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Abstract

Domain decomposition methods (DDMs) are popular solvers for discretized systems of PDEs, with one-level
and multilevel variants. Yet the optimal construction of these methods requires tedious analysis and is often
available only in simplified, structured-grid settings, limiting their use for more complex problems. These
solvers rely on several algorithmic and mathematical parameters, prescribing overlap, subdomain boundary
conditions, and other properties of the DDM. In the first two sections of this study, we develop methods for
learning optimal one and two-level DDMs utilizing graph neural networks (GNNs). Key components of our
proposed methods include novel loss functions enjoying theoretical guarantees to converge to global optimum
in limits.

First, we generalize optimized Schwarz domain decomposition methods to unstructured-grid problems, using
Graph Convolutional Neural Networks (GCNNs) and unsupervised learning to learn optimal modifications at
subdomain interfaces. A key ingredient in our approach is an improved loss function, enabling effective training
on relatively small problems, but robust performance on arbitrarily large problems, with computational cost
linear in problem size. The performance of the learned linear solvers is compared with both classical and
optimized domain decomposition algorithms, for both structured- and unstructured-grid problems.

Second, we propose multigrid graph neural networks (MG-GNN), a novel GNN architecture for learning
optimized parameters in two-level DDMs. We train MG-GNN using a new unsupervised loss function,
enabling effective training on small problems that yields robust performance on unstructured grids that are
orders of magnitude larger than those in the training set. We show that MG-GNN outperforms popular
hierarchical graph network architectures for this optimization and that our proposed loss function is critical
to achieving this improved performance.

Cross-device user matching is a critical problem in numerous domains, including advertising, recommender
systems, and cybersecurity. It involves identifying and linking different devices belonging to the same person,
utilizing sequence logs. Previous data mining techniques have struggled to address the long-range dependencies
and higher-order connections between the logs. Recently, researchers have modeled this problem as a graph
problem and proposed a two-tier graph contextual embedding (TGCE) neural network architecture, which
outperforms previous methods. In the last section of this study, we propose a novel hierarchical graph
neural network architecture (HGNN), which has a more computationally efficient second level design than
TGCE. Furthermore, we introduce a cross-attention (Cross-Att) mechanism in our model, which improves

performance by 5% compared to the state-of-the-art TGCE method.
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Chapter 1

Introduction

Domain decomposition methods (DDMs) [1]-[3] are highly effective in solving the linear and nonlinear systems
of equations that arise from the numerical approximation of solutions to PDEs. While most effective on elliptic
boundary-value problems, DDMs can also be applied to nonlinear problems, either using their nonlinear
variants, or successively solving linearizations. Time-dependent problems are normally solved by using a
time stepping algorithm in the time domain for implicit methods, which require the solution of a spatial
problem for each time step. Of these methods, Schwarz methods are particularly popular given their relative
simplicity and ease of parallelization. The common theme is to break the global problem into subproblems,
derived either by projection or by discretizing the same PDE over a physical subdomain, and to use solutions
on the subdomains as a preconditioner for the global discretization. Classical Schwarz methods generally
make use of Dirichlet or Neumann boundary conditions for these subdomain problems, while Optimized
Schwarz Methods (OSMs) aim to improve the convergence of the algorithm by using more general interface
conditions [4]. Notably, [5] demonstrates that optimal, but non-local, interface conditions exist for more
general decompositions.

Much of the OSM literature considers only one-level additive Schwarz methods, although multilevel
extensions do exist. For one-level methods (i.e., domain decomposition approaches without a “coarse grid”),
restricted additive Schwarz (RAS) approaches [6] are arguably the most common; optimized restricted additive
Schwarz (ORAS) methods are considered in [7]. The OSM idea has also been extended to asynchronous
Schwarz methods [8], where the computations on each subdomain are done using the newest information
available in a parallel computing environment without synchronizing the solves on each subdomain.

With a recent focus on machine learning (ML) techniques for solving PDE systems [9], [10], there is also
effort to apply learning-based methods to improve the performance of iterative solvers for PDEs, including
DDM and algebraic multigrid (AMG) methods. Within AMG methods, ML techniques have been applied
to learning interpolation operators [11], [12] and to coarse-grid selection in reduction-based AMG [13]. Of
particular note here is the loss function employed in [11], [12], where they use unsupervised learning to train
a graph neural network to minimize the Frobenius norm of the error-propagation operator of their iterative
method. Within DDM, significant effort has been invested in combining ML techniques with DDM, as in [14],
where two main families of approaches are given: 1) using ML within classical DDM methods to improve
convergence, and 2) using deep neural networks, such as Physics Informed Neural Networks (PINNs) [9], as a
discretization module and solver for DDM problems. In [15], a fully connected neural network is used to

predict the geometric locations of constraints for coarse space enhancements in an adaptive Finite Element



Tearing and Interconnecting-Dual Primal (FETI-DP) method. Using the continuous formulation of DDM,
the so-called D3M [16] uses a variational deep learning solver, implementing local neural networks on physical
subdomains in a parallel fashion. Likewise, Deep-DDM [17] utilizes PINNs to discretize and solve DDM
problems, with coarse space corrections [18] being used to improve scalability.

Graph neural networks (GNNs) extend learning based methods and convolution operators to unstructured
data. Similar to structured problems, such as computer vision tasks, many graph-based problems require
information sharing beyond just a limited local neighborhood in a given graph. However, unlike in CNNs,
where often deep CNNs are used with residual skip connections to achieve long range information passing,
GNNs dramatically suffer depth limitations. Stacking too many GNN layers results in oversmoothing, which
is due to close relation of graph convolution operators to Laplacian smoothing [19], [20]. Oversmoothing
essentially results in indistinguishable node representations after too many GNN layers, due to information
aggregation in a large local neighborhood. Inspired by the Unet architecture in CNNs [21], graph U-nets [22]
were introduced as a remedy for longe-range information sharing in graphs without using too many GNN
layers. Similar to their CNN counterparts, graph-Unet architectures apply down-sampling layers (pooling) to
aggregate node information to a coarser representation of the problem with fewer nodes. This is followed by
up-sampling layers (unpooling, with the same number of layers as pooling) to reconstruct finer representations
of the problem and allow information to flow back to the finer levels from the coarser ones.

As mentioned in [23], U-net and graph-Unet architectures suffer from a handful of problems and non-
optimalities. In these architectures, scale and abstraction are combined, meaning earlier, finer layers cannot
access the information of the coarse layers. In other words, initial layers learn deep features only based on
a local neighborhood without considering the larger picture of the problem. Moreover, finer levels do not
benefit from information updates until the information flow reaches the coarsest level and flows back to the
finer levels. That is, the information flow has to complete a full (graph) U-net cycle to update the finest
level information, which could potentially require multiple conventional layers, leading to oversmoothing in
the case of graph U-nets. More recently, there has been similar hierarchical GNN architectures utilized for
solving PDEs, such as those proposed by [24] and [25]. In each case, the architecture is similar to a U-net, in
terms in terms of information flow (from the finest to coarsest graph and back), and there is no cross-scale
information sharing, making them prone to the aforementioned U-net type problems.

It is a common occurrence for users to engage in online activities across multiple devices. However,
businesses and brands often struggle with having insufficient user identities to work with since users are
perceived as different individuals across different devices due to their unique activities. The ability to
automatically identify the same user across multiple devices is essential for gaining insights into human
behavior patterns, which can aid in applications such as user profiling, online advertising, improving system
security. Therefore, in recent years, the has been a flourishing amount of studies focusing on cross-device user
matching [26].

In recent years, with the advent of machine learning-based methods for entity resolution, several studies
have focused on learning distributed embeddings for the devices based on their URL logs [27]-[29]. The earlier
studies focused on utilizing unsupervised feature learning techniques [30], developing handcrafted features for
the device logs, or relied on co-occurrence of key attributes of URL logs in pairwise classification [27].

Methods that utilize deep learning have a greater ability to convey dense connections among the sequential
device logs. For instance, researchers have utilized a 2D convolutional neural network (CNN) framework to
encode sequential log representations to understand the relationship between two devices [31]. However, this

model primarily captures local interactions within user sequence logs, limiting its ability to learn the entire



sequence or a higher-level pattern. Recently, there has been further emphasis on the effectiveness of sequential
models like recurrent neural networks (RNNs) and attention-based techniques in modeling sequence patterns
and achieving promising results in numerous sequence modeling tasks [32]—-[34]. Although these methods
work well for sequence modeling, they are not specifically designed for user-matching tasks and may not be
optimal for learning sequential log embeddings.

Recently, researchers proposed a two-tier graph contextual embedding (TGCE) network for the cross-
device user matching [29] task. While previous methods for the task often failed at long-range information
passing along the sequence logs, TGCE leverages a two-level structure that can facilitate information passing
beyond the immediate neighborhood of a device log. This was specifically achieved by considering a random
walk starting from every node in a device log, connecting all of the visited nodes to the original node, and
performing a round of message passing using the newly generated shortcut edges.

Although the two-tier structure seems to enable long-range information sharing, we note two major
limitations with the existing method. First, in the device graph, the random walk on the URL nodes may
randomly connect two URLs that have been visited at two far-away time-stamps. Intuitively, two different
URLs browsed by a device with weeks of gap in between share less information than two URLs visited in a
shorter time frame. Second, at the end of the TGCE architecture, for the pairwise classification task, the
generated graph embeddings for two devices are entry-wise multiplied and sent through a fully connected
network to determine if they belong to the same person. However, there could be significant key features
in the learned embeddings that may be shared between the devices, which can alternatively get lost if the
architecture does not compare them across one another.

In the second chapter, we advance DDM-based solvers by developing a framework for learning optimized
Schwarz preconditioners. A key aspect of this is reconsidering the loss function to use a more effective
relaxation of the ideal objective function than Frobenius norm minimization [11], [12]. Moreover, the approach
introduced here offers an opportunity to reconsider existing limitations of optimized Schwarz methods, where
optimal parameter choice is based on Fourier analysis and requires a highly regular subdomain structure,
such as in the classical cases of square domains split into two equal subdomains or into regular grids of square
subdomains. Our framework learns the optimized Schwarz parameters via training on small problem sizes, in
a way that generalizes effectively to large problems, and in a way that allows us to consider both irregular
domains and unstructured grids, with no extraordinary limitations on subdomain shape. Furthermore, the
evaluation time of our algorithm scales linearly with problem size. This allows significant freedom in defining
optimized Schwarz methods, in comparison to classical approaches, allowing us to explore the potential
benefits of optimized Schwarz over classical (restricted) additive methods on unstructured grids for the first
time.

In the third chapter, to fully unlock the ability of GNNs to learn optimal DDM operators, and to
mitigate the shortcomings of graph U-nets mentioned above, we introduce here a novel GNN architecture,
multigrid graph neural networks (MG-GNN). MG-GNN information flow is parallel at all scales, meaning
every MG-GNN layer processes information from both coarse and fine scale graphs. We employ this MG-GNN
architecture to advance DDM-based solvers by developing a learning-based approach for two-level optimized
Schwarz methods. Specifically, we learn the Robin-type subdomain boundary conditions needed in OSM as
well as the overall coarse-to-fine interpolation operator. We also develop a novel loss function essential for
achieving superior performance compared to previous two-level optimized RAS. Our MG-GNN architecture
that outperforms existing hierarchical GNN architectures and scales linearly with problem size.Moreover, we

improve the loss function with theoretical guarantees essential for training two-level Schwarz methods. Our



method is also scalable, leading to effective training on small problems and generalization to problems that
are orders of magnitude larger. Finally, our method outperforms classical two-level RAS, both as stationary
algorithm and as a preconditioner for the flexible generalized minimum residual (FGMRES) iteration.

In the fourth chapter of this study, we propose a new hierarchical graph neural network (HGNN) inspired
by the star graph architecture [35]. In the terminology of HGNN, we refer to the URL nodes as fine nodes,
and in an unraveled sequence of URL logs, HGNN assigns a coarse node to every K consecutive fine nodes.
The message passing between the coarse and fine nodes enables effective long-range message passing without
the need to excessively add edges, as in the random walk method. Moreover, for the pairwise classification
task, we utilize a cross-attention mechanism inspired by Li et. al. [36], which enables entry-wise cross-encoding
of the learned embeddings. The main two-fold contributions of this chapter is that we model a given device
log as a hierarchical heterogeneous graph, which is 6x faster than the previous state-of-the-art while keeping a
competitive level of accuracy and performance, and that we employ a cross-attention mechanism for pairwise
matching of the graphs associated with a device log, which improves the accuracy of the overall method by
about 5%.



Chapter 2

Background on Domain Decomposition
Method

The domain decomposition method is a numerical method for solving partial differential equations (PDEs) by
dividing their computational domain into smaller subdomains and solving the PDEs independently on each
subdomain. This approach is particularly useful for solving large-scale problems that can be parallelized, as
it allows for distributed computing and can significantly reduce computational costs [37].

Consider a PDE defined on a domain 2 with boundary 9. The domain decomposition method divides
Q into N non-overlapping subdomains €);, each with its specific boundary 9€2;. The union of all these
subdomains embodies the entire domain; in other words 2 = Uf\il Q;, and the boundaries of the subdomains
satisfy 02 = vazl 0.

The intuition behind domain decomposition methods is to solve the PDE independently on each subdomain
and share information at the interfaces of the subdomains to make sure they are compatible and accurate
for the overall solve. This passing of information is typically done iteratively until a global solution is
obtained [38], [39].

Mathematically, let u; represent the solution on subdomain €2;. The domain decomposition method aims

to find w = (uy,us,...,un) that satisfies the following conditions:

1. The solution u; on each subdomain §2; solves the PDE locally, i.e., £;(u;) =0 for i =1,2,..., N, where
L; is the local PDE operator on subdomain (2;.

2. The solution u; on each subdomain agrees with the neighboring solutions u; on the interfaces, i.e.,

uiloo,nan; = ujlon;naq; for all 4, ;.

