
© 2023 Zachary James Williams

DISTRIBUTED GAME-THEORETIC TRAJECTORY PLANNING FOR
MULTI-AGENT INTERACTIONS

BY

ZACHARY JAMES WILLIAMS

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Adviser:

Assistant Professor Negar Mehr

ABSTRACT

In this work, we develop a scalable, local trajectory optimization algorithm

that enables robots to interact with other agents. It has been shown that

the interactions of multiple agents can be successfully captured in game-

theoretic formulations, where the interaction outcome can be best modeled

via the equilibria of the underlying dynamic game. However, it is challeng-

ing to compute equilibria of dynamic games, as it involves simultaneously

solving a set of coupled optimal control problems. Existing solvers operate

in a centralized fashion and do not scale up tractably to multiple interacting

agents. We enable scalable distributed game-theoretic planning by leveraging

the structure inherent in multi-agent interactions, namely, interactions be-

longing to the class of dynamic potential games. Since equilibria of dynamic

potential games can be found by minimizing a single potential function, we

can apply distributed and decentralized control techniques to seek equilibria

of multi-agent interactions in a scalable and distributed manner. We com-

pare the performance of our algorithm with a centralized interactive planner

in a number of simulation studies and demonstrate that our algorithm re-

sults in better efficiency and scalability. We further evaluate our method in

hardware experiments involving multiple quadcopters.

ii

To my dad, for his steadfast love and relentless support.

iii

ACKNOWLEDGMENTS

I would like to sincerely thank my adviser, Dr. Mehr, for leading me through

this process and forging me into the researcher I am today through the ex-

citing discoveries and the disheartening failures. I am indebted to her unwa-

vering dedication to her students’ growth and to solving important robotics

problems. Another individual who spent much time in the trenches with

me in this effort is Randy Chen, without whom this would not have been

possible.

Several faculty here at UIUC have significantly impacted my academic

journey through their exceptional teaching, including Dr. Roy Dong, Dr.

Saurabh Gupta, and Dr. Zhi-Pei Liang. I extend my sincere gratitude toward

my colleagues at Raytheon BBN Technologies for always pushing me as an

engineer and fostering the early phases of my career including Dr. Vince

Radzicki, Justin Swartz, Dr. Collin Smith, Gigs Gregory, and Matt Rebholz.

I am also immensely grateful for my company providing financial assistance

for me to attend graduate school.

I cannot talk about my time here in Illinois without also thanking my

roommates. For the late night talks by the fire, for the random existential

debates, for the meals we shared together, and for y’all’s constant friendship

and community.

Lastly, I’d like to express my deepest thanks to my family - Beth, Lauren,

Josh, and Dad, who are always present in my life and have collectively made

me into who I am today.

iv

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . vi

1 INTRODUCTION . 1
1.1 Contributions . 3
1.2 Thesis Organization . 3

2 BACKGROUND . 5
2.1 Optimal Control . 5
2.2 Multi-Agent Decision Making 10
2.3 Multi-Agent Control Architectures 14

3 RELATED WORK . 16
3.1 Interactive Trajectory Planning 16
3.2 Potential Games . 17
3.3 Decentralized Architectures in Multi-Robot Teams 18

4 PROBLEM FORMULATION . 19
4.1 Planning Problem Notation 19
4.2 Nash Equilibria in Dynamic Games 20

5 PRIOR RESULTS . 22
5.1 Reduction to Single-Objective Optimization 22
5.2 Example Cost Decomposition for Multi-Agent Navigation . . . 23

6 DISTRIBUTED TRAJECTORY OPTIMIZATION 25
6.1 Interaction Graph . 25
6.2 Partitioning the Centralized Problem 26
6.3 Distributed Potential-iLQR 27

7 RESULTS . 29
7.1 Simulation Studies . 29
7.2 Hardware Experiments . 31

8 CONCLUSION . 34

REFERENCES . 35

v

LIST OF ABBREVIATIONS

ADMM Alternating Direction Method of Multipliers

DDP Differential Dynamic Programming

DP-iLQR Distributed Potential iLQR

LQR Linear Quadratic Regulator

iLQG Iterative Linear Quadratic Gaussian

iLQR Iterative LQR

MAS Multi-Agent System

MPC Model Predictive Control

NE Nash Equilibrium

OC Optimal Control

ToM Theory of Mind

UAV Unmanned Aerial Vehicle

vi

1 INTRODUCTION

Automatically generating intuitive trajectories in interactive robotic applica-

tions involving multiple agents is an important and challenging problem [1].

In situations where scalability matters, we need algorithms that enable robots

to safely and tractably interact with other agents. For example, crowd robot

navigation may require a robot to navigate among multiple humans. Alter-

natively, drone delivery systems may require quadcopters to navigate by mul-

tiple drones in an aerial space. Autonomous driving among human drivers

is another highly relevant problem where agents must reason about their

impacts on others. A critical challenge in trajectory planning in such in-

teractive settings is that each robot must account for the likely reactions of

other agents to its actions, which results in a coupling among the agents,

accounting for which quickly becomes intractable as the number of agents

increases. In this work, we address this challenge and develop a scalable

trajectory optimization algorithm that enables robots to interact efficiently

with other navigating agents.

One concept in psychology that relates to this recursive problem in robotics

relates to the theory of mind (ToM), which is a person’s ability to associate

mental states such as thoughts, emotions, and desires to others and reason

about how those affect their behavior [2]. One test commonly conducted

to quantify ToM is the Imposing Memory Task [3]. Participants are tasked

with reading a series of complicated stories involving reasoning about various

social situations. They then fill out a questionnaire regarding their under-

standing of the psychological dynamics behind the characters’ actions. This

asks them questions about first order beliefs - “Sam wanted to go to the

Post Office to buy a stamp,” to fifth order beliefs with increasing recursion

across multiple characters - “John thought that Pamela thought that he,

John, wanted that Pamela discovered what Sara wanted to do because John

wanted to go out alone with Pamela.” Similarly, multi-agent planning prob-

lems require agents to reason about other agents’ intentions and how context

1

Figure 1.1: Heterogeneous multi-agent navigation problem featuring four
agents, each with separate cost functions J i(·) for agent i. Starting from
some initial condition xi

0, agent i would like to navigate around the other
agents to a given target state.

shapes them.

Game-theoretic planning has proven to be a powerful framework for cap-

turing interactions between independent agents [4, 5], where an agent seeks

to maximize its utility. Since agents’ utilities depend on the state and actions

of all agents, the interaction outcome can be best represented via equilibria

that account for the mutual influence of agents. While conceptually powerful

for modeling a large variety of problems, solving for the equilibria is difficult,

as it requires navigating a set of coupled optimal control problems. Several

recent works have developed approximate trajectory optimization algorithms

for such games [6–8]. However, all these works execute in a centralized fash-

ion, i.e. they require the robot to account for interactions with all agents in

the environment. As a result, they rarely extend beyond three agents, even

for simple dynamics models. Section 2.1 will briefly introduce the reader to

foundational concepts in optimal control, and Section 2.2 will provide greater

context for game theoretic interactions and notions of equilibria.

2

1.1 Contributions

We consider the couplings that result from agents’ interactions in a game-

theoretical setup and draw from decentralized and distributed MPC litera-

ture to develop a distributed trajectory planner that can be run in a receding

horizon fashion efficiently and scalably. We leverage the fact that certain

multi-agent interactions are part of a more special class of games, namely

dynamic potential games [9]. Potential games are a class of games for which

equilibria can be found efficiently and tractably by solving a single optimiza-

tion problem. Our key insight is that since equilibria of dynamic potential

games can be found by minimizing a single potential function, we can apply

techniques from distributed and decentralized model predictive control to

seek Nash equilibria of game-theoretic interactions in a scalable and efficient

manner. Section 2.3 introduces the notions of distributed and decentralized

control architectures in more vivid detail.

Our algorithm is distributed because each agent independently computes

its control input using the state information of its neighboring agents and

requires no centralized coordinator to solve its local problem. This archi-

tectural modification allows the algorithm to scale to arbitrary numbers of

agents. Additionally, realistic problems do not have access to any centralized

source of information and are decentralized in structure [10,11]. When driv-

ing on the highway, humans must make decisions based on what they can

currently see. We compare the performance of our algorithm with a central-

ized interactive planner in a number of simulation studies and demonstrate

that our algorithm can efficiently account for interactions with a larger num-

ber of agents. We further showcase the success of our method in hardware

experiments involving multiple quadcopters.

We note that this thesis is based on the work of the authors in [12], which

was accepted at the International Conference of Robotics and Automation

2023.

1.2 Thesis Organization

The organization of this thesis is as follows. In Chapter 2, we review relevant

background material. We put this work into the context of the literature in

3

Chapter 3. In Chapter 4, we introduce the planning problem to be solved.

In Chapter 5, we discuss the previous work that utilizes dynamic potential

games. Our distributed trajectory planning algorithm is defined in Chapter 6.

In Chapter 7, we highlight empirical results in simulations and on hardware.

We conclude the thesis in Chapter 8.

