
© 2023 Malachi Phillips

SPECTRAL ELEMENT POISSON PRECONDITIONERS FOR HETEROGENEOUS
ARCHITECTURES

BY

MALACHI PHILLIPS

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Professor Paul Fischer, Chair and Director of Research
Professor Luke Olson
Associate Professor Andreas Kloeckner
Dr. Tzanio Kolev, LLNL
Dr. James Lottes, Google Research

Abstract

The solution to the Poisson equation arising from the spectral element discretization of

the incompressible Navier-Stokes equation requires robust preconditioning strategies. Two

classes of preconditioners prove most effective: geometric p-multigrid and low-order refined

methods. Low-order refined preconditioners, moreover, require the use of algebraic multi-

grid to approximate the inverse of the operator. The communication associated with the

multigrid coarse-grid solve hinders the parallel scalability of both classes of precondition-

ers, especially on heterogeneous architectures. To mitigate the coarse-grid solve cost, novel

smoothing strategies are considered. The fourth-kind Chebyshev polynomial smoothing

proposed by James Lottes is utilized to accelerate additive Schwarz-based smoothers in

a geometric p-multigrid preconditioner. Through these techniques, we develop geometric

p-multigrid preconditioners capable of achieving up to an 81% speedup over the state-of-

the-art p-multigrid preconditioners on the Summit supercomputer. A p-multigrid approach

with an additive coarse-grid solve specifically designed for heterogeneous architectures is

considered. We also propose a hybrid p-multigrid and low-order refined preconditioner that

improve the time-to-solution by as much as 86% compared to the low-order preconditioner.

We demonstrate the effectiveness of these novel approaches on a variety of problems arising

from the spectral element discretization of the incompressible Navier-Stokes equations on

GPU architectures spanning to P ≥ 1024 NVIDIA V100 GPUs on Summit.

ii

To my wife, Miranda

iii

Acknowledgments

Since this dissertation would not have been possible without the support of numerous

people, I would like to thank them here.

I would like to thank my advisor, Professor Paul Fischer, for his guidance and support

throughout my graduate studies. You have provided many opportunities for me to grow

as a researcher. Your conversations and ideas have not only provided me with a deeper

understanding of the field, but have also helped me to develop my own research interests

and ideas. Your insights from fluid dynamics to solver algorithms have been invaluable.

Thank you for your patience and willingness to help me grow as a researcher. Thank you

for shaping my interest in fluid dynamics and numerical methods.

A special thanks to my collaborator and coworker, Dr. Stefan Kerkermeier, for his help

in the nekRS project. You have been a great mentor and friend. Your insights into the

implementation of Nek5000 are vast, and you have been a great resource for me throughout

the nekRS project. You have provided much inspiration with respect to the development,

both algorithmic and implementation-specific, of nekRS. I hope that, after this dissertation,

we will continue to collaborate on nekRS and other projects.

I would like to thank my many collaborators, especially those involved in the CEED

project. Professor Tim Warburton, you have proved an oracle of knowledge in writing

efficient kernels. Without your help, I would not have the fundamental building blocks for

the fast solvers considered in my thesis. Yu-Hsiang Lan, you have been a great collaborator

and friend. Without your help, I would not have had the great collection of benchmarks

that I have. To all of the other CEED collaborators, I would like to thank you for your

help in the development of the CEED project. There are too many to list individually, but

I would like to thank you all for your guidance throughout the project. I hope to continue

to collaborate with you in the future.

I would like to thank my committee members, Professor Luke Olson, Professor Andreas

Kloeckner, Dr. Tzanio Kolev, and Dr. James Lottes. Dr. Tzanio Kolev, I would like to

thank you both for your guidance on auxiliary space methods, as well as your contribution

in helping lead the CEED project. Dr. James Lottes, I attribute much of my theoretical

understanding of multigrid to your work. Your paper and conversations on the fourth-kind

Chebyshev polynomial smoother have been invaluable and have influenced the direction of

my research. Professor Andreas Kloeckner and Professor Luke Olson, I would like to thank

you not only for your insightful comments and suggestions, but for also helping to shape

iv

my interest in numerical methods both during my coursework and through my teaching

assistantship with you.

Lastly, I would like to thank my wife, Miranda, for her support and encouragement

throughout my graduate studies. I would not have been able to complete this dissertation

without her support.

v

Table of Contents

Chapter 1 Introduction . 1
1.1 Problem of Interest . 2
1.2 Why Do We Need Fast Poisson Solvers? . 3
1.3 Novel Contributions . 5
1.4 Manuscript Organization . 5

Chapter 2 Existing Solver Methods . 7
2.1 Spectral Element Discretization . 8
2.2 Krylov Subspace Solvers . 9
2.3 Generating an Initial Guess Through Solution Projection 16
2.4 Preconditioning by Low-Order Operator . 20
2.5 Multigrid . 25
2.6 p-Multigrid and Schwarz-Based Smoothers 29
2.7 Chebyshev Polynomial Smoothers . 33
2.8 Cases . 35
2.9 Numerical Results . 39

Chapter 3 Programming Considerations for Heterogeneous Architectures 46
3.1 Performance Portability Through Run-Time Preconditioner Selection 46
3.2 Performance Portable Solver Kernels . 52
3.3 Understanding the Cost of Various Operators 66

Chapter 4 Optimal Smoothing Polynomials and One-Sided V-Cycles 72
4.1 Optimal Polynomial Smoothers for Multigrid 73
4.2 Finite Difference with Geometric Multigrid Poisson 82
4.3 Local Fourier Analysis . 89
4.4 Numerical Results . 95
4.5 Direct Optimization of Polynomial Smoothers 100

Chapter 5 Hiding Coarse-Grid Solves through Overlapping 110
5.1 Motivation and Theory . 111
5.2 Algorithm . 114
5.3 Numerical Results . 118

Chapter 6 Improving Low-Order Refined Preconditioning: Auxiliary Space Methods 123
6.1 Auxiliary Space Methods . 124
6.2 Low-Order Operator as Coarse-Grid Space 125
6.3 Numerical Examples . 130

vi

Chapter 7 Results . 138
7.1 Additive Coarse-Grid Solve . 138
7.2 Improving Low-Order Preconditioners: Auxiliary Space Methods 147
7.3 Comparing the Best Solvers . 163

Chapter 8 Conclusions . 168
8.1 Summary and Impact . 168
8.2 Future Work . 169

References . 172

Appendix A Optimized 4th-Kind Chebyshev Tabulated Coefficients 181

Appendix B Additional Results . 182
B.1 Overlapping Coarse-Grid Solves . 182
B.2 Low-Order Auxiliary Space Method . 186

vii

Chapter 1: Introduction

Recent trends in super-computing have seen the rise of heterogeneous computing archi-

tectures, wherein the CPU runs in conjunction with an accelerator, such as a GPU. Many

of the largest machines in the world, such as Frontier and Summit at Oak Ridge National

Laboratory, are heterogeneous architectures; Frontier is currently the largest machine in

the world, with a peak performance of 1.194 × 1018 floating point operations per second

(FLOPs) [1]. Programming for heterogeneous architectures, on the other hand, is a chal-

lenge. In the context of physics-based simulations, such as computation fluid dynamics

(CFD), communication costs are a primary bottleneck to performance on CPU architec-

tures. On heterogeneous architectures, moreover, the increased throughput offered by the

accelerator exacerbates this communication bottleneck, as the relative speed between work

in terms of FLOPs and communication increases dramatically. However, the algorithms

and discretizations used in CFD simulation codes can be designed to mitigate the effect of

communication costs on simulation codes.

Due to their higher arithmetic intensity, high-order methods finite element methods (FEM),

including the spectral element method (SEM) 1, are better suited for heterogeneous archi-

tectures than low-order methods. In addition, the high-order operators can be cast into a

tensor-product sum-factorization form, allowing for the fast application of the operators in

general geometries for unstructured problems without requiring the assembly of the oper-

ator. In this regard, the methods are matrix-free [2]. To effectively utilize the matrix-free

methods, however, iterative solution schemes are required to solve the resulting linear sys-

tems. Effective preconditioning strategies, therefore, are paramount to the performance of

high-order methods.

In this thesis, we consider the use of preconditioning strategies for the SEM Poisson

problem on general, unstructured geometries. In the incompressible Navier-Stokes (NS)

equations, a pressure Poisson problem is solved at every time instance to enforce the in-

compressibility constraint. Since our target application is ultimately the solution of the NS

equations, the fast solution of the pressure Poisson problem is paramount to overall solution

time. In many large scale production simulations for Nek5000 [3] and nekRS [4], the pressure

Poisson problem is the dominant cost in the simulation, accounting for as much as 80% of the

total solution time. Therefore, to fully realize the potential of SEM incompressible Navier-

1The spectral element method (SEM) is a finite element method (FEM) with the combination of a stable
Gauss-Lobotto-Legendre (GLL) nodal basis for QN elements with nodal integration. A prominent feature of
the SEM is that the resulting mass-matrices are lumped (diagonal). The SEM is a generalization of spectral
methods; by taking a single element E = 1 and increasing the polynomial degree p, the SEM is equivalent
to a spectral method.

1

Stokes simulations on heterogeneous architectures, effective preconditioning strategies are

required.

1.1 PROBLEM OF INTEREST

In fluid flow simulations, the incompressibility constraint is often used to bypass fast

acoustic waves and thereby allow the solution to evolve on a convective time-scale that is

most relevant for many engineering problems. This model leads to a Poisson problem for the

pressure that is invariably the stiffest sub-step in the time-advancement of the Navier-Stokes

(NS) equations. For large 3D problems, which mandate the use of iterative methods, the

pressure solve thus typically encompasses the majority of the solution time. Here, several

different preconditioning strategies for the Poisson problem in general domains, particularly

for discretizations based on high-order SEM, are considered.

The target problem is to solve a sequence of Poisson problems,

−∇2ũ = f̃ for ũ, f̃ ∈ Ω ⊂ lRd 7→ lR. (1.1)

The weak formulation is written as: find um(x) ∈ XN
0 ⊂ H1

0 such that∫
Ω

∇v · ∇um dV =

∫
Ω

v fm dV ∀ v ∈ XN
0 , (1.2)

where fm(x) is the data and um(x) is the corresponding solution field at some time in-

stant tm, m = 1, 2, Here, Ω ⊂ lRd is the computational domain in d (=2 or 3) space

dimensions; H1
0(Ω) is the standard Sobolev space comprising functions that vanish on a

subset of the boundary, ∂ΩD ⊂ ∂Ω, are square-integrable on Ω, and whose gradient is also

square-integrable; and XN
0 = span{ϕj(x)} is the finite-dimensional trial/test space associ-

ated with a Galerkin formulation of the Poisson problem. The discrete problem statement

is expressed as Aum = bm, where um is the vector of basis coefficients at tm and A is the

symmetric-positive definite (SPD) matrix with

aij =

∫
Ω

∇ϕi · ∇ϕj dV. (1.3)

As noted in [5], the SEM is a finite element method (FEM) with the combination of a stable

(GLL) nodal basis for QN elements with nodal integration.

For the spectral element (SE) discretization, the Poisson system matrix contains O(Ep6)

non-zeros for E elements with a polynomial degree of p (i.e., approximately n ≈ Ep3 un-

2

knowns.) Through the use of tensor-product-sum factorization, however, the SE matrix-

vector product can be effected in only ≈ 7E(p+1)3 reads and 12E(p+1)4 operations, even in

the case of complex geometries [2, 6]. Consequently, the key to fast SE-based flow simulations

is to find effective preconditioners tailored to this discretization. Many methods, including

geometric p-multigrid approaches with point-wise Jacobi and Chebyshev-accelerated Jacobi

smoothers [7, 8, 9], geometric p-multigrid with overlapping Schwarz smoothers [10, 11, 12],

and preconditioning via low-order discretizations [5, 6, 13, 14, 15], have been considered.

These are all discussed in further detail in chapter 2.

1.2 WHY DO WE NEED FAST POISSON SOLVERS?

As discussed in chapter 1, the Poisson problem is the dominant portion of the solution

time in many fluid flow simulations. Therefore, the development of effective preconditioning

strategies in nekRS, a GPU-accelerated SEM Navier-Stokes solver [4], is crucial. For example,

table 1.1 shows that the pressure solve, prior to tuning, encompasses 90% of the overall

solution time of the n = 51B,P = 27648 V100 GPU nekRS simulation of the 352,000 pebble

bed geometry on Summit [16]. Even worse, we observe that half of the solution time is

spent in the coarse-grid solve, which runs entirely on the CPU! However, by tuning the

solver parameters, additional work can be moved onto the smoother through increasing the

Chebyshev order, among other things. After tuning, the coarse-grid solve cost is reduced by

nearly a factor of 10, just be reducing the number of iterations, and therefore the number

of coarse-grid solves required. This translates to over a factor of 2 speedup in the overall

solution time.

As we have observed from table 1.1, the design of highly scalable and efficient Poisson pre-

conditioning strategies is imperative for the success of incompressible Navier-Stokes solvers.

In this dissertation, we explore several novel preconditioning strategies for the Poisson prob-

lem on heterogeneous computing architectures. One major theme of this dissertation is the

design of preconditioner algorithms to exploit heterogeneous computing architectures. For

example, as we discuss later in this thesis, the coarse-grid solve associated with the lowest

level of the geometric p-multigrid preconditioner contains an inevitable logP communication

cost scaling, where P is the number of processors. However, this effect is mitigated through

designing robust preconditioners that require few iterations to converge, thereby limiting the

number of times the coarse-grid solve is visited during the linear solve.

While the results in this thesis are specific to linear solvers for the high-order SEM dis-

cretization of the pressure Poisson problem, the methods and techniques presented here

are applicable to a wider range of problems. Notably, many of the methods discussed in

3

Figure 1.1: 352K pebble geometry from [16], n = 51B, P = 27648 V100s on Summit.

this thesis are equally applicable to symmetric positive definite linear systems arising from

high-order discretizations. While many of the methods discussed in chapter 2 are presented

in the context of geometric p-multigrid preconditioners, many of the ideas are nevertheless

applicable to algebraic multigrid approaches. Further, as we discuss later in chapter 4, the

ideas from this thesis are already integrated or nearly integrated into existing geometric and

algebraic multigrid preconditioners from popular libraries such as hypre [17], petsc [18],

Trilinos/MueLu [19], LFAToolkit.jl [20], and nekRS [4].

Table 1.1: Run-time statistics for the 352K pebble geometry of fig. 1.1 on P = 27648 V100s
on Summit [16].

nekRS Timing Breakdown: n=51B, 2000 Steps

pre-tuning post-tuning

Operation time (s) % time (s) %

computation 1.19+03 100 5.47+02 100
advection 5.82+01 5 4.49+01 8
viscous update 5.38+01 5 5.98+01 11
pressure solve 1.08+03 90 4.39+02 80

precond. 9.29+02 78 3.67+02 67
coarse grid 5.40+02 45 6.04+01 11

projection 6.78+00 1 1.21+01 2
dotp 4.92+01 4 1.92+01 4

4

1.3 NOVEL CONTRIBUTIONS

In this dissertation, we explore several novel preconditioning strategies for the Poisson

problem on heterogeneous computing architectures. Our contributions are summarized as

follows:

� We extend the pre-existing literature on Chebyshev polynomial smoothing, as discussed

in section 2.7, to accelerate the smoothing properties of a Schwarz-based smoother as

detailed in section 2.6.

� Detailed strong/weak scaling studies are conducted to understand the effect of the

various preconditioning strategies on the overall solution time, especially at scale.

� Theoretical error bound analysis is employed to determine the optimal way of dis-

tributing smoothing passes amongst the pre-/post-smoothing phases of the V-cycle, as

noted in chapter 4.

� We propose a novel multigrid approach, wherein the coarse-grid solve is treated addi-

tively, as discussed in chapter 5. This approach is inspired by the additive multigrid

Bramble-Pasciak-Xu (BPX) preconditioner [21] and the additive multigrid ideas of

[22]. Notably, this approach is tailored for heterogeneous computing architectures in

that the portion of the multigrid scheme that is treated additively is minimal.

� An improvement to the SEMFEM or low-order refined preconditioning strategies through

the use of smoothing operations based on the high-order operator is proposed in chap-

ter 6. Theoretical analysis utilizing literature on non-Galerkin coarse grid operators

and auxiliary space methods is used to demonstrate the conditioning for this approach

can be no worse than the classical SEMFEM preconditioning strategy.

1.4 MANUSCRIPT ORGANIZATION

Chapter 1 provides an overview of the problem of interest, the motivation for this work,

and the novel contributions of this dissertation. In chapter 2, we aim to inform the reader

regarding the spectral element method discretization employed in this work. We further

outline the existing state-of-the-art preconditioning methods for preconditioning the Poisson

problem in chapter 2, including geometric p-multigrid methods, Schwarz-based smoothers,

and low-order refined preconditioning. Chapter 3 highlights various programming consider-

ations for heterogeneous architectures, including ensuring performance portability through

5

run-time GPU kernel selection and algorithms. Further, weak scaling results highlight the

implication of the O(logP) scaling of the coarse-grid solve on the overall solution time. In

chapter 4, the Chebyshev polynomial smoothers presented in chapter 2 are expanded to

include the novel smoothing techniques based on Chebyshev polynomials of the fourth kind

from [23]. These results are further expanded to determine the optimal way of distributing

smoothing passes amongst the pre-/post-smoothing phases of the V-cycle. A novel addi-

tive coarse-grid solve scheme, based on the seminal BPX preconditioner [21], is presented in

chapter 5. This scheme is specifically designed for use in heterogeneous computing environ-

ments. Chapter 6 presents an improvement to the SEMFEM preconditioning strategy based

on using the low-order operator as an auxiliary coarse-space as described by Xu [24]. The

proposed methods in chapters 5 and 6 are tested on a wide variety of problems in chapter 7.

Other methods, as described in chapters 2 and 4, are also considered. Finally, the impact

from the work in this thesis and future work are summarized in chapter 8.

6

Chapter 2: Existing Solver Methods

A brief overview of the existing solver methods considered in this thesis is provided in

this chapter. Brief details concerning the spectral element method Poisson discretization

are discussed in section 2.1. The first component for the efficient solution of linear systems

is an iterative method. Krylov subspace projection (KSP) methods offer robust iterative

solvers for a wide range of problems. In section 2.2, we discuss the use of flexible precon-

ditioned conjugate gradients and flexible generalized minimal residual methods. Notably,

the typical modified Gram-Schmidt orthogonalization employed in the flexible generalized

minimal residual method is replaced with classical Gram-Schmidt orthogonalization to re-

duce the synchronization costs associated with the orthogonalization step. KSPs, moreover,

require the use of effective preconditioning strategies. While the Poisson operator is sym-

metric positive definite (SPD), many of the preconditioners considered in this thesis are not

symmetric.

As our target application is the time-advancement of the incompressible Navier-Stokes

equations, multiple right-hand side solves are required. This presents the opportunity to

leverage previous solution states to generate a high-quality initial guess for the current

state. We consider the use of Fischer’s solution projection method to generate high-quality

initial guesses in section 2.3.

With the iterative method and solution projection method in place, we turn our attention

to various preconditioning strategies. The high-order spectral element operator has a spectral

equivalency to the low-order operator discretized on nodes coinciding with the high-order

nodes. This so called SEMFEM equivalency forms the basis of a high-quality preconditioner,

as described in section 2.4. Multigrid methods are a popular choice for the solution of

linear systems arising from the discretization of partial differential equations. These are

described generally in section 2.5. Matrix-free preconditioners build on geometric p-multigrid

are described in section 2.6, along with the use of Schwarz-based smoothers. Polynomial

smoothing based on Chebyshev polynomials of the first-kind are described in section 2.7.

In order to assess the performance of the solver techniques described, we consider moderate

size cases in section 2.8. Numerical results for these cases are presented in section 2.9, based

on the work in [25].

7

2.1 SPECTRAL ELEMENT DISCRETIZATION

We introduce here basic aspects of the SE Poisson discretization. Consider the Poisson

equation in R3 from eq. (1.1). Boundary conditions for the pressure Poisson equation are

either periodic, Neumann, or Dirichlet, with the latter typically applicable only on a small

subset of the domain boundary, ∂ΩD, corresponding to an outflow condition. Consequently,

Neumann conditions apply over the majority (or all) of the domain boundary, which makes

the pressure problem more challenging than the standard all-Dirichlet case. In this case,

the Neumann boundary condition is enforced weakly, and the resultant system contains a

non-trivial null-space spanned by the constant vector, v = [1, 1, . . . , 1]T . To correctly handle

this null-space, the solution vectors are projected onto the space orthogonal to v prior to

solving the linear system. Further, any preconditioners must also correctly account for this

null-space. For example, the multigrid algorithm later described in section 2.5 must smooth

on the lowest level, rather than applying a direct solver.

The SE discretization of eq. (1.1) is based on the weak form: Find u ∈ Xp
0 such that,

(∇v,∇u)p = (v, f)p ∀v ∈ Xp
0 , (2.1)

where Xp
0 is a finite-dimensional approximation comprising the basis functions used in the

SE discretization, ϕj(x), j = 1, . . . , n, that vanish on ∂ΩD and (·, ·)p represents the discrete

L2 inner product based on Gauss-Lobatto-Legendre quadrature in the reference element,

Ω̂ := [−1, 1]3. The basis functions allow us to represent the solution, u, as u(x) =
∑

ujϕj(x),

leading to a linear system of unknown basis coefficients,

Au = Bf, (2.2)

with respective mass- and stiffness-matrix entries, Bij := (ϕi, ϕj)p and Aij := (∇ϕi,∇ϕj)p
2.

Ω is tessellated into non-overlapping hexahedral elements, Ωe, for e = 1, . . . , E, with

isoparametric mappings from Ω̂ to Ωe provided by xe(r, s, t) =
∑

i,j,k x
e
ijkhi(r)hj(s)hk(t), for

i, j, k ∈ [0, p]. Each h∗(ξ) is a pth-order Lagrange cardinal polynomial on the Gauss-Lobatto-

Legendre (GLL) quadrature points, ξj ∈ [−1, 1]. Similarly, the test and trial functions u, v

are written in local form as ue(r, s, t) =
∑

i,j,k u
e
ijkhi(r)hj(s)hk(t). Continuity is ensured

across the interface between adjacent elements by enforcing ue
ijk = ue

îĵk̂
when xe

ijk = xe
îĵk̂
.

From this, a global-to-local degree-of-freedom mapping, u := {ul} −→ uL := {ue
ijk}, can be

2Technically, eq. (2.2) is only true if B is diagonal. The right-hand side is actually RB̄f̄ , where R is a

restriction matrix mapping from points to true degrees of freedom, B̄ is the unmasked mass matrix, and
f̄ is the unmasked forcing vector. For a more thorough discussion of the SE-discretization, refer to [2, eq.
(4.3.24)].

8

P

PT

T-vector

Global true dofs

G

GT

L-vector

Local subdomain dofs

B

BT

E-vector

Element dofs

D

Q-vector

Quadrature point values

Ap = P TGTBTDBGP

Figure 2.1: Schematic of the high-order operator decomposition used in the MFEM and
libCEED software libraries.

represented by a Boolean matrix Q, such that uL = Qu. The assembled stiffness matrix is

then A = QTALQ, where AL = block-diag(Ae) comprises the local stiffness matrices, Ae.

Similarly, B = QTBLQ. The SE formulation uses coincident GLL quadrature and nodal

points, such that Be is diagonal. Moreover, Ae is never formed, as it would contain O(p6)

non-zeros in the general case. Rather, the tensor-product-sum factorization [6] allows for Au

to be evaluated in O(Ep4) time with O(Ep3) storage, as described in detail in [2, Section

4.3].

The matrix-free approach described herein can also be expressed in terms of the math-

ematical description employed by the high-order operator decomposition employed in the

MFEM [26] and libCEED [27] projects. The operator decomposition is illustrated in fig. 2.1.

Here, our high-order operator is expressed as Ap = P TGTBTDBGP . We note that this

operator is never explicitly formed, but rather that function handles compute the action of

an operator on the vector. In this thesis, we consider the so-called PN − PN discretization

in which the pressure quadrature points and element degrees of freedom are the same. The

solution vector u can be stored using the unique, true degrees of freedom (i.e., a T-vector in

fig. 2.1). Given this storage format, and the fact that quadrature point are element degrees

of freedom, we see that the assembled stiffness matrix A = QTALQ is equivalent to the

operator expression Ap with Q = GP and AL = BTDB.

2.2 KRYLOV SUBSPACE SOLVERS

The solution to the large linear systems associated with solving the Poisson equation

require the use of Krylov subspace projection methods (KSPs). Since the discrete Poisson

operator is symmetric positive definite (SPD), the use of a preconditioned conjugate gradient

(PCG) method is the most natural choice. However, the use of a PCG method requires the

9

use of a symmetric positive definite preconditioner. As we will see in section 2.6 and later

section 4.1, however, introducing some asymmetry to the preconditioner can improve the

overall convergence rate of the solver. In this section, we will discuss the use of a flexible

PCG method and the use of a flexible generalized minimal residual (FGMRES) method to

solve the linear systems associated with the Poisson equation. A comparison between the

flexible PCG and flexible GMRES methods is presented in section 2.2.4.

2.2.1 Flexible Preconditioned Conjugate Gradients

Algorithm 2.1 shows the flexible PCG method from [28]. In this thesis, the termination cri-

teria specified in alg. 2.1 include reaching a specified absolute residual tolerance or a specified

relative residual tolerance. The flexible PCG method is the result of a simple modification

in computing the βk coefficient. The numerator of the βk coefficient for flexible PCG is

computed as rTk+1(zk+1 − zk) as opposed to rTk+1zk+1 [29]. Provided that the preconditioner

M−1 is SPD and constant with respect to the iteration count, rTk+1zk = 0, and the update

βk coefficient is equivalent. Computing the modified βk term requires storing the additional

zk vector and one additional vector operation. However, the total number of dot-products

remains the same. In this thesis, two concerns require the use of a flexible PCG method:

first, the use of non-symmetric preconditioners, and second, the use of a non-constant pre-

conditioner. The use of non-symmetric preconditioners in flexible PCG methods for SPD

problems has been justified [28, 30]. Here, the asymmetry in the preconditioner comes from

the use of non-symmetric additive Schwarz and restrictive additive Schwarz smoothers in

the context of p-multigrid preconditioners, see section 2.6. Furthermore, as explained in sec-

tion 4.1, the use of a non-symmetric distribution of smoothing passes in a multigrid V-cycle

preconditioner can enhance the convergence rate of the solver, despite the loss of symmetry.

The use of a flexible PCG method also allows for the use of a non-constant preconditioner.

This is especially useful when developing a preconditioner that may involve a sub-iteration

scheme. For example, the coarse-grid solve required in the multigrid V-cycle preconditioners

described in section 2.6 may be performed through an inner PCG solve. For these reasons,

we consider the use of a flexible PCG method in this thesis. For brevity, we will refer to the

flexible PCG method in alg. 2.1 interchangeably as CG, PCG, or FPCG in the remainder of

this thesis.

How quickly the PCG method converges depends on the condition number of the precon-

ditioned operator, M−1A. For a fixed, SPD preconditioner, the error at the k-th iteration,

10

ek = xk − A−1b, satisfies the following error equation [31]:

∥ek∥A ≤ 2

[√
κ(M−1A)− 1√
κ(M−1A) + 1

]k

∥e0∥A. (2.3)

Given that a non-symmetric preconditioner is used in conjunction with a flexible PCG

method, however, the convergence bound in eq. (2.3) may be violated.

Algorithm 2.1: Flexible Preconditioned Conjugate Gradients (FPCG)

Data: Initial solution, x0, preconditioner M
−1

Result: Solution, x
r0 ← b− Ax0, z0 ←M−1r0, p0 = z0, k = 0

while not converged do

αk =
rTk zk
pT
k
Ap

k

xk+1 ← xk + αkpk
rk+1 ← rk − αkApk
zk+1 ←M−1rk+1

βk =
rTk+1(zk+1 − zk)

rTk zk
p
k+1
← zk+1 + βkpk

k ← k + 1

end
return xk

2.2.2 Flexible Generalized Minimal Residual Method

Since the use of non-symmetric preconditioners is considered in this thesis, we also con-

sider the use of a flexible generalized minimal residual (FGMRES) method. The FGMRES

method is a generalization of the generalized minimal residual (GMRES) method that al-

lows for the use of a non-constant preconditioner. The FGMRES method based on modified

Gram-Schmidt (MGS) orthogonalization, as it appears in [32], is shown in alg. 2.2. The

number of iteration prior to restarting the FGMRES method is denoted by m. Several is-

sues are immediately apparent when comparing FGMRES to flexible PCG. First, the MGS

orthogonalization procedure requires j < m dot-products to compute the vector vj+1. Sec-

ond, the storage requirement for FGMRES requires the storage of 2m + 1 vectors. Lastly,

this orthogonalization cost can be as large as O(m2n) for a n-dimensional problem.

11

Algorithm 2.2: Modified Gram-Schmidt Flexible Generalized Minimal Residual
Method (MGS-FGMRES)

Data: Initial solution, x0, preconditioner M
−1, size of space, m

Result: Solution, x
Allocate (m+ 1)×m matrix, H, with entries hij = 0
x← x0

while not converged do
r0 ← b− Ax, β = ∥r0∥, v1 = r0/β
for j = 1, . . . ,m do

zj ←M−1vj
w ← Azj
for i = 1, . . . , j do

hij ← wTvi
w ← w − hijvi

end
hj+1,j ← ∥w∥
vj+1 ← w/hj+1,j

end
Z ← [z1, . . . , zm]

y
m
← argminy

∥∥βe1 −Hy
∥∥

x← x+ Zy
m

end
return x

How can we mitigate the issues with MGS-FGMRES? The first issue regarding the high

synchronization cost is resolved through realizing that the orthogonalization step in alg. 2.2

can be replaced with classical Gram-Schmidt (CGS) orthogonalization, as shown in alg. 2.3.

This resolves the high synchronization costs associated with MGS orthogonalization, as the

dot-product computation can be batched into j simultaneous dot-product operations. The

use of CGS orthogonalization, however, introduces potential loss of orthogonality in the

computed vectors. Fortunately, this issue, along with the relatively high orthogonalization

costs and storage requirement, are mitigated by restricting the number of GMRES itera-

tions prior to a restart to just a few vectors (m = 15). We further explore this issue in

section 2.2.3. Through investing in robust preconditioners and high-quality initial guesses

through solution projection (section 2.3), further, the number of GMRES iterations required

to converge to a solution can be reduced. We will refer to the flexible GMRES method

with CGS orthogonalization in alg. 2.3 interchangeably as GMRES. In the remainder of this

thesis, unless otherwise specified, the flexible GMRES with classical Gram-Schmidt orthog-

onalization described in the preceding paragraph is utilized as the outer Krylov subspace

12

solver with m = 15 vectors prior to restarting the routine.

Algorithm 2.3: Classical Gram-Schmidt Flexible Generalized Minimal Residual
Method (CGS-FGMRES)

Data: Initial solution, x0, preconditioner M
−1, size of space, m

Result: Solution, x
Allocate (m+ 1)×m matrix, H, with entries hij = 0
x← x0

while not converged do
r0 ← b− Ax, β = ∥r0∥, v1 = r0/β
for j = 1, . . . ,m do

zj ←M−1vj
w ← Azj
for i = 1, . . . , j do

hij ← wTvi /* Batch into single j-word all-reduce */

end
for i = 1, . . . , j do

w ← w − hijvi
end
hj+1,j ← ∥w∥
vj+1 ← w/hj+1,j

end
Z ← [z1, . . . , zm]

y
m
← argminy

∥∥βe1 −Hy
∥∥

x← x+ Zy
m

end
return x

How does the convergence rate of GMRES compare to PCG? Unfortunately, the bound

on the convergence of GMRES is more involved than the relatively simple bound for PCG

in eq. (2.3). A discussion of the convergence rate of GMRES based on the eigenvalues of

the preconditioned operator can be found in [31, Section 6.11.4]. The convergence rate from

[31], however, may be overly pessimistic for the case of non-normal operators. Embree notes

that bounds based on field of values or pseudo-spectra approaches can provide more useful

information regarding GMRES convergence [33].

2.2.3 Loss of Orthogonality

In section 2.2.2, we discuss the use of CG-GMRES over MGS-GMRES, preferring the

former due to the lower synchronization cost. A well-known limitation of Gram-Schmidt

13

0 10 20 30 40 50
Iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100
Lo

ss
 o

f o
rth

og
on

al
ity

, |
|I

V
T V

|| 2
CGS
MGS
CGS2

0 10 20 30 40 50
Iteration

10 16

10 13

10 10

10 7

10 4

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

CGS
MGS
CGS2

Figure 2.2: CGS-GMRES, MGS-GMRES, and GGS2-GMRES results for E = 93 half
cylinder problem. Left: loss of orthogonality as a function of iteration count. Right: relative
residual as a function of iteration count.

orthogonalization, however, is the potential loss of orthogonality [34, 35] in the computed vj

vectors in alg. 2.3. In this section, we demonstrate the loss of orthogonality in the GMRES

vectors in the E = 93 half cylinder problem later discussed in section 2.4.1. The impact of

the loss of orthogonality on the convergence of the GMRES method is also discussed.

To represent a realistic use case, the linear solver is preconditioned with a 1st-Cheb,

ASM(1,1),(7,3,1) multigrid preconditioner (sections 2.6 and 2.7). To facilitate the cancel-

lation errors needed for the loss of orthogonality, a fixed number of m = 50 iterations are

used without restarting the GMRES method. Defining Vk as the matrix with columns vj,

Vk = [v1, v2, . . . , vk], and quantifying the loss of orthogonality as

loss of orthogonality =
∥∥I − V T

k Vk

∥∥
2
, (2.4)

we observe the loss of orthogonality and residual convergence of the various GMRES methods

as a function of iteration count in fig. 2.2. In addition to the CGS-GMRES and MGS-GMRES

methods, we also consider the use of two-pass classical Gram-Schmidt orthogonalization,

referred to as CGS2-GMRES [35]. This method is similar to CGS-GMRES (alg. 2.3), except

that the new tentative vector vj+1 is re-orthogonalized against the previous j vectors in

the orthogonalization step. This requires twice the work and synchronization cost as CGS-

GMRES, but does not require the j separate synchronizations incurred in the MGS-GMRES

14

orthogonalization step. The authors note that many alternate orthogonalization routines

with relatively low synchronization cost exist, such as iterated Gauss-Seidel GMRES [36].

The left subplot in fig. 2.2 demonstrates that the loss of orthogonality in the GMRES

vectors remains relatively low for both CGS-GMRES and MGS-GMRES provided that fewer

thanm = 30 vectors are used prior to restarting the GMRES method. For largerm, however,

both MGS-GMRES and CGS-GMRES experience order unity loss of orthogonalization, with

the loss of orthogonality in MGS-GMRES being slightly better than CGS-GMRES. The

use of CGS2-GMRES, however, demonstrates that a single additional orthogonalization is

sufficient to recover orthogonality despite the large number of GMRES vectors. How does

this loss of orthogonality impact the convergence of the GMRES method?

The right subplot in fig. 2.2 demonstrates that the loss of orthogonality in the GMRES

vectors has essentially no impact on the convergence of the linear solver. Only when the

relative residual is reduced to machine precision does the loss of orthogonality impact the

convergence of the GMRES method. In this regime, we observe that CGS2-GMRES is able

to further reduce the residual. Despite the loss of orthogonality in the GMRES vectors, the

use of either CGS-GMRES or MGS-GMRES is sufficient to converge the linear system to

machine precision. Greenbaum and coworkers observe similar results in [37].

2.2.4 Loss of Symmetry and GMRES versus CG

One concern with the non-symmetric Schwarz smoothers in section 2.6 and the non-

symmetric V-cycle approaches later described in section 4.1 is the loss of symmetry in the

preconditioner. This loss of symmetry, however, does not necessarily require the use of

GMRES instead of CG as a KSP solver. As noted in section 2.2.1, the flexible PCG algorithm

can be used with non-symmetric preconditioners. However, the use of GMRES is preferred.

Further, there are several strategies to mitigate the potential issues with using GMRES, as

discussed in section 2.2.2. Using restarted GMRES(m) bounds the orthogonalization cost for

n degrees of freedom to at most O(m2n) per iteration. Further, an effective preconditioning

strategy can reduce this cost further by ensuring that the number of iterations is small.

An additional concern using GMRES(m) is the O(m) all-reduce operations per iteration.

However, by utilizing classical Gram-Schmidt orthogonalization, GMRES(m) requires only

two all-reduce operations per iteration. Concerns over the loss of orthogonality are avoided

by keeping m small (e.g., m = 15 or m = 30). While not used in this current work, Thomas

and coworkers demonstrated that iterated Gauss-Seidel GMRES reduces the number of

synchronizations to a single all-reduce while preserving backward stability [36].

Kershaw (section 2.8.1) results utilizing 1st Cheb, Jacobi(3,3), (7,5,3,1), pMG as a sym-

15

metric preconditioner with CG and GMRES(30) as the KSP solvers are shown in table 2.1.

For a more complete description of this preconditioner, see sections 2.6 and 2.7. The Ker-

shaw case described in section 2.8.1 uses a 10−8 relative residual. GMRES(30) produces a

lower iteration count than CG. The results presented in table 2.1, however, are meant to

illustrate that the time to apply a single GMRES iteration is similar to CG. Consider that,

for this case, GMRES(30) is employed, thereby over-estimating the cost per iteration for the

NS cases in section 2.8.2 wherein GMRES(15) is used. Lastly, the most effective precondi-

tioning strategies utilize Schwarz-based Chebyshev smoothing. The ASM and RAS methods

considered herein in section 2.6 are asymmetric, and thus the development of a symmetric

preconditioning strategy is tabled to pursue a broader set of preconditioners in this thesis.

Table 2.1: Comparison of CG and GMRES(30) for the Kershaw cases using 1st-Cheb, Jacobi(3,3),
(7,5,3,1) as preconditioner.

ε CG iter. Time per CG iter. GMRES iter. Time per GMRES iter.

1 20 1.26× 10−2 9 1.27× 10−2

0.3 286 1.38× 10−2 123 1.50× 10−2

0.05 1000 1.39× 10−2 474 1.52× 10−2

2.3 GENERATING AN INITIAL GUESS THROUGH SOLUTION PROJECTION

During the course of a Navier-Stokes simulation, the linear system associated with the

pressure Poisson equation is solved at each time step,

Axn = bn, n = 1, . . . , N. (2.5)

Given that the operator, A, remains constant or nearly constant over the course of a simu-

lation, high-quality initial guesses for the solution with right-hand side bn can be generated

by projecting onto the span of previous solution states.

The exposition here is from Fischer’s solution projection scheme in [38]. Let Bl =

{b̃1, . . . , b̃l} and Xl = {x̃1, . . . , x̃l} each be a set of l < L vectors with

Ax̃j = b̃j, j = 1, . . . , l (2.6)

and

b̃
T

j b̃k = δjk, j, k = 1, . . . , l, (2.7)

16

Algorithm 2.4: Solution Projection

Data: Number of solution vectors, l, current right-hand side bn, projection state
{Bl, Xl}

Result: Solution vector xn

for k = 1, . . . , l do

αk = (bn)T b̃k /* Batch as single l-word all-reduce */

end

b̃← bn −
∑l

k=1 αkb̃k
solve Ax̃ = b̃

xn ← x̃+
∑l

k=1 αkx̃k

update {Bl, Xl}
return xn

where δjk denotes the Kronecker delta with

δjk =

0 if j ̸= k,

1 if j = k.
(2.8)

At time step n with a given right-hand side, bn, the solution projection scheme seeks to

generate an initial guess in the span of Xl that is as close as possible to the solution of the

current linear system. This routine is given in alg. 2.4. While alg. 2.4 utilizes a potentially

unstable classical Gram-Schmidt orthogonalization, this allows the l dot-products to be

computed in a single l-word all-reduce operation, similar to the orthogonalization required

in the GMRES algorithm from section 2.2.2. In practice, this is not an issue for the values

of L considered in this thesis, with L = 30 being the largest value considered. Through

using alg. 2.4 to generate an initial guess, the initial residual norm is reduced significantly,

typically by a few orders of magnitude.

The solution projection update step required in alg. 2.4 is given in alg. 2.5. For a given

user-defined choice of L, 2L vectors must be stored. However, by ensuring that the vectors

are A-orthogonal, this storage requirement can be reduced to L vectors at the expense of a

single additional matrix-vector product.

The A-conjugate solution projection seeks to construct a solution minimizing the A-norm

error. Given a set of A-orthonormal solution vectors Xl = {x̃1, . . . , x̃l}, we must find αk

coefficients such that

x̄ =
l∑

k=1

αkx̃k (2.9)

minimizes the A-norm error. Insisting that the vectors inXl are A-orthonormal, the following

17

Algorithm 2.5: Update Projection State

Data: Number of solution vectors, l, maximum number of vectors, L
Result: Updated projection state, {B,X}
if l = L then

b̃1 ← Axn/∥Axn∥2
x̃1 ← xn/∥Axn∥2
l← 1

else

b̂← Ax̃
for k = 1, . . . , l do

αk ← b̂
T
b̃k /* Batched as single l-word all-reduce */

end

b̃l+1 ←
(
b̂−

∑l
k=1 αkb̃k

)
/
∥∥∥b̂−∑l

k=1 αkb̃k

∥∥∥
2

x̃l+1 ←
(
x̃−

∑l
k=1 αkx̃k

)
/
∥∥∥b̂−∑l

k=1 αkb̃k

∥∥∥
2

push b̃l+1 onto {B}
push x̃l+1 onto {X}
l← l + 1

condition holds: (
x̃j

)T
Ax̃k = δjk, j, k = 1, . . . , l. (2.10)

This is necessary to simplify the A-norm error, as

∥xn − x̄∥2A = (xn)T Axn − 2
l∑

k=1

αk (x
n)T Ax̃k +

l∑
k=1

l∑
j=1

αkαj

(
x̃j

)T
Ax̃k︸ ︷︷ ︸

(x̃j)
T
Ax̃k=δjk

= (xn)T Axn −
l∑

k=1

αk (x
n)T Ax̃k (2.11)

Taking the A-norm error in eq. (2.11) and setting it to zero, we have the following result on

the αk coefficients:

(xn)T Axn =
l∑

k=1

αk (x
n)T Ax̃k

=⇒ αk = (x̃k)
T Axn, k = 1, . . . , l

=⇒ αk = (x̃k)
T bn, k = 1, . . . , l. (2.12)

18

The result in eq. (2.12) allows us to construct an orthogonalization procedure similar to

alg. 2.4 in alg. 2.6.

Algorithm 2.6: A-conjugate Solution Projection

Data: Number of solution vectors, l, current right-hand side bn, projection state
{Bl, Xl}

Result: Solution vector xn

for k = 1, . . . , l do

αk = (x̃k)
T bn /* Batch as single l-word all-reduce */

end

x̄←
∑l

k=1 αkx̃k

solve Ax̃ = b̃
xn ← x̃+ x̄
update {Xl}
return xn

Similar to alg. 2.4, alg. 2.6 requires a mechanism to update the projection space, Xl, with

a new solution vector. Using the same classical Gram-Schmidt approach as before, this

requires only a single additional matrix-vector product and reduces the storage requirement

from 2L vectors to L vectors. This update procedure is given in alg. 2.7.

Algorithm 2.7: Update A-conjugate Projection State

Data: Number of solution vectors, l, maximum number of vectors, L
Result: Updated projection state, {X}
if l = L then

x̃1 ← xn/∥xn∥A
l← 1

else
for k = 1, . . . , l do

αk ← (x̃k)
T Ax̃ /* Batched as single l-word all-reduce */

end

x̃l+1 ←
(
x̃−

∑l
k=1 αkx̃k

)
/
∥∥∥x̃−∑l

k=1 αkx̃k

∥∥∥
A

push x̃l+1 onto {X}
l← l + 1

In nekRS and this thesis, the A-conjugate solution projection scheme is the default initial

guess generator with L = 10, unless otherwise specified. At relatively large points per

processor, n/P , memory requirements often prevent much larger values of L from being

considered. However, when assessing the strong-scalability of a solver, the overall memory

footprint per processor is reduced, allowing for larger values of L to be considered. This,

19

in turn, can be employed to increase the strong parallel scalability of the solver through a

poly-algorithmic approach.

While the use of solution projects in this thesis is limited to those proposed by Fischer

in [38], others have similarly considered various techniques of leveraging previous solution

states to accelerate the solution of linear systems. Parks and coworkers [39] construct a

recycling Krylov subspace method, GCRO-DR, to accelerate the convergence of the solver.

Further improving the A-orthogonality of the solution vectors in alg. 2.6 through House-

holder reflections or Givens rotations is considered in Christensen’s thesis [40]. Notably,

two-pass classical Gram-Schmidt achieves similar loss of A-orthogonality as single pass mod-

ified Gram-Schmidt while still allowing for the l dot-products to be computed in a single

l-word all-reduce operation. With a special focus on GPU-architectures, Austin and cowork-

ers further expand this idea in [41], including a “rolling” QR-factorization to avoid the need

to drop to l = 1 solution vectors when the projection space is fully saturated in algs. 2.5

and 2.7. In addition to the novel projection based approaches, the authors also consider

stable extrapolation schemes based on least-squares.

2.4 PRECONDITIONING BY LOW-ORDER OPERATOR

While the high-order spectral element operator is prohibitively expensive to directly form,

as noted in section 2.1, a preconditioner constructed from a low-order discretization with

coinciding nodes can be directly formed. In [6], Orszag notes that the inverse of the low-

order operator yields bounded conditions numbers which, under certain circumstances, can

yield κ(M−1
F A) ∼ π2/4 for second-order Dirichlet problems. To illustrate this point, consider

a two-dimensional Poisson problem with Dirichlet boundary conditions discretized with a

single spectral element on Ω = [0, 1]2. The corresponding low-order operator, AF , is con-

structed using Q1 finite elements sharing the same nodes as the high-order operator. Details

regarding the eigenvalue distribution for varying polynomial orders, p, are shown in fig. 2.3.

The order-independent spectral equivalence between the high-order and low-order oper-

ators, as demonstrated in fig. 2.3, offers a robust preconditioning strategy for high-order

spectral element discretizations. This observation has led to the development of precondi-

tioning techniques based on solving the resulting low-order system [5, 13, 14]. While the

inverse of the low-order operator, A−1
F , forms a robust preconditioner with no dependence

on the polynomial order, in practice, the action of A−1
F must be approximated by a precon-

ditioner for AF . Later in this chapter, we will discuss the construction of a preconditioner

for AF based on algebraic multigrid methods. Given a preconditioner, M−1
F , for AF , what

is the condition number of the resulting preconditioned system, M−1
F A? A bound on the

20

0 50 100 150 200
Eigenvalue index

100

101

Ei
ge

nv
al

ue
(A)
(AF)

4 6 8 10 12 14
p

100

101

max(A)
max(AF)
min(A)
min(AF)
(A 1

F A)
2

4

Figure 2.3: Eigenvalue distribution for the Poisson operator, A, for a single spectral element
in two spatial dimensions with Ω := [0, 1]2. Left : Eigenvalue distribution for both the high-
order and low-order operators, polynomial degree p = 16. Right : Min/max eigenvalues,
preconditioner condition numbers for varying polynomial orders, p. The low-order operator,
AF , is constructed using Q1 finite elements.

condition number of the system is obtained through applying lemma 2.1.

Lemma 2.1. Let A, B, and C be invertible matrices. Then the following condition number

bound holds:

κ(AC) ≤ κ(AB) · κ(B−1C) (2.13)

Proof. The proof is straightforward, requiring only the definition of the condition number

and the Cauchy-Schwarz inequality:

κ(AC) = ∥AC∥ ·
∥∥(AC)−1

∥∥
=

∥∥ABB−1C
∥∥ · ∥∥(ABB−1C)−1

∥∥
≤ ∥AB∥ ·

∥∥B−1C
∥∥ · ∥∥(B−1C)−1

∥∥ · ∥∥(AB)−1
∥∥

= ∥AB∥ ·
∥∥(AB)−1

∥∥ · ∥∥B−1C
∥∥ · ∥∥(B−1C)−1

∥∥
= κ(AB) · κ(B−1C) (2.14)

QED.

Substituting M−1
F for A, AF for B, and A for C in lemma 2.1, we obtain the following

21

Figure 2.4: Depiction of one tet-per-vertex scheme used to construct low order operator.

condition number bound for the preconditioned system:

κ(M−1
F A) ≤ κ(M−1

F AF) · κ(A−1
F A). (2.15)

In the preceding paragraph, the importance of constructing a preconditioner, M−1
F , for

AF is established. In this work, we consider using the same FEM discretization from Bello-

Maldonado and Fischer [14]. The low-order problem is then approximated using a user-

defined number of algebraic multigrid (AMG) V-cycles on the GPU through AmgX [42]

or boomerAMG [43]. Each of the vertices of a hexahedral element is used to form one

low-order, tetrahedral element, as shown in fig. 2.4. This process is repeated for each GLL

sub-volume of the high-order hexahedral element. This discretization, based on P1 finite

elements, is found to provide better condition numbers than Q1 finite elements [14]. This

low-order discretization is then used to assemble the sparse operator, AF . The so-called

weak preconditioner, A−1
F , is used to precondition the system. The following AMG settings

are used to approximate the solution to the low order system:

� PMIS coarsening

� 0.25 strength threshold

� Extended + i interpolation (pmax = 4)

� Damped Jacobi relaxation (0.9)

� One V-cycle for preconditioning

� Smoothing on the coarsest level

This preconditioning strategy is denoted as SEMFEM. How many AMG V-cycles should be

used in the preconditioner? This concern is addressed in section 2.4.1, where we investigate

22

the effect of the number of AMG V-cycles on the convergence of the preconditioned sys-

tem. While increasing the number of V-cycles improves the iteration count, the substantial

increase in computational cost is not justified.

2.4.1 Effect of Accuracy of Low-Order Operator

The consequence of the condition number bound in eq. (2.15) is that the iteration count

for the preconditioned system depends not only on the spectral equivalent between the high-

and low-order operators, but also on the condition number of the preconditioned low-order

operator. In this section, we investigate the effect of the accuracy of the low-order operator

on the convergence of the preconditioned system.

(a) E = 93 (b) E = 372

(c) E = 1488 (d) E = 1744

Figure 2.5: Flow past a half-cylinder cases with varying level of h-refinement.