3. The global solution u satisfies the boundary conditions on 9, i.e., ulgg = g, where g is the given
boundary data.

To achieve these conditions, various domain decomposition methods can be employed, such as the overlapping
and non-overlapping methods. These methods are different in terms of how they handle the passing of
information along the interfaces and the coupling of the subdomain solutions.

One popular approach is the classical Schwarz method [40], which falls under the non-overlapping category

and is explained in the next section.



2.1 Schwarz Domain Decomposition Method

The classical Schwarz method divides the original problem’s domain into subdomains and solves the PDE on
each subdomain independently. At each iteration, the solutions on the subdomains are updated considering
information from its neighboring subdomains [40].

Consider a simple example of a 1D PDE defined on the interval 2 =
subdomains Q; = (%, ﬁ), where ¢ = 1,2,...,N. The PDE is given as g%‘
conditions u(0) = u(1) = 0.

To solve this problem using the classical Schwarz method, we start with an initial guess for the solution

(0,1). We divide € into N
= f(x), with the boundary

0

u,; on each of the subdomain. At each iteration k, the solution on each subdomain is updated by considering

information from its neighboring subdomains. The update step is written as follows:

N
k+1 _ p—1 ) -k
u; =L, fi— E 7;Juj

j=1.j#i

Here, £,

; 1is the inverse of the local PDE operator on subdomain €;, f; is the local source term on €, Ti;

represents the transmission operator that transfers information between subdomains ¢ and j, and uf is the
solution on subdomain §2; at iteration k. The transmission operator is for making sure the solutions at the

interfaces are compatible.

2.1.1 Dirichlet-Schwarz Method

The Dirichlet-Schwarz Method considers Dirichlet boundary conditions at the subdomain interfaces [41].

Consider a PDE problem defined on a domain 2. The goal is to find the solution u that satisfies the equation

Lu)=f inQ, (2.1)

where L is a differential operator and f is a given source term. We impose Dirichlet boundary conditions,
u = g, on the boundary 92.

The domain 2 is decomposed into N subdomains, €21, €2s,...,Qy. These subdomains can overlap, and
each subdomain has its own local coordinate system. The overlapping regions are called interface regions or
overlap regions, denoted by I';;, where ¢ and j represent the subdomains sharing the interface.

For applying the Dirichlet-Schwarz method, we consider the decomposition u = uy + ug + - - - + up, where
u; is the solution on the i-th subdomain. By substituting this decomposition into Equation (2.1) and using

the linearity of £, we obtain a system of equations for each subdomain:

subject to the interface conditions:
u; = u; on Iy, (2.3)
,Cl(uz) Ny = £j(Uj) *ny  on Fij, (24)

where n; and n; are the outward unit normals to I';; for subdomains €2; and €2; respectively.



To solve the system of equations (2.2) subject to the interface conditions (2.3) and (2.4), an iterative
procedure is employed. The Dirichlet-Schwarz method iterates between solving the local problems on each of
the subdomains and updates the interface values until it achieves convergence. The method starts with an
(0)

initial guess for the solution on each subdomain, u; . At each iteration, the following steps are performed:

1. Solve the local problem on each subdomain €2; independently:

LWy =f inQ,. (2.5)

2. Update the interface values using the updated solutions:
uEkH) = uyﬂ'l) onT;; foralli,j. (2.6)

The iterations continue until convergence, and is is commonly based on the difference between consec-
utive iterations or the residual norm. The Dirichlet-Schwarz Method is naturally employed for parallel

implementation since solutions of local problems on each subdomain are independent.

2.1.2 Neumann-Schwarz Method

The Neumann-Schwarz method is another variant of the Schwarz domain decomposition method that considers
Neumann boundary conditions at the interfaces of the subdomains [42]. In this method, we consider a PDE

problem as in (2.1), and at the boundary 92, we consider Neumann boundary conditions of the form:

N(u)-n=g ondQ, (2.7)

where NV represents the Neumann operator, n is the outward unit normal vector, and g is the given boundary
data.

Similar to the Dirichlet-Schwarz method, the Neumann-Schwarz method decomposes the domain 2 into
N subdomains, ¢,y ...,{y, and the subdomains can be overlapping or not. The interface operators I';;
denote the overlapping between subdomains ¢ and j.

To apply the Neumann-Schwarz method, we introduce the decomposition v = w1 +ug + - - - +uy, where u;
is the solution on the i-th subdomain. By applying this decomposition into the PDE, and since the operator

L is linear, we obtain a system of equations for each subdomain:

subject to the interface conditions:
8ui 8uj
= — | 2.9
87@1- 8nj o 7 ( )

where gg? and gZ? denote the normal derivatives of u; and u; with respect to the respective outward unit
i ]

normal vectors n; and n;.
The Neumann-Schwarz method solves the system of equations and applies the interface conditions
iteratively. The method starts with an initial guess for the solution on each subdomain, denoted by uz(-o). At

each iteration, the following steps are performed:



1. Solve the local problem on each subdomain €2; independently:
Ly =f in Q. (2.10)

2. Enforce the interface conditions by ensuring the consistency of normal derivatives:

oy Ft) 6u§_k+1)

5“1 = on,; onI';; foralli,j. (2.11)

The iterations continue until convergence, typically based on the difference between successive iterates or
the residual. The Neumann-Schwarz method can be implemented in a parallel fashion since the solution of

local problems on each subdomain are independent.

2.1.3 Robin-Schwarz Method

The Robin-Schwarz method is an extension of the Schwarz domain decomposition method that considers
Robin boundary conditions at the subdomain interfaces, and it is used to solve PDEs with Robin boundary
conditions in a domain decomposition framework [43]. Consider a PDE problem defined on a domain {2 as
in (2.1) but subject to the Robin boundary conditions:

afu) + B(u) -n=g on 0L, (2.12)

where L is a differential operator, f is a given source term, a(u) and §(u) are functions of the solution u,
and g is the given boundary data. The term «(u) denotes the coefficient of the normal derivative, and 3(u)
is the coefficient of the solution itself in the Robin condition.

Similar to the Dirichlet-Schwarz and Neumann-Schwarz methods, the Robin-Schwarz method decomposes
the domain 2 into N subdomains, €1, s,...,Qn, with possible overlap between them. Similar to prior
subsections, I';; represent the overlapping regions between subdomains ¢ and j, and similarly, to apply the
Robin-Schwarz method, we introduce the decomposition v = uy + ug + - - - + un, where u; is the solution
on the i-th subdomain. By substituting this decomposition into the PDE equation, we obtain a system of

equations for each subdomain:

subject to the interface conditions:

a(w;) + B(u;) - ny = auy) + f(uy) -n; on Iy, (2.14)

where n; and n; are the outward unit normal vectors to I';; for subdomains €2; and €2, respectively.
The Robin-Schwarz method employs an iterative procedure to solve the system of equations and enforce
the interface conditions. The method starts with an initial guess for the solution on each subdomain, denoted

as ugo). At each iteration, the following steps are performed:

1. Solve the local problem on each subdomain 2; independently:
L™y = inQ (2.15)

8



2. Enforce the interface conditions by ensuring the compatibility of the Robin conditions:

a(u§k+1)) + 5(u§k+l)) ‘n; = a(u§k+1)) + 5(u§-k+1)) -n; only; foralli,j. (2.16)

The iterations continue until a convergence criterion is met, typically based on the difference between
successive iterates or the residual. The Robin-Schwarz method allows for parallel implementation due to the
independent solution of local problems on each subdomain, and moreover, various parallel strategies can be

employed, such as domain decomposition techniques, message passing interfaces, or rid approaches.
ployed, h as d in d position techniques, ge passing interf: , or hybrid app h

2.1.4 Optimized Schwarz Method (OSM)

The Optimized Schwarz Method (OSM) is a more advanced subcategory of the Schwarz domain decomposition
method which is developed to improve the convergence rate and efficiency of the classical Schwarz methods [44]-
[46]. To achieve this goal, OSM optimizes the transmission conditions along the subdomain interfaces and
enhances the information sharing between the subdomains. In the traditional Schwarz method, the transmission
operator 7;; is often chosen as a simple restriction or interpolation operator. However, OSM introduces an
optimization procedure to determine the transmission conditions that minimize the error and maximize the
convergence rate.

To apply the Optimized Schwarz Method, we start with the initial guess u? for the solution on each
subdomain ;. The algorithm proceeds through iterations, where at each iteration k, the following steps are

performed:

1. Update the interface values using the previous iteration’s solutions:

uf = w1 onTy; for all i, (2.17)

2. Solve the local problem on each subdomain 2; independently:

N

uSth =L - > Tl |, (2.18)

where /Ji_l is the inverse of the local PDE operator on subdomain €2;, f; is the local source term on €2,
7T;;j represents the optimized transmission operator between subdomains 7 and j, and uf is the solution

on subdomain 2; at iteration k.

The key difference in OSM is the optimized transmission operator 7;;. This operator is computed using
optimization techniques to minimize the error and improve the overall convergence. By selecting the optimal
transmission conditions, OSM improves the information passing between subdomains, leading to faster
convergence and improved accuracy.

The optimization procedure for determining 7;; involves solving additional problems and applying
appropriate optimization algorithms. The goal is to find the transmission conditions that balance the accuracy
and computational efficiency of the method. Several optimization strategies, such as domain decomposition

techniques, model reduction, or adaptive algorithms, can be employed to enhance the performance of OSM.



2.1.5 Additive Schwarz Methods

The Additive Schwarz Method (AS) is a domain decomposition technique for solving PDEs that has offers
parallelization, and improves convergence features [47]. AS decomposes the computational domain into
non-overlapping subdomains and solves the problem independently on each subdomain before combining the
solutions to obtain the overall solution. To apply the Additive Schwarz method, we divide the domain
into N subdomains, denoted as 1, (s, ..., Qy. Each subdomain covers a specific part of the overall global
domain, and the union of all subdomains covers the whole computational domain. The subdomains can be
defined based on the geometric decomposition or other criteria appropriate for the considered problem.
The AS algorithm iteratively solves the problem, where at each iteration k, the following steps are

performed:

1. Initialize the solution on each subdomain:

w0 = k1 on 09, for all 4, (2.19)

3

k—

where u*~! represents the solution from the previous iteration.

2. Solve the local problem on each subdomain €2; independently:
N
uf’m = L:l_l fi— Eiuiﬁmil + Z Biju?mil s (220)

J=Lj#i

where £, ! is the inverse of the local PDE operator on subdomain €, f; is the local source term on

Q;, L; represents the local PDE operator, B;; is the restriction operator that restricts the solution

from subdomain 2; to the interface I';; between subdomains ¢ and j, and u?’m_l is the solution on
subdomain 2; at iteration k and level m — 1.
3. Combine the local solutions to obtain the global solution:
N
ub =" Bl (2.21)
i=1

where B; is the restriction operator that maps the solution on subdomain €2; to the global domain.

By solving the local problems independently, AS is able for parallel computations, which allows each
subdomain to be solved at the same time [37], [48]. This parallelization capability makes AS particularly
appropriate for high-performance computing architectures. Moreover, the convergence of AS is often faster
than that of the classical Schwarz method. This improved convergence can is due to the additive feature of
the algorithm. At each iteration, the local solutions are combined additively, which allows error reduction
from multiple sources simultaneously.

AS can be applied to a wide range of PDE problems, including elliptic, parabolic, and hyperbolic equations.
It is especially useful for problems with heterogeneous coefficients or complex geometries since the subdomain

decomposition is able to process local features in an efficient manner.
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2.1.6 Multiplicative Schwarz Method (MS)

The Multiplicative Schwarz Method (MS) is another domain decomposition technique used for solving
PDEs [48]. Similar to the Additive Schwarz methods (AS), MS divides the computational domain into
non-overlapping subdomains and solves the problem iteratively on each subdomain. However, unlike AS,
MS considers the interaction between subdomains multiplicatively, which results in different convergence
characteristics.

To utilize the Multiplicative Schwarz method, the domain €2 is decomposed into N subdomains, denoted
as Q1,s,...,Qy, where each subdomain covers a distinct portion of the global domain. The subdomain
decomposition can be based on geometric considerations or other relevant criteria. The objective of MS is
to obtain the solution u by solving the PDE independently on each subdomain and updating the solution
iteratively.

The MS algorithm proceeds as follows:

1. Initialize the solution on each subdomain:

W =uF1 on 99, for all 4, (2.22)

k=1 represents the solution from the previous iteration.

where u
2. Iterate until convergence:
(a) Solve the local problem on each subdomain €;:
N
u§m> ol Z Aijug,m*l) , (2.23)

j=1.j#i

where £ ! is the inverse of the local PDE operator on subdomain €, f; is the local source term

on €, £; represents the local PDE operator, A;; is the interaction operator that accounts for the

influence of the solution on subdomain 2; in the update of ugm), and uEmfl) is the solution on
subdomain 2; at iteration m — 1.
(b) Update the global solution:
N
ul™ =T Bu™, (2.24)
i=1

where B; is the restriction operator that maps the solution on subdomain €2; to the global domain.

The MS method offers several advantages in the solution of PDEs. By considering the interaction between
subdomains in multiplicatively, MS considers the coupling between subdomains more explicitly than AS. This
can potentially improve convergence, particularly for problems with highly heterogeneous coefficients or when
the solution has strong variations across subdomains.

