
© 2023 Maxwell Bland

EMULATION-BASED SECURITY MEASUREMENT WITH APPLICATIONS IN
AVIONICS, REDACTION, AND INDUSTRIAL CONTROL

BY

MAXWELL BLAND

B. S., University of Califonia, San Diego, 2018
M. S., University of Califonia, San Diego, 2019

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Associate Professor Kirill Levchenko, Chair and Director of Research
Associate Professor Adam Bates
Assistant Professor Aaron Schulman, University of California, San Diego
Assistant Professor Gang Wang

Abstract

The safety of critical systems and data is of paramount importance to society. Attacks
on these systems can have catastrophic consequences, and the security of these systems is
often difficult to measure. Existing methods often involve access to an operating version
of the system, such as a physical device or executable specification, to provide ground-
truth. However, access to a complete representation of the system is not always possible
or practical. In this dissertation, we explore the use of emulation to measure the security
of systems in the absence of this ground-truth information.

Complex system emulation often requires sophisticated approaches to digital foren-
sics and tactics for navigating undecidability resulting from uncertainty of the system’s
state. To address these challenges, we present intelligent guess-and-check strategies for
deducing hidden information in executable code in the absence of original source code
or other auxiliary information. Our core technical contributions are (1) the first symbolic
execution based firmware rehosting system, used to generate emulations of embedded
systems. (2) A novel system for the analysis and recovery of glyph positioning infor-
mation in PDF documents. This system was used to recover redacted text information
where the characters were removed in hundreds of sensitive documents. (3) A logic-
based intermediate representation and framework for the extraction of lifted function
summaries from binary firmware. This framework makes existing verification and syn-
thesis techniques applicable to real-world systems by translating implemented code to
mathematical models. Where appropriate, we justify our strategies through discussions
of correctness, precision, and generalizability. Our results are never theoretical: we apply
them to pre-existing, empirically validatable domain rather than models: among others,
we study the Communication Management Unit used in Boeing 737 Aircraft, histori-
cally important redacted documents, and a programmable logic controller operating a
Tennessee Eastman chemical plant reactor pressure valve.

ii

Acknowledgments

I would like to thank my advisor, Kirill Levchenko, for pushing me to standards and
achievement few attain and for maintaining his support throughout the Ph.D. process.
Thank you to my committee members, Adam Bates, Aaron Schulman, and Gang Wang,
for their support and guidance throughout the Ph.D., before, and in the completion of
this disseration.

Thank you to Abraham Clements, Gabriela Ciocarlie, and Richard Kennell with Cy-
ManII for their support, advice, feedback, particularly in relation to the InteGreat system.
Additionally, I thank my collaborators Anthea Chen, Anushya Iyer, Stephen Checkoway,
Stefan Savage, Joshua Mason, YiFei Zhu, Evan Johnson, Mingjia Huo, Stewart Grant, Alex
Snoeren, Anil Yelam, and Nishant Bhaskar for their support and efforts throughout our
papers together, though the subjects are not all approached in this thesis. I also thank
the University of Illinois, National Science Foundation, and CyManII for funding my
research and efforts as a graduate student.

Additional thanks are in order for my labmates Tzu-Bin Yan, Margie Ruffin, Michael
Chen, Megan Culler, Jonatas Marques, and many others at the Coordinated Science Labo-
ratory who have provided support and friendship throughout my time at the University
of Illinois, including Andrew Miller, Nikita Borisov, Michael Bailey, Deepak Kumar, Zane
Ma, Paul Murley, Kyo Kim, and Joshua Reynolds. I would also like to thank my friends
in the Urbana-Champaign community, including Kevin Langowski, Alex Rogers and the
Ship of Fools, the Rose Bowl, Waluigi’s Mansion, the Spice Rack, and other basements
unnamed who supported my harsh noise wall and other musical experiments.

Finally, thank you to Annika Sornson, whose love made me realize not all systems
need to be broken: unfortunately, it was too late for the redactions, airplanes, and others.
Thank you as well to her parents for their support and friendship. Finally, thank you to
my parents and step-parents for their love and sacrifices.

iii

“The revolutionary character of scientific knowledge is its speculative import.”
— Quentin Meillassoux, After Finitude, p. 120.

“Reason is, and ought only to be the slave of the passions.”
— David Hume, A Treatise of Human Nature, II.3.3, p. 415.

“We only have a right to the retro, to the phantom, parodic rehabilitation of all lost referentials.”
— Jean Baudrillard, Simulacra and Simulation, p. 41.

iv

Table of Contents

Chapter 1 Introduction . 1
1.1 Targeted Firmware Rehosting for Embedded Systems 5
1.2 Glyph Positions Break PDF Text Redaction 6
1.3 Lifting Continuous Control Equations from Binary Code 7
1.4 Summary of Contributions . 8
1.5 Dissertation Structure . 9

Chapter 2 Preliminaries . 10
2.1 Program Analysis Methods . 10
2.2 Information . 14

Chapter 3 Emulation Systems . 17
3.1 Peripheral Emulators and Instruction Set Simulators 17
3.2 Dynamic Analysis . 22
3.3 High Level Emulators . 23
3.4 Encoding, Decoding, and Modeling . 27

Chapter 4 Targeted Firmware Rehosting . 32
4.1 Related Work on Rehosting . 34
4.2 Jetset’s Inference of Hardware Semantics . 37
4.3 Evaluating Jetset’s Targeted Rehosting . 42
4.4 Open Challenges in Rehosting . 50
4.5 Summary . 51

Chapter 5 Digital Forensics Using Simulation . 52
5.1 Introduction . 52
5.2 Background on PDF Text Representation . 54
5.3 Modeling and Simulating Glyph Shifting . 61
5.4 Breaking Redactions . 63
5.5 Broader Implications . 74
5.6 Summary . 78

Chapter 6 Logic-based Function Extraction . 80
6.1 Introduction . 80
6.2 Related Work on Lifting . 82
6.3 Design of a Logic-based Lifting Specification 84
6.4 Experiments on a Quad-copter and Programmable Logic Controller 89
6.5 Precise Destabilization Attack Development 96

v

6.6 Discussion . 97
6.7 Summary . 98

Chapter 7 Conclusions . 99

References . 102

vi

Chapter 1: Introduction

Software systems, usually invisible to the end user, are ubiquitous in our daily lives.
They are used in a wide range of applications, from consumer electronics to critical
infrastructure. The security of these systems is paramount, as they are prevalent in our
daily lives, however, analyzing these systems can be difficult as code and hardware
may be opaque, meaning vulnerabilities may be known to specialized attackers that are
not possible to measure automatically or easily. Existing techniques often make strong
assumptions about our understanding of the system, such as access to source code, non-
symbol-stripped binaries, or mathematical models.

Conventional approaches rely on real-world testing or complex simulations, bug re-
ports, high-level verification (formal methods), and manual analysis to find bugs and
vulnerabilities. There is nothing inherently wrong with any of these approaches, but they
still have limitations due to complexity, cost, coverage, and effort involved, limiting these
approaches to parties with sufficient resources to perform them. And regardless of the
approach taken to security, as with most problems, there remain unknown features of the
system under analysis (or simply too many systems), making it potentially impossible
to predict all future exploits. In 2022, Mitre reported 34,553 CVE entries [1], following a
steady, monotonic increase from 2016. Moreover, metrics for evaluating the complexity
of source code are still fail to capture developer expectations [2, 3, 4]. Even in the “good”
case, where we have perfect ground truth for a system, algorithms struggle to make accu-
rate judgments of general constructs in real systems, judgments necessary to determine
systems’ security.

The security of a system hinges on whether the flaws in the system are represented
in an accessible medium whereby they are effectively identified and corrected, a hard
problem as every measurement exists in a specific interpretive context [5]. Each paradigm
for securing a system, e.g. a provably correct decision system, implicitly determines
which flaws are considered or prevented and which are overlooked. Ultimately a variety
of approaches are necessary to secure a system and all of them, in principle, make
some statement about the observable behavior of the system during operation. Security
is a veritable symbolic arms race towards better representations and emulations, as
evidenced by recent works [6, 7, 8], including works from this dissertation [9, 10, 11]. In
this dissertation, we present several novel approaches to the representation and emulation
of complex, opaque software systems, broadly applicable and empirically capable of
identifying flaws in and exploits for real-world avionic, PDF document redaction, and

1

industrial control systems.

Terminology This dissertation focuses on single, specific concepts of emulation and sim-
ulation as applied to systems. While traditional definitions of emulation and simulation
are vague, “the ability of a computer program in an electronic device to emulate (or
imitate) another program or device” and “the imitation of the operation of a real-world
process or system over time”, respectively, in this dissertation, we will use a more refined
conception of these two terms.

Under the traditional definition, an emulation is a simulation applied to a program or
device: we define emulation as the process of executing a model of the system where
the internal state ofthe system is not necessarily preserved, e.g. some component may be
missing, on some kind of host computer [12], a definition closer to the implications of the
use of the term “emulation” in standard English. We will use the term simulation to refer
to a process aimed at replicating and modeling the internal state of the target: a perfect
simulation would be an exact copy, whereas a perfect emulation may not resemble the
original system at all, but would match the original system’s behaviors exactly. Implied in
this definition is the fact that emulation embraces speculation, non-exact representation,
and a lack of ground truth for the system being analyzed, making it more broadly appli-
cable than simulation for complex systems. Emulations, simulations, and the systems in
question are subjects of dynamic analysis, which attempts to run the program and analyze
its execution, introduced by Ball in 1999 [13]. Dynamic analysis is contrasted with static
analysis, which attempts to analyze the program without running it and also attempts
to make statements about the dynamic behavior of the system [14]. In either case, the
purpose of these analyses is typically to enforce some requirement (also called property
or specification), to represent the desired behaviors of the system, such as safety, stability,
or temporal constraints, falling into the subdomain of formal methods [15, 16]. More
generally though, emulations can be used to imperfectly replace the system in question,
aiding in processes falling outside the purview of verification, such as binary exploit
development, information leak detection, and behavioral prediction [17, 18, 19].

Within the broad areas of emulation and simulation, this dissertation focuses on three
strategies or techniques: rehosting, dictionary attacks, and lifting.

Rehosting Rehosting is the process of bootstrapping a system so that it can be emulated
in a different context, typically a laptop computer instead of the original embedded
system, e.g. a programmable logic controller. This encounters the particular challenge of
modeling or re-implementing subsystems or sub-components that are not present in the

2

new context, such as hardware devices. If a ground truth reference for the subsystem’s
behavior is available, then this can be used to bootstrap a simulation of it (or sometimes
a connection to the subsystem itself) in the new context, but this is not always the case.
In cases where a ground truth reference is not available, the behavior of the subsystem
must be inferred from residual information recoverable from the system, such as binary
code for interacting with the subsystem.

Dictionary Attacks A brute force approach to emulation that attempts to perform a
universal quantification of the possible true behaviors of the system and then use some
checking or verification mechanism to isolate the correct behavior. In many cases it is
possible to extract a function from a program, and evaluate it in isolation of the rest of
the system for all possible given inputs, recovering all possible outputs. We also classify
fuzzing, the process of mutating inputs to a system to find unexpected behaviors, as a
form of dictionary attack. This can precisely determine what the system is capable of in
circumstances where a specific function can be isolated, the number of possible inputs is
constrained, and a precise verification mechanism is available.

Lifting Lifting is the process of translating the representation of a system into a different
symbolic domain which is easier to reason about. The result of lifting is an intermediate
representation or extracted model of the system. An example of this is a translation from
binary code to mathematical statements which can be emulated outside of the complex
context of software, e.g. one with hardware device models. While this can potentially
miss the validation of critical components, careful lifting can also avoid the necessity of
reasoning about unknowns in the system.

Challenges Rehosting, dictionary attacks, and lifting each have their own challenges in
generalization, scalability, and completeness respectively [20, 21, 22]. Significant progress
continues to be made in addressing these challenges in order to apply each of these
techniques to practical problems, and approaches to emulation are often mixed in order to
achieve effective results [23, 24, 25, 26, 27, 28]. However, each of these strategies presents
a perspective on the problem of evaluating a system in the absence of a complete model,
and so all recent work shares a common goal of determining knowable and unknowable
features or flaws in a system.

Dissertation Topics Whereas verification enforces a specific representation of a system
through mathematical proof, emulation strives to develop a useful clone of the system

3

for another context. More recent data-driven verification approaches bridge this gap but
do not approach the subject of emulation and how it affects modeling. This dissertation
does not provide a framework for completing all incomplete system models but does
make progress the above common goal by introducing theories on or strategies for the
emulation of complex systems. One shared theme is the use of subtle information present
in things which are distinctly not the system in order to emulate the system. As a result,
our strategies are particularly useful for real-world systems of which only some qualities
are known or accessible. Thus, we are also able to provide evidence of our theories’
effectiveness in practice and provide insight into the absolute limits of emulation.

In the description of these strategies for emulation, we will find the application of guess-
work is unavoidable, and that these guesses must later be checked and verified against
the system itself. Correct emulation avoids making unjustified assumptions about possi-
ble states or accurate representations of the system under analysis. Luck and probability
play an integral role in the application of emulations and the proper use of emulation
often requires the joint application of uncertainty and sensitivity analysis, but we will
not limit ourselves to analyzing emulations in terms of axiomatics or quantification via
a unifying theory. A complete description of the problem acknowledges mathematics
does not confer existence upon its subject and adopts conceptual or empirical strategies
into the execution and analysis of unknown system features. That is, in this disserta-
tion, we focus on the symbolic representations that exist prior to analysis and effects of
interpretive frameworks on the generation of emulations from the context of:

1. the synthesis of hardware models from software information [9] (Chapter 4),

2. the determination of text content after it is removed (redacted) from PDFs [10]
(Chapter 5), and,

3. the use of logic-based intermediate representations for lifting between symbolic
domains [11] (Chapter 6).

With exceptions for the implementation of a taint-tracking based symbolic execution
system in QEMU and some ideas relating to symbolic search strategies (Chapter 4),
the information leak quantification for specific redaction dictionaries (Chapter 5), as
well as the analysis of the quad-copter stabilization algorithm (Chapter 6), which were
implemented jointly with coauthors, the works presented in this dissertation are the
author’s own with dialectic support from coauthors.

We next provide a more detailed introduction to each of the above topic areas, followed
by a summary of contributions and impacts.

4

1.1 TARGETED FIRMWARE REHOSTING FOR EMBEDDED SYSTEMS

The possession of a physical copy of a critical system for analysis is often difficult. Ad-
ditionally, it is valuable to attain an emulated copy of these systems for the purposes of
precise, invasive analysis without binary rewriting. Implementing an emulation of a sys-
tem’s hardware devices is labor intensive, therefore, automated methods for generating
emulated, rehosted copies of systems are valuable.

In this dissertation, we discuss the possibility of generating emulations of hardware
from information present in firmware alone, with the first strategy being the symbolic
analysis of firmware interactions with hardware devices. By collecting the constraints soft-
ware places on the function of hardware during interaction with hardware peripherals,
it is possible to synthesize a model of the hardware device. We show the limitations and
challenges involved in this analysis and find that in many cases it is possible to use this
partial constraint information to generate a useful emulation of associated hardware. In
solving this challenge, we introduce one of the first fuzzing systems targeted at arbitrary
QEMU system simulations, and several tactics for dealing with undecidable problems
related to symbol-stripped, binary program analysis. We applied this system to more
than ten firmware images, but we focus on one in particular, the Communication Man-
agement Unit of a Boeing 737, and other aircraft, responsible for managing a large part
of the communication of key Line Replaceable Units (LRUs) in the aircraft, including the
Flight Management Computer. Our emulated hardware not only allowed us to develop
an effective rootkit and local code execution attack on the CMU, but also identify three
remote messages capable of powering down the machine, creating a denial-of-service
attack.1

In the preliminary section of this dissertation, we introduce the notion of abstract
interpretation as a method of reasoning about symbols inside of algorithms. This method
was implied in the form of symbolic execution within the Jetset system [9], where it was
able to rehost all the devices targeted by an “equivalent” fuzzing approach [23], as well as
and SEL Feeder Protection relay controlling breaker switches in electrical substations [29],
the aforementioned CMU-900 [30], and various SoCs (Raspberry Pi 2 and BeagleBoard-
xM) [31, 32]. The rehosted emulations can be subject to several forms of potentially
destructive dynamic analysis routines that would be impossible on the physical device,
such as fuzzing, which may “brick” the device in question. The use of symbolic execution
for rehosting-related tasks has now been adopted and integrated into several additional
research works in top venues to rehost a variety of systems [33, 8, 34, 35]. A complete

1Due to their sensitivity, the specifics of these exploits are not given explicit detail.

5

explication of the challenges and techniques involved in rehosting is beyond the scope
of this dissertation and we refer interested readers to [20].

1.2 GLYPH POSITIONS BREAK PDF TEXT REDACTION

The analysis of embedded systems is just one application of emulation—emulation
of software systems can also play a vital role in the analysis of information leaks. By
extracting and emulating the glyph positioning behavior of popular PDF document
creation software, it is in fact possible to generate precise fingerprints for the layout of
text on a page. It turns out that this layout contains sub-pixel error-correction information
which leaks a large amount of information about any text redactions where characters
are removed the document’s digital representation.

To emulate these different PDF creation software stacks and break redactions, we
developed a novel framework Edact-Ray [10] which attempts universal quantification
over potential redacted texts in emulation to identify the input which produced the
PDF document under analysis. The system also includes scripts which are capable of
analyzing thousands of PDF documents and locating vulnerable redactions in these
documents in bulk. Using access to the RECAP court document system [36], we were
also able to identify hundreds of non-excising redactions where the text was simply
covered with a black box rather than being removed from the PDF, resulting in the
discovery of confidential trade secrets for large corporations, the addresses of famous US
celebrities, and salacious statements. This has resulted in the notification of hundreds of
lawyers involved and significant efforts to make redaction uniform across court systems.

We used the Edact-Ray system to break a number of historically relevant redactions
otherwise thought to be secure. These include redactions in documents from the Dig-
ital National Security Archives (DNSA) [37], and the US Court System [38]. We also
used the system to identify hundreds of broken redactions in Office of Inspector Gen-
eral (OIG) [39] and Freedom of Information Act (FOIA) documents [40]. Our findings
resulted in the notification of more than 22 different US government agencies, national
media recognition [41] and extensive collaborations on working towards a solution to
the problem of broken redactions.

6

1.3 LIFTING CONTINUOUS CONTROL EQUATIONS FROM BINARY CODE

The last topic addressed in this dissertation is a bottom-up approach to verification,
a system for lifting discrete binary code algorithms to the continuous domain for sim-
ulation in frameworks like Matlab Simulink [11, 42]. We consider the possibility of rep-
resenting symbolic translation rules in a logic-based intermediate representation, where
micro-architectural features are modeled deductively and complex statements about
program semantics may be derived by nesting simpler statements. Intermediate repre-
sentations for the purposes of lifting (decompilation), translation, and emulation are an
active area of research and are used by several high-powered offensive analysis tools
such as angr and Ghidra, however, logic has not yet been used as a syntax for describing
micro-architectural features in a decompiler [43, 44, 8, 45, 46, 47].

As a result, current intermediate representations for binary analysis suffer from several
drawbacks related to nesting and translation. They strive for a static representation of
program semantics rather than one which must be dynamically evaluated, limiting their
representational capacity for more complex semantic structures present in code. This
dissertation explores the possibility of using a logic-based intermediate representation to
lift continuous control equations from the binary firmware of Cyber-Physical Systems [48].
We begin by representing and lifting simple micro-architectural semantics, such as the
splitting of a floating point number split across registers 0 and 1 in the ARM architecture.
These rules are then nested into more complex deductive chains, such as the structure
of common mathematical functions, through the use of statements in propositional logic
over the theory of uninterpreted functions2. The representation is extracted using abstract
interpretation as a subroutine to identify the specific relations between input and output
locations, in order to translate logically-defined program slice boundaries in the system
under analysis to relations and operations over uninterpreted functions. The results are
then combined via a theorem prover to lift implicit, abstract semantics from a binary
firmware images, e.g. mathematical functions like cosine.

We implemented this approach in a tool called InteGreat and use the tool to extract
functions from a Programmable Logic Controller (PLC) used to control the reactor pres-
sure of a chemical plant, as well as the stabilization algorithm of a quad-copter and a
single back-propagation step in an artificial neural network. InteGreat does not just lift
program slices to the continuous domain using the logical statements embedded in its
intermediate representation: it then translates the lifted representation into a Matlab emu-

2Uninterpreted functions discard the computation under analysis and reduce it to a single symbol and
list of input, output locations.

7

lation of the system, allowing us to model precise destabilization attacks on the chemical
plant and identify flaws in implementations and published versions of the quad-copter’s
stabilization algorithm.

1.4 SUMMARY OF CONTRIBUTIONS

The effective emulation of complex systems is a critical component of their analysis
and measurement. This dissertation presents three different approaches to the emulation
of complex systems, each of which has been used to identify and exploit vulnerabilities
in real-world systems, and its objective is to expand our understanding of how unknown
information in systems may be rediscovered. Our contributions are therefore as follows:

1. Novel state-of-the-art techniques in the rehosting and analysis of complex embed-
ded systems through the use of targeted abstract interpretation and comprehension
of firmware constraint sets into models of hardware peripherals. This approach al-
lowed us to emulate hardware devices across three different micro-architectures [9],
and perform dynamic analysis (fuzzing) of the systems in question, then reproduce
the results of fuzzing on the related physical devices. We were able to develop a
sophisticated exploits for a critical avionics system by combining careful analysis of
the generated emulations with analysis of the device in question [49] (Chapter 4).

2. The first effective attacks on document redactions where the characters of the text
are not present in the PDF document (a literal black box) [10]. By emulating the
glyph positioning behavior of popular PDF document creation software, we were
able to uncover sensitive information from several documents of significant his-
torical importance. Our approach has been used to identify hundreds of broken
redactions in documents from the US Court System, the Digital National Security
Archives, and the Office of Inspector General (Chapter 5).

3. The introduction of logic-based intermediate representations for binary lifting and
the bottom-up verification of cyber-physical system implementations [11]. We im-
plement a system adopting this approach and use it to extract control equations
from real-world firmware, emulate the associated systems behavior, and develop a
precise destabilization attack on a chemical plant’s reactor pressure (Chapter 6).

To the extent that it is safe, we have released software code and tools for all associated
techniques: JetSet [50], which applies symbolic execution to rehosting, Edact-Ray [51],

8

but only the portions relating to the location and defense of vulnerable redactions, and
InteGreat [11], for lifting using a logic-based intermediate representation. Each of these
systems has been applied to real-world case study systems with verifiable results. The
most impactful of these is Edact-Ray, which has identified vulnerabilities and hidden
information in a number of important documents (Sec. 5.4 and Sec. 5.5); the full version
of the tool now sees continued use by the US courts and the US OIG. Jetset was able
to successfully rehost thirteen distinct pieces of firmware (Sec. 4.2) and an associated
system-mode QEMU fuzzer was able to reproduce and identify identical code-paths
across real and Jetset-emulated copies of both Linux system calls on the Raspberry Pi 2
and VRTX system calls on the CMU-900 (Sec. 4.3.2). The techniques and tools are also
actively being shared with numerous other researchers in the Department of Energy,
Universities, and private industry.

1.5 DISSERTATION STRUCTURE

We introduce technical concepts and background in Chapter 2. Chapter 3 describes
different forms of emulation and the systems used throughout this dissertation, such as
symbolic executors, as well as related work on each subject. We then introduce the concept
of rehosting for emulation in Chapter 4, and describe the JetSet system for rehosting
embedded systems. Chapter 5 describes emulation’s role in dictionary attacks on leaked
information as well as the Edact-Ray system for identifying broken redactions in PDF
documents. In Chapter 6, we introduce the InteGreat system for lifting control equations
from binary firmware and the function extraction, summarization for the purposes of
emulating of complex cyber-physical system behavior. We conclude in Chapter 7 with a
summary of this dissertation and a discussion of future work.

9

Chapter 2: Preliminaries

Here, we introduce concepts, vocabulary terms, operations, and initial related work
that is referenced throughout this dissertation. The theme of each of these subject areas
is the representation of information, whether that information relates to the operation
of binary code, the content of removed text, or a deduced interpretation of an existing
system.

2.1 PROGRAM ANALYSIS METHODS

The accuracy of a constructed emulation depends on the method used to interpret the
system under consideration. Common methods for reasoning about software systems
include abstract interpretation, symbolic execution, lifting, and intermediate representa-
tions.

2.1.1 Abstract Interpretation

Under the traditional definition, abstract interpretation is a method of approximating the
behavior of a program using monotonic functions over ordered sets (typically lattices).
It is related to the emulation of a program in that it is intended to extract a model of
the program’s behavior without performing the exact computations involved. However,
abstract interpretation has become more of a general framework for defining relations
between different domains, as the necessity of translation between dissimilar symbolic
representations, e.g. in transpilers, has become more prevalent.

Arbitrarily, let L and L′ be concrete and abstract ordered sets, respectively.3 These sets
are related to each-other by a total function, which maps elements in one set to another.
We define two functions, α and γ, which map elements of L to L′ and vice versa, and are
called the abstraction function and concretization function respectively.

Then, given ordered sets L1, L2, L′1, L′2, the concrete semantics f is a monotonic function
from L1 to L2, and a correct abstraction from L to L′ is valid if the abstract semantics f ′

mapping L′1 to L′2 preserves the ordering in f of L1 to L2. In this definition the function
used to provide an order on objects in the sets is undefined. The primary goal of abstract
interpretation is to explore all executions of a program by over-approximation. This is

3The ordering of higher or lower levels of abstraction themselves is a function over the mathematical
structures being discussed.

10

established by working from an abstraction of a concrete state (e.g. registers and memory)
and providing commutativity: given a c′ = o(c) where o is an operation and c a concrete
state, and α(c) the abstraction of c, o(α(c)) = α(o(c)) must hold true. Second, states are
joined when their execution reaches an equivalent program counter (in the simplest case,
by combining two sets, e.g. a join b = {a, b}). They may also be widened, a statement
in logic which handles undecidable semantics, e.g. loops, to ensure all executions are
ultimately analyzed.

2.1.2 Symbolic Execution

A standard misconception is that symbolic execution is a form of abstract interpretation:
symbolic execution is concerned with the expression of the values of all variables (the
state) for arbitrary points in a program’s execution as functions of initial values. To do
so, it only needs to compute an under-approximation of the possible program states,
and not all possible executions. However, in practice, symbolic execution is implemented
through a method for the abstract interpretation of a concrete, machine code program
into the theory of bit-vectors. For example, in standard execution the statement (x >

5)? y+ 1 : x+ 1 would be concretely evaluated to 4 if x = 3, however, a standard symbolic
execution, the system will record the pair (x <= 5; x = x + 1), (x > 5; x = y + 1)
into a symbolic state, representing the two possible execution paths. Unlike abstract
interpretation, symbolic execution’s limitations make it more immediate: a function of
initial values can be defined without explicit widening or joining operations.

Symbolic execution is a powerful tool for program analysis, but it is not without its
limitations. The core challenge is the path explosion problem, where the number of pos-
sible execution paths grows exponentially with the number of branches in the program.
This can be limited through loop invariant analysis, where the system attempts to identify
the invariants of a loop and only execute the loop a finite number of times, a search strat-
egy, which determines which execution paths to explore from the exponential number
possible, or a number of other deductive techniques. Closely related is the challenge
of memory aliasing, which occurs when the system is unable to determine whether two
pointers point to the same memory location, as the values of each pointer are treated as
symbolic expressions over the theory of bit-vectors rather than concrete values. Addition-
ally, there is the environmental modeling problem, where symbolic execution is unsound
due to missing context, typically because the specific execution behavior of the hardware
is not present, e.g. interrupts or highly-specific micro-architectural features.

11

2.1.3 Lifting

We contrast abstract interpretation with the notion of lifting, a borrowed term concept
from category theory, where given a structure-preserving map from one mathematical
structure to another of the same type (a morphism), f : X → Y, and another g : Z → Y, a
lifting of f to Z is a morphism h : X → Z such that f = g ◦ h, or more simply, a function
that points to another representation that may more closely resemble the structure Y but
also has a morphism to Y (Fig. 2.1).

X Y

Z

f

g
h

Figure 2.1: Lifting f to Z

When applied to code, lifting typically refers to exposing the semantic structure of
the binary to a higher level of abstraction. However, as the mathematical definition
suggests, lifting may also refer to a different structure with the same morphism to the
“true” structure. Note that lifting is a form of translation, but the new structure exists over
a different domain. For example, machine code may be lifted to a symbolic representation
that represents a call-graph, or it may be lifted to a higher-level language, e.g. C, but it
would be translation rather than lifting if the code was made into an equivalent, different
machine code, e.g. ARM to x86.

Standard forms of lifting include translating a program into a form of graph repre-
senting latent relationships in the program, in order to simplify algorithms for reasoning
about the program’s structure. For example, a program may be translated into a control
flow graph (CFG), where each node represents a basic block of code and each edge repre-
sents a possible transition between blocks. Figure 2.2 shows an example of lifting a CFG
from a simple machine code program.

Program slicing is a form of lifting which transforms a program specification into slices,
sets of statements affecting sets of values in the program’s state at some points of interest.
More generally, they may also refer to arbitrary subsets of the program’s statements. The
determination of the slices is typically referred to as a slice criterion. Symbolic execution
can be used to determine a given slice by exploring all paths through a program and
thus the statements which affect the value of a variable of interest.

