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Abstract

Classifying the number of simultaneous speakers in a reverberant environment remains a difficult problem to

solve. The less complicated but no less important problem of detecting whether a single speaker or multiple

speakers are present also poses a challenge, as multipath often distorts or alters the features commonly used

in speaker number classification. When this classification system is used as a front-end to a learning-based

system, then it becomes imperative that the classifier be accurate.

This thesis presents SinguDetect, an end-to-end system which uses the inter-aural phase differences be-

tween a pair of in-ear microphones to classify each 64 ms time window of audio as belonging to one speaker

or not. Even in heavily reverberant environments (RT60 = 2.0 s), SinguDetect is still able to maintain a

precision of around 0.8 where the number of simultaneous sources is not higher than three, whereas other

state-of-the-art algorithms tend to suffer decreases in precision and f-score in this range.
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Chapter 1

Introduction

Machine learning and artificial intelligence (AI) are fast encroaching onto all fields of research. Using a

model-free approach, machine learning is capable of solving many tasks such as classification and regression

with just data needed during the learning process — sometimes without the data being explicitly labeled.

In light of such advances, there still remains a need to provide formatted data to such algorithms using

model-based methods. This thesis’s motivating example fits this criteria. In [1], A. Xu and R. R. Choudhury

use spatial clustering as a front-end to a neural network, identifying which snippets of speech are suitable to

learn from and which are not. Specifically, it selects snippets where only one talker is present, which we will

refer to as singular frames, and the property of which we will refer to as the singularness of talkers in speech.

The totality of these singular frames is what we refer to as single talker segments. However, the clustering

used in [1] degrades heavily in performance in reverberant environments. Therefore, herein we address

that shortcoming. SinguDetect has been specifically tuned to function in reverberant environments, and

performs better than the state-of-the-art algorithms in such conditions. Any system that requires knowledge

of the singularness of talkers in a segment of audio can rely on our algorithm in environments of varying

reverberation and signal-to-noise (SNR) ratios.

The main contribution of this thesis is a method to detect the singularness of talkers in speech. This

detection is on the order of tens of milliseconds and can operate in extremely reverberant environments.

With knowledge of these singular frames, this work allows for models that rely on single talker data to be

implemented in conversation settings.

Our proposed approach operates on binaural audio, just as its inspiration did. Binaural audio is the

most natural format for human audition, as with monaural audio, almost all spatial features are lost, and

thus, monaural audio will sound flat or incomplete to most listeners [2]. For classifiers, monaural audio

is similarly deficient, as many classifiers exploit the spatial features present in recordings by two or more

microphones. SinguDetect is one such algorithm, as we will cover in detail in the system design section.

The rest of this thesis is divided into five more chapters. Chapter 2 introduces the background infor-

mation relevant to understand the subsequent sections, particularly the system design and experiment and

results chapters. Specifically, we will go over the signal model for source to sensor channels, an explanation of

the feature primarily used for our classifier, the GCC-PHAT algorithm and its relevance to SinguDetect, and,
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finally, an overview of several competing methods and their limitations compared to our proposed approach.

Chapter 3 will cover the design of SinguDetect. In particular, we will develop the theory behind each step of

the algorithm with special attention to inputs and outputs. Chapter 4 will cover the design of the experiments,

which are used to elucidate the performance of the competing methods and our proposed method, and the

corresponding results. Chapter 5 discusses the limitations of the current work, as well as possible future work

in the same direction as this thesis. Chapter 6 concludes the thesis and examines the implications of this

work.
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Chapter 2

Background

In this chapter, we introduce the models and formulae necessary for understanding the design of the proposed

method. We briefly present several state-of-the-art algorithms and highlight their differences to the presented

algorithm and the choices that resulted in these differences.

2.1 The Signal Model

We try to follow the signal model from the work of L. Wang et al [3]. Indeed, the basis for SinguDetect is

the algorithm presented in [3]. The differences between this work and that paper will be expanded upon in

Section 2.3.

Consider M = 2 microphones with an inter-microphone distance of d. At any given time instant, we

represent the audio received by a single microphone as a mixture of the following description,

xm(n) =

N∑
i

(am,i ⊛ si)(n) + vm(n) (2.1)

where xm corresponds to the signal received at microphone m, n to the time index of the signal, am,i to

the room impulse response from the m’th microphone to the i’th source, si to the i’th speech source, vm

to the noise present at the m’th microphone, and ⊛ to the convolutional operator. Note that the room

impulse response length Lrir is typically much shorter than the speech source length, and noise is uncorrelated

between the two microphones.

If we analyze the signal received by the microphones using the short-time Fourier transform (STFT) to

enter the time-frequency domain, we obtain the following equation.

Xm(k, l) =

N∑
i

Am,i(k)Si(k, l) + Vm(k, l) (2.2)

where all upper-case letters correspond to the same meaning as their lower-case counterparts, k refers to the

k’th frequency bin of the fast Fourier transform (FFT), and l refers to the l’th time frame. For the purposes

of this thesis, the total number of frequency bins will be referred to as D and the total number of frames as L.

Equation (2.2) represents a simplified signal model that is mathematically easier to work with, and therefore,

it will be the one we will work with going forward. Note that we have made the narrowband transfer function

assumption. However, instead of directly dealing with the measured signal, We use the inter-aural phase
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difference (IPD) of the microphones. This refers to the phase difference between the signal captured by the

first microphone and the second, induced by the specific acoustic transfer functions (ATFs) between the

microphones and the sources producing the signal. It is estimated by the following equation, assuming a

static (in location) source with respect to a single time frame,

ψ(k, l) = ∠
X2(k, l)

X1(k, l)
(2.3)

where then angle is derived by taking the inverse tangent of the imaginary part of the signal over the real

part [4]. However, there is a major problem with deriving the IPDs in this way. If there are multiple speech

sources active in the same time-frequency bin, or the noise is uncorrelated and present at all frequencies, then

the IPD will potentially be heavily corrupted and unreliable for further use. These possible speech sources

include echoes or reverberations, since these arrive at a different angle of arrival (AoA) than the direct path

from the source to the microphone. Nevertheless, as we will see in the results, if there is only one source that

is active for the duration of the time frame, we can usually derive the correct AoA for that source. Although

the resulting signal will be noisy, we will be able to fit linear curves to it, resulting in a fairly accurate angle

estimate.

In an anechoic scenario, our IPD simplifies further, as illustrated in Figure 2.1. Our phase difference

becomes a function of the time difference of arrival (TDoA) τ between the same signal entering the first and

second microphones and the specific frequency of sound, as shown below [3].

ψs(k, l) = 2πfkτs + 2πpk (2.4)

where fk refers to the frequency in Hz corresponding to the k’th frequency bin of the FFT, τs to the TDoA

for source s, pk to the phase wrapping term for the k’th frequency bin, and ψs to the IPD for source s. Here,

we clearly obtain a linear relation between frequency and the IPD — the only confounding variable is the

phase wrapping term pk. This wrapping term is also linearly dependent on frequency, and corresponds to the

following: |2πfkτs|2π [3]. We have the same terms from before, only | · |2π refers to the integer 2πfkτs mod 2π.

