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Abstract 
The U.S. nuclear industry is progressively integrating automation technologies into Nuclear Power Plants 

(NPPs). To make informed decisions about large-scale investments in automation technologies 

specifically used for safety critical applications, stakeholders require robust evidence of their 

transparency, trustworthiness, and operational acceptability. This study introduces a risk-informed 

approach to evaluate automation trustworthiness by leveraging and making advancements to the Integrated 

Probabilistic Risk Assessment (I-PRA) methodological framework and the Probabilistic Validation (PV) 

methodology that were previously developed by some of the authors. I-PRA connects simulation models 

of underlying physical and social phenomena with the existing plant PRA model through a probabilistic 

interface. This study advances the I-PRA framework to explicitly capture relationships between the plant 

risk metrics and input parameters associated with the underlying human-automation-physics interactions. 

Meanwhile, the PV methodology is enhanced to characterize and propagate the uncertainties associated 

with the human-automation-physics coupling, allowing for the degree of automation trustworthiness to be 

measured by the magnitude of epistemic uncertainty associated with the automation output. Acceptability 

of a certain degree of automaton trustworthiness in a specific automation application is evaluated using 

predefined acceptance criteria that can be found available at one or more levels of the system hierarchy 

(e.g., automation output or plant risk). By integrating the advanced I-PRA framework with the enhanced 

PV methodology, the proposed approach offers a holistic evaluation of and an efficient algorithm to 

enhance automation trustworthiness. This paper also includes initial results of an ongoing case study 

evaluating the trustworthiness of an Artificial Intelligence (AI)-based automated firewatch system 

suggested for use in NPPs. 

 

Keywords: Integrated Probabilistic Risk Assessment (I-PRA), Automation Trustworthiness, Probabilistic 

Validation (PV), AI-Based Automated Firewatch, Nuclear Power Plants.  

  

1. Introduction 

To improve efficiency and ensure safe, reliable operation, the U.S. nuclear industry is working to leverage 

automation as much as possible. Introduction of automation technologies, however, still presents 

challenging issues for most NPPs. These issues include defining an appropriate end-state automation 

architecture, developing business cases for automation implementation, assuring automation 

trustworthiness, improving automation transparency, and addressing licensing process burden. These 

challenging issues contribute to higher costs and schedule uncertainties for automation deployment, 

creating hurdles for the use of automation in NPPs. Before committing to a significant investment in the 

deployment of an automation technology in the nuclear domain, specifically for safety critical applications, 

decision-makers need methodologies that can generate sufficient evidence to verify that the automation 
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would be explainable, trustworthy, and operationally acceptable. This paper focuses on establishing a 

theoretical basis and developing a generic methodology to evaluate automation trustworthiness.  

In a companion paper [1], the authors have conducted a comprehensive literature review on the definition 

of automation trustworthiness and existing methodologies for its evaluation. Based on the results of this 

review, two common approaches for defining automation trustworthiness have been identified [1]: (i) 

Output deviation-based approach, i.e., defining automation trustworthiness using the deviation between the 

output of the automation model and the actual observations; and (ii) Attribute-based approach, i.e., defining 

automation trustworthiness using a set of attributes (e.g., “reliability and accuracy,” or “security, trust, 

resilience, and agility”). A methodology for evaluating trustworthiness associated with the first approach 

would require a substantial number of actual observations, which is not always the case in the nuclear 

context. On the other hand, using the second approach is subject to questions about, for example, the 

comprehensiveness of the attribute list and the appropriateness and adequacy of the attributes to be 

included. In the existing literature, evaluation of trustworthiness using this approach includes two aspects: 

(a) Measuring the attributes and (b) Aggregating the attributes. Measuring the attributes can be done either 

using expert opinions [2], data-driven approach [3], or model-based approach [4]. Meanwhile, aggregating 

the attributes can be done through either having a correlation that relates different attributes to the 

trustworthiness [5], or using a Bayesian Belief Network (BBN) [2].  

To overcome the abovementioned limitations/challenges 

of the existing approaches, a systematic, risk-informed 

methodology for evaluating automation trustworthiness 

has been developed in this paper, using a third approach 

based on advanced uncertainty analysis. In this proposed 

methodology, automation trustworthiness is referred to as 

the “degree of confidence” that an automation system can 

function as expected; in this context, the “degree of 

confidence” can be measured by the magnitude of 

epistemic uncertainty associated with the automation 

system’s output. The proposed methodology leverages an 

Integrated Probabilistic Risk Assessment (I-PRA) 

methodological framework and a Probabilistic Validation 

(PV) methodology previously developed by some of the 

authors and makes necessary advancements to enable the 

evaluation of automation trustworthiness in NPP context.  

I-PRA was developed by some of the authors in their 

previous studies [6, 7] to allow for integrating simulation 

models of underlying physical and social phenomena with 

the existing plant PRA model through a probabilistic 

interface. In the current study, I-PRA is advanced by 

adding and/or advancing automation-related modules 

(i.e., those red-boxed modules in Figure 1) to enable a 

clear tracing and capture of relationships between the 

plant risk metrics and input parameters associated with the underlying physics, automation, and human 

performance.  

The PV methodology was originally developed to test the validity of simulation models [8, 9] and is 

leveraged and advanced in the current study for evaluating automation trustworthiness. Following this 

advancement, PV allows for characterizing and propagating uncertainties associated with the human-

automation-physics coupling and quantifying the magnitude of epistemic uncertainty associated with the 

automation output, a.k.a., the degree of automation trustworthiness. Execution of the PV methodology for 

evaluation of automation trustworthiness in NPPs requires that the uncertainties from the underlying 

Figure 1: Integrated PRA (I-PRA) 

Framework for Automation Technology 
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automation model level be propagated up to the level of plant risk metrics, which necessitates a 

computational platform that is achievable by leveraging the advanced I-PRA framework. The acceptability 

of the degree of automaton trustworthiness for a specific automation application is evaluated against 

predefined acceptance criteria  at the output level or plant risk metric level. The PV methodology is also 

equipped with an advanced Global Importance Measure (GIM) method to rank significant sources of 

uncertainty at the level of underlying physics, automation, and human performance concerning their 

contribution to the plant risk uncertainty. This provides an efficient algorithm to enhance automation 

trustworthiness. 

To demonstrate the feasibility and practicality of the advanced I-PRA framework and the PV methodology, 

this paper also reports on results of an ongoing case study of AI-based automated firewatch system. By 

integrating the advanced I-PRA framework with the PV methodology, the proposed approach offers a 

holistic evaluation of automation trustworthiness, considering complex interactions among human 

operators, automation technologies, and the evolution of physical phenomena in NPPs. This comprehensive 

evaluation will assist in making informed decisions about the deployment and operation of automation 

technologies in NPPs, ultimately contributing to the enhancement of plant safety and efficiency. 

The remainder of this paper is organized as follows. Section 2 explains the proposed methodology for 

evaluating automation trustworthiness. Section 3 presents an application of the developed methodologies 

for a case study that centers around an AI-based automated firewatch system. Finally, Section 4 provides 

concluding remarks and discusses future work.

2. Methodology to Evaluate Automation Trustworthiness 

As asserted, the proposed methodology for automation trustworthiness leverages the I-PRA methodological 

framework and the PV methodology previously developed by some of the authors. Necessary advancements 

to I-PRA and PV are made in the proposed methodology to enable the evaluation of automation 

trustworthiness in the NPP context. These advancements to the I-PRA framework and PV methodology are 

discussed in Subsections 2.1 and 2.2, respectively. 

2.1. Advancing the Integrated Probabilistic Risk Assessment (I-PRA) Methodological Framework 

The fundamental concept of the I-PRA methodological framework [6, 7] is that simulation models of 

underlying physical and social phenomena are developed and then integrated with the existing plant PRA 

through a probabilistic interface. I-PRA adds realism into the risk estimation by explicitly incorporating 

time and space into underlying models while avoiding significant changes to the plant PRA model and its 

associated costs (e.g., peer review). In previous work [6, 7, 10], I-PRA encompasses Failure Simulation 

Module (FSM) (‘b’ in Figure 1), Human Performance Module (HPM) (‘c’ in Figure 1) and their couplings. 

The dynamic coupling between the modules is similar in its nature to simulation-based PRA (or dynamic 

PRA), while the Interface Module (‘g’ in Figure 1) conducts uncertainty propagation and offers the 

possibility of using simulation approaches linked with the existing PRA of plants (‘h’ in Figure 1).  

In the current regulatory and nuclear industry PRA practices, simulations are used in various applications 

to estimate PRA inputs. For instance, Fire PRA uses a fire model, e.g., CFAST [11], to estimate cable 

damage probabilities. The connection of these simulation models with PRA, however, is ‘passive,’ where 

the underlying simulation generates basic event probabilities as its outputs, which are then plugged into the 

PRA software as inputs [12]. This passive PRA-simulation interface does not have the capability to trace 

the input-output relationships between plant risk metrics and the input parameters of the simulation models. 

In contrast, I-PRA creates a “unified” connection between the plant PRA and the underlying physics and 

human performance simulations, where the transfer of data and information among multiple levels of 

causality (physical mechanisms, human performance, and plant-level PRA) are carried out in a cohesive 

computational platform. This way, the relationship between the plant risk metrics and the input parameters 

associated with the underlying physics and human performance can be explicitly traced and captured. The 

unified connection also allows for adding a GIM method to I-PRA to enable the ranking of significant 
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sources of uncertainty at the level of underlying physics and human performance with respect to their 

contribution to the uncertainty in the plant risk. I-PRA has been successfully used in two industry 

applications: (i) the risk-informed resolution of Generic Letter 2004-02 [7, 13], and (ii) Fire PRA [6, 10, 

14]. 

