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Abstract

Neurons encode information in the form of spike times. It is argued that the timing between

spikes (i.e., spike-timing) encodes the stimulus input. Spike threshold adaptation is speculated

to be the major driving force behind a spike-timing code. Efforts to understand the neuron

channels that drive an adaptive threshold have relied on purely mathematical models. Such

models have had great success at predicting spike times [1], [2], but do not have a strong basis

in biophysics or what is known about neural channels to predict spike timing. State-of-the-art

biophysical models, however, suffer at the cost of model interpretability and spike-timing

accuracy. We investigate spike threshold adaptation with a biophysical, Hodgkin-Huxley type

model in a reduced fashion, with consideration to voltage-gated ion channels present only

the axonal hillock, and fit spike timing that outperforms the best phenomenological model.

We then evaluate the presence and effect of spike-threshold adaptation by estimating the

current-voltage interaction and determine that the Kv7/KCNQ ion channel is likely the major

ion channel responsible for an adaptive threshold in rodent pyramidal cells in-vitro. These

findings are an alternative approach to previous research investigating outward potassium

channels, and partially agree with previous research. We next develop a stochastic extension

of the model with consideration of other stochastic models to produce stochastic spike

timing and behavior observed in experimental data. We find that a stochastic Kv7/KCNQ

ion channel with correlated spike-to-spike noise is able to reproduce neuron variability in

experimental data and is consistent with the theoretical parameters derived from a stochastic

dynamic threshold model.
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Chapter 1

Introduction

Encoding is the method by which neurons translate information they receive into a series of

action potentials, also known as a spike train. Throughout the literature, there is evidence of

different encoding schemes in the brain. Specialized neurons attuned to a particular feature or

pattern have been observed, such as phase coding in the hippocampus. From the perspective

of a single neuron, there are two competing ideas: information is carried in the timing of

individual spikes (temporal code), and information is carried in the aggregate rate of spikes

(rate code). Despite several decades of research both, ideas are still debated. From the

efficiency standpoint, there are arguments for both sides [3], [4]. Encoding, in the case of

neuron-to-neuron communication, is when information arrives in synapses and is translated

into a series of action potentials. Decoding is the field that centers around understanding

information about the presynaptic neuron’s input from the spikes. As early as the work of

De Boer, (white noise approach), given an output of a neuron (action potentials), it has been

shown that it is possible to approximately reconstruct the input using a linear filter [5]. In

De Boer’s work, auditory nerve fiber action potentials were recorded in the cat, and repeated

trials of white noise stimulus were played in ears. The resulting spikes were averaged and

the correlation between the spikes and sound input were calculated. The resulting transfer

function estimates the firing rate, given the white noise stimulus. In terms of neural coding,
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mathematical models have been formulated to capture the relationship between the input of a

neuron and the spike trains it produces. One of the earliest models is the Leaky Integrate and

Fire model (for review, see [6]), where the membrane voltage is treated as a low-pass circuit

and outputs a spike when a threshold is reached, resetting to the resting voltage immediately.

Such spiking models can be purely phenomenological or biophysical. In terms of decoding,

the idea of estimating the input stimulus of a neuron from a spike train of a neuron population

was one of the earliest works in the field [7]. The study of decoding was applied to the input

of a single neuron, named stimulus reconstruction. Stimulus reconstruction arose for single

neurons [8] in the Calliphora erythrocephela visual system (see [9] for review). Apart from

the work in stimulus reconstruction, the field of neural decoding largely refers to work at a

population level.

Both scientific and pragmatic interests motivate our research into more advanced spiking

models. Motivation: Efforts in studying neural coding not only help our understanding of

sensory coding, but optimal signal detection strategies learned from neural coding can also

be applied to improve brain machine interfaces and in low-power computing.

Chapter 2 serves as the background of neural encoding at the single neuron level, the

spiking models frequently used by researchers, ion channels, and progress in the field of

neural coding at a single neuron level. The aim of Chapter 3 is the introduction of the

Hodgkin-Huxley type model capable of accurately producing spike times to partially explain

elements of optimal source coding. The model is then extended in Chapter 4 to reproduce

spike jitter present in real neurons under repeated stimuli. The stochastic form of the model

is based on biophysical processes that extend beyond channel noise and proposed in its

simplest form to be an outcome of ion channel modulation. This thesis is inspired by work

from Jones and colleagues’ [10], [11] derivation of optimal source coding in neurons. From

mathematical first principles they derive an optimal neural timing code and demonstrate that

it produces remarkably good fits to experimental spike train timing data. While accurate in

terms of timing reproduction, this abstract mathematical model provides little guidance in
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terms of its biophysical implementation in neuronal cells. The aim of this dissertation is to

produce a biophysically plausible neuron model that accurately predicts spike timing and

jitter in experimental data. I implement a minimum channel Hodgkin Huxley-type model

fitted to a publicly available dataset [2] in rat layer 5 cortical pyramidal cells to reproduce

firing behavior and infer insights of a dynamic threshold model.
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Chapter 2

Background

2.1 Ion channels in the axon initial segment

During an action potential, a sequence of ion channels open and close to rapidly depolarize

the neuron to create a pulse in the membrane potential. This sequence was first speculated

by Julius Bernstein in 1912. The types of ion channels and their kinetics throughout the time

of the action potential were conjectured by Hodgkin and Huxley in 1952. At the time, ion

channels were only known as ‘sodium’ and ‘potassium’ channels. It was through the discovery

of the patch clamp technique and gene sequencing that families of ion channels were classified.

In the potassium channel family alone, there are 180 different genetic expressions, all of which

produce different kinetics [12]. These channels are termed voltage-gated ion channels, which

are a superfamily of ion channels that open and close based on a cell’s membrane potential.

Ligand-gated ion channels, on the other hand, are modulated by chemical binding. While

voltage-gated ion channels open primarily by membrane potential, there exist channels in this

superfamily that are additionally modulated by various ligands to alter their kinetics. One

example is the KCNQ2/3 channel, which closes based on the concentration of Acetylcholine

[13]. The ionic channels in the mammalian neuron vary by the neuron’s location. For clarity,

the following notations for each channel are based on those consistent with the literature
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in biophysical modeling of neurons [14]–[17], rather than their genetic classification. While

there is a relationship to the genetic classification and its membrane physiology, under certain

conditions, its kinetics across different organs and species can lead to a categorically different

physiology in some ion channels [18]–[20].

The channels involved in the action potential have been first speculated to occur in the

axon hillock, a region in the axon proximal to the soma. Evidence in fluorescent channel

labeling is that action potentials begin in the distal area of the Axonal Initial Segment (AIS)

[21]–[23]. In this region, there is a large expression of Nav1 (NaT and NaP ), delayed rectifier

(KD), transient potassium (KA) and Kv7.2/7.3 channels (KM) [15]. An extensively studied

neuron used in mammalian physiology are the layer 5 pyramidal cells in the neocortex. It is

one of the neurons that receive dendritic input from all layers in the cortex [24], [25], and

send long range output to many areas in the brain, including sub-cortical structures [26]–[28].

They can be categorized by their anatomy as thick-tufted or slender-tufted. Thick-tufted

layer 5 neurons have apical dendrites in the superficial layers and are characterized as intrinsic

bursting cells in mature rodents. Slender-tufted layer 5 neurons project to layers 2/3 and

have a regular spiking behavior [26]. The interest in this neuron is its association with sensory

processing as well as its implication in pathophysiology, such as epilepsy and schizophrenia

[15].

2.2 Neuron Spiking Models

Regarding neural spiking models used for understanding neural coding, I will discuss the

single neuron models that have been used to investigate spiking behavior such as biophysical

mechanisms and spike-timing. The most-known are the Hodgkin-Huxley and Integrate-and-

Fire models. The former relates the dynamics of voltage-gated ion channels to spiking, and

the latter describes the firing behavior to the summed input of the neuron. In addition to the

models above, there are variants from the original equations due to increasing knowledge of
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ion channels and their kinetics, mathematical analysis of dynamical systems, and to reduce

computational complexity. Since 1952, many other types of voltage-gated ion channels that

influence the spiking behavior have been discovered. Spike-frequency adaptation, being one of

such behaviors, has attributed to certain ion channels and have been implemented in spiking

models. Modelers have approached spike frequency adaptation in two different ways, either

by using an adaptive current’s kinetics directly, or by adding a mathematical equation that

changes the “threshold” of the neuron after a spike fires. Multi-compartment models and

morphological models are another class of models that factor in compartmentalization, which

influence the membrane potential. Along with what I will describe, there are many more

neuron spiking models beyond the scope of this thesis.

2.2.1 Hodgkin Huxley-type models

The Hodgkin-Huxley model [29] was introduced by Alan Hodgkin and Andrew Huxley as an

effort to understand the ionic mechanisms responsible for the action potential in the giant

squid axon. Its use in trying to understand ion channel dynamics has been very popular

in computational groups. The formulas describing the Hodgkin-Huxley model are based on

voltage-clamp data in the giant squid axon. At the time, sodium and potassium channels

were speculated to be involved in the action potential.

C
dV

dt
= ḡNam

3h (V − VNa) + ḡKn
4 (V − VK) + ḡL (V − VL)

dx

dt
= αx (1− x)− β

where x refers to the dynamics of the gating variable (m, h and n). α (V ) and β (V ) are

the voltage-dependent open and closing rates of a subunit in an ion channel, and ḡx is the

maximum conductance of a channel. L refers to a leak conductance, an ohmic conductance

that establishes the resting membrane potential. In the equation above, the sodium current

gating variable is m3h to represent the interaction of activation subunits m, and inactivation
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h.

Alternatively, the equations of the gating variables can be expressed as a change in the

steady state of its gating over time with the expressions:

dx

dt
=
x− x∞ (V )

τ (V )

x∞ =
α (V )

α (V ) + β (V )
, τ =

1

α (V ) + β (V )

In further work the Hodgkin-Huxley model has been modified in various ways, from inclusion

of ion channels not originally present in the model to simplifications of the model that

preserve the ion dynamics but reduce the computational complexity or analysis (such as the

Morris-Lecar Model or Fitzhugh-Nagumo model), and termed Hodgkin Huxley-type models.

2.2.2 Integrate and Fire models

Models of this type treat the membrane potential as an integrator of the neuron’s input. The

Leaky Integrate-and-Fire model treats the current-voltage relationship as strictly linear

τ
dV

dt
= RI (t)− [V (t)− Vrest]

where R is the membrane resistance, I (t) is the injected current, V (t) is the membrane

voltage, and τ is its time constant.

The change in voltage in membrane potential is determined by the input current, the

membrane resistance, and the driving force created by the membrane potential at time t

against its resting membrane potential. When the voltage reaches a threshold Vthresh, in the

integrate and fire model, the driving force is V (t)− Vrest. However, the driving force can be

treated as a function that relates the behavior to that seen in neurons. The current-voltage

relationship in the membrane can be defined by replacing V (t)− Vrest with a function f (u)

defining this relationship [30]. These so-called Generalized Integrate-and-Fire Models have
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been used to fit experimental data [31], [32]. Further, the equations that represent the

function of the spiking output can be generalized, with a combination of linear filters instead

of differential equations, to produce a transfer function. Combined with a rectified nonlinear

operation, the termed spike-response model (SRM) or generalized linear model (GLM) [33],

[34] is a phenomenological model widely used to model spiking behavior (for review, see [30]).