We consider the flow past a cylinder problem from [44], as shown in fig. 2.5. Four different

levels of h-refinement are considered: E = 93, E = 372, E = 1488, and E = 1744. A

three-dimensional mesh is constructed by extruding the two-dimensional mesh by a single

spectral element in the z direction. Dirichlet boundary conditions are applied in the x and

y directions, while a periodic boundary condition is applied in the z direction. A random

solution vector satisfying the boundary conditions, u, is used to generate the right-hand

side of the linear system, b = Au. GMRES(30) is used to solve the linear system using a

termination criteria of a 108 reduction in the residual norm. Four strategies are considered

for the low-order operator: 1, 2, and 4 AMG V-cycles to approximate the action of A−1
F , and

directly applying A−1
F .

23

0 10 20 30 40
Iterations

10 7

10 5

10 3

10 1
Re

la
tiv

e
re

sid
ua

l,
||r

|| 2
||r

0||
2

V1
V2
V4
A 1

F

Target

(a) E = 93

0 10 20 30 40
Iterations

10 7

10 5

10 3

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

V1
V2
V4
A 1

F

Target

(b) E = 372

0 10 20 30 40
Iterations

10 7

10 5

10 3

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

V1
V2
V4
A 1

F

Target

(c) E = 1488

0 10 20 30 40
Iterations

10 7

10 5

10 3

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

V1
V2
V4
A 1

F

Target

(d) E = 1744

Figure 2.6: Iteration counts for the SEMFEM preconditioner for the half-cylinder cases
from fig. 2.5.

Figure 2.6 shows the residual histories for the four solution strategies described in the

prior paragraph. As predicted by the condition number bound in eq. (2.15), the iteration

count for the preconditioned system is dependent on the accuracy of the low-order operator.

Providing a more accurate approximation of the action of A−1
F results in lower iteration

counts. However, this effect has diminishing returns. For example, opting to solve A−1
F

directly instead of using 4 AMG V-cycles to approximate the low-order operator results in

only a small reduction in the iteration count.

While the results in fig. 2.6 demonstrates that using a more accurate approximation for

A−1
F results in lower iteration counts, this comes at the cost of additional AMG V-cycles.

Figure 2.7 is similar to fig. 2.6. However, instead of showing the iteration counts, fig. 2.7

shows the number of AMG V-cycles required to reach a given relative residual norm. While

24

0 20 40 60 80 100
AMG Solves

10 7

10 5

10 3

10 1
Re

la
tiv

e
re

sid
ua

l,
||r

|| 2
||r

0||
2

V1
V2
V4
Target

(a) E = 93

0 20 40 60 80 100
AMG Solves

10 7

10 5

10 3

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

V1
V2
V4
Target

(b) E = 372

0 20 40 60 80 100
AMG Solves

10 7

10 5

10 3

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

V1
V2
V4
Target

(c) E = 1488

0 20 40 60 80 100
AMG Solves

10 7

10 5

10 3

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

V1
V2
V4
Target

(d) E = 1744

Figure 2.7: AMG V-cycle counts for the SEMFEM preconditioner for the half-cylinder cases
from fig. 2.5.

the iteration count is significantly reduced by using 4 AMGV-cycles, for example, the number

of AMG V-cycles required to reach a given relative residual norm is significantly higher. As

later discussed in section 3.3, the application of a single AMG V-cycle is significantly more

expensive than a high-order matrix-vector product. As such, in the remainder of this work,

we opt to use a single AMG V-cycle.

2.5 MULTIGRID

Let us consider the V-cycle algorithm to solve the SPD matrix A. Suppose that levels

j = 0, . . . , ℓ are used in the V-cycle, with A = A0. Let us denote the interpolation operator

mapping entries from grid j + 1 to j by P j
j+1 for j = 0, . . . , ℓ− 1. The sequence of matrices

25

corresponding to each level are typically constructed in a Galerkin fashion, with

Aj+1 =
(
P j
j+1

)T
AjP

j
j+1, j = 0, . . . , ℓ− 1. (2.16)

The multiplicative error propagator for a single V-cycle is given recursively by

Ej = I −M−1
j Aj

= G′
j

(
I − P j

j+1M
−1
j+1

(
P j
j+1

)T
Aj

)
Gj, j = 0, . . . , ℓ− 1, (2.17)

with M−1
ℓ := A−1

ℓ . Gj and G′
j are the smoother iteration matrices for the pre- and post-

smoothing iteration matrices, respectively. For example, Gj = (I − ωSjAj)
k corresponds to

k steps of the simple smoothing iteration

(
xi+1

)
j
= (xi)j + ωSj(bj − Aj (xi)j), (2.18)

where Sj is the smoother for the jth level, such as Jacobi with Sj = diag(Aj)
−1. G′

j and

Gj are not necessarily the same—in fact, we will consider the choice of G′
j = Gj (symmetric

post-smoothing) as well as G′
j = I (omitting post-smoothing), among others in Section 4.1.2.

ℓ0

ℓ1

ℓ2

V-cycle Progress

(a)

ℓ0

ℓ1

ℓ2

(P 1
2P

0
1)

T
b

(P 0
1)

T
b

e2 = A−1
2 (P 1

2P
0
1)

T
b

CPU, thread 1

GPU, thread0

V-cycle Progress

(b)

Figure 2.8: Standard, multiplicative multigrid (fig. 2.8a) versus multiplicative multigrid
with additive coarse-grid correction (fig. 5.1b). The coarse-grid solve, shown in the dashed
box in fig. 5.1b, is performed on the CPU simultaneous with the rest of the multigrid V-cycle
on the GPU, shown in the solid box.

The multiplicative V-cycle algorithm discussed in the preceding paragraph is summarized

26

Algorithm 2.8: Multiplicative Multigrid

Data: Right-hand side, b
Result: Preconditioned solution, z
for l = 0, . . . , ℓ− 1 do

xl ← pre-smooth(xl, bl) /* e.g., alg. 2.12 */

rl ← bl − Alxl /* Residual re-evaluation */

bl+1 ←
(
P l
l+1

)T
rl /* Coarsen */

end
xℓ = A−1

ℓ bℓ /* Coarse-grid Solve */

for l = ℓ− 1, . . . , 0 do
xl ← xl + P l

l+1el+1 /* Prolongate */

xl ← post-smooth(xl, bl)

end
z ← x0

return z

in alg. 2.8. Smoother operations pre-smooth and post-smooth are required. Choices for

multigrid smoothers are discussed in greater detail later: the Schwarz smoothers are ex-

plained in section 2.6, while polynomial smoothers are expanded upon in section 2.7. Addi-

tional results utilizing novel polynomial smoothers developed by Lottes in [23] are explained

in section 4.1.

In addition to the multiplicative V-cycle approach described in alg. 2.8, an additive V-cycle

approach is described in alg. 2.9. Both of these approaches are depicted in fig. 2.8. Notably,

alg. 2.9 does not require the additional matrix-vector product associated with the residual

re-evaluation after the initial pre-smooth pass. The benefits of this approach are two-fold.

First, the coarsening operation acts directly on the right-hand side, bl, has no dependency on

xl. This means that several of the operations in alg. 2.9 may be simultaneously overlapped.

In this thesis, we consider overlapping the coarse-grid solve, which occurs on the CPU,

with the remainder of the cycle, which occurs on the GPU. Second, careful construction

of the pre-smooth and post-smooth operations ensures that every matrix-vector product

is projected as part of the Krylov subspace projection scheme wherein alg. 2.9 is employed

as a preconditioner. For example, the pre-smooth operation can be a single sweep of a

Schwarz smoother from section 2.6 or damped Jacobi, which does not require a matrix-

vector product since the initial guess x0 on a given level is 0. This is an approach utilized

in the Nek5000 hybrid Schwarz multigrid solver [10], and is later compared against other

methods in section 2.9. For the Nek5000-based solver, the post-smooth operation is omitted.

We introduce the Schwarz smoothers used in this approach in section 2.6. In chapter 5,

27

we consider treating only the coarse-grid component as additive, while the remainder of

the V-cycle is multiplicative. This is especially beneficial for heterogeneous architectures

wherein the coarse-grid solve is already performed on the CPU, allowing for the operations

to be performed simultaneously while minimizing additional overhead for concurrent kernel

execution [45]. Further, as we discuss in section 3.3, many of the operators employed in the

multigrid smoother already overlap communication and computation on the GPU. In this

scenario, there is little benefit to overlapping the multigrid levels occurring on the GPU. This

is the approach considered in nekRS when utilizing the additive multigrid preconditioner.

After immediately coarsening the residual, the coarse-grid solve is performed on the CPU

while the remainder of the V-cycle is performed on the GPU, as depicted in on the right in

fig. 2.8. Since only the coarse-grid solve occurs on the CPU while the remainder of the work

is performed on the GPU, only the coarse-grid component needs to be additive, while the

remainder of the V-cycle is multiplicative. This idea is deferred to chapter 5.

Algorithm 2.9: Additive Multigrid

Data: Right-hand side, b
Result: Preconditioned solution, z
for l = 0, . . . , ℓ− 1 do

bl+1 ←
(
P l
l+1

)T
bl /* Coarsen */

end
Thread Block

/* Thread one only uses CPU */

Thread 1
xℓ = A−1

ℓ bℓ /* Non-blocking solve on CPU */

/* Thread zero utilizes GPU */

Thread 0
for l = 0, . . . , ℓ− 1 do

xl ← pre-smooth(xl, bl) /* e.g., alg. 2.12 */

end

/* Threads synchronized outside of block */

for l = ℓ− 1, . . . , 0 do
xl ← xl + P l

l+1xl+1 /* Prolongate */

xl ← post-smooth(xl, bl)

end
z ← x0

return z

For later use in chapter 4, we will need to consider the one-sided V-cycle, which is sufficient

28

for the analysis of general V-cycles [23, 46]. Similar as before, the “fine-to-coarse”

(E↘)j = I − (M↘)−1
j Aj

=
(
I − P j

j+1 (M↘)−1
j+1

(
P j
j+1

)T
Aj

)
Gj, j = 0, . . . , ℓ− 1, (2.19)

and “coarse-to-fine”

(E↗)j = I − (M↗)−1
j Aj

= G′
j

(
I − P j

j+1 (M↗)−1
j+1

(
P j
j+1

)T
Aj

)
, j = 0, . . . , ℓ− 1, (2.20)

error propagators are defined, with (M↘)−1
ℓ = (M↗)−1

ℓ = A−1
ℓ . Let E↘ = (E↘)0 and

E↗ = (E↗)0. The general V-cycle, therefore, is the product of the “fine-to-coarse” and

“coarse-to-fine” error propagators,

EV = E↗E↘. (2.21)

2.6 P -MULTIGRID AND SCHWARZ-BASED SMOOTHERS

A popular class of high-order FEM Poisson preconditioners is based on geometric p-

multigrid [7, 9, 11, 12, 47]. Borrowing the notation from section 2.5, each level in j = 0, . . . , ℓ

is a geometric level corresponding to a mesh with polynomial degree pj. Typical level sched-

ules, for example, would be the choice of (p0, p1, p2) = (7, 3, 1) for a p = 7 problem. The

prolongation operators, P j
j+1, are applied matrix-free using the tensor-product-sum factor-

ization. To keep the p-multigrid approach matrix-free, the sequence of matrices as described

in eq. (2.16) cannot be formed. Further, applying the Galerkin operators in eq. (2.16) in

a matrix-free manner would require applying the operator at the finest level. This implies

that there is no cost reduction in the coarse levels. As such, each operator in eq. (2.16) is

chosen as the matrix-free operator corresponding to the given polynomial order of the level,

and is therefore non-Galerkin.

As discussed in section 2.5, the V-cycle requires the application of a smoother. These range

from point-wise and Chebyshev-accelerated Jacobi [7, 9], which are discussed in section 4.1,

to SE-based Schwarz methods, such as that presented in [10, 12]. The SE-based additive

Schwarz method (ASM) solves a local Poisson problem on subdomains that are extensions

of the spectral elements. The formal definition of the ASM preconditioner (or, in this case,

29

pMG smoother) is

SASMr =
E∑

e=1

WeR
T
e Ā

−1
e Rer, (2.22)

where Re is the restriction matrix that extracts nodal values of the residual vector that

correspond to each overlapping domain, as indicated in fig. 2.9b. To improve the smoothing

properties of the ASM, we introduce the diagonal weight matrix, We, which scales each

nodal value by the inverse of the number of subdomains that share that node. Although

it compromises symmetry, post-multiplication by We was found to yield superior results to

pre- and post-multiplication by W
1
2
e [10, 11].

1
1

2
2

(a)

u| e = 0

e

(b)

u| e = 0

e

(c)

Figure 2.9: Figure 2.9a Approximation of deformed elements Ω1 and Ω2 as box-shaped,
overlapping subdomains Ω̄1 and Ω̄2. Figure 2.9b overlapping subdomain Ω̃e, constructed
by overlapping two nodes in each spatial dimension and applying a homogeneous Dirichlet
boundary condition on ∂Ω̄e. Figure 2.9c same as fig. 2.9b, but depicting copying the interior
value of Ω̃e to the overlapping region to communicate neighboring point values through
gslib. This is further explained for ASM smoothing in alg. 2.10, RAS smoothing in alg. 2.11.

In a standard Galerkin ASM formulation, one would use Āe = ReAR
T
e , but such an

approach would compromise the O(p3) storage complexity per element of the SE method.

To construct fast inverses for Āe, we approximate the deformed element as a simple box-like

geometry, as demonstrated in fig. 2.9a. These boxes are then extended by a single degree-

of-freedom in each spatial dimension to form overlapping subdomains with p̄3 = (p + 3)3

interior degrees-of-freedom in each domain. The approximate box domain enables the use

of the fast diagonalization method (FDM) to solve for each of the overlapping subdomains,

which can be applied in O(Ep4) time in lR3. The extended-box Poisson operator is

Ā = Bz ⊗By ⊗ Ax +Bz ⊗ Ay ⊗Bx + Az ⊗By ⊗Bx, (2.23)

30

where each B∗, A∗ represents the extended 1D mass-stiffness matrix pairs along the given

dimension [2]. The FDM begins with a pre-processing step of solving a series of small, p̄× p̄,

generalized eigenvalue problems,

A∗si = λiB∗si (2.24)

and defining S∗ = (s1 . . . sp̄) and Λ∗ = diag(λi), to yield the similarity transforms

ST
∗ A∗S∗ = Λ∗, ST

∗ B∗S∗ = I. (2.25)

From these, the inverse of the local Schwarz operator is

Ā−1 = (Sz ⊗ Sy ⊗ Sx)D
−1(ST

z ⊗ ST
y ⊗ ST

x), (2.26)

where D is a diagonal matrix defined as

D := I ⊗ I ⊗ Λx + I ⊗ Λy ⊗ I + Λz ⊗ I ⊗ I. (2.27)

This process is repeated for each element, at each multigrid level save for the coarsest

one. Note that the per-element storage is only 3p̄2 for the S∗ matrices and p̄3 for D. At

each multigrid level, the local subdomain solves are used as a smoother or the basis of

a Chebyshev-accelerated polynomial smoother, see section 2.7 for more details. On the

coarsest level (p = 1), however, BoomerAMG [43] as provided by hypre [17] is used to solve

the system on the CPU with the same parameters described in section 2.4, except using

Chebyshev smoothing. A single BoomerAMG V-cycle iteration is used in the coarse-grid

solve.

Presently, we also consider a restrictive additive Schwarz (RAS) version of (2.22), wherein

overlapping values are not added after the action of the local FDM solve, following [48],

SRASr =
E∑

e=1

R̃T
e Ā

−1
e Rer. (2.28)

RAS has the added benefit of reducing the amount of communication required in the

smoother. Similar to ASM, RAS is non-symmetric. Attempts to symmetrize the opera-

tor tend to have a negative impact on the convergence rate [48]. The smoother SASM or

SRAS described here is then used to construct a polynomial smoother using Chebyshev poly-

nomials of the 1st kind, as described in section 2.7, or 4th-kind, as described in section 4.1.

How are the smoothers described in eqs. (2.22) and (2.28) applied in parallel comput-

ing context, especially for heterogeneous architectures? Fortunately, the subdomain overlap

operations are accomplished through a series of highly-scalable gather-scatter operations pro-

31

Algorithm 2.10: ASM smoother

Data: Initial solution, x, Scratch buffers xext, rext
Result: Smooth solution, r
ParallelFor e = 1, . . . , E

Copy element e values from x into interior xext

Place element e interior values of xext into xext /* fig. 2.9c */

end
gslib(xext) /* perform on extended mesh */

ParallelFor e = 1, . . . , E
Subtract xext ← xext − x for interior values
Apply FDM for element e, rext ← (Sz ⊗ Sy ⊗ Sx)D

−1(ST
z ⊗ ST

y ⊗ ST
x)xext

Place element e interior values of rext into xext /* fig. 2.9c */

end
gslib(rext) /* perform on extended mesh */

ParallelFor e = 1, . . . , E
Copy element e exterior values of rext into interior rext
Place element e interior values rext into r
r ← Wer

end
gslib(r) /* on regular mesh, ensure C0 */

vided through the gslib library, as detailed in algs. 2.10 and 2.11. For more information,

as well as kernel performance results for the FDM operation in eq. (2.26), see chapter 3. As

shown in fig. 2.9c, the values in the overlapping region are communicated between neighbor-

ing elements by putting values that lie in the interior of Ω̃e into the boundary of Ω̃e. After

a single gather-scatter call and subtracting the values on the exterior of Ω̃e by the values

from the interior of Ω̃e, the value from the neighboring elements are exchanged. The corner

vertices in the overlap region are ignored, as indicated in fig. 2.9b. The reasons for this

are two-fold. First, overlapping corner values as in fig. 2.9b require a global element tensor-

product structure, which is not possible given that we are developing solvers for unstructured

problems. Second, this has the effect of reducing the number of elements involved in any

gather-scatter exchange to the number of face neighbors, 4 in 2D and 6 in 3D, instead of

3d− 1 elements (8 in 2D, 26 in 3D). This greatly reduces the potential number of neighbors

in the QQT gather-scatter exchange, leading to a significant reduction in the number of

messages and the amount of data communicated. When constructing the Sx, Sy, Sz matrices

in eq. (2.26), an element may lie on ∂Ω, and therefore an overlapping point may lie outside

of Ω. In this scenario, the row corresponding to that point in the operator is set the zero.

We note that the smoothers described in algs. 2.10 and 2.11 are employed as smoothers for

a multigrid V-cycle which is embedded in a Krylov subspace method. Therefore, simplifying

32

assumptions such as the box-like approximation shown in fig. 2.9 are appropriate in this

context.

Algorithm 2.11: RAS smoother

Data: Initial solution, x, Scratch buffers xext, rext
Result: Smooth solution, r
ParallelFor e = 1, . . . , E

Copy element e values from x into interior xext

Place element e interior values of xext into xext /* fig. 2.9c */

end
gslib(xext) /* perform on extended mesh */

for e = 1, . . . , E do
Subtract xext ← xext − x for interior values
Apply FDM for element e, rext ← (Sz ⊗ Sy ⊗ Sx)D

−1(ST
z ⊗ ST

y ⊗ ST
x)xext

Place element e interior values rext into r
r ← Wer /* inverse multiplicity */

end
gslib(r) /* on regular mesh, ensure C0 */

The ASM and RAS smoothers in algs. 2.10 and 2.11 are used as smoothers in a multigrid

V-cycle. The Nek5000-based hybrid Schwarz multigrid method described in section 2.5

utilizes a single ASM or RAS smoothing operation as a pre-smooth operation in an additive

V-cycle, alg. 2.9. The post-smooth operation is omitted. As mentioned in section 2.5, the

motivation behind this construction is that every matrix-vector product employed in the

solver is projected—that is, every matrix-vector product performed in the algorithm is done

by the outer KSP. These methods are denoted by the smoother, followed by the multigrid

schedule. For example, the common p = 7, 3, 1 cycle with ASM smoothing is denoted ASM,

(7,3,1). While this method is the only multigrid scheme available in Nek5000, we consider

in this thesis more general multigrid schemes, including the multiplicative V-cycle from

alg. 2.8. To further improve the smoothing properties of the ASM and RAS smoothers,

we also consider their use as part of a polynomial smoother as described in section 2.7. In

section 2.9, we compare the efficacy of the Nek5000-style algorithm compared with the other

approaches described in this thesis.

2.7 CHEBYSHEV POLYNOMIAL SMOOTHERS

Consider the multigrid V-cycle approach as described in section 2.5. Given kj iterations

of the smoothing iteration in eq. (2.18) for level j, is it possible to construct a better order

33

kj polynomial than pkj(SjAj) = Gkj = (I − ωSjAj)
kj? Following [8, 31], we wish to solve:

min
pk∈Pk,pk(0)=1

max
λ∈[λmin,λmax]

|p(t)|. (2.29)

where Pk is the space of all polynomials with degree less than or equal to k. The solution

to the mini-max problem in eq. (2.29) are the shifted and scaled Chebyshev polynomials of

the 1st-kind

T̂k(λ) =
1

σk

Tk

(
θ − λ

δ

)
with σk := Tk

(
θ

δ

)
. (2.30)

Tk(·) is the Chebyshev polynomial of the 1st-kind of order k; θ is the midpoint of the interval

[λmin, λmax],

θ =
λmin + λmax

2
; (2.31)

and δ is the mid-width of the interval,

δ =
λmax − λmin

2
. (2.32)

The Chebyshev polynomials of the 1st-kind enjoy a three-term recurrence relation that is

used to derive alg. 2.12 [31]. The maximum eigenvalue of SjAj is estimated through Arnoldi

iteration, providing a high-quality estimate λ̃ for λmax. As we later see, the quality of

the Chebyshev smoother is highly sensitive to underestimation in the maximum eigenvalue.

Therefore a small factor larger than unity is typically used, e.g., λmax = 1.1λ̃. While λmax

is taken to represent the largest eigenvalue of SjAj, how should λmin be chosen? λmin is

chosen as a small factor of λmax. Previous works considered factors such as 1/30 [8], 3/10

[49], 1/4 [7], and 1/6 [50].

To better understand the effect of the λmin and λmax parameters from alg. 2.12, a sensitiv-

ity analysis similar to that performed by Adams and coworkers [8] is conducted. For this, we

consider the challenging Kershaw model problem, section 2.8.1, with ε = 0.3, E = 243, p = 7,

and relative residual tolerance of 10−8. A third-order Chebyshev-accelerated ASM smoother

is used in the p = 7, 3, 1 pMG V-cycle preconditioner.

The results of the sensitivity study are shown in table 2.2. The required iteration counts

are seen to be sensitive to underestimation of λmax, as also found by Adams and coworkers [8].

On the other hand, results are less sensitive to the minimum eigenvalue estimate, provided

λmin > 0, as this delimits between the low frequencies that are handled by the coarse grid

correction and the high frequencies that are eliminated by the action of the smoother. Unless

otherwise noted, we choose λmin = 0.1λ̃, λmax = 1.1λ̃ throughout this thesis.

34

Algorithm 2.12: Chebyshev smoother, 1st-kind

Data: Initial solution, x0; Chebyshev polynomial order, k
Result: Smooth solution, xk

θ =
1

2
(λmax + λmin), δ =

1

2
(λmax − λmin), σ =

θ

δ
, ρ0 =

1

σ
x0 = x
r0 = S(b− Ax0) /* Omit Ax0 if x0 = 0 */

d0 =
1

θ
r0

for i = 1, . . . , k − 1 do
xi = xi−1 + di−1

ri = ri−1 − SAdi−1, ρi =
1

2σ − ρi−1

di = ρiρi−1di−1 +
2ρi
δ
ri

end
xk = xk−1 + dk−1

Table 2.2: Iteration counts for the (λmin, λmax) sensitivity study. Omitted entries failed to converge
in 1000 iterations.

λmin\λmax 0.9λ̃ 0.95λ̃ 1.0λ̃ 1.1λ̃ 1.2λ̃ 1.3λ̃

0.0λ̃ - - - - - -

0.025λ̃ - - - 110 64 48

0.05λ̃ - - - 50 40 38

0.1λ̃ - - 124 40 38 38

0.2λ̃ 159 45 43 42 43 44

0.25λ̃ 47 45 44 44 45 46

2.8 CASES

We describe four model problems that are used to test the SE preconditioners. The first is

a stand-alone Poisson solve, using variations of the Kershaw mesh. The others are modest-

scale Navier-Stokes problems, where the pressure Poisson problem is solved over multiple

time-steps. The problem sizes are listed in table 2.4 and range from relatively small (n=21M

points) to moderately large (n=645M).3

35

(a) ε = 1.0 (b) ε = 0.3 (c) ε = 0.05

Figure 2.10: Kershaw, E = 123, p = 1.

2.8.1 Kershaw

The Kershaw family of meshes [51, 52] has been proposed as the basis for a high-order

Poisson-solver benchmark by the Center for Efficient Exascale Discretization (CEED) within

the DOE Exascale Computing Project (ECP). This family of meshes is parameterized by an

anisotropy measure, ε = εy = εz ∈ (0, 1], that determines the degree of deformation in the

y and z directions. As ε decreases, the mesh deformation and aspect ratio increase along

with it. The Kershaw mesh is shown in fig. 2.10 for ε = 1, 0.3, 0.05. The domain is defined

as Ω = [−1/2, 1/2]3 with Dirichlet boundary conditions on ∂Ω. The right hand side for

eq. (1.1) is set to

f(x, y, z) = 3π2 sin (πx) sin (πy) sin (πz) + g, (2.33)

where g(x, y, z) is a random, continuous vector vanishing on ∂Ω. The linear solver terminates

after reaching a relative reduction of 10−8. The solver used is GMRES(20) preconditioned

with a single pMG V-cycle. Since this test case solves the Poisson equation, there is no

time-stepper needed for the model problem. Mesh quality metrics are shown in table 2.3 for

E = 363, p = 7.

2.8.2 Navier-Stokes Cases

For the pressure-Poisson tests, four flow cases are considered, as depicted in figs. 2.11

and 2.12. The three cases in fig. 2.11 corresponds to turbulent flow through a cylindrical

packed-bed with 146, 1568, and 67 spherical pebbles. The 146 and 1568 pebble cases are

from Lan and coworkers [53]. The 67 pebble case is constructed using an alternate Voronoi

3Larger cases for recent full-scale runs on Summit with n=51B are reported in [16].

36

(a) (b) (c)

Figure 2.11: Navier-Stokes pebble cases with: (a) 146, (b) 1568, and (c) 67 spheres.

cell approach, and includes chamfers [54, 55]. As such, the 67 pebble case is a more complex

geometry, as indicated in table 2.3. The first two bed flows are at Reynolds number ReD =

5000, based on sphere diameter, D, while the 67 pebble case is at Reynolds number ReD =

1460. Time advancement is based on a two-stage 2nd-order characteristics time-stepper with

CFL=4 (∆t = 2× 10−3 ∆t = 5× 10−4, and ∆t = 5× 10−5 for the 146, 1568, and 67 pebble

cases). An absolute pressure solver tolerance of 10−4 is used. A restart at t = 10, t = 20,

and t = 10 convective time units is used for the 146, 1568, and 67 pebble cases, respectively,

to provide an initially turbulent flow.

Table 2.3: Mesh quality metrics for cases from figs. 2.10 to 2.12.

Case Name Spacing (min/max) Jac. (min/max/avg) A.R. (min/max/avg)

Kershaw (ε = 1) 1.78× 10−3 / 5.81× 10−3 1 / 1 / 1 1 / 1 / 1
Kershaw (ε = 0.3) 5.34× 10−4 / 3.5× 10−2 0.316 / 1 / 0.841 1.08 / 20.1 / 4.64
Kershaw (ε = 0.05) 8.91× 10−5 / 4.72× 10−2 1.86× 10−2 / 1 / 0.733 1.1 / 162 / 21.7

146 pebble 1.01× 10−3 / .32 4.31× 10−2 / .977 / .419 1.07 / 56.9 / 7.14
1568 pebble 2.21× 10−4 / .3 2.59× 10−2 / .99 / .371 1.12 / 108 / 12.6
67 pebble 4.02× 10−5 / .145 5.97× 10−3 / .970 / .38 1.17 / 204 / 13.2
Boeing speed bump 8.34× 10−7 / .00299 .996 / 1 / .999 6.25 / 255 / 28.1

The case shown in fig. 2.12 is a direct numerical simulation (DNS) of separated turbulent

flow over a speed bump at Re = 106. This test case was designed by Boeing to provide a

flow that exhibits separation. A DNS of the full 3D geometry, however, remains difficult

[56]. Therefore, this smaller example proves a useful application for bench-marking solver

performance. This case uses a 2nd-order time-stepper with CFL=0.8 (∆t = 4.5× 10−6) and

37

an absolute pressure-solve tolerance of 10−5. A restart at t = 5.6 convective time units is

used for the initial condition.

Figure 2.12: Direct numerical simulation (DNS) of Boeing speed bump.

In all cases, solver results are collected over 2000 time-steps. At each step, the solution

is projected onto a space of up to L = 10 prior solution vectors to generate a high-quality

initial guess, ū. Projection is standard practice in nekRS as it can reduce the initial residual

by orders of magnitude at the cost of just one or two matrix-vector products in A per step

[38]. Details regarding this projection scheme are discussed in section 2.3.

The perturbation solution, δu := u − ū, is typically devoid of slowly evolving low wave-

number content. Moreover, the initial residual is oftentimes sufficiently small that the so-

lution converges in k < 5 iterations, such that the O(k2) overhead of GMRES is small. As

discussed in section 2.2.4, GMRES is employed as the underlying ASM/RAS smoothers,

presented in section 2.6, are non-symmetric. The additional expense incurred by using GM-

RES as opposed to CG, however, is further mitigated by the use of a projection scheme

to generate a high-quality initial guess. Testing the preconditioners under these conditions

ensures that the conclusions drawn are relevant to the application space.

Table 2.4: Problem discretization parameters.

Case Name E p n

146 pebble (fig. 2.11a) 62K 7 21M
1568 pebble (fig. 2.11b) 524K 7 180M
67 pebble (fig. 2.11c) 122K 7 42M
Speed bump (fig. 2.12) 885K 9 645M

38

2.9 NUMERICAL RESULTS

Here we consider the solver performance results for the test cases in section 2.8, adapted

from [25]. We assign a single MPI rank to each GPU and denote the number of ranks

as P . All runs are on Summit. Each node on Summit consists of 42 IBM Power9 CPUs

and 6 NVIDIA V100 GPUs. We use 6 GPUs per node unless P < 6. In the following,

we denote a pMG preconditioner using η-order Chebyshev-accelerated ξ smoother with a

multigrid schedule of Π as 1st-Cheb, ξ(η,η),Π. The Nek5000-style additive multigrid solvers

employing ASM or RAS-based smoothing, as described in section 2.6, are similarly denoted

as ASM,Π and RAS,Π, respectively. Note that only a single pre-smoothing pass is considered

for the latter solvers. For the moment, the Chebyshev polynomial smoothers considered are

restricted to the first kind Chebyshev polynomial smoothers presented in section 2.7. The

pre-/post-smoother use the same η-order Chebyshev smoother across all multigrid levels,

except the coarsest. A wide range of preconditioning strategies is considered.

2.9.1 Kershaw

The Kershaw study (section 2.8.1) comprises six tests. For each of two studies, we consider

the regular box case (ε = 1.0), a moderately skewed case (ε = 0.3), and a highly skewed case

(ε = 0.05). The first study is a standard weak-scaling test, where P and E are increased,

while the polynomial order is fixed at p = 7 and the number of gridpoints per GPU is set

to n/P = 2.67M . The range of processors is P=6 to 384. The second study is a test of the

influence of the polynomial order on conditioning, with P = 24 and n/P = 2.88M fixed,

while p ranges from 3 to 10. Both cases use GMRES(20).

The results of the weak-scaling study are shown in fig. 2.13. For all values of ε, the

iteration count exhibits a dependence on problem size, as seen in fig. 2.13a,d,g, especially

in the highly skewed case (ε = 0.05). The time-per-solve also increases with n, in part due

to the increase in iteration count, but also due to increased communication overhead as P

increases. This trend is not necessarily monotonic, as shown in fig. 2.13c,f. In the case

of ε = 0.3 1st-Cheb, RAS(3,3),(7,3,1), a minor fluctuation in the iteration count from the

P = 6 to P = 12 case causes the greater than unity parallel efficiency. For ε = 1.0 1st-Cheb,

Jac(3,3),(7,5,3,1), the effects of system noise on the P = 6 run causes the greater than unity

parallel efficiency for the P = 12 run.

Table 2.5 indicates the maximum number of of neighboring processors for the assembly

(QQT) graph of A, which increases with P . In addition, the number of grid points per

GPU (n/P = 2.67M) is relatively low. These two factors cause an increased sensitivity of

39

the problem to the additional communication overhead as the number of GPUs is initially

increased. The number of neighbors, however, saturates at larger (i.e., production-level)

processor counts.

Lastly, the relative preconditioner performance depends on ε. Figure 2.13b, e, h show

that, for the easy ε = 1.0 case, a pMG scheme with a smoother that is cheap to apply

is best, such as 1st-Cheb, RAS(2,2),(7,3,1), 1st-Cheb, Jac(3,3),(7,5,3,1), and ASM,(7,3,1).

However, as ε decreases, more robust pMG smoothers such as 1st-Cheb, RAS(3,3),(7,3,1)

and SEMFEM result in lower time to solution. Once ε = 0.05 (fig. 2.13h), the problem is

sufficiently challenging that SEMFEM overtakes the pMG based preconditioning schemes.

This indicates that, in the highly skewed case in which the maximum element aspect ratio

increases, the pMG preconditioner is not as effective as the SEMFEM preconditioner.

10

20

30

40

Ite
ra

tio
ns

(a)

= 1.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
/ P

re
ss

ur
e

so
lv

e
(s

)

(b)

= 1.0

0.4

0.6

0.8

1.0

Pa
ra

lle
l E

ffi
cie

nc
y

(c)

= 1.0

P

100

200

300

400

500

Ite
ra

tio
ns

(d)

= 0.3

P

2

4

6

8

Ti
m

e
/ P

re
ss

ur
e

so
lv

e
(s

)

(e)

= 0.3

P

0.4

0.6

0.8

1.0

Pa
ra

lle
l E

ffi
cie

nc
y

(f)

= 0.3

101 102

P

100

200

300

400

500

Ite
ra

tio
ns

(g)

= 0.05

101 102

P

2

4

6

8

10

Ti
m

e
/ P

re
ss

ur
e

so
lv

e
(s

)

(h)

= 0.05

101 102

P

0.4

0.6

0.8

1.0

Pa
ra

lle
l E

ffi
cie

nc
y

(i)

= 0.05

1st-Cheb,Jac(3,3),(7,5,3,1)
1st-Cheb,ASM(3,3),(7,3,1)
1st-Cheb,RAS(3,3),(7,3,1)
1st-Cheb,ASM(2,2),(7,3,1)
1st-Cheb,RAS(2,2),(7,3,1)
1st-Cheb,ASM(4,4),(7,3,1)
1st-Cheb,RAS(4,4),(7,3,1)
1st-Cheb,ASM(3,3),(7,5,3,1)
1st-Cheb,RAS(3,3),(7,5,3,1)
SEMFEM
ASM,(7,3,1)
RAS,(7,3,1)

Figure 2.13: Kershaw weak scaling, GMRES(20). n/P = 2.67M .

The influence of the polynomial order is illustrated in fig. 2.14. For ε = 1.0, iteration counts

are essentially p-independent, as seen in fig. 2.14a. For ε = 0.3, however, a slight upward

trend in the iteration count is observed for SEMFEM and for the pMG preconditioners with

ASM, RAS, and Chebyshev-Jacobi smoothing (fig. 2.14b). Similarly, ε = 0.05 exhibits a

40

10

15

20

25

30

Ite
ra

tio
ns

(a)

= 1.0

100

200

300

400

500

(b)

= 0.3

100

150

200

250

300

350

400

450

500

(c)

= 0.05

3 4 5 6 7 8 9 10
p

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ti
m

e
/ P

re
ss

ur
e

so
lv

e
(s

)

(d)

= 1.0

3 4 5 6 7 8 9 10
p

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(e)

= 0.3

3 4 5 6 7 8 9 10
p

5

10

15

20

25

30

(f)

= 0.05

1st-Cheb, Jac(3,3)
1st-Cheb, ASM(3,3)
1st-Cheb, RAS(3,3)
1st-Cheb, ASM(2,2)
1st-Cheb, RAS(2,2)

1st-Cheb, ASM(4,4)
1st-Cheb, RAS(4,4)
SEMFEM
ASM
RAS

Figure 2.14: Kershaw order dependence, GMRES(20). n/P = 2.88M .

Table 2.5: Max neighbors, Kershaw.

Nodes 1 2 4 8 16 32 64

Max Neighbors 5 11 16 24 20 24 29

dependence between the iteration count and the polynomial order for all preconditioners

(fig. 2.14c). Figure 2.14d, e and f demonstrate that the time per pressure solve is strongly

dependent on the polynomial order. For SEMFEM, there is an increase in time as a result

of increased overhead for the underlying AMG solver. For the pMG-based methods, higher

orders are generally faster. This performance gain can be attributed to surface-to-volume

effects in the evaluation of the operators and smoothers. Application of Ae and (smoother) Se

is highly vectorizable, whereas application of QQT (assembly) involves a significant amount

of indirect addressing. The discrete surface to volume ratio for a spectral element of order

p = 7 is 296/512 ≈ 60%. For lower p this value is larger. This situation is exacerbated

in the case of Schwarz-based smoothers, where the overlap contributes substantially to the

work and communication for the small-element (i.e., low-p) cases. In addition, these results

were collected with an older version of nekRS [4], which used a single element per thread

block, thereby limiting the amount of work available for a streaming multiprocessor for

relatively small polynomial orders. This issue, however, is addressed in newer versions of

nekRS through the run-time kernel tuning strategies discussed in section 3.2.

41

2.9.2 Navier-Stokes

We consider scalability of nekRS for the cases of figs. 2.11 and 2.12. All simulations except

one use GMRES(15) with an initial guess generated by A-conjugate projection onto L = 10

prior solutions [38]. Due to memory constraints, the 1568-pebble case with P = 24 uses

GMRES(10) with only L = 5 solution-projection vectors. For each case, two pMG schedules

are considered: (7, 5, 3, 1) and (7, 3, 1) for p = 7; and (9, 7, 5, 1) and (9, 5, 1) for p = 9.

Other parameters, such as the Chebyshev order and the number of coarse grid BoomerAMG

V-cycles are also varied. Results are shown in figs. 2.15 and 2.16b. The plots relate the

effective work rate per node, measured as the gridpoints n (as shown in table 2.4) solved per

second per node, to the time-to-solution. The y-axis notes the drop in the relative work rate,

which corresponds to a lower parallel efficiency, as the strong scale limit is reached, while the

x-axis denotes the time-to-solution. Each node consists of 6 GPUs, hence P = 6× nodes.

In all the performance tests conducted, the pMG preconditioner with Chebyshev-Jacobi

smoothing is outperformed by the other preconditioners, whether using one or two V-cycle

iterations in the AMG coarse-grid solve. For each case, the fastest preconditioner scheme

varies. In the 146 pebble case (fig. 2.15a), using 1st-Cheb, RAS(3,3),(7,5,3,1) yields the small-

est time per pressure solve. However, in the 1568 pebble case (fig. 2.15b), SEMFEM is a mod-

erate improvement over the second best preconditioner, 1st-Cheb, ASM(3,3),(7,5,3,1). pMG

with a (9, 5, 1) schedule and Chebyshev-RAS (of any order) yield the best scalability and

lowest time per pressure solve for the Boeing speed bump case (fig. 2.16b). The Chebyshev-

accelerated Schwarz schemes are not always the fastest, however. For the 67 pebble case

(fig. 2.15c), 1st-Cheb, Jac(3,3),(7,5,3,1) is comparable to 1st-Cheb, RAS(3,3),(7,5,3,1) and

are the two fastest pMG based preconditioners. However, SEMFEM is significantly faster

than the other preconditioners for this case.

Also considered is a two-level approach wherein SEMFEM is used as a non-Galerkin ap-

proximation to the coarse grid operator. Algorithm 6.1 describes this approach, wherein

the SEMFEM operator is used as the coarse grid operator at a different polynomial order.

A complete description of this approach, however, is deferred to chapter 6. For p = 7, a

(7, 6) schedule with 3rd order Chebyshev-accelerated ASM smoothing on the p = 7 level

and SEMFEM solver on the p = 6 level, denoted as 1st-Cheb, ASM(3,3),(7,6) + SEMFEM,

is used. Similarly, 1st-Cheb, ASM(3,3),(7,5) + SEMFEM and 1st-Cheb, ASM(3,3),(7,3) +

SEMFEM are considered. For p = 9, a (9, 8), (9, 7), (9, 5), and (9, 3) two-level approach is

considered, denoted as 1st-Cheb, ASM(3,3),(9,8) + SEMFEM, 1st-Cheb, ASM(3,3),(9,7) +

SEMFEM, 1st-Cheb, ASM(3,3),(9,5) + SEMFEM, and 1st-Cheb, ASM(3,3),(9,3) + SEM-

FEM, respectively. In the pebble cases shown in fig. 2.15a,c, this two-level approach performs

42

somewhere between the SEMFEM and 1st-Cheb, ASM(3,3),(7,3,1) preconditioners. In the

Boeing speed bump case, however, fig. 2.16b demonstrates that this approach is not as per-

formant as either the SEMFEM or 1st-Cheb, ASM(3,3),(9,5,1) preconditioners. Theoretical

analysis of this two-level approach based on two-grid perturbed coarse-grid operators from

[57] is deferred to section 6.2, where it is shown that using this two-level approach with

a polynomial order less than the fine level worsens the condition number compared to the

spectral equivalence discussed in section 2.4. This idea, however, is further explored and

improved in chapter 6.

Solver performance degrades whenever n/P is sufficiently small, regardless of the solver

considered. For the various preconditioners considered, at 2 nodes (n/P = 1.75M), the

strong-scale limit of 80% efficiency is far surpassed in the 146 pebble case. This leaves the

effective strong scale limit at 1-2 nodes (n/P = 3.5 to 1.75M). For the 1568 pebble case, 12

nodes (n/P = 2.5M) yields a parallel efficiency around 60-70%, depending on the specific

solver. The 67 pebble cases reaches 70% efficiency on 3 nodes (n/P = 2.3M). The parallel

efficiency for the Boeing speed bump case for the fastest time-to-solution preconditioners

drops below 70% when using more than 48 nodes (n/P = 2.24M).

0.1 0.2 0.3 0.4 0.5 0.6 0.8
Time per solve (s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Gr
id

po
in

ts
 /

(ti
m

e
pe

r s
ol

ve
 *

no
de

)

1e8

(a)

pb146, P = 3 : 18

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time per solve (s)

0.2

0.4

0.6

0.8

1.0

1.2
1e8

(b)

pb1568, P = 24 : 96

0.1 0.2 0.3 0.4 0.5 0.6 0.8
Time per solve (s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1e8

P = 18

(c)

pb67, P = 12 : 24

1st-Cheb,Jac(3,3),(7,5,3,1),2 crs
1st-Cheb,Jac(3,3),(7,5,3,1)
1st-Cheb,ASM(3,3),(7,3,1)
1st-Cheb,RAS(3,3),(7,3,1)
1st-Cheb,ASM(2,2),(7,3,1)
1st-Cheb,RAS(2,2),(7,3,1)
1st-Cheb,ASM(4,4),(7,3,1)
1st-Cheb,RAS(4,4),(7,3,1)
1st-Cheb,ASM(3,3),(7,5,3,1)
1st-Cheb,RAS(3,3),(7,5,3,1)
SEMFEM
1st-Cheb,ASM(3,3),(7,6)+SEMFEM
1st-Cheb,ASM(3,3),(7,5)+SEMFEM
1st-Cheb,ASM(3,3),(7,3)+SEMFEM

Figure 2.15: Strong scaling results on Summit for the Navier-Stokes cases of fig. 2.11. Iso-processor
count line illustrated in (c). A user running on a specified number of processors should use the
lowest time-to-solution preconditioner along this line.

While the effect of mesh quality metrics, such as the max aspect ratio and scaled Jacobian,

on solver convergence has been studied by Mittal and coworkers [58], predicting the optimal

preconditioner settings from mesh quality metrics is not obvious. While the maximum

aspect ratio is an important metric for mesh quality, it alone cannot explain the apparent

poor performance of the pMG preconditioners in the 67 pebble case, fig. 2.15c. Consider, for

example, that the Boeing speed bump case has a larger maximum aspect ratio (255) than the

67 pebble case (204), but does not exhibit this poor performance in the pMG preconditioners.

43

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time per solve (s)

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Gr

id
po

in
ts

 /
(ti

m
e

pe
r s

ol
ve

 *
no

de
)

1e7 pb67, P = 12 : 24, pMG

1st-Cheb,Jac(3,3),(7,5,3,1),2 crs
1st-Cheb,Jac(3,3),(7,5,3,1)
1st-Cheb,ASM(3,3),(7,3,1)
1st-Cheb,RAS(3,3),(7,3,1)
1st-Cheb,ASM(2,2),(7,3,1)
1st-Cheb,RAS(2,2),(7,3,1)
1st-Cheb,ASM(4,4),(7,3,1)
1st-Cheb,RAS(4,4),(7,3,1)
1st-Cheb,ASM(3,3),(7,5,3,1)
1st-Cheb,RAS(3,3),(7,5,3,1)
1st-Cheb,ASM(3,3),(7,6)+SEMFEM
1st-Cheb,ASM(3,3),(7,5)+SEMFEM
1st-Cheb,ASM(3,3),(7,3)+SEMFEM

(a) Same as fig. 2.15c, pMG preconditioners
only.

0.3 0.4 0.5 0.6 0.7 1.0 2.0
Time per solve (s)

2

4

6

8

Gr
id

po
in

ts
 /

(ti
m

e
pe

r s
ol

ve
 *

no
de

)

1e7

P = 288

BoeingSpeedBump, P = 96 : 432

1st-Cheb,Jac(3,3),(9,7,5,1),2 crs
1st-Cheb,Jac(3,3),(9,7,5,1)
1st-Cheb,ASM(3,3),(9,5,1)
1st-Cheb,RAS(3,3),(9,5,1)
1st-Cheb,ASM(2,2),(9,5,1)
1st-Cheb,RAS(2,2),(9,5,1)
1st-Cheb,ASM(4,4),(9,5,1)
1st-Cheb,RAS(4,4),(9,5,1)
1st-Cheb,ASM(3,3),(9,7,5,1)
1st-Cheb,RAS(3,3),(9,7,5,1)
SEMFEM
1st-Cheb,ASM(3,3),(9,8)+SEMFEM
1st-Cheb,ASM(3,3),(9,7)+SEMFEM
1st-Cheb,ASM(3,3),(9,5)+SEMFEM
1st-Cheb,ASM(3,3),(9,3)+SEMFEM

(b) Strong scaling results on Summit for the
Navier-Stokes case, fig. 2.12.

Figure 2.16: fig. 2.15: Strong scaling results for 67 pebble case, limited to p-geometric
multigrid methods. fig. 2.16b: Strong scaling results for the Boeing speed bump case.

The minimum scaled Jacobian, however, is at least an order of magnitude smaller in the 67

pebble case (5.97 × 10−3) as compared to the other cases (e.g., .996 for the Boeing speed

bump case, 4.31× 10−2 and 2.59× 10−2 for the 146, 1568 pebble cases, respectively). This

may, in turn, explain why the pMG preconditioners in the 67 pebble case were significantly

sub-optimal compared to the SEMFEM preconditioner. This demonstrates, however, that

a user cannot simply rely on, e.g., the maximum aspect ratio when deciding whether or

not to use SEMFEM as a preconditioner. This inability to correctly identify preconditioner

settings based on mesh quality metrics alone motivates the introduction of an auto-tuner to

choose preconditioner parameters during run-time, which is the subject of section 3.1.

Table 2.6: Strong scaling limits and fastest solver for the Navier-Stokes cases from section 2.8.2.
The time-to-solution for the best solver Ts is reported. Speedup over the time-to-solution for the
default solver, TD, is reported in the last column. For p = 7, the default solver is 1st-Cheb,
ASM(3,3),(7,3,1). For p = 9, the default solver is 1st-Cheb, ASM(3,3),(9,3,1). For E, p, and n,
refer to table 2.4.

Case Name P n/P Fastest Solver Ts
TD

Ts

146 pebble 6 3.5M 1st-Cheb, RAS(3,3),(7,5,3,1) 0.15 1.20
1568 pebble 72 2.5M SEMFEM 0.18 1.08
67 pebble 18 2.3M SEMFEM 0.12 4.51
Speed bump 288 2.2M 1st-Cheb, RAS(3,3),(9,5,1) 0.28 1.32

The fastest solver configuration and strong scaling limits for the Navier-Stokes cases are

summarized in table 2.6. Through carefully designing the preconditioner, we achieve modest

44

speedups of 8%, 20%, and 32% for the 1568 pebble, 146 pebble, and Boeing speed bump

cases, respectively. This is with respect to a performant p-multigrid default preconditioner

based on Chebyshev-accelerated ASM smoothing. For the 67 pebble case, however, we

observe that SEMFEM preconditioning is required to achieve good solver performance. As

a result, there is no single preconditioner configuration that runs well across all cases. In

section 3.1, we propose a run-time tuning approach to help mitigate this issue.

Table 2.6 establishes that the strong scalability limit remains relatively constant at n/P ∼
2.5M despite the overall problem size. The scalability limits identified in table 2.6 are utilized

in the remainder of this work. The “rule-of-thumb” for the Navier-Stokes cases considered

herein is that strong scaling below n/P ∼ 2M for V100-based systems is not recommended.

For newer, faster GPU architectures, this limit is increased due to the increased discrepancy

between GPU compute and communication performance. Later in this thesis, section 3.2

establishes single GPU performance profiles of the individual kernels required for the pre-

conditioners considered in this chapter. These results are relevant both to the newer A100

GPUs, as well as AMD’s MI250X GPUs. We observe that achieving good single GPU perfor-

mance requires at least n/P ∼ 1M points. This is further exacerbated once communication,

both on-node and off-node is considered. This issue is further discussed in section 3.3.