 

To appropriately credit the use of automation technologies in the PRA of NPPs, this current work advances 

the existing I-PRA framework by (i) adding the Automation Module (AM) ('e’ in Figure 1) and the Human-

System-Risk Interface (HSRI) ('f’ in Figure 1); (ii) advancing the HPM and the Scenario-Based Failure 

Model ('g.2’ in Figure 1); and (iii) developing a computational coupling among those added modules and 

the existing human and system performance modules in I-PRA. The upgraded I-PRA framework simulates 

complex interactions among automation systems, physical phenomena, and plant operators. It allows for 

the impacts of these interactions on plant equipment and system performance to be evaluated. The following 

sub-sections discuss the advanced I-PRA framework and its automation-related modules. Since our case 

study involves an AI-based automated firewatch system that can be credited in Fire PRA, the discussion 

will use this case study and the Fire PRA context to explain details of the automation-related modules and 

the spatiotemporal interactions among them. 

2.1.1. Advanced I-PRA Framework for the AI-based Automated Firewatch Case Study 

When developing the I-PRA framework for the case study of AI-based automated firewatch at an NPP, the 

first task was to work out the interactions of interest (i.e., related to the automated firewatch) among the 

AM, HPM, and FSM. Then based on the identified interactions, these modules were developed in detail 

and coupled with each other inside the I-PRA framework, shown in Figure 2 and explained in the following 

subsections. This coupled environment is in essence the lower portion of the I-PRA framework with 

modules in them in Figure 1. While Figure 1 depicts the interactions among models in a more general sense, 

Figure 2 offers a detailed resolution in terms of this study. 

 
Figure 2: Coupling Methodology for Automation, Human Performance, and Fire Simulation Module 

2.1.1.1. Fire Simulation Module (FSM)  

FSM simulates the initiation and propagation of the physics of fire. The Consolidated Fire and Smoke 

Transport (CFAST) software and Virtual Reality (VR) tool are used for developing the FSM. CFAST is a 



Probabilistic Safety Assessment and Management (PSAM) Topical, October 23-25, 2023, Virtual 

  

5 

 

fire model that can create and predict fire initiation and progression environment inside a compartment. It 

is a two-zone fire model that divides the compartment into an upper layer and lower layer during analysis 

and helps in calculating the time-evolving distributions of gas temperature inside the layers, temperatures 

at pre-defined targets as well as concentrations of smoke and other gaseous byproducts created during the 

combustion process inside the compartment. In the previous work, CFAST [10] and Fire Dynamics 

Simulator (FDS) [14] are used to simulate the physics of fire. FDS as another fire and smoke model, can 

perform simulations at much higher resolution. For the present case study, CFAST is used for simplicity 

and the outputs of CFAST are illustrated in a virtual environment using the Unity software [15]. VR has 

been used as a substitute to experiments and it is facilitating the present case study by providing: (i) high 

quality fire images to train and validate AI-based fire classifier; and (ii) more control over the environment 

subjected to fire. This would help in analyzing the influence of a large number of parameters such as 

lightening conditions, camera quality and camera position over AI-based fire classifier’s performance. This 

is important because eventually while estimating the trustworthiness of automation system using 

uncertainty-based approach, identification and characterization of underlying uncertain parameters would 

be needed. 

It should be noted that training and validating the AI-based model on the data coming actual experiments 

should always be preferred over the data generated by VR. However, availability of data coming from the 

real world that matches well with the actual scenarios of interest could be challenging at times. Using 

available but irrelevant real world fire images to train or test AI-based classifier will not be the best way 

moving forward as it halts the synergy between fire initiation and progression parameters of interest such 

as Heat Release Rate (HRR) curves, that were used to run CFAST model. Hence, to maintain that synergy, 

fire scenarios illustrated inside VR (Consequently fire images to train/test AI-based fire classifier) were 

made consistent with the ones created inside CFAST environment. This is done by creating fire scenarios 

inside VR using the outputs of CFAST model such as time evolution of HRR and soot concentrations. 

2.1.1.2. Automation Module (AM) 

The Automation Module (AM) (‘e’ in Figure 2) contains an Automated Firewatch (AFW) model (‘e.1’ in 

Figure 2), which is an AI-based fire classifier and is developed using a Convolutional Neural Network 

(CNN). For the present case study, the fire classifier is binary (Fire/no-fire) in nature. Sigmoid and Rectified 

Linear Unit activation function (ReLU) are used to add the desired level of non-linearity, which is needed 

to model complex functions, enhancing the capabilities of the developed classifier. In order to select the 

most optimum parameters during the training phase of the classifier, insights regarding performance of the 

classifier at various sets of parameters are needed, that would be coming from estimating the loss function 

of the classifier. In this work, binary cross entropy is used to compute the desired loss function, that is one 

of the most common loss functions used to train binary classifiers. The AM model architecture in this paper 

has been illustrated in Figure 3. In step 1, a rescaling layer normalizes the pixel values of the imagery data, 

reducing the computational load and making the training process more stable. Then, step 2 enhances the 

dominant features of the images such as edges and reduces image array dimensions, to improve model 

efficiency and helps in noise reduction. Finally, in step 3, a multidimensional output (from convolutional 

or pooling layers) is converted to one dimensional vector, which can be fed into the subsequent fully 

connected layers. The final layer is coupled with a Sigmoid function that creates the boundary between the 

two classes (fire/no-fire) for the images fed into the architecture. 

 

 
Figure 3: Model Architecture of AI-Based Fire Classifier Using CNN 
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In this paper, the training of the AI-based fire classifier followed the pattern of physics-informed machine 

learning. At first, fire simulation module using CFAST has been run for different fire initiation and 

propagation scenarios (each sampled set of inputs forms a specific scenario) that were visualized in Virtual 

Reality (VR) environment [11]. Then, the captured images are annotated with their desired classes as fire 

or no-fire using the same CFAST data based on actual physics. This is done in a way that an image 

simulating a scenario in VR environment at an instant where the HRR is non-zero/zero has been labeled as 

a fire/no-fire image. Training has been performed on 50 images from each of the 200 different scenarios 

(generated a total of 10000 images) representing a sampled set of all the input features, such as HRR curve 

of the fire and environmental conditions in VR. A training accuracy of around 99% and a validation 

accuracy of around 98.5% have been achieved by the end of 8 epochs. 

2.1.1.3. Human Performance Module (HPM) 

This module is developed using the IDHEAS HRA methodology. In this study, the HPM is advanced (as 

compared to previous Fire I-PRA studies by Sakurahara et. el. [14])) by extending its scope to include both 

Main Control Room (MCR) operator actions and first responder (FR) actions (outside the MCR) in response 

to the automation signals provided through the HSRI. There are multiple human failure events (HFEs) in 

the HRA based Event Tree Model, e.g., HFE1 (Operator Confirms and Communicate with FR), representing 

the human action of the operator, where, given a cue from the AM, the operator is supposed to communicate 

with a FR (another human agent) and dispatch the agent to the site of the fire signal to confirm the 

occurrence of a fire event. Furthermore, the time associated with each of the HFEs is also obtained from 

the HPM and those time durations are utilized to calculate the time to start suppression, the details of which 

can be found in subsection (c.2). 

(c.1) HRA Event Tree Model 

There are multiple HFEs, e.g., HFE1, HFE2, representing the human failure events of the HRA Event Tree 

Model as shown in Figure 4. There are also two end states, OK and NS. OK end states represent the 

sequence where suppression event is successful. On the other hand, NS denotes the sequence where neither 

of the suppression top events are successful. i.e., the fire is not suppressed.  

 

Figure 4: HRA Event Tree Model for HPM (c.1) 

The HEPs for those top events were calculated from the HEP Quantification Model (c.3) and utilized in the 

coupled simulations to determine the number of times these top HFEs should be assumed to succeed and 

fail. The HFEs are modeled in such a way that there is only one end state for the model of each HFE. 

Modeling an HFE this way allows for calculating the HEP for the whole HFEs using IDHEAS. In this case, 

since there is only one success state, it means that for the HFE to be successful, all involved tasks must be 

successful i.e., the number of critical tasks for the analysis of the HFE using IDHEAS is equal to the total 

number of tasks. Note that, since there is a separate Timeline Analysis Model being done in parallel, the 

HEP is estimated using IDHEAS only accounting for the Cognitive Failure Modes (CFM) i.e., for each 

analysis of the HFE, the probability of failure due to insufficient time (Pt) is set to be zero. The damage to 

a target due to human failure because of insufficient time is reflected on the modified HRR curve i.e., the 
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target cable damaged because there was not enough time for the human agents to successfully perform an 

HFE, will be reflected through the HRR curve being modified at a later point in time resulting in the max 

temperature exceeds the melting point of the cable and thereby damaging the cable. The list of HFEs and 

their constituent Critical Tasks (CTs) in addition to the duration of the CTs are described in Table 1. 

The first HFE1 is the one where the operator confirms and communicates with the FR. The suppression by 

the FR top event, HFE2, consists of three human tasks and has only one success state. The HFE2 is influenced 

by the environmental conditions since the assumption here is that the first and the second Critical Tasks 

(CTs) are dependent on the environmental conditions. Based on the analysis here, there are two relevant 

Performance Shaping Factors (PSFs), the first is related to the temperature of the compartment and the 

other one which is related to the visibility of the compartment. Visibility is calculated using the correlation 

described in the works of Bui et. el. [2] (see c.2 Timeline Analysis Model). The PSFs are included for a 

critical task in the calculation if at the start of that critical task either the upper layer or the lower layer 

temperature exceeds a specific threshold and visibility falls below a threshold (in this case, the threshold 

for temperature is 330C and the threshold for visibility is 40m, the highest dimension of the cable tray 

room). The HFE3 consists of tasks that are outside the location of fire and hence not influenced by fire 

induced environmental conditions. This HFE4, Fire Brigade Activity 1, consists of tasks performed by the 

fire brigade team immediately before the start of suppression. Finally, the HFE5 consists of tasks involving 

the suppression activity of fire brigade. This suppression by the fire brigade team consists of tasks that are 

executed at the location of fire. Like HFE2, the PSFs are included in the calculation if at the start of each 

critical task either the upper layer or the lower layer temperature and visibility exceeds specific thresholds. 