4

2 BACKGROUND

This thesis builds on a variety of tools from the fields of optimal control (OC)

to solve the optimization problem, game theory to model the outcomes of

multi-agent interactions, and distributed architectures to enable scalability.

This section highlights several of these foundational methods and concepts.

Those comfortable with the aforementioned topics can skip ahead to Chap-

ter 3 to explore the related works.

2.1 Optimal Control

The Linear Quadratic Regulator (LQR) is one of the most significant con-

tributions to the field of OC to date, finding a multitude of applications

in unmanned aerial vehicle (UAV) control [13–15], spacecraft control sys-

tems [16–18], power and energy system stabilization [19–22], and modeling

chemical and biological phenomena [23–25], to name a few. For those coming

from an estimation background, LQR is the analog to the Kalman filter [26]

(see [27] for a friendlier introduction), another name for which is the Linear

Quadratic Estimator (LQE), which refers to the fact that its construction

relies on the system having linear dynamics and quadratic estimate covari-

ance.

In this analysis, we consider the problem of steering a single agent toward

some goal state using LQR over some finite horizon T ∈ Z. More generally,

we can think of such an agent or robot as a dynamical system. Let the state

of a dynamical system at timestep k be denoted as xk ∈ Rn, where n is

the dimension of the state space. The corresponding control input at time

k is similarly written as uk ∈ Rm, with m serving as the control dimension

and u0:T−1 := (u0, u1, . . . , uT−1) being the sequence of control inputs over

the horizon T . The dynamics of a system f(x, u) : Rn × Rm 7→ Rn can be

expressed as

xk+1 = f(xk, uk). (2.1)

5

The dynamics uniquely define how a system traverses the state space using

its controls. In order to formulate the optimal control problem, we require a

cost or objective function J(·, ·) : Rn × Rm×T 7→ R which we would like to

minimize.

Definition 1. The optimal control problem for costs J(·, ·) and dynamics

f(·, ·) for a single agent from initial condition x0 is defined as follows:

min
u0:T−1

J(x0, u0:T−1),

s.t. xk+1 = f(xk, uk) ∀k.
(2.2)

2.1.1 Linear Dynamics and Quadratic Costs

For the purposes of this introduction to LQR, we focus on a subset of the

more general nonlinear dynamics expressed in (2.1) to the following linear

time-invariant model:

xk+1 = Axk +Buk, (2.3)

where A ∈ Rn×n and B ∈ Rm×m are constant matrices defining the linear

transformation of the current state and control input to the next state. Ad-

ditionally, we restrict the cost function J(·, ·) to be quadratic in both the

states and controls.

Definition 2. Let the Discrete-Time Finite Horizon LQR Problem for an

initial condition of x0 be defined below:

min
u0:T−1

x⊺
TQfxT +

T−1∑
k=0

x⊺
kQxk + u⊺

kRuk, (2.4)

s.t. xk+1 = Axk +Buk ∀k, (2.5)

where Q ∈ Rn×n weights the state costs and is symmetric and positive semi-

definite, which we write as Q = Q⊺ ⪰ 0, R ∈ Rm×m is some positive definite

matrix that weights the various dimensions of the control effort, R = R⊺ ≻ 0,

and Qf ∈ Rn×n forms the state cost at the terminal timestep, Qf = Q⊺
f ⪰ 0.

In Equation (2.4), the ultimate goal is to drive the system toward equilib-

rium where xT = 0 with minimal control input. Thus, we balance trajectory

6

Figure 2.1: Visualization of Bellman’s Principle of Optimality.

tracking error with what could be interpreted as fuel consumption or motor

torque.

Let the value function V ∗
k (x) from a given state x at time k be written as:

V ∗
k (x) = min

uk:T−1

J(x, uk:T−1). (2.6)

Therefore, if we had a way to solve for this V ∗
k (x), the LQR problem would

be solved, since by definition, this is a minimizer of J(·, ·) starting from the

initial condition x at time k.

To carry on with the derivation, we invoke Bellman’s Principle of Opti-

mality, where the core idea is that if some optimal trajectory were to exist,

all its subintervals would also be optimal. More precisely, we ultimately seek

to find the optimal trajectory over the interval t ∈ [T] := {0, 1, . . . , T − 1}.
Having acted optimally until some intermediate time m, 0 < m < T , which

passes through some state xm, we know that the trajectory over the interval

[m,T] is also optimal, where [m,T] := {m,m + 1, . . . , T], T > m. This con-

cept is visualized in Figure 2.1. With this intuition, we can write a recursive

expression of the value function. Starting from some state x at time t,

V ∗
t (x) = x⊺Qx+ u∗⊺Ru∗ + V ∗

t+1(Ax+Bu∗), (2.7)

where u∗ is the OC input at the given timestep t. To compute the optimal tra-

jectory, we have to iterate backward in time using this recursive relationship,

starting from t = T . Suppose that we can write the following closed-form

7

quadratic expression for the value function

V ∗
t (x) = x⊺Ptx, (2.8)

where Pt ∈ Rn×n, Pt = P ⊺
t ⪰ 0 is some symmetric positive definite matrix.

From here, we would like to utilize induction to identify the structure of Pt

for all t. At time t = T , we already know that V ∗
T (x) = x⊺Qfx, which shows

that PT = Qf . Now, starting from some arbitrary time t assuming knowledge

of Pt+1, we can apply (2.7) and (2.8) to compute the value function backward

in time.

V ∗
t (x) = x⊺Qx+min

u
u⊺Ru+ V ∗

t+1(Ax+Bu),

= x⊺Qx+min
u

u⊺Ru+ (Ax+Bu)⊺Pt+1(Ax+Bu).

Taking the gradient of the expression inside the minimization with respect

to u and setting to zero, we solve for the minimum.

∇u (u
⊺Ru+ (Ax+Bu)⊺Pt+1(Ax+Bu)) = 2u⊺R + 2(Ax+Bu)⊺Pt+1B = 0,

⇒ u∗ = −(R +B⊺Pt+1B)−1B⊺Pt+1Ax = −Ktx.

Hence, we get the following feedback law.

Kt = (R +B⊺Pt+1B)−1B⊺Pt+1A. (2.9)

However, we must plug Equation (2.9) back into the previous expression

for V ∗
t (·) to compute Pt.

V ∗
t (x) = x⊺ (Q+K⊺

t RKt + (A−BKt)
⊺Pt+1(A−BKt))x,

= x⊺Ptx.

Simplifying the previous expression yields the analytical expression.

Pt = Q+ A⊺Pt+1A+K⊺
t (R +B⊺Pt+1B)Kt − A⊺Pt+1BKt −K⊺

t B
⊺Pt+1A,

= Q+ A⊺Pt+1A− A⊺Pt+1B(R +B⊺Pt+1B)−1B⊺Pt+1A.

(2.10)

8

This shows that (2.9) and (2.10) solve Problem 2 for the given time t, as-

suming we already knew Pt+1. Hence, by induction, with the base case that

PT = Qf , we have that these recursions hold for all time t within the time

horizon [T].

In summary, we were able to derive the expression for the value function

V ∗
t (·) starting from time t = T with the guess that it obeys a quadratic

relationship with the current state. This provides the OC sequence u∗
0:T−1

for some initial condition x0, thereby solving Problem 2. See [28, 29] for

additional details.

2.1.2 Nonlinear Dynamics and Non-quadratic Costs

The above analysis was valid for the special case of linear dynamics expressed

in (2.3). However, how would we apply this to the more general case of Equa-

tion (2.1)? Additionally, there was an inherent assumption that the costs had

a quadratic structure in Equation (2.4). How do we handle these limitations?

To explore this route, we must introduce the concept of linearization.

Consider that rather than driving the system toward equilibrium at all

timesteps, we would instead like to follow some nominal trajectory X =

{x0, . . . , xT} with corresponding controls U = {u0, . . . , uT−1}. Note that the
controls only go to timestep T − 1 because the system has already been

driven to its terminal state by time T using uT−1. We can approximate the

dynamics (2.1) using a first-order Taylor-series expansion. To apply this in

discrete time, we consider a small perturbation in the current state δxk and

controls δuk.

xk+1 + δxk+1 = f(xk + δxk, uk + δuk),

≈ f(xk, uk) +
∂f

∂x

∣∣∣∣
xk,uk

(x− xk) +
∂f

∂u

∣∣∣∣
xk,uk

(u− uk),

δxk+1 = Akδxk +Bkδuk,

Ak =
∂f

∂x

∣∣∣∣
xk,uk

(x− xk),

Bk =
∂f

∂u

∣∣∣∣
xk,uk

(u− uk).

While the derivation in Section 2.1.1 was shown for time-invariant A and B,

9

it can also be shown to hold for the time-variant case above for all time k.

