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ABSTRACT

Micro-architectural side-channel attacks are a critical security threat that arises as a result

of modern processors’ pursuit of performance and efficiency. In those attacks, malicious

actors exploit the micro-architectural implementation of processors to attack victim software,

by monitoring how data-dependent micro-architectural resource usage varies in response

to the victim’s secret information. By focusing on hardware, this intricate security attack

can exfiltrate sensitive information in a software-invisible manner. As future processors

continue to increase in complexity, the risk posed by micro-architectural side-channel attacks

is expected to escalate.

This thesis represents a significant advancement in developing secure, comprehensive,

and high-performance micro-architectural side-channel mitigation solutions. While various

mitigations have been proposed to address these attacks, existing approaches either target

specific attack types, leaving vulnerabilities against other or future side-channel attacks open,

or induce substantial performance degradation. The ideal mitigation solution, therefore,

should both offer strong and comprehensive security guarantees while maintaining modest

performance overhead.

To overcome these challenges, the key idea underpinning our solutions is enforcing

information-flow properties at the hardware level: once all side-channel vulnerabilities

are identified, and all secret information is correctly tracked and annotated, blocking micro-

architectural side-channel leakage is simply preventing side channels from consuming the

secret. Based on this key idea, we developed the data-oblivious ISA (OISA), which for the

first time, incorporates side-channel-specific security specification at the ISA level and en-

forces the desired information-flow properties in commodity hardware. To address the recent

surge of speculative side-channel attacks, we further designed Speculative Taint Tracking

(STT), which employs the same principle for achieving provable security against speculative

side channels in general. We further improve the performance of STT with Speculative

Data-Oblivious Execution (SDO) without sacrificing its security properties.

In addition to the proposed mitigation frameworks, we also examined several existing

point-mitigation strategies and developed new attacks circumventing those mitigations. We

demonstrated how common control-flow leakage attack mitigations fail with a new attack

variant capable of extracting the byte-granular PC information of arbitrary victim’s dynamic

instruction. We also showcased why eliminating timers is insufficient in blocking cache

side-channel attacks by identifying new primitives for monitoring cache state. Although

ii



these attacks may be further mitigated with new point defenses, our claim is that defending

against micro-architectural side-channel attacks should not become a cat-and-mouse game.

Instead, comprehensive mitigations, such as the solutions proposed in this thesis, should be

adopted to effectively combat current and future attacks.
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CHAPTER 1: INTRODUCTION

Over the past several decades, the third industrial revolution—also referred to as the digital

revolution—has brought sweeping changes to every corner of the world, influencing every

aspect of human life, including education, communication, work, and entertainment. Central

to this revolution lies the development of microprocessors, which have unleashed immense

computing power and catalyzed innovations across various disciplines. And critical to the

advancement of microprocessors is computer architecture design, which has continuously

pushed the boundaries of computer performance and efficiency with innovations in underlying

hardware structures and organizations.

However, in the late 1990s, researchers began to realize that the growing sophistica-

tion of those processor design optimizations may lead to serious security issues, known as

micro-architectural side channels, leaking sensitive data stealthily across mutually distrusted

parties [1]. Since then, many processor structures and optimizations have been exploited as

side-channel attacks, ranging from the initial cache attack [2], to more recent speculative

execution attacks [3, 4]. Those attacks have proven to cause a wide range of security and

privacy threats, from breaking cryptographic implementations [5, 6, 7], stealing personal

information [8, 9], to monitoring user activities [10, 11, 12], and in the worst case scenario,

leaking the entirety of the program memory [4]. With modern processors persisting in

seeking performance and efficiency by incorporating more sophisticated, but potentially more

vulnerable designs, mitigating micro-architectural side-channel attacks has become a matter

of utmost urgency.

1.1 MICRO-ARCHITECTURAL SIDE-CHANNEL ATTACKS

Computation is a process of generating output from a given input based on a protocol

that defines the input-output relationship. The protocol can take various forms depending

on the level of abstraction. At the software level, a protocol can be a program written to

process some user input; while at the hardware level, a protocol can be a combinational

circuit describing the transitions of the register state. Cyber-attackers develop techniques

to attack these protocols in different computing systems to undermine different security

properties, such as confidentiality and integrity.

Side-channel attacks are a common type of attack that targets confidentiality. The

fundamental difference between side-channel attacks and other common attacks, such as

memory corruption attacks [13], lies in how they exploit the protocol. Common attacks target
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the design errors within the protocol itself, such as program bugs, coercing the protocols into

behaving in unintended ways, ultimately generating output directly revealing the secret input.

In contrast, side-channel attacks do not rely on any program bugs to misuse the protocol.

The key insight of side-channel attacks is that, protocols implemented in the real world

inherently produce various forms of computational side effects that depend on the input. By

measuring those computational side effects, side-channel attacks may obtain information

about the secret input through the correlation between the observed side effects and the

input, as illustrated in Figure 1.1a [14].

C o m p u t e r  S c i e n c e G R A I N G E R  E N G I N E E R I N G
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(a) Side-channel attacks
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Figure 1.1: Relationship between side-channel attacks and micro-architectural side-channel attack

Micro-architectural side-channel attacks constitute a significant class of side-channel attacks.

In these attacks, as shown in Figure 1.1b, the attacker focuses on the practical implementation

of processors, with the objective of learning the secret input through its measurement of

the micro-architectural resource usage resulting from processing the input on the targeted

processor. This approach is driven by the fact that many micro-architectural structures incur

data-dependent state changes: as an example, the location of data within a processor cache

directly depends on the data address. Therefore, an attacker aware of the data’s residency

inside the cache can easily deduce information about the data address.

Since the discovery of micro-architectural side-channel attacks, numerous hardware struc-

tures have been exploited as side channels, such as cache [5, 15], Translation Lookaside

Buffers (TLBs) [16], predictors [17, 18, 19, 20], micro-op caches [21], execution units [22],

and data prefetchers [23, 24]. As the complexity of modern microprocessors continues to

evolve, more and more side-channel vulnerabilities will likely be discovered in the future.

1.2 PROBLEMS OF EXISTING MICRO-ARCHITECTURAL SIDE-CHANNEL
MITIGATIONS

With the emergence of micro-architectural side-channel attacks as a critical security threat,

it is imperative for researchers and practitioners to develop effective strategies for mitigating

those attacks. Unfortunately, existing mitigations either deliver weak and limited security

guarantees, or induce substantial performance degradation.
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For instance, researchers have proposed secure hardware designs to fix processor components

prone to side-channel attacks, including secure cache [25], secure TLB [26], and others.

However, given a processor is a synergy of numerous different hardware components, fixing

vulnerabilities individually without a comprehensive study of the entire processor is bound

to be incomplete.

There have also been protection schemes aimed at comprehensively mitigating micro-

architectural side channels. One straightforward solution is to eliminate resource sharing by

running the victim program on dedicated hardware exclusively. While this approach can be

considered comprehensive as it prevents attackers from observing the hardware usage (since

most micro-architectural side-channel attacks require co-residency with the victim program),

it is impractical for general applications. Modern processors are designed to handle multiple

tasks simultaneously [27], so restricting a processor to a single victim software would lead

to significant resource under-utilization, which may further exacerbate as future processors

pursue more aggressive parallel processing.

Another popular approach that claims to comprehensively mitigate micro-architectural side

channels without relying on physical isolation is data-oblivious programming. Data-oblivious

programming encapsulates a series of secure coding practices with the goal of eliminating

any secret-dependent hardware usage. Yet, achieving data obliviousness usually entails

introducing redundant operations to conceal the actual secret-dependent execution behavior,

resulting in significant performance overhead in practice.

1.3 THESIS CONTRIBUTIONS AND ORGANIZATION

Given the limitations of existing micro-architectural side-channel mitigations, the main

objective of this thesis is to design hardware-based mitigations that deliver strong and

comprehensive security guarantees that cover micro-architectural side-channel attacks broadly,

and at the same time minimizing the performance overhead caused by the defense mechanism.

Central to our solution is the key idea of consolidating different individual side-channel attacks

into general and clear micro-architectural side-channel abstractions. These abstractions serve

as micro-architectural specifications to help enforce security policies in hardware designs, and

offer a unified protection mechanism for different, and even future attacks.

Our abstractions are directly inspired by the existing information flow literature [28]. At

a high level, our abstractions define secrets as data inside micro-architecture that requires

protection. In addition, data-dependent hardware execution behaviors are classified as

channels. Thus, mitigating micro-architectural side-channel attacks can be formulated as

blocking the information flow from any secrets to the identified channels. The benefit of this
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methodology is two-fold. In terms of security, preventing the channels from ever consuming

secrets comprehensively blocks different types of side-channel leakages. Performance-wise,

the protection mechanism is relaxed whenever possible, for example when processing public

data (non-secrets), or when any data is processed by data-independent hardware execution

(non-channels).

This thesis consists of two parts. First, this thesis presents several side-channel protection

frameworks which demonstrate how specifying proper abstractions helps to mitigate side-

channel attacks comprehensively and efficiently. Chapter 3 describes OISA, which applies

this methodology at the hardware-software interface level, by specifying the concept of secrets

and channels through new instruction-set architecture (ISA) extensions. The new side-

channel-centric security definition introduced by OISA can be used to guide the development

of side-channel-resistant hardware, and simultaneously enable provable side-channel-free

programming. While OISA concentrates on micro-architectural side-channel attacks in

general, Chapter 4 and 5 introduce new abstractions for the more recent speculative execution

attacks. The two proposed mitigations, named STT and SDO, apply the security abstractions

originated from OISA to construct software-invisible defenses that overcome the additional

security threats introduced by speculative execution attacks with tolerable performance costs.

Second, we pinpoint the weaknesses of existing point mitigations in concrete side-channel

attack scenarios, thereby advocating for the adoption of robust and comprehensive mitigations

such as our proposed schemes, as such schemes have not yet been implemented in real

processors. In Chapter 6, we investigate the idea of fixing side-channel vulnerabilities by

introducing code transformations in response to new side-channel attacks, specifically in the

context of control-flow inference attacks. Our study presents a new instance of control-flow

leakage attacks that exposes new attack opportunities and surpasses state-of-the-art defenses.

Chapter 7 explains in practice how constraining the attacker’s observability over the micro-

architectural state fails, as modern complex hardware contains hidden primitives that enable

the attacker to retrieve micro-architectural state information.

We now present the organization of the thesis with the overview of each chapter.

Chapter 2 – Background This chapter presents a framework for understanding micro-

architectural side-channel attacks, which can be divided into classic side-channel attacks and

more recent speculative side-channel attacks. We explain how these two types of attack work

and the important part of the attack process, using existing attacks as examples. We also

discuss mitigations for these attacks.
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Chapter 3 – Data-Oblivious ISA (OISA) This chapter presents OISA—a hardware-

software interface that enables formally-provable, portable, and performant side-channel-free

programming. OISA is built upon data-oblivious programming, a technique that theoretically

eliminates micro-architectural side-channels, but in practice remains vulnerable due to the

lack of security guarantees from the hardware. OISA provides a security specification that

establishes the security foundation for data-oblivious programming while maintaining the

flexibility required for designing hardware optimizations.

The idea behind OISA is a combination of new ISA-level security specifications with hard-

ware information-flow tracking. The new ISA allows programmers to directly communicate

data secrecy with the hardware (rather than indirectly, e.g., via encryption [29]). OISA

also directly exposes any potential micro-architectural side channels in the form of unsafe

instruction operands. Therefore, eliminating side-channel leakage is equivalent to preventing

the information flow from any secret data to unsafe operands—we demonstrate how to achieve

this by presenting an implementation of OISA architecture on an existing processor. This

methodology not only ensures security against traditional side-channel attacks but also the

recent speculative side-channel attacks without any special handling.

This work appears in [30] and won the following awards:

• Distinguished Paper Award Honorable Mentions at NDSS’19

• CSAW’19 Applied Research Finalists

• IEEE MICRO Top Picks, 2020

Chapter 4 – Speculative Taint Tracking (STT) This chapter presents a novel pro-

tection framework named STT, which comprehensively mitigates speculative execution

attacks. STT makes two key contributions: first, it presents a comprehensive classification

of hardware mechanisms (referred to as covert channels) that might transmit speculative

data to the attacker’s execution context, in the form of data-dependent hardware resource

usage. These covert channels manifest as explicit channels and implicit channels, akin to

the explicit flow and the implicit flow in the program analysis literature. Second, STT

applies OISA’s methodology of mitigating micro-architectural side channels to speculative

execution attacks only, by leveraging hardware-level information-flow tracking that prevents

secret-dependent data from being consumed by identified covert channels during the execution

of transmitter instructions. This prevention is implemented in a conservative manner in STT:

the speculative execution of transmitter instructions that deliver secrets to covert channels

is delayed until non-speculative. But like OISA, the protection is only enforced when the

leakage is possible, which effectively reduces the performance cost of the overall mitigation.
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This work appears in [31] and won the following awards:

• Best Paper Award at MICRO’19

• IEEE MICRO Top Picks, 2020

• Communication of ACM Research Highlight, 2021

Chapter 5 – Speculative Data-Oblivious Execution (SDO) This chapter introduces

SDO, a protection framework that builds on top of STT to achieve higher performance

without compromising STT’s strong security guarantee. Since the performance overhead

of STT is mostly due to the delay of transmitter instruction’s execution when it involves

covert channels consuming speculative secrets, SDO devises novel mechanisms to proceed

with the execution. Inspired by OISA, SDO partially achieves this goal with data-oblivious

execution hardware, whose execution is independent of sensitive data.

However, despite its security, data-oblivious execution involves significant redundant work

that usually offsets the benefit of executing unsafe transmitters early. Here comes the major

contribution of SDO: we for the first time demonstrate how prediction/speculation can assist

in mitigating speculative attacks, despite being the root cause of those attacks. In short,

SDO utilizes prediction to reduce the baseline data-oblivious execution down to a smaller

set of hardware activities that still maintain data obliviousness, and eventually delivers a net

performance gain.

This work appears in [32] and won first place in the Inaugural Intel Hardware Security

Academic Award in 2021.

Chapter 6 – NightVision Attack This chapter presents a novel micro-architectural

side-channel attack called NightVision that is capable of directly observing the exact

address of arbitrary victim dynamic instructions. NightVision leverages several overlooked

characteristics of Branch Target Buffers in modern processors, and shows how this predictor

structure, while commonly considered only relative to control instructions, can also lead

to observation of the execution of non-control instructions. NightVision’s capability of

extracting PCs of potentially any victim dynamic instructions naturally surpasses prior

control-flow leakage attacks that infer secret information through its impact on program

control-flow, and overcomes corresponding software mitigations. In addition, NightVision

enables new opportunities in binary fingerprinting—allowing an attacker to identify unknown

victim programs through their dynamic instruction address footprints.

This work appears in [33].
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Chapter 7 – Synchronization Storage Channel (S2C) This chapter presents a novel

timer-less cache side-channel attack that exploits hardware synchronization instructions,

specifically load-linked/store-conditional (LL/SC) instructions. This attack, dubbed S2C,

aims at eliminating the reliance on high-resolution timing measurements in existing cache

attacks. S2C exposes how the implementation of LL/SC on modern Apple processors allows

an attacker to directly read private cache evictions as the SC return value. With this

vulnerability, S2C further develops several techniques to expand the attacker’s observability

toward activities within multiple shared cache sets. The end result is a cache side-channel

attack with the same threat as state-of-the-art cache attacks [5, 34, 35] without depending

on the existence of high-resolution timers.

This work will appear in [36].

Chapter 8 – Conclusion This chapter summarizes the thesis and addresses possible

directions for future research.
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CHAPTER 2: BACKGROUND

2.1 PROCESSOR OPTIMIZATIONS

Modern processors integrate a wide range of processor optimizations to enhance performance

and efficiency. Unfortunately, many of those optimizations exhibit data-dependent behavior

which the attacker can exploit for mounting micro-architectural side channels. Before delving

into those attacks, it is important to first highlight the most common processor optimizations,

as they form the foundation for most identified side-channel attacks.

2.1.1 Processor Pipelining and Out-of-order Execution

Modern processors use dynamic scheduling to execute instructions in parallel and out of

program order to improve performance [37, 38]. This is achieved by dividing the processing of

instructions into multiple pipeline stages. Initially, instructions are fetched into the processor

pipeline at the fetch stage, and issued to reservation stations for scheduling at the issue stage,

all following the program order. All pipeline stages up to this point are usually referred to

the processor frontend. The execution of instructions at the execution stage is out of program

order. Finally, at the retire (also called commit) stage, instructions retire as they make

their operation externally visible by irrevocably modifying the architectural system state in

program order. The pipeline stages starting from the execution stage until the retire stage

are referred to as the processor backend. The in-order retirement is implemented by queuing

instructions in a reorder buffer (ROB) [39] in the instruction fetch order and dequeuing a

completed instruction when it reaches the ROB head.

2.1.2 Prediction and Speculation

Speculative execution improves performance by executing instructions whose validity is

uncertain instead of waiting to determine their validity. If such a speculatively-executed

instruction turns out to be valid, it is eventually retired; otherwise, it is squashed and the

processor’s state is rolled back to the prior state when speculation starts. As a byproduct, all

the following instructions also get squashed. That is, a squash causes a large pipeline distur-

bance. However, if the speculation is done correctly, the processor can execute instructions

that would have been delayed, leading to a significant performance improvement.

To facilitate speculative execution, modern processors employ multiple hardware prediction

mechanisms for determining when and how speculation should be performed. The most
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common prediction mechanism is the branch predictor for predicting the direction and target

of control-transfer instructions. Branch predictors in today’s processors are sophisticated

hardware logic structures that can be trained to learn the program’s control-flow behavior,

and make predictions based on the current program counter value alone. Additionally,

memory dependency prediction is another prevalent prediction mechanism for predicting

dependencies between memory loads and stores before their address operands are ready.

Other prediction strategies such as value prediction have also been proposed for improving

processor performance [40].

2.1.3 Superscalar processing

Super-scalar processing is a fundamental performance optimization for executing multiple

instructions within a single instruction stream at any clock cycle. A superscalar processor

augments its hardware resources, such as buffers, execution units, and reservation stations,

allowing every pipeline stage— such as fetch, decode, issue, execute and commit—to handle

multiple instructions per cycle. The maximal number of instructions that can be possibly

processed by a superscalar pipeline simultaneously is usually called pipeline width. When

combined with other optimizations such as processor pipelining and speculative execution,

superscalar processors achieve a high level of instruction-level parallelism and overall compu-

tation throughput.

The instruction-level parallelism achieved by superscalar processing is inherently restricted

by the interdependency between instructions, as the execution of mutually-dependent instruc-

tions has to be serialized. Programs with fewer inter-instruction dependencies thus benefit

more from superscalar processing. On the other hand, superscalar machines must employ

dedicated hardware logic for checking instruction dependencies, whose complexity scales

super-linearly with the pipeline width. Consequently, most real-world processors typically

opt for modest pipeline widths (typically around 4 to 8).

2.1.4 Multi-threading, Multi-core, Multi-processor

Simultaneous multi-threading, multi-core, and multi-processor are basic performance

optimization aiming at improving the resource utilization by concurrently running multiple

programs at different levels of processors. Simultaneous multi-threading, or SMT [41], allows

each processor core to simultaneously run multiple hardware threads, such that a hardware

thread can use core resource that is not currently used by other threads. While individual

thread performance may be negatively impacted by resource competition with other threads,
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the overall utilization of the execution units within the core pipeline is maximized, resulting

in a substantial throughput improvement.

Multi-core and multi-processor achieve a lower-level of resource sharing compared to SMT.

With multi-core, processor cores can share lower-level resources, such as shared caches and

memory controllers. The prevalence of multi-core processors is evident in the contemporary

computing landscape, with the core count in state-of-the-art processors continuously increasing

to meet the demands of modern computing tasks [42]. Multi-processor architecture aims at

building large, expansive interconnected computer networks by linking a large number of

processors together. This allows each processor to share data with other processors through

high-speed interconnects.

2.1.5 Caching

Caching is essential optimization to alleviate the performance impact of memory (DRAM)

accesses. Since accessing main memory is a slow process that may yield a significant

performance bottleneck, modern processors adopt small and fast on-chip storage units called

caches for storing frequently used data. By doing so, caching benefits applications with good

locality by transforming slow DRAM accesses into fast cache accesses.

Processor caches operate as lookup tables, mapping addresses to corresponding data.

Based on how cache access logic locates the target data, caches can be categorized into

three types: directed-mapped, fully-associative and way-associative caches, among which the

way-associative cache is the most popular option for modern processors. A way-associative

cache is organized into cache sets, where each set is associated with a specific subset of

address bits called set index bits. Each cache set consists of N cache lines, where N represents

a number of ways, and each cache line stores a fixed number of contiguous bytes. During a

cache access, the cache access logic first uses cache set index bits to locate a cache set, which

contains cached data that share the same set index bits. The remaining address bits are then

used to identify the target data within the set. When the data is present in the cache (called

a cache hit), it is retrieved and returned to the pipeline. If the data is not found (a cache

miss), the next cache level (or the memory) will be accessed.

Most processors nowadays adopt a multi-level cache hierarchy. The highest-level caches

are typically private to each core and have smaller sizes compared to lower-level caches,

allowing for short access latency. The lower-level caches are larger in size and are commonly

shared between multiple processor cores. As a trade-off, they store more frequently-used

data but come with longer access latency. The specific organization of the cache hierarchy is

implementation-dependent and varies across different processors.
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2.2 OVERVIEW OF MICRO-ARCHITECTURAL SIDE-CHANNEL ATTACK

Micro-architectural side-channel attacks are attacks exploiting the incidental computational

side effects resulting from running programs on real processors, to infer secret information

processed by the processor. Those side effects include but are not limited to timing [1],

power [43], temperature [44], and hardware activity statistics reported by the hardware

performance counters. Modern processors provide primitives for directly obtaining these side

effects at the software level, making micro-architectural side-channel attacks possible with

only software effort.

Micro-architectural side-channel attacks can be categorized into two large types based

on the attacker’s proximity to the victim program. First, there are remote attacks, where

the attacker needs not co-reside with the victim software on the same computing platform.

The attacker simply interacts with the victim (e.g., via a caller-callee relationship) from

remote and obtains the side effect associated with the victim’s computation. Timing is

the most commonly exploited side effect in this case, which has inspired the remote timing

attack—a common side-channel attack paradigm where the attacker can remotely invoke the

vulnerable program and obtain accurate program execution timing. For instance, Paul Kocher

utilized end-to-end program execution timing to learn secret data in cryptographic systems [1].

While many remote timing attacks only exploit the data-dependent behavior at the program

level [45, 46, 47, 48], data-dependent micro-architectural designs also significantly influences

the program timing [49, 50]. Other side effects, like power [50, 51, 52] could be exploited

in a similar manner. Despite the advantage of not relying on resource sharing between the

attacker and the victim, the coarse-grained, end-to-end measurement of the side effect is

typically susceptible to a low signal-to-noise ratio in today’s computing systems. Therefore,

large numbers of repeated experiments are necessary for extracting a clear correlation between

the measured side effect and the target secret value.

The second attack setting, assumed by most micro-architectural side-channel attacks,

leverages the multi-tenancy in modern computing systems. Multi-tenancy is ubiquitous

nowadays: browsers on personal devices can connect to websites from independent hosts;

cloud computing platforms such as Amazon AWS [53] and Microsoft Azure [54] normally use

the same processor for hosting services belonging to different customers for higher resource

utilization. In this co-location attack setting, the attacker can interact with the hardware

directly through their own programs. Consequently, instead of relying on coarse-grained,

end-to-end side-channel measurements, the attacker can directly monitor the victim program’s

micro-architectural resource usage. By observing the appropriate hardware resource in a

precise manner, the measured side effect establishes a much more accurate correlation with the
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victim’s secret information. Furthermore, direct interaction with the victim is not necessary

for the co-location attack setting. This work presents mitigation methods applicable to both

settings, with a primary emphasis on the co-location setting since this scenario presents a clear

view of how different hardware resources function as side channels and enable information

leakage.

Over the years, countless micro-architectural side-channel attacks have been developed

to exploit weaknesses in the design of various components in current processors for leaking

sensitive information. To implement effective countermeasures, it is crucial to understand

each individual attack as well as the underlying principles behind all attacks. Therefore,

in this section, we further classify co-location-based attacks into two categories: classic

(non-speculative) side-channel attacks and speculative side-channel attacks. We highlight the

relationship between these two categories, the individual attacks they encompass, and the

common mitigations employed against these attacks. Inspired by the prior work DAWG [55],

we introduce abstract models for describing the classic and speculative attack procedures, as

illustrated in Figure 2.1.

Victim’s secrets Victim’s secrets
Transmitter 

instruction(s)
Receiver 

instruction(s)
Channels

Victim domain Attacker domain

Predictor

Victim’s secrets Victim’s secrets
Transmitter 

instruction(s)
Receiver 

instruction(s)
Channels 

Predictor training code

Access 
instructions

Transient Execution

(1) Classic Side-Channel Attack Flow

(2) Speculative Side-Channel Attack Flow

Disclosure Gadget

Figure 2.1: Classic and speculative side-channel attack procedures. Regular squares represent
software components; rounded-corner squares are hardware components. Dotted arrows
denote information flow via transient execution.

The rest of this chapter will describe classic (Section 2.3) and speculative attacks (Sec-

tion 2.4) in detail, as well as the existing mitigations for both types of attacks (Section 2.5

and 2.6).
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2.3 CLASSIC SIDE-CHANNEL ATTACKS

As Figure 2.1 (1) showns, a classic micro-architectural side-channel attack requires the

victim program to contain transmitter instructions (or transmitters) that operate on the

victim program secrets. The key to micro-architectural side-channel attacks is that, modern

processors contain various hardware resources and optimizations that act as channels, such

that the execution of transmitter instructions inadvertently transmit secrets through the

channel. To capture the secret-dependent resource usage happened to those channels, the

attacker carefully selects receiver instructions (or receivers) and when and how to execute those

instructions. The receiver instructions interact with the channel, and generate computational

side effects which is precisely correlated with the transmitted information.

Importantly, the transmission of secret information is never the intended purpose of the

victim1. In the following, we describe classic side-channel attacks based on these three

components: channels, transmitter instructions, and receiver instructions.

2.3.1 Channels

Micro-architectural side-channel attacks use data-dependent micro-architectural resources

as channels for transmitting information stealthily. Specifically, the inner state of the micro-

architectural resources is encoded with the information associated with the victim’s program

execution. Although this encoding does not affect the victim’s program output, the state can

be decoded by the attacker who accesses the same hardware and uses specific instructions to

monitor the hardware state. Eventually, this enables the attacker to learn the victim’s secret

information.

To illustrate the concept, take the cache side-channel attack, such as Prime+Probe [5, 34, 56]

as an example. In the Prime+Probe attack, the attacker preloads a specific memory address

into the cache, therefore accessing to this address is a cache hit unless other addresses sharing

the same cache set are loaded and evict this address from the cache. By waiting for the

victim’s execution and then testing whether this address is cached, the attacker can deduce

whether the victim loads addresses into the same set. Based on how different address values

are mapped into cache sets, the attacker can further recover a significant portion of the

victim’s address bits.

Over the years, various cache attacks have been created, in addition to Prime+Probe [10,

1Note a side channel is different from a covert channel. In a micro-architectural covert channel, the sender
and the receiver are both malicious parties who agree to use a micro-architectural resource to transmit data.
Although the setting is similar, a side channel attack assumes a victim program that is beyond the attacker’s
control.
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15, 35, 57, 58, 59, 60]. Many other micro-architectural structures that are exploited in similar

manners, such as branch predictors [17, 18, 19, 20, 61], instruction decoders [62], micro-op

caches [21], instruction scheduler [63], execution units [22, 64, 65, 66], Translation-Lookaside

Buffers (TLBs) [16], data prefetchers [23, 24], DRAMs [67, 68], and many more. These

channels can be further characterized by three factors:

Channel Duration

Based on how long the transmitted information remains inside the channel, we can roughly

characterize micro-architectural side channels into two types, based on the duration:

• Ephemeral : Ephemeral channels are micro-architectural resources that exhibit ob-

servable data-dependent usage only during the instruction’s execution. For instance,

many execution units, such as multiplier [64, 65] and floating-point units [22] have

data-dependent behavior (e.g., timing), which allows a side-channel attack to infer

knowledge about the operand value based on their behavior. However, the behavior

depends only on the operand of the currently executed instruction, not on the previously

executed ones. Several other attack vectors, such as execution port contention [66] and

cache bank conflict [69], are also ephemeral channels. Since the leakage from ephemeral

channels is present for a short duration during the instruction’s execution, it typically

imposes strict requirements on the attacker, such as close proximity to the victim, and

concurrent execution with the victim.

• Persistent : Persistent channels maintain the date-dependent effects of instructions

even after they have retired, thus impacting instructions executed much later in the

pipeline. One prominent example of a persistent channel is the processor cache:

accessing the cache causes an irreversible change to the cache state, including the

eviction of existing cache lines. Subsequent memory accesses to the evicted line

will experience cache misses and longer access latency, from which one can infer the

confidential memory access patterns. Secret information transmitted through persistent

channels persists for an extended duration compared to ephemeral channels, which

significantly relaxes the attacker’s requirements. For instance, if the secret-dependent

micro-architectural state change persists throughout a process context switch, the

attack will not necessitate concurrent execution. However, certain resources such as

TLB in many processors perform state sanitization when transitioning between different

security domains, thereby mitigating the advantage of persistent channels.
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Channel Location

When the attacker has only end-to-end measurements of the computational side effect of

the victim’s computation, e.g., through a remote timing attack, the physical location of the

channel within a processor becomes irrelevant in terms of the attacker’s proximity. However, in

the co-location attack setting where the attacker typically needs to measure the channel state,

the channel placement becomes crucial as it directly affects its exploitability. For example,

several intra-core channels, like the branch predictor [19, 20, 61], micro-op cache [21, 70], and

load-store unit [71], reside within the core pipeline. Therefore the attacker must be scheduled

to the same core as the target victim program to observe the data-dependent usage of those

channels.

Additionally, there are also micro-architectural resources shared between processor cores,

such as the shared cache [7, 11, 15, 34, 35, 56, 57, 58, 72, 73], shared directory [60, 74], and

on-chip interconnect [75, 76, 77]. By utilizing these inter-core resources as channels, the

attacker is not limited to only the victim’s core, and can instead launch the attack from other

cores, which significantly improves the practicality and the effectiveness of the side-channel

attack.

The requirement of the attacker’s location can be further relaxed by cross-processor

channels [78], which enables side-channel leakage across processors.

Channel Information

While various micro-architectural resources exhibit data-dependent behavior and serve as

channels, they transmit different types of information related to the executed instructions.

The information about the instruction type is naturally leaked by what execution units are

used for the instruction, as well as other characteristics about the instruction itself, such

as the execution timing, and whether or not it accesses the memory subsystem. Although

the instruction type is typically not considered confidential, as we will explain next in

Section 2.3.2, it can reveal secret control-flow decisions that lead to the execution of the

current instruction.

The primary type of information exposed through the execution of instructions pertains to

the operand values of the instructions. For instance, information about the source operand

of floating-point instructions can be leaked by the latency of their execution [22]; the address

operand of memory loads can be partially leaked via the accessed cache set or bank [5, 69].

The specific information leaked about the instruction’s operand depends on the hardware

implementation. In Prime+Probe attacks, for example, only the cache set bits from the
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address operand of memory instructions are leaked. However, even the leakage of a limited

number of operand bits can pose a significant threat to real-world applications, such as those

involving cryptographic algorithms [79].

Another significant type of information that is commonly leaked through various identified

channels is the instruction’s address, also referred to as the Program Counter (PC) value [80].

Several hardware structures, including the instruction cache, branch predictors, micro-op

cache, and hardware prefetchers, are directly accessed and updated based on the instruction’s

address as part of their functionality. This enables the side-channel attack to learn information

regarding the instruction address based on their behavior [4, 17, 18, 19, 20, 21, 24, 70, 81, 82,

83, 84]. As later described in Section 2.3.2, acquiring knowledge about instruction addresses

assists the attacker in deducing the program control flow, which contains sensitive information

in many applications, such as cryptographic codes [33].

2.3.2 Transmitters

As shown in Figure 2.1, a classic side-channel leakage starts with the victim’s transmitter

instructions operating using the secret information. These transmitter instructions will incur

data-dependent behaviors to the exploited channels, which are later observed by the attacker.

The transmitter instructions determine how the side-channel attack should be conducted

and what secret information is collected through the attack. Therefore, information about

the target transmitter instructions in the victim program is generally required for launching

classic side-channel attacks.

Transmitter instructions are related to secret data through data flow or control flow.

In other words, the transmitter instructions are either data-dependent on the secret, or

control-dependent on the secret. We now use the following example in Algorithm 2.1 to

explain these two kinds of transmitters.

Algorithm 2.1: A pseudocode example of the square-and-multiple algorithm for modular

exponentiation, which is used by the RSA algorithm. Secret data are marked in red.

Input: [Public]: base, modulus; [Private]: exponent

1 for bit in exponent do

2 output Ð output2 % modulus

3 if bit ““ 1 // data-dependence

4 then

5 output Ð output ˚ base % modulus // control-dependence

6 end

7 end
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• Data-dependence: A transmitter instruction that is data-dependent on the secret has its

source operands data-dependent on the secret. Information about the secret is leaked

when this type of transmitter instruction interacts with channels that leak operand

values. For example, consider line 3 of Algorithm 2.1. The condition of the branch

instruction from this line has a clear data dependence of bit, which corresponds to bits

of the private component. The branch instruction’s execution requires branch predictor,

which is a common channel for leaking branch predicate values [17, 18, 19, 20, 61].

• Control-dependence: For transmitter instructions that are control-dependent on the

secret, the fact that they execute or not is decided by the secret. For instance, line 5 of

Algorithm 2.1 has control-dependence of the secret exponent. By observing whether

the instructions corresponding to line 5 execute, the attacker could learn each bit

value. Note that in practice the attacker has various channel options for exploiting

transmitters with control-dependence of secrets. For example, assume that a branch

with a secret condition has two sides of different types of operations, or the same type

of operations but different operand values. In those cases, the attacker can utilize

specific channels for differentiating instruction types or operands, as described above.

A more straightforward approach is to leverage channels that leak instruction addresses,

such as the instruction cache [20, 81, 82, 83]., branch predictors [17, 18, 19].

2.3.3 Receivers

In contrast to attacks like memory corruption attacks [13] where the attacker can con-

veniently read the victim’s secret, side-channel attackers rely on carefully crafted receiver

instructions to capture the victim’s computational side effects. Although these side effects

are not the actual target secret, they can be utilized to deduce the target secret through

analysis.

The choice of receiver instructions is straightforward in remote attacks: the attacker

employs primitives for measuring the side effect during their interactions with the victim.

In a typical remote-timing attack, the attacker records the wall clock time when invoking

and receiving responses from the vulnerable victim routine. The attacker would then use

complex analysis techniques to extract the target secret [85]. The specific analysis methods

utilized by the side-channel attackers are beyond the scope of this thesis.

In scenarios when the attacker co-locates with the victim, the attacker must include

instructions in their receivers that use the intended hardware resources (channels). More

importantly, these instructions must be properly parameterized so that their execution is
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influenced by the victim’s transmitters through the channel behavior. As an example, in

Prime+Probe cache attacks, the attacker aims to observe whether the victim accesses a

specific cache set. Therefore, the attacker would normally incorporate memory loads in their

receiver instructions to probe the same cache set. The attacker also includes measurement

primitives to observe the execution of those instructions, such as timing the memory accesses

in Prime+Probe attacks.

2.4 SPECULATIVE SIDE-CHANNEL ATTACKS

The surge of speculative side-channel attacks (also referred to as speculative execution

attacks), notably led by Spectre [4] and Meltdown [3] has opened up a new chapter of

micro-architectural side-channel attacks, and greatly advanced our understanding of this

type of attack. Speculative side-channel attacks overcome a major limitation of classic

side-channel attacks where the attacker can only exfiltrate victim secrets that are consumed

by the victim’s transmitter instructions in a valid (retired) execution. In speculative side-

channel attacks, the attacker exploits the various hardware speculation mechanisms in today’s

high-performance processors, to transiently execute instructions (which are invalid execution

due to mis-prediction). While speculative execution never affects program correctness as the

invalid execution is eventually squashed once the misprediction is detected, it introduces

major security problems: the attacker can leverage speculative execution to allow transmitter

instructions to consume secret data that it would not consume in normal, non-speculative

execution. Even though the execution is ultimately invalidated, the transient execution of

transmitter instruction facilitates secret-dependent utilization of channels (such as processor

caches), thereby leaking the secrets to the potential receivers. Since prediction and speculation

are pure hardware optimizations, it is impossible for programmers to reason what data can

be speculatively accessed and leaked.

Figure 2.1 (2) illustrates the process of speculative side-channel attacks. Speculative

side-channel attacks leverage the classic side-channel attack flow “transmitter Ñ channel

Ñ receiver” for transmitting the victim’s secrets to the attacker. On the other hand, these

attacks exploit hardware prediction and speculative execution to realize “secret Ñ transmitter”

relationships that never appear in the normal program semantics.
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Algorithm 2.2: A pseudocode example of the Spectre V1 [4] example, which has a

branch followed by the access and transmitter instructions. secret data are marked in red.

Input: public array: publicData, array index: Index;

secret data array: secretData

1 cond Ð ...

2 if cond then // a long-latency branch for transient execution

3 secret Ð secretData[Index] // access instruction

4 temp Ð publicData[secret] // transmitter instruction

5 end

As a demonstration, consider the original Spectre V1 attack, illustrated by Algorithm 2.2.

The vulnerable code contains a branch, which will be mispredicted by the branch predictor

after the attacker trains the predictor. The branch condition, cond, may take a significant

amount of cycles to compute, thus giving sufficient time for transiently executing the

instructions inside the branch block. The access instruction on line 3 transiently accesses

a secret, and the subsequent transmitter instruction uses the secret value as the memory

operand, therefore leaking the secret through channels such as cache [4, 86] or TLB [87].

A speculative side-channel attack typically requires three extra components beyond a classic

side-channel attack: the predictor training code, a predictor, and a disclosure gadget which

includes the combination of access and transmitter instructions. A previous survey work by

Xiong et al. uses a similar framework for classifying speculative side-channel attacks [88].

We now discuss all three components in details.

2.4.1 Predictor

There are various prediction mechanisms in modern processors that have been exploited

for speculative side-channel attack purposes, which include:

• Branch prediction: Branch prediction is the most common hardware optimization that

involves multiple hardware structures such as pattern history tables (PHTs, also called

directional predictors), branch target buffers (BTBs), and return stack buffers (RSBs,

also called return address stacks or RASs). All these structures have been the target

of different attacks for generating misprediction. For example, the PHT has been

exploited in the original Spectre V1 attack [4] and its derivatives [89, 90]; the BTB

has been exploited in Spectre V2 attack [4] and its derivatives [91]; the RSB has been

exploited in [92, 93].

• Memory address dependency prediction: Memory address dependency prediction, also
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referred to as memory disambiguation, is another prediction mechanism widely used

by high-performance processors to predict the dependency between memory loads and

stores when their address operands are unavailable. This prediction mechanism allows

speculative data flow between stores and loads, which motivates several speculative

attacks such as Spectre V4 [84, 94, 95].

• Hardware prefetching: Differing from branch and memory dependency prediction,

hardware prefetching does not lead to software instructions being speculatively executed.

Instead, an activated hardware prefetcher will perform memory accesses that do not

correspond to any software instructions. Attacks such as Augury [23] have found that

in some processors, a hardware prefetcher can also be trained in a similar way as branch

predictors and result in a similar leakage as the Spectre attack.

• Exception: Several existing attacks, such as the Meltdown attack [3] and ForeShadow [96,

97], are built on the observation that processors typically resolve exceptions at the

retire stage. This allows the subsequent instructions to exploit the fault and perform

operations that would otherwise be prohibited before the exception is resolved. So

even though exceptions are fundamentally different from hardware predictions, it has a

similar effect as predictions in terms of speculative execution attacks: code dependent

on the instruction triggering the exception gets transiently executed.

2.4.2 Predictor Training Code

As Figure 2.1(1) shows, a successful speculative side-channel attack starts by utilizing

predictor training code for training the hardware predictor into a state which produces desired

misprediction for the attack. Depending on the targeted predictor structure, the predictor

training code includes different instructions. For example, conditional branches are used to

train PHTs, while jump instructions are employed for BTBs. In most attacks, the attacker

exploits the sharing nature of hardware predictors to train the predictors using predictor

training code within their own programs [3, 86, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102].

However, this approach necessitates the attacker and the victim being co-located on the

same processor core, and the exploited hardware predictor cannot adopt mechanisms that

isolate the predictor state between the attacker and the victim. If these requirements are

not satisfied, the attacker may resort to leveraging predictor training code available within

the victim software routine, provided they can directly invoke such routines [4, 94]. Lastly,

the predictor training code is not necessary for a successful speculative attack; the predictor

state may correspond to a well-trained predictor state by pure coincidence.
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2.4.3 Disclosure Gadget

Another key step in speculative execution attacks is the transient execution of the disclosure

gadget, which includes access and transmitter instructions. The access instruction should

transiently access the secret data by bringing it into the core pipeline, and a subsequent

transmitter instruction consumes the secret and generates secret-dependent channel usage,

such as cache access or data-dependent execution timing. Because the leakage must happen

transiently (otherwise those instructions will be squashed before the secret-dependent channel

usage is made), the attacker must create a sufficiently large speculation window for covering

those instructions. For instance, in the Spectre Attack shown in Algorithm 2.2 where the

access and transmitter instructions follow a branch, the attacker must induce a long latency

for determining the branch condition, thus the access and transmitter instructions can finish

their execution, and leak the secret through cache before the branch misprediction is identified.

The transmission of secret information from the channel to the attacker through receiver

instructions is identical to classic side-channel attacks.

In Spectre V1 and other variants, attackers exploit the access and transmitter instructions

embedded within the victim code to extract the victim’s secrets. However, many speculative

attacks, represented by Meltdown, have showcased how access and transmitter instructions

inside the attacker’s code can also result in a similar effect [3, 96, 97, 99, 100, 101, 102, 103].

Ideally, processors should enforce strict isolation between distinct security domains to prevent

attackers from accessing the victim’s program data. Unfortunately, these attacks have found

that real processors have implemented various optimizations that could temporarily violate

the isolation during transient execution, which enables the attacker’s access instructions to

momentarily access and transmit the victim’s data. For example, the original Meltdown attack

demonstrated that in modern Intel processors, when a (potentially malicious) user program

accesses kernel memory and triggers an exception, before the exception is handled at the

retire stage of the faulting instruction, subsequent instructions can transiently consume the

accessed kernel data, causing leakage of kernel data through classic side channels. Subsequent

attacks like ForeShadow [96, 97], MDS [100, 101, 102], and others [103, 104, 105] exploit

different conditions when speculative execution relaxes the isolation policies, such as when

speculative data is in the L1 cache or in various on-chip buffers.

A speculative side-channel attack can also include a combination of a non-speculative

access instruction and a speculative transmitter instruction as the disclosure gadget. However,

this attack approach is relatively uncommon due to a major drawback compared to existing

attacks with speculative access instruction. With a transiently-executed access instruction,

data that would otherwise be inaccessible during normal execution can be transiently fetched
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and leaked, which significantly enlarges the attack surface. This has been demonstrated

originally by Spectre [4] and Meltdown [3] as they were able to leak the entire kernel memory

from userspace.

2.5 MITIGATIONS FOR CLASSIC SIDE-CHANNEL ATTACKS

Since the appearance of classic side-channel attacks such as cache attacks, researchers have

proposed various software and hardware countermeasures to mitigate those attacks, which is

the focus of this section.

2.5.1 Software Mitigations

Software mitigations cannot directly fix the vulnerable micro-architectural resources (chan-

nels). Instead, they focus on software elements that constitute the classic side-channel leakage,

which are the transmitter instructions and the receiver instructions.

Addressing Transmitters

Classic side-channel attacks start with the victim’s transmitter instructions consuming

secret data as their input operands, and the execution of the transmitters creates micro-

architectural resource utilization that exhibits a correlation with the secret data. The strategy

that software developers adopt to address the risk posed by transmitters is to introduce

redundant program execution which obfuscates the measurement of channel usage.

For instance, consider the two scenarios depicted in Figure 2.2. In Algorithm 2.3, the

memory access operation uses secret data in its address calculation (line 4), rendering it

vulnerable to side channels that can divulge address access patterns, such as cache attacks [25].

To conceal the real target (secretIndex), as Algorithm 2.3 shows, one common approach is to

perform a memory scan across all potential targets (all elements of publicData in the case of

Algorithm 2.3) and only use the right data for subsequent computation [106, 107, 108]. This

simple approach ensures that the memory access pattern no longer reveals information about

the secretIndex. However, it comes at a significant performance cost of OpNq bandwidth

cost for each access. One may assume that the attacker has no observability over the cache line

offset bits, which holds for most cache attacks, and only access addresses that are multiples

of cache lines away from the target address. This strategy is further challenged by more

subtle attacks which are capable of leaking low-order address bits [66]. To address all these

attacks that collectively reveal different parts of memory addresses, researchers resort to more
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Algorithm 2.3: Memory access with

a secret address operand. secretIndex

could be leaked via cache side channels.
Input: array publicData of size N;

secret index secretIndex

Output: returned value tmp

1 dummy Ð publicData[0];
2 dummy Ð publicData[1];
3 ... ...;
4 tmp Ð publicData[secretIndex] ;
5 ... ...;
6 dummy Ð publicData[N-2];
7 dummy Ð publicData[N-1];

Algorithm 2.4: Branch with a secret

predicate. cond could be leaked via ob-

serving the execution unit usage.