The MS method can be used for different types of PDE problems, such as elliptic, parabolic, and hyperbolic
equations. It is particularly useful for problems with complicated shapes or materials that have varying
properties in different regions. By dividing the problem into smaller parts, MS can accurately capture the
local features of the problem. However, compared to the AS, MS is not as easily parallelizable. As a result,

AS is more commonly used than MS.
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Chapter 3

Learning Interface Conditions in Domain

Decomposition Solvers

Portions of this chapter appear in the paper "Learning interface conditions in domain decomposition solvers”
published in Advances in Neural Information Processing Systems (NeurIPS 2022) [49]

3.1 Introduction

Domain decomposition methods have proven to be highly effective in approximating solutions to partial
differential equations. However, achieving the optimal construction of these methods often involves complex
analysis and is typically limited to simplified, structured-grid scenarios, thereby restricting their applicability
to more intricate problems. In this chapter, we extend the application of optimized Schwarz domain
decomposition methods to unstructured-grid problems by leveraging Graph Convolutional Neural Networks
(GCNNs) and employing unsupervised learning techniques to acquire optimal modifications at subdomain
interfaces. A pivotal element of our approach is the utilization of an enhanced loss function, which facilitates
effective training on relatively small problem instances while ensuring robust performance on significantly
larger problems. Notably, our approach exhibits a computational cost that scales linearly with the problem
size. To evaluate the performance of the learned linear solvers, we conduct comparisons against both classical
and optimized domain decomposition algorithms, encompassing both structured- and unstructured-grid
problems. The chapter is structured as follow: we fist provide some required background in section 3.2. We

then proposed our method in section 3.3, and finally, we discuss the results in section 3.5.

3.2 Background

Let Q C R? be an open set, and consider the positive-definite Helmholtz problem
Lu=n—Au=f inQ, (3.1)

with inhomogeneous Dirichlet conditions imposed on the boundary 9. In (3.1), the parameter n > 0
represents a shift in the Helmholtz problem. In the numerical results below, we consider both finite-difference

discretizations of (3.1) on regular grids, as well as piecewise linear finite-element (FE) discretizations on
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arbitrary triangulations. In both cases, we denote the set of degrees of freedom as D, and note that these
are in a one-to-one correspondence with the nodes of the underlying mesh. Consider a decomposition of D
into non-overlapping subdomains DY,i € {1,2,...,S} such that each node is contained within exactly one
subdomain DY, yielding UD? = D. In this subdomain notation, the superscript denotes the amount of overlap
in the subdomains, which is zero for the non-overlapping subdomains that we first consider. Let R? be the
restriction operator onto the set of degrees of freedom (DoFs) in DY, and let (R?)T be the corresponding
extension operator from DY into set D. Then, an FE discretization of the Helmholtz problem leads to a linear
system of the form Az = b, where A is the global stiffness matrix and A? = R?A (R?)T is the subdomain
stiffness matrix for DY. We note that alternate definitions to the Galerkin projection for AY are possible, and
are commonly considered in optimized Schwarz settings (as noted below).

In the case of restricted additive Schwarz (RAS) [6], the subdomains are extended to allow for overlap: nodes
near the “boundary” of their subdomain are potentially included in two or more subdomains. We denote the
amount of overlap by 6 € N, defining subdomains D? recursively, by D¢ = fol u {j | ax; # 0 and k € fol}

for § > 0. The conventional RAS preconditioner is defined as

S
Maas = Y (BT (AD)'RY, (3.2)

i=1

where R? is the standard restriction operator to subdomain Q?, R? is a modified restriction operator from D
to the DoFs in D? that takes nonzero values only for DoFs in D?, and A? = (Rf)TAR;»S . Figure 3.1 shows an
example unstructured grid with two subdomains and overlap § = 1.

In an optimized Schwarz setting, we modify the subdomain systems, AJ. Rather than using a Galerkin
projection onto D, we rediscretize (3.1) over the subdomain of Q corresponding to these DoFs, imposing a
Robin-type boundary condition on the boundary of the subdomain. We define this matrix to be flf =A;+L;,
where A; is the term resulting from discretization of (3.1) with Neumann boundary conditions, and L; is

additional the term resulting from the Robin-type condition, as in:
Dirichlet: u = gp(x), Neumann: 7 - Vu = gn(z), Robin: au + 7 - Vu = gr(z), (3.3)

where 77 is the outward normal to the edge on the boundary and g denotes inhomogeneous data.

The matrix L; has the same dimensions as A;, so that flf is well-defined. However, it has a significantly
different sparsity pattern, with nonzero entries only in rows/columns corresponding to nodes on the boundary
of subdomain D¢. In practice, we identify a cycle or path in the graph corresponding to A; with the property
that every node in the cycle is on the boundary of Df but not the boundary of D (the discretized domain),
and then restrict the nonzeros in L; to the entries corresponding to the edges in this cycle/path (including
self-edges, corresponding to entries on the diagonal of L;).

Using this notation, the ORAS preconditioner can be written as

S

Moras = Z (Rf)T (z‘if)il R.. (3.4)

i=1

Our aim is to learn the values in the matrices L;, aiming to outperform the classical choices of these values
predicted by Fourier analysis, in the cases where those values are known, and to learn suitable values for cases,

such as finite-element discretizations on unstructured grids, where no known optimized Schwarz parameters
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Optimized
Schwarz DoF's

Figure 3.1: Two subdomains with overlap § = 1 on a 58-node unstructured grid. The blue and orange shading
denotes the original non-overlapping partitions (DY and DY), while the blue and orange dashed outlines show
the overlapping subdomains (D1 and D3). Nodes belonging to only one subdomain are marked with a solid
circle, while those in white belong to both subdomains. The connections in the boundary matrices Ly and Lo
are denoted by the edges shaded in blue (for L) and orange (for Ls).
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exist. We optimize the values for the case of stationary (Richardson) iteration, but evaluate the performance

of the resulting methods both as stationary iterations and as preconditioners for FGMRES.

3.2.1 Graph Neural Networks (GNNs):

Applying learning techniques to graph structured data necessitates stepping beyond multilayer perceptron
(MLP) and conventional convolutional neural networks (CNN) to a type of network that leverages the
underlying graph nature of the problem, namely graph convolutional neural networks (GCNNs). GCNNs are
typically divided into two categories: spectral and spatial [50]. Spectral GCNN, first introduced by Bruna et
al. [51], consider a graph Laplacian eigenbasis and define convolution as diagonal operators. As such, spectral
GCNN methods suffer from time complexity problems due to the necessity for the eigendecomposition of
the Laplacian matrix. Nevertheless, in follow-up work [52], [53], remedies have been proposed to mitigate
this. Unlike spectral methods, spatial GCNNs consider local propagation of information in graph domains as
a convolution graph. One popular framework is the message passing neural network (MPNN) [54], which
is based on sharing information among neighbor nodes in each round of a convolution pass. This has been
generalized [55] by introducing a configurable graph network block structure consisting of node and edge
convolution modules and a global attribute. In an effort to alleviate computational complexity of GCNNs [56],
topology adaptive graph convolution networks (TAGCN) can be constructed by defining learnable filters.
This is not only computationally simpler, but also allows for adapting to the topology of the graphs when

scanning them for convolution.

3.2.2 Lloyd aggregation

Lloyd’s algorithm [57] is a standard approach for partitioning data, closely related to k-means clustering,
that can be used (for example) to find close approximations to centroidal Voroni tesselations. Here, we use a
modified form of Lloyd’s algorithm, known as Lloyd aggregation [58], to partition a given set of degrees of
freedom, V, into the non-overlapping subdomains, V2, for i € {1,2,...,S5}, needed as input to our algorithm.
(Note that, here, we change notation from the main document and use V' to denote the vertices in the graph
associated with the matrix, rather than D to denote the index set of degrees of freedom.) Consider a 2D
planar graph, G, the set of all edges F, the set of all of its nodes V', and V. C V. The nodes in V. serve as
the centers of “clusters” in the graph that will define the subdomains, V;?. These regions are obtained based
on the closest center to each graph node, where the distance is measured by the number of edges covered in
the shortest path between two nodes (denote distance in the graph between node i and j by g;;). Define the
centroid of a region as the farthest node from the boundary, breaking possible ties by random choice. We use
a modified version of the Bellman-Ford algorithm, commonly used for obtaining the nearest center to every
node in V and its associated distance [59]. Let 7 be a list of graph nodes whose i-th element is the nearest
center to the i-th node of the graph, and let g; be the graph distance from node j to n;; then, the modified
Bellman-Ford algorithm is shown in Algorithm 1.

While this is an iterative computation, it has finite termination when the values in § and 7 stop changing.
After running this modified Bellman-Ford algorithm, Lloyd’s algorithm modifies the clusters by selecting the
centroid of every subdomain as its new center, then iterates, using the modified Bellman-Ford algorithm to
calculate new distances and nearest centers. Given updated center positions, it forms the new subdomains.
The full Lloyd algorithm is shown in Algorithm 2, where we define the set of border nodes, B, as the set of all

nodes that are connected by an edge to a node that has a different nearest center node. The key point here is
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Algorithm 1 Modified Bellman-Ford
1: Input E: The set all edges, V: The set of all nodes, V,.: The set of initial center nodes.
2 gi =00 Vie(1,2,.|v|}

3 n; =—1 vie{1,2,i..,\\/|}

4: for ce V. do

5: ge 0
6:
7
8:
9

Ne ¢ C
end for
while True do
Finished < True
10 for (i,7) € E do
11: if g; + 9i5 < g; then
12: 9j < 9i t Gij
13: ng <Ny
14: Finished <« False
15: end if
16: end for
17: if Finished then
18: return g, 7
19: end if
20: end while

that we use Modified Bellman-Ford to assign closest centers, then compute the set of border nodes, then find
the new centers as those that are further from the border set within each of the original subdomains (using

graph distances from B, but original center assignment in 7).

Algorithm 2 Lloyd Aggregation
1: Input K: Number of iterations, E: The set of all edges, V: The set of all nodes, V,: The set of initial
center nodes.
2: fori=1,2,3,.... K do

3: g, 7 < Modified Bellman-Ford(FE, V, V)
4: B«

5: for (i,7) € E do

6: if n; 7é n; then

7: B+ BU{i,j}

8: end if

9: end for

10: g, & + Modified Bellman-Ford(E,V, B)
11: V;(—{Z'EVZgi>gj V’I’lenj}

12: end for

13: return 77

Time Complexity: Assuming each node’s initial distance to a center node is bounded independently
of |[V|, and also assuming that each node’s degree is bounded independently of |V, Algorithm 1 runs a
|V |-independent number of iterations to determine one nearest center node for every point. Thus, Algorithm 1
is O(]V]) in our case. This is run a |V|-independent number of times in Algorithm 2, to generates the

subdomains, resulting in an overall algorithmic cost of O(|V]).
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3.3 Method

3.3.1 Optimization problem and the loss function

Throughout this study, we use || - || to denote the £2 norm of a matrix or vector, ||A||z for the Frobenius
norm of A, and p(A) as the spectral radius of A. The optimization problem that we seek to solve is to
find optimal values for the entries in the matrices L;, constrained by given sparsity patterns, to minimize
p(T), where T = I — MorasA is the error-propagation operator for the stationary iteration corresponding to
Moras defined in (4.5). The spectral radius p(T') corresponds to the asymptotic convergence factor of the
stationary iteration, giving a bound on the asymptotic convergence of the method. Formally defined in terms
of the extremal eigenvalue of 77T (since T is not symmetric), direct minimization of p(7T') is difficult since
backpropagation of an eigendecomposition is numerically unstable [60]. To overcome this, Luz et al. [12]
propose to relax the minimization of p(T") (for a similar AMG preconditioner) to minimizing the Frobenius
norm of T, ||T||F. In our experiments, however, we find that this is insufficient, leading to preconditioners
that do not scale. One reason is that while the Frobenius norm is an upper bound on the spectral radius, it
does not appear to be a suitably “tight” bound for use in this context (see Section 3.5.2 and Figure 3.16).
Instead, we use a relaxation inspired by Gelfand’s formula, that p(T) = KlgnoO |T* ||%, and the common
bound that

1
1 TEz||\ ¥ 1
() < 1 =sup ()™ = s (e 35

[l z:||z|| =1

for some finite K € N. This results in the optimization problem

Lii=1,2,...,8 p.llpl =1
spz;rsit},z of L7 @illl

3.3.2 Numerical evaluation of the loss function

We denote the action of evaluating the GNN by f(®) (where 6 represents the network parameters), and consider
a discretized problem with DoF set D, of size n. The set D can be decomposed into subdomains either by
using fixed geometric choices of the subdomain (e.g., for finite-difference discretizations), using the METIS
graph partitioner [61], or a k-means-based clustering algorithm (best known as Lloyd’s algorithm which has
O(n) time complexity) [57], [68]. For unstructured problems, we use a k-means-based algorithm, decomposing
D to subdomains D; for ¢ = 1,2,...,S, with overlap §. The GNN then takes D and its decomposition as
inputs, as well as sparsity constraints on the matrices L; for ¢ = 1,2,..., 5, and outputs values for these

matrices:

L LY L9 fO D). (3.7)

Using the learned subdomain interface matrices, we then obtain the modified MLORAS (Machine Learning
Optimized Restricted Additive Schwarz) operator, Mg)f){ Ag» simply using flf =A; + LEG) in (4.5). We denote
the associated error propagation operator by T¢) = I — MC()OI% agA.