An additional assumption is that, if a PSF is selected for one of the Critical Tasks then the PSF is included 

for all the CFMs (e.g., Understanding, Action) inside that critical task e.g., if the temperature PSF is 

selected.  

Table 1: Human Failure Events (HFEs) and Constituent Critical Tasks (CTs) 

HFEi Critical Tasks Critical Task 

ID (CTi,j) 

Cognitive Failure Modes 

(CFM) 

Total Duration 

(ti,j) 

HFE1 

Operator Receives Fire Detection from 

AM and Diagnoses the Signal on the 

MCR Computer 
CT1,1 Detection, Understanding, Deciding 𝑡1,1 

Operator Communicates with First 

Responder (FR) 
CT1,2 Action 𝑡1,2 

FR Arrives at and enters Fire Location, 

and Communicates with MCR Operator 

[16] 

CT1,3 Understanding, Deciding, Action 𝑡1,3 

HFE2 

FR Searches for and Locates Fire Source 
CT2,1 Detection, Action 𝑡2,1 

FR Starts manually Suppressing Fire 

using Portable Fire Extinguisher CT2,2 Action 𝑡2,2 

HFE3 

Operator Receives Signal from FR to 

Call the Fire Brigade (FB) CT3,1 Detection, Understanding, Deciding 𝑡3,1 

Operator Communicates with Fire 

Brigade 
CT3,2 Action 𝑡3,2 

HFE4 

FB Gathers at the Assembly Area and 

Gets Pre Plan CT4,1 Action 𝑡4,1 

FB Peer Checks and Moves to and 

Arrives at the Staging Area 
CT4,2 Action, Inter Team 𝑡4,2 

FB Lays Hose & Puts on Breathing 

Apparatus 
CT4,3 Action 𝑡4,3 

HFE5 

FB Searches for and Locate Fire CT5,1 Detection, Action 𝑡5,1 

FB Prepares Hose for Discharging and 

Starts Suppressing the Fire 
CT5,2 Action 𝑡5,2 
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(c.2) Timeline Analysis  

The objective of the timeline analysis (Figure 5) is to keep track of the duration of the Critical Tasks (CT) 

and calculate the time to start suppression for the Fire Suppressant Interaction Model (c.4). The constituents 

of Critical Tasks of the HFEs and their time durations along with the variable used to denote the time 

durations of these critical tasks are described in Table 1. These time durations are sampled from the 

distributions described in Table 3 and are used to obtain the time to start suppression. After obtaining the 

time to start suppression from this step, the HRA Event Tree Model is used along with the HEP 

quantification model (c.3) for a specific run of the coupled code to generate an updated HRR curve that 

refed to FSM to get the KPMs of interest. The consecution of these critical tasks can be seen in Figure 5. 

 
Figure 5: Timeline of Critical Tasks for the HFEs in HRA Event Tree Model (c.1) 

. To determine the time to start fire suppression based on different scenarios a sampling technique was 

adopted from the paper by Sakurahara et. al. [20]. This method allows for controlling the simulation by 

adopting the split fraction method. By random sampling a number from a uniform distribution and 

comparing with the probability, the number of simulations is being split according to the ratio of event’s 

states, in this case, success and failure. The timeline analysis can be divided into the following steps.   

 

Step 1: Start by checking a random value between 0 and 1 and compare it against the probability of 

Detection by the Automated Firewatch, Pr(DAF). If this random value is greater than Pr(DAF), proceed to 

step 2.a, otherwise proceed to step 2.b. This Pr(DAF) value will be provided from the AM.  

Step 2.a: The next check will involve another random value against Pr(HFE1) (from HEP quantification 

model). If the random number is greater, proceed to step 3. Otherwise, the HRR curve is not suppressed. 

Step 3: Get the upper- and lower-layer temperature (𝑇𝑙,𝑐𝑜𝑚𝑝𝑎𝑟𝑡 
𝑘 (t); 𝑙 = upper, lower) , and optical density 

(𝑂𝐷𝑙,𝑐𝑜𝑚𝑝𝑎𝑟𝑡 
𝑘 (t); 𝑙 = upper, lower) values of the compartment, from the non-suppression HRR curve 

output at, 

 

𝑡1 = ∑𝑡1,𝑗

3

𝑗=1

 ; 

 

(Eq. 1) 

which is the start of searching for and locating fire source, i.e., the first critical task of HFE3. In this study 

we calculated the visibility data from the empirical correlation used in the works of Bui et. al. [10]. Here, 

visibility,  
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𝑣 = 𝑘𝑣

1

𝑂𝐷𝑙,𝑐𝑜𝑚𝑝𝑎𝑟𝑡(𝑡1);
; 𝑙 = upper, lower; (Eq. 2) 

Now set the environmental PSFs for CT2,1 of HFE2, if any of the data exceeds some threshold value set by 

the expert. Then set the PSFs for CT2,2 of HFE2 by getting the environmental conditions of the compartment 

at, 

 𝑡1 + 𝑡2,1; (Eq. 3) 

Now use HEP quantification model to calculate the probability of HFE2 Pick a random number from a 

uniform distribution from 0 to 1. If this random number is greater than Pr(HFE2), proceed to step 4.a. 

Otherwise proceed to step 4.b. 

Step 4.a: The top event HFE2 is successful. The time to start suppression, 

 𝑡𝑠 = 𝑡1 + 𝑡2,1;   (Eq. 4) 

Step 4.b: From HEP quantification model, we get the Pr(HFE3) which is the probability of failure for the 

Pre Fire Brigade Activity. Pick a random number from the uniform distribution. If it is greater than, 

Pr(HFE3), go to step 5.a. Otherwise, go to step 5.b. 

Step 5.a: Pick a random number from a uniform distribution from 0 to 1. If it is greater than the Pr(HFE4) 

which is the human error probability of failure for the top event Fire Brigade Activity 1, go to step 6.a. 

Otherwise, go to step 6.b. 

Step 6.a: Now, the top event HFE5, is performed inside the fire room. Check the environmental conditions 

(i.e., the upper layer or lower layer temperatures and optical densities of compartment) at, 

 
𝑡2 = ∑𝑡1,𝑗

3

j=1

+ ∑𝑡2,𝑗

2

j=1

+ ∑𝑡3,𝑗

2

j=1

+ ∑𝑡4,𝑗

3

j=1

; 

 𝑡𝑖,𝑗 = time duration of CTi,j for HFEi   

(Eq. 5) 

And at  

 𝑡2 + 𝑡5,1; 

𝑡5,1 = time duration of CT5,1 for HFE5; 
(Eq. 6) 

Get the Pr(HFE5) by setting the appropriate PSFs for CT1 and CT2. If the random number exceeds Pr(HFE5), 

then HFE5 is a success and ts = t2 + t5,1.Otherwise, the HRR curve is non-suppressed.  

Step 6.b: If the random number is smaller than Pr (HFE4), then the HRR curve is non suppressed. 

Step 5.b: If the random number is smaller than Pr(HFE3), the HRR curve is non suppressed. 

Step 2.b: In this scenario DAF is a failure. Therefore, HRR curve is non suppressed.  

 

(c.3) HEP Quantification Model: To quantify the failure probabilities of the HFEs IDHEAS [23] software 

developed by the NRC is used. This is because of the widespread acceptability of the use of IDHEAS in 

the quantification process of the Human Error Probability.  

 

(c.4) Fire Suppressant Interaction Model:   

After obtaining the time to start suppression, 𝑡𝑠 , the updated HRR curve, Q̇s(t), is generated and used 
to rerun the FSM. To generate Q̇s(t), a correlation was used in the works of Bui et. el. [10] and it has 
been adopted in this study.   
One of the outputs of this model is the time to full suppression,  
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 tFS = ts + 
1

kf
ln [

Q̇controlled

Q̇0(t = ts)
]  (Eq. 8) 

 

Here,  

Q̇controlled = Heat Release Rate when fire is considered suppressed  

Q̇0(t = ts) = Heat Release Rate at the start of suppression, ts 

kf = coeffient for calculating the time to full suppression 

Yu et al. [24] derived that, under the assumptions that the fuel material properties are constant over 

temperature and that the water evaporation rate per unit burning surface area is always balanced with the 

water application rate per unit area (denoted by mw
,′′

), the coefficient kf can be formulated as follows: 

 kf = a1mw
′′ + a2 

(Eq. 9) 

where a1 and a2 are represented by analytical functions of several physical parameters. The empirical 

correlation developed for the FMRC standard plastic commodity suggests that a1 = 0.716 and a2 =
0.1317 [24].   

Using this time to suppression and time to start suppression from the timeline analysis model, the HRR 

curve can be updated to reflect the suppression event. 

2.1.1.4. Identified interactions among the AM, HPM, and FSM for the Automated Firewatch case study. 

These interactions are represented by six arrows on Figure 2, numbered from 1 to 6, and are explained 

below. 

• Arrow 1 (FSM to AM): The FSM models the physics of fire and will provide simulated fire images for 

the AM.  

• Arrow 2 (AM to HPM): The AM can provide information related to the time evolution of fire and 

thereby reduce the time it takes to detect fire. This in turn, will affect the time available and, by proxy, 

the performance of the responders.  