Input: integers a, b, c
secret branch condition cond

Output: returned value tmp

1 if cond then
2 tmp Ð a * b;
3 tmp Ð tmp + c

4 else
5 tmp Ð a * b;
6 tmp Ð tmp + 0

7 end

Figure 2.2: Two examples of how secret is leaked by transmitters taking secret input operands
through micro-architectural side channels. Programmers may address this leakage with redundant
operations, marked in blue, to obfuscate the data-dependent micro-architectural behavior.

strict security policies—such as memory trace obliviousness [109]—which require the memory

address pattern to be independent (or oblivious) to any secret information. In fact, the

problem of performing memory accesses with confidential addresses motivates the creation

of Oblivious RAM [110, 111, 112, 113], which strives for achieving sub-linear bandwidth

cost with the aid of some adversary-invisible data structures (such as position map in [114]).

Nonetheless, these methods are rarely used in practice due to their performance degradation.

Algorithm 2.4 represents another common scenario when the secret control-flow decision is

leaked through branches or other control-flow structures. In the original form, the then path

includes one more addition than the else path, therefore a side-channel attacker who is capable

of measuring the execution time of the branch body can easily deduce the branch decision.

A simple countermeasure against this attack approach is to add a dummy addition (line 6

to balance both sides and ensure identical execution time. However, the fixed code remains

vulnerable to other side-channel attacks, such as those that can observe the address sequence

of executed instructions (at different granularity, such as page [115] or cache line [116]). The

attacker may even learn the conditional branch direction directly by monitoring the behavior

of the hardware branch execution unit [19, 20, 61]. To mitigate those attacks, software

developers may adopt more aggressive code transformation techniques, such as restricting the

secret-dependent control flow to the minimal observation granularity (cache/page) [117]. In

high-security applications such as cryptographic libraries, a common practice is to eliminate

secret-dependent branches by performing the worst-case amount of work [118].

The endeavors of programmers in search of side-channel-free programming techniques have
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led to data-oblivious programming [22, 30, 106, 107, 114, 119, 120, 121, 122, 123, 124, 125,

126, 127, 128, 129]. Data-oblivious programming, also known as “constant-time programming”

or “writing programs as circuits”, aims to thwart micro-architectural side channels by ensuring

secret-independent hardware resource usage. It provides a formal framework for adding

redundant operations in code vulnerable to side channels, such as Algorithm 2.3 and 2.4.

Despite its strong security guarantee, its significant performance overhead still impedes its

practical adoption in real-world applications [118]. Moreover, the emergence of speculative

execution attacks has raised concerns about the security of data-oblivious programming,

which was originally designed to address classic side-channel attacks without considering

out-of-order and speculative execution [30, 130, 131].

Addressing Receivers

Preventing attackers’ receiver instructions from measuring secret information through the

channel provides another direction for countering micro-architectural side-channel attacks.

Since any micro-architectural side-channel attack, regardless of the attacker’s proximity to the

victim, relies on analyzing the correlation between the measured computational side effects

(e.g., timing) and target secrets, introducing inaccuracies in the measurement is considered

an effective mitigation applicable to any micro-architectural side-channel attacks, including

speculative attacks that still utilize classic side channels for secret transmission. Since most

side-channel attacks leverage high-resolution timers, possible mitigations can be reducing the

timing resolution, fuzzing, or completely disabling the timing source [132, 133, 134, 135, 136].

However, injecting noise or completely disabling the timing source is impractical in many

circumstances, and will result in significant performance degradation [137]. Furthermore,

subsequent attacks have been proposed to completely eliminate the side-channel attack’s

dependence on timers [36, 138, 139, 140, 141].

Considering that many micro-architectural attacks assume the attacker’s physical proximity

to the victim for the direct observation of the hardware resource usage, a straightforward

approach is to assign the victim application exclusive ownership of an isolated core (to mitigate

intra-core attacks) [142] or even an isolated processor (to mitigate cross-core attacks). However,

as the current trend of building processors that are capable of running more concurrent

workloads continues, these mitigation strategies come at the expense of higher performance

costs. Researchers have also proposed to sanitize the victim’s secret-dependent hardware

state change, such as flushing the cache [5, 143] and the branch predictor state [144] when

switching between security domains. While these solutions result in less performance impact,

they offer a trade-off in terms of weaker security guarantees.
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2.5.2 Hardware Mitigations

Micro-architectural side-channel attacks exploit security flaws in the hardware design,

therefore incorporating defense strategies during the hardware design process should address

the root cause of micro-architectural side channels. Additionally, hardware mitigations

generally provide better software compatibility due to less involvement by the software.

However, few of those hardware mitigations are implemented in real-world processors, since

they usually introduce significant design complexity as well as non-negligible performance

cost.

Secure Hardware Units

Most current hardware mitigations focus on hardening individual micro-architectural

resources that induce side-channel attacks, such as caches, TLBs, branch predictors, etc.

These resources are commonly shared by programs from distinct security domains, allowing

potentially malicious programs to learn secret information from the hardware resource usage

pattern of the victim program. Based on the cause of the information leakage, most existing

solutions aim for achieving non-interference: the execution of a program cannot create secret-

dependent hardware resource usage that can be observed by the execution of another program

from a different security domain. To achieve non-interference, these solutions typically follow

two different methodologies (some may aim at the best of both worlds):

• Isolation-based. Isolation-based mitigations give the victim exclusive ownership of a

portion of the vulnerable hardware resource, therefore the victim’s usage of the resource

cannot be observed by other tenants sharing the hardware. This strategy was first

applied to the processor cache, as the researchers suggested assigning different cache

ways to software from different security domains (e.g., VMs) [145, 146]. However,

static partitioning faces scalability limitations due to the finite hardware resources

and the potentially infinite number of tenants. Moreover, static partitioning results in

poor resource utilization as the resource demand of different programs can vary. To

address these challenges, most solutions adopt dynamic and fine-grained (e.g., cache-

line level) cache partitioning approaches to alleviate the performance impact of the

protection mechanism [55, 147, 148, 149, 150, 151, 152, 153, 154]. Specifically, these

solutions follow the key observation that cache side-channel attackers must identify

the victim’s accesses to critical cache lines that depend on the victim’s secrets through

interference with those accesses (e.g., through cache evictions [5] and flushes [15]). By

introducing new cache replacement logic (some even with assistance from the operating
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system [154, 155], these solutions ensure that critical cache lines remain unaffected

by other software, effectively isolating them from interference. The isolation-based

approach is also applied to other micro-architectural resources such as TLB [26], cache

directory [156], and branch predictor [157, 158].

• Randomization-based. Micro-architectural side-channel attacks are possible only when

the hardware activities observed by the attacker exhibit a correlation with the victim’s

secret. To counteract this, researchers propose randomization-based solutions, which

introduce randomness in the attacker-observable hardware activities with the goal

of eliminating the correlation. The initial randomization-based cache defenses are

designed based on fully-associative caches, which render the popular cache attacks like

Prime+Probe and Flush+Reload ineffective due to the absence of cache sets [147, 159].

Since the use of the fully-associative cache introduces significant performance and

complexity overhead, more recent randomization-based caches are constructed on top

of the set-associative cache, by randomizing the mapping between memory addresses to

cache sets [160, 161, 162, 163, 164]. Researchers have also proposed similar approaches

for other hardware resources [26, 165].

In general, these mitigations offer promising security assurances against well-known attacks,

such as Prime+Probe [5] and Flush+Reload [15] in terms of cache attacks. In addition, the

performance overhead associated with these mitigations has been steadily reduced as new

solutions are proposed. On the other hand, such mitigations are point defenses that cannot

address micro-architectural side channels comprehensively. For instance, most randomization-

based cache mitigations block the leakage of cache set index bits, while the sub-cache-line

address bits remain vulnerable to other subtle side-channel attacks [69].

Secure Co-processors

Aside from running victim programs on shared hardware with vulnerable hardware resources

fixed, other solutions propose to run victim programs exclusively on secure co-processors [166,

167]. Attackers in those cases only have coarse-grain observability that captures the processor’s

external pin activities. The internal state of the co-processor remains hidden from external

programs, and is securely sanitized during context switches. Yet, these proposals assume

simple processor pipelines and scheduling (e.g., one process per chip at a time). In contrast, our

goal is to show how existing high-performance machines can be retrofitted to simultaneously

execute extensive workloads encompassing both sensitive and non-sensitive programs, all

while maintaining the high parallelism provided by modern processors.

26



2.6 MITIGATIONS FOR SPECULATIVE SIDE-CHANNEL ATTACKS

Since the appearance of speculative side-channel attacks, researchers have developed many

defense schemes to counteract those attacks. We now brief the previously proposed speculative

side-channel mitigations.

As mentioned in Section 2.4, speculative attacks still rely on the classic side channels for

transmitting the secret over to the attacker. However, many existing classic side-channel

mitigations are ineffective in defending against speculative attacks. First, consider software

mitigations that apply software transformations to the victim code for constant micro-

architectural resource usage, e.g., using data-oblivious programming. However, due to

speculative execution, the hardware may execute the victim program in an unexpected way,

or even generate software-agnostic hardware activities (such as hardware prefetching) [23]. In

addition, in practice, many parts of the victim program may not be covered by the software

mitigations, such as those legacy or third-party libraries, and any code vulnerable to side

channels in those parts can be exploited by speculative attacks even if those codes do not

touch any user secrets in non-speculative execution.

Most hardware-based classic side-channel mitigations also fail to address speculative attacks.

As mentioned in Section 2.5.2, the security of most defense schemes comes from achieving

the non-interference property between different programs sharing the same hardware. In this

leakage model, the victim program must actively execute to enable any form of side-channel

leakage. However, many recent speculative attacks [3, 23, 96, 97, 100, 101, 102, 103] have

shown how the attacker can leverage speculative execution to access and transmit victim

secret data at rest, i.e. secret data that is never touched by the victim. So even if the victim

never executes, which ensures that any classic side-channel attacks are impossible to carry

out, its secret can still be exposed to speculative attacks.

A simple solution to eliminate speculative attacks is to disable speculation, for instance,

by inserting speculation barriers after branches. However, this approach completely erases

the performance advantage of speculation. Next, we showcase prior works on mitigating

speculative attacks by introducing new security-related mechanisms to speculative execution.

Similar to the previous surveys conducted by Xiong et al. [88] and by Hu et al. [168], we

categorize these works based on which step of the speculative side-channel attack flow they

target.
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2.6.1 Targeting Malicious Predictions

Speculative execution attacks start from the predictor being properly trained, which leads

to a misprediction and eventually the speculative leakage of secrets. To ensure the attacker’s

training of the predictors does not result in a misprediction favoring the speculative attack, the

first defense strategy is to separate the victim’s predictor state from the attacker. For example,

Intel/ARM both introduce security features to their branch predictor structures [169, 170] to

ensure that the jump target in the branch target buffer that is updated by a program cannot be

used for making predictions for programs belonging to different security domains. Researchers

also proposed similar isolation mechanisms for other branch predictor structures [158, 171].

While this strategy prevents the malicious predictor training from different security domains,

it fails to mitigate attacks like the original Spectre V1 [4] and NetSpectre [172] where the

predictor is trained by the victim program itself.

2.6.2 Targeting Speculative Access Instructions

In speculative attacks, it is impossible to leak the secret without first accessing the secrets

from the memory. This leads to the second mitigation strategy, which is to enforce specific

speculation-aware access control policies to the secret data. For instance, the Meltdown

attack is possible because the kernel memory can be accessed from the userspace during

speculative execution. Hence, an immediate countermeasure against Meltdown, dubbed

kernel address space isolation (or kernel page-table isolation), completely separates kernel

address space from the user address space such that kernel memory is inaccessible from the

userland even during hardware speculation [173]. Browsers also adopted this strategy and

developed site isolation [174], which segregates browser sites into different address spaces.

However, completely separating programs into mutually exclusive address spaces might

be overly conservative when the victim program only possesses limited private data and

can benefit from sharing public data. In such scenarios, schemes that enforce speculative

access control at a finer granularity, such as page-granularity as demonstrated by Intel’s

speculative-access protected memory (SPAM) [175], could be more desirable. Nonetheless,

such schemes often rely on manual labeling of program secrets, which is often infeasible in

real-world applications.
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2.6.3 Targeting Speculative Transmitter Instructions

Blocking speculative accesses to secret data is a sufficient, but unnecessary mitigation

strategy, as the secret also needs to be consumed by the transmitter instructions. Many

defenses therefore choose to block the execution of transmitter instructions instead of access

instructions [176, 177, 178, 179, 180, 181]. These defenses track data returned by speculative

access instructions, and block the execution of any speculative transmitters that use those

data or the dependent data as inputs. While most of them assume any data returned by

speculative access instructions as secrets, some schemes (such as SpectreGuard [177] and

ConTExT [179] provide extra software support for programmers to mark data as private.

Alongside the hardware schemes mentioned, Speculative Load Hardening (SLH) [182] employs

similar strategy at software level, with compilers introducing extra data dependence between

transmitter instructions and the prior branches.

2.6.4 Targeting Channels

Another major strategy adopted by many existing mitigations is to intercept the speculative

leakage at the channel. To achieve this, any micro-architectural resource (such as cache) cannot

exhibit secret-dependent usage resulting from transient execution that can be eventually

observed by the attacker. Most solutions focus specifically on the processor cache since it is

the primary option for transmitting speculative secrets. InvisiSpec [183], SafeSpec [184], and

MuonTrap [185] are based on the idea of using dedicated buffers for filtering any speculative

updates to caches, such that the cache state remains unchanged from the attacker’s perspective.

CleanupSpec [186], on the other hand, rollbacks any updates to the cache once the processor

recognizes that those updates are from squashed memory accesses.

Other mitigations follow a major observation that in most speculative attacks, attackers are

from a different security domain, and such attackers can only observe speculative cache state

changes if the state changes happen to the shared cache, or the private cache state change

remains across context switches. Therefore, in SelectiveDelay [187], only cache accesses

that miss L1 are delayed. Other defense frameworks, such as DAWG [55], MI6 [188] and

Ironhide [189] combine resource partitioning with micro-architectural resource flush to ensure

speculative state updates cannot be directly observed from other security domains.

A major drawback of the above schemes that target channels is that, they still create

secret-dependent micro-architectural state usage. For instance, despite using special buffers

to filter speculative cache updates [183, 184, 185], the cache access still reaches the cache

level where the address is present, which leads to speculative leakage when the address itself
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depends on speculative data.
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CHAPTER 3: DATA-OBLIVIOUS ISA

This chapter presents a comprehensive solution for blocking micro-architectural side chan-

nels called Data-Oblivious ISA extension (OISA). The current effort of addressing micro-

architectural side channels comprehensively, by writing program data-obliviously, is insecure

and inefficient due to the absence of security guarantees from the hardware. OISA, for the

first time, includes side-channel-specific security specifications at the ISA level, facilitating

communication between hardware and software regarding side-channel protections. Aside

from introducing OISA design principles, this work also proposes a hardware prototype im-

plementing an instance of OISA including safe performance optimizations, and provides a

formal analysis showing that programmers can write provable and efficient side-channel-free

(covering both traditional and speculative side channels) programs with OISA.

3.1 INTRODUCTION

With the rise of cloud computing and internet services, digital or microarchitectural side

channel attacks [107] have emerged as a central privacy threat. These attacks exploit how

victim and adversarial programs share hardware/virtual resources on shared remote servers

(e.g., an amazon EC2 cloud). Simply by co-locating to the same platform, researchers have

shown how attackers can learn victim program secrets through the victim’s virtual memory

accesses [115, 190], hardware memory accesses [5, 15], branch predictor usage [20, 191],

arithmetic pipeline usage [22, 66, 192], speculative execution [4, 193] and more. Given the

many avenues to launch an attack, it is paramount for researchers to explore holistic and

efficient defensive strategies.

Recently, there has been a surge of work that attempts to block all digital side channels,

on commercial machines, by writing and compiling programs in a data-oblivious fashion (e.g.,

[22, 106, 107, 114, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129]). Data-oblivious code,

a.k.a. “constant time” or “running programs as circuits,” blocks side channels by disallowing

private data-dependent control flow. Figure 3.1 and 3.2 give an example. Figure 3.1 leaks

private information over microarchitectural side channels—namely, program execution time

(the ‘if-taken’ case executes more instructions) and memory footprint (if x and y touch

different lines in cache). To block these leakages, a data-oblivious program will evaluate both

sides of the branch as shown in Figure 3.2. A ternary operator—e.g., implemented as the x86

cmov instruction or bitwise operations—chooses the correct final result (Figure 3.2, Line 4).

Since executing each side of the branch is independent of the secret, and the ternary operator
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does work independently of the secret, running the code data-obliviously does not leak the

secret.

1 x = 0, y = 64

2 if (secret)

3 x = y

4 z = Memory[x]

Figure 3.1: Non-oblivious (insecure) code.
The word secret denotes private data.

1 x = 0, y = 64

2 z = Memory[x]

3 tmp = Memory[y]

4 z = secret ? tmp : z

Figure 3.2: Equivalent data-oblivious code.
The word secret denotes private data.

Despite the promise of data-oblivious programs to block side channels, future progress

faces two key challenges.

Security First, existing Instruction Set Architectures (ISAs) provide no guarantees that

instructions used in data-oblivious codes can block leakages over microarchitectural side

channels. For example, if cmov (used as the ternary operator in [107, 114, 123, 125]) was

ever implemented as the microcode sequence branch+mov, the secret condition would leak

through branch predictor state and whether hardware speculation results in a squash. Being

ISA-invisible, these changes can occur at any time. Case in point, Intel has stated that cmov’s

behavior w.r.t. speculation may change in future processors ([194], Section 3.2).

Beyond cmov, the larger problem is that commercial ISAs such as x86 give engineers

significant rope to perform data-dependent optimizations during program execution. For

example, it is well known that arithmetic units can sometimes take data-dependent time [22,

192]. We provide a comprehensive background on related vulnerabilities in Section 3.3.2.

Any of these software-invisible optimizations can undermine the security of prior and future

work that attempts to write data-oblivious programs.

Performance Data-oblivious programming usually incurs large performance degradation.

The reason, once again, is that data obliviousness does not have ISA-level support. As a

result, programmers are forced to use only the simplest instructions to achieve data-oblivious

execution, out of fear that other instructions will leak privacy. For example, data-oblivious

codes must make two memory accesses in Figure 3.2 out of fear that a single access will

reveal the address through the processor cache, or other, side channel. This overhead scales

with deeper data-dependent control flow and larger data sizes.

In this work, we tackle both the security and performance aspects of this problem by

developing a novel type of ISA extension which we call a Data-Oblivious ISA extension

32



(OISA). To our knowledge, this represents the first foundation for writing and executing

secure, portable, and performant data-oblivious code on commercial-class (out-of-order,

speculative) processors. Our key idea is to explicitly specify security guarantees at the ISA

level, while decoupling those guarantees from the implementation details of a particular

processor. Specifically, each operand of each instruction is given an ISA-level attribute

specifying whether that operand is Safe to receive private data. If marked Safe, processor

implementations (microarchitectures) using that ISA must hide operand-dependent side

effects from other parts of the system due to that instruction’s execution. Importantly, how

protecting Safe operands is implemented is left to the hardware designer, who can devise

efficient protections depending on each microarchitecture (e.g., by breaking the instruction

into simpler data-oblivious instructions [22] or using hardware partitioning [108] or using

cryptographic techniques [114]). In all cases, the programmer works with a simple, portable

guarantee.

With these principles, we define a set of instructions that can serve as the foundation for

the rich line of ongoing work in data-oblivious programming [22, 106, 107, 114, 119, 120,

123, 124, 125, 126, 127, 128, 129]. Beyond Turing completeness and security, we also want to

reduce the performance overhead common with data-oblivious code. To that end, we provide

additional instructions that implement efficient memory oblivious computation [106, 114]

(featuring loads/stores with private addresses). Given the principles above, this extension

is conceptually simple: instead of emulating memory obliviousness with dummy memory

operations (Figure 3.2), we designate a new load instruction whose address operand is Safe,

which gives hardware designers the ability to build secure and efficient implementations, e.g.,

using partitioning, for that specific operation.

To show that our ideas are practical, we prototype all hardware changes needed to support

our ISA on top of the RISC-V BOOM processor (for “Berkeley Out-of-Order Machine”) [195].

BOOM is the most sophisticated open RISC-V processor, featuring modern performance

optimizations such as speculative and out-of-order execution, and is similar to commercial

machines that run data-oblivious code today.2 We evaluate our prototype in terms of

hardware area and performance over a range of existing data-oblivious programs (including

linear algebra, data structures, and graph traversal). Area-wise, our proposal takes ă 5%

the area of the unmodified BOOM processor. Performance-wise, our ISA and hardware

implementation provide an 8.8ˆ/1.7ˆ speedup on small/large data sets, respectively, relative

to data-oblivious code running on commodity machines (and with the security and portability

2We note that prior work [166, 167, 196] requires the use of discrete co-processors with simple microarchi-
tecture. To match modern cloud deployments, our goal is to support concurrent execution of many processes
on advanced microarchitectures.
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benefits stated before). We also show case studies, where our ISA speeds up constant time

AES [197, 198] by 4.4ˆ and the memory oblivious ZeroTrace [114] library by 4.6ˆ to several

orders of magnitude, depending on parameters.

In parallel to our hardware prototype, we develop a formal analysis that models an abstract

BOOM-class processor (out-of-order, speculative, superscalar), and describe how to map

the abstract BOOM to our concrete BOOM prototype. A key insight enabling this analysis

is that by applying local checks to each instruction as it executes, the analysis/hardware

need not be aware of whether each instruction is speculative, executed out-of-order, etc.: the

checks performed to maintain security are the same in all cases. Through this formalism,

we prove that the ISA provides a basis to satisfy strong security definitions such as non-

interference [199] on advanced machines. Importantly, we achieve this result while allowing

high-performance hardware optimizations (e.g., out-of-order, speculative execution) to remain

enabled in the common case and without ever requiring hardware flushes to structures such

as the cache or branch predictors [19, 96].

Contributions To summarize, this chapter makes the following contributions:

• We present the design principles for data-oblivious ISA extension, as a way to facilitate

communication between software and hardware for micro-architectural side-channel

protections.

• We design a concrete OISA based on RISC-V ISA, and present a hardware prototype

on an out-of-order, speculative processor, based on RISC-V BOOM processor, which

supports our OISA. The evaluation shows less than 5% area overhead, 8.8x/1.7x

speedup on small/large data sets, respectively, relative to data-oblivious code running

on commodity machines.

• We perform a formal analysis showing that the abstract processor supporting OISA

fulfills the non-interference property, which is a strong security property allowing for

side-channel-free programming.

3.2 THREAT MODEL

We consider the setting where a victim program runs on a shared machine in the presence

of adversarial software. The adversary’s goal is to learn private data in the victim program

through digital side channels. For example, private inputs contributed by another party or
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secret program state (e.g., a cryptographic key). The program itself is considered public. We

trust the processor hardware and that the victim program is correctly using the OISA.

We defend against two classes of adversaries: supervisor-level (Ring-0) and user-level (Ring-

3) software. In both cases, we strive to block digital side channels that could be exploited by the

standard Intel SGX adversary used in prior work on data-oblivious programming [106, 107, 114,

122, 123, 124, 125, 128]. This adversary is supervisor-level software that controls when victim

threads run, and therefore can monitor/influence the victim’s hardware resource utilization

(e.g., monitor/prime the cache/branch predictors [4, 5, 19]) at near-perfect resolution (e.g.,

via [115, 190, 200]). By extension, this adversary can monitor the victim’s termination time,

and determine when a precise exception [107, 201] or system call [202] occurs. We don’t

make assumptions on where the victim runs relative to adversarial code (e.g., as an adjacent

SMT context, adjacent core, etc.). If the adversary is actually user-level software, our threat

model is strictly conservative.3

In the case of a supervisor-level adversary, we assume the victim is running within a virtual

shielding system, such as an SGX enclave [203, 204], to prevent direct inspection/tampering

on victim data. The OISA is orthogonal to which virtual shielding system is used, in the sense

that shielded programs can execute oblivious instructions regardless of the exact shielding

system implementation. We will therefore only discuss the OISA, independent of the shielding

system, for the rest of the paper.

Non-goals Physical side channels (e.g., power [43] or EM [205]) are out of scope. Similar

to previous works on data-oblivious programming, we also do not consider the integrity of

computation. Integrity relies on orthogonal mechanisms, e.g., traditional or SGX-augmented

process/memory isolation.

3.3 DATA-OBLIVIOUS EXECUTION

We now give background on data-oblivious execution and give examples for where prior

work on commercial ISAs (e.g., x86) and modern machines (e.g., speculative, out-of-order) is

vulnerable to attack.

3Note that even user-level adversaries have been shown to be surprisingly powerful in their ability to
monitor digital side channels [7].
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3.3.1 Security Definition

Data-oblivious execution satisfies computational indistinguishably4 of program traces, once

the trace is projected by an appropriate observability function.

Definition 3.1. (Confidential input privacy). Given a program λ with Public (non-sensitive)

input x and Confidential (sensitive) input y, OpµArchpλpx, yqqq “ X “ tX0, X1, . . . , XMu

represents the program’s observable execution trace (projected through function O) when

running on a processor µArch. What information is contained in each Xt (for each time step

t) depends on the observability function O. W.l.o.g. we will treat x and y as fixed-size arrays,

thus λ can accept an arbitrary number of Public and Confidential inputs. Privacy for the

Confidential inputs then requires:

@x P DataP , @y, y1
P DataC : OpµArchpλpx, yqqq » OpµArchpλpx, y1

qqq (3.1)

where » denotes computational indistinguishability, and DataP and DataC denote the space

of Public and Confidential inputs, respectively.

We denote Definition 3.1 parameterized by an observability function O and a specific

microarchitecture µArch as ObliviousrO, µArchs, dropping µArch when it is clear which

microarchitecture we are referring to.

Existing data-oblivious programs written for commodity machines demand a rich observabil-

ity function that reveals fine-grain details about processor state [106, 107, 114, 119, 120, 123,

124, 125, 126, 127, 128, 129]. The reason is that machines today are shared, and adversaries

from Section 3.2 can monitor internal activity such as caches and pipeline behavior. It is

therefore useful to define the most conservative observability function that could apply to

adversaries from Section 3.2:

Definition 3.2. (BitCycle observability: Security labels at bit-level spatial granularity, cycle-

level temporal granularity). Let St “ t0, 1uN denote the processor state during clock cycle t,

where the state includes all on-chip storage (e.g., flip-flops, SRAM). Si
t denotes the value of

the i-th bit in cycle t. Given a program execution λpx, yq, BitCyclepµArchpλpx, yqqq “ X “

tX0, X1, . . . , XMu where Xt “ t0, 1uN and X i
t “ 1 indicates Si

t contains an explicit flow5 of

4Here, computational indistinguishability (adopted from the Oblivious RAM literature [112]) is synonymous
with computational non-interference [206], and the definition can be easily changed to require strict non-
interference [199] if the program does not require computational assumptions.

5Formally: Let each memory cell Si take two inputs: data (ini) and write enable (wei) where both are
functions (combinational logic) taking a subset of bits in S as input. For time t “ 0: S0 (i.e., at t “ 0) is
initialized with starting program state, Xi

0 “ 1 iff Si
0 is Confidential data. For time t ą 0: Xi

t “ 1 if (a) wei

outputs 0 in cycle t and Xi
t´1 “ 1 or (b) wei outputs 1 in cycle t and Xj

t´1 “ 1 for some j in the inputs to
Si (ini or wei). We note that implicit flows [207] are accounted for once BitCycle is applied to Definition 3.1.
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Confidential data in cycle t (X i
t “ 0 otherwise).

For example, writing data d to the processor cache at address a in cycle t sets bits in

Xt, corresponding to cache memory cells at a, if either d or a were computed based on

Confidential data. More generally, the definition implies the adversary can monitor every

possible hardware resource pressure (e.g., flip-flop level pipeline utilization, cache footprint,

etc.) every cycle. Our goal is to provide a basis for programs to achieve ObliviousrBitCycles

on advanced commercial-class machines.

3.3.2 Security Issues in Existing Data-Oblivious Code

Existing data-oblivious codes are written extremely conservatively to remove code constructs

that blatently violate ObliviousrBitCycles. For example, prior works rely solely on a carefully

chosen subset of arithmetic operations (e.g., bitwise operations), conditional moves, branches

with data-independent outcomes, jumps with public destinations, and memory instructions

with data-independent addresses [22, 106, 107, 114, 119, 120, 121, 122, 123, 124, 125, 126,

127, 128, 129].

It is important to understand when this isn’t sufficient for security. To that end, we

now detail 11 possible attack vectors on today’s data-oblivious code. Importantly, we do

not list many popular attacks (e.g., prime+probe in the cache [5]) as these are defeated

by writing programs in the style described above. Yet, attacks can still occur because the

hardware can apply invisible optimizations to undermine software-level transformations. In

the following, we describe attack vectors known to be implemented today, and also proposals

whose implementation status is unknown. However, importantly, each optimization could be

implemented at any time, breaking existing codes.

Vectors 1, 2, 3: branch, jump, memory speculation

While transient execution attacks [4, 193] are known to impact general-purpose code, their

impact on data-oblivious code has not been adequately studied. We make an important

observation that data-oblivious code security is undermined even by ‘honest’ speculative

execution. By ‘honest’, we mean the speculation is not intentionally being controlled in a

malicious way, e.g., as in [4]. The root problem is that modern ISAs have limited resources

(e.g., ISA-level registers) and executing unintentional instructions can cause secrets stored in

aliased resources to be exposed accidentally.

Consider a toy example for data-oblivious decryption, exploiting conditional branch mis-

prediction (denoted Vector 1):
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1 for (i = 0; i < NUM_ROUNDS; i++)

2 state = OblDecRound(state, rkey[i])

3 declassify(state)

Figure 3.3: An example of why data-oblivious encryption does not guarantee key privacy.

A legal data-oblivious code can implement decryption round logic data-obliviously, with

the round keys rkey considered Confidential (Definition 3.1), and wrap the round in a data-

independent branch to reduce code footprint. Once decryption is complete, the program

may use the plaintext in a non-oblivious way, e.g., by using it as an address to lookup a

record in cache (denoted declassify(state)). Such a non-oblivious operation can reveal

information related to the decryption key on a speculative machine. Specifically, if the branch

mispredicts “not taken” (e.g., while the predictor is training), state is prematurely exposed

before all rounds complete, allowing an attacker to perform cryptanalysis on encryption

round intermediate state.

Removing branches or disabling branch speculation is not sufficient to fix this issue, as other

forms of speculation (e.g., unconditional branches/jumps, memory disambiguation [193]—

denoted Vectors 2 and 3) cause similar issues on legal data-oblivious code.

Vectors 4, 5: sub-address optimizations

Numerous data-oblivious codes, e.g., “constant time” cryptography [208, 209], make an

assumption that modulating certain bits in a memory address (e.g., the bits indicating offset

within a cache line) does not create observable behaviors. This assumption doesn’t hold on

some microarchitectures due to hardware optimizations such as speculative store forwarding

(Vector 4) and cache banking (Vector 5), and attacks exploiting these features have been

shown to lead to full cryptographic breaks [69, 71].

Vector 6: input-dependent arithmetic

It is well known that complex arithmetic operations (e.g., multiply/divide, floating point

square root) exhibit observable data-dependent timing based on their operands [22, 192].

While prior work can mitigate these threats by re-writing complex arithmetic using bitwise

operations, this can incur over an order of magnitude performance overhead depending on

the operation [22].
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Vector 7: microcode

Even simple instructions may be decomposed into simpler instructions, called micro-ops,

before being executed. In some cases, micro-op conversion can create data-dependent behavior.

For example, cmov (which implements conditionals based on Confidential values [107, 114, 123,

125]) can be broken into a branch+mov. There is evidence to suggest that this transformation

will be applied in future Intel processors ([194], Section 3.2). This breaks privacy: the branch

direction will be speculatively guessed and whether a misprediction occurs changes program

timing due to the squash (Section 2.1).

Vectors 8, 9, 10, 11: data-based compression, data-based speculation, silent stores

Finally, there are a number of proposals whose implementation status on commercial

machines is unknown. In register file [210] and cache [211] compression (analogous to OS-

level page de-duplication [212]), register file and cache pressure is a function of program

data (Vectors 8 and 9, respectively). Value prediction [40] (Vector 10) speculates on the

result of a memory load or long-running arithmetic operation, causing a squash if the

prediction is incorrect (Section 2.1).Finally, silent stores [213] (Vector 11) remove redundant

store operations (impacting cache pressure) when the hardware detects the memory already

contains the same value at the same address. What all of the above have in common is

that they are program data-centric optimizations that don’t discriminate between Public and

Confidential data. Thus, they can undermine any data-oblivious code written in any style.

Takeaway

Not only is writing data-oblivious code difficult, but it is also fraught with danger due

to subtle ISA-invisible optimizations such as those given above. Our proposed OISA gives

hardware the visibility it needs to decide when and when not to apply leaky performance

optimizations (such as those above) and enables richer hardware support for data-oblivious

code to speed up core operations such as oblivious memory.

3.4 DATA-OBLIVIOUS ISAS

We now describe data-oblivious ISA (OISA) design principles and give an example concrete

OISA that we will later implement on top of the RISC-V BOOM.

39



3.4.1 Design Principles

We had two primary goals in designing an OISA. First, the ISA should expose security

guarantees in a microarchitecture-independent way. A single ISA may be embodied in many

different microarchitectures (within and across processor generations), each with different

organizations and optimizations. It isn’t reasonable to ask the software to reason about each

microarchitecture: a developer who writes a data-oblivious code correctly once should have

confidence that security will hold on each microarchitecture. Second, the ISA should not

preclude modern hardware performance techniques, except when those techniques have a

chance to leak privacy. Specifically, we want to be compatible with wide (multiple instructions

fetched per cycle), speculative, out-of-order commercial-class machines, e.g., those described

in Section 2.1, and also point optimizations (e.g., banked caches, data-dependent arithmetic;

c.f. Section 3.3.2) that, left unchecked, cause security problems.

To achieve these goals, an OISA has the following components (with hardware support).

Dynamic tracking for Confidential (sensitive) data

We use hardware-based dynamic information flow tracking techniques (DIFT, similar to

[214, 215]) to track how Confidential data propagates through the processor as the program

executes. Conceptually, all data in the processor is labeled Confidential/Public at some

granularity (e.g., word-level).6 This gives hardware the ability to decide when to apply

optimizations to data in use (e.g., attack Vectors 6-7, 10-11; c.f. Section 3.3.2) and at rest

(e.g., Vectors 8-9).

Prior work does not specify precise rules for when data labeled Confidential can be

processed relative to when its label is resolved. A conservative strategy is to require all {data,
label} state to correspond to program order, which would preclude speculative, out-of-order

execution. A more aggressive strategy is to allow speculation, and to further allow data to

be used before its label is resolved.7 Based on our use of DIFT, it will be clear the latter

approach is not secure. Instead, we adopt (and prove secure in Section 3.6) a middle ground

which we call coherent labels.

Rule 3.4.1. (Coherent labels) When reading an operand, its label must be resolved with

respect to the dynamic sequence of speculative/non-speculative instructions (which does not

necessarily follow program order) that have executed so far to generate that operand.

6‘Public’ and ‘Confidential’ semantics are equivalent to the lattice tL,Hu ({low, high} security) where
L Ď H [146, 216].

7For example, [215] proposes storing labels in the page table. If the processor supports speculative
store-forwarding [71] (Vector 4), data will be used before the label lookup completes.
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A simple implementation that satisfies Rule 3.4.1 is to physically extend each data word

with a label bit, which allows normal processor dependency tracking to ensure labels are

resolved on time. We use this strategy for our implementation in Section 3.5.

Instruction operand-level security specifications

In an OISA, instruction definitions specify, for each operand, whether that operand can

accept Public or both Public/Confidential data. We call the former an Unsafe operand and

the latter a Safe operand. Once specified, the hardware designer must handle the following

cases.

Rule 3.4.2. (Confidential Ñ Safe) When Confidential data is sent to a Safe operand: the

hardware designer must add mechanisms to enforce Definition 3.1, for a specified observability

function, despite that instruction’s execution. For example, by disabling performance

optimizations, scrubbing side effects and masking exceptions that occur as a function of

Confidential operands.

Rule 3.4.3. (Confidential Ñ Unsafe) When Confidential data is presented to an Unsafe

operand: the hardware must stop (squash) that instruction’s execution as soon as the label is

resolved. This event is called a label violation #LV. Due to Rule 3.4.1, #LV will be signaled

immediately after register/memory read, and before the execute stage begins. If the violating

instruction is the next instruction to retire (i.e., is non-speculative), terminate the program.

This event is called a label fault #LF.

That is, Rule 3.4.3 is similar to rules that handle badly typed programs, extended to

speculative execution. Label violations (#LV) are caused by transient conditions, e.g.,

imperfect prediction (Section 3.3.2, Vector 1), and are correctable. Label faults (#LF)

indicate a program bug or illegal typing. Fixing bugs is outside of our scope, so we will focus

on #LV.

An important question is whether #LV creates a side channel based on when it is triggered.

We prove in Section 3.6.2 that it does not, and further prove that #LV signals enable the

OISA to block multiple additional attacks (Vectors 1-5; c.f. Section 3.3.2), e.g., speculation

that can reveal Confidential data, on top of the vectors blocked from Section 3.4.1. Finally,

Public data is handled as:

Rule 3.4.4. (Public Ñ Safe/Unsafe) When Public data is sent to Safe or Unsafe operands,

no special treatment is needed and execution can proceed without protection.
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As the above definitions apply at operand granularity, the OISA permits optimizations

that are functions of individual operands. For example, zero-skip multiply can be enabled if

a Public operand is 0, regardless of whether other operands are Confidential.

Specifying each instruction operand as Safe/Unsafe at the ISA level is a key design feature,

and provides significant flexibility to both the ISA and hardware designer while simplifying

programmer-level reasoning about security. At the ISA level, an ISA designer can decide

which instructions are sufficiently important to warrant Safe operands. These choices should

be made carefully: On one hand, Safe operands impose a burden on hardware designers

as the processor must support mechanisms to uphold Definition 3.1 for those operands.

On the other hand, Safe operands do not specify an implementation strategy. Hardware

designers can implement a given operation using simpler data-oblivious instructions (e.g.,

[22]), hardware partitioning (e.g., [108]) or cryptographic techniques (e.g., [114])—depending

on what is efficient given public parameters and the specific microarchitecture. In either case,

programmers work with a simple guarantee: Confidential values will not be at risk when

consumed by Safe operands, and dynamic execution will be terminated when violations to

this policy are detected.

3.4.2 Concrete OISA Specification

Using the principles from the previous section, we now present a concrete OISA that we

will implement on top of the RISC-V BOOM processor. Figure 3.4 shows data-oblivious

instruction encodings, supported instruction types, and the Safe/Unsafe characteristics for

each operand (Section 3.4.1).

Label propagation

Our ISA requires word-granularity labels, tracked in the register file and memory. In most

cases, label update logic follows standard taint tracking rules, given the 2-level security lattice

{Public, Confidential} [216], as shown in Figure 3.4. When the result is fully determined by

Public operands, regardless of other operands (e.g., zero-skip multiply), the result label is set

to Public (as done in GLIFT [218], but not shown in Figure 3.4 for simplicity).

Label declassification

Declassification—downgrading data marked Confidential to Public—is a rare but necessary

task needed to, e.g., return results. Our ISA supports a single serializing declassification
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Oblivious Memory extension:

rs1 (S)

rs1 (S)rs2 (S)

Instruction functionality

R[rd] <- R[rs1] op R[rs2]

Base Data Oblivious ISA:

Arithmetic (R-type) rs2 (S) rs1 (S)

Arithmetic (I-type) rs1 (S)

Declassify (I-type) (serializing) rs1 (S)

Classify (I-type) rs1 (S)

Load (I-type) rs1 (U)

Store (S-type)

rs1 (U)rs2 (U)Branch (B-type)

Jump register (I-type) rs2 (U)

RNG (J-type)

R[rd] <- R[rs1] op ext(imm)

Oblivious Load (I-type)

Oblivious Store (I-type)

R[rd] <- R[rs1] 

R[rd] <- R[rs1]

M[R[rs1] + ext(imm)] <- R[rs2]

R[rd] <- rand()

R[rd] <- M[addr]

M[addr] <- R[rs2]

Operand label constraints
(S = Safe, U = Unsafe)

if (R[rs1] op R[rs2]) PC = PC + imm

R[rd] = PC + 4; PC = PC + imm

R[rd] <- M[R[rs1]+ext(imm)]

rs1 (U)rs2 (S)

Label propagation

Lr[rd] <- Lr[rs1] | Lr[rs2]

Lr[rd] <- Lr[rs1]

Lr[rd] <- 0

Lr[rd] <- 1

Lr[rd] <- 0

Lr[rd] <- 1

Lr[rd] <- Lm[R[rs1]+ext(imm)]

Lm[R[rs1]+ext(imm)] <- Lr[rs2]

Lr[rd] <- 1

-

rs2 (S) rs1 (S)Conditional move (R-type) R[rd] <- (R[rs1]) ? R[rs2] :  R[rd]  Lr[rd] <- Lr[rs1] | Lr[rs2] | Lr[rd]

let addr := R[rs1]+ext(imm) % OSZ

Notation (assembly)

ounseal %rd, %rs1

oseal %rd, %rs1

ocmov %rd, %rs1, %rs2

orng %rd

orld %rd, imm(%rs1)

orst %rs2, imm(%rs1)

ocld %rd, imm(%rs1)

ocst %rs2, imm(%rs1)

CPUID (J-type) R[rd] <- OSZ ocpuid %rd-

-

Figure 3.4: Data-Oblivious ISA. R/Lr, M/Lm denote register file data/labels, memory data/labels,
respectively. The label Public is denoted logic 0, Confidential logic 1. rs1 and rs2 denote operand
registers in RISC-V instructions while rd denotes destination register. R, I, B, J, S-type refers
to standard RISC-V instruction formats [217]. ext extends the immediate to the word width. If
assembly notation is unspecified, it follows RISC-V with an ‘o’ prefix (e.g., add becomes oadd). OSZ
refers to the microarchitecture-specific oblivious memory partition size (Section 3.4.2).

instruction called ounseal. Serializing instructions are not executed until all older in-flight

instructions retire. This is necessary for security: declassification is the only mechanism to

demote Confidential to Public, and this action under malicious speculative execution could

be used to bypass label checking.

Instruction set

Our ISA supports the following instruction types, which we chose to maximize compatibility

with existing data-oblivious codes and minimize hardware changes. First, all RISC-V integer

and floating point arithmetic with Safe operands. This means programmers can implement

floating point directly, without invoking bitwise libraries [22]. Second, random number

generation, as many randomized data-oblivious codes require private random numbers (e.g.,

[106, 114, 219, 220, 221]). Third, a cmov-style ternary/conditional move operator with a Safe

predicate for implementing conditionals, and branches/jumps with Unsafe operands to reduce

code footprint. Fourth, load/store operations (orld and orst) with Unsafe address operands.

Lastly, we support a second flavor of load/stores (with Safe address operands) which can

be used to implement oblivious memory using Confidential addresses (Section 3.4.2).
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Mixing in non-oblivious instructions

Oftentimes, only a small program region should be made data-oblivious (e.g., the inner

branch in modular exponentiation) to prevent unnecessary performance overheads. To

support these situations, we support mixing data-oblivious instructions with instructions

from the original ISA. All operands for all original instructions are considered Unsafe. All

data-oblivious instructions are encoded on top of the normal RISC-V ISA by modifying

existing instruction fields (e.g., the opcode and func [217]).

Putting it all together

To summarize the section, we show a version of Figure 3.2 written using our OISA in

Figure 3.5. The programmer need only specify what data is Confidential via oseal. The

ISA and hardware will prevent %x3 from being processed by subsequent speculative/non-

speculative Unsafe operands. For example, specifying %x3 as an address to a speculative/non-

speculative orld triggers a #LV/#LF, respectively.

1 oaddi %x1, %x0, 0

2 oaddi %x2, %x0, 64

3 oseal %x3, secret

4 orld %x1, 0(%x1) // memory access

5 orld %x2, 0(%x2) // memory access

6 ocmov %x1, %x3, %x2

Figure 3.5: Data-oblivious implementation of
Figure 3.2 using OISA without OMP. The word
secret denotes Confidential data. %xn are RISC-V
general-purpose registers. %x0 is RISC-V idiom
for zero.

1 oaddi %x1, %x0, 0

2 oaddi %x2, %x0, 64

3 oseal %x3, secret

4 ocmov %x1, %x3, %x2

5 ocld %x1, 0(%x1) // memory access

Figure 3.6: Data-oblivious implementation of
Figure 3.2 using OISA with OMP. ocld can take
secret address operands therefore one load in-
struction is sufficient.