45

Chapter 3: Programming Considerations for Heterogeneous Architectures

As demonstrated in section 2.9, the methods discussed in chapter 2 exhibit good perfor-

mance on the V100 GPUs used in the Summit supercomputer. Several prerequisites, how-

ever, are required to achieve this performance. First, the overall time-to-solution is highly

dependent on the solver configuration, which tends to vary on a case-by-case basis. Second,

the performance of the preconditioners depends both on highly performant GPU kernels

and communication operations. The latter is achieved through highly scalable non-blocking

point-to-point communication associated with performing gather-scatter operations on the

GPU. The former, however, is the subject of this chapter. In this chapter, we will discuss

strategies to achieve high-performance on GPU architectures, both from the prospective of a

single GPU with the kernel tuning strategies discussed in section 3.2, as well multiple GPUs

at scale through the tuning strategies discussed in sections 3.1 and 3.3.

This chapter is organized as follows. As observed in section 2.9, the optimal solver con-

figuration depends highly on the problem at hand. Section 3.1 seeks to mitigate this issue

by providing a description of a simple, yet effective, online tuning strategy that can be used

to select optimal or nearly-optimal solver configurations during the course of a simulation.

Section 3.2 then describes the two most important GPU kernels for the construction of fast,

high-order GPU Poisson solvers: the matrix-vector product kernel and the fast diagonaliza-

tion method (FDM) kernel employed in the Schwarz-based smoothers from section 2.6. As

the optimal kernel configuration depends on the precision, polynomial order, and specific

GPU architecture, section 3.2 describes an online tuning strategy to select highly perfor-

mant kernels. Finally, the costs associated with the communication required in the pressure

Poisson solves are quantified in section 3.3. The authors conduct a weak-scaling study to

quantify the communication costs associated with the common operators described in the

preconditioning methods from chapter 2.

3.1 PERFORMANCE PORTABILITY THROUGH RUN-TIME PRECONDITIONER
SELECTION

The results of section 2.9 provides a small window into the varieties of performance behav-

ior encountered in actual production cases, which span a large range of problem sizes, domain

typologies, mesh qualities. Moreover, production simulations are solved across a range of

architectures having varying on-node and network performance, interconnect typologies, and

processor counts. One frequently encounters situations where certain communication pat-

46

terns might be slower under a particular MPI version on one platform versus another. Unless

a developer has access to that platform, it is difficult to measure and quantify the commu-

nication overhead. Processor count alone can be a major factor in preconditioner selection:

large processor counts have relatively high coarse-grid solve costs that can be mitigated by

doing more smoothing at the fine and intermediate levels. How much more is the open

question. The enormity of parameter space, particularly “in the field” (i.e., users working

on unknown platforms) limits the effectiveness of standard complexity analysis in selecting

the optimal preconditioner for a given user’s application.

From the user’s perspective, there is only one application (at a time, typically), and one

processor count of interest. Being able to provide optimized performance—tuned to the

application at hand, which includes the processor count—is thus of paramount importance.

Auto-tuning provides an effective way to deliver this performance. Auto-tuning of precon-

ditioners has been considered in early work by Imagery et al. [59] and more recently by

Yamada et al. [60] and by Brown et al. [61]. The latter work couples robust optimiza-

tion routines with local Fourier analysis to provide the objective function for the optimizer.

Local Fourier analysis (LFA) is a powerful tool for analyzing the convergence properties

of multigrid methods. A brief introduction to LFA for p-multigrid methods is deferred to

section 4.3.

Table 3.1: Solver parameter space considered in the auto-tuner. A pMG preconditioner using an
η-order Chebyshev-accelerated ξ smoother with a multigrid schedule of Π is denoted as Cheby-
ξ(η,η),Π.

Parameters

Solver preconditioned GMRES

Preconditioner pMG, SEMFEM

pMG

p = 7:
1st-Cheb, ASM(3, 3),(7,3,1)
1st-Cheb, RAS(3, 3), (7,3,1)
1st-Cheb, Jac(3, 3), (7,5,3,1)

p = 9:
1st-Cheb, ASM(3, 3),(9,5,1)
1st-Cheb, RAS(3, 3), (9,5,1)
1st-Cheb, Jac(3, 3), (9,7,5,1)

Coarse grid single boomerAMG V-cycle
SEMFEM single AmgX V-cycle

In large-scale fluid mechanics applications, auto-tuning overhead is typically amortized

over 104–105 time-steps (i.e., pressure solves) per run (and more, over an entire simulation

campaign). Moreover, auto-tuning is of particular importance for problems at large processor

counts because these cases often have long queue times, which preclude making multiple job

47

submissions in order to tweak parameter settings. Failure to optimize, however, can result

in significant opportunity costs. For example, in [16] the authors realized a factor of 2.8

speedup in time-per-step for a 352,000-pebble-bed simulation (n=51B gridpoints) through

a sequence of tuning steps. Even if there were 100 configurations in the preconditioner

parameter space, an auto-tuner could visit each of these in succession 5 times each within

the first 500 steps and have expended only a modest increment in overhead when compared

to the cost of submitting many jobs (for tuning) or to the cost of 10,000 steps for a production

run.

Algorithm 3.1: Online Solver Tuner

Input: Solver configuration space, S ′, starting step to tune, iS , initial solver
configuration, s0, objective function to minimize, ϕ, number of samples, N ,
number of simulation time-steps, if

Output: Optimal solver configuration, s∗ ∈ S ′
Construct stack S containing ∀v ∈ S ′
s← s0, ϕ

∗ ←∞, converged← false

for i = 0, . . . , if do
if i > iS and (i− iS)%N = 0 and not converged then

(Ts, ρs, . . .)← statistics of s
if ϕ(Ts, ρs, . . .) < ϕ∗ then

s∗ ← s, ϕ∗ ← ϕ(Ts, ρs, . . .)
end
if S is empty then

s← s∗ /* found best solver, save result */

converged ← true

else
s← S.pop() /* try next solver */

end
if i = iS then

Enable sampling
end
Solve Axi = bi using s

end
return s∗

As a preliminary step, the authors consider constructing a small subset of the true search

space (which could include, e.g., other cycles, schedules, or smoothers) for use in a nascent

auto-tuner. Algorithm 3.1 describes the auto-tuner used in this work. Most notably, the

auto-tuner is designed to be used online during a run. This enables the simulation to continue

to progress while the auto-tuner performs an exhaustive search over a limited subset of the

full parameter space. Algorithm 3.1, moreover, requires several inputs. These include: the

number of evaluation phases, N , to perform prior to noting the performance of a solver; the

48

starting step iS at which to begin the tuning procedure; and the parameter space S ′ ⊂ S over

which to search. While the latter is currently chosen as the solvers identified in table 3.1,

the N and iS parameters are exposed to the user, with reasonable defaults being N = 5

and iS = 100. In addition, after each solver is evaluated under this tuning procedure, the

best solver configuration s∗ ∈ S ′ is noted. This has the additional benefit of providing a

reasonably performant solver configuration, which the user can use on subsequent runs for

the same case, e.g., for restarting a simulation to evolve the state to a later time.

Across all cases, with exception to the 67 pebble case, pMG preconditioning with Chebyshev-

accelerated ASM or RAS smoothing is the fastest solver or is comparable to SEMFEM. The

choice of Chebyshev order and multigrid schedule, moreover, contributes only a modest ≈
10-20% improvement to the overall time-to-solution in most cases, all else being equal. This

makes the default 1st-Cheb, ASM(3,3),(7,3,1) or 1st-Cheb, ASM(3,3),(9,5,1) preconditioner

reasonably performant. However, in order to avoid the situation encountered in the 67 peb-

ble case, SEMFEM is added to the considered search space. The parameters in table 3.1

are chosen as they include optimal or near-optimal preconditioner settings for the results in

figs. 2.15 and 2.16b, while still restricting the search space to something that is amenable

to exhaustive search. The authors note, however, that this parameter space may not reflect

the various factors affecting the performance of the preconditioners at especially large P or

on different machine architectures.

Algorithm 3.1 details the online auto-tuner considered in this thesis. During the simula-

tion, our simple auto-tuner performs an exhaustive search over the small parameter space

identified in table 3.1. This parameter space, denoted as S ′, is a small heuristic subset of

the true search space S, S ′ ⊂ S. The cardinality of S ′ identified in table 3.1 is 4, so the

space is amenable to exhaustive search. The authors note that the parameter space in S ′

can be expanded to include far more parameters, so long as the resultant space remains

amenable to exhaustive search. As each candidate solver in S ′ is evaluated online during a

simulation, the simulation is able to make progress as outlined in alg. 3.1. Therefore, the

expense of searching over a somewhat larger parameter space is amortized over the course

of the simulation.

In addition to the importance of identifying a heuristic search space S ′ ⊂ S that is small

enough to be amenable to exhaustive search while still being rich enough to include the

optimal or near-optimal preconditioner, the authors note that the objective function, ϕ in

alg. 3.1, must be carefully chosen. While the time-to-solution seems like a natural choice

for the objective function, the authors note that utilizing this parameter alone can lead to

sub-optimal results when combined with the high-quality initial guesses provided through

the solution projection method described in section 2.3. As noted in the PCG error bound

49

eq. (2.3) in section 2.2.1, the convergence rate of the KSP solver is a function of both the

condition number of the preconditioned operator, κ(M−1A), as well as the proximity of the

initial guess to the true solution. The former is a function of the particular solver configu-

ration, s, while the latter has no dependence on the solver at-hand. During the evaluation

phase in alg. 3.1, a candidate solver configuration, s, is evaluated with the particular right-

hand side and initial guess pairs for the given time-step. However, if the solution projection

space is not sufficiently rich, the candidate configuration may be discounted as sub-optimal

when in fact it is not. At the same time, other metrics, such as the solver convergence rate,

do not fully take into account the expense of the preconditioner.

To address the issue highlighted above, consider that we are trying to find the solver

configuration, s∗ ∈ S ′, that minimizes the time-to-solution, Ts = Ts(s). Let the iteration

count be denoted by k and define the average convergence rate for s as

ρs = exp

(
1

k
log
∥rk∥2
∥r0∥2

)
. (3.1)

The following relationship holds:

∥rk∥2 = ∥r0∥2ρ
k
s . (3.2)

Let the solver converge when the residual norm is τ , ∥rk∥2 = τ . Then, from eq. (3.2), the

number of iterations required to converge is

k = log
τ

∥r0∥2
· 1

log ρs
. (3.3)

Minimizing the time-to-solution, we observe that:

s∗ = argmin
s∈S′

Ts

= argmin
s∈S′

k︸︷︷︸
eq. (3.3)

·
(
Ts

k

)

= argmin
s∈S′

log
τ

∥r0∥2︸ ︷︷ ︸
const w.r.t. s

· 1

log ρs
·
(
Ts

k

)

= argmin
s∈S′

1

log ρs
·
(
Ts

k

)
. (3.4)

50

Choosing the objective function as

ϕ(s) =
1

log ρs
·
(
Ts

k

)
, (3.5)

therefore, provides a metric that balances the average solver convergence rate, ρs, and the

average time per iteration, Ts/k, of the solver. Further, eq. (3.5) provides a proxy for the

time-to-solution that does not depend on the right-hand side/initial guess dependent ∥r0∥2
term that is implicitly present in the time-to-solution metric.

The authors note that the choice of objective function in eq. (3.5) is important. For

example, using the time-to-solution as the metric without regard for the quality of the initial

guess during a simulation can lead the auto-tuner to select solver configurations that are

highly sub-optimal. For example, a tentative solver configuration s ∈ S ′ may be evaluated

during a handful of simulation steps with a rich projection space. The solver then converges

in a small number of iterations, even with a relatively poor choice of preconditioner. For

example, using the time-to-solution as the only metric, the auto-tuner would have chosen 1st-

Cheb, Jacobi(3,3), (7,5,3,1) with a single AMG V-cycle approximating the coarse-grid solve

as the preconditioner for the 146 pebble case. This is due to the fact that the evaluation

phase for the 1st-Cheb, Jacobi(3,3), (7,5,3,1) configuration happens to coincide within a

region of the simulation where the solution projection space is sufficiently rich, yielding low

iteration counts. Visual inspection of fig. 2.11a, however, shows that this is a poor choice

over the course of the entire simulation. However, by using the carefully crafted objective

function in eq. (3.5), the 1st-Cheb, RAS(3,3),(7,3,1) preconditioner is correctly chosen.

While the heuristic search space, S ′ is limited compared to the true search space S, the
resultant preconditioners selected are effective. Applying the online tuner from alg. 3.1

with the heuristic space S ′ identified in table 3.1 to the strong scaling studies conducted in

section 2.9.2, we observe that the tuner is able to identify optimal or nearly optimal solver

configurations. For example, in the 146 pebble case (fig. 2.15a), 1st-Cheb, RAS(3, 3),(7,3,1)

is identified as the preconditioner on each of the processor counts, which was comparable

in performance to the best preconditioner. The auto-tuner chose the optimal SEMFEM for

the 1568 pebble case (fig. 2.15b). SEMFEM was identified at the preconditioner for the 67

pebble case on all processor counts, which fig. 2.15c confirms. In the Boeing speed bump

case (fig. 2.16b), the auto-tuner chose 1st-Cheb, RAS(3, 3),(9,5,1) across all processor counts,

which was either the optimal or near-optimal preconditioner for the problem. These results

are summarized in table 3.2.

Note that the auto-tuner selects the fastest method at a fixed-processor count (i.e., what-

ever the user has selected). Consider, for example, the 67 pebble case on P = 18 GPUs

51

Table 3.2: Outcome of running alg. 3.1 on the Navier-Stokes cases from section 2.8 with the
parameter space identified in table 3.1.

Case Name Solver

146 pebble (fig. 2.11a) 1st-Cheb, RAS(3, 3),(7,3,1)
1568 pebble (fig. 2.11b) SEMFEM
67 pebble (fig. 2.11c) SEMFEM
Speed bump (fig. 2.12) 1st-Cheb, RAS(3, 3),(9,5,1)

(dashed black line, fig. 2.15c). The goal of the auto-tuner is to select the preconditioner

with lowest time-to-solution along the user-specified iso-processor count line. However, in

the results discussed above, there was no change with respect to a change in the processor

count. We note that our principal objective is not to squeeze out a few percent over a raft

of good choices, but rather to ensure that a case does not run with an unfortunate set of pa-

rameters for which the performance is significantly substandard. This primitive auto-tuning

technique proves effective at preventing the selection of highly sub-optimal preconditioners.

We have implemented this for production use and will continue to update and refine the

strategy to include the novel methods considered in chapters 4 to 6.

3.2 PERFORMANCE PORTABLE SOLVER KERNELS

Two crucial GPU kernels required in efficiently solving the high-order Poisson problem

are the matrix-vector product operator and the fast diagonalization method (FDM) operator

from eqs. (2.26) and (2.27) as described in section 2.6. The matrix-vector product kernel

is required both in the Krylov solver, as well as the construction of polynomial smoothers

as discussed in section 2.7 and the multigrid residual re-evaluation in the standard V-cycle

algorithm, see alg. 2.8. The FDM kernel, however, is only required in the construction of the

polynomial smoothers. Both of these kernels, moreover, encompass the majority of solver

operations utilizing the GPU. Due to their importance, tuning the matrix-vector product

kernel in section 3.2.1 and the FDM kernel in section 3.2.2 is the primary focus of this

section.

The kernels, along with the rest of the GPU kernels required in nekRS, are implemented

in the Open Concurrent Compute Abstraction (OCCA) library [62]. OCCA is a performance

portable library for writing GPU kernels that supports multiple back-ends, including CUDA,

HIP, OpenCL, and OpenMP. One main feature of OCCA is its reliance on just-in-time (JIT)

compilation. This allows for providing the compiler rich information, including the quadra-

ture order and constant compile-time parameters such as the reference-element derivative

52

matrices. In addition, OCCA allows for easy run-time kernel selection, which is a prominent

technique in obtaining good performance portable kernels in sections 3.2.1 and 3.2.2.

While the matrix-vector product associated with the Krylov solver must be performed in

double precision for accuracy, the matrix-vector product operations associated with the pre-

conditioner are performed in single precision to increase the overall throughput of the solver.

This mixed-precision approach offers better solver performance without impacting accuracy

or convergence. To fully exploit this mixed-precision approach, however, the matrix-vector

product kernel must be performant in both precisions. The FDM kernel, on the other hand, is

only employed as part of the preconditioner, and therefore must only target single precision.

The use of run-time kernel selection techniques discussed in this section is not new. On

CPU-architectures, for example, the use of run-time code generation in LIBXSMM is consid-

ered by Heinecke and coworkers to generate highly optimized, small matrix-matrix product

routines [63]. In [64], Hess and coworkers apply similar strategies to accelerate Nek5000

on CPU-architectures. The optimization of sparse matrix-vector product kernels on GPU-

architectures is explored by Baskaran and Bordawekar in [65] and more recently in a pre-print

by Ashoury and coworkers [66]. The use of run-time code generation through user-guided

code transformation statements is a prominent feature in Loo.py [67]. In [68], Klöckner

and coworkers consider the use of Loo.py to generate highly-optimized kernels for high-

order finite element operators. The approach considered in this thesis in sections 3.2.1

and 3.2.2, however, rely on hand-generated kernels provided by Tim Warburton. While

hand-generating multiple highly performant kernels is an onerous task for the entire end-

to-end solver, the two kernels considered in sections 3.2.1 and 3.2.2 are the most important

kernels in the solver and therefore warrant the effort.

3.2.1 Matrix-Vector Product Kernel

The fast application of the matrix-vector product is a prerequisite for the construction of

fast preconditioners for the spectral element Poisson problem. The matrix-vector product

kernel, moreover, must be performance portable across several different GPU architectures,

including the NVIDIA V100 and A100 GPUs as well as the AMD MI100 and MI250X GPUs.

As several polynomial orders are required in applying the multigrid method described in sec-

tion 2.6, the matrix-vector product kernel must be performant across all polynomial orders.

Finally, the preconditioner is performed in single precision in order to increase the through-

put of the solver. The matrix-vector product in the Krylov solver, however, is performed

in double precision to ensure accuracy and convergence. Through Tim Warburton’s efforts,

several matrix-vector product kernels variants are developed. A brief description of each

53

kernel is given in table 3.3.

The baseline kernel described in table 3.3 already represents a well-optimized kernel for

CUDA GPUs. The matrix-vector product kernels are taken from the OCCA implementation in

libParanumal [69]. The kernel there includes the numerous optimizations described for the

BK5 kernel in [70]. Included in these optimizations are the efficient use of shared memory

with padding to avoid bank conflicts and careful use of register to reduce the number of

global memory accesses while still reducing register pressure and preserving high occupancy.

Table 3.3: Summary of the strategies applied for Ax kernel. Nq = p + 1 is the number
of quadrature points in a single dimension. nD represents the number of dimensions in
launching the thread block, while t0, t1, and t2 represent the number of threads in each
dimension. E/b represents the number of elements in a thread block. For the cases where
E/b is not unity, a fixed number of elements are executed per each thread block. This specific
number, however, is tuned for a given polynomial order, precision, and GPU.

v E/b = 1? nD t0 t1 t2 Description

0 1 2 Nq Nq 1 Baseline kernel
1 1 2 Nq Nq 1 Pad shmem to avoid bank conflicts, reduce register pressure
2 0 3 Nq Nq E/b Blocked element left-most index in shmem
3 0 3 Nq Nq Nq · E/b 3D thread launch, only good for low orders
4 0 3 Nq Nq E/b Blocked element right-most index in shmem
5 0 3 Nq Nq E/b Same as 4, reduced register pressure
6 1 2 Nq Nq 1 Same as 1, different shmem padding

The performance of each kernel variant is measured, both on a single A100 GPU, as well as

a single MI250X/1GCD GPU. The GFLOPS rate, fastest kernel, and speedup over the base-

line kernel are reported in table 3.4 for the A100 GPU and table 3.5 for the MI250X/1GCD

GPU. The results demonstrate that the fastest kernel variant depends on the polynomial

order, precision, and even the GPU architecture. In addition, using the incorrect kernel

variant can result in highly sub-optimal performance. Hard-coding the fastest kernel variant

for each polynomial order, precision, and GPU architecture combination, however, is not a

viable solution. This is especially the case for new and upcoming GPU architectures, such

as the NVIDIA H100, AMD MI300, and Intel Ponte Vecchio GPUs. Therefore, run-time

kernel selection is required for good performance portability. This is done by measuring the

performance of each of the kernel variants described in table 3.3 and selecting the fastest

kernel variant at run-time. This process is repeated for each polynomial order and precision

required for the case. For example, a (7, 3, 1) multigrid cycle requires the matrix-vector

product kernel in single precision for polynomial order p = 7, p = 3, and p = 1, as well as

double precision for p = 7.

To further illustrate the importance of run-time kernel selection, the performance of the

54

Table 3.4: Ax kernel GFLOPS rates and speedup for A100

(a) Single precision

p GFLOPS Fastest Kernel Speedup

1 1428 2 3.43
2 1902 2 1.75
3 2493 2 1.18
4 2870 2 1.06
5 3323 4 1.27
6 3610 2 1.09
7 4244 4 1.02
8 4139 6 1.11
9 4556 4 1.14
10 4348 6 1.00
11 5015 6 1.07
12 4476 6 1.01

(b) Double precision

p GFLOPS Fastest Kernel Speedup

1 814 2 2.19
2 1009 4 1.25
3 1326 4 1.05
4 1504 2 1.02
5 1749 4 1.14
6 1913 2 1.07
7 2220 2 1.03
8 2220 2 1.10
9 2390 2 1.10
10 2460 2 1.09
11 2560 2 1.11
12 2341 2 1.17

Table 3.5: Ax kernel GFLOP rates and speedup for MI250X/1GCD

(a) Single precision

p GFLOPS Fastest Kernel Speedup

1 1017 2 4.20
2 1101 5 1.58
3 1476 6 1.02
4 1668 1 1.73
5 2003 4 1.04
6 2522 6 2.49
7 3831 4 1.02
8 3246 5 3.40
9 3632 2 1.25
10 4000 4 4.20
11 4005 2 1.33
12 4165 5 4.61

(b) Double precision

p GFLOPS Fastest Kernel Speedup

1 491 2 2.76
2 504 5 1.08
3 762 2 1.17
4 949 5 1.07
5 1187 1 1.03
6 1317 4 1.00
7 1923 0 1.00
8 1742 4 1.05
9 1919 2 1.10
10 2167 0 1.00
11 2022 2 1.06
12 2233 2 1.36

matrix-vector product kernel is measured on a single V100 and MI250X/1GCD GPU in both

single and double precision. The performance of the baseline kernel is compared against the

performance of the fastest kernel variant for the given problem. The number of degrees

of freedom is varied from a few hundred to 10 million, and the throughput performance is

measured across a thousand trials. Double and single precision results for the V100 GPU

are shown in figs. 3.1 and 3.2, respectively. The same for the MI250X/1GCD are shown in

figs. 3.3 and 3.4. Work rates in terms of GFLOPS on the V100 GPU for double and single

precision are shown in figs. 3.5 and 3.6; MI250X/1GCD GFLOPS results are in figs. 3.7

55

103 104 105 106 107

Degrees of Freedom

0

2

4

6

8

Th
ro

ug
hp

ut
 (G

DO
F/

s)
Max Throughput: 8.39 GDOF/s
cusparse
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

103 104 105 106 107

Degrees of Freedom

0

2

4

6

8

Th
ro

ug
hp

ut
 (G

DO
F/

s)

Max Throughput: 8.58 GDOF/s
cusparse
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Figure 3.1: Single V100 throughput performance of Ax kernel in 64-bit precision on Summit
for varying polynomial orders and degrees of freedom. Left: no run-time kernel selection,
right: run-time kernel selection.

103 104 105 106 107

Degrees of Freedom

0

5

10

15

Th
ro

ug
hp

ut
 (G

DO
F/

s)

Max Throughput: 16.50 GDOF/s
cusparse
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

103 104 105 106 107

Degrees of Freedom

0

5

10

15

Th
ro

ug
hp

ut
 (G

DO
F/

s)
Max Throughput: 17.71 GDOF/s

cusparse
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Figure 3.2: Single V100 throughput performance of Ax kernel in 32-bit precision on Summit
for varying polynomial orders and degrees of freedom. Left: no run-time kernel selection,
right: run-time kernel selection.

and 3.8.

As shown in figs. 3.3 and 3.4, the maximum observed throughput is not significantly im-

proved through run-time kernel selection. For the double precision Ax kernel, the maximum

observed throughput is 11.62 GDOF/s for the baseline kernel and 12.01 GDOF/s for the

fastest kernel. Further, reasonably good performance is obtained across the considered poly-

nomial orders, with exception to the p = 1 and p = 2 cases. For reference, the measured

throughput using hipsparse on an assembled CSR matrix representing a three-dimensional

finite-difference grid on a box is shown as the black line figs. 3.3 and 3.4. This observed

56

103 104 105 106 107

Degrees of Freedom

0

2

4

6

8

10

12
Th

ro
ug

hp
ut

 (G
DO

F/
s)

Max Throughput: 11.62 GDOF/s
hipsparse
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

103 104 105 106 107

Degrees of Freedom

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (G

DO
F/

s)

Max Throughput: 12.01 GDOF/s
hipsparse
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Figure 3.3: Single MI250X/1GCD throughput performance of Ax kernel in 64-bit precision
on Frontier for varying polynomial orders and degrees of freedom. Left: no run-time kernel
selection, right: run-time kernel selection.

103 104 105 106 107

Degrees of Freedom

0

5

10

15

20

Th
ro

ug
hp

ut
 (G

DO
F/

s)

Max Throughput: 22.59 GDOF/s
hipsparse
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

103 104 105 106 107

Degrees of Freedom

0

5

10

15

20

Th
ro

ug
hp

ut
 (G

DO
F/

s)
Max Throughput: 23.75 GDOF/s

hipsparse
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Figure 3.4: Single MI250X/1GCD throughput performance of Ax kernel in 32-bit precision
on Frontier for varying polynomial orders and degrees of freedom. Left: no run-time kernel
selection, right: run-time kernel selection.

performance regression in the matrix-free implementation is explained at the end of this

section.

Why does run-time kernel selection not improve the performance of the matrix-vector

product kernel on the MI250X/1GCD for double precision? As noted previously, the base-

line kernel is already highly optimized, especially for double precision. However, in single

precision, the baseline kernel is not as well optimized for even values of p. The max through-

put prior to tuning is 22.59 GDOF/s and 23.75 GDOF/s after tuning. Careful inspection,

however, reveals that the throughputs prior to tuning are significantly lower for even values

57

103 104 105 106 107

Degrees of Freedom

0

500

1000

1500

GF
LO

PS
Max Work Rate: 1563.16 GFLOPS

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8
p = 9

103 104 105 106 107

Degrees of Freedom

0

500

1000

1500

GF
LO

PS

Max Work Rate: 1594.49 GFLOPS
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8
p = 9

Figure 3.5: Single V100 GFLOPS performance of Ax kernel in 64-bit precision on Summit
for varying polynomial orders and degrees of freedom. Left: no run-time kernel selection,
right: run-time kernel selection.

103 104 105 106 107

Degrees of Freedom

0

1000

2000

3000

GF
LO

PS

Max Work Rate: 3023.67 GFLOPS
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8
p = 9

103 104 105 106 107

Degrees of Freedom

0

1000

2000

3000

GF
LO

PS
Max Work Rate: 3304.85 GFLOPS

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8
p = 9

Figure 3.6: Single V100 GFLOPS performance of Ax kernel in 32-bit precision on Summit
for varying polynomial orders and degrees of freedom. Left: no run-time kernel selection,
right: run-time kernel selection.

of p, such as p = 4 and p = 6. After tuning, however, these throughputs are significantly

improved.

Similar results are observed for the V100 GPU, as shown in figs. 3.1 and 3.2. In double

precision, the maximum throughput for the baseline kernel is 8.39 GDOF/s. while the run-

time tuned kernel achieves 8.58 GDOF/s. In single precision, the maximum throughput for

the baseline kernel is 16.50 GDOF/s and 17.71 GDOF/s for the run-time tuned kernel. An

important observation is that, in single precision, the kernel throughputs are nearly a factor

of two higher than in double precision. This is the case for both the MI250X/1GCD and

58

103 104 105 106 107

Degrees of Freedom

0

500

1000

1500

2000
GF

LO
PS

Max Work Rate: 1980.31 GFLOPS
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8
p = 9

103 104 105 106 107

Degrees of Freedom

0

500

1000

1500

2000

GF
LO

PS

Max Work Rate: 2008.65 GFLOPS
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8
p = 9

Figure 3.7: Single MI250X/1GCD GFLOPS performance of Ax kernel in 64-bit precision
on Frontier for varying polynomial orders and degrees of freedom. Left: no run-time kernel
selection, right: run-time kernel selection.

103 104 105 106 107

Degrees of Freedom

0

1000

2000

3000

4000

GF
LO

PS

Max Work Rate: 3913.97 GFLOPS
p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8
p = 9

103 104 105 106 107

Degrees of Freedom

0

1000

2000

3000

4000

GF
LO

PS
Max Work Rate: 4058.05 GFLOPS

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8
p = 9

Figure 3.8: Single MI250X/1GCD GFLOPS performance of Ax kernel in 32-bit precision
on Frontier for varying polynomial orders and degrees of freedom. Left: no run-time kernel
selection, right: run-time kernel selection.

V100 GPUs, motivating the use of mixed-precision for preconditioning.

In addition to the matrix-free b = Ax kernels, figs. 3.1 to 3.4. show the performance

applying the assembled compressed sparse row (CSR) matrix through the native cusparse

and hipsparse libraries. As noted by Jed Brown and coworkers in [71], it is possible to

apply the matrix-free operator, even for p = 1, faster than the native CSR implementation.

This, however, is not observed in these kernels as the solution vector is stored in E-vector

format, see fig. 2.1, rather than the T-vector format used in the native CSR implementation.

This results in roughly a factor of 8 increase in the words read from global memory for x

59

and written to b. However, unless smoothing at the p = 1 level is utilized, the matrix-

free operator at p = 1 is never applied in the multigrid V-cycle preconditioner described in

section 2.6. However, since the focus of this work is on the performance of the matrix-free

operator for higher polynomial orders, we do not explore this further.

2 4 6 8 10
Polynomial order, p

0

500

1000

1500

M
at

rix
-v

ec
to

r p
ro

du
ct

 G
FL

OP
S

Double Precision V100
Measured Performance
Empirical Roofline

Figure 3.9: Single V100 measured maximum GFLOPS rate for the matrix-vector product
kernel in 64-bit precision on Summit. The roofline model from eq. (3.6) is used with B = 820
GB/s.

2 4 6 8 10
Polynomial order, p

0

1000

2000

3000

M
at

rix
-v

ec
to

r p
ro

du
ct

 G
FL

OP
S

Single Precision V100
Measured Performance
Empirical Roofline

Figure 3.10: Single V100 measured maximum GFLOPS rate for the matrix-vector product
kernel in 32-bit precision on Summit. The roofline model from eq. (3.6) is used with B = 820
GB/s.

While the kernel work rates and throughputs reported in this section are useful for un-

derstanding the performance of the matrix-free operator, is there an upper bound on the

performance of the matrix-free operator? We perform a roofline model similar to [72]. The

60

computed rate, R, is modeled as

R = min

(
C,

B

dw + dr
F

)
, (3.6)

where C represents the peak work rate of the GPU in FLOPS, B represents the peak

(bidirectional) bandwidth in bytes per second, dw and dr represent the number of bytes

written and read, respectively, and F represents the number of FLOP invoked in the kernel.

As C is typically measured in several TFLOPS and B is near 1 TB/s on current-generation

GPU architectures, the relatively low arithmetic intensity of the matrix-free operator results

in the bandwidth bound being the limiting factor. Based on the asymptotic streaming rates

described in [73], we use here the same bandwidth values as in [72]: B = 820 GB/s for the

V100 GPU and B = 1117 GB/s for the MI250X/1GCD GPU.

2 4 6 8 10
Polynomial order, p

0

500

1000

1500

2000

2500

M
at

rix
-v

ec
to

r p
ro

du
ct

 G
FL

OP
S

Double Precision MI250X/1GCD
Measured Performance
Empirical Roofline

Figure 3.11: Single MI250X/1GCD measured maximum GFLOPS rate for the matrix-vector
product kernel in 64-bit precision on Frontier. The roofline model from eq. (3.6) is used with
B = 1117 GB/s.

With the roofline model described in eq. (3.6) available, we can compare the maximum

observed work rate to the roofline model. This is done in figs. 3.9 and 3.10 for double and

single precision on the V100 GPU, respectively, and in figs. 3.11 and 3.12 for double and

single precision on the MI250X/1GCD GPU, respectively. As we observe, the maximum

observed work rate matches the empirical roofline model across most polynomial orders. For

particularly high polynomial orders, such as N = 10, we observe that the maximum observed

work rate starts to deviate from the roofline model. Despite this, the maximum observed

work rate remains within 80% of the empirical roofline model across all polynomial orders,

precisions, and GPUs considered here.

61

2 4 6 8 10
Polynomial order, p

0

1000

2000

3000

4000

5000
M

at
rix

-v
ec

to
r p

ro
du

ct
 G

FL
OP

S
Single Precision MI250X/1GCD

Measured Performance
Empirical Roofline

Figure 3.12: Single MI250X/1GCD measured maximum GFLOPS rate for the matrix-vector
product kernel in 32-bit precision on Frontier. The roofline model from eq. (3.6) is used with
B = 1117 GB/s.

3.2.2 Fast Diagonalization Method Kernel

The Schwarz smoothing strategies described in algs. 2.10 and 2.11 from section 2.6 require

the application of the fast diagonalization method (FDM). Since this operation is performed

as part of the smoother, potentially several times for the polynomial smoothers described

in section 2.7, the performance of the FDM kernel is critical to the overall performance of

the solver. As mentioned previously, this operation need only be applied in single precision,

as it is merely a step in the preconditioner. Similar to the matrix vector product kernel in

section 3.2.1, however, the FDM kernel must be performance portable across several different

GPU architectures and polynomial orders. With help from Tim Warburton, several FDM

kernel variants are developed. Table 3.6 describes each kernel variant.

Table 3.6: Summary of the strategies applied for FDM kernel. Nq = p + 1 is the number
of quadrature points in a single dimension. nD represents the number of dimensions in
launching the thread block, while t0, t1, and t2 represent the number of threads in each
dimension. E/b represents the number of elements in a thread block. For the cases where
E/b is not unity, a fixed number of elements are executed per each thread block. This specific
number, however, is tuned for a given polynomial order, precision, and GPU.

v E/b = 1? nD t0 t1 t2 Description

0 1 2 Nq + 2 Nq + 2 1 Baseline kernel
1 0 3 Nq + 2 Nq + 2 E/b Blocked element left-most index in shmem
2 0 3 Nq + 2 Nq + 2 E/b Blocked element right-most index in shmem
3 0 3 Nq + 2 Nq + 2 E/b Same as 2, reduce shmem usage
4 1 2 Nq + 2 Nq + 2 1 Same as 0, reduce shmem usage

62

While baseline kernel described in table 3.6 offers decent performance, it is not optimal.

The performance of each kernel variant is measured, both on a single V100 GPU, as well as a

single MI250X/1GCD GPU in table 3.7. Note here that pe denotes the size of the overlapping

subdomains, with pe = p+2 representing the overlap scheme depicted in fig. 2.9. We observe

that the fastest kernel variant provides a large speedup over the baseline kernel in all cases.

Much like the matrix-vector product kernel in section 3.2.1, the fastest variant differs for

each polynomial order and GPU architecture. Therefore, as before, the fastest kernel variant

is selected at run-time to maximize the kernel throughput.

Table 3.7: FDM Kernel GFLOPS rates and speedup on A100 and MI250X/1GCD.

(a) Single precision A100 FDM kernel

pe GFLOPS Fastest Speedup

3 2720 1 1.771
4 3787 4 1.607
5 4372 1 1.544
6 5211 4 1.662
7 5589 4 1.972
8 6938 4 1.721
9 7128 4 1.429
10 8261 4 1.748
11 8270 4 1.606
12 8272 4 1.785

(b) Single precision MI250X/1GCD FDM kernel

pe GFLOPS Fastest Speedup

3 2746 2 2.657
4 3199 2 5.565
5 4153 3 1.751
6 4774 3 7.301
7 4347 4 1.525
8 5435 3 8.616
9 5019 3 1.84

10 5336 3 8.58
11 4736 3 1.993
12 5076 3 9.239

103 104 105 106 107

Degrees of Freedom

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (G

DO
F/

s)

Max Throughput: 23.39 GDOF/s
pe = 3
pe = 4
pe = 5
pe = 6
pe = 7
pe = 8
pe = 9

103 104 105 106 107

Degrees of Freedom

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (G

DO
F/

s)

Max Throughput: 30.83 GDOF/s
pe = 3
pe = 4
pe = 5
pe = 6
pe = 7
pe = 8
pe = 9

Figure 3.13: Single V100 throughput performance of FDM kernel in 32-bit precision on
Summit for varying polynomial orders and degrees of freedom. Left: no run-time kernel
selection, right: run-time kernel selection.

63

103 104 105 106 107

Degrees of Freedom

0

10

20

30

40
Th

ro
ug

hp
ut

 (G
DO

F/
s)

Max Throughput: 25.53 GDOF/s
pe = 3
pe = 4
pe = 5
pe = 6
pe = 7
pe = 8
pe = 9

103 104 105 106 107

Degrees of Freedom

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

DO
F/

s)

Max Throughput: 40.21 GDOF/s
pe = 3
pe = 4
pe = 5
pe = 6
pe = 7
pe = 8
pe = 9

Figure 3.14: Single MI250X/1GCD throughput performance of FDM kernel in 32-bit pre-
cision on Frontier for varying polynomial orders and degrees of freedom. Left: no run-time
kernel selection, right: run-time kernel selection.

103 104 105 106 107

Degrees of Freedom

0

1000

2000

3000

4000

5000

GF
LO

PS

Max Work Rate: 3882.15 GFLOPS
pe = 3
pe = 4
pe = 5
pe = 6
pe = 7
pe = 8
pe = 9

103 104 105 106 107

Degrees of Freedom

0

1000

2000

3000

4000

5000

GF
LO

PS
Max Work Rate: 4910.47 GFLOPS

pe = 3
pe = 4
pe = 5
pe = 6
pe = 7
pe = 8
pe = 9

Figure 3.15: Single V100 GFLOPS performance of FDM kernel in 32-bit precision on Summit
for varying polynomial orders and degrees of freedom. Left: no run-time kernel selection,
right: run-time kernel selection.

Figure 3.13 shows the throughput performance of the FDM kernel before and after tuning

on the V100 GPU. The same results in terms of GFLOPS are reported in fig. 3.15. The

max throughput achieved prior to tuning is 23.39 GDOF/s. However, after tuning, the max

throughput is 30.83 GDOF/s, a 31.8% increase in performance. A much larger performance

boost is observed on the MI250X/1GCD GPU. As shown in fig. 3.14, the max throughput

is raised from 25.53 GDOF/s to 40.21 GDOF/s, a 57.6% increase in performance. An

additional benefit from the run-time kernel selection is that the measured throughputs are

more consistent across polynomial orders. For example, an odd-even pattern is observed in

64

103 104 105 106 107

Degrees of Freedom

0

1000

2000

3000

4000

5000

6000

GF
LO

PS
Max Work Rate: 3445.89 GFLOPS

pe = 3
pe = 4
pe = 5
pe = 6
pe = 7
pe = 8
pe = 9

103 104 105 106 107

Degrees of Freedom

0

1000

2000

3000

4000

5000

6000

GF
LO

PS

Max Work Rate: 6240.52 GFLOPS
pe = 3
pe = 4
pe = 5
pe = 6
pe = 7
pe = 8
pe = 9

Figure 3.16: Single MI250X/1GCD GFLOPS performance of FDM kernel in 32-bit precision
on Frontier for varying polynomial orders and degrees of freedom. Left: no run-time kernel
selection, right: run-time kernel selection.

the left in fig. 3.14, where the throughput is much lower for even polynomials orders. This is

mitigated through the run-time kernel selection, however. For this reason, run-time kernel

selection, both for the FDM and matrix-vector product kernel in section 3.2.1, is used for

the remainder of this work.

3 4 5 6 7 8
Polynomial order, pe

0

1000

2000

3000

4000

5000

6000

FD
M

 G
FL

OP
S

Single Precision V100
Measured Performance
Empirical Roofline

Figure 3.17: Single V100 measured maximum GFLOPS rate for the FDM kernel in 32-bit
precision on Summit. The roofline model from eq. (3.6) is used with B = 820 GB/s.

Is it possible to further improve the performance of the FDM kernel? According to the

roofline model from eq. (3.6), the answer is not by much. Figure 3.17 shows the measured

maximum GFLOPS rate as compared to the empirical roofline model for the V100 GPU

with B = 820 GB/s. The same results for the MI250X/1GCD with B = 1117 GB/s are

shown in fig. 3.18. The difference between the observed maximum work rate and the roofline

65

3 4 5 6 7 8 9 10
Polynomial order, pe

0

2000

4000

6000

8000

10000

FD
M

 G
FL

OP
S

Single Precision MI250X/1GCD
Measured Performance
Empirical Roofline

Figure 3.18: Single MI250X/1GCD measured maximum GFLOPS rate for the FDM kernel
in 32-bit precision on Frontier. The roofline model from eq. (3.6) is used with B = 1117
GB/s.

model is larger for the FDM kernel than the matrix-vector product kernel in section 3.2.1.

However, the FDM kernel still achieves roughly 80% of the roofline model across all but the

highest polynomial orders on both the V100 and MI250X/1GCD GPU. We observe that the

matrix-vector product kernel consistently achieves at least 80% to 90% of the roofline model

across all polynomial orders, precisions, and GPUs. We further observe that the FDM kernel

generally reaches 80% of the roofline model for most polynomial orders, irrespective of the

GPU. As such, we conclude that both kernels are nearly optimal. We therefore now focus our

attention on the performance of the various solver components in parallel in section 3.3.

3.3 UNDERSTANDING THE COST OF VARIOUS OPERATORS

Important preconditioner components include the matrix-vector product, the additive

Schwarz smoother in alg. 2.10 from section 2.6, a boomerAMG V-cycle on the GPU to

approximate the low-order operator, A−1
F from section 2.4, and a coarse-grid solve A−1

c on

the CPU as required in algs. 2.8 and 2.9. These relatively simple operators form the basis

of the preconditioners considered in this thesis; all preconditioners considered in the current

work are the composition of these operators, albeit at different polynomial orders. Therefore,

it is imperative that these operators be as fast possible and performance-portable. Run-time

kernel selection, as described in section 3.2.1 and section 3.2.2 for the matrix-vector product

and FDM kernels, respectively, is one technique to ensure performance portability.

To illustrate the relative cost of these various components of the Poisson solver, a weak

scaling study for the Kershaw (ε = 0.05) benchmark problem (see section 2.8.1) is performed

66

with n/P ∼ 2.67M unknowns per V100 GPU, starting at P = 6 GPUs. The time to apply

A, SASM , and a single boomerAMG V-cycle to approximate A−1
F on the GPU and A−1

c on

the CPU is shown in fig. 3.19. For more detail regarding SASM , see section 2.6. In addition,

fig. 3.19 also shows the time to compute 10 weighted inner products (wdotp), including

the all-reduce across all processors. Despite the higher kernel throughputs observed in the

101 102 103

V100s

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e
(m

s)

2.48 + 0.77log(P), R
2 = 0.98

6.26 + 2.19log(P), R
2 = 0.95

101 102 103

V100s

0

10

20

30

40

50

Co
st

 re
la

tiv
e

to
 A

x

Ax
ASM
Coarse
SEMFEM
10 wdotp

Figure 3.19: Weak scaling operator cost study for the Poisson solver for the Kershaw
benchmark problem, ε = 0.05.

FDM kernel application (fig. 3.13) compared to the matrix-vector product kernel (fig. 3.2),

the total time to apply SASM is nearly a factor three more expensive due to the increased

number of gather-scatter applications required, see alg. 2.10. Both of these operations, which

require only highly-scalable gather-scatter communication operations, exhibit practically no

P -dependence in the time to apply them. This is the case even when moving from entirely

on-node communication at P = 6 to off-node communication. The relatively expensive

coarse-grid solve and SEMFEM operator costs, however, scales as logP . For SEMFEM,

this observation is consistent with the performance cost analysis performed by Fischer and

coworkers [74] for geometric multigrid. Coarse-grid solves, moreover, scale as logP due to

the all-to-all communication pattern required in the solution of the coarse-grid problem [75,

section 1.4]. As we will discuss in section 3.3.1, the communication costs associated with

the coarse-grid solve are especially expensive in comparison to the relatively fast compute

provided on heterogeneous architectures.

From fig. 3.19, why is applying the low-order AMG V-cycle much more expensive compared

67

to the matrix-vector product and smoother applications, even at relatively low processor

counts. Let us consider applying the AMG V-cycle for approximating A−1
F . The AMG grid

complexity, which measures the number of non-zeros per row in the entire multigrid V-cycle

relative to the finest grid, remains approximately 2.56 for the problem considered in fig. 3.19.

As a very light-weight L1 Jacobi smoother is employed, the equivalent work of two matrix-

vector products per cycle per level are performed. Assuming the throughput of applying

the low-order operator is comparable to applying the high-order operator, this equates to

the expense of roughly 5.12 matrix-vector products per V-cycle. However, even at P = 6

processors, the measured time to apply the AMG V-cycle is approximately 30 times larger

than a matrix-vector product. There are two primary reasons for this discrepancy. First,

the assembled CSR matrix-vector product throughput steeply drops off with respect to the

number of degrees-of-freedom in the operator, as observed in the assembled matrix-vector

product throughputs from section 3.2.1. Second, each algebraic multigrid level implies a

necessary communication in applying the operator. This grows from 8 multigrid levels for

P = 6 to 11 levels for P = 768.

3.3.1 Communication Cost on Heterogeneous Architectures

The following communication analysis is from [74, 75]. To understand the effect of com-

munication on the performance of our solvers, we consider the communication cost in terms

of the available work while a single word is communicated. Given the inter-node latency in

seconds, α∗; the inverse-bandwidth as seconds per word, β∗; the total number of words to

be communicated, m; and the time in seconds to send the message, tc; the communication

cost is given by the following model:

tc(m) = α∗ + β∗m. (3.7)

Introducing an inverse throughput measure in terms of seconds per FLOP, ta, the following

non-dimensionalization of eq. (3.7) is obtained:

tc(m) = (α + βm)ta. (3.8)

Table 3.8 shows empirically measured machine-performance characteristics for various ma-

chines. Reproduced from [75], table 3.8 is constructed using the table from [74] with Summit

values measured from [76] and the Summit throughput from [77].

From table 3.8, we observe that the heterogeneous Summit architecture is significantly

68

Table 3.8: Empirical machine-dependent parameters over a range of supercomputers. For
reference, OLCF’s Summit are equipped with 6 V100 GPUs per node, with a theoretical
peak performance of 7 TFLOPS per GPU. In CFD simulations, however, a more realistic
work rate of 0.5 TFLOPS per GPU is utilized. m2 := α∗β∗ is the message size at which it
would take twice as long to send as a single word message.

Year ta (µs) αta (µs) βta (µs/wd) α β m2 machine

1986 50 5960 64 119.2 1.28 93 Intel iPSC-1 (286)
1987 0.333 5960 64 17898 192 93 Intel iPSC-1/VX
1988 10 938 2.8 93.8 0.28 335 Intel iPSC-2 (386)
1989 0.25 938 2.8 3752 11.2 335 Intel iPSC-2/VX
1990 0.1 80 2.8 800 28 29 Intel iPSC-i860
1991 0.1 60 0.8 600 8 75 Intel Delta
1992 0.066 50 0.15 760 2.3 333 Intel Paragon
1995 0.02 60 0.27 3000 13.5 222 IBM SP2 (BU96)
1996 0.016 30 0.02 1875 1.25 1500 ASCI Red 333
1998 0.006 14 0.06 2333 10 233 SGI Origin 2000
1999 0.005 20 0.04 4000 8 500 Cray T3E/450
2005 0.002 4 0.026 2000 13 154 BGL/ANL
2008 0.0017 3.5 0.022 2060 13 160 BGP/ANL
2011 0.0007 2.5 0.002 3570 2.87 1250 Cray Xe6 (KTH)
2012 0.0007 3.8 0.0045 5430 6.43 845 BGQ/ANL
2015 0.0004 2.2 0.0015 5500 3.75 1467 Cray XK7
2020 0.000002 12.6 0.0011 6300000 550 11456 Summit

different from the other machines considered, in that millions of operations can be performed

within the span of a single communication. This, in turn, implies that the per GPU workload

must be sufficiently large to enable good performance. This is true both from the fact that

sufficient work must be present to reach good kernel throughputs, as shown in section 3.2,

as well as the fact that the communication cost relative to FLOP cost is much larger on

heterogeneous architectures than traditional CPU-only machines. This is the reason we

observe the strong scaling characteristics described in section 2.9. For example, the strong

scaling limits on Summit are established at no less than n/P ∼ 2M gridpoints per GPU.

How can we utilize the fact that the problem sizes per GPU must be relatively large to

our advantage? For the matrix-vector product and Schwarz operations shown in fig. 3.19,

only sparse point-to-point communication is required. Given that this communication scales

with the surface area of the domain owned by a given processor, the square-cube law rela-

tionship between the surface area and volume of the per-processor domain is exploited. The

ratio of the per-processor volume, which dictates the total amount of work required, to the

per-processor surface area must be larger on heterogeneous architectures than traditional

69

Launch operator on global elements

Launch pack kernel

MPI exchange

Launch unpack kernel

Launch gather-scatter kernel

Start

Time

End

Host Device

Synchronize

Launch operator on local elements

Figure 3.20: Timeline visualization for overlapping communcation and computation. This
allows nekRS to effectively hide the communication cost associated with the matrix-vector
product and Schwarz smoother.

CPU-architectures. Since there are so many more elements that lie entirely within the per-

processor volume, we can effectively overlap much of the communication and computation

required in the matrix-vector product and Schwarz operations.

In nekRS, a communication/computation overlapping strategy similar to those considered

by Chalmers and coworkers in [72] is employed. Figure 3.20 shows a timeline visualization

of the overlapping strategy employed in nekRS. First, the surface-elements that lie at inter-

processor boundaries are executed in the operator kernel evaluation. Once complete, those

entries are packed into send buffers. Afterward, the operator kernel is launched over the

interior “local” elements, allowing a large portion of the computation to be overlapped with

70

the communication. The MPI exchange in question is implemented using either MPI Isend

and MPI Irecv following by a MPI Waitall call (referred to as “pair-wise” exchange), or

through a sparse MPI Neighbor alltoallv (referred to as “neighbor all-to-all” exchange).

