = / DN D(V) (3.33)
is given by:
D(\) = Di6(A— A1) +6(A—Xo), Dy =min{xZ*, x&"} (3.34)
where \g = xg& “*7*F and Ay = max{x5>"*, x5>*", \o}. °

This is a crude approximation to the actual spectrum that we will compute in the next section. One
obvious crude feature, for example, is that it has one more than the allowed number of non-zero eigenvalues,
min{x%, x%}, although this is clearly a small correction in the large yc limit.

We now turn to an examination of the phase transition near x4 + xg = 1. This will give some further
evidence for the prescription given above, and will also give a more complete picture of the reflected entropy
and spectrum. It is clear from the above discussion that there are potentially many g elements that we need
to sum up in order to compute the cross-over corrections. While we might attempt to directly sum over
a class of g this approach turns out to be somewhat ad-hoc. The main difficulty is that certain classes of
elements can be more important at different values of n, so the issue of which elements to include is mixed up
with the question of how to analytically continue in n. This is in turn related to the fact that the spectrum
itself does not have a uniform limit as y — oo, being made up of distinct contributions. Instead, in the
next few sections, we will develop a diagrammatic approach that attempts to directly extract the spectrum.
Having said this we briefly discuss an explicit sum over elements in Appendix C.2, where we do find consistent

results.

3.5 Schwinger-Dyson for entanglement entropy

In this section we will present a standard diagrammatic technique for computing the entanglement spectrum
of a Haar random pure state on a bipartite Hilbert space AB reduced to A [61]. This is of course the setting

for the Page curve, so these results are very well known. We review it here just to setup notation used in the

5Note that for t4 < xp — 1 then n(zxp +x4 — 1) > 2nxz4 > 2(n — 1)z 4 so the last possibility in Eq. (3.32) is never dominant
for n > 1. We interpret this to say that the single eigenvalue \g gets absorbed by the large set of D eigenvalues at A; in this
particular part of the phase diagram. We have written the spectrum in a way that is consistent with this.
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next section for the reflected entanglement spectrum problem.

The approach we present was first proposed by Ref. [129-131]. It was recently applied to find the
entanglement entropy of JT gravity [15] and generic fixed area states [46]. Similar techniques were used to
calculate the negativity [119, 132]. This powerful approach enables us to write down the Schwinger-Dyson
equation for the resolvent of p4p, which then gives full information about the entanglement spectrum.

A density matrix |¢) (] is represented as a four-legged tensor

) (3] = E ﬂ -

BrA*

where we use black (green) lines to represent the subspace associated to A (B). We can form the reduced

density matrix by tracing over the B indices

pa =Ty ) (] = M (3.36)

Averaging over random states is accomplished by means of pair contractions between bras and kets. In
Sec. (2.4) we reviewed the fact that an average over (the m-th power of) a Haar random state can be recast
as a summation over permutation group elements g € S,,. In terms of diagrams these permutations become

pairwise contractions between the bras and kets:

all possible contractions

() @Dem o< > ﬁ/ ﬁ (3.37)

A single pair contraction is defined by simply connecting the corresponding legs:

A solid black (green) line represents the Kronecker delta. The purpose of the (xaxs)~! factor associated

(3.38)

to each contraction is to maintain the correct normalization of the density matrix. The element g € S,, is
recovered by tracing out the contractions from bras to kets. This allows one to recover the Haar averaged
expression Eq. (2.47).

As a simple example, let us compute the second Rényi entropy (purity) of the reduced state using this
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method. Connecting the lower legs appropriately we have

Trpf = +
(3.39)

1 1
el —+—
XA XB

where we have used the fact that a full contraction of black (green) loop gives a factor of xa (xp), the
corresponding Hilbert space dimension.
To get the full eigenvalue distribution of p4 we will make use of the resolvent trick. The resolvent R())

for the density matrix p4 is defined formally as

RO = tr ( - _lpA> (3.40)

from which one can extract the eigenvalue distribution function D(\) using

D(\) =—— hm ImR()\ + i€) (3.41)

T e—=0

To evaluate R(\), we expand the matrix inverse around A = oo:

Ri;(\) X“‘am n Z (i )iy (3.42)

In terms of diagrams, this is

) 32 33 R AR A+

)

where we have restricted our summation to planar diagrams only, or equivalently, over all the corresponding
non-crossing permutations. The contribution of non-planar diagrams are always suppressed in the limit of

the large bond dimension.

FARArt FAr

Figure 3.5: (left) An example of the planar diagram in the calculating p?, featuring a non-crossing permutation
for the contraction. (right) An example of a non-planar diagram. The contribution is always suppressed by
powers of .
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Now denote Fj;(A) to be the connected part of the resolvent, defined by

: L Pt PP+
A A2 A3

(3.44)

It allows us to write down a Schwinger-Dyson equation for R;;()) and F;;(\):

A AR A2 AR AR

(3.45)
which after taking the trace gives rise to the following algebraic equation
oo m 1
tr Fi;(\) = = 3.46
! z_: (xaxs)™ 1 - £ ( )
m=1 XAXB

Combining this with Eq. (3.44), and using the fact that both R and F' are proportional to the identity matrix

(as implied by contraction rules) we obtain a quadratic equation for R(A):

A0 (L_L
XAXB XA XB

- A) R(A\) + x4 =0 (3.47)

Solving for R(A) and picking the square root sign by demanding the correct behavior at A — oo we find

_xaxp (11 = (L, Y
RN = =53 (A XA+XB VA=A A+)>, &-(mi\/@) (3.48)
and
D) = BV A O = N + 300 (a — X8)00xa — x5)- (3.49)

Thus, we have found that the eigenvalue spectrum consists of a large peak within the range [A_, A\;] and a
number of extra zero eigenvalues when x4 > xp. This is the famous Marchenko-Pastur (MP) distribution. Tt
describes the singular value distribution of a random m X n matrix when both m,n > 1. This result was

first shown by Page [61]. Using the spectrum, the entanglement entropy is given by

lo — XA <
S(A) = —trpalnps = gla) = 3G xa<xs (3.50)
log(xs) — 3%,  xB < Xa-
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3.6 Schwinger-Dyson for reflected entropy

We now move on to our main problem. We want to find the resolvent for the reduced density matrix p4 4+

obtained from the Rényi generalization of the canonically purified state |)(™)) defined in Eq. (2.33), i.e.,

2 oo
_ Xa tr(py -

Rp(A) =4+ — (3.51)

n=1

where the integer moments of the (normalized) density matrix are given by
#99,"  #995" _#(9)
tr(pT ) = Zn 7 Xgesun Xa " Xp " XO (3.52)
ad (Zym? T > ges,, (xaxsxco)#9

We would like to evaluate this sum in the limit where the bond dimensions x4, x5, xc are taken to be large
and the ratio ¢ = xaxs/xc and r = xa/xp are held fixed. We will do so by a diagrammatic technique,
keeping track of the important diagrams. Ultimately we are interested in the analytic continuation m — 1,
where the normalized factor Z; = tr(p”y5) — 1, so it suffices to only consider the numerator partition function
Z,, for now. We will later discuss how to restore correct normalizations in our calculation for general m.

Most of the notation in the previous section carries over, except that our state |¢) is now a three-legged

) (| = m ﬂ m = (xaxsxc)™' ﬁ (3.53)

Note that the denominator in Z,, will be approximated as (xaxsxc)™" from the identity group element,

tensor. See:

which dominates for large bond dimensions. We can easily account for this factor in the diagrammatic
expansion by dividing by xaxBXxc for each contraction as shown.

We now setup a slightly more general problem. Consider the following 2 x 2 “matrix” of resolvents:®

00 m/2\7t k
R()\) — Z)\—l—k/2 <( m(;Q (pAB ) ) ’ (354)
k=0

Pap )t 0

where p — p' is an involution defined to take a linear operator p on Hap to a linear operator from
Haa — Hpp+. It is defined by re-arranging the incoming/outgoing legs in the obvious (and canonical /basis
independent) way. In fact it is the same as the correspondence between the Choi state 7 of a channel (here,
the would be channel maps B(H?) to B(Hg)) and the linear representation of the channel via a transfer
matrix 71, Similarly p — pFf spits out an operator from Hpps — H a4+ which is also the adjoint operator.
Each insertion of (pZéQ)F (and (pfﬁ)ﬁ) has m/2 replicas of each of the bra and ket of the original random
state |¢). Note that R(\) € B(Haa» ® Hpp+). These involuted density operators are related to the canonical
purified density matrix by

m/2 Tt , m/2 m m/2 m/2 Tt m
()" (ORE)T = o PAE) (AE)" = P (3.55)

6All powers of the (involuted) density matrix pfAﬂX* , (p?{f)r, etc... appearing in the resolvent calculation, unless otherwise

noted, refer to the Haar averaged version pf:};), (pZLéQ)F etc.
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up to an overall normalization factor that we will correct for later. In terms of diagrams, this is (e.g. for

m = 6)
(Pa5)" = w (PaE) = @

uy —
PAA* =

(3.56)

In the following calculations we will represent them diagrammatically using a short-hand:

1
ﬁ @ ) @ N

From these results we can infer an alternative expression for matrix R(\):

x (m) \n
RN =Y A7t <(p"‘6‘*) ( o )n> (3.58)

Ppp*
[e ] m) \n— m/2 T
+ZA_1/2_H< 0 (P53~ (04 >f> (3.59)
m) \p— m/2 ’ .
()" (AT 0

which diagrammatically looks like

R(A) = 3 . (3.60)

T+ — + U T+

Thus the actual resolvent we are interested in is
R(A\) = Traa«(Ry1(N)). (3.61)

Now, as in the calculation of the entanglement entropy, the Haar averaging over the states is done by
summing over all possible pair contractions over bras and kets. We call each pattern of contractions a diagram.
We call a single copy of (p;"g 2))F a puddle. Each diagram corresponds to an element in g € S,/ where k

is the total number of puddles. A sub-diagram is a subset of puddles and associated contractions that act
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o M A~
Tl x 0 C T =

Figure 3.6: Example contractions of the diagram that give rise to the projector or the identity, where it
should be clear that all the possible diagrams are either proportional to identity operator 144+, 1pp«, or one
of the four projectors |es ) (€a,B|.

only inside this subset. We say a diagram is connected if the diagram cannot be split into more than one
sub-diagrams each made up of a contiguous set of puddles. Otherwise the diagram is disconnected.
Consider the connected part of R, which we call F. This corresponds to a sum over a subset of diagrams
which are connected. We have
1 F F? 1

SRBVRD) (3.62)

Note that F and R are constrained to take the following form: (all possible contractions give rise to this form,

for example see Fig. (3.6))

IF()\): Gll(lAA*—eA)+F116A F12 |€A> <€B| (3 63)
Fy [ep) (eal G2(lpp —ep) + Fasep )’
where |e4) = X;1/2 [14) is the maximally mixed state on AA* (same for |eg)), ea = |ea) (4| and

ep = |ep) (eg| are normalized minimal projectors and F is a 2 x 2 matrix of scalars (not to be confused with

F). Also 144~ is the identity acting on Haa« etc. A similar form applies to

S11(1aas — R R
R()) = 11(1aa- —ea) + Rirea 12 |€a) (€| . (3.64)
Ro1 |ep) (€Al Sa2(1pp- — ep) + Razep
Meanwhile we must have F}, = F; and R}, = Ro; (for real A). Then from Eq. (3.62) we obtain:
Sii=MAN=-Gu)™t, Sog = (A—=Gp) !, Rij=(A-F);" (3.65)
and the resolvent of interest is
R(\) = trRi = (x4 — 1)Su1 + Rur. (3.66)

We now seek a Schwinger-Dyson equation for F(\). There will be many different diagrammatic contributions
to F. We can organize them by the number of R insertions: £ —1for k =1,2.... Thatis F=3)", F*). Note
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that k is also the number of external puddles in each diagram:

conn. conn.

e NN~ (DA
F(A) = A (3.67)

conn. conn.

NIV TN e T

where we have used the shorthand conn. to indicate all the connected contractions.

The lowest order contribution (k = 1) for F only features diagrams with a single disconnected puddle:

(1) _ 0 lea) (el
F D VA <|€B> (el 0 : (3.68)

where the number D, is defined as

\/X he Sm/z

D - _ X?(h)fm/:z(XAXB)#(hflfm,z)f(mH)/g . 3.69
™ J/XAXB U heszm,2 (3.69)

At large x, this sum is dominated by non-crossing permutations and we have D,, ~ X(Cmﬂ)/ 2\/§Cm s2(1/q) ~
O(X(Cm+1/2)). Using Eq. (3.65) we can find the lowest order solution for the matrix R:

1 1 \12D,,
ij

A—DZ \\"1/2D,, 1

This represents the single eigenvalue contribution we had originally around Eq. (3.34) by summing elements.
We will find significant corrections to this pole from the next order.

At the second order (k = 2), we have diagrams that contain exactly one R insertion. Their contributions
split into two parts according to the pattern of contractions between the first and last legs of each puddle.
That is if we follow the contractions in the resulting diagram - following lines above and below puddles - the
pattern of outer contractions tracks where the first and last legs connect to in the rest of the diagram.

For example, let’s take a look at the diagonal component Fﬁ):

) conn. /\
Fir _ . (3.71)
\ — N J \

where the bold blue lines after the second equality represent the pattern/topology of outer contractions. By

using this pattern to follow the green and black curves below the puddle, we can see if the contribution should

be either proportional to the identity and thus contributing to (G11) or a projector, contributing to (F11).
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On the other hand, for the off-diagonal part of F(2), both permutation types only contribute to the projector,
e.g.,

2
IFI? )\RQI ( + ) . (372)

YT D O

For both Fﬁ) and IF‘S)7 the first diagram shown above necessarily involve elements h € S, that are

crossing or higher genus, so these are naturally suppressed by powers of external bond dimensions.

We can compute these diagrams to find F) written as:

(XAXB)zGﬁ) = )\(522(X2B — 1)+ Ra2)B.,
(XAXB)QGg) =MS11(x4 — 1) + R11) B,

(2)

2 (F F R R S 21 0

(xaxs)® (Fu1 Fiz _ (B B o 2(x5 — 1) 5 B, (3.74)
A Fgl F22 R12 Rll 0 - 1)

(3.73)

where the numbers B,, and F,, are defined by the following diagrams

B, =2 b . EBm=2XAXxaxs) Qm\sm XQ . (3.75)

More explicitly, we have

Bn= sy [ Bt X )P (3.76)
XAXB B hESWL\S'm/ZXS'm/Z
En= Y T eaxg) e mmi, (3.77)
h€Sm\Sm 2XSm /2
where we have used the identity
h € 8m\Smya X Bmj2 B € Sm\Smyz X Sy

N —XA;BU )
(' wwr)

which follows from the fact that crossing permutations are projected out from the LHS.

(3.78)

We now conjecture that the main contribution to the matrix F comes from lowest two orders in k, i.e.
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F ~ F® + F® in large bond dimensions. Unfortunately this truncation does not obviously follow from a
genus counting argument. We base our conjecture on four pieces of evidence: First, we explicitly calculated
the contribution from k& = 3 and a special class of k£ = 4 diagrams and found that they only give corrections to
higher orders of x. Secondly we power counted a particular class of diagrams for general k (which we believe
to be the dominant contributions for k) and find it to be suppressed by powers of x. Thirdly, although our
diagrammatic approach is not entirely the same as the direct summation of group elements in App. C.2, the
two approaches give results that differ only by sub-leading x corrections. Finally, we numerically evaluated
the reflected entropy and eigenvalue spectrum for a Haar random state and we indeed find good match to the
analytical results obtain from this truncation. The numerical results will be discussed in Sec. (3.9).

We rescale various quantities to restore the correct normalization from Eq. (3.52)
G—)GZl, F—)FZl, S—)S/Zl, R—)R/Zl, )\—>>\Zl (379)

in which all the above equations take the same form but with Em = B,/ 71, Em = E,,/Z; and IA)m = Dm/le/2
and these hatted quantities are now all O(1) at large x¢ with ¢ fixed. We have the sum rule:

~ 1 PN RPN
D3,L+<1—)B +—sE,=1 3.80
(xaxs)?/) ™ (xaxs)? " (3.80)

We now attempt to solve for the system of matrix equations Eq. (3.65), Eq. (3.73)-Eq. (3.74). We can
completely solve this system if we make one approximation, which we will later check is self-consistent. We

will assume that we can drop the “back-reaction” of R on Eq. (3.73) that determined S;;, S22. We have
(xaxs)?(A = S1i1) = ASaa(x} — B, (xaxn)?(A = S5') = AS11 (x4 — 1)Bn (3.81)

The solution is

2 2 _ XaXB B — — Xa— XB
(¢ = DS, (s — )z = 328 (A= VO A A (3.82)
where R
B
M= (XA x5 —2+£2y /(x4 —1 2-1) 3.83
L= (XA XB \/(XA )X —1) (3.83)

This is a Marchenko-Pastur distribution with support between Ay ~ Em(le + ngl)2 and min(x%4 —1,x% — 1)
eigenvalues. We can check that our initial assumption for solving S11, S22 is indeed valid since Ry; ~ O(1)
and (x4 —1)S11 ~ x5x%4. The validity of this assumption breaks down at A > x;f, x§2, but as we have seen
already, this is well outside the spectral weight of the MP distribution and so does not effect the spectrum
that we find.

The second equation Eq. (3.74) determines correction to the leading order solution of matrix R;; Eq. (3.70)
we obtained earlier. Together with Eq. (3.65) and Eq. (3.68), this yields a quadratic equation of 2 x 2 matrices.
We can solve this equation completely, although the algebra is a bit more involved and the it only features

corrections of O(x~2) and higher orders. For this reason we only summarize our findings here:

1. The position of the single pole at A = ﬁ?n is now shifted to

~ 1 1 ~
A=D2 + <2 + x2> By +0(x™) (3.84)
A B
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2. The same pole is now resolved to a small peak of width

8D\ Em y
oA~ — 2 O (3.85)

XAXB

For the detailed form of R and its derivation please refer to appendix C.3. As a final remark, we stress here
that the various techniques we used here, such as the truncation at £ = 2 and various approximations we
made to solve the SD equation, rely on the limit of large bond dimension x4, x5, xc — co. However we
do not require all the external bond dimensions to be large for our analysis to work. In fact there are two

interesting parameter ranges to take:

L. Xa,XB, Xc — 00 with ¢ = xaxB/xc and r = xa/xp fixed:
This is the main parameter range of our interest in this chapter. The resolvent has two interesting
regimes. For A ~ 1/x¢ we simply find the MP distribution
2 2

RO\ = bgj; </\— \/(/\—/\+)(A—A,)) +% (3.86)

And for A = IA)m ~ O(x?) we find a simple pole. This pole is resolved into a mini-peak each with width
oA~ 8ﬁm\/ megl for finite x¢.

2. x4, Xc — 0o with xa/xc and xp fixed:
The main MP distribution becomes narrow, approximating a pole centered at Ay = ng with weight

X% — 1. The other single pole is located at A = émng + ﬁfn

21 1
RN =B~ 4 (3.87)
A=BnXxp~ A= Bumxg — D3

The first, smaller peak, is resolved into a peak with width §\ ~ 81A)m Em(X 4xB) "1, and the larger

peak is resolved into an MP distribution of width:
1 2B, \/X% — 1
A= _—mVXBT - (3.88)
XA XB

This regime is not relevant to the random tensor model we study in this chapter. However it will
prove to be useful for a 2-site random tensor model that aims to better model the holographic phase

transition, which we will aim to discuss in Chapter 5.

3.7 Spectrum and reflected entropy

We have seen how to use diagrammatic methods to construct the resolvent of the reflected entropy. We

summarize what we have found here:

Ry = A (2 (= ) B a0 B ) ) s 69)

m
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with

Ai:miM(\/Xi‘_li\/X%_lf (3.90)

We have given evidence that this form is asymptotically correct under the limit xo — oo with ¢ = xaxs/xc
and 7 = xa/xp fixed. For higher order corrections to the resolvent refer to the previous section and
Appendix C.3. Under the limit of large bond dimension, the permutation sums Em and ﬁm are dominated
by non-crossing permutations and can be expressed in terms of g-Catalan numbers”.

71)2 Cm(qil) - C7TL/2(q71)2

By, ~ =pm (3.91)

ﬁg -~ Cm/Q(q
Crm(q™1)

m — Cm(q_l) = Do,

We now have the simplified sum rule:
pot+pr=1 (3.92)

We will see that these quantities act like classical probabilities, which control the phase transition between
the connected and disconnected entanglement wedges, with ¢ being the tuning parameter. We have the

following asymptotic expressions:

nup) ~ { T, a < (3.98)
(1/¢,1=1/q), g>1

and around ¢ ~ 1 the two probabilities are both order 1.

1o}
0.8
08
o

02

Figure 3.7: The plot showing the trend of p;(¢q). We have taken m = 1 here.

The reflected entropy that follows from this resolvent is given by (assuming x4 < xB)

2
X _
Sr=—polnpy — p1Inp; +p1 (lnxi — 2)(’3) +0(x7?) (3.94)
B
This is the main result of this section. Note that the entropy has a contribution from the classical Shannon
entropy of a single bit p; plus a term proportional to what seems to be the entropy of a Haar random state

on AA*BB* reduced to AA* (the standard Page result). This contribution however is multiplied by p;.

"The g-Catalan numbers generalize the Catalan numbers away from g = 1. They can be written in terms of Hypergeometric
functions. For the complete definition see Appendix A.
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We can better understand the physics by looking at the eigenvalue spectrum:

(XAXB)2

D(\) = 555 VO = M)A pr = A2) + 6N (xh — xB)OXG — xB) + (A — po) (3.95)

D(X)

4

x4 — 1 eigenvalues

'/ / single eigenvalue

Y
>

pl/X,%\ Po
Figure 3.8: The spectrum obtained from the resolvent Eq. (3.95). We take x4 < xp here so the MP

distribution has no zero eigenvalues.

We see that the spectrum is given by a shifted Marchenko-Pastur distribution with a total of min(y?% —
1,x% — 1) eigenvalues, plus a single eigenvalue located at A = py The Rényi entropies can be reconstructed

by the sum of the moments of the two pieces in resolvent

1

—-—n

* n 2(1—n), — n
Sn(AA*) = 1 In (po —i—XA( )y 2C’n(r2)p1) (3.96)
where r = x%/x%. Note that the (m,n) dependence has essentially factorized: the only m dependence is
through the probabilities po(m), p1(m).

The Rényi entropies have three different approximate behaviors based on the relative ratio of the external

bond dimensions. We have:

5 Inpo = 0, xaB < Xc¢
2(n—1)
Sn(AA%) = ¢ 2 Inpy ~ 2 In %, Xc K XAB < XcX4 " (3.97)
2(n—1)
~2lnyg, XAB > XcXp "

and we have assumed x4 < xp and n > 1. These three different behaviors exactly match the three phases
we found in Sec. (3.4), and their transitions match the phase boundary lines in Fig. (3.4). As we take n — 1
the middle regime vanishes and we get back the single transition in the reflected entropy as expected, as we

move from disconnected to connected entanglement wedges.

3.8 Effective description

Based on the results of the previous subsection, we now give an alternative effective description of the
canonically purified state and its m generalization: | p;‘”éf) <p7:g2 . Consider the following pure state on the

Hilbert space AA* BB*: a superposition of a factorized state (with probability pg) plus a random maximally
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pas ~ /D1 + /Do

A* B* A* B* A” B*

Figure 3.9: An illustration of Eq. (3.98). We argue that the canonical purification is effectively described by
a sum over tensor network states. The first state comes from the natural doubling procedure outlined in
Ref. [115] for the connected entanglement wedge of the original network in Fig. (3.3) and the second is the
trivial factorized network which is obtained by doubling the trivial/disconnected entanglement wedge of the
original network.

entangled state (with probability p;):

Wett) = p5'” Ix0) + 1 [x1) (3.98)

Here |x0) = |1a/xA) 44 @ |1B/XB) g~ is the factorized state and we construct |x1) using a random tensor
network state as follows. We use a new network geometry that comes from doubling across the connected
entanglement wedge:

Ix1) o (1c| UABCU,’L&*B*C* |O>ABC |O>A*B*C* (3.99)

where [1¢) is the (canonical) un-normalized maximally entangled state on the CC* Hilbert space. It is
natural to pick Uapc |0) 4 g to be the same random state that we started with, but we choose Uy, g. v toO
be an independent Haar random unitary. We will comment on this choice further below. See Fig. (3.9) for a
picture of these states.

Note that |yo) is the canonical purification of a maximally mixed state pap = lap/(xaxp) - this is the
density matrix pap that usually arises from a Haar random state reduced to AB when y¢o > xaxp. And,
Ix1) is the natural guess for the canonical purification of the original Haar random state reduced to AB when
Xc < xaxp: that is, when the entanglement wedge is connected. The doubling procedure is motivated by
the AdS/CFT discussion in [56].

The claim is that |[¢.g) has the same entanglement structure as ‘ p}éz>, at large bond dimension and
for all m (note that po1 depend on m). In particular we will see that it has the same AA* entanglement
spectrum. Similarly, observe that the two states |xo.1), when working in their respective phases, give the
same expectation values for operators in AB as the original density matrix pap. Thus the entanglement
structure for sub-regions of AB is also maintained, at least away from the phase transition. Since we think of
the entanglement structure as being closely linked to the emergent bulk geometry, we can think of |1.g) as
capturing the effective geometry of the canonical purification.

Such superpositions Eq. (3.98) over different tensor networks, have been postulated as models of gravita-
tional states in AdS/CFT [37, 96, 97, 133, 134], see also [135]. In particular these states allow for non-trivial
fluctuations in the area of the RT surface, and do not suffer from the issue of a flat entanglement spectrum
that is not expected in typical holographic states. Each wavefunction in the superposition is then thought
of as a fixed area state, where the gravitational state is projected onto approximate eigenstates of the area

operator.

48



More specifically, on the physical Hilbert space the reduced density matrices on AA* will have approximately

orthogonal support:

supp((po) aa+) L supp((p1)aax) supp((po)BB+) L supp((p1)BB*) (3.100)

So the resulting states behave like approximate superselection sectors with respect to AA*: the phase between
the two components in the wavefunction is unobservable when restricting to AA* or BB*. This turns out to
be approximately true for |xo), |x1), in particular because of how we chose Uy, g« o« in Eq. (3.99): we picked
an independent random unitary not equal to (Uspc)!. This latter choice might have seemed more natural,
considering the m = 2 case |pap) exactly gives such a network, albeit without the disconnected wave-function
Ixo). Note that the choice U’ = UT leads to correlations between different tensors in the doubled tensor
network. Our claim here is that for the effective state, such correlations have already been taken into account
by |xo0) so we should not double count this effect. This leads us to Eq. (3.99).

Given the discussion above, we can easily compute the entropy S(AA*) of |¢e) and indeed it agrees with
Eq. (3.94). Similarly the Rényi entropies also agree.

Let us push this interpretation a little further, and give an quantum error correction interpretation of
this superposition of tensor networks states, and emergent area operator. For simplicity let us assume the
density operators have exactly orthogonal support. We introduce an area operator that labels the different
superselection sectors. The superselection sectors in this case are described by a single bit s = 0,1. The area
operator is:

Laar= D S(xs) (3.101)

s=0,1
accounting for the entropy of each sector. The two orthogonal subspaces, determined by projections mg, 71,
are defined using the supports:

7o = supp(pa-) @ supp(ppp-) (3.102)

and similarly for 7. Then:

L+ |Xs> = S(Xs) |Xs> (3103)

In this case we can define a simple quantum/classical error correcting code, that protects a single classical bit
from quantum errors. Define the code subspace as a single bit and the isometry V = |xo) (0| + |x1) (1]. This

code protects from errors on either AA* or BB*, which can be confirmed by computing:
Vi(Laae ® Opp-)V = 0) (0] (xo| Opp- [x0) + 1) (1] (x1| OnB- [x1) (3.104)

So the error, represented by an arbitrary operator on BB*: Ogpg+, does no damage to the classical information.
This is the Knill-Laflamme condition stated for operator algebra error correction with complementary recovery
and a center, see Refs. [37, 136] (in this case the center is everything in the code.)

We know how to compute the entropy for states on such a code, following [37] we find:

Speis (AA*) = —poInpy — pr Inpy + (Ver| Laar [ter) (3.105)

as expected. Note that, in reality the supports of the reduced density matrices are not exactly orthogonal.

This is because the error correcting code is not exact.
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3.9 Numerical results

Our main result Eq. (3.94) corrects the naive holographic reflected entropy, from a step function to a smooth
transition. In this subsection, we corroborate these corrections, comparing our answer to numerical results,
showing they indeed capture the details of the phase transition. All numerical results are obtained by
generating a random tripartite state of appropriate bond dimension and numerically computing its reflected
entropy.

First, in Fig. (3.10) we plot a histogram of (the logarithm of the) eigenvalues of pga+, corroborating
Eq. (3.95) and Fig. (3.8). We choose bond dimensions y := x4 = 23, xp = 25, x¢ = 11, and 50 trials.

LogEigs[paa+]

p1l(x2-1) Po

Figure 3.10: The blue histogram is a numerical plot of the spectrum of p4 4+ for a tripartite tensor. The
orange curve is our analytic prediction for the spectrum Eq. (3.95). Note that the tick values on the x-axis
are not exactly po from Eq. (3.2), but instead include a small correction, replacing py with its shifted version
Eq. (C.79), differing only at O(log(x)/x?). This gives the value in the plot of py = 0.226.

In Fig. (3.11), we present two plots of the “Page curve” for reflected entropy. Solid lines are analytic
results Eq. (3.94). Dots are numerical results (only obtained for small bond dimension). All values are
normalized by twice the entanglement entropy of A, the upper bound on Sg(A : B). In the top figure, the
blue step function is the large-y limit, with 24 + 25 = log(xax5)/log(xc) held fixed. The other dimensions
are logs x4 = logs xp = walogs xc = {16,11,6,1}. The numerics agree, with larger deviation at large x 4.
This is as expected, because large © 4 at fixed x4 means small o, and Eq. (3.94) was derived in the large
bond dimension limit. Besides illustrating that Eq. (3.94) agrees with small bond-dimension numerics and
limits to the correct semiclassical answer in the limit xy — oo, this plot also illustrates the novel prediction
for Sg(A : B) very near the phase transition.

Our results are depicted more precisely in the bottom figure: where we zoom into a narrower range
of x4 around the phase transition point. The horizontal blue dashed line depicts the predicted value of
Sgr(A: B)/2S4 in the limit x — oo. To demonstrate agreement with numerics, we have included curves and
numerics corresponding to smaller dimensions, x4 = x5 = x¢&* = {3,4,6,7}. It is evidence that Eq. (3.94) is
sufficient to capture many of the non-trivial features of the transition.
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Figure 3.11: Plots of the “Page curve” for reflected entropy. Our results capture the phase transition and
agree with numerics. The disagreement in the top figure at small x¢ is to be expected from Eq. (3.94) not
being valid at small bond dimension. Note that the analytic functions plotted are not exactly Eq. (3.94),
but instead include a small correction, replacing py with its shifted version Eq. (C.79), differing only at

O(log(x)/x?)-

3.10 Discussion

3.10.1 Effective description of canonical purification

Given a state pap, we have suggested a recipe for computing the reflected entanglement spectrum in
random tensor networks. First construct the canonical purification |\/pag) aa+ppe Using a generalized gluing
construction - allowing for a superposition of networks for different possible entanglement wedges. Then
compute the spectrum of the density matrix on AA* using the fact that the individual density matrices on

AA* are approximately orthogonal.
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Let us comment in more detail how this relates to the gravitational gluing construction used in Ref. [56].
There, the canonical purification [\/pAB) 4 4. g5+

one formed by gluing two copies of the AB entanglement wedge together. If we naively follow this procedure

was described as dual to a particular bulk geometry, the

for a random tensor network we arrive at the following picture. Firstly the entanglement spectrum of pap is
flat in this case, so up to normalization we can replace plA/ ; by pap. Then seemingly the gluing procedure
automatically follows, since we know there is an isometry from the bulk legs at the AB RT surface to the
AB boundary legs and p4p already contains two copies of the tensor network for the bra and the ket [115].

To see how this works, consider again the single tripartite tensor example. The canonical purification
|M> AA“BB* following this procedure corresponds to a tensor network with two tensors Tapc and T4 g
contracted along leg C. This however is not exactly the analog of gluing two copies of the entanglement
wedge together. The difference is that these two tensors are now correlated. Normal tensor network analogs
of any given geometry discretize that geometry with a collection of tensors that are all chosen independently
at random. Hence the random tensor network analogous to the glued entanglement wedges from gravity [56]
would have completely uncorrelated tensors in the two copies!

How big is this difference? It is certainly somewhat important: while the network of two uncorrelated
tensors would have a completely flat entanglement spectrum, the canonical purification does not. As computed
in Sec. (3.7), the spectrum of AA* involves two peaks. These two peaks can trade dominance as a function
of Rényi parameter n. For example, when the entanglement wedge is in the connected phase, the single
eigenvalue peak is subdominant, and the spectrum of AA* is approximately that of two uncorrelated tensors—
yet for large enough n, the single eigenvalue peak begins to dominate. This phase transition as a function of
n is completely absent in two uncorrelated tensors. Hence the canonical purification in this tensor network
example is not entirely described by the analog of gluing of two entanglement wedges.

That said, there is a simple fix, an updated effective description of the canonical purification that does
capture this more complicated spectrum. As we described in Sec. 3.7, the spectrum of AA* appears analogous
to that obtained by summing, with appropriate weights, two tensor networks as in Eq. (3.3), one with two
uncorrelated tensors and one with no tensors at all. And note, for the purposes of describing pa 4+, this
effective description is quite consistent with the original, naive gluing of the entanglement wedge, as long as
we are far from any n-dependent phase transition, i.e. as long as one peak dominates and the other is an
exponentially small correction to the state. Therefore this effective description is nice for at least two reasons:
(1) it gives a good description of the reduced density matrix of AA*, and (2) it clarifies the sense in which we
should trust the doubled-and-glued description of the canonical purification.

How good is this effective description for more general purposes? Can we use it to compute things
besides the Rényi entropies of AA*, such as the spectrum of AB? At least far from phase transitions, this
seems roughly correct: as long as [AB| < |C| or |AB| > |C|. In the former case, pap is approximately
maximally mixed, which is indeed the density matrix in the effective description of that regime (AB maximally
entangled with A*B*). In the latter case, pap is approximately maximally mixed on a random dimension
|C| subspace, which is indeed the density matrix of the effective description in that regime (two uncorrelated
tensors contracted across a dimension |C| leg). Hence this effective description seems valuable, capturing the
far-from-transition physics as well as at least some of the physics near transitions.

We note one interesting subtlety: the two networks in the effective description Eq. (3.3) are not generally
orthogonal. So while it is approximately correct for some purposes to view them as defining separate
superselection sectors, their overlap is not always ignorable.

How does this effective description generalize beyond the single tensor example, to hyperbolic networks?
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As we will describe in Chapter 6 (more specifically in Sec. (6.6)), the spectrum of AA* is well-modeled
by as a sum of many tensor networks, each formed by doubling and gluing the tensor network along a
different, possibly kinked candidate entanglement wedge, with all tensors chosen independently at random.
See Eq. (6.182).

What do these lessons say about reflected entropy in a gravitational theory? Because something is clearly
missed in the random tensor network by the naive doubling and gluing of the entanglement wedges, we can
expect that the same is true in gravity. Albeit we still expect the Reflected entropy /EW cross-section duality
to hold, just not away from n = 1.

Likely there is some effective description that improves upon this naive doubling, analogous to the tensor
network case sketched in Eq. (6.182). That said, it’s not entirely clear how to interpret such an effective
description in gravity. For example it is not obvious that the ‘kinked’ geometries in Eq. (6.182) correspond to

any saddles in gravity. We leave a precise investigation of this question to future work.

3.10.2 Non-flat spectrum and building geometry from RTNs

This effective description offers an interesting possibility. Perhaps the canonical purification is a useful tool
for constructing, out of tensor networks, a geometry with gravity-like area fluctuations.

To explain this, let us recall some background. While impressive in many ways, the precise relationship
between random tensor networks and AdS/CFT is not yet fully understood. So far, the best understanding
is that tensor networks resemble so-called fixed-area states, which have approximately flat Rényi spectra just
like random tensor networks [96, 97]. This matching is quite good; both fixed-area states and random tensor
networks have exactly the same non-perturbative corrections to the Rényi entropies [15].

However, it would be nice to have a random tensor network model of something more realistic than
a fixed-area state. Our results suggest an interesting method for obtaining such a model. The procedure
is as follows. First, start with some conventional random tensor network, say |¢) 4. Second, find the

VPaB) {\/pag|) has a non-flat spectrum.

That said, this is only a partial success. Not all factors of the canonical purification have a non-flat spectrum.

canonical purification |\/pag). As we've shown, paa- = trpp«(

In particular, pap is the same as in the original tensor network. To fix this we can iterate, now finding
the canonical purification of the canonical purification, this time canonically purifying, say, paa+. Then all
factors have non-flat spectra. If we like, we can continue to iterate, building up increasingly sophisticated
superpositions over tensor networks and associated spectrum. In this way we might even build up complicated
tensor networks describing higher dimensional space times just starting from a single random tensor. This
seems a bit like the Eguchi-Kawai mechanism which grows extra dimensions out of large-N matrices. See for
example Ref. [137].

Having said this, this is not the only method for building up a tensor network with a non-flat spectrum.
Another possibility is to simply add degrees of freedom to each of the legs connecting the tensors, as in [138].
This raises the question, is there any reason one might prefer this iterative canonical purification method for
building a tensor network with a non-trivial entanglement spectrum?

Here’s one possible reason. In conventional random tensor networks, even those with degrees of freedom
on each of the links as in [138], the area operators associated to two crossing cuts commute. That is, if you
consider one cut through the tensor network, and then a second cut that crosses it (but nowhere overlaps it),
the ‘areas’ associated to those cuts can be simultaneously fixed. This cannot happen for overlapping cuts
in AdS/CFT [133]. There, crossing areas do not commute because the area is conjugate to the boost angle

across the surface, and fixing one area makes the geometry of the Cauchy surface highly uncertain. Hence
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simply adding link degrees of freedom does not capture this subtle behavior seen in gravity.
Very speculatively, perhaps this s captured by the iterative canonical purification geometry. If so, this
would be an interesting reason to take these seriously as toy models of holography. We leave such an

investigation to future work.
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Chapter 4

West Coast Model

In this chapter, we investigate the reflected entropy phase transition in the so-called West Coast Model (also
known as the Penington-Shenker-Stanford-Yang (PSSY) model) [15]. The West Coast Model is a toy model
consisting of Jackiw-Teitelboim (JT) gravity coupled to end-of-the-world (ETW) branes that was used to
calculate the Page curve of black hole evaporation from semiclassical gravitational path integral. The model
consists of two parameters: the horizon area Spy and the number of ETW brane flavour indices k. Tuning
these parameters simulates black hole evaporation, and one finds the entanglement entropy of the black hole
radiation R to be

S(R) = min(Spm,logk) (4.1)

away from the Page time.

The west coast model can be thought of as a single random tensor in the canonical ensemble and they
exhibit numerous common features. In particular, spectra of the reduced density matrices can be obtained
using a similar resolvent trick as in the case of 1TN. This allows one to use the formalism we developed in
Chapter 3 with only minor modifications to compute the reflected spectrum of the West Coast model in full
detail. We will find that the reflected spectrum bears striking similarity to that of 1TN, composed from two
super-selection sectors corresponding to a disconnected and connected bulk solution. The main difference is
that there are additional O(1/4/Gy) corrections resulting from thermal fluctuations in the horizon area near
the phase transition. Such feature is absent in RTNs since they corresponding to fixed area states in which
the horizon area cannot fluctuate.

The results presented in this chapter is based on Ref. [67].

4.1 Summary of results

We consider a natural generalization of the west coast model by splitting the radiation into two subsystems
R = R1 U R5, each entangled to a ETW branes labeled by different sub-flavor indices k and ko with ki1ks = k,
see Fig. (4.1). We analyze the reflected entropy between the radiation subsystems R; and Ry. Simply
applying Eq. (2.32) to the model leads to

Sn(Ry: Ry) = 4" b < exp(Sen) (4.2)

2min(log ky1,log ka) k > exp(Spr)
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Figure 4.1: The Lorentzian description of the state we consider in the West Coast Model, a JT gravity black
hole with an ETW brane. The ETW brane carries two sub-flavours, denoted black and green, that are
entangled (dashed, coloured lines) with radiation systems R; and Ry respectively. The extremal surface is
denoted in purple and the island that dominates after the Page time is coloured gray.

This follows from the two possible saddles obtained upon canonical purification: the disconnected
geometry and the connected geometry depicted in Fig. (4.2). We will compute the reflected entropy
precisely, demonstrating the validity of the holographic formula away from phase transitions. The fact that
the gravitational path integral can be performed exactly allows us to compute the detailed behaviour of
Sr(R; : Ry) including corrections to Eq. (2.32) near the phase transition.

We will compute the reflected entropy precisely, demonstrating the validity of the holographic formula
away from phase transitions. The fact that the gravitational path integral can be performed exactly allows us
to compute the detailed behaviour of Sr(R; : R2) including corrections to Eq. (4.2) near the phase transition.
This is the main result of this chapter, summarized by Fig. (4.2).

In fact, we compute the entire reflected entanglement spectrum, which takes a very simple form: it consists
of a mixture of two superselection sectors corresponding to the disconnected and connected geometries shown
in Fig. (4.2). The probabilities p; and p. of the two sectors are computable functions, that vary as we change

k, leading to the phase transition in Eq. (4.2). Moreover, we find corrections to Eq. (4.2) in a window of

Alogk = O( JéTN) near the phase transition that arise from fluctuations in the horizon area' (equivalently
thermal fluctuations, in this model). This is analogous to a similar effect found in the entanglement entropy
Page curve [15, 62, 63, 139, 140], and we expect it to be a universal feature of holographic reflected entropy.

We now give an outline of this chapter. In Sec. (4.2), we review the West Coast Model and set up the
stage for our analysis. The proposed holographic answer arises from a leading saddle computation assuming
replica symmetry. This calculation suffers from various issues, which motivates us to analyze the problem in
more detail.

In Sec. (4.3), we review the computation of the entanglement spectrum in the West Coast Model. This
serves as a warm-up for the resolvent trick which is used to obtain the spectrum in Sec. (4.3.1). We then use
the spectrum to compute the Renyi entropies in this model in Sec. (4.3.2). Apart from being of interest on
their own, the results for the Renyi entropies serve as an input for the reflected entropy calculation.

In Sec. (4.4), we analyze the reflected entanglement spectrum in the West Coast Model. We describe the
resolvent trick in Sec. (4.4.1) to obtain a Schwinger-Dyson equation for the reflected entanglement spectrum.
In Sec. (4.4.2), we solve this equation to obtain the spectrum and use it to analyze the reflected entropy. In

Sec. (4.4.3), we go on to analyze a two-parameter Renyi generalization of the reflected entropy, called the

1In JT gravity, this corresponds to the value of the dilaton at the bifurcation surface.
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Figure 4.2: The main result: (a) The reflected entanglement spectrum of p44+ in the canonically purified
state |\/pap) is a mixture of two superselection sectors: a single pole of weight pgq corresponding to the
disconnected purification, and a mound of approximately k? eigenvalues (assuming k; < ks) with weight p,.
corresponding to a connected purification involving a closed universe with the entanglement wedge cross
section denoted in orange. (b) The probability of the connected purification p. as we vary k across the Page
transition. We show analytic plots for the microcanonical and canonical ensemble. The latter shows a spread
in the phase transition of O(v/Gx). We also show plots for p. when considering the (m, 1)-Renyi reflected
entropy; these undergo sharp transitions at m-dependent locations in the canonical ensemble.

|
pe/ki

(m,n)-Renyi reflected entropies.

In Sec. (4.5), we discuss these results and future directions.

4.2 The west coast model

The West Coast Model is a toy model that was used to derive the Page curve of entanglement entropy. We
briefly describe the model here, for more details refer to Ref. [15]. The model consists of JT gravity coupled
to ETW branes. The action is given by

brane

Ly = _;i; B /M var+ | \/EK} - B /M Jio(R+2) + \/E¢K] , (4.4)

oM

where Sy is the extremal entropy and g is the mass of the brane. We will take both the above parameters to
be large in our analysis. The ETW branes also possess a large number of flavours k, which we artificially
divide into two sub-flavour indices that number k; and kg respectively.
We consider a state where the ETW brane is entangled with two radiation bath systems R; and Rs as
1 ke
@) = ﬁzzjl% 13 &, [Wis) 5 » (4.5)

i=1 j=1

where [¢;5) 5 is the state of the black hole system B with the ETW brane chosen to be of sub-flavours 4 and
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7 respectively. The state can be prepared using a Euclidean path integral, and the Lorentzian description is
obtained by analytic continuation as shown in Fig. (4.1).

A diagrammatic description of the boundary conditions that compute the overlap between two such states

il i2
(Viy ju Wiz 32) = \/_\/ s (4.6)
n J2

where the red line represents an asymptotic AdS boundary, whereas the black and green lines correspond to

is

sub-flavour indices of the ETW brane.? In this chapter, we will consider two choices of boundary conditions
imposed at the asymptotic boundary: a) microcanonical, where we impose a fixed energy F, and b) canonical,
where we fix the renormalized length § corresponding to the inverse temperature. The computation in
Eq. (4.6) is done by performing the gravitational path integral over geometries consistent with these boundary

conditions, e.g.,

<wi1 j1‘¢i2j2> = 0 125 (47)

&
N

J1 J2

where the ET'W brane has a definite flavour and thus, makes the diagram proportional to 0;, 5,05, j,-

We are interested in calculating the reflected entropy Sr(R; : R2). To motivate the proposed holographic
answer, we can first consider preparing the Renyi generalization of the canonically purified state given in
Eq. (2.33). For even integer m, this can be analyzed using the replica trick. Consider the Euclidean path
integral that computes the norm of the state (1)(™)|p(™)) = tr(p%, r,) it is diagramatically represented by
the boundary conditions: (e.g. m = 4)

(o, ,) = . (48)

The boundary conditions have a dihedral symmetry composed of Z,, rotations and a Zyg reflection.
We now consider two natural saddle points that respect this replica symmetry [56], and applying the

saddle point approximation gives us

tr(pk ‘ ‘ (4.9)
TR @

=max [kZ]", k"' Z,,] (4.10)

where Z,, is the p-boundary partition function and the purple dot indicates the location of the extremal
surface. The disconnected saddle dominates before the Page transition, i.e. k < exp(Sp), while the connected
saddle dominates after the Page transition. Each of these saddles has a Zx symmetric slice which can be used

to analytically continue the Euclidean saddle to a Lorentzian solution, giving us two candidate geometries

2Note that we have changed the diagrammatic notation from Ref. [15].
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corresponding to |¢(™):

==

™) =

- (4.11)
Ro| [R;

or

We refer to these geometries as the disconnected and connected purifications respectively. Here, m is
simply a parameter that fixes the area of the extremal surface and thus, the analytic continuation in m is
straightforward. As m — 1, these geometries can be interpreted as arising from gluing together two copies of
the entanglement wedge of Ry U Ry [113, 114].3

Within the respective phases, we can apply the QES formula once we know the geometry corresponding
to |¢(™)). For the disconnected saddle, the QES is trivial and thus, the reflected entropy vanishes. On the
other hand, for the connected saddle we have two non-trivial candidate QESs represented by the pink and

orange cuts in Eq. (4.11). This leads to the proposed formula

0 k< S
Sr(Ry: Ry) = p(S5x) (4.12)

2min(log k1,logks) k > exp(Sey)

While this saddle point approximation is expected to work far away from the Page transition, there are
various issues with this proposal which will require a more detailed analysis that we carry out in Sec. (4.4).
In particular, the saddle point calculation suffers from an order of limits issue when analytically continuing
m,n — 1. Further, Eq. (4.12) has a discontinuous jump at the phase transition which is resolved by non-
perturbative effects. Once these effects are included, we will find significant corrections to this formula near

the phase transition.

4.3 Entanglement spectrum

Before we go to a more careful analysis of the reflected entropy, we first discuss the simpler case of entanglement
entropy. In Sec. (4.3.1), we first review the resolvent trick that was used to compute the entanglement
spectrum in Ref. [15]. This serves as a warm-up for the analogous calculation for the reflected spectrum.
Further, we analyze the Renyi entropies in the West Coast Model in Sec. (4.3.2) which will be useful for our

later calculations.

4.3.1 Resolvent trick

The technique we use here was presented in Ref. [15] (see also [46, 118, 119]). This powerful approach enables
us to write down a Schwinger-Dyson equation for the resolvent of pr, r,, which then gives full information

about the entanglement spectrum.

3See also Ref. [141] for a construction of the canonical purification of the black hole system in a model of JT gravity coupled
to matter.

59



Consider the resolvent matrix R;;(\) for the density matrix pr, g, defined formally as

1
Ry(\) = () , 113

i A= PRiR, ij ( )
where the 7, j indices run over both R, and R, labels and take values from 1 to k = k1ks. We then define the
resolvent as the trace R(\) = tr R;;(\). From the resolvent, we can obtain the density of eigenvalues D(\)
using

DOV = — L lim Im RO\ + de). (4.14)

T e—0

To evaluate R(\), we expand the matrix inverse around A = oo as

kX tr(ph
R(A) =+ + J%%Q, (4.15)

n=1

sum the series and then analytically continue to A € [0,1] on the real axis where D()) is non-zero. In terms

of diagrams, this leads to the boundary conditions:

1 1 1
= —_— 4+ = 0 Y W s S
7:>_ N Ui v *

A2 , (4.16)

where uncontracted indices have been used to represent a matrix equation for R;; and each red line carries a
power of k—él for normalization. These boundary conditions are then filled in with planar disk geometries
since crossing (higher genus) geometries are suppressed by powers of % (e=%).

Now denote F;;(A) to be the connected part of the resolvent, defined by

@ - }= O O

AN—F , (4.17)

where the last term denotes the matrix (A — F))~!. We can now write down a Schwinger-Dyson equation for
Rl]()‘) and FIJ(A)

o (4.18)

where we note that a self consistent solution is to consider every term to be proportional to d;;, and thus

Fi;(\) = @cﬁj, where we have defined F'(A\) = tr F;;(\). After taking the trace of Eq. (4.18), we obtain the
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following algebraic equation

HMZE:M%gyf. (4.19)

n=1

We could now consider boundary conditions that correspond to either the microcanonical or canonical
ensemble. The microcanonical case is identical to 1TN and is discussed in detail in Chapter 3,* so our primary
focus here will be on the canonical ensemble. For this case, we can use an integral representation for the

n-boundary partition function Z,, given by

Zn = /000 ds p(s)y(s)", (4.20)

where p(s) is the density of states, and y(s) is the Boltzmann weight for the thermal spectrum given by

e ssinh 27s

p(s) = oz (4.21)

82 51-2 Lo e
22 “\F(u—§+zs)| . (4.22)

y(s) =e”

It is convenient to define the normalized Boltzmann weight w(s) = %f) Using this representation in

Eq. (4.19), we obtain

[T p(s)w(s)
HM_A Ol (4.23)

Finally, combining this with Eq. (3.44), we obtain an integral equation for R(\):

[T p9uw(s)R
AR_k+A ds R (4.24)

Solving this equation will give us the entanglement spectrum and corresponding entropies.

Approximate entanglement spectrum

D(X) D(})
.k k
‘e1genvalues A eigenvalues I\
I
Ask) Ao + A(sk)

(a) (b)

Figure 4.3: (a) The thermal spectrum of the JT black hole. (b) The approximate spectrum of pr, g, is
a cutoff thermal spectrum which is obtained by truncating the spectrum to the k largest eigenvalues and
shifting it by A\¢ to make it normalized.

4In this model, fixing the energy is the same as fixing the area of the horizon in the semiclassical approximation. Thus, the
calculations can be understood as related to those done in random tensor networks via the connection to fixed-area states [96-98]
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The resolvent equation was solved approximately in Ref. [15] to obtain an approximate entanglement
spectrum. It was shown that the spectrum of pgr, g, can be well approximated by a cutoff thermal spectrum
(see Fig. (4.3)), i.e.,

D) = /0 " s p(8)500 = 2o — w(s)), (4.95)

where the parameters s; and A\g can be computed by

kz/o ds p(s) (4.26)
1 o0

Ao = z /Sk p(s)w(s). (4.27)

For more details about the calculation, refer to Appendix F of Ref. [15]. Here, we will simply use the result
and discuss the interpretation of this spectrum.

Intuitively, the thermal spectrum of the black hole is divided into two portions - a part that has already
undergone the Page transition, and a part that hasn’t. For states corresponding to sufficiently high energy in
the thermal spectrum, the Page transition has still not occurred since they correspond to larger black holes.
On the other hand, low energy states are past the Page transition and in this part of the wavefunction, the
radiation system contains an island in the black hole interior. Thus, it is natural to expect that details of
the spectrum such as the probability distribution of the horizon area should be observable. This natural
ansatz is in fact a good approximation and leads to a cutoff thermal spectrum where s; roughly corresponds
to the threshold dividing the pre-Page and post-Page parts of the wavefunction. The post-Page portion of
the spectrum is not normalized on its own and thus, A\ is the additive constant contributed by the pre-Page
spectrum that shifts the spectrum of pr, r, to make it appropriately normalized. Further, this ansatz captures
the feature that the rank of pr, r, cannot exceed k even far past the Page transition, since the dimension of

the radiation Hilbert space is k.

4.3.2 Rényi entropy

Given this approximate description of the spectrum, we will now analyze the Renyi entropies in this model,

Sm(PRiRy) = — log(tr(pk, r,)) (4.28)

m—1
for different values of m. To simplify the analysis, we choose pu > % In this limit, the u-dependent terms
drop out from w(s). Further, we also work in the semiclassical limit 8 — 0.°

Using Eq. (4.25), we obtain

Sk
(o n) = [ p(s) 00+ (o)™ (4.29)
0
There are a few values of k near the phase transition, equivalently si = w7 that play an important role
in this calculation. First, the location of the peak of p(s)w(s)™ is s, = i—% Secondly, far from the phase

transition the calculation of Renyi entropies is dominated by either of the two Z,, symmetric saddles. The
location at which they exchange dominance is denoted by slgm). Working in the saddle point approximation,
we obtain the condition

2?1
=exp [(1 —m)Sy + 7(E -m)|, (4.30)

5Note that 8 should be replaced with 8G  to restore explicit dependence on the Newton constant.

km—l
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Figure 4.4: (a) For m > 1, the Renyi entropy (denoted by the green line) has a sharp transition at s, = s,(cm)

where the two replica symmetric saddle contributions (denoted by blue and red dotted lines) exchange
dominance. Phase transitions in the two terms in Eq. (4.31) happen at s; = s1, s, (depicted with curved,
gray dashed lines) and thus don’t affect the Renyi entropies. (b) For m < 1, the Renyi entropy (denoted by
the green line) has a transition in the range s € [$1, $;,] whereas the two naive replica symmetric saddles
(denoted by blue and red dotted lines) exchange dominance at s = s](cm). Thus, the phase transition is
over a large window of size O(%) and the Renyi entropy has O(%) corrections compared to a naive analytic
continuation of the replica symmetric saddles.

which leads to sl(cm) R %(1 + %) Lastly, from Eq. (4.27), we see that Ao has a phase transition at s, = s;.