Oblivious memory extension

A common bottleneck in existing data-oblivious code is the inability to use Confidential

data as memory addresses [106, 107, 108, 114]. For example, Figure 3.5 needed to execute two

orld instructions. More generally, looking up an array with a Confidential address requires a

memory scan.

To accelerate these operations, our OISA exposes two new instructions ocld and ocst,

which are analogous to orld/orst (Section 3.4.2) except with Safe address operands, and a new
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variant of CPUID ocpuid which returns a microarchitecture-specific constant OSZ (“oblivious

memory partition size”).

Each microarchitecture is responsible for providing OSZ bytes of “fast” oblivious storage,

called the oblivious memory partition (OMP), which only ocld and ocst can read/write. This

storage can be used to speed up data-oblivious code. For example, if x and y in Figure 3.2

both fall within the OMP, then Figure 3.5 can be rewritten as Figure 3.6.

How much storage is provided (the value of OSZ) and how that storage is implemented—e.g.,

a dedicated scratchpad, flexible cache partition, etc.—is left to hardware designers and can

be decided on an implementation-by-implementation basis. (Our prototype in Section 3.5.2

uses ways in a cache.) We note that the hardware constrains addresses sent to ocld/ocst to

fall within bounds 0 to OSZ-1.

To make data-oblivious code portable across machines (each of which can specify a different

OSZ), we provide the following software/programmer-level functions:

• Unsafe OblObj ˚ obl allocpUnsafe int sizeq

• void obl freepUnsafe OblObj ˚ oq

• Safe int obl readpUnsafe OblObj ˚ o, Safe int addrq

• void obl writepUnsafe OblObj ˚ o, Safe int addr, Safe int dataq

Safe/Unsafe qualifiers are implied based on how these functions are implemented. That

is, size must be Public. obl alloc/free dynamically allocate/free an oblivious memory object

OblObj which exposes type, base and bound fields. type “ tOMP,ORAM, SCANu and is

determined by obl alloc under the hood using the following rules:

1. If the new object will completely fit into the OMP, based on the size argument, previous

allocations, and OSZ: set type “ OMP.

2. Else: depending on remaining space in the OMP and the size argument, set the type

as ORAM or SCAN. Heuristics to select which are described below.

Post-allocation, users perform reads and writes to OblObjs through obl read and obl write,

which instrument each operation based on the allocator’s prescribed type, as shown in

Figure 3.7. We describe the ORAM type below.

obl alloc decides on each allocation’s type based on information returned by ocpuid. In the

current design, ocpuid returns OSZ, the implementation-specific size of the OMP. Future

implementations may also return richer information, such as machine cache sizes/etc. to

make more informed decisions. Since size and branches/jumps in our OISA are Unsafe, the
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1 int obl_read(OblObj* o, int addr) {

2 #oblivious {

3 int ret; int tmp;

4 switch (o->type)

5 case OMP:

6 asm ("oaddi %0, %1, %2": "=r" (tmp): "r" (addr), "r" (o->base));

7 asm ("ocld %0, 0(%1)": "=r" (ret): "r" (tmp));

8 break;

9 case ORAM:

10 ret = oram("read", o, addr); break;

11 case SCAN:

12 for (int j = o->base, j < o->bound; j+=4) {

13 asm ("orld %0, 0(%1)": "=r" (tmp): "r" (j));

14 asm ("ocmov %0, %1, %2": "+r" (ret): "r" (j==addr), "r" (tmp));

15 }

16 break;

17 return ret;

18 } }

Figure 3.7: obl read implementation (obl write is analogous). #oblivious is short-hand to indicate
that the body consists only of data-oblivious instructions. oram’s implementation is discussed in
Section 3.4.2. “=r”,“+r” denotes output register; “r” denotes input.

strategy selected for each allocation depends only on the program (which is Public) and the

machine architecture. Lastly, we note that since the allocator makes decisions based on the

order of previous allocations, more performance-sensitive objects should be allocated first.

ORAM and SCAN types. When the oblivious object does not fit into the OMP, the

allocator may implement it as an Oblivious RAM [112] (ORAM) or memory scan. ORAMs

are randomized algorithms which implement oblivious memory in poly-logarithmic time. For

ORAM, we use the ZeroTrace library [114] which is a data-oblivious ORAM client written

in our threat model. Depending on the remaining OMP space, ZeroTrace’s internal sub-

structures (e.g., the ORAM stash and position map [114]) can be placed in the OMP, which

we show can speedup the original ZeroTrace by ą 4ˆ (Section 3.7.3). SCAN is a fallback

that emulates oblivious memory using normal memory, and is implemented as a sequence of

orld and ocmov instructions (Figure 3.7).

Pointed out by [107], when scan vs. ORAM is more efficient depends on the memory size

and the allocator should take this into account based on the allocation size parameter.

3.4.3 Process-OS Interface

Processes interact with the OS through exception handling, context switching and system

calls. We design the OISA to cause minimal friction with the existing OS-process interface.

46



Exceptions Exceptions leak data-dependent conditions (e.g., when a divide by zero occurs)

in programs [107, 201]. When an exception occurs on instructions with all Public operands,

it is handled like a normal exception. When an exception occurs on an instruction with a

Confidential operand, the hardware must mask that exception (e.g., by replacing the result

with a canonical value and leaving the label unchanged). In this design, the adversary may

learn an exception has occurred only if resulting data is explicitly declassified with ounseal.

Context switching In the current design, the OMP (Section 3.4.2) and register file labels

are added as thread state. Labels in memory are mapped to pages in a region of virtual

memory that cannot be accessed directly by the program (Section 3.5.3). While adding the

OMP to thread state doesn’t make context switching performance-prohibitive for the OMP

sizes we consider in Section 3.7, it will for sufficiently large OMPs. We leave integrating the

OMP into normal process virtual memory (e.g., by using the RISC-V VLS technique [222]),

as future work. Finally, if the adversary is supervisor-level (Section 3.2), we rely on the

shielding system, e.g., SGX, to protect program data during context switches. For example,

in an SGX setup [203], all data (Public and Confidential) would be stored within the SGX

ELRANGE.

System calls We rely on orthogonal software techniques to sanitize system call argu-

ments [202, 223].

3.5 IMPLEMENTATION

This section describes how we prototyped our OISA on the RISC-V BOOM microarchi-

tecture. Our design augments BOOMv2, which is the most recent iteration of the BOOM

design [195]. We give the exact parameters used for the architecture in Table 3.2, which

corresponds to the block diagram in Figure 3.8 and is a default BOOM configuration.

3.5.1 RISC-V BOOM Summary

We first summarize unmodified BOOM (referencing Figure 3.8). These details will be used

for our implementation (this section) and formal analysis (Section 3.6).

First, multiple instructions are fetched each cycle ❶. Based on the current program counter

(PC) and decoded instructions, multiple levels of branch/jump predictors issue predictions

for fetched branches/jumps. Mispredicted branches/jumps are discovered in the execute

stage, and cause subsequent speculatively decoded instructions to squash (Section 2.1). Once
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decoded, instructions are added to the issue windows ❷ where they wait for their operands

to be ready, at which point they are scheduled (possibly out-of-order) to execution units.

Operands become ready when they are written (or written back) to one of two register files

(RFs, for floats and integers) ❸, or when an execution unit finishes early and bypasses the

result directly to the consumer instruction. RFs contain speculative and non-speculative

data.

BOOM supports a configurable number of execution units ❹, each of which contains a

configurable number of primitive arithmetic/branch/etc. units, shown in Table 3.2. Each

execution unit receives dedicated read/write ports to the RFs. Primitive arithmetic blocks

may be pipelined (have input-independent latency) or un-pipelined (have input-dependent

latency). Lastly, a load/store unit interfaces to the cache and decides whether load data

should be read from the cache or store data queue (SDQ) which contains speculative stores

(store-load forwarding). Loads may speculatively execute after stores whose address has not

resolved [224]; address alias violations are caught and squashed at retire time. Finally, a

reorder buffer (ROB) ❺ tracks in-flight instructions in-order to facilitate in-order commit

(Section 2.1).

The current BOOM does not currently support SMT/hyper-threading. We note that

our OISA is compatible with an SMT-enabled machine and that the hardware mechanisms

discussed below need not change to support SMT.
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Figure 3.8: RISC-V BOOM v2 pipeline [195]. ‘exeXX’ are execution units, and contain arith-
metic/branch/etc units stated in Table 3.2. Hardware modifications needed to support the OISA
(Figure 3.4) are shown in the legend. No modifications are needed before the int/fp register files.
Label stations are discussed in Section 3.5.3. ‘omp’ is the oblivious memory partition (Section 3.5.2).
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3.5.2 Support for New Instructions

Discussed in Section 3.4.2, most instructions in the OISA have exact counterparts in RISC-V,

but with additional semantics/dynamic checks for Safe/Unsafe operands. These instructions

reuse existing RISC-V encodings and have altered opcode/func fields to be identified during

the decode stage. Several exceptions are oseal, unseal, orng, ocmov, ocld/ocst/ocpuid which

don’t have RISC-V counterparts (Figure 3.4).

We implement oseal and ounseal as the RISC-V addi instruction with the immediate field

set to 0 (functionally a move operation), but with modified logic to set/clear label bits. As

discussed in Section 3.4.2, ounseal must also serialize (execute non-speculatively) to prevent

malicious declassification. Since BOOM already implements serializing instructions, we reuse

that functionality for ounseal. Our prototype implements orng as a cryptographic PRNG

(iterative AES core), although a hardware TRNG [225] may be used for a production design.

ocmov presents a challenge, as conditional move requires three operands (predicate, new

value and old value) whereas no RISC-V integer instruction requires three input operands. To

minimize ISA-level changes, we design a single ALU (in one execution unit) to serve ocmov

instructions, and add a new RF port for that execution unit. We design this ALU to support

bypassing. This design is low overhead and efficient. Having one execution unit support

ocmov means we only need to add a single read port to the RF (not `1 per execution unit).

Through bypassing, our design can execute back-to-back dependent ocmovs, one per cycle.

Finally, our current implementation implements the oblivious memory partition (OMP)

for ocld/ocst as a quarantined region of the first-level data cache. We isolate a region of

the cache using way partitioning techniques [148], which are a low-complexity mechanism

to divide the cache into non-interfering regions as long as the region size is a multiple of

the associativity (our first-level cache is 16-way; Table 3.2). This design has low hardware

overhead. If no process has allocated oblivious objects (Section 3.4.2), OMP storage can be

used as normal cache memory. While an ocld/ocst instruction is looking up the OMP, all

concurrent cache lookups are stalled to avoid cache bank contention [69].

3.5.3 Tracking and Checking Labels

An important component in our OISA is checking and tracking Public/Confidential labels

as data flows through the pipeline and signalling #LV when violations occur. Noted in

Section 3.4.2, we track labels at word granularity.
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Label storage

Labels must be stored alongside each word, wherever each word resides in the processor.

This includes the RF, the SDQ, the data cache hierarchy, and intermediate pipeline registers.

In these structures, we treat the data label as an extra bit in each word. This makes it

simpler to satisfy Rule 3.4.1: whenever a speculative or non-speculative instruction reads an

operand, normal out-of-order processor dependency checking ensures the label is resolved.

Unfortunately, this strategy would require large changes to the DRAM/below memory

levels because wider words would require wider DRAM lines and larger page tables. Thus, at

the DRAM level, we store data and labels in separate disjoint pages and modify the hardware

DRAM controller to join data and label into a widened cache line when on-chip (a similar

scheme was used in [214]). This means any DRAM access in our system turns into two

DRAM accesses.

Label checks

To satisfy Rules 3.4.2 and 3.4.3: once a consumer instruction indicates its intent to use an

operand, that operand’s label must be checked against the instruction opcode/func fields,

before the use occurs. We design a parameterizable hardware module called a label station,

which wraps each BOOM execution unit, to administer these checks. The main observation

enabling the label station design is that in BOOM, all operand-dependent processor state

updates are signalled from the execution units. This makes it possible to implement a shim

at the input of each execution unit to perform label checks, handle label violations/faults,

and disable hardware optimizations on Confidential inputs.

#LV (to ROB)

(Labeled) 
operands

Operation 
metadata Result label

Arithmetic 
unit

Counter

Check 
label

12

3

In/out buffers

Data
Label

Figure 3.9: Label station (Section 3.5.3) for an execution unit with one internal arithmetic unit. A
real execution unit may contain multiple arithmetic units (Table 3.2), in which case this logic is
replicated as needed. Added hardware is shaded.

Specifically, the label station (visualized in Figure 3.9):
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➀ (Rule 3.4.2: Confidential Ñ Safe) Blocks access to/from arithmetic units so that any

operation processing Safe operands takes the worst-case time. This is implemented using

input/output buffers (e.g., flip-flops), a timer (counter), and operand/label decode logic

(“Check label” in the figure). Variable-time arithmetic units and their worst-case times are

given in Table 3.2. Lastly, any status bits set as a function of Confidential operands are set

to canonical values.

➁ (Rule 3.4.3: Confidential Ñ Unsafe) Checks each incoming operation for illegal label-

operand violations, and signals #LV when violations are detected. All checks are performed

before operands are forwarded to the execution unit. If any violation is detected, the

execution unit does not receive the operation and an #LV signal is sent to the ROB, where it

is interpreted as a violation (squash) or a fault (termination, #LF), respectively.

➂ (Label propagation) Computes the result label based on operand labels and stages the

label to travel with the result when it writes back to the RF or exits early via bypass.

Label stations are parameterized at design time based on what functionality is actually

needed. For example, Execution unit 2 (Table 3.2) only supports Safe-operand arithmetic

and therefore doesn’t need logic to enforce Rule 3.4.3 (Confidential Ñ Unsafe). Hence, this

logic is pruned away at hardware synthesis time.

3.6 SECURITY ANALYSIS

We will show that the OISA provides a basis for satisfying ObliviousrBitCycles (Sec-

tion 3.3.1) by proving its security over an abstract out-of-order, speculative machine (AOOM),

and arguing that this abstract machine can be reduced to real hardware such as the BOOM.

3.6.1 Takeaways and Main Insights

The takeaway from the analysis is that the OISA provides a basis to prove (computational)

noninterference on an out-of-order, speculative processor. Importantly, we achieve this result

while allowing hardware optimizations, such as branch predictors, to remain enabled and

without requiring those structures to be partitioned or periodically flushed.

Informally, for this result to hold we need to show that (a) each instruction’s visible execution

and (b) the sequence of instructions that are executed is independent of Confidential data.

(a) follows by definition, given Rules 3.4.2-3.4.4, and is enforced by label stations in our

implementation (Section 3.5.3). A key insight here is that by applying these rules locally,

and to each instruction as it executes, the analysis/hardware need not be aware of whether

each instruction is speculative, executed out-of-order, etc.: the checks performed to maintain

51



security are the same in all cases. To show (b), we leverage a key property inherent in any

OISA: that the inter-instruction program counter (PC) never becomes a function of (“tainted

by”) Confidential data.

Guaranteeing that the PC stays “untainted” involves some subtlety. On an out-of-order

speculative machine, the sequence of dynamic instructions clearly depends on more than just

the program and its input. For example, the PC is influenced by hardware predictors and

dynamic data-dependent events such as when squashes occur. Yet, the untainted PC property

(once proven) is surprisingly powerful,8 and is the crux behind why hardware performance

optimizations can remain safely enabled. For example, if the PC is untainted, branch predictor

structures are also by extension untainted. In our design, this holds because only branch

instructions that do not cause #LV (i.e., those based on Public decisions) are allowed to

update the branch predictor, and because maliciously “priming” the branch predictor [4] can

be modeled using only Public information. If the branch predictor is untainted, it can by

definition remain enabled.

In general, the only new source of overhead occurs when Confidential Ñ Unsafe events

cause squashes. The analysis will show that when this occurs doesn’t depend on Confidential

data and, in particular, that a correctly written program should only see this event when

“honest” miss-speculation (Section 3.3.2) occurs. Predictors must be high accuracy to be

effective, thus honest miss-speculation should be rare.

3.6.2 ISA Level

The following analysis assumes the OISA disables the ounseal instruction (Section 3.4.2)

unless otherwise stated.

Abstract machine basics

The functional model for AOOM is given in Algorithm 3.2, with notations/helper functions

explained in Table 3.1 and Algorithm 3.1. Our goal was to keep the model as simple as possible,

while capturing core features. Specifically, the abstract machine: (1) has a 3-stage pipeline

tFetch,Execute,Retireu where each stage is atomic and takes one unit of time, (2) has four

instruction types tArithmetic,Branch,MemLoad,MemStoreu, (3) has infinite fetch bandwidth

and execution units, (4) can be parameterized as an in-order or out-of-order/speculative

machine. Which instruction types support Safe/Unsafe operands are encoded as conditionals

checking operands for label violations (#LV). We explain how to extend the model (e.g., to

8Similar observations were also made in prior work [218].
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|T | Returns number of elements in T
T ri : js Returns items with index i to j (inclusive)
λ Public program
Fetch,Execute,Retire Instruction stages
Arithmetic,Branch MemLoad{Store Instruction types
stage, pc, squash, update Trace entry format
Writepaddr, data, labelq Token denoting write to program memory
Proj pT q Trace with updates removed
arg ippc, λq, destppc, λq Returns instruction operand/dest fields
opppc, λq Returns instruction’s implied arithmetic op
T.appendpeq Append e to end of of T
typeppc, λq Return instruction at pc’s type (Branch, etc)
donepe, λq Returns true if e.stage “ Retire and e.pc is the stop PC given λ
schedule,predict Instruction scheduler and predictor functions

Table 3.1: Notations and simple helper functions.

account for variable latency instructions, cache, limited execution units, more pipeline stages,

etc.) in Section 3.6.3.

Algorithm 3.1: Helper functions meminit and mem.

function: meminitpx, yq // fill memory w/ Public x, Confidential y

1 T :“ rs;

2 for xi P x do

3 T.appendppExecute,K, false,Writepi, xi, falseqqq

4 for yi P y do

5 T.appendppExecute,K, false,Writep|x| ` i, yi, trueqqq

6 return T ;

7

8 /* return coherent memory snapshot, given T. Note, an instruction that is

squashed by another instruction may still create visible state changes in the

window of time before the other instruction reaches Execute. */

function: mempT q

9 T 1 “ T with all squashed instructions (trace entries) removed. That is, remove from T any entry

that occurs in between the Fetch and Execute stage of an instruction I if I satisfies

I.stage “ Execute ^ I.squash (inclusive);

10 mem :“ rK for t P T 1s; // |T 1| upper-bounds mem size

11 for xi P T 1 do

12 up :“ xi.update;

13 if up.addr ‰ K then

14 memrup.addrs “ up.data, up.label;

15 return mem;
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Algorithm 3.2: Abstract machine definition.

function: AOOMpλ, x, yq

1 T :“ meminitpx, yq; // initialize memory

2 while !donepT r|T | ´ 1s, λq do

3 idx :“ schedulepProj pT q, λq;

4 if idx “ K then // Fetch new instr

5 pc :“ predictpProj pT q, λq;

6 T.appendppFetch, pc, false,WritepK,K, falseqqq;

7 else

8 pc :“ T ridxs.pc;

9 stage :“ T ridxs.stage;

10 if stage “ Fetch then // Execute instr

11 T.appendpexecutepExecute, pc, T, λqq;

12 else if stage “ Execute then // Retire instr

13 T.appendppRetire, pc, false,WritepK,K, falseqqq;

14 return T ;

15

function: executepstage, pc, T, λq

16 update :“ WritepK,K, falseq; squash :“ false;

17 arg0,data, argchpoisa:0,label :“ mempT qrarg0ppc, λqs;

18 arg1,data, argchpoisa:1,label :“ mempT qrarg1ppc, λqs;

19 if typeppc, λq “ Arithmetic then

20 data :“ arg0,data opppc, λq arg1,data;

21 label :“ argchpoisa:0,label _ argchpoisa:1,label;

22 update :“ Writepdestppc, λq, data, labelq;

23 else if typeppc, λq “ Branch then

24 if argchpoisa:0,label _ argchpoisa:1,label then

25 squash :“ true; // #LV: Confidential->Unsafe

26 else

27 fidx :“ index of Fetch for current instr in T ;

28 guess :“ direction for predictpProj pT r0 : fidxsq, λq;

29 actual :“ arg0,data opppc, λq arg1,data;

30 squash :“ guess ‰ actual; // mispredict

31 else

32 if argchpoisa:0,label then

33 squash :“ true; // #LV: Confidential->Unsafe

34 else

35 if typeppc, λq “ MemLoad then

36 data, label :“ mempT qrarg0,datas;

37 addr :“ destppc, λq

38 else if typeppc, λq “ MemStore then

39 data, label :“ arg1,data, argchpoisa:1,label;

40 addr :“ arg0,data
41 update :“ Writepaddr, data, labelq

42 return stage, pc, squash, update;
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Execution traces

The abstract machine AOOM takes as input a program λ, Public input x and Confidential

input y and generates a trace T where each entry Tt tracks a stage of each instruction as it

executes on the machine. That is, the t-th element in T is a 4-tuple:

Tt “ pstaget, pct, squasht, updatetq (3.2)

staget denotes the instruction’s stage tFetch,Execute,Retireu. pct denotes the instruction

address/program counter. Different stages for the same logical instruction share the same

pc. If staget “ Execute, squasht “ ttrue, falseu denotes whether the instruction caused a

squash during speculation (Section 2.1) or due to a label violation #LV (Section 3.4.1). If

staget ‰ Execute, squasht “ false. updatet “ Writepaddr, data, labelq where Write is a token

denoting whether program memory was written, and with what addr, data and label. The

Public label is logic 0, Confidential is logic 1. If no write occurs, addr “ K.

Modeling time

In our abstraction, entries in T are ordered in time as timepTiq ď timepTi`jq for i, j ě 0

where time is a metric for real-time (e.g., clock cycles). That is, multiple events may occur in

the same clock cycle (as in a real processor) or be separated far apart. staget and typeppct, λq

allow us to model contention in different pipeline stages for different instruction types.

Modeling out-of-order and speculative execution

A key feature in our analysis is that AOOM is parameterized by two functions, schedule

and predict. schedule represents control logic in a real processor and decides which stage

of which instruction should be evaluated next. It takes as input the program λ and Proj pT q,

a projection of T that removes update from each entry, i.e.,

Proj pT q “ te.stage, e.pc, e.squash for e P T u (3.3)

Importantly, Proj pT q constrains scheduling to not be a function of program data (i.e., e.update)

beyond the sequence of present/past fetched instructions (e.stage, e.pc) and whether those

instructions result in a squash (e.squash). schedule outputs an index idx P r0, |T |q or K. If

idx “ K, the machine will fetch the next instruction. If idx ‰ K, the machine will evaluate

the next stage for the instruction at T ridxs. predict represents branch/jump predictor logic,
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takes the same inputs as schedule and outputs the predicted next PC. W.l.o.g. we assume

schedule and predict are deterministic.9

Importantly, schedule and predict are representative of modern processors and allow us

to model simple in-order processors to advanced out-of-order speculative processors (details

on this claim related to BOOM are in Section 3.6.3). The only assumption we will make is

that schedule respects in-order Fetch and Retire, as done by machines today.

Modeling machine state

The current machine state at some point idx in the trace is determined based on the trace

prefix from 0 to idx. This includes program state (register file, cache, etc.) and intermediate

pipeline/machine state. Program state is calculated based on mem (Algorithm 3.1). We

merge the register file and other memory into a single memory for simplicity. Data always

travels with its label, which models Rule 3.4.1. As mentioned in Section 42, pipeline state

(e.g., flip-flops/SRAM not included in program state) is modeled by the sequence of PCs and

stages in the trace.

Proof of Security

We now prove that the abstract model AOOM satisfies Definition 3.1 with respect to the

following observability function WordStage.

Definition 3.3. (WordStage observability: Public data and labels at Word spatial granularity,

instruction stage-level temporal granularity) Given T “ AOOMpλ, x, yq,

WordStagepT q “ te.stage, e.pc, e.squash, hpeq for e P T u (3.4)

where hpeq returns e.update (unmodified) when e.update.label “ false holds, and returns

Writepe.addr,K, trueq otherwise.

That is, WordStage only removes write data from the trace if the label corresponding to

that data is Confidential. Satisfying Definition 3.1 with the WordStage function implies

the strongest level of privacy with respect to our abstract machine, and implies that the

machine’s pipeline utilization, PC sequence, set of squash events, and state w.r.t. Public

data is independent of Confidential data. We proceed to show Theorem 3.1:

Theorem 3.1. ObliviousrWordStage,AOOMs holds.

9Heuristics based on randomness can be modeled with an additional seed input.
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We prove Theorem 3.1 using strong induction over traces of two program executions

AOOMpλ, x, yq and AOOMpλ, x, y1q, relying heavily on predict and schedule not being

functions of trace data. Details for the proof are given in the full version [226].

Extensions to randomized cryptographic algorithms

It is straightforward to extend the above analysis to support randomized cryptographic

algorithms such as Oblivious RAM (ORAM) [112, 114]. For example, ORAM client logic can

be written data-obliviously to satisfy ObliviousrWordStage,AOOMs [114, 227]. What is left is

to show how the visible ORAM access pattern—which forms a subset of the trace—satisfies

computational indistinguishability [112]. This reduces to the security of the ORAM protocol

itself and to the OISA’s mechanism to declassify private data, i.e., ounseal. For the latter,

since ounseal is a serializing instruction, we know private randomness will be exposed if and

only if it is intended by the protocol.

3.6.3 Implementation Level

We now map our ISA-level security analysis (Sections 3.4.2 and 3.6.2) to our prototype on

BOOM (Section 3.5), referred to as BOOM.

Threat vectors in unmodified BOOM

Unmodified BOOM hardware (Section 3.5.1) supports speculation over branches, jumps

and unresolved store instructions (Vectors 1-3; c.f. Section 3.3.2) as well as arithmetic units

with input-dependent timing (Vector 6, Table 3.2).10 Our implementation of the OMP

(Section 3.5.2) is also susceptible to cache bank contention (Vector 5) because it uses space

in the data cache.

Securing BOOM

Recall, the primary hardware mechanisms we added to get security are dynamic information

flow tracking (Section 3.5.3), label stations per execution unit to implement Safe/Unsafe

operand semantics (Section 3.5.3), and logic to isolate the OMP (Section 3.5.2).

10We note BOOM also supports load/store forwarding but is not susceptible to Vector 4 because the data
TLB is accessed sequentially before checking the SAQ (Section 3.5.1).
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In Section 3.6.2, we proved ObliviousrWordStage,AOOMs. We show how to use the proof

to argue ObliviousrBitCycle, BOOMs—i.e., cycle-level security of our implementation—which

implies that Vectors 1-3 and 5-6 are blocked. There are two steps: (1) mapping AOOM to

BOOM and (2) mapping WordStage to BitCycle.

Finally, we remark that our current reduction to BOOM is best effort, and consider using

formal/automated methods to improve design confidence to be important future work.

3.7 EVALUATION

We now evaluate the OISA in terms of area overhead (given our prototype on RISC-V

BOOM) and performance over data-oblivious workloads. We also show two case studies,

showing how the OISA secures and accelerates constant time cryptographic code and memory

oblivious libraries.

3.7.1 Methodology

We evaluate our system through hardware prototyping to show area overheads and software

simulation to show performance.

Core µarch out-of-order, speculative

Fetch/issue width 4 instructions fetched/issued per cycle

Execution unit 1 iALU, Branch, iMul, iDiv (6-66)

Execution unit 2 iALU, CondMove

Execution unit 3 IntToFP casting

Execution unit 4 fAdd, fMul, fDiv (5-21), fSqrt (5-29), FPToInt casting

Execution unit 5 Load/store + Omp (memory unit)

L1 I/D cache 32 KB, 4 way/64 KB, 16 way; 64 B cache lines

I/D TLB 16/32 entries

Table 3.2: RISC-V BOOM parameters we use for our prototype and evaluation. Arithmetic
units with a ‘(xx)’ next to their name are un-pipelined (variable latency), where ‘xx’ denotes the
worst-case latency. The prefix ‘i’ denotes integer, ‘f’ denotes floating point. CondMove and Omp
denote logic for ocmov and the oblivious memory partition (Section 3.4.2), respectively, and are
only present on our modified BOOM.
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Hardware prototyping

We build on top of the open-source BOOM design [195] which is written in the Chisel

hardware description language [228]. We parameterized the prototype according to Table 3.2

and synthesized the design using a 32 nm commercial process and the Synopsys flow. We

report standard cell (logic cell) area for logic and flip-flops post-synthesis, and report SRAM

area using the widely used Cacti tool [229]. BOOM maps the instruction/data caches/TLBs

and branch predictor tables to SRAM. The remaining storage structures (e.g., the SDQ, RFs)

are mapped to flip-flops. The BOOM word width is 64 bits.

Software simulation

The BOOM hardware only features a single-level cache, whereas commercial machines

feature two- or three-level caches to reduce traffic to DRAM. Thus, to measure more realistic

performance figures for our system we use Multi2Sim [230], parameterized to match Table 3.2

as closely as possible. For all experiments, we use a 256 KB 4-way level 2 cache (that is

shared by data and instructions) and a 2 MB 16-way level 3 cache. This configuration is

similar to a single slice on an Intel Skylake machine.

OMP usage

We use a 32 KB OMP (Section 3.4.2) that is built into the level 1 data cache. This is

sufficient to store ORAM sub-structures (Section 3.4.2) and also big enough to fit tables for

constant time cryptographic routines (e.g., AES T-tables and RSA multiplier tables). Some

workloads do not benefit from the OMP. In this case, a bit in the thread state disables the

OMP to recover cache space.

3.7.2 Hardware Prototyping and Area Results

We show area results for unmodified BOOM and BOOM extended to support our OISA

in Table 3.3. Our prototype supports all instructions in Section 3.4.2 and Figure 3.4. The

main hardware components needed to support the OISA are storage for DIFT, logic/storage

for label stations, logic to partition the OMP, and a random number generator for orng

(Section 3.5). For structures that need to store labels, we store those labels alongside the

data in whatever medium the data was stored in. That is, labels in the data cache are stored

in SRAM, labels in the SDQ and register files are stored in flip-flops. The largest single area

overhead comes from an iterative AES core that we downloaded from OpenCores [231] to
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implement orng. This unit has area 10,935 um2 (3% of the logic area for the unmodified

BOOM), and can be replaced by a hardware TRNG (whose area is negligibly small [225]) in

a production design.

The takeaway is that hardware overheads are tolerable, both on the logic and SRAM side,

showing the practicality of the proposal on advanced commercial-class machines.

BOOM BOOM + OISA Overhead

Logic 363,900 388,658 6.80%

SRAM 384,232 391,291 1.84%

Total 748,132 779,949 4.25%

Table 3.3: Area (um2) for baseline and modified BOOM cores.

3.7.3 Performance Results

We now perform studies to evaluate the performance overhead of running data-oblivious

code securely, with and without the oblivious memory partition.

Comparison systems

We compare doisa and doisa ompto a baseline insecure system. All three systems use the

same microarchitecture (Table 3.2). Benchmarks run on insecure are written in a non-data-

oblivious fashion (i.e., without the constraints in Section 3.3.2). Benchmarks run on doisa

are data-oblivious, and written using only instructions in Figure 3.4 except ocld/ocst (the

oblivious memory extension; c.f. Section 3.4.2). Thus, doisa will be similar performance-wise

to existing data-oblivious codes, e.g., Raccoon [107], which don’t have access to an OMP.

Benchmarks run on doisa omp use all instructions in Figure 3.4 including ocld/ocst.

Name Implementation Data size (small / large)
mat. mult data-oblivious by default 256x256 / 1024x1024
neural network data-oblivious by default 64-1K-8 / 1024-32K-256
findmax data-oblivious by default 8K / 1M integers
sort bitonic-sort, data-obliv. merge-sort 4K / 256K integers
pagerank GraphSC [232] 1K / 16K nodes
binary search memory scan (doisa), obl. memory (doisa omp) 8K / 16M integers
kmeans obl. memory for histogram 64/256 clusters, 4K/32K points
heap push ODS [221] 8K / 32M integers in heap
heap pop ODS [221] 8K / 32M integers in heap
sparse dijkstra ObliVM [219] 256 / 4K vertices

Table 3.4: Benchmarks and input data sizes for comparing insecure, doisa and doisa omp.
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Workloads

We evaluate a suite of common workloads (Table 3.4) which have previously been written

and evaluated data-obliviously [107, 219, 221, 232] on existing x86 machines. These codes

are divided into three categories. First, codes that are nearly data-oblivious in their default

form (mat mult, neural network, findmax). Second, codes that rely heavily on data-oblivious

sort as a subroutine (sort and pagerank). Third, codes that rely heavily on oblivious memory

(binary search, kmeans, heap, dijkstra). We will also perform case studies showing our

proposal’s applicability in two additional important settings—constant time cryptography

and oblivious memory—in Sections 3.7.3 and 3.7.3.

Data set sizes

For each benchmark, we evaluate ‘small’ and ‘large’ data sizes. ‘small’ indicates the largest

input size that wholly fits into the 32 KB OMP (Section 3.7.1). We use this configuration for

two reasons. First, to show the benefit of having an OMP. Second, to performance compare

against prior work (Raccoon [107], which uses similar data sizes). Finally, we show the ‘large’

data size to illustrate overheads where program data does not completely fit into the OMP.

In that case, we fall back to ORAM or SCAN as described in Section 3.4.2.

Results

Figure 3.10 shows the overhead of {doisa, doisa omp} ˆ {small, large} relative to insecure.

The main takeaway is that doisa omp achieves significant (8.8ˆ/1.7ˆ for small/large data

sizes) speedup over doisa. Furthermore, doisa omp has only 3.2ˆ/40.4ˆ slowdown relative to

insecure on the same data sizes. This shows that our OISA makes data-oblivious computing

practical in cases where data fits in the OMP.

There are two avenues for future work. First, enhance the OMP to support larger sizes (e.g.,

beyond the level 1 data cache, see Section 3.4.3). As we see on the large data set size, the

overhead for both doisa and doisa omp can be large for workloads that depend on oblivious

memory, as large data sizes cannot fit into the OMP. Second, engineer more sophisticated

instructions supporting Safe operands. For example, sort is an important kernel in multiple

data-oblivious codes [125, 219, 232, 233]. An OISA can support an osort instruction with

Safe operands directly, and use techniques such as hardware partitioning to speed up that

operation.
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Figure 3.10: Performance comparison between doisa and doisa omp relative to insecure for
small/large data sets.

Case study: constant time AES

An important commercial use-case for data-oblivious code today is “constant time” cryp-

tography. Many papers have demonstrated how un-protected codes—e.g., T-table AES [197]

and naive modular exponentiation for RSA—leak privacy over microarchitectural side chan-

nels [5, 69, 71]. As a result, practitioners use slower codes to improve security—e.g., S-box

or bitslice AES [198] and montgomery ladder exponentiation for RSA.11

Our OISA provides a basis for running high-performance cryptography securely. To

demonstrate the benefit, we compare the performance of T-table AES [197] (high performance,

low security) vs. bitslice AES [198] (low performance, high security). For this study, we

retrofit T-table AES using our ISA and store the T-tables in the OMP to prevent cache

attacks (the rest of the code is naturally data-oblivious). This gives us a high-performance,

high-security code. The OISA can securely run both the fully unrolled code or a variant with

a loop over the number of rounds, regardless of branch prediction accuracy (Section 3.3.2).

We argue that on commodity machines today, highly sensitive applications will have to resort

to codes like bitslice AES.

Both codes are compiled with gcc using -03 optimizations. Relative to an insecure T-table

AES code (insecure), our data-oblivious T-table AES (doisa omp) has a 2.17ˆ slowdown,

while bitslice AES has a 9.6ˆ slowdown against the same baseline. Our slowdown relative

to insecure is caused by the compiler not optimizing code around ocld instructions. Thus,

doisa omp can achieve an even lower slowdown with better compiler support.

11Discussed in Section 3.3.2, even hardened codes may be insecure due to subtle hardware optimizations.
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Case Study: ZeroTrace

Beyond encryption, there is a rich literature to accelerate data structure operations data-

obliviously [106, 219, 221]. These schemes typically use oblivious memory as a subroutine.

We now demonstrate how the OISA can speed up this subroutine by comparing our oblivious

memory API to the original ZeroTrace [114] proposal. As discussed in Section 3.4.2, our

library combines ZeroTrace with the OMP to achieve speedup for different oblivious memory

sizes.

Figure 3.11: Comparison between oblivious memory primitives. Scan is the SCAN code
from Figure 3.7, shown for completeness. non-recursive/recursive Path ORAM are baseline
ZeroTrace [114].

Results are shown in Figure 3.11. doisa omp provides significant speedup in all size regimes.

For small data, doisa omp places the entire memory in the OMP, providing Op1q (ą 1000ˆ

speedup) time access to that data. For larger data, doisa omp uses SCAN or ORAM, depending

on which strategy yields the best performance, and places the ORAM stash in the OMP

in the latter case. An important finding in the ZeroTrace paper is that stash management,

written data-obliviously, creates a performance bottleneck.12 Since the stash does not grow

as a function of the ORAM capacity, we can use the OMP to store the stash and manage it

more efficiently, which allows us to improve over baseline ZeroTrace by ě 4.6ˆ in all regimes.

12We note that an alternate ORAM, Circuit ORAM [227], was designed to avoid stash management
overheads. Unfortunately, Circuit ORAM has worse bandwidth—12 ˚ log n vs. 8 ˚ log n and 3.5 ˚ log n for
data size n—than Path ORAM, which relies on a stash. Since our oblivious memory extensions make stash
management essentially free, our scheme based on Path ORAM will outperform Circuit ORAM.
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3.8 OTHER RELATED WORK

Data-oblivious programming stack. Beyond data-oblivious code written for today’s

ISAs, there is a rich literature to improve algorithm/data structure [112, 219, 221, 232, 233,

234, 235, 236, 237, 238] performance in the software circuit abstraction. Additionally, there

is rich literature to write (e.g., [220, 239]) and compile (e.g., [219, 237, 240]) programs to

software circuits. An important observation is that, although many of these works target

cryptographic backends such as garbled circuits, their underlying programming abstraction

(software circuits) is very similar to the data-oblivious abstraction. For example, bitwise

crypto can be easily mapped to integer-wide operations. Thus, our proposal can be used as a

secure hardware backend for these works.

ISAs for security, type systems for information flow guarantees. ISAs for security

are not new; further Safe/Unsafe operands and the use of DIFT can be viewed as performing

runtime checks between a simple type system and security lattice (e.g., see [108, 146, 218, 241]).

Relative to these lines of work, we view our conceptual contribution as introducing new

ISA abstractions and design principles that allow software/hardware designers to trade off

efficiency with implementation complexity, while leaving programmers with simple, portable

security guarantees. We note that our choice of lattice and types was done for simplicity; an

OISA may be combined with a more sophisticated lattice and set of operand functionalities.

Finally, we view GLIFT [108, 218] as a spiritual predecessor to this work. One of GLIFT’s

major insights is that at the logic gate level, implicit and explicit flows look very similar. We

observe that the same is true in the data-oblivious abstraction at the program level. This

allows insight from GLIFT to carry over to our domain (e.g., GLIFT’s bit-level checks/tran-

sition functions perform a similar purpose for bits as label stations perform for words; c.f.

Section 3.5.3).

3.9 CONCLUSION

This chapter proposes a data-oblivious ISA extension to enable secure and high-performance

data-oblivious computing in the data-oblivious abstraction. We propose ISA principles, a

concrete ISA, a complete prototype on an advanced microprocessor, and accompanying formal

analyses for all of the above. Long term, we hope OISA serves as a step for writing and

running safe, portable, and performant data-oblivious code for sensitive applications.
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CHAPTER 4: SPECULATIVE TAINT TRACKING

This chapter presents Speculative Taint Tracking (STT), a comprehensive protection

framework for protecting all speculatively accessed data against all types of speculative side-

channel attacks. Speculative attacks present an enormous security threat, capable of accessing

and transmitting arbitrary program data under malicious speculative execution. Rather

than following the conservative defense approach by delaying the speculative execution of

instructions that access potential secrets, STT shows that it is safe to execute and selectively

forward the speculative accessed data, which improves performance, as long as the forwarded

data do not reach covert channels. We conduct a throughout classification of covert channels

in modern processors, and design novel mechanisms to enable protection only when speculative

leakage is possible for reducing the performance overhead. STT showcases a substantial

performance improvement over previous protection schemes with a provable security guarantee

against speculative attacks.

4.1 INTRODUCTION

Spectre [4], Meltdown [3] and follow-up attacks [92, 93, 96, 97, 172, 183, 242, 243, 244, 245]

based on speculative execution have opened a new chapter in hardware security. In these

attacks, adversary-crafted sequences of transient instructions—i.e., speculative instructions

bound to squash—access and then transmit sensitive program data over microarchitectural

covert channels (e.g., the cache [15]). For example, Spectre Variant 1, shown in Figure 4.1,

bypasses a bounds check due to a branch misprediction and transmits secret data behind

that bounds check over a cache-based covert channel [4]. Since the address addr can take

an arbitrary value, val can be any value in program memory, meaning the covert channel

can reveal arbitrary program data. (In this chapter, we denote a potentially secret value in

green.)

Prior work has pointed out that speculative execution attacks are broken into two compo-

nents [55, 172]. First, a secret value is speculatively accessed and read into the architectural

state (e.g., a register) due to adversary-controlled speculative execution. For example, load M1

in Figure 4.1 reads val even if addr ě 10 due to a branch misprediction. Second, that secret

value is transmitted over a covert channel (formed using one or more younger instructions).

For example, load M2 in Figure 4.1 transmits the secret over a cache-based covert channel

(displacing the attacker’s line in the cache).

Using this distinction, a conservative scheme to protect all speculatively accessed data is
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1 uint8 A[10];

2 uint8 B[256*64];

3 void victim (size_t addr) {

4 if (addr < 10) { // mispredicted branch

5 M1: uint8 val = A[addr]; // secret is accessed

6 M2: ... = B[64 * val]; // secret is transmitted

7 }

8 }

Figure 4.1: Spectre Variant 1 assuming a 64 byte cache line size. Variables carrying potentially
secret data are colored green. If the if condition is predicted as true, then the cache line of
B indexed by val is loaded to the cache (load M2) even though both loads are eventually
squashed.

therefore to delay the execution of any instruction deemed capable of accessing a secret (access

instruction for short) until it becomes non-speculative. For example, if we define access

instructions to be “all loads,” it isn’t possible for val in Figure 4.1 to leak an out-of-bound

value through the covert channel formed by load M2, since we delay executing load M1 until

the branch resolves (and squashes). On the other hand, this scheme has high overhead, as

delayed execution blocks execution for all dependent instructions.

The key observation underpinning our solution is that one can improve the above conserva-

tive scheme’s performance, without hurting security, by executing and selectively forwarding

the results of speculative access instructions to younger instructions, as long as those younger

instructions cannot form a covert channel. For example, suppose the microarchitect designs

simple arithmetic (e.g., adds, xors) to have data-independent timing (e.g., implemented with

a single-cycle ALU). Then, it is safe to execute and forward the result of load M1 to these

dependent instructions, because their execution cannot reveal the result’s value. By issuing

load M1 and the arithmetic early, we improve performance if the branch resolves with a correct

prediction.

This chapter designs a framework to selectively forward data in this fashion, providing an

efficient mechanism to comprehensively protect all speculatively accessed data. At a high

level, our scheme tracks the flow of results from access instructions, through their def-use

chains in a manner similar to dynamic information flow tracking [214, 215], until those results

reach an instruction, or sequence of instructions, that may form a covert channel. Only at

that later point do we stop forwarding the access instruction-dependent value. To be secure

and efficient, this approach needs to solve two key technical challenges:
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Challenge 1: Blocking leakage through all covert channels. First, paramount to

deciding when to forward the results of speculative access instructions (called secrets for

short) is having a complete understanding of how instructions can form covert channels

in speculative execution attacks. This is not trivial, as prior attacks have shown there to

be many ways to leak a secret (e.g., through loads that interact with the cache [4], SIMD

units [172], and port contention [245]).

A key contribution of our proposed framework is a comprehensive study of how instructions

can be used to create covert channels and communicate data. In particular, we find that all

covert channels are one of two flavors, which we call explicit and implicit channels. First,

in an explicit channel data is directly passed to an instruction whose execution creates

operand-dependent hardware resource usage, and that resource usage reveals the data. For

example, how a load impacts the cache depends on the load address [4]. Second, in an implicit

channel data indirectly influences how (or that) an instruction or several instructions execute,

and these changes in resource usage reveal the data. For example, instructions executed after

a branch reveal the branch predicate [172, 245].

Implicit channels are related to implicit flow from the information flow literature [207],

which is notoriously difficult to deal with in side-channel research [218]. To our knowledge,

we are the first to study and provide comprehensive protection for implicit channels in the

speculative execution attack setting. Along the way, we also discover new ways that these

channels can leak, and also find entirely new forms of implicit channels, unique to speculative

microarchitectures.