To mimic human audition, binaural microphones are often placed within a distance typically around 22 cm of

each other [5], so in these cases the τs factor is not too large. However, at higher frequencies — especially at

larger AoAs — phase wrapping frequently occurs. This, along with the problems of noise, reverberation, and

multiple simultaneous sources, will pose a problem for us later on.
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Figure 2.1: Illustration of an anechoic IPD vs. a reverberant IPD

2.2 Generalized Cross-Correlation Phase Transform

With the IPDs being noisy due to a number of factors listed in Section 2.1, it is more efficient to have a

hypothesis of what the IPD line should be. That is, rather than attempting to discern structure from the

IPD itself, we can formulate some idea of what the IPD should look like and check how close this hypothesis

is for classification. Such a hypothesis will be more akin to the blue trend line of Figure 2.1 rather than the

red. In [3], L. Wang et al. make the argument that the GCC-PHAT algorithm [6] can be modified to find

each τs from each source in a multi-source environment. They prescribe the function,

Rw(τ) = |
∑
k,l

WTF (k, l)e
jψ(k,l)e−j2πfkτ | (2.5)

where WTF refers to a time-frequency weighing factor dependent on an SNR weight, a coherence weight, and

a cancellation weight, all of which will be explained in Chapter 3. The peaks of the GCC correspond to the

most likely AoAs, although discerning the direct path AoAs from the multipath ones is quite challenging.
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However, assuming there is only one source, and that the near path signal is the loudest, the largest GCC

peak should correspond to the direct path source AoA [4], a concept depicted in Figure 2.2. Therefore, we

use the τ derived from the largest GCC peak as the hypothesis to fit an IPD line. We will expand on this

concept in Chapter 3 when we go over the central algorithm of the thesis.

Figure 2.2: GCC-PHAT function of a single speaker in a heavily reverberant environment. The red dots

indicate likely source TDoAs, with the rightmost peak being the correct one. This function was calculated

over 10 frames of the STFT.

2.3 Competing Methods for Singularness Detection

We now begin briefly covering competing methods for detecting the singularness of talkers in speech. The

first method is “Source Counting and Separation Based on Simplex Analysis” [7] by B. Laufer-Goldshtein

et al. The second method is “Overlapping Speaker Segmentation Using Multiple Hypothesis Tracking of

Fundamental Frequency” [8] by A. O. T. Hogg et al. And the final method we will cover in this section

is the inspiration behind the algorithm for SinguDetect, “An Iterative Approach to Source Counting and

Localization Using Two Distant Microphones” by L. Wang et al [3].
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2.3.1 Source Counting and Separation Based on Simplex Analysis

B. Laufer-Goldshtein et al. implement a statistical method to estimate the number of sources using data

from many different microphones. The crux of their paper is that the correlation between two instantaneous

relative transfer functions (RTFs) W̃(l) and W̃(n), where each RTF is a D dimensional vector corresponding

to the frequency bins of a single time frame of index either l or n, is

E

{
1

D
W̃T (l)W̃(n)

}
=

{ ∑N
i=1 pi(l)pi(n) if l ̸= n

1 if l = n
(2.6)

where pi(l) represents the probability of a source i being represented in a single time-frequency bin in the

observation at frame l.

The relative transfer function is defined as the ratio of acoustic transfer functions (ATFs) between two

sensors [9], which in our case would be
A2,i

A1,i
. Acquiring ATFs is difficult in practice, so [7] estimates the

instantaneous RTF through the following equation

W̃ (k, l) ≡
Φ̂y2y1(k, l)

Φ̂y1y1(k, l)
≡

∑l+T/2
n=l−T/2X2(k, n)X

∗
1 (k, n)∑l+T/2

n=l−T/2X1(k, n)X∗
1 (k, n)

(2.7)

where Φ̂y2y1 refers to the estimate of the cross power spectral density of the received signal, Φ̂y1y1 to the

estimate of the power spectral density of the first microphone, and T to the size of the window to compute

the RTF.

Across all sources in a single time frame, probabilities sum to 1:
∑N
i pi(l) = 1. Each RTF W̃T (l) can

be thought of as the result of D trials, where the outcome of each trial is the time-frequency bin of one

of the unknown RTFs
A2,i

A1,i
. Therefore, [7] assumes the W-disjoint orthogonality of speech, where each

time-frequency bin is only composed of a single source. That is, there is no mixture of sources within each

time-frequency bin.

From this formulation, B. Laufer-Goldshtein et al. make the argument that the correlation matrix, of

shape L× L, where L is the number of time frames, can be decomposed using the eigendecomposition, and

that the resulting N eigenvectors corresponding to the N largest eigenvalues form a simplex that corresponds

to the probability of activity of each source along the observation index 1 ≤ l ≤ L [7]. They estimate the

number of sources N by finding the number of eigenvalues larger than a certain scalar multiple of the largest

eigenvalue. This scalar’s value can be varied to elicit better performance in certain scenarios and is an

important hyperparameter. Through mathematical process, they produce an estimate of the matrix Q such

that the inverse of this matrix multiplied by the eigenvectors recovers the original source probabilities, as

shown below.

p̂(l) = Q̂
−1

ν(l) (2.8)

Here, p̂(l) is the estimate of the source probabilities, Q̂
−1

is the aforementioned Q matrix, and ν(l) is the

matrix of N eigenvectors of the correlation matrix corresponding to the N largest eigenvalues. With these

estimated probabilities, we can theoretically fulfill the goals of SinguDetect, as we can go frame by frame and

determine whether the frame is probabilistically dominated by any source. The authors of [7] decide this by

setting a parameter β, and declaring a frame to be a single speaker frame if any value in the vector p̂(l) is

greater than β. The value of β in the paper is 0.9, which is a logical choice as that would indicate the frame
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heavily dominated by a single speaker. In this thesis’s implementation of the paper’s algorithm, β was set to

0.6 instead of 0.9 because it was found this value worked better for the considered experimental conditions.

Why did we choose the IPD based approach over this correlation matrix based approach? Firstly, the

signal model has some weaknesses. It assumes that the probability is fixed per frame — every time-frequency

bin across the same time frame has an independent probability of belonging to each source. However, this

is not necessarily true, as different talkers are likely to have different pitched voices. Thus, frequencies

around the pitch and harmonics of a talker are more likely to belong to that talker. This weakens the

convergence of Equation (2.6), as there would not be a single probability for each talker for every time

frame — more probabilities are required for separate frequency bins as well. Secondly, the W-disjoint

orthogonality assumption is sometimes violated in practice [10]. Again, this weakens the signal model as the

RTF’s time-frequency bins W̃ (k, l) cannot be represented merely by a single source RTF’s corresponding

time-frequency bin . Finally, the most important reason is that the correlation matrix is difficult to reckon

with. Although B. Laufer-Goldshtein et al. estimate the probability vector, and use that as the feature for

classification, any improvements in the classification algorithm have to tackle the estimation of the Q matrix.