With these ingredients in hand, we can now analyze Eq. (4.29). An important feature that appears in
this model is that different Renyi entropies have transitions at different values of k. We will analyze them

separately for m > 1, m =1 and m < 1 since they have qualitatively different behaviour.

m > 1

For m > 1, we have s,, < sgfm) < s1. This implies that A\g = % for si = s,(cm). As a simple approximation, we

can compute Eq. (4.29) by

o) ma | [ dsptog, [ asplsyutsr]. (4.31)

Since at the level of the saddle point approximation, this comparison is identical to Eq. (4.30), we see that

tr(p%, r,) has a phase transition at s; = S;m)_ More so, the second term in Eq. (4.31) is the integral of a

(m)

Gaussian with a width o, = ﬁ Since s;, ' — Sp, > 0, the second term is almost unchanging in this
region. Thus, we see that for m > 1, tr(p}, r,) has a rather sharp phase transition. The Renyi entropy takes
the form
. 272 1
S (pryRr,) = min |log k, Sy + 5 (1+ E) , (4.32)

as shown in Fig. (4.4).

m=1
The case m = 1 corresponds to the entanglement entropy which was analyzed in detail in Ref. [15]. In this

case, Sy, = s](gm) = s; and thus, there isn’t a sharp transition. Instead, one finds enhanced corrections of

O(%) in a window of size Alogk = O(ﬁ) near s = s1. Again, we can use the approximate spectrum in
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Eq. (4.25) to obtain
S(pmim) ~ / p(5)(Mo + w(s)) log(Ro + w(s)). (4.33)

m<1

For m < 1, we instead have s, > s,gm) > s1. Thus, we see that the phase transition in tr(p} p,) starts

happening at s = s; when \g starts decaying. This is qualitatively different from the m > 1 case and will
require a more careful analysis.®

In order to compute Eq. (4.29), we can use the following inequality on the integrand:
max[A\g", w(s)™ < (Ao +w(s))™ <A+ w(s)™, (4.34)

where the lower bound follows from positivity, while the upper bound follows from concavity. Upon performing

the integral for s = s1 — O(%), since A\g > w(s), we obtain

1

tr(pR, r,) = kA ~

since both the upper and lower bounds take the same value at leading order. In the regime s; + O(%) < s <

Sm — O(%), both the terms are comparable. Thus, we obtain

mpBsi 27r2m]
b

tr(pp, g,) = #exp [27rsk -t (1 =m)Sy — 3 (4.36)

where there is a potential O(1) multiplicative uncertainty. Similarly in the regime s; = s,, + O(%), the w(s)

term dominates over the \g term giving us
m 22 (1
tr(pg, r,) = exp |(1 —m)Sy + 7 \m ™ m |, (4.37)

where we have used the saddle point approximation. Combining these results, we obtain

log k s < 81

mpBs2 2
~ ) 2ms— 200k 4 (1-m) Sy — 222
Sm(pR1R2) ~ 5k 2 17(m m)So mp S1 < Sk < Sy ? (438)

So+ 2 (1+2) Sk > Sm

where we have ignored subleading corrections at s = s1 and s, = $,,. The result is sketched in Fig. (4.4),
along with the naive expectation from analytically continuing the results of the Z,, symmetric saddles a la
Lewkowycz-Maldacena [116, 142]. We see that there are in fact large O(%) corrections to the naive holographic
answer for Renyi index m < 1. This is consistent with expectations, hinted at in Ref. [140], based on chaotic
behaviour. As shown, the transition happens over a parametrically large window of Alogk ~ O(%)

Before moving on, we analyze the problem a little more carefully in a window s, = s1 + O(ﬁ) since this
will be relevant for the reflected entropy transition. We can use the inequality in Eq. (4.34) and perform the

integrals, which are simple Gaussian integrals. In fact, we will include one-loop effects to find the answer to

6Similar results have been discussed in Ref. [119]. We are very grateful to Sean Mcbride and Wayne Weng for discussions
related to this topic.
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greater accuracy. Computing the relevant quantities, we obtain

eso+2w2/3

\/2m[33

27mSsy,
Si€
ko~ edo2i-
€ 873
erfc(ﬂsjzl;”)
2k

81 - ﬁ3m/271647r2(17m)/,8
| et = e

Zl":

(4.39)

0=

where erfc(x) = % [ e~ dz is the error function. Thus, integrating Eq. (4.34) with the measure p(s) and
using Eq. (4.39), we obtain

where we have used the fact that the integral of p(s)w(s)™ is suppressed by powers of 8 in the regime of

interest.

4.4 Reflected entanglement spectrum

We now use a generalization of the resolvent trick in Sec. (4.4.1) to analyze the reflected entanglement spectrum.
Solving the Schwinger-Dyson equation leads us to the spectrum and reflected entropy in Sec. (4.4.2). Finally,

we analyze the (m,n)-Renyi reflected entropies in Sec. (4.4.3).

4.4.1 Resolvent trick

Our goal here is to find the resolvent for the reduced density matrix ,05533I obtained from the Renyi

generalization of the canonically purified state [¢)(™)) defined in Eq. (2.33), i.e.,

00 (m) n
k? tr(PRlR;)
Rn(\) = 71 +> et (4.41)

n=1

where the integer moments of the (normalized) density matrix can be computed using the replica trick on
mn copies of the system [48, 56].
In order to do so, we first set up a slightly more general problem. 7 Consider the following 2 x 2 “matrix”

of resolvents:
S 1-k/2 0 (PE% )Ft ’
R(A) =) AtM (2 e : (4.42)
k=0

where p — pl is an involution defined to take a linear operator p on Hg,r, to a linear operator from
HRr,r: — HR,ry- It is defined by re-arranging the incoming/outgoing legs in the obvious (and canonical /basis
independent) way. Each insertion of (p}gl/ 1,2;{2)F (and (p;gl/ ;2)FT) has m/2 replicas of each of the bra and ket of
the original state |1). These involuted density operators are related to the density matrices in the canonically
purified state by

m/2 T, m/2 m m/2 m/2 T m
(pRl/Rg)F (pRl/R2)F = Pgal}?,; ) (PRI/RQ)F(PRKRQ)F = ngez;%g' (4.43)

"This problem is analyzed in more detail in Chapter 3, here we attempt to be brief and focus on the main results.
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Figure 4.5: Example geometries that give rise to the projector or the identity. All possible contributions are
either proportional to the identity operator 1r, rx, 1r,ry, or one of the four projectors |er, r,) (€r,,R,|-

Diagramatically this is given by the following boundary conditions

(p};:bl/lza2 )p _ W7 (4.44)

where we have chosen m = 6 for example. As before, any calculation using the gravitational path integral in

this model will amount to a sum over geometries of different topology connecting the various asymptotic

boundaries, e.g, in computing Eq. (4.44) we get

(op/a)l = > . (4.45)

topologies

For convenience, we will use a shorthand representation

1 W AN __\ )

VA

From these results we can infer an alternative expression for matrix R(\):

oo (m) \n oo n—1 m/2 \rf
. 0 0 «
R(\) = Z)\—l—n ((pRlRl) ) n) + Z)\—l/Q—n ( ot e PRR} (PRle) ) . (447)
n=0 0 (PRyRs) n=1 Prars (PRI R,) 0

which diagrammatically looks like

AT T T T e

1
R(A) = —
() 3
s —+ T T+
(4.48)
The resolvent for system R; U R} in the state | pgl/ §2> is given by
R(\) = Trg, ry (Ri1(N)) (4.49)

A single copy of (pg?g))r is referred to as a puddle and given two contiguous sets of puddles, there are
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two classes of diagrams, either disconnected or connected. As before, consider the connected part of R that

we call F. This corresponds to a sum over the sub-diagrams over all connected contractions . We have

1 F T2 1

A useful fact is that all diagrams in F and R take the following form: (see Fig. (4.5))

G11(1 x — F F )
F(\) = 11(1r, Ry — €R,) + FlieR, 12 [€Ry ) (€R, | 7 (4.51)
Foi|er,) (€, | Ga2(1R,ry — €R,) + Fazenr,
S11(1g,rx — R R
R(A) = 11(1r,r; — €r,) + Ri1eR, 12 |€r,) (€Ry| ’ (4.52)
Roi|er,) (€r, | S22(1R,Rr5 — €R,) + Rozer,
where |eg,) = \/% |1g,) is the maximally mixed state on Ry R} (same for |eg,)), er, = |€r,) (€r,| and

€r, = |€r,) (€r,| are normalized minimal projectors and F is a 2 x 2 matrix of scalars (not to be confused
with F).

In order to write down a Schwinger-Dyson equation for F()), we can organize the different diagrammatic
contributions to F by the number of R insertions, labelled k — 1, where k is the number of puddles in each

diagram:

conn. conn.

TN T Ol T

conn. conn.

F(A) = A

(4.53)

where the shorthand conn. indicates connected contractions. In the above figure, the bubbles of AR indicate
insertions of the resolvent matrix given in Eq. (4.51) and the various components of the matrix are represented
by coloured index lines. Thus, combining Eq. (4.53) and Eq. (4.50), we now have self-consistency equations

that we can solve to obtain R and F, order by order in k.

4.4.2 Spectrum and reflected entropy

The solution to the Schwinger-Dyson equation is identical to that obtained in Chapter 3 for a random
tripartite state. Thus, we only discuss the results here. The results follow from a conjecture that the
important contributions to the matrix F come from the lowest two orders in k, i.e. F ~F®) 4+ F® in the
limit we are considering. Evidence for this conjecture in the case of the microcanonical ensemble is provided
in Chapter 3, while here we simply apply the same conjecture, now to the case of the canonical ensemble,
and obtain physically sensible results.

Since the solution to the Schwinger-Dyson equation is obtained by considering k = 1 and k = 2, the two
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parameters that determine the spectrum turn out to be given by (e.g. for m = 6)

Dy, = MU m > , (4.54)

topologies

VA VA

connected
topologies

:

where connected topologies are the ones which have geometries joining at least two asymptotic boundaries

on either side of the vertical dashed line. We define the normalized quantities B, = %1” and D,, = 5—%.
Further, these quantities are related by a sum rule:
D2 + B, =1 (4.56)
The solution to the resolvent is then given by
RO ~ XaXB)” ()\ + B (12 - 12> A >\_)> + L (4.57)
2B\ XB Xa A— D2

with

Ay = kle <\/k2 14 /K2 - 1) (4.58)

The spectrum obtained from Eq. (4.57) takes a simple form (see Fig. (4.6)), with two superselection
sectors: a single pole of weight pg = Dfn and a mound of eigenvalues with weight p. = B,,. The mound is a
Marchenko-Pastur (MP) distribution with support between Ay ~ By, (k7' = k5 ')? and min(k2 — 1, k2 — 1)

eigenvalues. l.e., the spectrum is given by

(k1ks)?
2TTPeA

D) = VO = N = A0) + 3N (K] — kD)O(kT — k3) + (A = pa), (4.59)

where the sum rule then takes the form:
Pe+pa =1, (4.60)

and thus we see that these quantities act like two “classical probabilities”.
Using Eq. (4.54), we obtain

m/2
(tr(p/7,))?
ktrpR g,

pe=1-pa. (4.62)

pa = (4.61)

we interpret these superselection sectors as corresponding to the two different geometries shown in Fig. (4.8),
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Figure 4.6: The spectrum obtained from the resolvent Eq. (3.89). We take k1 < ko here so the MP distribution
has no zero eigenvalues.
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Figure 4.7: Plot of p.(q) ~ % for m =1 as a function of ¢ = %, for 8 =1, in the canonical

ensemble (blue) and microcanonical ensemble (red). The phase transition in the canonical ensemble is spread
out over a region of size As = O(%) due to thermal fluctuations.

a disconnected and connected purification respectively. Thus, the reflected spectrum depends on the Renyi
entropies of pg, r,, which we computed in Sec. (4.3.2). For m = 1, the physically most interesting case, we
have from Eq. (4.61) and Eq. (4.40),

o0
pa = kX = / ds p(s)w(s), (4.63)
Sk
which can be interpreted as the Pre-Page probability as discussed earlier. Consequently, the connected
probability p. is interpreted as the Post-Page probability. We plot this result and compare the phase
transitions in the canonical and microcanonical ensemble in Fig. (4.7). Due to thermal fluctuations, the phase
transition is spread out over a range of parameter space of size As = O(ﬁ)

The reflected entropy is given by (assuming ki < k)

0 k< exp(SBH)
SR<R1 : Rg) = (464)
2logks k> exp(Spm).
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Figure 4.8: (a) The canonical purification in the disconnected phase has radiation systems purifying themselves.
(b) The canonical purification in the connected phase has a state of radiation systems entangled via a closed
universe. The two candidate RT surfaces are denoted orange and pink.

This is the main result of this chapter. The reflected entropy is given by:
Sr(R1 : Ra) =~ pe(2min(S(R1), S(R2))), (4.65)

where we generally have the upper bound Sr(R; : R2) < 2min(S(Ry), S(R2)). Thus, Fig. (4.7) serves as an
approximate plot of Sg(R; : Ry) normalized by the upper bound.

4.4.3 Renyi Reflected Entropy

Having discussed the reflected entropy, we now analyze the (m,n)-Renyi reflected entropies. Since the
spectrum is an analytic function of m, the Renyi entropies can be computed by using the sum of the moments

of the two sectors in the spectrum

1 —nNn —
Sp(R1RY) = — In (pg + kf(l )y 2C'n(rg)pZ) (4.66)

where r = k? /k3 and C,(q) is the g-Catalan number defined by
Cu(q) =Y _¢"N(n,k), (4.67)
k=0

where N (n, k) is the Narayana number. Notably, the probabilities are the only source of m-dependence. Thus,
we need to analyze the behaviour of pg(m) as we cross the Page transition using the analysis in Sec. (4.3.2).

For m > 2, we obtain

(m)

1 Sk < 8,
xp [(m—1)So+(m— &) 25>
el p[(m )k?n =k = | o) < gy < s/ (4.68)
S +67r2
ox[so 557 D g

There are two continuous transitions in pg and hence, also in the (m,n)-Renyi reflected entropy. However,

the second transition is almost invisible since p4 is already non-perturbatively small at s; = s,(cm/ 2 and the
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Figure 4.9: Analytic plot of p.(m, ¢) for m = 1.5 (yellow), m = 3 (orange) and m = 100 (green) and numerical

plot for m = 0.7 (thin, brown) as a function of ¢ = % for § = 1. The locations at which the (m, 1) Renyi
reflected entropies undergo a transition changes as a function of m for m > 1.

reflected entropy is dominated by the connected entanglement wedge.
For m € (1, 2], the phase transition in py is largely determined by the phase transition in tr(pg1 R2) which

occurs at s = sém) < s1. Thus, we obtain

(m)

1 Sk < 8y,
~ X —1)So+ _% 22 m
Da =~ ¢ p[(m )k(:n_(lm )% } Sl(c ) < Sk < 81 (4'69)
O(e™%) s1 < Sk,

where the value in the last line is difficult to compute analytically, although it is non-perturbatively suppressed
and has a negligible effect on the reflected entropy. We plot the behavior for pg(m) for different values of
m > 1 in Fig. (4.9).

Finally, for the case m < 1, there is a multiplicative uncertainty in the calculation of tr(p%, R2) which makes
it difficult to compute py(g) analytically. We provide a numerical plot instead in Fig. (4.9). Qualitatively, the
transition happens over a large region in parameter space corresponding to s € [s1, Sy ).

To summarize, the phase transition in the (m,n)-Renyi reflected entropy comes from a shift in dominance
between the two terms in Eq. (4.66). As n — 1, the transition is dictated by the phase transition in pg. This
transition is qualitatively different for m > 1 and m < 1. For m > 1, it is a sharp transition at s = s,(cm) and

for m < 1, it is spread out over s € [s1, Sim]-

4.5 Discussion

In this chapter we have analyzed the canonical purification and reflected entropy in the West Coast Model.
We found that the holographic proposal is satisfied in the expected regimes: the canonical purification is
related to a doubled spacetime, and the reflected entropy is related to the entanglement wedge cross section.
Furthermore, by summing over the contributions from all relevant saddles, we have understood how the

geometric picture evolves as we cross an entanglement phase transition. We now discuss certain interesting
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aspects of our calculation and potential directions for future research.

Relation to Petz map

Consider a code subspace of bulk states encoded in the boundary Hilbert space. The Petz map provides an
explicit realization in this setting of a reconstruction that maps a given bulk operator to a boundary operator
[15, 143, 144]. In the West Coast Model, one can consider bulk operators that live on the ETW brane. Before
the Page transition, they are reconstructable by the black hole B, whereas after the Page transition they
are reconstructable by the radiation system R. More so, in Ref. [15], they computed the probability of the
Petz map acting on the radiation to succeed. It turns out to be given by p., precisely the probability that
showed up in our calculation of the reflected spectrum (regardless of the choice of how to split R into Ry Rs).
This is true in both the microcanonical ensemble and the canonical ensemble (see Fig. (4.7) for our p., which
matches the Petz recovery probability computed in Ref. [15]).

This hints at a connection between the reflected entropy and the Petz map success probability. From one
point of view, this seems completely sensible within the paradigm of entanglement wedge reconstruction. The
reflected entropy Sr(R; : R2) is a sharp diagnostic of whether the entanglement wedge is connected, and
only when it’s connected does the entanglement wedge of Ry Ro include the black hole interior. Indeed, the
probability p. is simply the probability of measuring the canonical purification of Ry Ry in the connected
phase. It will be interesting to investigate a possible deeper connection between the reflected entropy and

reconstruction maps.

Area fluctuations

Here, we considered a holographic state in which the horizon area for B had area fluctuations. However, in
order to do the calculation, we needed to consider a maximally entangled state between R and the ETW
brane flavours. In the ER=EPR story, this can be interpreted as considering a three boundary wormhole
with area fluctuations for the horizon of B but fixed area boundary conditions for the horizons of R and R»
respectively, see Fig. (4.10). It would be interesting in the future to understand how the area fluctuations of
R, and R affect the reflected entropy. Presumably, it will affect the spectrum on Ry Rj by including the
effects of thermal fluctuations into the corresponding superselection sectors. One may attempt to analyze

this using the techniques of the equilibrium approximation [145, 146].

Figure 4.10: The three-boundary wormhole corresponding to our current setup.

72



Chapter 5

Double Random Tensors

In this chapter, we carry on with our analysis of reflected entropy in RTNs in the hope of finding other
undiscovered aspects of the replica trick. We focus on an RTN consisting of two random tensors, which we
refer to as 2TN. 2TN can be interpreted as a model for a four-boundary wormhole as depicted in Fig. (5.1),
where the areas of the labelled surfaces are fixed to a narrow window [96-98]. A key ingredient in our
calculation is the use of Temperley-Lieb (TL) algebra and its representation theory. The appearance of the
TL algebra has deep implications on the spectra of the 2TN model, and it hints an possible connection
between our results and an emergent type-II von Neumann algebra.

More generally, we provide heuristic arguments that the calculations in 2TN are also useful for more general
settings, e.g., the familiar setup of two intervals in vacuum AdS. Since the bulk geometry is coarse-grained
down to just two tensors, the model cannot capture any of the local dynamics. However, it does capture
general topological aspects of the gravitational calculation which turn out to be the relevant aspect for the
reflected entropy, including near phase transition effects.

The results presented in this chapter is mostly based Ref. [68] as well as unpublished notes from the

author.
C1 Cs
XC1 XCs
XA X XB
A—— 1T; 15 ——B

Figure 5.1: (left) The 2TN tensor network considered in this section is built from two random tensors 77 and
T,. The parameters are the boundary bond dimensions x4, X5, Xc;; Xc, and the internal bond dimension Y.
(right) The wormbhole solution that is modeled by 2TN. The external bond dimensions corresponds to the
three horizon areas and the internal bond dimension x corresponds to the cross-section surface vy .
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Figure 5.2: The canonical purification |\/pap) consists of a superposition of a one parameter family of
geometries labelled by k. They are obtained by gluing together 2k copies of the shaded portion (see Fig. (5.1))
of the connected entanglement wedge of AB in the four boundary wormhole. The k-th geometry has 2k
copies of the entanglement wedge cross section labelled EW.

5.1 Summary of results

In Sec. (5.2), we start by motivating the gravitational construction of novel, higher genus saddles that
contribute to the canonical purification. We consider the gravitational state corresponding to the four
boundary wormhole depicted in Fig. (5.1), prepared using a Euclidean path integral with fixed area boundary
conditions. As discussed in Refs. [15, 46, 62, 63, 96-98], the replica trick for such fixed-area states is simplified
by the fact that one can simply glue together multiple copies of the original bulk geometry without having
to solve for a new backreacted geometry. Thus, we have control over the different saddles contributing to
the canonical purification. By doing a replica trick to construct the state | pzlg) for even integer m [56], we
find saddles labelled by a topological index k € Z~. They correspond to geometries with initial data slices
obtained by gluing together 2k copies of the shaded region (see Fig. (5.1)) of the connected entanglement
wedge of AB in the original state. Each such geometry contributes with an amplitude /px computed from
the path integral. The canonically purified state can then be obtained via analytic continuation to m =1,
and is approximately given by a superposition over such geometries as shown in Fig. (5.2). Thus, we obtain
a family of geometries that contribute to the entanglement wedge gluing procedure dual to the canonical
purification [56, 62, 113, 114]. Finally, computing the reflected entropy, we see that the geometry labelled by

k contributes an amount Qk%éﬂ)

weighted by its probability.

Having motivated the existence of these higher genus geometries from the gravitational path integral, we
set up the 2TN problem in Sec. (5.3) to get a better handle on such effects. The replica trick for reflected
entropy, discussed in Sec. (5.3.1), involves computing the so called (m,n)-Rényi reflected entropy [56]. Here n
is the usual Rényi entropy index and m labels the state | p%/92>, a generalization of the canonical purification.
For the reflected entropy, one needs to then analytically continue to m,n — 1. Analyzing the (m,n) replica
trick for the 2TN problem beyond the saddle point approximation requires a new tool, the Temperley-Lieb
(TL) algebra [147], which we introduce in Sec. (5.3.2). Using the resolvent trick [15, 46, 48, 67, 118-120],
we show that the reflected spectrum can be categorized into different sectors in terms of the irreducible
representations of the TL algebra. These irreps are labeled by an index k& which we call “topological” since it
corresponds to the topology of the higher genus saddles in the gravitational path integral.

With the formalism for computing the reflected spectrum set up, we compute and analyze the 2TN
reflected spectrum and entropy using the TL algebra in Sec. (5.4). As a proof of principle, we first solve for the
spectrum at first few even integer values of m in Sec. (5.4.1). In order to then relate to the semiclassical limit
in gravity, we take the limit where x is large in Sec. (5.4.2). In this limit, we find the leading-x contribution to
reflected spectrum that can be analytically continued to m = 1. The spectrum exhibits an infinite sequence of
delta function peaks, labelled by the index k € Z>o. Each peak consists of x2* eigenvalues, thus contributing

74



D(\)

D()\) R x°® eigenvalues
1 2 eigenvalues / x* eigenvalues
'
X2 eigenvalues
single eigenvalue e
/ “e /\ / single eigenvalue
} 2 T > A t o T 4 I 2 T > A
pi/x Po /X" p2/X° m/X°  po

Figure 5.3: Sketch of spectrum of 1TN vs 2TN. While the 1TN model has two peaks corresponding to the
connected and disconnected phases, the 2TN model has infinitely many peaks corresponding to the novel,
higher-genus saddles discovered in Sec. (5.2).

to the reflected entropy by an amount 2kEW (A : B). This 2TN spectrum has a much richer structure than
the single random tensor analyzed in Chapter 3, see comparison in Fig. (5.3). We analyze the properties
of the 2TN spectrum and its relation to emergent superselection sectors and quantum error correction in
Sec. (5.4.3). Using the reflected spectrum, we find consistency with the holographic proposal, Eq. (2.32),
away from phase transitions where either £k = 0 or £ = 1 dominates. More so, the new sectors k& > 2 become
important near the phase transition and smooth out the discontinuity in the reflected entropy. In Sec. (5.4.4)
we consider the leading corrections to the large x limit. We find that these corrections shift the locations of
the delta functions and spread them into peaks with finite width containing x?* eigenvalues. We give an
estimate of the shift and relevant widths. Finally, we demonstrate the consistency of our calculations with
numerical results in Sec. (5.4.5).

With this, we conclude in Sec. (5.5) with a discussion of how the results obtained here generalize to
arbitrary RTNs which model multiboundary wormholes. We provide heuristic arguments that these additional
sectors also contribute to the canonical purification in more general settings such as the two interval example
in vacuum AdS. We also comment on the relation of our results to the emergence of non-trivial von Neumann
algebras in gravitational theories. More specifically we speculate that signatures of a non-trivial von Neumann
algebra, connected to the TL algebra, will emerge from a modular flowed version of reflected entropy.

We provide a short review on Temperley-Lieb algebra in Appendix B. Other supplementary materials of
this chapter are provided in Appendix D: We review multiboundary wormholes in Appendix D.1. Calculations
of the leading corrections to the large x limit can be found in Appendix D.2. Proofs of various results used in

Sec. (5.4) are available in Appendix D.4.

5.2 Motivation: canonical purification in gravity

Before analyzing the 2TN model in detail, we provide motivation for the anticipated results by constructing
novel gravitational saddles that contribute to the canonical purification. We will discover new features
from the gravitational path integral that will be mirrored by the 2TN model in Sec. (5.4). For simplicity,
our discussion will focus on pure 3D gravity with a negative cosmological constant, where multiboundary
wormholes are well understood [148-150]. In this context, we can make a direct connection between wormholes
and RTNs, closely following and elaborating on the analysis in Ref. [122].

The 2TN model can be directly translated into a four-boundary wormhole with a hyperbolic metric as
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Figure 5.4: A fixed-area Euclidean saddle B (left) computing the norm of the state |[¢)) representing a
four boundary wormbhole (right). Due to fixed-area boundary conditions at the relevant surfaces v4, 5.c,w,
generically the saddle consists of conical defects at these locations. The Zs symmetric slice of the saddle is a
Cauchy slice = of the wormhole geometry with shaded regions and extremal surfaces represented on either
side. The surfaces Z; (light and dark green) and Z5 (dark blue) are identified as shown, but can be cut open
to use as a building block for the replica trick.

shown in Fig. (5.1). First, it is useful to match the degrees of freedom on either side. The parameters in the
tensor network are the bond dimensions. On the other hand, the moduli of the wormhole can be understood
by a pair-of-pants decomposition of the hyperbolic geometry into two constituent three-boundary wormholes.
For each three-boundary wormhole, the moduli are the three horizon areas. Gluing them together removes
one degree of freedom due to identification and simultaneously introduces additional Dehn twist moduli. In
order to have a reflection symmetric Cauchy slice and be able to apply the RT formula, we can set the twist
to zero [122]. This leaves us with the areas of the labelled extremal surfaces, each corresponding to a bond in
the tensor network. For the calculation of reflected entropy, these are the only surfaces that are relevant.!
Thus, the 2TN model, despite being a rather coarse-grained description of the geometry, is sufficient to model
the four-boundary wormhole accurately.

The construction of these wormhole geometries using a Euclidean path integral is also well understood (see
Ref. [122] and references therein). Namely, given a spatial geometry Z, a corresponding Euclidean spacetime

geometry that prepares such initial data is given by
ds? =2 (dt% + cosh®tp dEQ) , (5.1)

where [ is the AdS scale and tg is the Euclidean time coordinate. However, since we are interested in preparing
holographic states that are modelled by an RTN, it is important to fix the areas of the various surfaces that
correspond to maximally entangled bonds [96-98]. Since these surfaces are all spacelike separated from each
other, the areas can be simultaneously fixed. While the geometry in Eq. (5.1) is a valid Euclidean saddle for
the fixed-area problem, other ways of preparing the same state would generically contain conical defects at
the fixed-area surfaces as shown in Fig. (5.4). Moreover, Einstein’s equations require the conical defects to be

located at extremal surfaces [98], and this is true by construction for the wormhole that we're interested in.?

IThere are other possible cross-sections in the geometry which could be minimal. We discuss these in Appendix D.1 and for
the comparison, one can restrict to a regime of parameters where the surface vy is indeed minimal.

?Note that despite the fact that Eq. (5.1) provides a valid saddle, there is no guarantee that it dominates and in general, it is
not completely well understood which saddles dominate the path integral [151-153]. Our results should be understood to apply
when such a dominant Euclidean saddle can be found.
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Figure 5.5: The computation of (pféﬂ pan ) =tr(pyp) (e.g. m = 8) involves Euclidean saddles constructed

by gluing m copies of the original fixed area saddle in different ways. E.g., a particular saddle %,, 4 is in a
one-to-one correspondence to permutation g acting on m elements. Here, we depict one such example. The
Z symmetric slice (black dotted) is then a Cauchy slice Xy, for Lorentzian evolution and consists of 2k copies
of the entanglement wedge, where k is the number of permutation cycles crossing the horizontal dotted line
on the right (here k = 2).

m/2

Once we pick any such Zs symmetric Euclidean geometry B, we can cut it open to obtain a preparation
of the state |¢) which has a spatial geometry Z. As usual, the norm of |¢) is computed by B as depicted
in Fig. (5.4). Moreover, the advantage of using fixed-area states is that we can find candidate geometries
for computing tr (p'y5) by using B as a building block. More specifically, we can cut open 9B in the region
=1 UEy such that 021 = y4 Uy U7y, Uye, and 023 = AU BU~vy4 Uyp. We can then glue together m copies
cyclically in the region 2y as shown in Fig. (5.5). We are then left with picking a way to glue together the
remaining section Z;. The different ways of gluing =; are fixed by an element of the permutation group S,,.
An example of this correspondence is demonstrated in Fig. (5.5).%> The fixed-area boundary condition ensures
that all the contributing geometries solve Einstein’s equations and satisfy the correct boundary conditions.
Any such geometry B, 4, obtained by gluing in a manner corresponding to a permutation g, contributes
to the computation of tr(p’y5). It is also easy to check that the Euclidean action agrees with the domain
wall cost in the RTN [96]. Thus, it is clear that there is a direct correspondence between the RTN replica
partition function and the gravitational path integral, which is a fact that has already been exploited in
various calculations [46, 62, 63, 96, 97].

We can now look at B, 4 for even integer m, and interpret it as computing the norm of the state | pzj/g2>.

3In principle, we have two independent permutations on the two different portions separated by the fixed-area surface vy in
correspondence with the two tensors in the RTN. However, saddles with different permutations are suppressed due to the cost of
having a domain wall at vy .
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It is well-known from the correspondence to the RTN that only the saddles corresponding to non-crossing
permutations are important [15, 46, 62, 63], thus we will neglect all other permutations. Once we do so, it
is useful to classify the non-crossing permutations by the number of cycles crossing the horizontal middle
line, which is representative of the Z, symmetric Cauchy slice of the geometry. For a crossing number k,
it can be checked that the spatial geometry ¥y is obtained by gluing together sections of 2k copies of the
original = at the horizons. We illustrate one such example in Fig. (5.5). As described before, these are also
hyperbolic geometries with a different pair-of-pants decomposition and by construction are prepared by a
Euclidean path integral which solves Einstein equations with fixed-area boundary conditions.® Given the
Cauchy data on = that satisfies the constraint equations, one can then evolve it in Lorentzian time to find
the full spacetime geometry.b

Since the spatial geometries on the Zy symmetric slice are different for different values of k, the states are
orthogonal in the gravitational path integral approximation. Thus, we can divide the path integral into a

sum over the index k as

m/2
T = Zioms (5.2)
k=0
and for each value of k, we can write down
Ziym = (Vk,m|WVk,m)- (5.3)

The state |1, ) has an associated geometry ¥; and can be written as a superposition over different

half-permutations with appropriate weight-factors that contribute to its norm. For example, we have (for

m =4)

Yo.4) = |09) + (&)
P1.4) =CW) + ) + D) (5.4)
Po.4) = W)

where the states written above are not normalized and the overlaps of these states can be computed by

)

closing up the open ends of the permutation and computing the action of the corresponding Euclidean saddle.
We will later see in Sec. (5.4.2) that the states |¢y) are naturally associated with specific states in the
standard module of the Temperley-Lieb algebra that dominate in the large x limit. Thus, we now have
written the state | pfﬁ) in terms of a superposition of geometries with appropriate weights determined by
the path integral.

The spatial geometry ;. consists of 2k copies of the surface ~y, which is the entanglement wedge cross
section in the connected phase. Now we can use the fact that the entropy of a superposition of a small

number of fixed-area states behaves approximately linearly as argued in Refs. [46, 62, 135]. Thus, the analog

4The slice is only locally Zo symmetric, but not globally so in general. The overall Zs symmetry is restored by the sum over
saddles.

51t is important to note that in general there are also perturbative corrections which have completely neglected in this analysis
since there is no corresponding feature in the RTN. Thus, even at this level the RTN only captures certain topological aspects of
the gravitational path integral, but they are usually the important non-perturbative corrections near phase transitions.

6Depending on how sharply the areas have been fixed, there may or may not exist a smooth spacetime to the future and past
of these fixed-area surfaces (see Ref. [154] for more details).
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of reflected entropy for the state | pré2> is computed by averaging over the different sectors, i.e.,

SE(A:B) = S(paas) mzy

/2 (5.5)
=Y pr(m)(2kEW (A : B)) — pi(m)log pi(m),
k=0

where EW (A : B) is used as a shorthand to represent the area of y, independent of which phase dominates.
The weights pi(m) = (Yg, m|¥k,m) can be thought of as probability weights associated to the geometries Xy.
We postpone the precise formulae for pi(m) to Sec. (5.4.2), but note for now that we will find a function that
is analytic in m. By extending the sum in Eq. (5.5) to all integer k, we can thus analytically continue the

answer away from even integer values of m. Doing so, we obtain an expression for the reflected entropy,

Sr(A:B) =Y pr(2kEW (A : B)) — pylog pi (5.6)
k=0

where pr = pi(1). Thus, we have found that the canonical purification is given by a superposition of
geometries obtained by gluing together multiple copies of the entanglement wedge of AB as demonstrated in
Fig. (5.2). As we shall see later, the different geometries Xy, obtained by this construction can equivalently be
interpreted in terms of new RTNs which are obtained by gluing multiple copies of the network at different
bonds, see Fig. (5.13). Thus, this provides a refined version of the effective description suggested in Sec. (3.8)

for the canonical purification.

5.3 Setup

In this section, we set up the problem of finding the reflected entropy in our model of interest, the 2TN
model. Sec. (5.3.1) describes the replica trick for reflected entropy, discussing the relevant saddle point
configurations. Sec. (5.3.2) then sets up the problem of computing the resolvent for the reflected density

matrix by introducing the Temperley-Lieb algebra.

5.3.1 Replica trick for the 2TN model

To recap, the replica trick for the reflected entropy involves computing the (m,n) Rényi reflected entropy
defined as

SE (A B) = Sp(AAY) e (5.7)

B )

which is the nth Rényi entropy of subregion AA* in a state | p2é2> that generalizes the canonical purification.”

For integer n and %, Eq. (5.7) can be computed using correlation functions of appropriately defined twist

"Note that we ignored normalization factors in the state for simplicity of notation.
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Figure 5.6: (a): An illustration of the phase diagram in the saddle point limit for 2TN for generic values of

m > 2,n > 1, as a function of }gi ’;2 and }gg%. The dominant elements in each phase are shown in a tuple
as (g1, g2). The green square roughly indicates the region of the phase diagram accessed by the TL limit. (b):

As we take the limit hl)zgxxc — 0, the yellow and blue domains shrink in the phase diagram.

operators on mn copies of the system, i.e.,

1

m,n Zm,n
51(2 ’ )(A:B): 1—n10g<(Z 1)n>

Zom = ("™ S a(ga) 5 (g8) [) ™"
Zi1 = (%" Sap(tm) [0)™,

where Y z(g) implement the permutation g on subregion R.

We now specialize to the 2TN model, which is depicted in Fig. (5.1). It models a four-boundary
wormhole with horizon areas A; which are related to the external bond dimensions x; = exp[%], where
i € {A, B,Cy,Cy}. Moreover, the internal bond dimension y is related to the area Ay, of the cross section
surface vy in a similar fashion. For convenience, we denote xc, Xc, = Xc¢, which is related to the total
horizon area for region C'.

When min(A4, Ap) < Aw, the analysis is similar to that done for the single random tensor which was
studied in detail in Chapter 3. Thus, here we will only be interested in the situation where the minimal
entanglement wedge cross section EW (A : B) is indeed given by Ay in the connected phase. We will ensure
this to be the case by picking Aw to be parametrically smaller than A4 /p/c.

For this problem, there are two limits of interest that we can discuss:

e The Temperley-Lieb (TL) limit: g4 = chi,qB = %;L, x held finite while taking all external bond
1 2

dimensions X a/p/c, /¢, — 00

e The saddle point limit: lloog—xxé is held finite while taking all bond dimensions y; — oco.

While our calculations in this chapter will be in the TL limit, we briefly make a detour to discuss the

phase diagram for the 2TN model in the saddle point limit. The saddle point limit is useful since it can be
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Figure 5.7: A graphical representation of the elements lying on the geodesics I'(ga, e) and I'(gp,¢e). An
element go € I'(gp, €) consists of products of non-crossing permutations acting within each circle; whereas an
element g; € I'(ga, e) is similar to go, but is additionally conjugated by the twist operator ..

shown that at every point in phase space, one only needs to optimize over the set {e,ga, g5, X}. We will
prove this statement in Chapter 6.

For simplicity, we consider the phase diagram in the case x¢, = x¢, = /Xc- Doing so, we obtain the
phase diagram shown in Fig. (5.6a) at generic values of m > 2 and n > 1. The first thing to note is that the
phase diagram is convex as expected from the fact that the contributions of each possible permutation tuple
is linear in log x4, p-

The TL limit approximately arises when we take the limit @% — 0 and zoom into a small, restricted
region around (1, 1). This follows from the fact that the ratios g4 and gg are held finite. In the TL limit,
the domains involving the X element shrink and we obtain the simpler phase diagram shown in Fig. (5.6b).

Returning to the calculation in Eq. (5.8) for the 2TN model, we have

1 # i # 5 1 2 -
Zomm = Z XA(glgA )XB(ng )Xé(g )Xé(g )X#(g192 )’ (5.9)

mn
(XAXBXCI XC2X) 91,92€Smn

where #(g) counts the number of cycles in permutation g (including trivial ones) and we have used the
relation d(g,h) = nm — #(gh™'). In the TL limit, the elements g; /o are then constrained to lic on the
geodesics between g4,/p and e, labelled by I'(g4,5,€), since the contributions of all other elements are

infinitely suppressed. The relevant geodesic condition reads

#(g192") + #(g1) =n(m+1),  #(9295") + #(g2) = n(m + 1), (5.10)

and the permutation elements that satisfy these conditions can be parameterized as:

n n
9= <H hi) whooge =[]k (5.11)

i=1 i=1
where h;, k; are permutations that act in a non-crossing fashion on the elements m(i — 1) + 1, -+ ,mi and
trivially on all other elements. 7, can be thought of as a “twist operator” that acts on the lower m/2 elements
in each circle, cyclically permuting them as shown in Fig. (5.7). We refer the reader to Appendix A for more

details on the geodesic elements and non-crossing permutations.
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5.3.2 Resolvent via the Temperley-Lieb algebra

Now, restricting the sum to the permutations on the relevant geodesics, we can write Z,,, using the

parametrization of Eq. (5.11) as

Xex {hiski}

To proceed, we must find a way to express #(g195 1) solely in terms of h; and k;. To attack this problem we
introduce the Temperley-Lieb algebra, denoted by TL,,.
The Temperley-Lieb (TL) algebra is an abstract algebra with basis vectors consisting of diagrams of

non-crossing strands between 2m points arranged on two vertical lines as follows:

TL,, = span @ @ N (5.13)

where each point necessarily has a strand emerging from it. This vector space is further endowed with a

bilinear product given by concatenating two diagrams and replacing each closed loop by a power of y. As an

illustrative example, consider the following:

SPAboRE -

In our problem, the parameter y in the algebra is chosen to be the same as the internal bond dimension in

the 2TN model. For the interested reader, we present a short review of the TL algebra in Appendix B.

For our purposes, the important point is that there is a natural one-to-one correspondence between the set
of non-crossing permutations NC,,, and the elements of TL,, as shown pictorially in Fig. (5.8). We denote the
element in TL,, corresponding to h € NC,,, as D(h). There is also a natural trace Trrr,, on TL,,, defined

diagrammatically for basis elements by closing the strands on opposing ends and assigning the value y#1°°Ps,

e.g.

3
Trry,, = =X (5.15)
The trace is then linearly extended to the full algebra.
We now claim that
#0192 = Tegy, [D(hn)" D(kt)D(ha)" D(ks) - - D(ha) " D(ky)] (5.16)

where D(h)T denotes the transpose of D(h), obtained by flipping the diagram across its central axis between

two boundary lines. Instead of providing a formal proof, we demonstrate the above statement via pictures.
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Figure 5.8: A non-crossing permutation is represented in double line notation, where there is an incoming
and outgoing line at each vertex. The mapping from h € NC,,, to D(h) € TL,, can be thought of as slicing
the circle in half and straightening the two boundary arcs into lines while preserving the connections.

For example, for (m,n) = (4,2), we have

#9195 ") = # (vehihov kg 'k (5.17)

Then, as a sample configuration consider:

—— ——t+
D(hy) = D(hz) =
— —
' ' (5.18)
——+ —
D(ky) = D(kz) =
—_ —
For the above configuration, we have
B
D(h)"
1 2
X#(glggl) _ D(ky)
—tt— (5.19)
D(ha)"
1 2
D(k2)
4 3

as the reader can easily verify. This generalizes in a straightforward manner to arbitrary (m,n).

Using this result we can then do the sum in Eq. (5.12):

T = (X:;Xfi)nTrTLm K 3 D(h)qﬁ“’) ( > D(k)qg#““))] . (5.20)
C

heNC,, keENC,,
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where we have used the fact that the h sum is invariant under D(h) — D(h)T to drop the transpose.

We will now use Eq. (5.20) to obtain the reflected entanglement spectrum via the resolvent trick [48, 67].

The resolvent for the reflected density matrix pfﬁ‘)* is defined as

= Zm n
Rn(A) =) i (5.21)
n=0

where Z,,, 0 = x4 and Z, 1 = Trp’f5 (which can also be checked from Eq. (5.20)). Plugging Eq. (5.20) into

Eq. (5.21) we obtain a formal expression for the resolvent:

—1
Rp(\) = Trrr,, [A— W( 3 D(h)q;#<h>> ( 3 D(/.:)q;#““ﬂ . (5.22)

m m
XcX heENC,, kENC,,

Once we evaluate the resolvent, one can extract the eigenvalue spectrum D, (\) of pfzg)* from it using:

D,,(\) = —% 21_1}(1) Im R, (X + i€). (5.23)
From the spectrum, one can obtain all the (m,n)-Rényi reflected entropies as well as the reflected entropy
after analytically continuing to m = 1.

Now, in order to evaluate Eq. (5.22) we will pick a representation of TL,,. However, an arbitrary
representation will not do the job for us. In particular, we must pick a representation such that the trace
function on this representation correctly reproduces Trry,, defined above. Such a representation will in
general be decomposed into a direct sum of irreducible representations (irreps). Thus, we expect the reflected
entanglement spectrum to be grouped into different “sectors” labeled by these irreps. This is precisely the
form of spectrum we will find for the 2TN model.

There are many ways of classifying the irreps of the TL algebra. Here, we will make use of the standard
module [155]. Tt is defined by considering vector spaces with basis vectors called link states, made by cutting
the basis elements of the TL,,, algebra into half. Cutting a diagram in half will always expose an even number
of “defects” (since m is even in our case), which we label by 2k with 0 < k < m/2. We call such a diagram
with 2k defects a (m, k)-link state and the set of all (m, k)-link states B,(Cm). The vector space spanned by
B](cm) is denoted by V,im).

There is a natural action of TL diagrams on (m, k)-link states given by concatenating and replacing closed
loops with powers of x. Such a concatenation may result in a number of disconnected strands that decrease
the number of defects. We will further require that the action maps the link state to zero whenever there are

any disconnected strands after concatenation. For example:

b - B -
D
=

(5.24)
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This action then defines a representation of TL,, on V,gm), called the standard module. The usefulness of the
standard modules comes from the fact that they classify all the finite dimensional irreducible representations
of TL,,.® We will denote 7r(m)( t) to be the matrix representation of ¢ € TL,, associated with V,(Cm). For more
details on the standard module, we refer the reader to Appendix B.

Our goal is to build a finite dimensional representation

v = @ v, (5.25)
k=0,1,--- ,m/2

where the coefficients d;@m) represent the number of times the irrep V]im) appears in V™. These coefficients
are uniquely determined by demanding that the trace of V("™ agree with the trace in the TL algebra Trry,,
We will see that d,(cm) is in fact independent of m and thus, the superscript will be omitted from now on. The

trace on TL,, then decomposes into the sum of matrix traces in each submodule, i.e.,

Tepe, ()= Y. dptr(nf™(t), Vt€ TLy,. (5.26)
k=0,1,---,m/2

Finally, in order to compute the resolvent, we are left with computing the matrix

M@= Y ¢ *Ox™(D(n)). (5.27)
heNC,,

for all k. From Eq. (5.22), we see that the spectrum of the product Mém) (qA)Mlgm) (¢B) determines the full

spectrum of the reflected density matrix. In more detail, the resolvent is given by

Rn(N) =) v i : : (5.28)

ki Oxe)™ M™

where )\M<m . are the eigenvalues of M,gm)(qA)M,gm)(qB). Thus, we obtain the spectrum:

=S 4o </\ - (XAXBAM;T”)J) =S dea (A=), (5.29)
ki '

xXxe)™ o

(m) — _xax
where A7 = X5 AMA(A,m)’i.
dy, determlne the degeneracy, while the eigenvalues are given by xaxps/(xxc)™ times the eigenvalues of
M™ (g)M™ (q5)-

We emphasize that, so far, our result is valid for large x4,5/c > 1 with the ratios g4 = xa/Xc,,45 =

The spectrum takes the simple form of a sum over poles where the coefficients

XB/Xc, held fixed. The internal bond dimension is kept finite and thus, xa,p/c > x. To match the
gravitational saddles, we will eventually take the limit x > 1, but the more general result Eq. (5.29) is valid

for all values of x.

8There are certain values of x where the standard modules are reducible. However those values are discrete and only exist for
X < 2, thus, irrelevant for our problem of interest.
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5.4 Reflected entropy in 2TN

Having set up the formalism for computing the reflected spectrum via the TL machinery, we will now compute
and analyze the spectrum in this section. First, we demonstrate the formalism by performing the analysis
at finite y in Sec. (5.4.1), focusing on m = 2,4 as illustrative examples. We will then analyze the large x
limit in Sec. (5.4.2). Working in this limit enables us to obtain the spectrum as an analytic function of m
and thus, continue to m = 1. With the spectrum at hand, we compute the reflected entropy and discuss the
interpretations in terms of superselection sectors in Sec. (5.4.3). We then analyze the leading effect of finite
external bond dimensions in Sec. (5.4.4). We will see that they shift the locations and give rise to a width

for each of the peaks in the spectrum. Finally, we demonstrate consistency of our analysis with numerics in
Sec. (5.4.5).

5.4.1 Finite y

The recipe outlined in Sec. (5.3.2) allows one to compute the spectrum exactly for arbitrary even integer
m. In this subsection, we will work out the detailed spectrum for m = 2 and m = 4 following this recipe.
The purpose of this analysis is twofold: First, it serves as a proof of principle for analyzing the spectrum of
arbitrary even integer m. Note that in practice, such an analysis is not always feasible since the complexity of
the calculation increases exponentially as m increases. Second, since we pose no restriction on x here rather
than x4,p/c > X, we expect our result to hold even when x is small. This particular small x regime allows
us to make non-trivial predictions for the Rényi reflected spectrum at even integer m. Such predictions can
be checked numerically up to high accuracy, as opposed to the x — oo results we will obtain in Sec. (5.4.2)

and Sec. (5.4.3), where our numerics are limited by finite y effects.

o m=2

Let us begin with a trivial case. The diagrammatic basis of the TLy algebra is given by
TLy = (5.30)

which we will refer to as D(7z) and D(e) following the notation of NCy. There are two standard modules

VSQ) and V1(2), each being one-dimensional:

v = v = (5.31)

’ )

where we remind the reader that the modules are labelled by half the number of open lines. Using the

diagrammatic action described previously, we compute
(5.32)

To reproduce the TL trace, it is easy to check that we must pick dy = 1 and d; = x2 — 1. Thus, the
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matrices M éz) (q¢) (which are simply 1-dimensional here) are:

MP(q)=xa2+q ", MP(q)=q"

(5.33)

Using Eq. (5.29), we find the spectrum to be a sum over two poles, which have degeneracies and

eigenvalues summarized in Table 5.1.

eigenvalue A,im)

multiplicity dj

sector
k=0
k=1

(@2 +x Dz +x H/xe

1/(x*xc)

1
X2 —1

Table 5.1: The list of eigenvalues and their degeneracies for the m = 2 reflected spectrum.

e m—=4

Moving on to a slightly more involved example, consider the TL, algebra which has 14 basis diagrams:

TLy =

There are three standard modules now: VO(4), V§4), V2(4) with dimensions 2, 3, 1 respectively:

Note that any two of the (m,k)-link

(

Ve =

(5.34)

(5.35)

states with same k£ can be “paired up” to form a unique TL

diagram with 2k crossing connections. In the case at hand the total number of diagrams that can be

formed this way are 22 + 32 + 12 = 14, i.e. such pairings generate the entire set of TL, basis diagrams.

This pairing up action will be important in our large x analysis in the next subsection.

Similar to the previous m = 2 calculation, the module is determined by the diagrammatic action of

TL diagrams on link states. The matrix M ,54) is then determined by a weighted sum over the module
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representation of these diagrams. Since it is conceptually straightforward, albeit tedious, to carry out

the analysis, we skip the details and present the results. They read:

M (q) = X*q~" +5xq ™% + 3¢ X*q > +3xq % +q7!

o @=1, 7 —4 -2 -3 2, -2 3, 1 = (5.36)
Xq P+ x(a +207%) +4¢7° X7+ x(g +q71) + 3¢
Xq_3 + 2(]_2 Xq_2 + 2(]_3 Xq—S + q—2

4 - - - — — _

M@= xa2+q" xg 4302 xgi+qt (5.37)
xe P +q 2 xqg 242077 xg P +2¢72

My (q) =72 (5.38)

Reproducing the TL trace requires us to pick dy = 1,d; = x? —1 and dy = x* —3x?+ 1. The eigenvalues

and their corresponding degeneracies are given in Table 5.2.

sector eigenvalue )\,(Cm) multiplicity dy,
k=0 i 1

k=0 l_ 1

k=1 | (5¢ "X+ (2072 + 1))*/(x2x?) X2 -1
k=12 1/(@*x&x") X -x*-1

Table 5.2: The list of eigenvalues and their degeneracies for the m = 4 reflected spectrum. We have set
ga = qp = q to simplify expressions.

Note that two eigenvalues of M2(4) (¢) turn out to coincide with the eigenvalue of Mf)(q). The k=0

eigenvalues ¢ is complicated, arising from the eigenvalues of the matrix in Eq. (5.36):

2 2 3 2
=31 4((q +1)x" + (¢° + 6¢)x + 6¢
4¢°xex , (5.39)

£ /(2 + D)2x* + (2¢° + 10¢% + 12¢)x® + (¢° + 20¢* + 44¢%)x2 + (8¢° + 52¢3)x + 16q4>

ly

At large x, the expressions simplify and we find

¢> +1)? 1
0y =~ <X?'c€16)’ S CEE TR (5.40)
We see that £, scales as O(x"), while £_ is suppressed by O(x~?) and comes close to the eigenvalue of
the £ = 1 sector. However, since the multiplicity of )\54) scales as O(x?) at large x, A_ can be ignored
(at leading order in ) when calculating the entropy. The same can also be said for the sub-leading
eigenvalue of the k = 1 sector (they coincide with that of k = 2). At large x the k = 2 sector multiplicity
scales as O(x*) and it dominates over the subleading poles of the k = 1 sector.

We depict the spectra we found for m = 2 and m = 4 in Fig. (5.9). For higher m, similar calculations
can be still be carried out, although the dimension of matrices M,Em)(q) will be large and one has to revert
back to numerical methods to find their eigenvalues. However, the lesson we learnt from studying m = 2,4
modules still holds: In general there will be m/2 sectors, and the leading eigenvalue in each sector behaves as
O(x~?F) and with multiplicity ~ x2*. This hierarchy structure is a general feature for the 2TN spectra and
we will see that it persists through analytical continuation m — 1.
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D)) D(X)

A ) 4 x* — x? — 1 eigenvalues
x~ — 1 eigenvalues
J x% — 1 eigenvalues
single eigenvalue single eigenvalue

-

' > )\ ; | I:)\

AP AP NS AP Ay

Figure 5.9: A sketch of the spectrum we obtained for m = 2 (left) and m = 4 (right). The eigenvalues of
k > 0 sectors are depicted here as having a small width. This is found by including the finite external bond
dimension effects, which we will study in Sec. (5.4.4)

5.4.2 Large x limit

We have already seen how one can use the standard module of the TL algebra to extract the reflected
spectrum of the 2TN at even integer m for arbitrary values of x. In this subsection we will study this problem
in the limit xy — oco. This limit is physically relevant for comparison with holography since it corresponds to
the G — 0 limit in gravity. In Sec. (5.4.2.1) we obtain the leading x behavior of the spectrum in this limit.
Then we will analytically continue the spectrum in m in this limit in Sec. (5.4.2.2). This information will

allow us to work at m =1 to understand the reflected entropy, which is the main focus of Sec. (5.4.3).

5.4.2.1 Even integer m

We begin with a preliminary statement on the coefficients d;m) introduced previously.
Proposition 5.1. The module multiplicity number d,(cm) satisfies the following properties:
° d,im) is independent of m.

e As a function of x, di is determined by

di = 2k + 1]4, (5.41)
where the g-number [-], is defined as
" —q* k=1, k-3 k—3 k—1
X and q are related by x = [2], = q+ ¢ .
One can solve for ¢ in terms of x to obtain
k+1
1 2k+1

d —— 2(k7’n+1) 2 _ 4 nfl’ 543
g 2 (e (543

so that dj is a polynomial in x. In fact one can show that the coefficients of this polynomial are integers. For
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instance, the first few values of dj are

dO = 17
di=x*—1,
PX (5.44)
dy = x" = 3x* +1,
ds = X% —5x* +6x* -1
Although this result holds for all x, we will mostly just need the large x behavior of dj, which is
dp =~ X% + 0(x**7?) (5.45)

Proving this proposition requires some additional facts about the standard module. For this reason we present
it in Appendix D.4.

Before moving on, let us introduce some useful notation. We define an inner product (-,-) on V,im) as
follows: If x,y are two link states, (x,y) is given by flipping x across the vertical axis, matching to y and
assigning a power of x for every closed loop. Furthermore, we define (z,y) to be nonzero only if every defect

in x ends up being connected to a defect in y. A few examples should suffice to clarify the definition:

= = X = =0 (5.46)

Y

Y Y

Note that if x,y are two link states in V,gm), then
(@,y) = 80y X™> 7+ O(PTE), (5.47)

where 0,, = 1 if £ = y and 0 otherwise. In other words, the set of link states form an approximately
orthogonal basis for V,Em) in the xy — oo limit. This fact will turn out to be useful later in this section, as
well as in order to get a gravitational interpretation in Sec. (5.2).