Challenge 2: Disabling protection as soon as access instructions become non-

speculative. Second, to be efficient, it is important to disable protection on data produced

by access instructions, as soon as doing so is safe. Consider the example in Figure 4.1. Here,

a simple, secure scheme is to execute and forward data from load M1, yet wait to issue load

M2 until load M2 reaches the head of the ROB. This is overly conservative. In fact, it is

safe to issue load M2 as soon as the branch resolves in a correct prediction, as this is the

soonest point when the data returned by load M1 is no longer considered secret (i.e., load

M1 is no longer speculative). To reiterate: at that earlier point, we can issue load M2. This

is important for performance. The later we delay issuing load M2, the greater the chance it

delays instruction retirement in the ROB.

The general principle is that it is safe to disable protection on data, as soon as the data’s

producer access instruction(s) have all become non-speculative. This is technically challenging

for a variety of reasons, as data can be the result of complicated def-use chains through

potentially many access instructions, and other instructions such as arithmetic. Yet, our
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solution requires simple hardware and can disable protection on any protected data in a

data-independent number of cycles (e.g., 1 cycle), regardless of the complexity of def-use

dependencies through older instructions.

Putting everything together, we call our combined protection scheme Speculative Taint

Tracking, or STT for short. In addition to proposing STT itself, we provide an extensive

formal analysis and prove that STT enforces a novel form of non-interference [199] with

respect to speculatively accessed data, given a powerful adversary that can monitor potentially

any covert channel at cycle granularity. We show how this implies that with STT enabled,

arbitrary speculative execution is only able to leak retired register file state as opposed to

arbitrary program memory. This means STT comprehensively defeats the worst Spectre

attacks, e.g., those which form a universal read gadget [246] such as Spectre Variant 1. We

provide an overview of our analysis in this chapter and provide proof details in a companion

technical report [247].

Contributions To summarize, this chapter makes the following contributions:

• We provide a comprehensive study of covert channels on speculative microarchitectures,

including the first in-depth look at implicit channels (related to implicit flow), new

ways implicit channels can leak, and new forms of implicit channels not yet exploited

by speculative attacks.

• Based on our study of covert channels, we propose a general framework for preventing

speculatively accessed data from leaking over any covert channel.

• We propose a novel scheme to quickly disable protection on flows of data, once the

data’s producer access instruction(s) becomes non-speculative.

• We formalize our protection mechanisms and show they are able to achieve a strong

security definition, akin to non-interference [199], with respect to data returned by

speculative access instructions.

• We extensively evaluate STT on 21 SPEC and 9 PARSEC workloads, and find it adds

only 8.5%/14.5% overhead (depending on the threat model) relative to an insecure

machine, while reducing overhead by 4.7ˆ/18.8ˆ relative to the baseline secure scheme

from Section 4.1.
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4.2 THREAT MODEL

We assume a powerful adversary that can monitor any microarchitectural covert channel

from anywhere in the system, and induce arbitrarily speculative execution to access secrets

and create covert channels. (For a more formal definition, see the BitCycle adversary from

[30].) For example, the attacker can monitor covert channels through the cache/memory

system [4], data-dependent arithmetic [192], port contention [245], branch predictors [191], etc.

As in [183], the adversary may try to induce and monitor malicious speculative execution by

priming predictors, caches, etc.—from within the victim thread itself (SameThread [172]), or

from an external context such as an SMT sibling (SMT ) or nearby processor core (CrossCore).

4.2.1 Scope: Protecting Speculatively Accessed Data

A speculative execution attack consists of two components [55, 172]. First, an instruction

that reads a potential secret into a register, making it accessible to younger instructions. We

call this instruction the access instruction [55]. Second, a younger instruction or instructions

that exfiltrate the secret over a covert channel. The access instruction is almost always

a load [92, 93, 96, 97, 172, 242, 243, 244, 245], but some attacks use a privileged register

read [193].

We further distinguish attacks based on whether the access instruction is transient or

non-transient, i.e., doomed to squash or bound to retire, respectively [193]. Figure 4.2 shows

the general schema. Note that the covert channel must be transient. Otherwise, all older

instructions—including the access instruction—are also non-transient, which means that the

attack is a traditional side channel attack (e.g., [5]) and out of scope.

Type 1:

Type 2:

Access instruction

Access instruction

[Transient]

Start mis-speculation

Start mis-speculation

[Transient]

[Non-Transient] [Transient]

Instruction fetch order

Covert channel

Covert channel

Scope of STT

Figure 4.2: Schema for speculative execution attacks. Attacks can be classified into two types,
depending on whether the instruction accessing the secret is transient (top) or non-transient
(bottom). Our solution protects data returned by transient access instructions.
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Our goal is to block attacks involving transient access instructions, which are arguably the

most dangerous speculative execution attacks. The reason is that a transient access instruction

can often be maneuvered to access data that its correct (not mis-speculated) execution would

never access. The worst such attacks can read from any location in memory, which is

referred to as a universal read gadget [246]. For example, in Spectre Variant 1 (Figure 4.1),

misspeculating that a bounds check passes allows the transient access instruction—load

M1—to read from an arbitrary out-of-bounds address. There are additional universal read

gadgets that exploit different program constructs and covert channels [246].

1 secret = *addr; // retired (non-transient) access instruction

2 ...

3 if (...) { // mispredicted branch

4 b = B[64 * secret]; // secret is transmitted

5 }

Figure 4.3: Example speculative execution attack involving a non-transient access instruction.
Blocking this class of attack is out of scope.

In contrast, attacks involving non-transient access instructions cannot create a universal

read gadget, because they can only leak retired (or bound to retire) register file state. Figure 4.3

depicts such an attack. Here, a secret is legitimately accessed by the program, i.e., the access

instruction retires. Later, a transient covert channel created through a branch misprediction

exfiltrates secret. Although such leakage is important to address, it is clearly less dangerous

than leaking all of program memory. Moreover, potential leakage of retired state can be

reasoned about by programmers and compilers and blocked using complementary techniques

(e.g., [30]). Therefore, we consider such leakage out of scope.

4.3 COVERT CHANNELS IN SPECULATIVE EXECUTION ATTACKS

As discussed in Section 4.1, STT executes and selectively forwards the results of speculative

access instructions (which are deemed secrets) to younger instructions. For security, it is

essential to understand how instructions, computing on secrets, can be used to create covert

channels. For this, we propose a novel abstraction for covert channels in the speculative

execution attack setting, shown in Figure 4.4. We note that, although our scope is protecting

data read by speculative access instructions (Section 4.2.1), our analysis here applies to covert

channels following non-speculative access instructions as well.
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Explicit channel Implicit channel

Covert channel

Explicit branch Implicit branch

Prediction-based Resolution-based

a b means a is a 
subtype of b

New

Figure 4.4: Covert channel classification on speculative microarchitectures.

4.3.1 Explicit vs. Implicit Channels

To start, we classify all covert channels as one of two types: explicit channels and implicit

channels. An explicit channel, related to explicit flow in information flow [207, 218], is

one where data (e.g., a secret) is directly passed to an instruction whose execution creates

operand-dependent hardware resource usage, and that resource usage reveals the data. An

implicit channel, related to implicit flow [207, 218], is one where data indirectly influences

how (or that) an instruction or several instructions execute, and these changes in resource

usage reveal the data. Examples of explicit channels are memory instructions (e.g., load

M2 from Figure 4.1), variable latency arithmetic instructions [192] and prefetch instructions.

Importantly, that load M2 executes is not secret; it is how the load executes (i.e., brings a

line into cache at a secret-dependent set) that leaks. Recent speculative execution attacks

have also started exploiting implicit channels. Examples are branches with secret-dependent

predicates, which influence the instruction cache footprint, program timing [172], execution

unit port usage [245], etc.

(a) Control dependency:
if (secret) 
  load rX <- (rY)

(b) Squash dep. (new):
if (secret) 
    rX += 64
load rY <- (rZ)

(c) Alias dep. (new):
store rX -> (secret) 
load rY <- (rZ)    

Figure 4.5: Examples of implicit covert channels revealing secret. Assume an older specula-
tive access instruction has already read secret into a register, e.g., M1 in Figure 4.1. The
attacker can see the sequence of load addresses sent to the memory system. rX, rY and rZ
are registers. Each of these covert channels can be “plugged into” existing attacks as the
“Covert channel” in Figure 4.2. For example, in Spectre V1 (Figure 4.1) we can replace load
M2 with one of (a)-(c) above.

A key contribution of this work is finding new ways that implicit channels can leak

(Section 4.3.2), and finding entirely new classes of implicit channels related to what we call

“implicit branches” (Section 4.3.3). Figure 4.5 gives examples of “traditional” (Figure 4.5(a))
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B predicts 
not taken

Load 
issues

B resolves 
not taken

B predicts 
not taken

Load 
issues

B resolves 
taken

Squash!

Load 
issues

secret
== 0

secret
== 1

Time

Figure 4.6: Resolution-based implicit channel for example Figure 4.5 (b). When branch (B)
resolves, it leaks the secret based on whether a squash occurs. There is an analogous case
when the (public) predictor state takes the branch.

and new (Figure 4.5(b)-(c)) channels. We denote the value being revealed through the channel

as secret. The examples assume the attacker can monitor the cache-based covert channel,

but in many cases (e.g., Figure 4.5(a) and (b)) the load can be replaced by an instruction

whose execution timing/etc. does not depend on its input. Importantly, secret is not passed

directly as the load address in any of the examples, yet still leaks.

4.3.2 Prediction- vs. Resolution-based Leakage

We make a key observation that on speculative machines, implicit channels can leak secrets

at two points: when a control-flow prediction is made (if any) and when that prediction

is resolved. Recall, branch prediction and resolution occur in the processor frontend and

backend, respectively. This creates new types of leakage depending on the adversary’s

capability. In the following, consider a branch whose predicate depends on a secret.

At prediction time, the sequence of instructions fetched after this branch is fetched (after

branch prediction but before resolution) leaks secrets if the predictor structures have been

updated based on secret information at some time in the past. For example, if an attacker

runs repeated experiments and the branch predictor is updated speculatively based on how

the branch resolves, the branch predictor “learns” the secret and will make future predictions

based on the secret.

At resolution time, the branch can also leak the secret even if the predictor state has not

been updated based on secret data, because incorrect predictions will cause a pipeline squash.

See the code snippet in Figure 4.5(b), whose timing is shown as a function of the secret

in Figure 4.6. If the attacker knows the branch will predict not taken (e.g., by priming it

beforehand [4]), a squash means the branch was actually taken. The adversary can observe

the squash through different effects, e.g., program timing or the fact that the load issues

twice. Importantly, Figure 4.5(b) would not be considered a leak in traditional implicit flow,

because the load is control- and data-independent of the branch.
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4.3.3 Explicit vs. Implicit Branches

We make a key observation that on speculative machines, non-control flow instructions

that speculate can similarly influence control flow based on conditions in the pipeline. For

example, in Figure 4.5(c) there is no control flow instruction and the load address seemingly

does not depend on secret data. Note, stores in isolation don’t form covert channels because

they are not performed until they retire.

Yet, there may still be an implicit channel. For example, on a machine that performs

memory dependence prediction [248], if the store address resolves after the load is issued,

the load will squash based on whether secret==rZ, causing a similar pipeline disturbance as

discussed above.13. In that attack, an access instruction reads stale data through a store

bypass. Our attack is concerned with store bypass used as a covert channel. Likewise, if

store-load forwarding is enabled, the load conditionally accesses the L1 cache depending

on whether secret==rZ. Many additional hardware mechanisms, e.g., memory consistency

speculation [249], value prediction [250], etc., create similar issues.

An important observation is that hardware optimizations like those above can be modeled

as implicit branches, whereas explicit control-flow instructions like branches can be viewed as

explicit branches. That is, the store bypass in Figure 4.5 (c) can be rewritten as “if (secret

== rZ) { rY = rX; } else { load rY <- (rZ); }” where the “implicit branch” direction is

predicted if secret has not yet resolved. In this sense, implicit branches may also leak at

prediction and/or resolution time (Section 4.3.2), e.g., if the architecture uses a store set

predictor [251].

Summary. To summarize, covert channels can be explicit or implicit, and implicit channels

can be further broken down based on when they leak and their branch type. The next section

uses these observations to block leakage through all channel types with a unified mechanism.

For reference, Table 4.1 specifies channel types for existing attacks and a variety of hardware

optimizations.

4.4 SPECULATIVE TAINT TRACKING

Speculative Taint Tracking (STT) is a low-overhead framework that protects data accessed

under misspeculation, such as data obtained by an out-of-bounds array access. We refer to

such data, that a non-speculative execution would never read, as secret.

13Note, this is not the already known Spectre Variant 4 (SSB) attack [94],invisispec
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Channel Spectre PoC? Type Branch Type
Cache timing [6, 15] Spectre V1 [4] Exp -
Execution unit timing [22, 192] - Exp -
SIMD utilization NetSpectre [172] Imp Exp
Port contention [66] SmotherSpectre [245] Imp Exp
Store-load forwarding - Imp Imp
Mem. dep. prediction [248] - Imp Imp
Mem. consist. speculation [249] - Imp Imp
Value prediction [250] - Imp Imp

Table 4.1: Classifying existing attacks and covert channel-creating hardware structures. A
channel’s Type can be either Explicit (Exp) or Implicit (Imp), c.f. Section 4.3.1. An implicit
channel’s Branch Type is likewise Exp or Imp, c.f. Section 4.3.3. Attacks utilizing implicit
channels may be either prediction- or resolution-time (Section 4.3.2), thus we leave that field
out.

In a manner similar to dynamic information flow tracking (DIFT) [214, 215], STT “taints”

secret data. The STT framework (Section 4.4.1) defines which data should be tainted, which

instructions might leak it and thus should be protected, and when protection can be disabled.

Section 4.4.2 describes how STT tracks the flow of tainted data between instructions and

how—in contrast to conventional DIFT schemes—it automatically “untaints” data once the

instruction that produces it becomes non-speculative. Based on taint information, STT

applies novel protection mechanisms to block explicit covert channels (Section 4.4.3) and

implicit covert channels (Sections 4.4.4–4.4.5).

4.4.1 Framework and Concepts

STT has three characteristics, which are set at design time.

Which data should be tainted? The microarchitecture classifies instructions capable

of reading secrets under speculative execution as access instructions. We focus on the case

where access instructions are loads, as this will be sufficient to block universal read gadget

attacks (Section 4.2.1). STT taints the output of any speculative access instruction.

When can data be untainted? The microarchitecture specifies when a speculative access

instruction is no longer considered a security threat, referred to as the instruction’s visibility

point [183]. The visibility point depends on the attack model. In the Spectre model, an

instruction has reached the visibility point if all older control-flow instructions have resolved.

In the Futuristic model, an instruction has only reached this point if it cannot be squashed.
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(The futuristic model protects data read by any possible hardware speculation, blocking

additional attacks such as Meltdown.) Instructions reach the visibility point in the fetch order.

We call access instructions before and after the visibility point unsafe and safe, respectively,

as instructions which have passed the visibility point are not speculative from a security

perspective. STT untaints the output of an access instruction once it becomes safe.

Who can leak secrets? The microarchitecture classifies certain instructions as transmit

instructions. (Note that an instruction can be neither, either, or both an access and a transmit

instruction.) STT considers the execution of a transmit instruction as an explicit covert

channel that leaks its argument (Section 4.3). Classifying only loads as transmitters will

block memory system-related explicit covert channels. Classifying all instructions that have

operand-dependent hardware resource usage as transmitters will block all explicit channels.

We assume that stores trigger a cache coherence invalidation only on retirement, or else are

defined as transmitters.

To block implicit channels, STT requires the microarchitect to classify explicit branch

instructions, which affect control flow, and to identify the implicit branches that represent

additional sources of data-dependent resource usage, e.g., store-to-load forwarding, memory

consistency speculation [249], etc. Section 4.4.4 discusses implicit branches in detail.

Identifying Access Instructions, Transmit Instructions and Implicit Branches

Here, we describe how microarchitects can identify access and transmit instructions, and

implicit branch conditions.

An instruction should be an access instruction if it has the potential to read a secret.

Except for loads, there are only a handful of such instructions (e.g., privileged/configuration

register reads or I/O instructions), which can be identified manually.

An instruction should be a transmit instruction if its execution creates operand-dependent

resource usage that can reveal the operand (partially or fully). Identifying implicit branches

is similar: the architect must analyze whether the resource usage of some in-flight instruction

changes as a function of some other instruction’s operand. Examples of both transmitters

and implicit branch-based channels are given in Table 4.1. This informal definition can

be formalized by analyzing (offline) how information flows in each functional unit at the

SRAM-bit and flip-flop levels to determine whether resource usage depends on the input

value, in the style of the OISA [30] or GLIFT [218] formal frameworks. We leave such analysis

to future work.
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   rA = &A
   rB = &B
   rC = 64
   rX = addr
 if (rX < 10) {
   r0 = rA + rX  
   load r1 <- (rA) // M1
   r2 = r1 * rC
   r3 = rB + r2
   load r4 <- (r3) // M2
 }

branch predictor state not updated

Figure 4.7: STT executing the code in (a), which includes an untainted branch B0, an access
instruction reading secret, and an implicit channel.

4.4.2 Taint and Untaint Propagation

STT tracks information flow from access instructions to younger in-flight instructions. STT

taints the output register of an unsafe access instruction and propagates taint using standard

taint tracking rules, namely that an instruction’s output register is tainted if any of its input

registers are tainted. Unlike conventional DIFT, STT automatically untaints data. When an

access instruction becomes safe, its output register is untainted. Untaint information is also

propagated, so that when all the data dependencies of an instruction become untainted, the

instruction’s output is untainted.

We defer the details of STT’s taint/untaint tracking implementation to Section 4.5. At

a high level, taint propagation is piggybacked on the existing register renaming logic in a

modern out-of-order core. As an instruction enters the frontend and its registers are renamed,

the instruction’s output register is tainted if (1) it is an access instruction or (2) any of

its input (physical) registers are tainted. Tainting is therefore fast. Propagating untaint

is non-trivial, because dependency chains can be long and each instruction can have many

data dependencies whose taint status needs to be tracked. STT addresses these challenges

with a novel fast untaint algorithm in Section 4.5. In this section, we simply assume that

taint/untaint information is available.

Unlike prior DIFT schemes [30, 171, 214, 215], STT does not require tracking taint in any

part of the memory system (TLB, caches, or memory) or across store-to-load forwarding. The

reason is that the taint of the output of a load—which is an access instruction—is determined

only based on whether it has reached the visibility point: If a load is unsafe, its output is

always tainted. If a load is safe, every instruction on which it depends has also reached its

visibility point (since this happens in-order) and so the load’s output is not tainted.
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4.4.3 Blocking Explicit Channels

STT blocks explicit channels by delaying the execution of any transmit instruction whose

operands are tainted until they become untainted.14 This scheme imposes relatively low

overhead because it only delays the execution of transmit instructions if they have tainted

operands. For example, a load that only reads a (potential) secret but does not transmit

one—such as load M1 in Figure 4.1—executes without delay. Load M2, however, will be

delayed and eventually squashed, thereby defeating the attack.
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Figure 4.8: Snapshots of ROB state during the STT execution of the Spectre V1 code, in the
Spectre threat model. (Tainted registers are green.)

Figure 4.8 depicts this scenario in detail. Figure 4.8(a) shows a sequence of instructions

executing the Spectre V1 code; load M1 is an access instruction. In Figure 4.8(b), the access

instruction has been executed, and its output and all dependencies are tainted. Non-transmit

dependent instructions can freely execute, but any transmit dependent instruction like M2

is stalled (Figure 4.8(c)). If the speculation succeeds (i.e., rX ă 10), the branch resolves as

correct and the access instruction becomes safe (assuming the Spectre threat model defined

in Section 4.4.1). In this case, its output becomes untainted and the transmit instruction

is allowed to execute (Figure 4.8(d)). Although in this example the transmit instruction

becomes safe together with the access instruction, this is not true in general (e.g., if there is

an unresolved branch between them). Thanks to STT’s untaint mechanism, however, even

an unsafe transmitter (i.e., that has not reached the visibility point) whose input becomes

untainted can execute without having to delay until it reaches the visibility point or head of

ROB.

In contrast, if the branch is mispredicted (i.e., rX ě 10) the transmitter remains stalled

until it is eventually squashed along with the access instructions it depends on.

Protection strategies. STT can apply different protection strategies to transmit instruc-

tions with tainted arguments. We chose to delay execution for simplicity, and also because

this allows us to prove non-interference (Section 4.6). Yet, other protections are possible

14Notice that for loads, delaying execution implies delaying the TLB lookup.
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which create security-performance trade-offs. For example, one can combine STT with a

scheme such as InvisiSpec [183], which would allow loads with tainted arguments to be

executed earlier.

4.4.4 Eliminating Implicit Channels

STT blocks implicit channels by enforcing an invariant that the sequence of instructions

fetched/executed/squashed never depends on tainted data. That is, STT makes the program

counter independent of tainted data.

A key challenge in enforcing this invariant is how to maintain efficiency. For example,

a strawman DIFT approach to block implicit channels would be to consider the execution

of any instruction following a branch with a tainted predicate (or tainted branch) as an

implicit channel, and delay the execution of all such instructions. This approach would

impose high overhead, as it requires delaying execution of all instructions following a tainted

branch until the branch predicate becomes untainted. Even then, such an approach would

not block implicit channels caused by implicit branches (Section 4.3.3), which are unique to

the speculative execution setting.

To efficiently maintain the STT program counter invariant, we introduce two general

principles to neutralize the sources of implicit channels identified in Section 4.3.2:

• Prediction-based channels are eliminated by preventing tainted data from affecting the

state of any predictor structure.

• Resolution-based channels are eliminated by delaying the effects of branch resolution

until the branch’s predicate becomes untainted.

In the following, we discuss how STT applies these principles to eliminate implicit channels

over explicit and implicit branches. Implementation details are presented in Section 4.5.

Explicit Branches

To prevent implicit channels through explicit branches (i.e., control flow instructions), STT

modifies the baseline microarchitecture as follows.

Prediction-based channels. STT requires that every frontend predictor structure be

updated based only on untainted data. This makes the execution path fetched by the frontend

unaffected by the output of unsafe access instructions. STT passes a branch’s resolution
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results to the direct/indirect branch predictors only after the branch’s predicate and target

address become untainted; if the branch gets squashed before this, the predictor will not be

updated.

Figure 4.7(c) demonstrates the effect of STT on a speculative execution of the code snippet

in Figure 4.7(a), in which the branch B0 is mispredicted as taken. No matter how many

experiments the attacker runs, the predicted direction of the branch B will not be a function

of secret, because the branch predictor is not updated when B resolves. As a result, the

execution path does not depend on secret (top vs. bottom)—it only depends on the

predicted branch direction (left vs. right).

STT does not need to change how the return address stack (RAS) [252] (which predicts

RET results) is updated; we discuss this issue shortly.

Resolution-based channels. STT delays squashing a branch that resolves as mispredicted

until the branch’s predicate becomes untainted. As a result, a transient branch with a tainted

predicate (such as the branch B in Figure 4.7(c)) will never be squashed and re-executed,

preventing the implicit channel leak shown in Figure 4.6. As Figure 4.7(c) shows, the

transient branch B is eventually squashed once an older (mispredicted) branch with an

untainted predicate squashes. Thus, the squash does not leak any information about the

transient branch’s resolution. Importantly, note that it is safe to resolve a branch as soon as

its predicate becomes untainted, even if an older branch with a tainted predicate has not yet

resolved.

To summarize, where the strawman DIFT approach would stall the execution of any

instruction following a tainted branch, STT lets the instructions execute, and only increases

the latency of recovering from a tainted branch misprediction. For example, in Figure 4.7(b),

the load M does not execute immediately after the tainted branch B resolves, because B’s

predicate is tainted at this point. This is in contrast to a modern processor, which squashes

a mispredicted branch and starts executing the correct path immediately upon resolving the

branch [253, 254, 255]. Fortunately, tainted branch mispredictions are only a small fraction

of overall branch mispredictions (Section 4.7), which are infrequent in the first place because

successful speculation requires accurate branch prediction.

Handling the RAS. With STT, the RAS is updated by the frontend as usual: as CALLs

and RETs are fetched, they push and pop return addresses from the RAS. The reason is that

STT makes the predicted execution path up to a CALL—and therefore the return address it

pushes—independent of tainted data. Thus, RETs can safely pop from the RAS as usual, as

the values they pop do not depend on tainted data.
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STT does need to delay squashes due to RAS misprediction until the mispredicted RET

reaches its visibility point, because the RAS misprediction resolution depends on the return

address the RET reads from the stack. We assume that the baseline microarchitecture can

repair the RAS after a squash to undo the effects of squashed CALLs [256]. We do not require

a perfect RAS repair algorithm. Our only requirement is that the repair does not depend on

tainted data. In particular, any repair algorithm whose input is only the RAS state [256] is

fine.

Implicit Branches

Implicit branches frame microarchitectural mechanisms that observably change how the

processor executes instructions as being caused by a branch “injected” into the execution

(Section 4.3.3). Speculations—such as memory dependence speculation [248], value pre-

diction [250], memory consistency speculation [249], etc.—are predictions of an implicit

branch.

Formulating microarchitectural mechanisms as implicit branches allows STT to block

leakage through them using a similar mechanism as was used to block prediction- and

resolution-based channels for explicit branches. This section walks through this process for

several common optimizations. While we cannot exhaustively discuss all known processor

optimizations, the successful systematic application of STT’s principles is evidence that they

should generalize to other optimizations.

Implicit branch without prediction. Consider a store-to-load forwarding design without

memory dependence speculation (e.g., [257]). In such a design, a load stalls until the

addresses15 of all older stores have resolved. As shown in Figure 4.9, store-to-load forwarding

creates an implicit channel because the load M2 accesses the cache only if it does not alias

with the store S, i.e., if the secret r2 is not 17. Figure 4.10 shows store-to-load forwarding

framed as an implicit branch, denoted by impIf in the code.

This implicit branch only creates a resolution-based implicit channel, because the branch

is not predicted. We eliminate this channel by delaying the resolution of the implicit branch

until its predicate is untainted. In our example, this means that M2 (and so all instructions

data-dependent on it) are delayed until both r2 and r0 become untainted, which means they

are delayed until the mispredicted explicit branch B squashes. (Section 4.4.5 describes an

STT optimization that handles store-to-load forwarding more efficiently.)

15We refer to physical addresses simply as “addresses.”
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In general, the store-to-load forwarding implicit branch predicate checks that every older

in-flight store does not alias with the load, i.e., it is a conjunction of the “no alias” predicate

for each older store. For example, Figure 4.10 should have:

1 impIf (ANDtS | in-flight store S older than M2u S.addr ‰ &Y[r0]) .

Crucially, the implicit branch predicate never depends on prior explicit or implicit branches.

This ensures that implicit branch predicates do not grow more complicated as more speculative

instructions enter the ROB. Because of STT’s invariant that instructions fetched/execut-

ed/squashed thus far are independent of tainted data, we need only guarantee that subsequent

instructions do not create an implicit channel by (in this case) delaying the branch’s resolution

until its predicate is untainted. Implementation-wise, our STT microarchitecture (Section 4.5)

efficiently tracks the taint of addresses in the load-store queue (LSQ), which allows resolving

the implicit branch as part of the store-to-load forwarding logic.

1 r0 = 17

2 B: if (r1 < size) { // mispredict

3 M1: load r2 <- &X[r1] // access

4 S: store r0 -> &Y[r2]

5 M2: load r3 <- &Y[r0] // transimit

6 }

Figure 4.9: Store-to-load forwarding.

1 r0 = 17

2 B: if (r1 < size) { // mispredict

3 M1: load r2 <- &X[r1] // access

4 S: store r0 -> &Y[r2]

5 impIf (r2 != r0)

6 M2: load r3 <- &Y[r0] // transimit

7 else

8 r3 = r1

9 }

Figure 4.10: How store-to-load forwarding in
Figure 4.9 forms an implicit branch.

Implicit branch with prediction. Consider now memory dependence speculation, where

the processor might execute a load (read from memory) speculatively and squash it if an

older store ends up aliasing with it. This is simply a prediction of the store-to-load forwarding

implicit branch. We eliminate its predictor-based channel by requiring that the relevant

predictor (e.g., a store set predictor [251]) be updated only by untainted data, i.e., only after

the implicit branch predicate becomes untainted. The prediction typically also depends on the

LSQ state—for example, a prediction is made only if there are older stores with unresolved

addresses. In this case, eliminating the predictor-based channel also requires delaying the

prediction until the relevant LSQ state becomes untainted, e.g, until the addresses of older

stores become untainted. We eliminate the resolution-based channel by delaying the squashing

81



of the load on a misspeculation (misprediction of the implicit branch) until the branch’s

predicate becomes untainted.

Squashing implicit branches early-on. An advantage of implicit branches is that the

microarchitecture knows the structure of their predicates. In some cases, this knowledge

allows STT to untaint an implicit branch predicate early-on, based on the observation from

GLIFT [218] that “the output of a logical function should only be untrusted if some untrusted

input actually had an opportunity to affect the output.”

For example, suppose that the memory dependence predictor predicts that the implicit

branch in Figure 4.10 is taken, and that this turns out to be a misprediction. Naively, STT

would need to delay squashing the implicit branch until the load’s address and the addresses of

all older stores become untainted, as the predicate is a function of them. However, the GLIFT

observation implies that we need to delay the squash only until one term that evaluates to

false becomes untainted—i.e., until the addresses of some older aliasing store and the load

are untainted. At this point, the result of the AND becomes a function of only untainted

data—the attacker only learns that an alias between untainted addresses exists.

Statically-predicted implicit branches. Several common forms of speculation can be

formulated as implicit branches that are predicted statically, and therefore have no predictor-

based channels. We only need to eliminate resolution-based channels by identifying the

branch’s predicate and, if the implicit branch is mispredicted, delay the resulting squash until

the predicate becomes untainted. Below, we consider the example of memory consistency

speculation in a multicore processor. Load-load ordering is another example with similar

characteristics.

Memory consistency speculation. A memory consistency model (or memory model) specifies

the order in which a processor’s memory operations are performed and observed by other

processors in the system [258]. Memory consistency speculation [249] allows the processor to

maintain any required ordering between loads while still issuing them out of order. The idea

is that if two loads, M1 and M2, must appear to execute in program order (M1 before M2), then

M2 can still execute before M1 but will be squashed if the data loaded by M2 is invalidated by

another processor or gets evicted from the cache before M2 retires.

Memory consistency speculation is thus a static prediction of true for an implicit branch

predicate that the cache line a load accesses remains valid until the load retires. It turns out

that with STT’s delayed execution protection strategy, the resolution of this implicit branch

predicate can only occur when it becomes untainted. Therefore, its resolution does not need

to be delayed—i.e., consistency squashes can be performed when signaled, as usual.
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The reason is that a consistency squash of load L can be signaled only after L accesses

the cache, which implies that L’s address is untainted. In addition, the memory access that

triggers the line’s invalidation/replacement is independent of tainted data. This holds because

such a memory access occurs either because of a load/store instruction or a hardware prefetch.

With STT, loads and stores access memory only if their address argument is untainted, which

also implies that hardware prefetching state at the caches is a function of untainted data.

Therefore, if the implicit memory consistency branch predicate evaluates to false, it is due to

an untainted term.

4.4.5 Optimizing Store-to-Load Forwarding

We now describe an optimization that allows resolving the store-to-load forwarding implicit

branch without waiting for its predicate to become untainted. The insight is, because store-

load forwarding can only result in two observable outcomes (issue the load, or forward from

a prior store) it is feasible to hide which occurs. Specifically: when the load address becomes

untainted, we issue the load unconditionally. (That is, we do not wait for the prior store

addresses to become untainted.) If forwarding should occur, we ignore the value read from

memory and use the forwarded store value as the load’s output. The load’s output register is

written only after the memory access completes, to guarantee that the timing of younger

instructions is unchanged from the “no forwarding” case.

The optimization maintains STT’s property that tainted data does not influence the

execution path. The reason is that the resolution of this implicit branch only determines

whether the load will access memory (and its output). It does not influence the execution

path as long as the load is unsafe. This principle is general to other implicit branches whose

resolution does not determine whether instructions retire/squash.

4.5 MICROARCHITECTURE

We now present a microarchitecture for STT. The key challenge in the implementation

is how to implement the automatic untaint operation (Section 4.4.2). We present a unified

mechanism that implements taint and untaint, and show how it can be used to block/elim-

inate both explicit and implicit channels. In the following, instructions are labeled with

monotonically increasing numbers, which we loosely refer to as their position in the ROB

(younger instructions are assigned larger numbers).
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4.5.1 Main Ideas

We make a key observation that helps implement untainting. Since instructions reach their

visibility point in program order (Section 4.4.1), to untaint the arguments for an instruction

i, it suffices to wait for the youngest access instruction that is causing the taint for i to reach

the visibility point. We call this instruction the Youngest Root of Taint (YRoT) of i.

With this approach, we do not need to track exact def-use chains between instructions.

Conceptually, we track the position of the YRoT for each instruction in the ROB. Then,

we broadcast the ROB position of each access instruction as it reaches the visibility point.

Each younger instruction whose YRoT is smaller or equal to the broadcasted value becomes

untainted. If multiple access instructions reach the visibility point in the same cycle, we can

broadcast the maximum index of all of them (instead of all of their indices). We note that

logic indicating which instructions reach the visibility point is provided by prior work on

InvisiSpec [183].

Untainting can trigger different operations. When a transmit instruction’s arguments

become untainted, it can execute (Section 4.4.3). When an explicit branch predicate is

untainted, subsequent instructions are squashed if the branch was mispredicted (Section 4.4.4).

Finally, when an implicit branch predicate is untainted, any observable effect related to the

implicit branch, e.g., a squash due to memory dependence prediction (Section 4.4.4), can

occur.

4.5.2 Hardware Changes to Frontend

We now describe an architecture that implements STT (Figure 4.11). Our architecture

is meant to model a modern speculative out-of-order multicore with optimizations such as

those described in Section 4.4.

In the processor frontend (up to dispatch to execution units) the main hardware changes

are to add logic to generate the Youngest Root of Taint (Section 4.5.1) for fetched instructions.

We reuse logic from the InvisiSpec paper [183] paper to generate the visibility point (VP,

shown as ①). For example, in the Spectre model the VP equals the ROB index of the oldest

unresolved branch.

Tracking Youngest Root of Taint. We calculate the Youngest Root of Taint (YRoT)

in the processor rename stage (Figure 4.11 ②). We add two new fields to the entries in

the rename table (which maps logical registers to physical registers): YRoT and the access

instruction ROB index (AccessInstrIdx), both of which require log2pROBSizeq bits. YRoT
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Figure 4.11: Microarchitecture with support for STT. The shaded blocks represent new
hardware added to support our scheme; the dashed lines are new wires. The per-instruction
Youngest Root of Taint is denoted yrot, whereas fields added to hardware tables are denoted
YRoT.

tracks the Youngest Root of Taint of the instruction that last produced each logical register

in program order. AccessInstrIdx records the ROB index of the last producer for each logical

register, if that producer was an access instruction, or ´1 otherwise.

Suppose a new instruction is being renamed. Then we calculate the Youngest Root of

Taint for that instruction (denoted yrot) as the YRoT of the argument, in the rename table,

which reaches the visibility point the latest. If an argument was directly produced by an

access instruction, that instruction’s index in the ROB directly becomes the YRoT for that

argument (which is known through the AccessInstrIdx field). For example, suppose that this

instruction has source registers Rs1 and Rs2. Let RT be short for rename table. Assume that

when the source for a logical register Rx is in retired architectural state, RT[Rx].YRoT = -1.

Then at rename time, we compute the instruction’s yrot as:

yrot = max( ((RT[Rs1].AccessInstrIdx == -1) ? RT[Rs1].YRoT : RT[Rs1].AccessInstrIdx),

((RT[Rs2].AccessInstrIdx == -1) ? RT[Rs2].YRoT : RT[Rs2].AccessInstrIdx) );

Recall, younger instructions have larger ROB indices, hence the use of max. If the

instruction has a different number of arguments, the same max is taken over all of them.

If the instruction has a destination register, call it Rd, then we update the rename table

as RT[Rd].YRoT = yrot. As previously mentioned, RT[Rd].AccessInstrIdx is set to the

instruction’s index in the ROB, if the instruction is an access instruction (determined in

decode), or -1 otherwise. If the instruction does not update a register (e.g., a branch or

store), the rename table is not updated because no logical register is being updated.
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After rename, the instruction is dispatched to a reservation station (RS) based on its type.

Depending on the instruction type, yrot may travel with the instruction and be stored in

the RS (see below).

Importantly, this design assigns each instruction a yrot without adding new ports to the

rename table or ROB. The YRoT and AccessInstrIdx fields for each entry are read along

with the logical to physical register mappings that are read per-argument in the rename

table already. As with the normal logical-to-physical register mappings, the YRoT and

AccessInstrIdx in each entry needs to be restored after a squash.

4.5.3 Hardware Changes to Backend

At dispatch time, each instruction travels with its yrot. We now describe logic changes at

the reservation stations (RS) for each instruction type, based on whether those instructions

can form explicit and/or implicit channels (Section 4.3).

Our goal is design simplicity, and note that many optimizations are possible. While

we cannot cover every proposed microarchitectural optimization, we cover an example for

instructions that cause neither, both or one of explicit/implicit channels. The mechanisms can

be generalized to other instructions. Recall, the microarchitecture is responsible for denoting

each instruction as potentially creating explicit and/or implicit channels (Section 4.4.1).

Data-Independent Arithmetic. In the simplest case, the instruction performs a simple

task that cannot create either an explicit or implicit covert channel (e.g., single-cycle add,

xor without side effects), shown in Figure 4.11 ③. In this case, there are no changes to the

RS and the yrot is dropped. Such instructions can execute as soon as their arguments are

available, even if they are tainted. This is key for performance.

Data-Dependent Arithmetic. Instructions may be capable of creating only explicit

channels, such as arithmetic with data-dependent timing (e.g., a multiplier [192]), see

Figure 4.11 ④. If the microarchitecture classifies these as transmitters, the yrot of each

instruction waiting in the RS is stored alongside the instruction in a new field called YRoT.

When the VP changes, we calculate for each instruction i in the RS:

instr i can execute “ yroti ă VP. (4.1)

Our current design performs these checks in parallel, for each RS entry, in a fashion similar

to instruction wakeup logic that checks if a dependency is ready.
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Recall, yrot is based on each instruction’s def-use chains, not where each instruction

appears in program order. So, instruction wakeup due to yrot still allows instructions to

execute out of order once their arguments become untainted.

Branches. Instructions may be capable of creating only implicit channels, such as condi-

tional/unconditional branches and jumps, see Figure 4.11 ⑤. We handle these cases with the

same mechanism as in the previous case for Data-Dependent Arithmetic: the yrot is stored

alongside each branch in the branch RS (branch unit) and wakeup occurs by performing the

same comparison between yrot and VP. This ensures that branch resolution only occurs

when the branch’s predicate and target (if any) are untainted. This design also avoids any

modification to the branch predictors in the frontend, because only executions based on

untainted data will update the predictors.

Loads and Stores. Finally, there are instructions which can create both explicit and

implicit channels such as stores and loads, see Figure 4.11 ⑥. Discussed in Section 4.3.1,

memory instructions are an important type of explicit channel. At the same time, loads

and stores can also create implicit channels due to hardware features such as store-to-load

forwarding, memory dependence speculation and memory consistency checks across cores

(Section 4.4.4).

In isolation, a store creates neither explicit or implicit channels because we assume stores

are performed at retirement. Yet, stores may alias with younger loads; we thus must store

the yrot for each store, calculated in rename, along with the store, to calculate the predicate

for implicit branches.

We block channels related to loads as follows. First, loads are stored in the LSQ with their

yrot, as with previous cases, in a new YRoT field. Loads are also assigned two additional

fields: PendingSquash (1 bit), and YRoT impSquash (same width as the YRoT field). YRoT

is used in the same way as before, to notify when the load address is untainted (can no longer

form an explicit channel), at which point it is safe to perform the load.

When the load address becomes untainted, it may require store-load forwarding or memory

dependence speculation. We handle store-load forwarding as discussed in Section 4.4.5:

we unconditionally perform the load unless all prior stores are resolved and untainted.

PendingSquash and YRoT impSquash are used to handle memory dependence speculation.

After the load is performed, if it suffers an alias to an earlier store whose address resolves late,

we set YRoT impSquash to the YRoT of the store causing the alias and set the PendingSquash

bit (but do not perform the squash). If PendingSquash is set and YRoT impSquash ¡ VP, we

perform the squash. (This check requires analogous logic as comparing the normal yrot values
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to the VP.) This is equivalent to performing the squash when the implicit branch predicate

becomes a function of untainted data (see Section 4.4.4). As explained in Section 4.4.4, a

memory consistency violation simply squashes when it is signaled.

Multiple late resolving stores may alias with the load, resolving one after another. In this

case, YRoT impSquash is set to the min YRoT impSquash of any store causing an alias.

This is important for security. Once any memory violation occurs, it will eventually cause

a squash, unless a squash is triggered beforehand by older instructions in the ROB. If the

memory violation itself causes the squash, we must reveal that squash only when the implicit

branch predicate is untainted. This moment is exactly when the min YRoT impSquash of

any alias reaches the visibility point. The logic for repeatedly updating the YRoT impSquash

in this fashion piggybacks off of the existing LSQ logic for detecting aliases.

4.6 SECURITY ANALYSIS

We formally prove that STT in the Spectre threat model enforces a novel notion of non-

interference [199] appropriate for enforcing privacy of speculatively accessed data. (The

formal proof for the futuristic model is ongoing work.) Our proof applies to a strong adversary

that observes the instructions fetched, when and which functional units are busy (i.e., resource

usage and port contention), and the target address of every cache/memory access. (See

Section 4.2.) This section summarizes the key ideas and results; the details appear in a

companion technical report [247].

We formally model processors as state machines. We define an STT machine that is a

detailed model of a speculative out-of-order processor with STT. In addition to registers and

memory, its state includes hardware structures such as branch predictors, the ROB, LSQ, etc.

Its state also includes taint bits for registers. A processor logic defines how the state changes

at every cycle. In each cycle, the processor logic performs events that modify the machine’s

state. These events model microarchitectural events such as instruction fetch, execution by a

functional unit, squashes, retirement, tainting/untainting, etc. The STT machine models the

protections described in Section 4.4 (e.g., delaying execution of tainted transmit instructions)

and the fast untaint mechanism described in Section 4.5.

We show that the STT machine provides the following non-interference security guarantee:

at each step of its execution, the value of a doomed register, that is, a register written to by

a speculative access instruction that is bound to squash, does not influence future visible

events in the execution. The key challenge is that when an instruction executes, we do not

know whether it is going to squash or not. We address this by considering a simple in-order

processor model, which we use to verify the STT machine’s branch predictions against their
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true outcome, obtained from the in-order processor. Specifically, at each step of the STT

machine’s execution of a program, in our formal analysis we maintain an auxiliary bit of

state, mispredicted, that is only set to true if the prediction of one of the preceding branches

differs from the outcome of a corresponding branch in the in-order execution of the program.

With the way to identify whether the STT machine mispredicts at each point of the

execution, we are able to distinguish doomed registers: a register r is doomed in a state σ

with a given mispredicted flag, if it gets tainted in the shadow of what the in-order processor

identifies as a misprediction, i.e., while mispredicted “ true. For each register, we also

maintain an auxiliary state indicating whether it is doomed. We refer to the STT machine

state coupled with its auxiliary state as an extended state. Given two extended STT states,

κ1 and κ2, we say that κ1 « κ2 holds if κ1 and κ2 only differ by values of doomed registers.

We prove the following theorem, which states that values of doomed registers neither

influence which events the STT machine executes at each cycle nor gets leaked into the

rest of the state by those events. We parameterize the theorem by an observability function

view, which models the adversary’s view [30], i.e., it projects event traces onto the parts the

adversary can observe. The theorem holds in particular for the strong adversary described

above, which observes the entire event trace.

Theorem 4.1. At any cycle t, given two extended states κ1 and κ2 such that κ1 « κ2 holds,

if τ1 and τ2 are the sequences of events the STT processor logic performs at the cycle t from

κ1 and κ2 respectively, then the following holds:

1. viewpτ1q “ viewpτ2q holds, and

2. for the extended states κ1
1 and κ1

2 resulting from executing τ1 and τ2 respectively,

κ1
1 « κ1

2 holds.

The theorem proves that κ1 « κ2 is an invariant preserved by each cycle of the machine

execution. Since this invariant is inductive, we obtain the following corollary: at any cycle

t in any extended state κ, changes to doomed registers do not influence the future of the

execution of the machine. In particular, they never influence the program counter’s value,

which is sufficient to eliminate traditional implicit covert channels.
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4.7 EVALUATION

4.7.1 Experimental Setup

Simulator setup. We evaluate STT with the Gem5 [259] simulator, which models the

performance implications of speculative instructions. We run SPEC CPU2006 [260] and

PARSEC 3.0 [261] benchmarks, as representatives of both single-threaded and multi-threaded

programs. For SPEC, we use the reference input size, and launch detailed simulation for

1 billion instructions after skipping the first 10 billion instructions. PARSEC benchmarks

are all run with eight cores with the simmedium input size (except x264, whose input size is

simsmall). A detailed architecture specification used for all schemes is shown in Table 4.2.