While Gelfand’s formula and the associated upper bound in (3.5) are valid in any norm, it is natural to
consider them with respect to the £2 norm in this setting. However, this raises the same issue as encountered

in [12], that it generally requires an eigendecomposition to compute the norm. To avoid this, we use a
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stochastic sampling of H (T(G))K ‘, generated by the sample set X € R™*™ for some m € N, given as

X =[z1,22,...,2m],Y; z; ~ R"” uniformly, ||z;|| = 1. (3.8)

Here, we randomly select m points uniformly on a unit sphere in R™, which can be done using the method
in [62]. We then define

7

o= )

Yo Jrey ] -

(7)) H} (3.9)

taking each column of X as the initial guess to the solution of the homogeneous problem Az = 0 and taking

. . K . .
K steps of the stationary algorlthm to generate (T(Q)) x;. Since we normalize each column of X to have

lz;]| = 1, the value of ’ (T®) H serves as a lower bound for H (T®) H Thus, taking the maximum of

the values in Y provides a practlcal loss function that we use below, defining
L9 = max (V). (3.10)

We note similarities between this loss function and that used in [63], but that we are able to use the maximum
of Y(® (giving a better approximation to the norm) in our context instead of averaging.
Ultimately, the cost of our algorithm depends strongly on the chosen values of m and K. For sufficiently

large values of m, we now show that the maximum value in Y@ is an arbitrarily good approximation to

1
H (T(e))KH ® (in the statistical sense). The following lemma is useful in the proof of Theorem 5. While its

proof is quite simple, we are not aware of the result in the literature, and include it here for completeness.
Lemma 1. For z,y € R, with0 <y <z and any K € N, 2% — y&x < (x—y)%

Proof. Since y < x, the binomial theorem gives that

1

< (z - +y+z< >way)KKi(yK+(xy)

)=

). (3.11)

Taking the K" root of both sides and rearranging gives the stated result. O

Theorem 2. For any nonzero matriz T, € > 0, and § < 1, there exist M, K € N such that for any m > M,

if one chooses m points, x;, uniformly at random from {x € R", ||z| = 1}, then
Y = {||T* NTE ]} (3.12)
satisfies
P (‘p(T) - max(Y)%’ <e)>1-6 (3.13)

Proof. According to Gelfand’s theorem, there exists L € N such that

Ve> L, |p(T)— sup ||Tz||? (3.14)
willzll=1
Take any K > L and let € = e . Since R™ is finite-dimensional, there exists an z* € R", ||z*|| =1
K
such that sup | T%z| = |T%2*||. Denote the volume of the surface of the n-dimensional sphere of unit

a:llzfl=1
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radius around the origin in R™ by Ciot, and the volume of the region on this sphere within radius X of z* by

Cek.

Given & < 1, let M € N satisfy M > —180)__ Thep,
log(lf Cﬁmf)
. K . Cexc \ M
P ([|a* — ;| > € forall i) < (1 — —== <. (3.15)
tot

Thus, with probability of at least 1 — §, we expect at least one point from a selection of m > M points

uniformly distributed on the sphere of radius unit radius to be in C¢ k. Let that point be z,., giving

|75 % = %, | F < (|75 - 7% ) * (3.16)
1

< (|75 @ —z)|))* (3.17)

<Y F ot — k< T e = (3.18)

using Lemma 1 and the reverse triangle inequality. Finally, by the triangle inequality, with probability of at

least 1 — §, we have:

sup ||TKx||% - max(Y)% <e. (3.19)

x:||z||=1

<

p(T) — sup ||TXz|*

a:|lz]l=1

p(T) — max(Y)*

+

O

Remark. According to [64], since the optimal interface values are Turing-computable, if the depth of the GNN
1s at least the diameter of the graph, and a TAGConv layer followed by a feature encoder is Turing-complete,
the optimal interface values can be learned. In our setting, for a problem on a structured grid of size N x N
with two identical rectangular subdomains, this implies that the GNN will be able to learn the optimal interface
values given, if and only the GNN has depth at least 2N, has deep enough feature encoders, and the width of

the layers is unbounded.

Remark. Theorem 5 guarantees convergence of the loss function to the spectral radius, in the limits of many
samples and many stationary iterations. To the best of our knowledge, such a guarantee is not known for
the previous loss functions used in the area [11], [12]. Moreover, there are substantial improvements in the

numerical results using the new loss function in comparison to that of [12], as shown in Figure 3.16.

Theorem 3. Assuming bounded subdomain size, the time complexity to evaluate the optimal Schwarz

parameters using our method is O(n), where n is the number of nodes in the grid.

Proof. Given bounded Lloyd subdomain size and fixed number of Lloyd aggregation cycles, subdomain
generation has O(n) time complexity [58] (see section 3.4). To evaluate each TAGConv layer, one computes
y = Zf:l Gyzg + bl,, where L is the number of node features, G, € R"*™ is the graph filter, b is a learnable
bias, and zy € R™ are the node features. Moreover, the graph filter is a polynomial in the adjacency matrix
M of the graph: Gy, = Zj:() ge.; M7 where J is a constant and g, ; are the coefficients of filter polynomial.
Since the graph has bounded node degrees, it implies that M is sparse and the action of M7 has O(n) cost,
and therefore, the full TAGConv evaluation also has O(n) cost. Moreover, the cost of edge feature and the

feature networks are O(n), resulting in overall O(n) cost. O
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3.4 Neural network details

3.4.1 Inputs and Output

Inputs: The GNN takes the grid G as its input which has three main components, namely D, 4. (node
feature matrix), Deqge (edge feature matrix), and A (the graph adjacency matrix). Every node has a binary
feature, and its value is one if it is on a boundary of a subdomain and zero otherwise. Therefore, for every
node, the corresponding element in D, .4 indicates whether that point is on a boundary or not. In other
words, the binary node feature determines the grid decomposition. Deqge consists of the edge values obtained

from discretization of the underlying PDE.

Outputs: After passing the input to the GNN architecture which consists of node and edge convolution
blocks and is fully described in the following subsection, the learned edge weights are obtained for every edge
in the grid. However, only the edges between the nodes on the subdomain boundaries (considering self-loops)
are of our interest so we mask the rest of the edges. Therefore, the output of the GNN is the learned values
for edges connecting nodes on the boundary of a subdomain which are referred to as interface values in the
main document. For the i-th subdomain, the interface value matrix is referred to as Lf, where 6 represents
the GNN learnable parameters (see Equation 4.12). Figure 3.8 shows an example of the sparsity pattern of
an L matrix for each of the identical subdomains of the 10 x 10 structured grid in Figure 3.9. Also note that

the interface values are the nonzero elements of the corresponding L matrix.

3.4.2 Architecture

The overall architecture of the GNN is shown in Figure 3.2. The GNN takes a graph as its input and sends
node and edge features to the node convolution and edge feature preprocessing blocks, respectively, both
of which are shown in Figure 3.3. Each node convolution block consists of a TAGConv layer with 2-size
filters and 128 hidden units, followed by a ReLU activation, an instance norm layer, and a feature network
block. The feature network block, as shown in Figure 3.4, consists of 8 blocks with residual connections
between each; furthermore, each of the blocks consists of a layer norm followed by a fully connected layer
of size 128, followed by a ReLU activation, and finally another fully connected layer of size 128. The edge
feature preprocessing block takes the edge features and applies fully connected layers, ReLU nonlinearities,
and instance normalization, before the graph convolution pass.

After passing through all of the node convolution blocks, the edge and node features are sent to a stack
block. This block simply stacks node features onto the edges adjacent to each node. For every edge, (u,v),
where u and v are the nodes on that edge, denote the node and edge features by Ey, £, E(y,,), which are the
inputs to the stack block. The block then stacks these features and outputs them as the new edge features
for the edge (u,v). Following the stack layer is the edge convolution block, depicted in Figure 3.5, which
takes the stacked edge and node features and passes them through a series of fully connected layers, ReLU
activation functions, and layer norms. It is noteworthy that the size of the input to the edge convolution
block is 257, since following the description of the stack block, the two node features, each of size 128, and
the edge feature of size 1 are stacked together. The output from the edge convolution block is, finally, passed
through a masking block that outputs the interface values. This masks the interior edge values, i.e., takes the
output of the GNN (one value per each edge in the graph) and multiplies those values that are not on the
boundary of a subdomain by zero, to restrict the output from the GNN to the desired edges in the graph.
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Figure 3.3: Left: Node convolution block. Right: Edge feature preprocessing block.
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Figure 3.5: Edge convolution block.
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Figure 3.6: Example grids from the training set.

3.4.3 Training Details

We use a graph neural network based on four TAGConv layers and ResNet node feature encoders consisting
of eight blocks after each TAGConv layer; see section 3.4 for more details on the structure of the GNN, and
Section 3.5.4 for an ablation study. The training set in our study consists of 1000 unstructured grids with
piecewise linear finite elements and with grids ranging from 90-850 nodes (and an average of 310 nodes).
The grids are generated by choosing either a regular grid (randomly selected 60% of the time) or a randomly
generated convex polygon; pygmsh [65] is used to generate the mesh on the polygon interior. A sample of
the training grids is shown in Figure 3.6. We train the GNN for four epochs with a mini batch size of 25
using the ADAM optimizer [66] with a fixed learning rate of 10~*. For the numerical evaluation of the loss
function (3.10) we use K = 4 iterations and m = 500 samples. The code! was implemented using PyTorch
Geometric [67], PyAMG [68], and NetworkX [69]. All training was performed on an 8-core i9 Macbook Pro
using CPU only.

Moreover, we train two special networks for use in Section 3.5.1. The first is a “Brute Force” network,
which is a single-layer neural network without an activation function, trained only on a structured 10 x 10
grid with two identical subdomains using the ADAM optimizer. The purpose of training this is to obtain
the optimal interface values as a benchmark for comparison, including against our method. The second is
the same network used for our method, MLORAS, but overtrained on only the problem in Section 3.5.1, to

understand the learning capabilities of the method and choice of GNN architecture.

3.5 Results

3.5.1 Structured grids

We first consider rectangular structured grids with two subdomains. Although restrictive, these problems
allow us to directly compare to existing OSM parameters, which are only available for structured grids and
exactly two subdomains. We follow [7] and consider the Helmholtz problem (3.1) on the unit square with
1n = 1 and homogeneous Dirichlet boundary conditions. We discretize the problem on an N x N rectangular
grid with h = 1/(N 4+ 1) grid spacing, using the standard five-point finite difference stencil.

Figure 3.7 demonstrates a working example of how to build the RAS preconditioner (and similarly
MLORAS, by replacing the interface values with the learned values from the network). In this example, a

LAll code and data for this study is at https://github.com/compdyn/learning-oras (MIT licensed).
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Figure 3.7: Top: A 10 x 10 structured grid with two identical subdomains. Middle: Sparsity pattern of
the interface matrices. Bottom: The sparsity pattern of the RAS, Mras (and similarly for MLORAS)
preconditioner. The interface sparsity plots axis is based on the node indexing, and the axis limit difference
between sparsity plots of the interface matrices and Mgag is due to subdomains and the global domain size.
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Figure 3.8: Results for the Helmholtz problem on a 10 x 10 structured grid with two identical subdomains, with
convergence plots for the methods used as stationary algorithms (top) and as preconditioners for FGMRES
(bottom).
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Figure 3.9: Interface values for the 10 x 10 structured grid with two identical subdomains. From left to right:
brute force optimization of the interface values, MLORAS, and second-order ORAS (002) [7].

10 x 10 structured grid is decomposed into two similar subdomains with overlap of 1. The sparsity pattern
of each of the interface matrix is shown in the middle and that of the RAS (and similarly MLORAS)
preconditioner, which is obtained from 3.2, is demonstrated at the bottom.

Figure 3.8 shows the results of different methods on a 10 x 10 structured grid with two identical
subdomains. We see that the overtrained MLORAS network learns interface parameters that outperform the
Restrictive Additive Schwarz (RAS) [6] method; more significantly, MLORAS also outperforms the existing
Optimized-RAS (ORAS) methods that were analytically derived for this specific problem (zeroth-order OO0
and second-order OO2 from [7]). Moreover, in these results, the MLORAS network almost reaches the
performance of the “Brute Force” network (obtained by directly optimizing all interface values for this single
structured grid), indicating that using a GNN to encode the optimal interface values does not significantly
restrict the search space.

To understand the performance of the methods in more detail, Figure 3.9 plots the interface values
output by the brute force optimization, the MLORAS network, and the OO2 ORAS algorithm. This shows
that the MLORAS network is choosing interface values very close to those directly optimized by the brute
force method, unlike those selected by the OO2 method. Another illustration of the learned values for the
aforementioned three models at each entry is shown in Figure 3.10.

We also study the effect of scaling on structured grids with identical subdomains with larger sizes. We
train the model on structured grid of size 10 and evaluate it on structured grids of size 20, 60,40, and 80. The
evaluation is done for the convergence of stationary algorithm and FGMRES preconditioner, and is compared
to classical RAS, Jacobi, and AS. The results are shown in Figure 3.11.

We have compared the solution plot of our method with RAS for the Holmholtz problem. We consider
a 100 x 100 structured grid on the (0,1) x (0,1) domain, and consider the following true solution for the
problem: u* = sin(87x) + sin(8my). We then start with an initial random guess with Lo norm of 1. We
apply 10 iterations of RAS and MLORAS (ours) as stationary algorithm and obtain solution for each method.
Moreover, we run 10 iterations of FGMRES with MLORAS and RAS preconditioners on the initial guess and
obtain predictions for both methods. The results are shown in Figure 4.12 for MLORAS and Figure 4.13 for
RAS.

3.5.2 Unstructured grids

To evaluate the performance of the MLORAS network on unstructured grids, we consider 16 unstructured

triangular grids in 2D with sizes ranging from about 90 to 40 000 nodes. These grids are defined on convex
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Figure 3.10: Interface values for the 10 x 10 structured grid with two identical subdomains. Comparison
of the learned interface values at each entry for brute force method, MLORAS, and second-order ORAS
(002) [7].
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Figure 3.11: Evaluating the trained model on a 10 x 10 structured grid on larger grids. Comparing perfomance
as stationary algorithm (left) and FGMRES preconditioner (right) against Jacobi, AS, and RAS.
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Ground Truth Stationary Soln. FGMRES Soln.

1.0 1.0 1.0
1 1 1
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Figure 3.12: MLORAS (ours) solution plots. Top left: ground truth, top middle: MLORAS stationary
solution after 10 iterations, top right: FGMRES solution with MLORAS preconditioner after 10 steps, bottom
left: initial guess, bottom middle: error of MLORAS stationary solution (Lo norm of error = 0.231), bottom
right: error of FGMRES with MLORAS preconditioner solution (Lg norm of error = 0.084).