A similar action can be performed on the costs with a second order Taylor

series to obtain a quadratic approximation to the costs about the current

operating point (xk, uk). However, because the approximation is only valid

in regions near the operating point, computed feedback gains might not hold

the same validity as they did for the quadratic case. With this severe lim-

itation, researchers modeling complex biological movement in animals and

humans came up with a new approach that iteratively optimized for the

locally-optimal feedback controller [30] known in the control community as

Iterative-Linear Quadratic Regulator (iLQR). While we will not introduce

the algorithm for the sake of brevity, the core idea is that we can run LQR

over the linear-quadratic approximation to some nominal trajectory until

some convergence criterion is met. For the sake of completeness, another

algorithm that is also commonly referred to in these settings is known as Dif-

ferential Dynamic Programming (DDP) [31]. The slight difference between

DDP and iLQR is that DDP computes the full hessian of the dynamics,

which are approximated in iLQR by only considering the first order terms

for the sake of efficiency, which is usually an acceptable compromise.

As will be emphasized later, we note that while iLQR is a core component

of the algorithm in this work, it is merely the solver of the optimization

problem. Any other black-box nonlinear optimization algorithm could be

used as a surrogate for iLQR such as Sequential Quadratic Programming or

Interior Point Methods [32] by directly treating the states and controls as

decision variables.

2.2 Multi-Agent Decision Making

Thus far, we have considered the OC problem of driving some dynamical sys-

tem to some desired state, exerting minimal control effort across a finite time

horizon. However, how do we model the interactions between multiple agents,

each with their unique dynamics and objective functions? Dynamic game

theory provides a powerful theoretical framework for this purpose. Chap-

ter 4 will bring this theory into better focus for the purposes of this thesis.

In this section, we seek to provide a brief introduction to game theory and

intuition on the various notions of equilibria to model the outcomes of static

10

multi-agent problems.

2.2.1 Game Theory Overview

The formalisms underlying game theory are broadly concerned with how

rationally behaving agents act. Especially when agents have competing cost

functions, who wins? Before understanding the outcomes, we must first

appreciate the game’s structure. Consider a game, where the participants

are referred to as agents. Agents can take actions within some set and have

a payoff function that depends on the simultaneously taken actions of other

agents. For consistency with the literature, we use the notion of a reward or

payoff to be maximized, as opposed to a cost to be minimized in the controls

community. As part of this broad class of games, we typically consider these

dimensions.

• Cooperative vs. Noncooperative: Can agents form alliances?

• Symmetric vs. Asymmetric: Are the payoffs for a given strategy

the same across all agents?

• Zero-sum vs. General-sum: What are the possibilities for the net

payoff of all agents? Are there finite resources?

• Static vs. Dynamic: Do agents move once or sequentially over some

period of time? Is there state?

It is usually assumed that agents are rational, meaning they act optimally or

seek to enact the best response given their potentially imperfect information.

Our work falls into the category of noncooperative asymmetric general-sum

dynamic games. There is an additional sector of dynamic game theory known

as differential game theory, in which agents’ states are governed by a differ-

ential equation and is closely related to optimal control. Since we consider

dynamics that have already been discretized, we reside in the class of dynamic

games.

2.2.2 Illustrative Examples

To add color to these abstract concepts, imagine the “chicken” game, with

two drivers on a collision course (some texts also refer to this as the hawk-

11

dove game [33]). If both swerve, neither agent wins. If either one swerves

and the other goes straight, the one that went straight wins. If neither agent

yields, both crash into each other, incurring a large penalty. This game can

be visualized by the payoff matrix in Table 2.1.

Table 2.1: Example payoff matrix for the chicken game, in which two drivers
heading for collision must decide whether to swerve or go straight. The
rows correspond to a given action of player A and the columns correspond
to a given action of player B. The two elements within each entry contain
the payoff for a given combination of actions, with the left number being
the payoff for player A and the right number being for player B.

Swerve Straight
Swerve 0, 0 -1, 1
Straight 1, -1 -1000, -1000

The idea is that since both drivers are prideful, neither wants to be the

“chicken” and swerve out. As shown in Table 2.1, the cost of winning is +1,

the cost of losing is −1, and the cost of crashing is −1000. We see the chicken

model play out in the current geopolitical crisis in the Russo-Ukrainian War.

Putin claims that “This is not a bluff. And those who try to blackmail

us with nuclear weapons should know that the weathervane can turn and

point towards them” [34,35]. It could be argued that Russia’s indiscriminate

attacks on cities are his way of doubling down in a game of chicken, and that

the West will not retaliate with nuclear force.

Table 2.2: Example payoff matrix for the volunteering dilemma from some
ego agent’s perspective.

Others
Volunteer

Nobody
Volunteers

I Volunteer 1 0
I Defect 10 -10

When applied to more than just two agents, this idea can be recast into

what is known as the Volunteer’s dilemma [36]. In this problem, one person

can sacrifice for the good of the group, or choose to defer, hoping that some-

one else will contribute. We also see this in the bystander effect, where people

are less likely to help others in need in the presence of other people [37, 38].

Table 2.2 provides one potential payoff matrix for this setting.

As depicted in Figure 2.2, chess is yet another intriguing example of how

the game-theoretical toolbelt can be applied to new problems. While it does

12

8rZblkans
7ZpopZpop
6pZnZ0Z0Z
5Z0Z0o0Z0
40ZBZPZ0Z
3Z0Z0ZNZ0
2POPO0OPO
1SNAQJ0ZR

a b c d e f g h

Figure 2.2: Chess is a canonical application of game-theory in which two
agents engage in a perfect-knowledge non-cooperative zero-sum dynamic
game. Strategies typically involve performing backward induction to
simulate forward various possible outcomes given an opponent’s
best-response.

not have quite as clear equilibria as the matrix games, it is still a powerful

game where agents iteratively execute their best-response strategies.

2.2.3 Nash Equilibrium in Static Games

While these examples allow us to model and simplify the mutual interactions

of rational agents, we must introduce the concept of equilibrium to better

understand the outcomes. Specifically, we highlight the notion of a static

Nash Equilibrium for use in the dynamic case in Section 4.2.

Let N be the number of agents in the static game. The strategy profile for

a given agent i is denoted by γi, where γi ∈ Γi is some finite set of strategies

for agent i. We use the notation γ−i to refer to the strategies of all agents

j ∈ [N] = {0, . . . , N − 1}, j ̸= i excluding agent i. The payoff of agent i is

written as P i(·) and depends on the strategies of all agents.

Definition 3. The set of strategies γ∗ = (γi∗, γ−i∗) constitutes a NE if for

every agent i ∈ [N] and every strategy γi ∈ Γi, we have the following rela-

tionship:

P i(γi∗, γ−i∗) ≥ P i(γi, γ−i∗). (2.11)

Informally, a set of strategies is considered a NE when no agent has an

incentive to deviate from his or her strategy, given that he or she knows the

13

best response strategies of the other agents [39]. This can also be understood

as all agents executing their respective best-response strategy to the possible

strategies of the other agents.

We see this play out in a host of everyday interactions. Consider two friends

who would both like to work out. Each must decide whether to go in the

morning or at night. They do not get as good of a workout by themselves, so

it benefits them to go together. They are also not morning people and hence

would prefer to go at night. We see the payoff matrix for such a scenario

depicted in Table 2.3. Here, the two pure-strategy NE, pure meaning agents

use policies with deterministic actions, are to either both go in the morning

or both go at night.

Table 2.3: One everyday life example of Nash Equilibrium, in which two
friends who are both night owls are coordinating a time to go to the gym
together.

Morning Night
Morning 2, 2 -1, 1
Night 1, -1 4, 4

Going back to the chicken game in Table 2.1, there are two pure-strategy

Nash Equilibria — one swerves and the other goes straight or vice versa.

Because agents are encouraged to choose opposite policies, this game is con-

sidered an anti-coordination game.

2.3 Multi-Agent Control Architectures

Now that we are equipped with a working understanding of how to drive

a dynamical system to some goal and model the interactions of competing

agents’ objectives, we now consider the following question — what control

architectures should we implement to facilitate desirable yet scalable out-

comes in the multi-agent system (MAS)? This considers the structure of the

communications between agents. It also specifies the hierarchy of control,

i.e. do agents independently observe and process information? Or is some

centralized node responsible for planning? These questions are paramount to

the trade space of designing robotic systems in modern society that produce

favorable outcomes using available information, yet are efficient and fault-

tolerant. While there does not seem to be strong consensus in the robotics

14

community on the technical requirements for the various architectures, we

utilize the definitions presented in [40,41].

2.3.1 Centralized Architectures

This dimension of the MAS concerns where the information is processed and

who makes decisions for each of the systems. More conventional systems

were created to be centralized, where a single computational node processes

information for all the agents [42]. A MAS where sensors are located in

each of the subsystems, but the measurements are communicated to the

central processor would still be considered centralized since the subsystems

are relying on the central entity to carry out their function. Consider a

team of workers tasked with cleaning a building. A centralized group would

take directions from a leader that coordinates the actions and decides how it

should be done.

2.3.2 Decentralized Architectures

In contrast, decentralized MAS’s have the property that there is not a central

node where resources reside, either computational or information related.

Each node decides independently based on local information. Regarding

the cleaning analogy, the decentralized team would instead operate more

independently to carry out the task, with each person choosing to clean a

given area based on their local observations.