A priori, the optimal communication pattern is not known until run-time. To further com-

plicate this matter, GPU-aware MPI implementations may execute slower than transferring

the data from the GPU to the host, performing the communication on the host, and then

finally transferring the data back to the device. This may occur especially when the volume

of words communicated is small—in that regime, the expense associated with offloading the

data back to the host may be comparatively small. To address this, the handle associated

with each gather-scatter operation in nekRS is tuned at run-time. The fastest combination

of pair-wise or neighbor all-to-all, performing the pack/unpack operations on the CPU or

GPU, and whether to perform the MPI communication with the GPU buffer or transfer to

the host is determined. This ensures that the handle associated with each gather-scatter

occurs as quickly as possible, as it is the fundamental communication pattern required in

the matrix-vector product and Schwarz smoother operations, which are needed at several

different polynomial orders when used as part of the p-multigrid preconditioner.

The relatively poor parallel scalability of the coarse-grid and AMG V-cycle operators as

compared to the matrix-vector product and Schwarz operators from fig. 3.19 is due to the

increased number of communication operations required in the former two. Both the coarse-

grid operator and AMG V-cycle associated with the low-order preconditioner require a global

reduction that scales as logP . To further worsen matters, at each algebraic multigrid level,

the assembled CSR matrix-vector product requires an additional nearest-neighbor exchange.

There are, however, several strategies that can be employed to mitigate this cost. First,

through improving the low-order operator by treating it as a coarse-sparse in an auxiliary

space method, the number of iterations required to converge can be reduced. This implies

fewer AMG V-cycle calls needed to reach convergence. This idea is covered in chapter 6.

A technique to mitigate the relatively poor parallel scalability of the coarse-grid solver is

through overlapping it with the remainder of the V-cycle. This topic is the subject of

chapter 5. Finally, another technique to ensure that fewer coarse-grid solves are required is

to invest in better multigrid smoothers. Chapter 4 discusses polynomial smoothers which

are asymptotically optimal as the polynomial smoother order is increased.

71

Chapter 4: Optimal Smoothing Polynomials and One-Sided V-Cycles

In section 2.7, polynomial smoothers based on the shifted and scaled first-kind Cheby-

shev polynomials are constructed as the solution to a mini-max problem on the interval

[λmin, λmax]. While the Chebyshev polynomials of the first-kind provide good smoothing

properties when paired with the Schwarz-based (section 2.6) or point-wise Jacobi smooth-

ing, the ad-hoc λmin parameter must be chosen. While the sensitivity analysis from table 2.2

indicates that good solver performance can be achieved for a wide-range of λmin values, tun-

ing the λmin parameter can yield a 10-20% reduction in the iteration count. This analysis,

further, is only conducted for a single problem with k = 3 order smoothing. In this chapter,

we will show, utilizing results from Lottes [23], that smoother polynomials can be con-

structed as the solution to theoretical multigrid error bounds. Notably, theoretical results

based on the value of a multigrid error bound demonstrate that the maximum eigenvalue of

the multigrid error propagator scales as O(k−1) as the order k → ∞ when using the first-

kind Chebyshev smoothers from section 2.7 with a fixed value of λmin. However, we achieve

O(k−2) scaling in the maximum eigenvalue of the multigrid error propagator through the

polynomial smoothers considered in this chapter.

The organization of this chapter is as follows. Section 4.1 introduces polynomial smoothers

based on Chebyshev polynomials of the fourth kind which are developed by Lottes in [23].

Lottes’s contributions from [23] are summarized in section 4.1.1. The remaining content in

this chapter, however, are original contributions in [78] and this thesis. While the first-kind

Chebyshev smoothers solve a mini-max problem on the interval [λmin, λmax], the fourth-

kind Chebyshev smoothers solve a weighted mini-max problem posed from a two-level error

bound posed by Hackbusch [79]. A multi-level V-cycle error bound due to Lottes [23] is used

to construct polynomial smoothers that are optimal with respect to that error bound. A

related question we answer in section 4.1 is the optimal way of distributing a fixed number of

smoothing operations m+n = 2k, with m pre-smoothing and n post-smoothing operations.

In section 4.2, the various polynomial smoothers are compared for the Poisson equation

discretized with 2D finite differences, and shown to have good agreement with the theoretical

results from section 4.1. The quality of the error-bound from [23] is also investigated, and

found to not be as sharp as desired. A local Fourier analysis (LFA) method extending the

work of Thompson and coworkers in [47] to the new polynomial smoothers is presented

in section 4.3. While this provides sharper estimates for the error bound, it is still not

as sharp as desired. Numerical results in the context of matrix-free p-multigrid methods

are considered in section 4.4. Finally, to address the lack of sharpness in the error bound,

72

smoother polynomials are constructed directly to optimize the convergence rate solver in

section 4.5. For this, the fourth-kind Chebyshev polynomials are used as a basis to construct

polynomial smoothers optimized through Nelder-Mead optimization.

4.1 OPTIMAL POLYNOMIAL SMOOTHERS FOR MULTIGRID

In this section, we describe the work by Lottes [23] on optimal polynomial smoothers for

multigrid in section 4.1.1. With the fourth and optimized fourth-kind Chebyshev smoothers

described, we then extend Lottes’s analysis to the first-kind Chebyshev polynomial smoothers

in section 4.1.2. In addition, section 4.1.2 applies a V-cycle error bound developed by Lottes

to determine the optimal way of distributing smoother passes between the pre- and post-

smoothing phases of the multigrid V-cycle.

4.1.1 Fourth and Optimized Fourth-Kind Chebyshev Polynomials

Is it possible to further improve the polynomial smoother and remove the ad-hoc λmin

parameter from the 1st-kind Chebyshev smoother, as described in section 2.7? Following

the work by Lottes [23], it is possible to improve the quality of the polynomial smoothers.

The polynomial smoother can be chosen in such a way to minimize an error bound [23], such

as the two-level bound proposed by Hackbusch [79] in eq. (4.1). Without loss of generality,

let ρ(SA) = 1. Let Gk(SA) be a k-order polynomial in SA. The two-level bound from

Hackbusch [79] is re-written as [23]:

∥E↘∥A =
∥∥(I − PA−1

c P TA)Gk

∥∥
A

≤ C
1/2
0 sup

0<λ≤1
λ1/2|pk(λ)|, (4.1)

where C0 is the multigrid approximation property constant, which for a given level j is

Cj :=
∥∥∥A−1

j − P j
j+1A

−1
j+1

(
P j
j+1

)T∥∥∥2

Aj ,Sj

:= sup
∥f∥

Sj
≤1

∥∥∥(A−1
j − P j

j+1A
−1
j+1

(
P j
j+1

)T)
f
∥∥∥2

Aj

. (4.2)

Solving the weighted mini-max problem in eq. (4.1) yields the solution [23]:

pk(λ) =
1

2k + 1
Wk(1− 2λ), (4.3)

73

where Wk is the Chebyshev polynomial of the 4th-kind of order k. Chebyshev polynomials

of the 4th-kind satisfy the same recurrence as that of the first-kind, with different initial

conditions [23, 80]:

Wn(x) = 2xWn−1(x)−Wn−2(x) with W0(x) = 1,W1(x) = 2x+ 1. (4.4)

While the fourth-kind Chebyshev polynomials optimize the two-level bound from Hack-

busch [79] in eq. (4.1), can we construct a polynomial that is optimal with respect to a V-cycle

bound? This is precisely what Lottes considers in [23] through optimizing the error-bound

presented in lemma 4.1.

Lemma 4.1. Let the smoother iteration (on each level j) be given by

Gj = pkj(SjAj) (4.5)

where Sj is SPD and scaled such that ρ(SjAj) = 1, and pkj(x) is a kj-order polynomial

satisfying pkj(0) = 1 and |pkj(x)| < 1 for 0 < x ≤ 1, possibly different on each level. Then

the V-cycle contraction factor

∥E↘∥2A ≤ max
j∈0,...,ℓ−1

Cj

Cj + γ−1
j

(4.6)

where Cj is the approximation property constant for level j, defined in eq. (4.2), and

γj = sup
0<λ≤1

λ pkj(λ)
2

1− pkj(λ)
2
. (4.7)

In order to optimize the bound in lemma 4.1, Lottes considers the fourth-kind Chebyshev

polynomials as a basis for the polynomial smoother given by

pk(λ) =
k∑

i=0

βi − βi+1

2i+ 1
Wi(1− 2λ), (4.8)

with β0 = 1 and βk+1 = 0. For the standard 4th-kind Chebyshev polynomial, βi := 1 for

all i, except for β0 = 1 and βk+1 = 0. In the case of the optimized fourth-kind Chebyshev

smoother, however, the βi coefficients can be chosen to form a polynomial smoother that is

optimal in the error bound from lemma 4.1 [23].

Given the polynomial smoother described in eq. (4.8) and relaxing the ρ(SA) = 1 as-

sumption, a similar iterative algorithm to alg. 2.12 can be derived as alg. 4.1. The inclusion

74

of the βi parameters in alg. 4.1 comes as a result of optimizing eq. (4.7) in the context of

the multi-level error bound from lemma 4.1 [23] 4 . For the standard 4th-kind Chebyshev

polynomial, betai = 1 for all i in alg. 4.1. While not a Chebyshev polynomial, the polynomial

optimizing the error bound in lemma 4.1 has a convenient basis in the 4th-kind Chebyshev

polynomials. The simple smoothing iteration with ω = 3/2, 1st-kind Chebyshev smoothing

with λmin = 0.3λmax, and the 4th-kind Chebyshev smoothing polynomials, with and without

optimal βi, are shown in fig. 4.1. Minimizing eq. (4.7) with respect to λmin in the 1st-kind

Chebyshev smoothing iteration, a contribution considered in this thesis, is also shown.

Algorithm 4.1: Chebyshev smoother, (Opt.) 4th-kind

Data: Initial solution, x0; Chebyshev polynomial order, k
Result: Smooth solution, xk

x0 = x
r0 = b− Ax0 /* Omit Ax0 if x0 = 0 */

d0 =
4

3

1

λmax

Sr0

for i = 1, . . . , k − 1 do
xi = xi−1 + βidi−1, ri = ri−1 − Adi−1

di =
2i− 1

2i+ 3
di−1 +

8i+ 4

2i+ 3

1

λmax

Sri

end
xk = xk−1 + βkdk−1

How does the γ−1 term from the bound in lemma 4.1 scale with respect to k for the various

polynomial smoothers? Lottes [23] notes that, for the simple smoother iteration with weight

ω,

γ−1
s (k) = 2ωk. (4.9)

The 4th-kind Chebyshev polynomial, however, has

γ−1
4 (k) =

4

3
k(k + 1), (4.10)

while the optimized 4th-kind Chebyshev polynomial is

γ−1
4opt(k) =

4

π2
(2k + 1)2 − 2

3
. (4.11)

Most notably, both 4th-kind Chebyshev polynomials types improve theO(k) simple smoother

iteration to O(k2) as k → ∞. In section 4.1.2, we will demonstrate the asymptotic scaling

4Tabulated βi coefficients for the 4th-kind Chebyshev polynomials are available in table A.1.

75

of γ−1 for the 1st-kind Chebyshev polynomial smoothers.

Figure 4.1: pk(λ) for various polynomial smoothers with varying polynomial orders, k.
fig. 4.1a simple polynomial smoothing with pk(λ) = (1 − 3/2λ)k. fig. 4.1b smoothing with
Chebyshev polynomials of the 1st-kind with λmin = 0.3. fig. 4.1c smoothing with Chebyshev
polynomials of the 1st-kind, λmin chosen to minimize eq. (4.7). fig. 4.1d smoothing with
Chebyshev polynomials of the 4th-kind, βi = 1. fig. 4.1e smoothing with Chebyshev poly-
nomials of the 4th-kind, βi chosen to minimize eq. (4.7). fig. 4.1f all polynomials considered,
with k = 3.

The method described in alg. 4.1 requires the same amount of computation/communi-

76

cation as the 1st-kind Chebyshev smoother in alg. 2.12 without needing the ad-hoc λmin

parameter required by the 1st-kind Chebyshev smoother. As discussed later in section 4.1.2,

the 4th-kind Chebyshev smoother converges faster than the 1st-kind Chebyshev smoother

for the same amount of work, especially as the smoother order, k, increases. Further, alg. 4.1

is widely applicable in various geometric and algebraic multigrid method solvers. Therefore,

as part of this dissertation, we have implemented alg. 4.1 in several popular open-source

software packages, including nekRS [4], petsc [18], and Trilinos/MueLu [19], in order to

make this method widely available. A further implementation of alg. 4.1 is available in hypre

[81] from the following pull request: https://github.com/hypre-space/hypre/pull/856.

In subsequent sections, such as section 4.1.2 and section 4.2, it is helpful to have a con-

crete mechanism to estimate the multigrid approximation property constant, Cj, as defined

in eq. (4.2). Following the interpretation presented by Lottes in [23], the multigrid ap-

proximation property constant in eq. (4.2) may be viewed as the condition number of SjAj

“restricted” to the Aj-orthogonal complement of the coarse-grid space, which is denoted

πj =
(
I − P j

j+1A
−1
j+1

(
P j
j+1

)T
Aj

)
. (4.12)

Without loss of generality, Sj may be rescaled such that ρ(SjAj) = 1. Given that, the

computation of multigrid approximation property constant, or the “restricted” condition

number of SjAj, may be found by performing Lanczos iteration on (SjAj)
−1 wherein the

candidate eigenvector is projected onto the Aj-orthogonal complement of the coarse-grid

space using the coarse-grid correction operator, πj, eq. (4.12). Algorithm 4.2 provides an

algorithm to estimate the multigrid approximation property constant on a given multigrid

level j.

4.1.2 Optimally Distributing Smoother Passes in the V-Cycle

Given 2k smoothing steps, what is the optimal way to distribute the number of smoothing

steps for the pre-smoother, m, and the post-smoother, n, with m+ n = 2k? The multi-level

error bound in lemma 4.1, developed by Lottes in [23], provides a theoretical framework to

answer the question.

Let us restrict the order considered in lemma 4.1 to the case kj = k for all j ∈ 0, . . . , ℓ− 1,

then γj = γ is constant across all levels. Further, let us define

C := max
j∈0,...,ℓ−1

Cj. (4.13)

77

Algorithm 4.2: Lanczos estimate of multigrid approximation property

Data: Operator Aj, Prolongator P
j
j+1, Coarse Operator Aj+1, m Lanczos iterations

Result: An estimate of the multigrid approximation property constant, Cj

q
1
= πj rand, q1 = q

1
/
∥∥∥q

1

∥∥∥
2

r = πjρ(SjAj) (SjAj)
−1 q

1

α1 = qT
1
r

β1 = ∥r∥2
for k = 2, . . . ,m do

q
k
= r/βk−1

r = πj

(
ρ(SjAj) (SjAj)

−1 q
k
− βk−1qk−1

)
αk = qT

k
r

βk = ∥r∥2
end

Cj ≈ ρ

α1 β1

β1 α2 β2

β2 α3
. . .

. βm−1

βm−1 αm

With eq. (4.13), lemma 4.1 simplifies to

∥E↘∥2A ≤
C

C + γ−1(k)

:= V (C, k). (4.14)

Rather than directly considering the effect of the choice of m and n on the multigrid error

contraction factor, we instead consider the effect on the error contraction bound presented

in eq. (4.14). The problem of interest, therefore, is to find m∗, n∗

m∗, n∗ := argmin
m,n,m+n=2k

√
V (C,m) ·

√
V (C, n)

= argmax
m,n,m+n=2k

C
(
γ−1(m) + γ−1(n)

)
+ γ−1(m) · γ−1(n), (4.15)

where γ−1(k) is the inverse of γ, as defined in eq. (4.7), for a k-order polynomial.

While Lottes [23] provides asymptotic results for γ−1(k) for the 4th-kind and optimized

4th-kind Chebyshev polynomial smoothers, we provide the same information here for the

1st-kind Chebyshev polynomial smoother, both with fixed λmin and λmin values chosen to

78

optimize eq. (4.7). This is required in order to apply the optimization problem posed in

eq. (4.15) to the 1st-kind Chebyshev polynomial smoother. To apply lemma 4.1 to the 1th-

kind Chebyshev polynomial, without loss of generality, let us assume that λmax = 1. For the

1st-kind Chebyshev polynomials with fixed λmin,

γ−1
1 (k) =

(
Tk

(
λmin+1
λmin−1

))2

− 1 k ≤ k∗

4kUk−1

(
λmin+1

λmin−1

)
(λmin−1)Tk

(
λmin+1

λmin−1

) k > k∗

, (4.16)

where Tξ and Uξ are the ξth-order Chebyshev polynomials of the first and second kinds,

respectively. For λmin = 0.1, k∗ = 3. As k →∞, eq. (4.16) scales as

γ−1
1 (k) ∼ 2

√
1

λmin

k. (4.17)

However, by choosing λmin such that γ−1 is maximized,

γ−1
1opt(k) ∼ 2.38k1.73 (4.18)

for large k. As an aside, a correlation for λ∗
min with 1% relative error and 0.1% absolute

error for k ∈ [1, 50] is given by

λ∗
min ≈

1.69

k1.68 + 2.11k + 1.98
. (4.19)

Asymptotic scaling for γ−1 as k →∞ are summarized for the various polynomial smoothers

in table 4.1.

Due to symmetry of eq. (4.15), the error bound for (m,n) is the same as that of (n,m).

To start to assess eq. (4.15), we first consider the case with m = n = k compared to m = 2k,

n = 0. For the simple smoother with fixed ω, the error-bound is minimized with m = n. For

the 4th-kind Chebyshev polynomial, m = 2k, n = 0 outperforms the symmetric m = n = k

if and only if

C >
2 (k + 1)2

3
. (4.20)

The optimized 4th-kind Chebyshev polynomial has a similar condition, provided

C >
2
(
6 (2k + 1)2 − π2

)2
3π2

(
−12 (2k + 1)2 + 6 (4k + 1)2 + π2

) (4.21)

79

Table 4.1: Asymptotic scaling of γ−1 for various polynomial smoothers in the limit as k → ∞.
The effect of the polynomial smoother on the multigrid error bound in lemma 4.1 is γ−1. Since
this term appears in the denominator, a larger γ−1 implies a smaller error contraction rate, which
is desirable. The scaling for the simple multi-sweep, 4th-kind Chebyshev, and 4th-kind optimal
Chebyshev smoothers are provided by Lottes in [23].

Polynomial Smoother γ−1, k →∞

Simple multi-sweep, damping 2ωk

1st-kind Chebyshev, fixed λmin 2

√
1

λmin
k

1st-kind Chebyshev, λ∗
min optimizes γ−1 2.38k1.78

4th-kind Chebyshev
4

3
k(k + 1)

4th-kind optimal Chebyshev
4

π2
(2k + 1)2 − 2

3

For the 1st-kind Chebyshev polynomial with fixed λmin,

C ⪆ 1.55e1.45k (4.22)

as k → ∞. However, for k ∈ [1, 3], m = 2k, n = 0 outperforms m = n = k, irrespective of

C. Lastly, for the 1st-kind Chebyshev polynomial with λmin chosen to maximize γ−1,

C ⪆ 1.81k1.73. (4.23)

The critical C values for the various polynomial smoothers are summarized in table 4.2.

As we will demonstrate later in section 4.2, the critical C value tabulated from lemma 4.1

in table 4.2 accurately predicts the region where the m = 2k, n = 0 scheme outperforms

the m = n = k scheme. This is the case for both multigrid as a solver, as considered in

lemma 4.1, and multigrid as a preconditioner.

With the regions where m = 2k, n = 0 outperforms m = n = k determined, the authors

wish to solve the more general optimization problem in eq. (4.15). In lieu of a general

solution, however, the authors opt to prove that the optimal m and n occurs at either

m = 2k, n = 0 or m = n = k for all C > 0. To do so, the authors utilized sympy [82] to

solve for the region where a tentative (m̃, ñ) outperforms m = 2k, n = 0 and the region

where (m̃, ñ) outperforms m = n = k. The intersection of these two regions, therefore,

is the region where (m̃, ñ) outperforms both m = 2k, n = 0 and m = n = k. If the

intersection of these two regions is empty for all C > 0, then the optimal solution (m∗, n∗)

80

Table 4.2: Given 2k smoothing passes, the critical C value is the minimum value for which the
(2k, 0) scheme yields better convergence than the (k, k) scheme as predicted in lemma 4.1.

Polynomial Smoother When to omit post smoothing?

Simple multi-sweep, damping C > (4k−log (4k))2

log (2k)

1st-kind Chebyshev, fixed λmin = 0.1 k > 3, C ⪆ 1.55e1.45k

1st-kind Chebyshev, λ∗
min optimizes γ−1 C ⪆ 2.38k1.78

4th-kind Chebyshev C > 2(k+1)2

3

4th-kind optimal Chebyshev C >
2(6(2k+1)2−π2)

2

3π2(−12(2k+1)2+6(4k+1)2+π2)

to eq. (4.15) must be either (m∗ = 2k, n∗ = 0) or (m∗ = n∗ = k) for all C > 0. Source code

demonstrating this analysis for the fourth-kind Chebyshev polynomial smoother is given in

fig. 4.2. With exception to (4, 2) and (5, 1) for C < 4 in the case of 1st-kind Chebyshev

polynomial smoothing with λmin = 0.1, the authors found that the optimal (m∗, n∗) is either

(m∗ = 2k, n∗ = 0) or (m∗ = n∗ = k) for all C > 0 for the smoothers considered, up to

k = 50.

How does the results that the optimal smoothing passes (m∗, n∗) is either (m∗ = 2k, n∗ =

0) or (m∗ = n∗ = k) effect the design of our multigrid preconditioner? First, the estimation

of Cj for each multigrid level as outlined in alg. 4.2 is no longer required to estimate whether

the (k, k) or (2k, 0) scheme is optimal for that given level. A high-quality estimate of Cj

is sufficient to determine whether to employ (k, k) or (2k, 0) smoothing based on table 4.2,

as demonstrated later in section 4.2. The authors note, however, that evaluating whether

the (k, k) or (2k, 0) scheme converges faster only requires running two solves, one for each

scheme, and comparing the convergence rates. This effort, which is amortized away as a one-

time setup cost, is negligible compared to the inverse Lanczos method required in alg. 4.2,

which requires several solves for the smoothed operator, SjAj, at each level.

A natural next question is on the expected improvement using the (2k, 0) scheme over the

symmetric (k, k) scheme. This is done by taking the ratio of the error bound eq. (4.15) with

(k, k) and (2k, 0) for the various polynomial smoothers considered. For the 1st-kind Cheby-

shev polynomial with λmin = 0.1, the expected improvement in the multigrid convergence is

no more than 6% for k = 1, and quickly decreases for larger k. Optimizing the bound with

respect to λmin, however, the 1st-kind Chebyshev polynomial with (2k, 0) can outperform

the symmetric (k, k) scheme by 9%. For both the 4th-kind and optimized 4th-kind Cheby-

81

import sympy

def checkSmootherOptimality(kmax, obj):

m+n=2k: check optimal m^*\in {k,2k}, n^* \in {0,k} for all k \in [1,kmax]

C = sympy.Symbol(’C’, positive=True, Real=True)

posReals = sympy.Interval(0, sympy.oo)

postSmoothOptimality = True

for k in range(1,kmax+1):

for m in range(k+1, 2*k):

n = 2*k - m

S_sym = sympy.solveset(obj(C,k,k) <= obj(C,m,n), C, domain=posReals)

S_asym= sympy.solveset(obj(C,2*k,0) <= obj(C,m,n), C, domain=posReals)

postSmoothOptimality &= (S_sym.intersect(S_asym) == sympy.EmptySet)

return postSmoothOptimality

gammaFourth = lambda k : 4 * k * (k+1) / 3

objective = lambda C,m,n : C * (gammaFourth(m) + gammaFourth(n)) +

gammaFourth(m) * gammaFourth(n)

assert checkSmootherOptimality(kmax=50, obj=objective)

Figure 4.2: Python code utilizing sympy to check the optimality of the (2k, 0) and (k, k)
schemes.

shev polynomials, however, the (2k, 0) scheme outperforms the symmetric (k, k) scheme by

15% as k →∞. A numerical example demonstrating the applicability of this analysis based

on lemma 4.1 and eq. (4.15) is given in section 4.2.

4.2 FINITE DIFFERENCE WITH GEOMETRIC MULTIGRID POISSON

In order to better appreciate the results of section 4.1, let us consider a simple d = 2

finite difference Poisson problem, eq. (1.1). The Poisson equation eq. (1.1) is considered

with d = 2. Let Ω := [0, Lx]× [0, Ly] be the domain of interest, with the boundary condition

u|∂Ω = 0. A finite difference grid of (n+ 1)× (n+ 1) points is considered, n = 128. For the

purposes of this study, u(x, y) = sin (3πx/Lx) sin (4πy/Ly) + g, where g is the same random

vector with g|∂Ω = 0. Lx ≥ 1 is varied, while Ly is fixed at unity. A geometric multigrid

V-cycle with Chebyshev-accelerated Jacobi smoothing is employed as a preconditioner for

GMRES(20). For the comparison with the bounds presented in lemma 4.1, multigrid is

also considered as a solver. Each coarser level is discretized as (nc + 1) × (nc + 1), with

nc = n/2, as well as aggressive coarsening with nc = n/8. This is repeated until there is

only a single degree of freedom. As this case is meant to represent our target problem for

82

unstructured multigrid, semi-coarsening is not employed. On the coarsest level, the single

degree of freedom system is solved exactly. We choose a relative residual reduction of 10−6

as the stopping criterion. A variety of smoothing orders are considered for all orders m

pre-smoothing and orders n post-smoothing, with m + n = 2k up to k = 10. For the 1st-

Cheb, λopt
min, the λmin value is provided from the correlation from eq. (4.19). The multigrid

approximation property constant is estimated using m = 20 Lanczos iterations, alg. 4.2.

2 4 6 8 10
k

101

102

C
*

:
V
(C

* ,
k)

(C
* ,

2k
)

(a)

(2k, 0)

(k, k)

Multigrid as Solver

2 4 6 8 10
k

(b)

(2k, 0)

(k, k)

Multigrid as Preconditioner

1st Cheb, opt
min, observed

1st-Cheb, opt
min, predicted

4th Cheb, observed
4th-Cheb, predicted

4th
opt Cheb, observed

4th
opt-Cheb, predicted

Figure 4.3: Critical C∗ at which (2k, 0) converges faster than (k, k) for C > C∗.

Convergence results are based on the observed average solver convergence rate

ρ = exp

(
1

N
log
∥rN∥2
∥r0∥2

)
, (4.24)

where N is the number of iterations. The first question, as posed in the optimization problem

eq. (4.15), is regarding the optimal choice of V-cycle smoothing (m,n) with m + n = 2k.

Recall, however, that the authors demonstrated the optimality of either the one-sided (2k, 0)

or symmetric (k, k) V-cycles for all orders up to k = 50, with a few exceptions for small

values of C. The authors observe that, as predicted in eqs. (4.14) and (4.15), the convergence

rate of (m,n) is nearly equivalent to (n,m). Further, with few exceptions, either the one-

sided (2k, 0) or symmetric (k, k) V-cycles yielded the smallest convergence rate, as defined

in eq. (4.24).

With our consideration now on the use of the symmetric (k, k) or one-sided (2k, 0) V-

83

2 4 6 8 10
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
V
(C

,k
)

(C
,2

k)

(a)

Multigrid as Solver

2 4 6 8 10
k

(b)

Multigrid as Preconditioner

1st-Cheb, min = 0.1 max
1st-Cheb, min = 0.1 min

4th-Cheb max
4th-Cheb min

4th
opt-Cheb max

4th
opt-Cheb min

1st-Cheb, opt
min max

1st-Cheb, opt
min min

Figure 4.4: Max (min) error contraction rate ratios for (2k, 0) and (k, k) smoothing schemes.

cycles, we can now confirm our theoretical prediction of when to apply these methods, as

outlined in eqs. (4.20) to (4.23). The convergence rate for the symmetric (k, k) V-cycle is

denoted ρV (C, k), while the one-sided (2k, 0) V-cycle is ρ↘(C, 2k). Values of (C, k) at which

ρV (C, k) ≥ ρ↘(C, 2k) are shown in fig. 4.3. Predicted results are from eqs. (4.20) to (4.23),

which are only applicable to multigrid as a solver, not preconditioner. Observed results

are from 2D finite difference example. At a given k, C > C∗ indicates that the one-sided

(2k, 0) V-cycle yields a lower error bound than the symmetric (k, k) V-cycle. Conversely,

C < C∗, indicates that the symmetric V-cycle yields better convergence. For the 1st-kind

with optimized λmin coefficient, 4th-kind, and optimized 4th-kind Chebyshev smoothers, the

predicted domain in which to apply the one-sided (2k, 0) V-cycle over the symmetric (k, k)

V-cycle shows agreement with the results obtained by experiment using multigrid as a solver

(fig. 4.3a). As noted by eq. (4.22), when k > 3, the 1st-kind Chebyshev smoother does not

benefit from applying the one-sided (2k, 0) V-cycle over the symmetric (k, k) V-cycle. At

the same time, however, for k ≤ 3, the one-sided (2k, 0) V-cycle outperforms the symmetric

(k, k) V-cycle, irrespective of C. Despite the applicability of lemma 4.1 being limited to

multigrid as a solver, the predicted domain in which to apply the one-sided (2k, 0) V-cycle

as a preconditioner is similar to that of using multigrid as a solver (fig. 4.3b).

The maximum and minimum ratio of the error contraction rates, along with the predicted

performance, are shown in fig. 4.4. While the predicted performance benefit of applying

84

the one-sided V-cycle approach is limited, nevertheless, fig. 4.4a and fig. 4.4b demonstrate

that the one-sided V-cycle offers an improvement compared to the symmetric V-cycle for

problems with moderate values of C. However, when applied to relatively easy problems

(C ≈ 1), the one-sided V-cycle is a poor choice.

2

4

6

8

10

12

Ite
ra

tio
ns

(a)

Lx = 1, Ly = 1, C 4

10

20

30

(b)

Lx = 8, Ly = 1, C 132

50

100

150

(c)

Lx = 64, Ly = 1, C 3668

1 2 3 4 5 6 7 8 9 10
k

40

60

80

100

M
at

rix
 v

ec
to

r p
ro

du
ct

s

(d)

Lx = 1, Ly = 1, C 4

1 2 3 4 5 6 7 8 9 10
k

80

100

120

140

160

180

(e)

Lx = 8, Ly = 1, C 132

1 2 3 4 5 6 7 8 9 10
k

400

600

800

(f)

Lx = 64, Ly = 1, C 3668

nc = n/2

1st-Cheb(k,k), min = 0.1
1st-Cheb(2k,0), min = 0.1

1st-Cheb(k,k), opt
min

1st-Cheb(2k,0), opt
min

4th-Cheb(k,k)
4th-Cheb(2k,0)

4th
opt-Cheb(k,k)

4th
opt-Cheb(2k,0)

Figure 4.5: FD, nc = n/2. Multigrid as preconditioner for GMRES(20).

Results for nc = n/2 are shown in fig. 4.5, nc = n/8 in fig. 4.6. In both, multigrid is

used to precondition the GMRES(20) solver. In the case nc = n/2 and Lx = 1 (C ≈ 4),

shown in fig. 4.5a,d, the work required, as measured by fine-grid matrix vector products, is

minimized for relatively low orders. Further, applying the bounds shown in fig. 4.3a, this is

the scenario in which the one-sided V-cycle approach should not be utilized. However, even

at moderate grid aspect ratios, such as Lx = 8, C ≈ 132 becomes large enough to justify the

usage of the one-sided V-cycle approach, especially for the 4th-kind Chebyshev smoothers

(fig. 4.5b,e) at moderate orders k = 6, or 12th-order for the (2k, 0) case. This effect becomes

even more apparent when Lx = 64 (C ≈ 3668), shown in fig. 4.5c,f. In the results for

nc = n/2, the 1st-kind with optimized λmin, 4th-kind, and optimized 4th-kind Chebyshev

85

5

10

15

20

25

Ite
ra

tio
ns

(a)

Lx = 1, Ly = 1, C 52

20

40

60

80

100

120

(b)

Lx = 8, Ly = 1, C 1363

50

100

150

200

250

300

(c)

Lx = 64, Ly = 1, C 6256

1 2 3 4 5 6 7 8 9 10
k

80

100

120

M
at

rix
 v

ec
to

r p
ro

du
ct

s

(d)

Lx = 1, Ly = 1, C 52

1 2 3 4 5 6 7 8 9 10
k

300

400

500

600

(e)

Lx = 8, Ly = 1, C 1363

1 2 3 4 5 6 7 8 9 10
k

400

600

800

1000

1200

1400

(f)

Lx = 64, Ly = 1, C 6256

nc = n/8

1st-Cheb(k,k), min = 0.1
1st-Cheb(2k,0), min = 0.1

1st-Cheb(k,k), opt
min

1st-Cheb(2k,0), opt
min

4th-Cheb(k,k)
4th-Cheb(2k,0)

4th
opt-Cheb(k,k)

4th
opt-Cheb(2k,0)

Figure 4.6: FD, nc = n/8. Multigrid as preconditioner for GMRES(20).

smoothers greatly outperform the 1st-kind Chebyshev smoother, especially at high orders.

Further, it is observed that both the iteration count and total work in matrix-vector products

is minimized at high orders for the 1st-kind with optimized λmin, 4th-kind, and optimized

4th-kind Chebyshev smoothers. This is not the case for the 1st-kind Chebyshev smoother,

however. This effect of lowering both the iteration count and work has the additional benefit

of reducing the number of coarse grid solves required for each iteration, whose cost is not

factored in this analysis.

In the aggressive coarsening case (nc = n/8), both the number of matrix-vector products

and iterations are reduced through using higher-order Chebyshev smoothing irrespective of

the grid aspect ratio for all but the standard 1st-kind Chebyshev smoothers. Secondly, the

one-sided (2k, 0) V-cycle approaches generally outperforms the full, symmetric (k, k) V-cycle

approach. There are two important implications from this result: first, there exists consider-

able benefit in transitioning a multigrid solver to either construct high-quality estimates for

λopt
min for the 1st-kind Chebyshev smoother, such as those provided in correlation eq. (4.19),

86

or utilize one of the 4th-kind Chebyshev smoothers; and second, additional performance can

be achieved by using the one-sided (2k, 0) V-cycle approach at the expense of symmetry, the

implication of which is further discussed in section 2.2.4.

Table 4.3: Multigrid hierarchy for 2D finite differences, nc = n/2

Level Rows nnz(·) nnz(·)/row Sparsity

1 16129 80137 4.968 0.999
2 3969 34969 8.810 0.997
3 961 8281 8.617 0.991
4 225 1849 8.217 0.963
5 49 361 7.367 0.849
6 9 49 5.444 0.395
7 1 1 1 0

Table 4.4: Multigrid hierarchy for 2D finite differences, nc = n/8

Level Rows nnz(·) nnz(·)/row Sparsity

1 16129 80137 4.968 0.999
2 225 1849 8.217 0.963
3 1 1 1 0

Let us also consider the trade-offs associated with using nc = n/2 and nc = n/8 as

coarsening strategies. The multigrid hierarchies for nc = n/2 and nc = n/8 are shown in

table 4.3 and table 4.4, respectively. Despite improvements in the convergence rate from

using a different V-cycle approach or Chebyshev smoother, the number of matrix-vector

products required by the solve is greater for the aggressive coarsening case. However, the

grid complexity ∑ℓ
j=0 nnz(Aj)

nnz(A0)
(4.25)

for nc = n/2 is 1.568, while for nc = n/8 it is only 1.023. Therefore, the amount of work done

per cycle is less for the aggressive coarsening case, even ignoring the cost of the grid-transfer

operators. An additional benefit of the aggressive coarsening strategy is decreasing the

number of multigrid levels from 7 with nc = n/2 to 3 with nc = n/8. This feature is especially

attractive in a parallel computing context where each additional multigrid level requires

additional communication cost, as noted in chapter 3. Significant effort has been spent on

improving the parallel scalability of multigrid methods, especially in the AMG context, see

[83, 84, 85]. One strategy to achieve better scalability is to rely on aggressive coarsening

87

strategies, which require more robust smoothers, such as the Chebyshev smoothers discussed

in section 4.1.

The results shown in fig. 4.5 and fig. 4.6 are summarized in table 4.5. The solver configura-

tion yielding the lowest number of matrix-vector products is listed for each case. 4thopt-Cheb,

Jacobi(20,0), for example, denotes a 20th order Chebyshev smoother of the optimized 4th-

kind, using one-sided smoothing (thereby, having the same cost per iteration as order 10 with

the symmetric V-cycle). This solver configuration yields the lowest number of matrix-vector

products for Lx = 128 with aggressive coarsening. We see that, for high aspect ratio grids

and aggressive coarsening, the one-sided (2k, 0) V-cycle offers superior performance to the

symmetric (k, k) V-cycle approach.

Table 4.5: Solver configuration with lowest number of matrix-vector products for finite
different geometric multigrid

Lx nc = n/∗ Complexity Solver Mat-Vec Iterations Work

1 2 1.568 4th-Cheb, Jacobi(2, 2) 20 4 31.4
2 2 1.568 4th-Cheb, Jacobi(3, 3) 28 4 43.9
4 2 1.568 4thopt-Cheb, Jacobi(5, 5) 44 4 69.0
8 2 1.568 4th-Cheb, Jacobi(14, 0) 75 5 117.6
16 2 1.568 4th-Cheb, Jacobi(20, 0) 126 6 197.6
32 2 1.568 4thopt-Cheb, Jacobi(20, 0) 189 9 296.4
64 2 1.568 4thopt-Cheb, Jacobi(20, 0) 252 12 395.1
128 2 1.568 4thopt-Cheb, Jacobi(20, 0) 252 12 395.1

1 8 1.023 4th-Cheb, Jacobi(7, 7) 60 4 61.4
2 8 1.023 4thopt-Cheb, Jacobi(8, 0) 81 9 82.9
4 8 1.023 4th-Cheb, Jacobi(20, 0) 126 6 128.9
8 8 1.023 4thopt-Cheb, Jacobi(14, 0) 195 13 199.5
16 8 1.023 4thopt-Cheb, Jacobi(18, 0) 266 14 272.1
32 8 1.023 4thopt-Cheb, Jacobi(20, 0) 315 15 322.2
64 8 1.023 4thopt-Cheb, Jacobi(18, 0) 323 17 330.4
128 8 1.023 4thopt-Cheb, Jacobi(20, 0) 294 14 300.8

The results shown in fig. 4.3 demonstrate the applicability of lemma 4.1 in determining

whether to employ the symmetric (k, k) versus the (2k, 0) V-cycle scheme. However, a

natural related question is: How well does lemma 4.1 actually predict the convergence rate

of the multigrid method? The convergence rate for the finite difference case with multigrid

as a solver is shown as a solid line in figs. 4.7 and 4.8 for each polynomial smoother, along

with the error bound from lemma 4.1 as the dashed line. Figure 4.8 contains the results

for the symmetric (k, k) V-cycle scheme, while fig. 4.7 contains those from the asymmetric

88

(2k, 0) scheme. There are two important observations from figs. 4.7 and 4.8. The bound

from lemma 4.1 proves both useful, in that it does not exceed unity and, as expected, serves

as an upper bound to the observed convergence rate, as noted by [23]. However, lemma 4.1

is not sharp. The difference between the predicted and observed convergence rate is large.

Fortunately, the relative ranking of each polynomial smoother is, however, preserved when

comparing the predicted and observed convergence rate. For example, the bound in fig. 4.8c

predicts that the relative ranking, from best to worst smoother polynomial, is: 4thopt-Cheb,

4th-Cheb, 1st-Cheb, λ∗
min, and 1st-Cheb. This matches the observed convergence rates.

What if a more accurate predictor of the convergence rate is required, however? The

Local Fourier Analysis (LFA) methods discussed in section 4.3 may provide more accurate

estimates for the multigrid convergence rate. Two-level LFA predicted convergence rates

from LFAToolkit.jl are shown as a dotted lines in figs. 4.7 and 4.8 for each polynomial

smoother [20]. The LFA methods are able to predict the convergence rate more accurately

than lemma 4.1, as shown by the smaller difference between the predicted and observed

convergence rate. For example, the LFA-predicted convergence rate is nearly identical to

the observed rate in fig. 4.7a. At the same time, however, the LFA prediction does not

provide an upper-bound to the observed convergence rate. Figure 4.8b, for example, shows

that often the LFA-predicted convergence rate is too optimistic. In other scenarios, the LFA-

predicted convergence rate is nearly identical to those predicted by lemma 4.1, as shown in

fig. 4.8d. As further discussed in section 4.3, the LFA-predicted convergence rate is for a two-

level method. By employing LFA for the multilevel case, however, more accurate predictions

of the convergence rate may be obtained. This, however, is omitted from the current study,

as the computational expense of the multilevel LFA is more expensive than performing the

solve itself when considering the aggressive coarsening case, nc = n/8. This prevents the

multilevel LFA from being employed as a predictor of the relative performance of each of the

polynomial smoothers. While one could imagine forming optimal polynomials with respect

to an LFA-predicted convergence rate as opposed to lemma 4.1, this is left as future work,

see section 8.2.

4.3 LOCAL FOURIER ANALYSIS

The construction of the 4th-kind Chebyshev polynomial smoother presented in section 4.1

relied on solving a weighted mini-max problem based on a two-level error bound from Hack-

busch, eq. (4.1)[79]. However, we observe that, through the work of Lottes in lemma 4.1, an

optimal polynomial smoother could be constructed with respect to the error bound[23]. How-

ever, as observed toward the end of section 4.2, the convergence rate predicted by lemma 4.1

89

2 4 6 8 10
k

10 3

10 2

10 1

100
Lx = 1, C 4, n*c = n*/2

Bound
FD
LFA
1st Cheb, min = 0.1
1st Cheb, opt

min

4th Cheb
4th

opt Cheb

(a)

2 4 6 8 10
k

10 3

10 2

10 1

100
Lx = 1, C 52, n*c = n*/8

Bound
FD
LFA
1st Cheb, min = 0.1
1st Cheb, opt

min

4th Cheb
4th

opt Cheb

(b)

2 4 6 8 10
k

10 3

10 2

10 1

100
Lx = 4, C 34, n*c = n*/2

Bound
FD
LFA
1st Cheb, min = 0.1
1st Cheb, opt

min

4th Cheb
4th

opt Cheb

(c)

2 4 6 8 10
k

10 3

10 2

10 1

100
Lx = 4, C 420, n*c = n*/8

Bound
FD
LFA
1st Cheb, min = 0.1
1st Cheb, opt

min

4th Cheb
4th

opt Cheb

(d)

Figure 4.7: Finite-difference convergence factor for the (2k, 0) V-cycle scheme using multigrid as a
solver (solid line), compared with predicted convergence factor from lemma 4.1 (dashed line). Rows
correspond to fixed Lx values: Lx = 1 for figs. 4.7a and 4.7b and Lx = 4 for figs. 4.7c and 4.7d.
Columns correspond to different coarsening factors: nc = n/2 for figs. 4.7a and 4.7c and nc = n/8
for figs. 4.7b and 4.7d.

is not sharp. Through the use of Local Fourier Analysis (LFA) [86, 87], sharper predictions

on the convergence rate of polynomial smoothers can be made.

LFA is a method for analyzing the convergence rate of multigrid methods by considering

90

2 4 6 8 10
k

10 3

10 2

10 1

100
Lx = 1, C 4, n*c = n*/2

Bound
FD
LFA
1st Cheb, min = 0.1
1st Cheb, opt

min

4th Cheb
4th

opt Cheb

(a)

2 4 6 8 10
k

10 3

10 2

10 1

100
Lx = 1, C 52, n*c = n*/8

Bound
FD
LFA
1st Cheb, min = 0.1
1st Cheb, opt

min

4th Cheb
4th

opt Cheb

(b)

2 4 6 8 10
k

10 3

10 2

10 1

100
Lx = 4, C 34, n*c = n*/2

Bound
FD
LFA
1st Cheb, min = 0.1
1st Cheb, opt

min

4th Cheb
4th

opt Cheb

(c)

2 4 6 8 10
k

10 3

10 2

10 1

100
Lx = 4, C 420, n*c = n*/8

Bound
FD
LFA
1st Cheb, min = 0.1
1st Cheb, opt

min

4th Cheb
4th

opt Cheb

(d)

Figure 4.8: Finite-difference convergence factor for the symmetric (k, k) V-cycle scheme using
multigrid as a solver (solid line), compared with predicted convergence factor from lemma 4.1
(dashed line). Rows correspond to fixed Lx values: Lx = 1 for figs. 4.8a and 4.8b and Lx = 4 for
figs. 4.8c and 4.8d. Columns correspond to different coarsening factors: nc = n/2 for figs. 4.8a
and 4.8c and nc = n/8 for figs. 4.8b and 4.8d.

the Toeplitz operators that arise from low-order finite element and finite difference discretiza-

tions on infinite uniform grids with grid point spacing h. Given the Toeplitz structure, the

operators are diagonalized by the standard Fourier modes φ (θ, x) = eıθx/h, with i2 = −1,

91

which are periodic with φ(θ + 2π, x) = φ(θ, x) on all grid points x ∈ hZ. This can be

extended to high-order p-multigrid methods, as in [47], by extending this analysis to block-

Toeplitz operators, such as those arising from the discretization presented in section 2.1.

Once in the frequency domain, the eigenvalues of the symbol of the multigrid error prop-

agator, Ẽ, which is the error propagator in the frequency domain, can be computed. For

standard coarsening from a fine grid with a mesh size h to a coarse grid with a mesh size of

H = 2h, low frequencies are given by θ ∈ T low = [−π/2, π/2)d and high frequencies are given

by θ ∈ T high = [−π/2, 3π/2)d \ T low. Once the eigenvalues of Ẽ are known, the convergence

rate of the multigrid method can be computed as

max
θ

ρ(Ẽ). (4.26)

For a more thorough introduction into LFA, the reader is referred to [47].

To better understand the smoother polynomials introduced in section 4.1, LFA is em-

ployed using the tools from [47], wherein the authors introduce LFAToolkit.jl [20], an

automated tool for performing LFA for both p-type and h-type multigrid. LFAToolkit.jl

is extended to support smoothing via the fourth and optimized fourth-kind Chebyshev poly-

nomial smoothers from section 4.1. This is done by computing the symbol of eq. (4.3) for

the fourth-kind Chebyshev polynomial smoother and the symbol of eq. (4.8). Following

the analysis in [47], this simply becomes the polynomials from the aforementioned equa-

tions applied to the symbol of the smoother. As an aside, both the fourth-kind Chebyshev

polynomial smoother and the optimized fourth-kind Chebyshev polynomial smoother are

implemented in LFAToolkit.jl to enable users the ability to perform automated LFA for

these polynomial smoothers.

p-multigrid results for a uniform aspect ratio grid and 4 : 1 aspect ratio grid are presented

in fig. 4.9 and fig. 4.10, respectively. These plots show the max eigenvalues of the symbol

of the two-level error propagator. The resulting convergence rate is computed as eq. (4.26).

The various polynomial smoothers considered in section 4.1 are compared for a two-level

p-multigrid scheme with p = 7 and p = 1. As predicted by lemma 4.1, the fourth and

optimized fourth-kind Chebyshev polynomials outperform the standard 1st-kind Chebyshev

polynomial smoother, especially at high smoother orders.

Two-level h-multigrid LFA for the finite difference case in section 4.2 is applied for the

two aspect ratios, Lx = 1, 4, and for the two coarsening factors considered, nc = n/2

and nc = n/8. This is repeated for the four kinds of polynomial smoothers considered

in section 4.1 across the various polynomial orders for both the (k, k) and (2k, 0) cycle

schemes. These LFA-predicted convergence rates are reported in section 4.2, specifically

92

figs. 4.7 and 4.8, and are shown to be generally sharper than the convergence rates predicted

by lemma 4.1. The reason a two-level LFA bound is employed in section 4.2, as opposed to a

multilevel bound, is that performing the multilevel LFA for the case of nc = n/8 coarsening

for the three-level V-cycle requires more computation in evaluating eq. (4.26) than solving

the resultant system using the multigrid method. As this LFA is meant to predict the solver

performance without requiring the expense of performing the actual solve, this is not a viable

option. As such, we employ a two-level LFA for the results in figs. 4.7 and 4.8.

2
0

2
3
2

x

2

0

2

3
2

y

Lx = 1, 1st-Cheb, Jac(5,5),(7,1)

0.1

0.2

0.3

0.4

0.5

(a)

2
0

2
3
2

x

2

0

2

3
2

y

Lx = 1, 1st
opt-Cheb, Jac(5,5),(7,1)

0.1

0.2

0.3

0.4

0.5

(b)

2
0

2
3
2

x

2

0

2

3
2

y

Lx = 1, 4th-Cheb, Jac(5,5),(7,1)

0.1

0.2

0.3

0.4

0.5

(c)

2
0

2
3
2

x

2

0

2

3
2

y

Lx = 1, 4th
opt-Cheb, Jac(5,5),(7,1)

0.1

0.2

0.3

0.4

0.5

(d)

Figure 4.9: LFA results for a two-level scheme at p = 7 for various polynomial smoothers,
all at order k = 5 with a symmetric (k, k) cycle. Grid aspect ratio is 1 : 1.

One could imagine, instead of finding the optimal polynomial with respect to lemma 4.1,

93

2
0

2
3
2

x

2

0

2

3
2

y
Lx = 4, 1st-Cheb, Jac(5,5),(7,1)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

2
0

2
3
2

x

2

0

2

3
2

y

Lx = 4, 1st
opt-Cheb, Jac(5,5),(7,1)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

2
0

2
3
2

x

2

0

2

3
2

y

Lx = 4, 4th-Cheb, Jac(5,5),(7,1)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c)

2
0

2
3
2

x

2

0

2

3
2

y

Lx = 4, 4th
opt-Cheb, Jac(5,5),(7,1)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d)

Figure 4.10: LFA results for a two-level scheme at p = 7 for various polynomial smoothers,
all at order k = 5 with a symmetric (k, k) cycle. Grid aspect ratio is 4 : 1.

one could instead find the optimal polynomial with respect to the convergence rate predicted

by LFA as in eq. (4.26). While this is still left as potential future work as discussed in

section 8.2, the direct polynomial smoother optimization methods considered in section 4.5

prove promising.

94

4.4 NUMERICAL RESULTS

Here we consider the solver performance results for the test cases highlighted in section 2.8.