Thus, any tweaks or improvements would be non-trivial in nature. In contrast, IPDs are easy to digest

visually, and, thus, any classifier built on top of them can be improved upon more easily and transparently —

i.e. we can tell why a proposed improvement actually effects an increase in accuracy.

2.3.2 Overlapping Speaker Segmentation Using Multiple Hypothesis Tracking

of Fundamental Frequency

As opposed to using the correlation matrix as the central feature in their algorithm, A. O. T. Hogg et al. use

pitch. To detect pitches from multi-speaker data, the paper uses PEFAC [11]. However, PEFAC produces

a number of possible pitches and harmonics without delineation between them at each time step, meaning

we do not know which values correspond to the pitches and which to the harmonics of one of these pitches.

Therefore, in order to narrow down the number of candidate pitches and harmonics, the paper produces a

set of non-overlapping pitches and their respective harmonics for every frame of data [8]. These pitches are

determined as the lowest possible values — above and below a certain threshold Fmin and Fmax — that have

at least one other value in the set close to an integer multiple of itself. These integer multiples (within a

tolerance) of the proposed pitch are the hypothesized harmonics belonging to that pitch. With the set of

possible pitches and their associated harmonics, a simple iterative pruning process is conducted per time

step. First, the longest observation, that is the pitch with the highest number of associated harmonics, is

added to the final set, and any other pitches with harmonics that intersect with this observation are removed

from consideration [8]. Then, this step is repeated until no candidates are left, and the final set containing

non-overlapping pitches and harmonics is produced.

Then, the paper moves onto using Kalman filters and multiple hypothesis tracking. For each time instant,

usually 10 ms in time, pitches and their harmonics are tracked. Depending on past values, overlapping

observations, etc. tracks are either terminated or propagated [8]. The end result is an estimate of the number

of speakers, given by the number of ‘alive’ tracks, at each time instant. Therefore, unlike part of [7], this

work is not truly a detector of whether there is one speaker or multiple, but rather of the number of speakers

total in each time instant. Nevertheless, we can clearly and easily change it into such a detector.

This pitch based approach was not taken for two reasons. Firstly, PEFAC has empirically produced

pitches and harmonics that either do not correspond to any speaker or have to be mapped to a speaker

already responsible for another set of pitches and harmonics. This derails the hypothesis tracking process, as
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the cardinality of tracks is taken as the number of speakers per time instant. Secondly, and related to the first

point, is that the performance of the algorithm in heavily reverberant environments is rather unreliable, as we

will see in the results section. It seems that pitch detection is tricky in these environments. For example, in

single speaker scenarios, multiple simultaneous sets of pitches and harmonics have been produced where there

should only be a single set. Therefore, it is impossible for any downstream algorithm to rectify this. There

is no way to differentiate the ‘real’ set from the false ones, if such a delineation even exists, and correctly

classify the frame as singular as a result.

2.3.3 An Iterative Approach to Source Counting and Localization Using Two

Distant Microphones

Finally, we move onto the paper that provides the basis for this thesis. L. Wang et al. use the IPD as their

primary feature for classification. They use the GCC-PHAT to produce a trend line for the IPD using the

derived τ corresponding to the largest GCC peak similar to what was alluded to before. Here, the major

difference is that for each iteration of the algorithm, the trend line is potentially shifted by an offset. This

offset is decided according to a loss criterion, defined below.

ρ′(k, l, τq) = |∠ej(ψ(k,l)−(2πfkτq+δ
′
q))| (2.9)

where τq represents the TDoA from the q’th iteration’s GCC-PHAT peak, and δ′q refers to the shift in the

trend line 2πfkτq. With this loss function, the optimal shift is defined as the following

δq = arg min
δ

∑
k,l

|∠ej(ψ(k,l)−(2πfkτq+δ))| (2.10)

The paper mentions that an exhaustive search is conducted for the value δq in the range [−π/3, π/3]. Searching
for this offset is important, because as Figure 2.1 and Figure 2.3 illustrate, the IPD often deviates away from

the hypothesized trend line.

9



Figure 2.3: IPD of a single speaker in a heavily reverberant environment. This IPD is a composite of 5

consecutive frames of the same speaker.

Upon discerning the optimal offset, the algorithm then alters the weight of WTF from Equation (2.5) to

have zeros where the time-frequency bins of the IPD are sufficiently within a threshold ρTH of the potentially

shifted trend line 2πfkτq + δq, and moves onto the next iteration. Every time frame is considered for the GCC

calculation (see Equation (2.5)), and the time-frequency bins are cancelled across all time frames as well.

The stop criterion for this process is three sided. First, if the number of time-frequency bins that are not

zeroed out is 1% of the total number of time-frequency bins, then the iteration stopped. Alternatively, if

the kurtosis value of the GCC-PHAT function is smaller than the threshold KTH , then the process is also

halted. Finally, if the number of iterations is equal to ten, the process stops. Every unique TDoA that the

GCC-PHAT produces during these iterations is recorded as belonging to a source. If two hypothesized sources

have TDoAs that are relatively close to each other, according to the following equation, they will be merged.

|τp − τq| <
dsin(Amin)

c
(2.11)

where Amin is a minimum separation angle, defined as 10◦ by the paper, τp and τq are the TDoAs produced

by GCC-PHAT for two separate iterations and theoretical sources p and q respectively, d is the separation

distance between microphones (typically around 22 cm for binaural microphones), and c is the speed of sound,

which will be 343 m/s in this thesis, corresponding to its speed in air at 20◦C [12]. If this criterion is met,
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then the TDoAs will be merged according to which GCC-PHAT peak was larger, that is

τm =

{
τp R̃o(τp) > R̃o(τq)

τq otherwise
(2.12)

where R̃o(τp) refers to the GCC-PHAT function’s value at τp during the p’th iteration. See Equation (2.5)

for the details of the implementation of GCC-PHAT here. The cardinality of the final set of TDoAs is taken

as the number of sources in the particular audio file presented to the algorithm.

This algorithm suffers from a few weaknesses with respect to singularness detection, the solution to which

is the main contribution of this thesis. Firstly, the algorithm uses every time frame in the STFT of the

observation for its operation. This severely reduces the granularity of the source counting mechanism — it

cannot classify whether single frames are dominated by a single source. If the number of time frames is

restricted to provide a sense of granularity, then further issues occur. In particular, with 10 frames of data for

example, the kurtosis of the GCC-PHAT function as part of the stop criteria of the algorithm was empirically

found to be unreliable given heavily reverberant data. Oftentimes, either the algorithm terminated too early,

when there were a greater number of sources than the number of iterations conducted, or the algorithm hit

the iteration limit because the kurtosis did not decrease below the threshold. With the algorithm stopping

prematurely, the correct number of sources may not be detected. For the purposes of singularness detection,

if only one source is detected when there are in fact many, an error will occur.