• Arrow 3 (FSM to HPM): The FSM provides data associated with the physics of fire, e.g., temperature, 

smoke density, heat flux etc. These physical parameters can influence the performance of the human. 

For example, reduced visibility due to smoke can affect the mobility of humans and thereby affect 

performance. 

• Arrow 4 (HPM to FSM): The effect of human performance can be reflected on the propagation of the 

fire. Its impact can be inferred by the effect of human performance on the HRR curve which is an input 

for the FSM. Here, the effect is reflected by updating the HRR curve based on the result of the HPM.   

2.1.1.5. Scenario-Based Failure Model 

Once the FSM, AM, HPM are developed, they are coupled together and are connected to a Scenario-Based 

Failure Model (‘g.2’ in Figure 1) and the plant PRA Module (‘h’ in Figure 1) using a computational 

platform. Details of the couplings are discussed in Section 2.1.2. The Scenario-Based Failure Model in this 

context was developed by leveraging the Fire Detection and Suppression Event Tree in Appendix P of the 

NUREG/CR-6850. In that Event Tree, three types of fire detection and suppression are considered: prompt, 

automatic, and manual. The Scenario-Based Failure Model maintains these types and considers the 

Automated Firewatch System as an additional measure to be included for "Prompt" Detection (instead of 

Prompt detection by continuous human firewatch and/or continuously occupied personnel in NUREG/CR-

6850). The Scenario-Based Failure Model has multiple sequences (depending on the status of the 

Prompt/Automatic/Manual Detection and Suppression functions), and these sequences are connected to 

different end states that are associated with fire-induced damage to target components.  

The Scenario-Based Failure Model is then connected to the plant-specific PRA Module (‘h’ in Figure 1) to 

credit the automated firewatch in the Fire I-PRA framework. The automated firewatch case study evaluates 
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the effectiveness of the AI-based automated firewatch in a fire scenario and analyzes its impacts on plant 

risk metrics (i.e., core damage frequency [CDF]). 

2.1.2. FSM-AM-HPM Couplings for the AI-based Automated Firewatch Case Study 
 

This case study uses an NPP fire scenario from NUREG-1934 Scenario E [17]. This scenario estimates the 

impact of a transient fire in a trash receptacle on the cables placed in cable trays inside a Cable Spreading 

Room (CSR) as shown in Figure 6. 

 

 
Figure 6: Configuration of Switch Gear Room (SGR) used in the case study (NUREG-1934 Scenario E) 

The modeling methodology of coupling between the FSM, HPM and AM for an internal fire scenario is 

shown in Figure 2. The I-PRA framework (Figure 1) provides a means of accomplishing that objective 

while considering the dependencies among the modules. The coupled simulation environment provides a 

means to treat the dependencies that are otherwise implicit by putting all the interactions in the coupled 

environment. For a given set of epistemic parameters, the process for performing quantitative analysis is 

broken into multiple steps. Let gFSM(∙) be the functional representations of the FSM model and tBO be the 

time when the fire self-extinguishes under the burnout condition (without any fire protection features) while 

gHPM(∙) is the functional representations of human performance model. Under this setting, the “discrete” 

FSM-Automation-HPM coupling is developed as follows: 

Step 1. Random Sampling.  

Once the epistemic parameters are fixed, create random samples for the uncertain parameters and variables, 

particularly the time distributions of each of the top events and the random variables associated with the 

HRR curve. Each set of random samples for parameters of the HRR represents the unsuppressed curve. For 

Random sampling RAVEN [26] is used because it offers extended ability for various uncertainty calculation 

processes.  

Vector of Random variables for the aleatory parameters are generated. 

  

 X = (𝑋𝐹𝑆𝑀 , 𝑋𝐻𝑃𝑀 , 𝑋𝐴𝑀); (Eq. 10) 

 Here, 𝑋𝐹𝑆𝑀 = 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐹𝑆𝑀, 
𝑋𝐻𝑃𝑀 = 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐻𝑃𝑀, 
𝑋𝐴𝑀 = 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐴𝑀, 

 

Step 2. Running FSM with unsuppressed HRR Curve 

Run the FSM Model with the unsuppressed HRR curve, aimed at finding the temperature of a specific 

compartment and specific targets situated in the compartment.  

 𝑇(𝑡)𝑙,𝑐𝑜𝑚𝑝𝑎𝑟𝑡 = gFSM(𝑄0(𝑋𝐹𝑆𝑀 , t), 𝑋𝐹𝑆𝑀) ;  0 ≤ t ≤ tBO, (Eq. 11) 

 𝑂𝐷(𝑡)𝑙,𝑐𝑜𝑚𝑝𝑎𝑟𝑡 = gFSM(𝑄0(𝑋𝐹𝑆𝑀 , t), 𝑋𝐹𝑆𝑀) ;  0 ≤ t ≤ tBO, (Eq. 12) 

 𝑇(𝑡)𝑖,𝑡𝑎𝑟𝑔𝑒𝑡 = gFSM(𝑄0(𝑋𝐹𝑆𝑀 , t), 𝑋𝐹𝑆𝑀) ;  0 ≤ t ≤ tBO, (Eq. 13) 
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where 𝑇(𝑡)𝑙,𝑐𝑜𝑚𝑝𝑎𝑟𝑡and 𝑂𝐷(𝑡)𝑙,𝑐𝑜𝑚𝑝𝑎𝑟𝑡 are the temperature and the optical density of the layer l 

(upper/lower) at time t of the compartment, respectively, 𝑇(𝑡)𝑖,𝑡𝑎𝑟𝑔𝑒𝑡 is the temperature of the ith (maximum 

value of i is the total number of targets) target in the compartment which can be any of the physical 

components of the automation module as well, 𝑄0(•) is the burnout HRR curve without suppression, 𝑋𝐹𝑆𝑀 

is a vector of input parameters for FSM, some of which are (e.g., max HRR, time to max HRR etc.) used 

for constructing the burnout HRR curve for a sample set. 

Step 3. Obtain Time to Detection by Automated Firewatch, 𝑡𝐷𝐴𝐹from AM and Perform Timeline Analysis 

Create simulated fire images of the fire scenario until the time of starting suppression using the virtual 

reality (VR) from the values of parameters of the HRR curve. The output AM, in this case is the time to 

detection by automated firewatch, 𝑡𝐷𝐴𝐹. It can be functionally represented as follows, 

gAM(𝑂𝐷(𝑡)𝑙,𝑐𝑜𝑚𝑝𝑎𝑟𝑡 , 𝑄0(𝑋𝐹𝑆𝑀 , t), 𝑋𝐴𝑀) ;  0 ≤ t ≤ tBO, 
(Eq. 

14) 

Where 𝑂𝐷(𝑡)𝑙,𝑐𝑜𝑚𝑝𝑎𝑟𝑡 is one of the outputs of the FSM generated by the non-suppression HRR curve.  

𝑂𝐷(𝑡)𝑙,𝑐𝑜𝑚𝑝𝑎𝑟𝑡 = gFSM(𝑄0(𝑋𝐹𝑆𝑀 , t), 𝑋𝐹𝑆𝑀) ;  0 ≤ t ≤ tBO, 
(Eq. 

15) 

 

Timeline analysis model needs to be performed here to obtain the time to suppression, 𝑡𝑠   which requires 

the time to detection by the Automated Firewatch Model (sub section 2.1.1.3 subsection c.2). This whole 

process of obtaining 𝑡𝑠   can be functionally represented as an output of the HPM. After determining which 

scenario is being analyzed in the coupled simulation, the time to start suppression can be derived from the 

HPM. If in the scenario the fire is not suppressed, then the time to start suppression is set to time to burnout 

(tBO).   

 

 
t𝑠 = gHPM( 𝑋𝐻𝑃𝑀) 

(Eq. 

16) 

Then we have a cross pairs of time to start suppression and their updated HRR curve that will be determined 

by the fire-suppressant interaction model (c.4) 

 
[t𝑠, 𝑄(𝑡)𝑢𝑝𝑑𝑎𝑡𝑒] 

(Eq. 

17) 

Step 4: Rerun CFAST using the Updated HRR Curve  

Rerun the FSM Model using Q̇Mod(t) as input to predict the physical KPMs: 

 

 
[𝑇𝐶𝐵 , 𝑞′′𝐶𝐵] = gFSM(𝑄(𝑡)𝑢𝑝𝑑𝑎𝑡𝑒 , 𝑋𝐹𝑆𝑀), 

(Eq. 

18) 

This whole coupled environment can be functionally represented as a function that consists of nested 

functional models of the three modules. Let, g𝑐𝑜𝑢𝑝𝑙𝑒𝑑 be the functional representation of the coupled 

environment. Then, 

  

 [𝑇𝐶𝐵 , 𝑞′′𝐶𝐵] = g𝑐𝑜𝑢𝑝𝑙𝑒𝑑(gFSM, gHPM, gAM, 𝑋𝐹𝑆𝑀, 𝑋𝐻𝑃𝑀 , 𝑋𝐴𝑀 ), 
(Eq. 

19) 

where TCB and qCB
′′  are the physical KPMs of the target cable (i.e., maximum temperature and heat flux of 

the cable jacket). 
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2.2. Advancing the Probabilistic Validation (PV) Methodology 

 

The PV methodology lies at the core of the approach used to develop a generic methodology, evaluating 

automation trustworthiness. This section starts with a brief introduction to the PV methodology, previously 

developed by some of the authors of this work [8, 9]. This is followed by the explanation on how PV 

methodology could be leveraged for automation trustworthiness evaluation. Finally, the methodological 

advancements needed to operationalize PV for automation trustworthiness evaluation are going to be 

highlighted. These advancements are made keeping in mind the generic bidirectional interactions within a 

coupled human-physics-automation model and then assessed over a case study, involving AI-based automated 

firewatch, in this work.  