2.2.3 Adaptation Current Models and Dynamic Threshold models

Adaptation current models are those that incorporate the dynamics of those channels that are

known to be involved in spike-frequency adaptation. These types of models can be applied to

the Hodgkin-Huxley or Integrate-and-fire models to introduce spike-frequency adaptation into

the spiking model. Since adaptation current models use the channel dynamics to produce the

desired spiking behavior, the resulting model results in a nonlinear term caused by the channel

dynamics themselves. Dynamic threshold models, on the other hand, treat the threshold

term in the Integrate-and-fire models as a variable that changes based on the previous spiking

history, and is typically modeled as a phenomenological function to incorporate a linear

change in current [35]. Dynamic threshold models have been successfully used to predict spike

timing experimental in-vitro neuron recordings [1], [36]. In 2009, Kobayashi’s multiadaptive

threshold model (MAT) won the International Neuroinformatics Coordinating Facility (INCF)

spike time prediction challenge. The MAT model has related parameters in the model’s

dynamic threshold to the M-current and calcium-activated potassium current [1] from its

dynamic threshold, and suggests that it may be possible to predict spike times with a Hodgkin

Huxley-type model.

2.2.4 Multicompartment/Morphological models

In Hodgkin-Huxley type models, it has been shown that compartmentalization of the equations

into separate dendrite and soma structures are capable of altering membrane potential and

can produce behavior seen in experimental data [37], [38]. Recently, biophysical models have
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included highly detailed morphology of a neuron to fit spiking behavior [17], [39]. In their

work, features from firing behavior, such as timing, spike frequency, adaptation index and ISI

covariance are extracted, and a multi-objective optimization procedure is used for fitting. The

procedure for these models would normally have a very large set of free parameters to fit, but

efforts to reduce the parameter space, such as altering only maximum conductance parameters

and treating each compartment in a location as homogeneous, can effectively reduce the

number of free parameters [40]. Recent models that have emerged for the rat layer 5 pyramidal

cells include the Schaefer [41], Hay [17], and Almog [42] models. However, a comparison of

such models shows that they are good at replicating behavior at the compartment it was

fitted for, for example in the soma, but less representative in other regions, such as the axon

initial segment and the dendrites [43].

2.3 Progress in Neural Encoding

Researchers in neural coding have argued whether the timing between spikes or the firing

rate represent the information. Rate coding is the view that information is encoded in the

firing rate [44]. At the population level, the ideas behind rate-coding are well-defined and

have been used to describe H1 visual neuron response to looming stimuli in the fly [45], [46]

and V1 neurons in the macaque [33].

In the single neuron level, rate coding is less defined since the timescale of the rate can

be arbitrary in models. For this section, I will focus on research in neural encoding at the

single neuron level. Early researchers in physiology had taken interest in the distribution

in the timing between discharge patterns in muscle fibers, with some suspecting that the

distribution is caused by a stochastic process [47]. One behavior noticed in such recordings

was negative correlations between consecutive ISIs [48]. Research in spike timing has since

focused on the inter-spike interval distribution [49] or the correlation between successive

spikes. Analysis of the timing between spikes has discovered that the joint ISI histogram
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of lags up to 6 ISIs in the p-type afferents behavior have a distribution that is partially

described by a first-order Markov model and has suggested that neurons have a memory

component with negative correlations, that can facilitate the detection of weak signals [50].

Research into understanding the effects negative correlations have on the noise have since

been theorized through analysis from the signal detection and information theory perspective

[44] and neuron modeling with a LIF model and dynamic threshold [51] to produce such

behavior. The idea of noise shaping has been proposed [52], arguing that sensory neurons can

be tuned to a range of frequencies based on their dendritic morphology [53], [54]. Speculation

on the ionic interactions responsible for this behavior had been associated with the impact

on the threshold of a neuron’s firing, with outward potassium currents and inactivation of

sodium channels as possible mechanisms [55]–[59].

In terms of spike timing precision, one notable report had injected current stimuli in

layer 5 cortical neurons and had recorded spike timing and found that neurons can be very

precise in their firing under certain conditions. In this case, presentation of stimuli with noise

mimicking synaptic effects had increased spike time precision and reliability across multiple

trials [60]. Cortical spike times are reliable under certain conditions, and the sources of noise

that have been responsible for the noise are channel noise (i.e., intrinsic noise) and effects

from noise from the synapse. In an experimental and computational study in hippocampal

CA1 neurons from postnatal day 5-7 rats, downregulation of delayed rectifier potassium

channels decreases spike-time precision [61].

The research in the stochasticity of neural spike times have been approached in many ways.

In any given area of the neuron, there are numerous ion channels of any given type. The

Hodgkin-Huxley model views the behavior of ion channels in the same types as mean response.

As the number grows large, its limit is the expression highlighted by equations above. More

information is known now about the physics of ion channels since the formulation of the

Hodgkin-Huxley [62]. The Hodgkin-Huxley equations treat the conductance for channels as a

composite of numerous channels of a specific type. Fluctuations in a channel’s conductance,
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however, can arise due to a finite number of channels in a single neuron, and is termed

channel noise. Numerically, the effect of individual channels to model neurons can be

implemented as Markov-chain Monte Carlo (MCMC) simulations [63]–[65]. One consequence

of MCMC models is the increase in computational cost as the numbers of individual ion

channels increase. In practice, estimation techniques in ion channel noise were used instead

to produce a stochastic biophysical model of neurons. [66]. One of the techniques scales

noises into dynamic gating variables and is called the Langevin approach (Fox and Lu, 1994).

However, debate in the accuracy of the Langevin approaches based on Hodgkin-Huxley

equations emerged, citing inconsistency with behaviors modeled by MCMC models [67]–

[69]. Modifications to the Langevin approaches, such as introducing colored noise, dynamic

conductance, and generalizing the form of the Hodgkin-Huxley, however, have since improved

accuracy [66], [70], [71]. The study of noise in neurons has conjectured possible utility for

exhibiting such behavior. Stochastic resonance has been coined in the field, adopted from

its physics term. Stochastic resonance is a phenomenon in nonlinear systems where noise

improves signal transduction and detection in many physical systems. The term had been

applied to neuroscience as a possible way to describe certain effects of noise in a single-neuron

and population level. However, the term is now used less frequently, and discouraged, in

favor of more specific descriptions [72]–[74].

2.3.1 Optimal Source Coding

Historically, the encoder and decoder mechanisms that neurons follow have been treated as

events happening in separate neurons, typically arranged as pre-synaptic and post-synaptic

neurons. In this motif, a neuron codes its input in a spike train and communicates it to a

post-synaptic neuron which “decodes” the input by means of synaptic filtering. The idea

behind neural source coding [11] is that the encoder-decoder mechanism is contained within

a neuron. That is, a neuron encodes its input into a spike train, and then simultaneously

decodes it so that it maintains a running estimate of the input. This estimate is fed back to a
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comparator which calculates the ongoing coding error (the difference between the input and

the estimate). The coding error is input to the spike generator. In the event where the error

between the internal decoder and input stimulus exceeds a threshold, an action potential

is generated. Thus, the neuron encodes the coding error [11]. The principle of coding the

stimulus error is mathematically like optimal coding in digital systems and is called source

coding or data compression [75]. In analogy with the digital scheme, Jones et al. [11] refer to

the model neuron as a source coding neuron.

There are two key features of the source coding neuron. The first is the internal estimate

of the input via linear filtering of the spike train. In the simplest form the linear filter is a

simple lowpass filter (a first or second order lowpass filter). The second is the comparison of

the estimate with the input to generate a spike when the error reaches a preset threshold.

When both are taken together, the estimation filter emerges as the well-known dynamic

threshold [35]. The theory of a source coding neuron supports the idea of a dynamic threshold,

where the tendency to fire successive spikes rapidly is resisted by the neuron in the form of

increased refractoriness and causes firing rate adaptation. That is, the time to next spike is

based on the history of previous spike times. Jones et al. [11] hypothesize that a voltage-gated

potassium channel (the M-channel, Kv7/KCNQ) forms the basis for adaptation in a source

coding neuron, and more specifically, the M-channel is responsible for the optimal timing of

spikes so that the coding error is minimized for a given long-term spike rate.

2.3.2 M (muscarinic) current

M-current refers to a non-activating voltage-gated potassium current elicited by channels

formed from the Kv7.2/7.3 (KCNQ2/3) family and characterized by its slow non-inactivating

kinetics. The channel of this current is formed as a tetramer of Kv7.2 and Kv7.3 subunits

in neurons. The excitability of this channel is well known, with disorder of the M current

being implicated in pathologies such as epilepsy. The M-current was named for its observed

effect of increasing neuron firing during the presence of muscarine [13]. The mechanism of
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the increased firing is a muscarine-bound receptor which blocks the M-current. In addition to

muscarine, channels associated with the M-current are affected by regulatory molecules such

as calmodulin and phosphatidylinositol-(4,5)-bisphosphate (PIP2), which plays a metabolic

role of regulation of the channel [76]. The precise mechanism of how Kv7 channels are

regulated from such molecules remains an active study in research [77], [78]. The aim of this

thesis relates M-current to regulation of spike timing.

The M-current channels (KCNQ/Kv7) are colocalized with voltage-gated sodium channels

in the axonal hillock by ankyrin-G [79], [80]. Ankyrin-G (or ankyrin-3, ANK-3) is a cy-

toskeleton scaffolding protein found in the axonal initial segment (AIS), the site of the axonal

hillock [81]. Within the AIS, the expression of Kv7.2 (KCNQ2) and Kv7.3 (KCNQ3) subunits

is highest at the distal portion of the axonal initial segment [21], [82]. The localization of

Kv7.2/7.3 in the AIS and its slow activation dynamics leads us to hypothesize that the

M-current has a crucial role in spike timing.

2.4 Summary

Encoding models can be phenomenological, biophysical, or somewhere in between. Work in

phenomenological threshold models has been successful in predicting spike-timing in neurons

[1], [83]. The understanding of thresholds in neurons has been viewed as mathematical

abstraction since a neuron’s response is stimulus dependent. The concept of a threshold has

nevertheless been useful in understanding neural coding at the single neuron level. It has led

to insights relating signal detection and information theory into the types of behavior seen

in spike timing statistics. This thesis is inspired by work from Jones ‘and colleagues’ [10],

[11] derivation of optimal source coding in neurons. The aim is to produce a biophysically

plausible neuron model that accurately predicts spike timing and jitter in experimental data.