Additionally, merely shifting the IPD trend line may not be sufficient to capture the perturbations

reverberation produces in the IPD, as the paper posits [3]. We can see this potentially occurring in Figure

2.1. If we cancel out enough time frequency bins according to one trendline, we may not be able to recover

the same TDoA from the GCC-PHAT peaks. This would prevent us from discovering the trend that starts at

4000 Hz for example in the figure. Thus, we will effectively miss some time-frequency bins that belong to

the same trend line derived from a certain TDoA that will affect the accuracy of our algorithm in further

iterations. To summarize, SinguDetect was built to address the shortcomings of the current state-of-the-art

algorithms used in either source counting or singularness detection. Although SinguDetect ’s algorithm is

based upon the work done in [3], it has several important improvements that are substantial in making

progress towards solving the overall problem of detecting the singularness of talkers in speech.
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Chapter 3

System Design

Now, we delve into the system design of SinguDetect. First we will cover the calculation of the IPDs, followed

by the GCC-PHAT equation. Next, we will cover the notion of structure in our IPD, how we quantify that

structure, and we will explain why measures of structure are useful in classifying singularness. Then, we will

formulate an improved method of establishing a trend line based on the given GCC-PHAT peak, which has a

higher probability of more closely following the measured IPDs in singular frames. Finally, we describe how

SinguDetect assimilates this information to predict the singularness of talkers in a frame.

To provide an overview of the system, SinguDetect begins by iterating through every frame of data in the

STFT of the microphone observations. Then, we calculate the GCC-PHAT function using the STFT around

that frame, including several frames of data in the calculation. Using the GCC-PHAT function, we construct

a trend line based off the most likely TDoA. We segment the trend line into regions between phase wrappings,

indexed i ∈ {1, ..., I}. For each segment i, we establish which time-frequency bins of the current frame’s IPD

are within a threshold ρTH of the segment. If the number of bins within this threshold are sufficiently large

relative to the length of the segment, then we posit that the IPD has enough structure that the frame at least

has one source present in it. Otherwise, if no segments meet this criteria, then we declare that the frame

has no sources dominating it as its IPD is too unstructured, hence it is not singular. In the former case, we

repeat the same process after cancelling out the time-frequency bins within the threshold ρTH of the IPD of

the current frame, as well as the corresponding bins in the current window of the GCC-PHAT function. If we

again find sufficient structure in the IPD, then we posit that the frame has another source present in it, so we

mark the frame as non-singular. If we do not meet this condition, then we finally mark the frame as singular.

3.1 IPD Calculation

In order to produce the IPD, L. Wang et al. use Equation (2.3). While this method generally produces suitable

results, in the noisy and reverberant environments tested in this thesis, it was found to be unsatisfactory.

SinguDetect uses a more robust means of IPD calculation. Rather than take the angle between the STFT of

the first microphone and the second, the algorithm instead uses the angle of the estimated instantaneous

relative transfer function. We use the method of estimating the RTF from [7]. Once we have estimated the
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RTF, then estimating the IPD is straightforward. We simply take the angle of the RTF as shown below.

ψ̂(k, l) = ∠(W̃ (k, l)) = ∠(

∑l+T/2
n=l−T/2 Φ̂y2y1(k, n)∑l+T/2
n=l−T/2 Φ̂y1y1(k, n)

) (3.1)

Using the estimated RTF rather than taking the angle of the ratio of the microphone signals directly has

empirically given better results, as it averages out errors in the IPD due to noise or reverberation over the

prescribed window. With too short a window, our IPDs will be too noisy to use for classification, but with

too long a window, our IPDs will not adequately represent the frame they are designated for.

3.2 GCC-PHAT

Although we have examined the GCC-PHAT equation, we did not explain the WTF term. This term in fact

consists of three separate components. One is an SNR term, one is based on coherence, and the final is used

to cancel out time-frequency bins [3]. These terms are simply multiplied by each other to produce the final

weight

WTF (k, l) =WSNR(k, l)Wcoh(k, l)Wcancel(k, l) (3.2)

and the final term serves as a mean of eliminating the impact of time-frequency bins that have too low of

an SNR, too low coherence, or are to be canceled out during the algorithm’s iteration. The WSNR term is

calculated by detecting whether the local SNR λ(k, l) exceeds a threshold λTH , and setting the term to zero

if it does not meet this criteria. λ(k, l) is calculated by the following equation

λ(k, l) = min (
Px1(k, l)

Pv1(k, l)
− 1,

Px2(k, l)

Pv2(k, l)
− 1) (3.3)

where Pxm
(k, l) = |Xm(k, l)|2 is the power of the m’th microphone signal, while Pvm(k, l) is the power of the

noise signal [3]. We can estimate Pvm(k, l) with the following equation, assuming our noise is stationary and

that we have frames of data Lv where we know only noise is present

Pvm(k) =
1

Lv

Lv∑
l=1

|Xm(k, l)|2 (3.4)

which is a simple estimation of the expectation of the power of the noise at every frequency. Once we have

obtained this value, we can then proceed to set WSNR appropriately in the following equation

WSNR(k, l) =

{
1 λ(k, l) > λTH

0 otherwise
(3.5)

Next, we settle the issue of the Wcoh weight. Coherence is a metric that indicates how likely it is that a single

time-frequency bin is dominated by a singular source [3]. Therefore, we set Wcoh to 1 if our coherence at a

time-frequency bin, r(k, l) is higher than a threshold rTH , and 0 otherwise, similar to the WSNR term. This

coherence r(k, l) is defined as the following [3]

r(k, l) =

∣∣∣∣∣ E(X1(k, l)X
∗
2 (k, l))√

E(X1(k, l)X∗
1 (k, l))

√
E(X2(k, l)X∗

2 (k, l))

∣∣∣∣∣ (3.6)
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where E(·) refers to the expectation. We estimate the expectation by averaging the value enclosed by the

operation over 2C +1 consecutive time frames. Finally, we address the Wcancel weight. We simply set certain

time-frequency bins of Wcancel to 0 if the previous iteration’s IPD trend line approached the IPD within

a threshold ρTH . To reiterate, to produce the final weighting WTF we multiply all three weights together:

WSNRWcohWcancel.

Finally, we resolve the issue of narrowing the GCC-PHAT calculation find the TDoA of a single frame.

We can simply sum across a window of time frames W to localize the GCC-PHAT

R̃w(τ) =

∣∣∣∣∣∣∣∣∣∣
l+
W

2∑
l′=l−

W

2

∑
k

WTF (k, l
′)ejψ̂(k,l)e−j2πfkτ

∣∣∣∣∣∣∣∣∣∣
(3.7)

where l is the time frame in the current iteration. However, we need to be careful that the window W is not

too large such that the derived τ no longer represents an AoA found in the current frame, but not too small

that the function becomes unreliable. We can then center and normalize Rw(τ) by subtracting its minimum

value from it, and then dividing it by its maximum value. We do this in order to ensure that our peak finding

remains consistent.