12

0x0 mov eax, 0x0

0x5 mov ebx, 0x1

0xa cmp eax, ebx

0xc jne 0x15

0xe mov eax, 0x1

0x13 jmp 0x1a

0x15 mov eax, 0x0

0x1a ret

0x0 0x5 0xa

0xc

0xe

0x13

0x15 0x1a

Figure 2.2: Lifting a CFG from machine code

2.1.4 Intermediate Representations

The term intermediate representation (IR) refers to a representation of a program that is
used as an intermediate step of a translation process, typically for a compiler. The IR is
typically designed to be easy to translate to and from the source and target languages,
and to be easy to reason about. Referring to Fig. 2.1, in lifting the IR is the structure Z
used to translate between X and Y. The critical form of IR for use in symbolic execution
and abstract interpretation more generally are abstract syntax trees (ASTs). ASTs are
a form of IR that represent the syntactic structure of a program as a tree, where each
node represents a syntactic construct and each edge represents a relationship between
constructs. For example, the AST for the expression a + b * c is shown in Fig. 2.3.

+

a *

b c

Figure 2.3: AST for a + b * c

ASTs may be used in conjunction with Hoare logic to reason about programs. Hoare
logic is a formal system for reasoning about the correctness of programs. It is based on
the notion of Hoare triples, which are statements of the form {P}S{Q}, where P and Q
are predicates and S is a statement. The meaning of a Hoare triple is that if the predicate
P holds before the execution of S, then the predicate Q will hold after the execution of
S. For example, the Hoare triple {x = 0}x := x + 1{x = 1} states that if x is equal to
0 before the execution of x := x + 1, then x will be equal to 1 after the execution of
x := x + 1.

This is equivalent to a satisfaction relation between a program and a specification, which

13

evaluates to true if the program satisfies the specification. In symbolic execution, this
specification is represented as a set of predicates defined over the program’s state, deter-
mined both by external inputs and the current execution path under consideration. By
evaluating the satisfaction relation, symbolic execution can determine whether a given
path is feasible.

Finally, note that while symbolic execution, lifting, and intermediate representations
can preserve a program’s semantics, each has the potential to introduce errors. For ex-
ample, the process of lifting a program to an IR may introduce errors if the IR is not
expressive enough to represent the semantics of the program. The outputs of this transla-
tion ultimately serve to perform analysis on the program’s behavior, and the correctness
of this analysis depends on the correctness of the translation. Thus, the use of these tech-
niques is ultimately one basis for emulation, an insight that will become more apparent
in our discussion of QEMU (Sec. 3.1).

2.2 INFORMATION

Many definitions of information exist—this dissertation will use information to repre-
sent pure difference or distiguishability between two objects, e.g. 0 and 1. A key measure of
information is entropy which quantifies the amount of uncertainty involved in a random
process [52]. Given a discrete random variable X with a probability distribution P, the
entropy of X is defined as

H(X) = − ∑
x∈X

P(x) log2 P(x) (2.1)

where P(x) is the probability that X takes on the value x. For example, the entropy
of a fair coin is H(X) = −1

2 log2
1
2 −

1
2 log2

1
2 = 1. The entropy of a biased coin with

P(heads) = 0.9 is H(X) = −0.9 log2 0.9− 0.1 log2 0.1 ≈ 0.47. The use of base 2 for the log
indicates that entropy is measured in bits. Entropy quantifies the amount of information
in a distribution as the number of bits required to represent it. For a uniform distribution
over n values, the entropy is log2 n.

It is therefore also possible to quantify the amount of information leaked by a process
f taking a “secret” input X and producing output Y as what number of bits of X may
be inferred from Y. If the number of bits determinable from Y about X is lower than
the total number of bits required to represent X, information has been lost. This does
not necessarily indicate it is impossible to disambiguate a specific value using accessible
information, but (assuming quantization) that some value from the initial distribution

14

cannot be differentiated from some other value.
For accurate emulations and measuring security, we are concerned with determining

how much information it is possible to recover about X from Y. However, X is inacces-
sible in many cases, so we must select some X′ as a dictionary limiting the scope of the
possibilities we are willing to consider. Selecting a point x ∈ X′, if f (x) ∈ Y and f is
assumed deterministic, then it is possible x ∈ X. In some cases it is possible to construct
a dictionary that is complete, i.e. that contains all possible values. When a dictionary is in-
complete, often due to practical limitations on computation and analysis time, it becomes
necessary judge whether a dictionary is reasonable.

2.2.1 Guess-and-Check

We consider a dictionary reasonable if it contains values that are likely to be observed in
practice. However, this is not a sufficient restriction for soundness, i.e. that results derived
from considering the dictionary as the superset of the accessible information must include
all correct values. So we have two forms of uncertainty: analytic uncertainty with respect
to the dictionary, and empirical uncertainty with respect to the resolution of the correct
dictionary entry from available information. The former occurs in cases where the true
set of values may not be a strict subset of the considered values, and the latter occurs
where information is lost.

The derivation of a value from accessible information is a guess and must be subject
to some form check, or oracle to determine whether, in fact, it is a correct derivation.
However, when analyzing real systems, an oracle is often unavailable, so we must rely
on the statistical probability of a guess being correct.

2.2.2 Regularity Conditions, Dependence, and Independence

Correct guesses are dependent on certain regularity conditions, assumptions which
imply a given estimation of a probability is correct. For example, assuming a uniform
distribution over a set of values implies that the probability of any value being selected
is equal to the inverse of the number of values. In contrast, an empirical distribution over
a set of values implies that the probability of any value being selected is equal to the
frequency of that value in the set.

The probability of a guess being correct is dependent on the amount of information
available to the guesser, and is informed by the method of analysis. We therefore differ-
entiate between dependent and independent information. Two pieces of information are

15

dependent if the presence of one piece of information affects the probability the other is
also present. Two pieces of information are independent if the presence of one piece of
information does not affect the probability of the other being present.

In this dissertation, we will consider the role that the probability a guess is correct
plays when measuring security and constructing emulations. Our study of rehosting will
demonstrate perfect inference of an absolutely “correct” value returned by a missing
hardware device is not necessary to construct a useful emulation. In studying redactions,
we will show how assuming a certain regularity condition, e.g. an empirical distribution
of names in a population, can make privacy attacks significantly more effective. Finally,
our framework for the extraction of continuous functions from binary firmware will
illustrate the utility of frameworks for inferring and explicating dependencies between
information in a system.

16

Chapter 3: Emulation Systems

To analyze a system, we must effectively represent its behavior for some case, or set
of cases, of interest. This dissertation is concerned with the emulation of systems or the
effective duplication of a system for the purpose of identifying flaws, particularly with
respect to security. In Chapter 4, we will consider the process of rehosting a system to a
different domain in the context of hardware and instruction set emulators, which often
allow complex embedded and cyber-physical systems to be analyzed on consumer desk-
top computers, e.g. laptops, and discuss dynamic analysis, a form of simulation which
involves instrumentation of the system under analysis, in this context. Chapter 6 and
Chapter 5 will discuss consider high-level emulators, copies of a system in a more ab-
stract domain, and function extraction, strategies allowing researchers to dissect complex
hardware, firmware, and software systems into testable sub-components. Both Chapter 4
and Chapter 6 consider the use of symbolic execution and abstract interpretation as a
mechanism for emulation, as these techniques explore multiple execution paths and thus
implicitly emulate any single, particular execution trace as long as their lifting, semantics,
and search strategies are able to identify it. Every one of these discussed formalisms is
well-known and each has several systems that implement the technique or strategy for a
variety of real-world use cases [53, 54, 55, 56, 57, 58, 59, 60]. This dissertation may be the
first to organize these approaches as forms of emulation—detailed literature reviews are
included alongside Chapters 4, 5, and 6.

In this chapter, we will introduce four different forms of emulation used in the anal-
ysis of complex systems. For each form, we will identify contemporary systems that
implement the approach, define its nature and limitations, and provide examples.

3.1 PERIPHERAL EMULATORS AND INSTRUCTION SET SIMULATORS

Embedded systems have different requirements than general purpose computers, and
typically interact with specialized peripheral devices, such as actuators, and often run
on different architectures designed for low power or high reliability usage (though the
choice of ISA may also be due to age, cost constraints, and similar root causes). We next
define the core elements of emulators designed to duplicate the operation of embedded
systems on general purpose computers [61].

17

Micro-architectural Semantics Base semantics for a micro-architecture consist of the
behavior and specification of instructions which are capable of being executed, the state
these instructions can affect, and peripheral interfaces, such as memory mapped I/O.
Beyond these base semantics, the architectural specification also captures the security
model of the architecture, such as exception handling and memory model capabilities
(e.g. read-only access), and the effects that various software interfaces (machine code
instructions, registers, and memory state), can have on this security model. Peripheral
interfaces define the capacity for the microarchitecture to interact with its environment,
though not the behavior of the peripherals themselves (discussed in Sec. 3.1). As an exam-
ple, semantics may refer to the content of the 12,940 pages of the Architecture Reference
Manual [62], which describes the behavior of the ARMv8-A ISA and the representation
of the processor’s state.

Complex micro-architectural semantics may also be established through microprogram-
ming. Microprogramming is a technique for implementing the behavior of an instruction
by executing a sequence of simpler instructions. The execution of several microcode
instructions effectively emulates the behavior of a single instruction. As a result of mi-
croprogramming and similar complex semantics, modeling the behavior of a processor
is a highly complex task and provides continuous challenge to development of effective
simulations for embedded systems.

Instruction Set Simulation Reviving the precise, non-standard definitions of emulation
and simulation introduced in Chapter 2, an instruction set simulator (ISS) simulates the
execution of instructions for a given ISA, typically by maintaining the state of the proces-
sor in its memory. There are two primary approaches to implementing an ISS. The first
is to implement the behavior of each instruction in the ISA in a programming language,
such as C, and to execute the instructions in the simulator by calling the appropriate
function, maintaining the processor state in variables. The second is to translate the ef-
fective behavior of the instructions into equivalent instructions on the host system, and
to execute the translated instructions. The first approach is easier to implement but the
second approach is typically faster, as it avoids the overhead of function calls and the
need to maintain the processor state in variables. Modern architectures also increasingly
support virtual machine (VM) extensions, which allow the host system to adopt the second
approach while maintaining security.

For many architectures, the specification of the processor and the physical implemen-
tation of the processor are the only full explication of the microarchitectural semantics.
That is, chipset manufacturers do not always provide a representation of the microarchi-

18

1 0xfff0010c: stw r0 ,4(r1)

Figure 3.1: Standard store instruction specified in assembly for PowerPC.

tectural semantics which can be readily provided as input to an algorithm or software
system. Because of this, many simulators face difficulties in emulating and discovering
more complex semantics, and these complex capabilities are often ignored. If they are
not ignored, simulators will typically use helper routines which operate outside of the
simulator’s standard translation process or representation of the system in order to han-
dle the complex operation. This is typically done because no equivalent translation to
the simulator’s intermediate representation has yet been given. Thus, both the the trans-
lation rules for the simulator and any helper routines used to avoid translation form an
intermediate representation of the target’s micro-architectural semantics. The simulator
may then be reused and leveraged to emulate a number of systems that are based on the
represented ISA without necessitating ownership of a chip implementing the ISA.

Example 3.1 (QEMU).

QEMU is a general purpose emulator that supports a wide variety of ISAs and hard-
ware peripherals [53]. QEMU is both a full system emulator, meaning that it is capable
of emulating the behavior of an entire system, including peripherals, and capable of
emulating the behavior of a processor in a virtual machine, which allows it to leverage
the virtual machine extensions of the host system to accelerate the emulation of the
target processor. In cases where native execution is not possible, QEMU will emulate the
instruction by executing a sequence of Tiny Code Generator (TCG) instructions operating
over a C struct that stores the target architecture’s micro-architectural state. For example,
the PowerPC instruction presented in Fig. 3.1, which stores the value in “r0” to an offset
of 4 from register “r1”.

This store instruction translates into the TCG instructions given in Fig. 3.2, where
qemu_st_i32 refers to the guest memory. The first of these instructions moves the value
of the 4 offset into a temporary RAM memory location on the host machine. The second
adds this value to the RAM location storing r1, storing it into another temorary RAM
location, “tmp0”. Finally, the third performs the actual store into the proper location in
QEMU’s model for the guest machine’s RAM.

TCG instructions are a RISC-like instruction set that is designed to be easy to translate
to the host system’s ISA, and serve as an intermediate representation for the emulated

19

1 0xfff0010c: movi_i32 tmp1 ,$0x4

2 add_i32 tmp0 ,r1 ,tmp1

3 qemu_st_i32 r0,tmp0 ,beul ,3

Figure 3.2: Standard store instruction from Fig. 3.1 translated to the TCG intermediate
representation.

system’s machine code [63]. Due to the complexity of certain micro-architectural seman-
tics, QEMU also contains hundreds of TCG helper methods, which operate over the same
C structure for the target architecture using C code. These helper functions are triggered
by failures in the translation process, and because not all of them are supported or correct,
QEMU serves to emulate targets rather than reproduce them.

Note that the emulation process itself is composed of a larger execution loop, which
is responsible for fetching instructions, translating them to TCG instructions, executing
them, and modeling the behavior of hardware peripherals and interactions between
multiple processors with respect to a given ISA’s interfaces.

Hardware Peripherals A peripheral emulator models the behavior of hardware periph-
erals in order to better emulate the behavior of the overall system. As a result, hardware
peripherals must be represented either by connecting the emulator to the actual hard-
ware, or by reproducing the peripheral in software. As the space of potential peripherals
is theoretically infinite, it becomes more essential to explicate the interfaces by which
information is passed from hardware to the emulator.

Hardware peripherals are typically connected to the processor through a bus, which is a
shared communication channel that allows the processor to communicate with the periph-
eral. Interfaces to a given bus are varied and dependent on the specific micro-architecture,
as bus is a catch-all term covering hardware, software, and involved protocols. For ex-
ample, a processor may communicate with a peripheral through a memory-mapped I/O
interface, which allows the peripheral to be accessed through the processor’s memory
interface, or a peripheral may communicate to the processor via an interrupt controller,
which signals an exception to the processor.

A peripheral emulator must emulate the behavior of the peripheral and the behavioral
portions of the processor’s interface to the bus not covered by the ISS. This is non-
trivial as it can require deducing specific information about the peripheral layout and
memory model of the embedded system under analysis, such as the I/O addresses of a
given peripheral. This information is not necessarily available for proprietary embedded

20

systems and in these cases must be inferred from firmware code or other sources.4

Instrumentation For the purposes of this thesis, we are interested in instrumentation of
the ISS and peripheral emulator to collect information about the execution of the target
system (Tab. 3.1). Instrumentation refers to the addition to and modification of a system
for the purposes of analysis and measurement. The amount of instrumentation possible
is dependent upon both the technique used to analyze the system and the completeness
of the emulation.

Because these emulators have complete insight into the behavior of hardware, it is gen-
erally possible to actively instrument them in order to collect information about execution.
Each instruction translation can be modified to collect information about various flows
of execution, such as transfers of control or data. It is also possible to inject artificial in-
structions and data into the emulated system, in order to explore the system’s behaviors
during certain peripheral interactions or when receiving particular inputs. Extending
this definition, it is also possible to execute the system from an entirely synthetic state
in order to model specific behavioral traces. If the simulator is sufficient, then it is also
possible to use active instrumentation to secure otherwise insecure operations, such as
by adding bounds checks to memory accesses or by adding checks to ensure that the
system is not in an invalid state.

Table 3.1: Active and passive instrumentation in instruction set and peripheral emulators.

Technique Description

Instruction Injection Modifies the translation of or injects instructions

Data Injection Introduces data into the system at some location

Synthetic Execution Executes the system from a synthetic state

Secure Policy Enforcement Adds security checks to the emulated system

Monitoring Frameworks Monitors the execution trace of the emulated system

Interface as Subsystem Incorporates the emulator into a larger system

Passive instrumentation is also possible, and active techniques are often combined with

4For example, Systems-on-Chip (SoCs) may be programmed with specific fuse values and flashed with
read-only memory to indicate information about the peripheral model and some modern operating systems
use specification files, e.g. device tree blobs, to indicate the layout of memory.

21

passive techniques to improve analysis [64, 65]. This involves implementing monitoring
frameworks which operate on the execution trace of the system and temporal reasoning
operations for interpreting this trace. These frameworks can provide performance bench-
marking information but also significantly aid in the reverse engineering of the target
system by indicating key information, such as explored paths in a symbol-stripped binary.
Passive instrumentation may also use the emulator as a black box and incorporating it
into a larger system such as an environmental simulator, to evaluate the dynamics of the
larger system.

3.2 DYNAMIC ANALYSIS

Instrumentation is one method of dynamic analysis, which analyzes the behavior of a
system or emulation during execution. To be concrete, the system must be running for
it to be considered dynamic, and the analysis must be performed during execution, and
the forms used for this dissertation include live binary rewriting, fuzzing, the use of
debugger, and passive monitoring.

Live Binary Rewriting Sometimes it is possible to add self-modifying instructions to a
binary in order to change its behavior as it executes. For a given system, different forms
of rewriting and instrumentation are possible, and most include the use of shim code
injected between the operations of other code for instrumenting the state of the system.
The shim itself can be implemented in a variety of ways, such as by using a trampoline
which maintains the setup and tear-down of the shim’s state during instrumentation.

As a common example, the length of a call instruction on i386 (x86) is a 5-byte instruc-
tion, consisting of one byte for the opcode and four bytes for the address of the function
to call. As long as the four byte offset is sufficiently small, the actual call target location
information only requires the middle three bytes of the instruction. In these cases, these
three bytes can be shifted over by one, and the call instruction may be modified to a 2-byte
interrupt instruction, which transfers control to an interrupt based trampoline for the
performance of instrumentation and, reads the remaining three bytes to determine the
correct return address, and then self-modifies the shim to replicate the control transfer
using the three byte offset (Fig 3.3). This same technique was used to develop exploits
for the CMU-900 in Chapter 4.

22

call _func: 0xE8,

0x12, 0x34, 0xFF, 0xFF

int 0x3: 0xCD, 0x03, 0x12, 0x34, 0xFF

Shim Injection

Figure 3.3: Example of binary rewriting.

Fuzzing Fuzzing is a technique for generating inputs to a system in order to explore its
behavior. In general, fuzzing must be performed on an emulation rather than the system
itself, as it is necessary to reset a correct initial state for fuzzing, and many crashes or
unexplored behaviors may damage the real system. For the discovery of bugs, fuzzing
is effectively an intelligent dictionary attack which must infer the right inputs to test
from a large number (potentially exponential) of possible inputs. Effective fuzzing also
requires careful definitions of exit conditions, which indicate when a given input has not
found any interesting path, as exploring paths which “hang” decreases overall analysis
performance. The most common fuzzers in use today are variations of American Fuzzy
Lop (AFL) [66], which provides a general framework and API for building more advanced
fuzzers attached to emulators.

Debugging Debuggers are a common tool for analyzing the behavior of a system, and
are often used in conjunction with other techniques. Similar to a shim, debuggers work by
halting the execution of a system at a given point, allowing the user to inspect or modify
the system’s state, and then resuming execution. These inspection routines may also
be automated, and can be used to collect information about the system’s state during
execution, similar to instrumentation. For this purpose, many emulators, like QEMU,
include a debugging (gdb) server which allows the analyst to connect to the emulator
and inspect the system using common mechanisms, e.g. reading memory values.

3.3 HIGH LEVEL EMULATORS

While the above techniques are often necessary for the analysis of opaque embed-
ded systems with symbol-stripped firmware, in many cases binaries also originate from
standard consumer hardware. For these binaries functional or high level emulation (HLE)
is appropriate—emulation that does not require the rehosting of system components,
and directly operates on program representations. Standard executables like Microsoft
Word are distributed as a binary in a common format with some symbols intact, and

23

emulation can run on standard laptop hardware as the system does not need significant
rehosting. These binaries can be instrumented, translated, or analyzed using a number of
tools, including symbolic reasoning frameworks and standard tools from formal methods.
However, these emulators can also be generated using function extraction, summarization,
and decompilation of embedded system binaries.

A HLE can make the model of the system more effective and useful while sacrificing
authenticity. These emulators abstract the lower level components or software of the
system either by assuming they are already present on the host or by ignoring them
altogether. One benefit of this approach is that it can more easily address high-level cor-
rectness concerns, such as the reachability of certain system states, as it does not require
a thorough analysis of the system’s sub-components and semantics. This approach is
also independent of detailed hardware specifications but is less flexible, as the high-level
emulator defines a limited API for the analysis of the system under consideration. More-
over, a given high-level emulator will be standardized to a particular interpretive domain,
e.g. a dynamical or hybrid system interpretation, and does not simulate the behavior of
the system under study, which may be possible to model using mathematics but is only
exactly specified by the system’s implementation in itself.

As more complex, widely used systems and software become prevalent, HLEs become
critical. Supporting the semantics of each detail for a complex system is often infeasible
or simply wasteful, as the features are already present on the host for the emulation or
not necessary for the analyst’s goals. Low-level emulations are also becoming easier to
generate as systems move to single, well-understood architectures like ARM.

Function Extraction HLEs often involve some method of function extraction for a given
component from a complex system, which allows a portion of the system to be emulated
in isolation from other components. Extraction can involve a range of techniques, includ-
ing program slicing, abstract interpretation, lifting and summarization. A summarization
of a function f is given by the following definition [67]:

Definition 3.1 (Function Summarization). Let f be a function, v a bound on the number of
unrolled loops and recursive calls, R f

v a set of tuples of computations in f over v, D a domain
function mapping from inputs to outputs of f , then S s.t. R f

v ⊆ S ⊆ D is a summary of f .

Here, “tuples of computations” refers to statements in the particular operational se-
mantics of the compuational domain under analysis, e.g. rules given to a classical turing
machine. Summarization as a whole provides a primitive form of function extraction, in-
volving reducing a set of computations that collect a subset of the original input-to-output

24

mapping of the computation. This definition in itself is limiting as it only considers a
strict subset of the map from the inputs to the outputs of the computation f , and does
not consider the relations that exist between tuples in R f

v . Thus it becomes appropriate
to consider a more general definition of logical translation, which uses propositions to
extract system components.

Definition 3.2 (Logical Translation). Let f and f ′ be functions, P = p1, p2, . . . possible
execution paths through f , Φ = φ1.φ2. . . . φn a set of statements in natural deduction for resolving
the relationships between symbols in one computational domain function, D, mapping from inputs
to outputs of f , to another domain function, D′, mapping from inputs to outputs of f ′, A f

Φ(P)
a set of tuples of computations resulting from the application of Φ to f over P, then S s.t.
A f

Φ(P) ⊆ S ⊆ D′ is a logical translation of p.

Often the specific translation process is not fully proven for real-world systems and
instead adopts heuristics or short-cuts which are assumed to be correct in most cases. An
example application of logical translation in this dissertation is the extraction of glyph
positioning schemes from PDF document creation software by deducing the C represen-
tation of important computations from data-flow analysis (dynamic instrumentation) of
machine code operations.

Regardless of the method used, the resulting extracted function may be used as an
emulator to verify and understand the behavior of the system, but may be missing non-
extracted interfaces. There are several methods of addressing this, such as replacing
these interfaces with logical summaries, as in the HiFrog [68] and later UpProver [69]
systems, or through the use of fuzzing. Not extracting hardware peripheral semantics also
makes firmware rehosting systems like P2IM [23] implicit forms of function extraction of
software from a hardware-software system, as evidenced by recent work on incomplete
information in firmware specifications [33].

Environmental Modeling and Communication Channels Emulation can extend to
the modeling of the environment of a system, and oftentimes the extracted function of a
single component may not be sufficient to understand the overall real-world behavior
or security of a system. Similar to peripheral modeling, some information about the
system’s environment may not even be available without additional external analysis.
Non-computational environmental modeling is constrained to three forms of specifi-
cation, captured by common tool-kits like Matlab Simulink, used in this dissertation:
equations, random variables, and logic. Models of computation and stateful systems in

25

Figure 3.4: Environmental model emulation inputs and outputs for a chemical plant
communicating to a physical Programmable Logic Controller (the blue block)
in Simulink.

the environment are also possible and captured by the subdomain of hybrid systems which
unify discrete and continuous state transitions [70].

Figure 3.4 depicts part of the environmental model for a Tenessee Eastman chemi-
cal plant used in this dissertation. Regardless of the interconnections and components
present in a given model, it is notable that the emulation of a given sub-component
is entirely determined on what the environmental model can communicate to the sub-
component. This concept generalizes across emulation and information theory, captured
in by the concept of a channel, which consists of an information source, transmitter, noise
source, receiver, and destination [71], shown in Fig. 3.5.

Noise constitutes any distortion of the signal (e.g. loss of information). The channel
capacity is the maximum amount of information that can be sent through the channel,
and is given by the following equation:

C = max
p(x)

I(X; Y) (3.1)

where p(x) is the probability of a given input x to the channel, and I(X; Y) is the mutual
information between the input X and the output Y of the channel. Mutual information is
defined as:

I(X; Y) = ∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(3.2)

26

Information
Source Transmitter

Noise Source

Receiver Destination

Message Signal Received
Signal

Message

Figure 3.5: Abstract representation of a noisy channel, a concept also applicable to
the communications between an environmental model and a system sub-
component.

where p(x, y) is the joint probability of x and y occurring, and p(x) and p(y) are the
marginal probabilities of x and y occurring. We relate this measure of mutual information
to our ability to determine unknown qualities of a system specification in Chapter 5. A
channel is considered to be lossless if the mutual information between the input and
output is equal to the entropy of the input, and lossy otherwise. Shannon’s information
channel is often also generalized into an information flow which moves between different
privilege domains and quantifies security [72, 73].

3.4 ENCODING, DECODING, AND MODELING

Finally, in this section, we provide some context on several different representations
for systems used throughout this dissertation. We briefly introduce these representations
by discussing representation generally: codes, systems of rules for the conversion of
information. Traditional coding theory is concerned with the design of codes that can be
used for the reliable and efficient transmission of information across a noisy channel [74,
75, 76]. Standard analyses of codes involve the removal of redundancies and detection of
errors and a study of communication channels.

However, one can also understand emulation as a decoding of communicated infor-
mation about the system and an encoding of the system’s behavior. Thus, the efficacy
of an emulation is determined by its ability to decode the original system and its ability
to encode relevant information. One (ineffective) method of considering how to encode
the “relevant” information in a system is a minimum description length (MDL) or Kol-
mogorov Complexity.

27

Definition 3.3 (Minimum Description Length). The length C(s) of the shortest binary string
s that is delimited by special marks and that can compute x on a Universal Turing Machine and
then halt.

This definition has several limitations with respect to the usecases and problems we are
considering in this dissertation, rendering it ineffective:

1. First, it is not computable [52]. Providing an informal proof of noncomputability,
consider if we are asked for the MDL of a program to compute a given output x.
In order to do so, we must look at every program that can compute x, choosing the
one with smallest size. However, to know whether a program computes x or not,
we would need to be able to determine whether the program that computes x halts,
and that program could include arbitrary compuations before returning x. Thus,
we would have a solution to the halting problem, a contradiction.

2. In many cases, e.g. emulation, an optimal encoding for a program may not be
necessary, and an effective encoding is all that is needed.

3. In real-world systems, the theory of a universal turing machine provides no specific
insight into the encodings or interpretation of facets of a system. As an example,
this description could not indicate whether a given sequence of binary digits is
used to imply an ascii letter or an RGB color component.

Despite a lack of practical utility, MDL presents an important insight in that it suggests
the possibility of measuring the relative optimality of two different system encodings.
In practice, we determine the value of an emulation by the results of different dynamic
analyses, presented in Section 3.2. There also exist standard encoding methods for rep-
resenting the operation of systems, encapsulated by prevalent static analysis techniques,
such as taint tracking.

Taint tracking is one such standard method of representation, used to encode the flow
of information. For every bit of information in a system, a bit of taint is associated with
it, and set to 1 if the information is tainted, and 0 otherwise. Then, for every operation
in the system, the taint of the output is determined by the taint of the inputs and the
operation. If input bits are tainted and these bits decide some bits output, then these
output bits will tainted. The resulting output bits encode how certain bits of information
are used throughout the system. In Chapter 4, we will use taint tracking to bootstrap the
operation of a symbolic execution engine within an instruction set simulator.

28

procedure Backprop(X, Y, W)
for l ← L− 1 to 1 do // Each layer

for i← 1 to n do // Each neuron
δl

i ← (∑j∈Li
wl+1

ij δl+1
j) ∗ f ′(zl

i)

end for
end for

end procedure

Algorithm 3.1: Single back-propagation step of an artificial neural network as an example
of system representations.

For general function extraction, a standard encoding method for a system’s operation is
an execution trace, which can be recorded and then “replayed” to emulate the behavior of a
system with the possibility of time-travel debugging, a form of source-to-sink information-
flow analysis capable of extracting the specific operations used to derive a variable.5

Execution traces are written by some interpretation of the system given by the emulator, a
transformation of information which provides that information with a concrete meaning
in some context. A given trace will be incorrect if the emulator does not capture the
semantics of the system which are captured by a “correct interpretation”, e.g. execution
on the target micro-architecture, in the trace’s output encoding (Section 3.1).

Modeling a system is the generation translation of the system’s original encoding which
is still executable either in the original context or in an emulator. Formally, a model of a
system will preserve some property of the system, such as its behavior or its structure,
to some degree of error ε. Given appropriate assumptions on the intended semantics of
the system hold, the correctness of a model may be determined by a proof demonstrating
the outputs of the model are within ε of the outputs of the original system. This problem
is also referred to as the completeness of an interpretation [78].

