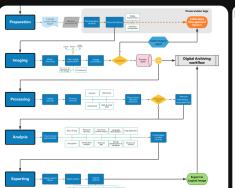
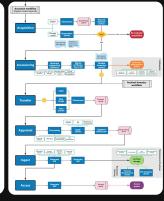
Digital Preservation in Disruptive Times

19th International Conference ■ Champaign-Urbana, Illinois ■ September 19–22, 2023


Prioritizing Storage Media for Digital Archiving and Preservation


Leo Konstantelos & Emma Yan, U of Glasgow

Thu 21st Sep 2023, 09:00-09:15

PROBLEM STATEMENT

archival forensics preservation

digital archiving

prioritizing collections

prioritizing storage media:

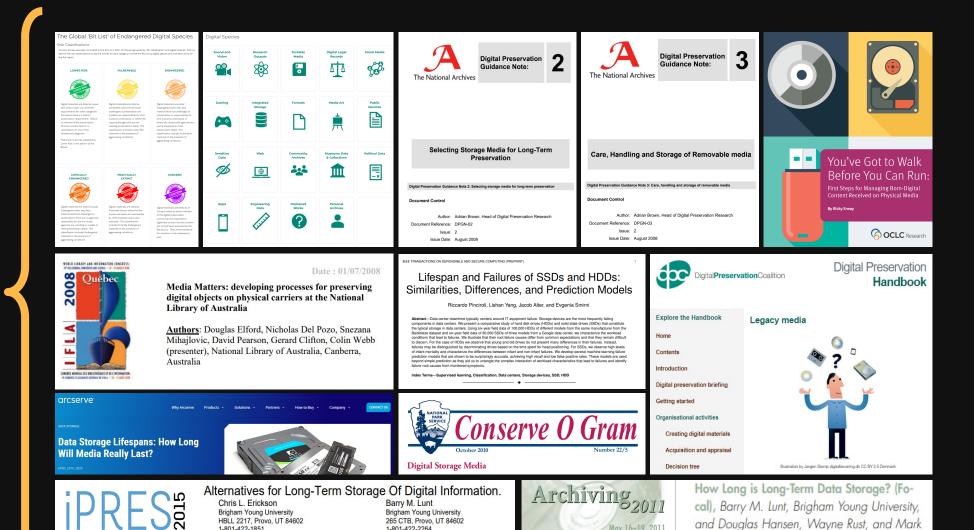
- degradation while in store
- legacy and obsolete media
- conditions of storage and handling pre-acquisition
- quality, lifespan and age of media

conservation

digital asset register

unregistered digital assets

ARCHIVES & SPECIAL COLLECTIONS


Methodology:

- identify criteria for prioritization
- generate score scales per criterion
- define priority score and action
- collate knowledge on average lifespan and level of endangerment
- wrap it all up in a nifty tool!

EXISTING WORK

1-801-422-1851

chris erickson@byu.edu

1-801-422-2264

luntb@byu.edu

May 16-19, 2011

Salt Lake City, Utah

Worthington, Millenniata, Inc. (USA)

METHODOLOGY

Assumptions / constraints

- only include media we can process in archival forensics lab
- no other copy of digital assets other than in storage media → unique records
- storage conditions pre-acquisition will be considered as "aggravating"
- for hybrid collections, digital assets in storage media will be considered as valuable and important as the rest of the items in the collection

Storage media-specific criteria

- Average lifespan (from existing literature)
- Year of production >
 measure of longevity and obsolescence
- Environmental conditions of storage post-acquisition
- 'Bit List' of Digitally Endangered Species classification