29



Ground Truth Stationary Soln. FGMRES Soln.
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Figure 3.13: RAS solution plots. Top left: ground truth, top middle: RAS stationary solution after 10
iterations, top right: FGMRES solution with RAS preconditioner after 10 steps, bottom left: initial guess,
bottom middle: error of RAS stationary solution (Lg norm of error = 6.526), bottom right: error of FGMRES
with RAS preconditioner solution (Ls norm of error = 0.146).
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Figure 3.14: Example two unstructured test grids with 1018 nodes (left) and 10260 nodes (right).

subsets of (0,1) x (0,1); we solve the Helmholtz problem (3.1) on these domains with = 1 and homogeneous
Dirichlet boundary conditions, discretized with piecewise-linear finite elements.

Example convergence plots are shown in Figure 3.15, where our method (MLORAS) is compared to
RAS (Restricted Additive Schwarz [6]), AS (Additive Schwarz), and Jacobi methods as a preconditioner
for FGMRES. Here we see that the MLORAS network is able to learn optimized interface parameters for
unstructured grids that outperform RAS, and that MLORAS can scale to problems that are much larger than
those in the training set, which are all below n = 1000 nodes. Importantly, MLORAS retains an advantage
over RAS even as the grid size increases.

Figure 3.16 shows the performance of three different methods across all unstructured test grids. The
three methods are: (1) “F-norm optimized”: the same network as MLORAS, but trained to directly optimize
the Frobenius norm of the error propagation matrix, ||A| r, (2) the RAS [6] method, and (3) the MLORAS
method. We do not show ORAS results here, as it cannot be applied to unstructured grids. Figure 3.16
reveals two important facts. First, MLORAS consistently outperforms RAS over the entire testing set, both
as an FGMRES preconditioner and as a stationary algorithm, and this advantage is maintained even for large
grids. Second, we see that the Frobenius norm is indeed a worse choice for the loss function than our new loss
n (3.6). We see this from the fact that MLORAS has a worse Frobenius norm than either of the other two
methods, but it has the best convergence rate. In addition, when we explicitly optimize the Frobenius norm
(the “F-norm optimized” method), we see that we do obtain the lowest Frobenius norm, but this translates to

the worst convergence rate.

3.5.3 Extra test cases

In this section, we test our method for more PDEs, including discontinuous and anisotropic diffusion
coefficients, as described below, and we demonstrate our approach clearly win over RAS for both stationary
iterations and preconditioned FGMRES. For each of the following problems, we generate training sets with
the same parameters for meshes as in the existing results in the previous chapter. For testing on these
problems, we consider nine domains with unstructured triangular grids, with sizes ranging from about 100 to
over 30k nodes. The subdomains are generated using Lloyd aggregation (fully explained in section 3.2.2),
with a fixed ratio of 0.015. The results of our method compared with RAS baseline for both the stationary
algorithm and the FGMRES preconditioner are shown in Figures in the following subsections, and show little

qualitative difference with the earlier results for Helmholtz.
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Figure 3.15: Example convergence on the test girds from Figure 3.14: 10260 nodes (top) and 1018 nodes:
(bottom).
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Figure 3.16: Convergence on all unstructured grids in the testing set. Top: Frobenius norm for each method
on each test problem. Center: error reduction by the stationary iteration after 10 iterations. Bottom: the
number of preconditioned FGMRES steps required to solve the problem to within a relative error of 10712,
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Figure 3.17: Visualization of the strong connections in the Poisson problem with discontinuous diffusion
coefficient

Poisson problem with discontinuous diffusion coefficient

We also consider the 2D Poisson problem with discontinuous diffusion coefficient which is formulated as

follows:
) 1000 0 <z <0.5
—V.k(z,y)Vu=f inQ, k(x,y)= (3.20)
1 05z <.
where € is, as before, defined as a convex subset of (0,1) x (0,1) and &(z,y) is the discontinuous diffusion
coefficient.
Figure 3.17 shows the illustration (strong connections) of this problem on a unit square domain. Figure 3.18

shows the performance of our method against RAS, both for the stationary iterations and FGMRES.
Rotated anisotropic diffusion

—V - (TVu) = f

cos?(0) + Esin®(A)  cos(6) sin()(1 — &)
cos(0) sin(0)(1 — &)  sin?() + & cos(0)

denote the strength of anisotropy and rotation direction for the problems, with these values chosen uniformly

where T' = . We use parameters 0.1 < <10 and 0 <6 < 7 to

random.

We illustrate the scaled strength of connection of rotated anisotropic poisson on a unit 2D square domain
in Figure 3.19. Figure 3.20 shows the performance of our method against RAS, both for the stationary
iterations and FGMRES.
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Figure 3.18: Discontinuous diffusion coefficient for Poisson problem on various size grids. Up: error reduction
by the stationary iteration after 10 iteration. Down: the number of preconditioned FGMRES steps required
to solve the problem to within a relative error of 10712,
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Figure 3.19: Visualization of the strong connections in the rotated anisotropic diffusion problem.

Low-diffusion inclusion

1078 l<gy<?2

=V k(z,y)Vu=f inQ, rk(z,y)= 3 V<3
1 else.

Figure 3.21 illustrates the problem visualization for the low-diffusion inclusion, and Figure 3.22 shows the

performance of our method against RAS, both for the stationary iterations and FGMRES.

3.5.4 Ablation study

To understand the impact of the network structure on performance, we conduct an ablation study by varying
the ResNet block length and the number of TAGConv layers. In each case, we train a network on five different
training sets, each consisting of 1000 grids generated as described in Section 3.4.3. The trained networks are
tested on 50 unstructured grids, each with 2400 to 2600 nodes. For each architecture, the mean performance
is computed, together with error bars from the fivefold repetition, with results shown in Figure 3.23. We
see that a higher residual block length is always better, but that the optimal number of TAGConv layers
is 4, and using more layers actually decreases performance. This phenomenon has been observed in other
contexts (e.g., [70] and [71]) and can be attributed to over-smoothing in GNNs. The use of residual blocks in
our architecture is, thus, important to allow us to increase network depth without needing to increase the

number of GNN layers.
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Figure 3.20: Rotated anisotropic diffusion problem on various size grids. Up: error reduction by the stationary
iteration after 10 iteration. Down: the number of preconditioned FGMRES steps required to solve the
problem to within a relative error of 10712,
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Figure 3.21: Visualization of the strong connections in the low diffusion problem.
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Figure 3.22: Low-diffusion inclusion problem on various size grids. Up: error reduction by the stationary
iteration after 10 iteration. Down: the number of preconditioned FGMRES steps required to solve the
problem to within a relative error of 10712,
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Figure 3.23: Ablation study results. The left panel varies the residual block length while keeping the number
of TAGConv layers fixed at 4. The right panel varies the number of TAGConv layers while keeping the
residual block length fixed at 8. The solid blue lines (left axis) show the average number of FGMRES steps
needed to reduce the relative error below 10712, while the dashed green lines (right axis) show the average
stationary algorithm error reduction after 10 iterations. The red circles mark the results for the network with
the best performance (residual block length of 8 and 4 TAGConv layers), which was used for all other studies
in this study. Error bars show one standard error of the mean.
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Chapter 4

Multigrid Graph Neural Networks for
Learning Multilevel Domain

Decomposition Method

Portions of this chapter appear in the paper "MGGNN: Multigrid Graph Neural Networks for Learning
Multilevel Domain Decomposition Method" accepted at International Conference on Machine Learning (ICML
2023) [72]

4.1 Introduction

Domain decomposition methods (DDMs) are widely used to solve discretized systems of PDEs. These
methods come in one-level and multilevel variants, and they depend on various algorithmic and mathematical
parameters. These parameters dictate the overlap, subdomain boundary conditions, and other characteristics
of the DDM. While some efforts have been made to optimize these parameters, the focus has primarily been
on the one-level scenario or specific cases such as structured-grid discretizations with regular subdomain
construction. In this chapter, we introduce a new GNN architecture called multigrid graph neural networks
(MG-GNN) to learn optimized parameters in two-level DDMs. MG-GNN is trained using a novel unsupervised
loss function, allowing effective training even on small problems while achieving robust performance on
unstructured grids that are significantly larger than those encountered during training. Our experimental
results demonstrate that MG-GNN surpasses other popular hierarchical graph network architectures in terms
of parameter optimization. This chapter is organized as follows: we fist provide background knowledge
regarding multilevel DDMs in section 4.2. We then introduce our GNN architecture in section 4.3, and
the unsupervised loss function we develop for this study in section 4.4. We finally provide the results and

experiments in section 4.6.
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4.2 Background

In this section, we review one and two-level DDMs. Let © be an open set in R?, and consider the Poisson
equation:

~AD = §, (4.1)

where A is the Laplace operator and f(z,y) and ®(x,y) are real-valued functions. Alongside (4.1), we consider
inhomogeneous Dirichlet conditions on the boundary of 2, 9f2, and use a piecewise linear finite-element
(FE) discretization on arbitrary triangulations of 2. In the linear FE discretization, every node in the
obtained graph corresponds to a degree of freedom (DoF) in the discretization, and the set of all nodes is
denoted by D. The set D is decomposed into S non-overlapping subdomains {D?, DS, ..., Dg} (where the
superscript in the notation indicates the amount of overlap; hence, the superscript zero for the non-overlapping
decomposition). The union of the subdomains covers the set of all DoFs, D = UDY, so that each node in D
is contained in exactly one DY. Denote the restriction operator for discrete DoFs onto those in D? by R?
and the corresponding extension from DY to D by (R?)T. Following the FE discretization of problem, we
obtain a linear system to solve, Az = b, where A is the global stiffness matrix. For every D?, we obtain the
subdomain stiffness matrix as A? = RVA(RY)T. In the OSM setting, alternative definitions to this Galerkin
projection for A? are possible as noted below. To obtain the coarse-level representation of the problem, let
P e R5*IPl he the piecewise-constant interpolation operator that assigns every node in D? to the i-th coarse
node. The coarse-level operator is then obtained as Ac = PTAP.

The restricted additive Schwarz method (RAS) [6] is an important extension to the Schwarz methodology
for the case of overlapping subdomains, where some nodes in D belong to more than one subdomain. Denoting
the overlap amount by § € N, we define the subdomains D? for § > 0 by recursion, as D! = Df_l U{jlar; #
0for k € Df_l}. For the coarse-grid interpolation operator, P, each of the overlapping nodes is now associated
with multiple columns of P, which is typically chosen as a partition of unity, with rows of P having equal
non-zero weights (that can be interpreted as the probability of assigning a fine node to a given subdomain).
The conventional two-level RAS preconditioner is then defined by considering the fine-level operator, Mgas,

and the coarse-level correction operator, Co_gas, given by

s
Mgas =) (R)"(A)'RY, (4.2)

i=1

Caomas = P(PTAP)"'PT, (4.3)

where A2 = (Rf)TAR;;S . The operator R’ denotes restriction for DoFs in D to those in D? while R? is
a modified restriction from D to D{ that takes nonzero values only for DoFs in DY. The two-level RAS
preconditioner is given as Mo gas = Co.ras + Mgras — Co.rasAMRgas, with the property that I — Mo rasA =
(I = CarasA)(I — MgrasA).

In the case of optimized Schwarz, the subdomain systems (fine-level A?) are modified by imposing a Robin
boundary condition between subdomains, writing flf = Af + L;, where L; is the term resulting from the

Robin-type condition:

ou+ 1 - Vu = g(x), (4.4)
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where g denotes inhomogeneous data and 72 is the outward unit normal to the boundary. From the finite-
element perspective, a Robin boundary condition appears in the weak form as an integral over the exterior
edges of the (sub)domain of the form « |, 5 Quv. While it is common to think of this for straight edges of a
regular domain, it is defined in the same way for irregular subdomains, and the resulting nonzero pattern
in L; is simply (periodic) tridiagonal, when the vertices are ordered in a cycle around the boundary of the
(sub-)domain. Here, « could be variable along the edges of each subdomain, leading to a general symmetric
(periodic) tridiagonal structure for L; when the vertices are ordered in a cycle (and a known pattern when
the vertices are in another order). Thus, for the optimization, we identify a cycle or path in the graph
corresponding to A; with the property that every node in the cycle (or path) is on the boundary of Df , but
not the boundary of D, the discretized domain. This defines the (permuted) tridiagonal structure for L;, and
we restrict the nonzero entries in L; to its diagonal and off-diagonal entries associated with edges on the
cycle or path.

The fine-level operator for optimized Schwarz is then given by

Monss = 3" (7)" (4) " . (45)

i=1

where the choice of weight, «, in the subdomain Robin boundary condition is a parameter for optimization.
Similarly, the method can be improved by optimizing the choice of coarse-level interpolation operator, P, but
this has not been fully explored in the OSM literature. Similarly to with RAS, we define the two-level ORAS
preconditioner as M>.oras = Ca-ras + Moras — Co-rasAMoRras-

The work of [49] suggests a method to learn L; for one-level ORAS. Here, we learn both L; and P for
two-level methods since, as later shown in Figure 4.9, the two-level methods are significantly more robust.
Furthermore, as we show in Section 4.6.2, while learning both ingredients improves the performance, learning
the interpolation operator, P, is significantly more important than learning L;’s in order to obtain a two-level

solver that outperforms classical two-level RAS.

4.3 Multigrid graph neural network

The multigrid neural architecture [23] is an architecture for CNNs that extracts higher level information in
an image more efficiently by cross-scale information sharing, in contrast to other CNN architectures, such as
U-nets, where abstraction is combined with scale. That is, in one multigrid layer, the information is passed
between different scales of the problem, removing the necessity of using deep CNNs or having multilevel
U-net architectures. Inspired by [23], we develop a multigrid architecture for GNNs, enabling cross-scale
message (information) passing without making the GNN deeper; we call our architecture Multigrid GNN, or
MG-GNN. Figure 4.2 shows one layer of the MG-GNN with two levels (a fine and a coarse level).