 

PV methodology has been originally developed to facilitate the validity evaluation of advanced simulation 

models that are used for Probabilistic Risk Assessment (PRA) in support of risk-informed decision-making 

and regulation. This PV methodology has been found particularly useful especially when validation data are 

not sufficiently available. It advances the scientific usage of uncertainty and acceptability criteria to facilitate 

the validity evaluation for simulation predictions. PV methodology runs a comprehensive uncertainty analysis 

over a simulation model, under which all the uncertainty sources associated to the model inputs, the model 

itself and the numerical approximations introduced during the development process of that simulation model 

are identified and characterized. The characterized uncertainties are then propagated under bottom-up 

approach [8, 9].  That is, all the uncertainty sources at the level of simulation model's input are propagated up 

to their desired level. The desired level could be either at the level of simulation model's output where 

simulation model would be making predictions or at plant’s risk metric level, depending upon where the 

predefined acceptability criteria is available. Then total uncertainty would be quantified at the desired level. 

Uncertainty sources, associated to a simulation model, which are being referred to as uncertainty parameters 

later in this section, can be of two types: (i) epistemic uncertainty that arises from a lack of knowledge 

regarding the true values of the predicted quantities; and (ii) aleatory uncertainty rooted from inherent 

stochasticity of the physical phenomena underlying the quantities of interest. In the PV methodology, the 

validity of a simulation prediction used for PRA is determined by firstly estimating the magnitude of epistemic 

uncertainty in the simulation prediction and then finding the result of an acceptability evaluation that 

determines whether the total uncertainty (including both aleatory and epistemic uncertainties) associated with 

the simulation prediction is acceptable for the specific application of interest (e.g., PRA) [8, 9].  

 

The generic methodology to estimate automation trustworthiness using the mentality of PV borrows the 

similar two-step process as described above: (1) At first, the degree of trustworthiness of an automation 

technology is determined by the magnitude of the epistemic uncertainty (i.e., representing the degree of 

confidence of that automation technology) quantified at the desired level of interest (i.e., at automation output 

level or plant's risk level). The magnitude of epistemic uncertainty is calculated by a comprehensive 

uncertainty analysis mentioned above; and (2) the total uncertainty (i.e., the combination of epistemic and 

aleatory uncertainties) quantified at the desired level is then used for evaluating the acceptability of the 

corresponding degree of automation trustworthiness by comparing it with a predefined acceptability criterion 

for a specific application of interest, available at that desired level. This study aims at developing the 

methodology to evaluate automation trustworthiness as generic as possible addressing a range of autonomous 

as well as semi-autonomous systems. Within such complex systems, spatiotemporal bidirectional interactions 

exist between automation, human actions and physical phenomenon. These interactions have been explained 

inside a coupled human-physics-automation model earlier in this paper along with some examples in 

subsection 2.1.1.4.  

 

In order to operationalize the proposed methodology to evaluate automation trustworthiness for a coupled 

human-automation-physics model, the underlying interactions within that coupled model should be analyzed 

as realistically as possible.  For example, if the signal provided by an automation system to a MCR operator 



Probabilistic Safety Assessment and Management (PSAM) Topical, October 23-25, 2023, Virtual 

  

14 

 

gets delayed due to some reasons, its influence should be reflected on requisite human actions that need to be 

taken by the operator following that signal. Hence, dependencies between different interactions within a 

coupled human-automation-physics model need to be assessed correctly and realistically. These interactions 

within a coupled human-automation-physics model are represented by a list of uncertain parameters (Table 3 

in subsection 2.2.1). The current scope of PV methodology [8, 9] does not account for such dependencies 

between uncertain parameters and hence needs to be updated for the methodology to evaluate automation 

trustworthiness. The two key advancements made to the existing PV methodology before leveraging it to 

estimate automation trustworthiness are: (a) Development of a Phenomenon Identification and Ranking Table 

(PIRT) for automation technology (Step 1 of the methodology), identifying list of uncertain parameters 

associated to that technology; and (b) Evaluating correlation coefficients between the dependent uncertain 

parameters associated to a coupled human-automation-physics model to correctly sample (Step 4 of the 

methodology) and propagate (Step 6 of the methodology) the uncertain parameters to their desired level of 

interest. The methodology to evaluate automation trustworthiness has been explained by a list of steps in 

subsection 2.2.1. Each of the steps has been explained for a generic human-automation-physics coupled 

model followed by a brief explanation tailored for the case study on AI-based automated firewatch. While 

the methodology to evaluate automation trustworthiness has been developed, the case study is still under 

process and the detailed results are going to be added in the future publications of this paper.  

 

2.2.1. The methodology to evaluate automation trustworthiness 

 
Methodology to evaluate automation trustworthiness using the mentality of PV follows the steps explained 

below. For the steps (1,4 and 6) that have been advanced to estimate automation trustworthiness are carrying 

more details, focusing on problem definitions and how those gaps could be addressed for the present case 

study. Details for the rest of the steps could be found in (Bui et al., 2023) [8, 9]. Each step has been explained 

for a generic human-automation-physics coupled model followed by its application over the case study 

focused on AI-based automated fire classifier. This case study involves a multi-level and a single-model 

system (figure 7 in step 2). The different hierarchical levels are denoted by 𝑖, models are denoted by 𝑗 and 

different model-forms are denoted by 𝑘. The case study is regarded to have a single-model system because 

the three different modules of AM, FSM and HPM are coupled together into a single model as shown in figure 

7. So, if  𝑀𝑖,𝑗,𝑘 represents a module in figure 7 over which the first 10 steps of the methodology need to be 

applied, then starting from the bottom (input level) to the top (system level), the modules of AM, FSM and 

HPM could be represented as 𝐴𝑀1,1,2, 𝐹𝑆𝑀1,1,1 and 𝐻𝑃𝑀1,1,1 respectively (figure 7). More details about 

these subscripts are going to be explained in step 6 and step 10.   

 

Step#1: Developing theoretical causal frameworks to identify uncertain parameters influencing the 

coupled human-automation-physics model's output: This step guides the process of identifying important 

causal factors and their paths of influence. Such causal factors are in fact the sources of uncertainties that 

could influence the outputs of a coupled human-automation-physics model. The theoretical causal model 

developed in this step helps ensure that the uncertainty quantification for the coupled model's outputs (Step 

10 in this methodology) will not be missing any important sources of uncertainties. In this work, the 

existence of the three modules of human, automation and physics within the coupled model, has motivated 

the development of separate causal models for AM, FSM and HPM. This is because these causal models 

would be carrying the footprint of all the important activities performed during the development processes 

of AM, FSM and HPM. For instance, the development process of AM should include the hardware and 

software development life cycle processes. In this methodology, these causal influencing factors or sources 

of uncertainties would be referred to as uncertain parameters associated to a coupled human-automation-

physics model.  

 

Several frameworks such as Bayesian Belief Network (BBN) or Phenomenon Identification and Ranking 

Table (PIRT) could be used to develop such theoretical causal models. Previously PV methodology has 
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been operationalized for FSM (that used CFAST) only and hence the theoretical causal model has been 

developed only for the FSM, without consideration of any dependencies between uncertain parameters [8, 

9]. In this work, FSM inside the coupled model also utilized CFAST, so the existing causal model developed 

by (Bui et al., 2023) has been borrowed [8, 9]. For HPM, a list of important sources of uncertainties relevant 

to our case study has been adopted from a previous work of some of the authors [18]. Finally for AM, a 

PIRT has been established as one of the key advancements made to the existing PV methodology. It should 

be noted that amongst different theoretical causal frameworks as described above, PIRT offers one of the 

most systematic ways to identify important sources of uncertainties. Hence, PIRT can be established for 

FSM and HPM as well, in the future publications of this work.  

 

An example of a PIRT table developed for AM could be seen in Table 2. This PIRT table has tailored for AI-

based automated fire classifier, keeping it consistent with the case study. To develop PIRT, a questionnaire has 

been generated enlisting important phenomenon that could influence the AI-based fire classifier's performance 

(First column). The questionnaire has been distributed amongst experts from the fields of machine learning, 

fire detection and analysis and NPP operations. In this questionnaire, experts were asked to rank these 

phenomena based on their importance in influencing the AI-based fire classifier's performance (Second 

column) and based on the level of knowledge experts have regarding those phenomena (Third column). This 

is done in accordance with Nuclear Regulatory Commission (NRC) guidelines on developing PIRT table [19]. 

The expert panel is comprised of six experts and so far, only two experts (E-A and E-B) have reported their 

feedback that resulted in table 2. Complete results from all the experts will be shared in the future 

publication of this work.  

 

Table 2: PIRT Table for AI-based Fire Classifier on the Scale of 1 to 5 

Phenomenon Importance  Current 

Understanding  

Degree of Expert’s 

Confidence  

E-A E-B E-A E-B E-A E-B 

Training Data Quality 3 5 2 3 5 1 

Model Architecture 4 2 3 4 5 5 

Model Training 4 2 3 2 3 3 

Model Hyperparameters 3 Not sure 2 3 Not sure Not sure 

Feature Extraction & 

Selection 
3 4 2 2 3 3 

Noise and Anomalies 2 Not sure 3 4 Not sure Not sure 

Regularization 

Techniques 
4 4 4 4 5 3 

Model Interpretability 3 1 2 3 5 1 

Operational 

Environment 
2 5 3 3 5 3 

 

As a result of step 1, all the important uncertain parameters associated to a coupled human-automation-

physics model were identified. In this methodology, for the sake of understanding, the identified uncertain 

parameters are categorized into input uncertain parameters and intermediate uncertain parameters. Input 

uncertain parameters are those parameters that serve as an input to FSM, AM or HPM. On the other hand, 

intermediate uncertain parameters are the one that come into picture while running FSM, AM or HPM with 

their associated input parameters. The list of these uncertain input and intermediate parameters for the 

present case study could be found in Table 3 and Table 4 under step 2 and step 4 of this proposed 

methodology, respectively.  
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Step#2: Approximate characterization and qualitative screening of input uncertain parameters 

influencing the outputs of human-automation-physics coupled model: Step 2 focuses on two key tasks: 

(I) Characterization of input uncertain parameters identified in step 1; and (II) Identifying correlated 

uncertain parameters from uncorrelated uncertain parameters followed by estimating correlation 

coefficients between correlated parameters. The characterization of input uncertain parameters involves 

two steps: 1) Selection of the choice of distribution functions, modeling input uncertainties, using tests 

such as probability plotting or goodness of fit tests (like K-S tests); and 2) Parameter estimation associated 

to each of these distribution functions using Maximum Likelihood Estimate (MLE) or Bayesian techniques. 