I implement a minimum channel Hodgkin Huxley-type model fitted to a publicly available

dataset [2] in rat layer 5 cortical pyramidal cells to reproduce firing behavior.
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Chapter 3

A Slow Activating Outward Current

(M-Current) is the Dynamic

Threshold of Neurons

3.1 Introduction

In the sensory system, information about the world around us is transmitted through neurons

as a sequence of spikes. The information carried through these spikes conveys information

about the stimulus, or features of it. The investigation in the neural encoding of this

information has produced evidence of various types of coding mechanisms, from the early

theories of rate-coding and spike-time coding to more specialized cases. With an ever-growing

amount of discovery revealing the complexity of neural composition, neural architecture

and chemical milieu, the modeling of neuron behavior becomes ever more difficult. One

of the earliest biophysical models of neuron firing behavior is the Hodgkin Huxley neuron

[29]. The Hodgkin Huxley considers Sodium, Potassium, and leak channels and produces

a relation between the ionic gradient and spiking of a giant squid axon. Sensory neurons

have been shown to fire in a consistent manner according to their input stimuli [60] and
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voltage-gated ion channels are known to play a role in this precision [84]. In addition, the

idea of a spike threshold of a neuron has been thought to be dependent on a membrane

time constant, with “both the magnitude and the rate of Vm depolarization” [85], [86] being

responsible for the change in threshold following the history of spikes. Spiking models have

been developed to replicate the spiking behavior of neurons. In terms of spike timing, one of

the best performers of replicating spiking behavior is the MAT model [1]. The MAT model

is a purely mathematical model that explicitly incorporates an adaptive threshold, with

parameters believed to be formed by outward potassium channels [87].

One of the most well-known channel models is the Hodgkin-Huxley type model; however,

precision in spike timing has not been directly demonstrated in a Hodgkin-Huxley model.

The goal of this paper is to investigate the individual ion currents from a model and validate

by fitting real data. The first result of this work shows that a single-compartment, Hodgkin-

Huxley-type model is not only capable of fitting a neuron’s timing response, but also to

introduce a single-compartment model with four voltage-gated ion channels that attains the

best prediction of any published model of spike times for Layer 5 pyramidal neurons. This

“minimum” model aims to minimize the number of voltage-gated ion channels possible in

a Hodgkin Huxley model while maintaining spike-timing precision. These include Hodgkin

Huxley channels (NaT , KDR, and Leak), Persistent Sodium (NaP ), Muscarinic Potassium

Current (KM ). Channels in the model are modeled from channels known to exist in the spike

initiation zone (e.g. Axonal Initial Segment or AIS). It produces the most accurate model

to date, in terms of capturing subthreshold membrane voltage and spike times. Another

advantage of this model is that it is more physiologically grounded than abstract mathematical

models [1] and allows us to probe the voltage-gated ion channels that comprise it, providing

insight into the physiological mechanisms by which neurons produce adaptive threshold

behavior. We use the minimum Hodgkin-Huxley type model to investigate the influence of

individual ion currents on short-term adaptation or an adaptive threshold and show evidence

supporting the role of the M-type Potassium current in the adaptive threshold.
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3.2 Methods

3.2.1 Neuron data

The dataset used here was obtained from a publicly available source, The 2009 INCF Spike

Time Prediction Competition organized by the International Neuroinformatics Coordinating

Facility (INCF). The competition provided datasets with a challenge to reproduce the spike-

times using any computational model. The results of the competition are summarized by

Gerstner and Naud (2009). The data set from one of the four challenges (Challenge A) is

considered here and consists of in-vitro current-clamp recordings from a Layer 5 pyramidal

cell in the rat somatosensory cortex. The data includes the neuron’s response (intracellular

membrane potential) to 13 repeated trials of frozen noise mimicking post-synaptic currents,

of 21.5 s duration. The average firing rate of the neuron is about 10 spikes/s. The injected

current and membrane voltage were sampled digitally at 10 kSamples/s. The data set includes

an initial portion with response to step currents, but it is not considered here. The data are

available in the public-domain along with a complete description of the methods from the

organizers1.

3.2.2 Model

The goal of the study is to model and predict the membrane voltage of the pyramidal neuron

in response to a stimulus and infer intrinsic properties that could point to mechanisms of spike

timing. The model used here is a classical Hodgkin-Huxley (HH) neuron [29], [88] with two

additional voltage-gated channels. The classical HH neuron models action potentials at the

Node of Ranvier of a squid giant axon and is a spike generator consisting of a voltage-gated

sodium channel (NaT ), a voltage-gated potassium channel (KDR), and a leak channel (L).

The voltage-gated activation of NaT and KDR are relatively fast with the KDR being delayed

1Dataset currently managed by the Collaborative Research in Computational Neuroscience https://

crcns.org/data-sets/challenges/ch-epfl-2009. Contains current stimulation protocol of frozen noise
for 35 seconds, but first 21.5 seconds are available to public
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relative to that of the NaT current. These currents produce the stereotypical shape of the

action potential, with the KDR contributing additionally to a refractory period. We are

interested in the axonal hillock where spikes are initiated from a generator potential that

consists of the summated input arising in the dendrites and soma. This region of spike

initiation is central to encoding because it produces a sequence of timed impulses in response

to the input. Our hypothesis is that memory or history effects in the evolution of the

membrane voltage, particularly with respect to timing of action potentials, requires relatively

long-duration conductances which span one or more interspike intervals. Such memory

cannot be due to HH conductances. Thus, in addition to the “fast” voltage-dependent HH

conductances, we add two slow and relatively long-duration (i.e., non-inactivating) currents

from a potassium channel (KM , or M-channel) and a sodium channel (NaP , or persistent

sodium). We hypothesize that the M-current substantially accounts for the timing of action

potentials, whereas the persistent sodium current is necessary to maintain a plateau potential

(described in the Results) but is not involved in the timing of action potentials. All these

channels are found in the axonal hillock in the spike-initiating region [22], [23], [89]. The goal

here is to estimate the parameters of these five channels or conductances so that the model

neuron reproduces the membrane potential from the experimental neuron. More specifically

it must reproduce the timing of the observed action potentials.

The parameters are obtained through a fitting procedure described for varying num-

bers/types of voltage-gated ion channels. One major change was that the conductance-based

model differs from the model previously described by Meliza and colleagues’ [16] by including

only voltage-gated Sodium Channels and Potassium Channels. The range of parameters in

the fit were selected to have the nonlinear equations resemble channels seen in Layer 5 rat

pyramidal cells (Appendix, A1). The lumped conductance-based model for the five channels
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reported in this work are described by the following equation for membrane voltage:

C
dV

dt
=− gNaT (t) (V − ENa)− gKdr (t) (V − EK)− gL (V − EL)

− gNaP (t) (V − ENa)− gKM (t) (V − EK) +
IInput
Iscale

,

where V is the membrane voltage, Ei are the reversal potentials for the ions Na+and K+,

and the leak channel L, and gx are ionic conductances for the five channels. Iinput is the

injected current and Iscale is a scaling term related to the compartment size. The first three

ionic currents in the above equation correspond to the spike-generator, i.e., they are the

classical Hodgkin-Huxley conductances, whereas the next two ionic currents are assumed to

be specific to the axonal initial segment. The leak conductance gL is constant and lumps the

contribution from passive Na+and K+ channels. The conductances for the four voltage-gated

ion channels are time-varying and voltage-dependent as follows: i) The fast conductances

gNaT and gKdr are time- and voltage-dependent and take the form gx = ḡxm
a
xhx where

x refers to the conductance, ḡx is the maximum mean conductance, mx is a time-varying

activation, and hx a time-varying inactivation. The parameter a is an integer exponent with

a = 3 (NaT ) and a = 4 (KDR). ii) The slow conductances gNaP and gKM have a time-varying

activation (mx) gate but no inactivation gate and are of the form gx = ḡxmx. The gate

equations for mx are of the form

dmx

dt
= αmx (V ) (1−mx) + βmx (V )mx.

The equation for hx are of the same form. The voltage-dependent parameters, α and β,

are specific for each voltage-dependent conductance (see Appendix for the full expressions).

There are a total of 41 undetermined free parameters in the voltage and gating equations:

i) The current equation has 10 free parameters which include capacitance C, scale Iscale,

reversal potentials ENa, EK , and EL, leak conductance gL, and max conductances ḡNaT , ḡKdr,

ḡNaP , ḡKM . ii) Each gate equation has 5 free parameters (see Appendix), and therefore 6 gate
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equations result in 30 free parameters. These are the parameters to be determined so that

the membrane voltage predicted by the model matches the experimental data. During model

fitting, these parameters are constrained so that they take values within a physiological range

[12], [15], [22].

3.2.3 Parameter estimation

The parameter estimation procedure is based on the interior-point optimization (IPOPT) im-

plementation for nonlinear programming [90] with some modifications by Toth and colleagues

[91], Kostuk et al. [92], Meliza et al. [16], and Nogaret et al. [14]. Parameter optimization

follows the procedure described by Meliza et al [16] using IPOPT and the IBM Watson Sparse

Matrix Package [93]. The model was fit for the first two seconds of the membrane potential

response to noise input (see Methods). The fit parameters were then used to predict the

membrane potential for the remainder of the noise input for all 13 trials. The cost function

to minimize during optimization was the mean-squared error between the predicted and

recorded membrane voltage, i.e., if the recorded membrane voltage is y(t), and the predicted

model voltage is ŷ (t), then in discrete-time, we minimize
∑
n

(y [n]− y [n])2. Next, the data

that were not used for the fitting (about 19-20 seconds) were evaluated for all 13 trials, and

the average coincidence metric was obtained. A coincidence metric for the trial with the

optimized fit was also recorded.

3.2.4 Analysis

The remaining segments of the INCF dataset not previously included in the fitting process

were predicted by the model and compared to the neural response of real data using a spike

coincidence metric [94]. The coincidence factor was used as a comparison between the neural

recording and the response of the neuron model to the injected current.

The dynamic I-V curve [31], [32] measures the mean transmembrane current at different

sections of the action potential. Traditionally, the I-V curve is obtained experimentally
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through voltage-clamp preparations. The dynamic I-V curve provides a way to estimate

the current-voltage relationship and serves as a tool to compare models to experimental

current-clamp data. In addition, the dynamic I-V curve can estimate spike thresholds within

given pre-spike and post-spike time windows (i.e., 5-10 ms, 10-20 ms). We obtain the dynamic

I-V curve to estimate the time course of an adapting or dynamic threshold.

Evaluation of model for biophysical plausibility

To verify that the optimized fits to the channel parameters are physiologically plausible,

we compare the voltage-dependent gating probabilities and time-constants obtained from

voltage-clamp simulations with values determined for Layer 5 pyramidal neurons (see, for

example, [17]. The goal here was to verify that the parameters were within the range of

values normally encountered in the literature.

Detect presence of adaptation

The post-spike Dynamic I-V curve during different time segments shows the estimated spike

threshold. The spike threshold for the model and INCF membrane potentials are estimated

in the following time segments (post-spike): 5-10 ms, 10-20 ms, 20-30 ms, 30-50 ms. The

responses of Hodgkin-Huxley type models are deterministic and do not change over repeated

trials. To produce a peri-stimulus time histogram (PSTH) which includes variability in the

response, the model was evaluated for a deterministic step input with additive noise. Noise

power was low compared to the DC value of the step. The PSTH responses are useful for

several reasons: 1) they provide an estimate of the Dynamic I-V curve, 2) the progressive

decorrelation of the spike train over time in response to current steps can be observed, and

3) rate-intensity curves can be obtained (spike rate versus DC current input). All these

measures can be obtained for the model neuron; however, only Dynamic I-V curves can be

obtained from the INCF recordings. No PSTH data were available for the pyramidal neuron.
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Effect of ion channel conductivity on spike firing rate

Voltage-gated Potassium channels have a strong effect on spike firing rate because they

generate outward current which tends to make the neuron more refractory. We tested the

hypothesis that the M-channel (KM ) modulates spike firing rate in inverse proportion to total

average conductance, but the conductance due to the delayed rectifier (KDR) has limited

influence on the firing rate. We vary the maximum conductances gKM and gKdr estimated

from parameter fitting (considered to be 100% or nominal value) from 50% to 130% of the

nominal value and obtain the mean firing rate in response to a fixed current input.