Decentralized MAS’s have been developed in more recent years to overcome

the various limitations of the centralized architecture [43]. In the centralized

case of the analogy, one might imagine how the leader might get flustered

both deciding and communicating to a large team one-by-one what to do.

Therefore, centralized architectures are not scalable in the number of agents.

Whereas in the decentralized team, people are mostly self-sufficient in know-

ing how to do the job.

15

3 RELATED WORK

In this section, we review several recent developments to put this work into

the context of the broader literature. Specifically, we focus on various aspects

of the work, including game-theoretic navigation planning in Section 3.1,

advantages of potential games in Section 3.2, and various recent approaches

to distributed architectures in Section 3.3 that distinguish it from the state

of the art.

3.1 Interactive Trajectory Planning

Reactive methods that utilize multi-modal probabilistic prediction models

of agents are one of the popular approaches to interactive trajectory plan-

ning [44–46]. The downside with these approaches is that agents are not

able to sufficiently influence each other, resulting in conservative interac-

tions. Consequently, several recent methods have considered game-theoretic

planning for interactive domains, which enables agents to influence one an-

other and achieve joint prediction and planning. Several approaches that

rely on DDP have been proposed [6,47,48] for finding NE of general dynamic

games, with [6] demonstrated in real-time. The hierarchical method shown

in [49] decomposes the problem into a strategic global planner and a tac-

tical local planner, but it requires discretizing the state and action spaces.

Dynamic programming approaches were further utilized in [8] and [50] to

approximately find equilibria of interactions under uncertainty. In [51], equi-

libria of interactive dynamic games were sought under nonlinear state and

input constraints.

Our work also correlates with various game-theoretic racing scenarios such

as those studied in [5,52–55]. Due to the proximal nature of these scenarios,

however, problems typically only have two agents interacting at a time and,

hence, do not explore the influence of the control architecture on the planning

problem. To handle stochasticity, authors in [56] used a method resembling

16

Iterative Linear Quadratic Gaussian (iLQG) control to do planning in belief

space. Implicit methods utilize some form of inverse reinforcement learn-

ing over trajectory datasets to achieve collision avoidance without directly

imposing constraints on the structure of interactions [57–59], whereas we ex-

plicitly take advantage of the structure of certain multi-agent interactions to

simplify the problem.

There has been a myriad of approaches exploring the various forms of

game-theoretic equilibria among agents. Stackelberg Equilibria were initially

used to model the outcomes [4, 52, 60]. However, it proved insufficient for

general forms of interactions because it assumes a leader-follower structure,

which does not apply to non-cooperative games with more than two agents.

In navigating through a crowd of people, for example, there is not necessarily

a designated leader. Some people might take more initiative than others in

walking on a certain side or walking more quickly to get others to move, but

this is not a general solution nor one to be deployed in robots. Due to these

challenges, others considered NE to capture the interactions among more

than two agents.

3.2 Potential Games

When it comes to computing equilibria, potential games are a class of games

for which equilibria can be found efficiently and reliably. While much of the

literature on potential games is oriented toward the static case, there have

been several recent advancements in dynamic potential games. Following the

pioneering works in [61] and [62], there were initially two primary methods of

solving dynamic games: Euler-Lagrange and Pontryagin’s Maximum meth-

ods. More recently, a Hamiltonian potential function was explored in [63]

for open-loop games with continuous time models. While [64] was primar-

ily focused on communications applications, they demonstrated successful

utilization of the simplified problem structure offered by potential games.

Similar to our work, [65] posed the idea of connecting the open-loop NE of a

dynamical game with the solutions to an OC problem under certain condi-

tions. Recently, [9] and [66] demonstrated that dynamic potential games can

be leveraged for trajectory planning in interactive robotics, but each used a

centralized construction.

17

3.3 Decentralized Architectures in Multi-Robot Teams

The control structures used in a given multi-agent planning problem have

strong implications for its applicability in the real world. We examine prob-

lems in which distributed and decentralized techniques have been applied to

various dynamic games in robotics. Yang et al. [67] explored the problem of

distributed role assignment cast as a dynamic game. In the vein of multi-

agent sensor fusion over a finite communication bandwidth, [68] proposes an

approach to enable a fleet of UAV’s to upload sensor data into the cloud

using a potential game formulation. However, this potential game is done

over a common convex function and is not relevant for problems with dis-

parate objectives. Formation control is another potential problem domain

for decentralized architectures, in which a set of leaders each guide a group

of followers in some formation, typically for coverage control or tracking pur-

poses. Hu et al. [69] introduces a hierarchical cluster formation technique

that utilizes a game-theoretic rule to split up the leaders into a Nash-stable

partition based on local information. The approach in [70] employs a fully

decentralized communication-free method, but makes assumptions about the

cost structures of the problem, limiting its applicability to formation control.

18

4 PROBLEM FORMULATION

4.1 Planning Problem Notation

Consider an interactive trajectory planning problem with N agents. Let

[N] ≡ {1, . . . , N} be the set of agents’ indices. We refer to the state of

the ith agent at time k as xi
k ∈ Rni , where ni is the dimension of the

state vector of agent i ∈ [N]. Agent i’s corresponding control input is de-

noted as ui
k ∈ Rmi , where mi is the dimension of the control space of agent

i ∈ [N]. Concatenating the states and inputs of all agents, the full state

vector of the system at time k is given by xk = (x1
k, x

2
k, . . . , x

N
k) ∈ Rn, where∑N

i=1 ni ≡ n. The concatenated set of control inputs of all agents at time

k is similarly denoted by uk = (u1
k, u

2
k, . . . , u

N
k) ∈ Rm, where

∑N
i=1mi ≡ m.

Generally, subscripts are used to denote the time index, whereas superscripts

denote the agent index. The states for agent i across an entire horizon T

is notated as xi = {xi
0, . . . , x

i
T} ∈ Rni×T . Similarly, for the controls, let

ui = {ui
0, . . . , u

i
T} ∈ Rmi×T be agent i’s control inputs across the horizon.

We drop both subscript and superscript to refer to all agents over an entire

horizon for states x ∈ Rn×T and controls u ∈ Rm×T . Lastly, we use capital-

ization to differentiate the predicted states X from the actual states x and

the same for the controls U from u, respectively.

We consider separable agents’ dynamics defined by f i : Rni × Rmi 7→ Rni ,

i.e. we assume that for every agent i ∈ [N], we have:

xi
k+1 = f i(xi

k, u
i
k). (4.1)

We denote the strategy space of each agent i ∈ [N] as Γi. Let the strategy

γi ∈ Γi of agent i be given by γi : Rni × {0, 1, . . . , T − 1} 7→ Rmi which

determines the actions of agent i at all time instants. We consider open-

loop strategies that are only a function of the system’s initial state and the

time step. Therefore, we have γi(x0, k) := ui
k. Hence, for simplicity, we use

19

strategies and actions interchangeably here out.

4.2 Nash Equilibria in Dynamic Games

While Section 2.2.3 covered NE for the static case, we cover the dynamic

case in this section. We assume that each agent i is minimizing some cost

J i(·) over the time horizon T :

J i(x0, γ) = Si(xT , T) +
T−1∑
k=0

Li(xk, γ(x0, k), k), (4.2)

where Si(·) is the terminal cost of agent i and Li(·) is the running cost of

agent i. Note that the cost perceived by an agent i may depend on the

states and actions of all the other agents. As a result, generally, it is not

possible for all agents to optimize their costs simultaneously, and we need

to model the outcome of the interactions between the agents as equilibria of

the underlying dynamic game. We denote our dynamic games by a compact

notation, GT
x0

:= (T, {γi}Ni=1, {J i}Ni=1, {f i}Ni=1), which denotes the dynamic

game that arises from interactions of the agents over a horizon T starting

from the initial condition x0.

Let γ−i = (γ1, . . . , γi−1, γi+1, . . . , γN) denote the strategies of all other

agents except i. We use similar notation to express the states and controls

of all other agents except i for a given time step k as x−i
k ∈ Rn−ni and

u−i
k ∈ Rm−mi , respectively. Then, the Nash equilibria of our dynamic game

are defined as [71]:

Definition 4. For a given game, GT
x0

:= (T, {γi}Ni=1, {J i}Ni=1, {f i}Ni=1), a set

of strategies γ∗ are open-loop Nash equilibrium strategies if for every agent

i ∈ [N] and every strategy γi, we have

J i(x0, γ
∗) ≤ J i(x0, γ

i, γ−i∗). (4.3)

Definition 4 implies that at equilibrium, no agent has any incentive for

changing its strategy and actions once it fixes the strategies and actions

of all the other agents to be their equilibrium strategies γ−i∗. However,

finding Nash equilibria is challenging, as solving (4.3) requires solving a set

of coupled optimal control problems. Finding equilibria has proven difficult

20

even in two-player settings for discrete state and action spaces [72–74]. Most

recent methods for finding Nash equilibria of dynamic games that arise in

robotics [6,7,9] solve the game in a centralized fashion, i.e. each agent must

maintain a full copy of all the other agents. As a result, the existing methods

and solvers are not scalable and become intractable beyond three agents

with simple dynamics. In this work, we seek to remedy this and develop a

distributed trajectory optimization algorithm for finding Nash equilibria of

dynamic games underlying multi-agent interactions.