3.3 Measuring Structure in the IPD

Once we have the localized GCC-PHAT function R̃w(τ), we find the most probable source TDoA by taking

the τ value corresponding to the highest peak. We can generate an estimate an estimate of the single source

IPD trend line using the following equation to calculate the slope of the line

µ = 2πfincτ (3.8)

where finc refers to the increment in frequencies across each STFT frequency bin. For example, an FFT size

of 1024 and a sampling frequency of 16,000 Hz would yield an finc of 15.625 Hz. Then we merely multiply µ

by the vector of frequencies f = {0, . . . , fmax} where fmax corresponds to the integer
fs

2
, where fs refers

to the sampling frequency, and the number of entries in f to

⌊
K

2

⌋
+ 1 to get the trend line γ. In order to

conform to the phase wrapping in the IPD, we wrap the trend line by using the following equation

γ̄ = (γ + π)2π − π (3.9)

Now we have a hypothesis of what the observed IPD should be, assuming the TDoA we have captured

corresponds to the direct path from a source to the microphone. However, if our frame contains multiple

sources within it, we will find that the IPD can differ greatly from this hypothesis, especially in reverberant

and noisy scenarios. Uncorrelated noise will perturb the IPD, because it will randomly (across frequencies)

bias the measured IPD positively or negatively [13]. Reverberation will similarly disrupt the structure of

the IPD, as the image of the source from angles other than the direct path can produce a different IPD

pattern than the direct path scenario. This pattern can clash with the direct path IPD as well as other

multipath IPDs across frequency bins, again reducing the structure of the measured IPD. This means that the
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presence of two or more speakers may severely clobber the structure of the measured IPD, and consequently

the GCC-PHAT, which relies on the IPD to calculate the most probable direct path TDoA. This situation

would violate the key assumption in [3] — that the time-frequency bins closest to the estimated IPD trend

line belong to the source that corresponds to the TDoA that generated the trend line. We can see this

illustrated in Figure 3.1. The singular frame on the left clearly corresponds to a source with an AoA of

around 0◦ at the microphone, whereas the two source frame on the right is relatively unstructured and it is

not obvious which AoAs the two sources produce, or whether there are two sources present at all. Therefore,

the iterative algorithm in [3] is unlikely to produce the correct direct path AoAs, and successfully cancel out

the time-frequency bins related to the two sources.

Figure 3.1: Illustration of an IPD in a singular frame vs. two source frame. The source producing the singular

frame is present in the two source frame. (a) Singular frame, (b) Two source frame.

Thus, we must devise a method to account for the degradation of the structure of the IPD in multi-source

frames, rather than relying on the ability to count the number of unique AoAs across iterations. An efficient

method to detect the structure of the IPD is to check how closely the trend line γ̄ matches the measured
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IPD. If there are a sufficient number of frequency bins where the IPD is significantly close to the trend line,

then we claim that the frame is highly likely to contain at least one source in it. We reason that if these

conditions are met, then the calculated anechoic IPD derived from the highest peak of the GCC-PHAT must

accurately represent the measured IPD, thus at least one source is present. In this case, just as in [3], we

cancel the time-frequency bins associated with the first TDoA from both the GCC-PHAT and the IPD, and

repeat the process. If we find that the new trend line derived from the new TDoA fulfills the aforementioned

condition, then we have at least a two source frame, and thus we mark the frame as non-singular. In the

opposite case, we can finally mark the frame as singular.

However, we must carefully consider how to count the number of frequency bins where the trend line

successfully approximates the measured IPD. The frequency bins in which perturbations caused by noise and

reverberation reside are difficult to predict, and therefore can disrupt the structure of the IPD unevenly. For

example, in Figure 2.3, the IPD has significant deviations occurring around 0 Hz and around 2000 Hz. In

order to mitigate this, we propose that we should count these frequency bins between each phase unwrapping.

Although these perturbations do not necessarily occur between phase wrappings, we posit that it is simple,

efficient, and effective to account for these disturbances by counting between each phase wrapping. Generally,

the presence of a single region between phase wrappings with enough frequency bins matching the trend line

was enough to successfully identify the frame as at least containing one source.

To summarize, we begin our algorithm by finding where the phase wraps occurs on the trend line. To do

this, we check where the difference between the consecutive values of the trend line is greater than 5 radians.

Then, for each segment of the trend line between phase wraps, γ̄i, where i refers to the index of the segment,

we count the number of time-frequency bins where the IPD is within a threshold ρTH of γ̄i. We use the

absolute error to determine the distance of the IPD from γ̄i, which is shown in Equation (3.11 below. We use

this distance to find Ci, the number of frequency bins in the trendline γ̄i sufficiently close to the IPD ψ̂(k, l)

as shown in Equation (3.10) below.

Ci =
∑
k∈Ωi

1i(k) (3.10)

where the indicator function 1i(k) is defined as the following

1i(k) =

{
1 if

∣∣∣ψ̂(k, l)− γ̃i(k)∣∣∣ < ρTH

0 otherwise
(3.11)

where l refers to the current frame. If Ci is greater than another threshold ζi, then we predict that

our trend line γ̃ correctly represents the TDoA of a source present in that frame, as it contains sufficient

structure. Otherwise, we predict that the frame is non-singular, and move onto the next frame. The reason

why the threshold is indexed by i is that we set it to be a multiple of the length of the line segment. Since

line segments vary in length — substantially across time frames — it is logical to examine the ratio of well

predicted IPD values to the number of time-frequency bins within the segment. The higher this ratio is, the

higher the probability the trend line represents a real TDoA.

Assuming that there are enough time-frequency bins to meet ζi, we now proceed to check if there is

another TDoA present. We use the current TDoA to establish trend lines in all frames in the current window,

and then we cancel out all time-frequency bins from all STFT frames in the window W , and all bins from the

current IPD where the trend lines are within ρTH of the corresponding IPDs. Let us refer to the set Ωcancel

as the union of the sets of time-frequency bins that are to be canceled. This union is composed of the sets Ωl
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where the l refers to the frame index, as before.. We cancel the bins in the GCC-PHAT function window

accordingly

Wcancel(k, l) =

{
0 if k ∈ Ωl

1 otherwise
(3.12)

And then we cancel the bins in the IPD as follows

ψ̂(k, l) = κmax if k ∈ Ωl (3.13)

where κmax refers to an arbitrarily high value. We ‘cancel’ the IPD by setting it to κmax in order to ensure

that the subsequent trend lines have no chance of claiming these time-frequency bins again.