We also define a bilinear map |- -| : V,gm) X V,gm) — TL,,, by flipping y across the vertical axis and

“pairing up” with x to form a TL diagram. For instance,

= (5.48)

This map has a nice property that for all x,y,z € V,gm) we have
[z ylz=(y,2) . (5.49)

The proof of this equality is provided in Appendix B.

Returning to our main problem of finding the leading x behavior of M ]Em)7 we ask the following question:
For any given link state v € B,(Cm), which set of diagrams acting on v produce the dominant power of x? It
turns out that, to produce the leading power of x, the right half of the TL diagram must be exactly the

mirror image of v, since this is the only way to get the maximum number of closed loops. Moreover, since
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each closed loop contributes one power of x, the overall contribution for such a diagram is O(Xm/ 2=k). This
fact is illustrated in Fig. (5.10).

Figure 5.10: The leading contributions in M ,Em) come from the TL diagrams whose right half is a mirror

image of the bases in V,(Cm). The contributing power is related to the number of defects by x™/2~*. Here
m=_8and k= 1.

Using our previous notation, the set of all possibly dominant diagrams for a given vector y € V}gm) is then

(m)
k

all elements of the form |z y| € TL,, where € V;". Note that every diagram in TL,, will be dominant in

exactly one module V,im). It is easy to write down the sum of such diagrams by making use of the bilinearity

of |- -|. For example:

Sooml om0 e D ul | FonmAE, (5.50)

t€TLm, 2eB™ yeB™

To actually compute the matrix M,im) (¢), we still need to weigh the sum by powers of g #M . Given
h € NC,,, #(h) can be computed by considering a two-sided concatenation of D(h) with a special link state
that we call ey € Vém), given by the relation D(e) = |eg eg| where e € NC,, is the identity permutation.
For example, if h = (1456)(23) € NCg, then we have

#(h) = #loop < > =2 (5.51)

This facilitates the definition of the following linear functional f, : V™ — Z[g~]:

Definition 5.1. If v is a link state in Vk(m), the value of f,(v) is given by concatenating the mirrored
reflection of eg with v and assigning a factor of ¢! for every closed loop. The action of f, on a general vector

in Vk(m) follows from the linearity of f,.

We illustrate the definition with the following example:

fq( N ) = ¢ #loop ( ) =q! (5.52)

where we emphasize that only closed loops are counted, whereas open strands are ignored. Using the linear

functional f,, we can then write

q_#(h) = q_qu(x)fq(y) (5.53)
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for all h € NC,,, with the decomposition D(h) = |z y| and x,y € Vk(m). It then follows that

= > ¢ *WDMm)yxg | D fl@a D fuwy|+ O™ PR (5.54)

heENC,, zeBg” yGBS”

when considered as a linear operator acting on V,gm).

For any v € Vk(m) we can use Eq. (5.49) to write

( 3 qA#“)D(h)) ( 3 qB#“)D(k))v
heNGC,, keNC,,
~(qas) ™ Y faa (@) faa W) fas (2) fan (W) (y, 2) (w,0)

r,y,z,wGBl(cm)

(5.55)

where we use the shorthand gap = qaqs = xaxs/xc- It then follows that at large x, the operator product
Mém)(qA)Mlgm)(qB) is of rank one with eigenvector erlﬁfj") fqa(x)z and eigenvalue

2 2

M ~ (QAB)_k Z faa (@) fou (y) (2, ) ~ (QAB)_ka_Qk Z faa @) fop (@) |, (5.56)

zyeB™ veB™

A

where we have used Eq. (5.47) to arrive at the second expression. All other eigenvalues in the same sector
are suppressed by O(x~2) 9.

The sum in Eq. (5.56) is related to the generating function G(q,r, z) of link states. This function can be
computed in various ways. We present a diagrammatic derivation in Appendix D.4 and use the result here

without proof.
Proposition 5.2. The f,-weighted generating function G(q,r, z) for the (m, k)-link states is given by

1- ZC(q, )

G(q,r,2) = 1—z(g+r)—2C(q, 2)

(5.57)

where C(q,z) = 2= (1 — 2(q — 1) — /(1 + 2(¢ — 1))® — 4gz) is the generating function of q-Catalan numbers

10 The argument r counts half the number of defects k and the argument z counts half the number of marked

points m/2.
G(q,r, z) has the following series expansion:
G(g,r,2)=1+(qg+1)z

+ ((g+ ) + (1 +29)r +12) 22 (5.58)
+ ((g+3¢°+¢*) + (1 +5¢+3¢°)r + (24 3¢)r* +r°) 25 + - -

where the formal expression G(q,7,2) = >_, 1 9, x(q)z"r* allows us to compute the eigenvalues relevant for

the reflected spectrum.

9Naively just from Eq. (5.56) it seems reasonable to assume that the subleading eigenvalue is suppressed by O(x 1), rather
than O(x~2). We will prove that the first order correction to the subleading eigenvalue vanishes in Sec. (5.4.4).
L0For more information on C(q, z) please see the proof of Lemma B.1 in Appendix B.
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Corollary 5.3. The matriz M,im) (qA)Mlgm) (gB) has a single nonzero eigenvalue at x — oo given by

k.m

Aprom) = (48) "X (gm/2,6(aap))” (5.59)
with multiplicity x*.

To conclude, for each even m we identify m /2 eigenvalues given by Eq. (5.59), labeled by k& € {0,--- ,m/2}.
At large x the multiplicity of these eigenvalues goes as dj ~ x2*. All the other peaks found in Sec. (5.4.1)

vanish in the limit.

5.4.2.2 Analytic continuation

Here, we will perform the analytic continuation away from even integer m to obtain the reflected spectrum
at m = 1. This will be accomplished by analytically continuing the generating function coefficient to g, 2 -
We have seen that for even integer m, only a finite number of eigenvalues are present, i.e., only the sectors
labelled by even integer k € {0,--- ,m/2}. However when taking the m — 1 limit, we will see that all integer
values of k contribute to the spectrum, forming an infinite tower of eigenvalues.

We start with Eq. (5.57). In particular, we need an analytic form for the coefficients in the series !

G(g,r,2) Z k(g2 (5.60)
k=0

The r expansion is easy to perform:

Gl(q,r,2) i (1—2C(g,2))2" rk = igk(q,z)rk (5.61)

0 (1—2q—2C(q,z))kt!
and thus, we identify

(1-20(q,2))z"
9{a%) = (1—2q—2C(q,2))F+! (5.62)

=C(g,2)(C(q,2) = )Hq™"

where we have made use of Eq. (D.113) to arrive at the final expression. We then still need to expand this
in terms of z and get a closed form for the coefficients. We will use a contour integral trick to pick out the

appropriate coefficient, i.e.,

T 2mi

1 dz 1 dz _

Where the contour is chosen to enclose a neighborhood of z = 0. The function C(q, z) has a branch cut

running between
1

15 va)?*

and there are no other poles or branch cuts on the complex plane 2. We can then deform the contour to

Z4+ = (5.64)

13We use the integer variable u as the z exponent of the generating function G(q,r, z), as opposed to the even integer valued
m. The analytic continuation of m — 1 is equivalent to continuing p — 1/2.

120ne must be careful about choosing the square root branch cut in C(q, z). In particular if we want the function to behave
nicely at z — co we have to use C(q,2) = (1 —2(¢ — 1)+ |¢ — 1|v/z2 — 24+/Z — 2—)/(22). This new C(gq, z) is equal to the original
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enclose the branch cut running between (z_, 24 ).
Now we would like to perform the analytic continuation for 1 — 1/2. This introduces an extra branch cut

emanating from z = 0, which does not affect our choice of contour. Since C(q, z) has the property

lim Im(C(q,2)) =— lim Im(C(q,z)), (5.65)

Im 2—0+ Im 2—0—

one can rewrite the integral as twice of the imaginary part of the UHP contour :
=+ dz b —k
g1/2.( Im C(q,2)(C(g,2) —1)"q¢™". (5.66)

For illustration, we evaluate the integral for the first few values of k:

e k=0
‘We have
#+ dz
g1/20(0) = = Tm / Cla, ) (5.67)

This integral results in the analytic continuation of the ¢-Catalan numbers at p = 1/2,

91/2,0((1) = Cl/2(Q)~ (5.68)

C,.(q) is a piecewise function depending on whether g > 1:

q2Fi (1 — p, —p;25q), q<1,
Culq) = ; (5.69)

" o Fi (1 —p,—p52,¢71Y),  g>1

which will be important seeds for expressing the coefficients for all the subsequent k. The eigenvalue in

this sector is

Ao = 4apC1y2(d4p)° (5.70)
with multiplicity 1
o k=1
The k =1 integral reads
*+ dz 9
gl/? 1 _ Im 3/2 q O (qa ) O(q7 Z)) (571)

Using Eq. (D.113) it can be shown that C(q, z) satisfies the quadratic equation
) 1 1
C*(q,2) + q—l—; C(q,z)—&-;:O, (5.72)
so that one can write the integrand as a linear functional of C(g, 2):

1 =
91/2.1(q) = ;Im/ dz(q 27?2 — 27320 (q, 2)

= qflcs/Q(Q) —C1/2(q)

definition in Proposition 5.2 near the z = 0 neighborhood and hence they have the same Taylor expansion.

(5.73)
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The eigenvalue of this sector is given by
M= x"*(gaBC3/2(axp) — C1/2(dap))? (5.74)

with multiplicity x2.

e k=2

We can use the same trick to reduce the integrand to be linear in C(q, 2):

1 *dz )
91/272(q) = ; Im ﬁ q C(q7 Z)(C(q7 Z) - 1)
1 #+
= ;Im/ dz (q_22_7/2 _ Z—5/2(2q—1 + q—2) + 2’3/2)0((],2) (575)

=q ?Cs2(q) — 247" + a7 )C3/2(q) + C1/2(q)

The eigenvalue of this sector is

1 _ _ 12
Ag = qulax * (%24305/2((1,4113) — (29aB + q,243)03/2(q,4113) + Cl/Q(qul?)) (5.76)

with multiplicity x?.

Thus, we see a general pattern emerging. The integrand of g; /1 is a polynomial of C*(q,z) and we can
always reduce it to some linear functional C(q, z) by repeated uses of Eq. (5.72). The outcome can in turn be
expressed in terms of (half-integer valued) ¢-Catalan numbers. Therefore, we only need to find out how the

reduction works for general k.

Proposition 5.4. The generating function G(q,r, z) in Proposition 5.2 can be alternatively resummed as

(r+q)Clg,2) —r/z
r2+(q+1-1/z)r+¢q

G(g,r,2) = (5.77)

We present the proof of this statement in Appendix D.4. This result allows us to write down an explicit

form of gr(q, 2) as a linear functional of C(q, 2):

Glq,r2) =C(g.2) |1+ (¢ 'z = )r+ (¢ %22 = (¢>+2¢ )z +1)r°

(P = (20 480 2+ (P 202+ 30 ) = )t (5.78)

+ other terms...

The detailed expression of the remaining terms not proportional to C(g, z) is irrelevant for determining
the contour integral. From this expansion, one can read off the coefficients g, 5 1 as linear combinations of

n

g-Catalan numbers easily: A negative power of 27" in the expansion coefficients becomes C /51, (q) after

performing the contour integral.

5.4.3 Reflected spectrum and the effective description

In previous subsections, we have seen exact calculations of spectra for even integer m and arbitrary x, as well

as how the large x limit allows us to extract analytic behavior of the eigenvalues in individual sectors. With
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Figure 5.11: The plot showing the first few px’s as a function of gap. It is clear that at any point in parameter
space, the dominant contribution comes from either pgy (if gap < 1) or p; (if gap > 1).

D(X)

R X eigenvalues

X eigenvalues
X2 eigenvalues
/\ single eigenvalue
> )\

ps/x P2/X pl/x p

Figure 5.12: The sketch of the 2TN reflected spectrum at m = 1. It features an infinite tower of eigenvalues
labeled by the sector number k. Note that the eigenvalues of the k > 0 sectors are drawn with a width here.
This effect comes from taking the external bond dimensions x 4,p,¢ large but finite, which we will investigate
in detail in Sec. (5.4.4).

these results in hand, we are finally ready to tackle the problem of analyzing the reflected entropy for the
2TN model.

In the limit y — oo, the leading eigenvalue in each k sector is

e = X" (91705 (@ap))? = X i (5.79)

with multiplicity dj, &~ x**. The numbers pj, are independent of x and satisfy « Pk = 1 from the normalization
condition. We plot the first few py’s as a function of g4 in Fig. (5.11). The spectrum in this limit is a sum

of the eigenvalue over all k sectors:

\) = i X2 (A = M) (5.80)

We present a sketch of the full reflected spectrum in Fig. (5.12).
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Figure 5.13: An illustration of Eq. (5.82). The canonical purification |pag) is effectively described by a
superposition of tensor network states. For k = 0 we have the factorized state with zero cross-section. To
form the k£ > 0 sectors we start from a simple network state made from two copies of the 2TN state. Then for
each k we glue together k such states, resulting in a TN with total cross-sectional area 2k In x, as indicated
by the number of bonds cut by blue dashed lines. This figure should be compared to Fig. (5.2), where each
effective TN corresponds to a genus-(2k — 1) bulk solution of the replica boundary problem.

The reflected entropy obtained from this spectrum is given by

Sr(qaB) = — Z YA In Ay
k=0

= N (5.81)
== prlnpe+ Y pr (2kIny)
k=0 k=0

Eq. (5.81) is the main result of this chapter. There are two different contributions to the reflected entropy.
There is a term from the classical Shannon entropy for the probabilities py, plus an infinite sum over terms
proportional to 2k Iny, weighted by py. This should be compared with the result, Eq. (5.6) obtained from
the gravitational path integral in Sec. (5.2). We can now interpret each k sector as a state with a effective
tensor network configuration with different EW cross-sections.

Based on the gravitational calculation (Sec. (5.2)), the results on single random tensor (Chapter 3),
and the analysis on finite external bond dimensions effects (Sec. (5.4.4)), we suggest that the effective TN
states are built as follows: Consider the natural doubling procedure [115] for the canonical purification, by
duplicating the 2TN state and gluing the two copies across the boundary of the bulk extremal surfaces
(C1 and C5 in our case). Call such a state |t1). Then, construct a series of wave functions |¢)y) by further
replicating |11) k times and gluing across the AA* BB* bonds. By construction |¢) will have an entropy of

2k In x and we have the follow effective description

VPAB) = Vo lbo) + > v/Pr 1) (5.82)

k=1

where |t)g) is a factorized state across AA* and BB*. The states |¢;) are approximately orthogonal at large
X, e (¥i];) ~ 6;; + O(x™!). Calculating the entropy of Eq. (5.82) gives precisely Eq. (5.81) at x — oo.
We give a diagrammatic illustration of Eq. (5.82) in Fig. (5.13).

Eq. (5.82) should be compared to the states prepared by a gravitational path integral in the sense of
Eq. (5.4). There we have a superposition of bulk solutions of EW cross-section 2k In x, whose reduced density
matrices pg, 44+ have approximately orthogonal support. One should think of the integer index k as capturing
the topology of the effective description. By gluing together k copies of the state |1)1) we have created a bulk
solution with genus 2k — 1. From the entanglement structure we also identify emergent superselection sectors
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labeled by the topological index k € Zx>(. The area operator is:

Laa- =) 2kInxII, (5.83)
k

where IIj is the projection operator down to the orthogonal subspace of |i;). Note that in real scenarios
with finite bond dimensions, the aforementioned superselection sector is only approximate as supports of the
density matrices are not exactly orthogonal.

As discussed in Ref. [37] there is a connection between the area law and quantum error correcting codes.
Taking this seriously here we see that the effective description looks like an emergent error correcting code,
with only a central degree of freedom. Hence it is perhaps better thought of as a classical error correcting
code. Presumably including bulk degrees of freedom in the original network, before canonically purifying,
will give rise to a genuinely quantum version of this code.

Returning to the calculation of the reflected entropy, the phase transition of Sg(A : B) is controlled by
the list of classical probabilities py as a function of gag. They can be shown to have the following asymptotic

behaviors

5 1 Dk—1/2)* 44

-1
Qap: 1— ZqAB’ WQAB ) gas > 1,

(Pos P1,PE>1) ~ (1 1 1 L(k—1/2)? ,

(5.84)
B, Sqap, o _12) 1.
4QABv 4qABa 7T(2]€)2F(k)2qAB) 3 gaB <

Away from phase transition, i.e., for gap < 1 (gap > 1), one can argue that either k = 0 (k = 1) is the
dominant sector. The probabilities pj of higher k sectors are always suppressed by factors of ¢ (¢71), as
shown in Eq. (5.84) and Fig. (5.11). This matches our expectation, as in the limit gap < 1 the state |1)) is
dominant and we have Sg(A : B) ~ O(1); whereas as gap > 1 the state |¢1) is dominant and we get the
classical result Sgp(A : B) =2Inx = 2EW (A : B). Near the vicinity of phase transition, i.e. gap = 1, all the
k sectors become important in determining the entropy, as one can check numerically that the probabilities
pi for k > 2 are of comparable order of magnitude, although numerically smaller than pg ;.

The (1, n)-Rényi reflected entropies are given by the sum

an _ 1 2k(1—n)
S _lnln<zij pe | (5.85)

In reality, only the first two terms k& = 0,1 can ever dominate the sum as long as n > 1. Therefore we found

that S’g’n) has three different approximate behavior depending on the value of g4 p:

ﬁ lnpO ~ 07 gaB < 17
1,n n —2/n
Sl Linpyx tlngap, 1< qap < X2, (5.86)
2In X dAB > X(2_2/n)7

which matches exactly the expected results from the phase diagram in Fig. (5.6) in the parameter regime
where our analysis is valid. As we take n — 1, the middle regime vanishes and we get back the single sharp
phase transition of reflected entropy.

Interestingly, for n < 1, the k > 2 saddles can dominate. For sufficiently large x, the term y2*(—™) in
Eq. (5.85) becomes increasingly important for larger k. For even integer m, this implies that the highest
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sector, i.e., k = %, dominates. For m away from the even integers, this leads to a runoff to arbitrarily high &
which leads to the entropy being infinite in our approximation. In practice, such calculations would receive
large corrections from the finiteness of the external bond dimensions x 4,p/¢ since there is a constraint on

the rank of the reflected spectrum arising from min(x%, x%).

5.4.4 Corrections to the spectrum

In this subsection, we study the effect of having finite bond dimensions x and x4,B,c,,c,. This is motivated
by comparing to situations such as the four boundary wormholes with large but finite horizon areas and EW
cross-section. Moreover, this allows us to make better comparison with numerics we obtained in Sec. (5.4.5).

Taking the internal/external bond dimensions finite alter the large x spectrum in independent ways. In
short, the leading effect of finite internal bond dimension x is to shift the location of the poles in each sector.
In contrast, the leading effect of finite external bond dimension xa,5,c,,c, is to spread out each pole into
a narrow mound. In the following we will examine how these effects work together to create a consistent
spectrum that matches our numerical data well and deepens our understanding of the effective description of
the 2TN as a sum over superselection sectors. However, the calculation of the finite internal bond dimension
X corrections is rather technical and involved. For this purpose we present the full analysis in Appendix D.2

for interested readers.

5.4.4.1 Eigenvalue shifts

Here we give a qualitative summary of the effect of finite internal bond dimension y. We identify two
phenomena as we take y finite: First, the orthogonality of link state basis v € B,(Cm), ie. Eq. (5.47), fails.
Second, elements not of the form {|z y|;z,y € Blgm)} in the sum ) w,gm)(D(h)) will start to contribute. These
two effects introduce O(x™!) corrections to the leading eigenvalue in each sector \x. The latter effect also
splits the degenerate zero eigenvalues in each sector. However, such corrections only appear at O(A\xx ™ 2),
so they do not affect the entropy at leading order. Note that O(\yx~?2) is also the order of the leading
eigenvalue Ag41 in sector k 4 1. This is seen in our numerics from the fact that the number of eigenvalues
in each mound is not exactly dj, but has corrections suppressed by O(x~2). We will refer to this as sector
mizing, which should be understood as a signature that the wave functions in different superselection sectors
acquire a non-zero overlap when y is finite. Both effects are seen in our explicit examples of integer m (sector
mixing is only visible in m > 4) in Sec. (5.4.1).

We conclude the brief discussion by giving expressions for the leading order correction to the eigenvalues
A, for k=0 and £ = 1. We chose to do so since the shifts of these two eigenvalues completely characterizes
the leading order correction to the reflected entropy for all g4p. Corrections to other sectors are also
obtainable via analytic continuation of the related generating function, but their contribution to the entropy

is sub-leading. Please refer to Appendix D.2 for a detailed treatment.
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-1 -1
q4 +¢q _ _ _ _ _ _
Al = A 7B X E 01/2(%4%) ((1 + QA123)D3/2(QA119) —2(1+ inr;)Dsm(qA}B) + D7/2(qA119))

+ (qa8C3/2(a4p) — C1/2(QA}9))21 ; (5.87)

—1 —1
Ay =4 tip

_ _ 12
O 3 (01/2(qA113) —(2qaB + q,243)03/2(QA}3) + q,%lBCS/Q(qAIIB))

+ (=Ciy2(dap) + 448Cs/2(d45))
x ((=(gap — 1)?D1j2(axp) + 2045 D3 2(a4p) + danDsj2(dap)

—2(¢ap + QAB)D7/2(QZ}9) + QQABD9/2(QZIB)) . (5.88)
where the function D, (q) is given by
2F1(1—p, 1= p; 15.q), q<1,
D,(q) = (5.89)

"o (1—p, 1 —pl5q7Y),  g>1.

5.4.4.2 Fluctuations in each sector

So far, the spectrum we have obtained consists of a bunch of poles, which in turn happened because we were
working in the limit of large external bond dimensions. The leading effect of taking these dimensions finite
will be to spread out each pole into a narrow mound, and the goal in this part will be to find a crude estimate
for the width.

Based on the results obtained in the single random tensor, we conjecture that such spreading effects arise
from including non-trivial permutations that act on the n-cycles. This motivates us to consider summing

over a more general class of elements:

g1 =" (H hi) 7,)_17 g2 =Yg H k; 7q_1 (5.90)
j=1

i=1

where as before h;, k; € NC,, and additionally we pick p,q € NC,,. =, stands for the n-twist operator
associated to p applied to the lower half of the elements. This should be contrasted with Eq. (5.11) where
we restricted to v, = vy, and v, = e. Note that these elements are only schematic since there is a possible
overcounting when h;, k; € NC,, /5 x NC,, 5, which will be accounted for later.

We remind the reader that in order to calculate the partition function Z,,, in Eq. (5.9), we need to
evaluate #(glgzl) and #(91951). These numbers depend on whether h;, k; € NC,;, /5 x NC,,, /5 (in which case
we call these permutations disconnected) or not (in which case they are called connected). For the connected
sector, we furthermore classify h; and k; based on the number of crossing connections when viewed as an
element of TL,,: We say h € NC,, j if D(h) = |z y| for some z,y € B,(Cm).

For now we restrict the sum to the set of h;, k; where all of the permutations are in the same subclass

NC,, ;. but we allow k to vary. Using the formalism of annular non-crossing permutations (see Appendix A
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for details) we get

> #(him ), h; € NCio
= 5.91
FHlaga) { S () — 2 — #(pr ), hi € NConion (5:91)
=1y _ Zj #(kj771)7 kj € NCm,O 5.92
#o295) { S kgt — 2n— #(0)), Ky € NCpo xoo (5.92)

Note that it is possible to give a formula for an arbitrary mixture of two different values of k but those effects
turn out to be subleading in determining the width, so we ignore them for now.

The partition function factorizes into different subclasses based on the number of crossings:

Ty = 20 + 20D 4+ 72 ... (5.93)
where the disconnected sum 1is
70, = <§2§B> S = T ey (D)D) - D(h)D (k) (5.94)
c

hi,k; ENCopy 0

The summation over p, q drops out since they all overcount the same set of permutations. Since its form
receives no correction from the new p, ¢ twist operators, we conclude that the single eigenvalue \y remains
unchanged in this approximation. We expect that by including the correction from mixed k contributions, Ag
may be shifted by a small amount or spread out to a very narrow peak.

Moving on to the connected sectors, there is no overcounting and we get extra corrections from the cycles

in p and q:

1 " —1 _ NS (ks
k 24 (p7, ") | 2#(a) > #(hi) — 205 #(ky)
A () | T Y B R E
c p,qENC,, hi,k?jENC.m,k

-1
xTr?Fqu (D(h1)D(k1) -+ D(hn)D(ky)) , (5.95)
where the trace pattern is determined by the partition pattern in pg~—!. For example,

Tel' 2@ (D(h1) D (k1) D(ha) D (ks) D(hs) D(k3)) 5.0
— Trqy,,, (D(7n)D(k1)D(hs) D(ks)) x Trpy,,, (D(hs)D(ks)) '

The dominant contribution in Eq. (5.95) comes from p = 7,,, ¢ = e, which gives the single eigenvalue identified
in Sec. (5.4.1) and Sec. (5.4.2). The summation over p and ¢ introduces nontrivial correlations in Z,, which

we now focus on analyzing.

1 1

Denoting pg~" =[], ¢; to be the individual cycle decomposition of pg~', we can write

=, #(hy) — X #(k5) -
> gy S0 TLEL (D(h1)D(k1) -+ D(hy)D(ky))
hi,kjeNCm,k
el (5.97)

= Terw, [ S ™D S "Dk :
{ci} heNC, x kKENCpm 1

where |¢;| is the number of elements in a given cycle. Then, using the fact that the leading order result
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Figure 5.14: Calculating the partition function in the each k sector is equivalent to calculating the partition
function for finding the n-th moment of an effective two-tensor model (up to a normalization factor) with
two external bonds with bond dimensions x4 and x%, along with an internal bond with dimension y2*.

Zy 2 xR AR in large y limit for such sector, we have

)\k " 2 71 -1
XaXp p,qeNC,

Interestingly, the partition function Z,sk) is identical to the partition function of an equivalent tensor network
(up to an overall normalization), see Fig. (5.14). One should view this effective network as an instantiation of
the effective description of the kth superselection sector, in the sense that our result exposes the effective
internal entanglement structure of a given sector. Note that the while the picture presented here is not the
same as the one proposed in Fig. (5.13), they have the same entanglement spectrum up to leading order in
X’Z /B We conjecture that by including the sum over different k sectors in the full partition function, one can
restore the hidden internal structure of the effective description.

The normalized spectrum of the tensor network shown in Fig. (5.14) is the same as the spectrum of the
product of two rectangular Ginibre matrices, which has been worked out in the large bond dimension limit
[107, 156, 157] using techniques from free probability theory [158]. The resolvent for this network can be
obtained through the following cubic algebraic equation

AW(A) = (1+ W)L+ caW (V)1 + csW (M) (5.99)

where ca = x?* /X2, e = x**/x% and W ()) is related to the resolvent by AR(\) = (1 + W())). Working in
the limit c4,cp < 1, we expand Eq. (5.99) to first order in c4,p:

AW(A) & (14+ WA+ (ca+ cg)WN), (5.100)

whose solution gives a Marchenko-Pastur distribution [159] with parameter ¢ = ca +cp = x2*(1/x%4 +1/x%).

Putting back the correct normalization factors, we obtain an approximate spectrum for the k-th sector

1
= -2 )

D) VORI N M = h (10 ) G0

i.e. the single eigenvalue ). in each sector spreads out into a narrow peak with width ~ 4" (XZ2 + X,}Q).
Note that the approximation in Eq. (5.100) fails when y* and Xa,/B are of comparable size. This is the
case in numerics when the number of eigenvalues in a higher k sector approaches the finite rank constraint
min(x%,x%). In this case one should use the full solution to the cubic equation Eq. (5.99) instead.

Note that it is rather straightforward to adapt our calculation for arbitrary finite y and finite integer m.
First, one needs to replace the number of eigenvalues in each sector by x2¥ — dj in Eq. (5.98) to account for
the finite x effects. Further, our previous analysis in Sec. (5.4.1) shows that there are subleading eigenvalues

in each sector that are suppressed by O(x~2) compared to the leading one. Repeating the calculation, we
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find that every eigenvalue in a sector will obtain a width, not just the leading one. Finally, for even integer
m the normalization term (Z,,1)" in Eq. (5.8) can no longer be ignored. Far from the EW phase transition,
Zum 1 is sharply peaked around min(xaxs, xc)™ ! and it merely restores the correct normalization for the
spectrum. However around the transition, Z,, ; has a large variance and it introduces extra fluctuations to
the spectrum by spreading each mound further out in addition to the Z,, ,, effects computed here. While this
is indeed a concern for our computation, we expect our result in this subsection to hold well when our system

is far from the EW phase transition at gap ~ 1.

5.4.5 Numerical results

Throughout this section, we saw that the use of TL algebra is extremely powerful and enables us to extract
various analytical properties for the 2TN reflected spectrum. To recapitulate, working in the limit x4, 5,c > X,
it allows us to obtain y-exact spectra for even integer m (Sec. (5.4.1)), leading (Sec. (5.4.2)) and sub-leading
(Sec. (5.4.4.1), Appendix D.2) contributions to m — 1 spectra, reflected entropy (Sec. (5.4.3)), as well as
fluctuation effects (Sec. (5.4.4.2)). In this subsection we corroborate these analytical predictions by comparing
to numerical results. All the numerical results presented here are obtained directly from simulating the 2TN
state by contracting two random tensors along the internal bond and calculating its reflected spectrum using
exact diagonalization.

First, in Fig. (5.15) we present the histogram of the reflected spectra for m = 2 and m = 4. The analytic
predictions for the locations of the eigenvalues come from Table 5.1, 5.2, and the spreading within each
sector is given by a modification of Eq. (5.101) to accommodate for finite-y effects. The bond dimensions
used in these plots are {x4, x5, Xy, XCss X} = {40,40,80,80,3}. We remind our reader that the analytic
results presented here are exact for arbitrary x and when the system is sufficiently far from phase transition.
Fig. (5.15) serves as an exceptional confirmation of our formalism in the regime of small internal bond
dimension Y.

Moving on to the analytic continuation m — 1 which is relevant to the canonical purification and reflected
entropy, we present a similar histogram of the spectra for m = 1 in Fig. (5.16). The bond dimensions used
here are {xa, XB, XC1» Xy X} = {16, 16,40, 40,4} (top) and {30, 30,70,70,4} (bottom). As opposed to the
case of even integer m, here we only have analytic control of the spectra up to first order corrections in Y.
The leading order analytic results of the eigenvalues are given by Eq. (5.79), and the first order corrections
for A\gp and \; are given by Eq. (5.87) and Eq. (5.88). The corrections to higher A;’s are obtained via direct
numerical contour integration to extract the relevant generating function coefficients, i.e. Eq. (D.20) and
Eq. (D.42). The number of sectors that show up in the numerics abides the rank constraint, namely that the
total number of eigenvalues cannot exceed the dimension of the matrix. Therefore, we expect to see higher
k sectors materializing as x 4 xp increases, which is indeed the case here: As we increase y 4xp, we see an
emergent fourth peak in the bottom plot compared to the top plot.

We also plot the transition of classical sector probability py in Fig. (5.17) as functions of ¢4 5, and likewise
the normalized reflected entropy Sr/2EW in Fig. (5.18). The bond dimensions used in these two plots
are {xa,xB, X} = {25,25,5} and we vary x¢, = x¢, to obtain different values of g4p. The colored dots
indicate the numerical results. We present two different analytical predictions here: Solid lines are the ones
that includes first order corrections (Eq. (5.87), Eq. (5.88), etc.), whereas dashed lines are the leading result
(Eq. (5.79) for py, and Eq. (5.81) for Sg), which is valid in the limit x — oo. It is evident that the first order

corrections captures the non-trivial effects of small internal bond dimension surprisingly well.
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Figure 5.15: Plots of spectra of the (unnormalized) density matrix pf& = Trpp- p;f”]/;) <pZL]/32| for m = 2

(top) and m = 4 (bottom), with the red lines being the analytic predictions. Note that in the case of m = 4
there is an additional eigenvalue that lies close to the leftmost peak. This is a finite x effect that is not visible
in our m — 1 analytics. Nevertheless our results for even integer m are x-exact which is well confirmed by
these two plots.

5.5 Discussion

In this chapter we have continued the study of canonical purification and reflected entropy for random
tensor networks. The picture developed in Ref. [48] for the tensor network version of the gravitational gluing
construction persists to more complicated tensor networks. In particular we have found a detailed match

between gravitational saddles that contribute to the canonical purification with higher genus equal time
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Figure 5.16: Plots of spectra of the m = 1 reflected density matrix ng)s = Trpg- |\/pas) (v/pas| for
{xA4,XB, X1y XCrs X} = {16, 16,40,40,4} (top) and {30, 30,70,70,4} (bottom). The analytic predictions are
shown as red lines. The mismatch of the k = 3 peak in the bottom plot is due to the fact that we can only
work numerically in low bond dimension. As we scale up the bond dimensions in numerics, the agreement
becomes better. We expect that it can also be resolved by improving the analytics, including subleading
corrections to the eigenvalues beyond first order.

surfaces and certain saddles in the statistical mechanics model governing random tensor network calculations.
Area fluctuations, probed using reflected entropy, are represented by the different topological sectors.

For the model at hand the topological sectors are governed mathematically by the Temperley-Lieb algebra.
The representation theory of the TL algebra then gives a nice picture of the emergent superselection sectors

that can be vividly seen in the numerics. The higher genus equal time surface arise from cutting open the TL
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Figure 5.17: Plots of the sector probability py. The analytic result (solid lines) is obtained from the product
of sector multiplicity dj and eigenvalues Ax. The dj used here are the exact expressions in Eq. (5.43) and
the A\, used here includes the first order shifts. We also incorporated the exact expression of px at y — oo
(Eq. (5.79)) as dashed lines.
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Figure 5.18: Plots of the reflected entropy, normalized by twice the EW cross-section 21In y. The analytic
prediction (red) is obtained by summing over the eigenvalues in k = 0,1, 2 sectors (these are the only available
ones due to the rank constraint), including the first order corrections and the contribution from spreading
(Eq. (5.101)). We have also included the form of Sg in the limit x — co shown as the orange dashed line for
comparison.

106



Cl CQ
XC1 XCs

Tl X12 T

XA XB
X34

Figure 5.19: (left): The 4TN network consists of four internal vertices connected by internal bonds y;;.
(right): It models a four-boundary wormhole with a handle.

diagrams. The genus, and hence topological index, is determined by the number of strands that are cut.
In the rest of the discussion section we summarize some possible avenues for future work and some

intriguing speculative connections to the theory of emergent non-trivial von Neumann algebras.

5.5.1 General RTNs and multiboundary wormbholes

Our analysis in this chapter was focused on the 2TN model, where we performed a concrete calculation using
the TL algebra, and matched the results to those obtained from the gravitational path integral in Sec. (5.2).
There is in fact a more general connection between RTNs and multiboundary wormbholes [122]. In this
section, we would like to make some comments on the presence of similar saddles for general multiboundary
wormbholes.

Consider an arbitrary RTN built out of constituent random tensors with three legs, an example is
shown in Fig. (5.19). Such an RTN models a multiboundary wormhole where the tensors correspond to
the constituent pair-of-pants decomposition of the spatial geometry. In general, there are multiple ways to
decompose a hyperbolic geometry into pairs-of-pants. However, the RTN has fixed-area surfaces which pick
a preferred pair-of-pants decomposition. The network is then interpreted as a coarse-grained descriptions
of the given geometry. In Ref. [122], it was argued that this model captures the entanglement entropies of
such multiboundary wormholes accurately. Our results here show that the same is true for the canonical
purification and the reflected entropy, thus enlarging the scope of the random state model discussed in
Ref. [122].

Firstly, note that the construction of geometries contributing to the canonical purification of a multi-
boundary wormhole is similar to that discussed in Sec. (5.2). Since all the horizons have fixed areas, the
saddles contributing to the path integral in Fig. (5.5) are identical, except that we now have more ways to
glue together the fixed-area saddles. In terms of the Cauchy surface obtained on the Zs-symmetric slice,
the saddles can be classified by picking a particular choice of entanglement wedge and then gluing together
multiple copies of the respective bulk regions.

In general, the TL algebra techniques can be applied to more general RTNs as well. For example, consider
the 4TN network shown in Fig. (5.19). The computation of the average partition function Z,,, in this
network includes a sum over independent permutations g; on each of the tensors. As before, we can take the
limit of external bond dimensions to be large. In addition, if we also take the internal vertical bonds to be
large, it is easy to see that we can then restrict the sum to the non-crossing permutations g, ,3 € I'(g, ) and

g2/4 € I'(g9B, €) since the other permutations are suppressed. For each internal horizontal bond x;;, there is
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ij
labelled by the bond dimension. Thus, Z,,, is computed by a product of TL traces, one for each horizontal

a domain wall cost of the form x ). Asin Eq. (5.16), this can be done by introducing a TL algebra
bond. However, the analysis is complicated by the fact that the traces are coupled to each other. It would be

interesting to analyze this using free probability theory techniques [110, 160] in the future.

5.5.2 Junctions for the cross-section

Our results in this chapter rigorously apply to situations where the entanglement wedge cross section is
spacelike separated from all the external RT surfaces. This guarantees that we can simultaneously fix their
areas and thus, model the holographic state by an RTN. Our TL algebra techniques can then be applied to
such situations. However, we now argue that the TL algebra analysis can be useful for more generic situations
in holography where all the surfaces are not necessarily spacelike separated.

For example, consider a three-boundary wormhole with horizons ~; for i = A, B, C, each of the subregions
being one asymptotic boundary. As discussed in Ref. [48], when the minimal entanglement wedge cross
section is given by one of the external horizons, this situation is modelled by a single random tensor with three
boundary legs, one for each subregion. However, in general there is a non-trivial cross section surface vy as
shown in Fig. (5.20), which can be important for the reflected entropy. In fact, we show in Appendix D.1
that this is true for a large region in parameter space.

In such a situation, the TL algebra analysis cannot be applied directly since there is a codimension-3
junction where the surface vy meets 7. One can check that the areas of v and vy can indeed be
simultaneously fixed. This is manifest from the fact that the area of vy generates a kink transform [161-163],
which preserves the minimal entanglement wedge cross section. Nevertheless, the RTN in fact fixes the areas
of 7o, and ¢, as well, since they correspond to bonds in the network. It can be checked in various models
[164] that these areas do not commute with vy .

Nevertheless, the saddles contributing to the gravitational path integral for tr(p’yy) discussed in Sec. (5.2)
are valid even if we don’t fix the area of ~y,. Thus, for the state | pZ;}éQ), we still obtain the same geometries
Yk, labelled by their genus. While, we cannot then use the TL algebra technology to compute the Rényi
reflected entropies, we can gain some mileage from directly assuming that the RT formula can still be applied
to each of these geometries. Since this is a superposition over a small number of geometries (not exponentially
large in the entropy), we can use the expectations from Ref. [135] to argue that the (non-linear) entropy
is given by the expectation value of the minimal area, a linear operator defined on the gravitational phase
space. This expectation is clearly borne out in the situation where we could fix the area of vy as seen from
Eq. (5.5). With this assumption, even in this situation, we expect to have an analog of Eq. (5.5). It would be
interesting to generalize our TL algebra construction to include a non-flat spectrum which allows fluctuations
for v and make this heuristic argument more rigorous.

With the above heuristic understanding, our 2TN results also apply to a rather generic situation that
arises for subregions in a CFT. In such a situation, the areas of the extremal surfaces or equivalently the
external bond dimensions are IR divergent, whereas the cross section is finite. The external areas can be
regularized by allowing for a small splitting between the regions. Having done so, the density matrix pap
can in fact be defined rigorously by the split construction described in Ref. [56]. The regularization removes
subtleties associated with fixing an IR divergent area. With this understanding, the analysis is similar to the

heuristic argument described above for the three-boundary wormhole and thus, our results are rather generic.
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Figure 5.20: A three-boundary wormhole with horizons labeled as v4,/c and the non-trivial EW cross-section
yw . While one cannot fix the individual area of vy and v¢, ¢, simultaneously, the area of vy and the sum
Yo = Yo, + Yo, can be fixed simultaneously.

5.5.3 Emergent von Neumann algebras

Temperley-Lieb (TL) algebras play an important role in the study of type-II; subfactors, initiated by Jones.
A subfactor is a subalgebra B C A of von Neumann algebras both of which do not have centers. In this case
the TL algebra emerges from a sequence of further subalgebras B C A C A; C A, ... constructed using the
Jones basic construction [165]. Then the TL operators are generated by a sequence of projection operators
that arise from the basic construction. The TL,, algebra for even m then appears in the relative commutants
Airm N A of two of the algebras in this sequence. The algebra generated by all of these relative commutants
would reproduce a type-II; algebra. We might then speculate that our model gives one more avenue [93, 94,
166] through which non-trivial von Neumann algebras can arise from gravitational like theories.

Comparing to the emergent TL algebras in our tensor network model the relevant inclusion involves
decreasing the number of handles on the fixed time slice. To really see an emergent type-II; algebra we would
need to move to high topological index. In particular m — co would be interpreted as giving rise to such
a non-trivial von Neumann algebra. Interestingly by continuing m away from an even integer we have a
mechanism by which arbitrarily high topological index can arise, unfortunately however these states become
increasingly suppressed at high k by the sector probabilities. Near the phase transition all sectors are excited,
however to really claim an emergent type-I1; algebra we would need to somehow project to a high k& sector so
that py is peaked around kg which is then approaching co. If we managed this then the leading reflected
entropy = ko In x is diverging with kg, a necessary condition for an emergent type-II; von Neumann algebra.
Perhaps this can be achieved by perturbing the original density matrix by some x4, dependent operator
that excites the topological mode ko(x4,5), with ko — co as we send x 4,5 — oo while holding fixed x. We
certainly need to send the external bond dimensions to oo so that the rank condition does not come into play.
A natural guess for such a perturbation is to apply p%p (half sided) modular flow to the original state ’pz/ §>
In fact one can show, using similar techniques to Section 5.4, that under modular flow the probabilities py,
get modified to

(8) = Qg 91/24is k(@) 91 /25,8 (Aa ) (5.102)
at leading order in x. This change of py(s) is seemingly consistent with the above requirements. We have
confirmed this numerically (see Fig. (5.21)) and analytically using the method of asymptotic analysis (see

Appendix D.3). We would then need to pick s(x4,xs) diverging and one important question is can we

control such a computation while taking s large? This would be an interesting avenue to pursue since it
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Figure 5.21: (Top) Sketch of the (x-leading) modular flowed sector probability pj as a function of modular
parameter s. One can see the shift of dominance to higher k sectors as s increases. (Bottom) The
numerical result of pg for £ = 0,1,2, shown as colored dots. The bond dimensions used in the numerics are
{xa,XB, Xy, XCs, X} = {16,16,40,40,4}. One sees a good match with the analytical prediction at small s.
To match the behavior at larger s one would need to access higher k£ sectors in the numerics.

would give rise to a computable model of topological gravitational like fluctuations. It is also important to
understand the exact nature of the putative emergent type-II; von Neumann algebra other than simply via
entropy computations.

There are also some superficial similarities to Ref. [86] that are worth exploring further. Ref. [86] gives a
Hilbert space interpretation of the double scaled SYK model, for which a diagrammatic solution was given
in Ref. [167]. These are the chord diagrams and the Hilbert space description is in terms of cutting open
these chord diagrams, similar to the Temperley-Lieb Hilbert spaces. In this case an emergent type-II; von

Neumann algebra naturally arises.
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Chapter 6

Generic Tensor Networks

In this chapter we will examine canonical purification in RTNs defined on generic graphs. We will prove that
at large bond dimension, the integer Rényi reflected entropies are determined by minimal triway cuts through
the network when the system is sufficiently far away from phase transitions. Minimal triway cuts can be
formulated as integer programs which cannot be relaxed to find a dual maximal flow/bit-thread description.
We prove that the Markov gap that measures tripartite entanglement is lower bounded by the integrality gap
of the integer program that computes the triway cut. To make connection with AdS/CFT, we apply this to
the hyperbolic tensor networks and provide evidence for the Sp = 2EW conjecture.

The results presented in this chapter are based on Refs. [48, 70].

6.1 Summary of results

In AdS/CFT, the RT formula relates the entanglement entropy of the boundary and areas of minimal surfaces
in the bulk: a measure of bipartite entanglement in pure states. Minimal surfaces can be equivalently
described by bit-threads [65, 66], maximal divergence free locally bounded flows between two boundary
regions. Furthermore, these bit-threads give a vivid picture of bipartite entanglement in the boundary
wavefunction, with a thread corresponding to a distillable EPR pair.

In RTN states, the bit-thread picture can be formulated more directly via the tool of linear programming and
flow networks. For RTNs defined on a graph, the RT prescription can be formulated as an optimization program
minimizing over all cuts that divides the vertices into two disjoint sets each containing the corresponding
sets of boundary vertices whose entanglement entropy we wish to compute. Bit-threads correspond to dual
maximal flows between the two sets of boundary vertices with flow capacities set by the bond dimensions.
This correspondence is a version of the max-flow min-cut theorem that can be proven using strong duality
theorems from the theory of linear/convex programs.

Bit-threads however tend to give a misleading picture of multipartite entanglement. For example, a
bipartite dominance conjecture was formulated for three party holographic states based on the existence
of such bit-thread configurations [59]. However, the conjecture of Ref. [59] contradicts other measures of
tripartite entanglement beyond von Neumann entropies. For example, Ref. [58] argued using the reflected
entropy that holographic states have large amounts of tripartite entanglement and thus, disproved a version
of the bipartite dominance conjecture.

Generally, minimal areas are only a limited probe of the underlying geometry, and one might expect
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other geometric objects — such as surfaces of various co-dimensions — to play an important role in a putative
correspondence between geometry and quantum information. For example, computational complexity is
believed to be associated to co-dimension 0 or 1 regions in spacetime [168, 169]. There are now also hints
that a class of tripartite entanglement should be associated to spatial co-dimension 2 objects [101]. In this
chapter we find further evidence for the latter by proving a correspondence between reflected entropy and
a minimal triway cut. Triway cuts generalize the bipartite cuts described above, and are likely the closest
graph analog of a co-dimension 2 object that is defined for any graph.'

Triway cuts are integer optimiaztion programs that cannot be dualized to a bit-thread description 2.
Relaxing the integer constraint gives a linear program that underestimates the cut. The ratio between these
values, the output of the integer program over that of the linear program, is generally a difficult quantity to
compute, and is called the integrality gap. In fact, computing the integrality gap is an NP-complete problem
[170].

We now introduce our main results in more detail. Recall that the reflected entropy Sgr of a state pap is
defined as the entropy of AA* in the canonical purification |p114/ §> € Haa+pp+. The Renyi generalization of
Sr is a simple one parameter family of quantum information measures:

S™M(A:B) = - N (6.1)

InTrp" 4+ « =Trpp+
n—1 N Irpaa PAA I'BB

We will prove:

Theorem 6.1. For integer n > 1, the reflected entropy of a random tensor network state at large bond
dimension, with a unique entanglement wedge for AB : C and a unique triway cut for A: B : C' (with tensions

specified below), satisfies:

. sWaiB) 1 o n .
Xlggo Iy = n_lAt(A.B.C)fn_l.A(AB.C’), (6.2)
where Ay(A : B : C) is the area of a multiway cut with tensions t = (ta.p,tp.c,tc.a) = (2(n —1),n,n) * and

A(AB : C) is the area of the minimal cut (with tension 1) for AB : C.

Averaging is taken with respect to the Haar measure over unitary matrices that are applied to vertex
states in the graph. See Definition 6.1 (and also Sec. (2.4)) for the precise construction. The triway cut is
defined in the same way as a cut: we split the vertices into three disjoint subsets containing respectively
boundary vertices A, B, C. The area is then the sum over the edges e which intersect two of the three regions,
weighted by the respective tensions and w(e). See Definition 6.7 and Fig. (6.1).

The Markov gap is defined as [101]:

h(A:B)=Sgr(A:B)—I(A:B) >0, (6.3)

where I(A : B) is the mutual information. The Markov gap vanishes iff the three party state has a particular

structure: a classical superposition of states with only bipartite entanglement between the three different

1The cuts themselves are co-dimension 1, however the three cuts meet at some locus that might considered co-dimension 2.

2What we mean here is that the (Lagrange) dual flow programs do not have the same optimal value, i.e. there is a duality
gap. However it is possible to find a “dual” if one considers more exotic optimization problems. See Sec. (6.7) for more discussion
on this topic.

31n this chapter we mostly consider triway cuts defined with this tension. For this reason we will often abbreviate the triway
cuts simply as A(A : B : C) when it is unambiguous.
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Figure 6.1: (left): A network with three boundary vertices (open dots) A, B, C, showing the definition of
a triway cut, allowing for different domain wall tensions. This figure is schematic: edges in the graphs are
weighted by some unspecified bond dimensions. (right): To compute the reflected entropy we must subtract
the minimal cut for AB : C' which is always contained inside the C' domain as shown. We should also divide
the areas by (n — 1).

parties [57]. The Markov gap thus detects a certain class of non-trivial tri-partite entanglement.*

In particular, we have the following lower bound:

Theorem 6.2. Under the uniqueness assumption for n = 2 in Theorem 6.1, the (normalized) Markov gap

(MG) of a random tensor network state at large bond dimension is lower bounded by:

MG = lim M

x—oo  Iny

>2As(A:B:C)—A(A:BC)— A(B: AC) — A(C : AB), (6.4)

where As is the standard minimal triway cut with equal tensions s = (1,1,1).
Proof. This follows from BnSgL) < 0 and Theorem 6.1 applied at n = 2. O

We will show that the right hand side of Eq. (6.4) is determined by the integrality gap of the integer
program [172]:

min 3~ pleyule)

VL € PapUPacUPrc: Zp(e) > 1,
ecL

(6.5)

where p(e) € Z>o and P, refers to all paths through the edges of the network connecting vertices x and y.
The integrality gap IG is the ratio between the two optimal values of the program before and after relaxing
the integer constraint on p, a standard concept in the theory of integer programming [64]. The original
program computes A(A : B : C) with equal tensions, while the relaxed program allows the domain walls to
split into pairs and form three minimal cuts with tensions 1/2 (see Fig. (6.2)). The relaxed program is dual
to the multicommodity flow problem [59] on three parties for which efficient algorithms exist. In this sense,

we can interpret the integrality gap as an obstruction to obtaining a bit threads picture. Explicitly our bound

4h vanishes on GHZ states, so it does not detect all kinds of tripartite entanglement [58]. A refined version, based on the
entanglement of purification does better [33, 171]. This is generally harder to compute but the results of this chapter help
compute it for a class of RTN states, as we will show in Chapter 7.
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Figure 6.2: The optimal configuration for the integer program computing the triway cut at n = 2 involves
domain walls (solid red) that indicate the location of p(e) = 1. The optimal configuration for the same
program after removing the integer constraint has domain walls (dashed green) with p(e) = 1, that relax to
the minimal surfaces in contrast with the triway cut.

relates the two “gaps”:
MG > (IG—-1)x (A(A: BC)+ A(B: AC) + A(C : AB)) (6.6)

Roughly speaking IG — 1 > 0 measures how computationally hard the integer program is, and so this gives
an intriguing link between the Markov gap and complexity.’

While an obvious and natural continuation in n away from the integers exists for the triway cut problem,
we have not yet rigorously established that this still computes the n-Renyi reflected entropy. We have no
reason to believe otherwise®, and so it is worth noting that the limit n — 1 reproduces the entanglement

wedge cross-section:

. 1 n
7111311 (n1A(A:B:C)—n1.A(AB:C)>:2EW(A:B) (6.7)

The calculation of reflected entropy in holography involves analytically continuing a two-parameter replica
trick computation. It was shown in Ref. [117] that the continuation of the naive saddles proposed in Ref. [56]
suffers from an order of limits issue, an analog of which exists for RTNs as well [48]. By incorporating new
saddles, rigorously performing an analytic continuation in m and proposing an analytic continuation in n via
the triway cut problem, we have resolved this issue in general RTNs. This motivates a similar prescription
with the inclusion of new saddles even in AdS/CFT.

A summary of this chapter is as follows. In Sec. (6.2), we state our main theorems pertaining to the
computation of Renyi reflected entropies for the state | p%é?) with m > 2 an even integer. In Sec. (6.3) we give
some required background, including results on standard network flows, minimal cuts, and the mathematics
of permutations and set partitions that make appearances in various statistical mechanics models that we
consider. Sec. (6.4) proves that the optimal solution to the reflected entropy statistical mechanics model can

be found in a series of coarser models, finally ending in the multiway cut problem. In Sec. (6.5) we continue

5Note that this is logically different from the computational complexity of the state often discussed in AdS/CFT [168, 169].

6 Any lingering doubt might be used to challenge the conclusion [58] that the bipartite dominance conjecture [59] is false.
However, independent of the EW duality, using Eq. (6.6) we have now rigorously proven the bipartite dominance conjecture
false for any random tensor network with IG # 1 for the program Eq. (6.5).
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the m parameter away from even integers to m — 1, where we make contact with the reflected entropy.
In this step we use the method of moments in conjunction with a weak form of measure concentration for
random tensor network states. In Sec. (6.6), we apply our result to hyperbolic graphs and calculate the
reflected entropy therein. In Sec. (6.7), we discuss various aspects of our work such as bit threads, the relation
to entanglement of purification as well as generalization to hypergraphs. Several lengthy proofs are relegated
to Appendix E.

We end this section with a list of common notations used in this chapter:

Table 6.1: Glossary of symbols and notations.

term definition first defined in
G={E,V} graph Def. 6.1

w(e) weight of an edge e € F after Def. 6.1

Eq[V'] or E[V'] | set of edges that have some vertex in V' before Def. 6.2

Vg|E'] or V[E'] | set of vertices that lie in £’ before Def. 6.2

Pa.B set of paths from A to B before Def. 6.2

73,473 set of edge-disjoint paths from A to B before Def. 6.2

T4 OL T'A:B cut region containing A or dividing A : B before Eq. (6.30)

u(iryC B cut surface of a region r C V Eq. (6.30)

A(A: B) minimal cut for A and B Def. 6.6

A(A:B: () minimal triway cut among A, B and C' Def. 6.7

1.(z) indicator function of the set s after Eq. (6.40)

SN symmetric group of order N before Eq. (6.13)

Py partitions of a set of order N before Eq. (6.16)

By set of string of N Boolean algebras before Eq. (6.19)

P(g) coarse graining P : Sy, — P before Eq. (6.16)

g0 (P) coarse graining qg, : Prn — Pu(g) Eq. (6.57)

ax (p) coarse graining qx : P, — Poy Eq. (6.16) and Eq. (6.57)
s(q) coarse graining s : Pa, — $(Pay,) ~ Ba, before Eq. (6.70)

b*(q) coarse graining b* : Py, — (Ba,)* ~ Zs before Eq. (6.81)

Uk largest partition with a singlet at location k after Eq. (6.19)

#(z) cycle (z € Sy) or block (z € Py) counting function | Eq. (6.13) and Eq. (6.17)
#1(q) number of singlets in ¢ € Py before Eq. (6.70)

anb meet of a and b beginning of Sec. (6.3.2)
aVb join of a and b beginning of Sec. (6.3.2)
d(g1,92) (91,92 € Sn) Cayley distance in Sy Eq. (6.13)

d(q1,q2) (g1, q2 € Pn) distance on semimodular lattice Py Eq. (6.17) and Eq. (6.58)
dy(s1, 52) (s; = s(p;) : p; € Py) singlet distance on Py Eq. (6.70)

d(by, b2) (b1,b2 € By) Hamming distance on By Eq. (6.20) and Eq. (6.81)
dy(z,y) (x,y € E) graph distance induced by p: £ — R Eq. (E.2)
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Throughout this chapter we will define various distance functions on different sets. Most of these distances
will be termed universally by d(-,-), with an understanding that we use different definitions based on the set
in context, as shown in Table 6.1. For a function p(e) on the set of edges p : E — R we will sometimes write
p(E'") = .cp ple) for a subset E' C E.