3.3 Results

Our goal was to obtain the best fit to the membrane potential of an experimental layer 5

pyramidal neuron with the smallest number of voltage-gated channels in a single-compartment

model. The rationale is that we are interested in the axonal initial segment where a spike

is initiated, and we argue that in this region, a single compartment will suffice. We began

with the classical Hodgkin-Huxley model (NaT (transient sodium), KDR (delayed rectifier

potassium), and L (leak) channels) and attempted to hand-tune the model to fit the membrane

potential to the experimental data. The initial results were poor in matching spike timing

(data not shown). This is not surprising, because the classical Hodgkin Huxley equations

model the action potential recorded from the node of Ranvier in the giant squid axon, which

acts as a repeater. We added two slowly activating channels, a persistent sodium channel

(NaP ) which captures the plateau potential seen in the experimental data, and an M-current

(KM) to regulate spike timing. It should be noted that the persistent sodium current due to

the NaP is not necessary if the plateau potential is not present. The only modification we

made was to the delayed rectifier KDR, where we added an inactivation gate. The KDR in

the classical Hodgkin-Huxley model included only an activation gate. We will discuss this

in detail later. The parameters of the model were fit using an interior-point-optimization
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procedure [16], with multiple unique fitting sessions to find a set of parameters that minimized

the mean-squared error between the membrane voltage generated by the model, and data

from the INCF pyramidal neuron.

3.3.1 A minimum model of a single compartment model describes

spiking behavior seen in a layer 5 pyramidal neuron

With the two criteria of spike-time precision and minimum-mean square voltage error, the

parameters we present are likely suboptimal since interior point optimization results in

a locally optimal solution, but well enough to make some claims about biophysical ionic

conductance. We first look at qualitative aspects of membrane voltage in response to current

injection. In the training set, 2 seconds of data were used. In the test set, the 2 seconds of

data were included with 19.5 seconds of stimulus following the original 2 seconds. In total,

21.5 seconds from both the training set and test set were predicted from the model and

compared to the neural recordings (Fig. 3.1).

Comparison between the voltage trace of the model and INCF show a reasonably good

fit. Insets a and b in Fig. 3.1A demonstrate that the model occasionally adds a spike. Other

segments sometimes show deleted spikes. However, the figure demonstrates that the relatively

simple conductance model can reproduce spike times fairly accurately despite the model

being deterministic. A phase plot was used to explore the change in the voltage over the

duration of the spiking events (Fig 3.1A) but did not prove meaningful in the context of

spike-time precision. The model and experimental data have similar rise characteristics (Fig.

3.1B), but differ in their repolarization phase, with the model repolarizing more rapidly than

the experimental neuron. Comparison between the voltage trace of the model and INCF

show a reasonably good fit
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Figure 3.1: Comparison between the membrane voltage of the minimum Hodgkin Huxley
model (red) and recorded data (black): a) an example trace of ∼2 seconds of data overlaid
with model prediction, above shows a raster of the corresponding data. B) voltage potential
for a single spike and average for the model (red) and data (black). C) Phase response for
model and data.
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3.3.2 Spike-time precision as measured by a coincidence metric

shows reasonable accuracy

Figure 3.2: Comparison of spike time coincidence between models and the INCF pyramidal
neuron data. The minimum Hodgkin-Huxley based model (MMH) is shown as a solid grey
bar with normalized coincidence factor (ΓA) 0.84. Other models (arranged in random order,
with coincidence factor in parenthesis) are the adaptive exponential integrate-and-fire (AdEx)
model (0.65), Izhikevich (Izhk) model (0.48), adaptive leaky integrate-and-fire (LIF-D) model
(0.64), leaky integrate-and-fire with dynamic threshold (LIF-DT) model (0.69), multi-timescale
adaptive threshold (MAT) model (0.76), and the Naud model (0.72). Data for AdEx, Izhk,
LIF-D, LIF-DT are taken from Rossant et al. (2014), the MAT model from Kobayashi et al.
(2009), and Naud model from Naud et al. (2014). Standard error is shown where available.

We obtained the spike time coincidence measure between the predicted spike times from

our model and the actual spike times (Fig. 3.2, MHH), and further, compared the timing

coincidence with other models that used the same INCF data set for prediction (Fig. 2, see

caption for model descriptions). Our model captures timing accuracy in about 84% of the

spikes (and provides the best spike timing accuracy among all the models evaluated with the

INCF data, so far). The winning model in the 2009 INCF Spike Time Prediction Challenge

was the multiadaptive threshold model (MAT, [1]) with a relative coincidence, ΓA =0.76 (see

also [95]). The remaining models (see Fig. 2, and [96]; [97]) demonstrate lower spike time

coincidence. The only Hodgkin-Huxley type model (i.e., with biophysical conductances) is

the MHH model, the remaining models are without conductances, with varying degrees of

biophysical plausibility.
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3.3.3 Estimating the I-V relationship using a Dynamic I-V esti-

mate

To explore the model more analytically, we estimate the membrane-current relationship

between the model and experimental data. Traditionally, the current-voltage (I-V) relationship

is obtained from voltage-clamp measurements. This data was not provided by the organizers

of the INCF challenge, and so we estimate the I-V curve using the dynamic I-V curve [31].

The dynamic I-V curve of the model and INCF data are estimated at four time-bins (5-10 ms,

10-20 ms, 20-30 ms, and 30-50 ms), postspike, where each bin is a time window with at most

one succeeding spike. The dynamic IV curve uses the average of the membrane potential

traces. The black, dashed line (Fig. 3.3) represents the “pre-spike” I-V relationship and is

measured in a post-spike time window long after the spike (here 200 ms) so that the I-V

curve has returned to its normative value. The pre-spike dynamic I-V curve is compared

to the dynamic I-V curve for each respective time bin and shows regions of the model that

fit the experimental data well, and those that do not. The region around spike initiation is

within 4 mV of each other across the regions that spike. One useful piece of information we

can obtain is the spike threshold for spikes that occur in each time range, indicated by the

point at which the dynamic I-V curve crosses zero during the curve’s rise (i.e., on the positive

slope, Fig. 3.3A, 3.3B).

Due to the limited amount of data from the experimental recordings, the zero threshold

can only be obtained by linear interpolation between the point below and point above zero.

By comparison, the model data was simulated for the experimental current, and with much

longer duration (100 minutes), with noise matching the power of the experimental current.

This allows us to obtain a more accurate estimate of spike threshold (seen later).

One issue to point out is the inaccuracy of the model in the region from -50 to -65 mV. It

appears to be heavily influenced by the sharp hyperpolarization of the Potassium delayed

rectifier before rising again with the persistent Sodium current within 5 ms after the initial

spike. With the model being restricted to the minimum number of channels in the axonal
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Figure 3.3: Comparison between the spike-time averaged trace between model (red) and
experimental data (black) and their respective dynamic IV curve. Shown for post-spike
dynamic IV curves within the range of 10 and 50 ms
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hillock, and tuned to precisely predict spike timing, the model will not match the dynamic

IV curve at every region. Since we are interested mainly in determining spike threshold and

the timing of spikes, the minimum Hodgkin-Huxley type model is sufficient in our case.

3.3.4 Presence of an adaptive threshold exists as an outward Potas-

sium current (M-current)

Previous researchers have shown that outward Potassium currents serve as regulators of

spike-frequency adaptation [98]. Previous studies have shown that the parameters of an

adaptive threshold model can be described by Potassium currents in a Hodgkin-Huxley type

neuron [99]. However, we ask whether it is possible to construct a Hodgkin-Huxley type

neuron, with the fewest number of ionic channels found in the axonal hillock, while precisely

predicting spike times as in experimental data. The dynamic IV curve, as shown previously,

allowed us to estimate the spike threshold at various time ranges. Using this approach, we

calculated the threshold (from the dynamic I-V curve) for our model in 1 mV time bins

for 100 minutes of simulated noise current, matched in power to the experimental current

injection stimuli. We use this to demonstrate an adaptive threshold in the Layer 5 pyramidal

cell. Figure 3.4 shows that for the Layer 5 pyramidal neuron, a dynamic, adapting spike

threshold is likely to be present (black filled circles). A double-exponential fit, like that

described by the MAT model [1], specified by A1e
−t/τ1 +A2e

−t/τ2 +C gives A1 = 32.5 mV, τ1

= 9.00 ms, A2 = 3.12 mV, τ2 = 105.5 ms, and C=-44.2 mV demonstrates a fast exponential

decay of 9 ms and a slower exponential decay at around 106 ms. This finding supports the

idea of a dynamic (adaptive) spike threshold.

3.3.5 An adaptive threshold regulates spike firing

To investigate the role that individual ionic currents have on the behavior of the membrane

potential after a spike, the normalized spike-triggered ionic current is used (Fig. 3.5). For
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Figure 3.4: Threshold (mV) vs time (ms) of the model after spike for experimental pyramidal
neuron (black filled circles) and our biophysical model neuron (red filled circles). A double
exponential fit of the threshold for the model is shown in red. The fit is described by a fast
exponential with time constant of about 9 ms, and a slow exponential with a time constant
of about 106 ms. Parameters for the threshold fit are fully described in the text.

any given ion channel, each trace is divided by the norm of the trace between a -20 ms

and 50 ms window about the spike. The M-current shows a noticeable elevation above

baseline immediately after the spike as it slowly decays throughout the plot and continues

for about 1.5 s (not shown). Other channels do not show such large excursions for a long

duration. The leak current (Fig. 3.5) also demonstrates large amplitudes, but it is not

sustained beyond 30-40 ms, sufficient for the membrane potential to return to rest. Both the

M and the leak currents demonstrate a sustained outward current immediately following the

spike threshold (i.e., the rising depolarizing phase) with the M-current remaining elevated

for a longer duration. The leak current demonstrates less variability across spikes than the

M-current. The larger variability in the M-current is due to the increase in ionic current from

the history of spikes, i.e., the memory of the previous spike, and this presumably raises the

threshold of the next spike. The smaller variability in the leak current is attributed to the

fact that the leak current is an ohmic current, where the ionic contribution is directly related

to the change in membrane potential. For the M-current and leak current, the associated

time constants to a decaying exponential are 140 and 59.6 ms, respectively.
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Figure 3.5: Spike-triggered ionic currents. Total response for each ion channel, overlaid to a
fixed spiking event. The mean response for each ion channel is shown in bold. Dashed line
indicates the baseline conductance prior to spiking event.

3.3.6 The peristimulus time histogram and regulation of firing

rate

Adaptation to a sustained stimulus can be seen in the peristimulus time histogram (PSTH)

depicted in Fig. 3.6A. A DC current step (550 pA) is presented repeatedly to the model

neuron. To introduce noise in spike timing (and in the PSTH) low-power noise is added

to the DC current (see red trace in Fig. 3.6A). For a sustained step current, the model

neuron adapts its firing rate over time. Similar data is not available for the experimental

data. The PSTH demonstrates the two timescales of adaptation reported in Fig. 3.4, namely,

a rapid initial decline in firing rate, followed by a slower decline in firing rate until a plateau

is reached.