The input data to one layer of an MG-GNN has L different graphs, from fine to coarse, denoted by G©) =
(XO A®) where A® € R™*™ and X ¢ R™*4 are adjacency and node feature matrices, respectively,
and ny and d are the number of nodes and node feature dimension in ¢-th graph for ¢ € {0,1,...,L — 1},
with £ = 0 denoting the finest level. If the input graph does not have multiple levels, we obtain the
coarser levels recursively by considering a node assignment matrix (clustering operator) RW g Rme+1xne for
te{0,1,...,L—2}:

43



X+ = RO X, (4.6)
A — RO 4O (ROYT (4.7)

We note that, in general, the assignment matrix R’ could be any pooling/clustering operator, such as

k-means clustering, learnable pooling, etc. We denote R“~%) to be the assignment matrix of graph level ¢
k=1

to level k (with ¢ < k), which is constructed through R“~*) = ] RU) (down-sampling). To complement
j=t

this terminology, we also define R*=9 = (RU=F)T for ¢ > k (up-sampling), and for the case of £ = k,

the assignment matrix is simply the identity matrix of dimension n,. The mathematical formalism of

the m-th layer of the MG-GNN with L levels is as follows: given all graphs feature matrices, X,(,f), for

te{0,1,...,L—1}:

Xtk — Féﬁk(XT(f),XT(rlf%R(fﬂk)) (4.8)
Xg) _ [XOH@HXIHKH o ||Xk71~>q (4.9)
XU = GNNO(XO, 40y (4.10)

where || denotes concatenation, and GNN® and F~* could be any homogeneous and heterogeneous GNNs,
respectively. For the case of £ # k, we consider F*7* to be a heterogeneous message passing scheme
between levels ¢ and k, which is defined as follows. Consider any node v in G() and denote the row in x
corresponding to the feature vector of node v by x,. Then, Ff_’k(X,(f)7 Xf,lf), R“_*k)) is given by

My = gf%k < 0 fz‘}k(xv7xw7evw),xv> (411)
weN (v)

where e,,, is the feature vector of the edge (if any) connecting v and w, [J is any permutation invariant

operator such as sum, max, min, etc., and /7% and ¢‘=*

are learnable multilayer perceptrons (MLPs). See
Figure 4.1 for visualization of up-sampling and down-sampling in MG-GNN.

In this study, we consider a two-level MG-GNN (see Figure 4.2) and, for the clustering, we consider a
k-means-based clustering algorithm (best known as Lloyd’s algorithm) which has O(n) time complexity and
guarantees that every node will be assigned to a subdomain [57], [58]) in a connected graph. As mentioned
earlier, the MG-GNN architecture could alternatively use any pooling/clustering method such as DiffPool [73],
top-K pooling [22], ASAP [74], SAGPool [75], to name but a few. However, for the case of this study, since
RAS (and therefore, ORAS) necessitates every node in the fine grid be assigned to a subdomain, we do not

consider the aforementioned pooling (clustering) methods.

4.4 Optimization problem and loss function

In this section, we denote the £2 norm of a matrix or vector by ||-|| and the spectral radius of matrix T by p(T).
Our objective is to minimize the asymptotic convergence factor of the two-level ORAS method, defined as
minimizing p(T"), where T' = I — My.orasA = (I — Co.orasA)(I — MorasA) is the error propagation operator
of the method. Since T is not necessarily symmetric, p(T') is formally defined as the extremal eigenvalue of T7T.

As discussed in [60], numerical unsuitability of backpropagation of an eigendecomposition makes it infeasible
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passing through an MG-GNN layer, respectively.
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to directly minimize p(T'). To this end, [12] relax the spectral radius to the Frobenius norm (which is an upper
bound for it), and minimize that instead. However, for the case of optimizing one-level DDM methods, the
work in [49] highlights that the Frobenius norm is not a “tight” upper bound for p(T'), and considers minimizing
a relaxation of p(T) inspired by Gelfand’s formula, Vien p(T) < |TX||® = supwszH:l(HTKxH)%. We
present a modified version of the loss function introduced by [49] and, in Section 5.3.2, we show the necessity
of this modification for improving the two-level RAS results.

Consider the discretized problem with DoF set D of size n, decomposed into S subdomains, D¢, D3, . .. ,Dg
with overlap 6. The GNN takes D, its decomposition, and a sparsity pattern for the interface values and
that of the interpolation operator as inputs and its outputs are the learned interface values and interpolation

operator (see section 4.5 for more discussion on inputs and outputs of the network):
PO L LY L yO(D). (4.12)

where 1? denotes the GNN, and @ represents the learnable parameters in the GNN.

We obtain the modified two-level ORAS (Optimized Restricted Additive Schwarz) operator by using
the learned coarse grid correction operator, C’g_ORAS = p© ((P(e))TAP(g))_1 (P(e))T, and the fine grid
operator, M(()GF){ as from (4.12). The associated 2-level error propagation operator is then given by 70 =
(I = Cipas AV — M) 55 A).

In order to obtain an approximate measure of p(T(G)) while avoiding eigendecomposition of the error

K
propagation matrix, similar to [49], we use stochastic sampling of H (T (9)) , generated by the sample set

X € R™™™ for some m € N, given as
X = [z1,22,...,2m],¥; x; ~ R" uniformly, ||z;|| =1, (4.13)

where each x; is sampled uniformly randomly on a unit sphere in R™ using the method introduced in [62].
We then define X« K« X«
Y {H (7). H (70)" s, () zmH} . (4.14)

Note that H (T(a))Kxj (T(Q))KH. [49] use L) = maX(YI((e)) as a practical loss

function. However, for large values of K, this loss function suffers from vanishing gradients. Moreover, as we

yoeeey

is a lower bound for

show in Section 5.3.2, employing this loss function results in inferior performance of the learned method in
comparison to two-level RAS. To overcome these issues, we define Z,(f) = max((Yk(e))%) for1 <k<K to

arrive at a new loss function,

L9 = (softmax(Z?), Z®) 4 ytr ((P(G))TAP(0)> ) (4.15)

where Z(?) = (Zl(e),ZQ(O), .. .,Z;?)), 0 < v is an adjustable constant, and tr(M) is the trace of matrix
M. Adding the term tr((P@)T AP®) is inspired by energy minimization principles, to obtain optimal
interpolation operators in theoretical analysis of multilevel solvers [76], [77]. In Section 5.3.2, we show the
significance of this term in the overall performance of our model. Nevertheless, for the first part of the new
loss function (4.15), we prove that it convergence to the spectral radius of the error propagation matrix in a

suitable limit. First, we include two lemmas:

Lemma 4. For any nonzero square matriz T € R™" k€N, ¢,£ >0, and 0 < d < 1, there exists M € N

such that for any m > M, if we choose x1,x2,..., &y uniformly random from {x € R"|||z| = 1}, and
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Z = max{||T*z1 ||¥, || T 2o|| %, ..., || T* % ||+ } then, with a probability of at least (1 — &), the following hold:

0<||TH|*F — Z <, (4.16)
p(T)-€§<Z (4.17)

Proof. The left side of the first inequality is achieved by considering the definition of matrix norm, i.e. for
any 1 <i <m, ||TFx]| < sup |[T*z| = || T%||, then taking the k' root of both sides. For the right side
o=
of the first inequality, consider the point z* € {x € R"|||z|| = 1} such that |T*z*|| = sup ||T*z| (such a
ll=ll=1
point exists since R™ is finite dimensional). Let S be the total volume of the surface of an n dimensional unit

sphere around the origin and denote by S the volume on this surface within distance € of the point z* in the

. Let m > My > logi(é)g, then, since 0 < § < 1, we have:
i log (1-£ )

02 measure, for € =

P(|z* — zi|| > & Vi) = (1 - g) <5 (4.18)

Therefore, with probability of at least (1 — ¢), there is one x; within the é neighborhood of z* on the unit
sphere. Without loss of generality, let =1 be that point. Using Lemma 1 and the reverse triangle inequality,
we have

|5 |F = | Tha || < (7% | - |The|)* < ||T4| lla® — el < ITF[Fe=e  (4.19)

which finishes the proof for the right side of the first inequality.
For the second inequality, since p(T') < HT’“H%, choose My such that, with probability 1 — §, (4.16) holds
for € = | T%||* — p(T) + € > 0. Rearranging (4.16) then yields (4.17) for any m > M = max{M;, M,}. [

We next state the main result on optimality.

Theorem 5. For any nonzero matrix T, ¢ > 0, and 6 < 1, there exist M, K € N such that for any

m > M, if one chooses m points, x;, uniformly at random from {x € R"|||lz|| = 1} and defines Zi, =
max{||T*az||*, | TF2a|| %, ..., |T*%m||*}, then Z = (Z1, Zo, ..., Zx) satisfies:
P (|(softmax(Z), Z) — p(T)| <€) >1—24. (4.20)

Proof. Since p(T) < || T*||* for any k and limj_,o |T%||* = p(T), for any 0 < «, there exists K* € N such

that for any k > K*, 0 < ||T%||* — p(T) < a. Take 0 < o < min{ilog(%)} let

IT*|#} +a, p(T) +2a}, §=1—(1-6)%, (4.21)

u = max{ mg}}((*{

and take

K*(ue® — (p(T) + a)erP)+e)

K> mast n=ce v o) = (1) T a)ea™e)’

K*}. (4.22)

. Note that, by the choice of a, we have p(T) + a < p(T) + § and e**¢ < p(;))_ti , which (along with the

choice of u) guarantees a positive K. By Lemma 4, for any 1 < i < K* and K* < j < K, there exists
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ni,n; € N such that:

u)>1-90 for m > n;, (4.23)

IN
IN

— € Zz
Pp(T)—e<Zi<p(T)+a)>1-90 for m > n;. (4.24)

IN

For any 1 < k < K, take nj independent points on unit sphere so that the above inequalities are satisfied for

K
all k. Note that this can be achieved by taking M = > nj. Since the points for satisfying equations (4.23)
k=1

K ~
and (4.24) are chosen independently, for any m > M, with probability of at least [] (1 —0) =1 — 4, we have

k=1
p(T) —e < Zj for all 1 <k < K. Consequently:
K K
(p(T) =€) Y e” > Zie#i
S = N ST S— (4.25)
> e > e
i=1 i=1

uK*e* + (K — K*)(p(T) 4 a)erT+e

= (softmax(Z2), Z) — p(T) < Teor(T)—¢ —p(T) (4.26)

_ K (ue" — (p(T) + a)er™e) a+e

- o + (p(T) + a)e™* — p(T) < e, (4.27)
where the last inequality is obtained by the choice of K. O

In addition to these properties of the loss function, we now show that obtaining the learned parameters

using our MG-GNN architecture scales linearly with the problem size.

Theorem 6. The time complexity to obtain the optimized interface values and interpolation operator using
our MG-GNN is O(n), where n is the number of nodes in the grid.

Proof. Every in/cross-level graph convolution of the MG-GNN has linear complexity. This must be the case
when the graph convolution is a message passing scheme due to the sparsity in finite-element triangulations.
For the case that the graph convolution is a TAGConv layer, we have y = Zle Gyxy + b1, where zy € R"
are the node features, L is the node feature dimension, b is a learnable bias, and G, € R™*™ is the graph filter.
In TAGConv layers, the graph filter is given as G, = E}]:o ge,; M7, where M is the adjacency matrix, J is a
constant, and g, ; are the filter polynomial coefficients. In other words, the graph filter it is a polynomial
in the adjacency matrix M of the graph. Moreover, the matrix M is sparse, hence obtaining M7 has O(n)
computation cost, resulting in full TAGConv O(n) time complexity. Moreover, for both the interface value
head and the interpolation head of the network, the cost of calculating edge feature and the feature networks
are O(n), resulting in overall O(n) cost of MG-GNN. O

4.5 Model architecture

Inputs and outputs: The model takes any unstructured grid as its input, which consists of the node
features, edge features, and adjacency matrix of both the fine and coarse grids. Every node on the fine level
has a binary feature, indicating whether it lies on the boundary of a subdomain. Fine level edge features
are obtained from the discretization of the underlying PDE, A, and the adjacency matrix of the fine level

is simply the sparsity of A. Similar attributes for the coarse level are obtained as described in Section 4.3,
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Figure 4.3: GNN architecture used in this study.

Equations (4.6) and (4.7), and Lloyd aggregation has been used for obtaining subdomains throughout. The
outputs of the model are the learned interface values and the interpolation operator.

We use node and edge preprocessing (3 fully connected layers of dimension 128, followed by ReLU
activations, in the node and feature space, respectively) followed by 4 layers of MG-GNN. For GNN®
in (4.10) and F*~¢ in (4.8), we use a TAGConv layer [56] and, for F*~* with ¢ # k, we use a heterogeneous
message passing GNN as shown in Equation (4.11). Specifically, we choose summation as the permutation
invariant operator in (4.11) and, for the MLPs, we use two fully connected layers of size 128 with ReLU
x,y) = .

Following the MG-GNN layers, the network will split in two heads, each having a stack layer (which

nonlinearity for f*7* and g*=*(
essentially concatenates the features of nodes on each side of every edge) and an edge feature post-processing
(see Figure 4.4 for details). The edge weights between the coarse and fine level are the learned interpolation
operator weights, and the edge values along the subdomains in the fine level are the learned interface values.
The upper head of the network has a masking block at the end, which masks the edge values that are not
along the boundary, hence only outputting the learned interface values. The overall GNN architecture for

learning the interpolation operator and the interface values is shown in Figure 4.3.

4.6 Experiments

4.6.1 Training

We train each model on 1000 grids of sizes ranging from 800-1000 nodes. The grids are generated randomly
as a convex polygon and using PyGMSH [65] for meshing its interior. The subdomains are generated using
Lloyd clustering on the graph [58], the subdomain overlap is set to one, and the weights of the edges along the

)

boundary determine the interface value operators, Ll(-e . As shown in the interpolation head of the network in

section 4.5 Figure 4.3, the weight of the edges connecting the coarse and fine grids determine the interpolation
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Figure 4.4: Edge feature post-processing block.

Figure 4.5: Training grid examples with about 1k nodes.

operator. In our case, the edges between the coarse and fine grids connect every fine node to the coarse node
corresponding to its own subdomain and its neighboring subdomains. Alternatively, every fine node could
connect only to the coarse node corresponding to its subdomain but, as we discuss in Section 5.3.2, this
significantly impacts the performance of the model. Moreover, each row of the interpolation operator, P(?), is
scaled to have sum of one, as would be the case for classical interpolation operators. Figure 4.5 shows several
example training grids.