Note: So far in this thesis we have been denoting the identity element in the group Sy to be e € Sy. This
unfortunately clashes with our notation for edges. Hence in this chapter we will use id to denote the identity
element in Sy as well as the finest element of set partitions Py. This will hopefully not cause confusion to

our readers.

6.2 Setup

We summarize our key mathematical theorems that lead to our main result, setting up some of our notation
at the same time. Our main results utilize the replica trick used to compute reflected entropy in random

tensor networks (see Sec. 2.3-2.5). For definiteness we reiterate the constructions below:

Definition 6.1 (Random tensor network states). Consider an undirected graph G = (V, E') where edges
correspond to unordered pairs of vertices e = {v1,v2} for e € E and v1 2 € V. We mark special vertices

0 C V as boundary vertices and the graph describes a pure state in the Hilbert space:

Wy e @H",  H = @ H, (6.8)
)

v€ED e€E(v

where E(v) := {{z,y} € E: x = v or y = v} are the subset of edges that contain v and x(e) is the bond
dimension of the edge. For a given vertex v not in the boundary, i.e. v € V\9, we pick random tensors

T(v) € HY according to the Haar measure. Then the states in question are defined via:

o= o @ol)(gw), (©.9)

where |U,) € 7—[;1)(2) ® ’HSJ(QE)) is a maximally entangled state between the vertex Hilbert spaces of {v1,v2} = e.

For convenience, on the graph we will use the rescaled weighting

: (6.10)

which we hold fixed as we send xy — oo.
We will care about graphs with boundary 0 = AU B LI C, and we are interested in using the replica trick

to compute the averaged (m,n)-Renyi reflected entropy

Sim™(A: B) = —n_llnTr(pEM),)", pTY. = Tepp.

oatt) (o) (6.11)

where pap = Trc |¢) (¢| and where m € 2Z>;. The n-th moment Tr(pfﬂ)*)" contains nm copies of [¢) (],
and the overline denotes that we compute the quantity in Eq. (6.11) averaged over the choice of T'(v) from the

Haar ensemble. This calculation reduces to a statistical mechanics model with vertex-valued group elements
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g(v) € Spmn:

T = 5 Zuw= Y e (= Y dia).a)nxe) | | (6.12)

{g(v)} e={z,y}ek

where {9(v)} denotes a sum over all configurations of g(v). We have denoted by d(g1, g2) the Cayley distance
in Syn:
d(g1,92) = mn — #(g195 ), (6.13)

where #(-) is the cycle counting function. Note that we do not sum over permutations at boundary vertices;
instead their permutations are fixed by the patterns of contractions that compute the moments in Eq. (6.11).
We fix g(v) = ga for v € A, g(v) = gp for v € B, and g(v) = id for v € C' where id is the identity group
element. For detailed for of the permutation elements g4 and gp please refer to Sec. (2.3).

A particularly important group element that will arise in the optimal configuration g(v) for Eq. (6.12)
is the element X that has made numerous appearance in Chapter 3. It is uniquely defined as the element
X € Sy, with the largest Cayley distance to the identity, d(X,id), that lies on the joint Cayley geodesics
defined by: d(ga, X) +d(X,id) = d(ga,id) and d(gp, X) + d(X,id) = d(gp,id). See Sec. (2.3) and Sec. (2.5)
for details on this element.

Exactly evaluating Eq. (6.12) for general graphs is difficult, but in the large x limit we can often obtain a
very good approximation by evaluating Eq. (6.12) at a saddle point, i.e., finding the configuration g(v) that

maximizes the exponential and dropping all other terms. Namely, we have

Zppmexp | = D dd),dy)nxe) | , (6.14)
e={z,y}€E

for g(v) now the configuration minimizing the “free energy”

Y. dg@),g(y)) nx(e) . (6.15)

e={z,y}€E

The saddle point approximation is valid away from phase transitions and thus, in such generic situations, the
problem of computing Sgn’n)(A : B) reduces to the problem of finding the optimal configuration g(v). It is
this problem that we focus on in this chapter.

In order to find the optimal configuration g(v), with minimal free energy, we will relate this statistical
mechanics model to a sequence of increasingly coarse grained models where we throw out some information
contained in g(v). See Fig. (6.3). As a result the free energy can only decrease (as we prove rigorously), but
then — crucially — we will prove that the minimal free energy in the most coarse-grained model upperbounds the
free energy of the original model! This loop of inequalities allows us to use the tractable, most coarse-grained
model to find the minimal free energy. This approach was inspired by the solution to the single tensor case
studied earlier in Appendix C.1 where a similar sequence of steps was followed. Below we first describe
the various coarse-grained variables, then we define the various stat mech/optimization problems we are
interested in. An important ingredient is the theory of set partitions which form a lattice, in the sense of a
partially ordered set, with binary operations V and A. Boolean algebras will also make an appearance. We
review the necessary background material in Sec. (6.3.2).

Given a permutation g € Sy we can associate a set partition P(g) € Py by mapping the cycles to subsets
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Figure 6.3: An illustration of the coarse-graining process used to establish our main result. We start from
g € Simn as shown at the top of the figure. For the convention used here to represent g: Each circle represents
the m replica, and each circle is further replicated n times (here m = 4 and n = 3). The actions of g are
represented as directed arrow connecting different replicas. See Sec. (2.3). To pass from S, to Pa,, we
divide the mn elements into 2n blocks, each containing the m /2 elements in the corresponding half circle. We
join two blocks if and only if any element in them can be reached by repeated actions of g. To pass from Ps,
to Bay, we simply label each block by a number in {0,1}. That is, we label a block by 0 if it is not connected
to any other block (such a block is called a singlet), and by 1 if otherwise. The result is a bit string of length
2n.

of Zy, simply forgetting how elements within each cycle are permuted. In our case N = nm. We then
further coarse-grain this set partition further by blocking P(g) into partitions of the 2n blocks in P(X). This
reduction effectively removes dependence on m. More specifically for each g € S,,,, we associate an element
in Py, via gx(g) : Smn — P2y, defined as:

ax(g) = (P(g) vV P(X))/ ~ v~y iff {z,y}Vv P(X)=PX), (6.16)

where V is the least upper bound operation on the lattice and the quotient is applied element wise to each

element within the partition. We introduce a distance on set partitions’:

d(q1,q2) = #(q1) + #(q2) = 2#(q1 V ¢2), (6.17)

where #(-) now counts the number of subsets in the partition. Note that #(g) = #(P(g)). This distance will
replace the Cayley distance function in Eq. (6.12). For the problem in P,, the boundary elements will be

"See Sec. (6.3.2) for some properties of this metric. See Ref. [173] for some discussions of this metric.
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fixed to partitions: g4 = gx(ga) and ¢p = gx(9p) and gc = id = ¢x (id). See:

: (6.18)

qa :
e
where we have represented each dot as an element in Z,,, each corresponding to a cycle in the blocking
permutation X, with position arranged in a similar fashion as in Fig. (6.3). We connect two dots by a line if
they belongs to the same subset in the set partition. The partition distances are d(ga,¢g) = 2(n — 1) and

d(qa,n,id) = n.
At the next level we introduce Boolean variables b = {b¥}2" € (Z3)®?" = By, that detect the presence

of a singlet in g € Py, (subsets with size 1). Define:

b (q) =2 — #(u V q), (6.19)

where uy, for k € {1,2,...2n}, is the partition with a singlet at k plus a block of size 2n — 1 containing with
the rest of the elements. Thus b* = 0 implies there is a singlet at location k; otherwise b* = 1. The distance

between two Boolean strings by 2 is:
2n
Abr,bs) = 30k — B}, (6.20)
k=1

In this case the boundary conditions are by = 11...1 and b =00...0.

The set of walks/paths in a graph between v; and ve will be denoted P, and consist of a sequence of

1,029
edges L C E that join at common vertices and start (end) at vy (v2). The set of edge disjoint paths will be
denoted 731,171)2 — these are paths with no repeated edges (vertices may be repeated). The vertices vq and v
may be replaced by sets of vertices with paths starting/ending on any vertex in the respective set. For a
graph G = {V, E} and a subset of edges E’' C E, denote Vg[E'] ={v eV : {z,v} € E' or {v,y} € E'} as
the set of vertices that lie in E'. Similarly Eg[V'] = {{z,y} € E: 2 € V' or y € V'} are the set of edges that
have some vertex in V' C V. The subscript G in E¢[-] and V][] shall often be omitted when the referencing
graph is unambiguous. Lastly for a function on edges p: £ — R we define p(E') = > . p(e) for a subset
E' CE.

Define the various optimization problems based on the refinements g — g — b:

Definition 6.2 (Reflected entropy optimization).

R=minR(g), Rlg)= 3  w(e)dg(=)9(v)), (6.21)
e={z,y}€E

where g : V' — Sp,, and such that g(A) = ga , g(B) = gp and ¢(C) = id.
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Definition 6.3 (Set partition optimization).

Q=minQq), Q= )  wle)da()q)) (6.22)

e={z,y}€E
where ¢ : V' — P, and such that ¢(A) = ¢4 and ¢(B) = ¢p and ¢(C) = id.

Definition 6.4 (Boolean optimization).

B= mbin B(b) (6.23)
B(b) = min > w(e)r(e) (6.24)
eclE
subject to VL € Pap : Zr(e) €2(n — 0y, bay) +2Z>0 (6.25)
ecL
and Vee E :r(e) > Bd(b(m),b(y))-‘ ) (6.26)

where r : E — Z>¢ and b : V' — Ba, such that b(A) = b(B) = bag = 11...1 and b(C) = 00...0, where

b = /\UGV[L]b(v) denotes the piecewise and operation on Boolean algebra along the path L 8.

Definition 6.5 (Integer program).

I = min Z w(e)(o(e) + p(e)) (6.27)

p,o

ecE
subject to VL € Pap : Z(J(e) +p(e)) €2(n —0,1),0) +2Z>0 (6.28)
ecL
and VL € Pap.c : Zp(e) >n, (6.29)
ecL

where p(L) =) .., ple) and p,0 : E — Zxo.

Our main result is to prove that the optimal solution to these programs is given by a particular minimal
and multiway cut program that we now define. A cut (or cut set) r for two vertices (or sets of vertices),
A': B is defined as a subset » C V such that A C r» and B C 7.2 A cut surface u(r) for a given subset r C V
comprises the subset of edges that lie on the “boundary” of r <> r¢, in the sense that for all e € u(r) the pair

{z,y} = e satisfies € r and y € ¢ or vice-versa. In other words:
w(r) = E[r] N E[r9] (6.30)

Definition 6.6 (Minimal cut). The minimal cut for A : B partitions two sets of boundary vertices 0 = AU B

and minimizes:

A(A: B) = mTinA(r) (6.31)
A(r) =Y wle) = w(p(r))
e€pu(r)

over all subsets » C V, such that the boundary vertices A C r and B C r°.

8That is for L = {{vo,v1}, {v1,v2}, -+, {vi—1,v:}}: by, = b(v1) Ab(v2) A+ -+ Ab(v;) and (b1 A b2)* = bk A bE.
9We will sometimes denote a cut that divide boundary vertices A : B as 4.5, or simply as r4 when B = A°,
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rc

Figure 6.4: The entanglement wedge of C' is denoted r¢ (blue) and the complement is (r¢)¢ (yellow). For
any triway cut configuration (o, ',+’) (demarcated by solid lines), we can construct a better triway cut
(o, B,7) (separated by dashed lines) such that ro C 7.

Definition 6.7 (Triway cut). Fix some tensions t = {ta.5,t5:0,tc.a} With ta.5,t5.c,tc.a > 0 and boundary

vertices 0 = AU B U C. The triway cut problem minimizes:

Ag(A:B:C) = min)At(a :B:7) (6.32)
a8y
Afa:B:y)=tap Y wle)+tpc Y, wle)+tea Y, w
e€u(a:pB) e€p(By) e€pu(y:a)

= tapw(p(a: B)) +ip.cw(p(f: 7)) +tapw(p(y: o))

over all subsets (a, 3, 7) such that allfUy =V with A C o, B C 8,C C v and where u(ry : r2) = E[r1]NE[rs].

Remark. The triway cut is a special case of a multiway cut and we will often refer to it as such. The equal
tension case is the standard multiway cut problem, which arises here when n = 2 (see e.g. Ref. [170, 172]). In
the context of AdS/CFT, multiway cuts have been studied previously in [174-176].

We note that minimal cuts must always lie inside some optimal multiway cut region:

Lemma 6.3. Given an optimal solution to a minimal cut problem for C : AB, rc C 'V then there exists an

optimal solution («, 3,7) to the triway cut problem for (A, B,C) with ta.c = tp.c and such that rc C 7.

Proof. Consider any optimal triway cut (o/, 5’,7'). Construct « = o/’ N (r¢)¢, 5= p'N(re) and vy =+"'Ure
(see Fig. (6.4)). We note:

Z w(e) < Z w(e) (6.33)

ecp(a:fB) ecu(a’:p")

since p(a: B) 2 p(a’ : B') by construction and w(e) > 0. Also,

doowle)+ D wle) =w(p())
e€pu(ay) e€u(B:y) (6.34)

=w(p(y)) +wp(re)) —w(p\re)) < w(p(')),

where in the last inequality we used the fact that y\r¢ is a cut for C': AB and that r¢ is a minimal such cut.

Putting these inequalities together we have:
Ao, 8,7) < A, 8',7'), (6.35)
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implying equality and that (a, 8, ) is a minimal triway cut satisfying the properties stated in the Lemma. [

The main theorem of this chapter establishes:

Theorem 6.4. The minimum of each of the programs defined above are determined by an optimal solution

to the multiway cut problem with t = (ta.p,tp.c,ta.c) = (2(n—1),n,n):
R—AAB:C)nlm—-2)=Q=B=I=A(A:B: (). (6.36)

Proof. Consider some minimal cut r¢ for C': AB. There is an optimal solution to the triway cut problem

with r¢ C v by Lemma 6.3. Set

ga, TEQ
9B, HAS ﬂ
g(x) =4 . (6.37)
id, T Ere
X, xE€y\re
We then estimate:
R<A(AB:(0)d(id,X)+ Ac(A: B:C) (6.38)

by direct computation and since d(X, ga) = d(X,gp) = n and d(ga, gp) = 2(n — 1) give the correct tensions.

After this we prove a chain of inequalities in the other way, R > A(AB : C)d(id, X) + @ (Lemma 6.11
and Lemma 6.12) , and @ > B (Lemma 6.14 and Corollary 6.15), and B > I (Lemma 6.16) and finally
I>Ay(A:B:C) (Theorem 6.17). Together with Eq. (6.38) this implies equality through the chain. O

Theorem 6.4 only asserts that the optimal value of the program R are equivalent to that of the triway cut.
It need not be the same as the one that was constructed above and there may be other degenerate solutions
that achieve the minimum — Indeed one generally expects a huge degeneracy when a phase transition happens.
Such phase transitions in tensor networks are usually signaled by a degenerate minimal surface. The following
theorem states that the optimal solution constructed above is unique when the system is far away from such

transitions.

Theorem 6.5. Let g : V. — S,y be an optimal solution to the reflected entropy permutation group optimization
problem R on graph G with a unique solution (c, B,7) to the triway cut problem for (A, B,C) and a unique
solution r¢ to the minimal cut problem C : AB. Then g is unique and of the form as given in Eq. (6.37).

We prove this theorem in Sec. (6.4.4) after we establish the necessary Lemmas that lead to Theorem 6.4.

6.3 Preliminaries

6.3.1 Min cuts and Max flows

We discuss a version of max-flow min-cut that is convenient here. Consider the undirected max flow problem

written as a linear program and in terms of edge disjoint paths:

max Z c(L) (6.39)

L€73A,B

subject to: Vee E Z e(L)1p(e) < wle) (6.40)
PEﬁA,B
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where 11(e) =1 if e € L and 0 otherwise. and where ¢ : ’I/D\A,B — R>¢ and we maximize over all such maps.
Any ¢(L) that satisfies the constraint above is called feasible while any feasible ¢ that achieves the maximum
is called optimal.

Let us derive the dual program. For each constraint we introduce a function p : E — R>( and minimize

over p(e):

= max min Z (L) + > ple) | w(e) - Z ¢(L)1L(e) (6.41)

LePa,B ecl PcPaB
The minimum is —oo with p — oo for some e if ¢ is not feasible. If ¢ is feasible the minimum is p(e) = 0.
Thus this gives back the original problem after maximizing over ¢. We can now exchange the maximum and
the minimum since the function is linear in ¢ at fixed p (and hence concave) and linear in p at fixed ¢ (and

hence convex), so we can use the von Neumann’s minimax theorem:

= min max Z ple)w(e) + Z e(L)(1— Zp(e)) (6.42)

P c ey
eckE LeP ecL

Maximizing over c gives +oo unless ) p p(e) > 1 in which case we find ¢(L) = 0. Thus we can restrict to
the set of dual feasible p satisfying this later constraint.

In summary the dual program is defined in terms of a map p: E — Rx¢:

mpin Z ple)w(e) (6.43)

subject to: VL € 73,473 Zp(e) >1 (6.44)

As we just derived, this problem satisfies strong duality.! We can also impose the further constraints that
all L € P p (not necessarily edge disjoint) also satisfy > ., p(e) > 1 without changing the minimum, since
it does not change the set of feasible p.

It is possible to show that this last problem is a min-cut problem. A proof of this fact can be found
in standard references in linear programming, e.g. Ref. [64]. We will take a slightly different approach
here. We consider the integer version of Eq. (6.44) where we further impose p € Z>o. This does indeed give
the equivalent optimal value as Eq. (6.43), although this is not obvious and there could well have been an
integrality gap. We will now demonstrate it is equivalent to the min-cut problem, or that the integrality gap

vanishes for this problem. To construct the cut we consider an optimal p and define:
ra={z:d,(z,A) =0}, (6.45)

where d,(x,y) is the graph distance induced by p(e), which is the minimal distance between z and y as
measured by the edge function p(e). See Appendix E.1.
It is clear that

p(e) > 1,4y (e) (6.46)

10Strong duality means that the optimal values of the original and dual program are equal.
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by integrality. Then for any other feasible p’:

Y Aew(e) =Y pleywle) = wlu(ra)) (6.47)

ecE eeE

Also any path from A to B must pass u(r4) so that p'(e) = 1,(,,)(e) is feasible and we have the opposite
inequality.

We now give a quick derivation of the RT formula for RTNs. We pick the cut C' : AB, although this
discussion is general. We compute the mth Renyi entropy for psap at large x which involves finding the
minimum of the free energy:

min > wle)dlg(x), g(y)) (6.48)
e={z,y}€E
where g : V — S,,, and g(AB) = 7, = (12...m) and g(C) = id. Use an optimal solution to the flow problem
¢(L), inserting Eq. (6.40) into the objective function of Eq. (6.48):

Y. wedlg@),g) = Y L) Y dlgla),9(y)) (6.49)

e={z,y}€E LePapc  e={zwleL
> d(r,id) Y (L) (6.50)
LePas.c
=(m—-1)A(AB: C) (6.51)

where in the first inequality we used the feasibility condition, and in the second we used the triangle inequality
for the Cayley metric repeatedly along the path. The opposite inequality follows by considering g(x) = id for
z € 19p.c and g(x) = T, for & € rap.c. Thus Renyi entropies are all computed by the same minimal area
cut. This is the well known result that the entanglement spectrum of random tensor networks is flat, and
determined by minimal cuts.

We now give a proof that the integrality gap of Eq. (6.5) is determined by the ratio between A(A : B : C)
and 2(A(AB: C)+ A(B: AC) + A(C : AB)). First we show that the value of the following integer program

min 3 ple)uw(e)

(6.52)
subject to: VL € PapUPacUPpc: Zp(e) >1

ecL

is given by the minimal triway cut. We restrict our discussion here to the case where every connected
component of G is connected to at least one of A, B, or C, since any adding disconnected components to G
does not change the area of an optimal triway cut.

Consider an optimal p and define 74 = {z € V : d,(z, A) = 0} and similarly define r5 and r¢. (ra,rg,rc)
must be disjoint otherwise we violate the path constraint. Furthermore r4 Urg Urc = V: If otherwise define
rp = V\ra\rg\rc. rp must be connected to at least one of r4,rp or r¢, since otherwise rp will be totally

disconnected from the boundary. Without loss of generality suppose it is r4. We have

p(€) 2 (Lutrairs) + Lurare) T Lutrsre) + Lutrarrp) + Lutrsirp) + Luromp)) (€)

/ (6.53)
> (lﬂ(r;l:rg) + 1M(r’/_‘:'rc) + 1;1,(7‘Bzrc)) (6) =p (6)7
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where the first inequality follows from integrality. In the second line we defined , = r4 Urp and this
inequality is strict for e € u(ra : rp). p'(e) is clearly feasible since any path from A to B must pass through
p(r’y : rp) and similarly for B : C'and C : A. Since p(ra : rp) # We have ) p(e)w(e) > >, p'(e)w(e),
which is a contradiction since we have assumed p to be optimal. Therefore rp = ) and 1’y = r4. Since p is

optimal we must have

min > pleyw(e) =Y pe)w(e) = Alra:rp:rc) > A(A: B:C). (6.54)

eckE eck

On the other hand from any minimal triway cut (a, 3,7) we can construct p”(€) = (1,(a:5) + Lu(asy) + Lu(s)) (€)
which is clearly feasible. Hence A(A : B : C) > Y _p'(e)w(e) and the value of program is equivalent to
minimal triway cut.

If one relaxes the integer constraint of p, then it allows us to construct a new solution from any optimal p:

1

p(e) = 5 (]'H(T'A:T‘fq) + 1;/,(7"3:7“%) + 1u(rc:rg)) (6) (655)

p(e) violates the integer constraint but is still feasible. Using a similar argument as above one can show that

in this senario we get

N | =

min D pleyw(e) =Y ple)w(e) = = (Alra : 75) + Alrp : r3) + A(re : 16))
e€l €€l (6.56)

> % (A(A: BC)+ A(B: AC) + A(C : AB)),

and the optimal value of the program is given by a sum of minimal cut areas. We have determined the
optimal value of the program Eq. (6.5) before and after the linear relaxation, which agrees with the right
hand side of Eq. (6.4).

6.3.2 Permutations, Partitions and Boolean variables

In Sec. (6.2) we introduced a coarse graining procedure which takes permutations to partitions. We further
coarse grain our partitions by blocking them into partitions of the blocks in P(X). We can apply this
procedure given any fixed permutation go, instead blocking with P(go). We discuss this more general
procedure here and prove some important bounds.

The collection of set partitions Py admits a natural lattice structure. There is a partial order within
Py: Given two elements p,q € Py we say p > q if every subset of p can be expressed as the union of some
subsets in ¢, or in other words, ¢ is a “finer” version of p formed by further dividing blocks in p. The finest
(smallest) element in Py is the identity permutation id = {{1},...,{N}}, and the coarsest (largest) is {Zx}.
The join of p and ¢, denoted by p V ¢, is defined to be the least upper bound of p and ¢q, i.e. pV ¢ is the
smallest element x such that x > p and = > q. Conversely, the meet of p and ¢, denoted by p A g, is defined
to be greatest lower bound of p and ¢, i.e. p A q is the largest element y such that y < p and y < ¢. In the
lattice of Py the meet is simply the set of non-empty pairwise intersections of p and ¢; whereas the join
can be thought of as the partition that arises from the connected orbits generated by p and ¢. For further

information on the lattice of set partitions we refer the reader to Appendix A.
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Given some element g, go € Sy we define:

490(9) = (P(9) V P(g0))/ ~ € Py(go) (6.57)

where / ~ is the set quotient operation defined element wise on each block in the partition and using the
equivalence x ~ y if x,y are in the same block of P(gop).

Recall the distance measure on the set of partitions Py:

d(p,p") = #(p) + #') = 2#(p V') (6.58)

We verify some properties.

Lemma 6.6. The distance on set partitions d(p,p’) is a metric: it is positive, symmetric, vanishes iff p = p’

and satisfies the triangle inequality. Additionally:
(a) There is the estimate:

d(p1,p2) > |#(p1) — #(p2)| (6.59)

(b) For all partitions r then:
d(p1,p2) > d(p1 Vr,pa V) (6.60)

(¢) It bounds the Cayley distance by the associated set partitions P(g), or coarse grained versions qq,(g):

#(9) —#(gV 9') > #(490(9)) — #(ag0(9) V 140 () (6.61)

and
d(g,9") > d(P(g),P(g")) = d(dg,(9): 90 (9")) (6.62)

Proof. Firstly the distance is positive since #(p) — #(p V p’) > 0 and similarly for p > p’. Equality implies
that #(p') = #(p) = #(p V p’) which is only possible if p’ < p and also p’ > p which implies equality of the

partitions. We have the triangle inequality:

d(p,p') +d(p',p") = d(p,p") (6.63)
which follows from semimodularity '!:

#) —#@V)—#@ V") +#m V")

6.64
>HPV)AN@ VD) —#pVD)—#@ VD) +# VP V) >0 (064

where the first inequality follows simply from p’ < (p' Vp) A (p' Vp”) and p' Vp”" <pVvp” V'
<

(a) Using #(p1 V p2) < #(p1) or #(p1 V p2) < #(p2) we derive d(p1,p2) > [#(p1) — #(p2)|-
(b) For any r € Py:

d(p1,p2) —d(p1Vr,p2Vr)
=#(p1) + #(p2) — #(P1 V1) — #(p2 V1) + 24 (p1 Vp2 V1) — 2#(p1 V p2) (6.65)
>#(p1) + #(p2) — #((p1 Vp2) A(p1 V1)) — #((p1 Vp2) A(p2 V7)) >0

HSemimodularity here means #(p1 A p2) + #(p1 V p2) > #(p1) + #(p2).
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where we used semi-modularity in the first inequality'? and we used p; < (p1 V p2) A (p; V ) in the second
inequality.

(¢) In general we start with some g € Sy. Then we will remove fine-grained topological information
(roughly speaking we lose information on the genus expansion) by moving to partitions. We can do this using

the general bound:

d(g,9") = —d(e,g) +d(e,g') +2(#(g") — #(9'V 9)) +2G ¢ (g)
> #(9) +#(9') —2#(gVg') =d(P(g), P(g")) (6.66)

where #(g' V g) = #(P(¢') V P(g)) is the number of orbits generated by the joint action of g and ¢, and
Gy (g) is the genus of the admissible surface associated for g based over ¢’. The inequality then follows from
the non-negativity of the genus. See Theorem A.5 of Appendix A.

Consider semimodularity applied to p = P(g) V P(go) and p’ = P(g) V P(¢’) giving:

#(P(9)+#@ V) >#pAD)+# VD) >#p) +#0') = #(a4(9)) + #(g V') (6.67)

where the first inequality follows since P(g) < p and P(g) < p’ implying the same of the meet p A p’. Note
that #(p V p') = #(dg,(9) V 490 (9")); #(p) = #(dg,(9)) and #(p’) = #(g V ¢'). Thus we derived the bound:

#(9) = #(gV 9') > #(a90(9)) — #(290(9) V €0 (9")) (6.68)

which implies:
d(P(g), P(g) > d(qg,(9):4g0(9")) (6.69)
O

Consider ¢ = qx(g) € Pz, for some g € S,,,,. We can further classify ¢ by the singlets in ¢. A singlet
is a block of size 1 so there are 2n possible singlets. We define #1(g) as the number of singlets in a given

partition. We define s(q) as the (unique) largest partition with singlets in the same location as the singlets of

q. That is s(q) > q and #(s(q)) = #1(q) + 1 — 04, (g),2n- Also #1(q) = #1(s(q))-
We define the singlet distance on the set of s as:

di(s1,82) = #1(s1) + #1(s2) — 2#1(s1 V 82) > d(s1, 52), (6.70)

where the later inequality is only not saturated if one of s; or s is id (but not both.) We also have
dy(s1, 82) < d(s1, s2) + 1 with equality iff one and only one of s, so is id.
We can bound the difference in g by s:

Lemma 6.7.
d(qr,q2) > [di(s1,82)/2] > di(s1,52)/2, (6.71)

where s; := s(q;).

Proof. If ¢; and g2 do not contain any singlet, then s1 = so = Zsg,, and d(s1, s2) = 0 so the estimation is true.

Now let C75 be the common singlets of ¢; and g2, Cy be the singlets in ¢; that do not overlap with the singlets

128pecifically: —#(p1 V p2) — #(p1 V1) + #(p1 Vp2 Vr) > —#((p1 Vp2) A (p1 V7)) and 1 > 2.
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in g2 and similarly for Cy. Note that d(q1,q2) > d(g1 V1, q2 Vr) from Eq. (6.60). We take r = 51V s5. We can

express r as the unique element that is fully connected in K = Zo,\C1\C2\C12 and singlets elsewhere. See:

Ciz Ch K Cs
n= @ |® ./. oo
»- 070 @_090/0 0'0 @ (6.72)
r=s1Ns2= @ @ @ ® O O 0 O
We can compute
A Vr,geVr)=#(@ Vr)+#(@Vr)—2#@ Ve Vr) (6.73)

= |C1]| 4+ |Co| + #(q1 V 7)|kuc, + #(q2 V )| kue, —2#(q1 V @2 V 7)) | kuc,ucs

where we have used #(q)|c to indicate the number of cycles of ¢ when restricted to a subset of elements
C' C Zsy,. Note that the common singlets |C2| cancels out in the calculation. To proceed further, we define

C1 C C to be the elements in C that are not connected to K via g V r and similarly for C%. Then we have

#(q1 Vr)lkue, =1+ #(q1 V)l (6.74)
#(g2 V1)kue, =1+ #(g2 V T)|Ci (6.75)
#(1 V@2 Vr)lkuc,ue, =1+ #(q1 Vr)le, + #(q2 vV r)ley, (6.76)

which readily follows from the structure of ¢; vV r. See:

—
avVr= 0 @ @ ® 00 00
2Vr= @ @ 000 0 0 © (6.77)
nVevr= 0 @0 00000 60
K U(C1\C1) U (C2\Cy)
(In the example given here Cf = ) Hence,
d(qi Vr,g2Vr)=[C1] +|Co| — #(q1 V7)loy — #(q2 V1)los (6.78)

Also note that (g2 V 7)|c; has no singlets so that # (g2 V )| < [|C1]/2] < [|C1]/2] since this number is
maximized by forming the largest number of doublet blocks or doublet and a single triplet block in C] (and

similarly for 1 <+ 2.) This gives the estimate:
d(q1,q2) = [|C1]/2] + [1C2|/2] = [(|C1] +[Cal)/2]. (6.79)

Now |C1| + |Ca| = di(s1,s2) (see the proof of the Lemma following immediately after). O
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Note that the set of s, s(Pa,) C Pa,, forms a lattice (albeit not a sub-lattice of P, %), under the new
meet and join defined by s1 Ap so = 1 A s2 and s1 Vg s2 = s(s1 V $2). Define the units ux € s(Psy,) to be
the partition with one singlet at location k. That is, up = {{k}, Z2,\{k}}. It then follows that every element
in s(Py,) (other than Zs,) can be expressed as the meet of a string of u*’s, i.e. s = up, A--- Aug,.

The lattice (s(Pay), VB, Ap) is isomorphic to Boolean algebra Ba,, of bit-strings where singlets in s are 0’s,
and non-singlets are 1’s. More specifically, identify s (and thus ¢) using a binary variable b* for k = 1,...2n.
That is:

b*(q) = #1(s(q) V ur) = #1(q V up), (6.80)

so that b*(¢q) = 0 if ¢ has a singlet at the k-th element and b*(q) = 1 otherwise. The bit-string b = {bF}37
then forms a lattice where V is the pair-wise or operation and A is the pair-wise and operation. Then the

singlet distance on P, is simply the Hamming distance on bit-strings:

Lemma 6.8.
2n

d(b1,b2) EZ\blf*blzw = di(s1, 52), (6.81)
k=1

where bY 5 = b¥(s1,2).

Proof. Consider the k-th element in a partition of Zs,. Then s; V s5 has a singlet at position k iff s; and sq

both have a singlet at position k. Let S; be the set of singlets in s;, then we have

di(s1,82) = #1(s1) + #1(s2) — 2#1(51 V 52)

(6.82)
= |S1| + [S2| = 2|51 N S| = |C1] + |Cal,

where C7 are the elements in S that are not contained in S5 and likewise for Cy. By definition C1 N Cy =0

and
2n
C1| +|Ca| = [CLUCy| = > b} — b, (6.83)
k=1
since |b¥ — bk| = 1 signals k € C; U Cy and |[bY — b%| = 0 otherwise. O
Corollary 6.9.
d(q1,q2) > [d(b1,b2)/2] > d(b1,b2)/2, (6.84)
where bY 5 = b¥(s12).
Proof. Substitute Eq. (6.81) into Lemma 6.7. O

Remark. d(by,bs) clearly satisfies all the properties of a metric. We will also sometimes work with [d(by, b2)/2]
which also satisfies the properties of a metric, since [a| + [b] > [a + b].

We need one final result, which generalizes the triangle inequality and was already proven in Appendix A .4.

Lemma 6.10. Consider two partitions ta,tp € Py and consider the bi-partite graph G formed from #(t4)
black vertices and #(tp) white vertices joined with t 4 Atg = id edges for each block inta and tp that intersect.
If G is a cycle graph then:

d(ta,q) +d(qg,tp) > d(ta,tg) +2(1 = d4,(g).0) (6.85)

13Since s(P2y) is not closed under V.
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for any q € Py.

ta =

itp =

Figure 6.5: Two partitions t4,tp € Py with t4 A tp = id and the bi-partite graph G constructed from the
subsets (labeled {a,b,..., f}) of t4 and tp.

Proof. An example graph is shown in Fig. (6.5). Blocks in ¢4 can be found by combining the edges that
intersect a fixed black vertex. From this figure it is clear that t4 and tp are made of doublets. Because it has

a single cycle t4 and tp fail to be a modular pair'* by 1:
d(ta,id) + d(tB,id) —d(ta,tg) = 2(#(tA \/tB) + #(tA ANtg) — #(tA) — #(tB)) =2, (6.86)

since #(ta Vtp) = 1. A modular pair (#,,tg) is associated to a tree graph (c.f. Lemma A.4), and so any

unit uy, will break a single edge /4 = t4 A uy of the cycle and produce a tree with:
d(ty,id) + d(tp,id) — d(ts, t5) = 2(#(t'a Vtp) + #(ta Alp) — #(t) — #(tB)) =0, (6.87)
where we used the fact that t/y Atp = ux Aid =id. Thus if ¢ = ¢ A uy, then:

d(ta.q) +d(tp,q) = d(t)y. q) +d(ts,q) > d(t)y. tp) = d(t)y,id) + d(t5,id)

(6.88)
=d(ta,id) + d(tp,id) = d(ta,tp) + 2

Since this is true for any wy it is true if #1(q) # 0 as required. O

Remark. We will apply this Lemma to t4 = g4 and tp = gp where these partitions satisfy the required
properties. While the above example only slightly generalizes the case of interest, it points towards the
basic structure that makes our results work. In particular note that #;(id) # 0 and indeed the bound for
g = id, Eq. (6.85), is saturated in this case. So the bounds we derive (here for partitions) are tight, which is
important for the possibility of forming a collapsing chain in Theorem 6.4. It is also important that the pair
(ta,tp) does not form a tree (they are not a modular pair) since otherwise we would not get minimal triway

cuts — we would simply get minimal cuts.

6.4 Proof of the main theorem

In this section we establish our proof for the main results (Theorem 6.4 and Theorem 6.5) of this chapter.
First, in Sec. (6.4.1) we show that the permutation group optimization problem R (Definition 6.2) can be
coarse grained into a set partition optimization problem @ (Definition 6.3). Next, in Sec. (6.4.2) we bound Q
by a mixed Boolean-integer program B (Definition 6.4), and then an integer program I (Definition 6.5). We

these results at hand, we relate the value of I to multiway cuts in Sec. (6.4.3), thus proving the collapsing

1A modular pair saturates the semimodularity condition.

130



chain R— A(AB:C)>@Q@>B>1>A(A: B: () as required by Theorem 6.4. We prove the uniqueness of
the solution in Sec. (6.4.4). Note that this section only establishes our results on even integer m > 2. We will

deal with the problem of analytically continuing m — 1 in Sec. (6.5).

6.4.1 From permutations to partitions

We seek:
R=minR(g), Rlo)= Y w(e)dlg)e) (6.89)
e={z,y}€FE
Consider a minimal cut r4p C V associated to the division AB : C. Define C' = {z € 45 : {z,y} €
w(rap)} to be the vertices in r4 g that border r4p. Define a new amputated graph G’ = (V',E') =
(rapUC’,Eg[rap]). We can estimate R using a new model, written in terms of the coarse grained ¢x(g)

with respect to element X, on this new graph:

Lemma 6.11. We have the following estimate:
R(g) > A(AB : C)d(X,id) + Q'(q), (6.90)
where q : V! — Py, defined via q(v) = gx(g(v)) and where:

Q=3 weda) ). (6.91)

e={z,y}€E’

Remark. Minimizing over g gives R > A(rap)d(X,id) + @' with @ = min, Q'(¢), where the boundary
conditions on ¢ for this later model is such that vertices in A(B) have a fixed permutation ¢ = ga(gp) and
the permutations on C’ are fixed as ¢ = id. To pass from the program @’ (on the amputated graph G’) to
the program @) (on the original graph G), as required in Definition 6.3 and Theorem 6.4, we simply need to
show that @’ > @. This is proven in Lemma 6.12 after the proof of Lemma 6.11.

Proof. Given the minimal cut r4 5 we can consider an optimal solution to the linear program ¢(L) in Eq. (6.39)
for edge-disjoint paths:

Alrap)= > L), (6.92)

LePaB,c

where for all e € E then w(e) > 3, ¢(L)11(e). Consider a single such path L € Pap,c. Such a path must
pass through the minimal cut u(rap) at least one time. Denote the vertex v to be the first vertex along L
that connects r4p to C’. That is for the first edge e in L N u(rap) we have e = {v/, v} where v/ € C’. Since
C’ lies on the minimal cut, this is guaranteed to exist, see Fig. (6.6). We split up L = Lap U L¢ into two
connecting paths at the common vertex v, where Lap € ]3,4 B,y and L¢ € 13,,}0. We estimate the contribution
of L to be:

> dgla)gy) = > dlg@).gw)+ D dlg(x),g(y)) (6.93)

e={z,y}€L e={z,y}€Lc e={z,y}E€Lap

>d(g(v),id)+ Y d(P(g(x)). Pg(y))) (6.94)

e={z.y}€Llap

To arrive at Eq. (6.94) we have used Eq. (6.62) for the part of the path that intersects 7 45 and then repeated
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Figure 6.6: We split up a path L € ]3A370 at the cut surface p(rap), through a vertex v € ryp that lies
immediately inside 7 4.

uses of the (Cayley distance) triangle inequality in the complement.

We can re-arrange the sum:

> d(P(g(x)), P(g(y)) =#(ga.8) — 2#(ga.B V g(x2)) + #(g(v)) (6.95)
e={ww}eLan
ILaB|
+ ) 2(#(9(xa)) = #(9(z0) V 9(Tat1))) (6.96)

where z,, is the sequence of vertices that connects the path L. With z; € AB and |1, |41 = v. Note that if
there are no edges in L4p then the sum Eq. (6.96) does not contribute. Now use the bound Eq. (6.61) along

with the equality #(g9a,8) = #(¢x(9a,8)) and #(gV ga.B) = #(ax(9) V ¢x(94,B)), we turn all g’s in the
sum of Eq. (6.96) into ¢x(g)’s plus the remainder #(g(v)) — #(¢x(g(v))). That is:

> d(P(g(2), P(g(y) = #(gw)) — #aw)+ > dla(@),q(y)) (6.97)

e={z,y}€Lap e={z,y}€lap

(recall that ¢x(g(x)) = q(z)). Hence we have the following estimate:

(]

d(g(x), 9(y)) > d(id, X) +d(id,q(v)) + D> dg(=),q(y)), (6.98)

e={z,y}eL e={z,y}€Llap

where we have used the identity

d(id, g(v)) + #(g(v)) — #(q(v)) = nm — #(q(v)) = d(id, X) + d(id, ¢(v)). (6.99)

Now write:

Rig)= Y. <w<e>2c<L>1L<e>> d(g(@),g) +YeL) 3 dlg(),g(y)) (6.100)
L

e={z,y} L e={z,y}eL

> Z (w(e) - ZC(L)IL(6)> d(q(x),q(y))

e={z,y}Cram L

+Y (L) (d(id,XHd(id,q(v)H > d(q(a:),q(y))), (6.101)
L

e={z,y}€Lap

where we applied Eq. (6.98) to all paths weighted by ¢(L) in the last term of Eq. (6.100), along with Eq. (6.62)
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in the first term of Eq. (6.100) on the edges that are entirely inside r 45 and finally dropping all other edges
in 745 (note that the bracketed term in the first part of Eq. (6.100) is positive by feasibility of ¢(L)). Using:

> e(L)d(id, X) = A(AB : C)d(id, X) (6.102)
L

we arrive at Eq. (6.90). O

Remark. We will make use of the saturation conditions for the inequality (6.90) in our proofs for uniqueness
of the solution. It is useful to record them here for reference later. For edges e in r% 5 the saturation of
Eq. (6.100) requires:

> <w(e> - Zc(L)h(e)) d(g(x),9(y)) = 0. (6.103)
L

e={z,y}€rape

We also have, from Eq. (6.94),

> diglx),g(y) = d(g(v),id), (6.104)

e={z,y}€lc

where Lo € Py ¢ is a subpath of L € Pap ¢ with ¢(L) > 0. Lo connects a vertex v immediately inside 745 to
C. For the edges e in 74, saturation of Eq. (6.100) requires ZeerAB (w(e) = >, e(L)1r(e)) d(g(x), g9(y)) =
Deeray (w(e) = > pc(L)1r(e))d(q(x),q(y)). Since d(g(z),9(y)) = d(q(x),q(y)) = 0 by Eq. (6.62), this

condition holds locally, i.e.
d(g(x), 9(y)) = d(q(x),q(y)) (6.105)

for all edges e = {z,y} where w(e) — >, ¢(L)1r(e) > 0. If the minimal cut rap is unique then it holds for
all e strictly inside r4p.

Lemma 6.12. Consider the program

Q = minQ(g). (6.106)

on the original graph G, where we minimize over all q : V' — Py, with q(A) = qa,q(B) = g and gc = id.
Then we have
R> A(AB: C)d(X,id) + Q. (6.107)

Proof. Consider the program @’ = min, Q'(¢), as defined in Lemma 6.11 and Remark that follows immediately
after. Let ¢’ be an optimal solution to this problem. We construct from ¢’ a feasible solution ¢ : V — P»,, to
the @ problem by

! , cv!
q(v) =< * W : (6.108)
id, ve VAV’

It is clear that ¢ satisfies all the boundary conditions and Q(q) = Q'(¢’), since setting ¢(v) = id on the new
vertices does not increase the free energy. Minimizing over all g : V' — Py, we have Q" > Q. Then from Remark
that follows immediately after Lemma 6.11 we have R > A(AB : C)d(X,id)+Q’ > A(AB : C)d(X,id)+Q. O
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6.4.2 From partitions to integer program

In this section we move from partitions ¢, to Boolean variables b, to an integer program.

Lemma 6.13. For all paths L € Pa p (not necessarily edge disjoint) we have the estimate:

Y. dla(@)a(y) = 2(n = 6oy pan) 5 > dla(@).aly) € 22, (6.109)

e={z,y}€L e={z,y}el

where byg = 11---1 € By, and

b= N b), (6.110)

zeVI[L]

and where b : V — Ba, is defined via b(v)* = bv*(q(v)).

Proof. If b, = bap then we must have b(x) = bgp = 11---1 for the entire path, so that #1(¢(z)) = 0 for all
x € L (since singlets are preserved through the meet operation). We use the triangle inequality repeatedly to

show:

> dg(x),q(y) > d(ga, qp) = 2(n— 1) (6.111)

e={zy}eL

Conversely, if by, # bap then there must be some 2 € V' along the path such that #;(g(x)) # 0. We apply
the triangle inequality about this point:

> d(g(z),q(y)) > dlga, q(x)) + d(q(z), q5) > 2n (6.112)

e={z,y}€L

where we used the improved triangle inequality derived in Lemma 6.10, and which applies when ¢(z) has a
singlet somewhere.

More generally the deficit in the triangle inequality is always an even integer:

d(q1,q2) + d(q2,q3) — d(q2,q3) = 2(#(q2 V q3) + #(q2) — #(q1 V @2) — #(q2 V ¢3)) (6.113)

Thus the difference in the left and right hand side of the inequality in Eq. (6.109) must be an even integer. [J
We have the estimate in terms of an integer program:

Lemma 6.14. Given some fized b: V — Ba,, define the integer program:
B(b) =min Z w(e)r(e)

subject to VL € Py p : Zr(e) =2(n —8b, bap) +2Z>0 (6.114)
ecL

and Ve={z,y} € E :r(e) > Ed(b(x),b(y))-‘

where r € Z>o. Then for any q : V — P, satisfying the boundary condition q(A) = qa, ¢(B) = qp and
q(C) = id, we have the bound Q(q) > B(b*(q)).

Proof. We simply consider r(e) = d(q(z), q(y)) for e = {z,y}. We use the bounds in Lemma 6.13 and
Corollary 6.9 to check feasibility for the B(b) problem. O
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Corollary 6.15. Consider the program.:

B= mbin B(b), (6.115)
where we now minimize over allb:V — Ba, with b(A) =b(B) =bag =11...1 and b(C) =00...0. Then
we have Q > B.

Proof. Consider an optimal solution ¢ to program Q. Then from Lemma 6.14 it is clear that B(b*(q)) < Q(q)
is feasible. Minimizing over all b then gives ) > B. O

We will now introduce an edge variable p(e) = [3d(b(z),b(y))] for e = {z,y}. We note that we can write:

Obrban = 0p(L),0, (6.116)

where we recall the shorthand notation p(L) = .. p(e). Thus we have the new integer program:

Lemma 6.16. For integer n > 2, consider the integer non-linear program:

I'=min > w(e)(o(e) + ple))

ecE
subject to VL € Pap : Z(a(e) +p(e)) € 2(n —d,(1),0) +2Zx0 (6.117)
ecL
and VL € PaB,c : Zp(e) >n
ecL

for p,o € Z>o. Then min, Q(q) > min, B(b) > 1.

Proof. Again we just have to check feasibility with p(e) = [$d(b(z),b(y))] and o(e) = r(e) — p(e) > 0, which
again follows from Lemma 6.13, Lemma 6.7 and Eq. (6.116). We also need repeated use of the triangle

inequality for the metric [%d(bl, bgﬂ:

WCE Fd(bAB, bcﬂ —n (6.118)

2
ecL
for all L € Pap,c. O

Remark. In passing from the Boolean program B to the integer program I, we have split the integer variable
r(e) into two variables p(e) and o(e). In particular, the region associated to p = 0 plays a special role in
the program, as the constraint on a path is weaker if it stays entirely within the said region. It turns out
that this region corresponds to the “squeezed entanglement wedge” (backreacted EW accommodating the
non-zero tension t4.p) in the solution to the reflected entropy optimization problem. The o variable can
be set to be non-zero only inside the p = 0 wedge, which sources a total of 2(n — 1) cuts separating A and
B. We will see that these cut surfaces collapse to a single domain wall corresponding to the (squeezed) EW

cross-section for an optimal solution.

6.4.3 From integer program to multiway cuts

The main theorem we would like to prove here is that the program Eq. (6.117) is equivalent to a multiway

cut problem:
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Theorem 6.17. The minimum of the non-linear integer program Eq. (6.117) is achieved by an optimal

solution to the multiway cut problem for A: B : C withta.p =2(n—1) and ty.c =tp.c =n.

We do this in two steps. In the first step we prove the existence of a subgraph G’ = (V', E’) with
A, B C V' such that either (i) A and B are disconnected on V' and there is an optimal solution to Eq. (6.117)
where p(e) = o(e) =0 for all e C V' or (ii) A and B are connected and there is in optimal solution (p, o) to
Eq. (6.117) where p(e) = 0 and o can be described as a set of 2(n — 1) cuts separating A, B for all e C V".
These solutions then seed a multiboundary/intersecting cut problem in the remaining graph made from the
remaining edges: E¢ = E\E’ and vertices V¢ = (V\V')U (AB)’ where (AB) ={xz € V' : x € Vg[u(V")]} are
the vertices in G’ that lie on the cut surface u(V'). Both cases (i) and (ii) will be treated together, using a
vertex valued variable k(z) instead of an edge variable. In the second step we solve this multiboundary cut
problem.

More explicitly, the first step is the following Lemma:

Figure 6.7: The original graph G is split into two subgraphs G’ and G° that share common vertices (AB)’
(dashed line). On G’ we define a vertex variable k associated to o, whose value on (AB)’ seeds an ¢-intersecting
cut problem on the complementary graph G’ with boundary vertices I'.

Lemma 6.18. There exists a subgraph G' = (V' E") of G where A, B C V' such that there is an optimal
solution (p, o) to Eq. (6.117) where:

1. There exists a function k : V' — Z>o with k(z) < 2(n — 1) such that: for all edges e € E' we have:
o(e) = [k(z) —k(y)|,  ple) =0, (6.119)

where k(x) =0 for x € A and k(xz) =2(n —1) for x € B.

2. For the remaining edges we consider the £-intersecting cut problem with £ = 2(n—1) (defined immediately
below) on the complementary reduced subgraph G¢ = (V¢, E€) , with boundary vertices Ty, = {x € (AB)’ :
k(x) =k} and C. Where the optimal minimum M of this later problem bounds:

I MAuEv )+ Y we)lkE) - k) (6.120)
e={z,y}€E’

See Fig. (6.7) for an exemplary configuration. We prove this in Appendix E.1. Recall the notation, used
in Eq. (6.120), f(E') = > .cp f(e) for some function f on the edges and some subset £’ C E.
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Definition 6.8 (¢-intersecting cut problem). Given an integer £ > 1 and weighted graph G = (V, E) with
¢+ 2 sets of boundary vertices {I'y; £ =0...¢} and C, define the following k-intersecting cut problem:

M=minM(o)  M(o)=_wle)ole)

eckE
subject to  Vk,k' =0,... VYL € Pr,r,, :o(L)€|k—K|+Zxg
and Vk=0,...£ YLePr,c :o(L)€l/2+4 ZL>o,

(6.121)

where g(e) € Z>o/2.

) Lo(n—1)
I'

Figure 6.8: The solution to the /-intersecting cut problem as described in Lemma 6.19. The dark green curves
represent the cut surfaces of oy and the dark blue curves represent the cut surfaces of G.

We solve this problem recursively in Appendix E.2. The result is:

Lemma 6.19. The optimal value of the £-intersecting cut problem is:

-1

> (o)) +w(n(Br))) (6.122)

Y4
M =
k=0

DO | =

where ay, is a minimal cut for (Do U...T%) : (Txr1 U...TpUC) and By is a minimal cut for (D U...Ty):
(ToU...TxUC) and o N By, = 0.

See Fig. (6.8) for an example. Given the above two Lemmas we now prove Theorem 6.17.

Proof of Theorem 6.17 and Theorem 6.4. Use the function k(x) in Lemma 6.18 to define bulk regions:

Ve ={z €V’ :k(z) <k} (6.123)
for k=0,...,2(n —1) — 1 and such that:
2(n—1)—1
Y wlk@) —ky)= ) w(e), (6.124)
e={x,y}eE’ k=0 e€pgr (k)

where pg(+) denotes the edge cut function on some graph G = {V, E}, that is ug(r) = Eq[r] N Eg[V\r] for
rCV.
The region -, contains A and shares vertices with «j constructed from Lemma 6.19 on the subgraph G¢.

Similarly V’'\7; contains B and shares vertices with 8. Thus we can combine them so that A = v, U ag
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forms a cut for A : BC on the original graph G and By, = (V'\yx) U B forms a cut for B : AC. These cuts

are non-intersecting but share edges in E’ that are ug(yx). In particular:

te(Ar) = per (k) U pae (o) (6.125)

and similarly for Bj.

We give an explicit proof of Eq. (6.125) for completeness. Recall that (AB) =V'NV¢and E = E'U E°.
We note that (AB)' N ay = (AB)’ N+, by the boundary conditions and this implies that Ax NV’ =~ and
A NVE = i, further implying that Eq/[Ax] = FEg[vk] since all {z,y} € F’ satisfy {z,y} C V’. Similarly
Ege[Ak] = Ege[ag]. Also note that V\A, = (V'\ ) U (V\ay). Putting this together:

pa(Ag) = Eq[Ar] N Eq[V\A]
= (EG/ [Ak] N Egr [V\Ak]) U (EGc [Ak] N Ege [V\Ak]) (6126)
= (Ec[vi] N Ec [V\]) U (Egeaw] N Ege [V \a])

as required. A similar argument applies to ug(By).

Thus we can write the estimate from Lemma 6.18 and using Eq. (6.124) as:

1 2(n—1)—1

I - w A w B w V!
25 % wletae) suelus) | +wic) -

> min ((n = 1) (wpe(Ar)) +wlne(Br))) + w(pa(V')).

The right hand side can be written as a sum of two triway cuts, with tensions as given in the statement of
this theorem. That is:

1> min ((” “ U Ay B (V\(A U B)) + S (9 s (V) (V\V’)))
n n (6.128)

Equality follows from the collapsing chain mentioned in Theorem 6.4 that we have also now established. [

The proofs we give for Lemma 6.18 and Lemma 6.19 are quite lengthy, so we present these in Appendix E.1
and Appendix E.2 respectively.

6.4.4 Uniqueness theorem

In this subsection we give a proof for Theorem 6.5, i.e. the solution to the permutation group optimization
problem R (Definition 6.2) is the unique solution given by the triway cut if both the triway cut and the
entanglement wedge of the graph are unique. Though this result may seem trivial, it lays the foundation for
performing the analytic continuation m — 1, the main result in Sec. (6.5).

We only consider the case where every connected component of the graph G is path connected to at least
one boundary region. The reason is obvious — If such a disconnected region exists then one can always set
the permutations on such region to be any fixed element on S,,, and we have a degeneracy of |S;,,|. In any
case, such disconnected parts of the graph can be factored out of the computation of reflected entropy. We

can thus deal with these trivially.
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Lemma 6.20. Let g : V — Sy, be an optimal solution to the permutation group program R. If the minimal

cut rap for AB is unique, then g(v) = id for all vertices v € 15 p.