We next looked at the effect of change in maximum conductance on the spike firing rate

for the delayed rectifier (ḡKdr) and the M-current (ḡM ). Our hypothesis, based on the known

properties of the M-current, is that the M-current regulates the baseline level of activity for a

given bias input, by regulating spike timing. On the other hand, the delayed rectifier is part

of the action potential generator (i.e., the impulse generator) and has no role in regulation

of baseline levels of firing rate. We assume that the baseline firing rate is governed by the

expression levels of the voltage-gated potassium channels, i.e., the mean channel density

regulates the firing rate (see [22]). Consequently, the maximum conductance ḡKdr and ḡM are

surrogates for the channel densities, and their variations should cause changes in the mean
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Figure 3.6: A) PSTH of our model neuron to a 550 pA DC stimulus. Low-power noise is
added to the step current to cause variability in spike timing. 6 seconds of step current is
used, with a 1 second gap in the start of the simulation, and 1 second gap at the end of the
stimulus. B) Average firing rate vs percent maximum conductance of the M-current and
the delayed rectifier potassium channels. Note that firing rate for the M-channel decreases
monotonically with increase in total (max) conductance, whereas firing rate for the delayed
rectifier is non-monotonic, dropping sharply from a peak firing rate at about 80% maximum
conductance. C) Rate-intensity function parameterized by the maximum conductance of
M-channel. Note the rightward shift in the rate-intensity function, indicating adaptation as
the conductance changes from 60% (green), to 100% (red or nominal), to 120% (blue).

firing rate. We use the optimized values of the parameters for our model and denote the

values of ḡKdr and ḡM as the “nominal” or 100% values. We then scale these conductances

from 50% to 125% of the nominal values (i.e., we effectively adjust channel density) and

calculate the mean firing rate in response to a DC step current of 550 pA (as shown in Fig.

3.6A). The results are depicted in Fig. 6B. The M-current and delayed rectifier are outward

potassium currents, and so we expect an increase in maximum conductance to decrease the

average firing rate. However, the change in firing rate is non-monotonic for the delayed

rectifier (square symbols) whereas for the M-current, there is a monotonic and proportional

change in firing rate with the mean conductance (filled circles).

The adaptation of firing rate to stimulus intensity by the M-channel can be seen in Fig.

3.6C which depicts the rate-intensity function at three different mean conductance values:

60% (green), 100% (red), and 120% (blue). As the total (mean) conductance of the M-channel

increases, the rate-intensity function shifts to the right, as expected, making the neuron more
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refractory.

3.4 Discussion

Evaluation of the activity of model neurons by use of computational models suffers the

tradeoff between biophysical realism and computational efficiency. Increasing complexity in a

biophysical model, such as inclusion of a neuron’s morphology, results in an exceptionally

demanding task in fitting the membrane voltage produced by the neurons, with an extensive

number of free parameters that will exponentially increase in the parameter space. Such mas-

sive models are computationally complex and require high-performance computing resources

which make routine evaluation of models difficult. Thus, the model complexity must be

reduced to allow reasonable parameter estimation times even in a high-performance computer.

Biophysical models typically reduce the computational demand by fixing channel kinetics

and limiting the fits to a handful of features of spiking activity instead of the membrane

voltage itself. In addition, the difficulty in fitting a neuron model with extensive biophysical

realism suffers the cost of interpretability of the model’s mechanism. While there is a utility

in using these multi-compartment models for studying neuronal population and meso-scale

structures of the brain, this work aims to accomplish another objective. In Gerstner and Naud

[95], it is mentioned that not much is known about the performance of biophysical models

in terms of spike time prediction of experimental data, as in the 2009 INCF Spike Time

Prediction Challenge. We argue the necessity, in our case, for utilizing a single-compartment

biophysical model to describe the ionic channel behavior in real neurons. With the reduction

of the model complexity, i.e., numbers of channels, a parsimonious model requires less data

for fitting, and the extent of overfitting is decreased to the number of free parameters in

an underdetermined system. Here, a single-compartment Hodgkin-Huxley type model is

considered for this experiment, with only ion channels found in the axon initial segment. The

methods used to fit a Hodgkin-Huxley type model to predict membrane voltage activity have
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been successfully demonstrated [14], [16], [100] in zebra finch and mice neurons. We attempt

to create a biophysical model that not only produces reliable spike-timing in rodent neurons,

but we also investigate the impact of voltage-gated ion channels in short-term adaptation.

Further, to narrow our search for probing into the effect of ion channels in adaptation, we

first want to test the hypothesis of fitting a Hodgkin Huxley-type model with the minimal

number of ion channel types necessary to produce spiking activity. This model with the three

classical Hodgkin-Huxley channels which make up the spike generator are complemented with

a slowly activating M-current to determine spike times. Additionally, a slow persistent sodium

channel captures the plateau potential but is not necessary for regulating spike timing. This

model is adequate to capture 84% of the spike timing. To our knowledge this represents the

best-known fit to spike-times of any model and is the only known model with biophysically

realistic conductances (see [95]).

While we took care to produce a biophysical model with equations that closely represent

the ion kinetics, we cannot rule out certain limitations of the model. First, the parameters

representing Sodium channels with very fast kinetics, such as the inactivation time constant

of NaT , result in a very flat time constant in the model that does not fully agree with the

kinetics seen in-vitro. Second, we cannot rule out the possibility that any missing ion channel

is being “compensated” by channels that are in the model. Third, the exclusion of Calcium

channels in the model removes the impact of potential calcium-activated Potassium channels

in the axonal initial segment [22]. Nevertheless, this presence of this small (and restricted)

set of 5 channel types agrees with known channel types in the axonal initial segment (see [15],

[36]). It is known that voltage-gated ion currents are involved in adaptation. There has been

a large amount of evidence showing that the currents involved are outward potassium currents

[61], [87], [98], [101], [102] and inactivation of sodium [56], [86], [103], [104]. In addition, we

know that information processing from spikes can incorporate spiking events from structures

apart from the axonal hillock. In this study, we focus solely on signal processing in the

axonal hillock to see whether the timing between spikes can be explained by spiking from
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only the axonal hillock. The extent of this study shows a large extent of spike-fitting can

indeed be explained by the 4 channels in a Hodgkin-Huxley model. Since the data we are

working with are in-vitro recordings from the soma, there are limitations to the data we

wish to fit. Because our model only contains channels within the axonal hillock, the spike

waveform will not match completely. Figure 3.1 shows the incomplete match to the data.

This study puts more focus on the timing between spikes and investigated the presence of a

dynamic threshold in the individual ion currents. The results of this study show that none of

the nonlinear parameters of any individual ion current matches the decaying threshold of the

dynamic threshold, which could point to the fact that a combination of multiple ion channels

shapes the dynamic threshold. We do, however, show the contribution each channel, such as

the M-current, during the time course of the spiking event and on the firing rate.

The justification for including the muscarinic current in a minimal biophysical model

is detailed in the extensive work from ion channels. Evolutionarily speaking, neurons have

preserved their functional role across multiple species [98], which we argue as having a largely

fundamental role in information processing. The details of muscarinic (or Kv7.2/7.3/KCNQ

channels) currents have been investigated through a large body of in-vitro neural recordings.

Notably, these types of channels are found in a variety of neuron types, including cortical

pyramidal cells and sensory afferent neurons [105]. The role of muscarinic currents has been

associated with spike frequency adaptation [98] and can serve as a means of optimizing a

neuron’s spike-timing based with respect to energy expenditure [106]. The parameters for this

model were obtained from a single neuron. The data source is an L5 pyramidal cell, which

adapts for only small-time scales (18-50 ms), thus we cannot fully say that the leak current

does not contribute at all to adaptation with this model. The limitation in our conclusions

can be restricted to the amount of data used for this analysis. We aim to extend the model

to a larger set of data and neuron types to further investigate the role of a dynamic threshold.

The phenomenon incorporated in this model can explain the adaptive behavior, and this

study builds upon the established body of work.
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Chapter 4

A Minimum Hodgkin-Huxley

Stochastic Threshold Model Describes

Experimental Data

4.1 Introduction

In Chapter 3, I have presented a biophysical model capable of matching spike times in the

cortical Layer 5 pyramidal neurons and have shown that a dynamic threshold is implicitly

contained in the model. The dynamic threshold, as shown from analysis of the dynamic

I-V curve, explains the variability in the spike threshold observed in the experimental data.

However, the variability in the model, a Hodgkin-Huxley type with a persistent sodium (NaP )

and M-current, is deterministic, and the model lacks a stochastic element; upon repeated

trials of the same stimulus, the model will produce identical spike trains. In vitro current

clamp recordings of cortical neurons, upon repeated stimulation of the same injected current

produce variability in spike timing. In real neurons, this is far from the case. With the same

stimuli, a noise current was repeatedly presented to the neuron 13 times (Fig. 4.1). This

method of repeated stimulation with a single realization of a random noise signal (called
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Figure 4.1: Raster plot of cortical pyramidal neuron response (INCF data set, see Methods).
Upper panel shows injected noise current (blue trace) presented repeatedly (frozen noise),
thirteen times. The lower panel shows the raster plot of trials (1 through 13). Action potentials
are locked to features of the stimulus and spikes are generally reproducible. However, spikes
are not perfectly aligned and exhibit some jitter. Additionally, some spikes may be added or
deleted between trials.

“frozen noise”) is referred to as a “frozen noise experiment”. In the 13 trials of repeated

stimulation with frozen noise, comparison of spike trains across trials shows that spikes occur

with reliable timing in response to certain stimulus features with some timing jitter (Fig.

4.1). This allows us to identify a “coincidence” window for aligning spikes across trials.

Given a small window size, spikes between trials found within the window are considered

“coincident”. However, not all trials may demonstrate coincident spikes. Thus, there are

spikes which appear in some trials and but may not be present in other trials, i.e., spikes

appear to be “added” or “deleted”. This observation lends to the idea that such neurons are

better described by a spike-timing code rather than a rate code [60].

Jitter in the spike timing suggests that there is a certain amount of randomness in the

spike train. It does not alter the pattern of spikes seen in large scale, but on a smaller

scale it will lead to small shifts in spike timing, or the deletion/addition of a spike. The

aim of this research is to incorporate stochasticity into the model which has been fitted in
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the earlier part of my research work, so that the model can accurately produce the timing

jitter and the observed additions/deletions of spikes. Implications related to noise in the

dynamic threshold, which is contained in the voltage-gated ion channels are explored. To

recall, the Hodgkin-Huxley model is deterministic and does not produce variability in spike

firing upon repeated trials. Since the equations in the Hodgkin-Huxley model calculate the

average fraction of open channels rather than the summed contribution of individual ion

channels, the output to a presented stimulus input is identical each time. One major, and

noticeable difference in my modeling results is that my deterministic model can add an

“extra” spike (re: the experimental spike train). This can be seen in Fig. 3.1A (insets a and

b, see figure caption). It is not clear whether randomness can correct for the “extra” spikes

and reproduce the random patterns as observed in the experimental data (with the same

statistical properties in timing).

I will establish a stochastic extension of the previous model and predict both the timing

jitter and the negative correlation between adjacent ISIs (see chapter 2 and [50]. The goal of

this chapter is to provide a biophysically plausible source of noise that can be explained by

the data and theory. Specifically, I will explore a noisy spike threshold to perturb spike timing.