Parameter Value

Architecture 1 core (SPEC) or 8 cores (PARSEC) at 2.0GHz

Core
8-issue, out-of-order, no SMT, 32 Load Queue entries, 32
Store Queue entries, 192 ROB, Tournament branch
predictor, 4096 BTB entries, 16 RAS entries

Private L1-I Cache 32KB, 64B line, 4-way, 1 cycle round-trip (RT) lat., 1 port
Private L1-D Cache 64KB, 64B line, 8-way, 1 cycle RT latency, 3 Rd/Wr ports

Shared L2 Cache
Per core: 2MB bank, 64B line, 16-way, 8 cycles RT local
latency, 16 cycles RT remote latency (max)

Network 4ˆ2 mesh, 128b link width, 1 cycle latency per hop
Coherence Protocol Directory-based MESI protocol
DRAM RT latency: 50 ns after L2

Table 4.2: Parameters of the simulated architecture.

Microarchitectural features modeled in Gem5. In Gem5, instructions that create

explicit channels are loads. The simulator also models the implicit channels discussed in

Section 4.4, including direct/indirect branches, jumps, calls/returns, as well as implicit

branches formed by store-load forwarding, memory dependence speculation (with a store set

predictor), memory consistency checks and load-load ordering.

Configurations. We evaluate the following design variants, as shown in Table 4.3. We

evaluate a baseline scheme DelayExecute which conservatively delays execution for all

access instructions until they reach the visibility point. This models the strawman, secure

scheme from Section 4.1. Our main proposal DelayExecute+STT only applies this

protection to tainted transmitters, and additionally eliminates implicit channels.
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Configuration Description

Unsafe An unmodified insecure Gem5 processor as the baseline.

DelayExecute
Delay the execution of every transmit instruction

until it reaches the visibility point.

DelayExecute+STT
STT implemented on top of DelayExecute, therefore

only transmitters with tainted arguments are delayed.

DelayExecute+STT-ExpOnly
DelayExecute+STT without handling implicit channels.

Thus this configuration has weaker security.

Table 4.3: Evaluated configurations.

For each configuration, we evaluate the two visibility points from [183], namely Spectre

and Futuristic, together with both Total Store Ordering (TSO) and Release Consistency

(RC) memory consistency models.

Penetration testing. Prior to performance modeling, we evaluated whether our framework

blocked Spectre variants, such as Spectre V1 (Figure 4.1) and confirmed the attack was

blocked.

4.7.2 Main Performance Result

Figures 4.12 and 4.13 compare the execution time of configurations Unsafe, DelayExe-

cute and DelayExecute+STT on the single-threaded SPEC and multi-threaded PARSEC

applications, respectively. The goal is to show the performance overhead of DelayExe-

cute+STT (our complete proposal) relative to Unsafe and performance improvement

relative to the naive but secure DelayExecute scheme. All individual benchmark results

use the TSO model, and execution times are normalized to Unsafe for each memory model.

SPEC analysis. With the Spectre threat model, STT improves overhead on average

relative to naive DelayExecute from over 40% without STT to 8.5% with STT, in TSO.

RC results are similar. The main reason is that only a small portion of all speculative loads

(transmitters) are tainted due to older speculative loads (access instructions).

The saving is even more pronounced using the Futuristic model, where overhead drops

from around 3ˆ to 14.5%. This makes sense because Futuristic is a more restrictive model

that forces longer delays before loads can execute. The fact that Futuristic overhead is close

to Spectre overhead (14.5% to 8.5%) is an important result. Futuristic was designed in [183]

to be a holistic threat model, taking into account all possible reasons for an instruction
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Figure 4.12: Execution time (normalized to Unsafe) of SPEC benchmarks with the schemes
DelayExecute, DelayExecute+STT, DelayExecute+STT-ExpOnly, in two visi-
bility points (Spectre and Futuristic). All per-benchmark results assume TSO; averages for
TSO and RC are given on the right.

to be speculative. The small difference between the two models suggests that supporting

comprehensive security definitions is viable with STT without sacrificing much performance.

PARSEC analysis. The multi-threaded PARSEC workloads in Figure 4.13 exhibit the

same trends seen in the SPEC workloads. For the Spectre model, DelayExecute+STT

reduces the overhead of DelayExecute from 78% to 24% in TSO model, and from 103%

to 30% in RC. For the Futuristic model, DelayExecute+STT lowers the overhead (over

3x in both TSO and RC) of DelayExecute to 27% and 36% for TSO and RC, which are

close to the weaker Spectre model.

Figure 4.13: Execution time (normalized to the Unsafe baseline) of PARSEC benchmarks.
Results shown and methodology follow Figure 4.12.
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Overhead from implicit branch protection. A central component in STT is mechanisms

that eliminate implicit channels by delaying predictor updates and explicit/implicit branch

resolutions until branch predicates are untainted. Figure 4.12 and 4.13 include results for

DelayExecute+STT-ExpOnly, which shows performance for a weaker security guarantee

that ignores implicit channels. For SPEC workloads, ignoring implicit branches reduces

overhead on average relative to DelayExecute+STT by around 1%, for all memory models

and visibility points. The number increases to 3% for PARSEC workloads. The takeaway is

that protection against implicit branches using our mechanisms is very cheap.

For more insight into implicit channel overhead, Table 4.4 shows the explicit and implicit

branch misprediction rates for both the Unsafe baseline and DelayExecute+STT, under

TSO in the Futuristic model. We see that, delaying branch predictor updates only increases

the explicit branch misprediction rate by 0.2% relative to the unsafe baseline, and the rate

of memory violations (implicit branch misprediction) is close for all schemes. Second, the

percentage of branch mispredictions where STT would delay resolution—and thus may incur

performance overhead—is small. These are the explicit and implicit branch mispredictions

that occur when the branch is tainted. For example, with DelayExecute+STT on SPEC,

only 0.8% of all dynamic branches are both tainted and mispredicted (8.87% of the 9.04%

mispredicted branches). The situation is even more apparent for memory violations, as they

are very rare (ă 0.1%, regardless of whether the implicit branch predicate is tainted). Results

for PARSEC are similar.

SPEC2006 PARSEC

Unsafe DelayExecute+STT Unsafe DelayExecute+STT

# explicit br. misp. /
# explicit branches

8.81% 9.04% 3.62% 3.85%

# tainted explicit br. misp. /
# explicit br. misp.

N/A 8.87% N/A 28.81%

# implicit br. misp. /
# implicit branches

0.008% 0.01% 0.022% 0.018%

# tainted implicit br. misp. /
# implicit br. misp.

N/A 15.5% N/A 7.74%

Table 4.4: The effect of delaying predictor updates and resolution (for explicit and implicit
branches). All numbers assume TSO + Futuristic.

4.7.3 InvisiSpec vs. STT

InvisiSpec [183] is a prior hardware mechanism for blocking speculative execution attacks.

The two schemes have different security trade-offs: On one hand, InvisiSpec only blocks
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covert channels through the cache hierarchy, whereas STT can block any covert channel. On

the other hand, STT does not prevent leaking secrets which are part of the retired state

(Section 4.2.1) whereas InvisiSpec does handle this case. As we mentioned, STT is sufficient

to prevent the universal read gadget, which is the most dangerous class of attacks.

We compare the overhead of InvisiSpec and STT running SPEC2006, using the Spectre

and Futuristic threat models. We find InvisiSpec and STT have 7.6% and 8.5% overhead

relative to Unsafe for the Spectre model, respectively; and 18.2% and 14.5% overhead in

the Futuristic model, respectively.

4.8 CONCLUSION

This chapter proposes Speculative Taint Tracking (STT), a novel protection framework to

comprehensively protect speculatively accessed data from speculative execution attacks. STT

has two key novelties: a framework to eliminate both explicit and implicit covert channels,

and a new taint/untaint procedure capable of waking instructions up early. Together, these

mechanisms enable a high-performance and high-security design, able to enforce strong

non-interference properties with respect to speculatively accessed data.
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CHAPTER 5: SPECULATIVE DATA-OBLIVIOUS EXECUTION

This chapter presents another efficient protection framework against speculative execution

attacks, called Speculative Data-Oblivious Execution (SDO), built on top of the previous work

Speculative Taint Tracking (STT, Chapter 4). The major performance bottleneck of STT

and other similar schemes is due to delaying the execution of unsafe operations (identified

as explicit channels by STT) and their dependent instructions. The premise of SDO is to

safely execute these instructions by executing them data-obliviously in hardware. However,

replacing delaying with data-oblivious execution does not necessarily improve performance,

as data-oblivious execution introduces redundant work. SDO leverages the safe prediction

provided by STT to predict only a subset of data-oblivious execution to perform, yielding a

significant performance improvement over STT without compromising STT’s performance

properties.

5.1 INTRODUCTION

As described in prior chapters, a successful speculative execution attack must force the

speculative secret to be transmitted to the attacker through a transmitter instruction. There-

fore, prior work has endeavored to block leakage through transmitters. On one hand, invisible

speculation schemes [184, 186, 187, 262] attempts to execute transmitters “invisibly,” e.g., by

not modifying cache state for the load transmitter. This is efficient, but has security holes,

e.g., due to data-dependent timing effects. On the other hand, delayed execution [31, 176, 178]

schemes, such as STT present in Chapter 4, endeavor to completely block all covert channels

by monitoring how secrets flow through instructions and delaying the execution of transmit-

ters until their operands become a function of non-speculative data. While this idea can

enable strong security, it can incur high overhead as delaying execution can stall the pipeline.

The goal of this chapter is to get the best of both of the above worlds: high performance

and high security. The key idea is that it is safe to execute transmitters early, i.e., while

their operands are still a function of speculative (sensitive) data, as long as their execution is

made to not require operand-dependent hardware resource usage. We call this speculative

data-oblivious execution (SDO).

We start with a state-of-the-art defense framework against speculative execution attacks,

called STT [31]. STT provides comprehensive protection for speculatively accessed data,

but incurs overhead from delaying the execution of transmitters until their operands are a

function of non-speculative data as discussed earlier. We will apply SDO to transmitters
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in STT, retaining that work’s strong security properties while dramatically improving its

performance. (See Section 5.2 for detailed background on STT.)

To illustrate SDO, consider a simple example where the transmitter is implemented as

a floating-point instruction. Floating-point instructions typically have operand-dependent

behavior: if the operand is subnormal, the instruction may execute on a slow path (e.g., in

microcode); otherwise, it executes on a fast hardware floating point unit [22]. To simplify the

example, we assume this creates two execution equivalence classes: slow and fast, respectively.

This forms a covert channel. An attacker can infer which equivalence class a floating point

operation belongs to by, e.g., monitoring program runtime [22, 172] and hardware resource

usage, and this reveals information about the operand.

To be speculative data-oblivious, the starting point is to execute multiple copies—one

for each equivalence class—of any transmitter that computes on speculative data. In our

example, we execute two copies of speculative floating point instructions: one for the fast

and one for the slow execution. Once both are complete, it is safe to forward the result of

whichever one was correct to younger, dependent instructions.

While the above idea is sufficient for security, it is low performance. Not only must we

execute two versions of the floating point instruction, we must wait to forward the result

until the slowest (subnormal) mode completes, to hide which version was actually needed.

The key idea to address this issue is to predict that one equivalence class (or a subset of

classes) will be correct, and execute only those classes. An obvious pitfall with this idea

is security: can the prediction itself reveal private information? Since we build on STT,

however, the answer is no. STT automatically ensures that predictors’ predictions, and when

those predictions are resolved, are completely independent of speculative data.

With an “equivalence class predictor” in hand, we can safely speed up our floating point

example. Assuming subnormal inputs are rare, we might statically predict the input will be

normal. If the prediction was correct, we execute the floating point operation without delay

and incur no overhead. If the prediction was incorrect (hopefully rare), we squash when the

inputs become non-speculative and suffer a performance hit.

A remaining issue is: if we predict an equivalence class, as opposed to executing all

equivalence classes (the näıve strategy), we will have computed an incorrect result if the

prediction is incorrect. For security, we must ensure that any instructions receiving the result

do not reveal whether it is correct or not. Fortunately, STT also addresses this issue through

its tainting mechanism: by marking the output as tainted, no attacker will be able to learn

any bit of the return value.

The above ideas are general, and apply to other types of transmit instructions and more

sophisticated predictors. Beyond our simplified floating-point example, the bulk of this
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chapter is to design a novel speculative data-oblivious load operation. This is important for

performance as prior work shows the lion share of overhead in blocking speculative execution

attacks is due to loads [31, 183, 184, 187]. It is also non-trivial, as there are many ways a

load can execute that can create covert channels. For example, a load may hit or miss at

any cache or TLB level, contend for different resources such as uncore buses, cache banks,

lookup DRAM, etc. To address these challenges, we develop a new speculative data-oblivious

load operation (an “Obl-Ld” operation, for “oblivious load”), a novel “location predictor” to

improve performance for Obl-Ld operations, and additional optimizations that allow us to

safely return and forward load data to the pipeline earlier.

Contributions To summarize, this chapter makes the following contributions:

• We propose a novel framework enabling Speculative Data-Oblivious Execution (SDO),

enabling safe execution of unsafe transmitters.

• We propose a novel implementation of an SDO operation for speculative loads.

• We evaluate SDO as an optimization to prior work STT, treating both loads and loads

plus floating point operations as transmitters. We find that STT+SDO improves STT’s

performance on SPEC17 workloads by an average 36.3% to 55.1%, depending on the

microarchitecture and attack model—and without changing STT’s security guarantees.

5.2 MOTIVATION: IMPROVING SPECULATIVE TAINT TRACKING

Threat Model With the main goal of improving upon STT, we adopt STT’s threat

model, i.e. the adversary that can monitor any microarchitectural covert channel and induce

arbitrarily speculative execution from anywhere in the system. In addition, we only protect

speculatively-accessed data. More details are described in Section 4.2.

Source of STT’s performance overhead The lion share of STT’s overhead is due to

blocking explicit channels, specifically, delaying execution of tainted loads. The STT paper

reports that ignoring implicit channels reduces STT’s average overhead on SPEC [260] and

PARSEC [261] applications by just 1%–3% over the original 8.5%/14.5% overhead (depending

on the attack model). The effect on outlier applications with higher-than-average overhead

is similar. This result shows that STT’s implicit channel protection mechanism is cheap

and that obtaining better performance requires avoiding the delayed execution of tainted

transmitters, particularly loads.
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Key observation: STT Makes Prediction Safe An important corollary of the above

is that predictor structures can remain enabled without leaking privacy. The reason is

two-fold. Consider branch prediction as an example (an analogous argument follows for other

predictors). First, STT ensures that the branch predictor state is never a function of secret

data. Further, mis-predictions are squashed only when the prediction’s outcome becomes safe

to reveal. This policy means the predicted branch directions do not leak privacy and that

“what instructions are fetched due to the predictions” is public information. In other words,

the only possible source of privacy leakage is through transmitters. Second, STT ensures

that if any transmitter fetched on the predicted path can leak privacy, then that transmitter

is delayed until the threat passes. Note, this argument does not depend on whether the

predictor mispredicts by mistake, is intentionally mistrained, etc.

Our goal is to enable transmitters to safely execute early. That is, we will build on STT’s

mechanisms to block implicit channels and propagate untaint, and implement a new scheme

for handling select high-overhead tainted transmitters (loads and floating point operations).

5.3 SPECULATIVE DATA-OBLIVIOUS EXECUTION

We now present a general methodology for designing an SDO operation, which is an SDO

implementation for an arbitrary transmit instruction (transmitter). At a high level, an SDO

operation is a new implementation of the transmitter that can be executed safely, even if its

operands are tainted (Section 5.2).

The microarchitect starts with a transmitter f which takes operands args and returns result,

denoted result Ð fpargsq. We will construct an SDO operation for f, denoted Obl-f. This is a

two-step process (next two sub-sections).

5.3.1 Design Data-Oblivious (DO) Variants

First, the microarchitect designs N data-oblivious variants (called DO variants) of f,

denoted Obl-f1, . . .Obl-fN. We will see how to choose N and how to design each variant

create a new design space with performance/design complexity trade-offs. Each variant i for

1 ď i ď N has the following signature:

success?, presult Ð Obl-fipargsq (5.1)
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where success? is a boolean and presult is whatever datatype is returned by this instruction,

i.e., the same return type as the original f. We will abbreviate success? ” true as success and

success? ” false as “fail,” where ” denotes an equality check that returns true/false.

Informally, each variant must be data oblivious, i.e., not reveal its argument over mi-

croarchitectural side channels. A given variant may not be able to return the correct result.

For example, if the floating point operand is subnormal the variant for evaluating normal

operands will return the wrong result. Each variant indicates whether it has returned the

correct data with the success? flag.

We now formalize these requirements in two definitions:

Definition 5.1. (Functional correctness). Consider Equation 5.1 for 1 ď i ď N . For all

possible args: If Obl-fipargsq returns success, then presult ” fpargsq must hold. If this function

returns fail, then presult is undefined (we assume presult is set to K).

Definition 5.2. (Security). Consider Equation 5.1 for 1 ď i ď N . For any two operand

assignments args and args1: the execution of Obl-fipargsq and Obl-fipargs1q must create the

same hardware resource interference (i.e., which is measurable as a microarchitectural side

channel).

Definition 5.1 is also important for security, as we will see in Section 5.6.

Note, these definitions do not require that for some argument args, there must exist an

Obl-fi that will return success. For example, in our floating point example, we may have

N “ 1, e.g., a DO variant for the fast mode and no DO variant for the slow mode. This is

allowed because our scope only considers speculative execution attacks. Continuing the above

example, having a single DO variant for floating point operations means we will necessarily

see fail on a subnormal input. We will, however, be able to correct that situation by squashing

the incorrect speculation when the input becomes non-speculative (see Section 5.3.3 for

details).

5.3.2 Design Predictor To Select Which DO Variant

Second, the microarchitect designs a DO predictor, which selects some DO variant Obl-fi

(1 ď i ď N) to execute in place of f. Executing the DO variant in place of f will ensure args

does not leak. That is, a DO predictor is a pair of functions:

i Ð predictpinpq (5.2)

updateppinp, actual iqq (5.3)
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where 1 ď i ď N . predict, given an input (e.g., the PC), predicts which of the N DO variants

is most likely and update updates the predictor state (if any) to influence future predictions.

A prediction is considered correct iff Obl-fi returns success.

Importantly, the predictions made by the predictor, and the updates to the predictor

must be a function of non-sensitive information. We will see how this is achieved in the

context of malicious speculative execution next, in Section 5.3.3. The predictor’s internal

implementation can be arbitrarily simple or complex, and is free to select a different i for

each dynamic instance of a given transmitter f.

5.3.3 Putting It All Together: Protecting Speculative Data

To protect speculative data, we combine DO variants and the DO predictor with STT

(Section 5.2). Pseudo-code for the complete construction, called an SDO operation, is given

in Figure 5.1.

First, instead of delaying the execution of a transmitter with tainted operands as in

STT, the tainted transmitter f is unconditionally predicted on by the DO predictor and

issued as a DO variant (Lines 3-7). The case statement in the pseudo-code therefore

corresponds to an implicit branch (Section 5.2) with predicate success?. Likewise, each DO

variant corresponds to a non-transmitter by Definition 5.2. We follow STT’s principles

(Section 4.4.4) to make the DO predictor/implicit branch not leak privacy. That is, we require

that predictor updates be a function of untainted data, e.g., the program counter/PC, and

that predictor resolution/squashes be delayed until the implicit branch predicate becomes

untainted (Lines 11-16).

Second, results are unconditionally forwarded to dependent instructions (regardless of

success?) and tainted/protected by STT (Line 8). Once args becomes untainted, it is safe to

reveal success? because it is a function of the prediction and args. By extension, it is safe

to update the predictor and/or squash/re-issue the transmitter (since the implicit branch

predicate is now untainted).

At a high level, this construction combined with STT’s mechanisms ensures that the

predictor always makes predictions based on public information and that args never leaks

before becoming untainted. Section 5.6 formally argues how this does not change STT’s

security guarantee.
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1 // Part 1: On issue of f with PC pc, with tainted operands args
2 Obl-f(args):

3 switch( predict(pc) ):

4 case 1: success?, presult Ð Obl-f1(args) break;

5 case 2: success?, presult Ð Obl-f2(args) break;

6 ...

7 case N: success?, presult Ð Obl-fN(args) break;

8 return presult;

9

10 // Part 2: When args becomes untainted

11 if (success?): // Note: success? no longer tainted

12 update((pc, prediction))

13 else

14 // Required: squash instructions starting at pc

15 // Optional: call update, if correct prediction is known

16 return f(args)

Figure 5.1: Pseudo-code for translating a transmitter fpargsq into an SDO operation
Obl-fpargsq. Sensitive/tainted values are colored green. The predictor input is assumed
to be the transmitter’s PC, since this is what we evaluate in the paper. Part 1 occurs when
the SDO operation issues. Part 2 occurs when args becomes untainted.

5.4 SPECULATIVE DATA-OBLIVIOUS LOADS

We now use the framework from Section 5.3 to build a high-performance SDO operation for

loads. We call it an Obl-Ld operation. Loads are notorious transmitters, leaking privacy over

the cache/memory side channel. They are also notoriously high-overhead to protect [31, 183,

184, 187]. For example, STT reports nearly all overhead comes from delaying the execution

of loads until their arguments are untainted [31].

While the focus of this section is on loads, the framework in Section 5.3 applies to

any transmitter. Thus, to demonstrate generality, the evaluation shows how SDO improves

overhead when the framework is applied to both loads and loads plus floating point operations.

5.4.1 High-level Design Overview

To design the Obl-Ld, we must decide what DO variants to design (Section 5.3.1). This is

not trivial, as there are many distinct ways a load can execute from a covert/side-channel

perspective. For example, a load may hit or miss at any cache or TLB level, contend for

different resources such as uncore buses, cache banks, lookup DRAM, etc.—and each of these

implies different hardware resource usages, timings, etc.
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For this chapter, we decided to design DO variants which are capable of looking up specified

level(s) of cache in an address-independent fashion.

First, this leads to a relatively simple design. We need to design one DO variant per cache

level. Importantly, by the SDO operation semantics in Section 5.3.3, which DO variant we

predict is public information. That is, it is public knowledge which level cache tag/data

arrays we are accessing and we only need to hide the load address while looking up that

specific cache tag/data array. Thus, to implement the DO variants for monolithic private

caches (e.g., the L1 or L2), a straightforward design might serialize access to the cache and

only check but not update state (to hide whether a hit/miss occurred, and to eliminate

timing variations from, e.g., cache bank conflicts [69]). For shared caches (such as the sliced

L3) and DRAM, this is more challenging and discussed in Section 5.5.2.

Second, this design allows us to potentially eliminate most of the overhead from protecting

loads. For example, if a given load has data in the L2 and the DO predictor correctly predicts

“L2”, then the Obl-Ld latency will be comparable to that of an insecure load. That is, a

majority of the lookup time is simply to send a request to the L2, not to hide minor timing

behaviors such as bank conflicts. Note, our goal in designing Obl-Ld variants for every level

in the cache hierarchy plus the DRAM is to explore the design space. Our evaluation finds

that, in terms of the associated performance/complexity trade-offs, systems may be best

served by implementing only Obl-Ld variants for the caches (not DRAM).

5.4.2 Basic Obl-Ld Design

To implement the Obl-Ld, we design a DO variant for each cache level (i.e., Obl-Ld1 for

predicting data is in the L1, Obl-Ld2 for L2, etc.). When a load with a tainted address issues,

we look up a DO predictor (called the location predictor, see Section 5.4.4) to predict a

level/variant. Predictions are made based on the load’s PC. The chosen DO variant proceeds

to lookup all cache levels from the L1 to the level predicted. For example, predicting data

is in the L3 creates lookups in the L1, L2 and L3. Each lookup only checks if there is a

tag match in that cache level and returns either data/K accordingly. Importantly, a lookup

makes no address-dependent state changes to the cache.

We will assume each DO variant is securely implemented (i.e., satisfies Definition 5.2) for

now. In other words, when accessing a specific cache level, Obl-Ld does not create observable

address-dependent hardware resource interference. We will describe how this is implemented

in Section 5.5.2.

Designing the Obl-Ld to look up all levels from the L1 to the predicted level is important

for functional correctness and security. Consider an alternate design that only looks up
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the predicted level (e.g., looks up only the L2 if we predict L2). Such a design violates

Definition 5.1: if there is dirty data in the L1, such a design will return stale data. As we

will see in Section 5.6, this violates STT’s semantics for access instructions and creates a

security problem.

(a)

L2:

L3:

addr1: data

Location 
predictor

Obl-Ld2 (addr1)

Level = 2 (true1, data1)

(false2, ⊥2)

PC

PC: load [addr1]

Wait buffer

L1:

(b)

L2:

L3: addr2: data

(false1, ⊥1)

(false2, ⊥2)

Wait buffer

L1:

Location 
predictor

Obl-Ld2 (addr2)

Level = 2

PC

PC: load [addr2]

Figure 5.2: Example Obl-Ld operation given two different addresses addr1 (present in L1) and
addr2 (present in L3). In both cases, resource contention and operation timing is a function
of the prediction, not the address.

A structure at the core called the wait buffer receives responses from each cache level.

Each cache that is looked up returns either (success, presult) if data was present in that level,

akin to a cache hit, or (fail, K) otherwise. In our current design, each DO lookup returns

a word, not the whole cache line. We denote a response from cache level i with subscripts,

e.g., (success2, presult2) for a response from the L2. Once all responses are received, the wait

buffer forwards to the pipeline:

• presulti: for the smallest i such that we have successi

• K: if we have faili for all i

That is, we forward the correct data from the cache level closest to the core, as in a regular

cache.

Putting it all together, an example Obl-Ld is shown in Figure 5.2. In (a) and (b), we have

a load with different addresses but the same location prediction. The takeaway is that the

resource usage (cache lookups, timing, etc.) is a function of the prediction, not the address.
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When the load address becomes untainted, we follow the framework described in Sec-

tion 5.3.3. If the prediction was correct, we proceed with execution and update the DO

predictor (if applicable). Else, we squash execution starting at the load and re-issue as a

regular load.

Virtual memory. Every load first needs to consult the TLB/page tables for address

translation, and hits/misses in the TLB can also leak privacy [263]. As observed by prior

work, L1 TLB miss rates are low [187]. Thus, we adopt a simplified strategy based on the

same ideas as the main load operation. Conceptually, we design a single DO variant that

looks up the L1 TLB. On an L1 TLB hit (success), the rest of the access proceeds as discussed

above. On an L1 TLB miss (fail), we likewise continue with the prediction and Obl-Ld access,

but with K as the translation. That is, we do not consult the L2 TLB until the address

becomes untainted and execution squashes.

5.4.3 Advanced Obl-Ld Design

Memory Consistency Issues

In a standard multiprocessor system, memory consistency is maintained using specula-

tion [249]. Loads execute out of order—speculating that their output satisfies the memory

consistency model rules—and bring the accessed cache lines into the core’s L1. Memory

consistency violations are detected based on invalidations of these cache lines from the L1.

Under consistency model-specific conditions, a load is squashed and re-issued if the cache

line it read gets invalidated from the core’s L1. This mechanism has correctness and security

implications for the Obl-Ld implementation.

Correctness: Handling Missed Invalidations. Unlike a standard load, an Obl-Ld may

read from a cache line that is not in the core’s private L1. In this case, the core will not

get notified if the line is later invalidated (due to a coherence transaction or cache eviction),

which can lead to an undetected consistency violation. To address this problem, we adopt

InvisiSpec’s validation/exposure mechanism [183, 264]. Specifically, when an Obl-Ld that

did not obtain its value from the L1 becomes safe (i.e., its address is untainted), its output

is validated. A validation performs a standard cache access, bringing the line read by the

Obl-Ld into the L1, and compares the word read by the Obl-Ld to its up-to-date value. If

they match, the Obl-Ld’s output is valid; otherwise, the Obl-Ld is squashed and re-issued

(this time as a standard load, since it is safe). Following an Obl-Ld validation, the core
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receives future invalidations of the line and is able to maintain memory consistency as usual.

Because validation delays a load’s retirement, we adopt InvisiSpec’s exposure optimization,

which avoids validating loads that the memory consistency model would not have required

squashing had an invalidation been received. For such loads, validation is replaced by an

expose operation that brings the accessed line to the L1 asynchronously, without delaying

the load’s retirement. (InvisiSpec [183] details the conditions under which validation can be

replaced by exposure.)

Security: Handling Consistency Squashes. Our attacker model assumes that squashes

are observed by the adversary, e.g., through the re-execution of the load. Squashing a load

due to an invalidation could therefore leak the load’s address. To prevent such a leak, we

delay consistency squashes until the affected load’s address becomes untainted. This delay

is simply an application of STT’s implicit channel protection rule to the implicit branch

created by the memory consistency check, whose predicate compares the addresses of the

load being squashed and of the memory access that triggers the invalidation [31]. The fact

that an invalidation occurs implies that the access triggering it has an untainted address [31],

so we only need to wait for the Obl-Ld to become untainted.

Event Interleavings

Modern out-of-order processors maintain multiple in-flight operations concurrently, meaning

that the different steps in an Obl-Ld can occur in a variety of orders and interleavings. We

now discuss the different possible cases.

Starting when the Obl-Ld executes, there are four events which control the behavior of the

load:

A: The load is ready to issue but is unsafe/tainted, hence issues as an Obl-Ld.

B: The Obl-Ld operation completes when the responses from all predicted cache levels

reach the wait buffer. At this point, data is safe to forward to dependent instructions.

C: The Obl-Ld becomes safe, i.e., its address is untainted.

D: The validation for the load completes.

As discussed in Section 5.4.3, validations are needed to enforce memory consistency if the

Obl-Ld returns success from a lower-level cache, and the load must be re-issued if the Obl-Ld

returns fail. We will refer to both of these loads as validations (event D) for simplicity.
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The above events are partially ordered. In the following, we say X ă Y if event X happens

before Y in time. For example, we must have A ă B because an Obl-Ld must issue before it

completes. C ă D also holds since the validation is sent after the Obl-Ld becomes safe. On

the other hand, B ă C may not hold, because the load may become safe before its Obl-Ld

completes.

Issue an Obl-Ld
Allocate Waitbuffer

Writeback Obl-Ld data
Obl-Ld hit: send validation
Obl-Ld miss: squash

A: A unsafe load is ready to issue
B: Waitbuffer receives 
all Obl-Ld responses C: Load becomes safe D: Load finishes validation

Issue an Obl-Ld
Allocate Waitbuffer

Send validation
Obl-Ld hit: writeback Obl-Ld data
Obl-Ld miss: wait for validation

Obl-Ld hit: validate results
Obl-Ld miss: writeback validation result

A: A unsafe load is ready to issue
B: Waitbuffer receives 
all Obl-Ld responsesC: Load becomes safe D: Load finishes validation

Issue an Obl-Ld
Allocate Waitbuffer

Send validation Writeback validation result Ignore Obl-Ld result

A: A unsafe load is ready to issue
B: Waitbuffer receives 
all Obl-Ld responsesC: Load becomes safe D: Load finishes validation

Obl-Ld hit: validate results
Obl-Ld miss: writeback validation result

Figure 5.3: Obl-Ld operation flow with the three possible event sequences (top: A ă B ă C ă D;
middle: A ă C ă B ă D; bottom: A ă C ă D ă B) and corresponding actions.

In this way, there are only three possible event orderings that can occur: A ă B ă C ă D,

A ă C ă B ă D and A ă C ă D ă B, discussed in detail below and shown in Figure 5.3.

1. Event ordering is A ă B ă C ă D:

rAs When an unsafe load issues an Obl-Ld request, it allocates a wait buffer entry. rBs

When the wait buffer entry receives all responses from the accessed cache levels, the

Obl-Ld request completes and the result is written to the register file/forwarded to

dependent instructions. rCs Later, when the load eventually becomes safe, we issue

a validation. If the Obl-Ld returned fail, we also immediately (i.e., before untainting)

squash all subsequent instructions since their execution is based on an incorrect value.

rDs When the validation completes: If the Obl-Ld returns success: SDO compares the

result from the corresponding Obl-Ld and the current validation. If the values differ, a

consistency violation might occur, therefore all subsequent instructions are squashed

and the result of the validation is forwarded to re-issued dependent instructions. If the

Obl-Ld returned fail (and we squashed): the validation result is forwarded to dependent

instructions.
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2. Event ordering is A ă C ă B ă D:

rAs Same as Case 1. rCs Before the wait buffer receives all Obl-Ld responses, the load

becomes safe. Instead of waiting for Obl-Ld completion, SDO issues a validation at this

moment. rBs When the Obl-Ld completes: If the Obl-Ld returns success, SDO writes

back the Obl-Ld result, and wakes up dependent instructions. If the Obl-Ld returned

fail, forwarding incorrect data is unnecessary since it is now safe to reveal that the

fail occurred. Thus, SDO drops the Obl-Ld result and waits for the result from the

validation. rDs Same as Case 1.

3. Event ordering is A ă C ă D ă B:

rAs and rCs: Same as Case 2. rDs Since the validation completes earlier than the

Obl-Ld, and the validation result is always correct (i.e., a ‘guaranteed success’), SDO

writes back the validation result directly to complete the execution of the load. rBs

Since the load was completed by its validation, the Obl-Ld result is ignored.

Importantly, an Obl-Ld returning fail will only result in a squash (which hurts performance)

in Case 1: when the Obl-Ld completes before the load becomes safe.

Additional performance optimization: Early forwarding from wait buffer In

the scheme described so far, an Obl-Ld operation is considered to have completed when all

expected responses have reached the wait buffer. Only then can the wait buffer forward its

result to dependent instructions.

We can improve this scheme’s performance by leveraging the observation from before:

when a load becomes safe, its address and success/fail status is safe to reveal to the attacker.

Thus, if a load becomes safe, it is safe to forward data from the wait buffer early, i.e., as soon

as the wait buffer detects there has been a success.16

Other Considerations

Store-to-Load Forwarding. An Obl-Ld may get its data from the store queue due to

store-to-load forwarding. Here, we adopt STT’s policy: the Obl-Ld issues unconditionally,

but the correct data is forwarded from the store queue instead of from the wait buffer once

all Obl-Ld responses have returned.

16Here, we assume levels of the cache respond in order, i.e., L1 first, L2 second, etc. If responses can arrive
out of order, successi cannot be forwarded to the pipeline until all responses j for 1 ď j ă i arrive at the wait
buffer.
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Updating the location predictor. We update the location predictor when the load

becomes safe, if its Obl-Ld returned success (per Section 5.3). If the Obl-Ld returns fail, we

cannot perform the location predictor update as the actual location of the load data is still

unknown. In this case, we wait for the validation and update the predictor with the level

that the validation finds data in.

5.4.4 Predictor Design

We now describe a design for several location predictors. Suppose a load required data

from cache level i and the predictor predicts j. We say the predictor is accurate and precise if

i ““ j, accurate but imprecise if i ă j and not accurate if i ą j. The goal is to be accurate

and precise. When accurate but imprecise, the load incurs a larger delay because we must

wait for the level j request to return. When not accurate, we may incur a squash, depending

on when the load becomes safe (Section 5.4.3).

The goal of this work is to show the SDO framework is viable, not to invent a state-of-

the-art predictor. We therefore first evaluate several simple static predictors that always

predict to a specific cache level. Intuitively, static predictors to larger j (lower cache levels)

will become more accurate but less precise. We also designed a simple dynamic predictor

based on analyzing benchmark traces of high-overhead loads in vanilla STT, in particular to

what levels loads hit and in what order. We observed that a given static load’s cache level

access pattern falls into one of two categories:

1. The cache level access pattern changes at a coarse granularity. That is, there are regions

of continuous hits to a single cache level, i.e., low spatial locality.

2. The cache level access pattern consists of mostly L1 hits with predictable, singular

lower level hits in between, i.e., high spatial locality. One common pattern in this

category is accessing memory sequentially with a constant stride, i.e., one L1 miss per

N memory accesses.

To capture both patterns, we design a hybrid location predictor which internally chooses

between 2 predictors—a greedy predictor (greedy) and loop predictor (loop)—on each lookup,

based on a per-load saturating confidence counter. Our predictor follows the template in

Equation 5.2. The load’s static PC (which is public in STT; Section 5.2) is used as the

predictor’s input. greedy and loop are designed to capture access pattern 1 and 2, respectively.

greedy predicts the lowest cache level (highest j) that has been seen in the last m dynamic

instances of a given load. That is, it favors imprecision over inaccuracy to avoid potential
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mis-predictions. loop’s behavior resembles a loop branch predictor: it predicts the frequency

of lower-level accesses and tries to predict whether the next access will be an L1 hit or a hit

in that lower level.

5.5 MICROARCHITECTURE

Here, we describe microarchitecture changes to support SDO. We assume a baseline STT

microarchitecture. We make modest changes to the processor pipeline to support Obl-Ld

operations and enforce their consistency (Section 5.5.1). We then propose implementations

for data-oblivious access to the various levels of the cache/memory hierarchy (Section 5.5.2).

Figure 5.4 illustrates the baseline architecture and the modifications made for SDO.

5.5.1 Changes to Processor Pipeline

Our starting point is the STT microarchitecture, which extends a modern speculative

out-of-order pipeline with (1) taint propagation, which is piggybacked on the existing register

renaming logic; (2) a fast (single cycle) untaint mechanism; and (3) STT’s protection rules

for blocking implicit and explicit channels (Section 5.2).

On top of STT, we add the location predictor (Section 5.4.4) as well as control logic to

perform the Obl-Ld execution events (Section 5.4.3). To implement Obl-Ld execution logic,

we extend each load queue entry with the following fields.

1. Obl-Ld State (4 bits): Stores whether the load is an Obl-Ld and if so, the current state

of the Obl-Ld execution state machine described in Section 5.4.3.

2. Actual Level (2 bits): The highest cache level for which a DO variant succeeded. This

is used to update the location predictor once the load becomes safe.

3. Validation/Exposure (1 bit): Indicates if, when the Obl-Ld becomes safe, an expose

should be performed instead of a validation. This field indicates Exposure in one of

two cases: if the Exposure condition defined in InvisiSpec [183] is satisfied when the

Obl-Ld is issued,17 or if the Obl-Ld’s lookup in the L1 succeeds.

4. Pending Squash (1 bit): Indicates if this load should be squashed once it becomes

safe. (Also needed by STT, but written here because SDO adds a new case where it is

required.)

17This is a condition over the state of the load queue that identifies when the load cannot possibly be
reordered with older memory operations. (Importantly, we do not require InvisiSpec hardware to detect
when the condition is satisfied.) Refer to [183, Appendix A] for details.
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The wait buffer (which stores data returned by DO variants) is implemented using the

output register of the Obl-Ld. That is, the output register is repeatedly overwritten (with

the ready bit not yet set) when each cache level access returns.

5.5.2 Changes to Memory Subsystem

The crux of the Obl-Ld implementation are the DO load variants, which perform a data-

oblivious lookup of some level of the cache/memory hierarchy. To satisfy SDO’s security

definition (Definition 5.2), an Obl-Ld must not have any address-dependent hardware resource

usage; its resource usage can only be a function of untainted (public) state. This means that

an Obl-Ld cannot make any address-dependent change to the cache state, but also requires

avoiding every other type of address-dependent resource contention. We generally achieve

this property by partitioning an Obl-Ld from other loads (standard or DO), either spatially

or temporally (by serializing resource access). As we shall see, while an Obl-Ld may contend

for resources with other loads, the contention results only from the fact that the Obl-Ld is

executing—which is public, due to STT’s implicit channel protections—and not from the

Obl-Ld’s address.

Below, we discuss what a DO lookup entails for each level in the memory hierarchy, for

completeness. We find, however, that limiting Obl-Lds to the on-chip caches suffices to reap

most of SDO’s performance gains (Section 5.7). We thus posit that a microarchitecture which

implements only on-chip cache DO variants is a sweet spot from a complexity/performance

trade-off standpoint.

Baseline Memory Subsystem Model

We assume the following baseline, which is based on commercial processors. Each core has

private L1 instruction and data caches and a private L2 data cache. The L3 cache is shared.

The caches are all physically tagged set-associative caches and are write-back, write-allocate.

All caches are banked, i.e., the data array is arranged in several banks. Concurrent accesses

to different cache lines that target the same bank are serialized; otherwise, they are served in

parallel. The shared L3 cache is distributed: it is organized in multiple set-associative slices

(one slice per core). A hash function (set at design time) determines the slice associated with

a cache line. Caches are kept coherent with a MESI-style [258] coherence protocol.

The caches can sustain multiple concurrent misses. Each cache maintains an array of

miss status holding registers (MSHRs), each of which stores all information related to an

outstanding miss. A cache miss on a line allocates an MSHR if there is no outstanding miss

110



core
MSHR

L1

L2

L3 slice

core

L1

L2

L3 slice MC

DRAM...

Li dataLi tags

load queue

ctrl

send to all slices

Figure 5.4: Microarchitecture with SDO support. Shaded blocks represent modified hardware.

on that line; otherwise, the information in the MSHR is augmented with the new miss and

no new request is issued to the next cache level.

A single, shared memory controller (MC) connects the system to DRAM. The MC schedules

memory accesses (by L3 misses) to maximize DRAM row buffer hits and bank/rank parallelism.

Therefore, DRAM access latency is a function of recent and outstanding requests. The caches

and memory controller communicate over a ring interconnect.

Modifications for Obl-Ld

We describe how to avoid address-dependent resource contention throughout the path of a

cache/memory access.

Issuing Obl-Ld requests to the cache controller. In a baseline microarchitecture,

address-dependent scheduling can affect when a load gets issued to the cache hierarchy,

e.g., as a result of scheduling loads to minimize bank or port contention. To address this,

the Obl-Ld scheduling logic must be address-independent, e.g., an Obl-Ld should be issued

as soon as it is ready. Similarly, the choice of which cache port to access should also be

address-independent. Note that an Obl-Ld request might not successfully issue immediately

when ready due to other regular or Obl-Ld loads that are also pending to access the same

cache. Importantly, such contention doesn’t reveal any information about the Obl-Ld’s

address, because our design maintains the invariant that resource contention is a function of

public (untainted) state.
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Cache bank access. Accessing only the bank(s) dictated by a load’s address constitutes

address-dependent resource usage. Specifically, it risks creating a bank conflict with another

request, with the resulting contention leaking the address. Our solution is therefore for an

Obl-Ld to access all cache banks. Namely, after the Obl-Ld enters the cache, all succeeding

requests are blocked until the Obl-Ld request completes its lookup. This approach guarantees

that the resource use—and hence, effect on other requests—is independent of the Obl-Ld’s

address.

Storage of outstanding Obl-Ld miss state. We require the following to avoid address-

dependent MSHR usage. First, every Obl-Ld must allocate an MSHR; it cannot share an

MSHR with any other request. Second, the MSHR choice must be address-independent (e.g.,

the first available MSHR). In this way, any MSHR contention created by an Obl-Ld follows

only from the fact that the Obl-Ld is executing and accessing a specific cache level, both of

which are public (untainted) information.

LLC slice access. Similarly to bank access, an Obl-Ld cannot access only the LLC slice

dictated by its address. Consequently, the Obl-Ld variant accessing the L3 must send a

request to all LLC slices. The correct slice returns success or fail, depending on whether the

request hits or misses; all other slices necessarily return fail. The MSHR between the L2 and

L3 is de-allocated when all responses arrive, at which point it forwards a single response back

to the core.

DRAM modules access. Implementing data-oblivious DRAM accesses not only requires

changes to the on-chip memory controller (similar to [265]), but also to the DRAM modules

themselves. For example, an Obl-Ld cannot directly fetch data from the row buffer, which

has shorter access latency compared to accessing un-buffered rows [266].

As mentioned above, we find that designing a DO variant for DRAM is unnecessary,

because data usually resides in the cache (Section 5.7). However, simply limiting predictions

to the L3 would result in a failed Obl-Ld (and subsequent squash) for data that does reside

only in DRAM. We avoid this problem by allowing the DO predictor to predict that data is

in DRAM, and delaying the issue of that load, until it is safe, in that case (i.e., reverting to

STT’s default protection). In this way, we do not squash unnecessarily.
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5.6 SECURITY

We build SDO on top of STT, and denote our combined scheme STT+SDO. Our security

goal is to preserve STT’s security guarantee. Cited from the STT [31] paper: “at each step

of its execution, the value of a doomed (transient) register, that is, a register written to by

a speculative access instruction that is bound to squash, does not influence future visible

events in the execution.” This implies blocking leakage through all microarchitectural covert

channels including pressure in the cache, arithmetic unit ports, total program execution time,

etc.

To prove security, we argue that STT+SDO does not change STT’s security semantics for

transmitters and access instructions, Claims 5.1 and 5.2 below, respectively.

5.6.1 Security for Transmit Instructions

We first analyze SDO operations in general, and then analyze our Obl-Ld operation.

Claim 5.1. Implementing transmitter fpargsq as SDO operation Obl-fpargsq (Figure 5.1)

leaks equivalent privacy as delay-executing fpargsq until args are untainted.