21

5 PRIOR RESULTS

In this chapter, we review some of the results from our previous work that

we will utilize in the current work. Specifically, we review our previous

results from [9] that allow one to bypass solving (4.3) for interactions that

are dynamic potential games [75].

5.1 Reduction to Single-Objective Optimization

We have the following result from [9].

Theorem 1. For a given dynamic game GT
x0

= (T, {γi}Ni=1, {J i}Ni=1, {f i}Ni=1),

if for each agent i ∈ [N], the running and terminal costs have the following

structure

Li(xk, uk) = p(xk, uk) + ci(x−i
k , u−i

k), ∀k (5.1)

and

Si(xT) = s̄(xT) + si(x−i
T), (5.2)

then, the dynamic game GT
x0

is a dynamic potential game. and open-loop

Nash equilibria u∗ = (u1∗, . . . , uN∗) can be found by solving the following

optimal control problem

min
u

T−1∑
k=0

p(xk, uk) + s̄(xT),

s.t. xi
k+1 = f i(xi

k, u
i
k).

(5.3)

Conditions (5.1) and (5.2) imply that one can decompose both the running

costs Li(·) and terminal costs Si(·) into potential functions p(·) and s̄(·) which
can depend on the full state and control vector of the agents, and the cost

terms ci(·) and si(·) that have no dependence on the state and control input

of agent i.

22

For the remainder of the section, we make this result more concrete via

a navigation example, which serves as our running example throughout the

paper.

5.2 Example Cost Decomposition for Multi-Agent

Navigation

Consider a multi-agent navigation setup where each agent i ∈ [N] must

reach a goal state x̄i. We assume that each agent’s running cost function is

composed of a tracking cost and a control penalty term defined as:

Ci
tr(x

i
k, u

i
k) = (xi

k − x̄i)⊺Qi(xi
k − x̄i)

+ (ui
k − ūi)⊺Ri(ui

k − ūi),
(5.4)

Ci
tr,T (xT) = (xi

T − x̄i)⊺Qi
f (x

i
T − x̄i), (5.5)

where Qi, Qi
f ∈ Rni×ni , Qi, Qi

f ⪰ 0 and Ri ∈ Rmi×mi , Ri ≻ 0 are all sym-

metric matrices, and ūi is a reference control input. Moreover, assume that

agents’ decisions are coupled through cost terms such as the collision avoid-

ance terms between any pair of agents i ̸= j, i, j ∈ [N] defined as:

Cij
ca(x

i
k, x

j
k) = αij(d(xi

k, x
j
k)), (5.6)

where d(xi
k, x

j
k) ≡ dijk is the distance between agents i and j at time k.

For each agent i ∈ [N], the instantaneous running cost Li(·) can then be

defined as:

Li(xk, u
i
k) = Ci

tr(x
i
k, u

i
k) +

N∑
i ̸=j

Cij
ca(x

i
k, x

j
k). (5.7)

It was shown in [9] that under the assumption that agents induce coupling

costs between each other symmetrically, i.e. Cij
ca(x

i
k, x

j
k) = Cji

ca(x
j
k, x

i
k),∀i ̸=

j ∈ [N], the dynamic game is a dynamic potential game with the potential

function:

p(xk, uk) =
N∑
i=1

Ci
tr(x

i
k, u

i
k) +

N∑
i=1,i<j

Cij
ca(x

i
k, x

j
k). (5.8)

This implies that Nash Equilibria (4.3) can be found by solving (5.3), which

is a single optimal control problem. Prior work [9] used iLQR [30, 76] for

23

minimizing (5.8) in a MPC setting. Explicitly, it solves (5.3) for all agents

iteratively as covered in Algorithm 1. We refer the reader to the original

work [9] for additional details.

Algorithm 1 Potential-iLQR

Inputs
dynamics {f i}Ni=1, potentials p and s̄, initial state x0

Outputs
control inputs u
Initialization
u← 0N×m

1. while not converged do
2. Rollout from x0 with u s.t. (4.1) to compute X
3. Linearize dynamics, quadraticize costs about X, u
4. Solve the Riccati recursion to update controls u
5. end while

24

6 DISTRIBUTED TRAJECTORY
OPTIMIZATION

Prior work has proposed to solve (5.8) by requiring every agent to maintain

a copy of all the other agents, which restricts the scalability of the method.

Our key insight is that we can solve the optimal control problem (5.8) more

efficiently using ideas from distributed MPC [77–80]. Specifically, we can

break up (5.8) into smaller subproblems more relevant to each agent.

6.1 Interaction Graph

To formalize distributed interactive trajectory planning, we borrow ideas

from [79] and [81] and introduce the concept of an interaction graph G =

{V , E} comprising nodes V = [N] for each agent i and edges E ∈ V × V ,
where each edge (i, j) ∈ V , indicates a coupling between two agents in their

costs. For our purposes, these edges are connected if agents ever get within a

proximity distance dprox of each other throughout the predicted trajectories.

Formally, let {dijk }
T−1
k=0 ∈ RT be the predicted distances between agents i and

j over the horizon T . We create a bidirectional edge (i, j) if:

∃k, 0 ≤ k < T, s.t. dijk < αdprox, (6.1)

where α ∈ R, α ≥ 1 is some aggressiveness parameter on how finely to split

up the graph. For sufficiently large α, the interaction graph is complete, i.e.,

all agents are connected with one another. Whereas for sufficiently small α,

E = ∅. Additionally, for each agent i ∈ [N], its set of neighbors is defined as

N i, such that N i = {j : (i, j) ∈ E} (see Figure 6.1).

The introduction of the interaction graph is motivated by human swarm

motion. As referenced in [82], the key to collective motion is a pedestrian’s

zone of influence. Intuitively, humans need not worry about others outside

their vicinity. Similarly, we argue that in multi-agent interactions, agents

need only pay attention to their zone of influence in the navigation problem.

25

1

23

4

5

Figure 6.1: Schematic Example of an interaction graph for one-time step,
where N 1 = {2, 3}, N 2 = {1, 3, 4}, N 3 = {1, 2}, N 4 = {2, 5}, and
N 5 = {4}.

6.2 Partitioning the Centralized Problem

We require each agent i to solve its own subproblem, which we denote by P i,

associated with minimizing the potential function that comprises only itself

and its neighbors p̃i, i.e., the subset of the graph that it shares edges with N i.

Let the full subproblem consist of agents in the set Ñ i = N i ∪ i. The state

vector of this subproblem at time k is then denoted by x̃i
k = {xj

k}j∈Ñ i with

the corresponding control input ũi
k = {uj

k}j∈Ñ i . We propose to divide the

centralized problem (5.3) into a set of local subproblems, where each agent i

solves its subproblem P i defined as

min
ũi

T−1∑
k=0

p̃i(x̃i
k, ũ

i
k) + ˜̄si(x̃i

T)

s.t. xi
k+1 = f i(xi

k, u
i
k),

(6.2)

where ˜̄si(·) : Rñi 7→ R for ñi =
∑

i∈Ñi
ni, is a terminal cost for the local

problem. Therefore, (6.2) is the local analog to (5.3), with local potential

functions p̃i and ˜̄si that comprise local costs. In the specific case of multi-

agent navigation, one such potential function could take the following form:

p̃i(xk, uk) =
∑
j∈Ñ i

Cj
tr(x

j
k, u

j
k) +

∑
j∈N i

Cij
ca(x

i
k, x

j
k). (6.3)

Hence, (6.3) is then a subset of (5.8) that takes advantage of the sparsity of

the interaction graph.

26

6.3 Distributed Potential-iLQR

Let the trajectory of the full system predicted by agent i at time k be X i
k,

where X i
0 ≡ x0, such that over the full horizon:

X i = {x0, X
i
1, . . . , X

i
T−1}, (6.4)

where X i ∈ Rn×T is the predicted trajectory according to agent i across the

horizon.

We are now ready to define our distributed trajectory planner in Algorithm

2 — Distributed Potential-iLQR (DP-iLQR).

Algorithm 2 DP-iLQR

Inputs
predicted trajectories X i (6.4), system dynamics {f j}Nj=1 (4.1), costs (5.4)–
(5.6)
Outputs
control inputs ui for agent i

1. N i, x̃i
0 ← define Interaction Graph(X i) (6.1)

2. p̃i, ˜̄si ← define local potential functions(N i)
3. U ← Potential-iLQR({f i}i∈Ñi

, p̃i, ˜̄si, x̃i
0) (Alg. 1)

4. ui ← extract Agent(U, i)

In applying Algorithm 2 in a receding horizon fashion, we continually com-

pute the interaction graph at each step in line 1 and compose local potential

functions in line 2. Agents then solve their local subproblem (6.2) in line 3.

Agent i’s solution ui is then pulled out from U in line 4 and executed. This

is then communicated with the rest of the system to define the subsequent

graph at the next step.

We can utilize any single-agent trajectory optimization algorithm to solve

each local subproblem by each agent i. We choose iLQR for solving each

subproblem P i due to its widespread success across many robotics domains.