Example 3.2 (Artificial Neural Network). Consider a system with a sub-component imple-
menting a single back-propagation step of an artificial neural network (ANN), provided in the
high-level encoding of Algorithm 1. This standard model of the ANN could be “executed” by a
human reader, but the form of encoding executed by a computer is the low-level encoding of the
system, which is a sequence of instructions given in machine code or interpreted from a high-level
representation. Fig. 3.6. depicts one such high-level representation, the output of this routine
decompiled from machine code into a pseudo-C representation by Ghidra using several of the
techniques mentioned in this Chapter. This code, which represents a sub-component of a larger
system, could alternatively be modeled by a symbolic executor, such as angr. Upon reaching a

5We scripted the Windows debugger time-travel debugging feature [77] in order to perform function
extraction on the glyph positioning models for the purposes of breaking redactions in Chapter 5.

29

1 /* Code ommitted for space */

2 else {

3 /* Code ommitted for space */

4 do {

5 pdVar15 = pdVar7 + 1;

6 uVar22 = __aeabi_dmul(

7 *(undef4 *)pdVar7 ,

8 *(undef4 *)((int)pdVar7 + 4),

9 *(undef4 *)(pdVar17 + 1),

10 *(undef4 *)((int)pdVar17 + 0xc));

11 pdVar17 = pdVar17 + iVar14;

12 uVar21 = __aeabi_dadd(

13 (int)uVar21 ,

14 (int)((ulonglong)uVar21 >> 0x20),

15 (int)uVar22 ,

16 (int)((ulonglong)uVar22 >> 0x20));

17 pdVar7 = pdVar15;

18 } while (pdVar15 != pdVar11);

19 }

20 uVar10 = *(undef4 *)(local_78 + 1);

21 uVar13 = *(undef4 *)((int)local_78 + 0xc);

22 uVar22 = __aeabi_dsub (0,0x3ff00000 ,uVar10 ,uVar13);

23 uVar22 = __aeabi_dmul(

24 (int)uVar22 , (int)((ulonglong)uVar22 >> 0x20),

25 uVar10 , uVar13);

26 dVar23 = (double)__aeabi_dmul(

27 (int)uVar22 , (int)((ulonglong)uVar22 >> 0x20),

28 (int)uVar21 , (int)((ulonglong)uVar21 >> 0x20));

29 /* Code ommitted for space */

Figure 3.6: Ghidra decompiled code for the sum operation of Algorithm 1.

30

1 tmp = z3.Function('f', [z3.FPSort (11 ,53)]*3)(z3.fpBVToFP(

z3.Concat(r1 , r0), z3.FPSort (11, 53)), z3.fpBVToFP(

z3.Concat(r3 , r2), z3.FPSort (11, 53)))

2 r0 = z3.Extract (31, 0, z3.fpToIEEEBV(tmp))

3 r1 = z3.Extract (63, 32, z3.fpToIEEEBV(tmp))

Figure 3.7: Example model of a ARM software floating point add as an uninterpreted
function.

function like __aeabi_dadd, traditional symbolic execution will enter into the function, interpret
it, and return a complex bit-vector operation.

To provide some notion of complexity, one software floating point multiply we studied, for
example, had 153 lines of pseudo-C, 116 lines of decompiled assembly, and 15 branches, but
a given emulator may interpret only a subset of these instructions. Extending this notion of
emulation to the absolute limit, it is also possible to encode a system in such a manner that all
internal semantic detail is lost and only the input and output characteristics remain.

We extracted one ARM software floating point value add taken from a real implementation of
the above ANN code for a specific compiler and micro-architecture. Representing this operation
as an uninterpreted function, preserving no semantics of the add operation itself, in a format that
may be operated on by the Z3 theorem prover [79]6 results in the encoding provided in Fig. 3.7.
The high level of abstraction in this encoding serves as a demonstration for the degree of flexibility
possible in symbolic representations of systems. Thus, the remainder of this dissertation relies on
empirical evidence to justify its adopted emulation strategies.

6We split the representation into three assignments for simplicity.

31

Chapter 4: Targeted Firmware Rehosting

Embedded systems pose a challenge for emulation because their code expects to in-
teract with specialized on-chip and off-chip peripherals, such as general-purpose I/O
(GPIO) ports, sensors, and communication interfaces. In this dissertation, we consider
this specific challenge in the context of rehosted emulation. Introduced in Chapter 3, re-
hosting refers to the decoding of information from a system specification into a set of
emulated systems capable of executing that system in a different domain, e.g. a laptop
computer. The execution environment must emulate these devices with sufficient fidelity
to ensure that observed behavior accurately mimics the target system running on hard-
ware. However, because of the large variety of peripheral devices, most are not modeled
by the execution environment, creating a considerable blind spot for our most powerful
analysis techniques. Indeed, there may be no documentation at all about a target system,
which makes building a complete emulator for it nearly impossible.

In many cases, however, the code of interest to the system analyst is not the code that
interacts with peripherals. While peripherals cannot be ignored completely—hardware
initialization must appear successful for the system to boot successfully—correct behavior
of all devices may not be necessary. This chapter will focus on the rehosting approach,
which attempts to infer partial but effective models of these missing hardware devices,
and Chapter 6 will look at an extraction based approach to this same problem. For
example, an analyst interested in how a target responds to network traffic may not
require the execution environment to faithfully model all aspects of the system’s GPIO
ports or other communication interfaces.

The subject of this chapter is Jetset [9], a system that performs targeted rehosting of
firmware—it automatically infers the expected behavior of embedded system peripherals
using only its firmware and then synthesizes a model of the peripherals sufficient to
boot to security-critical code of interest.7 The synthesized peripheral model can then be
used in an emulator—in our evaluation we used QEMU [53]—to emulate the hardware
environment. An analyst can then use her tool of choice to interact with the firmware.
For example, a vulnerability analyst can use Jetset to fuzz-test the system to see how it
responds to malformed or otherwise malicious input. More advanced dynamic analyses,
like symbolic execution, are also available to the analyst.

7Note that this work was performed jointly with Evan Johnson as the primary author and other co-
authors, many of whom deserve a lion’s share of the credit for Jetset’s implementation. The present author
made substantial contributions, primarily in the implementation of the symbolic executor, the performance
of the evaluation of the system, and the development of exploits for the CMU-900.

32

Jetset infers the values that need to be read from peripheral devices needed for the
program to reach an analyst-specified goal address. For example, on the Raspberry Pi
target used in our evaluation, our goal is to reach the address where the code jumps to
user space. Our key insight is that firmware code interacting with a peripheral device im-
plicitly encodes how the device must behave for the system to boot. Jetset uses symbolic
execution of the firmware—specifically the angr framework [59]—to infer data returned
from devices.

The input to Jetset is the executable firmware image, the firmware entry point (where
to start execution), a goal address (the address we want to reach in execution), and a
memory layout specifying which parts of the address space represent RAM and which
represent memory-mapped I/O. Jetset only requires emulation support for the CPU
architecture; it does not require any special hardware, and does not use the underlying
hardware device.

To evaluate Jetset, we use it to infer and instantiate peripheral devices for thirteen
targets: an aircraft Communication Management Unit (AMD 486-based system) used
on the Boeing 737, Linux on a Raspberry Pi 2 (ARM-based SoC board), the first-stage
bootloader on a BeagleBoard-xM (ARM-based SoC board), a SEL-751 Feeder Protection
Relay (Motorola ColdFire-based system), and the 9 publicly available real-world targets
from prior comparable work[23]. These targets are diverse—they come from 3 different
architectures, 5 different operating systems (as well as 3 different bare metal systems),
and several different application domains. For each target, Jetset inferred the behavior
of its peripherals needed for the firmware to complete its boot sequence,and produced
C code suitable for use with QEMU that simulates the inferred devices. We then run
the firmware in QEMU configured for the target CPU architecture using our synthetic
peripherals to complete the configuration.

For two of our targets, we confirm that the synthesized devices work correctly by com-
paring the emulated system against a reference. For the Raspberry Pi 2, we compare the
emulated behavior of the system to its behavior on actual hardware. We used a novel
framework capable of snapshotting the QEMU device emulator and instrumenting this
with the AFL fuzzer [66] to fuzz-test the Linux kernel system call interface, obtaining
the same results both in QEMU and on the actual hardware. For the Communication
Management Unit (CMU), we use a high-fidelity QEMU implementation of the system,
including its most important peripherals for comparison. We produced this implementa-
tion by manually reverse-engineering the CMU as our reference. We used our fuzzer to
test the system call interface of the underlying OS on both the reference and synthesized
implementations to confirm we observe the same behavior on both. Although finding

33

vulnerabilities was not the goal of this testing, we nevertheless identified a previously
unknown privilege escalation vulnerability in the VRTX kernel used by the CMU (Sec-
tion 4.3.2). This chapter will also discuss other exploits developed using this emulator
analysis and disclosed to UTC aerospace: first, a local code execution method based upon
the data loader protocol, and ACARS messages which are capable of disabling a running
CMU remotely.

4.1 RELATED WORK ON REHOSTING

Due to the complex nature of firmware and the heterogeneity of the hardware it
interacts with, security testing and analysis of firmware is a difficult problem [80, 20].
Different techniques to test and analyze firmware vary both in their goal (e.g., finding
bugs, full rehosting, or partial rehosting), as well as the assumptions that they make about
the firmware they analyze. For example, a testing technique may only analyze firmware
using a particular operating system [81], or may assume that auxiliary information about
the firmware is available (e.g., firmware-hardware I/O traces [82]) to improve results.
The use case of Jetset—partial rehosting using only the firmware itself and no auxiliary
information—is most similar to other rehosting techniques, however, for completeness,
we outline other approaches to analyzing firmware below.

Firmware testing and analysis Approaches have been developed to test firmware with-
out attempting to create a stand-alone emulator for the hardware.

Symdrive [83] is a symbolic testing framework for Linux device drivers. Symdrive
takes as input the C code for the Linux drivers and attempts to find program paths that
violate user written assertions. Symdrive is able to uncover numerous bugs in Linux
device drivers; however, it requires source code and is Linux specific.

FIE [84] is a symbolic execution framework that targets firmware for the MSP430 family
of microprocessors. FIE takes as input a piece of firmware, a memory map (that denotes
which regions are RAM, ROM, MMIO, etc), and an interrupt specification which describes
all locations where interrupts could be fired. FIE is designed to analyze all firmware
execution paths, which, while effective for the simpler MSP430 microcontroller firmware,
is not feasible for more complex firmware like the Raspberry Pi’s Linux kernel. For this
complex firmware, a more targeted approach such as Jetset’s is needed. Furthermore,
FIE requires the source code for the firmware—this is how it adds its symbolic execution
instrumentation—and it is therefore unsuitable for our needs.

34

Revnic [85] is a system for symbolically executing driver firmware and reverse engineer-
ing its functionality. Revnic takes as input a driver binary, a driver template describing
the high level functionality of the driver, and domain specific knowledge about the OS of
the driver, and produces source code for the driver. Revnic requires knowledge of the un-
derlying operating system, and requires that the user provide detailed device templates
that outline the functionality of the device, and it is therefore unsuitable for the problem
of firmware-only emulation.

FirmUSB [86] is a USB-specific symbolic execution framework for analyzing USB mi-
crocontroller firmware. FirmUSB takes as input a USB firmware image, and uses domain
specific analyses to identify malicious behavior by the USB device. For example, FirmUSB
can detect if a device claiming to be a USB keyboard is injecting keys that have not been
pressed by looking for USB specific information flows.

Hardware-in-the-loop emulation Another method of approaching the problem of an-
alyzing firmware is to attach a software emulator running the firmware to the physical
hardware, forwarding I/O between the emulator and the firmware. Avatar [87] is a
dynamic analysis framework for embedded systems that does exactly this. Other tools
Surrogates [88] and Prospect [89] build on this hardware-in-the-loop approach.

This technique provides the highest fidelity emulation since the emulator directly
interacts with the physical hardware; however, use of this technique is contingent on
continuous access to the hardware, which is not always possible since hardware (like
that used in avionics) may be difficult or impossible to obtain.

Full firmware rehosting Full rehosting is a technique which attempts to construct a
fully featured, high-fidelity emulator from a piece of firmware and auxiliary information
about the SoC or firmware.

Firmadyne [81] is a platform for automated dynamic analysis of Linux-based embed-
ded systems. Firmadyne takes as input a piece of firmware running the Linux kernel,
and executes user-space code for the firmware, emulating the common Linux peripherals.
Similarly, Costin et al. [90, 91] extract and rehost the embedded system’s filesystem in
their own analysis environment to analyze network-facing code. Because the code of
interest to an embedded system security analyst is often the user-space, network-facing
code, Firmadyne and Costin et al.’s tool are well-suited for this scenario.

Pretender [82] rehosts firmware by recording the interactions between the physical
hardware and the firmware. It then uses a machine learning engine to learn a stateful
model for peripheral behavior and creates an emulator from this model. Similar to Avatar,

35

Pretender takes as input the firmware, and a connection to the physical hardware, and cre-
ates an emulation environment; however, unlike Avatar and related tools, Pretender can
fully migrate the firmware to a virtualized environment, and does not require persistent
access to the hardware.

HALucinator [24] is a firmware rehosting tool that uses hueristics to locate the code
belonging to the hardware abstraction layer (a vendor-provided API for interacting with
the hardware) in the firmware and replaces it with manually created handlers. HALu-
cinator takes as input firmware, and the HAL the firmware uses, and produces a fully
featured emulation environment for the firmware.

Previous rehosting techniques have relied on auxiliary information to infer the be-
havior of the hardware environment. While this results in a more complete emulator,
this auxiliary information is not always available—most of our evaluation subjects had
none. Furthermore, security analysis is often concerned with only a particular software
component of the firmware, (e.g., the network traffic or the file system code) and may
not need a fully featured emulator.

Partial rehosting Partial rehosting, as opposed to full rehosting, attempts to create an
emulator from the firmware only, with no auxiliary information about the peripherals.
However, the emulators produced by partial rehosting are not complete—they are not
guaranteed to implement all peripherals for the firmware, only what they can infer. This
is the point in the design space that Jetset occupies. There is one other notable system
that implements partial rehosting, P2IM.

P2IM [23] does both fuzzing and partial rehosting based on the peripheral model that
it infers from the fuzzing stage. It takes as input the target firmware and its memory
map, and fuzzes the firmware code by channeling input from an off-the-shelf fuzzer
like AFL to the peripherals. It then analyzes the device access patterns exercised during
this fuzzing pass to infer details about the memory-mapped IO interactions between the
firmware and peripheral devices, and executes the firmware without crashing.

There are two key differences between P2IM’s fuzzing-based approach, and Jetset’s
directed symbolic execution-based approach. The first difference is that unlike P2IM,
Jetset is targeted—it is designed to ignore most paths through the firmware to focus on a
particular target piece of code, which allows it boot deep into large pieces of firmware.
While Feng et al. showed P2IM’s approach is effective at fuzzing peripheral handling code
and emulating microcontroller code, it is not clear whether it scales to larger firmware.
Besides evaluating against all of P2IM’s publicly available real-world evaluation subjects,
we also evaluated Jetset against four complex pieces of firmware—one of our evalua-

36

tion subjects, the Raspberry Pi 2 is 450x LoC of any of P2IM’s evaluation subjects. We
attempted to evaluate P2IM on our 4 real-world firmware samples. Unfortunately, the
current version of P2IM only supports Cortex-M MCUs and we were unable to run it on
any of our samples, including our Cortex-A7 and Cortex-A8 firmware.

The second difference is that, while fuzzing-based approaches are efficient since they
use lightweight executions, they can have trouble bypassing complex checks. In Sec-
tion 4.2, we provide an example of a complex numerical check that occurred when
inferring the behavior of an FPGA in one of our evaluation subjects. Jetset is able to
handle complex numerical checks, because it performs partial rehosting using symbolic
execution.

4.2 JETSET’S INFERENCE OF HARDWARE SEMANTICS

Jetset uses symbolic execution to infer how peripheral devices must respond to reads
from the firmware for execution to progress toward the goal address. It uses this inferred
information to deduce and reproduce expected peripheral device functionality to boot
firmware in an emulator such as QEMU. This allows analysts to boot the system in an
emulator with only the firmware, and without the target’s hardware or support for the
peripheral devices in the emulator. To do this, Jetset requires the following information
about the target embedded system (discussed briefly in Chapter 3).

• The executable code of the target, usually read out of program flash or extracted from a
firmware update provided by a manufacturer.

• The memory layout of the target, specifying which regions of the address space are
mapped to program memory, RAM, and device I/O registers. This information can be
obtained from the data-sheet of a single-chip system or from a basic analysis of the
executable code. Note that Jetset does not need to know which devices are mapped
where, only the address range used for memory-mapped I/O.

• The entry point address where execution begins. This is often specified in the CPU
data-sheet.

• The program goal address that the analyst wants the program to reach. For example,
this can be the address of a print instruction that reports a successful system boot.

To model peripherals, Jetset uses symbolic execution to infer expected device behavior,
and then the resulting encoding of the device behavior in the constraints returned by
symbolic execution is used to synthesize a device suitable for use in an emulator (e.g.,

37

QEMU). Secondary to this peripheral Modeling phase, Jetset must also adopt a correct
search strategy to guide symbolic execution, introduced in Chapter 2.

4.2.1 Jetset’s Peripheral Modeling

In its peripheral inference stage, Jetset symbolically executes the firmware to infer what
values should be returned by reads from device registers in order for execution to reach
the firmware’s goal address. In Jetset, input from devices are marked symbolic and
tracked through QEMU’s emulation by taint-tracking all Tiny Code Generator (TCG)
operations and a number of QEMU’s helper functions. During execution, all reads from
memory-mapped I/O addresses space are therefore symbolic, while the initial contents
of flash and memory are concrete.8 Each read from a memory-mapped I/O address
returns a distinct symbolic variable; that is, two reads from the same address result
in two different symbolic values. Jetset stops when an execution path reaches the goal
address, resulting in a set of constraints on values read from device registers that lead to
this address.

Interrupts While executing, the firmware may also require interrupts to be serviced
to reach the target. Jetset therefore periodically injects interrupts during the modeling
stage. For example, the goal address for the Raspberry Pi firmware is in a different kernel
thread than the entry point, so a scheduler interrupt is needed to reach the goal. From
Jetset’s point of view, this means that it needs to execute an interrupt service routine
(ISR) to make progress. Given infinite compute resources, Jetset could explore every
possible interrupt either firing or not after each instruction. However, this is impractical.
Jetset exploits the fact that well-designed systems are not sensitive to the exact timing
of interrupts and that ISRs are written to handle spurious interrupts gracefully. Jetset
periodically injects interrupts during symbolic execution, so that each ISR is executed
periodically during each execution path. If the main execution thread happens to be
waiting for an ISR to update a variable, Jetset will eventually execute that ISR, and the
thread can continue making progress.

Peripheral synthesis Once Jetset has reached the target (with or without interrupts),
it can create a synthetic peripheral model that can be used in QEMU. The result of
the inference stage is a set of constraints on values read from peripherals needed for

8Note that this means Jetset does not infer flash devices, something which was manually modeled for
the emulation during the QEMU exploit generation.

38

the firmware to boot. Jetset then uses Z3 [79], the default SMT solver used by angr, to
find concrete values satisfying these constraints, capturing in the firmware’s expected
response to device reads during execution. This allows Jetset to construct a light-weight,
concrete device model, rendering peripheral modeling a one-time cost per device.

This synthesis stage generates an I/O trace model that is sufficient to reach the goal in
the emulator. The synthesized trace is partitioned by I/O address, so there is a separate
trace for each memory-mapped I/O address. When Jetset reaches the end of an I/O trace
for a particular address, any subsequent reads return the last value in the trace. This
allows Jetset to continue past the goal address in emulation, but precludes any complex
interaction with the device after the trace has ended (see Section 4.4).

The synthesized device injects interrupts in the same way as during peripheral model-
ing, ensuring that any necessary ISRs are executed in emulation. Interrupt timing during
execution in an emulator does not need to precisely match the timing during peripheral
modeling—if, during emulation, an interrupt is fired one instruction later, this will not
make a difference in emulation.

4.2.2 Jetset’s Search Strategy

To ensure that Jetset continues to make forward progress towards the goal address
during symbolic execution, which by default attempts to explore the all executable paths,
Jetset uses a distance function to guide its search. This distance function is context-
sensitive [92]: it takes into account that the distance between two instructions in a pro-
gram can depend on the calling contexts (i.e., the callstack) of the two instructions.
Computing a context-sensitive distance function is more complicated than computing a
local distance (i.e., the distance between two instructions in a single function). Whenever
a decision point is encountered, Jetset chooses the shortest path to the goal location,
barring a few exceptions, discussed later.

The local distance between two instructions is simply the graph distance between the
two instructions in the control flow graph. For example, in Figure 4.1, the distance from
statement 5 to statement 7 (both within foo) is 2. When computing local distances, the
edges for call instructions need to be weighted based on the called function’s length—the
distance between the start of the called function and the nearest return of that function.
For example, in Figure 4.1, the distance from statement 1 to statement 4 is not 3, but 7.
This is because, when executing a call instruction, it is not really one instruction being
executed, but every instruction until the call returns. This is further complicated, because
the called function may itself call other functions. Therefore, to compute local distances

39

1. call foo

2. call bar

2

3. call foo

3

4. ret

2

main (length = 7)

5. mem[0x100] = 1

6. eax = 2

1

7. ret

1

foo (length = 2)

8. ebx = mem[0x200]

9. ebx == 1

1

10. eax = 3

false; 1

11. eax = 2

true; 1

12. ret

1 1

bar (length = 3)

Figure 4.1: Context-sensitive distance from statement 5 (in first foo call) to statement 7
(of second foo call).

for each function, Jetset first creates a callgraph of all functions in the firmware, then
computes local distances for functions in topographical order. This ensures that when
Jetset computes local distances for a function, it has already computed local distances
for every function that function calls. But this still only gives local distances—it does not
provide distances between instructions in different functions.

Computing the distances between instructions in different functions is more compli-
cated, because functions are often called in more than one context and Jetset is only
interested in realizable paths—paths which follow a valid call-return sequence. For exam-
ple, in Figure 4.1, the distance between statement 5 (in foo) and statement 4 (in main)
depends on foo’s calling context: if foo was called from statement 1, then the distance is
7, if foo was called from statement 3, then the distance is 2.

Jetset uses a context-sensitive distance function: it determines the distance between
an instruction in one calling context—a (pc, callstack) pair—to another instruction, in
another calling context. To compute this distance function, Jetset first precomputes local
distances for all functions. Then, Jetset computes the distances between instructions in
different functions. To do this, Jetset takes advantage of the fact that all paths between
instructions can be broken up into a sequence of returns, followed by a sequence of
calls [92] (there will never be an interleaved call and return, because then that would be
a local distance!). Nonlocal distances can therefore be separated into two distances: the
callstack distance—the distance along the sequence of returns up the callstack—and the
callchain distance—the distance along the sequence of calls that lead to the goal address
(or the goal address in a specific calling context).

Jetset precomputes all local distances, but both the callstack and callchain distances are

40

1 # Calculate callstack distance

2 while function not in target_callstack:

3 distance += local_distance(cur , ret)

4 cur = function.returns_to

5 function = stack.next_function

Figure 4.2: Jetset’s context sensitive distance function with respect to return statements.

computed lazily from the actual stack during execution (it is infeasible to precompute all
callstack and callchain distances). Jetset computes the total context-sensitive distance as
the sum of the callstack and callchain distances.

The callstack distance measures the distance from an instruction in one calling context
to an instruction that can be reached by a sequence of returns (i.e., instructions in func-
tions in the current callstack). To compute the callstack distance, Jetset first computes the
local distance to the location of the closest return instruction. It continues summing the
distances to each return of each function recursively up the call stack. It stops once it
reaches a function that can reach the target with a set of calls (i.e., a function that is in
the target’s callstack), shown in Fig. 4.2.

For example, suppose Jetset wanted to reach statement 7 (in the second foo call) from
statement 5 (in the first foo call). The call stack distance would be 2, as that is the distance
to exit from foo to main, at which point statement 7 can be reached by a set of calls.

The callchain distance measures the distance from an instruction in one calling context
to an instruction that can be reached by a sequence of calls. To compute the callchain
distance, Jetset first computes the local distance to the nearest call instruction that leads
to the target. It then recursively sums the distance to each function call on the way to the
target, show in Fig. 4.3.

Suppose again that Jetset wanted to reach statement 7 (in the second foo call) from
statement 5 (in the first foo call). The call chain distance would be 5: 3 to reach the second
foo call and 2 to descend into the foo call to reach statement 7.

Search Exceptions However, there are many cases where due to incomplete semantic
modeling and software control flow complexity, Jetset is not able to identify a correct path
to the current goal address using the context-sensitive CFG. For example, to cope with
loops where taking the shortest path will lead to a hanging state, we alternate decisions,
to avoid taking the same branch twice where unnecessary. For these cases, Jetset relies
on using the local distance to the nearest return as a fallback distance function. The
incremental CFG generation improves the quality of the CFG over time, so eventually

41

1 # Calculate callchain distance

2 while function != target_function:

3 call = target_callstack.closest_call

4 distance += local_distance(cur , call)

5 function = call.target

6 cur = function.entry

Figure 4.3: Jetset’s context sensitive distance function with respect to function calls.

the CFG will contain a path to the target.
Jetset’s search algorithm may also guide it to a point in the program where it becomes

infeasible to reach the target and it needs to terminate the current path and backtrack to a
previous state. There are two different cases where this occurs. The first case where Jetset
backtracks is when a system reset occurs; it is unlikely that a system reset takes place in
a correct boot sequence, and backtracking on system resets allows Jetset to avoid boot
loops. The second case where Jetset backtracks is when Jetset enters a statically-detectable
infinite loop. It is also possible to set explicit “avoid” locations which will force Jetset to
backtrack if some set of constraints are satisfied.

4.3 EVALUATING JETSET’S TARGETED REHOSTING

Jetset’s evaluation was dependent upon getting several firmware images into a steady
state emulation, where the emulator would run without crashing. The core targets for
this evaluation were a Raspberry Pi 2, a single-board computer based on the Broadcom
BCM2836 system-on-a-chip (SoC); a BeagleBoard-xM, a hobbist board, based on the
Texas Instruments DM3730 SoC [93]; a Collins Aerospace CMU-900, an electronic system
used on many Boeing 737 aircraft, responsible for handling digital communications
between the aircraft and ground stations with an AMD Am486, Intel 486-compatible
processor; and a Schweitzer Engineering Laboratories SEL-751 feeder protection relay,
used to protect power grid systems, leveraging a MCF54455, a 32-bit microprocessor
implementing the ColdFire ISA. The statistics on the emulation of these systems are
given in Table 4.1.

Details on the emulated and symbolically executed versions of the execution are given
by the top and bottom portions of the table. Differences, in generally, are explainable due
to the backtracking of symbolic execution when it hits an infinite loop (in these cases
Jetset must re-execute code and take a different path), and due to slower inference-stage
execution. In the case of the Raspberry Pi, this led to an SD host controller command

42

Table 4.1: Jetset’s primary targets and summary statistics regarding peripheral modeling.

RPi2 BBXM CMU-900 SEL-751

OS/SW Linux 4.19.y X-Loader VRTX-32 G5.1.5.0
Peripheral inference

Wall-clock time 6m43s 5m15s 5m20s 2h34m51s
Blocks in code base 238,792 872 55,016 141,750
Total blocks executed 81,194,393 20,198,824 53,143,508 3,351,484,857
Blocks executed on path 81,194,393 20,198,824 27,517,932 3,351,484,857
Unique blocks executed 43,157 484 776 11,364
Unique blocks executed on path 43,157 484 731 11,364
MMIO writes (ignored) on path 84,060 938 1,308 32,480
MMIO reads (symbolic) on path 83,857 3,633 242 704
MMIO write addresses on path 40 244 13 68
MMIO read addresses on path 37 61 5 26
Devices accessed 6 11 5 5

Peripheral synthesis
Wall-clock time 3.16s 5.64s 0.018s 5.61s
Total Symbolic Variables 1,384 3,633 242 704
Total Constraints 5,226 8,353 756 11,142
Constraints per variable 3.78 2.30 3.12 15.83
Average trace length 37.4 59.56 48.4 27.08
Median trace length 1 3 5 2
Maximum trace length 1076 2,770 215 343

Emulator execution to goal
Wall-clock time 8s 101ms 289ms 1m1s
Total blocks executed 81,454,594 20,198,656 27,519,080 3,351,502,947
Unique blocks executed 43,255 483 731 11,364
MMIO writes (ignored) 83,915 938 1,882 32,480
MMIO reads 83,857 3,633 242 704
MMIO write addresses 43 244 13 68
MMIO read addresses 27 61 5 26
Devices accessed 6 11 5 5

43

RAM File-systemCRIU Snapshot

Container 1 Container n

Fuzzer 1 Fuzzer n

Figure 4.4: The CRIU and Docker-based QEMU fuzzing system used to evaluate Jetset’s
rehosting of emulated systems.

timeout, resulting in an error message and a register dump. During emulated execution
with synthetic devices, the SD host controller initializes without a command timeout,
thus, the executed blocks counts differ; however, the resulting emulation is resilient.