Proof. In STT’s terminology: Obl-fpargsq is equivalent to executing a non-transmitter in the

shadow of an implicit branch, which STT guarantees cannot violate security. From Figure 5.1,

the case statement on Line 3 is by definition an implicit branch whose (i) predictions and (ii)

updates/resolutions are a function of non-speculative data. (i) holds by Equation 5.2. (ii)

holds by Figure 5.1, Lines 11-16, i.e., namely we adopt STT’s policy for delayed predictor

update/resolution until args is untainted. Finally, by Definition 5.2 the DO variant executed

in the shadow of the branch—Obl-fipargsq for some i—is a non-transmitter. QED.

The Obl-Ld operation (Section 5.4) is a valid SDO operation from Claim 5.1. First, the

location predictor (Section 5.4.4) takes the load PC as input, which is a function of non-

speculative data due to STT [31, 247]. The predictor’s delayed resolution/updates follow the

same argument as above. Second, the design for each Obl-Ld variant–for each memory level

(Section 5.5.2)–satisfies Definition 5.2.

5.6.2 Security for Access Instructions

STT untaints the output of an access instruction when the instruction reaches its visibility

point, which is the point at which the instruction is considered non-speculative with respect

to the threat model (Section 5.2). Younger transmitters may reach their visibility point at
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the same time as their producer access instruction(s). For example, in the Spectre model,

if there are no unresolved branches between access and dependent transmit instructions.

STT’s protection no longer applies to such transmitters. It is therefore important to establish

that the output of the access instruction—which may be forwarded to these transmitters—is

the result of a correctly-speculated execution and hence not a secret. This property holds

for STT, because STT only delays execution of instructions, without changing how they

execute. Without careful attention, one might conclude that the property does not hold for

STT+SDO, because a DO variant might return fail. Here, we prove this property does in

fact hold for STT+SDO.

Claim 5.2. In STT+SDO, data returned by an access instruction is untainted only if that

data corresponds to the correct speculation, for the given attack model.

Proof. We consider Obl-Ld operations, since these are the only access instruction changed in

this work. Suppose an Obl-Ld access instruction, denoted ainstr, reaches its visibility point.

Let X be ainstr’s output. We now proceed in cases.

Case 5.1 (ainstr has forwarded X to younger instructions) . We have two sub-cases:

1. ainstr has returned in success: By Definition 5.1, success implies X is correct with

respect to the current speculative path. For a given attack model, having reached the

visibility point implies that the current speculative path is correct speculation, thus

the claim holds.18

2. ainstr has returned in fail: X may or may not correspond to correct speculation. As

described in Sections 5.3.3 and 5.4.2, ainstr (and younger instructions) are squashed at

the same moment that the data is untainted. Thus, the claim holds.

Case 5.2 (ainstr has not yet returned X / has returned but not yet forwarded) :

X may or may not correspond to correct speculation. As described in Section 5.4.3, we will

(a) forward X on success or (b) drop/re-issue ainstr as a normal load on fail. (a) becomes

Case 1-i above. In (b), the result will be produced by a normal load, so the claim follows

from STT’s properties. QED.

18Note, in the case of loads X may eventually cause a consistency violation. Depending on the attack
model (e.g., Spectre, Futuristic), a consistency violation may or may not constitute incorrect speculation.
In the Spectre model, there is no issue (consistency violations are out-of-scope). In the Futuristic model,
having reached the visibility point implies that a consistency violation can no longer occur (i.e., an access
instruction is unsquashable after reaching the visibility point in the Futuristic model).
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5.7 EVALUATION

We now evaluate the performance of STT+SDO, for a variety of attack models and SDO

design variants, relative to vanilla STT and an insecure baseline.

5.7.1 Experimental Setup

Simulation setup. We evaluate the performance of SDO using the Gem5 [259] simulator,

which models cache port, bank and MSHR contention. We change the simulator to model

the additional contention-related overheads caused by SDO. For example, by granting Obl-Ld

operations exclusive access to all banks once they access one cache level. Table 5.1 details the

simulated architecture. We use the x86-like Total Store Ordering (TSO) memory consistency

model. We run SPEC CPU2017 [267] benchmarks with the reference input size. To obtain

representative results for SPEC benchmark performance, we use SimPoint analysis [268] to

identify execution fragments representing program phases. For each benchmark, we simulate

10 million instructions of each such fragment, and sum each reported metric (e.g., cycles)

over all simulations, weighting each fragment according to its execution phase.

HW Components Parameters

Pipeline
8 fetch/decode/issue/commit, 32/32 SQ/LQ entries,
192 ROB, 16 MSHRs, Tournament branch predictor

L1 I-Cache 32KB, 64B line, 4-way, 2-cycle latency
L1 D-Cache 32KB, 64B line, 8-way, 2-cycle latency
L2 Cache 256KB, 64B line, 8-way, 12-cycle latency
L3 Cache 2MB, 64B line, 8-way, 40-cycle latency
Network 4ˆ2 mesh, 128b link width, 1 cycle latency per hop
Coherence Protocol Directory-based MESI protocol
DRAM 50ns latency after L2

Table 5.1: Simulated architecture parameters.

Configurations. We evaluate the following design variants, listed in Table 5.2. We compare

STT+SDO (with different predictors, treating both loads and floating point (FP) operations

as transmitters with architected DO operations) to STT. Two STT configurations are

evaluated: STT{ld} considers only loads to be transmitters; STT{ld+fp} also considers FP

operations to be transmitters. For STT+SDO, as discussed in Section 5.4.4, we evaluate both

static predictors (always predicting a specific cache level) and the hybrid location predictor

(Hybrid, which predicts L1, L2 or L3). The size of the Hybrid predictor’s internal state is
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4 KB. Finally, we evaluate a Perfect predictor which always predicts the correct cache level.

All SDO configurations protect subnormal FP inputs by statically predicting FP inputs to be

normal (as described in Section 5.1). All SDO configurations also mitigate leakage through

virtual memory translation in the fashion described in Section 5.4.2. For each configuration,

we evaluate both the Spectre and Futuristic attack models (Section 5.2).

Configuration Description

Unsafe An unmodified insecure processor
STT{ld} STT, delaying the execution of unsafe loads only
STT{ld+fp} STT, delaying the execution of unsafe loads and fmult/fdiv/fsqrt micro-ops
Static L1 SDO with predictor always predicting L1 D-Cache
Static L2 SDO with predictor always predicting L2
Static L3 SDO with predictor always predicting L3
Hybrid SDO with proposed hybrid location predictor (Section 5.4.4)
Perfect SDO with oracle predictor always predicting the correct level

Table 5.2: Evaluated design variants.

Penetration testing. Prior to performance modeling, we confirmed that all SDO design

variants block the Spectre V1 attack, to which the Unsafe baseline is vulnerable.

5.7.2 Main Result: Performance of STT+SDO vs. STT

Figure 5.5: Execution time (normalized to Unsafe) of SPEC2017 benchmarks with STT
and the proposed SDO design variants (STT+SDO) in Table 5.2. Averages are given on the
right. (Upper half: Spectre model; lower half: Futuristic model.)

Figure 5.5 compares the execution time, normalized to Unsafe, of STT and the SDO variants

on the evaluated SPEC2017 benchmarks. STT+SDO outperforms STT with both Static and

Hybrid predictors in all cases. The summary is that (1) our Hybrid predictor outperforms

Static predictors in the Spectre model, obtaining an average overhead of 4.19%, which
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translates to a 44.4%/50.1% improvement relative to STT{ld}/STT{ld+fp}, respectively;
and (2) Static L2 is the lowest overhead predictor in the Futuristic model, obtaining an

overhead of 10.05%, which is a 36.3%/55.1% improvement relative to STT{ld}/STT{ld+fp}.
We now discuss these results in more detail.

Static Predictors. In both the Spectre and Futuristic models, Static L1 has the highest

overhead of any SDO variant. The reason is that while predicting higher cache levels (e.g.,

L1) yields faster Obl-Ld operations, it also incurs more frequent squashes (due to Obl-Ld

operations returning fail). As shown in Section 5.7.5, performance overhead is strongly

correlated to the number of squashes. Relative to Static L1, Static L2 and Static L3 have

similar overheads on average, indicating that their relative differences in accuracy (which

impacts squash rate) and precision (which impacts memory latency) balance each other out.

(See Section 5.4.4 for definitions of accuracy and precision.)

Hybrid Predictor. While the Hybrid predictor can achieve high accuracy and precision

when access patterns fall into the categories discussed in Section 5.4.4, we have found that

it causes extra squashes (due to Obl-Ld failures) when accesses unpredictably miss in the

L1. In the Spectre model, the overhead of these squashes can be hidden by overlapping

computation, which allows the Hybrid predictor to achieve speedup over the Static predictors

through its increased precision. See Figure 5.7 (left): the number of squashes for the Hybrid

and Static L2 predictors is similar, but the Hybrid predictor achieves significantly lower

overhead. Table 5.3 further confirms that the Hybrid predictor has significantly greater

precision than the Static L2 predictor. In the Futuristic model, however, performance is

more tightly correlated to the number of squashes. Indeed, Figure 5.7 (right) shows once

again that the Hybrid and Static L2 predictors have a similar squash rate, but now with

similar overheads.

Perfect Predictor. We show a perfect accuracy location predictor to show what perfor-

mance potential is possible with SDO, beyond that achievable by our imperfect predictors.

Perfect prediction improves performance by 59.5%/63.7% relative to STT{ld}/STT{ld+fp}
in the Spectre model, and 51.3%/65.6% relative to STT{ld}/STT{ld+fp} in the Futuristic

model. Interestingly, there is still performance overhead, even if the location predictor is

perfect. We perform a more detailed breakdown of the sources of remaining overhead in the

next sub-section.
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Figure 5.6: Performance overhead breakdown (vs. Unsafe) for evaluated SDO variants,
averaged over SPEC17 workloads.

5.7.3 Sources of Slowdown

To provide more insight, Figure 5.6 shows a breakdown of what design components

contribute what % of the total slowdown. Inaccurate and imprecise cache level prediction

is a major source of overhead. Sections 5.7.4 and 5.7.5 below perform a deeper analysis of

how prediction impacts performance. Validation stall and TLB/virtual memory protection

constitute a small portion of the overhead. The remaining slowdown is due to (1) Obl-Ld

operations not changing cache state, which leads to more cache misses; (2) implicit channel

handling; and (3) the additional memory system contention caused by SDO requests.

5.7.4 Predictor Accuracy and Precision

We now measure the accuracy and precision of each SDO predictor. Table 5.3 shows that

our Hybrid predictor has the highest precision, followed by Static L1, since Static L1 can

usually satisfy most memory accesses. Static L2 and L3 have low precision (ă 8%), although

their prediction tends to be more accurate (leading to fewer squashes) than Static L1/Hybrid.

5.7.5 Relationship between Performance and Squashes

We now quantify the performance loss due to inaccurate location prediction, i.e., the

pipeline squashes that occur when an Obl-Ld returns fail. Figure 5.7 shows the correlation

between the number of squashes and the performance overhead. The takeaway is that

performance overhead is roughly proportional to the number of squashes. An exception to
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Spectre Futuristic
Configuration Precision Accuracy Precision Accuracy
Static L1 71.87% 71.87% 75.48% 75.48%
Static L2 7.01% 78.74% 6.58% 83.39%
Static L3 4.60% 85.04% 3.71% 89.25%
Hybrid 84.30% 86.49% 84.34% 87.18%

Table 5.3: Precision and Accuracy of evaluated SDO predictors in the Spectre/Futuristic
models, averaged over SPEC17 workloads.

Figure 5.7: Relationship between the number of squashes and execution time (normalized to
Unsafe) of all evaluated SDO variants, averaged over SPEC17 workloads.

this trend is Static L3, which has the fewest squashes because its predictions are relatively

accurate. In this case, fewer squashes are offset by imprecision (longer latency loads).

5.8 CONCLUSION

This chapter proposes speculative data-oblivious execution (SDO), a new primitive which

can be used to mitigate speculative execution attacks in a high-performance and high-security

fashion. The key idea is that it is safe to execute an instruction which can form a covert

channel, as long as that instruction’s execution is independent of sensitive data, i.e., is data

oblivious. To reduce the performance overhead of this idea, we extend prior work on STT to

design safe predictors that specify what data-oblivious behavior is needed to satisfy common

case program behavior. Putting it all together, we show that augmenting STT with SDO

significantly speeds up vanilla STT without altering security.
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CHAPTER 6: NIGHTVISION ATTACK

This chapter presents a novel attack framework named NightVision, which is capable of

extracting the precise byte-granularity PC information of arbitrary instructions in a victim

program. Leaking a program’s instruction address (PC) pattern, completely and precisely, has

long been a desired, but unattainable capability for micro-architectural side-channel attackers.

NightVision achieves this goal by exploiting several previously overlooked characteristics in

modern Branch Target Buffers (BTBs). The core observation is counter-intuitive: despite

being a structure related to control-flow prediction, the BTB incurs observable state changes

by potentially any instruction types, not just control instructions. NightVision’s precise

PC extraction enables powerful control-flow leakage attack that bypasses prior defenses, and

also can be utilized to reverse-engineer private programs under some attack scenarios.

6.1 INTRODUCTION

Micro-architectural side-channel attacks have emerged as a critical security threat. By

co-locating to the same processor, these attacks enable attackers to deduce program char-

acteristics (e.g., control-flow decisions, the set of addresses touched in data memory) by

observing the micro-architectural effects stemming from a victim program’s execution (e.g.,

through the cache, branch predictors and more [5, 15, 17, 20, 22, 61, 66, 269]).

One such program characteristic of fundamental interest to side-channel attackers is the

victim’s dynamic PC trace. That is, the sequence of PCs corresponding to the victim’s

dynamic instructions over the course of its execution. If attackers are able to directly learn

the victim program’s PC trace, they would be able to beat state-of-the-art defenses for

current attacks, and even effectuate new types of attacks. For example, consider control-flow

leakage attacks whereby an attacker tries to learn secret-dependent branch decisions in

otherwise public programs (e.g., RSA) [19, 20, 61, 62, 270, 271]. There has been significant

work to mitigate these attacks, e.g., through branch balancing [62, 270] and control-flow

randomization [272], while keeping the secret-dependent control flow intact for performance

reasons (i.e., not converting to data-oblivious code [30, 273]). Yet, all of these defenses

immediately fail if the attacker is able to directly learn the victim program’s PC trace. Going

beyond control-flow leakage attacks, knowing the victim program’s PC trace enables new

attacks on private programs. For example, extracting a significant portion of the victim’s

dynamic PC trace enables code fingerprinting on otherwise private code.

Yet, no existing side channel can precisely and directly extract any given instruction’s PC,
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or for that matter the program’s PC trace. For example, controlled-channel attacks and

their variants [115, 116, 274, 275] learn the PC trace at a page or cache-level granularity.

This is too coarse to be useful against basic defenses, which impose simple restrictions to

confine control flow within the minimal observation granularity (e.g., a single cache line) [117].

Several other attacks are capable of extracting PCs of particular instruction types (e.g.,

loads/stores [16, 276], jumps [18, 19]) or for specific code patterns (e.g., Frontal [62]). But

this is not sufficiently general to infer arbitrary secret-dependent control flow, let alone

recover the entire PC trace for attacks such as code fingerprinting.

We demonstrate the first micro-architectural side-channel attack capable of leaking the

byte-granular PC of any victim dynamic instruction. Our attack is enabled by new findings

related to how Branch Target Buffers (BTBs) are implemented in modern Intel processors. In

a nutshell: It’s well known that control-transfer instructions update the BTB, as a function of

their PC and predicted target. Indeed, this behavior underpins current attacks [4, 18, 19, 277].

Our key observation is that modern BTBs, i.e., implemented with pipelined superscalar cores

in mind, are also updated based on the execution of non-control-transfer instructions. We

show how this enables the BTB to leak the exact PCs of even non-control-transfer instructions,

e.g., of the instructions in the shadow of a branch or even the instructions in straight-line

code.

The above might seem counter-intuitive. The BTB only maps branch/jump PCs to

predicted target PCs, which is seemingly irrelevant to non-control-transfer instructions.

However, in modern pipelined processors, the BTB is accessed without knowledge of the

fetched instruction except for its PC. Additionally, modern BTB tag checks usually leave out

the highest-order bits to save on area [19, 277]. Hence, it is possible for a BTB tag check to

‘succeed’ but to provide a prediction corresponding to a different instruction, even when the

instruction corresponds to a non-control-transfer instruction.

Such false hits overwhelmingly result in pipeline squashes. To counteract this potential

performance loss, we find that modern Intel processors deallocate the involved BTB entry

upon detecting a false hit—as soon as instruction decoding finishes and even if the instruction

causing the false hit doesn’t retire. Since BTB entries correspond to branches, a BTB hit

on a PC that decodes to a non-control-transfer instruction is necessarily a false hit. Thus,

non-control-transfer instructions that alias with existing entries in the BTB create observable

BTB state changes.

We find that the above effects are further amplified by how the BTB is implemented to

handle superscalar fetch. Since modern superscalar processors fetch instructions in bundles,

BTB lookups in fetch have range query-like semantics. That is, the BTB compares the fetch

PC with all BTB entries whose PCs are greater than but nearby the fetch PC. Effectively, this
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means that BTB deallocations can be an indicator of not only whether a fetched instruction

matches a certain PC value, but also whether it falls within a BTB entry-defined address

range.

Based on the above, we propose an attack framework called NightVision. The core of

NightVision is a novel BTB Prime+Probe-like primitive which captures updates made

by a co-located victim’s execution, using attacker-allocated BTB entries. Using the false

hit-induced deallocation effect, we show how NightVision can determine the PCs of (in the

best case) individual victim dynamic instructions. By further exploiting BTB range query

semantics, we show how the attacker can efficiently binary search through larger address

ranges to recover said PCs.

We demonstrate how to use NightVision to attack victim programs in user-/supervisor-

level attacker settings, where we construct control-flow leakage attacks for leaking secret

data influencing program control flow. Our attacks circumvent defenses that mitigate prior

control-flow leakage attacks [18, 19, 62, 270, 272]. When equipped with supervisor-level

capabilities, such as managing system resources like virtual memory and interrupts, we

showcase how NightVision can deduce the exact PC of every victim dynamic instruction.

With the extracted PC trace, we show how NightVision can be used to reverse-engineer

private programs with function fingerprinting techniques, in settings where TEEs (e.g., we

evaluate on SGX) would otherwise provide code confidentiality protection.

We evaluateNightVision using two existing cryptographic functions with secret-dependent

control flow: big number comparison in Intel’s IPP Cryptographic library [278] and the

Greatest Common Divisor in MbedTLS [279], both evaluated by a recent work [62]. We

show that several prior software defense mechanisms, like branch balancing [270], basic block

alignment [62] and control-flow randomization [272], and hardware mitigations (IBRS/IBPB)

are ineffective at mitigating our attack. We further demonstrate how NightVision with

supervisor privileges manages to identify both of the above functions from a corpus of 175K

other functions by applying its function fingerprinting on the recovered dynamic PC traces,

when code privacy is enforced by Intel SGX.

Contributions To summarize, this chapter makes the following contributions:

• We show how modern BTB design enables learning the PCs of arbitrary victim dynamic

instructions.

• We implement an attack framework, named NightVision, and demonstrate how

NightVision can observe select victim instructions’ PCs, or the victim’s entire dynamic

PC trace, depending on the attacker’s capability.
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• We show how variants of NightVision can be used to leak secret data influencing

program control flows even with prior software/hardware mitigations enabled, and

reverse-engineer private binaries using function fingerprinting.

6.2 BTB MECHANISM

6.2.1 Existing BTB Reverse-Engineering Takeaways

Branch prediction is an essential performance optimization in modern processors to reduce

the delay caused by control-transfer instructions. The core of branch prediction is a Branch

Target Buffer (BTB), which is a lookup table mapping branch/jump addresses (PCs) to

their target PCs [280]. Since the BTB is shared by all software running on the same core,

prior work has attempted to reverse-engineer the BTB and use it to mount side-channel

attacks [4, 18, 19, 277]. Next, we highlight the BTB mechanism disclosed by prior work.

In a nutshell, the BTB mechanism comprises two key actions: access and update. At the

instruction fetch stage, the BTB is accessed to select an entry for predicting the target of

the fetched branch/jump, which becomes the next instruction to fetch. If no BTB entry is

selected or the selected BTB entry contains an incorrect target, the BTB is later updated

with the correct target of the branch/jump, e.g., by allocating a new BTB entry or replacing

an existing entry.

The BTB’s organization on modern processors resembles a set-associative cache. Every

BTB access uses tag, set index, and offset fields computed from the current instruction

pointer. The set index field determines the BTB set, and the tag and the offset are used

for selecting the matched BTB entry in the set. The offset field is usually 5 bits [277, 281],

meaning branches within the same 32-byte-aligned block are mapped to the same set. Unlike

the processor cache which uses all higher-order address bits as the tag, BTB tags tend to be

truncated to reduce the BTB size19, since the BTB is a predictor and needs not to guarantee

correctness. This causes branches with the same lower-order bits to collide on the same BTB

entry: the first branch’s execution allocates a BTB entry, which is later used to predict for a

different instruction with the same lower-order address bits.

Previous BTB side-channel attacks focus on BTB collisions between an attacker branch

and a victim branch in two different ways. First, by executing after the victim branch, an

attacker branch may access the BTB entry allocated by the victim branch. This enables the

19The actual number of lower-order PC bits used for BTB lookup depends on the processor generation.
Based on our reverse engineering, BTBs in Intel SkyLake/KabyLake/CoffeeLake/CascadeLake CPUs ignore
address bits 33 and above, while IceLake BTB ignores address bits 34 and above.
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attacker to learn, through timing channels, the victim branch decision [18, 20]. Second, the

attacker can execute branches first so as to corrupt the BTB and influence the prediction

of the victim branch that executes after, thereby facilitating transient execution attacks

(e.g., Spectre V2) [4, 86, 277]. While attacks such as Spectre V2 are mitigated with recent

hardware defenses (e.g., Intel IBRS/IBPB) by preventing the collisions between indirect

jumps, as we will elaborate in Section 6.4.1, collisions remain achievable in general and these

lead to more fundamental attacks like NightVision.

6.2.2 Overview of Unexplored BTB Behaviors

Existing BTB side-channel attacks focus on the BTB behavior in response to only branches.

This view of the BTB, however, oversimplifies the BTB mechanism and misses critical details

about BTBs in modern processors. In this section, we conduct experiments to reveal two

previously unexplored BTB behaviors.

Firstly and counter-intuitively, we learn that not only control-transfer instructions, but

also non-control-transfer instructions can update the BTB. Since modern processors are

deeply pipelined, instructions are unrecognized until they are decoded, which happens several

cycles after instruction fetch. When the instruction pointer points to a non-control-transfer

instruction, with no information about the instruction except its PC, the BTB must be

accessed as usual. However, because the BTB lookup disregards higher-order PC bits, a false

hit may occur, making a control transfer for the non-control-transfer instruction, eventually

causing a pipeline squash after the instruction is decoded. This is where a non-control-transfer

instruction can affect the BTB state—we find that the chosen BTB entry gets deallocated to

prevent misprediction on the next encounter of the same non-control-transfer instruction.

We demonstrate this behavior in Section 6.2.3.

Our second investigation examines the impact of superscalar pipelines on BTB accesses.

Modern Intel CPUs fetch several consecutive instructions within a 32-byte aligned fetch block

every cycle [70, 277, 281]. This bundle of fetched instructions, known as a prediction window

or PW [70, 282], consists of either non-control-transfer instructions with a trailing taken

branch/jump, or purely non-control-transfer instructions that end at the 32-byte boundary.

Since the instructions within the bundle are not known until the decode stage, the BTB

access logic must operate at PW granularity rather than instruction granularity. Specifically,

the BTB access logic must first predict the location of the next branch/jump after the current

PC (end of the current PW), and then the target of that branch/jump (beginning of the next

PW). To achieve this, as we will show in Section 6.2.4, the BTB access hits an entry if that

BTB entry has the same tag and the set index, and the same or larger offset compared to
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1 F1: jmp L1; // address range: [F1, F1+1]

2 ...

3 L1: ret;

4 ...

5 < 4/8 GB padding >

6 ...

7 F2: nop; nop; ... nop; // address range: [F2, L2-1]

8 L2: ret;

9

10 /* Experiment1 */

11 for (i = 1 ... 1000) {

12 flushBTB();

13 F1(); // allocate a BTB entry

14 F2(); // may update the allocated BTB entry

15 F1(); // observe the BTB prediction outcome

16 }

Figure 6.1: BTB experiment in Section 6.2.3 for showing how non-control-transfer instructions
update (deallocate) BTB entries.

the current PC offset. When multiple BTB hits are present, the one with the smallest offset,

yet no smaller than the current PC offset is selected.

6.2.3 BTB Updates with Non-branches

We use the code in Figure 6.1 to observe the BTB update made by non-control-transfer

instructions. In each loop iteration, we first flush the BTB (line 12) using the BTB cleanup

routine from [20]. The code then calls F1 to allocate a BTB entry representing the jump in

F1 (line 1). The returns on line 3 and 8 are used for returning to the caller and are not the

focus of the experiment. F2 contains a series of nops that may affect the allocated BTB

entry state. In the second call to F1 on line 15, we measure the prediction outcome of jmp

L1 to identify whether a BTB entry update occurs.

Given that the BTB uses the lower 32 (or 33, based on the CPU version) address bits

for indexing, we place F1 and F2 in different 4 GB (or 8 GB) regions in memory, allowing

instructions belonging to F1 and F2 to possibly create BTB collisions, i.e. some nop in F2

may have identical lower 32 address bits as jmp L1. For simplicity, we only specify the

lower-order bits for all addresses and ignore the higher-order bits. To ensure the BTB entry

allocated by jmp L1 is only affected by nops in F2, when exploring different L1 and L2 values

in this experiment, we always maintain F1 ď L2-2 (note that jmp L1 is 2-bytes long) hence

jmp L1 can only collide with nops.
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Experimental Methodology We perform the experiment on a series of Intel CPU

architectures, including SkyLake (Xeon 8124), KabyLake (Core 7700), CoffeeLake (Core

9700/9900), CascadeLake (Xeon 8252/8259), and IceLake (Xeon 8375). To capture BTB

updates, we use Last Branch Record (LBR)20, a feature available in all modern mainstream

Intel processors that logs runtime information of all retired control-transfer instructions,

including the branch PC, the predicted direction (only valid for conditional branches), and

the elapsed cycles between the retire of the last recorded branch to the retire of the current

branch. To measure the prediction outcome of jmp L1 during the second call of F1 on line 15,

we retrieve the elapsed cycles reported for the subsequent return (line 3), which represents

the duration between retiring jmp L1 and the subsequent ret. When jmp L1 is predicted

correctly, jmp L1 and the following ret should fetch/execute/commit back-to-back, therefore

this duration is expected to be smaller compared to when jmp L1 is mispredicted.

Figure 6.2: The averaged elapsed cycles between the retire of jmp L1 (line 1 in Figure 6.1)
and the subsequent return (line 3) as we change the value of F2. The orange line is the
reported cycle count by Experiment 1 in Figure 6.1, whereas the blue line is the cycle count if
we remove the call to F2 on line 14. The gap between the two lines when F2 ă F1+2 indicates
that when jmp L1 collides with the nops in F2, its BTB entry is updated (deallocated) thus
leading to a misprediction.

Result and Takeaway The yellow line in Figure 6.2 shows the elapsed cycles between

the retire of jmp L1 and the subsequent ret when varying F2, the starting address of the

nops. When F2 starts at an address prior to F1+2, i.e. when jmp L1 collides with a nop in

F2, we see a larger cycle count compared to when jmp L1 does not collide with any nop. For

reference, we plot the elapsed cycles in Figure 6.2 when removing the call to F2 on line 14 in

Figure 6.1 as the blue line. The difference between the two lines illustrates how the execution

of F2 influences the BTB entry allocated by jmp L1. The same pattern remains when varying

F1 and L2, or replacing nops with other non-branches such as adds. Also, the observation is

consistent across all tested Intel CPUs. Thus we conclude that:

20Here, LBR could be replaced with a traditional timestamp counter (rdtsc)-based measurement or Intel
Process Trace (PT). We opted to use LBR since it is orders-of-magnitude less noisy, as pointed out by [19].
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Takeaway 1: The BTB update (deallocation) can occur when only non-control-transfer

instructions collide with the branch recorded by the BTB entry.

6.2.4 BTB Accesses with PWs

1 F1: nop; ... nop; // F1 P [0, 0x1e]; # of nops = 0x1e - F1

2 J1: jmp L1; // address range [0x1e, 0x1f]

3 ...

4 L1: ret;

5 ...

6 < 4 / 8 GB padding >

7 ...

8 F2: jmp L2; // address range [F2, F2+1] (F2 P [0, 0x1c])

9 ...

10 L2: ret;

11

12 /* Experiment2 */

13 for (i = 1 ... 1000) {

14 flushBTB();

15 J1(); // allocate a BTB entry

16 F2(); // allocate another BTB entry

17 F1(); // observe the BTB prediction outcome

18 }

Figure 6.3: The BTB experiment used in Section 6.2.4 for studying the BTB access behavior.

We use Figure 6.3 to study the BTB access logic of modern superscalar processors. Similar

to the previous experiment, we start each test by flushing the BTB (line 14). The code

executes two different jumps (jmp L1 on line 2 and jmp L2 on line 8) by calling J1 and F2

back-to-back on line 15 and 16. Importantly, we fix the address range of jmp L1 at [0x1e,

0x1f] and limit the starting address of jmp L2, F2, to an arbitrary value within [0, 0x1c]

(notice both direct jumps are 2-bytes long, and they share the same set index bits and tag

bits, but not offset bits and bits higher than bit 33), so the two jumps do not collide but

allocate entries within the same BTB set. Then, on line 17 we jump to a series of nops

before jmp L1, and execute a longer PW code (from the first nop at F1 to jmp L1). In this

experiment, we observe any misprediction when processing this PW as we vary F1 and F2

without violating the above constraints.

Experimental Methodology We test this experiment on the same Intel machines as

the previous experiment, and use LBR to measure the prediction outcome. Different from
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the previous experiment which measures the prediction of a single jump, this experiment

requires inferring the prediction decision during the execution of the entire PW (line 1 to 2).

Therefore, we use LBR to extract the total elapsed cycles between the call to F1 (line 17)

and the return after jmp L1 (line 4). This cycle count reflects the prediction decision made

for any preceding nops as well as jmp L1.

Figure 6.4: The average elapsed cycles between the retire of the call to F1 (line 17 in
Figure 6.3) and the subsequent return after jmp L1 (line 4) as we change F1 between [0,

0x1e]. The orange line is the reported cycle count by Experiment 2 in Figure 6.3, whereas
the blue is the reported cycle count when we remove the call to F2 (line 16). The gap between
the two lines when F1 ă F2+2 indicates that the BTB entry allocated by jmp L2 is used
when fetching nops at F1, leading to misprediction.

Result and Takeaway As before, we plot two lines in Figure 6.4. The yellow line plots

the elapsed cycles between the retire of line 17 and line 4 as we change the value of F1. The

blue line reports the same measurement with the call to F2 (on line 16) skipped, reflecting

the execution of the prediction window from F1 to jmp L1 without any misprediction. The

blue line gradually decreases as F1 increases due to fewer executed instructions (nops). By

comparing the two lines, we observe that when the PW base address F1 has an offset larger

than that of jmp L2, the execution of the PW behaves as if the call to F2 does not exist.

This implies that calling F2 has no impact on the BTB entry allocated for jmp L1 during

the call to J1. In contrast, when the PW starts at an address with an offset equal to or less

than jmp L2, misprediction occurs, leading to a constant increase in the elapsed cycle, as

shown in Figure 6.4. Given the above observation that the execution of jmp L2 should not

affect the BTB entry allocated for jmp L1, the misprediction can only be attributed to the

use of the BTB entry allocated for jmp L2. Specifically, in this case, when predicting the

next fetch target with the current instruction pointer pointing towards F1, the BTB entry

representing jmp L2, rather than the entry representing jmp L1, is selected. Similar to the

previous experiment, this observation is also consistent among the tested machines. From

this result, we can deduce the following takeaway:
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Takeaway 2: Due to superscalar fetch, a BTB hit requires an identical tag/set index. The

offset of the selected entry must be equal to/greater than the current PC offset. If multiple

BTB hits are present, the one with the smallest offset is selected.

Lastly, we note that the above two takeaways are consistent with an earlier Intel Patent [283]

that specifies the implementation details of a set-associative BTB structure (Takeaways 1

and 2 are mentioned in columns 20 and 12, respectively).

6.2.5 Differences from Prior BTB Reverse-Engineering Efforts

Our reverse-engineering approach differs from prior BTB attacks [4, 18, 19, 86, 277] in two

respects. First, while prior efforts limit the scope to branches, our insight is that superscalar

processors fetch PWs every cycle, therefore the BTB access must exhibit range semantics

instead of simply PC matches. Second, while prior efforts mostly focus on how one branch

allocates BTB entry which affects the future branch predictions, we additionally investigate

how allocated BTB entries can be deallocated, displaying the role of non-control-transfer

instructions in the BTB mechanism.

6.3 ATTACK MODELS AND NIGHTVISION OVERVIEW

In this work, we consider two common attacker models adopted by existing side-channel

research:

• User-level: the attacker controls one or several user-space processes, which can co-

locate with the victim process on the same CPU core via context switches (SMT is not

mandatory), hence sharing the same BTB.

• Supervisor-level: the attacker has full control over the OS kernel, and can arbitrarily

interrupt the victim program’s (e.g., an SGX enclave’s) execution at a fine temporal

granularity, i.e., per instruction, and monitor/manipulate system resources, such as

page tables.

We now overview the NightVision attack. NightVision extracts the dynamic PCs

visited by the victim program. For either of the above attacker models, the attacker can extract

the PCs of both control-transfer and non-control-transfer instructions at byte granularity.

That said, depending on the attacker model, the attacker may be able to extract the full

trace (i.e., every PC belonging to every dynamic instruction) or only a subset of it (i.e.,

depending on the temporal granularity at which the victim program is context switched).
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The core of NightVision is a BTB Prime+Probe style primitive that is built on top

of Takeaways 1 and 2 from Section 6.2. This primitive, dubbed NightVision-Core or

NV-Core in short, determines if a fragment (i.e., the instructions executed during one

context switch) of the victim program’s execution contains instruction bytes overlapping with

a specified virtual address range. We construct two NightVision variants from NV-Core,

depending on the attacker model, namely NightVision-User (or NV-U) for the user-level

attacker and NightVision-Supervisor (or NV-S) for the supervisor-level attacker. Both

variants repeatedly apply NV-Core to every fragment of the victim’s execution. As described

above, NV-U is (practically) capable of recovering a subset of elements in the PC trace,

whereas NV-S can achieve much finer-grain measurement, ideally recovering the PC of every

victim dynamic instruction. Section 6.4 explains the design details of NV-Core and both

variants.

We later demonstrate two attack applications using the two NightVision variants. Sec-

tion 6.5 will explain how NV-U can serve as a control-flow leakage attack that aims at leaking

secret data influencing program control-flow, even when the program is protected against

prior control-flow leakage attacks. Section 6.6 further highlights how NV-S enables binary

fingerprinting to reverse-engineer private enclave binaries, using full PC-trace extraction.

6.4 NIGHTVISION ATTACK DESIGN

6.4.1 NightVision-Core (NV-Core)

Inspired by the two takeaways from Section 6.2, we first introduce NV-Core, which is

a BTB Prime+Probe style primitive to determine if instructions executed by the victim

overlap with an attacker-specified prediction window. The attacker starts by creating a PW

code snippet, with a sequence of nops followed by a direct jump. Based on the definition of

PW, the address range of this code snippet is restricted to within a 32-byte aligned block.

The attacker first executes the PW code to allocate a BTB entry, then allows the victim

program to run for a certain period of time, and finally executes the same PW code again

and measures the predictions during this second execution of the PW code, similar to the

technique in Section 6.2.4.

Our key insight is that, as the victim’s execution also fetches PWs, when the attacker

PW address range overlaps with a victim PW’s address range, i.e., some instruction bytes

from the attacker PW share the same lower-order (lowest 32 or 33) address bits as some

instruction bytes from the victim PW, the second execution of the attacker’s PW will incur

an observable misprediction.
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Figure 6.5: Different ways that the victim’s PW overlaps with the attacker’s PW. In
those cases, the second execution of the attacker’s PW in NV-Core incurs observable
mispredictions.

To illustrate this point, Figure 6.5 shows all four scenarios when the attacker PW and

the victim PW overlap. In (1) and (2), the victim PW ends at an address aligned with the

middle of the attacker’s PW range. In these cases, the victim PW must end with a taken

branch/jump otherwise the PW will extend to (and be truncated at) the 32-byte boundary.

Since the victim PW includes a branch/jump before the attacker’s jump, the execution of

the attacker’s PW must suffer from a misprediction caused by the victim’s branch/jump,

in the same ways as we showed in Section 6.2.4. In the other two cases (3) and (4), the

attacker PW ends at an address aligned with the middle of the victim PW range. Since

the overlapping part of the victim PW is non-control-transfer instructions, fetching those

instructions necessarily deallocates the BTB entry allocated at the prime step, resembling

the experiment in Section 6.2.3.

We can optimize NV-Core by priming and probing multiple contiguous, non-overlapping

PW ranges at once. Figure 6.7 compares the basic NV-Core monitoring one PW with

an optimized NV-Core which monitors two PW ranges. In the optimized one, both the

prime and the probe execute the chained PW snippets, and the prediction outcomes of all

direct jumps are measured during the probe. This optimization not only allows NV-Core

to simultaneously monitor multiple address ranges, but also expands the overall coverage.

Intel’s Recent BTB Mitigations Intel recently introduced Indirect Branch Restricted

Speculation (IBRS) [170] and Indirect Branch Predictor Barrier (IBPB) [169] to mitigate

Spectre V2 [4]. Although conventional wisdom might suggest that these schemes simply

flush the BTB (which, if true, naturally defeats NV-Core), we tested NV-Core with both

schemes enabled and still observe an update made by the victim’s execution to the BTB entry

state established by the attacker-controlled PW code. Our finding reveals that IBRS and

IBPB only change state for part of the BTB, i.e., entries corresponding to indirect branches,
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1 // p is a fragment of victim’s execution
2 bool NV-Core(PW, p):
3 Prime BTB with PW
4 execute p
5 match = Probe BTB with PW
6 return match
7

8 // optimized NV-Core, by priming/probing multiple PWs
9 bool[] NV-Core(PWs[], p)

10

11 // P is the victim program
12 bool[][] NV-U(PWs[], P):
13 match = []
14 while (P is not finished) {
15 p = next fragment of P to execute
16 match.append(NV-Core(PWs, p))
17 }
18 return match
19

20 bool[][] NV-S(PWs[], P):
21 match = []
22 while (P is not finished) {
23 i = next instruction of P to execute
24 match.append(NV-Core(PWs, i))
25 }
26 return match

Figure 6.6: The basic workflow of NV-Core, NV-U, and NV-S. NV-U measures a time
slice of the victim’s execution, whereas NV-S leverages supervisor privilege to measure every
dynamic instruction. Both NV-U and NV-S can benefit from optimized NV-Core to
monitor multiple PWs at a time.

rather than flushing the entire BTB. This is in line with the official security claims of IBRS

and IBPB, which state that both schemes only apply to indirect branches [169, 170], and

consistent with its goal to mitigate Spectre attacks: as direct jump targets are resolved early

in decode, they cannot result in a large enough speculation window to enable Spectre attacks.

6.4.2 NightVision-User (NV-U)

As shown in Figure 6.6, NV-U invokes NV-Core for each victim execution “fragment”, i.e.,

each time the victim is context switched onto/off of the core hosting the attacker-controlled

BTB. This enables the attacker to learn dynamic PC information at scheduling-epoch

granularity.
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Figure 6.7: Comparison between a single PW and two chained PWs.

Since the BTB’s size is limited, each context switch should run as few instructions as

possible to minimize the chance that attacker BTB entries are evicted. NV-U leverages

existing user-space preemptive scheduling attacks [7, 20, 81, 284, 285, 286, 287, 288, 289] to

drastically reduce this victim time slice duration to on-order hundreds of cycles. In a nutshell,

these preemptive scheduling attacks exploit the process scheduling mechanism adopted by

modern Operating Systems (like Linux) by mounting a denial-of-service attack with hundreds

of attacker-spawned child processes21. The attacker can (roughly) control the victim time

slice by carefully controlling when the attacker processes unblock and yield to each other. We

show in Section 6.5 how NV-U leaks victim control flow for programs hardened to withstand

prior control-flow side-channel attacks.

6.4.3 NightVision-Supervisor (NV-S)

Same as NV-U, NV-S continuously invokes NV-Core across the entire victim’s execution.

Other than relying on the coarse-grained user-level scheduling technique, as a supervisor

attacker, NV-S can leverage interrupts or signals (such as [270] and [290]) to single-step the

victim’s execution. In other words, every fragment is exactly one victim dynamic instruction,

as indicated by Figure 6.6. This allows NV-S to determine if each victim dynamic instruction

resides within specified PW(s) range(s). Although this information trivially enables the

control-flow attack we describe in Section 6.5, it uniquely enables a new attack on private

code fingerprinting that we will describe in Section 6.6.

21The implementation of the preemptive scheduling attack is orthogonal to our work and has been
demonstrated by prior work (e.g., [7]). It is a common ingredient in side-channel attacks (including
NightVision) for acquiring fine-grained side-channel measurements. We discuss its use and potential impact
to NightVision in Section 6.6.3 and Section 6.8.1.
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6.5 USE CASE 1: CONTROL-FLOW LEAKAGE ATTACKS

6.5.1 Motivation and Threat Model

We assume a user-level attacker described in Section 6.3 who wishes to extract the victim’s

secret data. The secret must affect the victim program’s control flow, e.g., as a branch

predicate. The victim code is assumed to be public, but can use software mitigations such as

branch balancing or control-flow randomization (CFR) [272]—see below—to block existing

control-flow attacks. The victim could also use SGX to provide an extra layer of data

protection.

The Control-flow Leakage Arms Race Prior control-flow leakage attacks [18, 19, 20,

61, 62, 115, 116, 270, 274, 275] share the same attacker goal and have similar assumptions.

However, the side channels that they exploit can be mitigated by incremental defenses

that block various tell-tales of control-transfer instructions. For example, existing attacks

on the BTB and the directional predictor [19, 20, 61] infer conditional branch outcomes

by observing branch predictions. Correspondingly, CFR [272] mitigates those attacks by

replacing observable secret branches with randomized jumps allocated at runtime, and

indirect jumps are not exploitable with Intel’s mitigation in place (Section 6.4.1). Several

attacks [62, 270, 271] in turn leverage observed features in the code executed in the shadow

of the branch, e.g., instruction count [270], type [271] or alignment [62], to leak control-flow

decisions. Yet these attacks fail against branch balancing-style defenses, e.g., padding both

sides of the branch to the same instruction count, type, or alignment [62].

All of the above defenses fail against NightVision, due to its ability to extract victim

PCs directly. For example: CFR fails because it tries to protect the branch decision, but

NightVision does not rely on the branch decision. Balancing fails because it tries to make

the execution of both sides of the branch look the same, but NightVision directly extracts

the PCs of instructions shadowing the branch.

6.5.2 Control-flow Leakage Attack Procedure Using NV-U

For a control-flow leakage attack, with the knowledge of the victim’s program, the attacker

first selects one or several consecutive victim instructions that control-depend on the secret,

i.e. instructions that execute if and only if the branch swings in a particular direction. The

attacker then creates a PW code snippet, and ensures the PW range is within the virtual

address range of the chosen victim instructions. Finally, the attacker employs NV-U along
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with the victim’s execution to determine whether and roughly when (within which time slices)

the victim executes the chosen instructions during its execution, and deduces the secret value

based on that information.

NightVision achieves a byte-granularity observation since the PW can start at any byte

address. Given the shortest PW snippet contains a 2-byte direct jump, any instruction

longer than one byte (almost all x86 instructions except ret and nop22) or any number of

consecutive instructions can be measured with a PW. For example, one may use NV-U to

observe whether a basic block executes, by making the PW a sub-range of the address range

of that basic block.

     Ta = (secret) ? L1 : L2;
     Tb = (secret) ? L4 : L3; 
     jmp La 
L1:  x = add x, 0
     x = mul x, y     
L2:  jmp Lb 
L3:  x = add x, 1     
     x = mul x, 1
L4:

// La is random
La: jmp Ta

 

   

// Lb is random
Lb: jmp Tb
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    cmp secret, 0
    je L3
L1: 
    x = mul x, y    
L2: jmp L4
L3: x = add x, 1

L4:

(a) (b)

Figure 6.8: (a) The original leaky code (b) The hardened code with branch balancing and
control-flow randomization [272]. NV-U defeats both defenses by observing which side of the
branch (L1 or L3) is executed with a PW that is either a sub-interval of the address range of
L1 (PW option 1) or L3 (PW option 2).

Figure 6.8 demonstrates the control-flow leakage attack when the victim program is using

branch balancing and CFR to protect the secret branch condition. Given the secret-dependent

control flow, i.e., either the then side (L1) or the else side (L3) will be executed, NV-U can

create a PW code snippet, and ensure that the PW range is either within the address range

of L1 or L3. By observing whether L1 or L3 is executed, NV-U can deduce the value of the

secret.