Proof. We know from Theorem 6.4 that R = A(AB : C')d(id, X) + Q. We also have, from Lemma 6.11 that
Rlg) = A(AB : C)d(id, X) + Q'(4x(9)). (6.129)

If ¢ is optimal, this inequality must be saturated since otherwise Q’(¢x(g)) has a smaller objective.
Consider an optimal solution ¢ : Pap.c — R>¢ to the dual max-flow problem Eq. (6.39). The saturation
condition of Eq. (6.129) demands that (see the remark before Lemma 6.12)

> dlg(@),9(y) = d(g(v),id). (6.130)

e={z,y}€lc

where L¢ is the subpath of L € Pap.c such that ¢(L) > 0 and L¢ connects C' to the vertex v immediately
inside r4p (see Fig. (6.6)). In other words, it states that the elements along the path Lo must be on the

group geodesic of id to g(v). Another saturation condition demands that

) w(e) = Y eL)1rle) | d(g(x),g(y)) =0. (6.131)

e={z,y}Cr4p LePaB,c

where we sum over all the edges outside the entanglement wedge r4p5. Since both terms in the sum are

semi-positive, for any e = {x,y} C r%p it must be that either

w(e) — Z e(L)1r(e) =0, or d(g(x),9(y)) =0. (6.132)

LePaB,c

Now pick any vertex v € r4p. We claim that there must exist a path L' € Pg, such that the
d(g(z),g(y)) = 0 for all adjacent vertices x,y along the path. If this is true, the triangle inequalities along L’
then require d(g(v),id) = 0 and thus g(v) = id. This holds true for any v € r$ 5 so we are done.

Suppose by contradiction that such a path does not exist. Define the region r¢ to be the set of vertices
that can be reached by some path with vanishing Cayley distance from C. It is clear that g(z) = id for all
x € ro by a similar argument as above. r¢ is a cut for C' since any vertex in r¢ is path connected to C.
Consider now the cut surface p(r¢). By definition, for all edges {x,y} € u(rc) we must have d(g(x), g(y)) > 0,
and thus w(e) — >, ¢(L)11(e) = 0 by Eq. (6.132). We compute

Y we)= Y L)=AAB:0), (6.133)

ecu(re) LePag:c

since all paths starting from C to AB must pass through p(rc). Moreover, any such path with ¢(L) > 0
can only intersect u(rc) once, since it cannot re-enter r¢ once it has left the cut, as this will violate the
geodesic condition Eq. (6.130). Hence u(r¢) is a minimal surface and r¢ is a minimal cut. It is different
from 4 5 since v € % and v ¢ r¢. This is a contradiction because we have assumed that the minimal cut

is unique. O

Lemma 6.21. Let q: V — Py, be an optimal solution to the set partition optimization problem Q) on graph
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G with a unique triway cut. Then for any edge e = {x,y} € E:

d(q(x), q(y)) = (2(n - 1)1/1(7"A27”B) + nl/L(TBITc) + nllt(TA:Tc)) (6)7 (6'134)

where (ra,rp,rc) s the optimal triway cut for (A: B : C).

Proof. Since g is optimal we know that the chain in Theorem 6.4 collapses, i.e.

Qq) = B({tF(a)},r) =1 (p.o), (6.135)

are all optimal, where r(e) = d(q(z), q(y)), p(e) = [2d(b(z),b(y))] and o(e) = (r — p)(e) for e = {z,y} € E.
Since we have r(e) = (p + o)(e) = d(q(z), q(y)), it suffices to prove Eq. (6.134) on p + o for an optimal
solution (p, o) of the integer program I. Now, from Lemma E.3 we know that for any optimal (p, o) one can

always construct a new optimal (p/,0’) with p+ o = p’ 4+ o’ that satisfies the conditions of Lemma 6.18. Now

we write
L 2D
(po) =2 3 (wlp(40) + w(u(Bu) + w(E(v") (6.136)
Q(nilk)_f)l n—1 1
= 3 (T A B (VAAB g A (V)W) )
=A(A:B:C)=A(ra:rp:ro), (6.138)

where we have used Lemma 6.19 and replaced the bound by equality since (p, o) is optimal. The cut surfaces
Ay, By, and ~;, are defined as in the proof of Theorem 6.17. Now since A(A : B : C) is the unique optimal
triway cut, both terms in the sum of Eq. (6.137) must be equal to A(ra : 75 : r¢) for all k. Hence we have

Ay =y =ra, Bpr=V"\m)=rp, (V\A\By) = (V\V') =rc, (6.139)
which implies that within V”’,
(&) =0, (€)= 21— Dlygrpirg) (€) (6.140)
and outside V|
(0 +0)() = vy (€) + (1= DLyt + Lus)(€) = 1Lty + Lugrren)(©), (6.141)

since any other configuration cannot reproduce an optimal value of M. Combining Eq. (6.140) and Eq. (6.141)

together we have proven the Lemma. O

Corollary 6.22. Let g : V — Py, be an optimal solution to the set partition optimization problem @ on

graph G with a unique triway cut. Then for any vertexv € V:

qA, vVETA
qw)=144qs, veETH, (6.142)
id, v ETC
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where (ra,rp,rc) s the optimal triway cut for (A: B : C).

Proof. Since (ra,rp,7c) is an optimal triway cut, if v € r4 then it is connected to A by some path L in
r4. The reason is as follows: Suppose that there exists a region r C r4 not connected to A. Then r must
be connected to at least one of rg or r¢ otherwise r will be a totally disconnected region. Without loss of
generality suppose it is B. We can then construct a new triway cut (r4\r,rg Ur, r¢) whose weight is smaller
than the original. This is a contradiction since we assumed (ra,7p,r¢) is optimal.

From Lemma 6.21 we know that Z{I’y}eL d(q(x),q(y)) = 0 along the path L. Then by repeated use of
triangle inequality we can show that d(g(v),ga) = 0 and thus ¢(v) = ga. Similar arguments also apply to

subregion rp and r¢. O

We are now ready to complete the proof for our main result of this subsection. To begin with, we restate

Theorem 6.5 in terms of the notations used here:

Theorem 6.23. Let g : V — Sy, be an optimal solution to the reflected entropy permutation group
optimization problem R on graph G with a unique triway cut (ra,rp,rc) and a unique entanglement wedge

rap. Then for any vertexv € V:

ga, VETA
, veEr
g(v) = {7° b (6.143)
X, vErap\ra\rp=rx
id, v E TR

Proof of Theorem 6.23 and Theorem 6.5. There are four regions that we need to take care of. It is immediate
that the region r4 5 follows trivially from Lemma 6.20. For the other regions: Note that since g is optimal for
R, gx(g) must be optimal for @, therefore ¢x(g) must coincide with Eq. (6.142). Moreover, the saturation
conditions requires d(g(x), g(y)) = d(P(g(x)), P(g(y))) = d(q(z),q(y)) for all e = {x,y} completely within
rap (see the remark before Lemma 6.12).

Let’s first consider r 4. The must be a path L completely within 4 such that d(g(x), g(y)) = d(q(z),q(y)) =
0 along adjacent vertices {x,y} € L (cf. the proof of Corollary 6.22). Applying triangle inequality along the
path we see d(g(v), ga) = 0 which implies g(v) = ga. A similar argument holds for v € rp.

For the remaining region rx, We split the contribution of R(g) as

Rig)= Y wle)dglx),gy)+ D wle)d(g(v),id), (6.144)
e€EE,eCranp vEITAB
where Orap = V[u(rap)] Nrap are the vertices on the cut surface p(rap) and within r4 5. We have used
the fact that g(v) =id for v € 14 5. Since gx(g(v)) =id for v € r4p we have #(g vV X) = #(g), and P(g(v))
lies on the geodesic between set partitions P(X) and P(id) on P,,:

d(P(X), P(g(v))) +d(P(g(v)), P(id)) = #(X) = 2#(X V g(v)) + #(id) = d(P(X), P(id)) (6.145)

We claim that this geodesic condition naturally extends to Cayley distances on S,,,. The reasoning is as
follows: The region rx must be path connected to either A or B, since if it is only connected to C' then we
know such region is subset of 7% 5 and thus must be empty. Now consider a connected component r; of this

region. Without loss of generality we may set g = g; for all v € r;. Consider an edge {z,y} on the common
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cut surface of 74 (or 7p respectively) and r; such that g(x) = g; and g(y) = ga,p. We know that since g is

optimal and =,y € rap,

d(9i,94/8) = d(P(9:), P(9a/B)) + 2Gy, ,;(9:) = d(ax(9i),94/B), (6.146)

which implies that the genus Gy, ,,(g:) = 0. But since P(ga/5) > P(X) we have Gy, ,,(g:) > Gx(g:) '° and
thus Gx(g;) = 0. Also G, (id) = 0 trivially. Thus d(P(g;), P(id)) = d(g;,id) and d(P(g;), P(X)) = d(gi, x)

and we have

Rig)= Y w(edgl)gy)+ Y wle)dX,id)-d(X,g(v)))

ecE,eCrap veEpu(rap)Nras (6147)
= Y wle)dg(x).g(y) + AAB: C)d(X,id) — > w(e)d(X, g(v)).
e€EE,eCrap vEITAB

Now since g is optimal we know R(g) = Q(¢x(g9)) + A(AB : C)d(X,id). Using d(g(x), g(y)) = d(q(z), q(y))
within r 4 we obtain
> w(e)d(X,g(v)) =0 (6.148)
vEODTAB
and thus g(v) = X for v € r4p on the cut surface u(rap). Since Cayley distance vanishes within rx we must

have g(v) = X within the whole region. This completes our proof. O

Remark. In general, when using the permutation optimization to determine the moments of the reflected
density matrix, one must sum over all the configurations that minimizes the free energy functional, i.e.
Eq. (6.12). Physically speaking, what we have proven here is that such minimum is unique as long as one
is sufficiently far away from the phase transitions, which is signalled by a degenerate minimal surface. In
fact, there are two different kinds of phase transitions in play here — one being the entanglement wedge
phase transition, in which the reflected entropy suffers a discontinous jump; and the other being the EW
cross-section phase transition, in which the there are two cross-sectional candidates with the same area. In
the latter case the change of reflected entropy across the transition is still continuous. Our result here only
applies when the system is far away from both kind of transitions.

However, based on various evidences, we conjecture that SI(%n) still converges as stated in Theorem 6.1 for
the second kind of the transitions. In this case the multiplicity factor is no longer unity but some integer
dngf ) > 1. We conjecture that d;’f ) is independent of m in this scenario. Therefore the techniques we will
be using for analytic continuation still carries over. The multiplicity factor will introduce a Ind™ ~ O(x°)
correction to the entropy, which goes away as one takes y — oco. Our uniqueness assumption on the triway

cut problem would then be unnecessary in Theorem 6.1.

6.5 Continuation in m

To finish the proof of Theorem 6.1, we need to “analytically continue” away from integer m/2. Since the
answer we have for R(g) only depends trivially on m through normalization (it is independent upon correctly
normalizing the reflected density matrix), it seems like this task would be simple. For example one might

expect a simple application of Carlson’s theorem. Unfortunately applying Carlson’s theorem after taking the

15This fact follows from the construction of admissible surfaces: Given an admissible surface of g; based on ga (or gg) one
can “pinch” the cycles of g4 (resp. gp) to form cycles of X without destroying any connections. See Appendix A.4 for details.
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limit x — oo turns out to be rather difficult — a fact that is often not discussed in the AdS/CFT literature.
The basic issue is that one does not know if the natural analytic continuation of Tr(agz)*)” in m remains
an analytic function upon taking the limit x — co. Compounding this difficulty is the need to divide the
function one wishes to continue by the expected answer - this division is necessary for convergence, but will
often introduce non-analytic dependence on m. Indeed it is well known that partition functions do not remain
analytic in the thermodynamic limit due to phase transitions and the condensation of zeros. That said, such
phase transitions in m are not present here since the expected answer has a simple analytic dependence on
m. Even so, it is not obvious how to establish pointwise convergence of the sequence as y — oo and this is
necessary in order to establish analyticity of the limit.

Thus we follow a different approach here - that of the methods of moments. One immediate difficulty is
that the quantity of interest Tr(afﬁ‘)*)” is not obviously a moment for m (it is a moment for n, but here we

are fixing n to be an integer.) However we can write it as a moment for some operator spectral measure:
Traa (044.)" = (15| £he™? ® 0™*La [153) . (6.149)
where g = p%% and Y 4 is the usual n-twist operator. Consider the operator:
O=0o®op (6.150)

and the associated spectral measure F) from which we define a new measure pug(A) = (¥| Ey |¥) with

|[T) =%4 ‘1§%>. More specifically we can write:
0= Z Ai |vi) (vil (6.151)
and the measure for finite y will have a discrete decomposition:
dprw(3) = D[ (W] w3) [P6(A = M)A (6.152)
We recover the quantity of interest:

oo
Traas (o0)" = /O dpg (N)A™/2 (6.153)

We have computed the moments for m/2 integer away from the phase transition, schematically:

oo
m/2 —2(n—1)A(A:B:C)+n(m—2)A(AB:C)
/0 dprg (M)A X::O X (6.154)
We have not computed the m = 0 moment. This makes the moment problem somewhat more involved since
we have less control over the limit of the measure 1y near A = 0. We will need to give an alternative estimate

in this limit. We will show that, schematically:

/ dpg (\AY2F (A2 AABC)) / dpug (\)AL/2 (6.155)
0 0

for large x and for a class of functions, specified in more detail later, which vanishes for F(z) =0:z > 1.

This result follows from a weak form of measure concentration for general random tensor networks that works
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as long as the entanglement wedge is appropriately unique:

Definition 6.9 (Unique entanglement wedge). Given a random tensor network with boundary = ABUC

then the entanglement wedge rap is called unique if for any other AB : C cut r # rap:
A(AB:C) < A(r:r°)—g (6.156)

for some non-zero gap g > 0.

Lemma 6.24 (Weak measure concentration). 1. Consider a density matrix p on a finite dimensional
Hilbert space H and supported on w, with Trr, = A then for a real function f € C*(R) such that
f(x) =0 for all x > 0 and such that f' is a rapidly decaying Schwartz function f' € S(R), then:

[l f(mp+ I A) |n2)| < [IF(F)Lellp — 70 /Al (6.157)

with normalized n1 2 € H and where § denotes the Fourier transform.

2. Consider a random tensor network state with boundary 0 = AB U C and with a unique entanglement
wedge for AB, then:

lpa = Tpap [XAABON; = O(x9/?) (6.158)

Remark. This might be called weak for two reasons. Firstly we are estimating matrix elements, and weak
continuity of operators pertains to such matrix elements. However since the operators do not live in the same
Hilbert space for different x it is not exactly clear what you would call weak continuity. Secondly it is a much
weaker bound than the standard measure concentration where the probability of finding a minimum non-zero
eigenvalue away from the peak is exponentially small in x#. Such measure concentration results were proven
for a single random tensor - multiple random tensors seem much harder to work with, hence we have not

succeeded in deriving the much stronger result. This weaker result is however sufficient for our purposes.

Proof. (2) We start with a computation of the projected trace distance on the subspace m,,,Hap where

Trrp,, < xAMAB) for any tensor network state. Then from Holder’s inequality we have:

2
048 = Tpas AP <A pap = 70 XADE G = XA Te(pa = 7y X))
— AMADB) (Trp?w —2/xAAB) L Ty, /X2A<AB)> (6.159)

<X T - 1.
Averaging gives the required estimate:
XA T — 1= O(x ) (6.160)

by explicit computation of the replica statistical mechanics model, and application of the gap condition in
Definition 6.9.
(1) Since p will have a minimum non-zero eigenvalue A, we can cut off f, = f ow, where w, € C* is a
smooth cutoff function:
we(x) = w(x/a), (6.161)
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with w(z) = 0 for £ < —2 and w(z) = 1 for z > —1 and generally 0 < w < 1 and also w’ € S. Choosing
a > —InAg, —InA > 0 we can replace f with f,. The result f, is a smooth function of compact support so

this has a Fourier transform. Thus:
fa(lnp+1InA) = /ds%(fa)(s)Aispis (6.162)

If p and p’ commute then we can simultaneously diagonalize these and

[l (0% = (o)) )| = | D _(exp(—isEy) — exp(=isE)) (m i) (i n2) (6.163)
<Y —exp(—is(Ef — E)| < slllp — ¢l (6.164)
i
where E; = —In \;, and the inequality follows from the bound |sin(x)| < |z|. Thus:
[{m| f(Inp 4+ A)[n2) — (m| f(np" +1InA)[n2)| < [|s§(fa)(8)llz: [0 — o'l (6.165)

In Appendix E.4 we prove that we can remove the cutoff function w,:

Jim [53(2) ()12, = 505 o (6.166)

for functions f and w that were specified in the statement and above. If we set p’ = m,/A and use the

properties of the function in the statement we find f(Inp’ 4+ 1In A) = 0 away from the subspace of support of p.

O
To proceed, we define a specific form of convergence in probabilities as follows. We say that:
Pr
ay —c (6.167)
if for all e:
lim Pr(ja, —c¢| >¢€) =0, (6.168)

X—00

where «,, is a sequence of real valued random variables (on different probability spaces equipped with the
Haar measure with dimension determined by ) and ¢ is simply a constant. We now state our main result of

this section:
Lemma 6.25. For integer n.:

n

S,(%")(A:B)—lnx<ni1At(A:B:C)— 1A(AB:C)> Mo (6.169)

as XY — 00.

The proof we give for Lemma 6.25 is rather lengthy and technical so we present it in Appendix E.3. We
now use the above result to prove Theorem 6.1.

Proof of Theorem 6.1. The only thing remaining is to move from convergence in probability to convergence

145



in mean after dividing by In x. Certainly:

Pr

CA(AB : C)) o (6.170)

Ag(A:B:C)—

SP(A:B) (1 n
n—1 n—

Iny

s (A:B)

as x — 00, follows from Lemma 6.25. We now show that —£ iy 182 uniformly bounded random variable.

We use monotonicity, established in Ref. [56] for integer n > 2:

St (A B) = Su(AA") 12 < Su(AAY) s = SEV(A: BC) = 28,(4) (6.171)
Using the Swingle bound gives:
() 4.
W <2A(AB: C) (6.172)

Both of these bounds apply to all instances of the ensemble. Convergence in probability for a bounded

random variable, implies convergence in mean and so we are done. O

6.6 Hyperbolic RTNs

So far in this chapter our focus has been on establishing general theorems for reflected entropy on arbitrary
RTNs. In this section we make connection to holography by restricting our focus on RTNs defined on
hyperbolic graphs motivated from AdS/CFT. We will revisit our initial the tensor network calculation for
reflected entropy in Sec. (2.5) and see how the naive saddles gets modified to give a consistent picture. We
focus on a regime away from the phase transition and does not investigate the phase transition itself.

To begin our discussion, recall that in Sec. (2.5) we identified two possible bulk solutions (Fig. (2.6)). We
now understand that such picture is not correct and one must allow the possible appearance of new bulk
regions associated to element X determined by the minimal triway cut. In continuum spaces, the minimal
multiway cut problem naturally translates to the problem of finding a bulk partition whose surface area
is minimized. For the equal tension case (n = 2 in our setup), this problem is a long studied problem in

geometric measure theory with the conjectured solution termed the “double bubble”:

Conjecture 6.26 (Double bubble). The least area connected partition of a manifold M into any number of

regions consists of the union of minimal surfaces whose intersections in M are trivalent and equiangular.

This conjecture has been proven for R? [177] and the hyperbolic disk H? [178] and is conjectured to hold
true for all dimensions [179]. The case of weighted area was proven by Ref. [180]. With this in mind, we
categorize different possible phases by the inclusion of an X-region. We consider four such possible saddles.
We do not prove that these are the only saddles possible. However minimal multiway cut problem seems to
We will simply assume this to be the case for now. The resulting physics we get from this assumption passes
many tests, and so we strongly suspect these phases dominate in at least some finite window of parameter
space.

Working with a connected entanglement wedge, with conformal cross ratio < 1/2, we now show possible
minimal solutions to the hyperbolic network model and list their normalized free energies. More specifically
the (m,n)-Rényi Reflected entropies are Iny x f for some minimal f. The candidate f’s arising from the

phases in Fig. (6.9) are:
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(a) phase I (b) phase II

(c) phase III

Figure 6.9: Different phases that can dominate in the reflected entropy bulk configuration.

phase 1

fi=d(n—1)mitVL=? ”i_x dn(m —1) (H(ps,p_) —In2), (6.173)

/e

where pL = 1/2 (1 4 {n=1) ) and H(ps,p—) = —p+Inpy —p_Inp_ is the Shannon entropy.

n(m—1)
e phase II
1+v1—a 1 1
=4n—1)ln——+4dn|(H(1——,— ) —In2 174
fm=4(n—-1)In NG + n( < 2n’2n> n ) (6.174)
o phase III 16
1—
fir = 2n(m — 1) In —= (6.175)
e phase IV
1—2
fiv =2nn (6.176)

Note that x is the conformal cross-ratio for end points of the intervals on the boundary, such that
0 <z <1andzx — 0 gives the phase with a connected entanglement wedge. We have assumed that we can
approximate the network geodesics by a continuum geometry where there is a conformal symmetry, this is a

crude approximation that is sufficient for our purposes.

6For & > 1/2 we are always in the disconnected phase corresponding to phase III. The free energy for = > 1/2 differs by an
amount 2n(m — 1) In((1 — z)/z) compared to that shown here, due to the phase transition in the normalization of the reflected
Rényi entropies.
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We now analytically continue in (n,m). Our first approach is naive and will fail for 1 < m < 2. We
simply analytically continuing the expressions in Eq. (6.173-6.176), and then compare all four free energies at
each point in parameter space. For example, we plot the resulting phase diagram in the (m,n) plane for
several different values of z in Figure 6.10. As we can see there is always a transition line at m = 2, and

(a) z =0.04 (b) x =0.11

40 40 [

20

n n
(¢) x=10.33 (d) z =0.56

T T T T 0 aop T y T T .

15+ e 35+ .

10t 4 a0} ]
v 111

E 25 4 B 2351 -

20f 20

1.5 H - 15 g
111 v

L0 - . 1o .

1 ) 3 4 5 [ 1 p) 3 4 5 5
n n

Figure 6.10: The phase diagrams for the four phases introduced above. The horizontal axis is n and the
vertical is m. Note the flip in the two phases in the last diagram.

above the transition line the phases are independent of m. The reason for this transition is that the tension
of the X + id domain wall d(X,id) = n(m — 2) becomes negative. Indeed this was exactly the same as
with the single tensor case. So rather than follow the above naive approach we apply our prescription from
the single tensor case (which has already passed many checks) and this implies that the phase diagram in
Fig. (6.10) is incorrect for m < 2. Instead we should analytically continue the phase transitions above m > 2
all the way to m = 1, without re-minimizing over the different phases. The resulting phase diagram is then
independent of m for all m > 1.

We now compute the full entanglement spectrum for this model away from the phase transition point.
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—1/a —a a 1/a

gA 2 9B

1/z

Figure 6.11: The bulk setup used to calculate Eq. (6.178). We work within Poincaré hyperbolic coordinate
with moving downward as going deeper into the bulk. The position of various end points are shown in terms
of a and z.

Analytically continuing from m > 2 gives for all m:

0, >1/2
Sp=— ! ’ / (6.177)

n—1 min{fn,flv}, xr < 1/2

While the expression in Eq. (6.174) seems rather complicated there is an interesting way to write fir at large

X:

Sru = - i : lnagﬂexp { In (4(n —1)Inz+4nln % (g + z>> } (6.178)
where a = /z/(1 + /1 — x) determines the un-pinched EW cross-section: —21Ina, and —21In z is the area of
pinched cross-section, see Fig. (6.11).

We are being schematic about the sum. One is tempted to make this an integral, but recall that the
network in question is really discrete and so there will indeed be a discrete set of cuts for the cross section.
This form agrees with the previous one since we have to evaluate the sum in a saddle point approximation at
large x. In particular Fig. (6.11) represents how we computed Eq. (6.174) in the first place.

Following the discussion in Sec. (3.8) for the 1TN model and Sec. (5.4.3) for the 2TN model, we now
interpret Eq. (6.177) as arising from an effective description of the canonical purification as a superposition
of wavefunctions. Thes wavefunctions then live in approximate superselection sectors when reduced to AA*.
It is clear the different sectors are associated to tensor networks with different/pinched cross-sectional areas.
We think of this pinching as being determined by an area operator that is now allowed to fluctuate. The area
is A(z) = —2In 2.

Given this discussion we can read off from Eq. (6.177) the probabilities of each sector arising:

P(A) = (cosh((A — Ap)/2)) "X 0< A< A,, (6.179)
where A9 = A(a) = —21Ina, the unpinched cross section. These probabilities are exponentially small except
when A = —21n a where the probability goes to 1. In general, there will be some perturbative corrections that

help maintain the normalization condition. Thus we write our effective model for the canonical purification
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state using a new set of doubled and glued random tensor networks labelled by A:
1/2
lo5) ~ > P(A) /2w (4)), (6.180)
A

where |U(A)) is defined as a random tensor network state as follows. Consider the pinched entanglement
wedge consisting of the vertices with group elements g4, ¢gp in Fig. (6.11). We construct a new tensor network
by doubling and gluing along the X <+ g4, gp domain wall. This domain wall is slightly pinched relative to
the original entanglement wedge. As before we can pick the random tensors on the AB entanglement wedge
to match those of the original tensor network, while we pick the tensors on the (AB)* to be independent and
random.

Note that 2A(z) will represent a true minimal cut, homologous to AA*, through this new doubled
network. In particular there is an associated AA* entanglement wedge consisting of the region outside of this
minimal cut/cross-section. Since the entanglement wedges for these random tensor networks associated to
the boundary region AA* are very different for different A(z) we expect the density matrices reduced to AA*
to be approximately orthogonal. This is also true for BB*.

It then follows that Traa- |[U(A)) (U(A")| « 64,4 and Trgps [¥(A)) (P(A’)| x da,4 up to small non-
perturbative corrections, and our results now parallel the results discussed in Sec. (3.8) and Sec. (5.4.3). In
particular an area operator on the physical Hilbert space emerges, by using the approximately orthogonal
supports of paa-(A(z)) and ppp+(A(z)). This area operator then determines the Rényi reflected entropy:

e~ (n=1)Srum ZP(A)"e—(n—l)A7 (6.181)
A

which agrees with Eq. (6.178). Evaluating the sum in the saddle point leads back to Eq. (6.174). The
dominant area A shifts as a function of n and in particular the n — 1 limit gives back the entanglement
wedge cross section since P(A) — 1 in this limit.

For large enough n the dominant phase actually becomes the disconnected phase IV which is the same n
dependent phase transition that occured for the single random tensor model. The final effective description

of the canonical purification, that capures all these effects, is shown pictorially here:

VPAB ~ Z \V/Di + /Do (6.182)
Lo <] 7

6.7 Disscussion

In conclusion, we have demonstrated quite rigorously that the (m,n)-Rényi reflected entropies in random
tensor networks are computed by dominant saddles involving triway cuts as shown in Fig. (6.1) for arbitrary
m and integer n. Moreover, there is a natural analytic continuation of the triway cut problem for non-integer
n which leads to the holographic proposal relating to the entanglement wedge cross section. It is then natural

to guess that similar saddles, which are different from the naive saddles written down in Ref. [56], will also
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play an important role in holography resolving the issues with analytic continuation found in Ref. [117]. We

now comment on various aspects of our work.

Bit Threads

As discussed earlier, bit threads provide a vivid picture of the entanglement structure of holographic states.
Based on the structure of bit thread configurations, Ref. [59] conjectured that the three party entanglement
structure of holographic systems is dominated by bipartite entanglement. However, a version of this conjecture
is in conflict with the Sg = 2EW proposal [58], for which we have found further evidence. While this is
conclusive, we would nevertheless like to discuss a way to see how one can get as close to bit threads as
possible.

As reviewed in Sec. (6.3.1), the RT formula can be recast as a max flow problem by convex duality.
Moreover, the natural form of the min-cut problem from the RTN perspective is an integer program where
the optimization is over domain walls with integer energy costs, representing the different permutations that
contribute to the free energy minimization problem. For the entanglement entropy, the problem can be
relaxed to a linear program over the real numbers since there isn’t an integrality gap for this problem. Once
relaxed, convex duality naturally leads to a max-flow problem, i.e., bit threads.

In the context of reflected entropy however, we showed that the triway cut problem is equivalent to
an integer program with a non-trivial integrality gap. While the Renyi reflected entropies are computed
by triway cuts, which are related to the entanglement wedge cross section, the non-integer program allows
relaxation to surfaces that are related to the original RT surfaces as shown in Fig. (6.2) (e.g. for n = 2). For
RTNs, this is identical to the mutual information, as found from assuming the mostly bipartite conjecture.
Thus, we can think of the relaxation of the integer program as the “incorrect” step that led to bit threads, as
well as the mostly bipartite conjecture.

It has been conjectured that one can amend the mostly bipartite story from bit threads by considering a
generalized “hyperthread” optimization program [181] (see also [182]). Hyperthreads are threads connecting
between multiple (k > 3) boundary regions and it is conjectured that the optimal value of a k-thread program
may be a measure of k-partite entanglement. In the case of 3-threads, the optimal configuration saturates a
minimal triway cut. In this sense our results serve as a firsthand bridge that connects the 3-thread problem
to a concrete quantum information measure. We think it should be possible to derive the hyperthread
optimization as a dual problem of the various integer programs appearing in this chapter — indeed the triway
cut does not admit a bit thread dual but it may still be able to be “dual” to a more exotic program such as
the hyperthreads. On the other hand, reflected entropy can be naturally generalized to accommodate k-party
systems [105]. It would be interesting to see if the formalism we developed in this chapter extends to such
case and if there is possible connection to the k-thread programs. We leave these investigations to future

works.

More General Tensor Networks

There are various aspects of RTNs that make them good models of holography such as their relation to
fixed-area states [96-98]. However, there are other aspects that are missing such as the lack of mutual
backreaction between domain walls, as well as the commutativity of area operators [133]. Thus, it is interesting
to analyze the extent to which variants of random tensor networks can model holography.

For instance, the RT formula can be reproduced by choosing tensors that are 2-designs where the average
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Figure 6.12: The purification for two intervals in the vacuum state at m = 2 is a BTZ geometry where fixing
the area of the entanglement wedge cross section induces a conical defect (dotted line) at the BTZ horizon.

is the same as the Haar average up to the second moment [40]. Random stabilizer tensor networks are an
example which form at most a projective 3-design [183-186]. However, they satisfy the bipartite dominance
conjecture [60] and thus, do not accurately model the reflected entropy for holographic states. Our results
certainly makes use of larger moments, so the discrepancy is no surprise. In fact our results suggest that
the integrality gap would become visible to a projective 4-design, at least when computing the (2,2) Renyi
reflected entropy (involving canonical purifications of the density matrix p? 5/Trp% ). The implications for
the Renyi reflected entropy and the Markov gap are less clear, and we leave it as an important open question
to understand at what level of k-design the Markov gaps becomes large, of order In x.

Another possible generalization of the RTN that can be considered is to use non-maximally entangled
edge states [110]. In this case, the calculation for the (m,n)-Renyi reflected entropy is similar except the
energy costs on the domain wall become functions of the entanglement spectrum of the edge states. In this
case, it is harder to prove anything about the analytic continuation, but we expect similar saddles to play an
important role.

Another generalization we can consider is that of hypergraph RTNs. Hypergraphs are a natural gener-
alization of graphs where edges connecting 2 vertices are generalized to hyperedges potentially connecting
more than 2 vertices. States satisfying the RT formula on hypergraphs were discussed in Refs. [187]. Such
states have a natural construction in terms of the RTN where hyperedges are formed by projecting onto
GHZ states coupling multiple vertex tensors [188]. One could then ask what the reflected entropy for such
states is. While we do not have a proof analogous to the one for usual RTNs, assuming that triway cut
like configurations dominate, we can compute the Renyi reflected entropy. The important ingredient is the
generalization of the free energy optimization problem. The free energy cost of an edge in the RTN for vertex
permutations g and go is weighted by #(g2g; D). Tt is easy to work out the generalization for hyperedges.
For instance, for a 3-edge with vertex permutations g1, g2 and g3, the free energy cost is #(g2g; Ly 9391 1),

which measures the number of orbits of the relevant elements.

Effective Description

In Sec. (6.6), we discussed an effective description of the canonical purification as a superposition over states
with different values of area for the squeezed cross sections (e.g. Eq. (6.182)). It is natural to expect a
generalization of this result to general RTNs where the squeezed cross sections are solutions to the triway cut
problem at different values of n.

While this effective description was proposed in the context of RTNs, where there is no backreaction

and the superposition is simply over different sets of vertices in the graph, it is natural to ask if it can be
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understood in holographic systems as well. For the special case of two intervals in the vacuum state at m = 2,
it was found in Refs. [189, 190] that the Renyi reflected entropies for arbitrary n can be computed by the torus
partition function. This makes analytic continuation easy, and is related to the fact that for m = 2, there is
no independent X element which we expect should play a role in holography more generally. The calculation
of Renyi reflected entropy can then similarly be decomposed into fixed-area sectors of the entanglement wedge
cross section, which correspond to different horizon areas in the BTZ saddle. It is then easy to see that the
effective description with different squeezed cross sections is represented by these fixed-area states which
induce varying conical defects at the horizon, which translate into the angle subtended at the triway cut at
different values of n (see Fig. (6.12)).
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Chapter 7

Holographic Entanglement of
Purification in RTNs

In this chapter we apply the results we obtained in Chapter 6 to prove that the entanglement of purification
E, is equal to EWCS: E,(A: B) = EW(A : B) in holographic RTNs, a conjecture motivated from AdS/CFT
[33, 171]. More specifically, we will prove a new inequality: Ep(A: B) > %Sz(:z?) (A: B). Using this, we
compute Fp(A: B) for a large class of RTNs at large bond dimension and show that it is equal to the EWCS.

This chapter is organized as follows: In Sec. (7.1) we review the necessary ingredients for proving the
conjecture, including the entanglement of purification and a formulation of reflected entropy using Tomita-
Takesaki theory. Armed with these results, we establish the necessary inequality that leads to the main
theorem. In Sec. (7.2) we combine the results obtained in Sec. (7.1) and Chapter 6 to prove the E, = EW
conjecture in a wide class of RTNs. We also showcase the validity of our results in terms of the phase diagrams
of the 1TN and 2TN model obtained in Chapter 3 and 5. We summarize our findings and discuss possible
future directions in Sec. (7.3).

The results presented in this chapter are based on Ref. [69].

7.1 Preliminary

7.1.1 Entanglement of purification

Given a bipartite density matrix p4p, the entanglement of purification Ep(A: B) is defined as [191]

Ep(A: B)= min S(A4A"), (7.1)
‘w>ABA/B'
where S(R) = —Tr(prlogpr) is the entanglement entropy. The minimization runs over all possible

purifications of pag, i.e., |¢) s g4/ g such that tra g (|¢) (¥|) = pap, and the |¢) that achieves the minimum
is called the optimal purification. Ep(A: B) is a useful measure of correlations in a bipartite mixed state
and is proven to be monotonic under local operations [191]. However, it is generally intractable to compute

because of the optimization over all possible purifications !.

I Exceptions to this include pure states like Bell pairs and classically correlated states like GHZ states, see Ref. [171] for
details.

154



In the context of AdS/CFT 2, it has been conjectured that for A, B subregions of the CFT, there is a
simple geometric, AdS dual to Ep(A : B). The entanglement wedge of subregion AB of the CFT is the bulk
region between AB and the minimal surface y4p (also called the Ryu-Takayanagi (RT) surface [26]). This
is, in appropriate settings, the bulk region reconstructable from the corresponding boundary subregion [36].
Based on this, Refs. [33, 171] conjectured that Ep(A: B) is given by

Ep(A: B) = EW(A: B) (7.2)

We compute Ep by using a known upper bound and deriving a new lower bound (Theorem 7.2), which
we are able to argue matches the upper bound in certain RTNs. This argument relies on the results obtained

previously in this thesis for the reflected entropy:
Sr(A:B)=2EW(A: B), (7.3)

which has been proven rigorously for a large class of RTNs in Chapter 3,5 and 6. Moreover, as argued in [33],
RTNs in general satisfy
Ep(A:B)<EW(A: B). (7.4)

This places the upper bound Ep < Sg/2.

7.1.2 Reflected entropy from modular operator

The lower bound in Theorem 7.2 will require the following lemma that rewrites the Rényi reflected entropy
using the formalism of modular operators appearing in Tomita-Takesaki theory . Consider a finite dimensional
system with Hilbert space Hap ® Hc, where subsystem C' is completely general. Given a state [¢) * and

subsystem AB, the modular operator is defined as

Aapy = pap @ po (7.5)

where the inverse is defined to act only on the non-zero subspace of pc and A 4p 4 is defined to annihilate

the orthogonal subspace.

Lemma 7.1. For integer n > 2,

1

—-—n

log (®" | SaAY 2o yen Sl [027) (7.6)

S (A: B) = :

where ¥ 5a+y are twist operators that cyclically permute the n copies of |\/pap) on subregion A(A*), |¢) is
an arbitrary purification of pap, and A gen yen = A%% v

Proof. The Rényi reflected entropy can be written as

n 1 n
S (A: B) = - log Tr(plh4.) (7.7)

Tr(pha-) = (VPas" " SaSa- [VPas™") . (7.8)

2See Ref. [78] for a review of the quantum information perspective on AdS/CFT.
3See Ref. [51] for a review.
4|4p) does not need to be cyclic and separating.
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As described in Sec. (2.3), operators act on End(H 45) by left and right actions, i.e.,

OaB|Map) = |Oap Mag) (7.9)
Oa-p+ |Map) = |Map Ol ) , (7.10)

and the inner product is defined by
(M|N) = Tr(MTN). (7.11)

Using this, one finds that Eq. (7.8) is given by

tr(piax) = Tr(AB)®n («/pAB®n2A,/pAB®nZL). (7.12)

To express Eq. (7.12) in terms of modular operators, we consider an arbitrary purification of p4p denoted

|1}, giving

Tr(pha-) = Treapyen (VpaB~"Sa \/PAB@mZ;)

1/2 —1/2
= <'(/J®”| EAAA/B®1L7¢®7L ETAAAB/®”L_’11[}®7L

n 1/2 n
= <¢® |EAAA/B®,17¢®"ET4 W)@ > 5

)

where we have used the fact that the pc dependence cancels out in the second line. For the last line, we have

used AZ}B/’ Z |1) = |v) which is easy to see by working in the Schmidt basis. O

7.1.3 A lower bound

Theorem 7.2. For integer n > 2,
Ep(A:B)>5"(A:B)/2. (7.13)

Remark. In Ref. [56], it was proven that for integer n > 2, the Renyi reflected entropy is monotonic under
partial trace, i.e., Sl(%n)(A: BC) > Sgb)(A: B). This immediately implies Theorem 7.2 by the following
argument. Let [1)) 45 4,5 be the optimal purification. Then

2S(AA") > 28, (AA") = ST (AA": BB') > S\ (A: B), (7.14)

where we have used the fact that Sl(:in)(C : D) = 25,(C) for a pure state on C'D. That said, we choose to

present the proof below because it is self-contained and far simpler than the proof of monotonicity in Ref. [56].

Proof of Theorem 7.2. We first define the Rényi generalization of Ep(A: B) as

EW(A: By= min S,(AA"). (7.15)
|w>ABA’B’
Applying the monotonicity of Rényi entropy, i.e., 9,5, < 0, for n > 1 we have

Ep(A: B) > EW(A: B). (7.16)

Now consider an arbitrary purification [¢) 454 p:. For integer n > 2, the Rényi entropy for subregion
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AA’ can be computed using twist operators in a fashion similar to Egs. (7.7,7.8), i.e.,

1
Sn(AA') = - log Tr(p’ 47) (7.17)

tr(pla) = (" ZaZa PO (7.18)

Define the operators ITap 4 (ILa’p/,y) to be projectors onto the non-zero subspaces of the reduced density
matrices on AB (A’B’). Then, using lTap 4 [¢) = arpr y |¥) = |3), we can insert Tap o (45 4) from the
right (left) in Eq. (7.18) for each of the n copies of ). Note that II4pIl4 g = AX;WA;E@ as the inverse
density matrices in the modular operators annihilate the orthogonal subspaces. We can use this fact to insert

a pair of modular operators into Eq. (7.18) to get

tr () = W Sa(AYS AL S S |27

(7.19)
< (o124l o o ZH IO W Za A2, oS [05)

[N

where we have applied the Cauchy-Schwarz inequality between the modular operators.
Using A5 » = Aapy and Eq. (7.13), the two terms in the last line of Eq. (7.19) can be related to
Renyi reflected entropies on A : B and A’ : B’ respectively. Thus, we have

1 n n
20— logtr (pfar) > ST(A: B)+SG(A': B). (7.20)
Finally using the fact that S}(%”)(A’: B’) > 0, applying Eq. (7.20) to the optimal purification arising in the

calculation of E},n) (A: B) and using Eq. (7.16), we have our desired inequality. O

We will use the inequality at n = 2 since it is the strongest. It is important to note that this inequality
was derived using twist operators which only exist at integer n. In the context of computing entanglement
entropy, one usually analytically continues the answer obtained at integer n to non-integer values using
Carlson’s theorem. However, it is not necessarily possible to analytically continue an inequality. For example,
the monotonicity of Renyi reflected entropy under partial trace, i.e., Sl(%n) (A: BC) > Sgl)(A: B) was proved

to be true at integer n [56], whereas counterexamples were found for non-integer n in Ref. [106].

7.2 Entanglement of purification on RTNs

We can now use these bounds to compute Ep in RTN states. We will consider RTNs in the simplifying limit
where all bond dimensions x., are large such that log x,, o< log D and D — oo 5,

It was proved in Chapter 6 that the optimal configuration involves four permutation elements {e, g4, g5, X }
and takes the general form shown in Fig. (7.1). In detail, we have
SY(A: B) n

li =2 A: B: -
ey log D An( ¢) n—

-A(AB: 0), (7.21)

where A, (A: B: C) is the triway cut with tensions ta.p = 1 and ta.c = tg.c = 2(%_1) (see Fig. (7.1)).
A(AB: C) is the minimal cut separating AB from C.

Slog D ~ ﬁ in AdS/CFT in units where l445 = 1.
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C

Figure 7.1: The triway cut (yellow) minimizes the energy cost of the domain walls with tensions t4.5 = 1
and tq.c = tp.c = ﬁ For n > 1, it lies within the entanglement wedge of AB defined by the RT

surface denoted A(AB : C'). The optimal configuration corresponds to domains of permutation elements
{67 9gA, 9B, X} as shown.

While the triway cut problem provides a natural analytic continuation in n and our results in Chapter 3-5
have provided evidence that this in fact is the correct prescription, it is not necessary to assume this for the
purpose of this chapter. For now we note that at n = 2, all the tensions are equal and normalized to 1. On
the other hand, in the limit n — 1, the RHS of Eq. (7.21) approaches 2EW (A : B).

Now, the key point is that there exist networks where the triway cut configuration is identical for n — 1
and n = 2. This corresponds to networks where the X region in Fig. (7.1) vanishes at n = 2. We will

demonstrate such examples in Sec. (7.2.1). For now, assuming such a network and using Eq. (7.13), we have
1
Ep(A: B) > 5S§§>(A; B) = EW(A: B). (7.22)

To prove the opposite inequality, we repeat the arguments made in Refs. [33, 171]. There is an approximate
isometry relating the RTN state [t)) 4 5 to the state |¢)) 4, g defined on the same graph truncated to the
entanglement wedge of AB, with C' = y45. The RT formula can still be applied and optimizing over
the choice of decomposition C' = A’ U B’, we have S(AA’) = EW(A: B). Since we have found one such
purification, we have

Ep(A: B) < EW(A: B) (7.23)

Note that each of the above inequalities is in the D — oo limit. Combining these two inequalities, we have
Ep(A: B) = EW(A: B) up to terms vanishing in the D — oo limit. It is then also clear that the geometric
purification in Refs. [33, 171] is the optimal purification to leading order in D.

7.2.1 Examples

We now provide simple examples of RT'Ns to demonstrate regions of parameter space where we have proved
Ep(A: B) = EW(A: B). While in the continuum limit one generically expects a non-trivial X region as
shown in Fig. (7.1), for any discrete network we expect a codimension-0 region of parameter space where the

X region vanishes.

e 1TN
The first example we consider is that of a Haar random tripartite state, represented by a graph with a
single vertex and three legs with bond dimensions d 4 ;g /¢ respectively. In this case, the reflected entropy

was computed in detail in Chapter 3. We present the phase diagram in the left panel of Fig. (7.2). The
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rB 1+ zw B

Figure 7.2: The phase diagram of the 1TN model (left) and the 2TN model (right), labeled by the dominant
permutation element in each domain. We have proved Ep(A: B) = EW(A: B) everywhere except the region
marked with squares.

log d A _ logdp
Tog do and zg = Llog i Apart from

the shaded region marking the X domain, we have proved Ep(A: B) = EW(A: B) everywhere else. It

is also straightforward to read off the optimal purification since we already argued it is given by the

phase boundaries at n = 2 are represented as a function of x4 =

geometric purification suggested in Ref. [33, 171].

One may consider a simple deformation of the above model, by changing the maximally entangled legs
of the RTN to non-maximally entangled legs. Such states have also been useful to model holographic
states [110]. In fact, the simplest situation where we add non-maximal entanglement to the C' leg results
in a state identical to the PSSY model of black hole evaporation [15]. We can thus use the results of
Chapter 4 which computed the reflected entropy in this model. The phase diagram turns out to be
similar to the 1TN phase diagram except the shaded region turns out to be larger. Thus, non-maximal
links do not help in improving the applicability of our result. We provide some more details on this in
Appendix F.1.

¢ 2TN
The next simplest network to consider is one where we have two vertices connected by an internal bond.
For simplicity, the external C' bonds are chosen to have identical bond dimension. In general, we have
the phase diagram shown in the right panel of Fig. (7.2). Again, we see a large codimension-0 region of

parameter space where our proof applies. In fact, motivated by holography, Chapter 5 considered a

_ logdw

= Togde 0. In this limit, the shaded domains containing the element X vanish at

limit where xy

arbitrary n. Thus, our proof always applies in this limit.

7.3 Discussion

In this chapter we have proven Ep = EW for a large class of RTNs. Our result relied on the inequality
Ep > %Sg) proven as Theorem 7.2. Proving the stronger inequality Fp > %S r would prove Ep = EW
more generally, but this cannot be achieved with our proof technique. It would be interesting to check this

numerically using the techniques of Ref. [192].
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Figure 7.3: A correlation function computed by the geodesic of length L (solid blue) can be compared to the
mirror correlation functions analogous to Eq. (7.19) computed by mirror geodesics (red and green) meeting

the RT surface (dashed) orthogonally. Each of the mirror geodesics with length L; 5 involves two copies
(dashed and solid). It is then clear that L > Z1tk2,

An inequality of the form of Eq. (7.19) can in fact be proved for heavy local operators in AdS/CFT by
using the geodesic approximation and the techniques of computing mirror correlation functions [193] (see
Fig. (7.3)). In AdS3/CFTs, twist operators are local and can be analytically continued to n = 1. Applying
the inequality, we would then find S(AA’) > 1Sk(A: B) + $Sg(A’ : B) in any geometric purification. It
would be interesting if this argument can be generalized to non-geometric states, so that we can minimize the
LHS and find the strengthened inequality.
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Chapter 8

Outlook

In this dissertation we carried out a thorough study of the entanglement properties of the canonical purification
for random tensor network states. We conclude this dissertation by summarizing some interesting future

research directions.

Analytic continuation of Rényi index n — 1 on generic RTNs

Our main result in Chapter 6 pertains to the integer (m,n)-Rényi reflected entropy. We have performed the
analytic continuation m — 1 rigorously, but not for the n — 1 required for the (von Neumann) reflected
entropy. The main difficulty is that the reflected spectrum is not flat in n inherently, and thus we have less
control over analytic continuation. This is in contrast to the simple tensor models in Chapter 3 and Chapter 5,
where we know all the n-Renyi entropies exactly. One may be able to bound the difference by application
of various bounds of Rényi entropy but so far we have not managed to do it. A successful implementation
of this result would have profound implications on the entanglement structure of holographic RTNs. In
particular it would push our result in Chapter 7 to cover the missing parameter spaces of RTN with large

bond dimensions.

Entanglement measures beyond reflected entropy

As we have shown in this thesis, the study of canonical purification and reflected has led to new and profound
insights in our understanding of the entanglement structure of holographic states and the emergence of
spacetime. A natural question is that what can more general information measures can tell us about quantum
gravity. Indeed the quantification of multipartite entanglement is known to be a very hard problem [49].
However, the methods we developed in this thesis provide a set of new lens which enable one to study these
measures under a new prospective. In particular, our proof of Sz = 2 EW conjecture for generic RTNs makes
heavy uses of lattice theory and convex optimization theory. In particular, lattice theory of the symmetry
group provides a natural language for twist operators in calculating different entanglement measures. Such a
approach has already been adopted in Refs. [174, 176] to construct new multi-partite quantum information
measures.

On the other hand, the application of max flow-min cut theorem has led to the bit-thread picture for
entanglement entropy [65, 66]. Naively, it suggests that the bulk entanglement is mostly bipartite [59]. On

the contrary, our results in Chapter 6 shows that tripartite entanglement involves solving a minimal triway
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cut problem, which has no dual flow/bit-thread picture. It has been conjectured that one can amend the
mostly bipartite story from bit-threads by considering a generalized “hyperthread” optimization program
[181] (see also [182]), which involves k-threads connecting between multiple boundary (k > 3) regions. Our
results in this thesis specifically applies to k = 3 hyperthreads. It has been proposed that reflected entropy
can be naturally generalized to accommodate k-party systems [105]. It would be interesting to see if the

formalism we developed extends to such case and if there is possible connection to k-thread programs.

Better tensor network models for AdS/CFT

Another interesting future direction involves improving existing TN models for AdS/CFT. It is long known
that random tensor networks possess flat entanglement spectra, which is not true for generic gravity states
due to area fluctuations [96, 97]. There has been proposals to address this issue by substituting the maximally
entangled state the at each bond dimension of the RTN by non-maximally entangled ones [110, 138]. However
it does not seem to pose a solution to another issue with TN models, namely that the non-commutativity
of minimal surfaces in quantum gravity. In RTN, the area operators obtained from two crossing minimal
surfaces commute. This cannot happen for overlapping cuts in AdS/CFT [133].

Our construction for the canonical purification in RTNs marks a novel way to introduce area fluctuations
via an effective superposition of different networks. In particular our construction seems to be able to naturally
introduce both the fluctuations in the entanglement spectra as well as non-commuting area operators. The
idea is that by repeated application of canonical purification, one should be able to build up increasing

sophisticated networks describing the bulk geometry. For details see the discussion in Sec. (3.10).

Tensor networks and von Neumann algebra

A promising direction worth pursuing along the line is establishing the connection between tensor networks
and operator algebras. In particular, the TL algebra we employed in solving the spectrum of 2TN (Chapter 5)
plays an important role in the study of type-II von Neumann algebras, which has been shown to be the type
of operator algebra in de Sitter space [94], (see also Refs. [93, 194]), double-scaled SYK model and JT gravity
[86, 95]. There seems to be a deep connection between the emergent bulk geometry of TNs and this type-II
subfactor generated by the TL algebra. In addition, the analysis of double-scaled SYK model makes heavy
uses of the so-called “chord diagrams” [85, 86, 167], which bears striking resemblance to the TL diagrams
used in our calculation in Sec. (5.4), suggesting that there may be deeper connections between RTN and
the SYK model. Understanding this connection will give us better intuition about holography and quantum

gravity.
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Appendix A

Symmetric Group and Set Partitions

In this appendix, we will summarize certain aspects of the symmetric group Sy, the group of all permutations
on N elements. These are closely related to set partitions Py, the set of all partitions of N elements. We
start with a quick review of some well-known theorems of non-crossing permutations NCp. These theorems
can be given a topological meaning via the relation to set partitions, which allows us to generalize the theory
of non-crossing permutations to multiple disjoint boundaries. They will play an important role in the proof

of the form of the phase diagram for reflected entropy.

A.1 Cayley distance

The Cayley distance d(g, h) is a metric on Sy defined by the minimal number of transpositions, i.e., swaps of
two elements, required to go from g to h. Any permutation can be decomposed into disjoint cycles, where a
cycle of n elements is represented by the notation (i1 is...ix). We first note that conjugation of an element
g by an element A results in an element hgh~' with the same structure of cycles as g but with a relabelling

of the entries in each cycle dictated by h as
(ivig...in) — (h(i1) h(i2) ... h(in)). (A1)
Using this it is easy to show that the Cayley metric is both left and right invariant, i.e.,
d(g,h) = d(gzx, hx) = d(xg, xh). (A.2)

The right invariance follows from the definition, while left invariance uses the fact that conjugation of a
product of transpositions by x is still a product of transpositions.
In particular, this means we can reduce all calculations of distance between two elements to the distance

of an element from the identity element e, i.e.,
d(g,h) = d(e,g~'h) = d(e,hg™"). (A.3)

A special example is a cycle of k elements for which the distance from e is simply k& — 1, as can be seen by
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constructing an optimal decomposition
(i1i2...in) = (int1) ... (i311)(i2 41). (A4)

Using the above fact and the decomposition of an arbitrary permutation g into k disjoint cycles of size ny,

we have

d(eag) = Z (nk - 1) =N - #(9)7 (A5)

k

where we use the notation #(g) = k to denote the cycle counting function.! This makes it manifest that

d(e,g) = d(e,hgh™1), i.e., distance from the identity is invariant under conjugation.

A.2 Non-crossing permutations

The Cayley metric like any other metric satisfies a triangle inequality
d(g, h) +d(h,r) > d(g,r), (A.6)

where equality implies h lies on a geodesic between g and r, and the elements lying on the geodesic are
collectively denoted I'(g,r). In the case where one of the elements is the identity, the set I'(g,e) can be easily

classified using the theory of non-crossing permutations as we review below.

Definition A.1 (Non-crossing permutations). Let g € Sy. Cousider a disk with N cyclically ordered (say
clockwise) marked points on its boundary and connect the points with directed lines according to the cycle
decomposition of g. Then g is non-crossing if and only if every directed cycle are also clockwise oriented and
can be drawn in the interior of the disk without ever crossing each other. The set of non-crossing permutations
is denoted NCly.

Theorem A.l. (Biane [195]) An element g lies on the geodesic between e and mazimal cyclic permutation
7= (12---N), i.e. , salisfies

d(eag)+d(g77-) =N - 1a (A?)
or equivalently,
#(9) +#(rg™!) =N +1, (A.8)

if and only if it is a non-crossing permutation.
We need the following lemma.

Lemma A.2. Suppose g is a permutation such that #(g) = k and o is a transposition. Then #(go) =k +1
if and only if the elements exchanged by o are in the same cycle of g, else #(go) =k — 1.