The method to introduce noise into the model described in Chapter 3 is fundamentally

different from approaches in the literature [55], [63], [66], [71] in that it makes the maximum

conductance of the M-channel stochastic but does so in a discrete way. Motivated by previous

results obtained from colleagues [10], I introduce a stochastic biophysical model with noise

in an adaptive current following each spike. I will compare the results of this model to

experimental data through numerical simulation of repeated current injection stimulation, by

analytical metrics of jitter. I will then compare the influence of increasing stimulus noise on

jitter to the report of Mainen and Sejnowski [60]. and compare the effect of spike-to-spike

correlated noise on the model to the theoretical derivation of Sidhu and colleagues [10].
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4.2 Neuron Variability and Stochastic Models

The variability in trial-to-trial neuron firing is contributed to by numerous factors. The first,

and most prominent, is noise due to network effects, i.e., caused by bombardment of synaptic

input. The next are intrinsic effects: thermal noise and noise in the ion channels of the neuron.

In vivo, extrinsic noise contributes to a large amount of variability, however, it is possible

to control the network effects in an in vitro recording. Using current clamp techniques in

vitro, Mainen and Sejnowski [60] have shown that a frozen noise stimulus produces per-trial

reproducible spike timing within 1 ms jitter, whereas a constant step input does not, due to

the accumulated effects of intrinsic noise over time. This suggests that the spike generation

mechanism has a short integration time, where there is a level of intrinsic noise, or “channel

noise” responsible for its variability that can be overcome when there is a high enough level

of synaptic input1.

The classical Hodgkin-Huxley equations represent the average opening and closing rate

in a population of ion channels [29]. For a specific type of channel (e.g., KDR, potassium

delayed rectifier), the channels are lumped with each possible state (open, closed) and its

transition to another state given as a probability which is the fraction of channels undergoing

that state transition. Further, channels such as the fast, transient voltage-gated Na+ channel

(NaT) have voltage-dependent activation and inactivation gates, each of which can transition

between states. The gates are considered to operate independently and so their gating

probabilities can be multiplied, as Hodgkin and Huxley [29] had done. There are methods to

simulate stochasticity in Hodgkin-Huxley type models. One method treats the differential

equations for the gating currents as stochastic differential equations by adding a scaled

stochastic noise term to the dynamic gating variables. The noise term is a white noise process

and is scaled based on the membrane voltage. Another method simulates opening and closing

of individual ion channels with Markov Chain Monte Carlo (MCMC) simulations to calculate

1In Mainen and Sejnowki’s research [60], noise in current stimuli was filtered before injection to represent
excitatory/inhibitory post-synaptic potentials.
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the membrane voltage. Since the opening and closing behavior of individual ion channels are

probabilistic, their inherent stochasticity appears from the finite number of ion channels in

the simulation.

The aim of this study is to replicate jitter seen in experimental data in a biophysically

plausible way. In addition, a stochastic optimal coding model, where noise is introduced

in the spike firing threshold, has been reported [10] which explained spike-time behavior in

P-type electrosensory afferents in the weakly electric fish ([50]). In the biophysical model,

the analogue to a threshold is not as clear. The equations in the Hodgkin Huxley model are

non-linear and coupled to the membrane voltage. Thus, mathematical analysis in this system

will be very challenging. In the literature, there are two competing ideas of the primary

contributor to a dynamic threshold, those being the inactivation of the fast sodium channel

(NaT) or the M-current (KM). Hence, careful consideration and a systematic approach in

implementing stochasticity into the Hodgkin-Huxley model is explored. To what extent does

noise in the ion channels contribute to jitter shown in experimental data? Are the spike

timing statistics captured from such noise? Is it possible to show that the stochastic model is

affecting the dynamic threshold?

4.3 Methods for Evaluation

Neuron variability has been measured by different methods, from either the physiologist

or the modeler’s perspective. In physiological experiments, the precision, reliability, Fano

factor, and serial correlation coefficient metrics are used. Across the literature, there are

many different approaches to measuring spike timing jitter [60], [94], [107]–[109]. A metric

described by Bair & Koch [60], [109] considers the possibility of trials having deleted, added,

or shifted spike times, called the precision metric. It does so by gathering the peristimulus

time histogram (PSTH) of the trials and measuring the standard deviation of the peaks in

the PSTH. Another metric, reliability, calculates the summed pairwise correlations of spikes
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and considers the standard deviation of the largest peak as the measure of jitter.

In the Markov-chain modeling of ion channels, the four metrics are threshold, relative

spread, spike latency and jitter [68], [110]. The threshold in this notion is the intensity of

stimulus needed to produce a spike, and relative spread is measured as the coefficient of

variation of the threshold. The following methods are used in the evaluation of the model:

jitter and serial correlation coefficient.

4.3.1 Jitter

A metric of spike timing variability is generally measured as the jitter in spike-times between

trials. The calculation of this measure depends on the stimulus and time scale. Across a

large timescale, under constant stimuli, jitter can be calculated as the standard deviation of

the difference in interspike intervals (ISIs). However, this results in a very coarse evaluation

and does not provide fine information. The assumption underlying this calculation is that

the noise in the system is gaussian. Further, the metric has dimensions of time which makes

it difficult to compare across spike trains with differing mean spike rates.

In chapter 3, the coincidence metric Γ [94] was used to measure similarity in spike timing

and measures the precision of spikes across various coincidence windows. We had used this

metric in the previous section when evaluating the best fit in spike times. Here, we will modify

the coincidence metric so that the effect of window duration does not impact the metric. The

jitter will be calculated as a function of coincidence window duration, and normalized by

the duration, so the jitter becomes a dimensionless quantity. The coincidence metric can be

modified in a way to give a measure of spike timing jitter. If Ncoin was decomposed into a set

of spike times for all trials in a dataset, the difference within a coincident window between

two trials can be calculated. Following normalization by the window size and number of

coincident spike times, we can have a reasonable measure for jitter. The pairwise metrics of a

given window can be summed to produce a single value that ranges from zero to 1, with zero

showing perfect spike timing for all times (i.e., spike timing would be deterministic). The
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formulation will then be:

Γ =

∑ntrials
i<j ‖[spiketimes (i)− spiketimes (j)]coin‖

|Ncoin|∆

where i, j ∈ I+. For a set of trials, (in this case, the INCF dataset containing 13 trials), this

modified form of the coincidence metric will be applied with coincidence values from 1-40 ms

in 1 ms increments and plotted against window size. Similarly, the procedure is performed

for the model simulation data of 13 repeated trials and overlaid on the same plot in order to

compare regions where the similarities occur between the data and model.

4.3.2 Serial Correlation Coefficient

Serial correlation coefficients are measured as the correlation of inter-spike intervals between

a given ISI and an ISI k lags apart [50], [111]. The ISI serial correlation coefficients (SCCs)

have a characteristic behavior. For each pair of ISIs separated by lag k, the SCC is calculated

as:

ρk =

∑M−k
i=1

(
ji − I1

) (
ji+1 − I1

)(∑M−k
i=1

(
ji − I1

)2∑M−l
i

(
ji+1 − I1

)2 ) 1
2

, l = 0, 1, . . . ,

where I1 is the mean ISI, M are the total number of successive ISIs, and j1, . . . , jM are

the sequences of ISIs in M. The values of ρk are from -1 to 1, where positive numbers are

positively correlated, and vice-versa. When estimated as a function of the ISI at lag k, the

SCC at k = 1 (adjacent ISIs) for strongly negatively correlated spike trains is around -0.5,

and then the magnitudes of the SCCs decay to zero with increasing lag.

4.4 Model Considerations

In implementing stochasticity into a biophysical model, a consideration of the literature

on past implementations on Hodgkin-Huxley and voltage-gated ion channels is addressed.

Three approaches in a stochastic biophysical model were considered: 1) introducing noise in
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the activation gates, 2) modifying V1/2, or 3) modifying a channel’s maximum conductance.

White [68] has described the inaccuracy of the Langevin approaches to the Hodgkin Huxley

model compared to its equivalent MCMC form. However, Goldwyn et al. [66] have revisited

Langevin method-based Hodgkin-Huxley models, where they re-implement the method

originally formulated by Fox and Lu [112], where the Langevin form of the Hodgkin-Huxley

equations were derived. Although the researchers have mathematically derived a Langevin

solution directly from the Fokker-Planck equations of KD and NaT from Markov chains,

they have not applied the approach to simulated data. Goldwyn found that “independent

subunit” and “identical subunit” Stochastic Differential Equation (SDE) models, which retain

the equations of Hodgkin and Huxley, are not mathematically equivalent to Fox and Lu’s

derivation. That is, a generalized form does not employ a Hodgkin-Huxley formalism, is its

proper implementation [66], [70]. With Langevin approaches that retain the Hodgkin-Huxley

equation, noise introduced in biophysical conductances, rather than the dynamic gating

variables, improves accuracy to experimental data [71].

Studies have reported that inactivation of sodium is associated with the change in threshold

[56], [103], [113]. Others claim an outward potassium current is involved [11], [57], [58], [87].

In effect, there is memory in the spike trains (see also [10], [50]). Since the distinction between

an adaptive current and dynamic threshold is clear [3] (see background), the challenge is in

introducing noise into a dynamic threshold that occurs indirectly through the change in the

Hodgkin-Huxley model. However, in vitro slice preparations may not create variability in

the inactivation of sodium due to loss of network effects and change in kinetics from in vivo

conditions [103].
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Figure 4.2: Randomness observed in a Markov-based ion channel model of the NaT current.
Simulation of 100 Markov-chain at 1000 trials. A: Activation of NaT gating across a population
of channels (individual traces are shown in red, average in black). B: Variance in the membrane
voltage resulting from the A, the peak in the variance (dashed line) is -28 mV, which differs
from the expected peak variance as around V1/2 of NaT. C: Mean activation channel noise for
the NaT current. Peak activation (dashed line) is 1/100 normalized conductance. At resting
potential (-65 mV), the peak level of noise drops to 1/300.

4.5 Numerical Simulations: Markov-based Channel Sim-

ulations

The stochastic fluctuation in a single dynamic gating variable, from its normative value,

was estimated from a Markov Chain Monte Carlo simulation (1000 trials). The variance

is calculated from the trials and the variance is plotted against voltage to observe the

channel model’s variance. The average NaT activation gating (Fig. 4.2A, black trace) and

100 individual gates (Fig. 4.2A, red trace) from the Markov-based ion channel simulation

demonstrate the variance in channel gating. The region in the gating that shows the highest
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variance (Figure 4.2B) occurs around V1/2 (-28 mV), which is more depolarized than expected

for typical NaT channel (-45 mV). For 1000 repeated trials, average channel noise from 100

NaT activation gates were estimated and detrended (Figure 4.2C). The peak in noise occurred

at V1/2 (-28 mV) with a normalized conductance of 1/100. Across a membrane voltage range

from -40mV to 0 mV (covering 20 mV on either side of V1/2, i.e., V1/2 pm 20 mV), the channel

noise decreases in the tails to about 3× 10−3. Between -70 and -60 mV, at the level of the

resting membrane potential, the noise in the conductance is very small, at the order around

3.33× 10−3 of maximum conductance.