Note that the attacker often needs to measure the decisions of multiple dynamic instances

of the same branch inside a loop. As mentioned in Section 6.4.2, NightVision relies on a

preemptive scheduling attack, a technique applied by many existing attacks for achieving fine-

grain temporal resolution side-channel measurements (e.g., per loop iteration) [75, 103, 276,

287, 288, 289]. This technique does have a limitation: it does not provide synchronization

between the attacker and victim, since it does not ensure the preemption of the victim

exactly once per loop iteration. To help overcome this limitation, we note that NV-U

provides additional opportunities to deduce the victim’s execution progress. For example,

22And some rarely used instructions, such as halt (hlt), complement carry flag (cmc).
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in Figure 6.8, if the attacker monitors both L1 and L3 with both PW options 1 and 2,

it is possible to detect excessive preemptions occurring within one loop iteration—NV-U

performed in those excessive preemptions will show that neither L1 nor L3 is executed.

6.6 USE CASE 2: FINGERPRINTING PRIVATE CODE

6.6.1 Intel SGX

Intel SGX [291, 292] is a hardware-based trusted execution environment solution that is

widely deployed by major cloud vendors today. It protects the integrity and confidentiality of

(a part of) a user-level application from a powerful attacker who controls the entire software

stack (including the OS, hypervisor, and BIOS), with a new CPU mode called enclave.

Enclaves leverage hardware-managed memory isolation to guarantee that the enclave state

can only be accessed by its owner enclave. However, SGX enclaves still rely on an untrusted OS

for managing resources, such as page tables and interrupts, enabling a privileged attacker to

interrupt enclave execution, as shown by controlled-channel attacks [115], microarchitectural

replay attacks [293], SGXStep [294], etc. Aside from the typical data protection, Intel SGX

also provides code confidentiality via Protected Code Loader (SGX PCL) [295], or similar

mechanisms [296, 297, 298, 299], by keeping the enclave binary encrypted until it is loaded

into the enclave. SGX also serves as a design paradigm for future TEE solutions, such as

Intel TDX [300].

6.6.2 Threat Model and Motivation

We assume an untrusted, privileged attacker whose goal is to obtain the victim’s code.

Given this strong attacker model, we make a realistic assumption that the victim relies on a

TEE mechanism, in this work Intel SGX. SGX provides data confidentiality such that the

victim’s program state is inaccessible to the attacker, and processor features such as LBR,

Intel Processor Trace, and performance counters are disabled in enclave mode. SGX also

provides code confidentiality (using PCL [295] or similar mechanisms [296, 297, 298, 299]),

therefore the attacker has no knowledge of the victim enclave code.

Different from Section 6.5 which leaks data in a public program setting, this section

demonstrates how NV-S enables reverse-engineering of private programs. Existing side-

channel attacks mostly consider programs as public and available for offline analysis. However,

an attacker without knowledge of the code, for instance, cannot locate Spectre gadgets [86],

deduce that certain types of side-channel vulnerabilities exist [301, 302], nor determine how
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to monitor the side-channel [303]. Although this may imply that keeping the program private

could be a holistic defense strategy by breaking an essential requirement for side-channel

attacks, this “security by obscurity” fails with NV-S, which extracts every element in the

dynamic PC trace with high accuracy. Although instruction addresses cannot directly reflect

the binary content, a sufficiently long sequence of PCs may contain enough entropy to identify

a specific function. Using this insight, we design a function fingerprinting approach that

identifies functions of interest from the extracted PC trace. NightVision thus complements

existing side-channel attacks by satisfying their assumption about victim programs being

public, even when the victim enclave program is unreadable+unwritable and only executable.

6.6.3 Dynamic PC Trace Extraction Using NV-S

NV-S infers the complete byte-granularity control-flow information of an enclave program’s

execution, in the form of a sequence of PCs of every retired dynamic enclave instruction.

No existing control-flow leakage attack achieves this goal: they either only recover coarse

spatial-granularity control-flow information [115, 274, 275] or only leak the addresses of

specific instruction types/patterns [16, 19, 62, 276].

Figure 6.9 illustrates the entire attack flow. In the following, we focus on how to deduce

a victim instructions’ page offset bits, since the victim instruction virtual page numbers

can be leaked through complementary work on controlled-channel attacks [115, 274, 275]

(line 2-4 in Figure 6.9) that induce page faults to learn page-level information. The attack

repeatedly invokes NV-S (line 1), and every invocation of NV-S continuously applies the

optimized NV-Core to measure every dynamic instruction against multiple PW ranges

(line 5-6). To execute exactly one enclave instruction during each call of NV-Core, we use

SGXStep [294] to single-step the enclave, by choosing a proper timer interrupt interval such

that the enclave execution is interrupted precisely after each dynamic instruction is retired.

Once an instruction retires, the timer interrupt delivers the control to NV-Core inside the

interrupt handler. By probing the BTB with the PW code snippet (line 11), NV-Core

determines if the instruction overlaps with the tested PW ranges (line 12-14), and then

launches NV-Core for the next instruction by choosing and creating the PW code snippet

for the next instruction and starting the prime step before resuming the enclave execution

(line 8-9). How NV-S chooses the PWs is described in the next paragraph. When the enclave

execution finishes, for each dynamic instruction, NightVision collects the PWs that overlap

with the instruction. If for any dynamic instruction, its matched PWs so far are insufficient

for determining its PC, NightVision performs another round of NV-S (line 17).
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Insts[i]

code page

 5 for ( ; ; i += 1)

 6   NV-Core(PWs for Insts[i], Insts[i])

 7 function NV-Core (PWs, Insts[i]):

 8   create PW code snippet 

 9   Prime BTB w/ PWs 

10   /* victim executes Insts[i] */  

11   matched = Probe BTB w/ PWs

12   for (n = 0 ... len(PWs)-1)

13     if (matched[n])

14       add PWs[n] to Insts[i].matched_pws

15   Insts[i].page_num = page_num

16   return

 2 last code page -> non-executable

 3 next code page -> executable

 4 page_num = page number of the next page

. . .
. . .

18 for inst in Insts:

19   compute inst.PC based on inst.matched_pws 

     and inst.page_num

Exit Enclave

Enclave - victim Host - attacker

17 if (PC of every inst in Insts can be 

       uniquely determined)

YES
NO

 1 launch NV-S with i = 0 (enter enclave)

. . . . . .
. . .

Timer 
interrupt

Restore

Figure 6.9: How NV-S infers the address of every dynamic enclave instruction. Defini-
tions of keywords: Insts: the sequence of dynamic enclave instructions; Insts[i].pc:
the PC of Insts[i]; Insts[i].matched pws: set of PWs which collide with Insts[i];
Insts[i].page num: page number of the code page containing Insts[i].

PW Traversal We now explain how to choose a proper set of PW ranges for NV-Core to

measure each instruction during every NV-S call. We leverage the range semantics of PWs

to perform a binary search through progressively-smaller PWs for each victim instruction.

Searching for the instruction PC is divided into multiple passes. Each pass splits the matched

PW range in the previous pass, and measures which sub-PW range contains the base address

of the instruction. As shown in Figure 6.10, the measurement of every dynamic instruction

starts by dividing the 4 KB page size range into 128 mutually disjoint 32-byte PW ranges.

Suppose every call to NV-Core tests N PW ranges. The first pass takes 128/N enclave

executions (NV-S calls), after which NightVision determines inside which 32-byte PW

each dynamic enclave instruction starts. Next, this 32-byte PW is split into N sub-PWs,

and with one more NV-S call, NightVision can determine which sub-PW each dynamic

instruction starts. This process is repeated until it determines the base address of the target

instruction.
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… ...Page 
offset

PWs[0]

0x30 0x38 0x400x0 0x8 0x10 0x18 0x20 0x28 0x1000

PWs[1]
… ...

…
 ...

PWs[0] PWs[1]

PWs[0] PWs[1]PWs[0] PWs[1]

instruction

1st NV-S run

65th NV-S run

66th NV-S run

Pass #1:
32B PWs

Pass #2:
16B PWs

Pass #3:
8B PWs

Figure 6.10: The PW traversal approach is explained in Section 6.6.3. NightVision first
generates 128 mutually disjoint 32-byte PWs. The matched PW is further converted to
smaller PWs recursively. We assume N “ 2, therefore each NV-Core tests the current
instruction with two PWs.

Impact of Speculative Execution The enclave single-stepping retires exactly one in-

struction per interrupt. However, succeeding instructions may speculatively execute, and

update the BTB state before the current instruction retires. So instead of measuring only

the address range of the single-stepped instruction, NightVision may measure the address

ranges of all executed instructions, including the succeeding speculatively-executed ones.

When speculation does not involve control transfer instructions, the base of the (extended)

measured range still corresponds to the PC of the target instruction. However, when spec-

ulation involves control transfers, NV-S may produce multiple candidate PCs: one being

the PC of the target instruction, and the others being the target PCs of the succeeding

control-transfer instructions which execute speculatively. The correct one can be deduced

after the next single step, when NV-S again generates a set of candidate PCs for the next

instruction, including the false PCs corresponding to the control-transfer targets. The actual

PCs belonging to the two single-stepped instructions are captured by comparing the two PC

sets and ruling out the repeated candidates.

6.6.4 Function Fingerprinting for Private Code

Although NightVision only collects PC traces, which have no information about the

actual instruction bytes, PC traces of sufficient length can be used to fingerprint known PC

sequences corresponding to functions in existing code bases. This technique is called function

fingerprinting [304] and is employed by NightVision for deducing whether the enclave

execution contains functions from a known binary file (these functions are called reference
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functions). In general, it is impractical to assume the attacker owns a set of binaries that will

always include enclave code. However, we deem this reasonable for at least cryptographic

code since most enclave programs use several popular off-the-shelf, open-source cryptographic

libraries, several of which contain vulnerable functions that have been exploited by existing

side-channel attacks. With the function fingerprinting, such use of vulnerable functions can

be identified in private programs.

The attack proceeds in two steps, as shown in Figure 6.11. First, we collect the victim PC

trace through NV-S and pre-process the trace. Second, we compare the similarity of victim

functions included in the PC trace to reference functions.

0x400140
0x400410
0x400411
0x400414
0x40041b
0x400420
0x400421
0x400142

call

ret

// assembly code of 
// reference function 1
F():
0x40: pop rax
0x41: pop rbx
0x42: add rax,rbx
0x45: and rbx,rax
0x48: ret

0x0
0x1
0x4
0xb
0x10
0x11

0x0
0x1
0x2
0x5
0x8

Similarity = 2/6

Similarity = 5/6

// assembly code of
// reference function 2
G():
0x10: push rsi
0x11: test rax,rax
0x14: jne  0x1c
0x16: sub  rax,0x1
0x1a: jmp  0x20
0x1c: add  rax,0x1
0x20: pop  rdx
0x21: ret

0x0
0x1
0x4
0x6
0xa
0xc
0x10
0x11

Victim Function 
PC trace

. . .
. . .

Figure 6.11: NightVision function fingerprinting computes the similarity between the
victim function and two reference functions F and G. Red PC value represents an incorrect
measurement.

Step 1: Victim PC trace preprocessing NightVision uses the complete attack flow

described in Section 6.6.3 to obtain a victim PC trace. As illustrated by Figure 6.11, it

partitions the whole PC trace at function call boundaries into per-function traces. Each

function-level trace is normalized to be position-independent by subtracting the PC of the

function start from all PCs in the trace, thus each function-level trace starts with zero. Every

function-level trace represents an invocation of an unknown victim function, and will then be

considered separately during function similarity matching (Step 2).

Function-level traces are sliced by locating call/ret pairs in the original trace, using the

following approach to identify PCs corresponding to calls and rets. First, we capture

jumps between PCs that are greater than 16 bytes, which indicates a control-transfer

instruction. Second, unlike other control-transfer instructions, call/ret also access data

memory. Thus, we additionally monitor whether a suspected call/ret accesses a data page

(through a controlled-channel attack [115]). Note for this work, we assume functions are only

entered/exited via calls/rets.
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Step 2: PC trace similarity test Next, we compare the function-level PC traces collected

during Step 1 that represent unknown victim functions with sets of PCs corresponding to

reference functions. Importantly, the PC traces collected during Step 1 are dynamic instruction

sequences. To avoid having to build a large (potentially exponential) number of dynamic PC

traces for reference functions, we simply analyze the PCs corresponding to static instructions

within each reference function. Testing similarity between victim and reference functions

then proceeds as follows, as illustrated by Figure 6.11.

1. (One time, offline) For each reference function f*, collect the static PCs in that function

(relative to the entry PC, to maintain position independence) into a set called S*.

2. For each victim function-level PC trace t (from Step 1), convert t to a set called S and

compute similarity = (|S X S*|q{|S|) for each reference PC set S*.

The percentage of PCs that survive the intersection indicates the similarity between the

victim function and the reference function. We note that this heuristic makes use of x86’s

variable-length instruction encoding in an essential way: due to the nature of variable-length

instruction encoding, the instruction length is directly influenced by the instruction semantics.

For example, x86 uses different byte lengths for different opcodes and addressing modes.

Additionally, variable instruction lengths add extra entropy to the PC trace, which serves

as the fingerprint in our case. Also, notice that the similarity based on set intersection

sacrifices information such as the ordering of PCs for simplicity. Section 6.8.3 discusses a

more sophisticated approach that considers instruction ordering.

6.7 EVALUATION

6.7.1 Experimental Methodology

We perform the evaluation on Intel 9700 and 9900(K) CPUs, all running Ubuntu 18.04 kernel

version 4.15.0, with Hyper-threading disabled. All tested cryptographic programs are compiled

with gcc 7.5.0 (more compiler versions are used when evaluating function fingerprinting in

Section 6.7.3). When evaluating the control-flow leakage attack in Section 6.7.2, the attacker

and the victim run separated userspace processes. For the fingerprinting experiment in

Section 6.7.3, the victim programs are written with Intel SGX SDK [305] and run inside the

enclave.
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6.7.2 Evaluating Control-flow Leakage Attack (Use Case 1)

We first evaluate whether NightVision can leak secret data in common cryptographic

code through vulnerable functions with secret-dependent control flow. Specifically, we focus

on leaking the secret key during the RSA key generation procedure in mbedTLS [279] version

3.0 by inferring the secret-dependent control-flow behavior in Great Common Divisor (GCD)

function. GCD contains a loop, in which a perfectly-balanced branch repeatedly evaluates

the secret key values. Recovering the secret key requires determining the direction of the

balanced branch at each loop iteration. The recent Frontal attack [62] has already exploited

this vulnerable function. On the other hand, Frontal can be mitigated by aligning two sides

of the branch to the same base address modulo the instruction fetch window size (16-byte

in Intel CPUs) using a simple compiler flag -falign-jumps=16. This flag is applied in our

experiment.

We implement a proof-of-concept control-flow leakage attack by simulating the preemptive

scheduling attack, following the same methodology as prior work [20, 75, 276, 287, 288, 289].

Specifically, we make the victim call sched yield() system call after the branch body to

yield to the attacker process. The attacker process executes the NV-U routine to deduce the

secret control-flow decision of the current victim loop iteration, followed by a sched yield()

to transfer the control back to the victim for the next loop iteration. We notice that the

per-victim-loop-iteration time is over 300 cycles, which is greater than the minimal time slice

achievable by the preemptive scheduling attack [7, 284, 285]. Therefore, although our proof-

of-concept attack simulates the attack preemption with sched yield(), per-loop-iteration

measurement is possible for GCDin practice.

We apply the strategy described in Section 6.5.2 to infer the direction of the balanced

branch. Because the instructions on the then path occupy address range [0x5940, 0x597c],

and the instructions on the else path occupy address range [0x5980, 0x59bc], we simply

apply NV-U oracle with a PW range [0x5980, 0x598f] that only overlaps with the first

several instructions on the else path. When the attacker observes a misprediction in the

probe step of NV-U, its BTB entry is updated (deallocated), meaning that the else path

should be taken. We repeat the attack on 100 different victim process executions. Each run

calls the RSA key generation function for generating a new key, and on average loops over

the vulnerable branch 30 times in GCD. NightVision achieves 99.3% accuracy in measuring

the direction of the vulnerable branch.

We additionally use NightVision to infer the secret predicate of a similarly balanced

branch in the big number comparison (bn cmp) function in Intel’s IPP-Crypto [278] v2020.

Frontal also evaluates this function. Similar to GCD above, Frontal cannot succeed when the
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basic block alignment flag is enabled. NightVision again is able to achieve 100% accuracy

in inferring the branch direction across 100 different runs.

6.7.3 Evaluating Function Fingerprinting (Use Case 2)

We now evaluate the effectiveness of NightVision’s function fingerprinting in the private

program setting. Since the goal of function fingerprinting is to reveal the use of vulner-

able functions in the private victim binary, here we show that it is possible to use the

proposed function fingerprinting mechanism to detect the use of GCD and bn cmp evaluated

in Section 6.7.2.

Figure 6.12: The top-100 highest similarity of the measured victim functions with respect
to GCD (left) and bn cmp (right). When matching against GCDas the reference function, the
highest similarity is 75.8% when the victim function is also GCD. The highest similarity to
bn cmp is 88.2% (when the victim function is bn cmp).

Effective fingerprinting should only match an unknown victim function to a reference func-

tion when the victim function is indeed the reference function. To validate that NightVision

fulfills this requirement, we generate victim PC traces for GCDand bn cmp as well as other

175,168 additional functions from many open-source SGX projects listed in [306]. Then we

compute the similarity of all tested victim functions to the two reference functions GCD and

bn cmp. Figure 6.12 demonstrates that for both GCD and bn cmp, we can observe the highest

similarity when the victim function is indeed GCD or bn cmp, whereas all other functions that

are not the reference function exhibit lower similarity. This shows that NightVision can

identify the two vulnerable functions in a large group of unknown, executed victim functions.

We notice that the similarities of GCD and bn cmpwith themselves are not even 100%. We

compare PC traces, with their originating assembly code, and notice that nearly all incorrectly

measured instructions correspond to macro-fusion structures [307, 308]. Since macro-fusion

combines adjacent instructions (usually arithmetic-branch or load-arithmetic-branch) into a

single, executable macro-op, one single step actually executes and retires all instructions in
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a macro-fusion structure. Therefore, NightVision only manages to measure the leading

instruction in a macro-op structure. The impact of macro-fusion on enclave single-stepping

attacks has also been observed and studied by prior work, e.g., CopyCat [270].

Figure 6.13: (Left) The similarities of GCD in eight different MbedTLS versions (2.5-3.1) to
GCD in the same/different versions computed by NightVision’s fingerprinting mechanism.
(Right) The similarity of GCD compiled with three different optimization levels to GCD with
the same/different optimization levels.

NightVision’s fingerprinting only handles functions in binary form, meaning that the

version of the library to which the function belongs, and the compiler configuration, can both

influence fingerprinting results. To evaluate how robust our fingerprinting is to these effects,

we compile GCD by tuning three different parameters:

1. MbedTLS library version: 8 different versions as shown in Figure 6.13 (left)

2. GCC version: 7.5, 8.4, 9.4, 10.3

3. Compiler optimization flag: -O0, -O2, -O3

We then run each compiled GCD with NightVision and compute the similarity of each

specific GCD with all compiled versions of GCD. We draw the following conclusions. First,

the impact of the library versions on fingerprinting depends on whether the source code is

changed across the library versions. We found that, for example, the GCD function source

code does not change across MbedTLS versions 2.5-2.15, but version 2.16 has a different

implementation than previous versions. This is reflected by Figure 6.13 (left): the similarity

amongst versions 2.5-2.15 is much higher than the similarity between a version before 2.16

and one after 2.16. Second, the compiler version alone usually does not affect the function

binary. Third, as demonstrated by Figure 6.13 (right), compiler flags can significantly impact

the fingerprinting result. The similarity between the victim function and the target function

may not be high enough when the victim function and the target function are compiled
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with largely-different compilation options. In summary, to successfully identify the use of a

specific target function in an unknown binary, the attacker should compile the function from

different library versions, and with different compilation options.

6.8 DISCUSSION

6.8.1 Limitations

Affected CPUs In this work, we examined a limited set of Intel desktop/server CPUs

listed in Section 6.2.3. However, any CPU that facilitates BTB updates by non-control

instructions is potentially vulnerable to the same attack. Since deep processor pipelining and

superscalar design are the underlying causes factors motivating this behavior, NightVision

can also likely affect other existing high-performance CPUs. We leave the analysis of CPUs

from other vendors as future work.

Limitations of Control-flow Leakage As explained in Section 6.5.2, NV-U relies on the

preemptive scheduling attack to achieve fine-grained measurement of the victim’s execution,

similar to many existing side-channel attacks [7, 20, 75, 81, 276, 284, 285, 286, 287, 288, 289].

This technique is infeasible in restricted environments such as browsers, which limit the

attacker’s capability of arbitrarily spawning threads. Additionally, the preemptive scheduling

attack does not provide perfect synchronization between the NV-U attacker and the victim,

thus the attacker needs complementary techniques (such as the example in Section 6.5.2) to

deduce the victim’s execution progress.

Limitations of Binary Fingerprinting Our fingerprinting attack is based on several

assumptions mentioned in Section 6.6. First, the attack is useful primarily in the context of

variable-length ISAs (like x86), as the variety in the instruction length amplifies the entropy

in the PC sequence, resulting in fewer false positives/negatives in fingerprinting. Second, the

fingerprinted function itself must have a sufficiently long PC trace to produce enough entropy

to differentiate it from incorrect candidates. Third, the attacker must possess knowledge of

the target function in assembly form, which may require non-trivial effort from the attacker

to prepare different possible assembly forms for the target function, similar to Section 6.7.3.
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6.8.2 Mitigations

Data-Oblivious Programming The only reliable software mitigation for NightVision is

to ensure the program control flow never depends on secret information, using data-oblivious

programming. Achieving data-obliviousness for normal programs requires engineering effort

to port existing applications [107, 219, 273, 309] and suffers from significant performance

overhead [30].

We have seen existing cryptographic libraries gradually adopt data-oblivious program-

ming for eliminating secret-dependent control-flows [278] and design efficient data-oblivious

implementations for critical cryptographic operations [310]. That said, non-data-oblivious

cryptographic libraries used by legacy binaries are still susceptible to NightVision. In

addition, NightVision’s function fingerprinting capability is unaffected by data-oblivious

programming.

BTB Hardening NightVision can be mitigated by constantly flushing BTB state [19],

or enforcing strict isolation between security domains [311, 312]. However, neither approach

has been adopted by current processors, due to the performance cost and implementation

complexity. The only effort in this direction is IBRS [170] and IBPB [169] which only prevent

indirect branches belonging to different security domains from influencing each other, as

stated in Section 6.4.1. Future processor generations could extend those defense proposals to

block attacks like NightVision.

6.8.3 Improving Function Fingerprinting

NightVision’s fingerprinting technique constructs function fingerprints by compressing

sequences of dynamic PCs into sets of static PCs. This simplifies the fingerprint-matching

problem to performing set intersections, but sacrifices information about the original PC

sequences such as the instruction order (e.g., loops). An alternative fingerprinting mechanism

could directly use the dynamic PC trace as the function fingerprint. In this case, matching the

PC sequence to reference functions becomes a more-complicated pattern-matching problem:

the PC sequence must obey the control flow of the original function, modulo the measurement

error. We note that this process is similar to genomic (DNA) sequence matching, which

pattern-matches a DNA sequence against several sample DNA sequences, and at the same

time, circumvents the interference from mutated genes. We leave applying related approaches

to improve NightVision’s fingerprinting as future work.
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6.9 OTHER RELATED WORK

Existing Side Channels Extracting PC-related Information Prior side-channel

attacks leak partial information about victim’s dynamic PCs. First, controlled-channel

attacks manipulate page permissions and attributes (access/dirty bits) to observe the page-

granularity PC trace [115, 274, 275]. Succeeding attacks leverage the instruction cache to

obtain cache-granularity PC information [116]. These attacks potentially leak information of

all dynamic PCs, but at a coarse spatial granularity. Correspondingly, several mitigations

have been proposed to confine secret-dependent control flow, e.g., inside a single page or

cache line [116, 117]. The more recent Frontal attack [62] exploits instruction decoding timing

for deducing information about basic block alignment, i.e., code address offsets relative to

16 B blocks. However, the timing channel discovered by the Frontal attack is not sufficiently

precise for determining byte-granularity PC information (use case 2 in our case); rather, it

uses differential analysis to differentiate branch directions (use case 1 in our case, which can

be mitigated as described in Section 6.7.2). Additionally, Frontal requires memory writes to

be present inside the basic block.

Several other attacks achieve more fine-grained PC measurements for specific PC types. For

instance, prior attacks targeting the BTB [18, 19] leverage collisions between control-transfer

instructions to deduce if a branch/jump at a specific PC executes at runtime. Although

these side-channel approaches have proved to successfully achieve different attack goals

(e.g., control-flow leakage attacks, breaking ASLR, crafting Spectre attacks), control-flow

randomization [272] converts conditional branches into randomized indirect jumps to thwart

attacks targeting conditional branches, and recent hardware mitigations such as IBRS further

provide protection for indirect jumps. Note that a prior attack BranchShadowing [19] is similar

toNV-S in that both leverage SGX single-stepping and BTB Prime+Probe. However, NV-S’s

BTB Prime+Probe mechanism is inherently different from BranchShadowing (Section 6.2.5),

hence NV-S can infer the PC of every dynamic enclave instructions while BranchShadowing

is limited to behaviors of branches with known PCs. Other hardware structures, e.g., the

hardware prefetcher [276], TLB [16, 275], reflect the PC information of memory loads and

stores. NightVision is the first side-channel capable of leaking the precise byte-granular PC

for all instructions types, and in the ideal case, for every single victim dynamic instruction.

Other Control-flow Leakage Attacks Many control-flow leakage attacks also do not rely

on extracting dynamic PCs directly. Attacks which exploit directional branch predictors [20,

61] are well-known for leaking secret branch conditions. Similarly, such attacks can be

mitigated with software defenses protecting conditional branches [272]. Recent attacks,
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such as CopyCat [270] and Nemesis [271], assume a privileged attacker who can single-step

the victim’s execution, which is the same as the supervisor-level attacker model in this

work. They show how to acquire secret-dependent control flow by counting instructions

or deducing the executed instructions’ types. However, such observations (instruction

counting/types) are insufficient for control-flow leakage attacks if the victim deploys defenses

such as branch balancing, and contain much less entropy for binary fingerprinting when

compared to NightVision.

6.10 CONCLUSION

NightVision is the first micro-architectural side-channel attack that extracts dynamic,

byte-granular PCs from the victim program’s execution—in the best case, for every victim

instruction. NightVision reveals victim dynamic PCs directly, thereby bypassing prior

defenses that attempt to block channels leaking partial/indirect information about the PC

sequence (such as the length of subsequent basic blocks). NightVision also showcases its

ability to identify unknown programs, challenging the notion of “security through obscurity”

while complementing existing side-channel attacks which by default require public code.
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CHAPTER 7: SYNCHRONIZATION STORAGE CHANNELS

This chapter presents a novel technique, called Synchronization Storage Channels (or S2C),

for mounting timer-less cache attacks targeting Apple M1 CPUs. Shared caches have been

a prime target for mounting cross-core side-channel attacks. However, most cache attacks

rely on timing measurements to indirectly infer cache state, hence their success hinges on

the reliability and availability of accurate timing sources. Our key observation is that the

implementation of synchronization instructions, specifically Load-Linked/Store-Conditional

(LL/SC) allows attackers to directly observe cache state changes on architectures like Apple

M1. Based on key insight, we reverse engineer the M1 cache organization and overcome

several challenges in using LL/SC for monitoring cross-core cache access patterns. The end

product S2C empowers a single-threaded user process to perform standard cache attacks, such

as breaking cryptographic implementations, without any reliance on timers.

7.1 INTRODUCTION

The increasing complexity of modern processors has led to a plethora of micro-architectural

side channels that can be exploited to infer sensitive information. Despite being one of the

earliest targets to mount such attacks, the shared cache is still the most prominent, due

to its shared use among all tenants on the same processor, the relative ease with which

it can be monitored, and the richness of information that can be gleaned through it. By

measuring the cache contention within the victim process, an attacker obtains information

about the victim’s memory access pattern, which can be useful in breaking cryptographic

implementations [5, 15, 34], key logging [10, 73, 313], browser fingerprinting [314], model

stealing [315], and aiding transient execution attacks [3, 4, 96].

A fundamental requirement of any cache side-channel attack is a way to accurately measure

cache state changes. Most existing attacks indirectly observe the cache state by measuring

memory access latencies with high-resolution timers. These can be used to deduce the cache

level an address resides in, and to further deduce the presence of the victim’s address(s)

in those cache levels. Even if only provided a low-resolution timer, techniques have been

proposed to enhance the effective resolution [134, 141, 316, 317]. Regardless, precise timing

measurement is prone to (or can be aggravated by adding) noise [132, 135], requires micro-

architecture-specific profiling (e.g., to ascertain cache latencies), and can be fully mitigated

by blocking the use of explicit timers. The attacker can also craft ‘implicit timers‘ with

a counter incremented by sibling threads in the absence of explicit timers [140, 316, 318],

149



but this requires additional attacker capabilities such as running multiple attack threads

concurrently.

To circumvent the limitations/defenses associated with timers, an attacker ideally would

like a way to directly and precisely measure cache state without relying on timers. Yet, there is

scant literature on such timer-less attacks, and at present all known methods have limitations.

For instance, cache storage channels [288] rely on uncacheable memory, which can only be

exploited by privileged attackers; Prime+Abort [59] and its variant [60] exploit Hardware

Transactional Memory, which is a rare and even deprecated feature implemented only by

specific vendors such as Intel [319]. Currently, no general-purpose primitive is available that

allows userspace attackers to directly and precisely observe the shared cache state on modern

CPUs.

This chapter’s key insight is that the implementation of hardware synchronization primitives

on modern CPUs, specifically Load-Linked/Store-Conditional (LL/SC) instructions on the

Apple M1, can be exploited to directly measure whether cache evictions have occurred.

LL/SC are general-purpose instructions in many common ISAs (such as ARM and RISC-V)

for implementing synchronization/mutual exclusion. In a nutshell: LL loads an address and

marks it as ‘exclusive’23 in the memory system. SC is a store that a) ‘succeeds’, i.e., performs

the store, if and only if its address has been marked ‘exclusive’ (by some older LL) and b)

writes to a register whether it succeeded. If any store (including an SC) from any processor

core writes to an address marked exclusive, the exclusive state is cleared. That is, LL-SC

implements atomic read-modify-write when there isn’t an intervening write to the target

address, and performs a NOP when there is an intervening write/atomicity violation. In both

cases, it makes architectural state changes (by writing the success bit to a register). In the

normal use of LL-SC, if an SC fails, the thread using LL-SC will retry the LL-SC sequence

until it reports success (e.g., lock acquired).

Ideally, only shared variables will be exclusive, and the variable’s exclusivity status is

maintained regardless of where the variable is cached in the memory hierarchy. However,

we found that the implementation of LL/SC in the recent Apple M1 drops the exclusive

semantic when the address is evicted from the L1 data cache, causing the later SC to fail

conservatively. In practice, this design does not compromise correctness, as a benign use of

LL/SC involves retrying when SC fails. However, it does enable attackers to directly measure

whether a local L1 eviction has taken place—using only a single user-space attacker thread

and without the use of any timer—by monitoring the result of the SC.

Following this idea, we propose Synchronization Storage Channels (S2C), the first timer-less

23Not to be confused with the Exclusive (E) state in modern cache coherence protocols, e.g., MESI, which
is a related but different concept.
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cache side-channel attack technique on the Apple M1, and also the first micro-architectural

attack to exploit hardware synchronization instructions (specifically LL/SC). At a high level,

S2C aims to build a cross-core side channel to monitor memory accesses of other processes

sharing the same cache as the attacker.

The technical core of the paper proposes techniques to overcome two main limitations in

LL/SC semantics that impede shared cache attacks. First, LL/SC on the M1 only indicates

L1 evictions, but to perform cross-core attacks, notifications from the shared L2 cache (L2

evictions) are required (both for building L2 eviction sets and performing the actual attack).

Second, LL/SC only allows the attacker to monitor evictions on a single cache line, as

opposed to traditional timer-based cache attacks that pre-occupy a cache set with multiple

attacker-controlled lines and monitor all those lines. Sometimes, the attacker may also need

to simultaneously monitor evictions happening to multiple cache sets.

To enable S2C-based attacks that can monitor a single L2 set, we reverse-engineer a

variety of new features related to the L2 cache on the M1 (for example, the L2 is inclusive,

implements the AutoLock optimization [320] and uses a dynamic replacement policy). We

then develop techniques that exploit said features to enable single-threaded, unprivileged

Prime+Probe-like attacks through the L2 using only LL/SC.

To enable S2C-based attacks that can simultaneously monitor multiple L2 cache sets,

the insight is to view LL/SC as a general-purpose single-bit communication channel, as

opposed to just a means to monitor whether a victim accessed the particular cache set.

Following this, we construct a weird circuit [321] that micro-architecturally computes the

logical-OR of whether the victim accessed at least one of an attacker-specified set of L2

cache sets—and communicates the single-bit result of this logical-OR through LL/SC to the

attacker’s architectural state. While weird circuit constructions are not the main focus of

the paper, our weird circuit is relatively simple conceptually (relies purely on out-of-order

execution and LL/SC as opposed to requiring speculative execution/Intel’s TSX [321]), and

thus may be of independent interest.

Contributions In summary, this chapter makes the following contributions.

• We present the first timer-less cross-core cache attack technique that exploits hardware

synchronization instructions, namely Load-Linked/Store-Conditional (LL/SC) on the

Apple M1. We call this technique Synchronization Storage Channels (S2C).

• We identify that LL/SC serves as a direct and precise architectural observation channel

to monitor micro-architectural events (L1 evictions).
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• We conduct a detailed reverse-engineering of the M1’s L2 caches, which is necessary to

exploit S2C and may benefit future attacks against the M1.

• We develop techniques to overcome challenges in using LL/SC to perform cache attacks.

In particular, we develop methods to monitor L2 evictions using LL/SC and methods to

simultaneously monitor evictions on multiple L2 sets (although LL/SC natively tracks

L1 evictions of only a single line at a time).

• We show that S2C can simultaneously monitor up to 11 L2 sets with high accu-

racy, and can be used for building covert channels as well as attacking cryptographic

implementations such as T-table AES.

7.2 CACHE SIDE-CHANNEL ATTACKS

The goal of a cache side-channel attack is to infer a victim program’s secret-dependent

memory access pattern by monitoring the victim’s use of a shared cache. In general, cache

attacks can be categorized into the following two types.

The first type, known as flush-based, works by the attacker flushing a line corresponding to

a shared address from the cache and monitoring whether the victim re-reads said address

(refilling the cache with the corresponding line). This type includes techniques such as

Flush+Reload [7, 15] and its variants Evict+Reload [10] and Flush+Flush [57]. These

attacks are only capable of learning memory access to data that is shared between the

attacker and the victim. Nonetheless, they have the advantage of inferring the precise cache

line-granular address accessed by the victim.

The second type, known as contention-based, relaxes the requirement for shared memory by

monitoring how the victim’s cache lines (addresses) contend for space in the cache with the

attacker’s cache lines (addresses). Our attack falls into this category. All contention-based

attacks, such as Prime+Probe [5, 34, 56, 72], Prime+Abort [59, 60], Reload+Refresh [58],

and Prime+Scope [35], follow a similar attack procedure. First, the attacker primes the

cache by filling a target shared cache set with attacker-controlled lines. Later, the attacker

probes the same cache set to observe whether any of its lines have been evicted, and from

this deduces if the victim line(s) has been accessed. By monitoring shared cache contention,

contention-based attacks do not require shared memory, but they only learn a subset of a

victim address bits (i.e., those bits used to choose the cache set).

An accurate method for determining the location of a specified cache line within the cache

hierarchy, is crucial for any cache attack. Most methods are based on timing measurements
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(timer-based attacks), yet several techniques achieve this without relying on timing (timer-less

attacks).

Timer-based attacks Most cache attacks rely on high-resolution timers to measure the

latency of accessing a specific cache line, by either reading the cycle count register directly

(e.g., via rdtscp in x86), or exploiting special instructions that interact with the cycle counter

register (e.g., monitor/mwait in x86 [138]). When only low-resolution timers are accessible,

the attacker can also leverage existing techniques to amplify small access latency differences

so that they are detectable by the timer [134, 141, 316, 317]. Despite these efforts, a fuzzy or

inaccessible timing source can still impede attacks that rely on timers [132, 134, 135]. When

an explicit timer is absent, a counter incremented by a sibling thread can serve as an implicit

timer [140, 316, 318]. However, this requires the attacker’s ability such as spawning and

concurrently running multiple threads, which may not be feasible in practice. For instance,

Javascript programs in browsers are single-threaded and sandboxed [139, 141].

Timer-less attacks The limitations of timers can be overcome if the attacker has the

ability to directly measure cache state, i.e., directly convert micro-architectural state changes

in the cache to architectural state changes in the register file. However, existing methods for

doing so are limited and scarce. One method is cache storage channels [288], which directly

returns to the attacker whether its data is cached or not. This primitive, however, is not

available to normal user-space attackers as it requires configuring non-cacheable memory.

Hardware Transactional Memory is another feature that communicates specific types of

cache misses/evictions as transactions abort when their data is evicted from the shared

cache [59, 60]. Yet, this feature is only available on some Intel products and has been

deprecated. Intel has also disabled the use of TSX by default on CPUs that support it

through a microcode update [322].

7.3 APPLE M1

Apple has recently started using a new processor architecture on its laptop, desktop, and

tablet devices. The new processor design, including the M1 and the latest M2, is based

on the ARMv8-A ISA (a variant of ARM64). We have confirmed that our findings about

LL/SC in Apple processors that are later discussed (Section 7.4) apply to both the M1 and

the newest M2, but in this work, we mainly focus on the M1.

153



7.3.1 Apple M1 Cache Organization

Level Ways Sets Line Size Total size

P-core
L1D 8 256 64 B 128 KB
L2 12 8192 128 B 12 MB

E-core
L1D 8 128 64 B 64 KB
L2 16 2048 128 B 4 MB

Table 7.1: Apple M1 cache parameters (from Table 2 of [87])

An M1 CPU consists of four performance-oriented cores (P-cores) and four energy-oriented

cores (E-cores). Based on prior works [87], each P-core/E-core has its own private L1 data

cache (L1). There are two separated L2 caches, one shared among all four P-cores, and the

other shared among all four E-cores. The associativity, number of sets, line size, and total size

of each cache is shown in Table 7.1. The M1 supports regular pages of size 16 KB and 32 MB

huge pages natively. Notice that M1 does not implement Simultaneous Multi-Threading

(SMT), thus each core only runs one thread.

Previous studies [140, 323] have highlighted two difficulties in performing cache attacks on

ARM processors. By adopting the ARM ISA, the M1 also inherits both difficulties. First, the

cycle count register on the M1 is only accessible by privileged software, unlike x86 processors

where the corresponding register can be read by unprivileged instructions. Second, ARM

does not have dedicated instructions for flushing a specific address from caches (like clflush

on x86), making attack methods that rely on those instructions, such as Flush+Reload [15]

and Flush+Flush [57], ineffective on the M1.

7.3.2 Load-Linked/Store-Conditional in ARM64

1 Retry: lock_val = LDREX [lock_addr]

2 if (lock_val == FREE) {

3 fail = STREX BUSY, [lock_addr]

4 if (fail) { goto Retry; }

5 }

Figure 7.1: A test-and-set-style lock implemented with ldrex/strex. Even when all threads
perform ldrex simultaneously and see a FREE lock, only one thread will successfully perform
strex and acquire the lock. All other threads will encounter failed strex and retry.

Load-Linked and Store-Conditional, also referred to as Load-Exclusive and Store-Exclusive

(ldrex/strex) by ARM [324], are used in common RISC ISAs such as ARM, MIPS, and RISC-V
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for implementing synchronization and mutual exclusion. A ldrex loads a specified address

while marking it as exclusive with respect to the current core in memory. This means that

an address can be exclusive to multiple cores at a given time when multiple sibling threads

running on different cores execute ldrex concurrently (e.g., for competing for a lock like

Figure 7.1). One core can track at most one exclusive address, meaning a younger ldrex will

overturn the exclusive address marked by an older ldrex on this core.

A strex only performs the store operation when the address is exclusive to the current

core and returns a bit in its output operand indicating whether the store is performed.

Whether a strex succeeds or not, it clears all exclusive states associated with its address for

every core. This ensures that when multiple threads simultaneously perform ldrex, such as

competing for a lock in Figure 7.1, only the first thread to perform strex will succeed, forcing

all other threads to lose their exclusive access to the lock and retry the procedure. Lastly, a

regular store behaves like an always-succeeding strex and it also changes the address back to

non-exclusive for all cores.

The exclusive states of cached addresses and how they respond to different memory opera-

tions are managed by an exclusive monitor [325]. The exclusive monitor tracks exclusiveness

at a granularity called Exclusive Reservation Granule (ERG). Whether the exclusive monitor

is implemented as a dedicated unit or integrated with existing cache logic such as cache

coherence protocol, as well as the ERG size, is design-specific.

Exclusive address vs. the Exclusive cache-coherent state. Modern cache-coherence

protocols, e.g., MESI, use an Exclusive (E) state to reduce bus invalidations when Shared+Clean

(S) data is Modified (M). Although the exclusive monitor implementation may piggyback

on top of the coherence protocol, it has different semantics when compared to the E cache-

coherence state. E in cache coherence means “clean, owned by a single core”. However, in the

context of ldrex/strex, a single address can be marked exclusive simultaneously by multiple

cores. For the rest of the paper, we refer to the target address of ldrex/strex as the exclusive

address.

7.4 NEW ATTACK PRIMITIVE ON M1 USING LL/SC

This section introduces the attack primitive associated with the behavior of ldrex and strex
on the Apple M1, which enables the S2C attack technique proposed in this work.
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7.4.1 Micro-architectural strex Failures

As explained in Section 7.3.2: A strex instruction, immediately following a ldrex, might

return ‘failed’ when multiple threads are competing to write to the same shared data. This

requires the implementation of the exclusive monitor to track the address’s exclusiveness

regardless of its location in the cache hierarchy. However, the official ARM specification

states that in some implementations, strex might return fail for micro-architectural reasons,

e.g., cache evictions [326]:

An implementation might clear an exclusive monitor between the ldrex and

the strex, without any application-related cause. For example, this might happen

because of cache evictions.

We investigated whether such an implementation exists, looking specifically at the widely-

used Apple M1. Our questions are: Can a single-threaded program, that executes ldrex-strex
to its own private data, see strex failures due to cache evictions—even if it performs no action

that is known to revoke the exclusive state (from Section 7.3.2)? If so, from what level(s) of

the cache can said evictions lead to strex failures?

The rest of this section answers these questions. To summarize: in a ldrex-strex sequence,

even when ldrex and strex instructions are applied to private data, strex can fail when the

exclusive address accessed by ldrex is evicted from the L1 cache before strex executes.

7.4.2 Experiment Design and Methodology

To answer the questions in Section 7.4.1, we designed the experiment shown in Algorithm 7.1.

The code contains a ldrex (line 3) and a strex (line 6) to addr, which points to a local variable.

Between the ldrex and strex, we traverse a set of random addresses S (S never includes addr)
which may evict addr from the L1 cache (line 4). To identify the location of addr after the
possible cache eviction, we load addr right before strex (line 5), and compare its access latency

with the L1 access latency L1 Latency using timers. The experiment, therefore, studies how

strex failures correlate with L1 evictions.

We test the above code on both P-cores and E-cores, by configuring the thread quality of

service [327]. The load latency is measured by reading the M1’s cycle count register before

and after the load and computing the difference. We use a custom kernel extension (similar

to the prior Pacman Attack [87]). Note that we read timers in this experiment, not in the

actual attack technique. L1 Latency can be obtained by executing two consecutive loads to

the same address (with a memory barrier in between for maintaining ordering) and measuring

the latency of the second load.
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Algorithm 7.1: Code for testing the correlation between strex failures and L1
evictions of the exclusive address.
Input: addr: a selected target exclusive address

1 for i “ 1 to 1000 do
2 Generate a set of random addresses S
3 val = LDREX [addr]
4 traverse S // may or may not evict addr from L1

5 latency = measure latency of load [addr]
6 fail = STREX val, [addr]
7 evicted from L1 = latency ¿ L1 Latency

8 print fail, evicted from L1

9 // An example of counting the output:

10 // fail “ True, evicted from L1 “ True: 518

11 // fail “ True, evicted from L1 “ False: 0

12 // fail “ False, evicted from L1 “ True: 0

13 // fail “ False, evicted from L1 “ False: 482

7.4.3 Result and Takeaway

Line 10-13 in Algorithm 7.1 shows an example of counting the output of the experiment.