Proof. Suppose the elements transposed by o, labelled i; and 4o, are part of the same cycle in g, then go

INote that elements that map to themselves are counted as cycles of size 1.
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Figure A.1: The transposition (i,j) breaks the cyclic permutation 7 into two cycles divided across the chord
joining points ¢ and j. In order to satisfy the geodesic condition, all further transpositions should act on
elements within the given cycles. Thus, we end up with a non-crossing permutation.

splits into two cycles of the form

(i1, gliz), .., g7" (ir))(iz, g(in), .-, 97" (i2))- (A.9)

On the other hand if 4; and i5 were not part of the same cycle in g, then go couples them into a single cycle

of the form

(i1, g(ig),..., 19, g(il),...). (AlO)

O

Proof. (of Theorem A.1). Consider an element g such that d(g,e) = k or #(g9) = N —k. Using Lemma A.2, we
see that 7¢g~! has at most k41 cycles and this precisely happens when the transpositions generating g—' break
the cycles of 7 at each step. The action of a transposition (i, j) is to break 7 into cycles (1,2, ...,i,j+1,...,N)
and (i +1,...,7). This can be represented on a disk as two cycles divided by the chord joining elements i
and j as seen in Fig. (A.1). This process can be repeated k times, while ensuring that transpositions always

act on elements within the same cycle. The figure makes it clear that the element 7¢g—!

obtained this way is
a non-crossing permutation.

To prove the other direction, it is useful to introduce a topological representation as shown in Fig. (A.2),
where the green blocks represent the group action of g while the orange blocks represents the action of 7¢g~!.
Theses blocks can never cross as implied from the non-crossing condition. Now reinterpreting the figure as a
graph we identify 2N vertices, 3N edges and the faces represent a cycle of either g or 7g~'. Thus, using the

Euler formula we have

V-E+F=%#(9)+#(rg)-N=2-2G-B (A.11)
— #(g)+#(rgH)=N+1-2G, (A.12)

where G is the genus of the Riemann surface and we have used B = 1 for the number of boundaries. Since the

graph is planar, G = 0, and we find that the geodesic condition is satisfied for non-crossing permutations. [

165



Figure A.2: The group action of a non-crossing permutation g is represented by its orbits (green) acting on
the elements i € 1,2,..., N, where N = 8. The action of 7g~! is represented by its orbits (orange) acting on
the same elements denoted ¢’ for clarity.

We note a nice corollary of theorem A.1.

Corollary A.3. Suppose g is a permutation with a decomposition into disjoint cycles By, Bs, ..., Bg. Then
an element h lies on the geodesic between e and g if and only if Vj B; is a union of disjoint cycles of h, and
h restricts to a non-crossing permutation on each Bj. In this case, non-crossing is defined with respect to the

orientation of cycles of g.
Proof. This follows from a simple application of Theorem A.1 for each B; separately. O

Remark. The topological representation (Fig. (A.2)) relates a permutation to a graph defined on 2N vertices.
The converse is also true and there is a bijection between such graphs and permutation elements g € Sy .
However the corresponding graph is only planar iff g € NCy. In general one can think of embedding this
graph onto some Riemann surface and make this statement much more refined by relating the genus directly

to the failure to comply the geodesic condition, i.e. For g,h € Sy,
d(e,g) +d(g,h) =d(e,h) +2(C — B) + 2G (A.13)

where B is the number of boundaries in the graph which is set by #(h) , C' is the number of connected
components of the graph and G is the genus of the surface. 2 For example when h = 7, we have B = C = 1
and we recover the geodesic condition Eq. (A.7). This allows us to study the group geodesic in a more general
setting and have a better handle on the resolvent calculation. We will give a proof for this proposition in
appendix A.4.

In the calculation of various entropic quantities we will encounter group summations over non-crossing
permutations, weighted by the individual cycle counts. The outcome of these summations can be expressed

in terms of ¢-Catalan numbers.

Definition A.2 (g-Catalan numbers). Given any positive integer n € N and ¢ € C, the ¢-Catalan number

2The meaning of C' and G is ambiguous at this point. In particular the genus of the embedding surface is not the same as the
common definition of the genus of the graph itself since our surface has nontrivial boundaries. We will clarify what we mean by
these numbers when we set out to prove this proposition.
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Cr(q) is defined by the following sum

Culg)= > ¢*9=> ¢"N(nk), (A.14)
k=0

geENC,

n

where N(n, k) =
p

) < " 1) are called the Narayama Numbers.
p—

N(n, k) counts the number of distinct non-crossing permutations with exactly k cycles. Thus C),(q) is
also the generating function for Narayama Numbers. The g-Catalan numbers can be expressed in terms of
the Hypergeometric functions
Cn(q) = q2F1(1 —n,—n;2;q) (A.15)

For positive integer n > 0 we have the following relationship:

Cn(1/q) = ¢~ "' Cn(q) (A.16)

This is not true for non-integer n. Because of the ambiguity in Hypergeometric function due to the branch

cut at ¢ = 1 we give the following analytic continuation in n at fixed ¢:

Definition A.3 (analytic continuation of ¢-Catalan numbers). For n > 0 and ¢ > 0,

Fi(l—n,—n;2;q), <1
Colg)= 12 1 ) 1 (A.17)
q" 2F1(1 —n,—n;2;1/q), q>1

A.3 Set partitions

We now establish the relation between symmetric group Sy and set partitions Py. We then show that it is
naturally equipped with a lattice structure which defines a way to compare elements in Py.

A partition p € Py is a disjoint set of subsets, or blocks, whose disjoint union is Zy. Given a g € Sy
we can use the cycles to produce a partition P : Sy — Py. This map is surjective but not injective. For
example, if g = (132)(45) € S5 then P(g) = {{1,2,3},{4,5}}. We can similarly define the counting function
#(p) as the number of blocks in the partition. So #(g) = #(P(g)). We denote the finest partition by
e={{1},{2},...,{N}} and the coarsest by {Zx}.

There is a natural partial order on such partitions given by a refinement of the partitions or sub-partitions.
That is p; < po if for every block ¢ € ps there is a subset of blocks in p; that forms a partition of ¢. It turns
out Py satisfies nicer properties that makes it a lattice. We review the definition and basic properties of

lattices below.

Definition A.4 (Lattice). A lattice is a partially ordered set L in which each two elements a,b € L always

have a meet and join, where:

Definition A.5 (Meet and Join). Let P be a partially ordered set and a,b € P. The join of a and b, denoted
a V b, is the least upper bound of a and b, i.e. a Vb < z for every x that simultaneously satisfies x > a and
x > b. Conversely, the meet of a and b, denoted a A b, is the greatest lower bound of @ and b, i.e. aAD >y
for all y such that y < a and y < b.
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The join satisfies certain properties:

aVb=bVa (commutativity) (A.18)
aV(bve)=(aVb Ve (associativity) (A.19)
aVa=a, (idempotent) (A.20)

and similarly for the meet. If @ < b then a Vb = b and a A b = a. They commute with the order, e.g.
a<b = aVc<bVc Note however in general they do not satisfy the distributive property that is familiar
from set intersections and unions, i.e. aV (bAc¢) # (aVb) A(aV c).

We now show that the set partition Py is indeed a lattice by explicitly constructing p; V p2 and p; A ps.
The latter p; A po is simply the set of pairwise non-empty intersections taken over all blocks in p1, p2. While
the former can be found recursively via: p1 V ps = p1 V (d1) V (dz2) ... where ps = (d1)(dz) ... is the block
decomposition. Then for a single block: ¢ V (dy) is simply (Ug, e, 20¢i)q" with (Ug e, 0¢i) = the single block
formed by all ¢’s that intersect di and ¢’ = [[; ., _g(c:i) are the remaining blocks that do not.

It turns out this lattice is also graded and (upper) semimodular.

Definition A.6 (Grading of a lattice). A lattice L is graded if there exists a map p : L — N such that for
a,be L:

e It is compatible with the ordering of the lattice: we have p(a) > p(b) when a > b.

e It is compatible with the covering condition: p(a) = p(b) + 1 iff a covers b (denoted a :> b), i.e. a > b
and there is no other ¢ € L such that a > ¢ > b.

The map p is called a grading of the lattice L.

For the lattice at hand the grading p(q) = N — #(q) satisfies these properties. We can check that p is
graded by the fact that when p; > ps and there is no other ps such that p; > ps > po, then p; must to be
formed from py by merging two blocks implying that p(p1) = p(p2) + 1.

A graded lattice L is semimodular iff the grading p satisfies the following property: 3

plaVvb) +pland) <pla)+pb) Va,belL (A.21)

We give a proof that set partitions satisfy this inequality.

Lemma A.4 (Semimodularity of Py). For all p1,p2 € Pn then:

#(p1 V p2) + #(p1 Ap2) > #(p1) + #(p2) (A.22)

with equality iff the graph, formed by #(p1) + #(p2) vertices, and connected via #(p1 A p2) edges in the

natural way, is a disconnected union of tree graphs.

Proof. Without loss of generality we can consider the case where #(p; V p2) = 1 since the different blocks in
p1 V pa contribute independently to the inequality. So the general case can be written as a sum over this case.
Consider a bi-partitle graph formed by black vertices for each block in ¢! € p; and white vertices for each

block in ¢4 € po. Connect the vertices by edges for each non-trivial intersection ¢t N c% # (). There must be

3For a general lattice L the semimodular condition is that Ya,b € L,a A b <: a implies b <: a V b. The equivalence of two
definitions can be found on standard textbooks on lattice theory, e.g. Birkoff [196].
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exactly E = #(p1 A p2) edges by definition. The graph must also be connected by p1 V pa = Zn. A connected
graph has the simple bound:
E>V -1 (A.23)

which is easy to prove by induction on the number of vertices. But V' = #(p1) + #(p2) and we are done.
Saturation of the inequality implies the graph is a tree (with no cycles), and this follows from the induction

proof mentioned above. O

A.4 Annular non-crossing and topology

We now make precise the statement in (A.13) and provide a proof for it. In particular we will define what
we mean by the embedding surface and various topological quantities associated to it. The statement of
proposition gives rise to an inequality which is saturated when the genus G = 0. This marks the proposition
as a generalization to the geodesic conditions of non-crossing permutations and we will denote the set of the
elements that saturates the inequality as multi-annular non-crossing permutations. *

Fix a special element gy € Sy with cycle decomposition go = []; 9. From corollary A.3 we know that
geodesics to the identity g € I'(e, go) are products of non-crossing permutations of length |c?| for each cycle.
We will denote these simply as NCy, = NC| Alle]... There is a geometric picture of these elements as curves
living on a disjoint union of #(go) disconnected discs.

Beyond non-crossing permutations we now discuss multi-annular non-crossing permutations that allow for
connections between the different gy cycles but continue to have zero genus. We will need a way to describe

how the different cycles in gy are connected through the action of g.

Definition A.7 (Connectedness). Given two elements g, gy € Sn. We define the connectedness of g over go,

written as qg,(g), to be the set quotient (P(g) V P(go0))/P(go), which is itself a partition gg,(g) € Pu(g,)-

Note that the quotient is well defined since P(gg) < P(g) V P(go). We will often drop the subscript go
when it is clear which base permutation we refer to. The connectedness g4, (g) measures how the different
orbits of gg are joined by actions of g. Besides connectedness there is another quantity we can define that

measures the number of connected components.

Definition A.8. Given g,go € Sy. We denote #(g V go) to be the number of orbits of where Zy is split

under the joint action of g and gg. By the “joint action” we mean the action on Zy by the subgroup generated

by (g, g0)-

Note that #(g9Vgo) = #(P(g)VP(go)) = #(qg,(g)). This number equals #(gVgo) = #(go) for g € I'(go, €).
More generally, we have to discuss the topology of permutation elements.

Definition A.9. Given elements g, go € Sy we define an admissible surface ¥ for g (based over gg) as a
disjoint union of oriented two dimensional Riemann surfaces with a total of #(gg) connected boundaries, and

such that it is possible to decorate this surface as follows:

1. Each connected boundary has |(c})| marked points where i = 1,...,#(go) labels the boundary. Each
point is ordered and marked using an element from the cycle (c?). The orientation of the ordering is

fixed by the orientation of the surface.

4This terminology comes from [197] who first studied the case of two boundaries, where the embedding surface of the graph is
annular.
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2. The permutations in g are represented by oriented curves on ¥ that pass between two different marked
points on the boundaries according to g. Each marked point has a curve entering and leaving, and we

locally pick these in the same direction as the cycles in ¢y (see Figure below.)

3. The curves are all mutually non-crossing.

Theorem A.5. For all g € Sy write:

(g0, 9) + d(g, ) = d(go, €) + 2(#(g0) — #(9 V 90)) + 2G4, (9) (A.24)

then Gg,(g) > 0. Furthermore there exists an admissiable surface for g that has genus Gg,(g) and #(g V go)
connected components. This is the minimal possible genus and mazimal possible number of connected

components.

Proof. 1t is clear we can always work with surfaces that have #(g V go) connected components and this is the
maximal number. Without loss of generality we can now assume that #(g V go) = #(¢g,(g)) = 1, since the
more general case is then just a sum over the partitions in gy, (g).

Firstly there always exists at least one admissible surface (not necessarily with minimal genus) since we
can simply thicken the lines defined by g into tubes and connect these tubes onto #(go) disks near the marked
points on the boundaries of the disk and according to g. Then each curve segment simply pass through their
respective tubes and do not cross each other.

Consider some admissible surface X. Let ¢; € g be a cycle. The corresponding line segments are E}; where
k=1,...|c;|. Consider a closed curve C; that hugs tightly to the line segments in this cycle - following the
direction of the cycle and strictly “inside” the boundary anchored curve Ui L%. Locally “inside” is defined
such that the curve does not intersect the boundary. It also does not intersect any of the g curves by the
non-crossing condition. Perform surgery on this closed curve C;. That is cut along the curve, and insert two
disks to close up the surface along the cuts. Discard any boundaryless Riemann surface that gets disconnected
under this process - by the non-crossing condition the result is a single surface with the original #(go)
boundaries. There can only be one boundaryless surface B that is discarded. This produces a new Riemann

surface ¥’ that is also admissible. The genus of this new surface must decrease:
G <G®) (A.25)

This is because the Euler character under connected sum must decrease by an amount corresponding to the

Euler character of a sphere:
X)) =xE'uB)-2 (A.26)
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The Euler character of B is bounded above by 2 and contributes additively:
X(2) = x(X) + x(B) =2 < x(¥) (A.27)

Since the number of simple boundaries in ¥ and %/ is the same we get Eq. (A.25). On ¥’ the curve C; is now
contractible.

Continue this process for all cycles in g such that the corresponding curves Uy L% for all i are contractible.
Similarly by including line segments between adjacent marked points on the boundaries, oriented opposite to
the ¢{s, we can cut along closed cycles on the “outside” of the cycles. It is easy to see that these can be
represented by the cycles in (go)g~!. Applying surgery to all of these cycles gives the final surface that we
call ¥y. We now give a triangulation of the surface ¥y. We have edges corresponding to the curves defined
by g. There are N of these. There are also edges on the boundaries of ¥j between the marked points. There
are also IV of these. So we have E = 2NN. The vertices have 4 lines meeting at the boundary for each marked

point on the boundary. There are V= N of these. See for example:

The faces are the interiors of the cycles in g and ggy ' so F' = #(g) + #(g(go)~"). Thus:

X =2—2G(X0) — #(g0) (A.28)
=V —E+F=-N+#(g)+#(g9,") = N —d(g,e) — d(g,90) (A.29)

Thus:
2G(X0) =2+ d(g,e) +d(g,90) — d(go,e) — 2#(go0) (A.30)

Which gives G(X) > G(2g) = Gy, (g). In particular this implies that Xy has the minimal genus, since for any
other valid surface 3 with lower genus G (§~]) < Gy, (g) we run the above surgery argument and arrive at a
contradiction: G(X) > Ggo(9) - O

Finally we give a definition of the multi-annular non-crossing permutations.

Definition A.10. A multi-annular non-crossing permutation g for go with #(go) > 1 is a group element
with G(g) = 0 as defined in Eq. (A.24) and such that #(g V go) = 1 (fully connected). We will denote these
ANC,, = ANC|C(1)|7|CS‘_“.
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Appendix B

Temperley-Lieb Algebra

In this appendix, we will summarize basic aspects of the Temperley-Lieb (TL) algebra and its representation
theory. There are many different flavors of classifying the representations of TL algebra, with the two most
prominent approaches being: 1. As a quotient of the Iwahori-Hecke algebra [198, 199], or 2. As a algebraic
module acting on a specific class of “link diagrams”. We will take the second approach here, also known
under the name of standard module [155, 200], or cell modules [201]. The goal of this appendix is to provide a
pedagogical review on various properties of the TL algebra and the standard module used in our computations.
Due to the length constraint we will omit the proof of many important theorems. Interested reader can refer

to [155] for a more complete and rigorous treatment on this subject.

B.1 Basic definitions

First, we define, for any positive integer n, an n-diagram. It is constructed by first drawing two parallel lines,
each with n marked points. Then, the set of 2n points are connected pairwise via n non-crossing strands that
lies entirely within the space between two parallel lines. We also define a pairwise product of two n-diagrams
by concatenating two diagrams side by side and replacing each closed loop by a factor of x. For example, for

n = 4 we write:

_ =xD (B.1)

This product is associative by construction. Although the parameter x is considered to be complex in more

general settings, in what is relevant to this note we will assume x € R and we will often consider the limiting

case where y > 1.

Definition B.1 (Temperley-Lieb algebra). The Temperley-Lieb algebra TL,, for a positive integer n, is the
(complex) vector space spanned by n-diagrams. This vector space is equipped with a pairwise product by

taking the diagrammatic product from above and extend it to the whole vector space bilinearly.
Lemma B.1. The dimension of TL, vector space is equal to the n-th Catalan number C,,.

Proof. To find the dimension of TL,,, we need to count the total number of distinct n-diagrams for given

n. There is a bijection D(-) between n-diagrams and NC,,, the non-crossing permutations on n elements,
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defined as follows. First, one deforms the n-diagram h by rotating the RHS of the diagram by 180 degrees
and append it below the LHS. Having done so one now has a diagram with non-crossing strands connecting
2n marked points arranged on a single line. These diagrams are of one to one correspondence to the double
line notations of non-crossing permutations on n elements. This fact can be made clear by concatenating the
left of the diagram with n “caps” and assigning a number to each cap. After doing so, the diagram factors
into a set of non-crossing closed blocks partitioning the set {1,--- ,n}, which can be further identified to the

cycle decomposition of a non-crossing permutation D(h) € NC,,. We give a example of the map D below.

a
@D
— — +«— (134)(2) e NCy

€
<

U

N

w

The number of distinct non-crossing permutations on n elements is given by Catalan numbers C,,. The
detailed form of C),, can be worked out using a simple generating function, but for reference here let us
consider a slight generalization by weighing each cycle of D(h) by a power of ¢q. Define

Clq,2) = +z
(B.2)
=1+qz+ g+ +--

to be the ¢g—weighted generating function for NC,, and F(q, z) the generating function for connected diagrams,

ie.
1
— 2 e
C(q, z) and F(q, z) satisfies the following Schwinger-Dyson equation
(B.4)
or
qz
F == B.
2 =100 ()
which can be solved to give
1—2(¢g—1)— /(1 +2(¢g—1))%—4qz
Clas) - L=Ha=1) = VTF=1) -

2z
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where we pick the sign of the solution by matching the small z behavior. The expansion coefficients for

C(q, z) are called ¢-Catalan numbers, which can be extracted using the contour integral trick:

Cn(q)

1 dz q2Fi(1—=n,-—n;2;q), q<1,
m.J oz q" oF1(1—n,—n;2;¢7Y),  g¢>1

The ordinary Catalan number C,, is related to C,(q) by

Cn=0Cnlg=1)= : <2n> (B.8)

It is easy to check that the diagram

id = _ (B.9)

acts as an unit in the algebra. Aside from the unit, every n-diagram can be obtained by multiplying a set of

generators ey, eg,- -+ ,€,_1, Where

€ = i (B.10)

These generators satisfy the following relations

el = =X = Xei, (B.11)
€i€ir16; = = = €, (B.12)
eie; = ¢ z = =eje;, [i—jl>1 (B.13)

and also e;e;_1e; = e;, which can be verified through the upside-down mirror of the second identity. This

motivates the another more abstract definition of TL algebra:

Definition B.2 (alternative definition of Temperley-Lieb algebra). The Temperley-Lieb algebra TL,, is
the algebra generated by a unit id and a set of n — 1 generators e; with ¢ = 1,--- ;n — 1 which satisfies the

following relations:

e? = Xe€, e€eix1€; =e;, ee; =eje; if|i—j|> 1 (B.14)
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The proof that the algebra generated from this definition is isomorphic to the diagrammatic one (Defini-
tion B.1) can be found in standard references of the subject.

We conclude this subsection by introducing a trace function on TL,,.

Definition B.3. For a positive integer n, Trry,, : TL,, — C is a cyclic linear function on TL,,. It is defined
diagrammatically on an n-diagram by closing the strands on opposing marked points on two lines and assign
a power of x for each closed loop obtained this way. Trry,, is cyclic from definition, and it is extended to the

full algebra using linearity.

For example,

Trry,, = = X" (B.15)

We also define a normalized version of this trace, denoted by Trg = x~"TrrL, L. This normailzed trace is

consistent with respect to all n and satisfies the following properties:
Trg (id) =1, Trg (h) = xTrg, (hen-1) (B.16)

where h € TL,_1 C TL,, is an element in the subalgebra of TL,, consisting of elements such that the n-th
marked point on both sides of its diagram are connected via a strand. This fact can be illustrated using the

diagrams below.

(B.17)

Trrr = = X TrrL,

where we used colored blocks to indicate arbitrary connections in the region. After putting back the
normalization factors one recovers Eq. (B.16). In fact the property Eq. (B.16) completely characterizes Trs,

as shown in the following lemma:

Lemma B.2. Trg is the unique linear function on TL, that is cyclic (Tr(ab) = Tr(ba)) and such that
Eq. (B.16) is true.

Proof. Every element h € TL,, can be written as a product of finitely many generators h = e;, - - - e;, where
ir € {1,---,n —1}. The e;;’s in the string can be further made unique by using Eq. (B.14) to permute the

list and eliminate any duplicates. To evaluate Trg (h) = Trg (ei, - - - €, ), we use cyclicity of the trace to

1This trace is usually referred to as the Markov trace in math literature.
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cycle the possible e,_1 to the end of the list, and we pick up a factor of x if there is one. Now since the new
list of generators does not contain e,,_1, the new element h’ obtained by multiplying the new list of generators
is in the subalgebra TL,_1 C T'L,,. Using Eq. (B.16) we see that Tr; (h) = x"Tr (h') where b = 0 if there
is no e,—1 in the generating string of h and b = —1 if there is one. Now by repeated iteration of this whole
process n — 1 times, one can eliminate all the generators of h and obtain Trg (h) = x *Trg (id) = x 7%

where k is the length of the generating list h = e;, - - - ¢;, with non-duplicating generators. Thus the condition

k

Eq. (B.14) uniquely fixes the action of Trs on every element in TL,,. O

B.2 The standard module

To define an algebraic module, one must first form the vector space for the algebra to act on. In the standard
module of Temperley-Lieb algebra such vector space is spanned by a collection of diagrams called link states
(or cup diagrams in Westbury [200]).

An n-diagram can be cut in half across the middle line and expose a number of “defects”, each corresponding
to a connection between a point in the left and another point in the right. The number of defects, denoted [,
is always even if n is even and odd if n is odd, which we keep track of using an integer k € Z>, by saying
that [ = 2k when n is even and [ = 2k + 1 when n is odd. We will call a half diagram obtained this way an
(n, k)-link state. 2 A link state will be drawn with the lines on the left and any possible defects facing right,
as shown in Fig. (B.1). We will refer to the set of all (n, k)-link states as B,(Cn).

B =

) )

Figure B.1: All the possible (4, 1)-link states.

Lemma B.3. For integer n and k < |n/2], the number of distinct (n, k)-link states is equal to the number
of standard Young tableauz of shape ([n/2] + k, |n/2] — k).

IB| = #SYT ([g] Yk, L%J k) (B.18)

Proof. Note that there is a bijection between a link state and a lattice word consisting of left and right
brackets {[,]} such that every prefix has more opening brackets than closing brackets. For example, [[[][]]]]
is a lattice word but [][]][[]] is not since the prefix [][]] has more ]’s than [’s. To put it in another way,
there can never be a closing bracket without a previous matched opening bracket, but a standalone opening
bracket is allowed. To see that this is true, simply assign an opening-closing pair to a closed strand in the

link state and any standalone opening brackets to defects, e.g.

m ‘ < [I11]] [ (B.19)

?Note that we label link states by k, (one half of) the number of defects, as opposed to the common practice of labeling by
the number of closed arcs p = |n/2| — k. The main advantage for this notation change is to make the various formulae regarding
to different k sector in the main text cleaner.
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where we have color coded the brackets to the matching strands. This correspondence works in either way so
it is really a bijection. Now it is a standard result that the number of lattice words are counted by standard
Young tableaux: Given a standard Young tableau of shape (p, ¢), construct the following word (s1,--- , Sp+q)
via

[, if¢is in first row,

s; = (B.20)

], ifiis in second row.
Then at any given point ¢ there can never be more closing brackets than opening brackets since the tableaux
is standard. The number of total brackets are p + ¢ whereas the number of standalone opening brackets are

p — ¢ from which one immediately sees that p = [n/2] + k and ¢ = [n/2] — k. O

For a n-diagram h € TL,,, we define a left action of h on a link state v in a similar fashion by concatenating
h and v from left to right, removing any disconnected open strands and assign a factor of x for each closed

loop. We illustrate this definition with an example:
= =X (B.21)

This action naturally defines a algebraic module (representation) on the vector space spanned by link states.

We will refer to such module as the link module.

Definition B.4 (link module). For given integer n, the link module, denoted by M) s a left TL,-module
on the collective vector space spanned by all link states whose action is given by the diagrammatic action

above and is extended to the whole vector space through linearity.

Note that the number of defects is not necessarily conserved under the action. (Eq. (B.21) is an example
where it decreases by two) However, it can only close defects in pairs, so k is always non-increasing under this
action. Acknowledging this fact, one can identify TL,-submodules M;Qn) C M®™ spanned by all (n, k')-link
states with &’ < k. There is a natural chain of submodules

MMM ca M =M™ (B.22)

Consecutive quotients on this chain determines quotient TL,-modules called standard modules:

Definition B.5 (The standard module). For integer n and k < [n/2], the (n, k)-standard module, denoted
by V,gn), is the quotient module

(n)
) _ Mt

% . (B.23)
k M ](Cn)

The standard module vector space (which we will also refer to as V,En) by an abuse of notation) is the
coset [/\/l,(ﬁ_)1 : Mén)}, which is isomorphic to the vector space spanned by (n, k)-link states. In this regard,
we will often talk about the action of (n, k)-standard module on (n, k)-link states directly, forgetting the
fact that it is really the coset that V,gn) is acting on. Diagrammatically, the action of an n-diagram h on a
(n, k)-link state v is given by the same action as in the link module, but with the further requirement that h
maps v to zero whenever the number of defects k decreases under the action.

There is a natural inner product (-, ) on the vector space V,En) defined as follows:
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Definition B.6. For z,y € B,(Cn), the inner product between x and y, denoted by (x,y), is obtained by first
flipping x around the vertical axis and identifying it with the vertical border of y. Then, define (x,y) by
assigning a factor of x for every closed loop obtained this way. Furthermore, we require {x,y) to be nonzero
only when every defect of z is connected to a defect of y. This product is extended to the full vector space

V,gn) by requiring the form being linear in the y and anti-linear in x.

As an example, we have

= = X = =0 (B.24)

Y

Y Y

Note that the link state basis B,(Cn) is not orthogonal under this inner product. However, they are approximate
orthogonal at large x, with corrections ~ O(1/x). This inner product is invariant under the TL action.
Lemma B.4. For all z,y € V,gn) and h € TL,,

(x,Uy) = (U'lz,y), (B.25)
where the “adjoint” U is obtained by flipping the n-diagrams across horizontally and conjugating the complex
coefficients.

Along with the inner product we define another sesquilinear form |- | : V,E") X V,g") — TL,, that takes

two (n, k)-link states and form a n-diagram.

Definition B.7. For x,y € B,i”), denote |z y| to be the unique n-diagram formed by flipping y across the
vertical axis and identifying its defects with the defects of x. This form is extended to the full vector space in

the same way as in Definition B.6.

For example,

= (B.26)

The usefulness of Definition B.7 comes from the following lemma.

Lemma B.5. If z,y,z € V,g"), then
|z ylz=(y,2)x (B.27)

Proof. Without loss of generality we can consider the case where all of z,y, z are (n, k)-link states. If |z y|
decreases the number of defects in z, then the LHS of Eq. (B.27) vanishes. This is consistent with the RHS as
since there must exist disconnected strands in (y, z) when such a pair of defect is closed, forcing (y, z) = 0. It
remains to check the case where no defects are closed. In this case the LHS of Eq. (B.27) will be proportional
to z. The proportionality factor is given by x#, where # is the number of closed loops in the concatenation,

which is the same as the number of closed loops in calculating (y, z). O

It is sometimes useful to think of |x y| as the outer product of link states zy', with the adjoint y' € ‘_/k(n)

in the dual module obtained by flipping y around its vertical axis. However such analogy is only true when all

178



of z,y, z lie in the same (n, k)-standard module. When it is not the case, say when x,y € Vk(n) and z € Vk(,n)7

then not only (y, z) is not defined, | y|z will not be proportional to . For example,
= (B.28)

In general, the standard module classify all the finite dimensional irreducible representations of TL,, for
almost all values of x, except for a discrete set of points when x < 2. The key to proving this proposition
is by studying the degeneracy of the inner product (-,-) through its Gram matrices G;C"). The idea is very
similar to the process of determining the reducibility of Verma modules of Virasoro algebra in 2d CFT: G,(C”)
being non-singular implies the irreducibility of V,gn). When Gén) is singular (i.e. det Gén) = 0), there will be
additional null states that one needs to discard to obtain a irreducible representation.

To end this short review we quote an important theorem, first due to Jones [165] and studied in more
detail by Westbury [200].

Theorem B.6 (Jones). When x # 2cos(mm/n) for some integer m > 3, the algebra TL,, is semisimple and
the standard modules V,E") form a complete set of finite dimensional irreducible non-isomorphic representations

of TLy,.

Due to the length constraint we will not present a proof for this theorem. Interested reader can refer
to the various literature (e.g. Refs. [155, 200]) on this subject. Throughout this note we always work with
integer xy > 2, and we frequently consider the case x > 1. In this regime the standard modules are always

irreducible.
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Appendix C

Supplement to Chapter 3

C.1 Proof of 1TN phase diagram

In this appendix we give a proof for the single site phase diagram Fig. (3.4) appeared in Sec. (3.4). This
proof draws heavily from the results in Appendix A, in particular the theorem given in Appendix A.4.

To set up the problem, we consider the group Sy = Sy, and the elements g4 and gp with n cycles each
and defined as

ge=0...m)(m+1...2m)...(nm—m+1...nm) (C.1)
ga=(m/2+1...3m/2)(3m/2+1...5m/2)...(nm —m/2+1...m/2) (C.2)

where the cycles contain all element that appear in between the numbers shown and are cyclicly ordered. These
are defined for n > 1 and m/2 > 1 integers. These have the property that I'(g4,e) NT'(gp, e) is non-trivial
(contains more than the identity), although the triple intersection I'(ga,e) NT'(gp,e) NT'(ga,gp) = 0. This is
the main origin of “frustration” in the problem below, and distinguishes the reflected entropy from negativity.
There is a unique element we call X that satisfies the property X € I'(ga,e) NT'(¢p,e) and it minimizes
d(X,g4,8). It has 2n cycles:

X=0...m/2)(m/2+1...m)...(nm —m/2+1...nm) (C.3)

Note that P(X) = P(ga) A P(gp). If m = 2 then X =e.

The free energy function we wish to minimize is:

f(g9) = zad(g,94) + vpd(g,g5) +d(g,e) (C.4)

for x4, 5 > 0. We wish to prove:

Theorem C.1. For all xa,xp > 0 then the following minimum is achieved on a simple four element subset:

min — i = i C5
f gglslgnf(g) ge{e’r)lg}gr:’g}s}f(g) (C.5)

Remark. This theorem only states that the minimum of f(g) can be achieved for g € e, X, ga, gp, but does

not exclude the possibility of other elements also saturating the minimum. In fact there exists other minimal
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elements g € S, that lives at the phase boundaries of the phase diagram Fig. (3.4), and they are crucial for
smoothing out the phase transition near x4 +xzp = 1. We will investigate the detailed form of these elements
in Appendix C.2.

Preliminary. We firstly note there are regions in the phase diagram that are easy to deal with:
zatrp<l:  f(g)>d(g,e)(1 —za—2zp)+ fle) > fle) (C.6)

where we have used the triangle inequality: d(ga,p,9)+d(g,€e) > d(e,ga,p). So we have equality iff d(g, e) = 0.
For x4 + xp = 1 then we have quality for g € I'(ga,e) UT'(gp,€). Similarly:

rpg>rp+1: f(g) = (xa —zp —1)d(g,94) + f(ga) > f(ga) (C.7)

where we have used the triangle inequality: d(ga,g) + d(g,95) > d(ga,95) and d(ga,g) + d(g,e) > d(e, ga).
Equality is achieved iff ¢ = ga. For £4 = xp + 1 we still only have g4 as the minimal element since the
intersection I'(ga, g5) UT'(ga,e) = {ga}. Similarly for A +» B. Thus the non-trivial region is x4 +xzp > 1,
zqa <zxzp+1and xp < x4 + 1. Indeed the phase diagram is convex:

Lemma C.2. If the minimum for f(g) is achieved for some g, at two locations in the (xa,xp)12 phase

diagram then g, is also minimal at:
(IA,IB))\:/\(IA,SCB)1+(17/\)(IA,£CB)2 0<A<1 (08)
Proof. Note that (in hopefully clear notation) for g € Sp:

(g) = Af1(g) + (1 =N f2(g) > Af1(gs) + (1 = N) falgs) = fr(g4) (C.9)

Thus, for the general Theorem C.1 we can limit ourselves to the line x4 = g > 1/2. Convexity will do
the rest, since all four elements {ga, g5, X, e} are already represented somewhere on the phase diagram away
from the non-trivial region. For m = 2 there is a much simpler proof than the proof discussed below, we

present this in Appendix C.1.1.

Proof. (of Theorem C.1) As discussed above we need only consider x4 = xp = & > 1/2. Consider the
topological discussion of Appendix A.4 for go = X. We classify all elements in S,,,, using their connectedness
gx(g) over X. Recall that ¢x(g9) = (P(g) vV P(X))/P(X). The quotient is a partition gx(g) € Pap.

Set ¢ = gx(g) and ny = #1(q), where #1(q) counts the number of length 1 blocks in ¢. It satisfies

0 <nyp <2n. Now write:

fg) = fle) + (1 —2z)d(e, X) +n — |n1/2] — 220y, 0 (C.10)
+22(Ga — Gx) + 22(Gp — Gx) +2(Gx) (C.11)
+ (22— 1) (dlg, X) — 20+ #(0)) (C.12)
+ 20 (#(a) — #(a V ta) = #(qV t5) + 60,0 (C.13)
+ (n+ /2] - #(0) (C.14)
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where [-] is the floor function, Ga,p = Gy, ;(9) and Gx = Gx(g) were defined in Lemma A.5. And
tap = q(ga,p) or more specifically: tp = (12)(34)...(2n — 1,2n) and t4 = (23)(34)...(2n, 1). To arrive at
the formula above we have used:

#(gaVg) =#(taVvalg),  #lgVyg)=#(B V) (C.15)

which follows from #(ga V g) = #(P(ga) V P(g)) and since P(g4) > P(X) this implies that P(ga) V P(g) >
P(X) and so we can take the set quotient (P(ga)V P(g9))/P(X) = (P(g9a)V(P(g)VP(X)))/P(X)=1taVqlg).
And the number of sets is the same under the quotient #(P(ga)V P(g)) = #(taV qq). Similarly for #(gp V g).

We aim to show that each bracketed terms in lines (C.11-C.14) are all positive. That is we wish to

establish the estimate:

flg) = f(e) + (1 —2z)d(e, X) + (n — [n1/2]) — 2205, 0 (C.16)
Assuming this is the case then:

i > 1—2x)d(e, X i — 2]) = 2x6p,0) = i C.17
min f(9) = f(e) + (1 = 20)d(e, X) + min ((n—[m/2]) = 2ab,0) = _min f(g)  (C.7)
which ,together with:

i < i C.18
Jnin flg)s  win f(9) (C.18)

proves the theorem. The last step in Eq. (C.17) is by direct computation. It also follows since the bounds
(C.11-C.13) that we derive below are all tight for the elements g = X, g4, g5.

We need the bound G4 > Gx in line Eq. (C.11). This follows from the construction of the genus. We use
the surface ¥y for g based over g4 which has genus G 4. We then deform the n boundaries of this surface
into 2n boundaries by pinching - dividing the m marked points into two sets of m/2 marked points on the
new boundary (see figure below). This deformed X, is an admissible surface of genus G(Xg) for g based over
X since we can do this deformation without touching any of the curves. By Theorem A.5 we must have
G = G(3) = G(X]) > Gx. Similarly Gp > Gx and Gx < 0 always.

A

/— 9
g

Moving to the next line we also need the lower bound Eq. (C.12):

d(g, X) > (2n — #(qx(9))) (C.19)

Note that ¢x(X'g) = gx(g) since (X,g) = (X,X 1g). So we can equivalently prove d(g,e) > (2n —
#(qx(g))) for all g. This follows from Lemma C.3 applied to go = X and N = nm.
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We also need to bound Eq. (C.13):

#(q) —#(aVita) = #(q Vi) + 04, (g0 = 0 (C.20)

To do this we use Lemma C.4, which simply follows from the semimodular condition Eq. (A.21). We apply
this Lemma with N = 2n, g =¢, s = tp and t = t4, and use the fact that t4 Vig = (Zo,) and t4 Atp = e,
giving the estimate:

#(q) — #(qVita) —#(qVip)+1=>0 (C.21)

We can improve this estimate as follows. If there is at least one block in ¢ of length-1 then we remove one of
the double blocks in ¢ g where this length-1 g-block would overlap. That is we split this double block into two
single blocks to give a new )3 < tg. After doing this we still have:

taV ity = (Zay) tanty=e H#(qVitg)=#(qVitg)+1 (C.22)

such that #(q) — #(qV ta) — #(¢V tp) > 0. Together the final estimate is Eq. (C.20).

Finally line Eq. (C.14) is positive since #(q) < n + |#1(q)/2] (the floor) which comes simply from
maximizing #(q) by splitting the remaining non length 1 blocks into pairs if #; is even, or pairs and a triplet
if #, is odd.

O
Above we needed the following results:
Lemma C.3. For all go,g € SN, then:
d(g,e) > #(g0) — #(g V 90) (C.23)
Proof. Map to the set of partitions Py and consider:
d(g, e) — (#(g0) — #(g V 90)) = N — #(P(9)) — #(P(90)) + #(P(9) V P(g0)) (C.24)
> #(P(9) N P(g0)) — #(P(9)) — #(P(90)) + #(P(9) V P(g0)) = 0 (C.25)

where the first equality follows since for all partitions #(P) < N and the second inequality uses the semi-
modularity property of p on Py. Saturation requires that P(g) A P(go) = e and also that for all p < P(go)
then:

P(go) A (pV P(g)) = (P(g90) NP(g9)) Vp=p (C.26)

O
Lemma C.4. Given three partitions q,t,s € Py then:

#(qV (ENs))—F#(qVt)—#(qVs)+#(q@N(tVs)>0 (C.27)

Proof. Since set partitions form a p-graded semimodular lattice with: p(¢) = N — #(q) we know that the
grading satisfies:
plarV a2) + plar A gz) < p(ar) + p(g2) (C.28)
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Set 1 =gVtand gg=¢qVs,then s Vg =¢qVsVitand g1 Aga>qV (tAs) (since t >t A s implies that
gqVit>qV(tAs).) Thus:

plgVsVit)+p(qgV(tAs) <plgVa)+plaAg) < plgVi)+plgAs) (C.29)

as required. O

C.1.1 Simpler proof at m =2

There is an independent proof of Theorem C.1 for m = 2, where there is only a three element subset on the
right hand side. A quick sketch:

Proof. (For m =2.) Set x4 =xp =x > 1/2. Write:

fmin = min f'(9)  f'(9) = flgag) = 2(d(g, 94" 9B) + d(g,€)) + d(g,94") (C.30)

gE€San

where it is easy to see that ggl gp is made of two cycles of length n. We have the more general bound

F(g9) > x(d(gy gB.€) +2(#(g1" 98) — #(91" 98 V 9))) + d(g,94") (C.31)

where recall 1 < #(gzlgB Vg) < #(92193) = 2 is the number of connected components discussed above. We

minimize over the partition of S,,, defined by the integer #(g;lgB Vg)=1,2:

fuin1 = min F'(9) > a(d(ga'gs, ) +2) +d(g,94") > a2n=f'(g")  (C32)
9ES2n:#(94 9BVg)=1

with equality iff g = g;l. And also

!

fmin,2 = min f (g) Z md(gzlgBu 6) + d(gmggl) (033)

gESan:#(9, g8 Vg)=2

= d(gy 9B, ¢) + (2n — #(kq)) = f'(e) (C.34)

where we have used the fact that all elements with #(g,'gp V g) = 2 must take the form g = kg2 where
k,q € S, and acts on the respective elements in the two cycles of 921 gp. The minimal is achieved for fiin 2

iff g e F(gZIgB, e) and k = ¢~!. Minimizing over the two different sets gives:

fmin = mingee ga,95f(9) (C.35)

where the minimum is achieved iff g € {gaki(k™')2: k € ['(7,,€)} CT(ga,g5) or g =e. O

C.2 Reflected resolvent via direct group summation

In this appendix we provide a parallel approach for finding the reflected entropy resolvent Eq. (3.89). We
consider factorization of g € Sy, into different ¢ = gx (g) sectors. In each sector we will find conditions that
must be satisfied for g that minimizes the free energy. By restricting the full permutation group to these
special elements we are able to arrive at an expression of the reflected entropy resolvent that matches the

form given in main text.
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C.2.1 Minimal elements in a fixed sector

The problem of finding elements that minimizes the free energy function Eq. (C.4) factorizes into two parts.
Firstly, we seek for minimal elements for a fixed #(q) sector that saturates the two conditions Eq. (C.13) and
Eq. (C.14):

#(q) —#(@Vita) —#(qVip) +0n,0=0, n+|n/2] —#(q) =0 (C.36)
Secondly, for a fixed ¢ € Ss,, it should be possible to find all the minimal g € S,,,, elements where:
Ga=Gp=Gx =0, d(g,X) =2n—#(q) (C.37)

Note that at = 1/2 (which is at the vicinity of reflected entropy phase transition at n = 1) we can drop the
latter condition in which case the answer can be written in terms of multi-annular non-crossing elements.
These elements marks the contribution of the new dominant saddles that smooth out the phases transition.
We will return to this problem when we have a better handle on the minimal ¢ elements discussed next.

Let’s begin with the first minimization problem. We will look for minimal elements for fixed [ny/2] =
0,...n sector. Note that we have, somewhat arbitrarily chosen to fix the ceiling of n1(q)/2 since this removes
the odd case. ' That is fix ng = 0,1...n then look for ¢’s such that:

#1(q) = 2ny, #(q) = n + ng, #HqVita)+#@Vig)=n+ng+dn,0 (C.38)

Theorem C.5. For fized integer 0 < ng < n all partitions which satisfy Eq. (C.38) take the form q =
P(ﬁg3|m:2) where h € Sa,, and is best described as the following diagram:

2nd

2n

In words, form the diagram by placing 2n points on the top (representing element 135...(2n — 1))

and 2n points on the bottom (representing element 246...(2n)). The left and right ends of the strip are
further identified (so it is really a annulus). h e ANC),, C Sap is then drawn by connecting the points
parrwise without crossing as per the permutations in ﬁ, where we split each of the 2n elements into two,
each representing the incoming and outgoing lines of h. Pick 2ng vertically aligned defect elements that is
unique up to cyclic translation. h is then constrained to take the form that it directly connects the 2ng pairs
of wertical defects (one-way) and otherwise only connects within the top/bottom half strip as an inverse with

respect to each other.

Proof. Fix gao,p = gA,B|lm=2 the m = 2 version of these group elements. That is gp = (12)(34) ... (2n—1,2n)

1Recall that the saturation of #(q) < n + |n1/2] enforces the non length-1 blocks of ¢ into pairs if n1 is even, or pairs and a
triplet (which we do not have a good handle on) if n; is odd. If we instead fix the ceiling then one can show that the inequality
will never be saturated when #1(q) is odd. This will likely not change our conclusion of this section and we suspect that the
effect of odd ng sector will only serve as a correction to the resolvent.
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and g4 = (23)(34)...(2n,1). The first two conditions Eq. (C.38) require ¢ to be composed of pairs or singlets.
In this case there is a canonical map to a permutation element hy € S, since the order does not matter for
cycles of length 2 or 1. Given this, we can easily compare #(hygp) and #(q V tg) since the latter is either
made of “closed even blocks” (a block that does not include any singlets) or “ng blocks” that start and end
on a singlet. The counting is doubled in #(h,gp) for the closed blocks in #(q V tp) (since the block factors

into an even and odd orbits under the action of hygp) while it is not for the blocks containing singlets. Thus:

#(hgga) = 2#(qVta) — na, #(hegB) =2#(qVitp) —ng (C.39)

Substituting these relations into Eq. (C.38) and defining h = hqgp one can show that the conditions Eq. (C.38)

are equivalent to

#(h) + #(hgpga) = 2n + 26,0, #(hgp) = n+na, #1(hgp) = 2nq (C.40)

Define 7 = gagp = (135...2n — 1)(246...2n)~! . We will use the notation (k)i(q)2 for k,q € S,
to mean permuting (1,3,5...2n — 1) according to k and the elements (2,4,6...2n) according to ¢q. So
7 = (14)1(7;;})2. We then recognize the first condition in Eq. (C.40) as the problem of finding annular

non-crossing permutations: ANC; = ANC,, ,, i.e.

d(h,e) +d(h,7) =d(r,e) + 2(#(1) — #(h V1)) (CA41)

which implies that the genus G, must be zero, see Definition A.10.
For ng = 0 we can only have factorized h= (k)1(kK'~1)5 on the two cycles in gagp where k, k' € NC,, are

non-crossing permutations. Now also #(h,) = #(hgp) = #(kk'~') = 2n implying that k = &’. Thus:

q=P((k)1(k™")295) (C.42)

For ng # 0 we have annular non-crossing permutations. In particular we can only get one-cycles in fALg B
iff there are straight crossings between the two sectors. Thus we are looking for a certain class of annular
non-crossings with 2n,4 straight crossings — where we count either direction of crossings.

Draw h as shown in the diagram in the statement of the theorem. Such a diagram can be intepreted as an
operator acting on the Hilbert space (H, ® 'H;)‘g’" of dimension y?". We define this corresponding operator
as D(h): 2

2n

€janizn @ Cloy_1izn_q -+ @ ej7z+1in+1> = H <7'k ‘Jﬁ(}g)> (043)
k=1

D(h)

<€i1j1 ® €i2j2 R ® einjn

where e;; = |i) (j| for some basis |¢) on the H, Hilbert space.

Given h € ANC, or it’s corresponding D(iz), we can define s(iz) as the number of straight crossings and
t(fz) as the total number of crossings. These are both even numbers. We can form h by considering two
non-crossing permutations kj, ko € NC,,1,, each with ¢ defect elements placed cyclically together and such
that k is constrained to connect all the ng defect elements to and from other non-defect elements. The first

defect is further constrained to connect the non-defect element directly next to it, as shown in Fig. (C.1).

2The relevant non-crossing diagrams can be understood as arising from the affine Temperley-Lieb (TL) algebra on 2n strands,
which in turn has a representation acting on this Hilbert space. Indeed there is a well known correspondence between the annular
non-crossing permutations and the affine TL algebra.
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he AN Cn.n can be constructed by cutting open the connections at the defects of k; and (kg) ™! and glue the
open connections in order, which we denote by h = k1# k5. We have the obvious bound s(h) < t(h).

-G
B "¢

Figure C.1: The procedure for constructing ki #:k5 1 The green lines represent the would-be crossings.
Now we seek elements h € ANC,, with s(h) = 2ng such that
i hga) — TrH;?an(iL) = ytna (C.44)
In fact we have the following inequality:
TI'/H;?ZnD(il) < X"+s(ﬁ)/2 (C.45)

and this is saturated iff h = k#:k~1 for some k € NC’;LH/2 in which case s = t = 2ng4. This proves the
theorem (after applying an arbitrary rotation by conjugating by powers of to (75,)1(7)2.) We prove Eq. (C.45)

and the saturation condition just used in Lemma C.6. O

Lemma C.6. For any he NCs,, then we have the estimates:
Tryeen D(h) < X" HW7H02 0 Ty gn, D(h) <y /2 (C.46)

Furthermore the later inequality is saturated iff h= k#:k~t for some k € NCY where t = t(fz)

+t/2
Proof. Note that:
Teyom D(keek™") = /2 (C.47)

by direct computation.

Consider now the first inequality Eq. (C.46). We can remove any straight crossings since they factor out

trivially from both sides of this inequality. So wlog consider only elements with s(h) = 0. We can then write:

Tryeom D(ka#ky ') = (ky| S|ks) 12 €ENCuy (C.48)
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defined as follows (see Figure below). Here kj , are constructed from k; and kz by removing the defects/crossing
lines and considering the remaining elements as a non-crossing permutation on n — t points. These can then
be interpreted as pure states (non-normalized maximally entangled states) in the Hilbert space of dimension
x2*=Y). Finally ¥ is a unitary permutation on this Hilbert space formed by following crossing lines in

k1 #tkgl around the trace.

S O\ \Wiwiw) B m
N/ ADA A Anaal
m R N/A Ao A S

Alrcaa N

(where we have included a single straight crossing, that may be removed trivially.)

Then Cauchy-Schwarz gives:

| Trpgoen D(ka#tcky V)P = | (k| ko) [* < (kq| TS |ky) (R [k) (C.49)
= (ki [KY) (K [K5) (C.50)
= X_2 TI"H®2nD(k31#t )TI”H®2nD(k’2#t ) = Xgn_t (C.51)

as required. The second inequality in Eq. (C.46) is trivial now. Saturation of this later inequality requires
t(h) = s(h) and saturation of the Cauchy-Schwarz inequality above (now with no ¥) requires k| = k} implying

the correct condition. O

We now consider the saturation condition for g in Eq. (C.37). To make progress we consider only the

form of ¢ given by Theorem C.5.

Theorem C.7. Fiz an ng and a corresponding q satisfying Eq. (C.38). Then there is a unique g € Sy that
satisfies Eq. (C.37). This element is:
9(q) = u(h)ys (C.52)

where h € Son 1s the unique element that satisfies g = P(ﬂgg|m:2) and where ¢ embeds the subgroup Sa, into
Smn- The subgroup acts only on elements jm/2+ 1 for j =0...2n — 1 fixing all other elements.

If we relax the second condition in Eq. (C.37) then all the dominant elements are those satisfying

g : P(¢") < P(g(q)) where g(q) was defined above, and also P(q') £ P(g(q')) for any ¢’ < q. There are:
(Crm = G2 j2)" (O, j2)™ (C.53)

of these, where Cy, are the Catalan numbers.

Proof. We first consider the case where we ignore second part of Eq. (C.37). Given a connectivity fixed by ¢
satisfying Eq. (C.38) first consider the blocks of length 1 in a; € ¢ . These contribute to all Gx,G4,Gp for
a given ¢’ independently, and so we have zero genus for g’ restricted to these blocks, iff these g’ forms a NC
permutation within the corresponding m,/2 block. We call these NC permutation a; € NCp, 2. It is not hard
to see that L(ﬁ)gA contains a cycle 7,/ on this same m/2 block. Thus the statements of the theorem are

true for the 2n4 unit blocks.
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Now consider a block b; € ¢ of length 2. From the form of ¢ given in Lemma C.5 we can see that such
a block sits either in a closed block of ¢ V t4 or a closed block of ¢ V tp (or both). Assume without loss
of generality it is the former. Now recall the “pinching argument” in Theorem C.1. Start with the zero
genus surface ¥4 describing ¢’ with resect to g4. Now pinch to form the surface with respect to X. Since
0 < Gx < G4 =0 the pinched surface must also be an admissible surface X x for ¢’ (with respect to X) that
has minimal genus 0. Focus on the curves connecting the two m/2 boundaries on X x associated to b; that
describe a disconnected genus 0 surface with two boundaries ¥;. These must form an annular non-crossing
permutations in S, C ANC,, /2 m/2 that we call 3;. We now show that these must be a special subset of
annular non-crossing permutations.

We will show that we can add to X; a curve that starts between the marked points 1 and m/2 on the
first boundary and ends between the marked points 1 and m/2 on the second boundary, and does not cross
any other curves on X;. We construct this as follows (see Figure below). Since we found ¥ x by pinching
3 4 between the marked points 1 and m/2 and m/2 + 1 and m on the boundaries of ¥4, we can add new
non-crossing curves to X x that pass between pairs of boundaries described by the blocks in ¢4 that start and
end between the 1 and m/2 marked points on each X boundary. On X x shrink all boundaries except for the
two described by b; to arrive at 3; plus some bulk points where the boundaries shrunk, and non-crossing
curves between the bulk points. Since ¢ V t4 contains the block b; in a “closed block” we can find a curve on
Y x that follows alternatively the new curves that we constructed using ¢4 and the curves in ¢’ not associated

to b;. The result connects, via the bulk points, the two remaining boundaries as required.

9 lba)e ()

/
g |b;

Figure C.2: The surface Xy is constructed from ¥ 4 in such away that we can insert non-crossing curves
on X x, shown in pink. These curves pass between the two boundaries associated to the blocks in t4. We
can use these curves and some other non-crossing curves, labelled ¢’ be, to pass between the two boundaries
associated to the block b; € q.

An annular non-crossing permutation (ANC,,, /2, /2) does not cross a line between the two boundaries iff
it is a non-crossing permutation NC,, associated to the joined boundaries, where we join the boundaries
through the non-crossing line. This is a special subset NC',, C ANC,, /2 /2. It is not hard to see that in our
case these are defined as non-crossing permutations with respect to the remaining cycles 7, of length m in
g(q) = (h))gp. Thus we solve the condition Gy = G4 = Gp = 0 by demanding P(¢’) < P(g(q)) (such that
the connectivity of ¢’ is still described by ¢ which requires that P(g') £ P(g(¢')) for ¢’ < q.)

For the first statement of the theorem (including the second condition in Eq. (C.37)), we now simply need
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to compute the following for ¢’ < g(q):
d(X,g') =mn— Z# (Tony2(0i) ™ Z# (T2 X Tiny2(87) ") (C.54)

= mn Z(m/2 + 1= #(en) = Y (m — #(8;)) (C.55)
(n—ng)+ Y F() 1)+ > #(B;) - 1) (C.56)
where n —ng = 2n — #(q). So we get equality for the second part of Eq. (C.37) iff o; and ; have one cycle -

namely they equal 7,,/5 or 7,, within their respective blocks. Again it is not hard to check that the unique
element that does the job is g(q). O

The surfaces that describe g’ with respect to gp, are disconnected NC,, 5 discs and, the k-fold branched

coverings of the disk. We give some pictures to describe the dominant saddles.