4.6 Stochastic Implementation Motivation

Recall that the goal of the model is to reproduce stochastic behavior seen in the experimental

data. In the literature, previous work in introducing stochastic behavior in biophysical models

is discussed above. Findings from Schwalger and colleagues [55] have concluded that the

time scale of the adaptive current is more important in determining the serial correlation

coefficients at lag one than the noise terms. Their work describes two models: 1) a perfect

integrate-and-fire model with an adaptive current, and a Hodgkin Huxley-type model with

an adaptive current. In addition, they included additive noise terms in the equation for the

change in voltage and the change in adaptive current. They have found that, in comparison

to a deterministic model, positively correlated noise introduced into the system produces

positively correlated inter-spike intervals and eliminates the negative correlation coefficients

seen in the deterministic case. Thus, a direct effect occurs with their stochastic model, with

statistics of the noise being passed directly to the ISI correlation of adjacent spikes. In other

words, positively correlated noise produces positive SCCs at lag 1. However, Guler [71]

had shown that introducing correlated noise into the channel conductance, rather than the

channel gating equations of the Hodgkin Huxley model, more successfully matches the spiking

behavior of experimental recordings than previous Langevin approaches to a biophysical

43



model.

A report from our lab by Sidhu et al. [10] has demonstrated that correlated noise in

the dynamic threshold can lead to a change in ISI correlations and associated spiking

behaviors, such as burstiness. They have derived a relationship between the correlation

of noise between spikes and their SCCs. Although the dynamic threshold in the spiking

model is mathematical, the underlying mechanism is thought to exist in a voltage gated ion

current. If this so-called adaptation current occurs, then it seems reasonable to introduce

spike correlated/anti-correlated noise into the suspected channel. In the INCF dataset, jitter

in the spike timing is likely affected by the M current, but there are questions of biophysical

plausibility about the implementation of noise. There is a body of literature showing that

modulation of the M-current is due to receptor-mediated or calcium-dependent pathways

(modal gating [114]), and occurs at longer time scales of 0.1 to 10 seconds [19], [115].

Although the mechanisms of the modulation after a spike are not known, we postulate

that modulation, if it were to occur, would be constant between the spikes. Previous work

(Chapter 3) demonstrates that the M currents contribute to the dynamic threshold. Our

approach, as described in the next section, is to alter the maximum conductance of the

neuron after a spiking event has occurred.

4.7 Model Details: Stochastic Hodgkin Huxley Model

The change in the M current’s maximum conductance occurs after each spike. The underlying

biophysical mechanism of the dependent change is attributed to modal gating. In modal

gating, the change in channel opening rate is thought to be modulated by messengers generated

by spike firing [114]. One possible scheme is related to signaling between the sodium channels

and the M current, as speculated by Pan [80]. It may be biophysically possible, although

never experimentally observed, for communication about a spiking occurrence from a large

influx of Sodium ion channels to occur with the M-channels. This mechanism is consistent
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Figure 4.3: Stochastic model implementation a) Spike-triggered membrane voltage at neuron.
Upon activation of fast Sodium (b) alters the opening probability of the M-channel and ξ(sn)
influences activation of the M current. The resulting change in the M-channel permeability
leads to noise in the interspike interval statistics. c) Implementation of the simulation neuron
to a constant step-current stimulus. Overlaid spike-triggered membrane voltage produces
spike jitter governed by ξ(sn)

with the idea of modal gating in addition to the fact that the Nav1 and Kv7.2/7.3 channels

are colocalized via the Ankyrin-G binding protein [80] and proceeds as follows:

Let ξ (sn) be a random variable, a be a constant reflecting the noise correlation between

action potentials, and εn be a white noise process with zero mean and finite variance. During

the rise of NaT activation, the event r = n0 occurs when activation reaches 0.5, and the

following is initiated:

ξ (sn) = a · ξ (sn−1) + ε (sn) (4.1)
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When the activation gating of NaT is greater than 0.5 on the upslope, the following

change in maximum conductance occurs (M-current):

g̃m (r) = gm + ε (sn) (4.2)

where gm is the nominal value of the M-channel maximum conductance.

The process repeats for subsequent action potentials. The parameter a is a feedback

parameter which carries the memory of preceding ISIs. The equation for ξ (sn) is a first-order

autoregressive process, similar to the noise process used by Sidhu et al. [10] to shift the spiking

threshold. My stochastic Minimum Hodgkin-Huxley (MHH) model (Equations 4.1-4.2) is a

straightforward approach to the adjustment of the adaptation current. It contains two free

parameters, “a”, and the variance of ε. A diagram of the implementation is shown in Figure

4.3.

4.8 Numerical Simulation: Noise Introduced into a

Biophysical Model

Introduction of noise into the M-current was achieved by perturbing the maximum conductance

parameter after each spike. After the activation gate of NaT reaches half its maximum value,

the maximum conductance is changed by adding scaled noise to a range of parameters obtained

from the Markov-based simulations and the process repeats for subsequent spikes. A search

across different parameter values in the noise model were compared to the experimental data.

The varying parameters were noise scaling and the correlation parameter. The correlation

parameter ’a’ ranged between -0.9 and 0.9. The parameters selected for the results are: a=0.4,

Var(ε) = 10−4.

The model is given an input of frozen synaptic current stimulus, from the INCF experi-

mental data. The frozen noise stimulus was repeatedly presented to the model neuron for
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Figure 4.4: Accuracy of stochastic model to experimental data. a) raster plot of experimental
data (above, black) and model (below, red) show individual spike variability. b) modified
coincidence metric to evaluate jitter across 13 trials for the model (red) and experimental data
(black). Repeated sets of trials (n=14) of the model were used to measure the consistency of
the model jitter.

a total of 13 trials, and the output is depicted in a raster plot of the spikes (Fig. 4.4A,

red). For comparison the raster plot from the experimental data is also shown (Fig. 4.4A,

black). Full stimuli response for the trials is shown in Appendix (A.2) for reference. The

implemented model’s spiking jitter appears to fit the INCF data quite well, with qualitative

features retained. For example, the 8th spike in the set of spikes in the simulation contains a

failure-to-spike condition in a fraction of the trials. When considering the similarity of the

model to the experimental data, the modified coincidence metric (see Methods for evaluation)

calculates the normalized distance between coincident spikes across all trials. We plot the

metric for different coincidence windows to see where the model fails to capture behavior

seen in the experimental data.

From 1-10 ms of the coincidence window, the model (red) precisely follows the experimental

jitter (black). At values exceeding this range, the model begins to deviate. Next, we asked if

this model responds to injected stimuli as described by Mainen & Sejnowski (1995). Their

work on the behavior of neurons under constant DC step current stimuli and frozen noise of
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increasing variance revealed the following: in the absence of fluctuating input (i.e., DC step

input), the timing consistency of neurons deteriorates and produces decorrelation over time

as the stimuli is presented (i.e., low reliability and precision). However, when frozen noise is

introduced, the reliability and precision of the spike increases for larger noise variance. This

finding has described neurons spike reliably for synaptic input.

Figure 4.5: Consistency in findings of neuron firing reliability. Comparison between findings
of Mainen & Sejnowski, 1995, upon repeated stimulation of a constant step current (a) and
one with added noise (b). A step current alone produces spike timing that decorrelates over
time. Adding noise of sufficient variability produces reliable spike firing. (c) model response
against varying step current amplitudes.

In Mainen & Sejnowski’s Figure 1A, they show that a DC pulse of 150 pA stimulus

produces spiking at a firing rate of 14 Hz that decorrelates over time. In their Figure 1B, with

a ’Gaussian white stimulus’ with a µ = 150 pA and σ = 100 pA, spiking is very precise over

time, across multiple trials. A 900 ms current stimuli is injected into the model neuron and

the membrane voltage, along with the raster for 25 trials are simulated. In our model, under
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DC stimuli at 150 pA, the model does not produce the same firing rate (2 Hz, see Fig. 4.5C).

However, if we increase amplitude to match firing rate (400 pA), the model reproduces spiking

behavior similar to their Figure 1A (Fig. 4.5A). Due to differences in stimulation amplitude

attributed to experimental preparation, noise was scaled by its coefficient of variation. For

output under frozen noise, white noise was filtered with an exponential filter, in a manner

identical to the described paper: τ = 3 milliseconds, µ = 400 pA, σ = 183 pA. For frozen

noise input (Fig. 4.5B), precise spike times are observed, consistent with previous findings.

To test for reliability in the metric and model, 10 sets of 13 trials of the model to the INCF

data was subsequently run to observe the variation in the model, and confirms that its average

jitter is not trial-dependent.

Finally, to observe the model’s effect on spike-timing correlations, we compared ISI serial

correlation coefficients to the theoretical as described by Sidhu et al. [10]. In their work,

correlated noise (“a” parameter) is related to a neuron’s serial correlation coefficient by the

following equation:

ρk =
ak−1 (1− a)

2
, k ≥ 1

where k is the kth lag from any given ISI and is denoted here as the theoretical value of ρ.

This equation can be plotted across values of “a” between -1 and 1 for any k. In practice,

estimating the value of ‘a’ in experimental data requires a large amount of spike times under

constant current steps. In the model simulation, calculation of ISI correlations requires many

spikes, and a step current stimulus of sufficient amplitude to produce a firing rate of around

10 Hz was simulated for 200 seconds. The calculated correlation coefficient of the first lag

(ρ1) plotted against “a” and compared to the theoretical value obtained from the equation

above (Fig. 4.6).

Altering the maximum conductance in M-current produces negative ISI correlations

compared to theoretical values. For the plot, the noise correlation (a) along abscissa ranged

from -0.9 to 0.9 and ρ1 is the correlation between a given ISI and the following ISI. The

theoretical value of ρ1 (Figure 4.6, black line) is obtained from the equation provided by
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Sidhu et al. [10]. Noise in the maximum conductance of the M-current with a noise scaling

value of 0.01 shows that I can reproduce the first ISI correlation accurately for a range of

“a” values, even for a small perturbation in the model parameters. Note that the sign of the

correlation variable “a” determines the value of ρ1 (Fig. 4.5). When a < 0, ρ1 < −0.5, and

when a > 0, ρ1 > −0.5. This was reported by Sidhu et al. [10]. However, when evaluating

the difference in ISIs, the jitter for the model (13 ms) differs from the experimental data

(11.97 ms, not shown).

Figure 4.6: The stochastic model describes a stochastic threshold model proposed by Sidhu
et al. a) a constant step current was used as the input stimulus to the model and run for
200 seconds to obtain around 3500 spikes. The serial correlation coefficients were calculated
from the spike times, the first SCC (ρ1) was plotted for varying “a” and overlaid with the
expected value, “a” estimated by Sidhu et al. [10]

50



4.9 Discussion

The model used in this chapter is an extension of the deterministic model described in

chapter 2. The approach in development of the model aims to represent jitter in real neurons,

constrained to biophysical processes that are known to occur. The effect of the M-current in

membrane excitability is well known. Further, the M-current is modulated by many different

pathways [19] and is implicated in metabolic regulation of spiking [11], [116]. The choice

of modifying the maximum conductance of the M-current, based on the activity of NaT is

consistent with the ideas proposed in modal gating of the M-current. The mechanisms of

modal gating and how it modulates the M-current are not fully known. What is known is

that the M-current is modulated through receptor binding and by intracellular calcium. This

is of particular interest since the KCNQ channel is linked to the sodium currents through

the anchoring protein. This link, we speculate, can introduce a correlated noise after a spike

occurs. With the M-channel partially conducting or fully opening there is a possible way

that it can alter its opening and closing rate. The M-current can switch between two or

three modes, at rates lower than those found in the traditional open and close scheme of the

channel. This rate can be influenced experimentally by introducing acetylcholine into the

cell [114], [117]. How this affects excitability is partially known from the work of Brown [13]

where excitability of a cell increases for increasing concentration via M-current suppression.