The model is trained for 20 epochs with batch size of 10 using the ADAM optimizer [66] with a fixed
learning rate of 5 x 10~4. For the full discussion on model architecture, refer back to section 4.5 and Figure 4.3.
For the loss function parameters introduced in Section 4.4, we use K = 10 iterations and m = 100 samples. We
developed our code! using PyAMG [68], NetworkX [69], and PyTorch Geometric [67]. All training is executed
on an 19 Macbook Pro CPU with 8 cores. In the training procedure, we aim to minimize the convergence
of the stationary algorithm and, as described in Section 4.4, we develop a loss function to achieve this goal
by numerically minimizing the spectral radius of the error propagation matrix. In practice, optimized RAS
methods are often used as preconditioners for Krylov methods such as FGMRES; as shown later, the trained
models using this procedure also outperform other baselines when used as preconditioners for FGMRES.
Directly training to minimize FGMRES iterations would require using FGMRES in the training loop and
backpropagation through sparse-sparse matrix multiplication [78], which is left for future studies.

We evaluate the model on test grids that are generated in the same fashion as the training grids, but are

larger in size, ranging from 800 to 60k DoFs. An example of a test grid is shown in Figure 4.6.

LAll code and data for this study is at https://github.com/JRD971000/Code-Multilevel-MLORAS/ (MIT licensed).
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Figure 4.6: Test grid example with about 7.4k nodes.

4.6.2 Interface values and interpolation operator

As mentioned in the Section 4.4, to optimize two-level RAS, one could optimize the parameters in the interface
conditions (4.2) and/or the interpolation operator (4.3). For one-level RAS, on the other hand, there is
no interpolation operator (since there is no coarse grid), leaving only the interface values to optimize, as
was explored in [49] and [7]. To compare the importance of these two ingredients in the two-level RAS
optimization, we compare three different models. Each of these models is trained as described in Section 4.6.1;
however, one of the models (labeled “interface”) is trained by only learning the interface values (ignoring the
interpolation head of the network), and using classical RAS interpolation to construct T . Another model,
which we label “interpolation”; only learns the interpolation operator weights, and uses zeros for interface
matrices LZ(-Q) to construct 7(?). The other model uses both training heads (see Figure 4.3), learning the
interface values and the interpolation operator. We compare the performance of these models with classical
RAS in Figure 4.7 as a stationary algorithm a preconditioner for a Krylov method, FGMRES.

The results show that learning the interpolation operator is more important in optimizing the 2-level
RAS. Intuitively, the coarse-grid correction process in (4.3) plays an important role in scaling performance
to large problems, due to its global coupling of the discrete DOFs. The interpolation operator is critical in
achieving effective coarse-grid correction. On the other hand, the interface values are local modifications to
the subdomains (see (4.2)), that cannot (by themselves) make up for a poor coarse-grid correction process.
Learning both operators clearly results in the best performance in Figure 4.7, where the interpolation operator

can be adapted to best complement the effects of the learned interface values.

4.6.3 Loss function and sparsity variants

We first compare five variants of our method with the RAS baseline, as shown in Figure 4.8. The main model
is trained as described in Section 4.6.1 with the loss function from Section 4.4. All but one of the variants
only differ in their loss function, and share the rest of the details. The variant labeled “Max loss” is trained
with the loss function from [49]. The variant labeled “Max+Trace loss” is trained with the loss function
from [49] plus the vytr(PT AP) term. Similarly, the variant labeled “Softmax loss” is trained by removing
the vtr(PT AP) part from the loss function in (4.15). For the last variant, we restrict the sparsity of the
interpolation operator to that obtained by only connecting every fine node to its corresponding coarse node,
labelled “DDM standard sparsity”, and trained using the loss function from (4.15). As shown in Figure 4.8,
the learned operator using this variant achieves worse performance than the baseline RAS. This is partly

because, for this variant, the constraint on unit row sums of the interpolation operator effectively removes
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most of the learned values, since many rows of interpolation have only one nonzero entry in this sparsity
pattern.

To show the effectiveness of the coarse-grid correction and the learned operator, we also compare two-level
RAS and our two-level learned RAS (MLORAS 2-level) with one-level RAS and one-level optimized RAS
from [49] in Figure 4.9.

4.6.4 Comparing the runtime

We find that the (offline) training phase (20 epochs of training on a set of 1000 grids) takes about 7.86 hours.
During the (online) testing phase, obtaining the preconditioners (setup of all parts of the preconditioner
once the system matrix is given) takes 11.44 seconds for classical RAS and 13.07 seconds for our MLORAS
(averaged over 11 tests). However, we find that our method makes up for this extra online time in significantly
reduced solve times across a range of grid sizes, both as a stationary iteration and as a preconditioner for
FGMRES. We note that the additional online setup time (and even, to some extent, the offline time) can
also be amortized when solving problems involving time-stepping or optimal control, where the same linear
system needs to be solved with many right-hand sides. Figure 4.10 shows the stationary solve times on some

of the test grids (in seconds).

4.6.5 Spectral radius metric

Spectral radius of the error propagation matrix is often a better criterion to use in comparing methods,
particularly for convergence of stationary iterations. However, it is often difficult to measure this directly,
particularly for problems larger than a few thousand nodes. To estimate the spectral radius, we run 200
iterations of the stationary iteration on a problem with a zero right-hand side and random initial guess,
and measure the effective per-cycle reduction in error, averaged over the final 10 iterations. For suitably
small problems, we can compare this against a direct eigenvalue calculation on the preconditioned system
matrix, and find that they agree perfectly. In Figure 4.11, we show the measured spectral radii for several
test problems (Poisson on grids of differing sizes), showing that our method always achieves a reduction in

the spectral radius in comparison to classical RAS:

4.6.6 Solution plots

We have compared the solution plots obtained using our method with the RAS method for the Poisson
problem. To conduct the comparison, we considered a structured grid of size 100 x 100 on the domain
(0,1) x (0,1). For this problem, we used the true solution given by u* = sin(87x) + sin(87y).

To initiate the iterative process, we started with an initial random guess having an Lo norm of 1. We
then performed 10 iterations of both the RAS and MLORAS methods as stationary algorithms, obtaining
solutions for each method. Furthermore, we ran 10 iterations of the FGMRES method using MLORAS and
RAS preconditioners on the initial guess, yielding predictions for both methods.

The solution plots for our MLORAS method are depicted in Figure 4.12, while those for the RAS method

are shown in Figure 4.13.
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iterations, top right: FGMRES solution with RAS preconditioner after 10 steps, bottom left: initial guess,
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4.6.7 Extra test problems

We have run tests with more PDEs, including discontinuous and anisotropic diffusion coefficients, as described
below. We note that in terms of iterations to convergence, we see our approach clearly win over RAS for
both stationary iterations and preconditioned FGMRES.

For each of the following problems, we generate training and testing sets with the same parameters for
meshes as in the existing results in the previous section, with training grids of size 800-1000 nodes, and
testing grids of size 1000-60000 nodes. We average iterations-to-convergence over 11 problems in the testing
sets. The mathematical formalism of the extra test problem we explore are as below (for visualization of

these problems, please refer to Chapter 3 section 3.5.3):
Jump-discontinuous diffusion:

100 0<z<0.5
1 05<z <.

V- k(z,y)Vu=f inQ, k(z,y) =

Figure 4.14 shows the performance of our method against RAS, both for the stationary iterations and
FGMRES.

Rotated anisotropic diffusion:
-V -(TVu)=f
cos?(0) + £sin®(0)  cos(6) sin(0)(1 — &)

cos(#) sin(0)(1 — &)  sin?() + £ cos(0)
denote the strength of anisotropy and rotation direction for the problems, with these values chosen uniformly

where T' = . We use parameters 0.1 < ¢ <10 and 0 < 6 < 7 to

random. Figure 4.15 shows the performance of our method against RAS, both for the stationary iterations
and FGMRES.

Low-diffusion inclusion:

1078 f<cay<?
VK@ y)Vu=f inQ w(ey) = 3emIEs
1 else.

Figure 4.16 shows the performance of our method against RAS, both for the stationary iterations and
FGMRES. Considering stationary iterations to convergence, we see improvements of 20-45% on average, and
as is typical, the improvements are somewhat less large for preconditioned FGMRES iterations to convergence,

but are still around 10% on average.

4.6.8 Comparison to Graph U-net and number of layers

In this section, the performance of Graph U-net and MG-GNN with different numbers of layers is studied.
Figure 4.17 shows the performance of each of the models as stationary iterations and preconditioners for
FGMRES, respectively. For a fair comparison, the MG-GNN and graph U-nets that share the same number
of layers also have the same number of trainable parameters. As shown here, the best performance is achieved
with 4 layers of MG-GNN, and MG-GNN strictly outperforms the graph U-net architecture with the same

number of layers.
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Figure 4.14: Jump-discontinuous diffusion coefficient for Poisson problem on various size grids. Up: error
reduction by the stationary iteration after 10 iteration. Down: the number of preconditioned FGMRES steps
required to solve the problem to within a relative error of 10712.
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iteration after 10 iteration. Down: the number of preconditioned FGMRES steps required to solve the
problem to within a relative error of 10712,
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Chapter 5

Hierarchical Graph Neural Network with
Cross-Attention for Cross-Device User
Matching

Portions of this chapter appear in the paper "Hierarchical Graph Neural Network with Cross-Attention for
Cross-Device User Matching" accepted at International Conference on Big Data Analytics and Knowledge
Discovery (DaWaK 2023) [79]

5.1 Introduction

Matching users across multiple devices is a crucial challenge in various domains such as advertising, rec-
ommender systems, and cybersecurity. The task involves the identification and linking of different devices
belonging to the same individual by analyzing their sequential logs. Previous approaches in data mining
have encountered difficulties in capturing long-range dependencies and higher-order connections present in
these logs. Recently, researchers have approached this problem from a graph perspective and proposed a
two-tier graph contextual embedding (TGCE) neural network architecture, which has demonstrated superior
performance compared to earlier methods. In this study, we present a novel hierarchical graph neural network
architecture (HGNN) that offers a more computationally efficient second-level design as compared to TGCE.
Moreover, we introduce a cross-attention (Cross-Att) mechanism into our model, leading to a 5% performance
improvement compared to the state-of-the-art TGCE approach.

The cross-device user matching task was first introduced in the CIKM Cup 2016', and the first proposed
methods for the task mainly considered hand-crafted features. For instance, the runner-up solution [26]
produces sub-categories based on the most significant URLs to generate detailed features. Furthermore, the
competition winner solution proposed by Tay et. al. [80] utilizes “term frequency inverse document frequency”
(TD-IDF) features of URLs and other related URL visit time features. However, their manually designed
features did not fully investigate more intricate semantic details, such as the order of behavior sequences,
which restricted their effectiveness. Aside from the hand-crafted features, the features that are developed

from the structural information of the device URL visit data are also crucial for accomplishing the task of

Thttp://cikm2016.cs.iupui.edu/cikm-cup/
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user matching. To further process sequential log information, studies have applied LSTM, 2D-CNN, and
Doc2vec to generate semantic features for a sequence visited by a device [27], [28], [31].

Sequence-based machine learning models have also been employed for different entity resolution tasks;
for instance, recurrent neural networks (RNN) have been utilized to encode behavior item sequential
information [32]. Nevertheless, long-range dependencies and more advanced sequence features are not well
obtained using sequence models [29]. With the advent of graph neural networks (GNN), researchers have
modeled device logs as individual graphs where nodes and edges represent visited URLs and transitions
between URLs. Each node and/or edge has an initial feature vector obtained from the underlying problem,
and the layers of GNNs are then employed to update these features based on information passing in the local
neighborhood of every node, such as the SR-GNN paper [81]. Another example is the LESSR [82] method
for recommendation systems where the method is capable of long-range information capturing using an
edge-order preserving architecture. However, these methods are specifically designed for the recommendation
task and do not necessarily achieve desirable results on the cross-device user matching task.

Recently, researchers have proposed TGCE [29], a two-tier GNN for the cross-device user matching
task. In the first tier, for every device log, each URL is considered as a node, and directional edges denote
transitions between URLs. In the second tier, shortcut edges are formed by starting a random walk from
every node and connecting all of the visited nodes to it. After a round of message passing in the first tier, the
second tier is supposed to facilitate long-range information sharing in the device log. After the second tier, a
position-aware graph attention layer is applied, followed by an attention pooling, which outputs the learned
embedding for the whole graph. For the final pairwise classification, these learned embeddings for each of
the devices are multiplied in an entry-wise manner and are sent to a fully connected deep neural network to

determine whether they belong to the same user.

5.2 Hierarchical graph neural network

In this section, we discuss how we employ a two-level heterogeneous graph neural network for the cross-device

user matching problem.

5.2.1 Problem definition

The aim of the cross-device user matching problem is to determine whether two devices belong to the
same user, given only the URL visits of each device. Denote a sequence of visited URLs by a device v by
Sy = {51,582, ..., 8.}, where s; denotes the i’th URL visit by the device (note that s;’s are not necessarily
different). We build a hierarchical heterogeneous graph, G,,, based on the sequence S, as follows: for a visited
URL, s;, consider a fine node in G, and denote it by f;. Note that if multiple s;’s correspond to the same
URL, we only consider one node for it in G,,. Then, we connect nodes corresponding to consecutively visited
URLs by directed edges in the graph; we connect f; and f;1; by a directional edge (if f; and f;+1 correspond
to the same URL, the edge becomes a self-loop). Up to this point, we have defined the fine-level graph, and
we are ready to construct the second level, which we call the coarse level.