Following approximate characterization, qualitative screening of all the input uncertainties needs to be 

done to distinguish important parameters from unimportant ones, qualitatively. Expert judgement, literature 

review findings and insights coming from the coupled automation-physics-human model developed in 

subsection 2.1.1 could be leveraged to conduct this qualitative screening process. For the present case study, 

focused on AI-based automated firewatch, the list of input uncertain parameters after qualitative screening is 

presented in Table 3. Feeding these input parameters to the coupled model would result in intermediate 

parameters enlisted in Table 4. Each of the intermediate parameters is mentioned with a module (AM, FSM 

or HPM) responsible for its generation referred to as origin in Table 4.  

 

Table 3: List of Input Uncertain Parameters with their Approximate Characterization for the Case Study 

𝐼 Input Uncertain Parameter (Units) Distribution Source 

1 
Maximum Heat Release Rate (KW) 

Gamma (0.271 ≤ α ≤ 1.8, 57.4 ≤ β ≤ 

141) 

NUREG 6850 and 

NUREG 2233 

2 Time to peak HRR (s) Uniform (38, 1961) NUREG 2233 

3 Steady burning at peak HRR (s) Uniform (2, 2268) NUREG 2233 

4 Time to decay (s) Uniform (68, 2581) NUREG 2233 

5 Cable jacket thickness (mm) Gamma (α = 17.24, β = 0.078) NUREG/CR-6931 

6 
Fire location (m) 

X = 33, Z= 0.8, Y = Uniform (2, 

16.3)  

NUREG 1934 

7 Visibility constant [10] Uniform (5, 10) Bui et al., 2020 

8 Time to detect and diagnose the fire 

signal (s) by the Operator on the 

MCR computer 

Truncated Normal (𝜇=15, 𝜎=11.7) 

(Sakurahara et al., 

2020) [18] 

9 Time taken by operator to 

communicate with First Responder 

(FR) (s) 

Truncated Normal (𝜇=75, 𝜎=35.1) 

(Sakurahara et al., 

2020) [18] 

10 Time taken by FR to arrive and 

enter fire location, and 

communicate with operator (s) [20] 

Uniform (120, 480) 

NUREG 2180 

11 Time taken by FR to search for and 

locate fire source (s) 
Truncated Normal (𝜇=35, 𝜎=19.5) 

(Sakurahara et al., 

2020) [18] 

12 Time to start manual fire 

suppression by FR using portable 

fire extinguisher (s) 

Truncated Normal (𝜇=20, 𝜎=7.8) 

(Sakurahara et al., 

2020) [18] 

13 Time taken by operator to receive 

fire signal from FR to call Fire 

Brigade (FB) (s) 

Truncated Normal (𝜇=15, 𝜎=11.7) 

(Sakurahara et al., 

2020) [18] 

14 Time taken by the operator to 

communicate with FB (s) 
Truncated Normal (𝜇=75, 𝜎=35.1) 

(Sakurahara et al., 

2020) [18] 
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15 Time taken by FB to gather at the 

assembly area (s) 
Truncated Normal (𝜇=540, 𝜎=255) 

(Sakurahara et al., 

2020) [18] 

16 Time taken by FB to get pre-plan 

from MCR Operator (s) 
Truncated Normal (𝜇=45, 𝜎=11.7) 

(Sakurahara et al., 

2020) [18] 

17 Time taken by FB to peer-check 

equipment (s) 
Truncated Normal (𝜇=45, 𝜎=11.7) 

(Sakurahara et al., 

2020) [18] 

18 Time taken by FB to move to 

staging area (s) 
Truncated Normal (𝜇=35, 𝜎=19.5) 

(Sakurahara et al., 

2020) [18] 

19 Time taken by FB to arrive at 

staging area (s) 
Truncated Normal (𝜇=150, 𝜎=23.4) 

(Sakurahara et al., 

2020) [18] 

20 
Time taken by FB to lay hose (s) Truncated Normal (𝜇=630, 𝜎=164) 

(Sakurahara et al., 

2020) [18] 

21 Time taken by FB to put on 

breathing apparatus (s) 
Truncated Normal (𝜇=180, 𝜎=46.8) 

(Sakurahara et al., 

2020) [18] 

22 Time taken by FB to search and 

locate Fire (s) 
Truncated Normal (𝜇=35, 𝜎=19.5) 

(Sakurahara et al., 

2020) [18] 

23 Time taken by FB to prepare the 

hose and start suppressing the fire 

(s) 

Truncated Normal (𝜇=180, 𝜎=46.8) 

(Sakurahara et al., 

2020) [18] 

 

Table 4: List of Intermediate Uncertain Parameters for the Case Study 

𝑂 Intermediate Uncertain Parameters Origin 

1 Time evolution of optical density (m-1) FSM with non-suppressed parameters 

2 Maximum compartment temperature (C) FSM with non-suppressed parameters 

3 Time to prompt detection by AI-based AFW (s) AM with non-suppressed parameters 

4 Probability of prompt detection by AI-based 

AFW 

AM with non-suppressed parameters 

5 Suppressed maximum Heat Release Rate (KW) HPM with non-suppressed parameters 

6 Suppressed time to peak HRR (s) HPM with non-suppressed parameters 

7 Suppressed steady burning time at peak HRR (s) HPM with non-suppressed parameters 

8 Suppressed time to decay (s) HPM with non-suppressed parameters 

9 Time to suppression (s) HPM with non-suppressed parameters 

10 Suppressed target temperature (C) and heat flux 

(KW/m2) 

FSM with suppressed parameters 

 

While proceeding with the next task of step 2 that is estimating correlation coefficients for correlated uncertain 

parameters, then as explained at the beginning of section 2.2, existence of spatiotemporal and bidirectional 

interactions between physics, human and automation modules within the coupled model, give rise to 

dependencies between different input and intermediate uncertain parameters. This comes in contrast to the 

existing PV methodology in which all the sources of uncertainties were considered to be independent of each 

other [8, 9]. Before proceeding towards the propagation of these input and intermediate uncertainties in step 

6, the correlations between different uncertain parameters need to be determined to account for any unrealistic 

sampling of these parameters that ultimately may lead to incorrect propagation and quantification of the 

uncertainties. To distinguish uncorrelated parameters from correlated parameters, Figure 7 shows interactions 

between HPM, AM and FSM as a coupled model for the case study. This Figure 7 has been generated from 

the insights coming from Figure 2 in subsection 2.1.1. The solid lines indicate interactions within two modules 
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utilizing intermediate uncertain parameters ranging from 𝑂1 to 𝑂9. The dotted lines represent input uncertain 

parameters ranging from 𝐼1 to 𝐼21. The subscripts of 𝐼 and 𝑂 in Figure 7 have been kept in consistent with 

their numbers in Table 3 and Table 4. This coupled model would operationalize the event tree-based Scenario 

Based Failure Model (SBFM) as explained in 2.1.1.5, providing system level predictions such as component 

failure probability, which could serve as an input to PRA.  

 

 
Figure 7: Interactions within human-automation-physics coupled model leading to correlations and 

system level hierarchy for the case study. 

 

Due to the nature of interactions within the coupled model, dependencies can exist within input parameters 

(Table 3) as well as within intermediate parameters (Table 4). For instance, and as shown in Figure 7, there 

should be a correlation between 𝐼1 "time to receive and detect fire signal" and 𝐼13"time to manual fire 

suppression". In other words, change in the detection time should have an influence on the suppression time 

that should be reflected while sampling these uncertain parameters. Similarly, talking about intermediate 

parameters (Figure 7), 𝑂1 to AM represents the CFAST informed optical density of the compartment. The 

optical density that changes with time triggers the visibility conditions of the compartment and hence should 

have an influence over the performance of AI-based fire classifier. Similarly, if the parameters associated to 

HRR curve (𝐼1- 𝐼4) are greater in size leading to a bigger and more visible flame for longer period of time, it 

would be easier for the AI-based fire classifier to detect it in less amount of time (𝑂3) but would be requiring 

more time for the fire responders to suppress it (𝑂9). That is, 𝑂3 gets smaller but 𝑂9 would get larger, 

depending upon the given conditions and the underlying correlation that exist between them. For the present 

case study, even though some correlations between input uncertain parameters were acknowledged, they have 

been treated as independent in this work for the sake of simplicity and due to lack of simulation or 

experimental data at the input level to support their correlation coefficients estimation. However, treatment of 

correlated uncertain parameters has been executed at the level of intermediate uncertain parameters, mainly 

because of the availability of simulation data at that level achieved by running the coupled model with input 

parameters and also because these intermediate parameters (Figure 7) would then be utilized to run the event 

tree based-SBFM to estimate component failure probability as an input to PRA. The component failure 
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probability gets influenced by the dependency between intermediate parameters making it more critical to be 

analyzed properly.  