We further ran Algorithm 7.1 over 10 times, and consistently observed that fail correlates
perfectly with evict from L1. In other words, strex to local exclusive address never fails when

the address still remains in the L1, and always fails when the address resides only in lower

levels of the cache. This observation aligns with the information in ARM’s documentation

(Section 7.4.1). Therefore, we can confirm that on Apple M1 CPUs, when a ldrex-strex pair is

applied to a local address, strex can fail if the address is evicted from the L1 in between when

the ldrex and strex are performed. We discuss the potential implementation of the exclusive

monitor on the M1 that can produce this behavior in Section 7.9.

We performed another experiment to determine the ERG size. The experiment consists

of only a single ldrex followed immediately by a strex, but they have different addresses.

We observed that strex can succeed even if ldrex and strex addresses differ. Also, strex only

succeeds when the two addresses are on the same 64-byte-aligned block. The fact that ERG

size is 64-byte (L1 line size) not 128-byte (L2 line size) implies that the exclusive monitor may

be implemented to only track exclusiveness for L1 lines, which results in our above finding

about strex failures. We also conduct experiments to verify that the behavior of ldrex/strex
follows ARM’s specification (Section 7.3.2). For example, we find that each core can indeed

only monitor one exclusive address at a time.

Microarchitectural factors influencing the result of strex might seem like a bug that affects

correctness. However, in practice, this behavior is acceptable. Regular programs always use
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ldrex and strex for thread synchronization purposes, which are inherently non-deterministic

due to unpredictable thread interleavings. Programmers will normally use the output of

strex to create higher-level synchronization primitives, for example by retrying the code until

the strex succeeds as shown in Figure 7.1. Therefore, a well-written program should not

break given this additional cause of strex failures, apart from possibly wasting cycles from

unnecessary code retries.24

From the security perspective, this observation is relevant in the context of cache side-

channel attacks. As explained in Section 7.2, the ability to directly and accurately observe

cache state circumvents the defenses and other challenges associated with timer-based attacks.

Utilizing ldrex and strex instructions, an attacker can detect L1 evictions, which can be caused

by contention in lower-level shared caches, such as the L2 cache in M1 processors. On the

other hand, such detection is limited to one exclusive address at a time, since each core can

only monitor one exclusive address. The rest of the paper builds upon this idea and presents

S2C, a timer-less attack technique aimed at the M1’s shared L2 caches.

7.5 REVERSE-ENGINEERING M1’S SHARED L2 CACHE

The goal of the S2C attack technique is to leverage ldrex and strex to expose information

leakage through the shared L2 cache, which requires detailed knowledge about the M1’s L2

cache. Given the lack of such information in existing research, in this work, we present the

first detailed reverse-engineering of the M1’s shared L2 caches, which encompasses various key

characteristics of the L2 cache, such as the inclusion policy (Section 7.5.3), the replacement

policy (Section 7.5.4) and the set index mapping (Section 7.5.5). Due to the observability of

ldrex/strex being limited to the L1 (Section 7.4.3), these details are essential for a successful

S2C-based attack. The information in this section may also benefit other cache attacks.

We describe the reverse-engineering process with a primary emphasis on the caches used by

P-cores, as the results obtained from E-cores are similar. This section’s reverse engineering

makes use of all capabilities required, such as making extensive use of the privileged cycle

count register, and executing experimental code on multiple cores simultaneously. For the

actual attack technique, starting in Section 7.6, we limit attackers to single-threaded execution

without access to timers.

24Note that livelock can occur when too many memory accesses are placed between ldrex and strex, causing
the exclusive address to be constantly evicted from L1. There is no guarantee that this won’t occur, but
programmer guidance (which says to minimize the use of instructions between a ldrex and strex pair, plus
several other rules of thumb) tries to minimize its likelihood in practice [326]. We discuss this further in
Section 7.9.
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Terminology We define addresses mapped to the same cache set as congruent addresses,

and further define addresses mapped to the same L1 set as L1-congruent. Correspondingly,

L2-congruent addresses are mapped to the same L2 set. An L1/L2 eviction set for a target

address is defined as a set of addresses that are L1-/L2-congruent to the target address, with

the size of at least the L1/L2 associativity. Such sets can be used to evict the target address

from L1 or L2, respectively.

7.5.1 Reverse-Engineering Private L1s

Before reverse-engineering the L2 cache, we first investigate the private L1 cache. We

suspect that, like most modern CPUs, the M1’s L1 cache is also virtually-indexed/physically-

tagged, with a Least Recently Used (LRU) replacement policy. In this case, the L1 set index

will correspond to the regular page offset subtracting the L1 line offset bits.

To test this, we first choose a random address and create a candidate L1 eviction set

comprised of eight addresses (since L1 is 8-way-associative) that share the same L1 set index

bits as the target address. We start by accessing the target address, then traverse all 8

addresses in the candidate eviction set, and lastly measure the access latency to the target

address and compare the latency with the L1 latency obtained from Section 7.4.2.

The results show that the candidate L1 eviction set always evicts the target address out of

the L1 cache. Also if we drop one address from the eight-element eviction set, the target

address will never be evicted. This confirms our hypothesis:

Observation 1. L1 sets are indexed by the page offset bits subtracting the L1 line offset

bits. The L1 cache adopts an LRU-based replacement policy for choosing evicted lines.

7.5.2 L2 Eviction Set Generation with a Timer

Our L2 cache reverse-engineering process relies heavily on L2 evictions. Since ARM does

not provide cache flush instructions, we generate L2 eviction sets for inducing L2 evictions,

similar to previous studies [140, 323, 328, 329]. However, identifying L2-congruent addresses

for building the L2 eviction set is challenging given that the L2 set index may depend on

physical page number bits.

Vila et al.’s algorithm [330] is the most popular eviction set generation algorithm that

overcomes this challenge. The algorithm starts by adding randomly generated virtual

addresses to a candidate set, and tests whether the candidate set can evict the previously

loaded target address from the L2, until enough L2-congruent addresses are included and

159



the eviction appears. At this moment, the candidate set is an L2 eviction set superset,

meaning that it contains a valid L2 eviction set, but also a significant number of redundant,

non-L2-congruent addresses. One thing to notice is that the L2’s inclusion policy is not yet

known. Assuming the L2 is exclusive of the L1, the first loaded target address will only be

cached in the L1, not L2, therefore a valid L2 eviction set cannot evict the target address

from the L2 unless it evicts the target address from the L1 first. So we force Vila et al.’s

algorithm to generate only addresses with identical L1 set indices as the target address,

ensuring that a valid L2 eviction set can always evict the target address from the L1 to the

L2 first, and subsequently from the L2. Once obtaining the L2 eviction set superset, the

algorithm prunes the superset iteratively and checks whether the remaining is still capable of

evicting the target address until the set size reaches the L2 associativity, and the superset is

now reduced down to a minimal L2 eviction set.

7.5.3 L2 Cache Inclusion Policy and AutoLock

Understanding the cache inclusion policy is crucial for cache attacks, especially our new

S2C attack technique, where the attacker can only observe the L1 cache state. Case in point,

if the shared L2 is inclusive of the private L1, contention within the L2 will cause L1 evictions,

allowing the attacker to detect cross-core activities by monitoring the L1.

One straightforward method for determining whether the L2 cache is inclusive of the L1

works as follows. First, we randomly select an address and create its L2 eviction set using

the technique in Section 7.5.2. Next, we access this address on a processor core, and then

traverse the eviction set on a different core. If the L2 cache is inclusive, traversing the

eviction set will evict the address from the L2, and correspondingly from L1. If the cache is

non-inclusive/exclusive, such L1 eviction will not happen. Hence whether the L2 is inclusive

can be determined by measuring the access latency to the address in the end and comparing

it with L1 Latency.
After running this experiment with different addresses, we always observe an L1 hit. In

fact, a recent attack on the Apple M1 by Hetterich et al. [329] also observed this phenomenon

and suggested that it could be due to several factors, namely an exclusive/non-inclusive

policy or a hardware optimization used in some ARM CPUs called AutoLock. AutoLock is a

common optimization used by ARM CPUs in conjunction with inclusive caches [320]. When

evicting data from the shared inclusive L2, AutoLock prioritizes data that is not present in

L1 caches, effectively locking those that are present in the L1, since they are likely to be

frequently reused. However, Hetterich et al. did not confirm whether the M1’s L2 cache is

inclusive with AutoLock or exclusive/non-inclusive [329]. The rest of Section 7.5.3 explains
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how we determine that the L2 cache is actually inclusive with AutoLock, by leveraging a

technique called eviction set splitting.

Eviction Set Splitting

We first eliminate the impact of AutoLock on our analysis of the inclusion policy. A

standard AutoLock mechanism chooses L2 lines with no L1 copies to evict over those with

L1 copies. Therefore, for an L2 eviction set to evict the target address cached in another

core’s L1 (hence AutoLocked), we must ensure that the L2 eviction set addresses are also

AutoLocked. In this way, the replacement logic must evict AutoLocked lines for bringing in

new lines. The original eviction set generated from Section 7.5.2 cannot achieve this, because

all eviction set elements are mapped to the same L1 set, so there are always eviction set

elements cached only by the L2, as shown in Figure 7.2 (left).

L1 Set M

 L2

Set M+1

128 B
1 2 3 4 5 6 7 8 9 10 11

10 115 6 7 8 9 12

12

Set T

64 B

L1 Set M

 L2

Set M+1

1 2 3 4 5 6

7 8 9 10 11

61 2 3 4 5

12

Set T

10 117 8 9 12

Figure 7.2: How eviction set splitting circumvents AutoLock. Every number represents a
different address, and the values represent the access order. Green marks addresses without
L1 copies (non-AutoLocked). Red marks addresses with L1 copies (AutoLocked). The right
part shows eviction set splitting: the minimal 12-element eviction set is distributed over two
adjacent L1 sets, ensuring all elements are AutoLocked.

Yet, we notice that the L2 line size in the M1 is 128 B, twice the size of L1 lines. This

means that data in one L2 set can reside in two adjacent L1 sets. By toggling bit 6 in half of

the eviction set addresses, as shown in Figure 7.2 (right), those addresses can be moved to

the other half of the L2 lines, and their L1 copies are moved to the adjacent L1 set. Now,

since all addresses own L1 copies, AutoLock, assuming it exists, can no longer interfere with

the L2 eviction.
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L2 Inclusion Policy

We use Algorithm 7.2 to determine the inclusion policy of L2. The algorithm first generates

L2-congruent addresses following Section 7.5.2, and chooses 1-4 addresses to form a set T .

The rest of the addresses, serving as the L2 eviction set of T , undergo eviction set splitting

and form S. Hence, all lines in S and T are AutoLocked. The algorithm then traverses T

on core 1, and subsequently traverses S on a different core 2 and measures the latency of

traversing S.

Algorithm 7.2: Code for testing L2’s inclusion policy.

Input: T : A set of addresses mapped to the same L2 set
S: A split L2 eviction set of T (T , S are in the same L2 set)

Output: Cycles spent by the traversal of S
1 Function Is Inclusive(T , S):
2 [Core 1] traverse T
3 [Core 2] t = measure latency of traversing S
4 return t

Figure 7.3: Time spent to traverse the split S when varying the size of S and T in Algorithm 7.2.
This result shows that the L2 cache is inclusive of the L1.

Figure 7.3 shows the result of the experiment. This result revealed that the L1 cache is

inclusive, because, from core 2’s perspective, the entire S can be cached in L1 only if the total

size of T and S does not exceed the L2 associativity. In other words, the contention with T

in the L2 causes S to be evicted from the L1, which is only possible in an inclusive L2.

AutoLock

We further use Algorithm 7.3 to verify that the L2 indeed implements the AutoLock

mechanism. The experiment starts by accessing addr, and then traverses its eviction set S on

a different core. We explore different ways of splitting S by varying the number of addresses
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Algorithm 7.3: Code for verifying AutoLock’s effect.

Input: addr: A randomly selected address
S: A minimal L2 eviction set of addr generated by Section 7.5.2

Output: Latency of the 2nd access to addr

1 Function Check AutoLock(addr, S):
2 Split S into n on one L1 set and |S| ´ n on the other L1 set
3 [Core 1] load [addr]
4 [Core 2] traverse S
5 [Core 1] t = measure latency of load [addr]
6 return t

in S to be flipped to the other L1 set. We observe that addr can be evicted when the smaller

half of S has at least 3 addresses (meaning 3 or 9 addresses are flipped). This proves the

existence of AutoLock: when fewer than 3 eviction set elements reside in an L1 set on core 2,

the other L1 set on core 2 can only hold 8 eviction set addresses. Hence, at most 11 addresses

out of 12 in the L2 set are AutoLocked, including at most 2 ` 8 “ 10 eviction set elements

plus addr, thus addr is never evicted. Hence, we can conclude that:

Observation 2. M1’s shared L2 is inclusive of private L1s. M1 also employs the AutoLock

optimization [320] to prioritize data without L1 copies for eviction from the L2.

7.5.4 L2 Replacement Policy

Algorithm 7.3 can also be utilized to investigate the L2 replacement policy. After applying

eviction set splitting to S, addr and addresses in S are all AutoLocked thus evictable from

the L2. We examine the replacement policy by measuring how difficult it is to evict addr as
we vary the size of S and the number of times traverse function iterates over S.
The L2 eviction rate with different eviction set sizes and iteration counts is displayed

in Figure 7.4 (a). The L2 eviction rate is always 0% when the size of S is less than the

L2 associativity (due to AutoLock), and it increases to 100% as S grows. In addition, by

iterating over S more times, a smaller S can guarantee to evict addr. For example, iterating

over the minimal eviction set at least 8 times guarantees the eviction of addr in practice.

These observations imply that a non-LRU replacement policy is adopted. In fact, prior

studies have shown that a pseudo-random replacement policy is adopted by the L2 cache in

previous Apple ARM CPUs [140, 331, 332].

Since the experiment above uses cache lines belonging to different cores, we ask whether

the replacement policy behaves differently for lines belonging to the same core. Thus, we
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Figure 7.4: (a) The L2 eviction rate of addr when we run Algorithm 7.3 but allow Core 2 to
traverse S multiple times. (b) The L2 eviction rate of addr when we run Algorithm 7.3 but
traverse S on Core 1 (the same core as load [addr]) instead of Core 2 and only iterate over S
once.

change line 4 in Algorithm 7.3 such that the eviction set S is accessed by the same core as

addr. Also, traverse only iterates over S once. The result shown in Figure 7.4 (b) indicates

that even one iteration over the minimal L2 eviction set S can guarantee to evict addr. This
is possible only when an LRU-based policy is used. We make the following observation:

Observation 3. The L2 replacement policy behaves as LRU when eviction candidates

are lines belonging to the same core, and non-LRU (possibly pseudo-random) when lines

belonging to different cores can be evicted.

7.5.5 L2 Cache Set Index Mapping

The L2 eviction set generation technique Section 7.5.2 is agnostic about the actual L2 set

index mapping function. However, this technique is not applicable when the cache state is

measured with ldrex/strex instead of timers, as shown in Section 7.6.3. Here, we aim to learn

the L2 set index mapping which is later used by S2C for generating L2 eviction sets.

We reverse-engineer the undocumented L2 set index hash function by inspecting the physical

addresses of L2-congruent addresses, which can be retrieved by /proc/self/pagemap on

Linux. Based on previous research on reverse-engineering Intel’s undocumented set/slice

mapping function [333, 334, 335], we speculate that on M1, every L2 set index bit is also

computed through a reduction operation with exclusive-or (xor) against a specific set of

physical address bits. To verify this, we generate a large number of mutually L2-congruent

addresses and compute the xor value of different combinations of physical address bits. When

a combination is actually used for computing an L2 set index bit, the xor reduction will
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produce the same bit value for every L2-congruent physical address. We demonstrate how

every L2 set index bit is formed from physical address bits in Figure 7.5 based on our

experiment results25. Notice that 11 out of 13 set index bits are directly mapped from huge

page offset bits. The other 2 bits are computed over a complex xor operation involving the

huge page number bits.
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Figure 7.5: L2 set index bit mapping based on our reverse engineering (Section 7.5.5). Eleven
L2 set index bits are directly mapped from huge page offset bits. Two L2 set index bits on
the top are XOR-ed from multiple regular page number bits (b denotes the XOR operation).

7.6 MONITORING A SINGLE CACHE SET

We now present a protocol that enables the attacker (the receiver) to use S2C to monitor

a single L2 cache set that the victim may access. Section 7.7 will describe how to generalize

the protocol to simultaneously monitor multiple L2 sets.

7.6.1 Attacker Model and Overview

We assume an attacker who co-locates with a victim process on the same Apple M1

processor, and shares the same L2 cache. The attacker can run arbitrary unprivileged

code, but the attacker has no access to any timing source (such as PMC0) and is limited to

using a single core. Such an attacker cannot use timing measurement techniques mentioned

in Section 7.2, including the implicit timer since no two attacker-controlled threads can run

concurrently. The attacker can allocate huge pages, which is required for generating eviction

sets in Section 7.6.3.
25This pattern resembles the address mapping in Intel CPUs, in which the LLC set index is directly mapped

from huge page offset bits (subtracting cache line offset bits) and LLC slice index bits are xor-ed from the
high-order page number bits [334, 335]. It is possible that M1 also divides the L2 cache into as many slices
as cores, resulting in a 2-bit L2 slice index, and each slice owns 8192{4 “ 211 sets.

165



The attacker’s goal is to monitor the victim’s memory access patterns, specifically,

whether/how the victim accesses a target address that maps to a specific L2 set. As a

contention-based cache attack, S2C cannot differentiate victim addresses that are mapped to

the same L2 set, as mentioned in Section 7.2.

Similar to existing cache attacks [5, 10, 15, 35, 57, 59], a complete S2C-based attack has

two phases: a preparation phase when the attacker generates the L2 eviction set for the

target victim address, and an attack phase when the attacker detects the victim’s access to

the target address in real-time. We explain the attack phase first in Section 7.6.2 assuming

minimal L2 eviction sets for the target address are available, and describe how to generate the

L2 eviction set using ldrex/strex instead of relying on timing measurements in Section 7.6.3.

7.6.2 Attack Phase

A strex leaks 1-bit of information about whether an attacker-controlled exclusive address

is evicted from the L1 cache. To relate this bit to the victim’s activities on a single target

address, an S2C attacker can simply co-locate the exclusive address with the victim target

address in the same L2 set, with additional efforts to ensure that the strex fails if and only if

the victim reads/writes to the victim target address.

This strategy faces two unique challenges. First, strex only indicates data’s presence in

L1, unlike timing measurements which reveal the exact cache level through concrete latency

numbers. To avoid false positives, the exclusive address visited by ldrex must remain in

the L1 until the expected L2 set contention occurs, which implies a victim’s access to the

target address. Second, unlike normal Prime+Probe which can measure the access latency to

multiple addresses, ldrex/strex only observes one specific address. This necessitates that our

attack performs a very delicate balancing act: we must ensure that the exclusive address is

not only evictable (not constrained by AutoLock), but that it is the line that gets evicted by

the victim’s access to the target address.

We now explain how S2C addresses both challenges, using Algorithm 7.4 as a guide. The

attacker can obtain an exclusive address P that is L2-congruent with the target address

addr, by choosing an arbitrary address from addr’s minimal L2 eviction set S. The rest of

the eviction set SP is traversed on the same core after ldrex completes. Importantly, we

must apply eviction set splitting to this L2 eviction set S. This guarantees that every L2

eviction set element, including P and all of SP , are cached in the L1. This addresses the first

challenge. For this exact same reason, P and SP are AutoLocked and occupy the entire L2

set, meaning P can be chosen by the L2 replacement logic, according to the mechanism of

AutoLock Section 4. Additionally, our study of the L2 replacement policy in Section 7.5.4
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Algorithm 7.4: How S2C monitors the victim’s access to a single target address
addr using ldrex/strex.
Input: P : exclusive address

SP : remaining eviction set of addr excluding P
Output: Boolean value indicating if addr is accessed

1 Function Monitor Single Addr(P , SP):
2 [attacker on core X] val = LDREX [P ]
3 [attacker on core X] traverse SP

4 /* Now P should be the next to evict in L2, but still cached in L1 (i.e.

AutoLocked) */

5 [victim on core Y] may or may not access [addr]
6 /* Accessing raddrs should evict P from the L2, and also from L1 due to

inclusive cache */

7 [attacker on core X] fail = STREX val, [P ]
8 return fail

points out that the L2 uses an LRU-based policy for evicting L2 cache lines belonging to the

same core. Since ldrex happens strictly before traversing SP , the L2 line where P is located

will become LRU after line 3 since P and SP are from the same core. The attacker then waits

for the victim’s action by spinning a loop a number of times. Whenever addr is accessed, P
will be evicted from both L1 and L2, causing the strex on line 7 to fail.

7.6.3 Preparation Phase

During the preparation phase, S2C generates L2 eviction sets for the target address utilizing

ldrex/strex only. As mentioned in Section 7.5.2, Vila’s algorithm (or similar techniques such

as [336]) is widely used by cache attacks due to the weak assumptions it makes on the attacker

— no knowledge about the address bits beyond the regular page offset bits is required.

However, we found that using Vila’s algorithm (or any similar techniques based on pruning

eviction set supersets) by replacing timing measurement with ldrex/strex is unfeasible due

to AutoLock. To start, ldrex/strex cannot distinguish between L1 evictions caused by L1

cache contention and those caused by L2 evictions. Therefore, building the L2 eviction set

superset should not use candidate addresses that are L1-congruent with the target address

addr. Given addr is AutoLocked and hence can only be evicted from the L2 when the other

11 lines in the same L2 set are also AutoLocked, the traversal of an L2 eviction set superset

S can evict addr only if at one point, all 12 L2-congruent addresses in S are cached in L1.

This is clearly impossible: they compete for one single L1 set, meaning at most 8 addresses

167



can be AutoLocked with addr in the L2 set.26 The outcome is that we can never identify an

L2 eviction set superset, let alone reduce it to obtain the actual L2 eviction set.

Inspired by previous works [34, 56, 333], S2C instead utilizes the reverse-engineering result

of the L2 set index mapping and huge pages27 to directly compute the minimal L2 eviction

set. Since 11 out of 13 L2 set index bits are huge page offset bits, after allocating a huge

page, the attacker can easily identify addresses within this huge page that share those 11 set

index bits as the target address. Although the remaining two bits cannot be determined due

to the unknown huge page number, we can easily determine whether two arbitrary addresses

within the huge page share the same value for these two bits, because the huge page number

is identical.

With this observation, our L2 eviction set generation works as follows. Given a target

address, we allocate one huge page, and collect all 27 “ 128 addresses on this page that share

the same regular page offset and address bits [19:16] as the target address. All these address

bits except the L2 line offset bits are required to match the target address to achieve L2

congruence. Next, we group the 128 addresses into four groups, such that addresses within

each group share the same two XOR-ed bits. Since the huge page number of these addresses,

as well as the target address, is unknown, we cannot determine which address group has the

exact same L2 set index as the target address, but it is guaranteed that one of these four

address groups will be an L2 eviction set of the target address.

We leverage Algorithm 7.4 to identify which group is actually the L2 eviction set. For each

group, we choose 12 addresses from the total 32 addresses as the candidate minimal eviction

set, and apply eviction set splitting so that those 12 addresses are distributed to two sibling

L1 sets evenly. As for Algorithm 7.4, one address is chosen as the address for ldrex/strex, and
the remaining are traversed after ldrex. Unlike the attack, when testing eviction sets, the

attacker must trigger access to the target address (which could be done by a victim-provided

API call that is known to access the target address). Only when the tested address group is

L2-congruent with the target address will the strex fail.

26Even if the attacker owns multiple cores to traverse the candidate set separately, it is still infeasible for a
candidate L2 eviction set S to evict addr: the L2-congruent addresses constitute only around 1{26 « 1.6% of
S according to Figure 7.5. Therefore, it is almost impossible to see 12 L2-congruent addresses cached in the
L1.

27Although allocating huge pages requires only user-level privilege, it may not be available when the
attacker is limited to a sandboxed environment, e.g., browsers. In those scenarios, the attacker cannot
proactively allocate huge pages via system calls. Instead, the attacker must rely on the runtime allocating
huge pages automatically, e.g., via OS features such as Transparent Huge Pages in Linux.
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7.7 MONITORING MULTIPLE CACHE SETS

We now generalize the protocol from Section 7.6 to enable the attacker to simultaneously

monitor multiple victim L2 cache sets. The attacker model is otherwise the same as that

presented in Section 7.6.1: the attacker is unprivileged, runs on a single thread, etc. As with

Section 7.6, we do not require modifications in the victim’s code.

The challenge here is that ldrex/strex only allow the single-threaded attacker to monitor

evictions on a single address/cache line at a time. To work around this limitation, the

insight is to view ldrex/strex as a general-purpose single-bit communication channel that

can communicate the result of an arbitrary 1-bit function computed in micro-architectural

space. With this in mind, we construct a micro-architectural weird circuit (µWC) [321] that

computes the logical-OR of whether the victim accessed at least one of several attacker-

specified L2 sets—and communicates the 1-bit result of this logical-OR through ldrex/strex
to the attacker’s architectural state, namely the result of strex. We remark that while weird

circuit constructions are not the main focus of the paper, our weird circuit is relatively

simple conceptually compared to the original proposals in [321] (which focuses specifically

on speculative execution), and may be of independent interest. We also remark that while

we compute logical-OR due its useful semantics, other functions are of course possible (e.g.,

one to compute hops in a binary search to localize which victim cache set was accessed). We

leave such investigations to future work.

7.7.1 Construction

We explain the µWC assuming the attacker wishes to monitor two victim target addresses

a and b located at L2 sets A and B for simplicity, and generalize to monitoring N L2 sets

A0, A1, . . . , AN´1 at the end.

To start, the attacker uses the procedure from Section 7.6.3 to construct minimal L2

eviction sets for target addresses a and b, and also a third eviction set for another address

x allocated by the attacker itself. The attacker ensures that x is located at an L2 set X

different from A and B, and X is not used by the victim. The attacker further builds a linked

list Pa Ñ Pb Ñ Px, where Pa, Pb, Px are addresses randomly chosen from the eviction sets

generated for a, b, and x, respectively.

The attacker is interested in whether the victim accesses a line in sets A or B. At a high

level, it can infer activity on these sets by observing the eviction of Px with ldrex/strex,
and using out-of-order execution to create a race between a) traversing the linked list

Pa Ñ Pb Ñ Px and b) accessing x. Depending on the outcome of this race, Px could be
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evicted by x when it is accessed by the attacker’s strex, which indicates whether the victim

displaced data in sets A or B.
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Figure 7.6: An example of how S2C constructs a µWC to monitor victim addresses (called
a and b) that map to L2 cache sets A and B, respectively. See text in Section 7.7.1 for a
detailed walkthrough.

In more detail: In the “Prime” step (Figure 7.6 ➀), the attacker uses the techniques in

Section 7.6.2 to bring Pa, Pb, Px into the cache, position each in the LRU position of each

respective L2 set and ensure that each is evictable (using eviction set splitting; Section 7.5.3).

It further evicts x from all levels of cache and monitors Px using ldrex. It then waits for the

victim to make an access (see Figure 7.6 ➁), same as in Section 7.6. In the “Probe” step, the

attacker begins the race (Figure 7.6 ➂) by simultaneously a) traversing Pa Ñ Pb Ñ Px and

b) making an access to x. x will always result in a miss. It accesses Pa, Pb with normal loads

and accesses Px using strex28. There are two possible outcomes, depending on the victim’s

access pattern:

• If the victim accessed neither A nor B (Figure 7.6 ➁-➂, bottom), traversing Pa Ñ

Pb Ñ Px will result in all hits and complete before x. Since Px will still be cached,

strex returns 0 (success).

28This racing code is actually a “racing gadget” from a parallel work HackyRacer [317], which amplifies
small timing difference to make it detectable by low-resolution timers. Both our uWC and HackyRacer
leverage out-of-order execution to create a race condition between two instruction paths.
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• Otherwise (Figure 7.6 ➁-➂, top), traversing Pa Ñ Pb Ñ Px will result in at least one

miss and complete after x. Since Px will be evicted (by x), strex returns 1 (fail).

Monitoring N victim addresses. The above generalizes to monitoring N victim addresses

a0, a1, . . . , aN´1 located at different L2 sets using N eviction sets, a separate set X (which

serves the same function as before) and a linked list that traverses PA0 Ñ PA1 Ñ ¨ ¨ ¨ Ñ

PAN´1
Ñ Px.

Implementation considerations. Our implementation matches closely with the above

description. That said, we needed to place load[x] after the strex in program order (Figure 7.6

➃). This is because strex is not performed until it reaches the head of the reorder buffer, and

thus would not execute until load[x] is completed if the load was placed before it. Another

important factor is that, as N increases, it is necessary to delay the load to x to ensure that

traversing the linked list is faster than accessing x, if all linked list accesses are hits. This

delay, called ‘slack’ in Figure 7.6, is implemented by spinning in a loop a specific number of

times.

7.8 EVALUATION

Our evaluation is performed on an M1 Mac Mini, running Asahi Linux (Linux version

6.1.0). We cannot conduct the full evaluation on MacOS since the M1 version of MacOS

does not support huge pages. Following the attacker model described in Section 7.6.1, the

S2C attacker is single-threaded and does not use timers.

7.8.1 Monitoring Multiple Cache Sets

We now evaluate S2C’s ability to simultaneously monitor multiple cache sets. Here the

victim may access a set of addresses that map to different L2 cache sets, and the attacker

uses the method described in Section 7.7 to detect accesses to those sets. Ideally, any victim

access to those sets should result in a 100% strex fail rate; if the victim accesses none of the

aforementioned sets, we expect a 0% fail rate, i.e., the difference in the strex fail rate should

be close to 100%.

Figure 7.7 shows the probability that the attacker’s strex fails when the victim 1) accesses

one target address, 2) performs no memory accesses, and 3) accesses addresses belonging

to other L2 sets. When monitoring less than 12 addresses, we can always find a suitable

slack so that the difference in the strex fail rates between the victim accessing the target
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Figure 7.7: The chance that strex fails when the victim accesses different addresses, given
S2C monitoring multiple target addresses.

address versus accessing no/other addresses is close to 100% (the difference is at least 93%).

This showcases S2C’s effectiveness in monitoring up to 11 L2 sets. For more than 12 target

addresses, we cannot find a slack value that achieves a favorable difference in the strex fail

rate. This results in significant false positives, as shown in Figure 7.7.

7.8.2 Covert Channel

S2C, like previous cache side channels, can be used to establish cross-process covert channels.

However, as the strex output only conveys 1-bit of information, the channel only transmits

1-bit at a time. Another challenge in building covert channels with S2C is that it requires

synchronization between two processes without relying on timing measurements, which are

used by prior cache attacks [34, 35, 57, 337].

The transmission of each bit consists of two stages: the standby stage and the transmission

stage. Both stages employ Algorithm 7.4, but in opposite directions. The sender and the

receiver each designate an address located in different L2 sets, and both generate an L2

eviction set for the other party’s address. The address owned by the sender, dubbed addrtrans,

is used in the transmission stage. The receiver prepares an exclusive address (to be monitored

by strex) which is L2-congruent to addrtrans, and uses it along with the remaining eviction set

to detect the sender’s accesses to addrtrans. To transmit 1 bit, the sender accesses addrtrans

(and otherwise makes no access). The receiver pauses by iterating over a busy-waiting loop

eight thousand times to give the sender sufficient time for accessing the targeted L2 set, and

then checks whether addrtrans was accessed using strex.
During the standby stage, the sender waits for a signal from the receiver indicating that the

receiver is ready. Likewise, this is achieved by the sender monitoring the receiver’s access to

the address addrready. Different from the transmission stage, the receiver will always access

addrready to indicate readiness. The sender repeatedly calls Algorithm 7.4 until an access to

addrready is observed, at which point the sender can proceed to the transmission stage.
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After tuning the covert channel code, we achieve a bandwidth of approximately 185 Kbit

per second with a 98.5% accuracy. The small error rate is due to the sender’s access to

addrtrans overlapping with the receiver’s ldrex/strex, creating a blindspot that has been studied

in previous works such as Prime+Scope [35]. Since our synchronization also relies on S2C

instead of a precise timing source, the blindspot can also cause de-synchronization. For

example, if the receiver sends a ready signal that is missed by the sender, the sender will get

stuck waiting. In the next round, the receiver will interpret that as the sender transmitting

0, at which point it will send another ready signal (which, hopefully, the receiver will now

see). This de-synchronization has a 0.2% chance of affecting each bit transmission.

Comparison with Prime+Probe We also implement a similar 1-bit covert channel

using Prime+Probe, after enabling the cycle count register from the kernel space. For the

Prime+Probe covert channel, the receiver owns the address addrtrans, and the sender controls

the L2 eviction set of addrtrans. To transmit a bit, the receiver first accesses addrtrans, and

the sender traverses the eviction set when the transmitted bit is 1 (otherwise does not traverse

the eviction set). The receiver pauses for a certain duration to allow the eviction set traversal

to finish, and then times the access to addrtrans to determine whether it has been evicted.

Unlike S2C which relies on cache contention during the standby stage for synchronization,

the Prime+Probe covert channel utilizes the timer directly for synchronization. This not only

reduces the activities during each transmission, leading to a significant increase in bandwidth,

but also ensures precise synchronization between the attacker and the sender, eliminating

the problem of de-synchronization. This 1-bit Prime+Probe covert channel is capable of

transmitting approximately 382 Kbit per second with over 99% accuracy.

7.8.3 Attacking T-table AES

We now demonstrate how S2C can be used to perform full key extraction on T-table AES,

based on the classical chosen-plaintext attack due to Osvik et. al [5].

T-table AES is a popular benchmark for evaluating cache side-channel attacks because it

creates secret key-dependent T-table access patterns, which can be used to infer information

about the secret key [5, 35, 57, 59]. We adapt the attack by Osvik et. al [5], which proceeds

in two steps: targeting high-key nibbles and low-key nibbles of key bytes, respectively.

Specifically, the first round of T-table AES performs bitwise XOR between the plaintext and

the private key, and the output bytes are used directly as indices for T-table lookups. To

exploit this behavior, the attacker repeatedly interacts with the victim. In each interaction,

the attacker tries to guess the high nibble of one key byte by creating a specific plaintext.
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When the guess is correct, the XOR produces an index value ă 24, thereby creating an

observable access to a specific cache line where the looked-up T-table is based. While this

cache line may also be accessed by other rounds, it is guaranteed to be accessed when the

high nibble from the plaintext byte and the target key byte match. Repeating for each key

byte, this allows the attacker to recover the high nibble of each key byte.

The low nibbles can be retrieved similarly by exploiting the second round. In the second

round, every T-table access index depends on four distinct key bytes, instead of one key byte

in the first round. Since the high key nibbles are known, the attacker can guess possible

values for the four low nibbles corresponding to the four key bytes used by the T-table index.

It validates these guesses in the same way as before: by submitting plaintexts and monitoring

whether the T-table target cache line is accessed during the AES operation. This process

can be repeated to learn the values of nibbles in other sets of four key bytes.

Here we show that S2C can leverage the above attack technique to infer the full 16-byte

AES key. Our experiment uses OpenSSL’s T-table AES implementation [338]. The victim

process maintains a secret key and exposes an AES encryption/decryption API to the attacker.

The attacker process performs the chosen-plaintext attack and leverages S2C (instead of

Prime+Probe as in the original attack [5]) to monitor accesses to targeted cache lines.

(a) First-round attack result. (b) Second-round attack result.

Figure 7.8: Accuracy of recovered high nibbles and the attack duration of both the first-round
and the second-round attack, as we increase the number of total AES calls for the full
first-/second-round attack. The kink in the accuracy plot in (b) is due to measurement noise.

Figure 7.8 shows the proportion of nibbles that can be accurately recovered in the first-

round and the second-round attack, as we increase the number of plaintext samples used for

testing each possible nibble value (or four nibble values in the second-round attack). Each

data is averaged over ten independent attacks, where each attack performs one first-round

and one second-round attack to leak one randomly-generated private key. The figure also

shows the attack latency as a function of the number of AES calls. The high nibbles can

be recovered with 100% accuracy with around 300K encryption calls, which takes around

1 second. However, to recover the low nibbles with 100% accuracy, we need around 700M

encryption calls, which is roughly 40 minutes. Notice that recovering low nibbles requires

significantly more time than high nibbles because, in the second-round attack, the attacker
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must guess four nibbles together, and measuring a cache access only indicates if all four

nibbles are guessed correctly.29 This difference is mentioned by the original attack [5].

Since most recent cache attacks mostly only evaluate the first-round attack [35, 57, 59,

60], we can compare the effectiveness of our version of the first-round attack with them.

For instance, Flush+Flush [57] shows 250 encryptions are required for recovering all high

nibbles, whereas Prime+Scope [35] reports a similar number (around 200). Therefore, S2C

demonstrates a similar capability in retrieving the AES key bytes albeit using a different

cache measurement technique and targeting Apple CPUs.

7.9 DISCUSSION

7.9.1 Impact on Other Processors

Load-Linked/Store-Conditional is an ISA-agnostic primitive for performing efficient mutual

exclusion and synchronization. We now discuss its support in other existing ISAs, and where

we believe those implementations may enable S2C-based attacks.

CISC/x86. CISC architectures such as x86 do not support LL/SC as part of their ISAs.

We have further performed experiments to check whether native x86 hardware atomics

(cmpxchg) are implemented using LL/SC-like microcode under the hood and haven’t found

evidence to support this theory.

ARM. In 2022, Apple introduced the M2 which continues using the same ARMv8-A ISA as

M1. We are able to reproduce the same attack primitive that we explained in Section 7.4 on

M2 CPUs. Future work is needed to reverse engineer the M2’s cache configuration (akin to

that in Section 7.5) to enable S2C-based attacks. It is possible that other ARM CPUs follow

the LL/SC semantics specified in ARM’s manual, making them vulnerable to the basic S2C

mechanism. But more reverse engineering is needed to confirm on which parts this holds.

RISC-V. RISC-V is a relatively new and rapidly growing RISC architecture. Different

from ARM, RISC-V recognizes that allowing store-conditional to fail on cache evictions might

impede LL/SC progress indefinitely. Therefore, the official RISC-V manual suggests that

29To illustrate, assume N samples are needed to verify each guess. The first-round attack, therefore, requires
16 (16 high nibbles) * 16 (16 possible values for each high nibble) * N = 256 * N AES calls, whereas the
second-round attack requires 4 (4 four-nibble combinations) * 164 (guess values for 4 low nibbles) * N =
262,144 * N AES calls.
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“reservations (exclusive addresses) are tracked independently of evictions from any shared

cache” [339], which, if implemented in real life, can effectively mitigate S2C.

MIPS. MIPS is an older RISC ISA. The MIPS manual suggests that the base observation

in S2C may apply. We quote: “...load or store may cause a cache eviction between the LL

and SC that results in SC failure” [340].

7.9.2 Mitigations

Restricting access to the attack primitive is a straightforward yet effective method for

mitigating many side-channel attacks [134, 135, 138, 319, 341]. Because LL/SC is only

leveraged by the attacker and not required to be used by the victim, one would seemingly

need to summarily disallow LL/SC. However, LL/SC are basic instructions that are impractical

to disable. Given this, we propose several mitigation strategies.

Changing Exclusive Monitor Implementation. Because the exclusive monitor only

tracks addresses in the L1 cache, we speculate that the exclusive monitor is implemented

by piggybacking on the cache coherence protocol. The implementation may use a dedicated

coherence state for exclusive addresses accessed by LL instructions. The behavior of SC

aligns with this design: an SC succeeds when the target address is in the new state; and like

normal stores, an SC invalidates the address in other private L1 caches, forcing other threads

to lose their exclusiveness to that address. To patch this vulnerable implementation, the safe

exclusive monitor should keep track of exclusive addresses independent of the location of the

addresses in the cache hierarchy.

Software Mitigations for Cache Side-Channels. Mitigating cache side-channel attacks

have been an important topic in side-channel research. Software developers generally use

constant-time programming to eliminate secret-dependent memory access patterns [30, 106,

107, 114, 123, 125, 273]. Constant-time programming has been applied to many modern

cryptographic libraries for protecting critical assets such as keys [342, 343]. However, many

cryptographic libraries, as well as general-purpose programming still opt out of the constant-

time property for better performance [118].

Hardware Mitigations for Cache Side-Channels. Researchers have also proposed

hardware-based mitigations for defeating cache side channels, most of which are based on

cache partitioning or randomization. Cache partitioning splits the cache into partitions,
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and each partition can be used by a security domain without any interference from other

domains [147, 148, 150, 153]. Cache randomization introduces randomness into the cache set

mappings, hindering the attacker from creating cache contention with victim lines [160, 161,

162, 163]. Since LL/SC is a contention-based attack, both of these approaches would apply

in principle.

Finally, we admit that disabling huge pages does mitigate our proposed attack on Apple

M1 by preventing the eviction set generation. For this reason, the current M1’s MacOS is

immune to S2C in practice. However, we note that previous MacOS versions on Intel CPUs

do support huge pages. Given M1 CPU natively supports huge pages, future MacOS versions

on Apple CPUs may re-adopt huge pages, making it susceptible to S2C.

7.10 CONCLUSION

This chapter proposes Synchronization Storage Channels (S2C), the first timer-less cross-

core cache attack that exploits Load-Linked/Store-Conditional (LL/SC) instructions on the

Apple M1. The key insight of S2C is that the implementation of LL/SC enables direct

observation of the cache activities, i.e., the L1 evictions of the address accessed by LL/SC.

With several novel techniques to circumvent the limitation in the single address observation

by LL/SC, S2C achieves similar attack capability as prior contention-based cache attacks

but without the dependence on timing measurements.
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CHAPTER 8: CONCLUSIONS

Micro-architectural side-channel attacks have emerged as a significant threat to computer

security as people discover more attack instances, which demonstrate how critical information

can be leaked due to the inherent complexity of modern processors. This thesis undertook

a thorough investigation of the current attacks and mitigation approaches, and highlights

two essential principles in designing mitigation solutions: strong and comprehensive security

guarantees, combined with low-performance overhead. Unfortunately, existing mitigation

schemes typically prioritize one of these two goals at the expense of the other.

The primary contribution of this thesis is the proposed mitigation frameworks that offer

comprehensive and efficient protections against generic micro-architectural side-channel

attacks and the recent speculative execution attacks. The underlying methodology behind

the proposed mitigations is that, side-channel-free can be provably achieved once the secret

information and the side channels are precisely identified, and any leakage of secret information

over the side channels is properly prevented. Following this key insight, we embed the side-

channel security specification into existing ISAs into the data-oblivious ISA, which enables

provable side-channel-free programming while maintaining flexibility for designing hardware

optimizations to enhance performance. In response to the surge of speculative execution

attacks, we present Speculative Taint Tracking and Speculative Data-Oblivious Execution,

which covers all types of speculative side channels with modest performance overhead.

In addition, this thesis addressed the limitation of the point defenses employed in existing

systems and presented novel micro-architectural side-channel attacks. Although these attacks

may be mitigated with future point defenses, our central argument is that micro-architectural

attacks and point defenses built for specific attack variants perpetuate a cat-and-mouse

game in which the attacker inevitably finds new avenues to exploit. Therefore, future side-

channel-proof systems must adopt protection schemes with comprehensive and robust security

properties, as exemplified by the solutions proposed in this thesis.

As hardware complexity continues to advance, it is inevitable that new micro-architectural

side-channel attacks will undoubtedly continue to surprise people in the near future. For-

tunately, in recent years, not only the researchers but also major hardware vendors and

software companies have paid more attention to this problem. However, this only marks the

beginning of our battle with micro-architectural side-channel attacks. Looking ahead, we

anticipate several critical challenges that must be overcome to secure victory in this ongoing

battle.

First, existing side-channel mitigation solutions are typically evaluated in an ideal, ex-
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perimental setting. However, the development of real-world hardware is a rigorous and

sophisticated process consisting of many stages. Evaluating side-channel security properties

will likely be integrated into multiple stages, such as in the early stages to prove the absence of

certain side channels, and in the post-design stages to verify that the implementation adheres

to the prescribed security specifications. In addition, there is a significant gap between the

evaluation methodologies employed in the research area and the industrial manufacturing

process. Therefore, existing industrial tool chains must be extended to properly evaluate the

security property and the performance overhead of proposed mitigation schemes.

Second, the trend of modern systems is shifting towards heterogeneity, with the emergence

of new hardware components such as GPU and domain-specific accelerators, alongside new

computing paradigms like machine learning and virtual/mixed reality. Consequently, future

research must address the side-channel vulnerabilities arising in heterogeneous systems. This

entails not only studying the new side channels enabled by non-CPU processing elements,

but also comprehending how the synergistic interaction between different processing elements

may enable new information leakage. Developing comprehensive side-channel protection in

heterogeneous systems is likely to be more complicated and requires collaborative efforts

among designers responsible for different system components.

Lastly, side channels are not limited to processors or hardware alone. Modern software

stacks incorporate various optimizations, such as caching, that may expose side-channel

vulnerabilities akin to micro-architectural side channels. Future research should examine the

security implication of those optimizations, and develop proper protection techniques if any

side-channel threat is identified.
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D. Gruss, “Squip: Exploiting the scheduler queue contention side channel,” in 2023
IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 2022, pp.
468–484.

[64] O. Aciicmez and J.-P. Seifert, “Cheap hardware parallelism implies cheap security,” in
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2007). IEEE,
2007, pp. 80–91.
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