Then, we repeat the process — calculate the GCC-PHAT function, fit trend lines, and check for the two

thresholds ρTH and each ζi. If we find the GCC-PHAT has a peak in the same location as before within a

tolerance Amin, we find the TDoA corresponding to the next largest value of the function that guarantees it

to be outside of this tolerance. This time, if we find that any threshold ζi is met, we know that there are at

least two TDoAs present in the time frame — thus, we have a non-singular frame. On the other hand, if the

threshold is not met, we ultimately predict a singular frame. We reason that with the contributions from the

previous TDoA canceled out, the new TDoA corresponding to the peak or next largest viable value of the

re-calculated GCC-PHAT function should belong to another source. And, with the contributions from the

previous TDoA canceled out in the IPD, our trend line will not consider bins from the previous TDoA. Thus,

if the trend line exceeds the two thresholds, it has a high possibility of representing an actual TDoA.

3.4 Offsetting the Trend Line

Although we have settled the issue of the lack of structure in non-singular IPDs thwarting the algorithm in

[3], we have one final problem to address. The offset calculation from Equation (2.10) is a global optimum,

i.e. it involves calculating the loss over every time frame and frequency bin. Even if we were to restrict

the loss to a single time frame to fulfill our purposes, the loss function still presents a problem. As stated

previously, the IPD suffers difficult to predict perturbations at certain frequencies, and in environments where

strong early reflections are present, the IPD can have non-linear characteristics [3]. This can be observed

in Figure 2.3, where the IPD clearly varies non-linearly with respect to frequency at around 0 Hz. Thus,

we may encounter a situation where the optimal offset leads the trend line to be misplaced, such that the

IPD appears unstructured, and therefore non-singular according to our previous metrics for structure. We

can observe this phenomena in Figure 3.2. The original offset calculation method, prescribed in [3], fails to

capture the locally linear trends in the IPD because of the globality of the loss function.
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Figure 3.2: Illustration of the results of the original method in calculating the offset of the trend line vs. the

new method of calculating the trend line compared to the measured IPD

In line with our previous thinking, we must therefore devise a more local means of calculating the offset,

such that we can approximate the IPD more correctly, assuming the TDoA derived from the GCC-PHAT

matches the direct path TDoA, and assuming the frame is singular. Therefore, we prescribe that the optimal

offset be calculated for each segment of the trend line between phase wrappings, producing a piece-wise linear

function similar to the one depicted in Figure 3.2. Through this method, we can increase the probability that

the trend line matches the measured IPD.

Thus, at each phase wrap, we produce the best offset such that the absolute error between γ̄i(k + ϕ) and

the IPD is minimized, that is

ϕ̂i = argminϕ
∑
k∈Ωi

|γ̄i(k + ϕ)− ψ(k, l)| (3.14)

where Ωi refers to the frequency bins in the current segment. Starting from the first segment, we calculate its

optimal offset ϕ̂1 and produce the first segment γ̃1, of our trend line, with γ̃i referring to the i’th optimally
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shifted line segment in our final trend line and γ̃ to the line itself. To produce the rest of the trend line, we

repeat the process, beginning with the end of the previous segment. Of course, these offset segments may

need to be phase wrapped themselves, as seen in Figure 3.2, so we do so and begin the next segment on the

second phase wrap of these segments.

3.5 Summary

This entire sequence of steps for SinguDetect can be summarized in algorithm 1, found below.

Algorithm 1 SinguDetect

Input: X1, X2 — the microphone observations and Lv, the noise frames

Output: Singularness of each frame

1: ρTH ← 0.5

2: Calculate the IPDs using Equation (3.1)

3: for l in L do

4: Calculate the GCC-PHAT using Equation (3.7)

5: Calculate the slope µ of the initial trend line using Equation (3.8)

6: Calculate the trend line γ̃ using Equations (3.9) and (3.14)

7: fit← False

8: for Segment seg in γ̃ do

9: ζseg ← len(seg) · 0.5
10: calculate Cseg using Equation (3.10)

11: if Cseg > ζseg then

12: fit← True

13: end if

14: end for

15: if fit is True then

16: cancel all time-frequency bins in the GCC-PHAT according to Equation (3.12)

17: cancel all time-frequency bins in the current IPD according to Equation (3.13)

18: repeat steps 4–13

19: if fit is True then

20: Declare current frame l as non-singular

21: else

22: Declare current frame l as singular

23: end if

24: else

25: Declare current frame l as non-singular

26: end if

27: end for
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Chapter 4

Experiments and Results

In the previous section, we introduced the algorithms and procedures used in SinguDetect. In this section,

we present experimental results that test the ability of the proposed algorithm to detect singularness. In

particular, we compare our proposed approach against against the algorithms in Section 2.3 on three different

scenarios. Since the performance of SinguDetect is dependent on various parameters, we first discuss the

specific choices made for our experiments.

4.1 Parameters and Details

We list the parameters associated with the algorithm in Table 4.1 below. To produce the STFT, we use an

FFT size of 2048 and an overlap of 1024 or a hop length of 1024. Our experiment consists of 100 trials using

three different sets of binaural room impulse responses (BRIRs), and under five different signal to noise ratios

(SNRs). Thus, the total number of trials run was 1500. These 100 trials consisted of five different numbers of

speakers, ranging from 1 to 5, with each speaker number being assigned to twenty trials each. Each trial

comprised no more than 11 seconds of audio and no less than 1 second, and each speaker began and ended at

a random time. The candidate pool for the speakers was fixed to 10 different speakers chosen from the CSTR

VCTK Corpus from the University of Edinburgh [14], with equal representation from men and women. This

corpus was chosen because it comprised anechoic and noiseless mono audio. In order to make the resulting

audio reverberant, we convolved the BRiRs with the corpus samples, producing reverberant binaural audio

suitable to replace actual microphone signals. The list of SNRs used was 25 dB, 20 dB, 15 dB, 10 dB, and

5 dB. At 5 dB, the results degraded to a point that further decreasing the SNR would no longer produce

any insightful information. For the experiment, we added uncorrelated zero mean Gaussian noise to both

microphone signals by sampling from a Gaussian distribution with a set standard deviation. These standard

deviations were chosen such that they would produce the corresponding desired SNR.
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Table 4.1: Parameters used by SinguDetect

Parameter Section Value

λTH 3.2 5

C 3.2 5

rTH 3.2 0.9

ρTH 3.3 0.5

T 3.1 6

W 3.2 6

ζi 3.3 length(γ̄i)/2

c 2.3.3 343.0 m/s

d 2.3.3 0.27 m

αTH 4.4 0.8

Amin 3.3 12◦

4.2 Algorithms for Comparison

We compare the proposed SinguDetect with two of the algorithms previously outlined, the simplex analysis

of B. Laufer-Goldshtein et al. [7] and the pitch detection of A. O. T. Hogg et al [8]. In the case of the former,

the threshold β was set to 0.6, because this empirically produced the best results. Otherwise, all other

parameters for the simplex analysis algorithm remained the same. As for the pitch detection algorithm, only

a small change was made. Instead of using a minimum amplitude of 105 for PEFAC, we used an amplitude of

4 · 105 which was found to be more performant on the data for this experiment.