We also evaluated Jetset on the nine publicly-available real-world pieces of firmware
used to evaluate P2IM[23], and all of these rehostings were trivially successful. In gen-
eral, the firmware images were non-complex and not symbol-stripped, making their
analysis straightforward. The P2IM used four different ARM SOCs, two Cortex M-3
(STM32F103RB and SAM3X8E), and two Cortex M-4 (STM32F429ZI and MK64FN1M0VLL12)
CPUs. Five of these systems used Arduino as their operating system, one used the RIOT
operating system, and three operated on bare metal.

4.3.1 Full Hardware System Emulation Fuzzing

The useful application of the emulations generated by Jetset required both the devel-
opment of systems for fuzzing and live binary rewriting (in the case of the CMU. For
this purpose, we reduced the requirement firmware modification imposed by the Fir-
mAFL [26] QEMU-AFL combined fuzzer. A simplified depiction of our final architecture
is given in Fig. 4.4.

We isolated each fuzzer instance into an system-resource isolated Docker [94] con-
tainer, and then shared a file system folder between these instances. Docker was used to
maintain isolation in the process tree and shared locks / backing files used by the QEMU
emulation of the target systems. Within each fuzzer instance, file system folders were
instantiated to maintain the initial state of the emulated system, including backing files
for flash memory and other peripheral devices, and an installation of QEMU and AFL
with either a ground-truth implementation of the system emulation or a Jetset-generated
emulation. For speed, these backing files were mounted into a RAM filesystem, rather

44

than disk, and each container was pinned to one of 32 CPUs. In order to provide the
initial state for QEMU, a Checkpoint-and-Restore in Userspace (CRIU) snapshot was
used [95]. Inside each container, the QEMU instance was run, reading inputs from AFL
and writing outputs to the shared folder. QEMU was instrumented with hooks which
would introspect the guest system for crashes or hangs and then signal to the host AFL
instance within the container to reset the entire QEMU process tree from a snapshot.
Because the process tree was reset rather than a single process, peripheral models and
co-processors running in separate child processes would also be reset, simplifying the
maintenance of state.

The two targets of our dynamic analysis using this fuzzing framework were the Rasp-
berry Pi and the CMU-900. Both fuzzing sessions targeted the OS system call boundaries
of Linux and VRTX, respectively. While no novel vulnerabilities were found in Linux, all
recovered fuzzing outputs were equivalent between the emulated and physical versions
of the Raspberry Pi. The CMU-900, however, had significantly more successful results.
The AFL fuzzer found 2963 unique code paths during 200 hours of fuzzing, over 200 of
which resulted in meaningful crashes. One of these code paths, crashing on a function
return, was bootstrapped into a privilege escalation vulnerability using a ROP chain by
the author. We next discuss the specific results of fuzzing each of these devices.

RPi Fuzzing Because the Linux kernel is used widely, we did not expect our testing to
identify new vulnerabilities in its system call interface. Instead, our goal was to determine
whether our synthesized configuration behaves the same way: for all three implementations,
we monitored the response of the Linux kernel to each system call and recorded which
of the following four observable behaviors resulted:

• Kernel “oops” or panic. Both indicate a kernel fault, pointing to a potentially ex-
ploitable bug. A kernel “oops” does not halt the system, while a panic does.

• Process killed. The kernel kills the process issuing the system call. In our configura-
tion, the only process is the init process, leading to a kernel panic with a unique error
message. Under normal circumstances process death would not result in a panic.

• System call return. The kernel returns to the calling process. We recover any set errno
and return values.

In our experiment, we issued 1,571,576 distinct system calls from our init process stub
to the Linux kernel running in QEMU with our synthetic devices, resulting in 123,198
unique codepaths. Of these, none resulted in a kernel “oops” or kernel panic. 51,638

45

Figure 4.5: A screenshot of the Jetset fuzzing framework (left) discovering a crash (right)
in the CMU-900.

resulted in the kernel killing the init process, and 71560 in the system call returning to
our user process. We then carried out the same experiment (using the same exact system
calls) using the official QEMU Raspberry Pi 2 configuration with manually-implemented
devices. In all 123,198 cases, we observed the same behavior in both the synthetic and
manually-implemented configurations, down to fuzzing paths discovered, error stack
traces, errno values, and system call return values.

To compare our (synthetic) implementation against the real hardware, we selected a
random sample of 14,661 test cases. We then booted the Raspberry Pi 2 kernel on the
target board and used a custom init process to read system call parameters from a serial
port, issue the system call, wait three seconds, and then reboot the system. Using this
interface, we issued 14,661 system calls on the target hardware. If the system call returned,
our init process printed errno and the return value to the serial console. Otherwise, we
relied on kernel serial console output to determine whether the init process was killed or
whether the kernel encountered a fault (“oops” or panic). We observed the same behavior
on the physical hardware as in the emulator with synthetic devices.

CMU-900 Fuzzing The mainline QEMU distribution implements four of the peripheral
devices used by the CMU-900 (the real-time clock, interrupt controller, interval timer, and
serial controller). We created a manual, ground-truth QEMU configuration mapping these

46

devices at addresses expected by the code, which allowed us to compare the behavior of
the emulated system with our synthetic devices against a QEMU configured with their
full implementation. As with the Raspberry Pi 2, we compared the behavior of the two
systems by issuing system calls from unprivileged task 1. A screenshot of the fuzzing
framework is shown in Figure 4.5.

AFL found 2963 unique crash code paths during 200 hours of fuzzing. To compare
the behavior of our two QEMU implementations (synthetic and manual), we compared
the debugging console output produced by the CMU-900.9 In the case of a successful
system call return, the CMU-900 continues with its normal unprivileged task startup
sequence. In the event of a protection violation, the CMU-900 prints a wealth of debug-
ging information, which we use to determine whether the two configurations behaved
similarly.

Of the 2963 execution paths discovered by fuzzing, 2884 (97.3%) code paths exhibited
identical behavior. Another 36 (1.2%) had the same outcome, but differed in the values in
some of the registers. The remaining 43 (1.5%) also had the same outcome, but differed
more extensively in the output generated.

Manual analysis of the 2963 execution paths led to the discovery of a privilege escala-
tion vulnerability. The vulnerability occurs because a single byte can be “leaked” from
unprivileged code into the offset of a call instruction in the VRTX kernel. One of the 256
potential values for this byte results in the call targeting the middle of a function. From
here, a Return-Oriented Program (ROP) chain can be used to modify the global descriptor
table (GDT). A few instructions later, the GDT modification causes the kernel protection
error handler to fire. However, the GDT modification changes the base address of the
data and stack segment used by the handler so they overlap with an unprivileged data
segment. The handler includes a far call whose address is dependent upon a read from
the corrupted data segment. A malicious address can be given to this far call, leading
to a second ROP chain which further modifies the GDT. This ROP chain changes the
address range limits for privileged code and transfers control to unprivileged, writable
memory while remaining in processor ring 0.

We were able to validate the exploit on another CMU-900 (one with a slightly different
part number and memory layout) after some minimal adaption and a live binary rewriting
process paired with a local code execution exploit which “poisoned” the VRTX operating
system with shim code. Due to small changes in the VRTX kernel between device versions,
we discovered the exploit’s control transfer required supplying one ROP gadget address

9We would prefer to compare the synthetic device QEMU instance to the actual hardware, however, did
not want to risk making the device inoperable, one explicit benefit of the emulated copies.

47

via a segment rather than a data register and changing some gadget offsets.

4.3.2 Leveraging Emulation in Avionics Exploit Development

While the loading capability used to introduce software into the physical CMU was
provided by the Triton Avionics Testbed [96], significant additional live binary instru-
mentation was needed to evaluate the exploit discovered above, and the techniques that
were developed in this process allowed us to develop a mechanism for poisoning the
CMU-900’s VRTX operating system and led us to the discovery of three sets of messages
capable of remotely disabling the CMU-900. Because Aircraft Communication and Re-
porting System messages also have a “broadcast” mode, these messages could be used
to crash a large number of CMU-900 devices simultaneously. Due to their sensitivity, we
omit the details of these messages from this dissertation and focus on techniques for their
discovery, noting only that one message generates a buffer underflow where memory
is allocated beyond the appropriate length and the other two cause excessive memory
allocations which drain the availability of new heap memory.

The ability to run the CMU-900’s VRTX operating system in an emulated environment
was critical to the development and testing of these techniques and associated exploits.
The emulated copies of the CMU-900 allowed us to attempt numerous instrumentation
approaches and gain visibility into implementation flaws, a task which would have been
significantly more difficult on the physical device.

Bootloader and OS Initialization Replication Once our malicious software is loaded
into the CMU-900 using the dataloader, control is effectively transferred entirely to the
malicious code as a bootloader, negating any prior operating system and hardware device
initialization. It was thus necessary to replicate the bootloader and operating system
initialization process in the emulator to ensure that the malicious code would be able
to run in the same environment as it would on the physical device. So, in this initial
case, the malicious code would first relocate itself to an unused portion of RAM, transfer
control to this new location, replicate the bootloader and initialization behavior necessary
to reset the system back to an appropriate initial state, and then return control to to the
original VRTX operating system.

Developing this replicated functionality required significant manual extraction and
analysis of code using Ghidra. The complexity of dealing with self-relocating code and
the specific magic numbers involved for resource initialization led this “poisoned” version
of the VRTX boot sequence required hundreds of lines of hand-written x86 assembly. The

48

development of this in situ emulation also required significant universal quantification
over possible relocation addresses as an alternative to the manual process of identifying
a suitable relocation address, a unique benefit of using an emulated system, and served
as one inspiration from the redaction attacks presented in Chapter 5.

Flash Code Relocation and Shim Injection For the purposes of analyzing the system
for crashing inputs and testing the system call paths discovered by fuzzing in the previous
section, it was not enough to replicate the boot process. Thus, we also performed binary
rewriting of operating system code in order to inject instrumentation routines for the
purposes of dynamic analysis.

This was complicated by the fact the CMU-900 executed a significant portion of its code
out of flash memory, which was considered to be read-only in order to avoid damaging
the physical unit. It was therefore necessary to relocate the portions of code that were
to be instrumented into unused, writable RAM memory, and update associated pointers.
This was a two stage process, first consisting of corrupting the interrupt vector table in
order analyze portions of the code that were in use at runtime for critical functions and
relevant to exploitation, and second, updating non-relative memory addressing data to
point to the relocated code segments.

However, once the appropriate relocation operations were complete, it was possible
to inject additional shim code at arbitrary locations in system memory using binary
rewriting tactics. The primary rewriting tactic used was the augmentation of x86 call
locations. The precise method used is detailed in Section 3.2 of this dissertation, and
code is given in Figure 4.6 With shim instrumentation in place, it was trivial to manually
identify potentially crashing inputs by examining data flows within the system.

49

1 /* eax stores the original offset in the code. we read from

this offset to get the relative offset the call lands at.

We then change that offset so it is relative to the

location of the trampoline call instruction. We then set it

into the trampoline call instruction. */

2 "mov $" TRAMPOLINE_LOC " ,%ebx\n"

3 "add $3 ,%eax\n"

4 "mov %eax ,1(% ebx)\n"

5 "sub $3 ,%eax\n"

6 "mov %eax ,%ebx\n"

7 "add $0x" RELOCATE_ACARS_CODE_BASE "00120 ,% eax\n"

8 "mov (%eax),%eax\n"

9 "shl $0x8 ,%eax\n"

10 "sar $0x8 ,%eax\n"

11 /* Add three bytes to account for the three storage bytes */

12 "add $0x3 ,%ebx\n"

13 /* Add relative base of call so it is relative to seg base */

14 "add %ebx ,%eax\n"

15 "sub $" TRAMPOLINE_LOC_OFF ",%eax\n"

16 /* Subtract 10 bytes relative to the tramp call return */

17 "sub $0xA ,%eax\n"

18 /* Write the jmp instruction of the trampoline loc */

19 "mov $" TRAMPOLINE_LOC " ,%ebx\n"

20 "mov %eax ,6(% ebx)\n"

Figure 4.6: Code for live binary rewriting of call instruction in the CMU-900 firmware.

4.4 OPEN CHALLENGES IN REHOSTING

Returning to the primary subject of Jetset, the approach of targeted rehosting works
well for firmware running on a variety of embedded system architectures across multiple
application domains. However, this approach to peripheral modeling and system emula-
tion is not without limitations, which we break down into internal and external semantic
challenges.

50

Internal Semantics The paths explored by Jetset through firmware are not necessarily
ones that may ever be returned by the hardware in the original system; however, the path
taken is one that is acceptable to the firmware—no interaction with any of the peripherals
results in a boot failure. While the execution of firmware running on physical hardware
is constrained in its behavior by how the physical peripherals really behave, these system
constraints are external to the firmware and cannot be inferred without auxiliary infor-
mation about its behavior. To effectively emulate a system, it is not necessary not only to
explore a single execution path, but to reveal the connections and meaning implied by
multiple execution paths, a topic we will approach in Chapter 5 and refine in Chapter 6.

External Semantics Jetset does targeted rehosting in that it only constructs an emulator
that is sufficient to emulate the software component-under-test. However, rehosting may
have no method of deducing the semantics of devices that the system depends upon if the
only information it considers is that which is contained within the system specification
which remains after these devices are removed, e.g. firmware. Jetset could be extended to
synthesize more complex, stateful peripheral models as well as identify known peripher-
als with existing emulator implementations using additional information from external
sources.

Included in external semantics is the information requires to solve the dynamic analysis
challenges presented by Section 4.3.2, which exist outside of the simple execution of a
given system model. While this information is of less general application, it still plays a
critical role in quantifying the security of the emulated system, as evidenced by its utility
in exploit development.

4.5 SUMMARY

In this chapter, we discussed one approach to the emulation of complex systems, tar-
geted firmware rehosting. The benefit of this approach is its ability to synthesize periph-
eral hardware devices for the analysis of real-world embedded systems. Particularly, it
considers the available information about the system to derive models of unknown com-
ponents. In the next chapter, we will develop an alternative approach which addresses
some of the shortcomings of looking at a strict derivation from available information for
resolving unknown components: universal quantification over possible missing informa-
tion, and see how this approach applies to the security of real-world redactions.

51

Chapter 5: Digital Forensics Using Simulation

In this chapter, we explore the application of system simulation for the purposes of
digital forensics, particularly in the analysis of PDF documents. We begin by introduc-
ing facets of the PDF format and redaction software that are relevant to the analysis of
redacted documents. Then we move on to discuss the extraction of models of PDF pro-
ducing software, and the use of exhausive search over inputs in determining the text that
is removed during redaction. We then introduce the most impactful discovery covered in
this dissertation: the fact one to two word excising redactions, where the text is removed
from the page, do not actually work. Finally, although it is not immediately related to
emulation, we see it necessary to discuss the ethical implications of these findings as they
present a significant threat to individual privacy. This work was published at PETS in
2023 [10], and the author of this work was the primary contributor.

5.1 INTRODUCTION

As noted in the last chapter, the one core element of emulation is the modeling of
unknown components of the system, and one approach to this problem is exhaustive
search, which tries every possible match for the missing information.

The problem of discovering or inferring of missing information can be encapsulated
in the consideration of attacks against the the centuries-old process of redaction, which
removes or obscures parts of a document to prevent its disclosure. In the past this was
performed by black marker or by physically cutting parts of the document out with
scissors. However, with the move to digital, paperless representations of documents, the
process of redaction is typically performed by software tools. The process of removing in-
formation from digital documents is error-prone, as demonstrated by several high-profile
examples [97]. However, while past work has considered the possibility of supplying all
inputs to a system in a brute-force attack [98], no existing work has considered the role
the PDF file representation plays in redaction security, and redaction’s vulnerability to
such guess and check attacks.

In this chapter, we begin by noting that the width of the characters in a proportional-
width font can leak information about redacted text, and extend this notion of leaked
information to the PDF file’s representation of sub-pixel-sized character positioning
shifts. These shifts can be used to decide far more information about redacted text than
width alone, and failing to understand these shifts exist leads to incorrect or imprecise

52

deredaction, serving as a useful parable for the more general field of modeling systems.
We were the first to identify this problem of sub-pixel shift information, leading us

to measure the severity of information leaks in PDF text redactions. We discovered
methods for breaking redactions occurring on documents processed by optical character
recognition (OCR) software and find that rasterizing a document (converting the PDF to
an image) increases the security of redactions but does not remove information leaks.
We also find a typical PDF document authored in Microsoft Word leaks about 13 bits of
information about a redacted surname. This is enough for an attacker to identify a single
individual from 8,000 candidates (say, employees at a company or potential confidential
informants in a gang), or reduce the 3.9 million possible first initial, surname pairs from
US census and Social Security Administration data to a set of only 200 potential matches
for a redacted name.

Although it did not relate to our core theme of exhaustive search, we also considered
nonexcising redactions which do not remove any text from the document, and leave it
directly encoded in the original PDF file. The text of these redactions can be copied
and pasted from the source document. Our study and techniques located thousands of
nonexcising redactions in US court documents, resulting in our notification of both the
US court system and the Free Law Project about these redactions.

To understand the methods by which systems leak redacted information, we examined
11 popular PDF redaction tools and find that two do not work at all.10 These two tools
leave the text underneath the selection marked for redaction in the PDF document. The
remaining tools, including those from Adobe Systems, remove the redacted text and re-
place it with a black rectangle. Without additional defenses, this practice leaks significant
glyph shifting information which can be used to deduce redacted text.

We built a tool Edact-Ray, which simulates the operation of common PDF production
software, such as Microsoft Word, and contains analysis subsystems which can be used
to identify, break, and fix redaction information leaks across millions of PDF files. Using
dictionary attacks on these simulations, Edact-Ray allows an attacker to test which strings
from a dictionary of candidates create the same PDF output as the original redacted PDF
file. We applied Edact-Ray to study the impact of our findings on three publicly-available
corpora of PDF documents, breaking redactions in several documents of historical im-
portance.

The resulting findings present a clear invasion of privacy for people whose names have
been redacted and may be used to circumvent redactions used in censorship. Thus, we

10As these findings are not entirely relevant to the subject of this dissertation beyond the minor applica-
tion of dynamic analysis, we refer readers to the original paper for more details on redaction tools.

53

have notified more than 22 organizations whose redacted documents were affected, as
well as vendors of leaky PDF production and broken redaction tools, and continue to
work with several of these groups to remediate the problem.

In the following sections, we provide the reader with the necessary background to
understand how these redactions are broken through simulation and modeling of glyph
positioning algorithms.

5.2 BACKGROUND ON PDF TEXT REPRESENTATION

The security of PDF text redaction depends on the specification of the PDF document.
We consider two types of PDF documents. One is a raster image of the original document.
The other PDF document type contains text data for both the font and the layout of each
character (glyph) on the page. We focus our discussion on non-raster PDF documents,
however, the concepts presented apply to raster PDF documents.

 [...(Exh)-2(ibit A.)] TJ
Positional Adjustment

Figure 5.1: The TJ text showing operator, which specifies the glyphs to render and, by
reference to a font object (not shown), their widths.

PDF documents can render text in innumerable ways (e.g. by embedding an image
in the document), though the most common is through use of a text showing operator,
one of which (TJ) is depicted in Figure 5.1. The TJ operator takes as arguments a string
of text and a vector of positional adjustments which displace the character with respect
to a default position. This default position is usually a fixed offset from the previous
character equivalent to the advance width of the previous character defined elsewhere in
the PDF document.

For our analysis, we converted the complex set of PDF text rendering operations into
a uniform intermediate representation, consisting of a minimal set of metrics (e.g. font
size) and a series of TJ operators. The intermediate representation presents PDF text as,
effectively, a set of advance widths and glyph shifts which are the sum of all the individual
positioning operations applied to a glyph. This conversion was necessary to account the
large number of ways in which text can be rendered in PDF documents.11

11For example, in the case of a TJ operator, the actual glyph shift includes any offset due to a positional
adjustment as part of the calculation of its value.

54

The positional adjustment in Figure 5.1 is −2 text space units between the h and i glyphs.
Text space units express glyph shifts, where 1,000 units almost always12 equals the point
size of the font times 1/72 of an inch. For a 12-point font, 1 unit equals 1/6,000 of an
inch (0.0042 mm).

Glyph advance widths and glyph shifts create a security concern, as an attacker can
supply all possible inputs to a simulation or high-level emulation of the tool used to
create the document and create two significant security risks:

• The precise width of the redaction can be used to eliminate potential redacted texts.

• Any non-redacted glyph shifts conditioned on redacted glyphs can be used to
eliminate potential redacted texts.

Examples of these output glyph width and shift descriptions as given by the PDF
format are provided in Table 5.1. In this table, “Edge/Firefox, Print/PDFViewer, Save”
can be interpreted as “using the edge or firefox browsers’ PDF viewer or print dialog,
hit save” and results in the right column’s displacements. We do not include strings of
numbers in our analysis as digits’ glyph advance widths and effect on glyph shifts is
almost always identical, making them effectively monospace, even if typeset in a variable-
width font. Some uncommon fonts may have non-identical digit glyph advance widths.

5.2.1 Glyph Shifts

The width of a PDF redaction depends on glyph shifts. Without accounting for glyph
shifts, redacted text guesses are imprecise and must account for error, reducing the po-
tential of finding a unique match for redacted content. The glyph shifts present in a PDF
document are dependent on the specific workflow used to produce the PDF document.
This includes an originating software, called the PDF producer by the ISO 32000 PDF stan-
dard [99], and any software that may modify the PDF file contents thereafter, including,
for example, a redaction tool. A given workflow creates a specific pattern of glyph shifts,
determining, in part, the security of any redacted text. We identify two types of glyph
shifting schemes:

• Independent: the glyph shifts for a given character are not dependent on any other
character in the document in any way.

12PDF offers the ability to redefine the text space and Edact-Ray accounts for this.

55

Table 5.1: Several possible PDF workflows. The left column indicates the operations
which to produce the representation on the right.

Software Stack, Workflow Description of Positioning Scheme

Word 365, Windows 10
Edge/Firefox, Save [(E)7(xhi)7(bi)7(t)7(A)-6(.)]
Edge/Firefox, Edited, Save [(E)7(xhi)7(bi)7(t)7()-1.75(A.)]
Edge/Firefox, Print/PDFViewer, Save [(E)-13(xhi)28(bi)28(t)-34(A)-27(.)]
Edge/Firefox, Edited, Print/PDFViewer, Save [(E)-13(xhi)28(bi)28(t)-34()-3.17(A.)]
Edge, Edited, Print/PDFViewer, Print Stream of Vector Graphics Commands
Firefox, Print, Save Stream of Vector Graphics Commands
Firefox, Print, Print [(Exhi)7(bi)7(t)7(A)-8(.)-20()]
Chrome Subset of Edge Outputs
Desktop, Save (all flows, including loaded again in Adobe) [(Exhibi)-2(t A.)]
Desktop, Edited Save (all flows) [(Exhibi)-2(t)-2.67(A.)-2()]
Desktop, Edited/Unedited Print [(E)-0.8398(xhi)-0.8320(bi)-0.8320(t)-0.8320()-10(A)-0.1680(.)10()]

Word 365, Mac OS
Safari, Chrome, Firefox, Edge Subset of Windows 10, Edge
Desktop, Save (all flows) [(E)0.2(xhi)0.2(bi)0.2(t)0.2(A)-0.2(.)-0.104()]
Desktop, Edited Save (all flows) [(E)0.2(xhi)0.2(bi)0.2(t)0.2()-0.136(A.)0.232()]

Word 2016, Windows 10
Save [(Ex)-8(hibi)6(t A.)]
Save, Edited [(Ex)-8(hibi)6(t)-2.67(A.)-2()]
Print [(E)-0.8398(x)-10(hi)-0.8320(bi)7(t)-0.8320()-10(A)-0.1680(.)10()]

Google Docs, Windows 10
Save (All flows) [(Exhibit A.)]
Save, Adobe, Save [(Exhibit)55.838(A.)], [(AAA)128.417(VVV)]
Chrome/Edge, Print, Adobe PDF Save [(0123435ÿÿÿ78ÿÿÿ)] (Actual embedded text is clobbered.)
Edge, Print, Print Stream of Vector Graphics Commands
Firefox, Download/Print, Firefox Viewer, Print, Print Stream of Vector Graphics Commands

Google Docs, Ubuntu 21.04
Firefox/Chrome, Save (all flows) [(Exhibit A.)]
Firefox, Download, Firefox Viewer, Print File rasterized
Chrome, Print/System Print [(Exhibit A.)] (Spaces tripled)

Google Docs, Mac OS
Chrome/Firefox/Safari, Download/Print, Save [(Exhibit A.)]
Chrome, Print, Save as Adobe PDF Same as Ubuntu, Chrome, System Print
Chrome, Print, Preview/Sysdiag Print, Export [(E)0.2(hi)0.2(bi)0.2(A.)], (Spaces Tripled)
Firefox, Print, Preview, Export [(E)0.2(hi)0.2(bi)0.2(A.)]
Firefox, Download, Firefox Viewer, Print File rasterized

Quartz PDFContext (Apple Pages), Mac OS
Export/Print/Preview, Save [(E)0.2(xhi)0.2(bi)0.2(t)0.2()55.2(A)-0.2(.)], [(AAA)129.0(VVV)]
Print, Save-as-Adobe-PDF [(Exhibit A.)], [(AAA)128.8(VVV)]

Word 2012, Windows 10 Same as Word 2016, Windows 10

All Word Versions, Windows 8.1 and Older Subset of Windows 10

No Disp. 600 DPI, Adobe OCR
OCR Only, Save [(E)-2.3(x)-2.3(h)-2.3(i)-2.3(b)-2.3(i)-2.3(t)-2.3()[79.75 Td - 2.3 Tc](A)3.3(.)3.3()3.3()]
Edit or OCR, Edit, Save [(E)-0.12(x)-0.12(h)-0.12(i)-0.12(b)-0.12(i)-0.12(t)-0.12()[71.6 Td - 0.12 Tc](A.)]

56

Table 5.2: Glyph width equivalence classes for the specific default version of Times New
Roman used by Microsoft Word.

569 ijlt 1251 ELTZ
683 Ifr 1366 BCR
797 Js 1479 ADGHKNOQUVXYw
909 acez 1593 m
1024 bdghknopquvxy 1821 M
1139 FPS 1933 W

• Dependent: the glyph shifts for a given character are dependent on some other
character in the document in some way.

These correspond to the notions of dependent and independent information in the
recovery of models of systems introduced in Chapter 2. We call independent schemes
unadjusted when there are no shifts on any character. Google Docs’ Export to PDF option
produces an unadjusted scheme.

Equivalence Classes.

Before discussing these schemes further, we introduce the idea of width and shift
equivalence classes. A shift equivalence class is a set of lists of glyphs of the same length
with identical shift values. A width equivalence class is a set of glyphs and associated
shifts with the same width.

Table 5.2 gives an example of the width equivalence classes for glyphs in a Times
New Roman font13 without shifts, next to their widths as specified by the font file. Each
number is the width in given to the glyph by the font file and each set of letters has
equivalent widths. The glyphs I, f, and r are exactly half the width of the glyphs of B, C,
and R. When typeset using Times New Roman, the words martian, templar, and mineral
all have the same width, as do the anagrams of those words tamarin, trample, and railmen.

The PDF specification does not include any specific signifiers for redacted text. How-
ever, residual specification information after redaction, such as glyph positions, can be
used to reasonably rule out large numbers of candidate width and shift equivalence
classes for redacted text. None of the prior words in this paragraph are in the width
equivalence class of the word cat.

13Different versions of a font can exist. We use the default versions available from Microsoft throughout
this paper.

57

Independent Schemes.

In an independent glyph shifting scheme, the security of a redaction may be considered
dependent on the size of the width equivalence class indicated by the PDF document’s
residual glyph positioning information. That is, the positions of glyphs prior to and
succeeding the redaction may leak the width of redacted text. The scheme’s specific glyph
shifts can make a given width equivalence class leak more or less redacted information
by making width of individual glyphs more or less unique.

As an example, consider redacting a single letter l as opposed to m in the Times New
Roman (TNR) scheme from Table 5.2. m is the only glyph in its width equivalence class,
so it may be possible to determine the letter m was redacted uniquely. Whereas if l is
redacted, then the residual information indicates the redacted letter could be any one of
i, j, l, or t. However, if l were always accompanied by a glyph shift distinguishing it from
these other three letters, then the scheme would leak more information.

We acknowledge that there is no guaranteed correlation between glyph positions before
and after redaction. Redaction may reposition glyphs in such a way as to destroy accu-
rate width information. However, we found this is almost never the case for commonly
accessible redaction tools [10]. We were also informed that in some contexts there are
(legal) restrictions on changing the glyphs or glyph positioning of a redacted document.

Scanned Documents. Many documents with independent shifting schemes are the result
of an optical character recognition (OCR) process. This process embeds a non-raster
representation of the document’s text in the resulting PDF document. This often allows
the document’s text to be searched and copied from by software tools.

Non-raster deredaction attacks work on documents that are scanned, OCRed and then
redacted, not on documents that are redacted, scanned, and then OCRed. We note that
attacking the OCR overlay is not always as straightforward as attacking a PDF produced
without OCR, and requires a separate model or simulation.

Dependent Schemes.

A dependent scheme is more dangerous to the security of redacted text than an in-
dependent scheme. In these schemes non-redacted glyph shifts can be dependent upon
redacted glyph information, because the non-redacted glyph shifts can be determined
before redaction.