Similar to section 2.9, the results presented here are on Summit, with 6 V100 GPUs and 42

IBM Power9 CPUs per node. Each rank is assigned to a single GPU. To limit the number

of runs required, we consider only varying the Chebyshev polynomial smoother, smoother

type, polynomial order, and the distribution of smoothing passes amongst the pre-/post-

smoothing phases of the V-cycle. The strong scaling limits for each case, as identified in

section 2.9.2, are used for the Navier-Stokes cases, which are reported in table 2.6.

4.4.1 Kershaw Results

Results for the Kershaw case for ε = 1, 0.3, 0.05 are shown in figs. 4.11 to 4.13. Note

the mesh is generated with E = 363 elements with a polynomial order p = 7. A single

Summit note with P = 6 V100 GPUs is used for all Kershaw results, putting n/P ≈ 2.7M

degrees-of-freedom per GPU. This represents the scalability limits identified in table 2.6. To

mitigate the effects of system noise, the reported solve times are based on minimum time

to solution over 50 trials. The reported number of matrix-vector products are for the finest

grid, p = 7.

When ε = 1, the time to solution is minimized by utilizing a symmetric V-cycle with

relatively low-order Chebyshev-accelerated RAS smoothing. For this case, SEMFEM is a

comparatively poor method. While the iteration count is decreased with respect to increasing

order, the overall cost of applying the heavier smoother translates to a higher cost per solve.

This can especially be observed in the increased work requirement in terms of matrix-vector

products, fig. 4.11d-f. At larger scales, however, the scalability of the AMG coarse grid solve

may dominate the cost of the preconditioner, and thus anything to reduce the number of

coarse grid solves may prove beneficial. In this scenario one should expect the multigrid

approximation property constant eq. (4.2) to be quite low for the case with no geometric

deformation. In this regime, the theoretical prediction in fig. 4.3, states that the convergence

is improved using a symmetric (k, k) V-cycle with as opposed to the one-sided (2k, 0) V-

cycle. Bench-marking demonstrates that a single boomerAMG V-cycle iteration for p = 1 on

the CPU is nearly 12 times the cost of a matrix-vector product, see fig. 3.19 from section 3.3

for additional information. For larger cases, wherein the number of AMG levels needed for a

single boomerAMG V-cycle increases, the relative cost of the coarse grid solve will increase

relative to the cost of a matrix-vector product.

When ε = 0.3, however, higher-order Chebyshev smoothing can yield a lower time to

95

10

15

20
Ite

ra
tio

ns

(a)

ASM

10

20

30

(b)

RAS

10

20

30

40

(c)

Jacobi

50

75

100

125

150

M
at

rix
 v

ec
to

r p
ro

du
ct

s

(d)

ASM

40

60

80

100

120

(e)

RAS

200

400

(f)

Jacobi

1 2 3 4 5 6
k

0.2

0.3

Ti
m

e
pe

r s
ol

ve
 (s

)

(g)

ASM

1 2 3 4 5 6
k

0.1

0.2

0.3

(h)

RAS

1 2 3 4 5 6
k

0.2

0.4

0.6

0.8

(i)

Jacobi

1st-Cheb(k,k), min = 0.1
1st-Cheb(2k,0), min = 0.1
SEMFEM

1st-Cheb(k,k), opt
min

1st-Cheb(2k,0), opt
min

4th-Cheb(k,k)
4th-Cheb(2k,0)

4th
opt-Cheb(k,k)

4th
opt-Cheb(2k,0)

Figure 4.11: Kershaw results, ε = 1.

solution. As shown in fig. 4.12d, the time to solution for the 4th and 4thopt Chebyshev schemes

tend to improve with high orders, even up to k = 6 for the full V-cycle (or 12 for the half

V-cycle). This demonstrates a major improvement over the standard first kind Chebyshev

scheme, which tends to yield a minimum time to solution at k = 3. Remarkably, the 4th-kind

and optimized 4th-kind Chebyshev schemes are generally equivalent to, if not better than,

optimizing the λmin parameter for the standard first-kind Chebyshev scheme. This allows

for increased performance with high order Chebyshev smoothing, without the requirement

of tuning an additional parameter. 5 Similar to the ε = 1 case, SEMFEM is not the precon-

ditioner yielding the fastest time to solution. However, this approach becomes comparable

5In large-scale fluid mechanics applications, this overhead is easily amortized over the 104–106 time-steps
required. Reasonably good values of λopt

min do not depend on the RHS, allowing this to be part of the setup
cost of the preconditioner.

96

40

60

80

100
Ite

ra
tio

ns

(a)

ASM

40

60

80

100

(b)

RAS

100

200

300

(c)

Jacobi

300

350

400

450

500

M
at

rix
 v

ec
to

r p
ro

du
ct

s

(d)

ASM

300

350

400

450

(e)

RAS

800

1000

1200

(f)

Jacobi

1 2 3 4 5 6
k

1.0

1.2

1.4

1.6

Ti
m

e
pe

r s
ol

ve
 (s

)

(g)

ASM

1 2 3 4 5 6
k

0.75

1.00

1.25

1.50

(h)

RAS

1 2 3 4 5 6
k

2

3

4

(i)

Jacobi

1st-Cheb(k,k), min = 0.1
1st-Cheb(2k,0), min = 0.1
SEMFEM

1st-Cheb(k,k), opt
min

1st-Cheb(2k,0), opt
min

4th-Cheb(k,k)
4th-Cheb(2k,0)

4th
opt-Cheb(k,k)

4th
opt-Cheb(2k,0)

Figure 4.12: Kershaw results, ε = 0.3.

to Jacobi-based Chebyshev smoothing.

For ε = 0.05, the fastest time to solution is reached using SEMFEM preconditioning. The

pMG methods are significantly more expensive. For the 4th and opt. 4th-kind Chebyshev-

accelerated RAS schemes considered, the time to solution is lowered by increasing the order.

Further, with the extreme geometric deformation, the multigrid approximation property

constant eq. (4.2) is expected to be quite large for this case. The results in fig. 4.3 predict

that the one-sided approach yields a better convergence rate. The results confirm this

theoretical expectation.

A summary of the results for the Kershaw case is shown in table 4.7. This table reports

the solver yielding the lowest time to solution (in seconds), TS, the iteration count, and the

speedup over the time to solution of the default nekRS solver, TD. The ratio between the

time spent doing coarse grid solves for the default solver, (Tcrs)D, and the time spent doing

97

100

200

300
Ite

ra
tio

ns

(a)

ASM

200

400

600

(b)

RAS

200

400

600

800

(c)

Jacobi

1200

1400

1600

1800

M
at

rix
 v

ec
to

r p
ro

du
ct

s

(d)

ASM

1500

2000

(e)

RAS

3000

4000

5000

(f)

Jacobi

1 2 3 4 5 6
k

3

4

5

Ti
m

e
pe

r s
ol

ve
 (s

)

(g)

ASM

1 2 3 4 5 6
k

2

4

6

8

(h)

RAS

1 2 3 4 5 6
k

2

4

6

8

10

(i)

Jacobi

1st-Cheb(k,k), min = 0.1
1st-Cheb(2k,0), min = 0.1
SEMFEM

1st-Cheb(k,k), opt
min

1st-Cheb(2k,0), opt
min

4th-Cheb(k,k)
4th-Cheb(2k,0)

4th
opt-Cheb(k,k)

4th
opt-Cheb(2k,0)

Figure 4.13: Kershaw results, ε = 0.05.

coarse grid solves for the fastest solver, (Tcrs)S, is reported. The default nekRS solver is 1st-

Cheb, ASM(3,3),(7,3,1). For the Kershaw case, these tables demonstrate that optimizing

λmin in the 1st-kind Chebyshev scheme greatly improves the solver performance. While

ε = 1, 0.3 do not benefit from the use of a one-sided V-cycle, the use of the one-sided V-

cycle, in conjunction with the optimized 4th-kind Chebyshev smoother, is able to increase

the solver speedup relative to the default solver by another 13% for ε = 0.05. A 75% speedup

is achieved over the default solver for ε = 1, 0.05. For ε = 0.3, a much more modest 35% is

achieved.

98

4.4.2 Navier-Stokes

Results for the 146, 1568, and 67 pebble cases are shown in fig. 4.14, fig. 4.15, and fig. 4.16,

respectively. Based on the strong scalability study in section 2.9, the processor counts from

table 2.6 are used. Since the 4th and optimized 4th-kind Chebyshev smoothers are compa-

rable to the 1st-kind Chebyshev smoother with optimized λmin as shown in section 4.4.1,

this smoother is omitted from these cases.

In the 146 pebble case, fig. 4.14 indicates that the optimal amount of Chebyshev smooth-

ing is k = 4, which corresponds to 8th-order polynomial smoothing in the (2k, 0) approach.

This is observed, despite the small up-tick in the number of matrix-vector products required

at that order, see fig. 4.14d at k = 3. In both the Jacobi-based and ASM-based Chebyshev

smoothers, an overall reduction in the time per solve is observed in utilizing the (2k, 0) V-

cycle approach, especially for lower orders. However, around k = 5, the relative performance

of the (k, k) and (2k, 0) V-cycle approaches switch. RAS-based Chebyshev smoothing, how-

ever, does not seem to benefit as much from the half V-cycle approach. pMG with a 4thopt

Cheb RAS(4,4) smoother yields the fastest time to solution, as summarized in 4.7. Tuning

the pMG parameters yields only a modest 17% speedup over the default preconditioning

strategy in nekRS.

The lowest time to solution for the 1568 pebble case is achieved using 4th-Cheb, ASM(12,0),

table 4.7. fig. 4.15d,g shows that the number of matrix-vector products remains nearly

constant with respect to the order, yielding a lower time to solution by minimizing the

coarse grid cost. The performance of the 1st-kind Chebyshev smoother, however, plateaus

around k = 3, especially for the Schwarz-based smoothers, see fig. 4.15g,h. Although some

improvement is observed through the use of the one-sided V-cycle, an additional benefit is

observed by using the alternate Chebyshev smoothers from Lottes’s work [23]. Without the

added benefit of the one-sided V-cycle, the fastest solver for this case yields a 17% speedup

over the default (table 4.6). However, enabling this one-sided V-cycle approach further

increases the solver performance to a 27% speedup over the default solver (table 4.7).

The 67 pebble case is distinct from the other two pebble meshes. The 146 and 1568

pebble cases are meshed using an all-hex meshing strategy developed by Lan and coworkers

[53]. The 67 pebble case includes chamfers, and is meshed using an alternate Voronoi cell

approach [54]. The resulting mesh proves to be much more challenging for the pMG based

strategies. As shown in table 2.3, mesh quality metrics, such as the min scaled Jacobian

and max aspect ratio reveal the 67 pebble mesh to be much more difficult to solve than

the 146 and 1568 pebble meshes. Nevertheless, pMG with one-sided Chebyshev smoothing

prove promising for this case. The time to solution is minimized at relatively high orders

99

6

9

12

15
Ite

ra
tio

ns

(a)

ASM

6
9

12
15
18

(b)

RAS

9
12
15
18
21
24
27

(c)

Jacobi

40
44
48
52
56
60

M
at

rix
 v

ec
to

r p
ro

du
ct

s

(d)

ASM

45
60
75
90

105
120

(e)

RAS

104
112
120
128
136
144

(f)

Jacobi

1 2 3 4 5 6
k

0.15

0.20

0.25

Ti
m

e
pe

r s
ol

ve
 (s

)

(g)

ASM

1 2 3 4 5 6
k

0.15

0.20

0.25

0.30

(h)

RAS

1 2 3 4 5 6
k

0.30

0.40

0.50

0.60

(i)

Jacobi

1st-Cheb(k,k), min = 0.1
1st-Cheb(2k,0), min = 0.1

4th-Cheb(k,k)
4th-Cheb(2k,0)

4th
opt-Cheb(k,k)

4th
opt-Cheb(2k,0)

Figure 4.14: 146 pebble results.

with RAS-based Chebyshev. This is further improved through the use of the one-sided V-

cycle. The total work required per solve is reduced at higher orders for the Schwarz-based

approaches. Through tuning the pMG parameters, a significant speedup of 81% is achieved

over the default solver. In this case, the fastest pMG preconditioner is 4thopt-Cheb, RAS(12,0).

However, the downward slope of the time to solution with respect to the order indicates that

smoothing with an even higher order is likely advantageous in this case.

4.5 DIRECT OPTIMIZATION OF POLYNOMIAL SMOOTHERS

In section 4.1, two error bounds were employed to construct polynomial smoothers that are

optimal with respect to the error bound. For example, the fourth-kind Chebyshev polyno-

100

3

6

9

12

15
Ite

ra
tio

ns

(a)

ASM

6
9

12
15
18
21

(b)

RAS

12
18
24
30
36
42
48

(c)

Jacobi

39
42
45
48
51
54
57

M
at

rix
 v

ec
to

r p
ro

du
ct

s

(d)

ASM

50
55
60
65
70
75

(e)

RAS

96
104
112
120
128
136
144

(f)

Jacobi

1 2 3 4 5 6
k

0.15

0.20

0.25

Ti
m

e
pe

r s
ol

ve
 (s

)

(g)

ASM

1 2 3 4 5 6
k

0.20

0.25

0.30

0.35

(h)

RAS

1 2 3 4 5 6
k

0.30

0.40

0.50

0.60

(i)

Jacobi

1st-Cheb(k,k), min = 0.1
1st-Cheb(2k,0), min = 0.1

4th-Cheb(k,k)
4th-Cheb(2k,0)

4th
opt-Cheb(k,k)

4th
opt-Cheb(2k,0)

Figure 4.15: 1568 pebble results.

mials are the solution to the weighted mini-max problem posed in the two-level error bound

from Hackbusch, eq. (4.1) [23]. Optimizing multi-level V-cycle error bound from lemma 4.1,

a result due to Lottes [23], yields the optimized fourth-kind Chebyshev polynomial smoothers

in eq. (4.8). Lemma 4.1 proves useful in analyzing the parameter space considered in sec-

tion 4.1.2. For example, concrete solutions regarding when to apply the symmetric (k, k)

V-cycle versus the (2k, 0) V-cycle are provided in the analysis in section 4.1.2, which is

summarized in table 4.2. This analysis shows good agreement with the experimental re-

sults in section 4.2, fig. 4.3. The relative performance ranking of the various polynomial

smoothers, moreover, is readily predicted by the bound in lemma 4.1, as demonstrated in

figs. 4.7 and 4.8. However, as alluded to in figs. 4.7 and 4.8, the bounds in lemma 4.1 are not

sharp. While the Local Fourier Analysis methods, presented in section 4.3 and also shown

in figs. 4.7 and 4.8, provide a more accurate estimate of the multigrid error convergence

101

15
30
45
60
75
90

Ite
ra

tio
ns

(a)

ASM

10
20
30
40
50
60
70

(b)

RAS

24
32
40
48
56

(c)

Jacobi

150
175
200
225
250

M
at

rix
 v

ec
to

r p
ro

du
ct

s

(d)

ASM

180
210
240
270
300
330

(e)

RAS

220
240
260
280
300
320

(f)

Jacobi

1 2 3 4 5 6
k

0.40

0.60

0.80

1.00

Ti
m

e
pe

r s
ol

ve
 (s

)

(g)

ASM

1 2 3 4 5 6
k

0.40

0.60

0.80

1.00

(h)

RAS

1 2 3 4 5 6
k

0.60

0.80

1.00

(i)

Jacobi

1st-Cheb(k,k), min = 0.1
1st-Cheb(2k,0), min = 0.1

4th-Cheb(k,k)
4th-Cheb(2k,0)

4th
opt-Cheb(k,k)

4th
opt-Cheb(2k,0)

Figure 4.16: 67 pebble results.

factor, they nevertheless struggle to provide sufficiently sharp estimates in the presence of

high aspect-ratio grids. The question, therefore, remains: How can we construct optimal

polynomial smoothers for a given case?

In this section, we present a scheme that directly optimizes the polynomial smoother with

respect to the observed solver convergence factor, rather than relying on the error bound

in lemma 4.1. The optimization problem in question is to find the polynomial smoother

the average convergence rate, eq. (4.24), for a preconditioned KSP solver. Each objective

function evaluation, therefore, requires solving the system to the specified tolerance. Similar

to the optimized fourth-kind Chebyshev polynomial smoother in eq. (4.8), the fourth-kind

Chebyshev polynomials are a convenient basis for constructing an optimized polynomial

smoother with respect to the average convergence rate. This has the added benefit of

allowing us to leverage the same optimized fourth-kind Chebyshev polynomial smoother

102

Table 4.6: Solver configuration with the fastest time to solution, restricted to identical
pre-/post-smoother orders. Processor counts identified from the strong scalability study in
section 2.9 in table 2.6 are used.

Case Fastest Solver TS Iterations
TD

TS

(Tcrs)D
(Tcrs)S

Kershaw(ε = 1) 1st-Cheb, λopt
min, RAS(2,2) 0.09 8 1.75 1.13

Kershaw(ε = 0.3) 1st-Cheb, λopt
min, RAS(5,5) 0.67 28 1.35 1.79

Kershaw(ε = 0.05) 1st-Cheb, λopt
min, RAS(6,6) 2.60 95 1.62 2.03

146 pebble 4thopt-Cheb, RAS(4,4) 0.15 5.3 1.17 1.21
67 pebble 4thopt-Cheb, RAS(6,6) 0.47 16.0 1.40 1.88
1568 pebble 4thopt-Cheb, ASM(5,5) 0.15 3.8 1.17 1.69

Table 4.7: Solver configuration with the fastest time to solution. Processor counts identified
from the strong scalability study in section 2.9 in table 2.6 are used.

Case Fastest Solver TS Iterations
TD

TS

(Tcrs)D
(Tcrs)S

Kershaw (ε = 1) 1st-Cheb, λopt
min, RAS(2,2) 0.09 8 1.75 1.13

Kershaw (ε = 0.3) 1st-Cheb, λopt
min, RAS(5,5) 0.67 28 1.35 1.79

Kershaw (ε = 0.05) 4thopt-Cheb, RAS(12,0) 2.40 88 1.75 2.31

146 pebble 4thopt-Cheb, RAS(4,4) 0.15 5.3 1.17 1.21
67 pebble 4thopt-Cheb, RAS(12,0) 0.37 12.5 1.81 2.41
1568 pebble 4th-Cheb, ASM(12,0) 0.14 3 1.27 2.13

in eq. (4.8), albeit with different βi coefficients. Furthermore, alg. 4.1 can be used directly

without any modifications to the several software implementations previously mentioned;

only the βi coefficients need to be altered. Lastly, as the fourth-kind Chebyshev polynomial

smoother is often either the best or competitive with the best polynomial smoother, a high-

quality initial guess to the optimization problem is done by simply setting each βi = 1. The

polynomial smoothers produced via this method are denoted as “NM” in the results that

follow.

While the description of the optimization problem is straightforward, how do we solve it

during run-time for a particular case? The Nelder-Mead algorithm [89] is a simple, yet robust,

algorithm for solving unconstrained optimization problems. The Nelder-Mead algorithm,

alg. 4.3, is a direct search method that does not require the gradient of the objective function,

which is not readily available in this case. A simple header-only C++ implementation of the

Nelder-Mead algorithm, based on [90] and Burkhardt’s implementation [91], is implemented

103

in the present work. An additional termination heuristic, which checks if the solver iteration

count has not improved in the last N function evaluations, is implemented to limit the

Nelder-Mead algorithm from fruitlessly over-optimizing the polynomial smoother. N =

k + 5 is chosen for the present work, where k is the smoother polynomial order. This

heuristic is motivated by the fact that the first N function evaluations in the Nelder-Mead

algorithm are required to construct the initial simplex prior to making any optimization

progress. The Nelder-Mead algorithm is used to solve the optimization problem for the

polynomial smoother coefficients in eq. (4.8), where the objective function is the average

solver convergence rate, eq. (4.24).

4.5.1 Results

The Kershaw case with ε = 0.3 from fig. 2.10 in section 2.8.1 with E = 363, p = 7

is used to demonstrate the efficacy of directly optimizing the polynomial smoother. A

single node of Summit with P = 6 V100 GPUs is used for the experiments as n/P ∼
2.67M represents a case that is reasonably close to the strong-scaling limits for the solvers

considered in section 2.9, specifically table 2.6. GMRES(15) is used as the KSP solver with

multigrid as the preconditioner. The ASM smoother from section 2.6 is accelerated using

the various Chebyshev polynomial smoothers, including the directly optimized polynomial,

whose coefficients come from minimizing the average convergence factor through Nelder-

Mead as described in this section. For tuning the coefficients of the directly optimized

polynomial smoother, a random solution vector satisfying the boundary condition is used

to generate the right-hand side, while the actual solve uses the right-hand side described

in eq. (2.33). This ensures that the results from the optimization problem are not specific

to the given right-hand side. The Nelder-Mead optimization algorithm is run for no more

than 100 function evaluations, with the additional termination heuristic described in the

preceding section providing an early termination condition.

Optimization progress in terms of the average convergence rate as a function of the number

of function evaluations is shown in fig. 4.17. The initial convergence rate, ρ0, which corre-

sponds to the fourth-kind Chebyshev polynomial smoother, is used to normalize the objective

function to show the relative improvement across several polynomial orders. Both the (k, k)

and (2k, 0) multigrid schemes discussed in section 4.1.2 are considered. The improvement in

the convergence rate quickly plateaus during the optimization process, requiring fewer than

the prescribed 100 function evaluations. While the directly optimized polynomial smoother

provides a modest improvement to the average convergence rate less than 10%, this improve-

ment is compounded over each solver iteration. We note that, for a fixed polynomial order,

104

0 10 20 30 40 50 60
Function Evaluation

0.6

0.7

0.8

0.9

1.0

1.1
0 *

Kershaw, = 0.3, (k, k)

NM, ASM(1,1)
NM, ASM(2,2)
NM, ASM(3,3)
NM, ASM(4,4)
NM, ASM(5,5)

0 10 20 30 40 50 60
Function Evaluation

0.6

0.7

0.8

0.9

1.0

1.1

0 *

Kershaw, = 0.3, (2k, 0)

NM, ASM(2,0)
NM, ASM(4,0)
NM, ASM(6,0)
NM, ASM(8,0)
NM, ASM(10,0)

Figure 4.17: Nelder-Mead optimization progress as a function of the number of function
evaluations for the Kershaw ε = 0.3 case. The average convergence factor of the initial
guess, ρ0 which corresponds to the fourth-kind Chebyshev polynomial smoother, is used to
normalize the objective function. Left optimization progress for the (k, k) smoother. Right
optimization progress for the (2k, 0) smoother.

the expense of applying a single iteration of alg. 4.1 does not depend on the coefficients βi.

The solver time speedup, therefore, is the same as the improvement in the iteration count,

shown in fig. 4.18

While fig. 4.17 shows that the average convergence rate is only improved by a modest

amount, the actual improvement in the iteration count is appreciable. For example, fig. 4.18

shows that the (k, k) smoother with k = 3 reduces the iteration count by 20%, requiring

relatively few function evaluations to achieve this improvement. We note that the function

evaluations required in the optimization, while expensive compared to a single solve, are

amortized over the many solves required in a production Navier-Stokes simulation, where

104 – 106 solves are typical. This expense, further, is only incurred during the initial setup of

the simulation. In a simulation campaign, a user can further reduce this expense by caching

the optimized smoother coefficients from the initial setup and reusing them for subsequent

simulations.

Figure 4.19 shows the result of the smoother polynomials optimized via Nelder-Mead for

the Kershaw ε = 0.3 case, similar to fig. 4.1. An unintuitive result from fig. 4.19 that the

optimized smoother polynomials may leave the highest frequency mode largely unsmoothed.

The Chebyshev polynomials with k ≥ 2 in fig. 4.1, for example, limit pk(λ = 1) ∈ [−1/3, 1/3].

105

0 10 20 30 40 50 60
Function Evaluation

0.6

0.7

0.8

0.9

1.0

1.1

1.2
Ite

ra
tio

n
Co

un
t S

pe
ed

up
, S

I
Kershaw, = 0.3, (k, k)

(1,1)
(2,2)
(3,3)
(4,4)
(5,5)

0 10 20 30 40 50 60
Function Evaluation

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Ite
ra

tio
n

Co
un

t S
pe

ed
up

, S
I

Kershaw, = 0.3, (2k, 0)

(2,0)
(4,0)
(6,0)
(8,0)
(10,0)

Figure 4.18: Improvement in iteration count during optimization. The iteration count for a
given number of function evaluations is normalized by the iteration count of the fourth-kind
Chebyshev polynomial smoother. Left iteration count improvement for the (k, k) smoother.
Right iteration count improvement for the (2k, 0) smoother.

0.0 0.2 0.4 0.6 0.8 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

p k
(

)

(a)

Kershaw, = 0.3,(k, k)
NM, ASM(1, 1)
NM, ASM(2, 2)
NM, ASM(3, 3)
NM, ASM(4, 4)
NM, ASM(5, 5)

0.0 0.2 0.4 0.6 0.8 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

p k
(

)

(b)

Kershaw, = 0.3,(2k, 0)

NM, ASM(2, 0)
NM, ASM(4, 0)
NM, ASM(6, 0)
NM, ASM(8, 0)
NM, ASM(10, 0)

Figure 4.19: Directly optimized smoother polynomials on λ ∈ [0, 1] from Kershaw ε = 0.3
case. Figure 4.19a optimized smoothers polynomials for (k, k) multigrid scheme. Fig-
ure 4.19b optimized smoothers polynomials for (2k, 0) multigrid scheme.

The optimized smoother polynomials, for example, tend to discount targeting the highest

frequency mode to target intermediate and lower frequency modes. For example, the poly-

106

2 4 6
k

0

20

40

60

80

100

120

Ite
ra

tio
ns

(a) 2 4 6
k

0

50

100

150

200

250

300

350

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b) 2 4 6
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

So
lv

e
Ti

m
e

(s
)

(c)

1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Kershaw, = 0.3, (k, k)

Figure 4.20: Iteration count, matrix-vector products, and solution time for the Kershaw ε =
0.3 case, using the (k, k) multigrid scheme with various polynomial smoothers accelerating
the ASM smoother.

2 4 6
k

0

20

40

60

80

100

120

Ite
ra

tio
ns

(a) 2 4 6
k

0

100

200

300

400

500

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b) 2 4 6
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

So
lv

e
Ti

m
e

(s
)

(c)

1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
NM, ASM(2k, 0)

Kershaw, = 0.3, (2k, 0)

Figure 4.21: Iteration count, matrix-vector products, and solution time for the Kershaw ε =
0.3 case, using the (2k, 0) multigrid scheme with various polynomial smoothers accelerating
the ASM smoother.

nomial pertaining to the NM, ASM(3, 3) smoother is less than -3/4 at λ = 1. One potential

explanation for this phenomenon is that the Chebyshev polynomials displayed in fig. 4.1

are developed to target higher-frequency modes to reduce the maximum eigenvalue of the

multigrid error propagator. The optimized smoother polynomials in fig. 4.1, on the other

hand, directly optimize for the average convergence rate of a KSP solver utilizing multigrid

107

as a preconditioner. As such, the optimized smoother polynomials target as their objec-

tive function a proxy for the condition number. While the maximum eigenvalue of M−1A

may remain large, the condition number can further be reduced by increasing the minimum

eigenvalue.

To determine the overall improvement in the solver performance through the optimized

polynomial smoothers as compared to the other Chebyshev polynomial smoothers, we con-

sider the iteration count, matrix-vector products, and solution time for the Kershaw ε = 0.3

case in figs. 4.20 and 4.21. As noted, the right-hand side used in the optimization problem

is random, while the actual solve results here are described in eq. (2.33). We observe that

the optimized smoother polynomials outperform all other Chebyshev polynomial smoothers,

irrespective of the polynomial order, for both the (k, k) and (2k, 0) multigrid schemes. While

the optimized smoother polynomials offer only a modest improvement to the overall solver

run-time, in certain cases, it improves the run-time by as much as 21% compared to the

second-best polynomial smoother.

108

Algorithm 4.3: Nelder-Mead Simplex Method [88]

Input: Initial guess, x0; Step size ∆x for initial simplex
Output: Approximate minimum, x∗

for i = 1 to n do
xi ← x0 +∆xi /* construct initial simplex */

end
while not converged do

Sort points x0, . . . , xn such that f(x0) ≤, . . . , f(xn)

m← 1
n

∑n−1
i=0 xi

r ← 2m− xn /* generate reflected point */

if f(x0) ≤ f(r) < f(xn) then
xn ← r
continue

end
if f(r) ≤ f(x0) then

s← m+ 2(m− xn) /* construct expansion point */

if f(s) < f(r) then
xn ← s
continue

else
xn ← r
continue

end

end
if f(r) ≥ f(xn−1) then

if f(r) ≤ f(xn) then
cO ← m+ 1

2
(r −m) /* construct outside contraction point */

if f(cO) < f(r) then
xn ← cO
continue

end

else if f(r) ≥ f(xn) then
cI ← m+ 1

2
(xn −m) /* construct inside contraction point */

if f(cI) < f(xn) then
xn ← cI
continue

end

end
for i = 1 to n do

xi ← x0 +
1
2
(xi − x0) /* shrink simplex */

end

end

109

Chapter 5: Hiding Coarse-Grid Solves through Overlapping

In chapter 3, weak scaling studies highlight the inherent logP communication complexity

associated with the coarse-grid solve. This limits the parallel scalability of the geometric p-

multigrid-based preconditioner strategies from section 2.6. As we have observed in section 2.9

and chapter 4, however, one technique for mitigating the cost of coarse-grid solves is to limit

the number of coarse-grid solves required. In chapter 4, we are able to achieve this by

increasing the smoother polynomial order and exploiting polynomial smoothers which have

provable upper bounds on the maximum eigenvalue of the multigrid error propagator which

scale as O(k−2) with respect to the polynomial order, k. Through effectively controlling

the coarse-grid solve cost, we are able to develop more performant preconditioners for the

SEM-discretized Poisson equation.

In this chapter, we propose a different technique to mitigate the relative expense of the

coarse-grid solves by overlapping the coarse-grid solves. This is achieved by treating the

coarse-grid problem as an additive correction to the geometric p-multigrid preconditioner,

which otherwise remains multiplicative. The coarse-grid solve, which occurs on the CPU,

occurs in parallel with the remaining portion of the multigrid V-cycle, which executes on

the GPU. This allows us to effectively hide the cost of the coarse-grid solve behind the cost

of the remaining portion of the V-cycle.

Additive multigrid schemes, at the same time, tend to degrade the convergence rate of

the preconditioner in comparison to multiplicative schemes. This is further discussed in the

theoretical considerations of section 5.1. In addition, section 5.2 presents a technique to

help recover part of the convergence rate degradation by balancing the relative cost of the

coarse-grid solve with the remaining portion of the V-cycle. We further note that the par-

ticular additive multigrid variant proposed herein is especially well-suited for heterogeneous

architectures in that the additive portion of the preconditioner is minimal.

The organization of this chapter is as follows. The motivation and some theoretical con-

siderations for this method are presented in section 5.1. In section 5.2, algorithmic details for

the method are presented. The algorithm proposed in this chapter is Finally, in section 5.3,

we present numerical results for the multigrid method with overlapped coarse-grid solves

on small, model problems. To enable comparison with the other methods discussed in this

thesis, large-scale performance studies for the cases described in section 2.8 are deferred to

chapter 7.

110

5.1 MOTIVATION AND THEORY

During the execution of the geometric p-multigrid preconditioner described in alg. 2.8

from section 2.6, the coarse-grid solve is performed after all former smoother, residual re-

evaluations, and restriction operations have been completed. At the typical scaling limit

of n/P ∼ 2.5M degrees of freedom per GPU, established in section 2.9, the number of

degrees of freedom corresponding to the p = 1 coarse grid problem scales with the number

of elements per rank, E/P . For example, for a discretization at p = 7, the coarse grid

problem would contain only ∼8,000 degrees of freedom per rank. This is too little work to

justify running an AMG solver on the GPU, so the CPU is used instead. However, during

the coarse-grid solve, the GPU is idle. This problem is further exacerbated by the fact that

the coarse-grid solve requires non-trivial communication patterns which generally scale as

log(P) [74], see chapter 3 for more details. All other operations in the V-cycle, however,

utilize highly-scalable nearest neighbor exchanges. Thus, the coarse-grid solve is a bottleneck

in the overall V-cycle performance, especially at scale.

How can we mitigate this problem? We propose applying the coarse-grid correction addi-

tively as shown in fig. 5.1. The use of additive V-cycles to offer better parallelism has been

well studied [21, 22, 92, 93]. A major concern with the use of additive V-cycle methods is the

degradation in the solver convergence rate in comparison to the multiplicative counterpart.

In an additive V-cycle approach, the coarse component is added to the current level in the

cycle. This has the effect of “over-correcting” the coarse-grid correction. This issue can

compromise the ability to use the additive multigrid technique as a solver—the multigrid

error propagator is no longer a contractor. This, however, does not prevent the additive

V-cycle from being employed as a high-quality preconditioner. In the oldest additive multi-

grid scheme from Greenbaum [92], Greenbaum addresses this issue by applying each grid

correction sequentially, such that each correction is made orthogonal to the residual after

correction. This approach is considered in a subsequent paragraph in this thesis in eq. (5.8).

In contrast to adding a “correction factor” to the coarse-grid correction considered by

Greenbaum, Bramble, Pasciak, and Xu, ignore this issue, instead choosing to use the multi-

grid method as a preconditioner [21]. Here, we summarize the preconditioner proposed

by Bramble, Pasciak, and Xu using the notation from section 2.5. The seminal Bramble-

Pasciak-Xu (BPX) algorithm [21] forms, for each level j = 0, . . . , ℓ − 1, the inverse of the

symmetrized smoother

I − Λ−1
j Aj = A−1

j GT
j AjGj, (5.1)

111

where Gj is the smoother iteration matrix and Aj is the operator on level j. The BPX

multi-level preconditioner is given by

M−1
BPXr = PℓA

−1
ℓ P T

ℓ +
ℓ−1∑
j=0

PjΛjP
T
j r, (5.2)

where each Pj is the prolongation operator from level j to the finest level. While the BPX

preconditioner built on geometric multigrid for Poisson is spectrally equivalent to the Poisson

operator, it converges much slower than the corresponding multiplicative V-cycle [22].

Further improvements to the BPX algorithm, however, have been considered. For exam-

ple, Vassilevski and Yang [22] suggest an improvement utilizing the “smoothed” two-level

interpolation operators

P̄ j
j+1 = GjP

j
j+1, (5.3)

where P j
j+1 prolongates from level j + 1 to j. By composing the interpolants for all i > j

and letting P̄ j
j = I,

P̄ j
i = P̄ j

j+1P̄
j+1
j+2 . . . P̄

i−1
i , (5.4)

a mathematically equivalent way to express the standard multiplicative V-cycle precondi-

tioner in an additive fashion is

M−1
V r =

ℓ∑
j=0

P̄ 0
j ΛjP̄

0
j r. (5.5)

This method is referred to asmultadd. Vassilevski and Yang also propose a simplified multadd

method, where Λj in eq. (5.5) is replaced by the smoother Gj. The multadd, simplified

multadd, and BPX methods are not, however, applicable in the matrix-free p-multigrid

context, as they rely on being able to explicitly form the Λk and/or P̄ j
j+1 operators.

Another major difference in the scheme proposed herein is the use of an additive coarse-

grid correction while treating the remainder of the V-cycle as multiplicative. The motivation

behind this choice is that the coarse-grid solve the remainder of the multigrid V-cycle operate

on different execution spaces, with the former being performed on the CPU, while the latter

is done on the GPU. This allows overlapping the coarse-grid solve with the remainder of the

V-cycle while minimizing the convergence rate degradation as the fewest possible levels are

treated additively.

The proposed algorithm is described in more detail in section 5.2. Mathematically, the

112

ℓ0

ℓ1

ℓ2

V-cycle Progress

(a)

ℓ0

ℓ1

ℓ2

P T b βPec

ec = A−1
c P T

c b

CPU, thread 1

GPU, thread0

V-cycle Progress

(b)

Figure 5.1: Standard, multiplicative multigrid (fig. 5.1a) versus multiplicative multigrid with
additive coarse-grid correction (fig. 5.1b). The coarse-grid solve, shown in the dashed box
in fig. 5.1b, is performed on the CPU simultaneous with the rest of the multigrid V-cycle on
the GPU, shown in the solid box. The parameter β is introduced to prevent over-correcting
the solution.

proposed method depicted in fig. 5.1b and alg. 5.1 corresponds to

M−1
ACr = βPℓA

−1
ℓ P T

ℓ r +M−1
0 r, (5.6)

where Pℓ is the prolongation operator from the coarsest level to the finest level. M−1
0 is

recursively defined as in eq. (2.17) for levels j = 0, . . . , ℓ− 2,

I −M−1
j Aj = GT

j

(
I − P j

j+1M
−1
j+1

(
P j
j+1

)T
Aj

)
Gj, (5.7)

where each Gj is the smoother iteration on level j, The recursion terminates with M−1
ℓ−1 =

Gℓ−1, which corresponds to only smoothing on level ℓ−1. A coarse-grid correction parameter,

β, is introduced. In Greenbaum [92], β is defined such that the coarse-grid correction is

orthogonal to the residual after correction. Denoting eℓ = A−1
ℓ P T

ℓ r, the correction due to

Greenbaum, βG, is given by

βG =
(r − AM−1

0 r)T (Pℓeℓ)

(Pℓeℓ)
TA(Pℓeℓ)

. (5.8)

If βG is near unity, then the coarse-grid correction is already nearly orthogonal to the residual

113

after correction. Computation of βG requires two additional matrix-vector products and

two dot products which can be performed within a single two-word all-reduce. While the

computation of βG requires additional work per cycle, including this correction improves the

convergence rate of the additive method. This trade-off is further explored in the results in

section 5.3.

We note that the proposed method in eq. (5.6) is especially attractive for heterogeneous

architectures, as the coarse-grid solve, which occurs on the CPU, can be overlapped with

the remainder of the V-cycle, which occurs on the GPU. While the BPX method in eq. (5.2)

shares this trait, the loss in convergence rate is minimized by our proposed method in eq. (5.6)

by only treating a single level additively. The change from the multiplicative V-cycle to the

additive coarse-grid correction proposed here is illustrated in fig. 5.1.

What effect on the convergence rate does the additive multigrid approach described in

eq. (5.6) have? Notay and Napov [94] demonstrated that, provided the correct β coeffi-

cient associated with the coarse-grid correction, the following condition number relating a

multiplicative two-level preconditioner, M−1, and its additive two-level counterpart, M−1
AC ,

κ(M−1A) ≤ κ(M−1
ACA) ≤ 4κ(M−1A). (5.9)

For large κ(M−1A), eq. (5.9) implies that the iteration count for the additive method is at

most twice that of the multiplicative method. Equation (5.9), further, is not applicable for

the multilevel preconditioner considered here. Provided that the coarse-grid solve and the

remainder of the V-cycle are perfectly overlapped, the maximum speedup achievable using

the approach proposed in eq. (5.6) is then a factor of two. What about when one component

of the V-cycle is more expensive than the other? In this case, additional work can be shifted

to either the coarse-grid solve or remainder of the V-cycle at no additional run-time cost,

as the time to execute a single V-cycle of the method in eq. (5.6) is given as the maximum

of the time to execute the coarse-grid solve and the time to execute the remainder of the

V-cycle. This idea is further expanded in section 5.2.

5.2 ALGORITHM

The multiplicative V-cycle with additive coarse-grid correction in eq. (5.6) is described

in alg. 5.1. The first step of the algorithm is to restrict the right-hand side to the coarsest

level of the V-cycle. Once available, a thread parallel-block with two threads (or some

partition of many threads) is created. One group of threads (e.g. thread 1) is responsible

for executing the coarse-grid solve on the CPU, while the other group (e.g., thread 0) is

114

responsible for executing the remainder of the V-cycle. Once both operations are complete

(thereby requiring a synchronization on the GPU to ensure all kernels have finished), the

coarse-grid correction is added to the finest-level solution. In alg. 5.1, a correction factor β

for the coarse-grid correction is required. In this thesis, we consider β = 1 and β = βG as

prescribed by Greenbaum [92] in eq. (5.8). The actions of alg. 5.1 are depicted on the right

in fig. 5.1.

Our implementation of alg. 5.1 requires both OpenMP [95] and a fully-thread safe MPI

implementation (MPI THREAD MULTIPLE). The former requirement comes from needing at

least one thread per MPI rank to execute the coarse-grid solve and at least one thread per

MPI rank for dispatching the kernel launches and communication operations required in

the remainder of the V-cycle. The latter requirement, moreover, comes from the need to

execute MPI commands both from the coarse-grid solve context and from the remainder

of the V-cycle. While the development of a fully-thread safe MPI implementation is not

without issues [96], more recent works (e.g. [97, 98]) have shown that the performance

impact of supporting a fully thread-safe MPI implementation is not too onerous. In our use-

case, we have not found any significant performance impact in the common solver operators

considered in fig. 3.19.

What expected performance improvements can be achieved by the proposed method? For

the purposes of analysis, let us consider the case with β = 1. The time to solution is written

as

Ts = niterTMG

= niter(Tcrs + Tv), (5.10)

where TMG is the time to perform a single multigrid V-cycle, which is further decomposed

into the coarse grid cost per iteration, Tcrs, and the remainder of the V-cycle, TV . Since no

additional work in terms of matrix-vector products or smoother applications is introduced

by the additive coarse grid method in eq. (5.6), the time to solution for overlapping the

coarse grid solve with the remainder of the V-cycle is given by

T ′
s = n′

iter max(Tcrs, Tv). (5.11)

The speedup is therefore

S =
niter(Tcrs + Tv)

n′
iter max(Tcrs, Tv)

. (5.12)

115

Algorithm 5.1: Multiplicative Multigrid with Additive Coarse-Grid

Data: Right-hand side, b
Result: Preconditioned Solution, z
bℓ ← P T

ℓ b /* Restrict right-hand side coarsest-level */

Thread Block
Thread 1

eℓ ← A−1
ℓ bℓ /* Non-blocking solve */

Thread 0
/* Unwind recursion to get down-leg of V-cycle */

for l = 0, . . . , ℓ− 2 do
xl ← pre-smooth(xl, bl) /* e.g., algs. 2.12 and 4.1 */

rl ← bl − Alxl /* Residual re-evaluation */

bl+1 ←
(
P l
l+1

)T
rl /* Coarsen */

end
xℓ−1 ← pre-smooth(xℓ−1, bℓ−1) /* Smooth on second coarsest level */

/* Unwind recursion to get up-leg of V-cycle */

for l = ℓ− 2, . . . , 0 do
xl ← xl + P l

l+1xl+1 /* Add coarse-grid correction */

xl ← post-smooth(xl, bl)

end

/* Threads synchronized outside of block */

x0 ← x0 + βPℓeℓ /* Additive coarse-grid correction on finest-level */

z ← x0

return z

If n′
iter = niter, then the maximum possible speedup by treating the coarse grid solve ad-

ditively is a factor of two, as shown in fig. 5.2a. This maximum speedup, however, is not

achieved due to the convergence degradation of the additive scheme compared to the mul-

tiplicative. An important observation, however, comes in the case when Tcrs > Tv. This is

representative of large cases, such as the n = 51B,P = 27, 648 V100 GPU case presented in

table 1.1 [16]. In this case, the cost of the remainder of the V-cycle can be increased through

using additional levels in the multigrid hierarchy or increasing the number of smoother it-

erations without increasing the time to apply a single V-cycle. Let us denote this alternate

V-cycle cost as T ′
v. As shown in fig. 5.2b, T ′

v can be increased to T ′
v = Tcrs without incurring

any additional cost. This has the added benefit of reducing the number of iterations required

to converge. In this scenario, if the additive coarse-grid variant yields n′
iter < niter iterations

116

(a) (b)

(c)

Figure 5.2: Figure 5.2a: speedup of additive coarse grid solve as a function of the ratio of
the coarse grid cost per iteration to the remainder of the multigrid V-cycle per iteration,
assuming niter = n′

iter. Figure 5.2b: cost per V-cycle evaluation for additive coarse-grid
solve as a function of increasing smoother cost, assuming Tv < Tcrs. Figure 5.2c: cost per
V-cycle evaluation for additive coarse-grid solve as a function of increasing coarse-grid cost,
assuming Tcrs < Tv.

at T ′
v = Tcrs and Tcrs > Tv, then the speedup over the multiplicative V-cycle is

S =
niter

n′
iter

Tv + Tcrs

Tcrs

>
niter

n′
iter

. (5.13)

Let us also consider the case for sufficiently small problems and heavy smoothers/V-cycles,

such that Tv > Tcrs. In this case, the coarse-grid cost can be increased to the point Tv =

T ′
crs > Tcrs. Consider, for example, that only a single AMG V-cycle is used to approximate

the coarse-grid solution, as discussed in section 2.6. However, the accuracy of the coarse-

grid correction can be improved at no additional cost per iteration, provided T ′
crs ≤ Tv, as

117

shown in fig. 5.2c. This method has potential not only to improve solver performance in

the case where the coarse-grid cost grows, but at the other end of the spectrum, where the

coarse-grid cost is small compared to the remainder of the V-cycle. Tuning for the selection

of the V-cycle or coarse-grid solver during run-time, in the spirit of the tuner proposed in

section 3.1, is planned for future work.

Numerical results for the half-cylinder case from section 2.4.1 are presented in section 5.3.

The results are included to demonstrate the effect of the additive method on the convergence

rate of the solver, as well as whether or not the correction factor for the coarse-grid correction

as proposed by Greenbaum [92] in eq. (5.8) is required. Identifying the scenarios in which

overlapping the coarse-grid solve with the remainder of the multigrid V-cycle is deferred to

chapter 7.

5.3 NUMERICAL RESULTS

Numerical results demonstrating the efficacy of the proposed additive multigrid method

in alg. 5.1 are presented in this section. Here, the half-cylinder cases briefly considered in

section 2.4.1 are reconsidered here. In each case, the initial residual norm is reduced by a

factor of 108. The number of iterations and fine level matrix-vector products required to

achieve this reduction are reported. Polynomial smoothers from section 2.7 and section 4.1

are employed to accelerate the ASM smoother alg. 2.10. To facilitate comparison with other

methods, the larger-scale cases considered in section 2.8 are deferred to chapter 7.

The results in this section are divided into two parts. First, the effect of the choice

of β from alg. 5.1 are considered in section 5.3.1. In this thesis, we consider β = 1 and

the Greenbaum correction β = βG from eq. (5.8). While the latter tends to improve the

convergence of the solver, computing the correction requires two additional matrix-vector

products per V-cycle iteration. Second, the performance of the proposed method is compared

against the multiplicative V-cycle in section 5.3.2.

5.3.1 Effect of Correction-Factor for Coarse-Grid Corrections

Iteration count and fine-level matrix-vector products required to reach convergence using

the additive V-cycle method are shown in figs. 5.3 to 5.6. Two values for β, the correction

factor for the coarse-grid solve, are compared: β = 1 and β = βG eq. (5.8). The latter

requires an additional two matrix-vector products per V-cycle.

The first result we note is that applying the Greenbaum correction β = βG either improves

the convergence rate or has no effect compared to β = 1. For example, fig. 5.3 shows that,

118

1 2 3 4 5 6
k

0

10

20

30

40

Ite
ra

tio
ns

(a)(a) 1 2 3 4 5 6
k

0

25

50

75

100

125

150

175

200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b)

= G

= 1
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Half-Cylinder, E = 93

Figure 5.3: Convergence and matrix-vector product count comparison for the additive V-
cycle with β = 1 and β = βG, E = 93.

at k = 1, using β = βG reduces the iteration count by roughly 10 iterations. However, the

improvement in the iteration count diminishes as the smoother polynomial order increases.

Further, the reduction in the iteration count provided by using β = βG is not sufficient

to make up for the additional work required to compute the correction. In the results

considered later in chapter 7, however, reducing the iteration count may be sufficient to

justify the additional work required. As such, using β = βG is not ruled out as a viable

option.

1 2 3 4 5 6
k

0

10

20

30

40

50

Ite
ra

tio
ns

(a)(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b)

= G

= 1
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Half-Cylinder, E = 372

Figure 5.4: Convergence and matrix-vector product count comparison for the additive V-
cycle with β = 1 and β = βG, E = 372.

Does the fact that the improvement in the iteration count using β = βG diminishes with

respect to the polynomial order imply that the coarse-grid correction is already orthogonal to

the residual post correction? Inspection of the values of βG associated with fig. 5.3 indicate

119

that the value of βG varies greatly for each iteration during the solve 6. To further complicate

the matter, there is not a clear trend in the values of βG. This, unfortunately, makes pre-

tuning the β coefficient using a one-dimensional optimizer have diminishing returns.

1 2 3 4 5 6
k

0

10

20

30

40

50

60

70

Ite
ra

tio
ns

(a)(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b)

= G

= 1
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Half-Cylinder, E = 1488

Figure 5.5: Convergence and matrix-vector product count comparison for the additive V-
cycle with β = 1 and β = βG, E = 1488.

Another important question is the optimal smoother polynomial order, k. As observed in

fig. 5.6, for example, the iteration count decreases from nearly 70 iterations at k = 1 to fewer

than 20 iterations at k = 6. Despite the reduction in the iteration count, the number of

matrix-vector products required to reach convergence increases from roughly 175 to nearly

200. In terms of matrix-vector products, the optimal smoother polynomial order for the

cases considered here is at k = 2 or k = 3. We observe similar trends for the multiplicative

V-cycle, as shown in section 5.3.2.

5.3.2 Comparison Against Multiplicative V-Cycle

As we observed in section 5.3.1, using β = βG improves the convergence rate of the

additive multigrid V-cycle. However, the improvement in the iteration count is not sufficient

to make up for the additional work required to compute the correction factor. In this

following section, we consider the performance of the additive multigrid V-cycle with β = 1

compared against the multiplicative V-cycle. As the metrics considered herein only include

the iteration count and fine-level matrix-vector products required to achieve convergence,

the impact of the coarse-grid solve on the solve cost is not factored in here. Despite this

6The fact that βG varied per iteration is an example of why it is important to consider a flexible Krylov
subspace method, such as those discussed in section 2.2.

120

1 2 3 4 5 6
k

0

10

20

30

40

50

60

Ite
ra

tio
ns

(a)(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b)

= G

= 1
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Half-Cylinder, E = 1744

Figure 5.6: Convergence and matrix-vector product count comparison for the additive V-
cycle with β = 1 and β = βG, E = 1744.

limitation, however, the results presented here provide insight into the expected convergence

degradation incurred from the additive V-cycle method.