Some mechanisms of interest are the PIP2 pathway and intracellular calcium concentration.

In contrast to other ion channels, PIP2 binding leads to an increased activation of the channel.

Nevertheless, the exact mechanisms related to modal gating in relation to spiking are not

known.

The model proposed in this thesis is conjectural, with mechanisms involved in the

regulation of the M-current being responsible for its altered conductance. The results of

the Markov-channel simulation were used to observe the amount of variance across different

voltages by channel noise to estimate the amount of change into, ultimately, the conductance.

The raster shown above Fig 4.5A shows that the model can match the jitter to the
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experimental data. For the 21.49 seconds of noise, a more viable metric is desired. A

coincidence metric is a value from 0 to 1, scaled based on the coincidence window length to

allow a comparison for the complete set of data. The model’s average jitter metric is almost

identical to the experimental data for jitter less than 10 ms and begins to deviate for larger

windows. This indicates that a small change in conductance of the M-current (additive noise

scaled 1/100 of maximum conductance) is plausibly the source of jitter for small time scales.

At larger coincidence windows, there exists spiking jitter in the data that is not factored in

the model.

As previously described, Mainen and Sejnowski [60] had shown that repeated stimulation

by a step current stimulus produces spike jitter precision that decorrelates over time. However,

when a frozen stimulus is used that resembles synaptic activity, repeated trials on the neuron

produce precise spike timing. To confirm the model’s behavior to such types of stimuli, it

is expected that the stochastic model will produce plots identical to that shown by Mainen

and Sejnowski. Metrics discussed in their report, such as precision and reliability, were

excluded due to its large variability from neuron to neuron and would not provide anything

meaningful. In comparing the behavior of the model to noise, differences in stimulus current

amplitude were observed. This difference could be partially explained by the methods of the

experimental recordings. In the data the model was fitted for, the ”liquid junction potential

between the ACSF and the intracellular solution (ICS) was around 12 mV and not corrected

for [2],” indicating that a shunt in the current could have occurred, leading to less current

injected into the neuron. We had applied an ad-hoc correction by matching neural firing rate

and coefficient of variation of stimulus noise. With the correction, the model can reproduce

the findings of Mainen and Sejnowski with our stochastic model.

Finally, a stochastic adaptive current in a Minimum Hodgkin Huxley (MHH) type model

can produce negative correlation behavior as seen in Sidhu et al. [10]. We speculate that a

stochastic adaptive current can produce the behavior seen in a stochastic dynamic threshold

model. The complication is that the Hodgkin Huxley-type model equations are coupled to
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the membrane voltage, and we cannot definitively say that the noise in the M-current is

leading to the negative ISI correlations. Schwalger and colleagues have described that colored

noise will raise the ISI correlation, but this model shows that some positively correlated

noise can still produce negative serial correlation coefficients and is closer to the observations

from [10]. The model’s serial correlation coefficients for lag 1, however, appear to deviate for

noise correlation ’a’ exceeding about 0.6. It is noted that in the dataset of electric fish, noise

correlation values estimated from the data do not exceed 0.6. and ongoing work agrees with

this speculation (data not shown).
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Chapter 5

Summary and Conclusions

The results presented in this thesis have shown that a Hodgkin Huxley-type model containing

4 defined voltage-gated ion channels (NaT , NaP , KDR, and KM), are the minimum number

of channels needed to reproduce spike timing in neurons. A necessary channel in the model,

an outward potassium current or an M-current, describes the dynamic threshold in neurons.

This finding assisted the development of a stochastic extension in the next part of this

thesis, where noise in the dynamic threshold is known to reproduce firing behavior in electric

fish p-type afferents [10]. Findings from this research are consistent with the theory of a

stochastic threshold model. The stochastic element used in this thesis is not described by the

Hodgkin-Huxley equations nor channel noise alone, but from the modulation of a channel

from an indetermined mechanism. The model described in this paper was aimed at action

potential generation in the Axonal Initial Segment, with the goal of fitting spike times on the

basis of the underlying short-term adaptation. Long-term adaptation and its mechanisms are

not considered in this model. In addition, the M-current in spike timing and jitter channels

have a prominent role on membrane excitability and synaptic plasticity. From the results of

this study, an M-current as a channel largely responsible for spike timing and jitter, align

well to the theory of optimal coding.

The model and fitting procedure used in this paper (see [16], [91], [118]) originally included
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calcium channels and various potassium channels. In our work with the model in the rat

cortical neurons, the model would converge to a parameter set which had large errors between

the membrane potential of the recordings and the model. This effect could possibly be due

to the nonlinearity of the Hodgkin Huxley-type model. Therefore, the choice to reduce the

number of channels in the model to limit the number of free parameters in the model was

made. That is, we reduce the model to those only contained in the axon initial segment.

The fitting procedure was challenging, and had required over 90 GB of RAM to fit 1-2

seconds of data over a period of days to complete. Even then, multiple runs had a chance to

converge to a local minimum. The topic of overfitting is a problem in generalizing model

results. The parameters obtained from this model were tuned specifically for the INCF

dataset. The model organism is the p14 rat in layer 5. It is not known if the recordings

are from thick-tufted or thin-tufted neurons. Thick-tufted neurons in juvenile rats share

the same firing behavior as their mature counterpart. They are regular-firing and have less

spontaneous activity. The preparation of the in vitro recordings does not appear to have

prevented multi-synaptic activity, thereby leaving the possibility of network effects. On the

other hand, the INCF dataset was part of a competition with the results of known models

and had made comparison of model performance possible. At the time of the fittings, a

dataset containing individual recordings from all cortical layers was made publicly available

[36]. This preparation had used a high magnesium, low calcium concentration of ACSF, and

partially blocks possible network effects [27], [119]. Attempts at generalization of the model

could make use of a comprehensive dataset. The caveat to this notion is that each neuron

will need to be re-tuned, either by the optimization procedure highlighted by the Abarbanel

group or by hand. Models for spike timing would need to be fit in a neuron-to-neuron basis

[83]. There is no parameter set that accurately predicts spike timing for all neurons, even of

the same type.

Limitations from these findings may be attributed to the Hodgkin-Huxley model itself.

While it is viewed as a biophysical model, is becoming less so with the more information
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discovered about voltage-gated ion channels. The biophysical accuracy of the gating interac-

tions of the Hodgkin-Huxley variables, such as the ball-and-chain model of sodium channels,

has been questioned [43], [120]. In the ball-and-chain model, initial depolarization influences

inactivation of the sodium channel, and there is a coupling with sodium activation that is

not factored into the model.

Nevertheless, we find that the behavior of serial correlation coefficients can be introduced

into a biophysical model with a stochastic M-current, where the noise communicated from the

Sodium channels influences the adaptive current at subthreshold level. Questions this thesis

has left unanswered include whether the stochastic implementation is directly changing the

threshold and if this hypothesis extends to neurons beyond a single dataset in layer 5 cortical

neurons. Most importantly, what is the key specific biophysical mechanism responsible for

such change? In the following section, we suggest some future experiments that might address

these questions.

5.1 Experimental Directions

In consideration to experimental techniques to find support of my model, a search of hypotheses

in the literature of colored noise in membranes raised possibilities of membrane physiology

experiments that may be performed. There exist a body of research that shows evidence

of cooperation of ion channel clusters, within a given area of the cell, to produced colored

noise in the membranes. The resulting effect on the membrane potential produces a memory

component in the cell [121], [122]. However, the hypothesis in the stochastic implementation

in Chapter 4 does not look at the history of the membrane voltage, but the history of spikes.

It is based on a possible interaction between NaT and M-channels. If one were to test this

hypothesis, then a reasonable start would be to compare the conductance of these ion channels

when the interaction would be present and absent. If correlated noise is the consequence of

such an interaction, a voltage clamp experiment that observes the kinetics of NaT and KM
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in a neuron, through pharmacological blockade of other channels, may confirm if correlated

noise (i.e. the “a” parameter in the model) is caused by the interaction or by the membrane

voltage, as suggested by ion cooperation. Alternatively, the introduction of proteases that

degrade the cytoskeleton, particularly the Ankyrin-G binding protein, can be used to weaken

the link between NaT and KM, and observed in voltage clamp experiments. Dynamic clamp

experiments may also be key in distinguishing the source of the correlated noise.

The question of suitable preparation arises. In order to retain the relative distribution of

ion channels, as observed in the AIS, I speculate that an in-vitro whole cell patch clamp of

the AIS region can demonstrate desired results. However, targeting a specific region in the

axon without labeling and imaging the AIS would be a challenge. Another possibility is to

perform a preparation from an artificial expression of the AIS ion channels and scaffolding

proteins in the Xenopous oocyte. The specifics of such a preparation are a challenge of itself,

as the density of M-type channels are 10 channels per µm2 and Sodium channels are 110-300

per µm2 [22], but may prove an interesting endeavor into uncovering the behavior of ion

channel interactions only speculated in this thesis.

5.2 Computational Directions

On the computational side, the mechanism in consideration for stochastic spike firing is the

possible communication between Sodium and M-type channels, resulting in the modulation

of the M-current. I have intentionally simplified the stochastic behavior due to many

unknowns about modulation in-vivo. The M-current is believed to be regulated by many

different pathways [114], which are not expressed in the Hodgkin-Huxley equations. A review

of biophysical models (see [43]) addresses morphological neuron models and details the

insufficiencies of them and discuss many factors, such as heterogeneity of ion channel kinetics

within a neuron, use of the Hodgkin-Huxley equations and ignoring biochemical network

properties. Their consideration to future experimentalists lays out a comprehensive approach
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of capturing spiking behavior and individual ion kinetics. While the model in this thesis

does not look at morphological or multi-compartment models, I’m inclined to believe Almog

and Korngreen’s proposal to explore the realm of molecular dynamics to understand neural

coding [43].

Possible future directions in this work can turn toward the behavior of ion channels at

a microscopic level, perhaps through Markov chain models employing modal gating [117],

where interactions beyond those described in the Hodgkin-Huxley model can be investigated.
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Appendix A

Supplementary Figures

Figure A.1: Minimum Hodgkin-Huxley Model Parameters for NaT (transient sodium), NaP
(persistent sodium), KDR (potassium delayed rectifier), and KM (M-current). Equations
follow the style of the model described in Nogaret et al [14]. It is important to note that
the parameters are not correct for junction potential between the ACSF and intracellular
solution. In the figure, the suffix “act” is associated with a channel’s subunit activation, and
“ina” is its inactivation.
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Figure A.2: Complete data of Stochastic MHH model simulations (red) compared to INCF
dataset (black). Raster plots appear to show similar jitter to the model, but it is difficult to
evaluate the model’s ability to replicate jitter seen in the experimental data. Instantaneous
firing rates, calculated from the PSTH described by [60], again show some similarities between
the two. However, not much can be known from a comparison of either result.
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