Microsoft Word “Save as PDF”. In this chapter, our primary simulations model a class of
dependent schemes defined by the Microsoft Word software’s Save As PDF command. We

58

1 for (int j = i + 1; j < vs ->size(); j++) {

2 t = ttfScaledWidths[j] / 1000;

3 d = internalMSWordWidths[j] / internalMSWordFontSize;

4 ttf += t;

5 msWord += d;

6 disp = ttf - msWord;

7 if (

8 ((disp > 0.003) || (disp < -0.003)) &&

9 i != vs->size() - 1

10) {

11 int adj = disp * 1000 + 0.5;

12 vs ->setShift(j, adj);

13 ttf = msWord = 0;

14 } else {

15 vs ->setShift(j, 0);

16 }

17 }

Figure 5.2: Snippet of reverse engineered code representing how Microsoft Word leaks
redacted character information into non-redacted characters in a PDF docu-
ment.

reverse-engineered the glyph shifting scheme produced by this command in Microsoft
Word for Windows desktop versions 2007 to 2019. This process took around several
months. Word 2007 to 2016 use one scheme, and Word 2019 to present versions use
another. These two schemes affect thousands of real world document redactions (Sec. 5.4).

The studied dependent schemes accumulate a What You See Is What You Get (WYSI-
WYG) error measurement for each glyph from left to right across each line of text. If
redacted content is not removed from a Word document before running “Save as PDF”,
redacted glyph positioning information affects the accumulated error value. Thus informa-
tion about the content of a redaction is leaked into the shifts applied to non-redacted characters.14

Figure 5.2 depicts this behavior. Word’s internal representation of the layout of char-
acters for display purposes does not exactly match that of the TrueType Font (TTF)
embedded in the PDF document. Word corrects for this small error between the two for-
mats through use of glyph shifts. Surprisingly, these modifications are done independent
of the user’s screen resolution.

We note the internal widths used on line 3 of Figure 5.2 are determined by a loop
with no overflow reset and the redacted information held by the accumulator is not zero

14Different text justifications can leak more information.

59

after a single shift is written. We refer the reader interested in the specific details of this
algorithm to our original paper [10].

Word’s shifting scheme depends on the document’s edit history. Changing a charac-
ter inside of a Microsoft Word document splits the internal representation of the text
fragment containing the character into two fragments. This fragmentation resets the accu-
mulation of glyph width error and affects the shifts emitted for a line of text. Edact-Ray
accounts for this by simulating all potential edits to redacted text.15

We validated our Word model on hundreds of lines of Wikipedia text rendered to
PDF by Word, several manually-crafted test cases, and text fragments from redacted
documents found in the wild.

Locating Redactions Briefly, to evaluate our forensic capabilities, we also developed a
redaction location algorithm for PDF documents, based upon an implicit model of how
redaction often appear as outputs of PDF document redaction systems.

For nonexcising redactions, we first detected filled boxes drawn over text. This creates a
large number of false positives as it does not consider whether the rectangles are actually
covering text in a meaningful way, so we also check whether the pixels in the bounding
box of each PDF glyph are all the same color. This does not handle complex cases (e.g.
using an image to redact text), but we did not find cases of these more complex styles of
redaction in practice.

We manually validated this nonexcising redaction location algorithm on PDF doc-
uments from RECAP, a website hosting US court documents, and discovered a false
positive rate of 4%. An additional 7% of these documents properly changed the under-
lying text (e.g. to REDACTED) or contained unintended redactions (e.g. a black box
covering non-sensitive text). This resulted in 710 documents with nonexcising redactions,
many of which included entire paragraphs of text. The algorithm encounters false neg-
atives when it cannot identify rectangular draw commands. We did not encounter false
negatives: redaction draw commands are rarely ambiguous enough to prevent detection.

For excising redactions, we first identified spaces larger than a single space character
between each pair of words in a document. It then analyzes the pixel color values be-
tween the words to identify a drawn rectangle.16 We evaluated our excising redaction
location algorithm’s accuracy on a random sample of 1,000 redacted pages from real-
world documents, and compared against Lee’s [100] prior work on redaction location

15We found edits have no significant impact on the efficacy of deredaction, as the information leaked is
at least as much as an independent glyph shifting scheme.

16We did not attempt to locate redactions without some visually signifying feature.

60

and against manual identification. Lee’s method flags every black rectangle drawn as
a redaction and has a high false positive rate for some classes of documents (around
30% for FOIA and nearly 100% for RECAP). With respect to false positives and false
negatives, our algorithm is equivalent to manual analysis when locating what we deem
to be vulnerable redactions.

5.3 MODELING AND SIMULATING GLYPH SHIFTING

For a given PDF generation and glyph positioning workflow, it is possible to construct
a precise simulation or model of the workflow’s operation and layout of glyphs. In this
chapter, the process was performed using WinDBG’s data flow analysis [77] and a series
of carefully crafted scripts for extracting information on how glyph positions are decided.

Extraction of System Simulations To extract simulations of glyph shifting schemes for
Microsoft Word, Adobe Acrobat, and other systems, we began by recording an execu-
tion trace of the production of a PDF document. In this document, we included easily
identifiable text fragments, such as “Lorem ipsum” and “redacted”, which exercised the
glyph shifting scheme. Because a given software workflow can split its operations across
multiple threads, we performed this recording in a virtual machine emulation running on
a single core. Then, we scripted WinDBG to identify the last use of a rep movs operation
with a pointer to the identifiable string.

This resulted in roughly five different identifiable code paths under which the specific
glyph shifts were decided. Code paths were discovered by using time-travel debugging to
trace the operation which last operated on a data value using a script. The binary code
for these paths was then extracted, decompiled, and then translated to a C-code repre-
sentation that could be compiled as a standalone binary. Beyond the strict operational
semantics of the system, it was also necessary to extract certain dictionaries from the
binary, such as the internal width map used by Microsoft Word in order to determine
the coordinate space “error” between Word’s internal representation and the output PDF
representation. We provide an example of a script which extracted such a dictionary in
Fig. 5.3. This script operates on an execution trace recording of the production of a PDF
with a separate glyph rendered on each line, e.g. “a”, “b”, “c”. In addition to the above,
a final manual analysis step was required to identify the types used in certain operations,
e.g. float vs. double, as small floating point errors would have dramatic effects on output
shifting information.

61

1 function handleInternalWidths () {

2 let Regs = host.currentThread.Registers.User;

3 let iWi = host.parseInt64(Regs.eax);

4 /* hack to identify the newline character */

5 if (iWi < 0x500) {

6 let internalWidth = iWi.toString (10);

7 internalWidths[characters[pos]] = internalWidth;

8 pos += 1;

9 if (pos == characters.length) {

10 internalWidthsArr.push(toJson(internalWidths));

11 internalWidths = {};

12 pos = 0;

13 }

14 lineend = !lineend;

15 }

16 return false;

17 }

18 function invokeBP(bpCmds) {

19 let Control = host.namespace.Debugger.Utility.Control;

20 Control.ExecuteCommand('bc *');

21 host.diagnostics.debugLog("Rewinding Execution ...\\n");

22 Control.ExecuteCommand('g-');

23 host.diagnostics.debugLog("Done\\n");

24 for (var i = 0; i < bpCmds.length; i++) {

25 Control.ExecuteCommand(bpCmds[i]);

26 }

27 host.diagnostics.debugLog("Invoking BP...\\n");

28 Control.ExecuteCommand('g');

29 host.diagnostics.debugLog("Done\\n");

30 }

31 function invokeScript () {

32 invokeBP (['bp /w

"@\$scriptContents.handleInternalWidths ()"

0x65567138 ']);

33 for (var i = 0; i < internalWidthsArr.length; i++) {

34 host.diagnostics.debugLog(internalWidthsArr[i]);

35 }

36 }

Figure 5.3: Example script for extracting the internal width map from Microsoft Word.

62

Universal Quantification of Inputs With C-code simulations extracted from respective
PDF document production and redaction systems, it was then possible, for a given line
of redacted text, to universally quantify all possibilities for the redaction’s content. This
dictionary attack aims to reproduce exactly the original behavior of the system when
the document under analysis was produced: Edact-Ray measures the security of a given
redaction by developing an information fingerprint (i.e. a hash of the width and shift
equivalence classes) of all leaked glyph positioning information from the simulation.
For each attempted guess at the redacted content, Edact-Ray matches the information
fingerprint for this guess to the fingerprint of the same information recoverable from the
source document.

If the guess information fingerprint does not match, that guess is ruled out as a po-
tential redacted content. Thus, Edact-Ray’s results are only as good as the dictionary
which it quantifies over, and if the redacted text is not in the dictionary, Edact-Ray may
return incorrect or no results, thus it is important to understand that in the determination
of unknown facets of a system, it is impossible to discover the ground truth unless it is
also possible to guarantee the dictionary used to guess and check is sound. Thus, while
the generation of potential dictionaries could be automated using machine learning, we
chose to perform this step manually in order to exclude a potential source of error. We
also used dictionaries consisting of multiple variations of possible redacted terms in
order to minimize the chances of not including the correct redacted content in our guess
dictionary, and performed extensive validation of our results wherever possible.

Running on an eight-core consumer laptop (a ThinkPad T420) and simulating the
Microsoft Word shifting scheme discussed in the previous section, Edact-Ray performs
80,000 guesses per second.

5.4 BREAKING REDACTIONS

Given the Edact-Ray tool, it was now possible to measure the security of redactions in
a variety of real-world PDFs and synthetic cases. First, we were able to quantify the exact
amount of information each shifting scheme leaked using a set of synthetic redactions,
where we attempted redaction on text with known ground truth. For this we used text
from the New York Times Annotated Corpus [101]. Then, we explored whether redactions
in real-world documents could fall victim to these same simulation-based attacks, and
quantified the number of broken redactions across thousands of PDFs.

63

Dictionaries The amount of information leaked also depends on prior information
about the redacted text. For example, if we know the redacted text is one of 151,671
American surnames, then this redaction leaks at most log2 151, 671 ≈ 17.2 bits. In our
experiment, we model this prior information as a dictionary, a set of strings from which
we assume the redacted text is drawn.

Based on an examination of real redactions, we constructed 10 dictionaries.
• Str. All strings of 3–16 characters in length starting with a uppercase or lowercase

letter followed by lowercase letters.
• Acrn. All strings of 2–5 uppercase characters.
• Word. English words including some proper nouns.
• Ctry. Official and common names of countries.
• Rgn. Names of regions, a superset of Ctry.
• Natl. Nationalities, demonyms, and adjectives of regions and nationalities, sourced

from lists on Wikipedia.
• FN. American given (first) names.
• LN. American surnames (last names).
• FI×LN. All combinations of a name initial followed by surname (LN).
• FN×LN. All combinations of a given name (FN) followed by a surname (LN).
• FNLN and FILN. FN×LN and FI×LN filtered to only include combinations of name

and surname that appear in the voter registration databases of the three US states.
North Carolina [102], Ohio [103], and Washington [104] were chosen based upon
the availability of publicly accessible data.

Table 5.3 lists the dictionaries and their statistics. NYT Occ. gives the number of occur-
rences of words from the given dictionary in the NYT corpus. Hu(X) is the uniformly
distributed information-theoretic entropy of the dictionary, given by log2 Size. For indi-
viduals’ names, He(X) is the entropy of the empirical distribution of dictionary words in
the voter registration databases, and for all others it is according to the NYT corpus.

We use the voter registration database frequency for individuals’ names to avoid bias
present when using the NYT corpus to estimate the frequency of a given name. For
example, “Al Gore” is more frequent in the NYT corpus than the population. Using
the NYT for names would skew the results in our favor. We opted to provide a general
representation of deredaction’s efficacy where nothing is known about the name in
question beyond population statistics.

The voter registration databases contained 1.7× 107 names total. Note that if this
measure was used instead of NYT Occ., FN, LN, FILN, and FNLN would be identical to
the population size.

64

Table 5.3: Dictionaries containing candidate texts used for evaluating deredaction. Stop
words are excluded from the statistics.

Dict. Size Hu(X) NYT Occ. He(X)

Str 9× 1022 76.3 791,209,093 11.8
Acrn 1.2× 107 23.6 4,674,379 10.0
Word 63,054 15.9 432,896,070 12.3
Ctry 566 9.1 3,905,371 5.9
Natl 509 9.0 4,081,019 5.4
Rgn 2.8× 106 21.4 33,636,150 10.6
FN 100,364 16.6 71,031,188 10.3
LN 151,671 17.2 97,551,697 13.1
FILN 1.6× 106 20.6 1,265,265 17.0
FI×LN 3.9× 106 21.9 2,139,713 17.0
FNLN 8.9× 106 23.1 3,650,063 19.6
FN×LN 1.5× 1010 33.8 14,440,238 19.6

Columns Hu(X) and He(X) are an upper bound on the amount of information a docu-
ment can leak about a redacted element of that dictionary. If the amount of information
leaked is equivalent to these numbers, then every word in the dictionary can be uniquely
identified by leaked information when redacted.

Compared to the brute force approach of using all possible name combinations, using
voter registration databases makes deredaction highly precise. However, we do not use
FNLN and FILN in our evaluation of real-world documents because we do not want to
bias our results by assuming what state the person (whose name was redacted) votes in
or whether they are registered to vote.

Synthetic Evaluation We simulate redaction in a PDF created with unadjusted, Word
2007 and Word 2019 “Save as PDF” shifting schemes, in 10 point Times New Roman,
Calibri, and Arial, the three most common fonts in our real-world document corpora,
discussed next. These fonts account for 71.6% of lines in the 40,000 documents we studied.
We include Courier as an example of a monospaced font. The simulated PDF, formatted
for US Letter size paper, is left-justified with 1-inch margins, giving a 468 point line
width.

We use a 10 point font size for our experiments as an upper bound on the amount
of leaked information. Our original publication also includes results for a 12 point font
size [10]. Because each 12 point line has fewer characters, the larger font size leaks a little
less information overall.

We parameterize each redaction with experimental parameters of shifting scheme, font

65

size, font, and dictionary. We then perform the following steps:
1. Choose some word from the corpus that occurs in the given dictionary.
2. Format a PDF document containing the chosen word and surrounding text from

the corpus using the parameterized font and shifting scheme.
3. Replace the chosen word at the point with each word in the parameterized dictio-

nary (either uniformly or according to the frequency distribution).
4. Redact the dictionary word by replacing it with a glyph shift equal to its width.
5. Record the leaked information fingerprint for this dictionary word.
In summary, we simulated the redaction of all possible dictionary words at a sample

of occurrences of dictionary words in the NYT corpus. We then computed the amount
of mutual information leaked by the redacted document Y about the redacted word X.
The amount of information leaked by the redacted document Y about the redacted word
X is given by the mutual information I(X, Y). Let L be a random variable representing
the location of the occurrence of the dictionary word chosen in our first evaluation step,
and H denote entropy. Note that H(Y|L, X) = 0 (there is no uncertainty about Y given
L and X), since the formatting and redaction in steps 3 and 4 are deterministic, and
H(L|X, Y) = H(L|Y) = 0 (there is no uncertainty about the location of the redaction
given the document after redaction). Using these two facts,

I(X; Y) =

= H(X)− H(X|Y)
= H(X)− H(X, Y) + H(Y)

= H(X)− H(L, X, Y) + H(L|X, Y) + H(L, Y)− H(L|Y)
= H(X)− H(Y|L, X)− H(L, X) + 0 + H(L, Y)− 0

= H(X)− 0− H(L)− H(X) + H(Y|L) + H(L)

= H(Y|L)
= ∑

`

Pr[L = `] · H(Y|L = `).

(5.1)

Thus, I(X; Y) is the average, taken over redaction locations, of the entropy of Y, that
is, the entropy of the distribution of possible documents after redaction. For a large
corpus and large dictionaries, calculating this quantity exactly is expensive. Instead of
calculating the exact value, we sample H(Y|L = `) for several initial word choices.

In addition to mutual information, we calculated the probability that the leaked infor-
mation can be used to correctly guess the redacted word. In the uniform distribution

66

Table 5.4: Number of bits leaked (left) and probability of a correct guess (right) for dif-
ferent shifting schemes in simulated redactions of the NYT corpus set in 10pt
font.

Leaked information (bits) Probability correct guess

Distr Courier Times Arial Calibri Times Arial Calibri
Dict Mo Un W07 W19 Un W07 W19 Un W07 W19 Un W07 W19 Un W07 W19 Un W07 W19

Uniformly distributed
Str 0.2 8.2 — — 8.8 — — 12.1 — — <1% — — <1% — — <1% — —
Acrn 0.2 6.5 11.0 9.2 6.4 10.9 9.7 11.4 13.9 13.7 <1% <1% <1% <1% <1% <1% <1% <1% <1%
Word 3.3 8.7 12.6 12.3 8.7 12.5 11.8 12.8 14.3 14.3 2% 22% 19% 2% 23% 16% 16% 48% 47%
Ctry 5.0 8.6 9.0 9.0 8.6 8.9 8.9 9.1 9.1 9.1 77% 94% 93% 75% 90% 89% 97% 98% 97%
Rgn 4.1 10.7 15.0 14.6 10.2 14.3 13.6 14.1 16.8 16.7 2% 10% 8% 1% 9% 7% 3% 15% 14%
Natl 3.8 8.2 8.8 8.8 8.0 8.8 8.7 8.9 8.9 8.9 66% 90% 91% 61% 90% 88% 97% 98% 98%
FN 2.6 7.8 11.6 11.1 7.9 11.0 10.4 12.3 14.1 13.8 <1% 11% 7% <1% 10% 6% 8% 32% 28%
LN 2.9 8.2 12.4 11.7 8.3 12.2 11.4 12.7 14.8 14.6 <1% 11% 8% <1% 12% 7% 6% 33% 30%
FILN 2.9 8.6 13.3 12.6 8.7 13.0 12.2 13.0 15.6 15.5 <1% 4% 2% <1% 4% 2% 2% 11% 11%
FI×LN 2.9 8.5 13.1 13.1 8.6 13.2 13.2 12.8 15.4 15.3 <1% 1% 1% <1% 2% 2% <1% 5% 5%
FNLN 3.2 9.4 14.5 14.1 10.0 14.9 14.0 13.5 16.7 16.5 <1% 3% 2% <1% 4% 3% 3% 8% 7%
FN×LN 3.4 8.8 13.7 13.3 9.2 13.8 12.9 12.8 15.9 15.3 <1% <1% <1% <1% <1% <1% <1% <1% <1%
Text frequency distr.
Str 3.0 7.6 — — 7.5 — — 10.5 — — 37% — — 35% — — 74% — —
Acrn 2.0 6.5 8.7 7.7 6.4 8.1 7.8 9.1 9.5 9.5 44% 75% 59% 43% 67% 61% 81% 91% 90%
Word 3.2 8.1 10.9 10.6 7.9 10.6 10.2 11.2 11.8 11.7 29% 69% 63% 27% 64% 57% 74% 88% 87%
Ctry 3.0 5.6 5.8 5.7 5.6 5.7 5.7 5.8 5.8 5.8 92% 99% 96% 93% 97% 96% 97% 98% 98%
Rgn 3.1 7.4 9.3 8.9 7.3 8.9 8.6 9.6 9.9 9.9 53% 81% 75% 51% 75% 71% 88% 94% 93%
Natl 2.5 5.2 5.4 5.4 5.1 5.3 5.3 5.4 5.4 5.4 95% 99% 99% 90% 99% 98% 100% 100% 100%
FN 2.5 7.1 9.3 9.0 7.2 8.8 8.6 9.7 10.0 9.9 45% 79% 74% 46% 71% 68% 87% 93% 92%
LN 2.7 7.8 10.8 10.4 7.9 10.7 10.1 11.4 12.2 12.1 28% 59% 53% 28% 58% 51% 66% 81% 79%
FILN 2.7 8.4 12.4 11.9 8.5 12.2 11.5 12.6 14.4 14.3 8% 30% 22% 8% 25% 21% 34% 53% 52%
FNLN 3.1 9.2 13.8 13.6 9.8 14.3 13.5 13.2 15.9 15.8 4% 20% 19% 6% 24% 19% 16% 38% 37%

this is a random guess from the (typically quite small) set of matching candidate words,
and in the frequency distribution we select the candidate with the highest frequency in
either the NYT corpus (for Str, Acrn, Word, Ctry, Natl, and Rgn) or in the three state voter
registration databases (for FN, LN, FN×LN, FI×LN, FNLN, and FILN).

Synthetic Results Table 5.4 reports on the vulnerability of excising redactions. “Prob-
ability correct guess” refers to the likelihood of randomly selecting the redacted word
given the (typically small) set of matching candidate texts. The top half of the table shows
the case where dictionary elements are drawn uniformly at random in step 3 above and
the bottom half shows the case where dictionary elements are drawn according to their
frequency of occurrence in the NYT corpus or, in the case of names, in the three states’
voter registration databases. We have omitted rows for the FN×LN and FI×LN dictio-
naries from the bottom half because they are identical to the FNLN and FILN results,

67

respectively.17

The left side of the table shows the mutual information of the dictionary and the result-
ing document. This is the number of bits of information leaked by the document about
the redacted word. These should be compared to the total entropy of the corresponding
dictionary given in Table 5.3.

The right side of the table gives the probability correctly guessing the redacted text
using only the information available after redaction. This corresponds to success proba-
bility of a game in which a player knows the dictionary and tries to guess the redacted
word based information in the redacted document. In the non-uniform case, the optimal
strategy is to guess the most likely (the highest occurrence frequency) word or phrase
that produces the same redacted document.

The table gives statistics for four fonts: Courier, Times New Roman, Arial, and Calibri.
For each font, we show the amount of information leaked by an unadjusted shifting
scheme (Un), text produced using Word 2007–2016 (W07), and Word 2019–2021 (W19)
dependent glyph shifting schemes. For Courier, we omit the W07 and W19 columns as
monospaced fonts behave identically in the unadjusted and Word cases.

Table 5.4 does not show results for the Str dictionary under the uniform distribution
using Word schemes because simulating redaction of all 9× 1022 strings is prohibitively
expensive. Results for the unadjusted positioning scheme were obtained without simu-
lating redaction by exploiting the regular structure of the dictionary.

We compare redaction vulnerabilities across three categories, using the example of
redacting a surname set in 10 point Times New Roman font to guide the reader:

Monospace (Mo). For monospaced font redactions, the residual information in the
document after redaction reveals the number of characters in the redacted word. The
Courier column in Table 5.4 thus tells us how much information is revealed by knowing
the number of letters in the word. (For monospace fonts, which are always unadjusted,
this is just the entropy of the distribution of word lengths.) For example, knowing only
the number of characters in a surname leaks 2.9 bits of information (out of 17.2) when
guessing uniformly at random from the candidate redacted texts. This has a < 1%
probability of success—redactions of monospace fonts are relatively secure.

Unadjusted (Un). For independent shifting scheme redactions, e.g. a PDF produced
by Google Docs, the residual width of the redaction leaks more information than the
number of characters redacted. The width of a redaction of a surname (the Un row)

17We considered using the empirical distribution generated by the independent distributions of first and
last names in the voter registration databases. However, the distribution of first names is not independent of
the distribution of surnames due to cultural naming conventions.

68

with no glyph shifts provides 8.2 bits of information about the surname if it is chosen
uniformly at random and 7.8 bits (out of 13.1) if it is chosen according to an empirical
distribution. While the uniform distribution still has a < 1% probability of success, the
empirical distribution has a 28% probability of success.

Dependent (W07/W19). For dependent shifting scheme redactions, the residual in-
formation after redaction leaks both width and shift equivalence classes and therefore
more information. If we redact a surname from a PDF produced by Word 2007–2016,
the resulting document leaks 12.4 bits of information about a name chosen uniformly
at random and 10.8 bits when chosen according to the empirical distribution given by
voter registration databases. With the inclusion of these information leaks, the probability
of a correct guess under the uniform distribution is 11% and the probability under an
empirical distribution is greater than 50%.

We found leaks of up to 15 bits of information about redacted text in dependent
(Microsoft Word “Save as PDF”) glyph shifting schemes. These schemes present a signifi-
cant security concern for excising redactions. Even without considering the frequency of
names in the population, single word redactions have a greater than 5% chance of being
broken. When an adversary can use statistical likelihoods of names, two word redactions
of first names and surnames face a 1 in 5 chance of being broken, and an adversary’s
chances are only better for other fonts.

Calibri, the default font in Microsoft Office since 2007, leaks the most information
because the font has a greater variety of character widths than Times New Roman or
Arial. Recall that the empirical entropy of the surname dictionary is 13.1 bits (Table 5.3),
so a redacted surname set in 10-point Calibri using a Word 2007 shifting scheme leaks
almost all the information available and can be correctly deredacted in roughly 81% of
cases.

In summary, short (1 to 2 word) excising redactions are NOT secure. Note these
synthetic attacks and our real-world attacks are performed in a vacuum, using a full
dictionary of US names. In practice, an attacker can use a smaller dictionary (e.g. company
employees).

Real-world Evaluation. With our synthetic evaluation done, it became immediately
apparent that understanding the applicability of our simulations to real documents was
critical. The generality of the results not immediately clear because glyph shifts may be
modified by a variety of software workflows.18 It is also unclear whether there exist a

18For example, by opening the PDF produced by word and then modifying it using Adobe Acrobat.

69

significant number of vulnerable redactions in real documents.
We consider both nonexcising and excising redactions in this section. We chose to study

redactions of names (e.g. first names, surnames, and country names) in this section
because they are the most common, discussed further below, and because their release
presents a privacy concern. We do not release any of these names and have taken steps
to notify affected parties in order to ensure no individual will be adversely affected by
the present analysis (Section 5.5).

We evaluated the following document corpora:

1. FOIA. Documents obtained via the US Freedom of Information Act (FOIA) on
governmentattic.org [40]. This corpus provides us with independently selected
documents with some public interest.

2. OIG. Office of the Inspector General (OIG) reports hosted by oversight.gov [39]. The
OIG is a US Government oversight branch tasked with preventing unlawful opera-
tion of other government branches. This corpus allowed us to measure the impact
deredaction may have on documents from a high-profile and large organization.

3. DNSA. Digital National Security Archive (DNSA) documents produced after 2010 [37].
The DNSA is a set of historical US government documents curated by scholars. That
is, we found redaction information leaks affect significant historical documents.

4. RECAP. CourtListener’s RECAP court document archive. RECAP mirrors PACER,
the US Federal Courts’ docketing system [38], and contains over 10 million docu-
ments. We use RECAP to measure the impact of nonexcising redactions (discussed
below).

5. rRECAP the subset of RECAP documents returned for the search string “redacted”.
We chose to include rRECAP because running the excising redaction location al-
gorithm mentioned on the entire RECAP corpus was both computationally and
financially prohibitive.

Only the RECAP corpus contained nonexcising redactions and our results for this
corpus are reported with respect to nonexcising redactions. Our results for all other
corpora are reported with respect to excising redactions.

These corpora provide a sample of vulnerable documents and are not intended to be
comprehensive analyses of any single affected party, e.g. government agency.

70

We also chose to restrict our evaluation to first name and last name redactions. In a
sample of 100 redactions from our corpora, 52 were personal names (determined man-
ually based on the surrounding text), 26 were multi-word phrases too long to attack,
17 were numbers (not vulnerable to attack), 3 were pronouns (trivial to attack), and 2
did not have identifiable semantics. We included titles, (Mr., Mrs., Ms., and Dr.), initials,
such as “J.” and “S.”, and possessive forms, such as “’s”, in our dictionary. However, our
results for matches remove these modifications, so “Ms. Doe”, “J. Doe”, and “Doe” count
as a single match.

Our final dictionary contained 7,066,800 entries. We do not include FN×LN as testing
this dictionary takes 6 hours on an Intel Xeon Silver 4208, 2.10 GHz, 32-core server and
the result sets are typically large.

The only exclusion we made for this dictionary restriction was in our evaluation of the
DNSA. The redactions matching the Microsoft Word dependent glyph shifting scheme
in the DNSA were of an acronym, demonyms, and countries.

We evaluate a redaction if:
1. The redacted text is present in the PDF (vulnerable to copy-paste attack); or
2. The redacted text is not present, but the document retains glyph shifting scheme

information where:
• The scheme matches a Word “Save as PDF” shifting scheme,
• The redaction appears to be a name, e.g. “Jane”, and
• The redaction is the first from left to right on the line of text.

These criteria provide a uniform and accurate proof-of-concept evaluation of the impact
of the discovered redaction vulnerabilities.

Real-World Evaluation Limitations. We chose to restrict our attacks to the Microsoft
Word schemes because these leak the most information, and are thus of the greatest
concern. Other shifting schemes exist and evaluating these schemes’ security will require
further reverse engineering. Cases matching the Microsoft Word “Save as PDF” workflow
represented 8.8% of redaction instances across all four corpora. We also considered only
the first redaction on a line to remove any dependence on prior correct guesses, which
would be necessary to attack the second redaction on a line.

Deredaction also requires modeling the glyph positioning scheme of the PDF document
and identifying a dictionary of possible redacted texts. Despite some scripting possible
using time-travel debugging, at the time of writing, this was a manual process. Therefore,
we report the conservative Evaluated row, which are redactions for which we were able
to perform an automated attack given our modeled Microsoft Word positioning scheme.

71

We also took three steps to ensure the results of our experiments were accurate:

1. We required all potential deredactions to exactly match all present PDF glyph
positioning information.

2. For excising redactions, it is necessary to identify the shifting scheme used by the
PDF document. This process avoids incorrect matching and filters out regions of
documents with idiosyncratic formatting. For example, Microsoft Word documents
may have alternative layouts for text, e.g. text boxes, tables, and line numbers.

In the present analysis, we considered a PDF page to match a scheme if we identify
greater than 100 glyphs with shift values matching the scheme on the page. We
only count entire lines: all of a line’s glyph positioning information must match the
scheme exactly to count toward the 100 glyph threshold.