4.3 Explanation of Scenarios

4.3.1 Scenario (a)

As previously explained, we produced our data using BRiRs from three different datasets. The first — scenario

(a) — was derived from the dataset 360◦ Binaural Room Impulse Response (BRIR) Database for 6DOF

spatial perception research [15]. Here, a portion of the dataset has the Neumann KU100 binaural head rotated

in 3.6◦ increments to provide a full 360◦ set of measurements in a reverberant concert hall. In particular, we

use the C2m set of BRiRs for our trials, and we use every second angle in order to avoid providing sources

that are too angularly similar. Thus, the true angular increment for our purposes is 7.2◦. Finally, the average

RT60 of the concert hall where the dataset was recorded is 2.1 s [15]. Finally, the speaker is located at a

position sufficient for far-field audio recording, a distance of 2 meters.

4.3.2 Scenario (b)

The second scenario was derived from the dataset A Spatial Audio Impulse Response Compilation Captured

at the WDR Broadcast Studios [16]. As before, part of the dataset was captured using the Neumann KU100

binaural head rotated in 1◦ increments to provide a full 360◦ set of measurements in a large broadcast studio.

In particular, we use the LBS KU MICS PAC set of BRiRs for our trials, and we use every tenth angle in

order to avoid providing sources that are too angularly similar. Thus, the true angular increment for our
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purposes is 10◦. Finally, the average RT60 of the large broadcast studio is around 1–2 s for frequencies below

8000 Hz [16], and the speaker is located at a position sufficient for far-field audio recording.

4.3.3 Scenario (c)

The third scenario was derived from the dataset Binaural room impulse responses of a 5.0 surround setup for

different listening positions. [17]. Unlike before, the dataset was collected using a KEMAR head rotated in n

1◦ increments to provide 180◦ set of measurements in listening room Calypso at Technische Universität Berlin.

This 180◦ coverage refers to the arc in front of the KEMAR head, such that no recordings with the speaker

behind the microphones are recorded. In particular, we use the 6 KEMAR Calypso Surround X0.0m Y0.0m

set of BRiRs for our trials, and we use every second angle in order to increase the level of difficulty for

SinguDetect. Thus, the true angular increment is 2◦. Finally, the average RT60 of the listening room is 0.17 s

at 1000 Hz [17], and the speaker is located at a position sufficient for far-field audio recording, a distance of 2

meters as we select speaker 2 for our BRiRs.

4.4 Evaluation Measure

We shape our evaluation measure according to the original use case. Because [1] was interested in capturing

data where single talkers were present, precision, recall and F-score are natural tools for evaluation, just

as in [3]. In this case, precision refers to the ratio of correct identifications of single talker frames to the

total number of such identifications for the algorithm in question. Meanwhile, recall refers to the ratio of

correct identifications of single talker frames to the total number of actual single talker frames. Therefore, the

F-score can be thought of as a balance between these two scores, with the lower of the two scores more heavily

influencing the F-score. Furthermore, we can use a factor of βR to define how important the recall score is

relative to the precision [18]. Let us define the number of correct identifications as Strue, the total number

of identifications as Stotal, the total number of actual single talker frames as Nsingle, and finally precision,

recall, and f-score as P , R, and Fscore respectively. Equations for the three metrics can be found below.

P =
Strue
Stotal

, R =
Strue
Nsingle

, Fscore = (1 + β2
R)

P ·R
(P · β2

R) +R
(4.1)

Clearly, we wish for any prospective singularness detector to have high precision and recall. If it were to

have a low precision, then the data that it produces cannot be trusted for use in downstream applications.

However, if it were to have a low recall, then it would require a lot of samples in order to produce enough

data for downstream applications which is also undesirable. Nevertheless, below a certain precision score, the

recall rate becomes irrelevant. For example, a precision score of 0.5 means we can only trust half the samples

reported to be singular, which would badly pollute any data for upstream applications. Therefore, we set the

βR parameter accordingly to 0.5, because precision is twice as important for our application than recall is.

Overall, the f-score provides us with a good measurement for the success of any algorithm for singularness

detection.

Our definition of a single talker frame is as follows. If the ratio of the sum of the spectral density of the

noisy mix to the sum of the spectral density of any of the clean sources is greater than a threshold αTH , then

we declare that frame to be singular. That is,
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G(l) =

 1 if ∃i such that

∑K
k=1 |Si(k, l)|2∑K
k=1 |Xm(k, l)|2

> αTH

0 otherwise

(4.2)

where G(l) refers to whether or not the l′th frame is singular. Note that αTH should be a fairly high

value, as the noisy mix rarely equals the sum of the power spectra of the noise and the individual clean

sources due to destructive and constructive interference. Therefore, we do not wish to have a singular frame

where more than one source is ‘dominant’ by virtue of the threshold.

4.5 Effects of finding the Optimal Offset

As explained in Section 3.4, we break the trend line into segments, and solve for the optimal offset for each

segment. This is in contrast to [3], which solves for the optimal offset among all frequency bins overall. In

order to elucidate the advantage of examining each segment separately, we therefore compare the results

of the original SinguDetect algorithm with one that is modified to implement a line fitting algorithm more

closely aligned to [3]. We refer to this modified algorithm as the iterative algorithm. To elaborate, on the

first iteration it produces the best offset for the phase wrapped line with the slope derived from Equation

(3.8). Then, it iteratively cancels the time-frequency bins, just as in the original SinguDetect algorithm, such

that the GCC-PHAT function produces a different highest peak, indicating a new AoA. Every time the same

AoA is produced, the optimal offset is recalculated, and time-frequency bins are accordingly canceled. If

this process repeats 5 times, then it is halted, and the next largest peak is used to produce a new phase

wrapped line. Therefore, the main difference in result between this iterative algorithm and SinguDetect

occurs when the loss function in Equation (2.9) leads to an offset of the entire trend line such that the trend

line substantially differs from the linearly varying portions of the IPD in a singular frame. Alternatively, a

difference would emerge if the original SinguDetect algorithm erroneously identifies a frame as singular, as a

result of producing a piece-wise linear trend line that sufficiently matched the observed IPD.

We can see the slight advantage of the non-iterative algorithm in Figure 4.1. In scenario (a), the two

algorithms have almost indistinguishable F-scores, as they match F-scores at every SNR and number of sources.

However, in scenario (b), we can see that SinguDetect boasts a slight advantage in terms of F-score, which is

present at a lower number of sources, and diminishes at a higher number of sources. This advantage can be

as high as 0.05 — somewhat marginal, but still important as we will see late in distinguishing SinguDetect

from other algorithms. It seems that in scenario (b), as opposed to scenario (a), there exists instances where

the iterative process does produce an offset such that some singular frames are incorrectly identified as too

unstructured. These instances reduce in frequency at higher source numbers likely because both algorithms

are overestimating the number of singular frames, which the segment examination method does not prevent.