Figure C.3: A part of ¢’ corresponding to single block in #(q V tp) and represented as a surface with respect
to gp. The boundary represented by the cycles of gp is shown in blue. The purple line can be thought of as
a “twist operator” which relates the different branches of the block.

Lastly we mention how these elements make their appearances in the phase diagram. The minimal
elements are constituted by g(q) € Sy, described in Theorem C.7 but also saturating Eq. (C.11), which in

turn forces either ng = n or ng = 0. They are:

o), x <1/2,
{g:P(g9) < P(X)} =T(ga,e) NI(gp,e), x=1/2, (C.57)
(x), 1/2 <z <n/2,

{EMm (=124t mgp k€ NC,} € T'(ga,98), x>n/2,

in terms of the notation of Sec. (2.3). We see that the X element comes from ng = n, whereas the x > n/2
elements come from ngy = 0. Intuitively one can also regard the elements with 0 < ng < n as smoothly
interpolating between {X} and {k[Mm (k=1)["/2+1mgp1 They are essential around the reflected entropy
phase transition x = n/2 = 1/2, where all the four regions in Eq. (C.57) come on top of each other. The fact
that phase transition occurs at x = 1/2 also implies that we drop the second condition of Eq. (C.37), that is

we must sum over all the elements prescribed in theorem C.7.
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C.2.2 Generating functions
Let us compute the generating function for elements that saturate the g conditions in Eq. (C.38). Define:
Z(z,w,p) Z Z Z p~FlEavO+#(tsVa) (C.58)
n=0nq=0 qE€Py,:Eq. (C.38)v

where we pick the ng = n = 0 term to equal p (which then violates the seeming p — 1/p symmetry.) We
use the result in Lemma C.5. Let us separate out the ng = 0 contribution. For n = ng we simply get the

generating function of the g-Catalan numbers:

_ (1—z/zp)1—=2/2—) 1 1
Lo =32 32 @ 2 (e, p) =~V T
= v 2z 2z 2/Zyz-

where z1 = p(1 4 p)~2 and we pick the cut such that \/z;z_ = p/(1 — p?) which is the term that violates the
symmetry p — 1/p. This function satisfies:

C(z,1/p) =C(z,p)+ (' —p),  20(z,p)C(z,1/p) = C(z,p) —p (C.60)

Focus now on the rest. Consider the integer partition n — ng = Zii‘il U, where 0 </, < n — ng, then
diagram represented in Theorem C.5 is described by 2ng4 group elements b, € NCp, and is weighted in the

partition function above by:
wndznpzk(*l)’“@#(bk)ffk73/2) (C.61)

where we pick #(by) = 0 for £, = 0. We also need to account for translations of the diagram up to an amount
of 1+ ¢ + 5. By cyclic symmetry we can pick any two £’s and sum ( 2”” —1(1/2 4+ L)) /ng = n/ng. Thus we

need to compute:

o0 n n N N B N B
3D LD DD D AL

{£k=0,...n—=ngq}r {bx€NCy, }

We introduce a contour integral to extract the correct power of y:

dy ng—n)+ Y4
052 4, 0y :jimy( TR b (C.63)

where C' encircles the origin y = 0. This also allows us to extend the sum Z?:io — ZZZO. Computing this:

0,
Inazo =% mey

Shifting the sums to ng =1,...00 and n =n —ng = 0,... 00 allows us to do the sums:

> Z *w"dz y" = (Cly, p)C(y, 1/p))"™ (C.64)

n=1ngq —1

dy 1
Zuspo =20- § S (1~ w2 Clp)Clu /) (C.65)

converging for small w, z. Then doing the contour integral to pickup the pole at z = y (we can pick the

contour C' to be at sufficiently small y to avoid non-analyticities from the C(y,p) terms above, but large
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enough to encircle this pole):

Zupo = 7o (1~ w20(z,p)O (=, 1/p) (C.66)

while this derivation required small z,w we can then analytically continue this answer away from this regime.

Putting it together we find:

20.C(z,p)

Z(z,w,p) = C(z,p) + Cop) —p—u-

(C.67)

1

Note that the second term has a pole at z = 4 C with unit residue.

P
I+pw)(p+w)
Now consider the problem of the minimal elements for g € S,,,, in a fixed ng sector, satisfying Eq. (C.37).

Z(z,w,p) = Z Z w5 Z p*%(#(ggzl)*#(gggl)) (C.68)

n=0nys=0 [Eq. (C.37)v
ges"""'{Eq. (C.SS)\q:qg\/

and this gives the same generating function.
We finally drop the second condition in Eq. (C.37) such that we have a new degree of freedom. Motivating

the more complicated generating function:

Y(zw,p,r) = Z Z W' A" Z = #(9) 3 (# (995" )~#(995")) (C.69)

Ga=Gp=0v

n=0mn4s=0
9ESmni| Eq. (C.38)|g=qy v

In a fixed ¢ sector we have to sum over all elements g < L(ﬁq)gA which simply gives:
pr(r) M po(r)" e, pr(r) = Con(r7) = Copa (172 po(r) = Crpa(r™1)? (C.70)

where Cy, (1) = > cne,, r#(9) with Cy(r) = 1. So that:

geN

Y (z,w,p,7) = Z(p1(r)z, po(r)pr(r) " w, p) (C.71)

C.2.3 Reflected resolvent

The resolvent can be expressed using the generating functions we found in previous subsection. We set:

xa =2 M2 xp=p V22 xe=x (C.72)

and take x large. This zooms into the x4 = x5 = 1/2 part of the phase diagram.

oo

RO = SOAT A A1 (Owglpr () + po(@)) s X0, ) (C.73)
n=0 (TIPZLB)

= A" Z((\xa)"'p1(9), xapo(a)/p1(a), p) (C.74)
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Where Y (z,w,p,q) = (x¢ — 1)Y (2,0,p,q) + Y (2, w, p,q) and similarly for Z. We have defined:

po(q) = —Lo1)

~ polq) + pi(q) (C.75)

At large y there are multiple scales in the resolvent, which makes it difficult to prove a clean statements on

the large x answer. We have the main part of the resolvent which describes the MP distribution given by:

R(N)|x~1/x = A~ xgC((Axq) " 'p1(q), p) (C.76)
o VOX =) =2z 1 1
X <_ 2;//\x + ) (C.77)

22 2 \X\/Z172—

and is found near eigenvalues A ~ 1/x where we have defined 2z’ = p;(q)/q and z3 = z4(p) was defined
previously. Then there is a single pole approximately at zw ~ 1 (taking w large and zw held fixed.) That is

A = po(q). For A ~ O(1) we have z small so we can approximate C(z,p) ~p+2z+...

1

R |1 ——
( )|)\ ' )\—PO(Q)

(C.78)

In particular the naively leading MP distribution is not relevant because it has zero imaginary part for this
range of .

Note the general location of the pole is:

1
/\=po<p+ b ><+ b >=p0<1+ p12><1+ p12> (C.79)
Poxq P PoXq PoXa PoXB

although there is no reason to expect there are not other 1/x corrections that possibly even compete with

the corrections implied by the above formula. The more general resolvent that is represented by Eq. (C.69) is
not accessible in this physical quantity since it lies outside of the domain of validity for the approximation
that we are using. This is due to the large w ~ x value that we must use in the generating function. In order

to access this we need a way to hold fixed w without changing ¢ or p.

C.3 Full solution to £ =2 SD equation

In section 3.6 we have the following set of matrix equations for the 2 x 2 matrix R which determines the

resolvent at A ~ O(x2):
-1
R Rz _ (A-Fu —Fi
R21 R22 —F21 A— F22

F11 F12 _ \/X 0 ﬁm I )\Em R22 R21 + )\Em SQZ(XQB - 1) 0
Fo Fy D,, 0 (xaxB)* \Ri12 Ry (xaxB)? 0 Sulxid—1)
(C.80)

With Sll and 522 given by

2 .2 2 .2
(¢ =181, (0% = )82 = 722 (3= VA0 A0 ) + XA (C.81)
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We now attempt to find a complete solution for matrix R. Define

2D B 2 1 My, M
- )\A VAD,, 3 B, : S11(x% ) (2) _ 11 12 (C.82)
—VAD,, A (xaxs) 0 Sa(xp — 1) My Mo

Note that M is symmetric, M1s = Ms;. We can write Eq. (C.80) as

~ —1
\E
T'RT=|M--—"""_R C.83

< (XAXB)2 > ( )

where

(01
r (1) o

is the x4 <> xp basis flip matrix. Multiply both sides by T from the left we obtain

~ -1
M\E,
RT = MT - —"_RT C.85

( (XAXB)2 > ( )

What we have shown is that RT and MT are simultaneously diagonalizable. Our strategy is then straightfor-
ward: we simply go to the basis where both matrices are diagonalized. Doing so allows us to solve for the
eigenvalues of RT easily, then we transform back to the familiar basis and undo the effect of T'. Start by

diagonalizing MT":

M M d 0
MT — 12 1y 0 + 0!
My Mo 0 d_

_ (\/Mn —\/Mn) <M12+\/M11M22 0 )( My — ]\411>1

(C.86)
VMo Mao 0 My — /M1 May ) \\/May /Mo

We find that the eigenvalues of MT are

dy = Mo £ /M1 My (C.87)

so we have

ay
I
QO
—/
=
+
o
~——
S
=

0 r_
1 ,/%—;(hr—r,) Ty +r_ (C.88)
2 T 4o %??(T.,_*T_) .
with ry given by
(XAXB)2 4)\Em
ry =--"C22 [ dy —y[d2d — ——F C.89
T, = (xaxs)? (C.89)
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In calculating the resolvent we only need the R;; component. It is

My (xaxs)? ANE,, ANE,,
Rit(\) = ) T 22280 2/ My My + (| (Miz — /My Mg )? — ———" — [ (M2 + /M
11() Mgg 4)\Em 114VL22 ( 12 11 22) (XAXB) 12 11 22 XAXB)

(C.90)

The form of Ri;()\) seems to predict two “mini-MP” peaks with width o« \/ B /(xaX5), centered at A,

where the condition
Mo = £/ M1 Moo (C.91)

is satisfied. However since Mis o< VA, from the branch cut of square root we see that solutions for these two
equations lie immediately above and below real axis, respectively. In fact they represent the same peak, as

we must have R(A + i€) = —R(A — ie) for any resolvent R()). Solving for A, gives

(Bu(1 = x32)x52 + D2) (B (1 — x52)xa> + D2,)

Ay =

D2
o Din (C.92)
=D + <X2 + X2> By +0(x™
A B

We can calculate the width of this mini-MP peak via solving the relation

ANE
(Mg £/ Mi1 M) = m (C.93)
We find
_ 8Dw\/En ( B3 (0~ D0 — 1))
_ D2
XAXB (4E D 2XAX%)? (C.94)
8ﬁm Em 4
==V o)
XAXB
Note that: )
R R 2 1)1/2(42 _ 1)1/2
Ao —Ap = (Dfn + 5, Xa (> (x;; ) ) (C.95)
XAXB
so the A\, pole never reaches the main MP peak. It rather bounces when
R 2711/2 2711/2
D'?n B, (XA ) (XB ) (C.96)

(xaxs)?

which is outside of the validity of our approximations.
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Appendix D

Supplement to Chapter 5

D.1 Multiboundary wormbholes

In this appendix, our primary goal is to analyze the extremal surfaces in a multiboundary wormhole. In
particular, we are interested in understanding the competition between different candidates for the minimal
entanglement wedge cross section.

The four boundary wormhole we are interested in can be decomposed into two pair-of-pants geometries
(see Fig. (D.1)). Without loss of generality, consider one of the constituent geometries with extremal surfaces
~; that have area L; for i = A, C1, W, corresponding to each of the asymptotic boundary regions as shown
in Fig. (D.1). In this geometry, there are three potential candidates for the minimal entanglement wedge
cross section for the region AB, i.e., 74 and 7y, which have obvious analogs in the 2TN model, as well as a
non-trivial surface 7/, whose area L’ is completely fixed in terms of the moduli L;. In order for the tensor
network to faithfully model this wormhole’s minimal cross section, we need to ensure that Ly < L'.

To compute L’ as a function of L;, we can use the symmetries of the problem and identities from hyperbolic
geometry (see Ref. [101] and references therein). In particular, an identity satisfied by right-angled pentagons
in hyperbolic space is

sinh(a) sinh(b) = cosh(c), (D.1)

where a and b are the lengths of adjacent sides of the pentagon and c is the unique side not adjacent to either

of them. Note that all lengths are measured in units of the AdS scale I. Suppose 7’ splits v¢, into portions

L L
sinh(z) sinh | = ) = cosh [ =X |,
2 2
. (Lo, (L Ly
sinh (2 — :E) sinh (2> = cosh (2> .

Moreover, we are interested in a limit where L4, Lo, > Lyy. Solving the above set of equations in this limit,

La—L L
L' = 2sinh™! <\/exp (La—Lc,)+2exp <A201) cosh (y)) . (D.3)

We can now compare L’ to Ly either by plotting the function as in Fig. (D.2), or by comparing them in

of length z and Lo, — x, then we have

(D.2)

we obtain
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Figure D.1: A pair of pants decomposition of a four-boundary wormhole. The constituent three-boundary
wormholes have horizons ~; with area L;. The surface vy was treated as the minimal entanglement wedge
cross section in our analysis. However, another possible non-trivial entanglement wedge cross section surface
~" exists with an area L’ that could be lesser in regions of parameter space.

L' /Ly

| S [N T S S S T S S I S T S E— IL
-2 4 6 8 10 W

Figure D.2: A plot of L' /Ly as a function of Ly for fixed L4 and L¢,. The dashed line labels the location
where the shift of minimal cross-section happens.

various limits. When L4 > L, , we find that L’ > Ly which means we can ignore the surface v’ for the cross
section. On the other hand, for L4 < L¢,, we find that L' < Ly and thus, it is very important to consider
~'. This means that the 2T'N approximation fails as we go far into the disconnected phase. However, for
our calculations we were mostly interested in the region near phase transitions. Thus for simplicity, consider
the case Ly = L¢,. Then, for small Ly, we have L' = 2sinh71(\/§) > Ly . For large Ly, we instead have
L' = 2w <« Ly . As seen from Fig. (D.2), there is a transition at an O(1) value of Lyy. Identical arguments
can be applied to the other constituent pair-of-pants geometry. Thus, as long as we tune the moduli to such
a regime, we find a wormhole whose minimal entanglement wedge cross section is indeed given by vy and is
modelled well by the 2TN.

On the other hand, it isn’t clear whether such saddles are dominant in the gravitational path integral. An
analysis similar to Ref. [152] would be useful to determine if this is the case. Even if such a saddle is not
dominant, we can consider a few alternate options: matter can be used to source a larger interior region in
which case it is clear that L’ > min(L4, Ly/). It may also be possible to simply choose to project on the
relevant saddles [202].
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D.2 Finite y corrections

In this appendix we will study the effect of finite bond dimension y. As opposed to the corrections from
finite external bond dimensions x 4,p,c, the effect of finite x acts only on eigenvalues within each £ sectors
by shifting them by a small amount. In the following we will give generating functions pertain to these
eigenvalue shifts. Analytically continuing the coefficient of the relevant generating function gives the leading
correction to the reflected spectrum. We give explicit formulae of such analytic continuation for k£ = 0, 1.
The correction to these two sectors completely characterizes the leading order corrections to the reflected
entropy in the finite x limit, which matches well with our numerics (Sec. (5.4.5)). While the detailed effect of
sector mixing is interesting on its own in that there seems to be an additional hierarchy structure from our
TL numerics, its effect on the reflected entropy is to the order O(x~2) which is outside the main interest of

this note.

D.2.1 Corrections to orthogonality condition

We will find the first order x corrections to Eq. (5.56). Denote the related generating function !

Girz)= 3 X (aas 02, XU qaas ) = DL faa@)fen @) (z,y)  (DA)

me2Z4 k€7 z,yEBém)

We write the function X ,gm) as a sum of diagrams:

! :x,gzs:w (q : ﬂ / - /. (B-5)

(@,y)#0

where we assign each closed red loop a factor of ¢4, each closed green loop a factor of ¢g and each closed
black loop a factor of x. Note that we work in the limit of large x and ga,qs ~ O(1). The contraction
pattern of blue strands is determined by the link states  (on top) and y (on bottom) where we exclude
all contractions in which (x,y) = 0. The dominant contribution comes from x = y, reflecting the fact that
the link states form a approximately orthogonal basis for V,gm). We now try to determine the first order

correction to this result. Begin by splitting G(r, z) in the following fashion
G(’I",Z) = GO(Taz) +G1(T7 Z)a (D6)

where Go(r, z) contains all the leading diagrams (that is with = = y). It is related to the link state generating
function Eq. (5.57) by Go(r,2) = G(qap,7/Xx,2X). Gi(r,z) contains all the next order corrections. Also

denote H(r,z) to be the generating function for 1PI diagrams and split it in a similar fashion

H(r,z) = Ho(r,2z) + Hy(r, 2) (D.7)

We will suppress the ¢ 4,B dependence in this section unless necessary to make our notation more clear.
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G(r,z) and H(r, z) are related by

—G— = —— + —H— + —H—Hy— +-

Go
+ —Hi— 4+ 2—Hi—Hy— +3—Hi—=Ho—Ho— +---

~—

G1

The weights in the sum of GG; counts the number of permutations for the 1PI diagrams. Algebraically,

Eq. (D.8) can be written as

S 1
z) = ZHSL(TJ) = m,
o0 (D.9)
Gi(r,z) = Hy(r, 2 Z (n+1)HY(r,2) = Gi(r, 2) Hy (, 2)

An important seed for the generating function G is the special case k = 0, where the link states are non-crossing

partitions z,y € NCy,. Schematically the SD equation for H; and k =0 is

A AN
+z2@ + 3z3@~ (D.10)

For the diagrammatic notations used here: dashed circles indicate generating functions such as G(r, z) and
H(r, z); and solid line circles indicate the generating functions for the k = 0 sector, i.e. G(0,z) and H(0, z).
In the last two rows the blue connections feature non-crossing permutations (z,y) of the form (7, 7,0) or
(Tno, Tn), where o is a simple transposition (permutation that swaps two elements and keeping all others
invariant). The number of these permutations o7, are n(n —1)/2. We get the following equation

H,(0,2) = qapXx?2*G1(0, 2) (n+1)(xzGo(0,2))"

11

+qap(qa +qB)Z H("T_l)z"(xao(o,z))”—l (D.11)
n=0
B 222G41(0, 2) x22Go(0, 2)
=qaB 1= x2Go(0.2))2 +qap(qa +qB) 1= x2Go(0.2))?

This equation, together with Eq. (D.9) yields a linear equation for G1(0, z) in terms of Gy(0, z). We get

qas(qa + q8)xz2G§(0, 2)
(XZG0(07 z) - 1) (QABXQZQG%((L z) - (XZG0(07 z) - 1)2)

G1(0,2) = (D.12)
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This generating function characterizes the correction to the single pole A, () of the £ = 0 sector.
0
For the k& > 0 sectors we must include in our sum connections with open strands, but only such that each
open strand on top is connected to an open strand in bottom, as required by the condition (z,y) # 0. To

better organize the SD equation we define an auxiliary matrix Fy(2)

IR = +zj(c:o}c+z2+...

1—2xGo(0,2) ——

(D.13)

Fo(z) can be thought of as an stripped down version of Hy(z) in the sense of the following equality

—Ho)— = (D.14)

Similarly we define the matrix Fy(z) that is comprised of the next order diagrams

F = :{}-1—2,2 1&){}(—!—32' _|_

( x2G1(0, 2) (g4 + gB)x#*Go (0, Z)2)
(1 — x2Go(0, 2))? (1 — x2Go(0,2))3 —

(D.15)

Note that despite the similarity, F1(z) does not satisfy a simple relation to Hy(z) like Eq. (D.14). The SD

equation for the connected generating function H(r, z) can then be formulated using these matrices

H— = —(H)— + zr ‘#]FH% + P (_!@j_,(;o\_f: Foj{‘ -+ mirror diagrams) (D.16)

As indicated there are three additional diagrams consists of vertical and horizontal reflections of the “zigzag”

diagram. Since each “zigzag” decrease the power of y by one, diagrams that with more than one “zigzags”

only contribute at higher orders. Algebraically this equation is
Hy(r,2) = Hi(0,2) + 2rFi(2) + 22°r(qa + qB) Fo(2)*Go(2) (D.17)

where the non-bold version of F; denote the common prefactor of the respective matrix. Together with
Eq. (D.9) this determines the form of G(r, z) (since both G1(0, z) and Gy(r, z) are known):

G1(0, 2) x22rG1(0, 2) (qa + qB)x2>rGo(0, 2)?
Go(0,2)2 (1 —x2Go(0,2))? (1 —x2Gp(0,2))3
22%r(ga + q8)Go (0, Z))
(1 = x2Go(0, 2))?

Gi(r,2) = Go(r, 2)? (

(D.18)
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The k = 0 result Eq. (D.12) is recovered by taking r = 0. Denote formally the series coefficient of G (r, z) by

Gi(r,2)= > ") (aa,qp)2"r" (D.19)
k=0

The correction to the matrix eigenvalue A, n) Eq. (5.56) from orthogonality is then
k

Aidyom = 20a8) X2 g2 (@150 )0 (02" 45T + O 472) (D.20)

where g,, /2,k(q2113) is the series coefficient of the link state generating function Eq. (5.57).

D.2.2 Corrections from subleading TL diagrams

We now write down the corrections from including the subleading TL diagrams in M, lgm)(q). We begin by
splitting the sum

MM ()= > ¢ #Ma™(D(h) = (Mo)™ (q) + AM™ (q) (D.21)
heNC,,

where (Mo)fcm) = D heNC,, x q*#(h)ﬂ,gm) (D(h)) contains diagrams of the form {|z y|;z,y € B,gm)} 2 and
AM™ = D hENCLANC g~ #Ma™ (D(h)) contains the rest. Then we have

A (M (@) M™ (a8)) ~ AM™ () (M) (a5) + (Mo){"™ (@) AM{™ (a5)  (D.22)

up to first order corrections. Our goal is to apply first order QM perturbation theory on the matrix
A (M,gm) (qA)M,gm) (qB)). Since M,im) (qA)Mlgm)(qB) is not Hermitian, we need a slightly modified version of

usual first order perturbation theory.

e correction to leading eigenvalue
Denote v,(cm)(q) = Zmesﬁ,’f fq(z)x, we have (Mo)l(cm)(q) =qF |v,(€m)(q)> (v,im) (¢)] and the right (left)
eigenvector of the unperturbed matrix |v,(€m)(q,4)> ( (v,(cm)(qB)\). 3. The first order correction to the

leading eigenvalue is

(1" (am) [ AM™ (02)(M0)(™ (a5) + (o)™ (@) AM™ (a5) | 0" (00))
(o™ (a8) | o™ (a4) ) (D.23)

= 3" (v (@) [ AM () | o™ (0)) + 05" (v (am) | AML™ (ga) | 0™ (a) )

Hence we must evaluate the expectation values of the form

@)= Y L@ Y. ¢ (a|xDm)|y)

2yeB™ hENC,, \NCy i

(o™ (@) | AM™ ()

(D.24)

2Certainly there are diagrams in My that contribute at O(x~!) but their effect is to alter the orthogonality condition
Eq. (5.56), which we have already dealt with earlier.

3We will use v and |v) interchangeably as a vector in the module V,gm) and (v| as the associated vector in the dual module

V,:<m> defined from the inner product (v| = (-,v) to match the notation of QM perturbation theory. We hope the change of
notation is not too confusing for the readers.
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Figure D.3: The leading correction diagrams for (x| D(h) |y) in the k = 0 sector (D(h) shown as dashed lines
in the middle) is constructed by starting with mirroring the x and y link states (shown as solid lines on the
left and right sides). Then an outer strand is cut on both mirrored link states before connecting them to form
D(h). This construction decreases the contribution of such diagram by one order of xy compared to |z y|.

We can think of the sum -, vc, \nc,, , <x ‘ ﬂ,im) (D(h)) ’ y> as flipping the diagram of |x) horizontally

and try to “fill in” the spaces between |z) and |y) by TL diagrams associated with D(h). Every D(h)
contributes to this sum in different powers of x and for our purpose here it suffices to find the diagrams

that contribute at leading order.

Again an important seed is the k = 0 sector. For k = 0 the leading elements in the sum

D hENCy koo g #M <x ’ ﬂ]i"b)(D(h)) ‘y> are elements such that D(h) = |z w| where z,w € B{™ in
which they can be thought of as the “cut-open” versions of z and y, as shown in Fig. (D.3). For a
link state x € B,(Cm), denote ¢(x) to be the number of outer strands it possesses, then the number of
diagrams we should include to get the leading behavior of >, (x| D(h) |y) is equal to c(x)c(y). We

have, up to leading order in y:

> O (a|xMDm) |y) 2 @ We@)ely), zyeB”  (D.25)
heNC,, k>0

¢(z) is also equal to the number of connected components = contains, which can be counted using a
modified generating function. Recall that H(q,r = 0, z) Eq. (D.111) is the 1PI generating function of
k = 0 link states. Instead of G(q,r =0,z) = 1/(1 — H(q,0, z)) we can additionally weigh the sum by

the number of 1PI diagrams using

H(q,0,z2)

Y =H 2H? H? = D D.2
(qu) (q,O,Z) + (anaz) +3 (anv'z) + (1 _ H(q,O,Z))2 ( 6)
Denote formally the expansion coefficient of Y by
Y(q,z2) = Z yu(q)z" (D.27)
=0

Then one can write <v(()m) (q) ‘ AMém)(q’) Uém)(q)> (up to leading order) as
(m) AM™ (o) | o™ o~ 2 N1y m=1 | (ym—2 D.28
vy () o (@) ]vo (@)~ q yn(lad) X" +OKX™7) (D.28)

The additional factor of ¢’ in front comes from the fact that the total number of loops decreases by one

when performing the surgery shown in Fig. (D.3). Finally from Eq. (D.23) we obtain the first order
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Figure D.4: The procedure of constructing leading diagrams for (x| D(h) |y) for the k > 0 sector. Starting
with the diagram |z y|, a similar procedure of cutting and gluing two outer strands are performed. However
different to the & = 0 case, the two outer strands being cut must stay inside the same block. This is
demonstrated using scissors with the same color in the above figure: The surgery on |z y| can be performed
either on the strands with two black scissors (which produces the first diagram on RHS), or strands with two
red scissors (which produces the second diagram on RHS), but performing surgery on a black-red scissor pair
is prohibited.

correction to /\M<m>:
0

Aok om = (44 + ) Yy (@ap)X™ "+ O™ ?) (D.29)

For the k£ > 0 sectors one proceeds in a similar fashion but the rule is more complicated. As shown in
Fig. (D.4), connecting the open strands dissects |z y| into different blocks. Due to the non-crossing
nature of the TL diagram, we must only perform the surgery on outer strands within the same block. To

do the required counting here we introduce the two-variable generating functions G(z,w) and Jo(r, z, w),

defined as |
g = é @ = C(q7 z)C(q,w) (D.30)
| |

= 2w + 22w + zw

and

\V]

+ 22w? + -

(D.31)

qrwz

(1 - ZC(q, Z))(l - 'LUC(q, w))

where the variable z counts the number of TL sites on the left and w counts the number of TL sites
on the right. One can think of G(z,w) as a two-point “propagator” with k£ = 0 and Jy(r, z,w) as the

source which increases k by 1. For example, using these elements we can write down the two-variable
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generating function for two-sided diagrams

+ - (D.32)

or in algebraic form

Vo(r, z,w) = G(z,w) (1 + G(z,w)Jo(r, z,w) + G(z,w)* To(r, z,w)* + - - )
B G(z,w) (D.33)
16z, w)To(r, 2, w)

To write down the generating for leading diagrams in (x| D(h) | y), we introduce additional ¢(-)-weighted

source functions J1(z,w) and J2(r, z, w), defined by

=zw<>¢+z2w@

bl o
(D.34)
= z(} +22 + ) w +w2@+...
= r| Z2w? % +2220° % +223w? % +
(D.35)

where we weight each diagram by product of the number of outer strands on each sides (marked by red

crosses above). Algebraically these equations read

_ qz qu
1-20(q,2) 1 —wC(q,w)
220(q, 2) w2C(q, w)
(1-2C(q,2))* (1 —wC(q, w))?

Ji(z,w) = H(q,0,2)H(q,0,w) (D.36)

Jo(r, z,w) = qr (D.37)
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Finally we can form the generating function for (x| D(h)|y) using

o 2
y]_ = + 2 g + 3 -go + e (D.38)
[ G

and similarly for J>. Algebraically this equation is

Ji(r,w, 2)G(w, 2)?
(1 — Jo(r,w,2)G(w, 2))?’

Vi(r,w, z) = i=1,2 (D.39)

The reason we separate the weighted generating function into ); and ) is that after the indicated
surgery is performed, the number of loops in diagrams of type J; decreases by 1 (this is the only case
for k = 0); whereas diagrams of type J2 increases by 1. Denote the triple expansion coefficient of
Yi(r,z,w) by

Vilg.rw,z) = Yy (g)Fwrrt (D.40)
w,v,k=0

This allows us to write down

q* <v;(€m)(q) ( AM™ ()

o™ ()

(D.41)
1 - _1 (2 - m—2k— m—2k—
~ (q’yfn}z,m/z,k((qq’) AT N () 1)) X" O
The first order correction to A, ) from subleading diagrams is thus
k
1 - - —1y (2 _ m—2k—
Doy % (@A + 08U ) o (@28) + (05" + 450 o (@2B) ) X772 (D.42)

Although it is not immediately apparent, Eq. (D.29) can be recovered by taking k = 0.

e sector mixing
We now give a brief argument that the correction to the degenerate zero eigenvalues in each sector
vanish to the first order. In short, we need to find the first order corrections to the null states of
the product matrix M, ,gm) (ga)M ,gm) (¢B). We need to apply first order degenerate perturbation theory.

Denote (m) )
v, (ga)) (v (gB)]

<v;(!”)(qA) ’ v (qB)>

to be the projector onto the left and right null spaces. To find the perturbation one needs to diagonalize

™ —id — (D.43)

the following matrix
"™ (AMIEm)(QAxMO)I(cm)(QB) + (Mo)ém)(QA)AMlim)(qB)) ™ = o, (D.44)

since (MO),im) (¢) is annihilated by the projector Hgﬁm). Therefore the order O(x~!) corrections to the

zero eigenvalues vanish and the degeneracy is not removed.

The degeneracy is only broken at O(x~2). At the next order one has the second order contribu-
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tion of AMém) (qA)(MO)gcm)(qB) + (Mo)](cm) (qA)AMlgm) (¢p) as well as the first order contribution of
AM,gm)(qA)AMlgm)(qB), and all other contribution is annihilated by the projector. While the detailed
effect of sector mixing is interesting on its own in that there seems to be an additional hierarchy
structure from our TL numerics, its effect on the reflected entropy is to the order O(x~2) which is

outside our main interest here.

D.2.3 Explicit form for k=0 and k=1

Here we will perform explicit analytic continuation m — 1 to find the leading order corrections to the spectral

eigenvalue Ao and \;. Together they determine the leading corrections to the reflected entropy in powers of .

e k=0

The generating function for A;\ can be written as

—1+4(1 1—2(1 1+ ¢2 2,2
X Gi(r=0,2) = i F U Faan)xz (L+gap)x=+ (1 + dhp)x*2

qa +4qp 2¢% p X222 2qapx222\/ (1 + x2(qap — 1))? — 4gapx=>

(D.45)

As in the case of main text there is a branch cut induced by the square root. To perform the analytic
continuation via contour integral, we chose our contour to wrap around the branch cut. Additional

poles at z = 0 does not contribute to the integral. To set up our notation, define

_ 1 m = dz
Dnle) = 7TI /z, z”\/(l +2(g—1))%2 —4qz (D.46)

Fi(l—n,1—n;1;q), <1,
_ )2l 9 ¢ (D.47)
"oFi(1-n1-m1;¢7Y),  g¢>1

as the analytic continuation for the series coefficients of z//(1 + z(g — 1))2 — 4gz. An contour integral

gives the expression for dg; /2 o

1 z4+ /X s/
691/2,0(94,98) = —;Im/ G1(0,2)z7°/4dz
( Z) X (D.48)
_'_
- ﬁ (14 ¢4p)Ds/2(qan) — 2(1 + qaB)Ds/2(qas) + D72(qan))
and
2q _ 1 -
A1) = \/14;91/2,0((114%)95})2,0((],417qu)
(D.49)

—1 —1
qy t4q _ B - - B )
- (AXB)CI/2(QA]13) (1 +q33)D3/2(qap) — 2(1 + ¢15)Dsj2(dap) + Dr2(aap))

The expression for As)g is also easy to write down. We work with the single variable generating
function Eq. (D.26) here. Use Eq. (5.72) one arrives at

Y(g,2) = (i - q) Clg,2) — = (D.50)
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which gives
+

1 z
Aghg = qaB(qa +qB) (Im/
X m z

2
Y(aap, 2)23/2d2>

- (D.51)
qaB(qa + 4B _ _ _
= (X)(C3/2(QA}3) - qulgcl/Q(QA}BDQ
and the first order correction is
AXg = A1) + Ao (D52)
e k=1
Extracting the linear r order coefficient of the generating functions we get
X* 0Gi(r2)|  _ —1+(qap+1)x2+d4p2” — (dhp — qaB)°X°2°
ga+qs  Or  lr=o 2¢%3 X373
L 1= 2aan + Dxz 43227+ 2035052 — (@A — qan)*X " (D.53)
25 pXx>2%/ (1 + xz(qap — 1))? — 4qapx2
The first term on RHS is irrelevant for determining the contour integral. We have
(1) 1 /X —3/2
91/2_1(QAaQB) =——Im arGl(OaZ)z dz
’ T z—/x
qa +q _ D.54
= 2X3/QB (—(ga —1)?D12(qaB) + 2qa8D3)2(qa8) + ¢4 5Ds2(q48) ( )
—2(qap + aap5)D7/2(qaB) + 453 Doj2(qaB))
and
A)\_i (71)(1)(71 71)
1M — X3/291/2,1 daB 91/271 da »4p
(42" +a5") _ _
= A><73B(_Cl/2(qAé) +q48C3/2(q4p)) (D.55)

< ((=(gap — 1)*D1ya(aap) + 2045 Ds/2(a4p) + dapDs2(a4h)
—2(¢4p + 4a8)Dr2(aap) + @i Dos2(a4n))

The two variable generating function Y;(q,r, z,w) factorizes when expanded as a series of r. We are

interested in terms linear to r here, which is

ay?(QJﬁvZ)w) _ qz2w20(Q7Z)BC(Q7w)3
or r=0 (1 —20(q,2))%(1 —wC(q,w))?’ (D.56)
ayl(Q7T727w) -9 2ay2(q7razaw)
I e T =2t
or r=0 or r=0
Using Eq. (5.72) we can write the individual factors as
5 22C(q,2)? —1+(1+q)z 1-(2¢+1)z+q%2?
= ’ = D.57
Y(q7Z) (1 — ZC((], Z))Q q222 + q222 C(q,Z) ( )
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Y(q7 z) has the following contour integral
1 dz o -1, —2 -2
—;Im Zg,ﬁy(q, z) = Cuy2(q) — (247 + ¢ 7)Cs/2(q) + ¢ "C52(q) (D.58)

which gives the following analytic continuation for the expansion coefficient

2

Y7121 (@) = 4 (Crp2(0) = (247" +¢7%)Caya(a) + 7 2Cspa(a)” D59
1) _ (2) ’
91/2,1/2,1(‘1) = 2q2y1/271/271(q)
and
3(gt + g5t _ _ 12
Ban = ML) (€ (k) — (aan + ) Coalnh) + BunCoralazh) (D.60)
The first order correction to the leading eigenvalue in k& = 2 sector is given by
A)\l = A1>\1 + A2>\1 (DG].)

D.3 Asymptotic behavior of pj(s)

The purpose of this Appendix is to study the asymptotic behavior of the function pg(s), which arises in the
calculation of the modular flowed reflected entropy in the 2TN model as the classical probability associated
to the super-selection sectors. By studying this function in detail, one can prove that the entropy increases
without bound as s — oo and as an evidence that there is an emergent type-II; von Neumann algebra.

The function of interest can be expressed as a simple contour integral

pr(q, s) = ql_kgl/2+is,k:(q_l)gl/27is,k(q_l)a (D.62)
1 dz
= —_— [ _ 1 k_—k .
gm.k(a) = 5 j{ 1 C(4,2)(Clg,2) = 1)%q (D.63)

where

1—2z2(g— 1)+ |qg—1|\/z — z\/z — z_ 1
e = CELEN I (D.64)

(1Fa)?

is the generating function of the g-Catalan numbers. C(g, z) has a branch cut running from (z_, z) and the
contour of integration is chosen to encircle this branch cut. For a given integer k, one can express p in terms

of a linear combination over (analytically continued) g-Catalan numbers. For example,

9m,0(0) = Cn(@),  gma(q) = "Crmgi(q) — Cim(q), -+ (D.65)

At large k the expression becomes really complicated and is not useful for determining an asymptotic
expression. Instead I will work with the integral expression Eq. (D.62) directly. We will be using saddle point
approximation and related methods to extract the large s, k behavior of this integral.

To have a better idea of how the function p; for typical & looks like, we include an exemplary plot for
pr(g, s) in Fig. (D.5): We can roughly classify the behavior with respect to s into four different regimes,
which is characterized by a single number s* = k|1 — q|/(2,/9).
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Figure D.5: A plot of pi(q, s) for k =5 and ¢ = 10. The four different regimes are also labeled.

s<qt(ifg<l),ors<q(ifg>1):
This is not really the limit we are interested in, since in this regime s ~ O(k°). Nevertheless one can
directly expand the integrand of Eq. (D.62) in powers of ¢ and show that under this limit

D(—L+k—is) (-1 +k+i
(=3 + is) 2+ +Zs)q1*kcosh(7rs), g>1

k
Pr(q,s) = 1 . 1 . (D.66)
I'(—s+k—is)['(—= + k
(=5 + is) 22 +k+ zs)qk cosh(rs). f<1

which is a simple modification of the asymptotics we found in Sec. (5.4.3). This formula actually still

applies in regime IT as long as ¢ < s/k or ¢ > s/k.

s < s* but not of order ¢(¢1):
Pk is growing exponentially in this regime. Using saddle point approximation one can show that

Lo ok 3
54 (g—1)%™, g>1
pelas) = 2 , (D.67)
53¢ (1 —gq)s*e™, g<1
s~ §*:

This is the most interesting regime, as p; attains its maximum here. However naive saddle point
approximation breaks down here and using uniform asymptotic expansion one can show that to the
leading order in k and when |logq| > 1,
28/3 24/3
Af? ).

e v v i ¢>1

(g, s) k>>1"‘~;zs* 98/3 .2< 94/3

i (D.68)
m 1 ]{;1/3(5\/62)), q<<1

For a more detailed expression which is valid for all g and a first order correction please see the analysis
part. This region is where the prominent contribution of py comes from (when viewed as a function of
k, fixing s). Using the formula above one can easily argue that this region contributes to ~ O(1) of the

total probability, and its contribution to the reflected entropy scales as O(s).
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(IV) s > s*: This is a “ringdown” regime for p, where it starts oscillate and decay. A stationary phase

analysis in this regime shows that the decay rate is ~ s~2 and the oscillation frequency is 2log | ﬁ: l,
independent of k.
PR 3 2is 3 2is|2
Pr(e,s) =~ i(=)*(va—1°vVa = 1 + (Va + 1)°|y/g + 11| (D.69)

s>s* Amrsd

Asymptotic analysis

Our main tool for obtaining the asymptotic behavior for g (and hence py,) would be saddle point approximation.

We begin by rewriting the integral for g as

1 C y2) z C y 2 -1
91/2+is,k(q, 8) = y{dz%e kf(q, )7 f(g,2) = —log <(Q)) (D.70)

T omi qzio

where o = s/k is a O(1) variable. At large k the integral is dominated by the saddle points of f(g,z) in the

complex plane of z. They are given by the expression

:(q+Doiv@ﬁfj@i7F:C*iy@iffzj (D.71)

(g —1)%0 lg —1lo

C+

where we define

1 -1

(g —1)* 2v4q

The behavior of the saddles depends on whether o is larger or smaller than ¢*. When ¢ > ¢*, both ;. and
¢_ are real and valid saddles for the f(q,z). When o < ¢*, (1 becomes complex. Moreover {_ ceases to be a
saddle and only {; remains on the principal branch. We summarize the movement of (4 with respect to ¢ in
Fig. (D.6).

A - ¢ G
> r » » 2o® » - -. s
zZ_ C* 24 zZ_ C* 24 . <* Z4
(a) o< (b) o Zo* (c)o>0o"

Figure D.6: The location of the saddle points (1 with respect to the flow parameter o. The red line indicates
the branch cut of the function f(g,z). (a) when o < o*, there is only one saddle (4 with ¥(¢;) > 0. (b)
when o = ¢* but o > ¢*, there are two saddles very close to each other. As 0 — ¢*, the two saddles coalesce
at ¢*. (c) when o > o*, the two saddles (1 approaches two branch points of the square root.

We have to treat these three different scenarios as separate cases. In both cases of (a) and (c) a regular
saddle point analysis will do the job for us. However for case (b) where the two saddles are coalescing, the

naive saddle point approximation fails and we need to resort to the method of uniform asymptotic expansions.

e case (a)

We will assume that o < ¢*. This choice corresponds to regime II in Fig. (D.5). Under this limit the
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saddle point can be approximated by

1

~ *1 0 D.73
G5 g ¢ 00) (D.73)
Saddle point approximation then gives 4
_ Clg,¢4) 1 —kf(a.¢4)
gl/2+is,k(st) ~ Ci/z 2k f7(CL) e +
. , (D.74)
(2mk) M2 (1 = q)**(~io (1~ q))*, q<1

oLt ia(27rk)71/2(q — 1)1/2q7k(*i0(q — 1)), qg>1

Note that as o0 — —o, the function satisfies g1 /245 — g1/2—is- And since pi ~ g1/24is91/2—is, it 18

guaranteed to be real and only depends on the modulus of g. After a bit of arithmetic we get

Loy 3
—q (g —1)%e™, qg>1
pr(g,s) _~ {2k (D.75)
E>1,5Ks 53 qk(]. _ q)82e‘n’s’ q< 1
T

e case (c)
This case corresponds to regime IV in Fig. (D.5). We have two real saddles here, and in the limit

o > o* they move close to the two branch points {zy,z_}.

1 1
F VaP | dyao®

G = O(o™?) (D.76)

The saddle point approximation now has two terms

_ Clg,¢4) 1 “kfacs) o g ¢-) 1 —kf(0.C-)
91/2+is,k(q; ) = Ci/Q 2k f7(Cy) € ™ 3P 2k f(¢-) ‘
L kja-1/4 k 3 mi/4 2is 3_—mi/4 2is
N\ — —)%(1 — 1-— 1 1
Vs (= vare™ = val + (1 + va)'e ™1 + g
(D.77)
Hence
(g, s) = ql_k91/2+is,k(q_la s)gl/Q—is,k(q_lv 5)
g PR 3 2is 3 2is|2 (D-78)
~ li(—)*(va —1)°|va — 117 + (Vg +1)°|ya + 1]**|

E>1,s>s* 4msd

Thus we find that at late time p;, decays as ~ s~3. The angular frequency of oscillation can be estimated
to be

—1 <, > 1
w = 2log \/Cj‘ ~{ Ve 1 (D.79)
V4 4, q<1

4Up to a factor of —i which we ignore since p;, only depends on the modulus of I k-
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0.100

0.010

0.001

which is independent of k. We plot the asympotics we found under case (a) and (c) and compare with
the actual function in Fig. (D.7)

0.100 |-
0.010

0.001

5 10 15 20 25 30 5 10 15 20 25 30

Figure D.7: (left) The asympotics obtained so far (eq. (D.75) and (D.78)) as blue and orange, versus the
actual pg, as green. We pick k = 3 and ¢ = 10 here. (right) More accurate asymptotics are available if we
do not take the limit s > s* (or s < s*) when formulating the saddle point approximations. This way the
expressions are much more complicated but captures the original function a lot better. However it is clear
that we need a new approximation formula in the crossover region.

e case (b)

This case corresponds to regime IIT in Fig. (D.5). As ¢ — o* the second derivative f”(¢) becomes
degenerate and the approximation breaks down, as seen in Fig. (D.7). In general, to deal with these
kind of problems of coalescing saddle points one needs to use the method of uniform asymptotic
approxzimations. The basic idea here is to find a one-to-one map u(z) near the vicinity of ¢* that takes

the function f(z,0) to a cubic polynomial
1
f(Z,(T) - f(U,CT) - §u3 - Bz(a)u + 77(0), (DSO)

which is always possible since the third derivative f/(¢) is always non-degenerate near o*. Having

done so the original expression can then be integrated repeatedly to a series in terms of Airy functions
Ai(z) and Ai'(2):

ekn k Ai(k*3B?) [ X a AV (k*°B?) [ &
—kf(2,0) 1y — m Z
i h(z)e dz = k1/3 — Jem + k2/3 km (D81)

where the lowest order coefficients are

1/3

B= <i[f(<_,0) - f<<+,a>]> L n= S o)+ (G o))
1 1 — (D.82)
§(¢++¢*)7 by = ﬁ(¢+_¢*>7 d):l::h(z) m e

For more detailed treatment please refer to standard references on this subject, e.g. [203].

For the present case we are mainly interested in the behavior near o ~ ¢*, where the saddles has an
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expansion in Ao =0 — o™ as

4 3/4
(oo (F 4 mfw\/m = (* £ (VAo (D.83)

and we have, up to leading order in Ao,

1/3
4374 . g — 1| — 2
B=i ((q|> VAo = ByVAo, e el = g — 1| va (D.84)

q+1)/]g—1 Valg +1)(¢)e
. 2B, 2" (iyalg—1)®+4qlg—1%)
OO GO T T @ )l 1 %)
R N O )
b~ V2By ( GOf®CY)  (Gf®(¢))*? ( 2 s C)) (D.86)

_ 2Pq(q—1)* (4ivalg—1)° + (¢ = 3)lg — 1)
(q + 1)17/6|q _ 1|20/3

We include an example plot for this asymptotic expansion given by these parameters in Fig. (D.8).

0.100

0.010

0.001

105k

" " " "
15 20 25 30

§=S

Figure D.8: The asymptotic expansion given by the coefficients Eq. (D.84)-(D.86) (blue), plotted against
the actual pg(q, s) (orange). The parameters chosen in this plot are ¢ = 10,k = 10. The blue asymptote is
obtained as an approximate formula near s = s*, shown as the gray dashed curve. Like in the previous case a
more accurate formula can be obtained if one uses directly the definition (Eq. (D.82)). For k = 10 it almost
directly lies on the orange curve so we did not include it here.

If we only keep the leading k term then one has °

_ur Ai(K*/3B? -
91/2+is (4, 5) otz knao% +O(k™%?) (D.87)
—k/ 24/3(5 . E)
q q

(20 @A | - kﬁ 22), <1
s s D.88
k> Lsms | g= s 24/3(ﬁ — k) ( )

(2 A | — vl DKES

5Up to a phase.

213



and

28/3 24/3 . L
12/3 SVE (77~ 2)> ’ ¢>1
pi(g,s) = 8/3 4/3 (D.89)
k>1,5~xs* 2 .2 2 k
Pk attains its maximum at the first saddle of the Airy function, which occurs at
94/3 _k
k*/°B? ~ —% =—-1.019..., ¢<=min(g, ¢ ") (D.90)
or
1 k .
PR = +(0.404. .. k1/3> D.91
= (5o (D.91)
with a maximum value of
28/3 o 1.822...
mbaxpk(q, 5) ~ o |Ai(—1.019.. )" = s (D.92)

Since s* ~ k/(2,/q<), this suggests that the maximum occurs at not too far from s*. The maximum
of the peak scales as k~2/2, and the width of the peak scales as k'/3. When fixing s and viewed as a
function of k, the location, height and width of the peak is roughly (k* + O((k*)Y/3), (k*)=2/3, (k*)'/3)
respectively, where k* ~ 2s,/q..

The total probability under this peak can be estimated by an integral bounded by the first zero of the
Airy function, which can be shown to approach a constant as s — oo. On the other hand, the reflected

entropy is given by the approximate integral

Sgr ~ log X2/ kpi(q, s)dk (D.93)
0

which can be easily shown to diverge as O(k*) ~ O(s /q<) as s — o0.

D.4 Proofs

D.4.1 Proof of Proposition 5.1

Proof. For given m we have a series of unknowns d,(cm) where k = 0,1,--- ,m/2. We pick m/2 elements
t; € TL,, such that the trace conditions Trry, t; =), d,(cm)tr(w,(cm) (t;)) give rise to m/2 linear equations for
which we check that the proposed solutions d;ﬂm) = [2k + 1], satisfy. We pick:

{ti} =
) ) ) (D.94)

or in terms of generators of TL,,:
{t:} ={id, e1, e1€3,e1€3€5, -+ } (D.95)
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The element id maps to the identity matrix in every submodule, so the trace condition for it is simply

m/2
S @ =X (D.96)
k=0

The element e; annihilates the module an”;)Q since the action of e; on any link state will always contain
at least 2 closed strands. Next, to calculate tr(ﬂ,(cm) (e1)) we must find all elements v; € Vk(m) such that
7T](€m) (e1)vj o vj. Such a link state must have a closed strand connecting first two sites, but can otherwise
have arbitrary connections in the remaining m — 2 sites since e; act on these sites just as identity. The closed

loop after concatenation contribute a single x for all ﬂ,im)(eg)vj and the trace condition for e, is thus

m/2—1
Z d](cm)|vlgm)| _ Xm_2 (D97)
k=0

For other elements in the list a similar argument also works as one simply consider link states with progressively
more closed strands connecting adjacent pair of sites when constructing the eigenvector of F](Cm)(ti). The

trace condition for ¢; is
m/2—i+1

S ) = ey
k=0

We observe that all the trace conditions have the same form — in fact for any given m only the ¢; condition is
new and the remaining m/2 — 1 conditions coincide with the conditions of the m — 1 module. This means a
solution for d,(cm) automatically solves the equations of d,(cmfl). Thus we conclude that d,(cm) is independent of
m. As a result, we will drop the m superscript in the remainder of this proof.

Let us reorganize the d;, equations we obtained. Introducing the variable ¢ which satisfies xy = ¢ + ¢!

and rewriting |V]im)| using Lemma B.3 we have an infinite set of conditions
m/2
> A #SYT (m/2+k,m/2— k) = (¢+q )™, Vme2Z, (D.99)

k=0

We now claim dj, = [2k + 1] = ¢~ 2k 4+ ¢72+2 1 ... 4 ¢®* solves this equation for every even m. Plug in dj

and match coefficients with the same power of ¢ we find

zn:#SYT(m/2+k,m/2—k):< " ) (D.100)

P ? \m/2—n
O " (D.101)
m/2—n m/2—n—1
which one can check by explicit computation

#SYT (m/2+n,m/2 —n) = <m/2_n> : (m/z—n—1>

B ml(2n + 1)
 (m/2+n+1)(m/2 —n)!

Or equivalently
#SYT (m/2+mn,m/2 —n)

~ |l

(D.102)

215



To show that the matrix trace tr = Zk ditrr, on V™) coincides with Trrr,, for all elements in V(m), it
suffices to check that Eq. (B.16) is true. We have tr(7("™ (id)) = x™ by construction, and VA € TL,, 1 C TL,,

we have
tr(7™ (hep—1)) = tr(x™ (ep_1h)) = Z dy, tr (ﬂ',im)(em_lh)) (D.103)
i

To evaluate this trace we must find all links states v € B,(Cm) such that e,,_1hv ox v. We can classify v’s by
the contraction pattern of the last two sites. We denote vy to be the set such that the last two sites are

connected through a closed strand and vs to be the remaining ones. Schematically,

U1 = b2 = (D.104)

)

where we used colored block to represent arbitrary connections. It is easy to check that

em_1hv = : h o (D.105)

3

and thus he,, _1vs ¢ hvs so they do not contribute to the trace. For vy, note that
em_1hv] = : h XV > h oS (D.106)

But this is only possible if in the diagram of h there is a path connecting the (m — 1)-th site on the left to
the (m — 1)-th site on the right, otherwise either the RHS of Eq. (D.106) vanishes or it is not possible to

reproduce the connection pattern of v1. Also,
hvy = h o (D.107)

is only possible for the same subset of h that Eq. (D.106) is true for a similar reason. For such h the
contraction in the RHS of Eq. (D.106) produces an extra factor of x, but is otherwise identical to Eq. (D.107).
Hence we find that hv = av < e,,,—1hv = xav for some a € C and thus tr(h) = xtr(hem,—1). This result
naturally generalizes to all sequential inclusions of algebras in the list TL; C --- C TL,,_; C TL,,. Using

Lemma B.2 we conclude that the trace function we constructed on V(™) is indeed the same as Tryy,, .
O
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D.4.2 Proof of Proposition 5.2

Proof. The generating function G(g,r, z) is defined as an infinite sum over diagrams

G(g,r2)= | +z (] +zz< +E§> e

@

+zr (| +2%r (C“ + T+ ) (D.108)

—|—z2r2 <:

where the power of z counts (half) the number of elements m/2 and power of r counts (half) the number of
defects k. Each diagram is evaluated in a similar fashion as the definition of linear functional f, in Eq. (5.52)
— for every closed loop in diagram assign a (positive rather than negative) power of ¢ to the result. Also

introduce 1PI generating function H(g,r, z) defined as the sum over all connected diagrams:

H(g,r,2)= 2z (|) +2° CD +z3<@+ @) 4.

- (D.109)
+2r (: +2%r C) +23r <$+ 3%)
The form of H allows us to reorganize it as
H(q,r,2) = =z () +22 @ +23 % +--
(D.110)
+zr (: +2%r % +23r ;Zg
or
H(q,r,2) = 2(q+7r)(1 4 20(q, 2) + 22C*(q, 2) +--)
2(g+7) (D.111)

1o 2C(q, 2)
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G and H are related by

1

-1 2 N
Glag,rz) =1+ H(q,r,2)+ H(q,7,2) + 1= Hg.r2)
1—2C(q,z2)

1—2(qg+7r)—2C(q,2)

The function C(q, z) is the generating function of link states with no defects:

C(q,2) = +z +z2<@+$) 4.

::(;(qar =:0,Z)

C(q, 2z) is also known under the name of the generating function of ¢-Catalan numbers.

O e i d{ CE (R LT

For a derivation of C(gq, z) please refer to the proof of Lemma B.1.