3. We manually classified each excising redaction as being a redacted name based
upon the content of the surrounding text. We were conservative with our classifica-
tion and only attack redactions we are certain are of names.

4. Where possible, we validated our findings using public information.

We also identified redactions in documents using unadjusted and Adobe OCR glyph
shifting schemes, though did not attempt to deredact these cases. These schemes leak
2–3 bits less information than documents produced by Microsoft Word.

Finally, To make sure we were not missing any PDF documents originating from
Microsoft Word, we also counted redactions within a 10 text space unit L1 distance from
our Microsoft Word model. These PDFs were the result of a non-standard workflow, e.g.
creation using Word 365, the web interface for Microsoft Word. In our results, we label
these redactions as Near Word.

Real-world Results The evaluation was able to find redacted information of significant
public and historical relevance (not included). We begin by briefly discussing the non-
excising redactions we located. We ran Edact-Ray’s location algorithm for nonexcising
redactions on all of RECAP (≈ 107 documents) and found 6,541 nonexcised redacted
names in 710 US court documents. The number of total nonexcised redacted words was
larger (≈1.4× 105). Of the redacted names, 327 had a independent glyph positioning
scheme, 445 used Adobe OCR, 20 were close to Word in L1 distance, 5,691 were not
positioned using a scheme we modeled, and 58 exactly matched the Word positioning
scheme.

72

Table 5.5: Potentially vulnerable redactions and glyph shifting schemes identified in
redacted corpora pages. The “Evaluated” row is filtered for the length of the
redaction (approx. 1 to 2 words), semantic context (being a name), and scheme
(Word).

Metric FOIA OIG DNSA rRECAP RECAP

Documents 3,145 1.9× 104 678 2.5× 104 ≈ 107

Pages 4.9× 105 5.2× 105 1.2× 104 3.4× 105 ≈ 108

Redacted PDFs 236 1255 7 67 710
Redactions 4.5× 104 1.3× 104 235 1,221 6,541
Unadjusted 2,844 314 7 7 327
Adobe OCR 3,406 1,814 0 224 445
Near Word 175 114 3 33 20
Unrec. 1.3× 104 1× 104 214 838 5,691
Exact Word 4,694 455 14 119 58

Vulnerable 711 58 9 0 58

No Matches 382 39 1 – N/A
Uniq. Matches 3 0 5 – N/A
Avg. Matches 2,435 4,260 393 – N/A
Med. Matches 494 1,081 1 – N/A

Due to the computational cost of locating excising redactions in the whole of recap, we
did not attempt to evaluate excising redactions for all US Court documents, though we
confirmed some historically important court documents are affected. We also found no
nonexcising redactions in our other corpora (expected, as we were informed they have
significantly more robust redaction workflows).

Table 5.5 also reports our findings on the security of excising redactions. The Evaluated
row reports the result of our redaction classification methodology. We identified 711
immediately vulnerable excising redactions in the FOIA corpus, 58 in the OIG corpus, 9
in the DNSA corpus, and none in rRECAP (mentioned above).

We deredacted the FOIA and OIG cases using the full cross product dictionary FN×LN,
1.5× 1010 entries. For FOIA, we had three cases of a single, unique name being returned
as the redacted text, 2,435 possibilities returned on average (a 3,000-fold reduction), and
494 on the median. For OIG, we had no cases of a single, unique name being returned
as the redacted text, but 4,260 possibilities returned on average, and 1,081 on the median.
After, we also validated many of these cases by looking up document details using google,
and found an empirical distribution of name probabilities returned the correct deredacted
name in several cases. The DNSA redactions were all of demonyms, and used the 509
entry dictionary. This resulted in 5 cases of a single, unique name being returned as the

73

redacted text, with 393 possibilities returned on average, and 1 match on the median.
We find unmatched cases are common (382 cases in FOIA, 39 in OIG, and 1 in the

DNSA). Manual analysis of nonexcising RECAP redactions found 28.2% of names were
of a form occurring in our dictionaries, leaving 71.7% in other forms (e.g. first name, last
name).19 Our own unmatched case rate (54.7%) was lower than expected, and indicating
matches were reported but the name was not in the dictionary in approximately 17% of
cases.

Real-world Validation As was noted in Chapter 3, any guess and check performed for
an unknown piece of information should be understood as ruling out possible candidate
texts rather than determining exact content. To serve as an oracle and ensure our methods
were correct, we therefore also manually validated our results for excising redactions
(where possible on 8 PDF documents) by performing web searches for further information
on the redacted document. For example, in the case of an OIG investigation, we would
perform a search related to the offense committed and organizations affiliated. In this
process, we found several cases where Edact-Ray’s returned matching name set included
the ground-truth name. We did not find any cases where a matching set was reported
and Edact-Ray did not return the correct name as one of the results, though these cases
likely exist.

Nonexcising redactions provide ground truth, and we also used these redactions to
validate our techniques. For every nonexcised redacted name in RECAP present in our
dictionary, we excised the name, i.e. we removed the redacted text but preserved non-
redacted glyph shift information. In all cases, the set of candidate texts returned by
Edact-Ray included the ground truth redacted word.

5.5 BROADER IMPLICATIONS

With the conclusion of this discussion on simulation for the purposes of analyzing
redactions, we may look towards the broader implications of this study on the topics
of this dissertation. Although the subject of this dissertation is on the construction of
effective emulations for use in security measurement, it also is pertinent to discuss, briefly,
the ethical implications of this work.

19We chose to evaluate the simplest formatting ruleset possible for simplicity.

74

Ethical Implications The application of effortful analysis to this subject demonstrated
sub-pixel-sized glyph position shifts, imperceptible to the human eye, can break text
redactions. There are at least 778 vulnerable excising redactions in FOIA, OIG, and DNSA
PDF corpora and more than 700 publicly accessible court documents with nonexcising
redactions. As a result, it is necessary to discuss the ethical implications of this work and
potential defenses.

The official NSA guidelines for redaction of Microsoft Word generated PDFs are to
change the content of the original Word document so that information regarding the
sensitive name is destroyed (i.e. by changing the name to the letter “x”) [105]. This is
likely the only perfectly secure manner by which to protect a redaction from information
leaks. However, this can be an invasive process and is not always applicable to old
documents for which the original files have been lost. Below, we describe five alternative
defenses against excising redaction vulnerabilities, which help to make redaction leaks
more difficult to exploit:

1. Glyph Shift Discretization Shifting scheme noise may be added to a line without
affecting visual fidelity. Alternatively, each shift could be rounded to a discrete
interval, e.g. 0.1 mm. If this noise is indistinguishable from legitimate glyph shift
information, accounting for it would require an adversary to increase the set of
accepted redacted text guesses. Removing shifting scheme information altogether
can also lower information leaks, though this is less visually appealing.

2. Document Layout and Redaction Obfuscation Modifying the PDF commands
used to render the box of the redaction complicates the process of automated
redaction location. For example, our excising redaction location algorithm relies
on identifying a black box between two US English words in order to avoid large
numbers of false positives.

3. Increasing Redaction Width Redacting additional adjacent words can make deredac-
tion more difficult, although this practice may not always compatible with legal
mandates. This defense increases the number of words the attacker must guess. If
the adjacent words are easy to infer, e.g., by a machine learning model, this is not a
sufficient defense.

4. Adversarial Redactions One defense against deredaction is to change the docu-
ment’s text before it is redacted, for example, by replacing a sensitive name with
the letter “X”. It is also possible to lie to deredaction by changing the redacted
content to something seemingly valid, potentially misinforming an adversary.

75

5. Rasterization Rasterization appears to be an effective defense against deredaction.
In many cases this defense is infeasible because it removes searchable text data
from the document, however, performing OCR on the document post-redaction can
act as a stopgap for this issue. Rasterization algorithms may also modify or ignore
certain glyph shifts,20 requiring the analyst to perform more reverse engineering to
identify the specific rasterization tool used.

As it is common practice to rasterize documents, we performed an experiment to
estimate the effects of rasterization on redaction security. We chose ten name occurrences
from court documents using the Word shifting scheme in 12 point Times New Roman.
For each selected text line, we substituted the name with each entry in our 235,560
name dictionary from our real-world evaluation, redacted the entry, and calculated the
redaction’s width. This resulted in 2,017 unique redaction widths,≈11 bits of information
leaked, on average. Quantization to 300 DPI (20 text space units) resulted in 252 widths
on average (≈8 bits) and quantization to 600 DPI performed slightly worse with a result
of 377 widths (≈8.6 bits).

Unfortunately, this estimation is a lower bound. In general, when a character is ras-
terized, the vector representation is converted to a “mosaic” of pixel values. Whether a
given pixel value is black, white, or in the case of anti-aliasing [106], some shade of gray,
is dependent on how the graphical rendering specification is converted to a matrix of
pixel values. An analysis of this possibility is beyond the scope of this dissertation.

In addition to providing access to some of these defenses publicly, we carefully consid-
ered the balance between the benefits of public awareness and potential risks of misuse
present in this research. To the best of our abilities we are attempting to maximize the
benefits to society and minimize the harm to individuals in the publication of this work.
All the documents studied are in the public domain. So long as copies of these PDFs
exist, they pose a risk to individuals’ privacy. During our evaluation, we ensured all
deredaction was performed on an isolated and hardened server and that no identifying
information exited this server. We deleted the documents from our server and associated
data after evaluation and notifying affected parties.

We have notified Microsoft and Adobe of our discoveries: they have acknowledged the
attacks are possible, but to our knowledge have not yet made changes to their tools that
could significantly help protect future PDF redactions. Our discussions with government
officials indicate remediations will require both redaction process and software changes.
We have also reached out to the PDF Association regarding the provision of guidance for

20We analyzed several rasterization tools, finding several had imperfect precision.

76

redaction application implementers. We have also performed an extensive notification
of the US Courts, the Free Law Project, the US Department of Justice, and 22 agencies
affected by our study of documents from the Office of Inspector General. The US Courts,
US Census, and CIGIE have been active in both understanding and remediating the
problem. Notification has been given to sub-courts affected by nonexcising redaction
vulnerabilities. Our discussions with these groups are ongoing and include technical
support, code, and free consulting regarding remediation and prevention efforts.

The discovered redaction vulnerabilities are not limited to US documents and affect
any PDF document positioned using non-uniform font metrics (whether these are Word-
internal metrics, TTF metrics, or otherwise). Due to the limitations on the author’s knowl-
edge of different languages, we were not able to effectively evaluate the security of docu-
ments internationally. We have indicated to US government officials that notification of
the international community is advisable.

Implications for Security Measurement Our study of the simulation of glyph shifting
schemes in this section point towards several critical limitations in the study of systems
generally. First, the importance of limiting the existence of Cartesian doubt in the deter-
mination of information by ensuring that the dictionary selected as a basis for further
deduction is sound. Second, this section clarified the possibility, in the case of some oracle
to determine whether a guess is correct and a reasonable search space, it is possible to
attempt a exhaustive search over the possible inputs of a simulation in order to find
inputs that “work”. In cases where the amount of information leaked by a system is large
enough, this is sufficient to determine the missing component. Finally, the danger of
ignoring hidden dependencies in information about a system: this is captured by the for-
mal study of side-channels [107] in hardware and cryptography, but is not always applied
evenly as a concept across different security-sensitive systems. To provide a concrete
example, we will note prior work on redaction:

The primary predecessor to our redacton work is Lopresti and Spitz [98], which
presents a manual technique for matching glyphs to a redaction’s width in a raster image
of text. This attack is prone to human error, especially in light of the fact some glyph
shifts are sub-pixel sized. The authors attempted to use natural language processing to
predict redacted words, something our work found imprecise given current models. The
Lopresti and Spitz work also conflates document glyph position specifications with TTF
glyph widths and assumes both are equivalent to a raster document’s character widths.
This presents two problems:

First, a rasterization workflow may change a document’s glyph positioning and physi-

77

cal printing may not be a pixel-perfect reproduction of the digital document. While the
accurate representation of documents is the whole point of PDF, a few of our tests found
glyph positioning operations were not always honored. Behavior and information from
any singular tool may or may or may not comply with the PDF standard, either because
of software bugs or due to a lack of support for a specific glyph positioning operation.

Second, TTF glyph widths do not necessarily equate with PDF document or raster
glyph widths. TTF is only one of five types of fonts supported by PDF. The Lopresti and
Spitz techniques also rely on (potentially inaccurate) human determination of glyph po-
sitions. Recall the present work provides a fully automatic deredaction method, a precise
analysis of leaked information, and a clear measurement of this problem’s prevalence in
real documents.

Whelan and Naccache [108] also performed the first case study of width-based tech-
niques for deredacting documents. They placed images of unredacted glyphs from a
printed document into the space of a redacted country name in an Iraq War memo.
While of historical importance, Whelan and Naccache’s technique is manual and error-
prone for large dictionaries. As shown by our evaluation, the width of a glyph is most
often not independent of its location on the page.

While the above had some idea of how attacks on redactions may work, their anal-
ysis did not present a principled study of the encoding of redactions in documents or
simulation of PDF document production. As a result, this prior work did not accurately
measure the security of redactions, demonstrating how a lack of proper measurement
and verification of common systems can lead to disaster.

5.6 SUMMARY

In this chapter, we have presented a principled study of the security of redactions
in PDF documents. We presented techniques and methods for creating simulations of
complex software functions using time-travel debugging and manual analysis. In doing
so, we also demonstrated a unique and impactful application of dictionary attacks in
the domain of digital forensics. Insights from this work can be generalized to many
scenarios where some information about the system under study is missing. Moreover,
this was the first work to demonstrate effective attacks on a large number of excising
redactions—redactions where character information is removed. Our empirical results
show that the attacks are effective on a large number of documents, including those from
the US government. This led us to notify more than 22 affected parties, including large

78

government organizations, and release effective tools for the protection of redactions.
Finally, we related this work to the primary subject of this thesis: redaction vulnerabil-
ities present a case study demonstrating the importance of accurate simulation when
evaluating a system’s security.

79

Chapter 6: Logic-based Function Extraction

In the approaches to emulation-based measurements of system security we have consid-
ered thus far, the primary limitation has been the representation of missing information.
In real-world systems, components are often only partially accessible due to a mixture of
closed-source code, limited physical accessibility, or intractable complexity. Traditionally,
the extraction of clean mathematical models from systems, such as ordinary differential
equations, is considered infeasible. Simultaneously, a significant amount of work has
now been performed on the verification of models with black-box components, such as
DryVR [109]. In this chapter, we will discuss an alternative method of verifying complex,
real-world systems which works by extracting key information from a given complex sys-
tem’s binary representation. We will introduce the InteGreat system [11] (in submission),
which uses a combination of a logical rule specification framework, program slicing,
and abstract interpretation to lift high-level emulations (continuous equation models
which can be dropped into Matlab Simulink). In the latter sections of this chapter, we
will demonstrate how this approach can be used to identify differences between imple-
mented machine code and published mathematical specifications. The present author
was the primary contributor to this work.

6.1 INTRODUCTION

Verification of cyber-physical systems (CPS) is a challenging problem, often simplified
by the treatment of complex implemented components as black-boxes. When considering
the system itself, mathematical expressions for these systems must often be translated into
low-level languages (C, Ladder Logic, etc.) and compiled for use in a physical system. The
resulting binary code may also be symbol-stripped and lose information, e.g. the names
of variables, present in the original control algorithm. In many cases, however, because
the system retains something of the high-level semantics, it should still be possible to
recover the original high-level model intended for a verification system. As an added
benefit, by working directly with firmware, we could verify and analyze programs where
no high-level specification has been written.

While tools such as Ghidra [45] are capable of lifting a binary to pseudo-C represen-
tations, these outputs cannot be translated into a more abstract representation of the
program. Adapting these existing tools to lift to a given higher-level representation also
requires significant effort, as their internal representations are static and aimed primar-

80

ily at capturing micro-architectural semantics. However, if natural deduction could be
applied to express the nature of the semantic patterns as they appear in the binary, then
lifting to a particular abstract representation could be made modular and portable. This
presents two particular problems of extraction and incorporation: in the former case, the
ability to derive an abstract semantic from machine code operations, and the ability to
incorporate outside information into the lifting process.

The current state of the art in function extraction involves the use of binary symbolic
execution to derive a model of the binary’s code over the theory of bit-vectors, as was
performed in part in Section 4.2. This approach deduces a mathematical model of a
computation’s behavior, but does not provide any framework for encoding common
rules of abstraction. Moreover, no current binary symbolic execution systems do not
provide any means of precisely defining slices of the program to serve as boundaries for
the lifting process, and rely on the user to isolate and substitute any sub-trees of the AST
for simplified expressions. The result is a set of systems that could theoretically serve to
automatically lift a binary to a higher-level representation based upon logical rules, but
which in practice lack much of the necessary automation.

We therefore introduce InteGreat, a system which takes in a set of logical lifting rules
(provided via Z3 [79]) and outputs of symbolic execution to translate closed-source,
symbol stripped binary firmware into verifiable mathematical models. We achieve this
by allowing users to nest and chain rules for lifting and decompilation in a natural,
declarative syntax, allowing for the modular capture of complex semantic operations. For
example, we may associate a sequences of calls to multiple different child functions as a
single operation and we lift a sequence of non-adjacent low level instructions into a single
function call using the same effective syntax. To our knowledge, this is the first lifter to
use explicit logical propositions in targeting the correct abstract domain representation
of a binary program.

InteGreat significantly extends the angr [59] symbolic executor to bind the semantics
of analyzed program slices into meaningful abstract symbols, replacing complex inner
computations with a uniform representations, while maintaining the integrity of the
symbolic state’s semantics. In particular, we focus on lifting to continuous equations that
may be “dropped in” as Matlab Simulink function blocks [42] for evaluation in the context
of an environmental model. Under the system’s default operation, a user only needs to
specify entry and exit points in the firmware binary, and the system will replace function
calls with uninterpreted functions, lifting sequences of otherwise complex operations
into a single symbolic value.

To demonstrate the capabilities of such a system, we use InteGreat to show how logical

81

rules can be used to lift continuous equations from a quad-copter firmware implement-
ing Sebastian Madgwick’s Orientation Filter [110, 111], and demonstrate these lifted
equations uncover an implementation error in the quad-copter firmware, finding a three-
way difference between the stabilization algorithm’s mathematical representation, C, and
third-party C implementations. We also analyze a PLC firmware regulating a chemical
plant’s reactor pressure [112] and use the equations recovered by InteGreat to determine
the sensor inputs necessary to precisely destabilize the reactor pressure of the chemical
plant and exactly reproduce a code upload attack performed by prior literature. The lifted
representation of the chemical plant’s firmware also communicates a subtle discovery:
it is not possible to automatically infer representations of analog-to-digital unit conver-
sions at I/O boundaries without additional information from a model of the physical
environment.

6.2 RELATED WORK ON LIFTING

This work brings together multiple methods from a rich history of verification of
software and firmware systems. While our discovery, the application of logics to the
domain of decompilation and lifting, is novel, we are indebted to prior work for the
introduction of nested abstractions, abstract interpretation, program slicing, function
summarization, and many other techniques:

• Currie et al. [113] use the substitution of program slices with uninterpreted func-
tions to determine program equivalence across compiler optimizations. However,
they do not address the idea of using nested logical rules to perform lift binary
programs or the complexities involved in stitching together abstracted program
slices. We provide a total framework for retaining viable semantics before and after
skipping a program slice, even at the bit-vector level. In fact, Currie et al. note
that there may be ways to improve the accuracy of their matching by “combining
uninterpreted functions with a bit of bit-level analysis.”

• Sery et. al [67] leverage the FunFrog system [114] to extract function summaries
after an initial verification run using source-code level symbolic execution to recover
a Bounded Model Checker (BMC) logical formula representing the original program.
The work performs AST slicing and variable binding methods similar to our own
and uses the Craig interpolation (the identification of a sub-proposition that implies
two other statements) to refine their function summaries. In contrast, InteGreat

82

targets firmware and thus supports the abstraction of micro-architectural semantics.
We also introduce the idea of using logical formulae to give rules for the translation
rather than strict substitution of abstracted program slices based upon the semantics
of the slices themselves (interpolation).

• A line of work has been done using symbolic execution to perform model extrac-
tion and subsequently verification on the extracted models. SPIN [115], defined the
term “model extraction” and applied model-checking on aero-space flight software.
Babić and Hu [116] used natural abstraction boundary identification and sym-
bolic execution to optimize the performance of verification. Hernandez et al. [86]
and [117] used symbolic execution to extract and verify protocol models. The same
authors also noted the importance of rounding the floating-point precision error on
verifying their extracted models in [118]. Jackson and Woodward [119] extracted
object-oriented (OO) models from Java byte-code, [120] extracted OO data models
from weakly-typed source code. Bandera [121] is a tool for user-guided extraction
of finite-state automata from Java programs, however, the tool requires access to
source code, and focuses on abstracting single variables rather than program slices.
While all of these techniques could improve InteGreat, prior work does not address
the possibility of a generic framework for the specification of lifting operations,
and does not solve the specific problems involved in stitching together uninter-
preted functions as abstractions. Our work also does not rely on static matching
of semantic patterns and supports nested and chained natural deduction rules for
lifting.

• Ji et al. [122] perform backward application of extended sequent calculus rules on
symbolic expression trees. Our use of nested logical statements is similar to sequent
calculus, however, the goal of Ji et al. was the bi-simulation and optimization of the
analyzed algorithms using sequent calculus, not to perform lifting.

Ultimately, we were somewhat surprised by the lack of a work approaching the subject
of extracting functions from a system using logical operations. However, this use case
was also motivated by the specific insights introduced in the emulation and modeling of
highly complex systems (Chapters 4 and 5). The InteGreat system draws on the specific
challenges of the Jetset and Edact-Ray systems to inform its unique approach to the
modeling of systems.

83

6.3 DESIGN OF A LOGIC-BASED LIFTING SPECIFICATION

We begin our design of InteGreat with program slices, introduced in Section 2.1.3,
which we denote with γ, and the location of which we denote f . By default we resolve
each γ to a function call boundary, but the determination of each γ’s location is also
user-scriptable via a provided wrapper around Ghidra’s static analysis APIs. We enforce
that the control flow of each slice must have either a total or no overlap with any other
slice (an independence system).

As InteGreat runs, it begins analysis at the innermost γ and works outward, identifying
all the input and output locations (side effects) of each γ via symbolic execution. By
default, these side effects are used to abstract the semantics of each γ into a single
uninterpreted function mapped to f (the location of the call). Specifically, we perform
three actions upon reaching a location f for a given γ:

1. We associate f to a set of logical formulae for lifting rules φ, potentially input by
a user, providing a deductive specification for how to lift f . For example, encoding
the logic of splitting a floating point value across r0 and r1.

2. We associate f ’s symbolic state with the set of input locations of γ: every potential
register and memory location used by the output constraints provided by a full
symbolic execution of γ. These are then available as symbols in φ to determine the
appropriate parameterization of f .

3. We associate encountering f with a specific timestamp to ensure the lifted repre-
sentation respects the program’s order of operations.

Our framework provides prospective solutions to the problems of unconstrained
pointer values and loop invariant inference during symbolic execution. To cope with
unconstrained pointers we represent each read or write to memory with both the value
and the symbolic expression used to determine the address, and enforce a strict equiv-
alence between the two (discussed next). We expect a zero-length program slice and
associated φ to be defined which can be used to resolve any runtime-ambiguous values
of pointers. For many problematic loops, we can define two program slices: an outer
which captures the formulae for handling the loop guard condition and an inner which
captures the loop’s body expression. If suitable, we may then replace the guard con-
dition with a concise symbolic representation, e.g. Σ, and the inner with an inferred
representation of the effects of the loop body as it relates to the outer operation.

As a fallback for fully automatic use of InteGreat, we accept the traditional symbolic
execution search strategy of unrolling loops and provide a few sensible defaults for the

84

search strategy, e.g. taking the state that generates the most complex set of constraints or
the largest number of writes to memory.

Once the specific challenges of potential state explosion are dealt with, each γ is
associated to a new symbol s0, s1, . . . and φ0, φ1, . . . to perform a translation into a new,
higher-level language. These formulas are also nestable, and rules may be written which
take some s and φ as input to produce a second s′ and φ′. For InteGreat’s evaluation,
we introduce φ and γ such that unmanageable machine code is be abstracted into a
Matlab-identical representation inside Z3. Thus, theorem prover expressions serve as a
flexible intermediate representation throughout the lifting process.

Symbolic Memory In most firmware programs, inputs and outputs are context-sensitive
to its program state, for example, the dynamic execution stack, or a dereferenced pointer
to a memory location. It is thus necessary for InteGreat to allow symbolic expressions as
memory addresses via a LOC function (discussed further below).

InteGreat accomplishes this by implementing a symbolic memory model, extending
Trtík et al.’s model [123], under-constrained memory [124], and incorporating the core
ideas of Coppa et al. [125]. Leveraging the angr event hook infrastructure, InteGreat
intercepts all program state modifications, and integrates them with effective address
use tracing in order to identify aliasing, which occurs when two symbolic pointers are
used to reference the same location but their specific value is runtime dependent. With
each pointer dereference, the symbolic memory model is queried with the intercepted
dynamic symbolic state of the symbolic executor, which handles returning the correctly
intended high-level variable value.

Pointer reasoning is provided by the equivalence of symbolic expressions for pointer
values. When resolving memory, we use timestamps associated with each memory op-
eration and a strict equivalence check on the pointer expression to determine when a
memory location is modified. For example, given two pointers p1 and p2, if p1 = 50
and p2 = 50 at runtime and we are checking read(p1) = write(p2), we will return that
they are NOT the same memory location. That is, we do not assume runtime knowledge.
We assume that if such knowledge is needed, a zero-size program slice (an entry point
address equivalent to the exit address) will be defined that will identify this runtime
equivalence, and other tools exist for this [126].

Correctness Traditional views of compiler (and by extension, decompiler) correctness
involve ensuring uncompiled programs, interpreted over an input, result in the same
output as compiled programs interpreted over the same input. In the bottom-down

85

view of compilation from a language operating over R, we already implicitly accept the
imprecision introduced by compiler/ISA when equations were compiled are executed.
One argument for the correctness of InteGreat’s approach is that we may implicitly
accept the imprecision introduced by the inverse operation: lifting from the ISA to the
real domain semantics.

However, this does not deal explicitly with the information lost in InteGreat’s approach
to lifting, as features from the initial domain D may not be present in D′. In our earlier
example, we mapped from an operation over a field of 64-bit floating point values to an
uninterpreted function over R, and the semantics of the Galois field are not preserved
in the uninterpreted function. This trust in the decompiler is further strained when
we begin to talk about abstracting arbitrary, complex program slices. For example, the
compiled version of a derivative function may be entirely different in implementation
than a Matlab continuous domain equivalent.

We therefore rediscover a common solution to the problem of determining equivalence
between complex computations: correctness is ensured by a reduction proof from the
original function to the abstract function given a configurable error bound on the differ-
ence between outputs in D and D′, ε. A similar approach was outlined in Section 3.4.
The structure and representation of this proof is flexible and domain-specific, so long
as it incorporates Φ and guarantees the limit ε holds. Proofs must be performed on a
case-by-case basis as the non-abstracted function and targeted domains can take any of
infinite forms. For example, a proof for a straight-line program performing floating point
operations could consider the error introduced by each operational step in the concrete
case, and then chain these values together in order to derive a total acceptable bound for ε.
In the present chapter, we forgo a general proof and demonstrate equivalence empirically.

InteGreat’s Interface Sufficient input to InteGreat is a program binary, an entry point at
which to begin symbolic execution and a list of start and end addresses of program slices. Slices γ

take the form of a range of addresses (potentially of zero length), a type of instruction, or
an expression over the names of other slices. To avoid repeating the same φ for multiple
γ referring to the same operations, we allow multiple range specifications for a given
slice. This input is provided by a series of files which name each γ and provide Φ via a
binds array of assignments where the left hand side is a symbol name and the right hand
side is a Z3 expression.

Binds is initialized with the following two symbolic name sets:

1. The inferred inputs of γ, e.g. i0, i1, . . . ,

86

Input: γ, binds
Output: A f

Φ(P)

1: A f
P ← SED(γ)

2: for each i in inputs(A f
P) do // Bind input to expressions

3: bindsi ← READ(LOC(i))
4: end for
5: for each o in outputs(A f

P) do // Bind abstract expressions to output
6: E[outputso]← Φγ(o) // Apply deduction rules
7: v← new_sym_name()
8: bindsv ← E[outputso] // Associate name to expression
9: WRITE(LOC(o), v) // Write abstraction to symbolic memory

10: end for
11: for each b in binds do
12: bindsb ← Φ(b)// Common axiom support
13: end for

Algorithm 6.1: Core lifting operations performed by the InteGreat system for binding
abstract operations.

2. Any prior expressions in the symbolic executor’s state prior to reaching γ, and
(optionally)

3. The full inner expression sets for γ′ inside of γ before and after the application of
the φ′ associated to the specification of γ′.

(3) is equivalent to preserving in memory the outputs of prior InteGreat lifting steps,
allowing us to nest lifting rules in a modular fashion, and (2) allows us to “chain” lifting
rules such that, given γ′ following γ, symbols returned by γ can be used to reason about
the lifting of returned by γ′.

The output of InteGreat is a simplified Z3 AST corresponding to the application of
the lifting rules. In the evaluation of InteGreat, we structured program slices and infer-
ence rules such that translating the Z3 AST to Matlab was trivial. However, the generic
structure of Z3 as an intermediate representation makes it suitable for other tasks, e.g.
inferring fixed points and loop invariants for lifted code [127].