Note that for Figure 4.1, the graphs are cutoff below an F-score of 0.4 because any data below that number

are practically irrelevant, and showing such numbers would make the important data less readable.
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Figure 4.1: F-score vs. SNR across the possible number of sources for SinguDetect using the iterative method

vs. the non-iterative method

4.6 Results of BRiR Scenarios

Now, we begin comparing the algorithms by presenting the same type of data as in Section 4.5 with the

F-scores averaged across all three scenarios. Examining Figure 4.2, we can see that F-scores intuitively

decrease with a lower SNR. Particularly at the higher source numbers of 3 and above, we can see that no

algorithm performs well at SNRs below 15 dB. This is why the range of SNRs was set from between 5 dB to

25 dB, as further information resulting from SNRs below the 5 dB mark would be uninformative. Although

it is clear why a low SNR degrades the F-scores of the algorithms so severely, it is not clear why having

a higher number of sources has such a negative impact. With our proposed approach, it is possible that

the unpredictable behavior of the sources interfering with each other often does produce a clear IPD trend

line that SinguDetect perceives as a singular source. For the simplex method, one would assume that the

estimated probabilities for each individual source would remain low in the presence of more sources, resulting

in accurate predictions as to the lack of singularness in the audio clips. Similarly, the pitch detection method
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should be able to distinguish the greater number of pitches, and predict a lack of singularness. Thus, the

degradation of the algorithms’ performance given a greater number of sources is puzzling. Nevertheless, we

can clearly see that our given method outperforms all other algorithms with respect to the F-score, except at

a source number of 1, where it matches the pitch method. At lower source numbers, particularly at 2 and 3,

we can see that SinguDetect boasts an increase of as much as 0.1 in the F-score at higher SNRs compared to

the other algorithms.

Figure 4.2: F-score vs. SNR across the possible number of sources for the different singularness detector

algorithms. Data is averaged across all three scenarios.

We dive into the precision, recall, and f-scores in scenario (a) for each algorithm. From Figure 4.3, we can

piece together why the F-score decreases rapidly in lower SNR scenarios. Here, we only have three speakers

present in each audio clip. Clearly, the recall score does not degrade too much for the simplex method and

SinguDetect. Therefore, the issue with the lower F-score lies singularly with precision for these two algorithms,

whereas for the pitch method, both precision and recall decrease with SNR. The pitch method suffers in its

recall score at lower SNRs because it labels almost every frame as non-singular, and in general, the method

labels fewer frames as singular compared to the others. Additionally, with a lower SNR, these singularness
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detection algorithms overestimate the number of singular frames, resulting in a lower precision. Notably,

SinguDetect has a superior F-score to every other algorithm at every SNR, and matches the pitch method

in terms of precision, but has a lower recall compared to the simplex method. Nonetheless, we believe this

disadvantage in recall does not offset the advantage in precision, thus our setting of βR to 0.5 is justified.

Figure 4.3: Precision, recall, and F-score vs. SNR for the different singularness detector algorithms. The

scenario providing the data is scenario (a), and the number of speakers is set to 3.

Finally, we break the results into each scenario, citing the precision, recall, and f-score across each number

of sources at 15 dB SNR. In Figure 4.4 we can see that the featured algorithms have quite different results in

each scenario. In particular, precision scores are lower for SinguDetect and the simplex method for scenario

(c), and the f-scores of the three algorithms are close in scenario (b). With scenario (c), we have a lower

overall reverberation time, but a smaller room. Therefore, it is likely that there is a strong early reverberation

component in the audio, which confounds the simplex method and SinguDetect. In the case of the former,

these early reverberations may present themselves as different sources, which would reduce its accuracy since

there would be a separate probability for different echoes presenting themselves as sources. In the case of the

latter, the early reverberations may smear the IPD in unpredictable ways, resulting in a particularly low

recall rate at higher source numbers and a lower precision rate overall. Additionally, the chances of there

being two sources located relatively close together due to the small angular increment in scenario (c) would
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hurt the precision of SinguDetect more so than the other algorithms. In the case of scenario (b), it is not

clear why the recall rate of SinguDetect suffers as compared to scenario (a) — the culprit of its lower F-score.

Scenario (a) and (b) are quite similar — taking place in large, reverberant rooms. Regardless, perhaps there

is some variation among IPDs of different rooms such that SinguDetect becomes more hesitant to declare

frames singular — decreasing its recall score but not its precision. Nevertheless, at 15 dB, it is clear that

SinguDetect is superior in terms of F-score in every possible situation except in scenario (b) with only a

single source present.

Figure 4.4: Precision, recall, and F-score vs. the number of sources in the trial across the three scenarios for

the singularness detector algorithms. SNR is set to 15 dB.
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Chapter 5

Limitations and Future Work

Given the original purpose of SinguDetect, it remains obvious that there is a lot of work still to be done.

Although the algorithm boasts an increased performance as compared to its competitors, its performance at

lower SNRs and a higher number of sources is quite weak. Some of this is due to the inherent nature of IPDs

— at low SNRs the IPD of a binaural recording is likely to be obliterated if the noise is uncorrelated. However,

the lack of success at at a higher number of sources across all three methods remains puzzling. Perhaps

the method of measuring the ground truth singularness of talkers is flawed, and a superior method exists

to establish which time frames of the STFT are singular. The beamforming metrics of [7] were considered,

where the singular frames were used to build beamforming weights for each individual talker, but ultimately

were decided as too difficult to interpret within the context of the original problem.

Overall, we can attribute the weaknesses of SinguDetect to the limitations of a classification algorithm

purely using IPDs. Often times when the algorithm had a low precision, it was because it correctly identified

a trend line in a frame that was not dominated by any singular source. Therefore, any future algorithms

must consider a breadth of features to improve results to the point that the problem is satisfyingly solved.

Features that were considered for SinguDetect include inter-aural level differences (ILDs) and Mel-frequency

cepstral coefficients (MFCCs), and could be helpful in augmenting classification performance. Intuitively, as

humans, we do not rely on any particular one feature, whether it is pitch or the IPD. Even if two people were

to have the same voice and spoke from the same direction, as long as they were saying different words, a

human would be able to distinguish the lack of singularness, albeit at a coarse temporal level. This indicates

a more holistic algorithm would have more success.

Of course, the field of machine learning, particularly with unsupervised or semi-supervised methods, may

also advance to the point that it is able to solve the problem. This would obviate the need for classical

methods.
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Chapter 6

Conclusion

In this thesis, we have proposed a singularness detection algorithm that performs better than the state-of-

the-art algorithms. Although there are clear shortcomings with SinguDetect, it performs remarkably well in

heavily reverberant and noisy environments. Generally, it maintains a precision greater than 0.5 above an

SNR of 10 dB at lower source counts, with a granularity of 64 ms for its singularness detection capabilities.

Additionally, it is capable of providing a measure of certainty about its predictions and accommodates moving

sources since it judges singularness on a frame-by-frame basis. Nonetheless, much work remains to be done

to solve the difficult problem of detecting the singularness of talkers in every feasible acoustic environment,

whether that be through classical methods or newer data-driven methods.
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