METHODOLOGY

CRITERIA AND SCORES

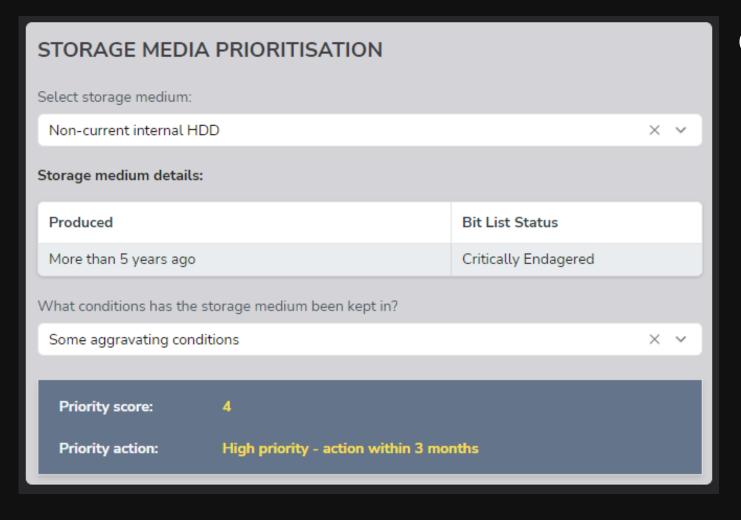
Bit List' of Digitally Endangered Species			
Classification	Score		
Lower risk	1		
Vulnerable	2		
Endangered	3		
Critically Endangered	4		
Practically extinct	5		
Average lifespan			
Lifespan	Score		
1-3 vears	5		
3-5 years	4		
5-10 years	3		
10-20 years	2		
More than 20 years	1		
Conditions			
Conditions	Score		
Optimal conditions	1		
Good conservation practice	2		
Minimal conservation practice	3		
Some aggravating conditions	4		
Mostly aggravating conditions	5		
Year of production			
Produced	Score		
Within the last 5 years	1		
More than 5 years ago	5		

KNOWLEDGE

Medium	Produced	Bit list status	Average lifespan (years)
Current internal HDD	Within the last 5 years	Vulnerable	3-5 years
Current internal SSD	Within the last 5 years	Vulnerable	3-5 years
Non-current internal HDD	More than 5 years ago	Critically Endangered	3-5 years
Non-current internal SSD	More than 5 years ago	Critically Endangered	3-5 years
Current portable HDD	Within the last 5 years	Endangered	3-5 years
Current portable SSD	Within the last 5 years	Endangered	3-5 years
Current optical media (CD, DVD, BlueRay)	Within the last 5 years	Endangered	5-10 years
Current magnetic tape	Within the last 5 years	Endangered	10-20 years
Current Flash storage (USB stick, SD card)	Within the last 5 years	Vulnerable	3-5 years
Floppy disk	More than 5 years ago	Critically Endangered	1-3 years
Non-current magnetic tape	More than 5 years ago	Critically Endangered	10-20 years
Cassette tar	More than 5	Critically	10-20 ears

DDIODITY COOPE

Priority score		
Score	Priority level	
1	Low priority - action within 3 years	
2	Low priority - action within 1 year	
3	Medium priority - action within 6 months	
4	High priority - action within 3 months	
5	Extreme priority - immediate action	



(bit-list \times 0.25) + (lifespan \times 0.25) + (YoP \times 0.25) + (conditions \times 0.25) = priority score

 $(4 \times 0.25) + (4 \times 0.25) + (5 \times 0.25) + (4 \times 0.25)$ = 4.25

NIFTY TOOL!

Currently developed as:

- an AppSmith app (internal use only)
 - → https://www.appsmith.com/
- an Excel spreadsheet app
- web version forthcoming

FUTURE WORK

Work in progress

Open to discussion and community feedback

Ongoing piece of work

Bound to change as knowledge on storage media evolves

Current feedback and planned changes

- storage conditions should be given a higher weight
- integration of storage media prioritization with other selection and appraisal practices / decision-making
- automated score generation as part of other tools / processing (e.g. forensics tools)
- Community review and updates of knowledge base, potential for integration into Bit List

DISSEMINATION & FEEDBACK

Current version of the methodology:

- available for download Q1 2024
- Excel spreadsheet with formulae to allow score weighting customisation
- Includes criteria, scales and collated knowledge
- Licenced under a CC BY-NC-SA

Feedback, questions, suggestions, corrections:

• Email us! Contacts in next slide

CONTACTS

ARCHIVES & SPECIAL COLLECTIONS

Dr. Leo Konstantelos, Senior Assistant Archivist (Digital):

leo.konstantelos@glasgow.ac.uk

@lkonstantelos

Emma Yan, Assistant Archivist (Accessions):

emma.yan@glasgow.ac.uk

@eswyan