The broader question of how these sub-problems interact with each other

remains an open question, which we will explore empirically in Chapter 7.

27

Figure 6.2: Example trajectories of DP-iLQR (Algorithm 2) for unicycle
dynamics for varying numbers of agents from random initial conditions and
goal positions. As time progresses from the left to right, the algorithm is
able to guide agents through complex interactions.

28

7 RESULTS

We first evaluate the performance of DP-iLQR in a custom-built simulation

environment across several dynamical models in a Monte-Carlo fashion in

Section 7.1. We subsequently examine performance in the real-world on

multiple quadcopters navigating around each other in Section 7.2.

7.1 Simulation Studies

We would like to show that DP-iLQR can handle larger-sized problems than

Potential-iLQR. To accomplish this, we vary the number of agents and com-

pare the centralized planner with the distributed planner at a given initial

condition. We considered a multi-agent navigation setup with several differ-

ent dynamics models, including 2D double integrator, 2D unicycle, and 3D

quadcopter dynamics. We model our quadcopter as a six-dimensional model,

specifically:

ṗx = vx, v̇x = g tan(θ),

ṗy = vy, v̇y = −g tan(ϕ),

ṗz = vz, v̇z = τ − g,

(7.1)

where θ is the pitch, ϕ is the roll, τ is the combined force of the motors in

the z-direction, px, py, and pz are the 3D position, vx, vy, and vz are the 3D

velocities, and g is the acceleration due to gravity.

The specific form of collision avoidance cost that we utilized is the follow-

ing:

αij(dijk) =

β(dijk − dprox)
2 dijk < dprox

0 otherwise,
(7.2)

where β ∈ R is some weighting parameter and dprox is a threshold distance

where agents begin incurring penalties for being too close to each other.

29

We implemented Algorithm 2 in a combination of Python and C++1. We

generated 30 random initial conditions. For a given initial condition, we fixed

the number of agents and computed the interactive trajectories of the agents

using both Potential-iLQR and DP-iLQR. We implemented our algorithm

in a receding horizon controller to fully exercise Algorithm 2. We ran the

simulations with a horizon length of 40, a time interval of 0.1 seconds, and

a collision radius dprox of 0.5 meters. As shown in Figure 6.2, DP-iLQR

generates intuitive collision-free trajectories under feasible initial conditions.

We conducted two primary analyses to quantify the differences in the per-

formance between the centralized and distributed implementations: limited

and unlimited solve time. The solve time refers to the time it takes at a

given operating point to entirely execute the control algorithm, which corre-

sponds to the time the algorithm would need to provide a new control input

in real-time use cases.

7.1.1 Analysis 1 - Unlimited Solve Time

For the case of unlimited solve time, we enforce no computational time limit

on the solver for converging to a solution at each receding horizon. This is

an unrealistic assumption for practical implementations, but it enables us

to compare the solve time of the two methods. In Figure 7.1, we compare

the individual subproblem solve times throughout the simulated trajectories.

As the number of agents increases, the problem gets increasingly congested;

hence, we see each agent spending more time computing its subsequent con-

trol input. This is to be expected as the size of the state space grows and

the cost surface becomes more challenging to navigate. The advantage of

DP-iLQR in terms of the solve time is most prominent for simpler dynamical

models like the double integrator. Regardless, it demonstrates a consistent

decrease in solve time that widens with more agents.

7.1.2 Analysis 2 - Real-Time Constraint

When evaluating performance with more realistic timing constraints, we only

permit the solver to iterate until it exceeds some time-based threshold. This

1dp-ilqr GitHub Repository: https://github.com/labicon/dp-ilqr

30

https://github.com/labicon/dp-ilqr

Figure 7.1: Average solve times without real-time constraints. DP-iLQR
yields a consistently lower solve time than the centralized solver across
various dynamics models and numbers of agents.

serves as a ’best-effort’ solution that will be more applicable to a hardware

implementation where the MPC planner requires a solution by the end of

each time step. In this case, we compare the quality of the trajectories

under real-time constraints. In particular, we measure the distance to goal

at the end of the time horizon as a measure of solution quality. Figure 7.2

demonstrates the distance to the goal position under the two methods for

various numbers of agents.

As the number of agents exceeds six, we see in Figure 7.2 that the vari-

ance in the centralized solver increases significantly as it starts getting over-

whelmed handling the multitude of agent interactions. In contrast, the dis-

tributed solver shows much more consistent convergence statistics and even

outperforms the centralized solver in most cases.

7.2 Hardware Experiments

To evaluate the real-time capabilities of our algorithm, we conducted nav-

igation experiments involving multiple quadcopters. We ran the DP-iLQR

algorithm on five Crazyflie 2.1 quadcopters, where each quadcopter navigates

to its designated final position. VICON motion capture system was used to

provide position and velocity feedback to all the quadcopters. The position

31

Figure 7.2: Average distance left to the goal position with a real-time
constraint. While the difference between the two solvers is smaller at lower
scales, Potential-iLQR is unable to maintain the quality of trajectories at
the scales of six or more agents.

update computed by DP-iLQR was sent to each quadcopter online via the

Crazyswarm API [83]. The algorithm was executed offboard on a laptop

with an 8-core AMD processor with 32 GB of RAM. We demonstrated that

DP-iLQR provides a more stable and intuitive trajectory than the Poten-

tial iLQR [9]. A visualization demonstrating the near-real-time trajectories

generated by DP-iLQR is shown in Figure 7.3.

While the experiments performed served as a proof-of-concept for demon-

strating the real-time capabilities of the algorithm, the experiments were lim-

ited in the links of the radio channels used to send instructions to the drones.

With stronger link quality, we would be able to simulate with quantities of

drones greater than five. Even more pressing to the processing speed of the

algorithm, having on-board computations or at least dedicated hardware for

each agent could have the potential to greatly speed up processing for suf-

ficiently strong processors. For the sake of time and simplicity, we solved

all individual agent subproblems on one laptop sequentially. This is still a

distributed manner of solving the problem considering each subproblem was

solved independently, with communication between agents happening only

between solving from a given condition.

32

Figure 7.3: Hardware experiment demonstrated on Crazyflie 2.1 using the
Crazyswarm library [83]. In this scenario, five drones navigate around each
other in two separate intersections. As time evolves from left to right, the
drones are able to safely navigate around each other. The first row depicts
the birds-eye view, the middle row depicts the 3D rendered side view, and
the lower row shows live pictures of the experiment. The vertical lines
correspond to each of the × markers and denote the (x, y) of the intended
goal position colored by agent.

33

https://www.bitcraze.io/products/crazyflie-2-1/

8 CONCLUSION

Summary. We introduced a scalable and distributed algorithm for inter-

active trajectory planning in multi-agent interactions. We considered in-

teractions in a game-theoretic setting and utilized the connection between

multi-agent interactions and potential games to reduce the problem of find-

ing equilibria of the game to that of minimizing a single potential function.

Then, we used distributed trajectory optimization algorithms to minimize the

resulting potential function. This results in a scalable and efficient trajectory

planner for finding equilibria of interactive dynamic games. We compared our

method with the state-of-the-art in several simulation studies and hardware

experiments involving multiple quadcopters.

Limitations and Future Work. In our simulations and experiments,

we found that the consistency of the trajectory that results from DP-iLQR

is sensitive to the choice of cost parameters. More work would be required to

investigate the feasibility of designing a self-tuning algorithm to determine

optimal weights automatically. We would like to further examine both the

theoretical guarantees and optimality gap of our proposed trajectory planner,

as well as the application and impacts of distributed optimization techniques

such as ADMM on distributed interactive trajectory planning.

34

REFERENCES

[1] G.-Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi,
R. Full, N. Jacobstein, V. Kumar, M. McNutt, R. Merrifield, B. J.
Nelson, B. Scassellati, M. Taddeo, R. Taylor, M. Veloso, Z. L.
Wang, and R. Wood, “The grand challenges of science robotics,”
Science Robotics, vol. 3, no. 14, p. eaar7650, 2018. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.aar7650

[2] M. Sabbagh and L. C. Bowman, “Theory of mind,” Stevens’ handbook of
experimental psychology and cognitive neuroscience, vol. 4, pp. 249–288,
2018.

[3] P. Kinderman, R. Dunbar, and R. P. Bentall, “Theory-of-mind deficits
and causal attributions,” British journal of Psychology, vol. 89, no. 2,
pp. 191–204, 1998.

[4] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions.” in Robotics:
Science and systems, vol. 2. Ann Arbor, MI, USA, 2016, pp. 1–9.

[5] Z. Wang, R. Spica, and M. Schwager, “Game theoretic motion planning
for multi-robot racing,” in Distributed Autonomous Robotic Systems.
Springer, 2019, pp. 225–238.

[6] D. Fridovich-Keil, E. Ratner, L. Peters, A. D. Dragan, and
C. J. Tomlin, “Efficient iterative linear-quadratic approximations for
nonlinear multi-player general-sum differential games,” 2019. [Online].
Available: https://arxiv.org/abs/1909.04694

[7] F. Laine, D. Fridovich-Keil, C.-Y. Chiu, and C. Tomlin, “The com-
putation of approximate generalized feedback nash equilibria,” arXiv
preprint arXiv:2101.02900, 2021.