1 2 3 4 5 6
k

0

10

20

30

40

Ite
ra

tio
ns

(a)(a) 1 2 3 4 5 6
k

0

25

50

75

100

125

150

175

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b)

Add. crs, = 1
Mult.
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Half-Cylinder, E = 93

Figure 5.7: Convergence and fine-level matrix-vector product count comparison between
multiplicative and additive V-cycle with β = 1, E = 93.

Results similar to figs. 5.3 to 5.6 are shown in figs. 5.7 to 5.10, where the additive V-cycle

with β = 1 is compared against the multiplicative V-cycle. As predicted by the condition

number bound from Notay and Napov [94] in eq. (5.9), the iteration count associated with

the additive multigrid scheme is generally no worse than a factor of two greater than the

multiplicative V-cycle. Timing results for the large cases in section 2.8, however, are needed

to determine if the additive multigrid V-cycle approach is viable.

121

1 2 3 4 5 6
k

0

10

20

30

40

50

Ite
ra

tio
ns

(a)(a) 1 2 3 4 5 6
k

0

25

50

75

100

125

150

175

200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b)

Add. crs, = 1
Mult.
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Half-Cylinder, E = 372

Figure 5.8: Convergence and fine-level matrix-vector product count comparison between
multiplicative and additive V-cycle with β = 1, E = 372.

1 2 3 4 5 6
k

0

10

20

30

40

50

60

70

Ite
ra

tio
ns

(a)(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b)

Add. crs, = 1
Mult.
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Half-Cylinder, E = 1488

Figure 5.9: Convergence and fine-level matrix-vector product count comparison between
multiplicative and additive V-cycle with β = 1, E = 1488.

1 2 3 4 5 6
k

0

10

20

30

40

50

60

Ite
ra

tio
ns

(a)(a) 1 2 3 4 5 6
k

0

50

100

150

200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b)

Add. crs, = 1
Mult.
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Half-Cylinder, E = 1744

Figure 5.10: Convergence and fine-level matrix-vector product count comparison between
multiplicative and additive V-cycle with β = 1, E = 1744.

122

Chapter 6: Improving Low-Order Refined Preconditioning: Auxiliary Space
Methods

The spectral equivalence between the operator for the high-order discretization, A, and

the low-order discretization, AF , provides a preconditioner with bounded condition num-

ber independent of the choice of E and N , as discussed in section 2.4. Directly applying

A−1
F , however, is expensive. In practice, therefore, the action of A−1

F is approximated using

algebraic multigrid (AMG), which we denote M−1
F . As noted by eq. (2.15), this scheme

incurs an additional factor κ(M−1
F AF) to the condition number bound. Further, as noted in

section 3.3, the fast application of M−1
F relies on having highly scalable GPU AMG solvers,

such as boomerAMG [43, 81], AmgX [42], or MueLu [19].

What if we could improve the conditioning of the low-order preconditioner? Assuming

the κ(A−1
F A) ∼ π2/4 condition number scaling noted by Orszag [6] for certain cases and

taking M−1
F = A−1

F , what is the largest improvement that can be achieved in terms of

iteration count? Recall the convergence rate of PCG from section 2.2.1 is given as [31]:

∥ek∥A ≤ 2

[√
κ(M−1A)− 1√
κ(M−1A) + 1

]k

∥e0∥A. (6.1)

From eq. (6.1), the number of iterations required to reduce the error in the A-norm by

a factor of 108 is 13. As noted in the preceding paragraph, the condition number scaling

suggested by Orszag is not reached in practice, as the action of A−1
F is approximated through

AMG, incurring an additional factor κ(M−1
F AF) to the condition number bound in eq. (2.15).

Further, if given a preconditioner M−1 with κ(M−1A) ∼ 1, then the number of iterations

reduces to only one. Achieving this reduction in the condition number is the subject of the

remainder of this chapter. Section 6.2 explains the use of the low-order operator as a coarse

space for a “two-level” preconditioning scheme, which can lead to an improvement in the

condition number. First, however, section 6.1 includes a brief introduction into auxiliary

space methods to show that the high-order smoothed SEMFEM (HOS-SEMFEM) method

in section 6.2 can be viewed as a special case of an auxiliary space method. Small numerical

examples are considered in section 6.3 to demonstrate the efficacy of this approach. However,

to enable comparison with the other methods considered in this thesis, larger numerical

examples from section 2.8 are deferred to chapter 7.

123

6.1 AUXILIARY SPACE METHODS

In this section, we briefly note the rich history of the use of auxiliary space methods,

and even note that the high-order smoothed SEMFEM (HOS-SEMFEM) method proposed

in this section can be traced back to 1996 [24]. The fictitious space lemma 6.1 was first

formulated by Nepomnyaschikh [99]. This was later extended by Xu [24] to develop the ab-

stract theory for auxiliary space methods to construct non-nested two-level preconditioning

techniques comprised of a relaxation scheme (smoother) and an auxiliary space (roughly, a

non-nested coarse-grid space). In [24], Xu also proposed utilizing the scheme as a nested

two-level method wherein the auxiliary space for a high-order discretization is a low-order

discretization, similar to the method proposed in this chapter. Hiptmair and Xu [100] later

extended the auxiliary space method to precondition H(div) and H(curl) finite element

spaces, without the need to generate a different mesh for the auxiliary space. These tech-

niques were further implemented by Kolev and coworkers as the auxiliary space Maxwell

solver (AMS) for H(curl) [101, 102] and auxiliary space divergence solver (ADS) [103] as

part of hypre [17]. These were further extended to high-order H(curl) [104] to H(curl) and

H(div) GPU preconditioners for the entire de Rham complex [15]. In this thesis, however,

we focus on the use of auxiliary space methods to develop a nested, multiplicative two-level

preconditioner. The low-order discretization is used as the auxiliary space for the high-order

discretization. Most notably, the cardinality of the auxiliary space considered in section 6.2

is the same as the cardinality of the high-order discretization. The only difference, then, is

the finite element space used to construct the auxiliary space.

In understanding auxiliary space methods, the fictitious space lemma 6.1 is an impor-

tant result. The fictitious space lemma 6.1, first formulated by Nepomnyaschikh [99] is

summarized below as it appears in [105, Theorem 6.3].

Lemma 6.1. Let H, H̃ be two real Hilbert spaces equipped with norms induced by A : H →
H∗ and Ã : H̃ → H̃∗ and let there exist a surjective linear operator Π : H̃ → H such that

∥Πṽ∥2A ≤ c0∥ṽ∥2Ã ∀ṽ ∈ H̃ (6.2)

and,

∀v ∈ H ∃ṽ ∈ H̃ such that v = Πṽ and ∥ṽ∥2Ã ≤ c1∥v∥2A, (6.3)

hold. Then, for the preconditioner Âa defined by Â−1
a := ΠÃ−1Π∗, there exists the following

124

spectral equivalency

c−1
0 (v, v)A ≤ (Â−1

a Av, v)A ≤ c1(v, v)A ∀v ∈ H. (6.4)

As a result of lemma 6.1, the following condition number bound holds:

κ(Â−1
a A) ≤ c0c1. (6.5)

In the view of lemma 6.1, we can view the low-order preconditioner described in section 2.4

as an auxiliary space method. Choosing Π = I and H, H̃ to be the Hilbert spaces given by

the high-order and low-order discretizations, respectively, we see that lemma 6.1 holds with

c0, c1 given by the high-order/low-order spectral equivalence. Further, the result in eq. (6.5)

further predicts the same condition number bound from section 2.4.

6.2 LOW-ORDER OPERATOR AS COARSE-GRID SPACE

As noted in the results from section 2.9, the low-order discretization can be utilized as the

coarse-grid space in a HOS-SEMFEM preconditioning strategy. To better understand this

point, consider solving the 2D Poisson equation problem on Ω := [0, 1]2 with u = 0|∂Ω and

(Ex, Ey, p) = (4, 4, 7). Similar to [14], P1 finite elements with one triangle per vertex are used

to construct AF , which is solved exactly. Eigenvalues and the eigenvectors associated with

the three largest (smallest) magnitude eigenvalues of the the error from the preconditioned

operator, I−A−1
F A, are shown in fig. 6.1. Eigenvectors associated with the largest magnitude

eigenvalues of I − A−1
F A (figs. 6.1b to 6.1d) display high-frequency oscillations. At the

same time, the eigenvectors associated with the smallest magnitude eigenvalues of I−A−1
F A

(figs. 6.1e to 6.1g) are comparatively smooth. As such, I−A−1
F A is able to effectively control

long, low-frequency modes. The remaining content that contributes to the condition number

of the low-order preconditioner, however, exhibits high-frequency oscillations. How can this

observation be used to improve the convergence of preconditioning by A−1
F ?

Let us recall the two-grid exposition from section 2.6. In section 2.9, we briefly considered

a two-grid approach where the SEMFEM discretization is used as a coarse grid system at a

lower polynomial order. Mathematically, this corresponds to

EPTG = I −M−1
PTGA

= G′(I − ωcPA−1
c,FP

TA)G, (6.6)

125

(a) Eigenvalue distribution

(b) Eigenvector for largest
magnitude eigenvalue

(c) Eigenvector for second
largest magnitude eigenvalue

(d) Eigenvector for third
largest magnitude eigenvalue

(e) Eigenvector for smallest
magnitude eigenvalue

(f) Eigenvector for sec-
ond smallest magnitude
eigenvalue

(g) Eigenvector for third
smallest magnitude eigen-
value

Figure 6.1: Eigenvalues/vectors of I − A−1
F A for p = 7, Ex = Ey = 4 model problem with

P1 finite element space.

where Ac,F is the SEMFEM system at a lower polynomial order. In practice, the action

of A−1
c,F is approximated through preconditioner M−1

c,F , such as a single algebraic multigrid

V-cycle. G,G′ are the pre- and post-smoothing operations, respectively. For a more detailed

discussion, see sections 2.6, 2.7 and 4.1. This approach is summarized in alg. 6.1, and is the

two-level approach described in section 2.9.

Algorithm 6.1 and eq. (6.6) includes an additional ad-hoc coarse-grid relaxation param-

eter, ωc. This tune-able parameter is included to improve the convergence of the two-grid

method. In addition, the introduction of ωc addresses the potential volume-scaling defi-

126

Algorithm 6.1: Two-level SEMFEM Scheme

Data: Initial guess x, right-hand side b
Result: Preconditioned solution, z
x← pre-smooth(x, b) /* e.g., algs. 2.12 and 4.1 */

r ← b− Ax /* Residual re-evaluation */

x← x+ ωcPM−1
F,cP

T r /* SEMFEM coarse-grid correction */

x← post-smooth(x, b)
z ← x
return z

ciency of the low-order discretization. Consider, for example, that the one-tet-per-vertex

finite element discretization described in section 2.4 does not cover the same volume as the

high-order finite element discretization. However, when utilizing the low-order discretization

as a preconditioner embedded inside a Krylov subspace method, this scaling factor has no

effect on the convergence of the method. In the method described in alg. 6.1, however, the

low-order discretization is used as a coarse grid system in a two-level scheme, rescaling the

operator by ωc may be necessary. Tuning for ωc, moreover, is not a difficult task. The

optimization problem is one-dimensional, and can be solved using a simple derivative-free

optimization procedure, such as golden section search. In this work, we consider both ωc = 1

as well as ωc = ω∗
c , the optimizer of the average convergence rate determined during setup

through golden section search.

The two-level scheme in eq. (6.6) can be viewed as a perturbation of the Galerkin two-grid

method with

ETG = I −M−1
TGA

= G′(I − PA−1
c P TA)G, (6.7)

where Ac = P TAP . Notay [57] proved the following eigenvalue relationship relating any

unperturbed and perturbed two-grid preconditioners:

λmax(M
−1
PTGA) ≤ λmax(M

−1
TGA) ·max

(
λmax(K

−1
c Ac), 1

)
, (6.8)

λmin(M
−1
PTGA) ≥ λmin(M

−1
TGA) ·min

(
λmin(K

−1
c Ac), 1

)
. (6.9)

Here, Ac is the Galerkin coarse grid operator, while Kc is the non-Galerkin coarse grid

operator considered in the perturbed two-grid preconditioner. Applying Ac = P TAP and

127

K−1
c = ωcA

−1
c,F in our case, we obtain

κ(M−1
PTGA) =

λmax(M
−1
PTGA)

λmin(M
−1
PTGA)

≤ λmax(M
−1
TGA)

λmin(M
−1
TGA)

· max (λmax(K
−1
c Ac), 1)

min (λmin(K−1
c Ac), 1)

= κ(M−1
TGA) · κ(A

−1
c,FAc) (6.10)

assuming that λmin(ωcA
−1
c,FAc) ≤ 1 and λmax(ωcA

−1
F Ac) ≥ 1. The κ(A−1

c,FAc) term in

eq. (6.10), moreover, exhibits the same spectral equivalence independent of N or E as

κ(A−1
F A). This latter point implies that the condition number bound in eq. (6.10), how-

ever, is larger than that of the SEMFEM preconditioner with κ(A−1
F A).

Additional issues, moreover, impact this approach. For example, the reduction in time for

applying AMG to evaluate A−1
c,F compared to A−1

F may not be large enough to justify the

use of this approach. For example, benchmarks on the Kershaw case with (E, p) = (363, 7)

on P = 6 V100 GPUs show that only a 6% reduction in time to apply a single boomerAMG

V-cycle is achieved with p = 6 compared to p = 7. This is despite the 59% reduction in the

number of degrees of freedom. However, given that the problem is near the strong-scaling

limit, reducing the number of degrees of freedom yields diminishing returns in the time to

apply AMG. This, combined with the lack of condition number improvement in eq. (6.10),

explains why the proposed two-grid approach with SEMFEM as the coarse grid solve was

not successful in [25]. Despite the shortcomings of the preconditioner described in alg. 6.1,

the remainder of this section explores ways to address these issues.

Is there still some way to apply SEMFEM as a coarse grid solve, as fig. 6.1 suggests,

while also improving on the condition number? Consider now the extreme case where the

coarse grid and fine grid are the same with P = I. The error propagator for the unperturbed

“two-grid” method, following eq. (6.7), is

EOG = I −M−1
OGA

= G′(I − PA−1
c P TA)G

= G′(I − A−1A)G

= 0. (6.11)

The method converges in a single iteration. However, no progress has been made as the

action of A−1 is still required. While the Galerkin coarse grid operator is Ac = P TAP = A,

replacing the coarse grid operator with a non-Galerkin counterpart can be used to avoid the

128

need to apply A−1. What is a natural choice for a non-Galerkin approximation to A that

captures the coarse modes? A−1
F ! Substituting Ac = ωcA

−1
F into eq. (6.11) yields

EPOG = I −M−1
POGA

= G′(I − ωcA
−1
F A)G. (6.12)

Repeating the same analysis from eq. (6.10) with Kc = ωcA
−1
F , and noting that κ(M−1

OGA) =

1, we see that κ(M−1
POGA) ≤ κ(A−1

F A). This analysis demonstrates that, at worst, the

convergence of the proposed method is no worse than the low-order SEMFEM preconditioner

described in section 2.4.

Algorithm 6.2: High-order smoothed SEMFEM (HOS-SEMFEM) Scheme

Data: Right-hand side, b
Result: Preconditioned solution, z
x← pre-smooth(x, b) /* e.g., algs. 2.12 and 4.1 */

r ← b− Ax /* Residual re-evaluation */

x← x+ ωcM
−1
F r /* SEMFEM coarse-grid correction */

x← post-smooth(x, b)
z ← x
return z

p0

a0

a1
a2

Progress

AMG

Figure 6.2: Depiction of high-order smoothed SEMFEM preconditioner, described in alg. 6.2.

The HOS-SEMFEM method proposed in the previous paragraph is depicted in fig. 6.2.

Algorithm 6.2 is the same as alg. 6.1, except with the interpolator P being replaced with

the identity matrix I. The inverse of the low-order system is approximated using a single

AMG V-cycle, denoted M−1
F .

The consideration here of non-Galerkin coarse grid operators is not new. Falgout and

coworkers [84] considered constructing non-Galerkin coarse grid operators to improve spar-

sity. Bienz and coworkers [106] considered sparsification to improve communication by re-

129

moving weakly connected entries in the coarse operator. Both of these approaches, however,

require access to the entries of the operator, and are therefore not amenable for direct use

in sparsifying the spectral element operator. At the same time, the proposed approaches in

[84, 106] can help in the AMG solve to apply A−1
F . A natural choice for a sparsified operator,

in this case, is the low-order operator, AF . As discussed in section 2.4, this operator is

spectrally equivalent to the high-order operator, and, as shown in fig. 6.1, functions as a

good coarse grid operator. Therefore, we propose to use AF as the coarse grid operator in

the “two-level” scheme in eq. (6.12).

The approach mentioned in [25] has been shown to not improve the SEMFEM condition

number in eq. (6.10). In addition, the reduction in cost to apply a single AMG V-cycle to

approximate A−1
c,F is not sufficient to offset any degradation in the convergence rate. The

scheme proposed in eq. (6.12), however, is able to improve on the convergence rate at the

expense of a few additional matrix-vector products and smoother applications. Therefore,

it is expected that the scheme from eq. (6.12) is able to outperform SEMFEM precondi-

tioning in the scenarios where SEMFEM outperforms the pMG-based approaches. It is

further expected that this approach can outperform pMG-based approaches under a variety

of conditions where the use of SEMFEM preconditioning is not competitive. While most of

the results for this method are presented in chapter 7, a few small numerical examples are

included in section 6.3 to demonstrate the efficacy of this approach. The following results in

section 6.3 and later in chapter 7 directly optimize ωc unless otherwise noted. ωc is chosen

as the minimizer of either the maximum eigenvalue of the error propagator, eq. (6.12), when

employing alg. 6.2 as a solver ; or the average convergence rate for alg. 6.2 as a precondi-

tioner.

6.3 NUMERICAL EXAMPLES

Numerical examples demonstrating the efficacy of alg. 6.2 are presented in this section.

Results from a single 2D spectral element are considered in section 6.3.1. The effect of tuning

the coarse-grid relaxation parameter, ωc, is also considered in section 6.3.1. The half-cylinder

cases briefly considered in section 2.4.1 are reconsidered here in section 6.3.2.

6.3.1 2D Single Spectral Element

A single spectral element with p = 9 is used to discretize the domain Ω = [0, 1] × [0, 4].

Jacobi smoothing is used to construct the polynomial smoother required in alg. 6.2. Two

values of the coarse-grid relaxation parameter, ωc, are considered. The first is ωc = 1. The

130

second, however, solves a one-dimensional optimization problem using golden section search

to find the value ω∗
c that minimizes the max eigenvalue of the error propagator, eq. (6.12).

The left plot shows the optimized values of ωc for various polynomial smoothers. The right

plot shows the maximum eigenvalue of the error propagator for eq. (6.12) various polynomial

smoothers. In addition to the suite of polynomial smoothers from section 2.7 and chapter 4,

the polynomials directly optimized through Nelder-Mead as presented in section 4.5 are also

considered. To observe the effect of optimizing ωc, the maximum eigenvalue is also plotted

for ωc = 1. Methods that directly optimize ωc are denoted by ω∗
c .

1 2 3 4 5 6
k

0.70

0.75

0.80

0.85

0.90

0.95

* c

1st-Cheb, min = 0.1, Jac(k, k), *
c

4th-Cheb, Jac(k, k), *
c

4th
opt-Cheb, Jac(k, k), *

c

NM, Jac(k, k), *
c

1 2 3 4 5 6
k

10 2

10 1
m

ax
(E

PO
G
)

1st-Cheb, min = 0.1, Jac(k, k)
1st-Cheb, min = 0.1, Jac(k, k), *

c

4th-Cheb, Jac(k, k)
4th-Cheb, Jac(k, k), *

c

4th
opt-Cheb, Jac(k, k)

4th
opt-Cheb, Jac(k, k), *

c

NM, Jac(k, k)
NM, Jac(k, k), *

c

Figure 6.3: Effect of optimizing ωc parameter for a single spectral element on Ω := [0, 1]×
[0, 4] with p = 9. Left: Optimized values of ωc for various polynomial smoothers. Right:
Max eigenvalue of two-level error propagator for various polynomial smoothers, both with
ωc = 1 and optimized ωc values. For simplicity, Q1 finite elements are used to construct the
low-order operator.

In fig. 6.3, the methods which optimize the coarse-grid relaxation parameter, ωc, sig-

nificantly reduce the maximum eigenvalue of the error propagator in comparison to the

counterparts with ωc = 1. This indicates that, with a few iterations of golden section search,

the coarse-grid relaxation parameter can be tuned to significantly improve the convergence

of the two-level method described in alg. 6.2. Since ωc can be tuned during setup time with

little work, there is no reason not to use the optimized value of ωc. As such, as noted in

section 6.2, we use the optimized value of ωc for the remainder of this chapter and the results

in chapter 7.

131

6.3.2 Half-Cylinder

2 4 6
k

0

5

10

15

20

Ite
ra

tio
ns

(a) 2 4 6
k

0

10

20

30

40

50

60

70

80

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b) 2 4 6
k

0

20

40

60

80

100

120

140

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c)

1st-Cheb, ASM(k, k), *
c

4th-Cheb, ASM(k, k), *
c

4th
opt-Cheb, ASM(k, k), *

c

NM, ASM(k, k), *
c

SEMFEM

Half-Cylinder, E = 93

Figure 6.4: Solver performance, half-cylinder, E = 93.

The flow over a half-cylinder case from [44], considered in section 2.4.1, is considered here

to demonstrate the performance of the HOS-SEMFEM preconditioning scheme described

in chapter 6. In each case, the initial residual norm is reduced by a factor of 108. The

number of iterations and fine level matrix-vector products required to achieve this reduction

are reported. In the results below, various polynomial smoothers from section 2.7 and

section 4.1 are employed to accelerate the ASM smoother alg. 2.10. Unlike in section 2.4.1,

only a single AMG V-cycle is used to approximate the inverse of the low-order matrix. As

discussed in chapter 6, an ad-hoc relaxation parameter for the coarse-grid correction, ωc, is

directly optimized for a few solver choices. Otherwise, ωc = 1 is used. The HOS-SEMFEM

preconditioner in chapter 6 seeks to balance the relatively expensive AMG V-cycle cost with

relatively cheap matrix-vector product and smoother applications. While higher degrees of

polynomial smoothing reduces the number of iterations required and the number of AMG

V-cycle applications, it also increases the number of matrix-vector products required per

cycle.

As observed in section 4.4, it is possible that the increase in the polynomial smoother

order may decrease the iteration count sufficiently to reduce the overall number of matrix-

vector products required for the end-to-end solve. Similar to chapter 4, however, much of the

cost savings associated with investing in a heavier polynomial smoother come in the form of

reducing the iteration count, thereby reducing the number of coarse-grid solve applications.

The same is true for the HOS-SEMFEM preconditioner here. A reduction in the iteration

132

2 4 6
k

0

5

10

15

20

25

30

35

40

Ite
ra

tio
ns

(a) 2 4 6
k

0

25

50

75

100

125

150

175

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b) 2 4 6
k

0

50

100

150

200

250

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c)

1st-Cheb, ASM(k, k), *
c

4th-Cheb, ASM(k, k), *
c

4th
opt-Cheb, ASM(k, k), *

c

NM, ASM(k, k), *
c

SEMFEM

Half-Cylinder, E = 372

Figure 6.5: Solver performance, half-cylinder, E = 372.

count reduces the number of AMG V-cycle calls required to solve the resultant system. While

the overall solve time is the most useful metric when comparing the performance trade-off

between the potential increase in matrix-vector products and the reduction in the number

of AMG V-cycle calls, the timings from the small half-cylinder cases considered here are not

representative of the large problems targeting heterogeneous computing platforms.

2 4 6
k

0

5

10

15

20

Ite
ra

tio
ns

(a) 2 4 6
k

0

20

40

60

80

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b) 2 4 6
k

0

20

40

60

80

100

120

140

160

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c)

1st-Cheb, ASM(k, k), *
c

4th-Cheb, ASM(k, k), *
c

4th
opt-Cheb, ASM(k, k), *

c

NM, ASM(k, k), *
c

SEMFEM

Half-Cylinder, E = 1488

Figure 6.6: Solver performance, half-cylinder, E = 1488.

To mitigate the issues discussed in the previous paragraph, we introduce a work measure of

the equivalent matrix-vector products (eq. (6.13)) to quantify the trade-off between incurring

133

additional matrix-vector products in the smoother versus reducing the number of AMG

V-cycle calls. We first assume that the expense of applying the forward operators A and

AF are equivalent. This is a reasonable assumption based on the throughputs gathered

in section 3.2.1 as applying the assembled, sparse matrix AF has similar throughputs to

applying the matrix-free operator, A. The cycle complexity of the AMG V-cycle, CAMG, is

available through boomerAMG as the ratio between the non-zeros in AF and the non-zeros

for all multigrid levels combined. The equivalent matrix-vector products, therefore, is

Equivalent matrix-vector products = Matrix-vector products

+ CAMG × Iterations× AMG smoother passes. (6.13)

The AMG solver details are explained in section 2.4. Two smoothing passes are employed at

each level of the AMG V-cycle. While this metric does not account for the communication

costs associated with applying the AMG V-cycle, it does provide a mechanism to measure

the relative cost between AMG V-cycle and the matrix-free smoother.

2 4 6
k

0

5

10

15

20

Ite
ra

tio
ns

(a) 2 4 6
k

0

20

40

60

80

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b) 2 4 6
k

0

20

40

60

80

100

120

140

160
Eq

ui
va

le
nt

 M
at

rix
-V

ec
to

r P
ro

du
ct

s

(c)

1st-Cheb, ASM(k, k), *
c

4th-Cheb, ASM(k, k), *
c

4th
opt-Cheb, ASM(k, k), *

c

NM, ASM(k, k), *
c

SEMFEM

Half-Cylinder, E = 1744

Figure 6.7: Solver performance, half-cylinder, E = 1744.

Solver performance results for the half-cylinder case are shown in figs. 6.4 to 6.7. The

polynomial smoother order is varied from k = 1 to k = 6 for a symmetric (k, k) multigrid

approach (see chapter 4) utilizing the ASM smoother from section 2.6. We observe that, in

all cases, the iteration count is reduced by nearly a factor of two, irrespective of the particular

choice of smoother. Despite the increase in the amount of work per-cycle employed by the

HOS-SEMFEM preconditioner, the number of matrix vector products using a (1, 1)-cycle

ASM smoother, However, which requires an additional two matrix-vector products per cycle,

134

is nearly identical to the SEMFEM scheme. However, as the smoother order is increased, the

total number of matrix-vector products increases, even though the total number of iterations

decreases.

0 10 20 30 40
Iterations

10 7

10 5

10 3

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

SEMFEM
pMG/SEMFEM
Target

(a) E = 93

0 10 20 30 40
Iterations

10 7

10 5

10 3

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

SEMFEM
pMG/SEMFEM
Target

(b) E = 372

0 10 20 30 40
Iterations

10 7

10 5

10 3

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

SEMFEM
pMG/SEMFEM
Target

(c) E = 1488

0 10 20 30 40
Iterations

10 8

10 6

10 4

10 2

100
Re

la
tiv

e
re

sid
ua

l,
||r

|| 2
||r

0||
2

SEMFEM
pMG/SEMFEM
Target

(d) E = 1744

Figure 6.8: Relative residual history as a function of iteration count for the SEMFEM and
best HOS-SEMFEM preconditioner identified in table 6.1.

How does the increase in the matrix-vector products compare to the reduction in the

number of AMG V-cycle calls? This is where the equivalent matrix-vector product from

eq. (6.13), shown in the rightmost subplot in figs. 6.4 to 6.7, is useful. For the E = 93

case (fig. 6.4), the work remains relatively constant with respect to the smoother order, k.

However, the remaining E = 372, 1488, and 1744 cases (figs. 6.5 to 6.7) show that the overall

work sharply increases with the smoother order. This would seem to indicate that only a

very light smoother should be used in the HOS-SEMFEM preconditioner from alg. 6.2. The

equivalent work metric in eq. (6.13), however, does not account for the communication cost

135

associated with the AMG V-cycle. This cost, especially at scale, may be sufficient to justify

the use of a higher order polynomial smoother. Results for larger cases, such as those in

section 2.8, are deferred to chapter 7 to enable direct comparison with the methods proposed

in this thesis.

0 100 200 300
Equivalent Matrix-Vector Products

10 7

10 5

10 3

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

SEMFEM
pMG/SEMFEM
Target

(a) E = 93

0 100 200 300
Equivalent Matrix-Vector Products

10 7

10 5

10 3

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

SEMFEM
pMG/SEMFEM
Target

(b) E = 372

0 100 200 300
Equivalent Matrix-Vector Products

10 7

10 5

10 3

10 1

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

SEMFEM
pMG/SEMFEM
Target

(c) E = 1488

0 100 200 300
Equivalent Matrix-Vector Products

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

re
sid

ua
l,

||r
|| 2

||r
0||

2

SEMFEM
pMG/SEMFEM
Target

(d) E = 1744

Figure 6.9: Relative residual history as a function of the equivalent matrix-vector product
count from eq. (6.13) for the SEMFEM and best HOS-SEMFEM preconditioner identified
in table 6.1.

The solvers producing the lowest number of equivalent matrix-vector products (eq. (6.13))

are summarized in table 6.1. Across all of the cases, we observe that ASM smoothing with

a first-order polynomial smoother produces the lowest number of equivalent matrix-vector

products. The speedup, in terms of equivalent matrix-vector products compared to the

SEMFEM preconditioner, is also shown in table 6.1. We observe a range of speedups from

62% for the E = 372 case, up to 96% for the E = 93 case. The iteration count, as well as

the total number of AMG V-cycle calls, is reduced by over a factor of 2 across all cases.

136

Table 6.1: Half-cylinder solver results. Solver configuration yielding the lowest equivalent
matrix-vector product count from eq. (6.13). The iterations, equivalent matrix-vector prod-
uct counts, for the SEMFEM preconditioner is also reported. The relative speedup in terms
of equivalent matrix-vector products is also reported.

E Solver Equiv. MV Equiv. MV, SEMFEM Speedup I ISEMFEM

93 1st-Cheb, ASM(1,1), ω∗
c 77.5 152.0 1.96 9 23

372 1st-Cheb, ASM(1,1), ω∗
c 175.3 284.0 1.62 20 42

1488 1st-Cheb, ASM(1,1), ω∗
c 86.0 158.5 1.84 10 24

1744 4thopt-Cheb, ASM(1,1), ω∗
c 86.7 160.1 1.85 10 24

Relative residual histories in terms of the iteration count are shown in fig. 6.8. The

solver that is optimal with respect to the number of equivalent matrix-vector products from

table 6.1 is chosen as the HOS-SEMFEM solver represented in the plot. As the amount of

work per iteration is different across the HOS-SEMFEM and SEMFEM solvers, the relative

residual histories in terms of equivalent matrix-vector products are shown in fig. 6.9. We

observe that, despite the user-specified solver tolerance, the HOS-SEMFEM solver is able

to achieve a lower relative residual than the SEMFEM solver in all cases, both in terms of

iteration count and equivalent matrix-vector products. This makes this method especially

attractive, as less work is required to achieve a given tolerance and fewer AMG V-cycle

solves are required. We observe that this trend continues in section 7.2 for the larger cases

in section 2.8.

137

Chapter 7: Results

So far in this thesis, we have discussed a variety of preconditioner schemes for the solu-

tion of the SEM Poisson problem. In chapter 4, we covered different polynomial smoothers

and the optimal way of distributing smoothing passes between the pre- and post-smoothing

phases of the multigrid V-cycle. Chapter 5 discusses a strategy of overlapping the coarse-

grid solve with the remainder of the V-cycle by treating the coarse-grid solve additively.

Lastly, in chapter 6, we propose an auxiliary space method wherein the low-order operator

from section 2.4 is used as a coarse-space combined with smoothing based on the high-order

operator. In order to better understand the various scenarios in which a given precondi-

tioner scheme is optimal, we consider the results of the test cases highlighted in section 2.8.

All results considered here are on the Oak Ridge Leadership Computing Facility’s Summit

supercomputer, which is equipped with 2 IBM POWER9 processors and 6 NVIDIA V100

GPUs per node.

The organization of this chapter resembles that of a tournament. The solvers discussed in

chapters 2 and 4 to 6 are compared against each other in the battery of tests identified in

section 2.8. Section 7.1 characterizes the performance of the multigrid scheme with additive

coarse-grid solve discussed in chapter 5. Results for the additive coarse-grid solve, alg. 5.1, are

compared against the standard multiplicative V-cycle in alg. 2.8 for the various polynomial

smoothers from sections 2.7 and 4.1. The solvers yielding the lowest time-to-solution are

noted and later compared in section 7.3. In terms of the tournament analogy, the lowest time-

to-solution solvers advance to the next round. The HOS-SEMFEM approach from alg. 6.2

in chapter 6 is compared against the standard low-order preconditioner from section 2.4. As

with section 7.1, the winners advance to the next round. The final round of the tournament,

section 7.3, is a comparison of the best solvers from the preceding brackets in sections 7.1

and 7.2. The best solver configuration for each problem is identified. Once known, the best

solver configurations from each class of methods are compared in a weak scaling study for

the Kershaw problem in section 7.3.1.

7.1 ADDITIVE COARSE-GRID SOLVE

As we have observed from the scaling results in section 2.9 and fig. 3.19 and the numerical

results from section 4.4, the coarse-grid solve component of the geometric p-multigrid method

in section 2.6 limits the parallel scalability of the solver. By controlling the cost of coarse-

grid solves through investing in more robust smoothing strategies, we noted in section 4.4,

138

the effect of the coarse-grid solve on the scalability can be mitigated. Chapter 5, on the

other hand, proposes an additive multigrid scheme to overlap the coarse-grid solve with the

remainder of the V-cycle. Here, we present numerical results for the cases from section 2.8

to test the efficacy of this approach.

The use of the additive V-cycle approach for the Kershaw problem from section 2.8.1 is

considered in section 7.1.1. Section 7.1.2 presents results for the Navier-Stokes pebble bed

problems described in section 2.8.2.

7.1.1 Kershaw

Here, we consider the additive coarse-grid V-cycle approach from alg. 5.1 for the Kershaw

case (section 2.8.1). A single node of summit (P = 6 V100 GPUs) is used with n/P ∼ 2.67M

with E = 363 elements and p = 7, the scaling limit from section 2.9. A random right-

hand side is generated to tune the NM polynomials from section 4.5. For the linear solve

evaluation, the right-hand side is set to the analytical expression eq. (2.33). The solver

terminates once a 108 reduction in the residual norm is achieved. The mesh anisotropy

factor ε = 1, 0.3 to consider a two distinct mesh anisotropies. The Kershaw case with

ε = 0.05 is omitted here, as the solver rarely converges in fewer than 200 iterations. For

that particular case, the low-order preconditioning schemes, including the HOS-SEMFEM

preconditioner from chapter 6, are more appropriate.

2 4 6
k

0

2

4

6

8

10

12

14

16

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

25

50

75

100

125

150

175

200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

So
lv

e
Ti

m
e

(s
)

(c)(c)

= G

= 1
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Kershaw, = 1, ASM, (k, k)

Figure 7.1: Comparison of β = 1 and β = βG. Kershaw, ε = 1. E = 363, p = 7. One
Summit node (P = 6 V100 GPUs) is used with n/P ∼ 2.67M . A symmetric distribution of
pre- and post-smoothings, (k, k), is used as the smoother polynomial order, k, is varied.

139

2 4 6
k

0

25

50

75

100

125

150

175

200

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

200

400

600

800

1000

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

So
lv

e
Ti

m
e

(s
)

(c)(c)

= G

= 1
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Kershaw, = 0.3, ASM, (k, k)

Figure 7.2: Comparison of β = 1 and β = βG. Kershaw, ε = 0.3. E = 363, p = 7. One
Summit node (P = 6 V100 GPUs) is used with n/P ∼ 2.67M . A symmetric distribution of
pre- and post-smoothings, (k, k), is used as the smoother polynomial order, k, is varied.

The first set of results mirror those from section 5.3.1. Here, we consider the use of two

distinct values of β from alg. 5.1: β = 1 and the Greenbaum β = βG (eq. (5.8)). The former

requires no work to compute, while the latter requires two additional matrix-vector products

per cycle. As we observed in section 5.3.1, β = βG tends to improve the convergence rate

of the solver. However, the added cost is not justified by the reduction in the iteration

count. In the following results, we demonstrate that β = βG has virtually no effect on the

convergence rate of the solver.

Iteration count, matrix-vector product count, and time-to-solution for the Kershaw cases

are shown in figs. 7.1 and 7.2. As clearly shown, the use of β = βG has virtually no effect on

the convergence rate of the solver. Unlike in section 5.3.2, inspection of the βG coefficients for

the case in fig. 7.1 reveal that βG ∼ 1. That is, the coarse-grid component is already nearly

orthogonal to the residual after correction. This makes the additional work in computing

βG redundant.

Further hurting the use of β = βG, the expense required in the two additional two matrix-

vector products per iteration is expensive. In fig. 7.2, for example, the matrix-vector product

count nearly doubles at k = 1 or k = 2. As the polynomial order increases, however, this

additional expense becomes smaller. This is purely from the fact that, at higher smoother

polynomial order, the iteration count is reduced. This mitigates the additional two matrix-

vector products per iteration.

As the results in figs. 7.1 and 7.2 demonstrate there is no benefit to choosing β = βG,

140

2 4 6
k

0

2

4

6

8

10

12

14

16

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

20

40

60

80

100

120

140

160

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

So
lv

e
Ti

m
e

(s
)

(c)(c)

Add. crs, = 1
Mult.
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Kershaw, = 1, ASM, (k, k)

Figure 7.3: Comparison of additive coarse-grid method with β = 1 the standard, multi-
plicative pMG method. Kershaw, ε = 1. E = 363, p = 7. One Summit node (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . A symmetric distribution of pre- and post-smoothings,
(k, k), is used as the smoother polynomial order, k, is varied.

2 4 6
k

0

25

50

75

100

125

150

175

200

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

100

200

300

400

500

600

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2
So

lv
e

Ti
m

e
(s

)

(c)(c)

Add. crs, = 1
Mult.
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

Kershaw, = 0.3, ASM, (k, k)

Figure 7.4: Comparison of additive coarse-grid method with β = 1 the standard, multi-
plicative pMG method. Kershaw, ε = 0.3. E = 363, p = 7. One Summit node (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . A symmetric distribution of pre- and post-smoothings,
(k, k), is used as the smoother polynomial order, k, is varied.

we consider β = 1 when comparing the performance against the standard, multiplicative

pMG approach from section 2.6. Similar to figs. 7.1 and 7.2. iteration count, matrix-vector

product count, and the time-to-solution are reported in figs. 7.3 and 7.4.

141

Figures 7.3 and 7.4 indicates that there are no cases in which the additive approach is able

to outperform the multiplicative V-cycle approach. The solver degradation predicted in the

two-level convergence bound from eq. (5.9) is too large for the additive approach to overcome.

However, in nearly all cases, the additive approach remains within “striking distance” of the

multiplicative approach. For this relatively small case with P = 6 processors, the relative

cost of the coarse-grid solve is minimal. At scale, however, this cost becomes more significant.

In this regime, therefore, we expect the additive approach to be more competitive than shown

here. Further, the tuning strategy suggested as future work in section 5.2 may also improve

the performance of the additive approach. For the results shown in figs. 7.3 and 7.4, a fixed

coarse-grid solve approximation is used. However, especially as the smoother polynomial

order increases, the amount of work in the multiplicative portion of the V-cycle increases.

Therefore, the solution accuracy of the coarse-grid solve approximation can be improved

at no additional run-time cost by balancing the relative time of each multigrid component.

For example, if the multiplicative portion of the V-cycle takes more time than the coarse-

grid solve, the coarse-grid component can be improved through additional AMG smoothings

without increasing the overall run-time per iteration. This is a significant advantage of the

additive approach over the multiplicative approach that is not fully realized in this work.

The results discussed in this subsection utilize the symmetric distribution of pre- and

post-smoothing applications, (k, k). For completeness, additional results for the (2k, 0) dis-

tribution are shown in appendix B.1.1. These results are qualitatively similar to those shown

here.

7.1.2 Pebble Cases

The Navier-Stokes pebble cases from section 2.8.2 are considered here. These three cases

consist of 146, 1568, and 67 contacting pebbles embedded in a cylinder. To avoid the full

time-stepping required for the Navier-Stokes equations, as in the results from section 2.9.2,

the right-hand side corresponding to the last pressure Poisson problem is used as the right-

hand side here. To tune the NM polynomial smoother in section 4.5, a random right-hand

side is generated by taking a random solution vector in [0, 1] that satisfies the pressure

boundary conditions and applying the discrete Laplacian operator.

As in section 7.1.1, we start by comparing the performance of the additive coarse-grid

solve scheme with β = 1 and β = βG. The results are shown in figs. 7.5 to 7.7. Similar

to the Kershaw results (section 7.1.1), β = βG has the same convergence as β = 1. The

former, however, requires more work per cycle to compute the correction. Therefore, in the

subsequent results comparing the additive coarse-grid solve with the multiplicative V-cycle,

142

2 4 6
k

0

10

20

30

40

50

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.0

0.1

0.2

0.3

0.4

0.5

So
lv

e
Ti

m
e

(s
)

(c)(c)

= G

= 1
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

146 Pebble, ASM, (k, k)

Figure 7.5: 146 pebble case (fig. 2.11a). Comparison of β = 1 and β = βG for the additive
coarse-grid method. A single summit node (P = 6 V100 GPUs) is used with n/P ∼ 3.5M .
The polynomial smoother order, k, is varied. Pre- and post-smoothing are equal, denoted
as (k, k).

2 3 4 5 6
k

0

100

200

300

400

Ite
ra

tio
ns

(a)(a) 2 3 4 5 6
k

0

500

1000

1500

2000

2500

3000

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 3 4 5 6
k

0

1

2

3

4

5
So

lv
e

Ti
m

e
(s

)

(c)(c)

= G

= 1
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

67 Pebble, ASM, (k, k)

Figure 7.6: 67 pebble case (fig. 2.11c). Comparison of β = 1 and β = βG for the additive
coarse-grid method. Three summit nodes (P = 18 V100 GPUs) is used with n/P ∼ 2.33M .
The polynomial smoother order, k, is varied. Pre- and post-smoothing are equal, denoted
as (k, k).

we use β = 1.

In figs. 7.5 to 7.7, the additive coarse-grid solve with β = 1 is compared against the same

method with β = βG. Figures 7.8 to 7.10 now compare the additive coarse-grid solve with

143

2 4 6
k

0

20

40

60

80

100

120

140

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

100

200

300

400

500

600

700

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.0

0.5

1.0

1.5

2.0

2.5

So
lv

e
Ti

m
e

(s
)

(c)(c)

= G

= 1
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

1568 Pebble, ASM, (k, k)

Figure 7.7: 1568 pebble case (fig. 2.11b). Comparison of β = 1 and β = βG for the additive
coarse-grid method. 12 summit nodes (P = 72 V100 GPUs) is used with n/P ∼ 2.5M .
The polynomial smoother order, k, is varied. Pre- and post-smoothing are equal, denoted
as (k, k).

2 4 6
k

0

10

20

30

40

50

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

50

100

150

200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.0

0.1

0.2

0.3

0.4

0.5
So

lv
e

Ti
m

e
(s

)

(c)(c)

Add. crs, = 1
Mult.
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

146 Pebble, ASM, (k, k)

Figure 7.8: 146 pebble case (fig. 2.11a). Comparison of additive coarse-grid solve with
β = 1 and multiplicative V-cycle. A single summit node (P = 6 V100 GPUs) is used with
n/P ∼ 3.5M . The polynomial smoother order, k, is varied. Pre- and post-smoothing are
equal, denoted as (k, k).

β = 1 to the multiplicative V-cycle approach. The results are similar to those from the

Kershaw cases (section 7.1.1). There are no scenarios identified herein where the additive

coarse-grid solve method outperforms the multiplicative V-cycle. This unfortunate fact is

144

2 3 4 5 6
k

0

100

200

300

400

Ite
ra

tio
ns

(a)(a) 2 3 4 5 6
k

0

500

1000

1500

2000

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 3 4 5 6
k

0

1

2

3

4

So
lv

e
Ti

m
e

(s
)

(c)(c)

Add. crs, = 1
Mult.
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

67 Pebble, ASM, (k, k)

Figure 7.9: 67 pebble case (fig. 2.11c). Comparison of additive coarse-grid solve with
β = 1 and multiplicative V-cycle. Three summit nodes (P = 18 V100 GPUs) is used with
n/P ∼ 2.33M . The polynomial smoother order, k, is varied. Pre- and post-smoothing are
equal, denoted as (k, k).

2 4 6
k

0

20

40

60

80

100

120

140

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

50

100

150

200

250

300

350

400

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.0

0.5

1.0

1.5

2.0

2.5
So

lv
e

Ti
m

e
(s

)

(c)(c)

Add. crs, = 1
Mult.
1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
NM, ASM(k, k)

1568 Pebble, ASM, (k, k)

Figure 7.10: 1568 pebble case (fig. 2.11b). Comparison of additive coarse-grid solve with
β = 1 and multiplicative V-cycle. 12 Summit nodes (P = 72 V100 GPUs) is used with
n/P ∼ 2.5M . The polynomial smoother order, k, is varied. Pre- and post-smoothing are
equal, denoted as (k, k).

due to the increase in the number of iterations required by the additive approach. The

speedup per iteration in the preconditioner is not sufficient to overcome the increase in the

number of iterations.

145

The results discussed in this subsection utilize the symmetric distribution of pre- and

post-smoothing applications, (k, k). While similar to the results shown in this section, for

completeness, additional results for the (2k, 0) distribution are shown in appendix B.1.2.

Table 7.1: Solver configuration yielding the lowest time-to-solution in seconds, Ts, comparing
the additive multigrid scheme from chapter 5 and the multiplicative V-cycle from section 2.6.
ASM (alg. 2.10) smoothing is accelerated via different polynomial smoothers.

Case Solver Ts Iterations

Kershaw, ε = 1 NM, ASM(1,1) 0.08 9
Kershaw, ε = 0.3 NM, ASM(6,0) 0.65 43

146 pebble NM, ASM(3,3) 0.27 12
67 pebble 4thopt-Cheb, ASM(12,0) 1.53 49
1568 pebble NM, ASM(6,0) 0.39 18

The results presented in sections 7.1.1 and 7.1.2 are summarized in table 7.2 are sum-

marized in table 7.1. Here, the solver achieving the lowest time-to-solution for each case is

highlighted across the additive coarse-grid and multiplicative V-cycle approaches. As dis-

cussed in sections 7.1.1 and 7.1.2, the additive multigrid scheme is unable to outperform the

standard multiplicative V-cycle. Part of the reason why the additive method in chapter 5

cannot outperform the multiplicative V-cycle is that the coarse-grid solve cost is already

effectively controlled by the robust polynomial smoothers. In this regime, the portion of the

simulation that is spent in the coarse-grid solve is already well controlled, assuming that

a reasonable smoother order is chosen. However, there are scenarios in which the additive

coarse-grid solve approach is “in the ball park” of the multiplicative V-cycle. For these cases,

the tuning strategy suggested in section 5.2 may be used to further improve the performance

of the additive coarse-grid solve approach. This, however, is left as future work for this

thesis. When comparing the results against the low-order auxiliary space method described

in chapter 6 in section 7.2, the multiplicative V-cycle solvers highlighted in table 7.1 progress

to the next round of the solver tournament.

To better understand the relative cost of each operation in the multiplicative and additive

V-cycle approaches, we show the ratio between the remainder of the V-cycle to the coarse-

grid solve, as well as the time per iteration, in fig. 7.11. We first note that the majority of

the solution time is spent in the smoother phases of the V-cycle, as shown in the left subplot

in fig. 7.11, except for very-low polynomial orders. As the polynomial order increases,

the time spent in the coarse-grid solve per cycle decreases, as expected. This indicates

that, in the additive V-cycle approach, the solve accuracy of the coarse-grid solve can be

increased without impacting the time per iteration. Whether this is sufficient to overcome

146

1 2 3 4 5 6
k

2

4

6

8

10

12

T v T c
rs

146 pebbles, ASM(k, k)
67 pebbles, ASM(k, k)
1568 pebbles, ASM(k, k)
Kershaw, = 1.00, ASM(k, k)
Kershaw, = 0.30, ASM(k, k)

1 2 3 4 5 6
k

10

15

20

25

30

35

Ti
m

e
pe

r i
te

ra
tio

n
(m

s)

Mult.
Add. crs.
146 pebble
1568 pebble
67 pebble
Kershaw, = 1.00
Kershaw, = 0.30

Figure 7.11: Left: ratio of time spent in the remainder of the V-cycle compared to the
time spent in the coarse grid solve. Right: time per iteration in milliseconds for the additive
and multiplicative V-cycle preconditioner. Note that neither metrics are impacted by the
particular choice of polynomial smoother (e.g., first-kind versus fourth-kind Chebyshev) from
chapter 4.

the convergence rate degradation from the additive approach, however, is left as future work.

With exception to the 1568 pebble case, our expectation that the additive V-cycle yields a

cheaper preconditioner per iteration is confirmed in the right subplot in fig. 7.11. However,

the reduction in the time per iteration is not sufficient to overcome the convergence rate

degradation of the additive V-cycle approach.

7.2 IMPROVING LOW-ORDER PRECONDITIONERS: AUXILIARY SPACE
METHODS

In chapter 6, we discussed the idea of using the low-order finite element equivalence with

the high-order SEM operator as a coarse-space in an auxiliary space method. Here, we

consider the use of this approach, described in alg. 6.2, as a preconditioner for the high-

order SEM operator. This “HOS-SEMFEM” approach seeks to minimize the number of

relatively expensive AMG V-cycles associated with the approximation of the inverse of the

low-order operator. As seen in section 6.3, this approach is promising as it both reduces

the total work metric referred to as the equivalent matrix-vector product count eq. (6.13) as

well as reducing the number of AMG V-cycles required to reach a given tolerance. Here,

147

we now consider the moderate scale cases from section 2.8 on the Oak Ridge Leadership

Computing Facility’s Summit supercomputer. For simplicity, we compare against the low-

order preconditioning scheme described in section 2.4. Comparison against other methods is

deferred to section 7.3. The Kershaw test case form section 2.8.1 is considered in section 7.2.1.