D.4.3 Proof of Proposition 5.4

Proof. Define C~'(q7 z) = C(q,2) — 1. Tt satisfies a different quadratic equation
. 1 -
Clg,2) + (g +1 - 2)C(g,2) +4 =0

Consider the generating function of C’k(q, z):

X(q,2,t) =Y _ CHg,2)t"

k=0
_ 1 o A1k A
—(;—q—l)ZC th—q> CF2F 4 Clg,2)t +1

k=2 k=2
1 -
Solving for X gives
C(q,2)t 1-e4+1
X(g2.1) = (g,2)t+(g+1—2)t+

qt?+ (g+1-2)t+1
~ Clg2)t+(g— D)t +1
qt?+ (g+1-1)t+1
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Now we can write G(q,r, 2) as

G(g,r,2) = C(q,2)X(q,2,7/q)
(r+9)Clg2) — & (D.118)

z

24 (gt+1-Lr+g

where we have again used Eq. (5.72) to swap out C?(q, z).
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Appendix E

Supplement to Chapter 6

E.1 Proof of Lemma 6.18: Structure of optimal p, o

For quick reference we sketch the integer program, Definition 6.5, we are trying to solve:

C

\

p=\n

= B
ﬁ;?(n —d,0)
g

plus the additional even condition on paths A — B (see the original definition.)

Let us introduce some notation. For a path L, not necessarily edge disjoint, define:

FL) =Y f(e) (E.1)

ecL

for some function of the edges f : E — R. This is slightly different (but consistent with) the notation
introduced previously, because of the possibility that paths L intersect an edge more than once. We sum

each edge in the sequence defining L, which then includes such multiplicities.

Definition E.1. We say e is p-binding if either p(e) = 0 or, when p(e) > 0, there exists a path L € P4p ¢
with e € L such that p(L) = n.

For the constraint involving the o variable Eq. (6.28) we need a refined notion:

Definition E.2. An edge e is called o-binding within E’ for some E’ C E if either o(e) = 0 or, when o(e) > 0,
then there exists a path L € P4 p with e € L and L C E’ for which o(L) + p(L) = 2(n — 6,(1),0). We say
that e is simply o-binding for the case E' = E.
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Given some function p on the edges E, we define the graph distance induced by p as:

dp(z,y) = i p(L) (E.2)
and similarly for the distances between subsets of V. We define the distance to be co should there be no such

path L in the minimization. Given some p, define the region:
(AB)o ={z €V :d,(xz,AB) =0} (E.3)

and similarly define
Ey={{z,y} € E:x € (AB)y and y € (AB)o} (E.4)

to be the edges that lie entirely within (AB)g .

We will construct an optimal pair (p, o) with some nice properties and such that V' = (AB)q will be our
choice for V' in Lemma 6.18. We note however, at this point there is no obvious reason for p(e) = 0 for all
edges within (AB)g.

Lemma E.1. Given some feasible (p,0), consider an edge e € Ey, then we have the estimate:

VL e Papc:e€ L = p(L)—ple) >n (E.5)

Proof. For all paths L € Pap ¢ passing through e = {z,y} in the order AB — 2 — y — C we we note
that p(L) > p(Ly,c) + p(e) where L, ¢ € P, ¢, after dropping the AB — z portion of the path. But since
y € (AB)o there is some path L% 5 , from AB to y with with p(L%p ) = 0. We can combine the two paths,

denoted as L p , U Ly c € Pap,c, and use this to estimate:

p(L) = p(Lyc) + ple) = p(Lap,y U Ly.c) + ple) = n+ple) (E.6)

by feasibility of p. O
Corollary E.2. For a feasible (p,o) an edge e € Ey is p-binding iff p(e) = 0.

Proof. The if statement is obvious from the definition of p-binding.

Now for the only if statement: Assume the edge e is p-binding. Then either p(e) = 0 or 3L € Pap.c
containing e such that p(L) = n. If p(e) = 0 then we are done. Assuming that it is the other case, we use
Eq. (E.5) to obtain

n—ple)>n = ple)=0 (E.7)

which is a contradiction. So we must have p(e) = 0. O
This motivates introducing;:

Ey={ec Ey:ple) =0} (E.8)

as the p-binding edges in Ey. Note that Ey C E,.

Remark. One might have expected that for an optimal solution there are simply no edges that are not
p-binding, otherwise one could get a smaller free energy by making p smaller. One cannot directly do this

because one has to consider the other constraint for paths P4 p that also involves p. We will eventually show

INote that Ep is not the same as FE[(AB)g], which is the set of edges that have some vertex in (AB)o.
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this is possible. That is we will prove that Ey = EO, but we cannot do this before we prove some results on

the behavior of o, our next goal.

Define the two o distance measures for paths within (AB)o:

do(z,y) = min o(L), d° T,Y) = min o(L E.9
olw,y) = min_ o(L) o (T y) e (L) (E.9)
which can be thought of a distance measures on truncated graphs. We continue to define the distance to be
oo should the set of such paths above be empty.

The next lemma pertains to the region (AB)g and edges Ey and Ey:

Lemma E.3. Given any optimal solution (p',0’), there exists an optimal solution (p,c) such that p+0 = p'+o’

and it satisfies the following properties that we prove sequentially:
(a) For all e € Ey then e is o-binding within Ej.

(b) There exists a function k : (AB)o — Z with 0 < k(z) < 2(n — 1) such that o(e) = |k(x) — k(y)| for all
e ={xz,y} € Ey and where:

k) = do(z,A), aES(x,A) < 00 (B.10)
2(n—1), d%w,A) =

and
k(z) = 2(n —1) —d%(z, B), c{g(x,B) < 00 (E11)
0, d2(z,B) = 0

If L € Pa,p is non-empty, then for all e € Eo\Ey we have p(e) € 2+ 2Z>y.
(c) All edges e € Eqy are p-binding. In other words Eg = Ey. This implies that J‘; can be replaced by d° in
Eq. (E.10) and Eq. (E.11).

Proof. (a) Consider some optimal (p,c’). We use the notation (AB){ and Ej) for the region as in Eq. (E.3),
defined with respect to d,s, and Ej) C E}) as the set of edges inside (AB)) with p/(e) = 0. Define Eg.y as the
edges e € Ej) which are not o’-binding within £j. Then set

—
b\
—~

)
~—
+
q\
—
(h
:_/
(e}
~
@
m
&

e,

(p(e),o(e)) = (E.12)

Note that (AB)y C (AB)) since p(e) > p'(e). Also Ey C E} and Ey C E}, for the same reason. And
Eo N By = 0 since p(e) = (o + o) (e) > 0 Ve € Ega.

We aim to show that (p, o) is (i) feasible, (ii) optimal and (iii) satisfies the statement under investigation
in (a). We start with (iii): Consider any edge e € Ey with o(e) # 0. Note that o(e) = o’(e) since only edges
in Ef.;y are changed. Since this edge is ¢’-binding within Eé, there is a path L € P4 p intersecting e such
that L C E}) and o/(L) = 2(n — 1). We just need to show that L C Ey so that e is o-binding inside Ey. Note
that L N Eg,y = 0 since this would otherwise contradict the definition of Eg,y (L being a saturating path).
Thus p(L) = p/ (L) since these edges are not changed, and p'(L) = 0 since L C E}. This implies that p(e) = 0

for all e € L implying that L C EO, and we are done. For later use, we note that we just proved:

VL€ Pap:LCE,then LNEpy=0 = p(L)=0 (E.13)
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(i) Since p > p’ any L € Pap,c is clearly still feasible for p. Also since (o' + p')(e) = (o + p)(e) for all
edges, we need only check paths L € P4 p such that 6, (1) 0 =1 and d,)0 = 0. The condition p'(L) =0
implies that L C E}, but then the converse of Eq. (E.13) implies that p(L) # 0 = L N Egy # 0 and thus
o'(L) > 2(n—1) by the failure of binding. Recall that the failure of saturating for the P4 g paths costs +2 in
the definition of the integer program, so actually o’(L) > 2n. Thus (o + p)(L) = o'(L) > 2n = 2(n — d,(1,),0)
as required. (ii) Optimality is obvious since (p + o)(e) = (p' + o’)(e).

(b) We start with an optimal (p’, ¢’) satisfying (a). Note that any point « € (AB)( has at least one path
to either A or B contained in E{) by the definition of these regions. Assume that that cig, (x,A) < oo, or in

other words, assume there is some path from z to A inside E‘é, and define:
k(z) = d2 (z, A) (E.14)

where we recall the definition of this hatted distances uses paths inside Ej. We now aim to find a consistent
set of equations Eq. (E.10) and Eq. (E.11) (with o replaced by ¢’ for now).

We note that if d2, (x, B) = oo then we must have k(z) = 0 or otherwise we will violate (a) with some non
o’-binding edge along the path from x to A. Furthermore if &2/(307 B) < oo then consider the edge e with
o’(e) # 0 along the piecewise minimal path L : A — x — B that is closest to x (either towards A or towards
B)

2(n—1) < o'(L) = d% (A, x) + d° (x,B) < o' (L) = 2(n — 1) (E.15)

where L' is a saturating path for e that exists by (a). The first inequality is feasibility and the second comes

from deforming the minimal paths in the distance functions to the path L’ (see Fig. (E.1)). Thus:

Figure E.1: We deform a piecewise minimal path L (solid line) containing the edge e with ¢/(e) # 0 and the
vertex x to a saturating path L’ (dashed line) containing e, which is guaranteed to exist by the conditions in

(a).
k(z) = 2(n—1) — d° (z, B) (E.16)

The only case we have not covered for Eq. (E.10) and Eq. (E.11) is when d2, (z, A) = cc. In this case we set
k(z) = 2(n — 1) and this is consistent with Eq. (E.16) since d?, (z, B) = 0 is again necessary in order to not
violate (a).

For edges e = {z,y} € E’é we now aim to compute:
k() = k(y)| (E.17)
There are three cases. Either (i) both {z,y} have infinite distance to B, or (ii) both {z,y} have infinite
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distance to A or (iii) all distances are finite. In the first two cases we have k(x) = k(y). We also have
o’(e) = 0 for these cases due to (a).

In the last case we can estimate using the triangle inequality:
[k(x) — k(y)] < o' (e) (E.18)

If o’(e) = 0 then k(z) = k(y), however if o’(e) > 0, then (a) implies the existence of a saturating path L such
that:
2(n—1)=o'(L) > d% (A, z) + o' (e) + d° (y, B) (E.19)

where e = {z, y} and the saturating path behaves as L : A — z — y — B. Thus:
o'(e) < k(y) — k(x) < [k(y) — k(z)| (E.20)

which combining with Eq. (E.18) proves equality. We have now established equality o’(e) = |k(z) — k(y)| for
all three cases above (i-iii).
We now consider edges e = {z,y} € E}, that are not in E}). We construct a new (p, o) that differs from

the original ones on these edges:

(ple), o(e)) = (¢ (e) +0'(e) = [k(z) — k(y)], [k(z) — k(y)]), ee€ EQE{) (EB21)
(0'(e),a'(e)), otherwise

We need to show that (p,o) is (i) feasible (ii) optimal and (iii) satisfies the requirements in both (a) and (b).
For (i) we first establish that p(e) > 0 for edges e = {z,y} € E}\E},. There are several cases to deal with
depending on whether the d, distances are finite or not. See Fig. (E.2).

(3)

Figure E.2: We construct a path from A — B containing e = {x, y} using minimal paths within E6 and use
it to prove p(e) € 2 + 2Z>~¢. There are three different cases depending on whether the d,+ distances of x,y
to the boundary vertices A, B are finite or not. The three cases are treated differently as shown here.

1. If 2,y have infinite cfg,—distance both to A or both to B then |k(z) — k(y)] = 0 and p(e) > 0 since
p'(e) > 0 on such an edge. We will need to improve this bound for later use when establishing the
statement in (b): Suppose that the cig, distances to B is infinite. If there is any path L € P4 p then we
can combine the minimal paths L, C Ej) and LyacC E}, that are used to compute the respective
distances dy (A, z) = zfg/(A, y) =0, to form a path L4 , Ue UL, 4 UL € P4 p giving the estimate:

(p'+0")LasUeUL, gUL)=p'(e)+0'(e)+ (p' + ") (L) € 2Z>¢ (E.22)
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since p’ and o’ vanish on these minimal paths. Feasibility gives the even condition. But (p’ + ¢’)(L) €
27 also by feasibility, thus p(e) € 2 + 2Zs. The other case where d2, (z, A) = d%, (y, A) = oo follows

in a similar way.

2. If  has infinite d2,-distance to A and y has infinite d% -distance to B then we can construct a new
path L : A — y — x — B using the minimal paths from A — y and the minimal path from x — B

both contained in E}. Since these two minimal d? -distances vanishes for this new path we must have:
2n+2Z>¢ 3 o' (L) + p'(L) = o'(e) + p'(e) (E.23)

where we used feasibility of (p’,¢’) with the fact that p’(e) > 0. In this case we have |k(z) — k(y)| =
2(n — 1), implying that p(e) € 2+ 2Z>o.

3. If both z,y have finite d% -distances to A and B then, picking k(y) < k(z), we can construct a path
L:A—y— x— B, as above, and feasibility now implies that:

2n+2Z>0 < o' (L) + p'(L) =0d'(e) + p'(e) + k(y) +2(n — 1) — k(z) (E.24)

or p(e) €2+ QZZO'

We have covered all possibilities and established that p(e) > 0 for such edges, and furthermore we have
established the final condition in (b). A corollary is that (AB)g = (AB)j, (since this only depends on the
pattern of zeros in p(e)) and thus Ey = Ej) and Ey = E}.

We now prove the rest of feasibility (i). Assume by contradiction that there is a path L € P4p ¢ such
that p(L) < n, then this path must pass through at least one edge e with e € E}\E}) because p/ was feasible
so L must go through one of the edges where p is changed. Consider the first such edge e on the journey
from C' — AB. It is possible to use this path to construct a new path L’ that uses L from C' — e and then
follows e — AB through Ey = E}) (since both vertices in e are in (AB)}, this is always possible). Thus this
path new path L’ only intersects one edge with e € Ej\E). Then:

p(L') < p(L) < n (£.26)
is still not-feasible for p. We use Lemma E.1 which states that for such an edge e and feasible p':
(L) > p(L) = p(e) = n (E:27)

which is a contradiction. The first inequality in Eq. (E.27) follows from p(e) > 0, and the fact that this is the
only edge that is changed relative to p’ along the path. For paths L € P4 p all paths that pass through a
deformed edge we maintain d,(1),0 = ,/(r),0 = 0 and o + p = o’ + p’ so feasibility for these paths is clear.
Optimality (ii) is also clear.

Now we show (iii) that the new (p, o) satisfies conditions (a) and (b) of the Lemma. (a) is clear since
Ey = E}) and we have not changed any o(e) inside Ey. For (b) we firstly note that o(e) = |k(z) — k(y)| for
all e = {x,y} € Ey by construction. Also d°(x,y) = d°, (x,y) since B} = Ey and ¢/ = o on these edges. We
are done with (b).

(¢) We consider an optimal (p, o) satisfying the properties in (a) and (b). We work by contradiction. That
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is we assume there is at least one edge e € E(’)\E(’) and prove a contradiction. Consider any one of these edges

and call it e,. Construct a new solution:

Wenoey = 7@ o= (E.28)
(p(e),o(e)), otherwise

This clearly has a smaller objective, so if we can show that (p’,¢’) is feasible we prove a contradiction since
(p, o) is optimal. For paths L € P4p ¢ that intersect e, — without loss of generality we may consider paths
that intersect e, only once. We then use Lemma E.1 which becomes p’(L) > n as required.

Now consider paths L € P4 p with e, € L. If there are no such paths, then there is nothing more to prove.
If there is at least one such path we know from (b) that p(es) € 2Z4 and this implies that the even condition
in Eq. (6.28) is preserved for (p’,0’). Thus we now consider only the inequality implied in Eq. (6.28). We set
e, = {z,y} and pick these vertices so that L : A — x — y — B. Define the subpaths as L4 , and L, p so
that L = La,Ue, ULy p . We must consider four cases depending on whether the distances cig (z,B) or
dO(y, A) are finite:

Figure E.3: Starting from the path L = L, Ue, UL, g € Pa, g (black solid) we construct two new paths in
P4 p (red and blue solid) using minimal paths (green dashed) that are contained entirely in Ey.

1. If d%(z, B) < oo and d(y, A) < oo then construct two new paths that by-pass e, as follows. Consider
the minimal paths for these finite distances: from A — y and z — B. Join these, respectively, to L,
and L, (see Fig. (E.3)). These minimal paths are contained in Ey (so p vanishes on them). We apply
feasibility for (p,o) to these two new paths:

d2(A,y) + (p+ 0)(Ly.B) > 2(

>2 6p(Ly,B),0) (E29)
(p+0)(Lag) +do(x, B) > 2(

Op(La.)0) (E.30)

n—
n—
adding these two bounds together and using the distance function k(x) we have:

(' +0)(L) —o(e) + k(y) —k(z) = 2(n+ 1= 0p(1, 5),0 = Op(La).0) (E.31)
then o(ey) = |k(y) — k(z)| > k(y) — k(z) (by condition (b)) and:

L= 05(Ly.5),0 = Op(La2),0 = —0p(Ly 5),00p(La.),0 = —0p(L),0 (E.32)

combines to give:
(p' +o)(L) >2(n—bp1)0) (E.33)

the required feasibility statement.

2. If d%(z, B) = oo and d%(y, A) = oo then the form of the function k(z) from (b) requires that k(z) = 0
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and k(y) = 2(n — 1). This implies o(es) = 2(n — 1). Then we note the bound:

(p+0)(L) = (p+o)(es) +2(1 = dp(r, 2),00p(La).0) (E.34)
= ples) +2(n = 6y(1),0) (E.35)

which follows by dropping all contributions from the path L, p and L4, except for a crude estimate
counting a minimal contribution if either p(L, g) or p(L4 ) is non-zero. The bound that we get from
this minimal contribution must be even, since (p + o)(e,) is even, and (p + o)(L) is even by feasibility.
So any gap between them must be even. So again we get Eq. (E.33).

3. If d2(z, B) < oo and d9(y, A) = oo (the reverse case follows a similar argument) then we must
have k(y) = 2(n — 1). We also must have d%(z, A) = oo since otherwise we could construct a path
A — z — B — y inside Ej and this would violate the condition d%(y, A) = co. So k(z) = 2(n — 1) and
hence d%(z, B) = 0 and o(e,) = 0. We estimate:

(p+0)(L) = (p+0)(Laa) + plex) +2(1 = dp(L, 5),0) (E.36)

where we again crudely dropped all contributions from L, g except if p(L, g) is non-zero. Evenness
also demands the gap in the bound is 2. We also consider a combined path that bypasses e, using L 4 ,

and the minimal czg—distance path from y to B inside Ey and apply feasibility:
(p+0)(Las) +dg (@, B) > 2n = byr.s ,).0) (E.37)
Combinding Eq. (E.36) and Eq. (E.37) gives:
(P +0) (L) >2(n+1 =01, 5)0 = Op(Lar)0) = 2(n—dy(L)0) (E.38)
as required.

We have now established feasibility for all possible cases and so we find the desired contradiction. We conclude

that there are no such edges and Fy = Ey. O

We now move on to prove Lemma 6.18. We use the optimal (p, o) constructed in Lemma E.3. We set

V' = (AB)o and E' = Ey. The above result establishes that p vanishes on E’ where only o is non-zero. We

now use this as an input to the following half integer program that lives on the complementary reduced graph
defined as:

G = (V¢ E°) Ve=(V\V')U(AB) E°=FE\F (E.39)

with (AB) = V N ua (V).

Lemma E.4. Given an optimal (p,0) satisfying the properties in Lemma E.3, then

o(e) = (p(e) +a(e))|me = Ly (e) (E.40)

227



is feasible for the following half integer program on the graph G¢ = (V¢ E°):

M =min Z w(e)o(e) (E.41)
® cepe

subject to VL € Pr, 1., :0o(L) €|k —Fk|+Zxo (E.42)

and VL € Pr,.c :0o(L) € (n—1)+Z>o (E.43)

forall k,k'=0,...,2(n—1) (E.44)

where p(e) € Z>o/2 and Ty, = {x € (AB)" : k(z) = k} and C, are boundary vertices on the reduced graph.
Thus:
1> Mtwp(V)+ Y w(elk) - k) (5.45)
e={z,y}€E’
Proof. We firstly check feasibility for paths Pr, r,,. We start by picking a subset of such paths (possibly
empty) ﬁpk’pk, for all k, k', with the extra condition that the path only intersects the boundary edges p(V”’)
twice (this need not always be the case for all paths, even ones that are edge disjoint).
Let k' < k (the case k' = k is trivial) and consider Lc ﬁl"]mr‘k, . We can construct a path in P4 g by
attaching minimal curves for the distance d through E’. We consider such curves from A — I'y, and I'y, — B.

We apply feasability to the combination:

(c+p)(L)+ (K —k)+2(n—1)>2n (E.46)
Using 1 N(V/)(ZNL) = 2 for such curves gives
o(L) > |k — K| (E.47)

Now any curve L € Pr, r,, can be constructed as a sequence of these restricted L curves from Iy =Tk —
...,y — I for arbitrary k; : ¢ =1...N. Thus:

o(L) > |k —ki| + |k1 — ka| + ... |kny — K| > |k — K| (E.48)

by the triangle inequality and Eq. (E.47). That concludes feasability for Pr, r,, .

For a paths Pr, ¢ we again have to deal with possible multiple intersections with p(V’). We again restrict
to ﬁrhc such that these paths intersect p(V’) only once. Consider Le ﬁphc and attach a minimal curve to
AB in the E’ graph. Then:

o) = p(D)+ (L) ~1> pL)—1>n—1 (E.49)
where in the first inequality we simply dropped the o contribution and in the second we used feasibility for
the combined curve € Pap ¢ (the minimal curve part sits in the region with p = 0.) Again any curve in the
more general set L € Pr, ¢ can always be written as a combination of curves I'y — I'y, — ... Iy, — C.
Thus we have:

oLy > |k —Fki|+ ...+ |kno1—kn|+n—1>n-1 (E.50)

as required. We conclude that p is feasible for this intersecting cut problem. The estimate Eq. (E.45) now
follows by plugging in Eq. (E.40) to Eq. (E.41) and finally using the form of o implied by Lemma E.3 on the
rest of the edges E'. O

Remark. The half integer relaxation for this program is convenient in the next section. The above feasible g
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is integer valued, but the optimal solution might be half integral. However this does not bother us, since at
this stage we only strive for an inequality. Also once the chain of Theorem 6.4 collapses the optimal solution

will be integral.

We have now proven Lemma 6.18, as can be seen by picking and choosing results from Lemma E.3 and
Lemma E.4.

E.2 Proof of Lemma 6.19: An intersecting cut problem

We now study the {-intersecting cut problem defined in Definition 6.8. We will solve this problem by a
C C

\ \

u(a),

Figure E.4: (left) A sketch of a ¢-intersection problem defined in Definition 6.8. (right) The reduction of the
{-intersection cut problem to the ¢ — l-intersection cut problem.

recursive reduction of the /-intersection cut problem to the ¢ — 1-intersection cut problem, as described below
in Lemma E.5. We will use a feasible solution to the {-intersection cut problem to construct a feasible solution

to the ¢ — l-intersection cut problem. See Fig. (E.4).

Lemma E.5. Given an feasible o for the £-intersecting cut problem with {Tg,T'1,...,T¢} then there exists a
cut, a, for (ToUTU...Ty_1): (TeUC) and a cut, B, for Tp: (ToUT1U...Ty_1 UC) where B is disjoint to

« such that:

o for £ >1 there is a feasible o' for the { — 1-intersecting cut problem for {T9,T1,...,T¢—1 UL} with:
M(o) = M(¢') + 5 (w(p(@)) +w(p(B))) (E.51)
o for £ =1 we simply have the bound:

M(o) = 5 (w(p(e)) +w(p(B))) (E.52)

M| —

Before we present a proof, we use the above result to prove Lemma 6.19.

Proof of Lemma 6.19. Starting from an optimal solution g for the ¢-intersecting cut problem M (o), we apply

Lemma E.5 repeatedly to arrive at

(w(plar)) +w(p(Br))) (E.53)



where «y, is a cut for (ToU...T%) : (Tr41 U...TeUC) and By is a cut for (Tg41 N...Ty) : (ToU...T, UC).

Minimizing over the all such cuts « and (i then gives

~

-1

(w(p(ag)) +w(n(Br))) (E.54)

0

M(o) >

N =
~
Il

where aj, and j3), are the minimal cuts. We now use them to construct a new p’, defined by
=
d(e) =5 > (Luar) + Lugay)(e) (E.55)

k=0

It is clear that ¢’ is feasible from the topology of the cuts (see Fig. (E.5)) so M(g) > M (o). Also,

Figure E.5: An example configuration to the solution of M (g’). The green solid lines represent minimal cuts
ay and fBy. Consider a path in L € Pp, ¢ (depicted as red line). It is clear that it must cross at least £
minimal surfaces in order to reach C' so w(L) > ¢/2. Similarly, for a path in L’ € Pr, r,, it must cross at
least 2|k — k’| minimal surfaces so w(L') > |k — K/|.

-1 -1
M(o') = % ZEw(e) kio(lma;) + 1)) = 5 I;) (w(p(ar)) +w(u(Br))) (E.56)

so M(o') > M/(p) since o), and B}, are minimal cuts. Thus we have inequalities in both ways and it must be
that

~

-1

M = M(e) = M(c') = % (w(p(ar)) +w(n(Br))) (E.57)
0

B
I

O

Proof. We first consider the region . Define this as:

B={z eV :d,(x,Ty) =0} (E.58)

It is clear that this satisfies the cut properties stated in the Lemma. It is also clear that g(e) :

o(e) —
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(1/2)1,5)(e) > 0. We show that ¢ is feasible for the following 1/2 integer program:

Nt = minit(e),  JH(2)= 3 w(e)ate) (E.59)
cEE

subject to VL € Pr,r,, :0(L) € [k — K|+ Z>o (E.60)

and VL € Pr,.c: 0(L) € £/2+ Z>o (E.61)

subject to VL € Pr,r,: 0(L) € (0 —k —1/2) 4+ Z> (E.62)

and VL € Pr,c: o(L) € (£ —1)/2+ Z>o (E.63)

forall k,k' =0,---,¢0—1.

This program is defined for £ > 1. The last constraint is trivial if £ = 1. We sketch this program in Fig. (E.6).

C

> (-2
Z=Fk-1)

= 7‘Fe

FO../. V/%k \ |

T Ly

Figure E.6: The intermediate half integer program described in Eq. (E.59).

Feasability is clear for paths that intersect p(5) the minimal number of times, that is the subset of paths
defined below:

() Pror, ={L€Pr.r, : Lug(L) =0} > |k — k| (E.64)
(I)  Per, ={L€Per,:1lup(L) =0} >£/2 (E.65)
() Pryr, ={L€Pr,r, :lup(L) =1} > —k—1/2) (E.66)
(IV)  Per, ={L€Por, :lup(L)=1} > (—-1)/2 (E.67)

for all k, k' =0,---,¢ — 1. We have listed the constraints for the ¢’ problem on the right and on the left we
have given labels to the various cases of paths. It is also clear we maintain the integer condition for ¢ in
Eq. (E.59) due to the topology of the paths, so we need only consider the inequalities below. Any other
path not in this class can be decomposed using these paths. There are four different cases to consider (see
Fig. (E.7)):

(I) If L € Pr,r,, with 0 <k <k’ </ —1 we can bound these paths via:

o(L) + 8(Ler,) + 8(Lerv,) > 8(Lr, r,) + 6(Lr, 1)) (E.68)
>(U—k—1/2)+ (K —1/2)> (K —k)+1
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(D) (I11)

Figure E.7: We perform surgery on a path L (black solid) at point # and 2’ using minimal paths (red solid)
and reduce L to the union of paths (blue solid) and use it to bound g(L). The procedure prescribed for
type-1 and type-1II paths are depicted here. The procedure for type-II and type-IV paths are similar.

where x and 2’ are the first and last points inside 3 where the path L enters and leaves. We have sewn
on paths L, r, and L,/ 1, to these points, where we can pick these paths as the ones minimizing the
distance d,(z,IT'¢) = 0 and d,(z’,T'¢) = 0. In particular for these paths o(Pyr,) = o(Psr,) = 0 and
similarly for /. The first inequality in Eq. (E.68) drops the mid portion of the curve and applies the
bound Eq. (E.66) for a curve that intersects u(j3) once, that is Ly, 1, and INsz,Fk./-

(I) If L € Por, for 0 <k <{¢—1 we can, in a similar manner as above, split this into two and show:
oL)y>U—-k—-1/2)+((—-1)/2>1¢/2 (E.69)

where we applied Eq. (E.66) and Eq. (E.67).

(IIT) If L € Pr, p, for 0 < k < ¢ — 1, then we simply drop the portion of the path after the first intersection
with « € § along the path I'y — 2 — I'y. Adding the curve §(L, r,) = 0 gives the estimate:

G(L) = ((—k—1/2) (E.70)

where we applied Eq. (E.66).

(IV) f L e 750;2 we do the same and drop the portion of the path after the first intersection to give:
o(L)y>(£—-1)/2 (E.71)

where we again applied Eq. (E.67).

This completes the proof that ¢ is feasible for Eq. (E.59).

We now introduce the region:
af ={x:ds(x,Ty) + dg(x,C) = (£ = 1)/2} U{z : dg(x,T) =0} U {z : d3(z,C) = 0} (E.72)

We check that it satisfies the cut properties. It is clear that C' UT'y C a° by definition. Assume that T'y € o
for some 0 < k < ¢ — 1. Thus either:

(6 —1)/2 =ds(T,T¢) + dg(T, C) > (€ — k — 1/2) + £/2 > (£ +1)/2 (E.73)
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which is not possible. Or d(T'y,T'y) > (¢ — k — 1/2) which is not possible or dz(I'y, C') > ¢/2 which is also
not possible. Thus we have a contradiction and I'y, € a. This establishes the cut properties stated.

We now define: .
Ql(e) = @(6) - §1p(a) (6) (E74)
We aim to show that ¢'(e) > 0. Consider an edge e = {z,y} € u(a) with z € a© and y € a. The triangle
inequality to C' states that:

o(e) = dg(w,y) = (dg(y, C) — dg(x, C)) (E.75)
So if dz(x,C) = 0 then g(e) > ds(y,C) > 0 since y € « and so must have this strictly greater than 0. Similarly
for I'y:
é(e) > d@(ﬂf, y) = (dé(yaré) - d@(xaré)) (E76)
So dg(xz,Ts) = 0 then g(e) > 0. Finally if ds(z,I'y) + dg(z, C) = (¢ — 1)/2 we add the two inequality above to
show that:
20(e) > dg(y, C) + dg(y,Te) >0 (E.77)

Thus in all case we have g(e) > 1/2, by the integrality gap. Indeed ¢'(e) > 0.

We thus have: )

M(o) = M() + 5 (w(p(a)) +w(n(B))) (E.78)

as required. For £ =1 we simply bound M (') > 0 and we are done. For £ > 1 we need to check feasibility
of ¢ for the ¢ — l-intersecting cut program. Paths that cross p(a) a minimal number of times are clearly

feasible:

) ﬁC,Fz = {L € PC7FZ : 1u(a)(L) = 0} > (é - 1)/2 ( )
) Por, ={Le€Por, luw(l)=1} >(—-1)/2 (E.80)
()  Pror, ={L€Pror, :lye(L)=1} >l —k—1) (E.81)
) Prory ={L€Pror, : Lu)(L) =0} > [k—F/| (E.82)
for all k, k' =0,---,£— 1, where we have listed the constraints for the ¢’ problem on the right and on the
left we have given labels to the various cases of paths.

We now prove a basic result that will seed the rest of our discussion. We consider a path L € Pc r, but
now with 1,,(4)(L) > 2, see Fig. (E.8). Consider the first edge e in p(c) the path crosses (starting at C.) Let

C

Lo ‘, Iy

'y

Figure E.8: We consider a path from C' to I'y that intersect the cut surface p(«) at least twice and we denote
e = {z,y} to be the first edge in the path that crosses u(a) (shown as the green solid line).
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e ={z,y} with z € a® and y € a. We know that:
d5(y,C) + dy(y,T) > (£ —1)/2 (E.83)
Using the minimality of these paths and comparing these to the two segments of L split at y we find:
oLy>((-1)/2 = o(L)>{U-1)/2+1 (E.84)

where we used the fact that the gap for such paths is 1 (see Eq. (E.63).) If this curve had only two intersections
with a (1,4 (L) = 2) we would be done since then we have shown that o'(L) > (¢ —1)/2.
Another obvious bound applies to any path L:

oL) > S 1 (E) (.85)

since we know ¢ on these edges. This bound is too crude to be used on its own, but we will still make use of
it below when we start performing surgery on the paths and we find paths that start and end on the same
boundary region. In this later case the bound we just derived can be tight.

We now address the four types of paths:

(I) Consider a path L € P¢ p, intersecting N times with p(c), where N > 2 is even. We aim to show that
o(L) > (£ —1)/2+ N/2. We do this by induction. We have proved the case N =2 in Eq. (E.84). We
assume it is true for N — 2 and prove if for N. Consider the second edge e = {x,y} that intersects
() along the path C — y — = — I'y, where x € a®. There are now three cases (a,b,c) to consider

depending on which set x belongs to in Eq. (E.72).
(a) If d3(z,C) + ds(x,T'p) = (£ — 1)/2 then consider the minimal paths L, ¢, L, r, defining these two

distances. We show that both of these curves L, ¢, L, r, lie entirely inside a. If not there would be
some y € « (the first vertex where either L, ¢, L, r, leaves a®) with dz(y, C) + ds(y,Te) = (€ —1)/2
and this is a contradiction. We use L, ¢, L r, to perform surgery on L as in the first figure shown in
Fig. (E.9). That is we start with L and L, ¢ U L, r, and end up with two paths in Pc r,. These later

Figure E.9: We perform surgeries on the N-intersecting path L € Pcr, (black solid lines) at the point x
using various minimal paths (red solid lines) and reduce L to two paths — the blue solid lines, which intersect
() two times, and red dashed lines, which intersect p(a) N — 2 times.

234



curves intersect p(«) two times and N — 2 times respectively. Thus:

o(L)+(£—1)/2 (L)4+ 0(Ly,cULyr,) (E.86)

=0
>((=1)/2+1)+ ((L—1)/2+ (N —2)/2) (E.87)

Thus g(P) > (£ —1)/2+ N/2 as required.

(b) If d3(z, C) = 0, we instead perform surgery with two copies of this minimal path. It is clear this path
remains inside a®. These paths do not cost anything. See the second figure in Fig. (E.9) for the pattern.
In particular we find, after surgery, a curve that starts ands in C' and that intersects u(«) twice, and a

curve in Pc r, intersecting N — 2 times. For the former curve we use the estimate Eq. (E.85) and find:
8(P)> (1) + ((t—1)/24+ (N —2)/2) = (£ —1)/2+ N/2 (E.88)

as required.

(c) If d3(x,Ty) = 0 then we again use two copies of this minimal path to perform surgery: see the third

figure in Fig. (E.9) for the pattern.

The right hand side is now a path Pc r, with two intersections and a path from Pr,r, with N — 2

intersections. Thus:
(L) > ((t—1)/2+41)+ (N—-2)/2) =(¢—1)/2+ N/2 (E.89)

where we used Eq. (E.84) and Eq. (E.85). We have completed the induction step.

(IT) Consider a path L € Pcr, for some 0 < k < ¢ —1 and intersecting N times with p(c), where N > 3 is
odd. We aim to show that g(L) > (¢ —1)/2 + N/2. Consider the last edge e = {x,y} that intersects
p(a) along the path C — y — & — I'y,, where € a°. There are again three cases (a,b,c) to consider:

Figure E.10: We perform a surgery that turns a path L € P, of type-II (a) (black solid curve) to a type-I
path in Per, (blue solid) and a path in P, (red dashed) that only intersects p(«) one time.

(a) If dg(z,C) + ds(z,Ty) = (£ — 1)/2, we again perform surgery as shown in Fig. (E.10). from which
we arrive at a path in Pcr, intersecting N — 1 times and a path in Pc r, with one intersection. We

dealt with the later path at the start and the former we have already bounded in (I) above. Thus:
o(L)+(—1)/2> ((t—-1)/2+ (N —1)/2) + (¢/2) (E.90)
implying o(L) > (¢ —1)/2+ N/2.
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(I1T)

(b) If d3(z,C) = 0, we take these minimal paths and join in the obvious way to find a path in Pc ¢

with NV — 1 intersections and one in Pc r, with one intersection. Thus:
B(L) > (N —1)/2) + (¢/2) = (€~ 1)/2+ N/2 (E91)

(¢) If dy(x,T¢) = 0 we use these minimal paths to construct a path in Pr, p, with one intersection and

one in Pcr, with N — 1 intersections. Hence:
oL)>(E—k—1/2)+ (((—1)/2+ (N —1)/2) > ({—1)/2+ N/2 (E.92)

where we used £ — k —1 > 0. And we claim victory for these paths.

Consider a path L € Pp, 1, for some 0 < k < /¢ — 1 and intersecting N times with p(a), where N >3
is odd. We consider now the second edge e = {z,y} along the path from L : Ty — 2 — y — I’y with

r € af. As usual there are three cases:

Figure E.11: We perform a surgery that turns a path L € Py p, of type-III (a) (black solid curve) to a type-II
path in Per, (blue solid) and a path in Pr, r, (red dashed) that only intersects u(a) one time.

(IV)

(a) If dg(z,C) + dg(x,Ty) = (£ — 1)/2, we again perform surgery as shown in Fig. (E.11). The resulting

paths are in Pr, r, with one intersections and and in Pc,r, with (N — 1) intersections. Thus:
oL)+(0-1)/2>((—k—1/2)+ (((—1)/2+ (N —1)/2) (E.93)

Or o(L) > (¢ —k —1) + N/2 as required.

(b) Now if dz(z,C) = 0, our surgery results in a path in Pcor, with one intersection and a path in

Pc,r, with N — 1 intersections. Hence:
o(L)> (¢/2) + (€ —1)/24+ (N =1)/2) =L -1+ N/2> (L —k—1)+ N/2 (E.94)

(¢) Now if dg(z,T'y) = 0, our surgery results in a path in Pr, r, with one intersection and a path in

Pr,,r, with N — 1 intersections. Hence:
o(L)>(t—k-1/2)+ ((N-1)/2) =(l—k—1)+ N/2 (E.95)

Consider a path L € Pr, r,, for some 0 <k < k' </ —1 and intersecting N times with p(a), where
N > 2 is even. We consider now the second edge e = {z, y} along the path from L: T} — 2z — y — T/

with € a®. As usual there are three cases:
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Figure E.12: We perform a surgery that turns a path L € Py r, of type-1V (a) (black solid curve) to a type-II

path in Pc . (blue solid) and a path in ﬁr,ﬁl"; (red dashed) that only intersects u(«) one time.

(a) If dy(z,C) + dg(z,Ty) = (€ — 1)/2, surgery results in a path in Pr, r, with one intersection and
another path in Pgr,, with N — 1 intersections, see Fig. (E.12). Thus, using (II) we have:

o(L)+(—1)/2>((—k—1/2)+ (((—1)/2+ (N —1)/2) (E.96)

implying g(L) > ({ —k— 1)+ N/2 > (k' — k) + N/2 where we used ¢ — 1 > k’. This is the required
bound.

(b) Now if ds(x,C) = 0, our surgery results in a path in Pr, ¢ with one intersection and a path in
Pr,,.c with (N — 1) intersections. Thus:

o(L) > (¢/2) + (¢ —1)/2+ (N —1)/2) =€ -1+ N/2> (k' — k) + N/2 (E.97)

where we again used (II).

(¢) Now if ds(z,T'¢) = 0, our surgery results in a path in Pr, p, with one intersection and a path in

Pr,,r,, with N — 1 intersections. Hence:
oL)>(t—k-1/2)+ ({—K -1+ (N-1)/2) > (K — k) + N/2 (E.98)

where we used (III) and £ — k' —1 > —(/ — k' — 1). And we are done.

The above bound establish feasibility of ¢’ for the £ — 1 intersecting cut problem. (The integer gap

conditions are again all automatic because the even/oddness of the number of intersections is fixed by the

topology of the path.) O

E.3 Proof of Lemma 6.25: Probabilistic convergence for Sp

Consider the renormalized operator:

~

O = (o® o) X" AU (E.99)

and define the renormalized measure:

dﬂ\p(j\) _ X2(nf1).A(A:B:C)f2nA(AB:C) Z | <\I/‘ vi> |25(5\ _ S\l)dj\ (EIOO)

7
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2nA(AB:C)

where \ = AX . We know that new measure satisfies

lim divg (M)A/2 =1 (E.101)

X—00 0

for m/2 € Z>1. Note that we do not know the zeorth moment of A.
Pick some cut-off A > 1 and define

Ao = / divg (A)A™/20(\ — A) < A=™/2 / dig (M)AmO(N — A) < A=™/2 / divg (A)A™ (E.102)
From now on we will set A = 2. Then we have:

m Ay < lim A, <2772 (E.103)
X—>00 X—>00

for all m’ € Z and m’ > m > 1. Taking m’ — oo proves that that limy_,.c A, /o = 0 for m € Z>;. In
particular, for any polynomial function f(A) we have that

/:odﬂ\y(S\)f(X)_Zf(k)( JAr = 0 (E.104)

k! —o00
keN x

In other words, the measure ﬂ\p(j\) is highly concentrated in the interval [0,2] and it suffices to only consider
test functions with compact support on the interval.

Let us approximate the square root function on [0, 2] as:

)= Z \/> b (2/2) (E.105)

where b, ar(z) are the Bernstein polynomials of degree M. Since only by as() has the constant monomial in

it, we only need the higher moments. For all § > 0 there exists some integer M such that

V& = par(@)| e, < 0 (E.106)

Now we write

\ ([ annioir) - 1\ < [T anie+ \ (/ 2 () ) - 1]

Ch Ca
) o ) (E.107)
| [ i) (W2 - ()|
0
Cs
Using Markov inequality along with Eq. (E.103) we can show that for any integer m,
Ay,
Pr(C;>e)< =" 5 0 (E.108)
€ X —00
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For Cy we consider:

2 2 2
Ca < |( [ anapuh) = ([ dnopae) 4| ([ aie@pnh) <1 (109
0 0 0
We can bound the first term using Chebyshev’s inequality:
o2
Pr(Cit > ¢) < = (E.110)

€

where

o2 = Var(C5™t) = Var ( /0 h dﬂq,(j\)pM(j\)) = i pm Var ( /O b dﬂq,(;\)f\m) (E.111)

where p,, are Taylor coefficients of pps(A). Note that we have extended the integration limit in Eq. (E.111).
The error from doing so can be shown to vanish in the limit x — oo by application of Eq. (E.104). The

expectation values of the double moments are related to

o) 2
(/ d/j&\y(j\)j\m) — X(4n—1).A(A:B:C)—4n.A(AB:C)<\IJ|®2 om & Om |\I/>®2 (E.112)
0

which can be computed by a different symmetry group optimization problem defined on G. We now minimize

over g € Somy, in this graph such that the boundary conditions are g4 = gg)gf), JB = gg)gg) and go = id,

where gg,)B permutes the first mn replicas and leaving the second mn copies invariant; whereas 91(42,)3 permutes
the second mn replicas and leaving the first invariant. Our analysis in Sec. (6.4) largely carries over. The
main difference is that we must now coarse-grain using the new element X = gaAgs =XDXR with XO

defined similarly as above. We need the following generalization of Lemma 6.10:

Lemma E.6. For any q € Py, we have
d(da,q) + d(GB,q) = d(Ga, qB) +2(1 = 0400y o) +2(1 =04 o) + 20qvrz,, (E.113)

where §a,p = q5(Ga.B), #(11’2)(-) counts the number of singlets in the first (second) sets of 2n elements, and

7 =A{Zapn, Zon} is the mazimal element in Py, that is disconnected between the two sets of 2n elements.

Proof. If ¢ € Pay, X Poy, then 64y z,, = 0 and we can simply break down the problem into two smaller

problems on disconnected copies of 2n elements. Applying Lemma 6.10 on each copy proves the result.
Now suppose that ¢ € Py, \Pap X Pan. Then there must exists some w;j € Py, \Pap X Poy, such that

pV u;; = p, where u;; is the unique partition with a doublet connecting element 7 from the first copy to

element j in the second copy and singlets at every other position. We write

d(qa,p) = d(Ga,p V uij) = #(qa) + #(@ V uij) — 2#(Ga V p V uij)
=1+ 9(qa V uij) + #(p V uij) — 2#(qa V p V uij) (E.114)
=d(qa Vuij,p) +1
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and similarly for d(Gg,p). Thus

d(qa,p) +d(p,qs) = d(ga V uij,p) + d(p, G V ui;) + 2

(E.115)
> d(Ga VvV uij,dp V uij) + 2

by triangle inequality. This bound can be strengthen in a similar fashion as the proof in Lemma 6.10. The
biparpite graph of G4 V u;; and ¢p V u;; is now connected with two cycles, each corresponding to a 2n-element
copy. A singlet in the first copy will break the first cycle and leads to a enhancement of the bound by 2, and

likewise for a singlet in the second copy. Since d(§a V u;j,Gs V u;ij) = d(Ga, ) we obtain
d(dAvp) + d(pa QB) > d(@A»CjB) + 2(1 - 6#31)@)70) + 2(1 -0 52)((1)70) +2 (E116)

And this completes the proof. O

Using Lemma E.6 we see that we may restrict to the disconnected elements g € Pa,, X Pa, (and hence
g € Spn X Smn as the coarse-graining retains this information) in the optimization problems, since for any
path L € P4.p and vertex v in the path, any q(v) € Py, \ Pay, X Pay, will lead to a stricter bound in the integer

program. Thus we find that the optimal value of our problem is simply twice of that in the original problem:

2
(/ dﬂqz(/\)/\m/2> — X—4(n—1)A(A:B:C’)+2n(m—2).A(AB:C)(1 +O(1/X)) (E.ll?)

And we have that 02 = O(1/x) and C5rst P40 as x — o0o. For the second term we have

( /0 h d,zq,(})pM(&)> 1 ( /2 h dﬂ\ll(j‘)pM(;\)>' E1s)

— |pu(1) = 1] <0

X—o0

Cgecond S 4

where we have used Eq. (E.101) to rewrite the moment integrals in the first line, and the bound |pas(1) — 1] <
lpas(x) — /|| Loj0,2) = 0. The second term in the first line vanishes by Eq. (E.104) in the x — oo limit.
For C5 we write

2
@s/dmwxw—mw>
0

2 2
< [Cdna (0325030 + [ a1 = 700 30) [32 = par () (E.119)
0 0
2 o . 2 A .
< [ die (A2 70 3) 46 [ (31 - 712 3)
0 0
where passing from the first line to second we used the fact that pys(z) approaches /x from below, which

follows from the positivity of pps(x). We have also introduced a function f with f(z) = 0 for > 0 and

whose other properties we will enumerate below. For the second term, we suppose that:

(1= f(z))e *0(In2 —2)| . = f1 < oo (E.120)
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For the first term we write this out:
Czi;irstX*Q(nf1).A(A:B:C)+n.A(AB:C)

= (13521 (0? ® 1) f(In(0 @ o) + 2nA(AB : C)Inx)(1 @ 0S4 [153)
<[ Fleille® o — m/x* AAE 1|1 @ 02)Sa 155 102 @ 1)Sa [157) ||

where we have applied Eq. (6.157) in the second line. Or, setting fo = || /|11

Cs < fi6+ fallo® o — 1/ X2mAABO|| / djig (3312
0

- (B.121)
< ot lewe-npe @Ol (14 |( [T ap e ) 1)
0

Since the same quantity appears on the left hand side of Eq. (E.107) we should subtract and write:

([ am i) <1 (1= ple o - npAUBOR) <irav ey (B2
0
with

C';/g, < fid+ fallo® o — W/XQHA(AB:C)||1 ono f1é (E.123)

where we have used Eq. (6.158) in the limit. Now suppose that 0 < fo < 1/2 then using the fact that the

trace distance is bounded by 2:

oo !
/ dﬂqj(j\)j\l/Q —1l< G+G+G (E.124)
0 1-2f,

Since § can be made arbitrarily small, we have C ) by Eq. (E.108), Cs o by Chebyshev’s inequality
and the vanishing of the variance of moments and Eq. (E.118), and C} o by Eq. (E.123). The rest of the

proof is fairly standard and we find:
Xz(n—1)A(A:B:C)—nA(AB:C)Tr(pfqlﬁ))n _ </ dﬂW(X)S\lm) lig 1 (E.125)
0

The map x — fﬁ In x is continuous for > 0, which is where the random variable is defined so, so by the
continuous mapping theorem we prove Eq. (6.169).
We have imposed various properties on f in the above proof. To finish we must show there exists a

function with these properties. We desire:
1. fis real with f € C°(R) with f(x) =0 for z > 0. Also f' € S(R).

2. fi1 < oo where:
fi = sup|(1 = f(a))e™ (E.126)

3. f2 < 1/2 where:
fo= I8 ) (E.127)

There is an easy way to achieve this. We need smooth function ¢ > 0 compactly supported between
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—L < x < 0. Then set:

f@ = [ " dro(z)

The requirements become: 1. is satisfied. 2 requires:

0
/ dro(z) =1 = |o|lp=1
-L

which implies that:

fi= sup
—L<z<0

/w dxo(z) exp(—z)| < 0o

—L

We need:
fo=8(o)llr < 1/2

Or, ignoring the normalization, we seek a bump function, where:

1 1
3@l _ 1
ol =2

Consider a bump function b(z) defined inside —1 < 2 < 0, and independent of L, then set:

o(x) =b(xz/L)

Then: )
I3l Jds| [ dze™sb(x/L)| _ -1 180l
oz J dxlb(z/L)] [0 1
So we need to choose: ol1% (b
L 20
[0l L1

In summary our function that does the job is:

1 0
flz) = L||b||L1/g; dxb(z/L)

Double checking:

/ dxemb(x/L)’ = ”fﬁ?l”; <1/2

1
M= ——— [ d

as required. Notice also that:
flz)=1 < —L

which is required for f; to be finite. Thus completing the proof.

E.4 Proof of Eq. (6.166)

Proof of Eq. (6.166):
is§(fa)(s) = §(fa)(s) = F(f'wa)(s) + F(fwy)(s)
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(E.128)

(E.129)

(E.130)

(E.131)

(E.132)

(E.133)

(E.134)

(E.135)

(E.136)

(E.137)

(E.138)

(E.139)



We have two remainder terms to analyze:

s (fa) )L, = I e, | < IFFwa)llz, + IS (1 = wa))z,
For the second term:

IBCF (1= wa) oy <A+ 5"z, 11+ )T (1 = wa))(5) 1.
<7l = wa)llp, + 1(F(1 = wa))"l|z,)
<w(sup [(1+2%)f (@) + sup |(1+2%)f" (x)])

r<—a r<—a

2l elwellw + 7l e lwg ] ow

(E.140)

(E.141)

where in the first line we use the Hausdorff-Young inequality. But ||w/ ||, = (1/a)||w’||r.. — 0 and similarly

|lw!||L., = (1/a?)||w”| L. — 0 as a — co and also:

sup |(1+2%)f'(2)] < a™® sup [o*(1+2%)f'(2)] < a”[l2®(1 + 2°) f'(2) ]| L. =0

z<—a z<—a

For the first term use:

F(fwy)(s) =F((f = fa)w,)(s) + fa /700 dze™w! ()
=3((f = fa)wa)(s) + fa /_Oo T )

=F((f = fa)we)(s) + faS(w')(sa)

where for some constant f,. We pick f, = inf,._, f(z) then:

I3 = f)wllle < 1CF = Fahwbllz, + 1(CF = fa)ut) "Iz,
< (Isggalf(x) — FaDlwl o, + 1IGF = fa)llzoe w12,

17z lwell o+ 2011 ey g [ o

the last two terms are dealt with as above. Note that:

If = Clle < [|fls~ +C = C + sup | £(b) + /b dyf' ()|

<CHIFOI+sw [ dilf )] < C+ 1O+

(E.142)

(E.143)

(E.144)

(E.145)

which is clearly finite. This analysis implies that f, is finite and ||f — f4||~ is finite. Thus we need to

compute:

1
lwall, = lw'llz, llwg'lle, = —llw™llz,
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the later of which vanishes. Since the first term does not vanish we instead note that:

sup [f(z) = fol = sup f(z) — inf f(z)~ f(zs)— f(zi)

r<—a r<—a

/ dof'(z / dal /()] < / dal f'(x (B.147)

<o [ sl @) <Pt (@), 0
—o0

where z; and x4 approximate the location of the inf and sup respectively. This approximation is what we
mean by =~ and this can be removed after taking limits.
All that is left to do is to compute:

18w (@)L, = /Oo ds|§(w')(as)| = o™ [|[F(w)]L, — 0 (E.148)

— 00

Thus establishing the limit Eq. (6.166).
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Appendix F

Supplement to Chapter 7

F.1 Non-maximally entangled RTNs

In a standard RTN, the edges are projected onto maximally entangled states. These RTN states can be
deformed to nearby states by simply changing the entanglement spectrum on the edges. One may then
ask whether we can prove Ep = EW for a larger class of states by considering such a deformation, and
attempting to enlarge the parameter space where the inequality in Theorem 7.2 is saturated. It turns out the
answer is no, and we give an example in this section to highlight the basic issue.

Consider the 1TN model of Sec. (7.2.1) with a non-maximally entangled leg for subregion C. This state,
for a specific choice of spectrum, is identical to that of the PSSY model, an evaporating black hole in JT
gravity coupled to end-of-the-world branes with flavour indices entangled with a radiation system [15]. Here,
we will not restrict to the PSSY spectrum, and find more generally how this deformation affects the phase
diagram of reflected entropy.

For generality, consider the state | pzlf/f), a one parameter generalization of the canonical purification. We
have computed the entanglement spectrum of pa 4+ for this state in Chapter 4. It consists of two features: a
single pole of weight py(m) and a mound of min(d% — 1,d% — 1) eigenvalues with weight p.(m). The weights

are given by

_ t(phE)’
pa(m) = dadp tr(pp) (1)
pe(m) =1 —pa(m). (F.2)

Now, we would like to compare the phase diagram of this model with the standard 1TN with maximally
entangled legs. First note that the transition between e and X in the 1TN phase diagram in Fig. (7.2) is
dictated by the location of the entanglement wedge phase transition, which we hold fixed to compare the two
models. Then the remaining question is where the transition from X to g4/gp happens.

Consider the region of the phase diagram where d4 > dp. The transition happens in the connected sector.
Thus, we have p.(m) ~ 1 and the spectrum of p4p is well approximated by the spectrum on the C' leg. Using
this, we find that the location of the transition for Sg) is given by

pa(m) = —. (F.3)
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Using Eq. (F.1), we then have
(2—=m)Sy, 2 — (1 =m)S,, = logda, (F4)

where S, is the nth Renyi entropy of the non-maximal spectrum on the C' leg.

Then it is clear that at m = 1, the location of the phase transition is x4 = Sg—iz > 1. The standard 1TN
has a flat spectrum, i.e, S,, = S; and the transition is at x4 = 1. Thus, the shaded region where we cannot
prove Ep = EW is larger after deforming the RTN to add non-maximally entangled legs.

As a side note, we would like to mention what happens for m > 2 where one can use the usual RTN
calculation of domain walls with tensions modified by the entanglement spectrum, thus introducing an m
dependence [47, 110]. For m > 2, we have x4 = Ss—l/z — (m — l)w < 1since Sy < Spj2 < S1. Thus,
the X region shrinks for m > 2 after deforming the spectrum on the legs. However, as demonstrated above

for m = 1, the naive analytic continuation of the result at m > 2 fails.
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