[8] M. Wang, N. Mehr, A. Gaidon, and M. Schwager, “Game-theoretic plan-
ning for risk-aware interactive agents,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
6998–7005.

[9] T. Kavuncu, A. Yaraneri, and N. Mehr, “Potential ilqr: A potential-
minimizing controller for planning multi-agent interactive trajectories,”
2021. [Online]. Available: https://arxiv.org/abs/2107.04926

35

https://www.science.org/doi/abs/10.1126/scirobotics.aar7650
https://arxiv.org/abs/1909.04694
https://arxiv.org/abs/2107.04926

[10] M. Smyrnakis and S. M. Veres, “Coordination of control in robot teams
using game-theoretic learning,” IFAC Proceedings Volumes, vol. 47,
no. 3, pp. 1194–1202, 2014.

[11] J. Banfi, N. Basilico, and S. Carpin, “Optimal redeployment of multi-
robot teams for communication maintenance,” in 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 3757–3764.

[12] Z. Williams, J. Chen, and N. Mehr, “Distributed potential ilqr: Scalable
game-theoretic trajectory planning for multi-agent interactions,” in 2023
International Conference on Robotics and Automation (ICRA). IEEE,
2023, awaiting Publication.

[13] H. Purnawan, Mardlijah, and E. B. Purwanto, “Design of linear
quadratic regulator (lqr) control system for flight stability of lsu-05,”
Journal of Physics: Conference Series, vol. 890, no. 1, p. 012056, sep
2017. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/890/
1/012056

[14] J. Willis, J. Johnson, and R. W. Beard, “State-dependent lqr control for
a tilt-rotor uav,” in 2020 American Control Conference (ACC), 2020,
pp. 4175–4181.

[15] C. Hajiyev and S. Y. Vural, “Lqr controller with kalman estimator ap-
plied to uav longitudinal dynamics,” Positioning, 2013.

[16] Y. Yang, “Analytic lqr design for spacecraft control system based on
quaternion model,” Journal of aerospace engineering, vol. 25, no. 3, pp.
448–453, 2012.

[17] M. Tillerson, G. Inalhan, and J. P. How, “Co-ordination and control of
distributed spacecraft systems using convex optimization techniques,”
International Journal of Robust and Nonlinear Control: IFAC-Affiliated
Journal, vol. 12, no. 2-3, pp. 207–242, 2002.

[18] Q. Hu, “Robust adaptive sliding mode attitude maneuvering and vibra-
tion damping of three-axis-stabilized flexible spacecraft with actuator
saturation limits,” Nonlinear Dynamics, vol. 55, pp. 301–321, 2009.

[19] P. Rao, M. Crow, and Z. Yang, “Statcom control for power system
voltage control applications,” IEEE Transactions on Power Delivery,
vol. 15, no. 4, pp. 1311–1317, 2000.

[20] H. Ko, K. Lee, and H. Kim, “An intelligent based lqr controller
design to power system stabilization,” Electric Power Systems
Research, vol. 71, no. 1, pp. 1–9, 2004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378779603003134

36

https://dx.doi.org/10.1088/1742-6596/890/1/012056
https://dx.doi.org/10.1088/1742-6596/890/1/012056
https://www.sciencedirect.com/science/article/pii/S0378779603003134

[21] U. Markovic, Z. Chu, P. Aristidou, and G. Hug, “Lqr-based adaptive
virtual synchronous machine for power systems with high inverter pen-
etration,” IEEE Transactions on Sustainable Energy, vol. 10, no. 3, pp.
1501–1512, 2018.

[22] M. Aldeen and F. Crusca, “Multimachine power system stabiliser design
based on new lqr approach,” IEE Proceedings-Generation, Transmission
and Distribution, vol. 142, no. 5, pp. 494–502, 1995.

[23] M. C. Priess, R. Conway, J. Choi, J. M. Popovich, and C. Radcliffe, “So-
lutions to the inverse lqr problem with application to biological systems
analysis,” IEEE Transactions on control systems technology, vol. 23,
no. 2, pp. 770–777, 2014.

[24] J. He, M. G. Maltenfort, Q. Wang, and T. M. Hamm, “Learning from
biological systems: Modeling neural control,” IEEE Control Systems
Magazine, vol. 21, no. 4, pp. 55–69, 2001.

[25] K. Uygun, H. W. Matthew, and Y. Huang, “Dfba-lqr: An optimal con-
trol approach to flux balance analysis,” Industrial & engineering chem-
istry research, vol. 45, no. 25, pp. 8554–8564, 2006.

[26] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Transactions of the ASME–Journal of Basic Engineering, vol. 82,
no. Series D, pp. 35–45, 1960.

[27] N. Thacker and A. Lacey, “Tutorial: The kalman filter,” Imaging Sci-
ence and Biomedical Engineering Division, Medical School, University
of Manchester, vol. 61, 1998.

[28] R. Tedrake, Underactuated Robotics, 2023. [Online]. Available:
https://underactuated.csail.mit.edu

[29] T. Basar, S. Meyn, and W. R. Perkins, “Lecture notes on control system
theory and design,” arXiv preprint arXiv:2007.01367, 2020.

[30] W. Li and E. Todorov, in Iterative Linear Quadratic Regulator Design
for Nonlinear Biological Movement Systems., vol. 1, 01 2004, pp. 222–
229.

[31] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 1168–1175.

[32] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.

[33] R. Sugden et al., The economics of rights, co-operation and welfare.
Springer, 2004.

37

https://underactuated.csail.mit.edu

[34] G. Faulconbridge and A. Richardson, “Factbox: Has putin
threatened to use nuclear weapons?” Europe, Oct.
2022. [Online]. Available: https://www.reuters.com/world/europe/
has-putin-threatened-use-nuclear-weapons-2022-10-27/

[35] O. of the Kremlin, “Message from the president of the russian
federation,” President of Russia, Sep. 2022. [Online]. Available:
http://www.kremlin.ru/events/president/news/69390

[36] “Volunteer’s Dilemma,” may 4 2022, [Online; accessed 2023-07-06].

[37] A. Diekmann, “Volunteer’s dilemma,” The Journal of Conflict
Resolution, vol. 29, no. 4, pp. 605–610, 1985. [Online]. Available:
http://www.jstor.org/stable/174243

[38] W. Przepiorka and A. Diekmann, “Heterogeneous groups overcome the
diffusion of responsibility problem in social norm enforcement,” PloS
one, vol. 13, no. 11, p. e0208129, 2018.

[39] R. Gibbons, “A primer in game theory,” 1992.

[40] A. C. Jiménez, V. Garćıa-Dı́az, and S. Bolaños, “A decentralized frame-
work for multi-agent robotic systems,” Sensors, vol. 18, no. 2, p. 417,
2018.

[41] A. Jamshidpey, M. Wahby, M. Heinrich, M. Allwright, W. Zhu, and
M. Dorigo, “Centralization vs. decentralization in multi-robot coverage:
Ground robots under uav supervision,” 2021.

[42] B. Khoshnevis and G. Bekey, “Centralized sensing and control of mul-
tiple mobile robots,” Computers & industrial engineering, vol. 35, no.
3-4, pp. 503–506, 1998.

[43] H. Asama, “Operation of cooperative multiple robots using communi-
cation in a decentralized robotic system,” in Proceedings of PerAc’94.
From Perception to Action. IEEE, 1994, pp. 36–46.

[44] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone, “Multimodal
probabilistic model-based planning for human-robot interaction,”
CoRR, vol. abs/1710.09483, 2017. [Online]. Available: http://arxiv.
org/abs/1710.09483

[45] H. Nishimura, B. Ivanovic, A. Gaidon, M. Pavone, and M. Schwager,
“Risk-sensitive sequential action control with multi-modal human
trajectory forecasting for safe crowd-robot interaction,” CoRR, vol.
abs/2009.05702, 2020. [Online]. Available: https://arxiv.org/abs/2009.
05702

38

https://www.reuters.com/world/europe/has-putin-threatened-use-nuclear-weapons-2022-10-27/
https://www.reuters.com/world/europe/has-putin-threatened-use-nuclear-weapons-2022-10-27/
http://www.kremlin.ru/events/president/news/69390
http://www.jstor.org/stable/174243
http://arxiv.org/abs/1710.09483
http://arxiv.org/abs/1710.09483
https://arxiv.org/abs/2009.05702
https://arxiv.org/abs/2009.05702

[46] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online
pomdp planning for autonomous driving in a crowd,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), 2015,
pp. 454–460.

[47] W. Sun, E. A. Theodorou, and P. Tsiotras, “Game theoretic continu-
ous time differential dynamic programming,” in 2015 American control
conference (ACC). IEEE, 2015, pp. 5593–5598.