Results fro the Navier-Stokes pebble cases from section 2.8.2 are considered in section 7.2.2.

7.2.1 Kershaw

The Kershaw case from section 2.8.1 is considered here to test the efficacy of the HOS-

SEMFEM preconditioner in alg. 6.2. The problem is discretized using E = 363 elements

with polynomial degree p = 7. A single node of summit (P = 6 V100 GPUs) is used

with n/P ∼ 2.67M , which roughly corresponds to the solver strong-scale limits identified

in section 2.9. To account for different levels of geometric deformation in the mesh, three

values of ε are considered: ε = 1, 0.3, 0.05. The right-hand side is set to the analytical

expression eq. (2.33). A random solution vector satisfying the boundary condition is used to

construct the right-hand side used for tuning the ωc parameter, as well as the NM smoother

polynomials from section 4.5. The reason for using this alternate right-hand side for tuning

is to demonstrate the transferability of the tuned parameters to different right-hand sides.

Algorithm 6.2 is utilized as a preconditioner with GMRES(15) as the Krylov solver. ASM

smoothing (alg. 2.10) is accelerated via the various polynomial smoothers considered in

sections 2.7 and 4.1. k pre- and post-smoothing passes (denoted as (k, k), see chapter 4) is

used for all polynomial smoothers. Results are shown in figs. 7.12 to 7.14.

How does the HOS-SEMFEM scheme from alg. 6.2 compare to the SEMFEM precondi-

tioner from section 2.4? As shown in subplot (a) from figs. 7.12 to 7.14, the HOS-SEMFEM

preconditioner yields a sharp decrease in the overall iteration count. For example, with

ε = 0.3, the iteration count reduces by nearly a factor of two from 147 to 74 with k = 1

ASM smoothing passes. This large reduction in the iteration count at the expense of a few

relatively inexpensive smoothing operations yields an appreciable speedup in the time-to-

solution, as shown in subplot (d). With ε = 0.3, for example, the time-to-solution drops from

roughly 1.8 to 1 second with k = 2 smoothing passes, an 80% speedup. While the SEMFEM

method is not competitive for ε = 1, 0.3 in section 2.9.1, see fig. 2.13, the improvement in the

time-to-solution makes the HOS-SEMFEM approach comparable to the pMG-based precon-

ditioners. In addition, the highly deformed case ε = 0.05 demands the use of SEMFEM as

a preconditioner; the relatively poor convergence rate of the pMG approaches yields a much

larger time-to-solution. However, with a moderate amount of smoothing, the solve times

drop from 2.41 to 2 seconds, a 20% speedup. This latter result makes the HOS-SEMFEM

148

1 2 3 4 5 6
k

0

5

10

15

20

25

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

50

100

150

200

250

300

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(k, k), *
c

4th-Cheb, ASM(k, k), *
c

4th
opt-Cheb, ASM(k, k), *

c

NM, ASM(k, k), *
c

SEMFEM

Kershaw, = 1, ASM, (k, k), c = *
c

Figure 7.12: Kershaw case from fig. 2.10, ε = 1. E = 363, p = 7. A single node of Summit
(P = 6 V100 GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with tuned
ωc value from chapter 6. The polynomial smoothers introduced in sections 2.7 and 4.1 are
used with ASM smoothing from alg. 2.10. The symmetric distribution of pre- and post-
smoothing passes, denoted by (k, k) from chapter 4, is used. The polynomial smoother
order, k, is varied.

approach especially attractive for highly deformed problems as the optimal SEMFEM pre-

conditioner is now improved through the smoothing in alg. 6.2.

How does our work metric of equivalent matrix-vector products (eq. (6.13)) shown in

subplot (c) of each figure correspond to the actual time-to-solution in subplot(d)? Since

the case considered here is on a single node, the communication is entirely on-node. As

the communication overhead required in the AMG solver is relatively low, corresponding to

the left-most data point in fig. 3.19, the time spent in the AMG solver is focused on the

matrix-vector products associated with the AMG hierarchy, which is accounted for by CAMG

in eq. (6.13). Later in section 7.2.2, we will observe cases where the communication overhead

is significant in comparison, especially for the 1568 pebble case.

Figures 7.12 to 7.14, moreover, leads us to conclude that only a relatively light amount

of smoothing is needed for the scheme proposed in alg. 6.2 to be effective. In particular,

149

1 2 3 4 5 6
k

0

25

50

75

100

125

150

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

400

500

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

200

400

600

800

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(k, k), *
c

4th-Cheb, ASM(k, k), *
c

4th
opt-Cheb, ASM(k, k), *

c

NM, ASM(k, k), *
c

SEMFEM

Kershaw, = 0.3, ASM, (k, k), c = *
c

Figure 7.13: Kershaw case from fig. 2.10, ε = 0.3. E = 363, p = 7. A single node of
Summit (P = 6 V100 GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner
with tuned ωc value from chapter 6. The polynomial smoothers introduced in sections 2.7
and 4.1 are used with ASM smoothing from alg. 2.10. The symmetric distribution of pre- and
post-smoothing passes, denoted by (k, k) from chapter 4, is used. The polynomial smoother
order, k, is varied.

our work metric of equivalent matrix-vector products (eq. (6.13)) shown in subplot (c) of

each figure reaches a minimum at k = 1 or k = 2 for all three Kershaw cases, irrespective

of the choice of polynomial smoother. This is in direct contrast to the p-multigrid results

from section 4.4, wherein the Kershaw ε = 0.3 and ε = 0.05 cases benefited from relatively

high smoother polynomial orders with RAS or ASM smoothing. This result, however, is

not surprising. The spectra of the high-order operator is roughly equivalent to low-order

operator, as shown in the left sub-figure in fig. 2.3. The remaining content spectral content in

A−1
F A, moreover, is relatively low in magnitude and is concentrated at the highest frequencies.

The observation that a relatively light smoother is needed for the HOS-SEMFEM scheme

motivates the authors to consider switch the use of ASM smoothing to Jacobi smoothing.

Results similar to those in figs. 7.12 to 7.14 are shown in figs. 7.15 to 7.17. The latter

results, however, utilize Jacobi smoothing. For ε = 1, the HOS-SEMFEM approach with

150

1 2 3 4 5 6
k

0

50

100

150

200

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

200

400

600

800

1000

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

250

500

750

1000

1250

1500

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

2.0

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(k, k), *
c

4th-Cheb, ASM(k, k), *
c

4th
opt-Cheb, ASM(k, k), *

c

NM, ASM(k, k), *
c

SEMFEM

Kershaw, = 0.05, ASM, (k, k), c = *
c

Figure 7.14: Kershaw case from fig. 2.10, ε = 0.05. E = 363, p = 7. A single node of
Summit (P = 6 V100 GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner
with tuned ωc value from chapter 6. The polynomial smoothers introduced in sections 2.7
and 4.1 are used with ASM smoothing from alg. 2.10. The symmetric distribution of pre- and
post-smoothing passes, denoted by (k, k) from chapter 4, is used. The polynomial smoother
order, k, is varied.

Jacobi yields a negligible reduction in the time-to-solution compared to the same approach

with ASM smoothing. The former achieves a time-to-solution of 0.25 seconds, while the

latter achieves 0.27 seconds. Similarly for ε = 0.05, the 1.9 second time-to-solution with

Jacobi smoothing is only slightly better than the 2.0 second time-to-solution with ASM

smoothing. At the same time, the time-to-solution with Jacobi smoothing degrades for

ε = 0.3. The HOS-SEMFEM approach with ASM smoothing achieves sub-second time-

to-solutions, while the same approach with Jacobi smoothing requires 1.2 seconds. While

Jacobi did not improve the time-to-solution for the HOS-SEMFEM method, it remains in

striking distance of the ASM results. This is in contrast to the p-multigrid results from

sections 2.9 and 4.4, wherein Jacobi-based smoothing methods significantly lag behind the

ASM- and RAS-based Schwarz smoothers.

An additional consideration in the design of the HOS-SEMFEM scheme is the choice of the

151

1 2 3 4 5 6
k

0

5

10

15

20

25

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(k, k), *
c

4th-Cheb, Jac(k, k), *
c

4th
opt-Cheb, Jac(k, k), *

c

NM, Jac(k, k), *
c

SEMFEM

Kershaw, = 1, Jacobi, (k, k), c = *
c

Figure 7.15: Kershaw case from fig. 2.10, ε = 1. E = 363, p = 7. A single node of Summit
(P = 6 V100 GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with tuned
ωc value from chapter 6. The polynomial smoothers introduced in sections 2.7 and 4.1 are
used with Jacobi smoothing. The symmetric distribution of pre- and post-smoothing passes,
denoted by (k, k) from chapter 4, is used. The polynomial smoother order, k, is varied.

polynomial smoother. While the polynomials directly optimized via Nelder-Mead from sec-

tion 4.5 are expected to outperform the other smoother polynomials, the results in figs. 7.12

to 7.14 and figs. 7.15 to 7.17 suggest that the choice of polynomial smoother is not critical.

The choice of smoothing polynomial in alg. 6.2 has a relatively small impact on the overall

solver performance. This is in stark contrast to the p-multigrid results from section 4.4,

wherein solver performance quickly degraded for the 1st-Cheb smoother polynomials with

respect to higher smoothing orders. However, the coarse-grid space considered in the HOS-

SEMFEM approach is much richer than the coarse-grid space considered in the p-multigrid

approach or for which the 4th-Cheb and 4thopt-Cheb smoother polynomials are constructed in

section 4.1 Further, as the NM polynomials from section 4.5 use the fourth-kind Chebyshev

polynomials as an initial condition for the optimizer, the optimizer may converge to a local

minima near the initial condition. In this case, the resulting NM polynomials would be

similar to the 4th-Cheb smoother polynomials.

152

1 2 3 4 5 6
k

0

25

50

75

100

125

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

200

400

600

800

1000

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

250

500

750

1000

1250

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(k, k), *
c

4th-Cheb, Jac(k, k), *
c

4th
opt-Cheb, Jac(k, k), *

c

NM, Jac(k, k), *
c

SEMFEM

Kershaw, = 0.3, Jacobi, (k, k), c = *
c

Figure 7.16: Kershaw case from fig. 2.10, ε = 0.3. E = 363, p = 7. A single node of Summit
(P = 6 V100 GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with tuned
ωc value from chapter 6. The polynomial smoothers introduced in sections 2.7 and 4.1 are
used with Jacobi smoothing. The symmetric distribution of pre- and post-smoothing passes,
denoted by (k, k) from chapter 4, is used. The polynomial smoother order, k, is varied.

Additional results, including omitting the post-smoother and considering ωc = 1, are

shown in appendix B.2.1. The choice of (k, k) versus (2k, 0) smoothing does not make

a significant impact on the solver performance. Further, tuning ωc improves the solver

performance, but choosing ωc = 1 still results in an improvement using the HOS-SEMFEM

approach when compared to SEMFEM.

7.2.2 Pebble Cases

In section 2.8.2, we introduced three pebble cases with 146, 1568, and 67 spheres. These

cases ([53, 54, 55]) are real complex geometries of interest that are time-varying Navier-Stokes

calculations. However, to facilitate the comparison against many different solver parameters

without requiring the full Navier-Stokes simulation, the right-hand side for the resultant

Pressure Poisson problem from the final solution step of the Navier-Stokes solver is used

153

1 2 3 4 5 6
k

0

50

100

150

200

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

250

500

750

1000

1250

1500

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

500

1000

1500

2000

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

2.0

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(k, k), *
c

4th-Cheb, Jac(k, k), *
c

4th
opt-Cheb, Jac(k, k), *

c

NM, Jac(k, k), *
c

SEMFEM

Kershaw, = 0.05, Jacobi, (k, k), c = *
c

Figure 7.17: Kershaw case from fig. 2.10, ε = 0.05. E = 363, p = 7. A single node of Summit
(P = 6 V100 GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with tuned
ωc value from chapter 6. The polynomial smoothers introduced in sections 2.7 and 4.1 are
used with Jacobi smoothing. The symmetric distribution of pre- and post-smoothing passes,
denoted by (k, k) from chapter 4, is used. The polynomial smoother order, k, is varied.

as the test problem. For tuning ωc and the NM smoother polynomials from section 4.5, a

random right-hand side is constructed by taking a random solution vector on [0, 1] satisfying

the boundary condition and applying the discrete Laplacian operator.

Results using the HOS-SEMFEM solver outlined in alg. 6.2 are shown in figs. 7.18 to 7.20.

Here, the ASM smoother from alg. 2.10 is accelerated using a polynomial smoother with

smoother passes distributed symmetrically in the pre- and post-smoothing phases of the

“two-level” cycle described in alg. 6.2. This smoother is denoted as (k, k) from chapter 4.

Similar results utilizing Jacobi smoothing are also shown in figs. 7.21, 7.24 and 7.25.

For the 146 pebble case (fig. 7.18), we observe a large reduction in the iteration count

from 34 to 20 using relatively light 1st-Cheb, ASM(1,1) smoothing. This has the effect of

reducing the time-to-solution from 0.45 to 0.34 seconds, a 32% speedup. Similar to the

results in section 7.2.1, the equivalent matrix-vector product metric (eq. (6.13)) shown in

fig. 7.18(c) accurately predicts the relative performance of the solvers. This is expected,

154

1 2 3 4 5 6
k

0

5

10

15

20

25

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

50

100

150

200

250

300

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

0.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(k, k), *
c

4th-Cheb, ASM(k, k), *
c

4th
opt-Cheb, ASM(k, k), *

c

NM, ASM(k, k), *
c

SEMFEM

146 Pebble, ASM, (k, k), c = *
c

Figure 7.18: 146 pebble case from fig. 2.11a. One node of Summit (P = 6 V100 GPUs)
is used, n/P ∼ 3.5M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6.
The polynomial smoothers introduced in sections 2.7 and 4.1 are used with ASM smoothing
from alg. 2.10. The symmetric distribution of pre- and post-smoothing passes, denoted by
(k, k) from chapter 4, is used. The polynomial smoother order, k, is varied.

as the 146 pebble case runs on a single node of Summit. Therefore, the communication

overhead associated with the AMG solves are minimal. Relatively light-weight smoothing

yields the lowest time-to-solution; the minimal time to solution is reached with k = 1 using

1st-Cheb, ASM(1,1) smoothing.

How does ASM smoothing compare to Jacobi smoothing? Comparing fig. 7.21 to fig. 7.18,

we observe that 4thopt-Cheb, Jacobi(1,1) smoothing yields a slightly higher iteration count of

20, compared to 20 for 1st-Cheb, ASM(1,1). However, the time-to-solution is slightly lower

for 4thopt-Cheb, Jacobi(1,1) smoothing at 0.32 seconds, compared to 0.34 seconds for 1st-Cheb,

ASM(1,1) smoothing. This improvement, however, is not significant.

While ASM smoothing proved effective for the HOS-SEMFEM preconditioner in the 146

pebble case, the same cannot be said for the 67 pebble case (fig. 7.19). At k = 1, the iteration

count is reduced from 38 to 35 iterations with 4thopt-Cheb, ASM(1,1) smoothing. However,

this translates to roughly the same time-to-solution—0.5 seconds for SEMFEM and 0.48

155

1 2 3 4 5 6
k

0

10

20

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.2

0.4

0.6

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(k, k), *
c

4th-Cheb, ASM(k, k), *
c

4th
opt-Cheb, ASM(k, k), *

c

NM, ASM(k, k), *
c

SEMFEM

67 Pebble, ASM, (k, k), c = *
c

Figure 7.19: 67 pebble case from fig. 2.11c. Three nodes of Summit (P = 18 V100 GPUs)
is used, n/P ∼ 2.33M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6.
The polynomial smoothers introduced in sections 2.7 and 4.1 are used with ASM smoothing
from alg. 2.10. The symmetric distribution of pre- and post-smoothing passes, denoted by
(k, k) from chapter 4, is used. The polynomial smoother order, k, is varied.

seconds using the HOS-SEMFEM preconditioner. Jacobi smoothing (fig. 7.24), however,

proves much more effective. NM, Jac(1,1) smoothing reduces the iteration count to 27. This

large iteration count reduction, combined with the use of an inexpensive smoother, translates

to a time-to-solution of 0.36 seconds, a 38% speedup over the SEMFEM solver.

Why does ASM smoothing prove ineffective for the 67 pebble case? The ASM smoother

from alg. 2.10 is significantly more expensive than simple diagonal smoothing, costing

roughly 3 times as much as a matrix-vector product (see, for example, the results in fig. 3.19).

Usually, this expense is justified by the smoothing properties of ASM smoothing. However,

as observed in the paragraph, ASM smoothing yields larger iteration counts compared to

Jacobi smoothing. As mentioned in the previous paragraph, the use of ASM smoothing is

worse both in terms of iteration count and time-to-solution. The sharp, connectivity of the

67 pebble case as depicted in fig. 2.11c is a contributing factor in the poor performance of

ASM smoothing. For example, 11 spectral elements share a single vertex in at least one of

156

1 2 3 4 5 6
k

0

10

20

30

40

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.2

0.4

0.6

0.8

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(k, k), *
c

4th-Cheb, ASM(k, k), *
c

4th
opt-Cheb, ASM(k, k), *

c

NM, ASM(k, k), *
c

SEMFEM

1568 Pebble, ASM, (k, k), c = *
c

Figure 7.20: 1568 pebble case from fig. 2.11b. 12 nodes of Summit (P = 72 V100 GPUs)
is used, n/P ∼ 2.5M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6.
The polynomial smoothers introduced in sections 2.7 and 4.1 are used with ASM smoothing
from alg. 2.10. The symmetric distribution of pre- and post-smoothing passes, denoted by
(k, k) from chapter 4, is used. The polynomial smoother order, k, is varied.

the pebbles. While this geometric irregularity is well-resolved by the low-order operator, the

ASM smoother, which is constructed using box-like approximations of each spectral element,

does not improve the convergence rate of the solver. This proves to be a pathological case

for ASM smoothing. Jacobi smoothing, on the other hand, improves the solution quality at

the pebble vertices, improving the convergence rate of the HOS-SEMFEM scheme.

To demonstrate this effect, we visualize the residual in each step of the HOS-SEMFEM

scheme for the 67 pebble case for ASM smoothing in fig. 7.22 and Jacobi smoothing in

fig. 7.23. The relatively large residual in the top-left pebble near the chamfer remains

largely undamped by the ASM smoother moving from fig. 7.22a to fig. 7.22b. After applying

the SEMFEM coarse-grid correction and another pass of ASM smoothing, we observe that

the residual in the top-left pebble remains large in fig. 7.22d. In contrast, the residual in the

top-left pebble is damped by the Jacobi smoother in fig. 7.23b. Here, the choice of Jacobi

smoothing results in a final residual that is smaller than the ASM smoother in fig. 7.23d.

157

1 2 3 4 5 6
k

0

5

10

15

20

25

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(k, k), *
c

4th-Cheb, Jac(k, k), *
c

4th
opt-Cheb, Jac(k, k), *

c

NM, Jac(k, k), *
c

SEMFEM

146 Pebble, Jacobi, (k, k), c = *
c

Figure 7.21: 146 pebble case from fig. 2.11a. One node of Summit (P = 6 V100 GPUs)
is used, n/P ∼ 3.5M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6.
The polynomial smoothers introduced in sections 2.7 and 4.1 are used with Jacobi smooth-
ing. The symmetric distribution of pre- and post-smoothing passes, denoted by (k, k) from
chapter 4, is used. The polynomial smoother order, k, is varied.

Remarkably, a cheaper smoother yields a better solution. For the other cases, however, we

observe similar iteration counts amongst the HOS-SEMFEM schemes with Jacobi and ASM

smoothing. All else being equal, we recommend the use of Jacobi smoothing here for its

lower cost.

While the 67 pebble case only encompasses three nodes of Summit (P = 18 V100 GPUs),

the effect of off-node communication costs is sufficiently large that our equivalent matrix-

vector product metric in fig. 7.24c can no longer serve as a proxy for the time-to-solution.

While the equivalent matrix-vector product metric climbs with respect to the smoother

polynomial order, we observe that the time-to-solution remains relatively constant. This

effect becomes more pronounced in the 1568 pebble case.

In the 1568 pebble case (figs. 7.20 and 7.25), the iteration count is improved from 40 to 27

iterations using 1st-Cheb, ASM(1,1) smoothing. This translates to an improvement in the

time-to-solution from 0.62 to 0.51 seconds using the HOS-SEMFEM preconditioner, a 22%

158

(a) Initial residual r in preconditioner z =
M−1r computation.

(b) Residual after smoothing, prior to SEM-
FEM correction.

(c) Residual after SEMFEM correction. (d) Final residual at end of preconditioner.

Figure 7.22: Residual visualization for the 67 pebble case in (fig. 2.11c) using HOS-SEMFEM
scheme with optimal coarse-grid relaxation ωc = ω∗

c parameter and 4thopt-Cheb, ASM(1,1)
smoothing.

speedup. However, the time-to-solution is slightly lower for 1st-Cheb, Jacobi(2,2) smoothing,

which achieves a time-to-solution of 0.44 seconds. This represents a speedup of 41% utilizing

the HOS-SEMFEM approach compared to SEMFEM.

159

(a) Initial residual r in preconditioner z =
M−1r computation.

(b) Residual after smoothing, prior to SEM-
FEM correction.

(c) Residual after SEMFEM correction. (d) Final residual at end of preconditioner.

Figure 7.23: Residual visualization for the 67 pebble case in (fig. 2.11c) using HOS-SEMFEM
scheme with optimal coarse-grid relaxation ωc = ω∗

c parameter and 4thopt-Cheb, Jacobi(1,1)
smoothing.

At the modest scale of 12 nodes of Summit (P = 72 V100 GPUs), we observe significant

off-node communication costs. For example, fig. 7.25c shows that the equivalent matrix-

vector product count is roughly equivalent at 221 work-units for the HOS-SEMFEM scheme

160

1 2 3 4 5 6
k

0

10

20

30

40

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(k, k), *
c

4th-Cheb, Jac(k, k), *
c

4th
opt-Cheb, Jac(k, k), *

c

NM, Jac(k, k), *
c

SEMFEM

67 Pebble, Jacobi, (k, k), c = *
c

Figure 7.24: 67 pebble case from fig. 2.11c. Three nodes of Summit (P = 18 V100 GPUs)
is used, n/P ∼ 2.33M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6.
The polynomial smoothers introduced in sections 2.7 and 4.1 are used with Jacobi smooth-
ing. The symmetric distribution of pre- and post-smoothing passes, denoted by (k, k) from
chapter 4, is used. The polynomial smoother order, k, is varied.

and the SEMFEM preconditioner at k = 1. As the smoother polynomial order is increased,

however, this metric increases by over a factor of 2 at k = 6. During this time, however, the

time-to-solution remains relatively unchanged. The minimum time-to-solution, moreover, is

achieved at k = 2 with the 1st-Cheb, Jacobi(2,2) smoothing strategy, which corresponds to

approximately 269 work-units.

In order to understand the effect of tuning the value of ωc, results using ωc = 1 are

presented in appendix B.2.2. Tuning the value of ωc improves performance, but choosing

ωc = 1 still results in a solver that is able to improve the time-to-solution compared to

SEMFEM. Additional results exploring the (2k, 0) V-cycle strategy are also presented in

appendix B.2.2.

The results presented in sections 7.2.1 and 7.2.2 are summarized in table 7.2. The HOS-

SEMFEM approach is always able to improve on the time-to-solution when compared to

the SEMFEM solver, assuming that the smoother is chosen correctly. Remarkably, Jacobi-

161

1 2 3 4 5 6
k

0

10

20

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(k, k), *
c

4th-Cheb, Jac(k, k), *
c

4th
opt-Cheb, Jac(k, k), *

c

NM, Jac(k, k), *
c

SEMFEM

1568 Pebble, Jacobi, (k, k), c = *
c

Figure 7.25: 1568 pebble case from fig. 2.11b. 12 nodes of Summit (P = 72 V100 GPUs)
is used, n/P ∼ 2.5M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6.
The polynomial smoothers introduced in sections 2.7 and 4.1 are used with Jacobi smooth-
ing. The symmetric distribution of pre- and post-smoothing passes, denoted by (k, k) from
chapter 4, is used. The polynomial smoother order, k, is varied.

based smoothing approaches tend to outperform ASM smoothing, albeit by a small amount

in most cases. For the 67 pebble case, however, Jacobi smoothing must be used to reach a

significant speedup in the time-to-solution. Tuning the value of ωc is required to reach the

optimal solvers, with exception to the 67 pebble case. In this scenario, 4th-Cheb, Jacobi(2,2)

smoothing with ωc = 1 outperforms the tuned ω∗
c value. This improvement, however, is

within the noise on Summit. The optimized smoother polynomials from section 4.5 and

tuned ω∗
c NM, Jac(1,1) solver is able to achieve a time-to-solution of 0.36 seconds.

The results from table 7.2 are important for two reasons. First, SEMFEM was previ-

ously the best solver for the 1568 and 67 pebble cases. Moreover in the latter case, SEM-

FEM achieved nearly a factor 4 speedup in the time-to-solution from section 2.9. However,

given the correct choice of smoother, polynomial smoother, and smoothing order, the HOS-

SEMFEM approach improves on the SEMFEM time-to-solution by 33% and 38% for the

67 and 1568 pebble cases, respectively. Second, the HOS-SEMFEM approach extends the

162

Table 7.2: Solver configuration yielding the lowest time-to-solution in seconds, Ts, for
the HOS-SEMFEM approach from chapter 6. The time-to-solution for the SEMFEM solver,
TS−F , speedup TS−F/Ts, iteration counts for the solver, Is, and iteration count for SEMFEM,
IS−F , are shown.

Case Preconditioner Ts TS−F
TS−F

Ts

Is IS−F

Kershaw, ε = 1 4thopt-Cheb, Jacobi(2,2), ω
∗
c 0.25 0.33 1.32 21 32

Kershaw, ε = 0.3 4th-Cheb, ASM(8,0), ω∗
c 0.97 1.80 1.86 42 147

Kershaw, ε = 0.05 1st-Cheb, Jacobi(2,2), ω∗
c 1.89 2.43 1.29 134 200

146 pebble 4thopt-Cheb, Jacobi(1,1), ω
∗
c 0.33 0.45 1.36 22 34

67 pebble 4th-Cheb, Jacobi(2,2), ωc = 1 0.36 0.48 1.33 27 41
1568 pebble 1st-Cheb, Jacobi(2,2), ω∗

c 0.44 0.61 1.38 27 37

region in which the low-order refined preconditioning strategies make sense. By improving

the time-to-solution drastically in the Kershaw ε = 0.3 case, the HOS-SEMFEM approach

is now within striking distance of the pMG-based methods, which, as shown in fig. 4.12,

outperform the low-order preconditioners.

7.3 COMPARING THE BEST SOLVERS

In section 7.1, we consider the performance of the additive coarse-grid solve proposed in

chapter 5 to the standard multiplicative method and determined the best solver parameters

for each case, given the choice of preconditioner. These results are in table 7.1. Section 7.2, on

the other hand, consider the performance of a HOS-SEMFEM approach, which is an auxiliary

space method utilizing the low-order operator as a coarse-space, from chapter 6. We compare

the efficacy of this method to the standard low-order preconditioner from section 2.4. The

optimal solver configuration for the HOS-SEMFEM solver is given in table 7.2.

In this section, we now compare the best methods from sections 7.1 and 7.2 to deter-

mine the best solver for each case. Taking the solver with the lowest time-to-solution from

tables 7.1 and 7.2, the best solver for each case is given in table 7.3.

As we observe in table 7.3, the optimal solver configuration still varies on a case-by-

case basis. There is no universally optimal solver configuration. However, we observe

a few important trends from these results. First, when combined with the polynomial

smoothers from chapter 4 and the ASM smoothers from section 2.6, geometric p-multigrid

approaches tend to be the most effective preconditioners across a wide-range of problems. As

mentioned in section 3.3, however, the coarse-grid solve required at the p = 1 level poses a

163

Table 7.3: Solver configuration yielding the lowest time-to-solution in seconds, Ts.

Case Solver Ts Iterations

Kershaw, ε = 1 NM, ASM(1,1),(7,3,1) 0.08 9
Kershaw, ε = 0.3 NM, ASM(6,0),(7,3,1) 0.65 43
Kershaw, ε = 0.05 HOS-SEMFEM, 1st-Cheb, Jacobi(2,2), ω∗

c 1.89 134

146 pebble NM, ASM(3,3),(7,3,1) 0.27 12
67 pebble HOS-SEMFEM, 4th-Cheb, Jacobi(2,2), ωc = 1 0.36 41
1568 pebble NM, ASM(6,0),(7,3,1) 0.39 18

significant bottleneck for the parallel scalability of the method, especially on heterogeneous

architectures. However, this issue is readily mitigated by constructing robust smoothers,

such as ASM combined with the polynomial smoothers from chapter 4. By using a heavier

smoother, fewer iterations are required to reach convergence. This has the effect of limiting

the number of coarse-grid solves required, as one is needed per V-cycle iteration.

The HOS-SEMFEM approach from chapter 6 is also a viable alternative. This approach is

especially effective when the low-order preconditioner is already a viable preconditioner for

the problem. As we observe in section 7.1, there exists a solver configuration for the HOS-

SEMFEM approach that is able to outperform the low-order preconditioner. In particular,

for Kershaw with ε = 0.05 and the 67 pebble case, the HOS-SEMFEM approach is able to

reduce the time-to-solution of the low-order preconditioner by 29% and 33%, respectively.

This is a significant improvement, especially considering that the low-order preconditioner is

the best solver without the approach from chapter 6. For the 67 pebble case, for example, the

time-to-solution is reduced by as much as a factor of 4 when compared to the p-multigrid

methods (see section 2.9). Further, we observe that the choice of smoother in the HOS-

SEMFEM approach matters. For example, relatively light polynomial Jacobi smoothing

tends to be more effective than the ASM smoother. This is not, however, universal. For

example, the HOS-SEMFEM preconditioner for the Kershaw case with ε = 0.3 worked best

with a high-order polynomial ASM smoother with no post-smoothing, see table 7.2.

7.3.1 Scalability of the Best Solvers

To better assess the performance of the best preconditioners identified in sections 7.1

and 7.2, we now consider the Kershaw case with ε = 1, 0.3, 0.05. The number of GPUs

utilized, P , is varied from a single Summit node (P = 6) up to 1024 Summit nodes (P =

6144). As this is a weak scaling study, the gridpoints per GPU is fixed to n/P = 2.67M

degrees of freedom per GPU.

164

101 102 103

P

0

10

20

30

40

Ite
ra

tio
ns

101 102 103

P

0

20

40

60

80

100

M
at

rix
 v

ec
to

r p
ro

du
ct

s

101 102 103

P

0

50

100

150

200

250

300

350

Eq
ui

va
le

nt
 m

at
rix

 v
ec

to
r p

ro
du

ct
s

101 102 103

P

0.0

0.2

0.4

0.6

0.8

1.0
So

lv
e

tim
e

(s
)

HOS-SEMFEM, 4th
opt-Cheb, ASM(1,1)

4th
opt-Cheb, ASM(1,1),(7,3,1)

SEMFEM

Kershaw, = 1.0

Figure 7.26: Weak scaling results for the Kershaw problem with ε = 1.0. The number of
GPUs, P , is varied from P = 6 to P = 6144. The number of gridpoints per GPU is fixed to
n/P = 2.67M . For a fair comparison, the best solver configuration for each case at scale is
used. For simplicity, we consider ωc = 1 for the HOS-SEMFEM scheme.

Figures 7.26 to 7.28 show the weak scaling results for the Kershaw problem with ε =

1, 0.3, 0.05, respectively. To enable work comparison between the solvers, both the matrix-

vector product count and equivalent matrix-vector product count from eq. (6.13) are shown.

The latter metric includes an estimate for the work performed in the AMG V-cycle for the

low-order preconditioners.

The best solver configurations identified for the Kershaw problem on a single node re-

main the best solver configurations for the Kershaw problem at scale, according to figs. 7.26

to 7.28. For the relatively east ε = 1 case, geometric p-multigrid built using a relatively

165

101 102 103

P

0

25

50

75

100

125

150

175

200

Ite
ra

tio
ns

101 102 103

P

0

100

200

300

400

500

600

700

800

M
at

rix
 v

ec
to

r p
ro

du
ct

s

101 102 103

P

0

200

400

600

800

1000

1200

Eq
ui

va
le

nt
 m

at
rix

 v
ec

to
r p

ro
du

ct
s

101 102 103

P

0

1

2

3

4

5

So
lv

e
tim

e
(s

)

HOS-SEMFEM, 4th
opt-Cheb, ASM(8,0)

4th
opt-Cheb, ASM(8,0),(7,3,1)

SEMFEM

Kershaw, = 0.3

Figure 7.27: Weak scaling results for the Kershaw problem with ε = 0.3. The number of
GPUs, P , is varied from P = 6 to P = 6144. The number of gridpoints per GPU is fixed to
n/P = 2.67M . For a fair comparison, the best solver configuration for each case at scale is
used. For simplicity, we consider ωc = 1 for the HOS-SEMFEM scheme.

light polynomial smoother outperform the SEMFEM and HOS-SEMFEM approaches. This

remains the case for the moderate mesh deformation case with ε = 0.3. While the gap be-

tween the HOS-SEMFEM and p-multigrid approaches is reduced, the p-multigrid approaches

remain the best solvers. However, when considering the highly deformed ε = 0.05 case, the

HOS-SEMFEM approach is the best solver. Notably, across all cases, the HOS-SEMFEM

approach improves the time to solution in comparison to the SEMFEM preconditioner.

When the p-multigrid preconditioner is viable, it displays the best parallel scalability of

the preconditioners considered. However, as in the highly-deformed case with ε = 0.05, the

166

101 102 103

P

0

50

100

150

200

250

300

350

400

Ite
ra

tio
ns

101 102 103

P

0

500

1000

1500

2000

2500

3000

3500

M
at

rix
 v

ec
to

r p
ro

du
ct

s

101 102 103

P

0

500

1000

1500

2000

2500

3000

3500

Eq
ui

va
le

nt
 m

at
rix

 v
ec

to
r p

ro
du

ct
s

101 102 103

P

0

2

4

6

8

10

12

14

16

So
lv

e
tim

e
(s

)

HOS-SEMFEM, 4th
opt-Cheb, ASM(8,0)

4th
opt-Cheb, ASM(8,0),(7,3,1)

SEMFEM

Kershaw, = 0.05

Figure 7.28: Weak scaling results for the Kershaw problem with ε = 0.05. The number of
GPUs, P , is varied from P = 6 to P = 6144. The number of gridpoints per GPU is fixed to
n/P = 2.67M . For a fair comparison, the best solver configuration for each case at scale is
used. For simplicity, we consider ωc = 1 for the HOS-SEMFEM scheme.

iteration count increase for the larger problem sizes limits the weak scalability of the method.

The HOS-SEMFEM and SEMFEM preconditioning approaches, on the other hand, exhibit

a higher dependency on the number of GPUs. The reasons for this are two-fold: first, like

the p-multigrid methods, the iteration count grows according problem size; second, the AMG

V-cycle becomes more expensive to apply per cycle as the number of GPUs increases. This

latter point is anticipated by the operator cost study from section 3.3.

167

Chapter 8: Conclusions

8.1 SUMMARY AND IMPACT

In this thesis, we develop a suite of solver techniques for the solution of the SEM-discretized

Poisson equation arising from the simulation of the incompressible Navier-Stokes. Through

these solver techniques, we are able to greatly improve the time-to-solution of the incom-

pressible Navier-Stokes equations in nekRS.

As part of this work, the Schwarz smoothers described in section 2.6 have been efficiently

implemented on the GPU for nekRS. As described in section 3.2.2, the kernels associated

with applying the Schwarz smoother are well tuned for both NVIDIA and AMD GPUs,

thanks in large part to Tim Warburton’s help on the nekRS project. These smoothers are

then combined with the existing literature on Chebyshev polynomial smoothing, described

in section 2.7. This itself is a contribution, as previous works typically only consider the use

of point-wise Jacobi smoothing in the polynomial smoothers. These approaches are then

combined with the geometric p-multigrid preconditioner to develop solvers that are able to

achieve high parallel scalability on the GPU in section 2.9.

The Chebyshev polynomial smoothers are then further improved through the use of the

fourth-kind and optimized fourth-kind Chebyshev polynomials, developed by James Lottes

in [23], as described in chapter 4. These polynomials achieve provably optimal convergence

rates, especially with high polynomial smoother orders. In particular, the multigrid er-

ror contraction factor using the standard Chebyshev polynomial smoothers only scale as

O(k−1). However, through the fourth-kind Chebyshev polynomials, O(k−2) convergence

rates are achieved. This is a significant improvement that can enable the use of higher-order

smoother polynomials to more effectively control the coarse-grid solve cost associated with

the multigrid V-cycle preconditioners.

Inspired by the theoretical results from [23], we develop a rigorous approach to selecting

how to distribute smoothing passes across the pre- and post-smoothing phases of a multigrid

V-cycle. This approach is guided by multi-level V-cycle error analysis provided through

[23]. Putting all 2k smoothing passes in the pre-smoothing phase and omitting the post-

smoothing phase is found to be optimal, provided that the multigrid approximation property

constant is sufficiently large. Asymptotically, this approach improves the multigrid error

contraction factor by 15% compared to the standard k smoothing passes in the pre- and

post-smoothing phases. The authors further demonstrate, through use of a computer algebra

system in sympy [82], that either the symmetric k pre- and post-smoothing passes or the 2k

168

pre-smoothing passes with no post-smoothing is optimal in most cases for the Chebyshev

polynomial smoothers.

A multigrid approach wherein the coarse-grid solve is treated in an additive fashion is

proposed in chapter 5. While this approach is not found to be competitive with the standard

multiplicative multigrid approach, techniques for improving the performance of the additive

multigrid approach are discussed and left as future work in section 8.2.

Finally, we have developed a new auxiliary space method utilizing the low-order operator

as a coarse-space. This method is described in chapter 6. Through this method, we are able

to achieve a significant reduction in the number of iterations required to reach convergence

at the expense of a few p-multigrid smoothing operations.

The improvements described in this thesis are not only relevant to nekRS and high-order

spectral element methods, but also to the broader solver community as well. As part of

this work, the fourth-kind and optimized fourth-kind Chebyshev smoothing polynomials

discussed in chapter 4 have been implemented in Trilinos/MueLu [19], a multigrid pre-

conditioner library for the Trilinos project [107]; petsc, the Portable, Extensible Toolkit for

Scientific Computation [18]; LFAToolkit.jl [20], a library for the analysis of multigrid meth-

ods via local Fourier analysis; and soon hypre [17] in https://github.com/hypre-space/

hypre/pull/856, a library for the solution of large, sparse linear systems arising from the

discretization of PDEs.

8.2 FUTURE WORK

Through the course of this work, we have identified several promising avenues for future

research. In this section, we describe these avenues for future work.

In section 3.3, we show that the coarse-grid solve component of the geometric p-multigrid

method can hinder the parallel scalability of the solver. This coarse-grid solve, however,

is approximated using algebraic multigrid techniques. In this thesis, not much attention

is afforded to the algebraic multigrid solver settings, except that the settings described in

section 2.4 are reasonably good. However, others have contributed much work on optimizing

the performance of the algebraic multigrid solvers. For example, Zaman and coworkers [108]

seek to optimize the NP-complete coarse-grid selection problem through simulated annealing.

In [109], Katrutsa and coworkers consider the black-box learning of multigrid parameters.

Huang and coworkers discuss learning optimal multigrid smoothers via neural networks in

[110]. By optimizing the underlying algebraic multigrid solver through these techniques, the

cost of the coarse-grid solve component of the geometric p-multigrid may be further reduced,

improving the parallel scalability of the solver.

169

Another approach for the coarse-grid solve component is significantly simpler. In [111],

Jansson and coworkers use a similar geometric p-multigrid preconditioner as described in

section 2.6. However, instead of using an algebraic multigrid solver, they solve the coarse-grid

problem using an inner preconditioned conjugate gradient solver. The conjugate gradient

solver, however, requires many dot products if the iteration count is high. A potential

way to mitigate this is to take fewer iterations with a high-quality Chebyshev polynomial

preconditioner. In this approach, the same algorithm from alg. 2.12 can be used to accelerate

Jacobi as a preconditioner. One notable difference, however, is that λmin in this case should

be chosen as the actual smallest eigenvalue of the D−1A [31]. This allows for Chebyshev

iterations with similar convergence to PCG to be utilized without requiring dot-products.

Other polynomial preconditioners, such as the polynomial preconditioned GMRES algorithm

discussed in [112], can be used to achieve similar results. One potential way to increase the

arithmetic intensity of this operator is to also consider evaluating the Chebyshev polynomial

in parallel (e.g., [113, 114]). This may be especially useful if several matrix-vector products

can be “blocked” into a single GPU kernel launch, allowing the operator to be evaluated

across many vectors at once.

In chapter 4, we consider the application of the symmetric pre- and post-smoother pass

distributions, (k, k), versus the asymmetric (2k, 0) approach where the post-smoother is

omitted. The operation count in terms of matrix-vector products and smoother applications

are equivalent between the two approaches, making it possible to compare only the conver-

gence rate when choosing between the two approaches. However, the repeated operations

required to form the 2k-th order polynomial in the (2k, 0) approach may improve the ex-

ecution time of the smoother due to cache reuse. On GPU-architectures, the scaling limit

in terms of points per processor, n/P , is large at n/P ∼ 2M . This unfortunately prevents

the cache reuse effect from being present, as too much operator data is streamed in mem-

ory for this potential beneficial cache effect to be present. However, on CPU architectures,

the cache reuse may allow the smoother to execute faster, making the cost of applying the

(2k, 0) approach less than the (k, k) approach per iteration. When further combined with the

potential convergence improvement, this makes the (2k, 0) approach more attractive. Fully

exploiting this potential benefit of the (2k, 0) approach, specifically on CPU architectures,

is left as future work.

In section 4.3, we extend Thompson’s LFAToolkit.jl [20] to support the analysis of

smoother polynomials built on the fourth-kind and optimized fourth-kind Chebyshev poly-

nomials from chapter 4. These two polynomial smoothers are themselves optimal with re-

spect to different error bounds. The fourth-kind Chebyshev polynomials are the solution to

a weighted mini-max problem posed by the two-level error bound established by Hackbusch

170

[79] in eq. (4.1), while the optimized fourth-kind Chebyshev polynomials are the solution

to the multilevel error bound due to Lottes [23] in lemma 4.1. As we observe that the lo-

cal Fourier analysis (LFA) provides sharper estimates for multigrid error contraction rates,

constructing an optimal polynomial smoother with respect to the LFA error bound may

improve the performance of the smoother. While the polynomials constructed in section 4.5

are optimal with respect to the solver convergence rate, assuming the Nelder-Mead optimizer

is able to find the global minimum, the LFA error bound may provide smoother polynomials

that are effective without requiring the setup costs incurred in section 4.5.

Section 5.2 describes the details for a multigrid scheme in which only the coarse-grid solve

is treated in an additive fashion. While this method proves ineffective in section 7.1, possible

improvements may be made by ensuring that each component of the additive multigrid

scheme occupies the same amount of time. For example, if the coarse-grid solve is cheaper

than the remainder of the V-cycle, then the quality of the coarse-grid can be improved

through increasing the AMG smoother order, for example. This can be done at no additional

cost per iteration, and may help the convergence rate. Further, the problem scales considered

in section 7.1 are relatively small. Larger scale problems wherein the coarse-grid solve cost

is more significant may benefit from the additive coarse-grid solve approach.

171

References

[1] “Top500: June,” https://top500.org/lists/top500/2023/06/, accessed: 2023-06-03.

[2] M. Deville, P. Fischer, and E. Mund, High-order methods for incompressible fluid flow.
Cambridge: Cambridge University Press, 2002.

[3] P. Fischer, J. Lottes, and H. Tufo, “Nek5000,” Argonne National Lab.(ANL), Argonne,
IL (United States), Tech. Rep., 2007.

[4] P. Fischer, S. Kerkemeier, M. Min, Y.-H. Lan, M. Phillips, T. Rathnayake, E. Merzari,
A. Tomboulides, A. Karakus, N. Chalmers et al., “Nekrs, a gpu-accelerated spectral
element navier–stokes solver,” Parallel Computing, vol. 114, p. 102982, 2022.

[5] C. Canuto, P. Gervasio, and A. Quarteroni, “Finite-element preconditioning of g-ni
spectral methods,” SIAM Journal on Scientific Computing, vol. 31, no. 6, pp. 4422–
4451, 2010.

[6] S. A. Orszag, “Spectral methods for problems in complex geometrics,” in Numerical
methods for partial differential equations. Elsevier, 1979, pp. 273–305.

[7] H. Sundar, G. Stadler, and G. Biros, “Comparison of multigrid algorithms for high-
order continuous finite element discretizations,” Numerical Linear Algebra with Appli-
cations, vol. 22, no. 4, pp. 664–680, 2015.

[8] M. Adams, M. Brezina, J. Hu, and R. Tuminaro, “Parallel multigrid smoothing: poly-
nomial versus gauss–seidel,” Journal of Computational Physics, vol. 188, no. 2, pp.
593–610, 2003.

[9] M. Kronbichler and K. Ljungkvist, “Multigrid for matrix-free high-order finite ele-
ment computations on graphics processors,” ACM Transactions on Parallel Comput-
ing, vol. 6, no. 1, pp. 1–32, 2019.

[10] J. W. Lottes and P. F. Fischer, “Hybrid multigrid/schwarz algorithms for the spectral
element method,” Journal of Scientific Computing, vol. 24, no. 1, pp. 45–78, 2005.

[11] J. Stiller, “Nonuniformly weighted schwarz smoothers for spectral element multigrid,”
Journal of Scientific Computing, vol. 72, no. 1, pp. 81–96, 2017.

[12] S. Loisel, R. Nabben, and D. B. Szyld, “On hybrid multigrid-schwarz algorithms,”
Journal of Scientific Computing, vol. 36, no. 2, pp. 165–175, 2008.

[13] L. Olson, “Algebraic multigrid preconditioning of high-order spectral elements for el-
liptic problems on a simplicial mesh,” SIAM Journal on Scientific Computing, vol. 29,
no. 5, pp. 2189–2209, 2007.

172

[14] P. D. Bello-Maldonado and P. F. Fischer, “Scalable low-order finite element precon-
ditioners for high-order spectral element poisson solvers,” SIAM Journal on Scientific
Computing, vol. 41, no. 5, pp. S2–S18, 2019.

[15] W. Pazner, T. Kolev, and J.-S. Camier, “End-to-end gpu acceleration of low-order-
refined preconditioning for high-order finite element discretizations,” arXiv preprint
arXiv:2210.12253, 2022.

[16] M. Min, Y.-H. Lan, P. Fischer, E. Merzari, S. Kerkemeier, M. Phillips, T. Rathnayake,
A. Novak, D. Gaston, N. Chalmers et al., “Optimization of full-core reactor simulations
on summit,” in 2022 SC22: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC). IEEE Computer Society, 2022, pp.
1067–1077.

[17] “hypre: High performance preconditioners,” https://llnl.gov/casc/hypre, https://
github.com/hypre-space/hypre.

[18] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
A. Dener, V. Eijkhout, W. Gropp et al., “Petsc users manual,” 2019.

[19] A. Prokopenko, J. Hu, T. Wiesner, C. Siefert, and R. Tuminaro, “Muelu user’s guide
1.0 (trilinos version 11.12),” SAND2014-18874. Oct, 2014.

[20] J. L. Thompson, “LFAToolkit,” https://github.com/jeremylt/LFAToolkit.jl, 2021.

[21] J. H. Bramble, J. E. Pasciak, and J. Xu, “Parallel multilevel preconditioners,” Math-
ematics of computation, vol. 55, no. 191, pp. 1–22, 1990.

[22] P. S. Vassilevski and U. M. Yang, “Reducing communication in algebraic multigrid
using additive variants,” Numerical Linear Algebra with Applications, vol. 21, no. 2,
pp. 275–296, 2014.

[23] J. Lottes, “Optimal polynomial smoothers for multigrid v-cycles,” preprint
arXiv:2202.08830, 2022.

[24] J. Xu, “The auxiliary space method and optimal multigrid preconditioning techniques
for unstructured grids,” Computing, vol. 56, no. 3, pp. 215–235, 1996.

[25] M. Phillips, S. Kerkemeier, and P. Fischer, “Tuning spectral element precondition-
ers for parallel scalability on gpus,” in Proceedings of the 2022 SIAM Conference on
Parallel Processing for Scientific Computing. SIAM, 2022, pp. 37–48.

[26] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev,
Y. Dudouit, A. Fisher, T. Kolev et al., “Mfem: A modular finite element methods
library,” Computers & Mathematics with Applications, vol. 81, pp. 42–74, 2021.

[27] J. Brown, A. Abdelfattah, V. Barra, N. Beams, J.-S. Camier, V. Dobrev, Y. Dudouit,
L. Ghaffari, T. Kolev, D. Medina et al., “libceed: Fast algebra for high-order element-
based discretizations,” Journal of Open Source Software, vol. 6, no. 63, p. 2945, 2021.

173

[28] Y. Notay, “Flexible conjugate gradients,” SIAM Journal on Scientific Computing,
vol. 22, no. 4, pp. 1444–1460, 2000.

[29] G. H. Golub and Q. Ye, “Inexact preconditioned conjugate gradient method with inner-
outer iteration,” SIAM Journal on Scientific Computing, vol. 21, no. 4, pp. 1305–1320,
1999.

[30] H. Bouwmeester, A. Dougherty, and A. V. Knyazev, “Nonsymmetric preconditioning
for conjugate gradient and steepest descent methods,” Procedia Computer Science,
vol. 51, pp. 276–285, 2015.

[31] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[32] Y. Saad, “A flexible inner-outer preconditioned gmres algorithm,” SIAM Journal on
Scientific Computing, vol. 14, no. 2, pp. 461–469, 1993.

[33] M. Embree, “How descriptive are gmres convergence bounds?” arXiv preprint
arXiv:2209.01231, 2022.

[34] N. N. Abdelmalek, “Round off error analysis for gram-schmidt method and solution
of linear least squares problems,” BIT Numerical Mathematics, vol. 11, no. 4, pp.
345–367, 1971.

[35] L. Giraud, J. Langou, and M. Rozloznik, “The loss of orthogonality in the gram-
schmidt orthogonalization process,” Computers & Mathematics with Applications,
vol. 50, no. 7, pp. 1069–1075, 2005.