InteGreat’s Algorithm for Lifting Before describing the InteGreat’s lifting algorithm,
we introduce some notation. Let A f

P to refer to the AST returned by angr prior to the
application of Φ, similar to Def. 3.2, and E to refer to an intermediate storage location
for Z3 AST expressions. Φγ refers to the set of logical statements registered for γ, Φγ(o)
refers to the full set of statements used to derive o in Φ from the binds array. Recall that

87

we also implement a symbolic memory addressing system for unconstrained pointer
values; we represent locations (either in registers or memory) through the LOC function.
Note that READ and WRITE operate on A f

P to produce A f
Φ(P). SED(γ) refers to an

augmented form of symbolic execution of γ using angr in the domain D.
Algorithm 2 presents InteGreat’s core lifting mechanics. As noted, the input to the

algorithm is a program slice γ and an existing set of symbolic bindings binds, and the
output is a new AST A f

Φ(P) ⊆ D′, representing the lifted program. When SE encounters
an inner γ′, we look up the associated specification for γ′ and apply Alg. 2 recursively
to γ′ and propagate our results to the current symbolic state appropriately.

Line 1 retrieves a set of registers and memory locations inputs, outputs describing the
micro-architectural input and output locations of a program slice. These are provided via
a symbolic executor with modifications to support the use of symbolic values as memory
addresses. For locations with existing symbolic expressions, InteGreat’s symbolic memory
dynamically fetches the most recent written expression, or else InteGreat writes and
returns a fresh symbolic variable in that location (the READ function).

For values stored in memory, InteGreat dereferences the input locations to the correct
symbolic expressions representing their values in InteGreat’s symbolic memory model
(discussed next). These symbolic values are then assigned into the inputs symbols i0, i1,
. . . of the binds array (lines 2–4). Note that the inputs may be sets of previously lifted
abstractions.

InteGreat then replaces the existing lower-level, concrete expressions returned by sym-
bolic execution for the slice’s outputs with the higher-level abstraction (lines 5–10). For
example, consider a floating point multiply over registers r0 and r1, with output in r0,
with a simple φ that returns an uninterpreted function f over the inputs. A fresh sym-
bolic variable v would be created and written to the symbolic memory model, with the
concrete register location r0 storing r0 = v 7→ f (i0, i1) rather than r0 = i0 ∗ i1. This step
also introduces fresh symbolic mappings to expressions in the binds state. All future
symbolic execution and calls to Alg. 2 will now operate on the abstractions provided by
binds rather than the original concrete symbolic expression for γ.

Lines 11 through 13 of Alg. 2 provide support for common axioms. The full set of Φ for
γ are reapplied at the end of analysis to resolve existing AST features into higher-level
abstractions. We found this useful for lifting certain common operations across different
slices. For example, we created rules for treating certain type-casts as equivalent, e.g.
when a double is rounded to a float or a float is extended to a double, the Galois field
variable should still refer to the same lifted variable over R.

88

fmul ... f2d sqrt trunc ... muldfdivdf ... atan2 asinfcmpeq

1.0

mul
cmul

csqrt catan2

casin

(a)

Version #Lifts #Symbols #LoA

Firmware 335 151 728
Corrected 343 149 730
Published 283 159 637

(b)

Figure 6.1: (a): Depiction of hierarchy of lifting rules for a quad-copter stabilization al-
gorithm. (b): Quad-copter firmware analytics, broken down into the number
of program slice locations lifted, unique symbolic variables used, and lines of
assembly code (LoA).

6.4 EXPERIMENTS ON A QUAD-COPTER AND PROGRAMMABLE LOGIC
CONTROLLER

This section presents the evaluation of InteGreat on a quad-copter firmware and a
PLC firmware stabilizing the reactor pressure of a chemical plant. In particular, we in-
vestigated a few concrete questions regarding the possibilities of InteGreat’s design. We
first consider whether, given the correct Φ, InteGreat can correctly lift machine code
programs to the continuous domain. Next, we determine whether InteGreat’s approach
can help identify inconsistencies between published results and different implementa-
tions of the same algorithm. Then, InteGreat’s lifted representations are testing in the
analysis and discovery of novel features in a Programmable Logic Controller. Finally, we
consider whether it is possible to correctly reproduce idealized models and attacks on
cyber-physical systems using InteGreat’s lifted representations.

To answer these questions, we evaluate InteGreat on two real-world embedded systems:
a quad-copter firmware and a PLC firmware. We considered the firmware for both
of these systems to be closed-source and symbol-stripped: the inputs to InteGreat are
not dependent on any meaningful variable names or function names. We also not that
the firmware was not obfuscated, and that the firmware is not using any anti-analysis
techniques.

The quad-copter firmware was compiled for ARM32, EABI5 version 1, and statically
linked. We targeted four versions of the quad-copter’s stabilization algorithm, a com-
piled version present in a firmware image on Github [111], a version compiled from
the specification given by the algorithm’s original publication [110], a correct version of
the algorithm written for Matlab, and a correct version of the algorithm written in C,
compiled using the same ARM compiler, and then lifted by InteGreat.

89

Table 6.1: 14 of the 18 quad-copter binds array elements used to lift continuous equations
from binary firmware using InteGreat.

Program slice C code name Associated binds array
__addsf3 "o0": "binds[’i0’] + binds[’i1’]"
__aeabi_f2d "tmp": "z3.fpToFP(z3.RNE(), binds[’i0’], z3.FPSort(11, 53))",

"o0": "z3.Extract(31, 0, z3.fpToIEEEBV(binds[’tmp’]))",
"o1": "z3.Extract(63, 32, z3.fpToIEEEBV(binds[’tmp’]))"

__aeabi_fcmpeq "o0": "z3.If(binds[’i0’] == binds[’i1’], z3.FPVal(1.0, z3.FPSort(8,
24)), z3.FPVal(0.0, z3.FPSort(8, 24)))"

__aeabi_fdiv "o0": "binds[’i0’] / binds[’i1’]"
__aeabi_fmul "o0": "binds[’i0’] * binds[’i1’]"
__aeabi_fsub "o0": "binds[’i0’] - binds[’i1’]"
__divdf3 "tmp": "z3.fpBVToFP(z3.Concat(binds[’i1’], binds[’i0’]),

z3.FPSort(11, 53)) / z3.fpBVToFP(z3.Concat(binds[’i3’],
binds[’i2’]), z3.FPSort(11, 53))",
"o0": "z3.Extract(31, 0, z3.fpToIEEEBV(binds[’tmp’]))",
"o1": "z3.Extract(63, 32, z3.fpToIEEEBV(binds[’tmp’]))"

__muldf3 "tmp": "z3.fpBVToFP(z3.Concat(binds[’i1’], binds[’i0’]),
z3.FPSort(11, 53)) * z3.fpBVToFP(z3.Concat(binds[’i3’],
binds[’i2’]), z3.FPSort(11, 53))",
"o0": "z3.Extract(31, 0, z3.fpToIEEEBV(binds[’tmp’]))",
"o1": "z3.Extract(63, 32, z3.fpToIEEEBV(binds[’tmp’]))"

__truncdfsf2 "o0": "z3.fpToFP(z3.RNE(), z3.fpBVToFP(z3.Concat(binds[’i1’],
binds[’i0’]), z3.FPSort(11, 53)), z3.FPSort(8, 24))"

asin "tmp": "z3.Function(’asin’, *[z3.BitVecSort(32) for _ in range(2)],
z3.BitVecSort(64))(binds[’i0’], binds[’i1’])",
"o0": "z3.Extract(31, 0, binds[’tmp’])",
"o1": "z3.Extract(63, 32, binds[’tmp’])"

atan2 "o0": "z3.Extract(31, 0, z3.Function(’atan2’, *[z3.BitVecSort(32) for
_ in range(4)], z3.BitVecSort(64))(binds[’i0’], binds[’i1’], binds[’i2’],
binds[’i3’]))",
"o1": "z3.Extract(63, 32, z3.Function(’atan2’, *[z3.BitVecSort(32) for
_ in range(4)], z3.BitVecSort(64))(binds[’i0’], binds[’i1’], binds[’i2’],
binds[’i3’]))"

sqrt "tmp": "z3.fpSqrt(z3.RNE(), z3.fpBVToFP(z3.Concat(binds[’i1’],
binds[’i0’]), z3.FPSort(11, 53)))",
"o0": "z3.Extract(31, 0, z3.fpToIEEEBV(binds[’tmp’]))",
"o1": "z3.Extract(63, 32, z3.fpToIEEEBV(binds[’tmp’]))"

neg "o0": "-binds[’i0’]"
csqrt "o0": "z3.Function(’csqrt’, z3.FPSort(8, 24), z3.FPSort(8,

24))(binds[’__aeabi_f2d’][’i0’])"

90

Table 6.2: Analytics for InteGreat’s lifting of the PLC firmware’s control logic. The integral
and derivative functions contained no inner program slices. Each call to PID,
integral, and derivative maintains separate state.

Function #Lifts #Symbols #LoA

integral 0 5 47
derivative 0 10 24
pid 8 9 302
main 2 6 148

The inputs to InteGreat used to lift the quad-copter firmware consisted of 18 program
slices (γ) and 24 binds entries (Φ). We depict the results of these lifting rules in Fig. 6.1,
and include the specification of 16 these bindings in Table 6.1 as an example. The left
side demonstrates the structure by which we were able to nest lifting rules. The right side
demonstrates the modularity of lifting rule applications across different code locations,
i.e. the slice for lifting a floating point multiply could be applied across several distinct
code locations.

The PLC firmware was compiled both using CoDeSys 2.3.9.44 and e!COCKPIT 3.5.16.30
for the WAGO 750-881 and PFC200 G2 750-8217 PLCs, respectively. We recovered the
same results for both of these PLCs and present the results for the latter in this paper, as
it is the more recent version. Both PLCs use the same CPU architecture (ARM32), and
the firmware is statically linked.

We targeted an algorithm in PLC firmware for actuating a pressure-controlling valve
in the Tennessee Eastman Challenge [128], a benchmark for modeling and analyzing
the dynamics of industrial control systems. The firmware is written in the structured
text, IEC 61131-3, programming language and then compiled to a binary for the PLC.
The firmware in question was provided by ICSREF [112], a security paper which staged
a code upload attack on a physical PLC connected to a Matlab environmental model.
Additional details of this attack’s physical setup are given in [129].

The specification used to lift the PLC firmware consisted of 3 program slices and 3
binds entries generating uninterpreted functions for three cases: a proportional-integral-
derivative call, a derivative call, and an integral call. We depict the results of these lifting
rules in Fig. 6.2. The PLC had significantly fewer binds as it did not rely on a software
floating point ABI and Matlab, the target domain, had pre-existing functions for integral
and derivative.

91

-20

 0

 20

 40

 60

 0 2 4 6

(a) Pitch

-40

-20

 0

 20

 40

 0 2 4 6

(b) Yaw

-40

-20

 0

 20

 40

 0 2 4 6

(c) Roll

Figure 6.2: Empirical results measuring the ability of InteGreat’s recovered models of
Orientation Estimation algorithms to identify bugs.

6.4.1 Correct Lifting of a Quad-Copter Stabilization Algorithm

We evaluated InteGreat by recovering equations for continuous orientation estimation
from an open-source, MCU-based quad-copter autopilot controller. The firmware we
studied implemented Madgwick’s Gradient Descent Orientation Filter [110]. The ori-
entation estimator takes in sensor inputs from the IMU consisting of an accelerometer,
gyroscope, and magnetometer. Orientation Estimators for strapdown INS (Inertial Navi-
gation Systems) continuously fuse sensor data with previous estimations and obtain new
attitude across the time domain. Because of this, difference in implementations that are
subtle on the surface lead to large accumulative error across small time periods.

We ran four experiments using different versions of Madgwick’s algorithm to showcase
InteGreat’s ability in detecting bugs and algorithm variants in firmware. These experi-
ments are depicted in Fig. 6.2, through a simulation of the quad-copter spinning in three
dimensions. These simulations were performed using Matlab’s “rpy_9axis” sensor data.

Note that only three lines are present in Fig. 6.2. The fourth line, the correct Matlab
implementation, the blue line, is identical to lifted version of a corresponding correct
C implementation. This finding ensures InteGreat did not make mistakes while lifting,
and was able to produce identically behaving Matlab code with respect to compiled
C firmware code. The equivalence between the two correct implementations gives us
confidence in the methodology InteGreat introduces.

The figure depicts the same inputs to the IMU sensor of a device oscillating in pitch,
yaw, then roll. Green is lifted by InteGreat from real world firmware that contains a bug.
Blue contains two lines: the InteGreat lifted firmware recompiled to correct the gradient
calculation, and a correct Matlab implementation of Madgwick’s algorithm. Red, however,
is a compiled firmware using the faulty C code included in Madgwick’s published report.
This version has accumulative error with respect to the earth’s magnetic field.

92

Continuous equations lifted by InteGreat were identical to ground truth simulations in
a controlled IMU sensor experiment rotating the quadcopter in 3 dimensions using 1,600
measurement points. This demonstrates our framework is able to lift correct continuous
equations from discrete, machine code implementations and verify them using tools
operating over the abstract domain.

Example of InteGreat Identifying Bugs We next evaluate whether InteGreat is useful
when attempting to identify bugs in firmware. When comparing the Madgwick-provided
Matlab implementation (blue) with the version recovered from the real world firmware
implementation (green), we discovered an error in the gradient of the solution surface
which is calculated by multiplying the objective Function matrix and its Jacobian matrix:
∇F = JT(S

Eq̂,E b̂)F(S
Eq̂,E b̂,S â,S m̂). Comparing the correct magnetic field components of

the Objective Function with the InteGreat lifted version (using normalized magnetic field
sensor values for simplicity):

fb(
S
Eq̂,E b̂Sm̂) =

2bx(0.5− q2
3 − q2

4) + 2bz(q2q4 − q1q3)−mx

2bx(q2q3 − q1q4) + 2bz(q1q2 + q3q4)−my

2bx(q1q3 + q2q4) + 2bz(0.5− q2
2 − q2

3)−mz

 (6.1)

F4 = ((0.5 + (−q2
3) + (−q2

4)) ∗ bx + (q2 ∗ q4 + (−q1 ∗ q3)) ∗ bz + (−mx)

F5 = (q2 ∗ q3 + (−q1 ∗ q4)) ∗ bx + (q3 ∗ q4 + q1 ∗ q2) ∗ bz + (−my)

F6 = (((0.5 + (−q2
2)) + (−q2

3)) ∗ bz + (q1 ∗ q3 + q2 ∗ q4) ∗ bx + (−mz)

(6.2)

It is clear that terms using the earth’s magnetic field (Eb̂) in the Objective Function
have missing coefficients.21 The same errors occur in all magnetic field components of
the Jacobian. We compare only one row of the Jacobian here for simplicity:

J4,1 = (−q3 ∗ bz)

J4,2 = (q4 ∗ bz)

J4,3 = (q3 ∗ (−2 ∗ bx) + (−q1 ∗ bz))

J4,4 = (q4 ∗ (−2 ∗ bx) + (q2 ∗ bz))

(6.3)

J4(
S
Eq̂,E b̂) =

[
−2bzq3, 2bzq4, −4bxq3 − 2bzq1, −4bxq4 + 2bzq2

]
(6.4)

After correcting all coefficients of the earth’s magnetic field (Eb̂) and recompiling

21by is not present as the earth’s magnetic field is be considered to have components in one horizontal
axis and the vertical axis.

93

the quad-copter firmware, the continuous equations lifted by InteGreat exactly matched
Madgwick’s Matlab implementation (blue).

We then compared the corrected equations (blue) with a third firmware version, com-
piled to use Madgwick’s published implementation, written in C, which is included in
the original Madgwick paper (red). We found that the published variant of the algorithm
recursively feeds in previously calculated gyroscopic biases multiplied by a correction
constant ζ. In contrast, existing implemented algorithms did not perform gyroscopic
bias removal and instead used dynamically calculated flux vectors of the Earth’s frame
in the equation’s objective function. This further confirmed InteGreat’s ability to help
researchers understand differences between implementations and published results.

By lifting compiled machine code to continuous equations using logical reasoning,
it is possible to identify bugs in firmware implementations and check the validity of
published results. Validation can be performed by comparing representations which,
after lifting, operate over the same domain, or by using a framework to check output
equivalence, i.e. reachability, between algorithm versions.

6.4.2 Analyzing and Extracting Functions from PLC Firmware

In this section, we demonstrate our ability to analyze continuous equation models
of the firmware of a PLC (Fig. 6.2). We recovered the following core model from the
firmware’s PID (proportional-integral-derivative) functions, where I and D are uninter-
preted functions for integral and derivative, respectively:

v6((v3 − v2) +
1
v5

I(v3 − v2, 1000t) + v1D(v3 − v2, 1000t)) + v0 + v7 (6.5)

For analysis in Matlab, we needed to also take into account some non-infinitesimal
measure of time. We simplified the recovered equation further via a few additional
common axioms, e.g. new_sym = v3 − v2, integ_e_dt = I(bindsi0, bindsi1):

Kp(e +
1
τi

∫
edt + τddvet) + b (6.6)

Eqn. 6.6 more closely matches the traditional PID formulation, where Kp is the propor-
tional gain constant the ICSREF attack modified. The other equations InteGreat recovered
from the PLC did not require further constructed abstraction specifications.

Discovering Additional Hardware. In the lifted version of the firmware, we also found
an obscure scaling was applied to the sensor value for the input reactor pressure before

94

(a) Naive Attack Reproduction (b) Voltage Corrected Destabilization

Figure 6.3: Left: An attempt to stage the ICSREF attack using the recovered model with-
out taking into account the physical effects of digital-to-analog conversion.
The plant shuts down upon when the reactor pressure hits 3000 kPa. Right:
Variations of the staged attack with physical effects accounted for. The dashed
line is the point at which the attack occurs (the 4 hour mark).

it was supplied to Eqn. 6.6:

P = 1000(((Pdigital/30000)− 0.0046)/0.9876) + 2000 (6.7)

We also were recovering the wrong value for the reactor pressure when we staged
normal operation of the environmental model using our lifted equations, depicted in
Fig. 6.3a. This led us to discover the reactor pressure (which starts at 2800 kPa in the
TE simulation) was supplied to the PLC through a physical wire connected to a separate
Analog-to-Digital Converter (ADC), rather than a serial port. The original pressure value
is converted to a voltage value between 1 and 3, and then this voltage is converted back
to a digital value on the physical PLC (30,000) corresponding to 3 volts.

We confirmed this was the case with the ICSREF authors. Because of the the physical
effects of the ADC being taken into account, the scaling equations applied to PLC I/O
values in the Matlab environmental model used by the paper were not the inverse of
Eqn. 6.7. Instead, the Matlab environmental model had no scaling to account for the ADC
and the firmware implicitly suggested the ADC was present via the scaling computation.

Even without ground truth, we were able to discover the presence of a physical ADC
by analyzing a firmware’s equations after lifting. This demonstrates novel discoveries
about a system’s environment can be made by using InteGreat to analyze firmware.

95

6.5 PRECISE DESTABILIZATION ATTACK DEVELOPMENT

The ICSREF attack flipped the sign on the proportional gain constant of the first of
the firmware’s PID calls. By recovering the continuous equations the firmware image
implemented, we were able to stage this attack without access to the physical PLC.

A naive extraction of the firmware’s implementation into Matlab, maintaining the
original voltage conversions discussed above, results in Fig. 6.3a when staging the attack.
This is because the input and output values to the PLC’s equations are affected by the
scaling decided by the physical digital-to-analog and analog-to-digital converters. This
proposes the importance of a hybrid approach to modeling in the current domain of
firmware rehosting [130, 131, 132]. While an exact emulation of the firmware’s operation
is desirable for dynamic analysis and testing (e.g. fuzzing), it is also necessary to verify
that the I/O boundaries of the system are consistent with the physical environment or
environmental model the emulation is attached to.

Moving forward with this understanding, we were then able to correctly reproduce the
destabilizing effects on reactor pressure created by uploading code to the PLC (Fig. 6.3b).
Red represents the original PLC firmware behavior from the ICSREF paper. However,
notice that the paper included an unexplained positive bump at the point of attack. Lifted
equations allow us to explore an idealized model of the firmware’s implementation: by
removing all scaling operations from Matlab and the recovered model, we attained the
line in Blue. In doing so, we discovered exactly how much the ADC voltage conversion
affects the cyberphysical system’s dynamics. The Green line represents a case where
the attack did not occur but control over the reactor pressure is given to the PLC (with
ADC scaling). This scaling makes the pressure of the plant far less stable, a feature of the
system not addressed in the original ICSREF paper.

As the above evaluation demonstrates, using InteGreat we were able to both reproduce
and verify the existing ICSREF attack on a PLC and extend it to target an arbitrary
reactor pressure levels by modifying the proportional gain constant in the recovered
model to desired values. The recovered equations were of value in precisely destabilizing
the plant’s reactor pressure while maintaining the appearance of correct behavior, similar
to stuxnet [133]. Because the recovered models of the PLC’s control equations are general,
it was also possible to experiment with any variety of potential modifications to the PID
controller and explore a variety of reachable states given the environmental model.

96

6.6 DISCUSSION

Informed by both the Jetset and Edact-Ray works, InteGreat adopts an opinionated
perspective on the challenges facing binary program analysis. It attempts to address
universal and necessary limitations to abstract interpretation, such as the modeling of
microarchitectural semantics and state explosion, by applying the well-worn technique of
wrapping these complexities in a layer of indirection, and then automates the construction
of this indirection. While this alleviates the immediate difficulties involved in inferring
loop invariants and pointer analysis, InteGreat also has the explicit limitation of requiring
users to leave these semantics undefined or provide their own formulae for resolution.

We therefore consider a primary future application of InteGreat being lifting libraries.
By incorporating an object-oriented approach for abstraction specifications, the InteGreat
framework is able to continually expand its base of knowledge. A given set of lifting
rules can be written and then shared, similar to a library, for the analysis of wide ranges
of firmware binaries. These libraries may also be generated via automated methods, and
serve as a compressed encoding of more complex inference procedures. Moreover, be-
cause it is possible to encode uniform semantics for a given system, these libraries can
begin to function as “contracts” to ensure a system meets certain regulatory implemen-
tation requirements, something top-down verification cannot provide.

InteGreat does not solve the internal or external semantic problems posed in Section 4.4
or the more general problem of missing information in a system’s specification. Instead,
the system attempts to provide a better interface for management of this problems. It does
so by making no assumptions about the underlying semantics of the system, building
a model of the system from the ground up by starting with the implementation, rather
than a mathematical model.

In providing an interface for a more abstract representation the system during symbolic
execution, InteGreat is able to rely on additional input for undefined or undecidable cases
and extract useful models in cases where no such additional information is required or
feasible to provide. InteGreat thereby alleviates the need to treat complex systems as
complete black-boxes,22 and instead attempts to restrict the use of black-boxes to cases
where information on the system is legitimately missing.

22The dangers of making representational assumptions were demonstrated in Chapter 5.

97

6.7 SUMMARY

The work presented in this chapter empirically demonstrates that traditional top-down
approaches to verification can underestimate the complexity of firmware implementa-
tions. Instead of only working from mathematical models of a specific implemented
system, we propose the additional application of careful, logic-based function extraction.
From this point of view, it is possible to define the system at arbitrary levels of granularity
while ensuring that the provided representation for verification is accurate to the system
under study. For this purpose, we developed a system that applies logic-based func-
tion extraction to recover continuous equations from symbol-stripped binary firmware.
Through the analysis of two real world systems, a quad-copter and PLC, we were able to
demonstrate such an approach’s ability to find differences between published, high-level
representations and low-level system representations. We were also able to elucidate
otherwise unknowable features of a system under study, such as physical ADCs and the
effects of their value representation on the system’s dynamics.

98

Chapter 7: Conclusions

Analysis of complex systems with limited ground-truth information is difficult but criti-
cal. Existing approaches proceed either from the minutia of a system’s micro-architectural
semantics or a broad set of general properties which are not always applicable to a sys-
tem’s implementation specifics and attempt to meet the other side in the middle. How-
ever, we are still facing profound challenges in explicating the problems involved in the
verification of systems, and often claim analysis of these systems is infeasible.

In this dissertation, we examined the practice of emulation and simulation of systems,
and developed three novel applications of emulation to systems security measurement.
Our first analysis considered the problem of modeling hardware from the domain of
firmware. Second, we considered inferring text removed from a PDF document by ex-
amining residual information and universally quantifying over possible inputs to a sim-
ulation of the document’s production software. Last, we provided a framework for the
extraction of otherwise black-box system functions using a combination of formal rea-
soning and abstract interpretation. All of these techniques identified new information
or perspectives on the system in consideration, and then used this novel insight to infer
missing information. Emulation always provides uncertain bounds on the true behavior
of the system modeled, defined by the method in which the system is emulated. Each of
our different approaches each eventually converged to some bound on the knowable, and
we identified how this bound plays a role when considering the correctness of deductions
made from the model. Such considerations can be understood in two ways. In reference
to missing sub-components, e.g. redacted content and missing peripherals, the unknown
can be used to bound our willingness to consider a system secure: referring to the abso-
lute rather than simple opacity, what cannot be effectively disambiguated to a necessary
degree is meaningless to an adversary, and that which can be known is insecure. In the
development of emulations, this absolute bound directed us towards completion in our
analysis of what can be observed, i.e. the shifting schemes underlying text layout and the
representations used for reasoning about systems.

We introduced different strategies to model the dynamics of diverse complex sys-
tems where ground-truth information was limited or unavailable. In Chapter 4, we used
taint-tracking based symbolic execution, fuzzing, and live binary rewriting to find ex-
ploits for a critical avionics component. Because these techniques work at the level of
micro-architectural semantics, we were able to generalize each of these principles to the
measurement of security of many embedded systems. Our findings ultimately led to

99

the deeper understanding that new strategies were needed for reasoning about complex
relationships within known firmware information and identifying unknown external
components. In Chapter 5, we approached the latter of these challenges by reviving
a decades-old information theoretic approach to the unknown: dictionary attacks, and
effectively applied this technique to achieve groundbreaking results that rendered hun-
dreds of redactions in historically relevant documents ineffective. The tool we built for
this purpose, Edact-Ray, adapted the careful analysis of binary code introduced by Jet-
set in the previous chapter to the generation of precise simulations of PDF production,
allowing us to use the information in the PDF documents as an “oracle” to eliminate
bad guesses for redacted content. In Chapter 6, we approached the problem of function
extraction faced by Jetset and Edact-Ray, in order to present a bottom-up approach to
cyber-physical system verification, bootstrapping mathematical models for systems from
symbol-stripped binary code. We were able to use this system to identify differences be-
tween published mathematical models and their implemented versions, as well as recover
control equations for a PLC used in a chemical plant, then perform more precise analysis
and attack modeling against these equations than was present in original publications
on the system.

Each of these techniques provided impactful analysis of otherwise opaque software
and embedded systems, in part due to the specific efforts involved in developing the tools
used. They present a clear line of development in approaching the problem of security
measurement in critical systems with specific applications and areas of focus, and each
of these areas could be further explored to identify new exploits. There are also many
additional challenges remaining in the field of emulation construction. We provide an
overview of potential areas for future work:

Multi-System Interaction Emulation and Simulation Extraction An immediate chal-
lenge to our analysis of PDF document production schemes in Chapter 5 was the possibil-
ity of modeling and tracking information as it flowed through multiple different software
stacks. For example, a PDF produced by Microsoft Word can then be fed to Apple’s email
client, where it is then opened in Firefox and printed as a PDF using the system dialog.
Exactly identifying the operations that are performed on the PDF’s specification in each
of these steps requires recording each step’s execution individually, reverse engineering
each software stack individually, or instrumenting the operating system to track how
the information of interest in propagated between these systems. One avenue for future
work is to instrument a system like QEMU, or the operating system itself, so that precise
extraction of models of operations performed on data can be extracted and reused in

100

simulations for the purposes of, for example, the measurement of redaction security.

Type Checking for Program Analysis and Emulation The representations used to
emulate, represent, and verify the behavior of systems are usually partial due to the com-
plexity of reproducing and precisely understanding the system under test. InteGreat’s
approach to function extraction introduced a verifiable representation of semantic model-
ing: we can represent the relationships and translations between symbols logically. This
effectively provides a form of type system for the interpretation of the analyzed system.
It would be ideal to extend this type system with analyses built from a description of
a system to ensure symbolic translations accurately represent the concrete system and
do not remove or fail to account for critical components that could affect the correct-
ness of further analysis, e.g. program analysis built on top of QEMU can simply ignore
some TCG helper routines which are used by the analyzed binary and the type checker
would enforce that these are supported. This could also help to ensure the authenticity
of academic research in the subject of security.

Catalogs of Common System Functions Use of the Jetset system in Chapter 4 was
severely limited by the unsolvable problem of understanding the “correct” path to ex-
plore through an arbitrary firmware image. The simplest and most effective solution to
this problem and many of the challenges encountered by this dissertation is the effective
cataloging, representation, and sharing of semantic knowledge regarding the function of
systems. For example, when performing symbolic execution on a function, the chances
are that the same function or one quite similar to it has been previously symbolically
executed by some individual analyzing some system at some point in time. Therefore,
it would be valuable to accumulate a database of both system functions and associated
strategies for their interpretation, which could be queried by analysis routines like ab-
stract interpretation. Moreover, this could provide predicates for pattern matching that
would be able to quickly determine whether a given sub-function of a new system was
secure or insecure based upon the history of that function’s use. In each case, the specific
representation of the information may vary, but there are a range of existing security
analyses are uniform enough in behavior, such as fuzzing, that the development of such
a catalogs is possible and in some cases already underway.