Once, all the correlated uncertain parameters are identified a procedure needs to be devised to characterize 

the dependency among them, providing a pathway to sample these correlated inputs with a consideration 

of their dependencies to correctly propagate them in step 6. Existing approaches to characterize the 

dependency among the correlated inputs include: (a) causal model approach in which cause and effect 

relationships between different parameters need to be developed and illustrated; and (b) developing the 

correlation coefficients based on available simulation and experimental data. It has been identified that 

developing causal models require comprehensive knowledge of the problem along with their scientific and 

theoretical justifications to characterize those causal relationships. For the present case study, availability 

of a coupled human-automation-physics model can help in creating substantial amount of simulation data 

and hence could be leveraged to proceed with the approach of generating correlation coefficients for the 

correlated inputs.  

 

The two most common approaches for developing correlation coefficients include the Pearson correlation 

and the Spearman Rank Correlation Coefficient (RCC) methods [21]. The Pearson correlation matrix, 

which is one of the parametric methods, requires the assumption that all the input variables should be 

represented by a normal distribution, while the Spearman RCC matrix is one of the non-parametric methods 

that gives relaxation over the choice of distribution functions for the correlated inputs [22]. In this work, 

Spearman's RCC method is adopted due to the fact that the parameters characterized in this case study are 

modeled by different kinds of distribution functions as indicated by Table 3. Equation 20 is used to calculate 

the Spearman RCC for each combination of the two correlated inputs 𝑥𝑖 and 𝑥𝑗 [23].  

               

                   𝑅𝑥𝑖𝑥𝑗
=

∑ (𝑅𝑖
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                                                                            (Eq. 20) 

 

Where 𝑅𝑖
𝑡 and 𝑅𝑗

𝑡 are the ranks among 𝑛 data points from low to high (𝑡 =  1, . . . , 𝑛) associated with 𝑥𝑖 and 

𝑥𝑗, respectively. Unlike the Pearson correlation matrix method, the Spearman RCC method utilizes the 

ranking of the data points instead of relying on the raw data. If the same rank is identified, the averaged 

value of the rank will be assigned for each data point. The values of 𝑅𝑥𝑖𝑥𝑗
 range from -1 to 1, with -1 

showing a perfect negative (increase in 𝑥𝑖 would result in 𝑥𝑗 to decrease) monotonic relationship and 1 

showing a perfect positive (if 𝑥𝑖 increases; 𝑥𝑗 increases as well) monotonic relationship. A Spearman Rank 

Correlation matrix (𝐶𝑅) associated with 𝑑 correlated inputs is shown in equation 21, where each element of 

𝐶𝑅 is calculated using equation 5. It should be noted that whenever 𝑖 =  𝑗 inside 𝐶𝑅, that entry inside the 

RCC matrix would be equal to 1, indicating that no dependency exists between a similar correlated input 

uncertainty source. The developed RCC matrix would help in correctly sampling these corelated uncertain 

parameters. The RCC matrix for the present case study is still under process and results would be shared in 

the future publication of this work.  

 

                                        𝐶𝑅 =

[
 
 
 

1 𝑅𝑥1𝑥2
⋯ 𝑅𝑥1𝑥𝑑

𝑅𝑥2𝑥1
1 ⋯ 𝑅𝑥1𝑥2

⋮ ⋮ ⋱ ⋮
𝑅𝑥𝑑𝑥1

𝑅𝑥𝑑𝑥2
⋯ 1 ]

 
 
 

                                               (Eq. 21) 

 

Finally, as explained above, equations 20 and 21 help in establishing correlations between different 

intermediate uncertain parameters. However, these correlations are only going to signify statistical 

relationships between different intermediate parameters by explaining how certain parameters change 

together. For instance, a coefficient of 𝑅𝑂3𝑂9
= 0.9 shows that if 𝑂3 increases, 𝑂9 should increase as well. 
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This however does not show any causation between the 𝑂3 and 𝑂9 and it cannot be deduced from 𝑅𝑂3𝑂9
 

that a change in 𝑂9 is because of 𝑂3 and it could be either coincidental or due to some other intermediate 

parameters. This motivates in establishing more meaningful relationships between intermediate parameters 

by looking into their underlying causation and not just correlation. In this case study, after quantifying the 

RCC matrix for intermediate parameters, the coupled human-automation-physics model would be run under 

controlled settings (designed to study the influence of intermediate parameters with each other) to evaluate 

causal relationships between different parameters. Detailed approach and results are going to be added in 

the future publication.  

  

Step#3: Quantitative screening of input uncertainties associated to a coupled model: In this step, all the 

uncertain parameters retained in step 2 would be ranked based on their influence on coupled model's output. 

This step would be done quantitatively using Extended Morris Elementary Effect analysis [24]. Only those 

uncertain parameters identified to be important under this quantitative screening method, would be 

propagated through the human-physics-automation coupled model to estimate total uncertainty during next 

steps of the methodology. The details on how quantitative screening can be done using Morris analysis 

could be found in (Bui et al., 2023) [8, 9]. 

 

Step#4: Detailed characterization of input uncertainties and estimation of correlation coefficients for 

intermediate uncertain parameters associated to the coupled model: In this step at first, the retained 

uncertain parameters following step 3 would undergo with their detailed characterization using more 

available data [8, 9]. This is followed by the classification of these uncertain parameters into epistemic or 

aleatory uncertainties to separately treat the two kinds of uncertainties during step 6. Separate treatment of 

the aleatory and epistemic would help in analyzing the influence of each of these uncertainty sources over 

degree of automation trustworthiness to get a better insight on where to focus in order to improve the 

trustworthiness of that system, during step 12 of this methodology. For the case study, the uncertain 

parameters identified to be epistemic and aleatory are enlisted in Table 5. Parameters are regarded as pure 

aleatory if their uncertainty is coming from inherent variability such as timings associated to human actions. 

On the other hand, parameters showing uncertainty due to lack of information are referred to as pure 

epistemic. For instance, due to lack of information regarding where fire is located inside CSR, the parameter 

of fire location is regarded as pure epistemic. Finally, the parameters exhibiting uncertainty due to the said 

reasons above at the same time, are classified as mixed aleatory and epistemic such as maximum HRR, in 

this case study.   

 

Table 5: Detailed Characterization of Uncertain Parameters 

Uncertain Parameters Type Uncertain Parameters Type 

Maximum Heat Release Rate (KW) 
Mixed aleatory 

and epistemic 

Time taken by operator to receive 

fire signal from FR to call Fire 

Brigade (FB) (s) 

Pure aleatory 

Time to peak HRR (s) Pure aleatory 
Time taken by the operator to 

communicate with FB (s) 
Pure aleatory 

Steady burning at peak HRR (s) Pure aleatory 
Time taken by FB to gather at the 

assembly area 
Pure aleatory 

Time to decay (s) Pure aleatory 
Time taken by FB to get pre-plan 

from MCR Operator (s) 
Pure aleatory 

Cable jacket thickness (mm) Pure epistemic 
Time taken by FB to peer-check 

equipment (s) 
Pure aleatory 

Fire location (m) Pure epistemic 
Time taken by FB to move to 

staging area (s) 
Pure aleatory 
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Time to detect and diagnose the fire 

signal (s) by the Operator on the MCR 

computer 

Pure aleatory 
Time taken by FB to arrive at 

staging area (s) 
Pure aleatory 

Time taken by operator to communicate 

with First Responder (FR) (s) 
Pure aleatory Time taken by FB to lay hose (s) Pure aleatory 

Time taken by FR to arrive and enter 

fire location, and communicate with 

operator (s) 

Pure aleatory 
Time taken by FB to put on 

breathing apparatus (s) 
Pure aleatory 

Time taken by FR to search for and 

locate fire source (s) 
Pure aleatory 

Time taken by FB to search and 

locate Fire (s) 
Pure aleatory 

Time to start manual fire suppression by 

FR using portable fire extinguisher (s) 
Pure aleatory 

Time taken by FB to prepare the 

hose and start suppressing the fire 

(s) 

Pure aleatory 

Visibility constant Pure epistemic   

  

Step#5: Characterization of uncertainties associated to numerical approximation: After the detailed 

characterization of uncertain parameters and estimating 𝐶𝑅 for correlated intermediate parameters, 

additional uncertainties coming from numerical errors committed during the development life cycle of the 

coupled model, would be characterized in this step. For example, differential equation-based models like 

CFAST offer no exact solutions for practical problems and give approximate solutions with some 

underlying numerical approximations. In general, these numerical errors may include discretization errors, 

iterative convergence errors, round-off errors, and errors due to computer programing mistakes. However, 

care should be taken that code verification process needs to be done before step 3 to avoid propagation of 

coding errors, while doing quantitative screening process. No modifications have been made on this step in 

the current methodology and more details for this step could be seen in (Bui et al., 2023) [8, 9].  