[36] S. Thomas, E. Carson, M. Rozložńık, A. Carr, and K. Świrydowicz, “Iterated-gauss-
seidel gmres,” arXiv preprint arXiv:2205.07805, 2022.

[37] A. Greenbaum, M. Rozložnik, and Z. Strakoš, “Numerical behaviour of the modified
gram-schmidt gmres implementation,” BIT Numerical Mathematics, vol. 37, no. 3, pp.
706–719, 1997.

[38] P. F. Fischer, “Projection techniques for iterative solution of ax= b with successive
right-hand sides,” Computer methods in applied mechanics and engineering, vol. 163,
no. 1-4, pp. 193–204, 1998.

[39] M. L. Parks, E. De Sturler, G. Mackey, D. D. Johnson, and S. Maiti, “Recycling krylov
subspaces for sequences of linear systems,” SIAM Journal on Scientific Computing,
vol. 28, no. 5, pp. 1651–1674, 2006.

[40] N. Christensen, “Efficient projection space updates for the approximation of iterative
solutions to linear systems with successive right hand sides,” M.S. thesis, University
of Illinois Urbana Champaign, 2017.

[41] A. P. Austin, N. Chalmers, and T. Warburton, “Initial guesses for sequences of linear
systems in a gpu-accelerated incompressible flow solver,” SIAM Journal on Scientific
Computing, vol. 43, no. 4, pp. C259–C289, 2021.

174

[42] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton, S. Layton,
N. Markovskiy, I. Reguly, N. Sakharnykh et al., “Amgx: A library for gpu accelerated
algebraic multigrid and preconditioned iterative methods,” SIAM Journal on Scientific
Computing, vol. 37, no. 5, pp. S602–S626, 2015.

[43] U. M. Yang et al., “Boomeramg: A parallel algebraic multigrid solver and precondi-
tioner,” Applied Numerical Mathematics, vol. 41, no. 1, pp. 155–177, 2002.

[44] P. F. Fischer, “An overlapping schwarz method for spectral element solution of the
incompressible navier–stokes equations,” Journal of Computational Physics, vol. 133,
no. 1, pp. 84–101, 1997.

[45] H. Dai, Z. Lin, C. Li, C. Zhao, F. Wang, N. Zheng, and H. Zhou, “Accelerate gpu
concurrent kernel execution by mitigating memory pipeline stalls,” in 2018 IEEE in-
ternational symposium on high performance computer architecture (HPCA). IEEE,
2018, pp. 208–220.

[46] S. McCormick, “Multigrid methods for variational problems: general theory for the
v-cycle,” SIAM Journal on Numerical Analysis, vol. 22, no. 4, pp. 634–643, 1985.

[47] J. L. Thompson, J. Brown, and Y. He, “Local fourier analysis of p-multigrid for high-
order finite element operators,” arXiv preprint arXiv:2108.01751, 2021.

[48] X.-C. Cai and M. Sarkis, “A restricted additive schwarz preconditioner for general
sparse linear systems,” Siam journal on scientific computing, vol. 21, no. 2, pp. 792–
797, 1999.

[49] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Multigrid smoothers for
ultraparallel computing,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp.
2864–2887, 2011.

[50] V. T. Zhukov, N. D. Novikova, and O. B. Feodoritova, “Multigrid method for ellip-
tic equations with anisotropic discontinuous coefficients,” Computational Mathematics
and Mathematical Physics, vol. 55, no. 7, pp. 1150–1163, 2015.

[51] T. Kolev, P. Fischer, A. P. Austin, A. T. Barker, N. Beams, J. Brown, J.-S.
Camier, N. Chalmers, V. Dobrev, Y. Dudouit, L. Ghaffari, S. Kerkemeier, Y.-H.
Lan, E. Merzari, M. Min, W. Pazner, T. Ratnayaka, M. S. Shephard, M. H.
Siboni, C. W. Smith, J. L. Thompson, S. Tomov, and T. Warburton, “CEED
ECP Milestone Report: High-order algorithmic developments and optimizations
for large-scale GPU-accelerated simulations,” Mar. 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.4672664

[52] D. S. Kershaw, “Differencing of the diffusion equation in lagrangian hydrodynamic
codes,” Journal of Computational Physics, vol. 39, no. 2, pp. 375–395, 1981.

[53] Y.-H. Lan, P. Fischer, E. Merzari, and M. Min, “All-hex meshing strategies for densely
packed spheres,” preprint arXiv:2106.00196, 2021.

175

[54] D. Reger, E. Merzari, H. Yuan, S. King, Y. Hassan, K. Ngo, P. Balestra, and
S. Schunert, “Large eddy simulation of a 67-pebble bed experiment,” in Advances
in Thermal-Hydraulics, June 2022.

[55] D. Reger, E. Merzari, P. Balestra, S. Schunert, Y. Hassan, and H. Yuan, “Toward
development of an improved friction correlation for the near-wall region of pebble bed
systems,” preprint arXiv:2203.05041, 2022.

[56] M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin, “Direct numerical sim-
ulation of the two-dimensional speed bump flow at increasing reynolds numbers,” In-
ternational Journal of Heat and Fluid Flow, vol. 90, p. 108840, 2021.

[57] Y. Notay, “Convergence analysis of perturbed two-grid and multigrid methods,” SIAM
journal on numerical analysis, vol. 45, no. 3, pp. 1035–1044, 2007.

[58] K. Mittal and P. Fischer, “Mesh smoothing for the spectral element method,” Journal
of Scientific Computing, vol. 78, pp. 1152–1173, 2019.

[59] A. Imakura, T. Sakurai, K. Sumiyoshi, and H. Matsufuru, “An auto-tuning technique
of the weighted jacobi-type iteration used for preconditioners of krylov subspace meth-
ods,” in 2012 IEEE 6th International Symposium on Embedded Multicore SoCs. IEEE,
2012, pp. 183–190.

[60] K. Yamada, T. Katagiri, H. Takizawa, K. Minami, M. Yokokawa, T. Nagai, and
M. Ogino, “Preconditioner auto-tuning using deep learning for sparse iterative algo-
rithms,” in 2018 Sixth International Symposium on Computing and Networking Work-
shops (CANDARW). IEEE, 2018, pp. 257–262.

[61] J. Brown, Y. He, S. MacLachlan, M. Menickelly, and S. M. Wild, “Tuning multi-
grid methods with robust optimization and local fourier analysis,” SIAM Journal on
Scientific Computing, vol. 43, no. 1, pp. A109–A138, 2021.

[62] D. S. Medina, A. St-Cyr, and T. Warburton, “Occa: A unified approach to multi-
threading languages,” preprint arXiv:1403.0968, 2014.

[63] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst, “Libxsmm: accelerating small
matrix multiplications by runtime code generation,” in SC’16: Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2016, pp. 981–991.

[64] B. Hess, J. Gong, S. Páll, P. Schlatter, and A. Peplinski, “Highly tuned small matrix
multiplications applied to spectral element code nek5000,” 2016.

[65] M. M. Baskaran and R. Bordawekar, “Optimizing sparse matrix-vector multiplication
on gpus using compile-time and run-time strategies,” IBM Reserach Report, RC24704
(W0812-047), 2008.

[66] M. Ashoury, M. Loni, F. Khunjush, and M. Daneshtalab, “Auto-spmv: Automated
optimizing spmv kernels on gpu,” arXiv preprint arXiv:2302.05662, 2023.

176

[67] A. Klöckner, “Loo. py: transformation-based code generation for gpus and cpus,” in
Proceedings of ACM SIGPLAN international workshop on libraries, languages, and
compilers for array programming, 2014, pp. 82–87.

[68] A. Klöckner, L. C. Wilcox, and T. Warburton, “Array program transformation with
loo. py by example: high-order finite elements,” in Proceedings of the 3rd ACM SIG-
PLAN international workshop on libraries, languages, and compilers for array pro-
gramming, 2016, pp. 9–16.

[69] N. Chalmers, A. Karakus, A. P. Austin, K. Swirydowicz, and T. Warburton, “lib-
Paranumal: a performance portable high-order finite element library.”

[70] K. Świrydowicz, N. Chalmers, A. Karakus, and T. Warburton, “Acceleration of tensor-
product operations for high-order finite element methods,” The International Journal
of High Performance Computing Applications, vol. 33, no. 4, pp. 735–757, 2019.

[71] J. Brown, V. Barra, N. Beams, L. Ghaffari, M. Knepley, W. Moses, R. Shakeri, K. Sten-
gel, J. L. Thompson, and J. Zhang, “Performance portable solid mechanics via matrix-
free p-multigrid,” arXiv preprint arXiv:2204.01722, 2022.

[72] N. Chalmers, A. Mishra, D. McDougall, and T. Warburton, “Hipbone: A performance-
portable graphics processing unit-accelerated c++ version of the nekbone bench-
mark,” The International Journal of High Performance Computing Applications, p.
10943420231178552, 2023.

[73] N. Chalmers and T. Warburton, “Portable high-order finite element kernels i: Stream-
ing operations,” arXiv preprint arXiv:2009.10917, 2020.

[74] P. F. Fischer, “Scaling limits for pde-based simulation,” in 22nd AIAA Computational
Fluid Dynamics Conference, 2015, p. 3049.

[75] P. D. Bello-Maldonado, “Polynomial reduction with full domain decomposition precon-
ditioner for spectral element poisson solvers,” Ph.D. dissertation, University of Illinois
Urbana Champaign, 2022.

[76] A. Bienz, L. N. Olson, W. D. Gropp, and S. Lockhart, “Modeling data movement per-
formance on heterogeneous architectures,” in 2021 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2021, pp. 1–7.

[77] P. Fischer, M. Min, T. Rathnayake, S. Dutta, T. Kolev, V. Dobrev, J.-S. Camier,
M. Kronbichler, T. Warburton, K. Świrydowicz et al., “Scalability of high-performance
pde solvers,” The International Journal of High Performance Computing Applications,
vol. 34, no. 5, pp. 562–586, 2020.

[78] M. Phillips and P. Fischer, “Optimal chebyshev smoothers and one-sided v-cycles,”
arXiv preprint arXiv:2210.03179, 2022.

[79] W. Hackbusch, “Multi-grid convergence theory,” in Multigrid methods. Springer,
1982, pp. 177–219.

177

[80] J. C. Mason, “Chebyshev polynomials of the second, third and fourth kinds in approx-
imation, indefinite integration, and integral transforms,” Journal of Computational
and Applied Mathematics, vol. 49, no. 1-3, pp. 169–178, 1993.

[81] R. D. Falgout, R. Li, B. Sjögreen, L. Wang, and U. M. Yang, “Porting hypre to het-
erogeneous computer architectures: Strategies and experiences,” Parallel Computing,
vol. 108, p. 102840, 2021.

[82] A. Meurer, C. P. Smith, M. Paprocki, O. Čert́ık, S. B. Kirpichev, M. Rocklin, A. Ku-
mar, S. Ivanov, J. K. Moore, S. Singh et al., “Sympy: symbolic computing in python,”
PeerJ Computer Science, vol. 3, p. e103, 2017.

[83] K. Stuben, “Algebraic multigrid (amg): an introduction with applications,” GMD
report, 1999.

[84] R. D. Falgout and J. B. Schroder, “Non-galerkin coarse grids for algebraic multigrid,”
SIAM Journal on Scientific Computing, vol. 36, no. 3, pp. C309–C334, 2014.

[85] A. Bienz, W. D. Gropp, and L. N. Olson, “Reducing communication in algebraic
multigrid with multi-step node aware communication,” The International Journal of
High Performance Computing Applications, vol. 34, no. 5, pp. 547–561, 2020.

[86] A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Mathematics
of Computation, vol. 31, no. 138, pp. 333–390, 1977.

[87] R. Wienands and W. Joppich, Practical Fourier analysis for multigrid methods. CRC
press, 2004.

[88] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of
the nelder–mead simplex method in low dimensions,” SIAM Journal on optimization,
vol. 9, no. 1, pp. 112–147, 1998.

[89] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The com-
puter journal, vol. 7, no. 4, pp. 308–313, 1965.

[90] R. O’Neill, “Algorithm as 47: Function minimization using a simplex procedure,”
Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 20, no. 3,
pp. 338–345, 1971.

[91] J. Burkhardt, “Asa047: Nelder-mead minimization algorithm,” C++ library, 2008.

[92] A. Greenbaum, “A multigrid method for multiprocessors,” Applied mathematics and
computation, vol. 19, no. 1-4, pp. 75–88, 1986.

[93] J. Wolfson-Pou and E. Chow, “Asynchronous multigrid methods,” in 2019 IEEE in-
ternational parallel and distributed processing symposium (IPDPS). IEEE, 2019, pp.
101–110.

178

[94] Y. Notay and A. Napov, “Further comparison of additive and multiplicative coarse
grid correction,” Applied Numerical Mathematics, vol. 65, pp. 53–62, 2013.

[95] OpenMP Architecture Review Board, “OpenMP application program interface
version 5.2,” Nov. 2021. [Online]. Available: https://www.openmp.org/wp-content/
uploads/OpenMP-API-Specification-5-2.pdf

[96] W. Gropp and R. Thakur, “Issues in developing a thread-safe mpi implementation,”
in Recent Advances in Parallel Virtual Machine and Message Passing Interface: 13th
European PVM/MPI User’s Group Meeting Bonn, Germany, September 17-20, 2006
Proceedings 13. Springer, 2006, pp. 12–21.

[97] T. Patinyasakdikul, D. Eberius, G. Bosilca, and N. Hjelm, “Give mpi threading a fair
chance: A study of multithreaded mpi designs,” in 2019 IEEE International Confer-
ence on Cluster Computing (CLUSTER). IEEE, 2019, pp. 1–11.

[98] R. Zambre and A. Chandramowlishwaran, “Lessons learned on mpi+ threads commu-
nication,” arXiv preprint arXiv:2206.14285, 2022.

[99] S. Nepomnyaschikh, Decomposition and fictitious domains methods for elliptic bound-
ary value problems. New York University. Courant Institute of Mathematical Sciences.
Computer . . . , 1991.

[100] R. Hiptmair and J. Xu, “Nodal auxiliary space preconditioning in h (curl) and h (div)
spaces,” SIAM Journal on Numerical Analysis, vol. 45, no. 6, pp. 2483–2509, 2007.

[101] T. V. Kolev, J. E. Pasciak, and P. S. Vassilevski, “H (curl) auxiliary mesh precon-
ditioning,” Numerical Linear Algebra with Applications, vol. 15, no. 5, pp. 455–471,
2008.

[102] T. V. Kolev and P. S. Vassilevski, “Parallel auxiliary space amg for h (curl) problems,”
Journal of Computational Mathematics, pp. 604–623, 2009.

[103] T. V. Kolev and P. S. Vassilevski, “Parallel auxiliary space amg solver for h(div)
problems,” SIAM Journal on Scientific Computing, vol. 34, no. 6, pp. A3079–A3098,
2012.

[104] A. T. Barker and T. Kolev, “Matrix-free preconditioning for high-order h (curl) dis-
cretizations,” Numerical Linear Algebra with Applications, vol. 28, no. 2, p. e2348,
2021.

[105] J. Xu and L. Zikatanov, “Algebraic multigrid methods,” Acta Numerica, vol. 26, pp.
591–721, 2017.

[106] A. Bienz, R. D. Falgout, W. Gropp, L. N. Olson, and J. B. Schroder, “Reducing
parallel communication in algebraic multigrid through sparsification,” SIAM Journal
on Scientific Computing, vol. 38, no. 5, pp. S332–S357, 2016.

179

[107] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps et al., “An overview of
the trilinos project,” ACM Transactions on Mathematical Software (TOMS), vol. 31,
no. 3, pp. 397–423, 2005.

[108] T. U. Zaman, S. P. MacLachlan, L. N. Olson, and M. West, “Coarse-grid selection
using simulated annealing,” Journal of Computational and Applied Mathematics, vol.
431, p. 115263, 2023.

[109] A. Katrutsa, T. Daulbaev, and I. Oseledets, “Black-box learning of multigrid param-
eters,” Journal of Computational and Applied Mathematics, vol. 368, p. 112524, 2020.

[110] R. Huang, R. Li, and Y. Xi, “Learning optimal multigrid smoothers via neural net-
works,” SIAM Journal on Scientific Computing, no. 0, pp. S199–S225, 2022.

[111] N. Jansson, M. Karp, A. Podobas, S. Markidis, and P. Schlatter, “Neko: A mod-
ern, portable, and scalable framework for high-fidelity computational fluid dynamics,”
arXiv preprint arXiv:2107.01243, 2021.

[112] J. A. Loe, H. K. Thornquist, and E. G. Boman, “Polynomial preconditioned gmres in
trilinos: Practical considerations for high-performance computing,” in Proceedings of
the 2020 SIAM Conference on Parallel Processing for Scientific Computing. SIAM,
2020, pp. 35–45.

[113] R. Barrio and J. Sabadell, “A parallel algorithm to evaluate chebyshev series on a
message passing environment,” SIAM Journal on Scientific Computing, vol. 20, no. 3,
pp. 964–969, 1998.

[114] A. M. Atallah and A. B. Younes, “Parallel evaluation of chebyshev approximations:
Applications in astrodynamics,” The Journal of the Astronautical Sciences, vol. 69,
no. 3, pp. 692–717, 2022.

180

Appendix A: Optimized 4th-Kind Chebyshev Tabulated Coefficients

Table A.1: Tabulated values of β for the optimized 4th-kind Chebyshev smoother.

k β
(k)
i

1 1.12500000000000

2 1.02387287570313
1.26408905371085

3 1.00842544782028
1.08867839208730
1.33753125909618

4 1.00391310427285
1.04035811188593
1.14863498546254
1.38268869241000

5 1.00212930146164
1.02173711549260
1.07872433192603
1.19810065292663
1.41322542791682

6 1.00128517255940
1.01304293035233
1.04678215124113
1.11616489419675
1.23829020218444
1.43524297106744

7 1.00083464397912
1.00843949430122
1.03008707768713
1.07408384092003
1.15036186707366
1.27116474046139
1.45186658649364

8 1.00057246631197
1.00577427662415
1.02050187922941
1.05019803444565
1.10115572984941
1.18086042806856
1.29838585382576
1.46486073151099

9 1.00040960072832
1.00412439506106
1.01460212148266
1.03561113626671
1.07139972529194
1.12688273710962
1.20785219140729
1.32121930716746
1.47529642820699

k β
(k)
i

10 1.00030312229652
1.00304840660796
1.01077022715387
1.02619011597640
1.05231724933755
1.09255743207549
1.15083376663972
1.23172250870894
1.34060802024460
1.48386124407011

11 1.00023058595209
1.00231675024028
1.00817245396304
1.01982986566342
1.03950210235324
1.06965042700541
1.11305754295742
1.17290876275564
1.25288300576792
1.35725579919519
1.49101672564139

12 1.00017947200828
1.00180189139619
1.00634861907307
1.01537864566306
1.03056942830760
1.05376019693943
1.08699862592072
1.13259183097913
1.19316273358172
1.27171293675110
1.37169337969799
1.49708418575562

13 1.00014241921559
1.00142906932629
1.00503028986298
1.01216910518495
1.02414874342792
1.04238158880820
1.06842008128700
1.10399010936759
1.15102748242645
1.21171811910125
1.28854264865128
1.38432619380991
1.50229418757368

k β
(k)
i

14 1.00011490538261
1.00115246376914
1.00405357333264
1.00979590573153
1.01941300472994
1.03401425035436
1.05480599606629
1.08311420301813
1.12040891660892
1.16833095655446
1.22872122288238
1.30365305707817
1.39546814053678
1.50681646209583

15 1.00009404750752
1.00094291696343
1.00331449056444
1.00800294833816
1.01584236259140
1.02772083317705
1.04459535422831
1.06750761206125
1.09760092545889
1.13613855366157
1.18452361426236
1.24432087304475
1.31728069083392
1.40536543893560
1.51077872501845

16 1.00007794828179
1.00078126847253
1.00274487974401
1.00662291017015
1.01309858836971
1.02289448329337
1.03678321409983
1.05559875719896
1.08024848405560
1.11172607131497
1.15112543431072
1.19965584614973
1.25865841744946
1.32962412656664
1.41421360695576
1.51427891730346

181

Appendix B: Additional Results

B.1 OVERLAPPING COARSE-GRID SOLVES

Supplementary results for section 7.1 are presented in this appendix.

B.1.1 Kershaw

2 4 6
k

0

2

4

6

8

10

12

14

16

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

25

50

75

100

125

150

175

200
M

at
rix

-V
ec

to
r P

ro
du

ct
s

(b)(b) 2 4 6
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

So
lv

e
Ti

m
e

(s
)

(c)(c)

= G

= 1
1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
NM, ASM(2k, 0)

Kershaw, = 1, ASM, (2k, 0)

Figure B.1: Comparison of β = 1 and β = βG. Kershaw, ε = 1. E = 363, p = 7. One Summit node
(P = 6 V100 GPUs) is used with n/P ∼ 2.67M . Post smoothing is omitted, e.g. the (2k, 0) approach. The
smoother polynomial order, k, is varied.

2 4 6
k

0

50

100

150

200

250

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

200

400

600

800

1000

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

So
lv

e
Ti

m
e

(s
)

(c)(c)

= G

= 1
1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
NM, ASM(2k, 0)

Kershaw, = 0.3, ASM, (2k, 0)

Figure B.2: Comparison of β = 1 and β = βG. Kershaw, ε = 0.3. E = 363, p = 7. One Summit node
(P = 6 V100 GPUs) is used with n/P ∼ 2.67M . Post smoothing is omitted, e.g. the (2k, 0) approach. The
smoother polynomial order, k, is varied.

182

A comparison of the β = 1 and β = βG coarse-grid correction factors are presented in

figs. B.1 and B.2 for the (2k, 0) V-cycle approach from chapter 4.

2 4 6
k

0

2

4

6

8

10

12

14

16

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

25

50

75

100

125

150

175

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

So
lv

e
Ti

m
e

(s
)

(c)(c)

Add. crs, = 1
Mult.
1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
NM, ASM(2k, 0)

Kershaw, = 1, ASM, (2k, 0)

Figure B.3: Comparison of additive coarse-grid method with β = 1 the standard, multiplicative pMG
method. Kershaw, ε = 1. E = 363, p = 7. One Summit node (P = 6 V100 GPUs) is used with n/P ∼ 2.67M .
Post smoothing is omitted, e.g. the (2k, 0) approach. The smoother polynomial order, k, is varied.

2 4 6
k

0

50

100

150

200

250

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

100

200

300

400

500

600

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
So

lv
e

Ti
m

e
(s

)

(c)(c)

Add. crs, = 1
Mult.
1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
NM, ASM(2k, 0)

Kershaw, = 0.3, ASM, (2k, 0)

Figure B.4: Comparison of additive coarse-grid method with β = 1 the standard, multiplicative pMG
method. Kershaw, ε = 0.3. E = 363, p = 7. One Summit node (P = 6 V100 GPUs) is used with
n/P ∼ 2.67M . Post smoothing is omitted, e.g. the (2k, 0) approach. The smoother polynomial order, k, is
varied.

Figures B.3 and B.4 shows a performance comparison of the additive coarse-grid method

with β = 1 to the standard, multiplicative pMG method for the (2k, 0) V-cycle approach.

183

B.1.2 Pebble Bed Cases

2 4 6
k

0

10

20

30

40

50

60

70
Ite

ra
tio

ns

(a)(a) 2 4 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

So
lv

e
Ti

m
e

(s
)

(c)(c)

= G

= 1
1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
NM, ASM(2k, 0)

146 Pebble, ASM, (2k, 0)

Figure B.5: 146 pebble case (fig. 2.11a). Comparison of β = 1 and β = βG for the additive coarse-grid
method. A single summit node (P = 6 V100 GPUs) is used with n/P ∼ 3.5M . The polynomial smoother
order, k, is varied. (2k, 0) smoothing is used.

2 4 6
k

0

100

200

300

400

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

500

1000

1500

2000

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
So

lv
e

Ti
m

e
(s

)

(c)(c)

= G

= 1
1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
NM, ASM(2k, 0)

67 Pebble, ASM, (2k, 0)

Figure B.6: 67 pebble case (fig. 2.11c). Comparison of β = 1 and β = βG for the additive coarse-grid
method. Three summit nodes (P = 18 V100 GPUs) is used with n/P ∼ 2.33M . The polynomial smoother
order, k, is varied. (2k, 0) smoothing is used.

184

2 4 6
k

0

20

40

60

80

100

120

140

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

100

200

300

400

500

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

So
lv

e
Ti

m
e

(s
)

(c)(c)

= G

= 1
1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
NM, ASM(2k, 0)

1568 Pebble, ASM, (2k, 0)

Figure B.7: 1568 pebble case (fig. 2.11b). Comparison of β = 1 and β = βG for the additive coarse-grid
method. 12 Summit nodes (P = 72 V100 GPUs) is used with n/P ∼ 2.5M . The polynomial smoother
order, k, is varied. (2k, 0) smoothing is used.

Figures B.5 to B.7 show solver performance comparisons of the β = 1 and β = βG coarse-

grid correction factors for the additive V-cycle.

2 4 6
k

0

10

20

30

40

50

60

70

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

25

50

75

100

125

150

175

200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6
So

lv
e

Ti
m

e
(s

)

(c)(c)

Add. crs, = 1
Mult.
1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
NM, ASM(2k, 0)

146 Pebble, ASM, (2k, 0)

Figure B.8: 146 pebble case (fig. 2.11a). Comparison of additive coarse-grid solve with β = 1 and
multiplicative V-cycle. A single summit node (P = 6 V100 GPUs) is used with n/P ∼ 3.5M . The
polynomial smoother order, k, is varied. (2k, 0) smoothing is used.

185

2 4 6
k

0

100

200

300

400

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

200

400

600

800

1000

1200

1400

1600

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0

1

2

3

4

So
lv

e
Ti

m
e

(s
)

(c)(c)

Add. crs, = 1
Mult.
1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
NM, ASM(2k, 0)

67 Pebble, ASM, (2k, 0)

Figure B.9: 67 pebble case (fig. 2.11c). Comparison of additive coarse-grid solve with β = 1 and
multiplicative V-cycle. Three summit nodes (P = 18 V100 GPUs) is used with n/P ∼ 2.33M . The
polynomial smoother order, k, is varied. (2k, 0) smoothing is used.

2 4 6
k

0

20

40

60

80

100

120

140

160

Ite
ra

tio
ns

(a)(a) 2 4 6
k

0

100

200

300

400

500

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)(b) 2 4 6
k

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

So
lv

e
Ti

m
e

(s
)

(c)(c)

Add. crs, = 1
Mult.
1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
NM, ASM(2k, 0)

1568 Pebble, ASM, (2k, 0)

Figure B.10: 1568 pebble case (fig. 2.11b). Comparison of additive coarse-grid solve with β = 1 and
multiplicative V-cycle. 12 Summit nodes (P = 72 V100 GPUs) is used with n/P ∼ 2.5M . The polynomial
smoother order, k, is varied. (2k, 0) smoothing is used.

Figures B.8 to B.10 show solver performance comparisons of the additive multigrid ap-

proach with β = 1 and the standard, multiplicative V-cycle.

B.2 LOW-ORDER AUXILIARY SPACE METHOD

The results from sections 7.2.1 and 7.2.2 are expanded here in appendices B.2.1 and B.2.2,

respectively. In addition the the (k, k) multigrid scheme (see section 4.1), the (2k, 0) scheme

is also considered. Finally, to observe the effect of tuning the ωc parameter introduced in

chapter 6, experiments with ωc = 1 are also included.

186

B.2.1 Kershaw

1 2 3 4 5 6
k

0

5

10

15

20

25

30
Ite

ra
tio

ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

0.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(2k, 0), *
c

4th-Cheb, ASM(2k, 0), *
c

4th
opt-Cheb, ASM(2k, 0), *

c

NM, ASM(2k, 0), *
c

SEMFEM

Kershaw, = 1, ASM, (2k, 0), c = *
c

Figure B.11: Kershaw case from fig. 2.10, ε = 1. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6. The
polynomial smoothers introduced in sections 2.7 and 4.1 are used with ASM smoothing. Post-smoothing is
omitted, denoted by (2k, 0) from chapter 4. The polynomial smoother order, k, is varied.

0 1 2 3 4 5 6
k

0

5

10

15

20

25

30

Ite
ra

tio
ns

(a) 0 1 2 3 4 5 6
k

0

50

100

150

200

250

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

0 1 2 3 4 5 6
k

0

100

200

300

400

500

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 0 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(2k, 0), *
c

4th-Cheb, Jac(2k, 0), *
c

4th
opt-Cheb, Jac(2k, 0), *

c

NM, Jac(2k, 0), *
c

SEMFEM

Kershaw, = 1, Jacobi, (2k, 0), c = *
c

Figure B.12: Kershaw case from fig. 2.10, ε = 1. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6. The
polynomial smoothers introduced in sections 2.7 and 4.1 are used with Jacobi smoothing. Post-smoothing
is omitted, denoted by (2k, 0) from chapter 4. The polynomial smoother order, k, is varied.

187

1 2 3 4 5 6
k

0

5

10

15

20

25

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
SEMFEM

Kershaw, = 1, ASM, (k, k), c = 1

Figure B.13: Kershaw case from fig. 2.10, ε = 1. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with ASM smoothing. Symmetric pre-/post-smoothing is used,
denoted by (k, k) from chapter 4. The polynomial smoother order, k, is varied.

1 2 3 4 5 6
k

0

5

10

15

20

25

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

0.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
SEMFEM

Kershaw, = 1, ASM, (2k, 0), c = 1

Figure B.14: Kershaw case from fig. 2.10, ε = 1. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with ASM smoothing. Post-smoothing is omitted, denoted by
(2k, 0) from chapter 4. The polynomial smoother order, k, is varied.

188

1 2 3 4 5 6
k

0

5

10

15

20

25

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(k, k)
4th-Cheb, Jac(k, k)
4th

opt-Cheb, Jac(k, k)
SEMFEM

Kershaw, = 1, Jacobi, (k, k), c = 1

Figure B.15: Kershaw case from fig. 2.10, ε = 1. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with Jacobi smoothing. Symmetric pre-/post-smoothing is used,
denoted by (k, k) from chapter 4. The polynomial smoother order, k, is varied.

0 1 2 3 4 5 6
k

0

5

10

15

20

25

30

Ite
ra

tio
ns

(a) 0 1 2 3 4 5 6
k

0

100

200

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

0 1 2 3 4 5 6
k

0

100

200

300

400

500

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 0 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(2k, 0)
4th-Cheb, Jac(2k, 0)
4th

opt-Cheb, Jac(2k, 0)
SEMFEM

Kershaw, = 1, Jacobi, (2k, 0), c = 1

Figure B.16: Kershaw case from fig. 2.10, ε = 1. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with Jacobi smoothing. Post-smoothing is omitted, denoted by
(2k, 0) from chapter 4. The polynomial smoother order, k, is varied.

189

1 2 3 4 5 6
k

0

25

50

75

100

125

150

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

400

500

600

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

200

400

600

800

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(2k, 0), *
c

4th-Cheb, ASM(2k, 0), *
c

4th
opt-Cheb, ASM(2k, 0), *

c

NM, ASM(2k, 0), *
c

SEMFEM

Kershaw, = 0.3, ASM, (2k, 0), c = *
c

Figure B.17: Kershaw case from fig. 2.10, ε = 0.3. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6. The
polynomial smoothers introduced in sections 2.7 and 4.1 are used with ASM smoothing. Post-smoothing is
omitted, denoted by (2k, 0) from chapter 4. The polynomial smoother order, k, is varied.

0 1 2 3 4 5 6
k

0

25

50

75

100

125

150

Ite
ra

tio
ns

(a) 0 1 2 3 4 5 6
k

0

200

400

600

800

1000

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

0 1 2 3 4 5 6
k

0

250

500

750

1000

1250

1500

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 0 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(2k, 0), *
c

4th-Cheb, Jac(2k, 0), *
c

4th
opt-Cheb, Jac(2k, 0), *

c

NM, Jac(2k, 0), *
c

SEMFEM

Kershaw, = 0.3, Jacobi, (2k, 0), c = *
c

Figure B.18: Kershaw case from fig. 2.10, ε = 0.3. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6. The
polynomial smoothers introduced in sections 2.7 and 4.1 are used with Jacobi smoothing. Post-smoothing
is omitted, denoted by (2k, 0) from chapter 4. The polynomial smoother order, k, is varied.

190

1 2 3 4 5 6
k

0

25

50

75

100

125

150

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

400

500

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

200

400

600

800

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
SEMFEM

Kershaw, = 0.3, ASM, (k, k), c = 1

Figure B.19: Kershaw case from fig. 2.10, ε = 0.3. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with ASM smoothing. Symmetric pre-/post-smoothing is used,
denoted by (k, k) from chapter 4. The polynomial smoother order, k, is varied.

1 2 3 4 5 6
k

0

25

50

75

100

125

150

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

400

500

600

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

200

400

600

800

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
SEMFEM

Kershaw, = 0.3, ASM, (2k, 0), c = 1

Figure B.20: Kershaw case from fig. 2.10, ε = 0.3. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with ASM smoothing. Post-smoothing is omitted, denoted by
(2k, 0) from chapter 4. The polynomial smoother order, k, is varied.

191

1 2 3 4 5 6
k

0

25

50

75

100

125

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

200

400

600

800

1000

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

200

400

600

800

1000

1200

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(k, k)
4th-Cheb, Jac(k, k)
4th

opt-Cheb, Jac(k, k)
SEMFEM

Kershaw, = 0.3, Jacobi, (k, k), c = 1

Figure B.21: Kershaw case from fig. 2.10, ε = 0.3. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with Jacobi smoothing. Symmetric pre-/post-smoothing is used,
denoted by (k, k) from chapter 4. The polynomial smoother order, k, is varied.

0 1 2 3 4 5 6
k

0

25

50

75

100

125

Ite
ra

tio
ns

(a) 0 1 2 3 4 5 6
k

0

200

400

600

800

1000

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

0 1 2 3 4 5 6
k

0

250

500

750

1000

1250

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 0 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(2k, 0)
4th-Cheb, Jac(2k, 0)
4th

opt-Cheb, Jac(2k, 0)
SEMFEM

Kershaw, = 0.3, Jacobi, (2k, 0), c = 1

Figure B.22: Kershaw case from fig. 2.10, ε = 0.3. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with Jacobi smoothing. Post-smoothing is omitted, denoted by
(2k, 0) from chapter 4. The polynomial smoother order, k, is varied.

192

1 2 3 4 5 6
k

0

50

100

150

200

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

200

400

600

800

1000

1200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

500

1000

1500

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

2.0

2.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(2k, 0), *
c

4th-Cheb, ASM(2k, 0), *
c

4th
opt-Cheb, ASM(2k, 0), *

c

NM, ASM(2k, 0), *
c

SEMFEM

Kershaw, = 0.05, ASM, (2k, 0), c = *
c

Figure B.23: Kershaw case from fig. 2.10, ε = 0.05. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6. The
polynomial smoothers introduced in sections 2.7 and 4.1 are used with ASM smoothing. Post-smoothing is
omitted, denoted by (2k, 0) from chapter 4. The polynomial smoother order, k, is varied.

0 1 2 3 4 5 6
k

0

50

100

150

200

Ite
ra

tio
ns

(a) 0 1 2 3 4 5 6
k

0

500

1000

1500

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

0 1 2 3 4 5 6
k

0

500

1000

1500

2000

2500

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 0 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

2.0

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(2k, 0), *
c

4th-Cheb, Jac(2k, 0), *
c

4th
opt-Cheb, Jac(2k, 0), *

c

NM, Jac(2k, 0), *
c

SEMFEM

Kershaw, = 0.05, Jacobi, (2k, 0), c = *
c

Figure B.24: Kershaw case from fig. 2.10, ε = 0.05. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6. The
polynomial smoothers introduced in sections 2.7 and 4.1 are used with Jacobi smoothing. Post-smoothing
is omitted, denoted by (2k, 0) from chapter 4. The polynomial smoother order, k, is varied.

193

1 2 3 4 5 6
k

0

50

100

150

200

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

200

400

600

800

1000

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

250

500

750

1000

1250

1500

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

2.0

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
SEMFEM

Kershaw, = 0.05, ASM, (k, k), c = 1

Figure B.25: Kershaw case from fig. 2.10, ε = 0.05. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with ASM smoothing. Symmetric pre-/post-smoothing is used,
denoted by (k, k) from chapter 4. The polynomial smoother order, k, is varied.

1 2 3 4 5 6
k

0

50

100

150

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

200

400

600

800

1000

1200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

500

1000

1500

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

2.0

2.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
SEMFEM

Kershaw, = 0.05, ASM, (2k, 0), c = 1

Figure B.26: Kershaw case from fig. 2.10, ε = 0.05. E = 363, p = 7. A single node of Summit (P = 6
V100 GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial
smoothers introduced in sections 2.7 and 4.1 are used with ASM smoothing. Post-smoothing is omitted,
denoted by (2k, 0) from chapter 4. The polynomial smoother order, k, is varied.

194

1 2 3 4 5 6
k

0

50

100

150

200

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

250

500

750

1000

1250

1500

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

500

1000

1500

2000

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

2.0

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(k, k)
4th-Cheb, Jac(k, k)
4th

opt-Cheb, Jac(k, k)
SEMFEM

Kershaw, = 0.05, Jacobi, (k, k), c = 1

Figure B.27: Kershaw case from fig. 2.10, ε = 0.05. E = 363, p = 7. A single node of Summit (P = 6 V100
GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with Jacobi smoothing. Symmetric pre-/post-smoothing is used,
denoted by (k, k) from chapter 4. The polynomial smoother order, k, is varied.

0 1 2 3 4 5 6
k

0

50

100

150

200

Ite
ra

tio
ns

(a) 0 1 2 3 4 5 6
k

0

500

1000

1500

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

0 1 2 3 4 5 6
k

0

500

1000

1500

2000

2500

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 0 1 2 3 4 5 6
k

0.0

0.5

1.0

1.5

2.0

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(2k, 0)
4th-Cheb, Jac(2k, 0)
4th

opt-Cheb, Jac(2k, 0)
SEMFEM

Kershaw, = 0.05, Jacobi, (2k, 0), c = 1

Figure B.28: Kershaw case from fig. 2.10, ε = 0.05. E = 363, p = 7. A single node of Summit (P = 6
V100 GPUs) is used with n/P ∼ 2.67M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial
smoothers introduced in sections 2.7 and 4.1 are used with Jacobi smoothing. Post-smoothing is omitted,
denoted by (2k, 0) from chapter 4. The polynomial smoother order, k, is varied.

195

B.2.2 Pebble Bed Cases

1 2 3 4 5 6
k

0

5

10

15

20

25

30
Ite

ra
tio

ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

50

100

150

200

250

300

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(2k, 0), *
c

4th-Cheb, ASM(2k, 0), *
c

4th
opt-Cheb, ASM(2k, 0), *

c

NM, ASM(2k, 0), *
c

SEMFEM

146 Pebble, ASM, (2k, 0), c = *
c

Figure B.29: 146 pebble case from fig. 2.11a. One node of Summit (P = 6 V100 GPUs) is used,
n/P ∼ 3.5M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with ASM smoothing from alg. 2.10. The (2k, 0) cycle scheme
from chapter 4 is used. The polynomial smoother order, k, is varied.

0 1 2 3 4 5 6
k

0

5

10

15

20

25

30

Ite
ra

tio
ns

(a) 0 1 2 3 4 5 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

0 1 2 3 4 5 6
k

0

100

200

300

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 0 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(2k, 0), *
c

4th-Cheb, Jac(2k, 0), *
c

4th
opt-Cheb, Jac(2k, 0), *

c

NM, Jac(2k, 0), *
c

SEMFEM

146 Pebble, Jacobi, (2k, 0), c = *
c

Figure B.30: 146 pebble case from fig. 2.11a. One node of Summit (P = 6 V100 GPUs) is used,
n/P ∼ 3.5M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with Jacobi smoothing. The (2k, 0) cycle scheme from chapter 4
is used. The polynomial smoother order, k, is varied.

196

1 2 3 4 5 6
k

0

5

10

15

20

25

30

35

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

50

100

150

200

250

300

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
SEMFEM

146 Pebble, ASM, (k, k), c = 1

Figure B.31: 146 pebble case from fig. 2.11a. One node of Summit (P = 6 V100 GPUs) is used,
n/P ∼ 3.5M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers introduced in
sections 2.7 and 4.1 are used with ASM smoothing from alg. 2.10. The (k, k) cycle scheme from chapter 4
is used. The polynomial smoother order, k, is varied.

1 2 3 4 5 6
k

0

5

10

15

20

25

30

35

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

50

100

150

200

250

300

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
SEMFEM

146 Pebble, ASM, (2k, 0), c = 1

Figure B.32: 146 pebble case from fig. 2.11a. One node of Summit (P = 6 V100 GPUs) is used,
n/P ∼ 3.5M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers introduced in
sections 2.7 and 4.1 are used with ASM smoothing from alg. 2.10. The (2k, 0) cycle scheme from chapter 4
is used. The polynomial smoother order, k, is varied.

197

1 2 3 4 5 6
k

0

5

10

15

20

25

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

50

100

150

200

250

300

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(k, k)
4th-Cheb, Jac(k, k)
4th

opt-Cheb, Jac(k, k)
SEMFEM

146 Pebble, Jacobi, (k, k), c = 1

Figure B.33: 146 pebble case from fig. 2.11a. One node of Summit (P = 6 V100 GPUs) is used,
n/P ∼ 3.5M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers introduced in
sections 2.7 and 4.1 are used with Jacobi smoothing. The (k, k) cycle scheme from chapter 4 is used. The
polynomial smoother order, k, is varied.

0 1 2 3 4 5 6
k

0

5

10

15

20

25

30

Ite
ra

tio
ns

(a) 0 1 2 3 4 5 6
k

0

50

100

150

200

250

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

0 1 2 3 4 5 6
k

0

50

100

150

200

250

300

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 0 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(2k, 0)
4th-Cheb, Jac(2k, 0)
4th

opt-Cheb, Jac(2k, 0)
SEMFEM

146 Pebble, Jacobi, (2k, 0), c = 1

Figure B.34: 146 pebble case from fig. 2.11a. One node of Summit (P = 6 V100 GPUs) is used,
n/P ∼ 3.5M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers introduced in
sections 2.7 and 4.1 are used with Jacobi. The (2k, 0) cycle scheme from chapter 4 is used. The polynomial
smoother order, k, is varied.

198

1 2 3 4 5 6
k

0

10

20

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.2

0.4

0.6

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(2k, 0), *
c

4th-Cheb, ASM(2k, 0), *
c

4th
opt-Cheb, ASM(2k, 0), *

c

NM, ASM(2k, 0), *
c

SEMFEM

67 Pebble, ASM, (2k, 0), c = *
c

Figure B.35: 67 pebble case from fig. 2.11c. Three nodes of Summit (P = 18 V100 GPUs) is used, n/P ∼
2.33M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with ASM smoothing from alg. 2.10. The (2k, 0) cycle scheme
from chapter 4 is used. The polynomial smoother order, k, is varied.

0 1 2 3 4 5 6
k

0

10

20

30

40

Ite
ra

tio
ns

(a) 0 1 2 3 4 5 6
k

0

50

100

150

200

250

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

0 1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 0 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(2k, 0), *
c

4th-Cheb, Jac(2k, 0), *
c

4th
opt-Cheb, Jac(2k, 0), *

c

NM, Jac(2k, 0), *
c

SEMFEM

67 Pebble, Jacobi, (2k, 0), c = *
c

Figure B.36: 67 pebble case from fig. 2.11c. Three nodes of Summit (P = 18 V100 GPUs) is used, n/P ∼
2.33M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with Jacobi smoothing. The (2k, 0) cycle scheme from chapter 4
is used. The polynomial smoother order, k, is varied.

199

1 2 3 4 5 6
k

0

10

20

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.2

0.4

0.6

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
SEMFEM

67 Pebble, ASM, (k, k), c = 1

Figure B.37: 67 pebble case from fig. 2.11c. Three nodes of Summit (P = 18 V100 GPUs) is used,
n/P ∼ 2.33M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers introduced in
sections 2.7 and 4.1 are used with ASM smoothing from alg. 2.10. The (k, k) cycle scheme from chapter 4
is used. The polynomial smoother order, k, is varied.

1 2 3 4 5 6
k

0

10

20

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.2

0.4

0.6

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
SEMFEM

67 Pebble, ASM, (2k, 0), c = 1

Figure B.38: 67 pebble case from fig. 2.11c. Three nodes of Summit (P = 18 V100 GPUs) is used,
n/P ∼ 2.33M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers introduced in
sections 2.7 and 4.1 are used with ASM smoothing from alg. 2.10. The (2k, 0) cycle scheme from chapter 4
is used. The polynomial smoother order, k, is varied.

200

1 2 3 4 5 6
k

0

10

20

30

40

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(k, k)
4th-Cheb, Jac(k, k)
4th

opt-Cheb, Jac(k, k)
SEMFEM

67 Pebble, Jacobi, (k, k), c = 1

Figure B.39: 67 pebble case from fig. 2.11c. Three nodes of Summit (P = 18 V100 GPUs) is used,
n/P ∼ 2.33M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers introduced in
sections 2.7 and 4.1 are used with Jacobi smoothing. The (k, k) cycle scheme from chapter 4 is used. The
polynomial smoother order, k, is varied.

0 1 2 3 4 5 6
k

0

10

20

30

40

Ite
ra

tio
ns

(a) 0 1 2 3 4 5 6
k

0

50

100

150

200

250

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

0 1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 0 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

0.5

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(2k, 0)
4th-Cheb, Jac(2k, 0)
4th

opt-Cheb, Jac(2k, 0)
SEMFEM

67 Pebble, Jacobi, (2k, 0), c = 1

Figure B.40: 67 pebble case from fig. 2.11c. Three nodes of Summit (P = 18 V100 GPUs) is used,
n/P ∼ 2.33M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers introduced in
sections 2.7 and 4.1 are used with Jacobi. The (2k, 0) cycle scheme from chapter 4 is used. The polynomial
smoother order, k, is varied.

201

1 2 3 4 5 6
k

0

10

20

30

40

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

400

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

500

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.2

0.4

0.6

0.8

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(2k, 0), *
c

4th-Cheb, ASM(2k, 0), *
c

4th
opt-Cheb, ASM(2k, 0), *

c

NM, ASM(2k, 0), *
c

SEMFEM

1568 Pebble, ASM, (2k, 0), c = *
c

Figure B.41: 1568 pebble case from fig. 2.11b. 12 nodes of Summit (P = 72 V100 GPUs) is used,
n/P ∼ 2.5M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with ASM smoothing from alg. 2.10. The (2k, 0) cycle scheme
from chapter 4 is used. The polynomial smoother order, k, is varied.

1 2 3 4 5 6
k

0

10

20

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(2k, 0), *
c

4th-Cheb, Jac(2k, 0), *
c

4th
opt-Cheb, Jac(2k, 0), *

c

NM, Jac(2k, 0), *
c

SEMFEM

1568 Pebble, Jacobi, (2k, 0), c = *
c

Figure B.42: 1568 pebble case from fig. 2.11b. 12 nodes of Summit (P = 72 V100 GPUs) is used,
n/P ∼ 2.5M . HOS-SEMFEM preconditioner with tuned ωc value from chapter 6. The polynomial smoothers
introduced in sections 2.7 and 4.1 are used with Jacobi smoothing. The (2k, 0) cycle scheme from chapter 4
is used. The polynomial smoother order, k, is varied.

202

1 2 3 4 5 6
k

0

10

20

30

40

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.2

0.4

0.6

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(k, k)
4th-Cheb, ASM(k, k)
4th

opt-Cheb, ASM(k, k)
SEMFEM

1568 Pebble, ASM, (k, k), c = 1

Figure B.43: 1568 pebble case from fig. 2.11b. 12 nodes of Summit (P = 72 V100 GPUs) is used,
n/P ∼ 2.5M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers introduced in
sections 2.7 and 4.1 are used with ASM smoothing from alg. 2.10. The (k, k) cycle scheme from chapter 4
is used. The polynomial smoother order, k, is varied.

1 2 3 4 5 6
k

0

10

20

30

40

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.2

0.4

0.6

0.8

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, ASM(2k, 0)
4th-Cheb, ASM(2k, 0)
4th

opt-Cheb, ASM(2k, 0)
SEMFEM

1568 Pebble, ASM, (2k, 0), c = 1

Figure B.44: 1568 pebble case from fig. 2.11b. 12 nodes of Summit (P = 72 V100 GPUs) is used,
n/P ∼ 2.5M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers introduced in
sections 2.7 and 4.1 are used with ASM smoothing from alg. 2.10. The (2k, 0) cycle scheme from chapter 4
is used. The polynomial smoother order, k, is varied.

203

1 2 3 4 5 6
k

0

10

20

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

50

100

150

200

250

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(k, k)
4th-Cheb, Jac(k, k)
4th

opt-Cheb, Jac(k, k)
SEMFEM

1568 Pebble, Jacobi, (k, k), c = 1

Figure B.45: 1568 pebble case from fig. 2.11b. 12 nodes of Summit (P = 72 V100 GPUs) is used,
n/P ∼ 2.5M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers introduced in
sections 2.7 and 4.1 are used with Jacobi smoothing. The (k, k) cycle scheme from chapter 4 is used. The
polynomial smoother order, k, is varied.

1 2 3 4 5 6
k

0

10

20

30

Ite
ra

tio
ns

(a) 1 2 3 4 5 6
k

0

100

200

300

M
at

rix
-V

ec
to

r P
ro

du
ct

s

(b)

1 2 3 4 5 6
k

0

100

200

300

400

Eq
ui

va
le

nt
 M

at
rix

-V
ec

to
r P

ro
du

ct
s

(c) 1 2 3 4 5 6
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

So
lv

e
Ti

m
e

(s
)

(d)

1st-Cheb, Jac(2k, 0)
4th-Cheb, Jac(2k, 0)
4th

opt-Cheb, Jac(2k, 0)
SEMFEM

1568 Pebble, Jacobi, (2k, 0), c = 1

Figure B.46: 1568 pebble case from fig. 2.11b. 12 nodes of Summit (P = 72 V100 GPUs) is used,
n/P ∼ 2.5M . HOS-SEMFEM preconditioner with ωc = 1. The polynomial smoothers introduced in
sections 2.7 and 4.1 are used with Jacobi. The (2k, 0) cycle scheme from chapter 4 is used. The polynomial
smoother order, k, is varied.

204