[48] B. Di and A. Lamperski, “Differential dynamic programming
for nonlinear dynamic games,” 2018. [Online]. Available: https:
//arxiv.org/abs/1809.08302

[49] J. F. Fisac, E. Bronstein, E. Stefansson, D. Sadigh, S. S. Sastry, and
A. D. Dragan, “Hierarchical game-theoretic planning for autonomous
vehicles,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 9590–9596.

[50] N. Mehr, M. Wang, M. Bhatt, and M. Schwager, “Maximum-entropy
multi-agent dynamic games: Forward and inverse solutions,” IEEE
Transactions on Robotics, 2023.

[51] S. L. Cleac’h, M. Schwager, and Z. Manchester, “Algames: A fast solver
for constrained dynamic games,” arXiv preprint arXiv:1910.09713, 2019.

[52] A. Liniger and J. Lygeros, “A noncooperative game approach to au-
tonomous racing,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 3, pp. 884–897, 2019.

[53] R. Spica, E. Cristofalo, Z. Wang, E. Montijano, and M. Schwager, “A
real-time game theoretic planner for autonomous two-player drone rac-
ing,” IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1389–1403,
2020.

[54] M. Wang, Z. Wang, J. Talbot, J. C. Gerdes, and M. Schwager, “Game-
theoretic planning for self-driving cars in multivehicle competitive sce-
narios,” IEEE Transactions on Robotics, vol. 37, no. 4, pp. 1313–1325,
2021.

[55] Y. Jia, M. Bhatt, and N. Mehr, “Rapid: Autonomous multi-agent
racing using constrained potential dynamic games,” arXiv preprint
arXiv:2305.00579, 2023.

[56] W. Schwarting, A. Pierson, S. Karaman, and D. Rus, “Stochastic dy-
namic games in belief space,” IEEE Transactions on Robotics, vol. 37,
no. 6, pp. 2157–2172, 2021.

39

https://arxiv.org/abs/1809.08302
https://arxiv.org/abs/1809.08302

[57] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A.
Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa, “Planning-based pre-
diction for pedestrians,” in 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2009, pp. 3931–3936.

[58] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in 2010 IEEE International Conference
on Robotics and Automation, 2010, pp. 981–986.

[59] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research, vol. 35, no. 11,
pp. 1289–1307, 2016. [Online]. Available: https://doi.org/10.1177/
0278364915619772

[60] J. H. Yoo and R. Langari, “Stackelberg game based model of high-
way driving,” in Dynamic Systems and Control Conference, vol. 45295.
American Society of Mechanical Engineers, 2012, pp. 499–508.

[61] D. Dechert, “Optimal control problems from second-order difference
equations,” Journal of Economic Theory, vol. 19, no. 1, pp. 50–63, 1978.

[62] W. D. Dechert and S. O’Donnell, “The stochastic lake game: A numer-
ical solution,” Journal of Economic Dynamics and Control, vol. 30, no.
9-10, pp. 1569–1587, 2006.

[63] D. Dragone, L. Lambertini, G. Leitmann, and A. Palestini, “Hamilto-
nian potential functions for differential games,” Automatica, vol. 62, pp.
134–138, 2015.

[64] S. Zazo, S. Valcarcel Macua, M. Sánchez-Fernández, and J. Zazo, “Dy-
namic potential games with constraints: Fundamentals and applications
in communications,” IEEE Transactions on Signal Processing, vol. 64,
no. 14, pp. 3806–3821, 2016.

[65] W. D. Dechert, “Non cooperative dynamic games: a control theoretic
approach,” Unpublished. Available on request to the author, 1997.

[66] M. Bhatt, A. Yaraneri, and N. Mehr, “Efficient constrained multi-agent
interactive planning using constrained dynamic potential games,” arXiv
preprint arXiv:2206.08963, 2022.

[67] F. Yang, N. Mehr, and M. Schwager, “Decentralized role assignment in
multi-agent teams via empirical game-theoretic analysis,” arXiv preprint
arXiv:2109.14755, 2021.

[68] O. Akcin, P.-h. Li, S. Agarwal, and S. P. Chinchali, “Decentralized data
collection for robotic fleet learning: A game-theoretic approach,” in Con-
ference on Robot Learning. PMLR, 2023, pp. 978–988.

40

https://doi.org/10.1177/0278364915619772
https://doi.org/10.1177/0278364915619772

[69] J. Hu, P. Bhowmick, I. Jang, F. Arvin, and A. Lanzon, “A decentralized
cluster formation containment framework for multirobot systems,” IEEE
Transactions on Robotics, vol. 37, no. 6, pp. 1936–1955, 2021.

[70] B. Reily, T. Mott, and H. Zhang, “Decentralized and communication-
free multi-robot navigation through distributed games,” arXiv preprint
arXiv:2012.09335, 2020.

[71] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory,
2nd Edition. Society for Industrial and Applied Mathematics,
1998. [Online]. Available: https://epubs.siam.org/doi/abs/10.1137/1.
9781611971132

[72] A. Fabrikant, C. Papadimitriou, and K. Talwar, “The complexity
of pure nash equilibria,” in Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, 2004. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/1007352.1007445 pp. 604–612.

[73] M. Ummels, “The complexity of nash equilibria in infinite multiplayer
games,” in International Conference on Foundations of Software
Science and Computational Structures. Springer, 2008. [Online]. Avail-
able: https://link.springer.com/chapter/10.1007/978-3-540-78499-9 3
pp. 20–34.

[74] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The
complexity of computing a nash equilibrium,” SIAM Journal on
Computing, vol. 39, no. 1, pp. 195–259, 2009. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/070699652

[75] A. Fonseca-Morales and O. Hernández-Lerma, “Potential differential
games,” Dynamic Games and Applications, vol. 8, no. 2, pp. 254–279,
2018. [Online]. Available: https://link.springer.com/article/10.1007/
s13235-017-0218-6

[76] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2012, pp. 4906–4913.

[77] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, “Distributed model
predictive control,” IEEE Control Systems Magazine, vol. 22, no. 1, pp.
44–52, 2002.

[78] Y. Zheng, S. E. Li, K. Li, F. Borrelli, and J. K. Hedrick, “Distributed
model predictive control for heterogeneous vehicle platoons under unidi-
rectional topologies,” IEEE Transactions on Control Systems Technol-
ogy, vol. 25, no. 3, pp. 899–910, 2017.

41

https://epubs.siam.org/doi/abs/10.1137/1.9781611971132
https://epubs.siam.org/doi/abs/10.1137/1.9781611971132
https://dl.acm.org/doi/abs/10.1145/1007352.1007445
https://link.springer.com/chapter/10.1007/978-3-540-78499-9_3
https://epubs.siam.org/doi/abs/10.1137/070699652
https://link.springer.com/article/10.1007/s13235-017-0218-6
https://link.springer.com/article/10.1007/s13235-017-0218-6

[79] T. Keviczky, F. Borrelli, and G. J. Balas, “Decentralized receding
horizon control for large scale dynamically decoupled systems,”
Automatica, vol. 42, no. 12, pp. 2105–2115, 2006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0005109806003049

[80] A. Richards and J. How, “Decentralized model predictive control of co-
operating uavs,” in 2004 43rd IEEE Conference on Decision and Control
(CDC) (IEEE Cat. No.04CH37601), vol. 4, 2004, pp. 4286–4291 Vol.4.

[81] G. Ferrari-Trecate, L. Galbusera, M. P. E. Marciandi, and R. Scattolini,
“Model predictive control schemes for consensus in multi-agent systems
with single- and double-integrator dynamics,” IEEE Transactions on
Automatic Control, vol. 54, no. 11, pp. 2560–2572, 2009.

[82] W. H. Warren, “Collective motion in human crowds,” Current
Directions in Psychological Science, vol. 27, no. 4, pp. 232–240, 2018.
[Online]. Available: https://doi.org/10.1177/0963721417746743

[83] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2017, pp. 3299–3304.

42

https://www.sciencedirect.com/science/article/pii/S0005109806003049
https://doi.org/10.1177/0963721417746743

	LIST OF ABBREVIATIONS
	INTRODUCTION
	Contributions
	Thesis Organization

	BACKGROUND
	Optimal Control
	Linear Dynamics and Quadratic Costs
	Nonlinear Dynamics and Non-quadratic Costs

	Multi-Agent Decision Making
	Game Theory Overview
	Illustrative Examples
	Nash Equilibrium in Static Games

	Multi-Agent Control Architectures
	Centralized Architectures
	Decentralized Architectures

	RELATED WORK
	Interactive Trajectory Planning
	Potential Games
	Decentralized Architectures in Multi-Robot Teams

	PROBLEM FORMULATION
	Planning Problem Notation
	Nash Equilibria in Dynamic Games

	PRIOR RESULTS
	Reduction to Single-Objective Optimization
	Example Cost Decomposition for Multi-Agent Navigation

	DISTRIBUTED TRAJECTORY OPTIMIZATION
	Interaction Graph
	Partitioning the Centralized Problem
	Distributed Potential-iLQR

	RESULTS
	Simulation Studies
	Analysis 1 - Unlimited Solve Time
	Analysis 2 - Real-Time Constraint

	Hardware Experiments

	CONCLUSION
	REFERENCES