 

Step#6: Propagation of unscreened uncertain parameters through the coupled model: All the uncertain 

parameters retained till step 4 would then be propagated from the level of input to the coupled model's 

output. Uncertainty propagation could be done with various techniques, but the double loop Monte Carlo 

technique would be used in this work to separately handle the aleatory and epistemic uncertainties identified 

in step 4 [8, 9]. The propagation is done in a nested iterative fashion. At first, all the uncertain parameters 

identified to be epistemic in step 4 are sampled on the outer loop and then for each sampled set of epistemic 

uncertain parameters, aleatory uncertain parameters are sampled on the inner loop. Key steps of the 

computational procedure for uncertainty propagation using double loop MC simulation include: 

 

1. Repeat the steps a, b and c 𝑁𝑂𝑡 times, the number representing the sample size of the outer loop.  

a. Get a sampled set of all epistemic uncertain parameters using Latin Hyper Cube (LHC) 

sampling. This sampled set would be represented by 𝑒(𝑂𝑡) = [𝑒(1), 𝑒(2), . . . , 𝑒(𝑛𝑋𝑒)], where 

𝑂𝑡 represents outer loop and 𝑛𝑋𝑒 represents the dimension of the sampled set equal to the 

total number of epistemic uncertain parameters. For the present case study 𝑛𝑋𝑒 = 3. For 

each 𝑒(𝑂𝑡) of the total sets equal to 𝑁𝑂𝑡, conduct sub-steps (i) and (ii), 𝑁𝑖𝑛 times, which is 

a number representing the sample size of the inner loop. 

i. Get a sampled set of all aleatory uncertain parameters using Latin Hyper Cube 

(LHC) sampling. This sampled set would be represented by 𝑎(𝑖𝑛) =

[𝑎(1), 𝑎(2), . . . , 𝑎(𝑛𝑋𝑎)], where 𝑖𝑛 represents the inner loop and 𝑛𝑋𝑒 represents the 

dimension of the sampled set equal to the total number of aleatory uncertain 

parameters. For the present case study 𝑛𝑋𝑎 = 21.  

ii. With the help of Raven run the human-physics-automation coupled model using 

the sampled sets 𝑒(𝑂𝑡) and 𝑎(𝑖𝑛). This is done as per the procedure explained in 
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subsection 2.1.1.3. This results into a point estimate for the Key Performance 

Measure (KPM) of interest, 𝑌𝑖,𝑗,𝑘(𝑖𝑛, 𝑂𝑡) = [𝐴𝑀1,1,2, 𝐻𝑃𝑀1,1,1, 𝐹𝑆𝑀1,1,1]. The 

KPMs of this case study are target maximum temperature and heat flux as shown 

in figure 2.   

b. Getting a point estimate in sub-step (ii) and then running Raven for 𝑁𝑖𝑛 times as mentioned 

in sub-step (a), a total 𝑁𝑖𝑛 point estimates are generated that are used to generate an 

empirical CDF for the KPM of interest. The empirical CDF is represented by 

𝐹𝑌𝑖,𝑗,𝑘
(𝑁𝑖𝑛, 𝑂𝑡).  

2. Run Raven for 𝑁𝑂𝑡 times as mentioned in step (1), a total of 𝑁𝑂𝑡 empirical CDFs would be 

generated. This family of the empirical CDF curves of the KPM of interest would then be used to 

generate a p-box for that KPM, denoted as [𝐹̅𝑌𝑖,𝑗,𝑘
, 𝐹𝑌𝑖,𝑗,𝑘

]. 

 

It should be noted that for those uncertain parameters that are identified to be correlated in step 2, there is 

need to convert their uncorrelated samples (generated from normal LHC sampling as described above) to 

correlated samples. Several approaches such as Iman-Corner procedure could be used to do this conversion 

[25, 26]. The details and results of this procedure will be added to the future publication of this work.  

 

Step#7: Characterization of model uncertainty associated with the coupled model: In this step, the 

uncertainties added during the approximations or assumptions made during the model development process 

of a human-automation-physics coupled model would be estimated. This could be done by using several 

approaches proposed in the original PV methodology [8, 9], depending upon the availability of validation 

data. In these approaches, model performance is compared with validation data at the same level to 

characterize model form uncertainties associated to that model.  In the existing PV methodology, if 

validation data exists and is found to be enclosed within the application domain, then data-driven 

methodology could be used to characterize the model uncertainty. However, if no validation data exist, then 

a causal model (similar to the one in step 1 but more specific to factors associated to computational model 

development rather than input factors to the model) needs to be made, and with a bottom-up approach, 

model form uncertainty could be characterized. 

 

In the present case study, data driven approach would be utilized to characterize model uncertainty of the 

coupled human-physics-automation model. To separately characterize the model uncertainties associated 

to FSM, AM and HPM, existing validation data for CFAST would be leveraged [8, 9]. Similar could be 

done for HPM by arranging validation data for IDHEAS. In this work, the model uncertainty associated to 

the AI-based fire classifier needs to be characterized. This is done by comparing the outputs coming from 

the developed AI-based fire classifier with another AI-based fire and smoke classifier. The AI-based fire 

and smoke classifier being more realistic in nature would serve as a surrogate reality model as a substitute 

to actual validation data. This is particularly useful for the cases, where getting actual data coming from the 

tests might not be feasible.   

 

Step#8: Estimating total uncertainty associated with the coupled model: In this step, the total uncertainty 

coming from input and intermediate uncertain parameters and coupled model's uncertainty would be 

quantified by aggregating results from step# 6 and step# 7, just like done in the existing work [8, 9].  

Step#9: Bayesian updating the uncertainty associated with the coupled model: If additional empirical 

data associated with the coupled model is available, this step conducts Bayesian updating to maximize the 

use of available empirical data and update the total uncertainty associated with the model predictions. This 

step serves two goals: i) It accounts for the cumulative effect of sources of uncertainty that have not been 

addressed in the previous steps (e.g., uncertainty due to errors in the screening processes); and ii) When 

validation domain associated to different models are not available and step 7 could not be feasible [8, 9], 

step 9 provides an alternative solution to model uncertainty quantification. This is done by Bayesian 
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updating the uncertainty associated with the model response/prediction (obtained in Step 6) with available 

empirical data (if any) in Step 9. For the present case study, this step would be applied to the coupled 

human-physics-automation model with the similar way as proposed by (Bui et al., 2023) [8, 9]. 

Step#10: Aggregating results associated with multiple model forms to estimate uncertainty associated to 

the coupled model: In this step, the uncertainty associated to the choice of model being used would be 

considered. For the present case study, no multi model form uncertainty would be considered for FSM and 

HPM, while the choice of picking up two different models such as CNN or Fully Connected Neural Network 

(FCNN) to develop an AI-based fire classifier for AM, would lead to its multi model form uncertainty that 

is going to be aggregated in this step. 

  

Step#11: Evaluating the acceptability of automation system’s trustworthiness from some predefined 

acceptability criteria: This step helps to evaluate the acceptability of the current degree of automation 

trustworthiness. Evaluating the acceptability of the current degree of automation trustworthiness for a 

specific application condition is done by comparing the total uncertainty (epistemic and aleatory) associated 

with the automation system against predefined acceptability criteria, at the desired level (coupled model's 

output level or plant's risk metric level, depending upon where that acceptability criteria would be available) 

of system hierarchy. The automation can then be considered “sufficiently trustworthy” for that specific 

application condition if the total uncertainty satisfies the acceptability criteria.  

 

Step#12: Improving the automation system’s trustworthiness with the insights coming from GIM 

rankings of all the sources of uncertainties associated to the coupled model: The last step is aimed to 

improve the degree of automation trustworthiness up to a level where the automation would be sufficiently 

trustworthy and ready for deployment at NPPs. This is done by equipping methodology to evaluate 

automation trustworthiness with advanced global importance ranking analyses to help identify factors 

(among those identified in step 4) that contribute the most to the total uncertainty in the coupled model's 

outputs (or the total uncertainty in the plant risk estimate). The importance ranking results will inform 

decision-makers regarding how to prioritize their resources most efficiently for improving the degree of 

automation trustworthiness.  

3. Concluding Remarks and Future Work 

In this paper, a new methodology estimating trustworthiness using advanced uncertainty analysis approach 

has been proposed. It develops a systematic and scientifically justifiable link between degree of 

trustworthiness of automation system and epistemic uncertainty associated to the automation system's 

output. All the sources of uncertainties associated to the underlying simulation modules of automation, fire 

simulation and human performance were first identified, characterized and propagated under bottom-up 

approach. The epistemic uncertainty quantified at the level of human-automation-physics coupled system's 

output, would be regarded as its degree of trustworthiness. To propagate these uncertainties, a 

computational platform using I-PRA framework has been utilized. Under this platform, an AM using AI-

based fire classifier; a HPM using IDHEAS; and an FSM using CFAST have been developed as I-PRA 

underlying simulation modules. A methodology has been developed to model spatiotemporal bidirectional 

interactions between these modules. Under this coupled model, RAVEN tool is used to generate an 

environment for sampling, with samples coming from the LHC sampling technique. For each sampled set 

of variables, the coupled model has been run multiple times. Aleatory and epistemic uncertainties were 

separately treated and propagated using double loop Monte Carlo sampling. The two loops would ensure 

generating a p-box for the KPM of interest, with the total epistemic uncertainty representing the width of 

that p-box. The quantified epistemic uncertainty of the desired KPM (e.g., target’s maximum temperature) 

at a specific level of interest (e.g., simulation model's output or plant risk metric) would be regarded as the 

degree of trustworthiness of the coupled simulation model at that level. The case study used in this paper 

involves a transient fire scenario in an open trash (Appendix E of NUREG 1934) and focused on AI-based 



Probabilistic Safety Assessment and Management (PSAM) Topical, October 23-25, 2023, Virtual 

  

24 

 

fire classifier as the AM. This paper only explains the methodology used to evaluate automation 

trustworthiness. Demonstrating the feasibility of the proposed methodology calls for its application over a 

case study, which is still under process. Complete results of the case study are planned to be added in the 

future publications of this work.  

 

For future considerations, a correlation matrix needs to be developed explaining the correlations between 

different uncertain parameters for the coupled human-physics-automation model. Once trustworthiness 

would be quantified, trustworthiness acceptability evaluation should be added to decide the deployment of 

automation technologies. Global Importance Measure (GIM) method should also be added to rank 

significant sources of uncertainty at the level of underlying simulation models, facilitating in improving the 

degree of trustworthiness of automation systems.  
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