101

References

[1] “ Published CVE Records Metrics ,” https://www.cve.org/About/Metrics, Mitre,
2022.

[2] J. Pantiuchina, M. Lanza, and G. Bavota, “Improving Code: The (Mis)Perception of
Quality Metrics,” in 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2018, pp. 80–91.

[3] J. Feigenspan, S. Apel, J. Liebig, and C. Kastner, “Exploring Software Measures
to Assess Program Comprehension,” in 2011 International Symposium on Empirical
Software Engineering and Measurement. IEEE, 2011, pp. 127–136.

[4] D. G. Feitelson, “From Code Complexity Metrics to Program Comprehension,”
Communications of the ACM, vol. 66, no. 5, pp. 52–61, 2023.

[5] S. Stolfo, S. M. Bellovin, and D. Evans, “Measuring Security,” IEEE Security &
Privacy, vol. 9, no. 3, pp. 60–65, 2011.

[6] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel et al., “Sok:(State of) the Art of War: Offensive
Techniques in Binary Analysis,” in 2016 IEEE symposium on security and privacy (SP).
IEEE, 2016, pp. 138–157.

[7] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wressnegger, L. Cav-
allaro, and K. Rieck, “Dos and Don’ts of Machine Learning in Computer Security,”
in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp. 3971–3988.

[8] Z. Chen, S. L. Thomas, and F. D. Garcia, “MetaEmu: An Architecture Agnostic
Rehosting Framework for Automotive Firmware,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, 2022, pp. 515–529.

[9] E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Checkoway, S. Savage, and K. Levchenko,
“Jetset: Targeted Firmware Rehosting for Embedded Systems,” in USENIX Security
Symposium, 2021, pp. 321–338.

[10] M. Bland, A. Iyer, and K. Levchenko, “Story Beyond the Eye: Glyph Positions Break
PDF Text Redaction,” Privacy Enhancing Technologies Symposium, 2023.

[11] M. Bland, A. Chen, and K. Levchenko, “InteGreat: Lifting Continuous Control
Equations from Binary Code,” IEEE/ACM International Conference on Automated
Software Engineering (in Submission), 2023.

[12] P. Marwedel, Embedded System Design: Embedded Systems Foundations of Cyber-
Physical Systems, and the Internet of Things. Springer Nature, 2021.

102

https://www.cve.org/About/Metrics

[13] T. Ball, “The Concept of Dynamic Analysis,” ACM SIGSOFT Software Engineering
Notes, vol. 24, no. 6, pp. 216–234, 1999.

[14] B. Chess and G. McGraw, “Static Analysis for Security,” IEEE security & privacy,
vol. 2, no. 6, pp. 76–79, 2004.

[15] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal Methods: Practice
and Experience,” ACM computing surveys (CSUR), vol. 41, no. 4, pp. 1–36, 2009.

[16] G. Leeb and N. Lynch, “Proving Safety Properties of the Steam Boiler Controller:
Formal Methods for Industrial Applications: A Case Study,” Formal Methods for
Industrial Applications: Specifying and Programming the Steam Boiler Control, pp. 318–
338, 2005.

[17] S.-K. Huang, M.-H. Huang, P.-Y. Huang, H.-L. Lu, and C.-W. Lai, “Software Crash
Analysis for Automatic Exploit Generation on Binary Programs,” IEEE Transactions
on Reliability, vol. 63, no. 1, pp. 270–289, 2014.

[18] Y. Le Corre, J. Großschädl, and D. Dinu, “Micro-Architectural Power Simulator for
Leakage Assessment of Cryptographic Software on ARM Cortex-M3 Processors,”
in Constructive Side-Channel Analysis and Secure Design: 9th International Workshop,
COSADE 2018, Singapore, April 23–24, 2018, Proceedings 9. Springer, 2018, pp. 82–98.

[19] O. Landsiedel, K. Wehrle, and S. Gotz, “Accurate Prediction of Power Consumption
in Sensor Networks,” in The Second IEEE Workshop on Embedded Networked Sensors,
2005. EmNetS-II. IEEE, 2005, pp. 37–44.

[20] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A. Clements, “Chal-
lenges in Firmware Re-Hosting, Emulation, and Analysis,” ACM Computing Surveys
(CSUR), vol. 54, no. 1, pp. 1–36, 2021.

[21] S. Delaune and F. Jacquemard, “A Theory of Dictionary Attacks and Its Complexity,”
in Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004. IEEE, 2004,
pp. 2–15.

[22] T. Reps, G. Balakrishnan, and J. Lim, “Intermediate-Representation Recovery from
Low-Level Code,” in Proceedings of the 2006 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, 2006, pp. 100–111.

[23] B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and Hardware-independent Firmware
Testing via Automatic Peripheral Interface Modeling,” in Proceedings of USENIX
Security 2020, Aug. 2020.

[24] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz, C. Kruegel,
G. Vigna, S. Bagchi, and M. Payer, “HALucinator: Firmware Re-hosting Through
Abstraction Layer Emulation,” in Proceedings of USENIX Security 2020, Aug. 2020.

[25] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a Survey,” Cybersecurity, vol. 1, no. 1, pp.
1–13, 2018.

103

[26] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “FIRM-AFL: High-
Throughput Greybox Fuzzing of IoT Firmware via Augmented Process Emulation,”
in USENIX Security Symposium, 2019, pp. 1099–1114.

[27] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{QSYM}: A Practical Concolic Execu-
tion Engine Tailored for Hybrid Fuzzing,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 745–761.

[28] L. Borzacchiello, E. Coppa, and C. Demetrescu, “FUZZOLIC: Mixing Fuzzing and
Concolic Execution,” Computers & Security, vol. 108, p. 102368, 2021.

[29] “SEL-751A Feeder Protection Relay,” https://selinc.com/products/751A/,
Schweitzer Engineering Laboratories, 2023.

[30] “CMU-900 Communication Management Unit,” https://www.collinsaerospace.
com/what-we-do/industries/commercial-aviation/flight-deck/communications/
data-link-services/cmu-900-communication-management-unit, Collins Aerospace,
2023.

[31] “Raspberry Pi,” https://www.raspberrypi.com/, Raspberry Pi Foundation, 2023.

[32] “BeagleBoard-xM,” https://beagleboard.org/beagleboard-xm, beagleboard.org,
2023.

[33] W. Zhou, L. Zhang, L. Guan, P. Liu, and Y. Zhang, “What Your Firmware Tells You Is
Not How You Should Emulate It: A Specification-Guided Approach for Firmware
Emulation,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 3269–3283.

[34] G. Hernandez, M. Muench, D. Maier, A. Milburn, S. Park, T. Scharnowski, T. Tucker,
P. Traynor, and K. Butler, “FIRMWIRE: Transparent dynamic analysis for cellular
baseband firmware,” in Network and Distributed Systems Security Symposium (NDSS)
2022, 2022.

[35] Y. Sun, Z. Li, S. Lv, and L. Sun, “Spenny: Extensive ICS Protocol Reverse Analysis
via Field Guided Symbolic Execution,” IEEE Transactions on Dependable and Secure
Computing, 2022.

[36] “Advanced RECAP Search,” https://www.courtlistener.com/recap/, Court Lis-
tener, 2023.

[37] “Digital National Security Archive,” https://nsarchive.gwu.edu/
digital-national-security-archive, George Washington University, 2021.

[38] “Public Access to Court Electronic Records,” https://pacer.uscourts.gov/, Admin-
istrative Office of the U.S. Courts, 2021.

[39] “All Inspector General Reports in one Place,” Council of Inspectors General on
Integrity and Efficiency, 2021.

104

https://selinc.com/products/751A/
https://www.collinsaerospace.com/what-we-do/industries/commercial-aviation/flight-deck/communications/data-link-services/cmu-900-communication-management-unit
https://www.collinsaerospace.com/what-we-do/industries/commercial-aviation/flight-deck/communications/data-link-services/cmu-900-communication-management-unit
https://www.collinsaerospace.com/what-we-do/industries/commercial-aviation/flight-deck/communications/data-link-services/cmu-900-communication-management-unit
https://www.raspberrypi.com/
https://beagleboard.org/beagleboard-xm
https://www.courtlistener.com/recap/
https://nsarchive.gwu.edu/digital-national-security-archive
https://nsarchive.gwu.edu/digital-national-security-archive
https://pacer.uscourts.gov/

[40] “The Government Attic,” governmentattic.org, 2021.

[41] M. Burgess, “Redacted Documents Are Not as Secure as You Think,” https://www.
wired.com/story/redact-pdf-online-privacy/, Wired, 2022.

[42] “Simulink,” https://www.mathworks.com/products/simulink.html, MathWorks,
2023.

[43] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle,
T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: Scaling Compiler Infrastruc-
ture for Domain Specific Computation,” in 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). IEEE, 2021, pp. 2–14.

[44] D. Quinlan, “ROSE: Compiler Support for Object-Oriented Frameworks,” Parallel
processing letters, vol. 10, no. 02n03, pp. 215–226, 2000.

[45] C. Eagle and K. Nance, The Ghidra Book: The Definitive Guide. no starch press, 2020.

[46] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K. Cha, “Testing Inter-
mediate Representations for Binary Analysis,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2017, pp. 353–364.

[47] J. Stanier and D. Watson, “Intermediate Representations in Imperative Compilers:
A Survey,” ACM Computing Surveys (CSUR), vol. 45, no. 3, pp. 1–27, 2013.

[48] A. Letichevsky, O. Letychevskyi, V. Skobelev, and V. Volkov, “Cyber-Physical Sys-
tems,” Cybernetics and Systems Analysis, vol. 53, pp. 821–834, 2017.

[49] M. Bland, “CMU-900 Local Code Execution and Rootkit,” https://youtu.be/
r4M9AFZcj2w, 2022.

[50] E. Johnson and M. Bland, “Jetset,” https://github.com/aerosec/jetset, 2021.

[51] M. Bland, “Deredaction,” https://github.com/maxwell-bland/deredaction, 2023.

[52] T. M. Cover, Elements of Information Theory. John Wiley & Sons, 1999.

[53] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in USENIX annual
technical conference, FREENIX Track, vol. 41, 2005, p. 46.

[54] N. A. Quynh and D. H. Vu, “Unicorn: Next generation cpu emulator framework,”
BlackHat USA, vol. 476, 2015.

[55] Z. Deng, X. Zhang, and D. Xu, “Bistro: Binary Component Extraction and Embed-
ding for Software Security Applications,” in Computer Security–ESORICS 2013: 18th
European Symposium on Research in Computer Security, Egham, UK, September 9-13,
2013. Proceedings 18. Springer, 2013, pp. 200–218.

105

https://www.wired.com/story/redact-pdf-online-privacy/
https://www.wired.com/story/redact-pdf-online-privacy/
https://www.mathworks.com/products/simulink.html
https://youtu.be/r4M9AFZcj2w
https://youtu.be/r4M9AFZcj2w
https://github.com/aerosec/jetset
https://github.com/maxwell-bland/deredaction

[56] J. Caballero, N. M. Johnson, S. McCamant, and D. Song, “Binary Code Extraction
and Interface Identification for Security Applications,” California Univ. Berkeley
Dept. of Electrical Engineering and Computer Science, Tech. Rep., 2009.

[57] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A Selective Record-Replay
and Dynamic Analysis Framework for JavaScript,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, 2013, pp. 488–498.

[58] J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti et al., “AVATAR: A Framework to
Support Dynamic Security Analysis of Embedded Systems’ Firmwares,” in NDSS,
vol. 23, 2014, pp. 1–16.

[59] F. Wang and Y. Shoshitaishvili, “Angr-The Next Generation of Binary Analysis,” in
2017 IEEE Cybersecurity Development (SecDev). IEEE, 2017, pp. 8–9.

[60] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs,” in OSDI, vol. 8, 2008, pp.
209–224.

[61] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M. Norton, P. Mund-
kur, M. Wassell, J. French, C. Pulte et al., “ISA Semantics for ARMv8-a, RISC-v, and
CHERI-MIPS,” Proceedings of the ACM on Programming Languages, vol. 3, no. POPL,
pp. 1–31, 2019.

[62] Arm Architecture Reference Manual for A-Profile Architecture. ARM, 2023.

[63] “A deep dive into QEMU: The Tiny Code Generator (TCG), part 1,” https:
//airbus-seclab.github.io/qemu_blog/tcg_p1.html, Airbus Seclab, 2023.

[64] M. Wenzl, G. Merzdovnik, J. Ullrich, and E. Weippl, “From Hack to Elaborate Tech-
nique—A Survey on Binary Rewriting,” ACM Computing Surveys (CSUR), vol. 52,
no. 3, pp. 1–37, 2019.

[65] A. Roy, S. Hand, and T. Harris, “Hybrid Binary Rewriting for Memory Access
Instrumentation,” pp. 227–238, 2011.

[66] M. Zalewski, “Technical “Whitepaper” for afl-fuzz,” http://lcamtuf.coredump.cx/
afl/technical_details.txt, 2017.

[67] O. Sery, G. Fedyukovich, and N. Sharygina, “Interpolation-Based Function Sum-
maries in Bounded Model Checking,” in Proceedings of the 7th International Haifa
Verification Conference on Hardware and Software: Verification and Testing, ser. HVC’11.
Berlin, Heidelberg: Springer-Verlag, 2011, p. 160–175.

[68] L. Alt, S. Asadi, H. Chockler, K. Even Mendoza, G. Fedyukovich, A. E. Hyvärinen,
and N. Sharygina, “HiFrog: SMT-based Function Summarization for Software Veri-
fication,” in International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2017, pp. 207–213.

106

https://airbus-seclab.github.io/qemu_blog/tcg_p1.html
https://airbus-seclab.github.io/qemu_blog/tcg_p1.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

[69] S. Asadi, M. Blicha, A. Hyvärinen, G. Fedyukovich, and N. Sharygina, “Incremental
Verification by SMT-based Summary Repair,” in 2020 Formal Methods in Computer
Aided Design (FMCAD), vol. 1. TU Wien Academic Press, 2020, pp. 77–82.

[70] T. A. Henzinger, “The Theory of Hybrid Automata,” in Proceedings 11th Annual
IEEE Symposium on Logic in Computer Science. IEEE, 1996, pp. 278–292.

[71] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell system tech-
nical journal, vol. 27, no. 3, pp. 379–423, 1948.

[72] A. Sabelfeld and A. C. Myers, “Language-Based Information-Flow Security,” IEEE
Journal on selected areas in communications, vol. 21, no. 1, pp. 5–19, 2003.

[73] G. Lowe, “Quantifying Information Flow,” in Proceedings 15th IEEE Computer Secu-
rity Foundations Workshop. CSFW-15. IEEE, 2002, pp. 18–31.

[74] J. H. Van Lint, Coding Theory. Springer, 1971, vol. 201.

[75] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge university press,
2008.

[76] J. Bierbrauer, Introduction to Coding Theory. CRC Press, 2016.

[77] “Time Travel Debugging - Overview,” https://learn.microsoft.com/en-us/
windows-hardware/drivers/debugger/time-travel-debugging-overview, Mi-
crosoft, 2023.

[78] M. Campion, M. Dalla Preda, and R. Giacobazzi, “Partial (In)completeness in Ab-
stract Interpretation: Limiting the Imprecision in Program Analysis,” Proceedings of
the ACM on Programming Languages, vol. 6, no. POPL, pp. 1–31, 2022.

[79] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Proceedings of the The-
ory and Practice of Software, 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, p. 337–340.

[80] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti, “What you
corrupt is not what you crash: Challenges in fuzzing embedded devices.” in NDSS,
2018.

[81] D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards Automated Dynamic
Analysis for Linux-based Embedded Firmware,” in Proceedings of NDSS 2016, Feb.
2016.

[82] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry, Y. Fratantonio,
D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel, and G. Vigna, “Toward the
Analysis of Embedded Firmware through Automated Re-hosting,” in Proceedings
of RAID 2019, Sep. 2019, pp. 135–150.

107

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-overview
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-overview

[83] M. J. Renzelmann, A. Kadav, and M. M. Swift, “SymDrive: Testing drivers without
devices,” in Proceedings of OSDI 2012, Oct. 2012, pp. 276–292.

[84] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on Firmware: Finding
Vulnerabilities in Embedded Systems Using Symbolic Execution,” in Proceedings of
USENIX Security 2013, Aug. 2013, pp. 463–478.

[85] V. Chipounov and G. Candea, “Reverse engineering of binary device drivers with
RevNIC,” in Proceedings of EuroSys 2010, Apr. 2010, pp. 167–180.

[86] G. Hernandez, F. Fowze, D. J. Tian, T. Yavuz, and K. Butler, “FirmUSB: Vetting USB
device firmware using domain informed symbolic execution,” in Proceedings of CCS
2017, Oct. 2017.

[87] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “AVATAR: A framework to
support dynamic security analysis of embedded systems’ firmwares,” in Proceedings
of NDSS 2014, Feb. 2014.

[88] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling near-real-time
dynamic analyses of embedded systems,” in Proceedings of WOOT 2015, Aug. 2015.

[89] M. Kammerstetter, C. Platzer, and W. Kastner, “Prospect: peripheral proxying sup-
ported embedded code testing,” in Proceedings of the 9th ACM symposium on Infor-
mation, computer and communications security, 2014, pp. 329–340.

[90] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A Large-Scale Analysis
of the Security of Embedded Firmwares,” in Proceedings of USENIX Security 2014,
Aug. 2014, pp. 95–110.

[91] A. Costin, A. Zarras, and A. Francillon, “Automated Dynamic Firmware Analysis
at Scale: a Case Study on Embedded Web Interfaces,” in Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, 2016, pp. 437–448.

[92] K.-K. Ma, K. Yit Phang, J. S. Foster, and M. Hicks, “Directed symbolic execution,”
in Proceedings of SAS 2011, Sep. 2011, pp. 95–111.

[93] BeagleBoard-xM Rev C System Reference Manual, http://beagleboard.org/static/
BBxMSRM_latest.pdf, BeagleBoard.org Foundation, Apr. 2010, revision 1.0.

[94] “Docker,” docker.com, Docker, Inc, 2020.

[95] R. S. Venkatesh, T. Smejkal, D. S. Milojicic, and A. Gavrilovska, “Fast In-Memory
CRIU for Docker Containers,” in Proceedings of the International Symposium on Mem-
ory Systems, 2019, pp. 53–65.

[96] S. Crow, B. Farinholt, B. Johannesmeyer, K. Koscher, S. Checkoway, S. Savage,
A. Schulman, A. C. Snoeren, and K. Levchenko, “Triton: A Software-Reconfigurable
Federated Avionics Testbed,” in Proceedings of CSET 2019, 2019.

108

http://beagleboard.org/static/BBxMSRM_latest.pdf
http://beagleboard.org/static/BBxMSRM_latest.pdf
docker.com

[97] H. Dixon, “Embarrassing Redaction Failures,” https://www.
americanbar.org/groups/judicial/publications/judges_journal/2019/spring/
embarrassing-redaction-failures/, May 2019.

[98] D. Lopresti and A. L. Spitz, “Quantifying Information Leakage in Document Redac-
tion,” in Proceedings of the 1st ACM workshop on Hardcopy document processing, 2004,
pp. 63–69.

[99] P. Association, ISO 32000-2, 2017.

[100] T. Lee, “What Gets Redacted in Pacer?” https://freedom-to-tinker.com/2011/06/
16/what-gets-redacted-pacer/, Freedom to Tinker, 2011.

[101] E. Sandhaus, “The New York Times Annotated Corpus,” https://catalog.ldc.upenn.
edu/LDC2008T19, Linguistic Data Consortium, 2008.

[102] “North Carolina Voter Data,” https://www.ncsbe.gov/results-data/
voter-registration-data, North Carolina State Board of Elections, 2022.

[103] “Ohio Voter Data Download,” https://www6.ohiosos.gov/ords/f?p=VOTERFTP:
STWD:::#stwdVtrFiles, Ohio Secretary of State, 2022.

[104] “Washington Voter Registration Database Extract,” https://www.sos.wa.gov/
elections/vrdb/extract-requests.aspx, Washington State Office of the Secretary of
State, 2022.

[105] “Redacting with Confidence: How to Safely Publish Sanitized Reports Converted
From Word to PDF,” 2005.

[106] O. N. Romanyuk, S. V. Pavlov, O. V. Melnyk, S. O. Romanyuk, A. Smolarz, and
M. Bazarova, “Method of Anti-Aliasing with the Use of the New Pixel Model,” in
Optical Fibers and Their Applications 2015, vol. 9816. SPIE, 2015, pp. 274–278.

[107] Y. Zhou and D. Feng, “Side-Channel Attacks: Ten Years After its Publication and
the Impacts on Cryptographic Module Security Testing,” Cryptology ePrint Archive,
2005.

[108] C. Whelan and D. Naccache, “US Intelligence Exposed as Student Decodes Iraq
Memo,” Nature, vol. 429, no. 6988, pp. 116–116, 2004.

[109] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “DryVR: Data-Driven Verification
and Compositional Reasoning for Automotive Systems,” in Computer Aided Verifi-
cation: 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I. Springer, 2017, pp. 441–461.

[110] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, “Estimation of IMU and
MARG Orientation Using a Gradient Descent Algorithm,” in 2011 IEEE international
conference on rehabilitation robotics. IEEE, 2011, pp. 1–7.

109

https://www.americanbar.org/groups/judicial/publications/judges_journal/2019/spring/embarrassing-redaction-failures/
https://www.americanbar.org/groups/judicial/publications/judges_journal/2019/spring/embarrassing-redaction-failures/
https://www.americanbar.org/groups/judicial/publications/judges_journal/2019/spring/embarrassing-redaction-failures/
https://freedom-to-tinker.com/2011/06/16/what-gets-redacted-pacer/
https://freedom-to-tinker.com/2011/06/16/what-gets-redacted-pacer/
https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2008T19
https://www.ncsbe.gov/results-data/voter-registration-data
https://www.ncsbe.gov/results-data/voter-registration-data
https://www6.ohiosos.gov/ords/f?p=VOTERFTP:STWD:::#stwdVtrFiles
https://www6.ohiosos.gov/ords/f?p=VOTERFTP:STWD:::#stwdVtrFiles
https://www.sos.wa.gov/elections/vrdb/extract-requests.aspx
https://www.sos.wa.gov/elections/vrdb/extract-requests.aspx

[111] “eYSIP-2017 Quadcopter firmware,” 2017, https://github.com/heethesh/
eYSIP-2017_Control_and_Algorithms_development_for_Quadcopter.

[112] A. Keliris and M. Maniatakos, “ICSREF: A Framework for Automated Reverse
Engineering of Industrial Control Systems Binaries,” in Network and Distributed
System Security Symposium (NDSS), 2019.

[113] D. Currie, X. Feng, M. Fujita, A. J. Hu, M. Kwan, and S. Rajan, “Embedded Software
Verification Using Symbolic Execution and Uninterpreted Functions,” International
Journal of Parallel Programming, vol. 34, no. 1, pp. 61–91, 2006.

[114] O. Sery, G. Fedyukovich, and N. Sharygina, “FunFrog: Bounded Model Checking
with Interpolation-Based Function Summarization,” in Automated Technology for Ver-
ification and Analysis: 10th International Symposium, ATVA 2012, Thiruvananthapuram,
India, October 3-6, 2012. Proceedings 10. Springer, 2012, pp. 203–207.

[115] P. R. Gluck and G. J. Holzmann, “Using SPIN Model Checking for Flight Software
Verification,” in Proceedings, IEEE Aerospace Conference, vol. 1. IEEE, 2002, pp. 1–1.

[116] D. Babić and A. J. Hu, “Structural Abstraction of Software Verification Conditions,”
in International Conference on Computer Aided Verification. Springer, 2007, pp. 366–
378.

[117] M. Aizatulin, A. D. Gordon, and J. Jürjens, “Extracting and Verifying Cryptographic
Models from C Protocol Code by Symbolic Execution,” in Proceedings of the 18th
ACM Conference on Computer and Communications Security, ser. CCS ’11. New York,
NY, USA: Association for Computing Machinery, 2011, p. 331–340.

[118] J. Park, M. Pajic, O. Sokolsky, and I. Lee, “Automatic verification of finite precision
implementations of linear controllers,” in Tools and Algorithms for the Construction
and Analysis of Systems: 23rd International Conference, TACAS 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, Part I 23. Springer, 2017, pp. 153–169.

[119] D. Jackson and A. Waingold, “Lightweight Extraction of Object Models from Byte-
code,” in Proceedings of the 21st International Conference on Software Engineering, ser.
ICSE ’99. New York, NY, USA: Association for Computing Machinery, 1999, p.
194–202.

[120] G. Ramalingam, R. Komondoor, J. Field, and S. Sinha, “Semantics-Based Reverse
Engineering of Object-Oriented Data Models,” in Proceedings of the 28th International
Conference on Software Engineering, ser. ICSE ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 192–201.

[121] M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Păsăreanu, H. Zheng, and
W. Visser, “Tool-Supported Program Abstraction for Finite-State Verification,” in
Proceedings of the 23rd International Conference on Software Engineering, ser. ICSE ’01.
USA: IEEE Computer Society, 2001, p. 177–187.

110

https://github.com/heethesh/eYSIP-2017_Control_and_Algorithms_development_for_Quadcopter
https://github.com/heethesh/eYSIP-2017_Control_and_Algorithms_development_for_Quadcopter

[122] R. Ji, R. Hähnle, and R. Bubel, “Program Transformation Based on Symbolic Exe-
cution and Deduction,” in Proceedings of the 11th International Conference on Software
Engineering and Formal Methods - Volume 8137, ser. SEFM 2013. Berlin, Heidelberg:
Springer-Verlag, 2013, p. 289–304.

[123] M. Trtik and J. Strejcek, “Symbolic Memory With Pointers,” in International Sym-
posium on Automated Technology for Verification and Analysis. Springer, 2014, pp.
380–395.

[124] D. Engler and D. Dunbar, “Under-Constrained Execution: Making Automatic Code
Destruction Easy and Scalable,” in Proceedings of the 2007 International Symposium
on Software Testing and Analysis, ser. ISSTA ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 1–4.

[125] E. Coppa, D. C. D’Elia, and C. Demetrescu, “Rethinking Pointer Reasoning in
Symbolic Execution,” in 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2017, pp. 613–618.

[126] M. Hind, “Pointer Analysis: Haven’t We Solved this Problem Yet?” in Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering, 2001, pp. 54–61.

[127] X. Si, H. Dai, M. Raghothaman, M. Naik, and L. Song, “Learning Loop Invariants
for Program Verification,” Advances in Neural Information Processing Systems, vol. 31,
2018.

[128] N. L. Ricker, “Decentralized Control of the Tennessee Eastman Challenge Process,”
Journal of process control, vol. 6, no. 4, pp. 205–221, 1996.

[129] A. Keliris, H. Salehghaffari, B. Cairl, P. Krishnamurthy, M. Maniatakos, and F. Khor-
rami, “Machine Learning-based Defense Against Process-aware Attacks on Indus-
trial Control Systems,” in 2016 IEEE International Test Conference (ITC). IEEE, 2016,
pp. 1–10.

[130] E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Checkoway, S. Savage, and K. Levchenko,
“Jetset: Targeted Firmware Rehosting for Embedded Systems,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 321–338.

[131] B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and Hardware-independent Firmware
Testing via Automatic Peripheral Interface Modeling,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 1237–1254.

[132] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz, C. Kruegel, G. Vi-
gna, S. Bagchi, and M. Payer, “HALucinator: Firmware Re-hosting Through Ab-
straction Layer Emulation,” in 29th USENIX Security Symposium (USENIX Security
20), 2020, pp. 1201–1218.

[133] M. Baezner and P. Robin, “Stuxnet,” ETH Zurich, Tech. Rep., 2017.

111

	Chapter 1 Introduction
	Targeted Firmware Rehosting for Embedded Systems
	Glyph Positions Break PDF Text Redaction
	Lifting Continuous Control Equations from Binary Code
	Summary of Contributions
	Dissertation Structure

	Chapter 2 Preliminaries
	Program Analysis Methods
	Abstract Interpretation
	Symbolic Execution
	Lifting
	Intermediate Representations

	Information
	Guess-and-Check
	Regularity Conditions, Dependence, and Independence

	Chapter 3 Emulation Systems
	Peripheral Emulators and Instruction Set Simulators
	Dynamic Analysis
	High Level Emulators
	Encoding, Decoding, and Modeling

	Chapter 4 Targeted Firmware Rehosting
	Related Work on Rehosting
	Jetset's Inference of Hardware Semantics
	Jetset's Peripheral Modeling
	Jetset's Search Strategy

	Evaluating Jetset's Targeted Rehosting
	Full Hardware System Emulation Fuzzing
	Leveraging Emulation in Avionics Exploit Development

	Open Challenges in Rehosting
	Summary

	Chapter 5 Digital Forensics Using Simulation
	Introduction
	Background on PDF Text Representation
	Glyph Shifts

	Modeling and Simulating Glyph Shifting
	Breaking Redactions
	Broader Implications
	Summary

	Chapter 6 Logic-based Function Extraction
	Introduction
	Related Work on Lifting
	Design of a Logic-based Lifting Specification
	Experiments on a Quad-copter and Programmable Logic Controller
	Correct Lifting of a Quad-Copter Stabilization Algorithm
	Analyzing and Extracting Functions from PLC Firmware

	Precise Destabilization Attack Development
	Discussion
	Summary

	Chapter 7 Conclusions
	References