To construct the second level, we partition the sequence S, into non-overlapping subgroups of K URLs,
where each subgroup consists of consecutively visited URLs (the last subgroup may have less than K URLs).
For every subgroup j, we consider a coarse node, c;, and connect it to all of the fine nodes corresponding to

the URLs in subgroup j via undirected edges.
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5.2.2 Fine level

In the fine level of the graph G, for every node f;, we order the nodes corresponding to the URLs that
have an incoming edge to f; according to their position in S,. We denote this ordered sequence of nodes
by Ni = {fj,, fjss-- [j.}- Also, we denote the feature vector of the fine node f; by z;. The I-th round of

message passing in the fine-level graph updates the node features according to the following update methods:

l
M( ) = (l)([le,$j2, -'wxjm’xi])’ (51)
(l+1) \I/(l)( (l)7 Mz(l))’ (52)

where ®() is a sequence aggregation function (such as sum, max, GRU, LSTM, etc.), for which we use
GRU [83], and ¥®) is a function for updating the feature vector (e.g., a neural network), for which we use a

simple mean.

5.2.3 Coarse level

In every round of heterogeneous message passing between fine and coarse level nodes, we update both the fine
and coarse node features. Consider the coarse node c;, and denote its feature by ;. Also, denote the fine
neighbor nodes of ¢; by N (¢j). In the I-th layer of heterogeneous message passing, the coarse node feature

update is as follows:

g = Z_eﬂ;(cj)(wl%i), (5.3)
where Wl(l) is a learnable matrix and O is an aggregation function (such as mean, max, sum, etc.), for
which we use mean. Denote by N (f;) the set of coarse nodes connected to the fine node f;. We first learn
attention weights for the heterogeneous edges, and then we update fine nodes accordingly. In the I-th round

of heterogeneous message passing, the fine node features are updated as follows:

(l) ¢(W(l) (l) W(l) (l)) (54)
1
oh = eXP(eg,z) (5.5)
" 2 exp(ef))’ '
JGN(f) p
I+1 1 1
Y —e@®, 3 o0E0), (5.6)
JEN(fi)

where WQ(Z) and W3(l) are learnable matrices, and £ and ¢ are update functions (such as a fully connected

network). Figure 5.1 shows the overall architecture of fine and coarse level message passing.

5.2.4 Cross attention

After the message passing rounds in the fine level and long-range information sharing between fine and coarse
nodes, we extract the learned fine node embeddings and proceed to cross encoding and feature filtering,
inspired by the GraphER architecture [36]. We consider two different device logs v and w, and their learned
fine node embeddings as a sequence, ignoring the underlying graph structure. We denote the learned fine
node embeddings for device logs v and w as X, € R™*? and X,, € R™»*¢ where m, and m,, are the
number of nodes in the fine level of G, and G, respectively. We learn two matrices for cross-encoding X,

into X,, and vice-versa. Consider the i-th and j-th rows of X, and X,,, respectively, and denote them by z,, ;

66



|

OO0 0 009
0000000

(]9ne7 aul)
indinQ Japooug ydels

aouanbag TyN 1nduy|

= =
() ()
= =
V) V)
= =
o o
= =
Q Q
9, =,
< <
(] D
n n
[ [
D D
(o] (o]
() ()
Ry 0
D D
(7 [
@ @
> >
« «

[

Figure 5.1: From left to right: heterogeneous (fine and coarse) graph modeling from a given URL sequence.
The hierarchical message passing blocks consist of message passing on the fine nodes with a GRU aggregation
function. Next, the coarse node features are updated using a mean aggregation function. Finally, the fine
node features are updated using their previous feature vector as well as an aggregated message from their
associated coarse nodes obtained via an attention mechanism between coarse and fine level nodes.

and x,, ;. The entries &; ; of the matrix A, ,, for cross-encoding X, into X,, are obtained using an attention

mechanism (and similarly for A, ,):

i WaTw,j), (5.7)

. exp(éi,;)

= ST exp(es)’ 8

where ¢ is an update function (such as a neural network), for which we use a simple mean. After obtaining the
cross-encoding weights, we apply feature filtering, a self-attention mechanism that filters important features.
The filtering vector is obtained as 3, = sigmoid(W,tanh(W5X7)), where W, and W5 are learnable weights

(B is obtained similarly). We apply the feature-filtering vector to the cross-encoding matrix as follows:
Lv,w = [diag(ﬂv)(Av,wa - Xv)] © [diag(ﬂv)(Av,wa - Xv)], (5'9)

where © denotes the Hadamard product (L, . is also obtained similarly). The L, ,, € R™»*d and Ly €
R™w >4 matrices come from the Euclidean distance between the cross-encoding of X, into X,, and X,,, and
therefore are a measure of the closeness of the original sequence logs of v and w.

To obtain a size-independent comparison metric, we apply a multi-layer perceptron (MLP) along the
feature dimension of L matrices (the second dimension, d), followed by a max-pooling operation along the
first dimension. Finally, we apply a dropout and a ReLU nonlinearity. This yields vectors ry ,, and ry,, that
have a fixed size for any pair of v and w. For the final pairwise classification task, we concatenate r, ,, and
Tw,» and pass it through an MLP followed by a sigmoid activation to determine if the two devices belong to
the same user or not:

g = sigmoid (MLP (7 i ||7w.v))- (5.10)
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Figure 5.2: Pairwise device graph matching: After the message passing, the two device graphs are cross-
encoded via an attention mechanism followed by an attention-based feature filtering. The resulting matrix for
each graph is then passed through an MLP layer, acting along the feature, followed by a maxpool operator
along the nodes. Next, the obtained vectors pass through a dropout layer followed by an activation function.
Finally, the resulting vectors of the two graphs are concatenated and passed through an MLP to obtain the

final output.

5.3 Experiment

In this section, we will describe the dataset, training details, and discuss how our method outperforms all

other baselines, including TGCE [29], the previous state-of-the-art.

5.3.1 Training details

We studied the cross-device user matching dataset made publicly available by the Data Centric Alliance?

for the CIKM Cup 2016 competition. The dataset consists of 14,148,535 anonymized URL logs of different
devices with an average of 197 logs per device. The dataset is split into 50,146 and 48,122 training and
test device logs, respectively. To obtain the initial embeddings of each URL, we applied the same data
preprocessing methods as in [28], [29]. We used a coarse-to-fine node ratio of k = 6, a batch size of 800 pairs
of device logs, a learning rate of 1073, and trained the model for 20 epochs. We used the binary cross-entropy
(BCE) loss function for training our model. The training, evaluation, and test were all executed on an A100
NVIDIA GPU. The BCE loss during training as well as the validation F1 score are shown in Figures 5.3
and 5.4, respectively.

5.3.2 Results

In this section, we evaluate the precision, recall, and F1 score of our method on the test set and compare
it to available baselines. All of the baselines have been obtained similarly as described in [29]. We present
two variants of our method; the first one, which we label “HGNN”, only differs from TGCE in the design
of the second tier, i.e., we use the hierarchical structure presented in subsections 5.2.2 and 5.2.3, followed
by the rest of the TGCE architecture. The second variant, which we label “HGNN+Cross-Att”, uses the

2https://competitions.codalab.org/competitions/11171
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Figure 5.3: Binary cross-entropy loss of our proposed method against that of TGCE. During training, our
method obtains strictly better loss values.

0.850 1
0.825 1
0.800 1
g
o
O
»n
— 0.775 A
o
0.750 1
0.725 A —— HGNN+Cross-Att(ours)
— TGCE
T T T T
0 5 10 15

Iteration

Figure 5.4: Validation F1 score during training. Throughout the training, our method achieves strictly better
F1 scores for the validation set compared to that of TGCE.

69



Table 5.1: Precision, Recall, and F1 score of different methods for cross-device user matching on DCA dataset.

Precision at Best | Recall at Best Best
F1 Score F1 Score F1 Score
TF-IDF 0.33 0.27 0.26
Doc2vec 0.29 0.21 0.24
SCEmNet 0.38 0.44 0.41
GRU 0.37 0.49 0.42
Transformer 0.39 0.47 0.43
SR-GNN 0.35 0.34 0.34
LESSER 0.41 0.48 0.44
TGCE 0.49 0.44 0.46
HGNN (ours) 0.48 0.43 0.45
HGNN+Cross-Att 0.57 0.48 0.51
(ours)

Table 5.2: Best F1 score and end-to-end training time of HGNN (without Cross-Att), HGNN+Cross-Att,
and TGCE. The HGNN model is 6x faster than TGCE with a slight trade-off (about 1%) on the accuracy
side. The HGNN+Cross-Att model has the same training time as TGCE while achieving 5% better F1 score.

Best End-to-end Number of
F1 Score | Training Time Epochs
TGCE 0.46 60h 20
HGNN (ours) 0.45 10h 20
HGNN+Cross-Att 0.51 60h 6
(ours)

hierarchical structure in subsections 5.2.2 and 5.2.3, and also utilizes the cross-attention mechanism presented
in subsection 5.2.4 after the hierarchical structure. As shown in Table 5.1, the “HGNN+Cross-Att” variant
outperforms all of the baselines on the F1 score metric, including the second-best method (TGCE) by 5% on
the test data.

We also compare the training time of the two variants of our method with that of TGCE. As shown
in Table 5.2, our hierarchical structure is significantly more efficient than that of TGCE while keeping a
competitive F1 score. Table 5.2 essentially indicates that by simply replacing the second-tier design of TGCE
with our hierarchical structure (presented in subsections 5.2.2 and 5.2.3), the method becomes 6x faster while
almost keeping the same performance. This is due to the large number of artificial edges generated in the
random walk passes in the creation of the second tier of TGCE. Moreover, although including cross-attention
slows down the model, we can still obtain the same training time as TGCE and achieve 5% better overall F1
score.

Figure 5.5 shows the precision-recall curve of our method (the HGNN+Cross-Att variant, trained for 6
epochs) with that of TGCE (trained for 20 epochs). As shown in the figure, the precision-recall curve of our
method is strictly better than that of TGCE. In other words, for every recall score, our method has a better
precision. Additionally, we further trained the HGNN+Cross-Att variant for 20 epochs (the same number of
epochs TGCE was trained for) to study if any further improvement is achieved on the test set. We also plot
the F1 score with different thresholds (from 0 to 1 incremented by 0.01) for our model trained for 6 and 20
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Figure 5.5: Precision-Recall curve of the proposed method and that of TGCE on the test data.

epochs and compare it to that of TGCE. As shown in Figure 5.6, our model trained for 20 epochs strictly
outperforms TGCE (also trained for 20 epochs) for every threshold for obtaining the F1 score. However,
our model trained for 6 epochs achieves the best overall F1 score, which is 5% higher than TGCE. This is

significant since as shown in Table 5.2, the model takes the same time as TGCE to train.
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Figure 5.6: F1 score against rounding threshold for our method (both for networks trained for 6 and 20
epochs) compared to that of TGCE (trained for 20 epochs). When our model is trained for 6 epochs, it
achieves the highest overall F1 score, which is about 5% better than that of TGCE. However, if our model is
trained for 20 epochs, it achieves higher F1 scores for a wider range of rounding thresholds, outperforming
TGCE for every rounding threshold.
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Chapter 6

Conclusions

In the second chapter of this study, we propose an unsupervised learning method based on Graph Convolutional
Neural Networks (GCNNs) for extending optimized restricted additive Schwarz (ORAS) methods to multiple
subdomains and unstructured grid cases. Our method is trained with a novel loss function, stochastically
minimizing the spectral radius of the error propagation operator obtained using the learned interface values.
The time complexity of evaluating the loss function, as well as obtaining the interface values using our neural
network are all linear in problem size. Moreover, the proposed method is able to outperform ORAS, both as a
stationary algorithm and preconditioner for FGMRES on structured grids with two subdomains, as considered
in the conventional ORAS literature. On more general cases, such as unstructured grids with arbitrary
subdomains of bounded size, our method outperforms RAS consistently, both as a stationary algorithm and
preconditioner for FGMRES.

In the third chapter, we proposed a novel graph neural network architecture, which we call multigrid
graph neural network (MG-GNN), to learn two-level optimized restricted additive Schwarz (optimized RAS or
ORAS) preconditioners. This new MG-GNN ensures cross-scale information sharing at every layer, eliminating
the need to use multiple graph convolutions for long range information passing, which was a shortcoming
of prior graph network architectures. Moreover, MG-GNN scales linearly with problem size, enabling its
use for large graph problems. We also introduce a novel unsupervised loss function, which is essential to
obtain improved results compared to classical two-level RAS. We train our method using relatively small
graphs, but we test it on graphs which are orders of magnitude larger than the training set, and we show our
method consistently outperforms the classical approach, both as a stationary algorithm and as an FGMRES
preconditioner.

In the fourth chapter, we present a novel graph neural network (GNN) architecture for a demanding
entity resolution task: cross-device user matching, which determines if two devices belong to the same user
based only on their anonymized internet logs. Our method comprises of designing an effective hierarchical
structure for achieving long-range message passing in the graph obtained from device URL logs. After passing
device logs through such a hierarchical GNN, we employ a cross-attention mechanism to effectively compare
device logs against each other to determine if they belong to the same user. We demonstrate that our
method outperforms available baselines by at least 5%, while having the same training time as the previous
state-of-the-art method, establishing the effectiveness of our proposed method.

Finally, we discuss a few next steps worth considering in the direction of this thesis. One of the main

obstacles regarding training on grids larger than a few thousand nodes has been lack of support for automatic
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differentiation for sparse matrix operation [12]. Recently, [78] has developed the software for mitigating
this shortcoming. Therefore, as a next step, to fully leverage the benefits of the MG-GNN architecture, we
are aiming to train the model on grids orders of magnitude larger than the current training set. Future
research may explore whether such alteration would result in more powerful learned solvers, and if global
error modes are better captured. Moreover, in a recent study [84], researchers have utilized convolutional
neural networks (CNNs) to learn smoothers for AMG on structured grids. Using CNNs will limit the method
only to structured grids. Future research may explore learning optimal smoothers for AMG using GNNs in

order to generalize the method to unstructured meshes.
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